
The tool of thought for software solutions

The JSON_APL

Shared Object

Version 20.0

Dyalog Limited

Minchens Court, Minchens Lane

Bramley, Hampshire

RG26 5BH

United Kingdom

tel: +44 1256 830030

fax: +44 1256 830031

email: support@dyalog.com

https://www.dyalog.com

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2025

mailto:support@dyalog.com
https://www.dyalog.com/

 The JSON_APL Shared Object 2

Dyalog is a trademark of Dyalog Limited

Copyright © 1982 – 2025 by Dyalog Limited.

All rights reserved.

Version 20.0

Revision: 20250703_200

Dyalog Limited makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied

warranties of merchantability or fitness for any particular purpose. Dyalog Limited reserves the right to revise this publication

without notification.

Raspberry Pi is a trademark of the Raspberry Pi Foundation.

Oracle® , MySQL, and Java™ are registered trademarks of Oracle and/or its affiliates. JavaScript™ is a trademark of Oracle

Corporation.

Unicode is a registered trademarks of Unicode, Inc. in the United States and other countries.

UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively through X/Open Company Limited.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Windows® is a registered trademark of Microsoft Corporation in the U.S. and other countries.

macOS® and OS X® (operating system software) are registered trademarks of Apple Inc. in the U.S. and other countries

All other trademarks and copyrights are acknowledged.

 The JSON_APL Shared Object 3

Contents

1 ABOUT THIS DOCUMENT . 4

 Audience .. 4

2 INTRODUCTION . 5

3 ENTRY POINTS . 6

 C functions ... 6

 APL functions ... 7

4 THE CALL_J SON_APL.C SAMPLE . 9

5 THE J SON_APL.PY SAMPLE . 11

 The JSON_APL Shared Object 4

1 About This Document

This document describes the JSON_APL Shared Object (included with standard

installations of Dyalog version 17.1 onwards). The JSON_APL Shared Object allows

the user to execute APL statements in the Dyalog interpreter from any programming

language that can access native shared libraries.

JSON_APL is a specific example of more general tools for wrapping APL applications

as shared libraries, as documented in APL as a Shared library. Only the binary shared

object library file and Python example are included with a standard Dyalog

installation; the source code is provided as one of several samples that can be

downloaded from https://github.com/dyalog/NativeLib.

 Audience

It is assumed that the reader has a reasonable understanding of Dyalog, knowledge of

the APL application to be called, the mechanisms used by the client language to make

calls to shared libraries (typically called the "foreign function interface") and how to

create and use JSON strings in that environment.

https://github.com/dyalog/NativeLib

 The JSON_APL Shared Object 5

2 Introduction

JSON_APL is an interface that allows any programming language to execute APL

expressions and call APL functions. Arguments are passed and results are received as

character strings in a format known as JSON (JavaScript Object Notation). For

example, to sum the first 5 even numbers using APL, the caller would need to create

the strings "+/" and "[2,4,6,8,10]" and invoke the function CallJSON,

passing those strings as parameters. The result will be the string "30", which is the

JSON representation of the numeric scalar result.

JSON_APL is included with standard installations of Dyalog version 17.1 or later in

the [DYALOG]/Samples directory. It is provided in the form of a shared library with

an extension appropriate for each platform (.dll under Microsoft Windows, .so under

Linux or .dylib under macOS). Examples of how to use it to call APL from C and

Python are included in this document, and the source code can be downloaded from

https://github.com/dyalog/NativeLib. The Python example (also included with

standard installations of Dyalog) is only compatible with Python 3.

JSON_APL is initialised by specifying APL start-up parameters and the location of the

APL code that is to be made available. It can be used to make any APL code available

without changes to the APL application as long as all arguments and results can be

represented in JSON. Unfortunately, JSON cannot represent multi-dimensional arrays,

so these typically need to be split into vectors of vectors and re-assembled into arrays.

Apart from this limitation, the vast majority of APL arrays can be represented.

https://github.com/dyalog/NativeLib

 The JSON_APL Shared Object 6

3 Entry points

This chapter describes the functions used for setting the active workspace parameters,

loading APL code into the workspace and accessing the APL functions using JSON.

Apart from the Initialise function, all entry points call APL functions that have

been compiled into the shared object. The source for these functions is not included in

a standard installation but can be downloaded separately from

https://github.com/dyalog/NativeLib. The source file

JSON_APL/JSON_APL/JSON_APL/JSON_APL.dyalog contains the APL

functions described in Section 3.2, which are used to execute the function calls in the

workspace.

