

Dyalog
for Windows

APLMON User Guide
 Experimental Functionality

Dyalog Limited

Minchens Court

Minchens Lane

Bramley

Hampshire

RG26 5BH

United Kingdom

tel: +44 (0)1256 830030

fax: +44 (0)1256 830031

email: support@dyalog.com

http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited

Copyright 1982-2014

http://www.dyalog.com/

What is APLMON

APLMON is a functionality in the interpreter that, when enabled, will monitor APL

primitives, and output the data into a CSV file (Comma Separated Values : a standard

way to store a table of data in a plain text file, where each line is a row, and cell values

are separated by one comma).

It was added to Dyalog APL Version 12.0. Note that it is still an experimental feature,

and its specifications might change over time. However, be assured that, when not

enabled (which is the default), it has no impact on the interpreter.

When running an APL application with APLMON enabled, it will log every primitive

usage: how many times it was called, how much time was spent running it, and which

arguments it was processing.

So this tool will point out which primitive usages your application hammers the most, to

help Dyalog implementers decide where optimizations are worth doing.

Unfortunately, APLMON will not give you any application-side information, which is

why APL programmers will prefer functions such as ⎕PROFILE or cmpx from the

dfns workspace to determine which parts of the application eats the CPU.

However, APLMON might be useful for APL programmers to check that their

application use primitives as expected - for example, a mathematical application could

be expected to spend most of its time using arithmetic function - or that it doesn't do

useless computation such as disclosing simple scalars. Dyalog too would be interested

in receiving APLMON output in order to determine where to concentrate performance

enhancement work.

How to use APLMON

To enable APLMON, use the APLMON Root Method, passing as argument the name of

the file where the data will be output. That file will be overwritten whether it exists or

not. An empty file name disables APLMON.

Every time you call the method, if it was previously enabled, it outputs the data to the

file that was set. It returns its name as a shy result. The data is also output when signing

off the interpreter.

 +2 ⎕NQ '. ' 'APLMON' 'C:\aplmon\myapplication.csv'

 ⍝ We can see that APLMON was disabled

⍝ so no output file was created.
⍝ Let’s run the application to monitor :

 MyApplication
 ⍝ Now, let’s output the data and disable APLMON
 +2 ⎕NQ '. ' 'APLMON' ''
C:\aplmon\myapplication.csv

 ⍝ The data has been output to that file

This system allows you to log applications in separate files :

 ⍝ Enable APLMON for my first application :
 +2 ⎕NQ '. ' 'APLMON' 'C:\aplmon\myapplication1.csv'

 MyApplication1
 ⍝ Flush the data of my first application
 ⍝ and disable APLMON :
 +2 ⎕NQ '. ' 'APLMON' ''
C:\aplmon\myapplication1.csv
 ⍝ Do some non-monitored stuff

InitialiseMyApplication
 ⍝ enable APLMON for my second application :
 +2 ⎕NQ '. ' 'APLMON' 'C:\aplmon\myapplication2.csv'

 MyApplication2
 ⍝ Signing off will flush the data

⍝ of my second application :
)OFF

Notes about time mesurement

On modern computers, accurate time measurements not trivial, due to several reasons :

 most operating systems are not real-time systems

 complex hardware (and software) generates lots of interruptions

 multi-core and variable-frequency processors invalidates clock count measurements

This is why, to help accuracy, any time measurement (be it with APLMON,

⎕MONITOR, or any other tool) should be done with as few other running processes as

possible, and on a process that has a higher priority than them.

However, when doing enough measurements, even though they are still not perfectly

accurate, their bias tends to level out so that the relative accuracy gets better. As long as

we are interested in relative rather than absolute CPU consumption, it makes time

measurements acceptable. This is why measurements get very accurate when in the

order of magnitude of a second, be it in one or multiple shots.

Finally, it should be noted that the APLMON monitoring overhead will make the

interpreter run about 3 times slower on Windows and about 2 times slower on UNIX

(which is spent outside the measurement and therefore will not affect relative accuracy

of the measurements).

After you start the interpreter, launch the task manager: Start → Execute... → type

“taskmgr” and hit enter. Then in the “Processes” tab, select “dyalog.exe”, right-click on

it and set its priority to “AboveNormal”, which is what we need because all other user

processes are in priority “Normal” by default. We don't need higher priority though, and

it is not desirable because the interpreter might hang the operating system and make

user control difficult.

