
User Commands
User Guide

User Commands version 2.7

The tool of thought for software solutions

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2025 by Dyalog Limited
All rights reserved.

User Commands User Guide

User Commands version 2.7
Document Revision: 20250716_270

Unless stated otherwise, all examples in this document assume that ⎕IO ⎕ML ← 1

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle® , MySQL, and Java™ are registered trademarks of Oracle and/or its affiliates.
JavaScript™ is a trademark of Oracle Corporation.
Unicode is a registered trademarks of Unicode, Inc. in the United States and other
countries.
UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively
through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark of Microsoft Corporation in the U.S. and other
countries.
macOS® and OS X® (operating system software) are registered trademarks of Apple
Inc. in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Contents

1 About This Document 1
1.1 Audience 1
1.2 Conventions 1

2 Introduction 3
2.1 Cache File 3

2.1.1 Defining the UCMDCACHEFILE Environment Variable 4
3 Using User Commands 6

3.1 Installation 6
3.2 Directory Structure 6
3.3 Implementation 6

3.3.1 Customising the Implementation 7
3.4 File Format 8
3.5 Groups 8
3.6 Syntax in Dyalog Sessions 9
3.7 Running User Commands 10

3.7.1 Arguments 10
3.7.2 Modifiers and Modifier Values 11
3.7.3 Errors when Running a User Command 11

4 Creating User Commands 12
4.1 Basic Definition 12
4.2 The List Function 13

4.2.1 Name 14
4.2.2 Group 14
4.2.3 Parse 15

4.3 The Run Function 16
4.3.1 Defining Multiple Levels of Help 16

4.4 The Help Function 18
4.5 Modifiers 19

4.5.1 Default Modifier Values 20
4.6 Arguments 21

4.6.1 Default Argument Values 21
4.6.2 Arguments Including Space Characters 22
4.6.3 Minimum Number of Arguments 22
4.6.4 Maximum Number of Arguments 22
4.6.5 Long Arguments 22
4.6.6 Summary of Argument Specification in the Parser 23

4.7 Saving Custom User Commands 23
4.8 Detecting New Custom User Commands 24

A SAMPLES Group 26

User Commands User Guide

revision 20250716_270 i

A.1]UCMDHelp 26
A.2]UCMDNoParsing 26
A.3]UCMDParsing 27

B Example User Commands 28
B.1 Example: Basic User Command Definition 28
B.2 Example: Cross-Operating System Definition 29
B.3 Example: Optional Arguments 32
B.4 Example: The Parse Variable 35
B.5 Example: Debugging a User Command 37

Index 41

User Commands User Guide

revision 20250716_270 ii

1 About This Document

This document introduces user commands and describes how to create/implement
new user commands.

1.1 Audience
It is assumed that the reader has a reasonable understanding of Dyalog.

For information on the resources available to help develop your Dyalog knowledge,
see https://www.dyalog.com/introduction.htm.

1.2 Conventions
Unless explicitly stated otherwise, all examples in Dyalog documentation assume that
⎕IO and ⎕ML are both 1.

Various icons are used in this document to emphasise specific material.

General note icons, and the type of material that they are used to emphasise, include:

Hints, tips, best practice and recommendations from Dyalog Ltd.

Material of particular significance or relevance.

Legacy information pertaining to behaviour in earlier releases of Dyalog or to
functionality that still exists but has been superseded and is no longer
recommended.

Warnings about actions that can impact the behaviour of Dyalog or have
unforeseen consequences.

revision 20250716_270 1

User Commands User Guide

https://www.dyalog.com/introduction.htm

A full list of the platforms on which Dyalog version 20.0 is supported is available at
https://www.dyalog.com/dyalog/current-platforms.htm. Although the Dyalog
programming language is identical on all platforms, differences do exist in the way
some functionality is implemented and in the tools and interfaces that are available.
Differences in behaviour between operating systems are identified with the following
icons (representing macOS, Linux, Microsoft Windows and UNIX respectively):

revision 20250716_270 2

User Commands User Guide

https://www.dyalog.com/dyalog/current-platforms.htm

2 Introduction

User commands are tools that are available at any time, in any workspace, as
extensions to the Dyalog development environment. The text-based implementation
of user commands allows development tools to be easily shared between users, and
the ability to create custom user commands in addition to the predefined user
commands that are supplied with Dyalog means that it is simple to write utility tools
for your environment that can be easily issued to an entire development team.

User commands are entered in an APL Session by starting an input line with a]
character, for example:

]ToHex 250+⍳5
FB FC FD FE FF

2.1 Cache File
The first time that you start a Dyalog Session after installing Dyalog, a cache file is
created comprising the name of each of the user commands and the file in which it is
defined. This can take a few seconds. If any of the files that contain user commands
are altered or a new file containing user commands is created, then the cache file is
rebuilt:

l the next time a Dyalog Session is started.
l when the]UReset user command is run (forces an in-Session recache).
l if a user attempts to run (or get help about) a user command that is not in the

cache.

The cache file is also rebuilt if a user command is called after updating the cmddir
global parameter (using the]Settings user command – for more information enter
]Settings cmddir -? in a Session).

revision 20250716_270 3

User Commands User Guide

The default name for the cache file uses the following syntax: UserCommand
<UcmdMajor><UcmdMinor>.<DyalogMajor><DyalogMinor><U|C><bits>.cache. For
example, the cache file for the user command framework v2.7, which accompanies
Dyalog v20.0, on a 64-bit Unicode system, would be UserCommand27.200U64.cache.

By default, the cache file is located in Documents\Dyalog APL <version> Files\

By default, the cache file is located in $HOME/.dyalog/

By default, the cache file is located in Users/<name>/.dyalog/

The name and location of the cache file can be changed from its default by setting the
UCMDCACHEFILE environment variable.

2.1.1 Defining the UCMDCACHEFILE Environment Variable

The name and location of the cache file can be changed from its default by setting the
UCMDCACHEFILE environment variable.

Defining an environment variable is operating system-specific.

To define the UCMDCACHEFILE environment variable on Microsoft Windows
(permanent method)

1. Open the Control Panel and click on the System icon.
The System window is displayed.

2. In the Control Panel Home pane, click Advanced system settings.
The System Properties window is displayed.

3. Navigate to the Advanced tab of the System Properties window.
4. Click Environment Variables....

The Environment Variables dialog box is displayed.
5. In the User variables for <user> pane, click New....

The New User Variable dialog box is displayed.
6. In the Variable name field, enter UCMDCACHEFILE.
7. In the Variable value field, enter <full path>\<cache file name> of the user

commands cache file.

revision 20250716_270 4

User Commands User Guide

8. Click OK to create the new environment variable and exit the New User
Variable dialog box.

9. Click OK to exit the Environment Variables dialog box.
10. Click OK to exit the System Properties window.
11. Close the System window.

To define the UCMDCACHEFILE environment variable on Microsoft Windows
(temporary method – for session duration only)

1. Open the cmd.exe application.
2. At the command prompt, enter:

dyalog.exe UCMDCACHEFILE=[UCMDCACHEFILE]

where [UCMDCACHEFILE] is the new <full path>\<cache file name> of the
user commands cache file.

