
FUNCTION/OPERATOR SYNTAX
X Y left and right arguments of a function/operands of an operator – any array
M N – numeric array
I J – integer array
A B – Boolean array
C D – character array
f g h functions
⍺ ⍵ left and right arguments of a function train

NS name or reference to namespace

[ax] indicates functions that can have an axis specified
[ct] indicates a dependency on ⎕CT/⎕DCT
s/v/m indicates highest rank allowed is that of a scalar/vector/matrix

SELECTED ABBREVIATIONS
actions ⎕NQ action: 0 add to queue, 1 process immediately, 2 perform default action,
 3 invoke OLE method, 4 signal ActiveX event
ax_mx three-column matrix containing userID, aggregated file operation numbers
 and permission numbers
bytes byte count
cn component number
conargs constructor arguments
dir|file the name of a directory/file
etype type of new object; one of ∇ (function/operator, the default value),
 ∊ (vector of character vectors), - (character matrix), ⍟ (namespace script),
 → (simple character vector), ○ (class script) and ∘ (interface)
name the name of a variable, function or operator in the active workspace
nvpairs one or more name/value pairs
object|ns a name or a ref
pn component file pass number
pnames character scalar or vector containing file property names
ref a reference to a namespace or object
regex a Perl-Compatible Regular Expression (PCRE)
rw read or read/write
tdno thread number
tn tie number for files; use 0 to generate number on tie/create
trans transformation function or numeric codes to apply to matched expressions
type internal data type – see TYPE CODES below

TYPE CODES
Constructed by prefixing one of the following numbers with the number of bits per element:

0 Unicode char, 1 Boolean, 2 Classic (⎕AV based) char, 3 Integer, 5 Floating point,
6 Pointer to Object or Nested Array, 7 Decimal floating point, 9 Complex.

Examples: 80 = 1-byte Unicode char, 163 = 16-bit integer, 645 = double-precision float
N.B. Pointers are reported as 326 in both 32-bit and 64-bit systems

NAME CLASSES (⎕NC and ⎕NL)
 2 Array 3 Functions 4 Operators 9 Spaces

.1 2.1 Variable 3.1 Traditional 4.1 Traditional 9.1 Namespace

.2 2.2 Field 3.2 dfns 4.2 dops 9.2 Instance

.3 3.3 Derived/Primitive 4.3 Derived/Primitive

.4 9.4 Class (OO)

.5 9.5 Interface (OO)

.6 2.6 External/Shared 3.6 External 9.6 External class

.7 9.7 External interface

PRIMITIVE FUNCTIONS

PRIMITIVE FUNCTIONS continued
NON-SCALAR FUNCTIONS
NON-SCALAR MATHEMATICAL

 Syntax Result Implicit Args
 ⌹Nm Matrix inverse of Nm (square Nm)

 ⌹Nm Matrix pseudo-inverse of Nm (over-determined Nm)
Mm⌹Nm Multiply Mm with inverse of Nm
 M⊤N Encode value N in number system M

 M⊥N Decode: Evaluate N in number system M

ARRAY PROPERTIES

 Syntax Result Implicit Args
 ⍴Y Shape: Length of each axis of Y

 ≡Y Depth: Maximum level of nesting in Y (-ve if uneven) ⎕ML
 ≢Y Tally: Number of items in leading axis

STRUCTURAL
 Change structure, typically keeping all items
 Syntax Result Implicit Args

 ⊂Y
 ⊆Y

Enclose: Scalar containing Y
Nest: Y if already nested, else scalar containing Y

[ax]

 ↑Y Mix: Remove nesting (⎕ML 1) ⎕ML, [ax]
 ↓Y Split: Nest sub-arrays [ax]
 ∊Y Enlist: Simple vector from elements of Y (⎕ML 1) ⎕ML
 ,Y Ravel: Reshape into a vector [ax]
 ⍪Y Table: Reshape into 2-dimensional array

 ⌽Y Reverse last axis of Y [ax]
 ⊖Y Reverse leading axis of Y [ax]
 ⍉Y Transpose: Reverse order of axes of Y

 Iv⍴Y Reshape Y to have shape Iv
 I⌽Y Rotate vectors along last axis of Y [ax]

 I⊖Y Rotate vectors along leading axis of Y [ax]
Iv⍉Y Reorder the axes of Y ⎕IO
 X,Y Catenate: Join along last axis [ax]
 X⍪Y Catenate First: Join along leading axis [ax]