 C functions

int LIBCALL Initialise(unsigned int runtime, unsigned int

len, wchar_t **args)

The Initialise function takes a Boolean flag runtime to indicate

whether to use the runtime interpreter (1) or development interpreter (0). If

the development interpreter is used then (on Microsoft Windows) any

untrapped errors in the APL code will cause the Dyalog Development

Environment to be displayed. In other scenarios, the RIDE_INIT environment

variable, or 3502⌶ (manage RIDE connections) can be used to configure the

interpreter to allow RIDE connections for debugging.

An array of pointers to wide character strings args is used to set interpreter

environment variables (for example, "MAXWS=512Mb" or "-Dcw"). The

integer len specifies how many entries are in the args array.

The function starts the APL interpreter with the specified configuration and

returns 0 if successful.

int LIBCALL CallJSON(wchar_t *fname, wchar_t *in, wchar_t

*out, unsigned int len)

The CallJSON function executes APL statements and calls APL functions,

passing arguments and receiving results as wide character strings in JSON

format.

The wide character string fname is the name of the function in the APL

workspace. This can be either one of the built-in functions described in

Section 3.2 or one that has been loaded into the workspace using the

LoadAPL function.

The wide character string in is either:

• A JSON object, represented as a wide character string, containing:

o A "Function" string of a monadic or dyadic APL function.

o An optional "Right" string, numeric or list for the right argument

to the function.

https://github.com/dyalog/NativeLib

 The JSON_APL Shared Object 7

o An optional "Left" string, numeric or list for the left argument to

the dyadic function.

For example: Sum the first five integers
{"Function": "+/", "Right": [1,2,3,4,5]}

For example: Apply a Boolean mask to a character array
{"Function": "/", "Left": [1,0,1,1,0], "Right":

"APPLE"}
• A wide character string representing a complete APL statement

For example: Sum the first five integers

"+/⍳5" (or "+/\\u23739" with explicit Unicode code points)

The wide character buffer out is used to store the result of the APL

statement. The integer len specifies the length of out and out must be

large enough to store the string representation of the APL statement result as

otherwise the result could be truncated.

The function returns an integer error code as described in APL as a Shared

Library.

int LIBCALL ExecAPL(wchar_t *statement, wchar_t *result)

The ExecAPL function calls the APL function Exec described Section 3.2.

The wide character string statement is the complete APL statement to be

executed. The wide character buffer result must be large enough to

contain the text-formatted result of the APL statement as otherwise the result

could be truncated.

The function returns an integer error code as described in APL as a Shared

Library.

int LIBCALL GetEnv(const wchar_t *name, wchar_t *value,

size_t len)

The GetEnv function calls the APL function GetEnv described in Section

3.2. The wide character string name is the name of an interpreter

environment variable (for example, "MAXWS"). The wide character string

value is the returned value of the named environment variable. The size_t

len is the size of the wide character buffer used to return the value; it must

be large enough to store the string representation of that value.

 APL functions

The built-in APL functions, found in JSON_APL/JSON_APL/JSON_APL.dyalog

inside the source code for the JSON_APL Shared Object (downloadable from

https://github.com/dyalog/NativeLib), are compiled into the Shared Object to make

calling APL using JSON more convenient. Unless otherwise specified, if there is an

error in execution there will be no result but the CallJSON function (see Section 3.1)

will return an error code (as described in APL as a Shared Library, positive error

codes are Dyalog error codes) as its result. The APL functions are described below:

∇ r←Load APLCode

The Load function brings APL code into the active workspace from a

binary .dws workspace or an APL text source file. APLCode is a simple

character vector representing the file path (relative or absolute) of the

APL code source. Text source files must have one of the file extensions

.dyalog, .aplf, .aplo, .apln, .aplc or .apli. The .dyalog extension is an

https://github.com/dyalog/NativeLib

 The JSON_APL Shared Object 8

APL text source file which may contain a class, namespace, interface or

standalone APL statements, while the other extensions refer to source

files created by Link (https://github.com/Dyalog/link) which correspond

to specific name classes as described in Table 1. The Load function can

be used multiple times to bring multiple APL functions or objects into

the workspace.

The output, r, is the numeric scalar 0 if the APL source file or

workspace loaded successfully, and 1 otherwise.

Table 1: APL text source file extensions and corresponding name classes

Name class Extension

3 .aplf

4 .aplo

9.1 .apln

9.4 .aplc

9.5 .apli

∇ out←Exec APL

Exec is used to execute APL statements.

APL is one of the following:

• A JSON object containing a character vector property Function that

represents the APL function statement, and optional properties Right

and Left that contain the right and left arguments respectively.