To define the UCMDCACHEFILE environment variable on Linux and macOS
(permanent method)

1. Open the $HOME/.dyalog/dyalog.config file in your preferred text editor.
2. Add the following:

export UCMDCACHEFILE=[UCMDCACHEFILE]

where [UCMDCACHEFILE] is the new <full path>/<cache file name> of the
user commands cache file.

To define the UCMDCACHEFILE environment variable on Linux (temporary method
– for session duration only)

1. Open a shell.
2. At the command prompt, enter:

UCMDCACHEFILE=[UCMDCACHEFILE] dyalog

where [UCMDCACHEFILE] is the new <full path>/<cache file name> of the
user commands cache file.

revision 20250716_270 5

User Commands User Guide

3 Using User Commands

This chapter introduces some of the concepts that underpin user commands in
Dyalog.

3.1 Installation
A set of predefined user commands is installed automatically with Dyalog.

Updates to the set of predefined user commands can be downloaded from
https://www.dyalog.com/tools/user-commands.htm.

3.2 Directory Structure
The [DYALOG]\SALT\spice directory contains the predefined user commands that are
installed with Dyalog.

The spice directory can only be moved to a different location by moving its parent
SALT directory and setting the SALT environment variable accordingly. For
information on moving the SALT directory and setting the environment variable, see
the SALT User Guide.

Although the spice directory can be moved, it must always remain directly
beneath the SALT directory and must not be renamed.

3.3 Implementation
When an input line in a Session starts with a] character, Dyalog looks for the function
⎕SE.UCMD:

revision 20250716_270 6

User Commands User Guide

https://www.dyalog.com/tools/user-commands.htm

l if this function exists, then it is called with the rest of the input line as the right
argument and a reference to calling space as the left argument.

l if this function does not exist, then user commands are disabled.

This implementation means that application code can invoke user commands by
calling ⎕SE.UCMD directly.

Dyalog Ltd reserves the right to change the implementation of the user
command framework.

EXAMPLE

The following command is entered while in a namespace:

]<ucmd> <-myModifier>=<value>

Dyalog's interpreter preserves this exactly and makes the following call:

⎕THIS ⎕SE.UCMD '<ucmd> <-myModifier>=<value>'

⎕SE.UCMD converts this into a call to the user command framework; the functions
defined for <ucmd> are actioned with the <-myModifier>modifier applied with a
value of <value> and the result is displayed in the Session.

EXAMPLE

The result of <ucmd> is assigned to a variable called <variable>:

]<variable>←<ucmd> <–myModifier>=<value>

Dyalog's interpreter preserves this exactly and makes the following call:

⎕THIS ⎕SE.UCMD '<variable>←<ucmd> <–myModifier>=<value>'

⎕SE.UCMD converts this into a call to the user command framework; the functions
defined for <ucmd> are actioned with the <-myModifier>modifier applied with a
value of <value> and the result is assigned to <variable>.

If <variable> was not included then the result of <ucmd> would be discarded and
not shown in the Session, although any non-result output generated would be
displayed.

3.3.1 Customising the Implementation

Although it is possible to implement a custom user command system by redefining
⎕SE.UCMD, Dyalog Ltd does not recommend this approach – adhering to the user
command framework supplied with Dyalog promotes a single, consistent, format that

revision 20250716_270 7

User Commands User Guide

enables all custom user commands to be shared between Dyalog Sessions.

3.4 File Format
Each user command comprises a script containing a single namespace object (for
more information on scripted files, including declaration statements and permitted
constructs, see the Dyalog Programming Reference Guide) and must be stored as files
with the .dyalog extension.

If an extension is not specified when using the]Snap or]Save user
commands to save a script file, then .dyalog is automatically appended.

By default, double-clicking on a .dyalog file opens that file using the standalone
editor.

Files with the .dyalog extension are Unicode text files. This means that they can store
any text that uses Unicode characters. This format includes most of the world's
languages and the Dyalog character set, and is supported by many software
applications. By using text files as a storage mechanism, user commands and other
tools written using Dyalog can be combined with industry-standard tools for source
code management.

3.5 Groups
User commands with common features can be grouped together under a single
name. These groups have no effect on the functionality of the individual user
commands but enable related user commands to be gathered together for ease of
reference and provide a means of sorting and classifying user commands that can be
very useful as the number of user commands increases.

User command names must be unique within a group but do not have to be unique
across all groups. This means that groups allow a systematic naming convention for
user commands that perform similar functions on different types of APL object, for
example, the predefined user command]FILE.Compare compares two files,
]ARRAY.Compare compares two arrays and]FN.Compare compares two functions.

Although a user command can have the same name as its group (or another
group), Dyalog Ltd does not recommend this as it can introduce ambiguity to a
user reading the code.

revision 20250716_270 8

User Commands User Guide

When running (or asking for help on) a user command, the group name can be
prefixed to the user command name, separated by a . character; this group name
prefix is mandatory if the user command name is not unique across all groups.

Every user command must be in a group, and every group must comprise at least one
user command.

3.6 Syntax in Dyalog Sessions
User commands are entered in a Dyalog Session with a preceding right bracket. The
basic syntax is as follows:

l to run a user command:]<ucmd>...
l to display general help information:]
l to list all user commands in their groups (without descriptions):]-?
l to list all user commands in their groups (with descriptions):]-??
l to list all the available commands in a specific group:]<groupname> -?

l to display information for a specific user command:]<ucmd> -?

l to list all the available user commands defined in .dyalog files in a specific
directory:
]<full path to directory>/<directory name> -?

l to list all user commands or groups that match pattern X*YZ*(* is a wildcard):
]X*YZ* -?

l to assign the result of a user command to a variable:]<var>←<ucmd>...
l to discard the result of a user command:]←<ucmd>...

Multiple levels of help can be defined for each user command; the information that is
returned is dependent on the level of help requested. The level is defined to be 1 less
than the number of ? characters entered after the - character. For example:

l level 0:]<ucmd> -? or]Help]<ucmd>

l level 1:]<ucmd> -?? or]Help]<ucmd> -page=2

l level 2:]<ucmd> -??? or]Help]<ucmd> -page=3

The number of levels of help available depends on a user command's definition (for
information on defining multiple levels of help in custom user commands, see
Section 4.3.1).

revision 20250716_270 9

User Commands User Guide

The names of user commands and groups are not case-sensitive although their
arguments, modifiers and modifier values might be. The convention used in
this document is that group names are shown in UPPERCASE and user
command names are shown in Upper CamelCase.

3.7 Running User Commands
User commands are run with the following syntax:

]<ucmd> <-modifiers/arguments>

For information on the precise syntax for each user command, the arguments that
can be supplied to it and the modifiers that it can take, enter]<ucmd> -? or]Help
]<ucmd> in a Dyalog Session.

When running a user command, the name of that command must be entered in full.

Dyalog's auto-complete functionality means that any user commands that
match the entered text are presented as selectable options, making it easy to
correctly specify the requisite user command. (Auto-completion is not available
in the TTY version of Dyalog.)

The names of user commands are not case-sensitive although their arguments,
modifiers and modifier values might be.