INDEX GENERATORS

 Syntax Result Implicit Args
 ⍳Jv
 ⍸B

Indices of all items of array of shape Jv
Indices of all 1s in B

⎕IO
⎕IO

 ⍋Y Upgrade: Indices to reorder Y ascending ⎕IO
 ⍒Y Downgrade: Indices to reorder Y descending ⎕IO
 X⍳Y
 X⍸Y

Index of: Indices in X of items of Y
Indices of items of Y in intervals with cut-offs X

⎕IO, [ct]
⎕IO

Is?Js Deal: Is distinct items from ⍳Js ⎕IO, ⎕RL
 C⍋D Upgrade using collation sequence C ⎕IO
 C⍒D Downgrade using collation sequence C ⎕IO

SET FUNCTIONS
Syntax Result Implicit Args
 ∪Yv Unique: Distinct items of Yv [ct]
 X∊Y For each item of X, 1 if found in Y, else 0 [ct]
 X⍷Y Occurrences of entire array X within Y [ct]
 X≡Y Match: 1 if X is identical to Y, else 0 [ct]
 X≢Y Not Match: ~X≡Y [ct]
Xv~Y Without: (~Xv∊Y)/Xv [ct]
Xv∪Yv Union: Xv,Yv~Xv [ct]
Xv∩Yv Intersection: (Xv∊Yv)/Xv [ct]

PRIMITIVE FUNCTIONS continued

SELECTION
Select items from an array

Syntax Result Implicit Args
 ⊃Y First item of Y (⎕ML 1) ⎕ML, [ax]
Iv⊃Y Reach into Y along path given by Iv ⎕IO
Iv⌷Y Index Y using indices Iv ⎕IO, [ax]
Iv↑Y Take Iv items along axes of Y [ax]
Iv↓Y Drop Iv items along axes of Y [ax]
Iv/Y Replicate along last axis of Y [ax]
Iv⌿Y Replicate along leading axis of Y [ax]
Iv\Y Expand last axis of Y [ax]
Iv⍀Y Expand leading axis of Y [ax]
Av⊂Y
Mv⊆Y

Partitioned enclose of Y according to Av (⎕ML 1)
Partition Y according to Mv

⎕ML, [ax]
[ax]

DATA CONVERSION
Syntax Result Implicit Args
 ⍎Dv Execute: Result of expression Dv
 ⍕Y Format: Character representation of Y
NS⍎Dv Execute Dv within namespace NS
Iv⍕Y Format Y using (width, decimals) pairs Iv

IDENTITY FUNCTIONS
Return an argument unchanged

Syntax Result Implicit Args
 ⌷Y Materialise items of Y in workspace
 ⊣Y Same: Y
 ⊢Y Same: Y
X⊣Y Left: X
X⊢Y Right: Y

DFN SYNTAX
{⍺ function ⍵} {⍺⍺ operator ⍵⍵} : guard
 ⍺ left argument ⍺⍺ left operand :: error guard
 ⍵ right argument ⍵⍵ right operand ⍺← default left argument
 ∇ self reference ∇∇ self reference 1:s← shy result

FUNCTION TRAINS
 (gh)⍵ → g(h⍵) ⍝ monadic atop
 ⍺(gh)⍵ → g(⍺h⍵) ⍝ dyadic atop

 (fgh)⍵ → (f⍵) g(h⍵) ⍝ monadic fgh fork
 ⍺(fgh)⍵ → (⍺f⍵) g(⍺h⍵) ⍝ dyadic fgh fork

 (Xgh)⍵ → Xg(h⍵) ⍝ monadic Xgh fork
 ⍺(Xgh)⍵ → Xg(⍺h⍵) ⍝ dyadic Xgh fork

PRIMITIVE OPERATORS
MONADIC

Syntax Result
{Is}f/Y Reduce: f between all items of Y (in groups of Is) on last axis
{Is}f⌿Y Reduce First: f between all items of Y (in groups of Is) on first axis
 f\Y Scan: f between items of Y in progressively longer vectors along last axis
 f⍀Y Scan First: f between items of Y in progressively longer vectors along first axis
 {X}f¨Y Each: f on items of Y or between items of X and Y
 Xf⌸Y
 f⌸Y