Details on the APLMON output

The columns of the APLMON output file are :

token Name of the primitive's token (symbol, if you prefer)

lfn, rfn Name of the left and right operand's token, if the primitive was an

operator

ltype, rtype Data type of the left and right arguments of the function

lrank, rrank Rank of the left and right arguments of the function.

Arrays of rank greater or equal to 3 will be logged as « 3+ »

lshape, rshape Range of the left and right argument sizes.

A range is made of two numbers separated by a « < » sign. The

real size is between these two numbers. So arguments with similar

sizes are grouped together.

hitcount Number of calls

time Time spent by the primitive, in seconds

These fields are empty if not applicable (which will appear in the CSV file as two

consecutive commas). Examples :

APL expression token lfn rfn ltype rtype lrank rrank lshape rshape

⎕AV []AV

⍳1000 iota int16 0 1<1

1↑¨'A'
'Poetic'
'Litterature'

each take int8 nested 0 1 1<1 2<4

APLMON measures time only for the “atomic” calls (i.e. not complex expressions or

user-defined functions). Primitives that evaluate APL expressions (such as ⍎, ⎕FIX,

⎕NEW) don't appear. For example :

 foo←{1+⍵} ⋄ foo¨(N⍴1) : the each will not appear in the log, but only the

primitives sub-called by foo : so + will appeared as being called N times

 +.×/(N⍴1) : the / will not be measured, but +.× will appeared as called (N-1)

times.

This ensure that time measurements don't overlap and therefore can be compared.

Some non-atomic expressions will be logged though, and the non-primitive parts will be

logged as “non-primitive”, e.g. the left operand in 1∘+.

Special syntaxes

APL has some special syntaxes that are, unavoidably, special-cased in APLMON.

Simple Indexing (where the indexed is semicolon-separated simple arrays)

The token is “simple indexing”, there are no lfn or rfn, the left argument is the indexed

array, and the right argument is as representative of the indices as possible. We

(arbitrarily) chose to make it appear as an array, the rank of which is the number of

specified subscripts, and the shape of which is the number of items in these subscripts.

Examples :

APL expression token lfn rfn ltype rtype lrank rrank lshape rshape

'abcd'[3 3⍴3] simple

indexing

 unicode8 int8 1 1 2<4 5<9

(2 2⍴4)[1;] simple

indexing

 int8 int8 2 1 2<4 1<1

Reach and Choose Indexing (where the indexer is a nested array)

The token is “reach indexing”, the left argument is the indexed array, and the right

argument is the indexer array.

Axis specification

The token is “axis”, lfn is the function whose axis is specified, rfn is “non-primitive”, as

it is the axis specification constant.

Assignment

The token is “left arrow” and it is considered as a monadic function.

Modified Assignment

The token is “left arrow”, lfn is the modifier function, rfn is empty, larg is the modified

value and rarg the modifier value.

Indexed Assignment

The token is “indexed assignment”, lfn and rfn are empty, larg is the indexed array, rarg

is the new value.

Modified Indexed Assignment

The token is “indexed assignment”, lfn is the modifier function, rfn is empty, larg is the

indexed array, rarg is the new value.

Selective Assignment

The token is “selective assignment”, lfn and rfn are empty, larg is the indexed array,

rarg is the new value.

Modified Selective Assignment

The token is “selective assignment”, lfn is the modifier function, rfn is empty, larg is the

indexed array, rarg is the new value.

Stranding

The token is "stranding", larg and rarg are the arrays being stranded together.

Name Lookup

The token is "name lookup". This represents time spent in the parser looking up names

in namespaces.

Defined Function Initialisation

The token is "tradfn init". This represents time spent on entry to a traditional defined

function.

Selective Assignment Pre-scan

The token is "selassi pre-scan". This represents extra time spent in the parser to analyse

the syntax of a selective assignment expression.

Control Structures

The token is "control structures". This represents time spent processing control

structures in a traditional defined function.

Namespace dot syntax

The tokenis “nsref”, lfn and rfn are right and left operands respectively, larg and rarg are

as expected.

Example : ⎕SE.⎕EX 'var' : token is “nsref”, lfn is “[]EX”, rfn is “non-primitive”,

larg is empty, rarg is the character vector.

	What is APLMON
	How to use APLMON
	Notes about time mesurement
	Details on the APLMON output
	Special syntaxes