3.7.1 Arguments

Some user commands can accept (or require) one or more arguments. To see a list of
the possible arguments for a user command, enter]<ucmd> -? or]Help
]<ucmd> in a Dyalog Session.

For example, the behaviour of the user command]CD depends on the argument
supplied when calling it. If it is run with no argument, then it returns the current
working directory – this is equivalent to entering cd on the command line of a
Microsoft Windows operating system or pwd in UNIX. However, if a single argument
specifying the full path to a directory is supplied, then the user command changes the
current working directory to be the one specified by the argument.

revision 20250716_270 10

User Commands User Guide

3.7.2 Modifiers and Modifier Values

The default behaviour of a user command can be altered through the application of
modifiers (instructions that the command should change its default behaviour).

Modifiers must be prefixed with the – character and are separated from any
associated modifier values with the = character, for example, -version=3 or
-format=APL. A modifier that does not accept a modifier value but can only be
present or absent is sometimes referred to as a flag or a switch, for example,
-protect.

When running a user command with a specified modifier, the name of the modifier
does not always need to be entered in full as long as enough of the modifier's name is
entered for it to be interpreted unambiguously. For example, if a user command has a
modifier called -version and does not have any other modifiers starting with the
letter v then the function can be successfully called with modifiers -version, -vers,
-v, and so on.

Multiple modifiers can be included in a user command call – in this situation they
must be separated by a space character. The order in which they are specified is
irrelevant.

3.7.3 Errors when Running a User Command

The]UDebug user command facilitates the debugging of user commands – switching
this on (]UDebug on) enables suspension inside a user command's execution.

If an error is generated when running a user command, then ⎕DMX is cloned to
⎕SE.SALTUtils.dmx; this means that information pertaining to the error is retained
even after the user command framework clears ⎕DMX.

EXAMPLE

This example shows that information pertaining to the length error is not available
from ⎕DMX but can be retrieved from ⎕SE.SALTUtils.dmx:

]Disp 1 2+3 4 5
* Command Execution Failed: LENGTH ERROR

⎕DMX

⎕SE.SALTUtils.dmx
EM LENGTH ERROR
Message Mismatched left and right argument shapes

revision 20250716_270 11

User Commands User Guide

4 Creating User Commands

When an instruction is called repeatedly it can improve efficiency to have that
instruction in a script file. The user command framework provides a very efficient
mechanism for doing this, allowing a user to create and update instructions without
the necessity of maintaining a workspace. Unlike a workspace, user commands do not
need to be loaded into each Session. In addition, their text-based implementation
makes them easy to store in a repository and share between users.

This chapter describes the syntax, rules and conventions governing the creation of
custom user commands.

4.1 Basic Definition
A new user command can be defined in several ways, for example:

l in a text file (for example, using Microsoft Notepad) and then saved as a
.dyalog file

l in a Dyalog Session and saved as a .dyalog file using the]Save user command.
l in a Dyalog Session using the]UNew user command – for more information

enter]UNew -? in a Session.

Once in the appropriate directory (see Section 4.7), the new user command can be
run from the Dyalog Session.

revision 20250716_270 12

User Commands User Guide

The script for Dyalog's predefined user commands can be a useful starting
point when creating a new user command. The location of an existing user
command's script can be found in the following ways:

l]UVersion <ucmd> returns the script location for the specified user
command

l]ULoad <ucmd> loads the script for the specified user command into
the active workspace and returns the script location.

l]<ucmd> -? returns the script location for the specified user command
if]UDebug is on.

User commands are defined by three specific APL functions (along with any additional
functions needed for the particular purpose of the user command). The three
functions must be called:

l List – for information on the List function, see Section 4.2.
l Run – for information on the Run function, see Section 4.3.
l Help – for information on the Help function, see Section 4.4.

These functions are wrapped together in a namespace (the order in which the
functions are specified within the namespace is not important). A single namespace
can host multiple user commands, but must only have one instance of each of the
three functions irrespective of how many user commands it contains. (Although a
class can be used instead of a namespace, a namespace is the recommended
approach.)

See Appendix A for some sample user commands that demonstrate the use of
multiple levels of help and parsing user command lines. See Appendix B for
some examples of user commands wrapped in a namespace – these show how
the List, Help and Run functions are defined.

4.2 The List Function
The List function informs the user command framework about the command being
defined, enabling it to display a summary of the command when requested to list all
available commands (] -?), optionally with descriptions (] -??) .

The List function is niladic and returns one namespace for each user command
defined within it. Each namespace contains four variables:

l Desc – a summary of the user command's functionality
l Name – the name of the user command (see Section 4.2.1)

revision 20250716_270 13

User Commands User Guide

l Group – the name of the group to which the command belongs (see
Section 4.2.2)

l Parse – parsing information for the framework (see Section 4.2.3)

4.2.1 Name

User commands must have unique names within a group (names can be replicated
across different groups if required). They must be valid APL identifier names (for more
information on legal names, see the Dyalog Programming Reference Guide).

Modifiers must have unique names within the user command but do not have to be
unique within the superset of user commands. Modifier names are case-sensitive;
Dyalog recommends using lowercase characters only.

The names of user commands and modifiers cannot contain space characters.

When naming a modifier, avoid the names arguments, delim, propagate, swd
and switch as these names are used by the parser.

4.2.2 Group

Every user command must be a member of a group (but can only be a member of one
group). In addition:

l the user commands for a single group do not all need to be defined within a
single namespace/.dyalog file

l a single namespace/.dyalog file can include user commands for several
different groups

l user command names must be unique within a group but do not have to be
unique across all groups (however, custom user commands should not be given
the same name as any of the predefined user commands within the SALT
group).

Although it is possible to add a custom user command to one of the predefined
user command groups, Dyalog Ltd recommends that this is avoided as there
could be unforeseen consequences (especially with the LINK, SALT and UCMD
groups).

revision 20250716_270 14

User Commands User Guide

4.2.3 Parse

If the Parse variable for a user command is empty, then the Run function's second
argument will comprise everything following the command name. By setting the
Parse variable to non-empty values, the user command framework is able to handle
arguments and modifiers. For more information on modifiers and modifier values, see
Section 4.5. For more information on arguments, see Section 4.6.

The following general rules apply when processing a call to a user command:
l user commands take 0 or more arguments and 0 or more modifiers
l individual arguments and modifiers are separated by space characters
l arguments and modifiers can be specified in any order
l arguments can be optional or mandatory
l modifiers are identified by a preceding - character
l modifier values are identified by a preceding = character
l modifier names are case-sensitive
l individual arguments and modifier values can be delimited by single or double

quotes to allow leading/trailing/internal space characters or to allow
arguments that have a leading - character.

The user command framework verifies that these rules have been adhered to before
creating a new namespace. It then populates this namespace with a variable called
Arguments (containing all the arguments) and a variable for each of the modifiers
with names matching those of the modifiers. Other manipulation tools are also added
to the namespace, for example, the Switch function – see Section 4.5.1. This
namespace is passed to the Run function (see Section 4.3) as its second argument.

If the Parse variable defined in a user command's List function is empty, then the
user command will accept anything; the entire character vector is the argument.