Key: f on items of Y grouped by unique X values
Key: f on first axis indices of Y grouped by unique Y values

 {X}f⍨Y Commute: same as YfX (or YfY if no X specified)
 {X}f&Y
{X}(Ns⌶)Y

Spawn: f on Y (or between X and Y) in a new thread
I-beam: Call experimental system-related service Ns

DYADIC

Syntax Result
{X}(f⍤r)Y
 (f⌺Jm)Y

Rank: f on or between trailing rank-r subarrays
Stencil: f on (possibly overlapping) rectangles of Y

{X}(f⍣g)Y Power: iterates f (or X∘f) on Y until condition YgfY (or YgXfY) is true
{X}(f⍣Js)Y Power: f (or X∘f) on Y Js times
 Xf.gY Inner Product: f / g between trailing vectors of X and leading vectors of Y
 X∘.gY Outer Product: g between each item of X and every item of Y
 f∘gY Compose (I): f on the result of g on Y, that is, fgY
 Xf∘gY Compose (IV): X∘f on the result of g on Y, that is, XfgY
 X∘gY Compose (II): g between X and Y, that is, XgY
 (f∘Y2)Y1 Compose (III): f between Y1 and Y2, that is, Y1fY2
{X}(f⍠Zv)Y Variant: f qualified by Zv on Y (or between X and Y)
 (X@N)Y At: use values in X to replace positions N in Y
{X}(f@N)Y At: apply f (or X∘f) to modify positions N in Y
 (X@g)Y At use values in X to replace positions identified by Boolean mask (gY) in Y
{X}(f@g)Y At: apply f (or X∘f) to modify positions identified by Boolean mask (gY) in Y

CONTROL STRUCTURES
:For var :In|:InEach ax ⋄ block ⋄ :EndFor

:Hold tkn ⋄ block ⋄ :Else ⋄ block ⋄ :EndHold

:If bx ⋄ block ⋄ :ElseIf bx|:Else ⋄ block ⋄ :EndIf

:Repeat ⋄ block ⋄ :Until bx ⋄ :AndIf bx|:OrIf bx

:Repeat ⋄ block ⋄ :EndRepeat

:Select ax ⋄ :Case val|:CaseList val ⋄ block ⋄ :Else ⋄
 block ⋄ :EndSelect
:Trap ecode ⋄ block ⋄ :Case ecode|:CaseList ecode ⋄ block ⋄
 :Else ⋄ block ⋄ :EndTrap

:While bx ⋄ block ⋄ :AndIf bx|:OrIf bx ⋄ block ⋄ :EndWhile

:While bx ⋄ block ⋄ :AndIf bx|:OrIf bx ⋄ block ⋄ :Until bx

:With ns ⋄ block ⋄ :EndWith

block one or more APL statements to be executed
ax an expression returning an array
bx an expression returning a single Boolean value (0 or 1)
ecode an integer scalar or vector containing the list of event codes to be handled
ns a namespace within which actions will be performed
tkn the tokens that must be acquired before the thread can continue
val an expression to compare with the array returned by <ax>
var one or more loop variable name
:Continue – start next iteration of surrounding :For, :Repeat or While
:Leave – terminate :For, :Repeat or While
:Return – equivalent to →0

SCALAR FUNCTIONS
Scalar functions are pervasive, apply item-wise and, when dyadic, respond to the axis operator

MONADIC
Syntax Result Implicit Args

 +Y Conjugate ('Identity' if Y not complex)
 -N Negate: 0-N
 ×N Direction ('Signum' if Y not complex)
 ÷N Reciprocal: 1÷N ⎕DIV

 ⌊N Round down to integer [ct]
 ⌈N Round up to integer [ct]
 |N Magnitude (absolute value)

 *N e raised to the power N
 ⍟N Natural logarithm of N
 ○N pi times N
 !N Factorial (Gamma function of N+1)
 ?J

Random number selected from ⍳J
 (when J=0, a real number from <0,1>)

⎕IO, ⎕RL

 ~B Logical Inverse: 0=B

DYADIC

 Syntax Result Implicit Args
 M+N Add N to M

 M-N Subtract N from M
 M×N Multiply M and N
 M÷N Divide M by N ⎕DIV

 M|N Residue after dividing N by M [ct]
 M*N M raised to the power N

 M⍟N Base-M logarithm of N
 M⌈N Maximum of M and N
 M⌊N Minimum of M and N
 I○N Circular functions1
 M!N Number of selections of size M from N (Beta fn)
 M∧N Lowest Common Multiple of M and N [ct]

 M∨N Greatest Common Divisor of M and N [ct]
< ≤ ≥ > Numeric comparisons2 [ct]
 = ≠ General comparisons2 [ct]
∧ ∨ ⍲ ⍱ Boolean functions3

1 Circular functions (angles in radians)
(-Is)○N Is Is○N

 (1-N*2)*.5 0 (1-N*2)*.5
Arcsin N 1 Sin N
Arccos N 2 Cos N
Arctan N 3 Tan N

(N+1)×((N-1)÷N+1)*.5 4 (1+N*2)*.5
Arcsinh N 5 Sinh N
Arccosh N 6 Cosh N
Arctanh N 7 Tanh N

-8○N 8 (-1+N*2)*.5
N 9 <real N>

+N 10 |N
N×0J1 11 <imaginary N>

*N×0J1 12 <phase of N>

3 Boolean functions
 A←1 0 0 1
 B←1 0 1 0

A∧B 1 0 0 0
A∨B 1 0 1 1
A⍲B 0 1 1 1
A⍱B 0 1 0 0
 ~B 0 1 0 1

2 Comparisons
 Comparisons return:
 - 1 if proposition is true
 - 0 if proposition is false

SYSTEM COMMANDS
The following system commands produce lists of specific types of names in the current
namespace:
)CLASSES,)EVENTS,)FNS,)INTERFACES,)METHODS,)OBJECTS,)OBS,)OPS,
)PROPS and)VARS. All these accept a starting letter for the list as an optional argument.

Command Description
)CLEAR Clear active workspace
)CMD cmd Execute cmd (cmd is mandatory on Windows, optional on UNIX)
)CONTINUE Save active workspace as CONTINUE and terminate session
)COPY ws {nms} Copy (selected) contents of workspace ws to active workspace
)CS {space} Change current namespace
)DROP {ws} Erase file containing workspace ws
)ED {etype} nms Open Editor for named objects of type etype
)ERASE nms Delete named objects from the active workspace
)HOLDS List tokens currently held (acquired by :Hold)
)LIB {folder} List workspaces either on WSPATH or in folder
)LOAD {ws} Replace active workspace with workspace ws
)NS {name} Create new global namespace called name
)OFF Terminate the session
)PCOPY ws {nms} As)COPY but does not overwrite existing objects
)RESET {n}

Reset state indicator and empty event queue/clear top n
suspensions

)SAVE {ws} Save active workspace, optionally with new name ws
)SH cmd Synonym for)CMD
)SI {n} {-tid=tdno} Display (first n /last if n<0 lines of) state indicator (for thread tdno)
)SIC Synonym for)RESET
)SINL{n} {-tid=tdno}

Display (first n /last if n<0 lines of) state indicator (for thread tdno)
with local names

)TID {tdno} Switch to thread tdno or report current thread number
)WSID {ws} Set or report the name of the active workspace
)XLOAD {ws} Load workspace ws without executing ⎕LX

SYSTEM VARIABLES

STATE SETTINGS AFFECTING BEHAVIOUR OF PRIMITIVE FUNCTIONS

Possible Values Default Description
⎕CT ←(0 to 2*¯32)
⎕DCT←(0 to 2*¯32)

1E¯14
1E¯28

Maximum ratio between two numbers considered equal
 (⎕CT/⎕DCT when ⎕FR = 645/1287 respectively)

⎕DIV←0|1 0 Set to 1 to return 0 on division by zero
⎕FR ←645|1287 645 Specifies the result type of floating-point computations
⎕IO ←0|1 1 Specifies whether array indices are counted from 0 or 1
⎕ML ←0|1|2|3 1 Degree of compatibility with IBM APL2 (from 0=low to 3=high)
⎕PP ←int (1-34) 10 Number of significant digits in the display of numeric output
⎕RL ←seed RNG

⍬ 1 Seed and Random Number Generator used by Roll/Deal to
generate random numbers