If the Parse variable defined in a user command's List function is not empty, then it
must describe the number of arguments and the modifiers used. The number of
arguments is a simple number and the list of modifiers must include, for each
modifier, its name, whether it accepts a value and, optionally, any restrictions for that
value.

revision 20250716_270 15

User Commands User Guide

4.3 The Run Function
The Run function executes the code for the command. It is always called monadically
with a two-element vector argument; the user command's name and the supplied
arguments/modifiers. As a single namespace can host multiple user commands, the
Run function uses the command name to determine the appropriate actions to
perform.

4.3.1 Defining Multiple Levels of Help
See Appendix A for some sample user commands that demonstrate the use of
multiple levels of help.

The specific defined help information that is presented to a user when requesting
help in a Dyalog Session is dependent on the level of help requested. This level is
defined to be 1 less than the number of ? characters entered after the - character;
for example,]<ucmd> -?? returns the information defined for level 1 of the <ucmd>
user command.

As with the predefined user commands, increasingly detailed levels of information
can be provided for custom user commands. If multiple levels of help are defined,
then Dyalog Ltd recommends including information to that effect in each level, for
example, the information that is displayed in response to a]<ucmd> -?? request
should state that more detailed information is available if]<ucmd> -??? is entered.

Any valid Dyalog algorithmic syntax can be used in the Help function to define
different levels of help, for example, control structures or branching. Optionally, the
different levels of help can be cumulative so that, for example,]<ucmd> -???
returns the help information for levels 0 and 1 as well as the help for level 2.

The following code fragment is an example showing how separate (non-cumulative)
levels of help can be defined within the Help function:

∇ r←level Help Cmd
:Select level
:Case 0

r←⊂'This is basic help.'
:Case 1

r←⊂'This is level 1 help.'
:Case 2

r←⊂'This is level 2 help.'
:Else

revision 20250716_270 16

User Commands User Guide

r←⊂'This is level 3 help.'
:EndSelect

∇

In this case:
l]<ucmd> -? gives This is basic help.

l]<ucmd> -?? gives This is level 1 help.

l]<ucmd> -??? gives This is level 2 help.

l]<ucmd> -???? gives This is level 3 help.

l]<ucmd> -????? gives This is level 3 help.

The :Else control structure in the code fragment ensures that requests for
higher levels of help than are defined return the highest-defined level rather
than generating an error message.

The following code fragment is an example showing how cumulative levels of help can
be defined within the Help function:

∇ r←level Help Cmd
r←⊂'This is basic help.'
r,←⊂'This is level 1 help.'
r,←⊂'This is level 2 help.'
r,←⊂'This is level 3 help.'
r←((1+level)⌊≢r)↑r

∇

revision 20250716_270 17

User Commands User Guide

In these cases:
l]<ucmd> -? gives
This is basic help.

l]<ucmd> -?? gives
This is basic help.
This is level 1 help.

l]<ucmd> -??? gives
This is basic help.
This is level 1 help.
This is level 2 help.

l]<ucmd> -???? gives
This is basic help.
This is level 1 help.
This is level 2 help.
This is level 3 help.

l]<ucmd> -????? gives
This is basic help.
This is level 1 help.
This is level 2 help.
This is level 3 help.

Entering]Help]<ucmd> in a Dyalog Session always presents the user with
the same level of help as]<ucmd> -? even if there are multiple levels of help
defined.

4.4 The Help Function
The Help function reports detailed information on the user command when this is
requested (by entering]<ucmd> -? or]Help]<ucmd> in a Dyalog Session). It is
called dyadically; the left argument is the level and the right argument is the name of
the user command.

As a single namespace can host multiple user commands, the Help function uses the
command name to determine the appropriate information to return.

When a user requests help for a particular user command, the Help function returns
a specific set of information by default:

]<GROUPNAME>.<commandname>

<specific defined help information>

If]UDebug is on, then the Help function returns an enhanced set of information by
default:

revision 20250716_270 18

User Commands User Guide

]<GROUPNAME>.<commandname>

Source: <location of the user command's script file>
Version: <version number of the user command>
Syntax: <number of arguments> only if arguments can be specified
Accepts modifiers <list of all modifiers> only if modifiers can be
specified
 <modifier restrictions> only if modifiers exist that have restrictions

<specific defined help information>

4.5 Modifiers
Modifiers enable a user command to apply filters and rules so that an entirely new
(similar) user command does not need to be written. The user command framework
allows you to define the modifiers that your user command will accept. The rules
when defining each modifier in the Parse variable are:

l If a modifier accepts characters in a set, then the Parse variable includes the
modifier and possible values with the ∊ character as a separator. For example:
-<modifier name>∊<set of characters>

so -XYZ∊abc012means that the modifier -XYZ can accept any number and
combination of characters in the set abc012, such as ab2a0b.

l If a modifier accepts specific character vectors, then the Parse variable
includes the modifier and possible values with the = character as a separator
and the character vectors separated by space characters. For example:
-<modifier name>=<charvec1> <charvec2> <charvec3>

so -XYZ=abc 012means that the modifier -XYZ can accept either abc or 012
as a modifier value.

l If a modifier accepts any character vector, then the Parse variable includes
the modifier and a = character with nothing after it. For example:
-<modifier name>=

so -XYZ=means that the modifier -XYZ can accept any value.

For each of these three rules, enclosing the separator character within square
brackets means that specification of modifier values is optional. For example,-XYZ
[=]means that the modifier -XYZ can be specified without a value but will accept
any value.

revision 20250716_270 19

User Commands User Guide

4.5.1 Default Modifier Values

A modifier always has an internal value. This is one of the following:
l 0 if the modifier is not included when running the user command
l 1 if the modifier is included when running the user command but no modifier

value is included
l a character vector matching the specified modifier value

A modifier can be configured to default to a specific value in one of three ways; these
approaches are shown in this section with the modifier –X defaulting to a modifier
value of 123 (a three-element character vector).

Approach 1: Assign a default value to the modifier using the ":" character as the
separator:

List[i].Parse←'-X:123'

With this approach, the default value is reported only if the modifier is not used; a
value of 1 is reported if the modifier is used but no value is specified.

Approach 2: Test whether the modifier value is 0 and, if it is, then set it to the
required default value.

For example:

:if X≡0 ⋄ X←'123' ⋄ :endif

Approach 3: Define the default value using the dyadic form of the Switch function
(automatically defined in the namespace that is passed to the Run function (see
Section 4.3) as its second argument).

Given the name of a modifier as a right argument:
l monadic Switch returns:

o 0 if an invalid modifier name is specified
o 0 if the modifier is not specified and no default value has been set for

that modifier
o 1 if the modifier is specified without a modifier value
o a character vector matching the specified modifier value
o a character vector matching the default modifier value if a modifier is

not specified but a default value has been set for that modifier

revision 20250716_270 20

User Commands User Guide

l dyadic Switch returns:
o the value of the left argument (default value) if an invalid modifier value

is specified
o the value of the left argument (default value) if a modifier is not

specified and no default value has been set for that modifier
o the specified modifier value if defined – however, if the value of the

default is numeric then it assumes that the specified modifier value
should also be numeric and transforms it into a number. This means
that, if the modifier and modifier value –X=123 is entered, the
expression 99 Args.Switch 'X' will return (,123) not '123'; the
Switch function always returns a vector, making it very easy to
differentiate between 0 (the modifier is not included when running the
user command) and ,0 (a modifier value of 0 was specified when
running the user command).