SELECTED ERROR CODES
0 Any 1-999 11 DOMAIN ERROR 1000 Any 1001-1006
1 WS FULL 12 HOLD ERROR 1001 STOP VECTOR
2 SYNTAX ERROR 16 NONCE ERROR 1002 WEAK INTERRUPT
3 INDEX ERROR 18 FILE TIE ERROR 1003 INTERRUPT
4 RANK ERROR 19 FILE ACCESS ERROR 1005 EOF INTERRUPT
5 LENGTH ERROR 20 FILE INDEX ERROR 1006 TIMEOUT
6 VALUE ERROR 21 FILE FULL 1007 RESIZE
7 FORMAT ERROR 22 FILE NAME ERROR 1008 DEADLOCK
10 LIMIT ERROR 24 FILE TIED

SYSTEM NAMES
TOOLS AND ACCESS TO EXTERNAL UTILITIES

captured_output← ⎕CMD cmd Execute Microsoft Windows cmd
r← ⎕CSV data Convert CSV data data to APL array

r←data {header} ⎕CSV format_spec Convert APL array to CSV data
r←type ⎕DR x Interpret internal representation as array of type type
type← ⎕DR x Return internal data type (type) of x

r←{format_spec} ⎕FMT x Convert x into character matrix according to spec
r←{flag} ⎕JSON data APL array from (flag=0) or to (flag=1) JSON text

name←{type}{shape} ⎕MAP file {rw} {offset} Associate name with mapped file (from offset)
{name}←{name} ⎕NA fn_desc Associate name with external DLL function

r←{tn} (reg_ex ⎕S trans) text Search text for PCRE reg_ex returning trans
 (optional tn to spool output to native file)

r←{tn} (reg_ex ⎕R trans) text Replace text selected by reg_ex using trans
captured_output← ⎕SH cmd Execute UNIX shell cmd

r←{encoding} ⎕UCS vec map chars to/from Unicode code points
 ⎕USING ←ns_specs Set search path for .NET Namespace(s)

valid nums←{seps} ⎕VFI text Validate numeric input: returns Boolean validity mask
 and numeric vector of converted input

r←{xml_options} ⎕XML data XML string ←conversion→ APL array

SESSION INFORMATION/MANAGEMENT
r← ⎕AI User number, compute, connect, keying time (ms)

user_name← ⎕AN User (login) name
 ⎕CLEAR Clear the active workspace

{names} ⎕CY file Copy (optionally selected) names from saved ws
{num}← ⎕DL num Delay and return seconds actually delayed

 ⎕LOAD file Load saved workspace
 ⎕OFF Terminate the APL session
 ⎕PATH ←nss Set search path for functions and operators

 (blank-separated list of namespace names)
{r}←{flag} ⎕SAVE file Save active ws in file with (with stack if flag=0)

 0 returned on reload of saved ws, else 1
 ⎕SE Session object

numvec← ⎕TS Current time (y m d h m s ms)

MANIPULATING FUNCTIONS AND OPERATORS
r←{selector} ⎕AT names Syntactical attributes of named functions or operators

r← ⎕CR name Source of function or operator as a character matrix
{names}←{types} ⎕ED names Open one or more objects (names) in the editor

{boolvec}← ⎕EX names 1 if each name is now free for use, else 0
{r}← ⎕FX cr|nr|vr|or Name of fn or op defined from its matrix, nested,

 vector or object representation (or failing line no)
{level} ⎕LOCK name|ref Hide source and optionally disallow suspension

r← ⎕NR name Source of function or operator as a nested vector
state|data←{settings} ⎕PROFILE action "Profile" CPU or elapsed time consumption of code

names← ⎕REFS name List the names referenced by a function
{linenos}←{linenos} ⎕STOP name Enable/report the current state of stops for a function
{linenos}←{linenos} ⎕TRACE name Enable/report the current state of tracing for a function

r← ⎕VR name Source of function or operator as a simple vector

NAMESPACES AND OBJECTS

 ⎕BASE.name Invoke the base class definition of name
class_hierarchy← ⎕CLASS ref Class hierarchy for a class|instance

ref←{class|interface} ⎕CLASS instance Extract specific interface to an instance
{old_ns}←{names} ⎕CS ns Switch to a ns, optionally exporting names

old_df← ⎕DF char_array Set the display form of the current space
{ref}←{flags} ⎕FIX source Define objects from source (vector of vectors or file

 name starting with file://)
refs← ⎕INSTANCES class Current instances of class

instance← ⎕NEW class {conargs} Create an instance of class
{me|ref}←{name} ⎕NS names|ns Create (optionally named) namespace copying

 names or contents of ns into it
script← ⎕SRC ref The source code of a ref

ref← ⎕THIS Reference to the current namespace

SYSTEM NAMES continued
COMPONENT FILE FUNCTIONS

cn←x ⎕FAPPEND tn {pn} Append x to end of file (optional passnumber)
r← ⎕FAVAIL 1 if file system is available, else 0

cns←{fchk_opts} ⎕FCHK file Inspect and optionally repair file
{tn}←file ⎕FCOPY tn {pn} Create copy of named file tied to tn
{tn}←file ⎕FCREATE tn {64} Create new component file

{cn}← ⎕FDROP tn n {pn} Drop n components from start (n>0) or end (n<0)
{tn}←file ⎕FERASE tn {pn} Erase exclusively-tied file

r← ⎕FHIST tn {pn} Return tied file tn's history (user/time of last operations)
{tn}← ⎕FHOLD tn {pn} Hold tied file tn (can be a matrix of tn {pn})

names← ⎕FLIB folder List component files in the specified folder
names← ⎕FNAMES Names of tied files in same order as ⎕FNUMS

tns← ⎕FNUMS Vector containing tie numbers of tied files
r←pnames ⎕FPROPS tn {pn} Current values of the named properties of file tn
r←nvpairs ⎕FPROPS tn {pn} Set properties of file tn using name-value pairs

ax_mx← ⎕FRDAC tn {pn} Read access matrix
r← ⎕FRDCI tn cn {pn} Size in bytes, user and timestamp of last update to cn
r← ⎕FREAD tn cn {pn} The array stored in component(s) cn in file tn

{tn}←file ⎕FRENAME tn {pn} Rename exclusively-tied file
{cn}←x ⎕FREPLACE tn cn {pn} Store array x in component number cn

{tn}←{bytes} ⎕FRESIZE tn {pn} Compact exclusively-tied file tn and set its max size
r← ⎕FSIZE tn {pn} First cn, next-free cn, used and max size in bytes

{tn}←ax_mx ⎕FSTAC tn {pn} Set access matrix for file tn
{tn}←file ⎕FSTIE tn {pn} Share-tie component file
{tn}←file ⎕FTIE tn {pn} Exclusively tie component file

{tn}← ⎕FUNTIE tns Untie one or more component files

STACK AND WORKSPACE INFORMATION
numvec← ⎕LC Lines at which each function on stack is suspended

 ⎕LX ←expression Expression to be executed when workspace is loaded
numvec← ⎕NC names Class of each name (fractional if names is encl. vec)

names←{init_chars} ⎕NL nums Active names of specified class(es), optionally filtered
space_references← ⎕RSI The spaces from which functions on stack were called

 ⎕SHADOW names Make names local to most recently invoked defined fn
names← ⎕SI Vector of names of functions on the stack

bytes← ⎕SIZE names Space consumed by code/data attached to names
r← ⎕STACK Definition of each function on the stack
r← ⎕STATE name Details of the usage of name at each level of the stack

bytes← ⎕WA Workspace available (unused)
 ⎕WSID ←name The name of the active workspace

names← ⎕XSI Full names of functions on the stack

THREADS
tdno← ⎕TCNUMS tdno The child thread numbers of the given thread numbers
tdno← ⎕TID The number of the current thread

{tdno}←{0|1} ⎕TKILL tdno Kill threads tdno and (default 1 is true) descendants

 ⎕TNAME←{tdname} Report/set the name (tdname) of the current thread
tdno← ⎕TNUMS Report the numbers of all current threads
tdres← ⎕TSYNC tdno Wait for threads tdno to terminate and return results

SYNCHRONISATION
{tkval}←{timeout} ⎕TGET tktype Remove tokens of types tktype from the token pool

tktype← ⎕TPOOL Type of each token in the token pool
{tdno}←{tkval} ⎕TPUT tktype Add tokens to pool and return any tdno this unblocks

tktype← ⎕TREQ tdno List token types that threads tdno are waiting for

SESSION OR DEVICE INPUT/OUTPUT
 ⎕ ←x Output x to the session

x← ⎕ Evaluate user input and return result
 ⍞ ←x Output x to session without trailing newline

charvec← ⍞ Return one line of user input

SYSTEM NAMES continued
NATIVE FILE FUNCTIONS

{r}←{flags} ⎕MKDIR dir Create or ensure existence of directory dir
{offset}←x ⎕NAPPEND tn type Append x using internal representation type