4.6 Arguments
Unlike modifiers, arguments do not have names. However, as arguments must be
specified in a particular order and each have a specific purpose, they should be given
an appropriate name in the Help function to make their purpose clear.

The number of arguments that a user command can take is specified in the Parse
variable (see Section 4.2.3 – this explains the rules for determining the value to
specify there).

4.6.1 Default Argument Values

A default value can be defined for an argument – this value is automatically used if
the argument is not specified when running the user command. Default values are
defined within the Run function.

EXAMPLE

To set a default value of 'defaultfor4th' for the 4th argument:

args←a.Arguments,(⍴a.Arguments)↓0 0 0 'defaultfor4th'

where a is the second argument supplied to the Run function, that is the
arguments/modifiers supplied to the user command (see Section 4.3). In this example,
the first three arguments have their default values set to 0 if they are optional
arguments; if they are mandatory then any value specified here is ignored.

revision 20250716_270 21

User Commands User Guide

4.6.2 Arguments Including Space Characters

Arguments that contain space characters must be delimited with ' or " characters.
For example, if the user command]NewIDmust have 2 arguments supplied, full
name and address, then Parse should be set to '2' and the user command is run as
follows:

]NewID 'Morten Kromberg' 'Dyalog Ltd'

If the user command]NewID accepts 3 arguments, firstname, surname and address,
then Parse should be set to '3' and the user command is run as follows:

]NewID Morten Kromberg 'Dyalog Ltd'

4.6.3 Minimum Number of Arguments

If a user command must have a minimum number of arguments, then Parse can be
coded to that effect by assigning it a range of numbers of arguments, that is:

Parse←'<min number of args>-<max number of args>'

A minimum number of arguments cannot be specified without also specifying a
maximum number of arguments. However, if there is no maximum number of
arguments then an arbitrary high number can be used. For example, if at least three
arguments must be supplied when calling a user command but there is no limit to the
number of arguments that the user command can process, then Parse could be
assigned as Parse←'3-9999'.

4.6.4 Maximum Number of Arguments

If a user command can only process a limited number of arguments, then Parse can
be coded to that effect by appending S to the maximum number of arguments. For
example, if the user command can accept 0, 1 or 2 arguments but no more, then
Parse should be set to '2S'.

4.6.5 Long Arguments

The last argument can be defined to comprise anything that remains after removing
the other arguments. Parse can be coded to that effect by appending L to the
maximum number of arguments – any additional arguments after the maximum
number is reached are merged into the last argument. For example, if the user
command can accept 1 argument consisting of everything that is included when
running the command, then Parse should be set to '1L'.

revision 20250716_270 22

User Commands User Guide

The long argument L can be appended to the maximum number of arguments S (see
Section 4.6.4) to specify that any additional arguments after the maximum number
has been supplied should be merged into the last one supplied. For example, if '3SL'
is specified, then 0, 1, 2 or 3 arguments can be supplied when calling the user
command but any more than this will be merged with the third argument. This means
that:

]cmd a1 a2 a3 a4 a5 a6

runs the user command cmd with three arguments: a1, a2 and 'a3 a4 a5 a6'.

4.6.6 Summary of Argument Specification in the Parser

Parse←'n' where n can be:
l n1 : exactly n1 arguments must be supplied
l n2-n3 : a minimum of n2 arguments and a maximum of n3 arguments can be

supplied
l n4S : a maximum of n4 arguments can be supplied (equivalent to 0-n4)
l n5L : n5 arguments must be supplied; if more than this are supplied then the

first n5-1 arguments are taken and the rest are merged together into the final
n5 argument

l n6-n7L : a minimum of n6 arguments and a maximum of n7 arguments can be
supplied; if more than this are supplied then the first n7-1 arguments are
taken and the rest are merged together into the final n7 argument

l n8SL : a maximum of n8 arguments can be supplied; if more than this are
supplied then the first n8-1 arguments are taken and the rest are merged
together into the final n8 argument (equivalent to 0-n8L)

l n9-n10L : a minimum of n9 arguments and a maximum of n10 arguments can
be supplied; if more than this are supplied then the first n10-1 arguments are
taken and the rest are merged together into the final n10 argument (equivalent
to 0-n10L)

4.7 Saving Custom User Commands
Custom user commands must be saved in a .dyalog file (if a custom user command
has been created in a namespace in a Dyalog Session, then it can be saved as a
.dyalog file using the]Save user command).

The predefined user commands are located in the [DYALOG]\SALT\spice directory.
Dyalog Ltd recommends that you save custom user commands in a different directory
that is not located beneath the SALT directory; this is because there might be

revision 20250716_270 23

User Commands User Guide

permissions issues with accessing custom commands beneath this directory and there
is always the possibility that Dyalog Ltd might issue a user command with the same
filename as your custom user command at a future date.

The custom user command directory must be added to the user command search
path to enable the user commands within it to be detected. To do this, use the
]Settings user command to set the cmddir global parameter to the full path and
name of the directory (for more information enter]Settings -? in a Session). The
new directory is added to the start of the list of directories, making it the first one
searched.

When adding a new directory to the list of directories searched by the user
command framework, you must precede its path with a , character.

If the cmddir global parameter includes multiple directories, then the user
command framework searches the directories in the order listed (starting from
the left) and retrieves the first user command it finds with the specified name.
To see the list of directories (and the order in which they are searched), enter
]Settings cmddir.

If the]UNew user command is used to create and save a new user command, then its
location is automatically added to the list of directories searched.

4.8 Detecting New Custom User Commands
If the newcmd global parameter is set to auto and a user command is entered in a
Dyalog Session that the user command framework does not recognise, then the user
command directory(s) is scanned to locate new user commands that have been
manually added. However, if the newcmd global parameter is set tomanual or a
change is made to the Help function or List function of an existing user command,
then the user command]UResetmust be run to force a complete reload of all user
commands.

In addition, new user commands that are placed in theMyUCMDs directory are
automatically active without needing to specify]Settings cmddir -permanent.

On the Linux operating system, theMyUCMDs directory is located directly
under the $HOME directory.

On the macOS operating system, theMyUCMDs directory is located directly
under the $HOME directory.

revision 20250716_270 24

User Commands User Guide

On the Microsoft Windows operating system, the MyUCMDs directory is
located directly under the %USERPROFILE%\Documents directory.

revision 20250716_270 25

User Commands User Guide

A SAMPLES Group

The SAMPLES group contains user commands that demonstrate the use of multiple
levels of help and parsing user command lines.

The user commands in this group are not like those in other groups; they do not
provide any useful functionality but their code can be examined to assist with
understanding when creating custom user commands. This can be achieved by
opening them in any text editor, for example, Microsoft Notepad.

This group is only available if]Settings cmddir ,[SALT]/study is issued.

A.1]UCMDHelp
An example of a custom user command that defines multiple levels of help
information in the Help function, selectable by the number of question marks
supplied by the user, for example,]<ucmd> -???.