{tn}←file ⎕NCREATE tn Create file (tn =0 to generate tn)
{r}←{flags} ⎕NDELETE file Delete file (if flags =1, tolerate 'file not found')

{tn}←file ⎕NERASE tn Erase tied file tn
r← ⎕NEXISTS file Return 1 if file exists, else 0

r←{encoding} ⎕NGET file {flags} Read Unicode text file as lines into array r
t←{properties}1 ⎕NINFO tn|file

Return values of properties 1 for file tn|file
 (⍠1 will expand wildcards in file)

{rarg}←lock {secs} ⎕NLOCK tn {offset} {bytes} Change lock status of file region (0=unlock,
 1=read, 2=write)(optional timeout in seconds)

file← ⎕NNAMES Names of tied files in same order as ⎕NNUMS
tns← ⎕NNUMS Tie numbers of tied files

r←{flags} ⎕NPARTS file

Splits file into path, base name and extension
 (normalising file if flags=1)

{bytes}←vec ⎕NPUT file {flags} Write (overwrite if flags=1) lines to Unicode file
vec← ⎕NREAD tn type n {offset} Read n items of specified type from file tn

{tn}←file ⎕NRENAME tn Rename tied file to have name file
{end_offset}←x ⎕NREPLACE tn offset {typ} Write x to file at offset as type

{tn}←{bytes} ⎕NRESIZE tn Resize file to have specified size
bytes← ⎕NSIZE tn Current size of file

{tn}←file ⎕NTIE tn {file_mode} Tie a file in the specified mode
{tn}← ⎕NUNTIE tn Untie one or more files

BUILT-IN GUI & COM SUPPORT

{r}← ⎕DQ object Process events generated by object(s)
{exported}←{flags} ⎕EXPORT nm Specify fns to be exported by an OLEClient

{r}←{action} ⎕NQ object event {params} Enqueue an event for processing
{name}←{name} ⎕WC type {ordered_props}

 {nvpairs} …
Create an instance of a built-in type and
 set property values

r←{object} ⎕WG props … The values of the properties of an object
children←{class} ⎕WN parent Child objects (of class) of parent

{old_values}←{object} ⎕WS nvpairs... Set the values of one or more specified
properties of object

ERROR HANDLING

 ⎕DMX Namespace containing details of most recent
error in current thread

 ⎕EXCEPTION Details of most recent .NET exception
{msg} ⎕SIGNAL errno|{nvpairs}…

⎕SIGNAL 0
Signal an error; nvpairs set ⎕DMX props
Reset error-related system constants

 ⎕TRAP ←trap_spec Define error handling

SYSTEM CONSTANTS

⎕A The letters from A to Z
⎕D The digits from 0 to 9
⎕NULL A reference to a null item

OTHER SYSTEM NAMES

A number of system names
that are no longer
recommended for use in
new applications have not
been listed. Similarly, not
all cases/variants of the
listed system names are
included

The tool of thought for software solutions

Dyalog version 16.0 (released June 2017)

Documentation: http://docs.dyalog.com/
Online help: http://help.dyalog.com/

Position the cursor after any symbol or name and press F1

to view the online help (except in TTY mode)

UK: +44 1256 830 030 US: +1 202 525 7994
sales@dyalog.com or support@dyalog.com

http://www.dyalog.com/

"Dyalog APL" is a UK registered trade mark of Dyalog Limited number 1192130

Copyright © 2017 by Dyalog Limited. All rights reserved

1 ⎕NINFO: Values for Numeric Array properties
X Property Default

0 Name of file/directory
1 Type 0
2 Size (in bytes) 0
3 Last modification time 7⍴0
4 Owner user ID ''
5 Owner name ''
6 Whether file/directory is hidden (1) or not (0) ¯1
7 Target of symbolic link (when Type is 4) ''

mailto:sales@dyalog.com
mailto:support@dyalog.com

	PRIMITIVE FUNCTIONS
	PRIMITIVE FUNCTIONS continued
	PRIMITIVE FUNCTIONS continued
	DFN SYNTAX
	FUNCTION TRAINS
	CONTROL STRUCTURES
	SELECTED ERROR CODES
	SYSTEM NAMES
	SYSTEM NAMES continued
	SYSTEM NAMES continued