To open the code for this user command in the Editor:

]ULoad UCMDHelp
Namespace #.HelpExample now contains source for
]SAMPLES.UCMDHelp from <full path>\SALT\study\aSampleHelp.dyalog

)ED HelpExample

A.2]UCMDNoParsing
An example of a custom user command that does not use parsing; the argument is
the entire character vector after the command name.

revision 20250716_270 26

User Commands User Guide

To open the code for this user command in the Editor:

]ULoad UCMDNoParsing
Namespace #.anyname now contains source for
]SAMPLES.UCMDNoParsing from <full
path>\SALT\study\aSample.dyalog

)ED anyname

A.3]UCMDParsing
An example of a custom user command that uses parsing; the character vector after
the command name is parsed and turned into a namespace containing the arguments
(tokenised) and each of the identified modifiers.

To open the code for this user command in the Editor:

]ULoad UCMDParsing
Namespace #.anyname now contains source for]SAMPLES.UCMDParsing
from <full path>\SALT\study\aSample.dyalog

)ED anyname

revision 20250716_270 27

User Commands User Guide

B Example User Commands

This appendix includes examples illustrating the construction of user commands.

The examples in this appendix have been created to illustrate different aspects
of user commands. This means that they do not necessarily follow an efficient
workflow process or best coding practice.

B.1 Example: Basic User Command Definition
This example illustrates the definition of a basic user command.

A new user command called Time is required to display the local time. The necessary
functions are defined in a namespace called timefns:

:Namespace timefns

⎕ML ⎕IO←1 ⍝ set to avoid inheriting external values

∇ r←List
r←⎕NS¨1⍴⊂'' ⍝ r is a vector of length 1 with the

⍝ item set to be a ref to a namespace
r.(Group Parse Name)←⊂'TimeGrp' '' 'Time'
r[1].Desc←'Time example Script'

∇

∇ r←Run(Cmd Args)
r←1↓,'⊂:⊃,ZI2'⎕FMT ⎕TS[4 5 6] ⍝ show time

∇

∇ r←Help Cmd
r←']Time (no arguments)'

∇

:EndNamespace

revision 20250716_270 28

User Commands User Guide

In this example:
l The List function sets the four variables Desc, Name, Group and Parse to
'Time example Script', 'Time', 'TimeGrp' and '' respectively.

l The Run function only needs to call ⎕TS so the command name and any
supplied arguments are ignored. This function also formats the time into a
user-friendly format.

l The Help function identifies that there is only one user command in the
namespace (there is only one user command name, Time, defined) and returns
the appropriate information for that user command.

Running this user command in a Dyalog Session returns three numbers; these three
numbers are the current time, indicating the hour (according to the 24 hour clock),
the number of minutes past the hour and the number of seconds elapsed
respectively.

]Time -?
──
]TIMEGRP.Time

]Time (no arguments)

(the same result is returned if]Time -?? or]Help]Time is entered)

]Time
13:05:09

(indicating that the current system time is 13:05 and 9 seconds)

B.2 Example: Cross-Operating System Definition
This example illustrates the inclusion of two different user commands within a single
namespace, different techniques for achieving the same result depending on the
operating system being used and using breakout without user commands.

Although the current system time returned by the Time user command (see
Section B.1) is useful, it might be more relevant to have a choice of displaying local
time or UTC (Co-ordinated Universal Time). To do this, a new user command called
UTC is required. As this is closely related to the Time user command, it should be
created in the same namespace; this involves adding a new function called Zulu and
modifying the Run, List and Help functions.

revision 20250716_270 29

User Commands User Guide

To illustrate the ability of a user command to obtain information through a
breakout call to .NET, this example also includes options in the Run function
that are dependent on the operating system that the Dyalog Session is being
run on (.NET is only valid when running on the Microsoft Windows operating
system). These options ensure that the same user command is cross-system
compatible for Microsoft Windows and UNIX.

:Namespace timefns

⎕ML ⎕IO←1 ⍝ set to avoid inheriting external values
∇ r←List

r←⎕NS¨2⍴⊂'' ⍝ r is a vector of length 2 with the
⍝ items set to be refs to namespaces

r.(Group Parse)←⊂'TimeGrp' ''
r.Name←'Time' 'UTC'
r.Desc←'Show local time' 'Show UTC time'

∇

∇ r←Run(Cmd Args);dt
:If 'Windows' ≡ 7↑⊃'.'⎕WG 'APLVERSION' ⍝ If Windows

⎕USING←'System'
dt←DateTime.Now

:If 'UTC'≡Cmd
dt←Zulu dt

:EndIf
r←(r⍳' ')↓r←⍕dt

:Else ⍝ If not Windows
dt←('UTC'≡Cmd)/'TZ=UTC' ⍝ set timezone
r←⊃⎕SH dt,' date +"%H:%M:%S"' ⍝ and get the time

:EndIf
∇

∇ r←Help Cmd;which
which←'Time' 'UTC'⍳⊂Cmd
r←which⊃']Time (no arguments)' ']UTC (no arguments)'

∇

∇ r←Zulu date
⍝ Use .NET to retrieve UTC info
r←TimeZone.CurrentTimeZone.ToUniversalTime date

∇

:EndNamespace

revision 20250716_270 30

User Commands User Guide

In this example:
l The List function is amended to allow for two function definitions in the four

variable definitions:
o Desc is set to to 'Show local time' 'Show UTC time' (two

values, therefore the first applies to the first user command and the
second applies to the second user command)

o Name is set to 'Time' 'UTC' (two values, therefore the first applies to
the first user command and the second applies to the second user
command)

o Group is set to ⊂TimeGrp (only one value so applied to both user
commands)

o Parse is set to '' (only one value so applied to both user commands)
l The Run function is amended to use the Cmd argument to determine which

user command is being run (any further supplied arguments are still ignored).
The operating system on which the Dyalog Session is being run is then
identified; this determines whether to use the current system time or the APL
system function ⎕TS. For example, if the UTC user command is being run on a
Microsoft Windows operating system, then the Run function calls the Zulu
function. The Run function also formats the resulting time into a more user-
friendly format irrespective of the operating system and user command.

l The Help function is amended to enable it to identify that there are two user
commands in the namespace (there are two user command names, Time and
UTC, defined) and return the appropriate information according to which name
is specified.

l The Zulu function is added to retrieve the UTC time through a .NET call – this
function is only called if the Run function identifies that the Dyalog Session is
running on a Microsoft Windows operating system and the]UTC user
command is specified.

After changing the code but before running these user commands, the
]UReset user command should be run to force a cache file update (otherwise
the code changes will not be detected).

The Time and UTC user commands can now be run from a Dyalog Session:

]TimeGrp -?

TIMEGRP:
Time Show local time in a city
UTC Show UTC time

]Time -?
──
]TIMEGRP.Time

revision 20250716_270 31

User Commands User Guide

]Time (no arguments)

(the same result is returned if]Time -?? or]Help]Time is entered)

]Time
13:17:34

(indicating that the current system time is 13:17 and 34 seconds)

]UTC -?
──
]TIMEGRP.UTC

]UTC (no arguments)

(the same result is returned if]UTC -?? or]Help]UTC is entered)

]UTC
12:18:15

(indicating that the co-ordinated universal time is 12:18 and 15 seconds)

B.3 Example: Optional Arguments
This example illustrates the creation of a user command with an optional argument.

Although the Time and UTC user commands return the local time and UTC
respectively (see Section B.2), they only work for the location in which the system is
located. To return the time in different locations, new functions could be defined for
each location and the Run, List and Help functions modified accordingly.
Alternatively, the Run function can be modified to use the location as an argument to
compute the time (this does not take account of daylight saving time). Using this
second approach the timefns.dyalog file can be modified as follows (example
assumes the Microsoft Windows operating system only):

:Namespace timefns

⎕ML ⎕IO←1 ⍝ set to avoid inheriting external values

∇ r←List
r←⎕NS¨2⍴⊂'' ⍝ r is a vector of length 2 with the

⍝ items set to be refs to namespaces
r.(Group Parse)←⊂'TimeGrp' ''
r.Name←'Time' 'UTC'
r.Desc←'Show local time in a city' 'Show UTC time'

∇

∇ r←Run(Cmd Args);dt;offset;cities;diff;city;lcity;ix

revision 20250716_270 32

User Commands User Guide

⎕USING←'System'
dt←DateTime.Now
:Select Cmd
:Case 'UTC'

dt←Zulu dt
:Case 'Time'

:If 0≠⍴city←Args~' '
offset←CityTimeOffset city
'Unknown city'⎕SIGNAL 11⍴⍨⍬≡offset
diff←⎕NEW TimeSpan(3↑offset)
dt←(Zulu dt)+diff

:EndIf
:EndSelect
r←(r⍳' ')↓r←⍕dt

∇

∇ r←Help Cmd;which
which←'Time' 'UTC'⍳⊂Cmd
r←which⊃']Time [city]' ']UTC (no arguments)'

∇

∇ r←Zulu date
⍝ Use .NET to retrieve UTC info
r←TimeZone.CurrentTimeZone.ToUniversalTime date

∇

∇ r←CityTimeOffset city;lcity;cities;ix;offsets
cities←'l.a.' 'montreal' 'copenhagen' 'sydney'
offsets←¯8 ¯5 1 10
r←⍬ ⍝ Assume no match
lcity←⎕C city ⍝ Case-fold name
ix←cities⍳⊂lcity ⍝ Find city in cities
:If ix≤⍴cities ⍝ If present,

r←ix⌷offsets ⍝ return the offset
:EndIf ⍝ [else return ⍬]

∇

:EndNamespace

In this example:
l The List function has one small amendment to the description of the Desc

variable for the first user command.
l The Run function still uses the Cmd argument to determine which user

command is being run; different actions are taken according to which is
specified. If the Cmd argument is UTC then the function proceeds as before.
However, if the Cmd argument is Time then the function now takes the second

revision 20250716_270 33

User Commands User Guide

argument into account and passes it to the CityTimeOffset function (the
Args~' ' expression removes any extraneous spaces in the name of the city,
so that a user can enter (for example) 'l.a.' or 'l. a.' and get a valid
result) If the CityTimeOffset function returns an offset value then the Run
function uses this to calculate the time in the specified city, otherwise it
generates an "Unknown city" error message.

l The Help function has one small amendment to state that an optional
argument specifying the location can be included when running the Time user
command.

l The Zulu function remains unchanged.
l The CityTimeOffset function is added to determine whether the second

argument matches the name of one of the cities that have had time offsets
defined and return the appropriate offset if a match is found. The name of the
city entered when running the user command is made case insensitive by case-
folding it with the ⎕C expression.

After changing the code but before running these user commands, the
]UReset user command should be run to force a cache file update (otherwise
the code changes will not be detected).

The Time and UTC user commands can now be run from a Dyalog Session:

]Time -?

──
]TIMEGRP.Time

]Time [city]

(the same result is returned if]Time -?? or]Help]Time is entered)

]Time
13:17:34

(indicating that the current system time is 13:17 and 34 seconds)

]Time l.a.
04:17:51

(indicating that the current time in Los Angeles, ignoring daylight saving time, is 04:17
and 51 seconds)_819

]Time l.x.
* Command Execution Failed: Unknown city

(an invalid city was specified)

revision 20250716_270 34

User Commands User Guide

]UTC -?
──
]TIMEGRP.UTC

]UTC (no arguments)

(the same result is returned if]UTC -?? or]Help]UTC is entered)

]UTC
06:08:30

(indicating that the local co-ordinated universal time is 6:08 and 30 seconds)

]TimeGrp -?

TIMEGRP:
Time Show local time in a city
UTC Show UTC time

B.4 Example: The Parse Variable
This example illustrates use of the Parse variable; by setting this to non-empty
values, the user command framework is able to handle arguments and modifiers.

For more information on the Parse variable, see Section 4.2.3. For more
information on modifiers and modifier values, see Section 4.5. For more
information on arguments, see Section 4.6.

A new user command called Number is required to display either the age of the
specified person or to convert a decimal number into its Hexadecimal equivalent. The
necessary functions are defined in a namespace called number:

:Namespace number

⎕ML ⎕IO←1 ⍝ set to avoid inheriting external values

∇ r←List
r←⎕NS¨1⍴⊂''
r.(Group Parse Name Desc)←⊂'AgeHex' '' 'Number' 'Gives age

or Hexadecimal format'
∇

∇ r←Run(Cmd Args);N;H;alph;Name;Names
r←⍬
Names←Args.Arguments
:For Name :In Names

:Select Name

revision 20250716_270 35

User Commands User Guide

:Case 'Fiona'
r,←40

:Case 'Andy'
r,←51

:Else
:If ∧/Name∊⎕D ⍝ If all digits...

N←⌈16⍟(⍎Name)
H←(N⍴16)⊤(⍎Name)
alph←'0123456789ABCDEF'
r,←⊂alph[⎕IO+H]

:Else
r,←⊂'Unrecognised Name'

:EndIf
:EndSelect

:EndFor
∇

∇ r←Help Cmd
r←'Enter either a person''s name to return their age or a

number to return the Hexadecimal equivalent'
∇

:EndNamespace

In this example, the Parse variable is empty – this means that the Run function takes
everything following the command name as a simple character vector. However, if a
valid name is entered with the expectation of having that person's age returned, then
an error message is generated:

]Number Fiona
* Command Execution Failed: SYNTAX ERROR

The same error message is generated if a decimal number is entered with the
expectation of its Hexadecimal equivalent being returned:

]Number 42
* Command Execution Failed: SYNTAX ERROR

This error arises because the user command is expecting a namespace as its input and
instead it is receiving a simple character vector.

These errors arise because the Args parameter in the Run function is a simple
character vector rather than a namespace; this is due to the empty Parse variable.
Populating the Parse variable means that the Args parameter becomes a
namespace.

revision 20250716_270 36

User Commands User Guide

For this example, the only changes that will be made to the user command's
code are to its Parse variable definition.

To enable the user command to perform the necessary namespace conversion, the
Parse variable is changed from '' to '2S' – this means that the user command can
accept 0, 1 or 2 arguments but no more (for more information on this, see
Section 4.6.4).

]Number 42
2A

]Number 42 42
2A 2A

]Number 42 42 42
* Command Execution Failed: too many arguments

]Number 42 Fiona
2A 40

Changing the Parse variable again, this time from '2S' to '2L', means that 2
arguments must be supplied; if more than this are supplied then the first argument is
taken as specified and the rest are merged together to become the second argument
(for more information on this, see Section 4.6.5).

]Number 42
* Command Execution Failed: too few arguments

]Number 42 42
2A 2A

]Number 42 42 42
2A Unrecognised Name

]Number 42 Fiona
2A 40

B.5 Example: Debugging a User Command
This example illustrates using the]UDebug user command to debug a namespace
containing a user command group definition.

Three keyboard shortcuts for command codes are referred to in this example – <TC>
(Trace), <ED> (Edit) and <EP> (Escape). The usual key combinations for these are
operating-system-dependent.

revision 20250716_270 37

User Commands User Guide

Relevant key combinations on the Microsoft Windows operating system:
l <TC> is usually Ctrl + Enter
l <ED> is usually Shift + Enter
l <EP> is usually Escape

Relevant key combinations on the UNIX operating system:
l <TC> is usually APLKey +Shift + Enter
l <ED> is usually APLKey + Enter
l <EP> is usually Escape

Relevant key combinations on the macOS operating system:
l <TC> is usually Ctrl + Enter
l <ED> is usually Shift + Enter
l <EP> is usually Escape

A user command can be debugged by tracing through ⎕SE.UCMD (see Section 3.3).
However, a more convenient method is to instruct the framework to suspend on the
first line of the Run or Help function – tracing/debugging can then proceed from
there. To do this, debugging mode must be switched on:

]UDebug on
Was OFF

If an error is encountered in debugging mode, execution of the user command is
suspended rather than returning to the calling function.

When debugging is enabled, specifying a space followed by the – character at the end
of the command opens the Trace window with the code suspended on Run[1]. For
example, using the number namespace defined in Section B.4 to hold the AgeHex
group of user commands:

]Number 42 Andy
2A 51

]Number 42 Andy –
Run[1]

To progress through the Run function, enter the Trace command (<TC>).

You can now trace and debug the code in the namespace.

revision 20250716_270 38

User Commands User Guide

The Trace window shows that, in the number namespace, the Parse variable is set to
2S. This means that the Args variable is a namespace. The namespace contains a
number of variables, one of which is Arguments:

]Disp Args
⎕SE.[Namespace]

Args.⎕NL 2
Arguments
SwD
_1
_2

]Disp Args.Arguments
┌→─┬────┐
│42│Andy│
└─→┴───→┘

This shows that the Arguments variable is a vector comprising two character vectors.

Enter the Edit command (<ED>) to open the namespace definition in the Edit window
and change the Parse variable from '2S' to '2L'. Save the changes and repeatedly
enter the Escape command (<EP>) until you are no longer tracing through code. Then
enter:

]Number 42 Andy 8 9 10 –

With the Run function suspended, enter:

]Disp Args.Arguments
┌→─┬───────────┐
│42│Andy 8 9 10│
└─→┴──────────→┘

This shows that the Arguments variable is still a vector comprising two character
vectors. However, the second of the two character vectors now includes everything
after the first argument in the call to the user command.

Press the <ED> key combination to open the namespace definition in the Edit window
and change the Parse variable from '2L' to '2S -true'. The '-true'means that
the parser now accepts a modifier called -true that does not accept a modifier value
but can only be present or absent (see Section 3.7.2). Save the changes and
repeatedly hit <EP> until you are no longer tracing through code. Then enter:

]Number 42 Andy –
Args.⎕NL 2

Arguments

revision 20250716_270 39

User Commands User Guide

SwD
_1
_2
true

This shows an additional variable, true, created with the same name as the modifier
that was included in the Parse variable. However, when calling the]Number user
command, this on/off modifier was not specified. Therefore:

Args.true
0

To see the effect of calling the]Number user command with this modifier specified:

)reset
]Number 42 Andy -true –
Args.true

1

Debugging mode is switched off using:

]UDebug off
Was ON

revision 20250716_270 40

User Commands User Guide

Index

A

Arguments 10, 21
Default values 21
Including space characters 22
Long 22
Maximum number of 22
Minimum number of 22
Specification in the parser 23

B

Basic Definition 12

C

Cache file 3
Creating custom user commands 12
Argument definition 21
Basic Definition 12
Detecting new user commands 24
Help function 18
List function 13
Modifier definition
Default values 20

Run function 16
Saving custom user commands 23

D

Detecting new user commands 24
Directory structure 6

E

Environment Variables
UCMDCACHEFILE 4

F

File format 8
Flags See Modifiers

G

Groups 8

H

Help function 18
Defining multiple levels of help 16

I

Implementation 6
Installation 6

L

List function 13
Group variable 14
Name variable 14
Parse variable 15

M

Modifiers 19
Default values 20

revision 20250716_270 41

User Commands User Guide

Syntax 11

P

Parse variable 15

R

Run function 16
Running user commands 10

S

Saving custom user commands 23
Switch function 20
Switches See Modifiers
Syntax 9

U

UCMDCACHEFILE Environment
Variable 4
User command groups
(predefined)
SAMPLES 26

User commands (predefined)
]UCMDHelp 26
]UCMDNoParsing 26
]UCMDParsing 27

revision 20250716_270 42

User Commands User Guide

	1 About This Document
	1.1 Audience
	1.2 Conventions

	2 Introduction
	2.1 Cache File
	2.1.1 Defining the UCMDCACHEFILE Environment Variable

	3 Using User Commands
	3.1 Installation
	3.2 Directory Structure
	3.3 Implementation
	3.3.1 Customising the Implementation

	3.4 File Format
	3.5 Groups
	3.6 Syntax in Dyalog Sessions
	3.7 Running User Commands
	3.7.1 Arguments
	3.7.2 Modifiers and Modifier Values
	3.7.3 Errors when Running a User Command

	4 Creating User Commands
	4.1 Basic Definition
	4.2 The List Function
	4.2.1 Name
	4.2.2 Group
	4.2.3 Parse

	4.3 The Run Function
	4.3.1 Defining Multiple Levels of Help

	4.4 The Help Function
	4.5 Modifiers
	4.5.1 Default Modifier Values

	4.6 Arguments
	4.6.1 Default Argument Values
	4.6.2 Arguments Including Space Characters
	4.6.3 Minimum Number of Arguments
	4.6.4 Maximum Number of Arguments
	4.6.5 Long Arguments
	4.6.6 Summary of Argument Specification in the Parser

	4.7 Saving Custom User Commands
	4.8 Detecting New Custom User Commands

	A SAMPLES Group
	A.1]UCMDHelp
	A.2]UCMDNoParsing
	A.3]UCMDParsing

	B Example User Commands
	B.1 Example: Basic User Command Definition
	B.2 Example: Cross-Operating System Definition
	B.3 Example: Optional Arguments
	B.4 Example: The Parse Variable
	B.5 Example: Debugging a User Command

	Index