• A simple character vector describing a complete APL statement.

If the function executes successfully then the result out is a simple character

vector of the function result. Otherwise there is no result, but the CallJSON

function (see Section 3.1) will return an error code (error codes are described

in APL as a Shared Library).

∇ r←GetEnv n

The GetEnv function is a wrapper for 2 ⎕NQ '.' 'GetEnvironment'
var and is used to verify that the interpreter has been initialised correctly

with the specified environment variables.

n is a simple character vector giving the name of an environment variable

(for example, 'MAXWS', 'RIDE_INIT') and r is a simple character vector

representation of that variable's value.

https://github.com/Dyalog/link

 The JSON_APL Shared Object 9

4 The call_JSON_APL.c Sample

This sample demonstrating how to call APL functions using the JSON_APL Shared

Object in C is built alongside the JSON_APL Shared Object. The source code is not

included with standard Dyalog installations but is available from

https://github.com/dyalog/NativeLib. It can be built using Visual Studio on Microsoft

Windows or using make on Linux, macOS or on Windows using Cygwin. Details of

how to build the sample are documented in APL as a Shared Library.

The examples below demonstrate how to use the entry points described in Section 3.1.

The layout for each example is:

Function declaration (function arguments);

Variable declaration and function call;

extern int LIBCALL Initialise(int runtime, unsigned int

len, wchar_t **args);

const wchar_t *WSargs[] = {

 L"MAXWS=256Mb",

 L"SESSION_FILE=JSON_APL.dse"

 };

 Initialise(1, sizeof(WSargs) / sizeof(WSargs[0]),

WSargs);

extern int LIBCALL CallJSON(wchar_t *function, wchar_t

*in, wchar_t *out, unsigned int len);

 // Load a .dyalog script

 APL = L"\"sign.dyalog\"";

 err = CallJSON(L"Load", APL, buf, 256);

 wprintf(L"CallJSON Load: %ls\nError: %i\n", buf,

err);

// Execute an APL function called using JSON

 APL =

L"{\"Left\":[1,0,1,1,0],\"Statement\":\"/\",\"Right\

":\"APPLE\"}";

 err = CallJSON(L"Exec", APL, buf, 256);

 wprintf(L"CallJSON Exec: %ls\nError: %i\n", buf,

err);

extern int LIBCALL ExecAPL(wchar_t *statement, wchar_t

*result);

// Execute wchar APL statement (expects wide char

return so format required):

#define STR_FMT L"\x2355"

 wchar_t *APL = STR_FMT L"+/1 2 3 4";

 err = ExecAPL(APL, buf);

https://github.com/dyalog/NativeLib

 The JSON_APL Shared Object 10

 wprintf(L"ExecAPL: %ls\n%ls\nError: %i\n", APL, buf,

err);

extern int LIBCALL GetEnv(const wchar_t *name, wchar_t

*value, size_t len);

// Query MAXWS

 err = GetEnv(L"MAXWS", buf, 256);

 wprintf(L"GetEnv MAXWS: %ls\nError: %i\n", buf,

err);

 The JSON_APL Shared Object 11

5 The JSON_APL.py Sample

The Python example JSON_APL.py includes simple wrapper functions for accessing

the shared library. These are:

InitAPL(runtime, WSargs)

Initialise the Dyalog interpreter with custom environment variables. The

Boolean runtime tells the library whether to use the runtime interpreter (1)

or development interpreter (0). WSargs is a list of Unicode strings that set

environment variables, for example: "MAXWS=512Mb".

If the Python example is suspended partway through execution (for example,

by using an input() statement) then the active workspace can be accessed

using the RIDE.

CallJSON(function, parms)

Call a function in the active workspace. This includes functions brought in

using the APL function Load and those from JSON_APL.dyalog described

in Section 3.2. The function Exec (in JSON_APL.dyalog) can process APL

statements in JSON format. Either a whole statement can be passed as a

single Unicode string (for example,
CallJSON("Exec","+⌿(⍳3)∘.+⍳5")), or a dictionary containing a

"Function" value and, optionally, "Right" and "Left" values

(corresponding to an APL function, right and left arguments respectively) can

be passed. The dictionary construct allows Python numeric variables and lists

to be passed as arguments to APL.

CallJSON returns a two-element list containing the function result and an

error code (as described in APL as a Shared Library). It is often useful to

retrieve numeric values in Python using json.loads(result). Note:

Only arrays of rank 1 or less can be passed using CallJSON (nested arrays

are allowed).

GetEnv(var)

This is a wrapper for the APL function GetEnv described in Section 3.2.

The Python example uses the ctypes create_unicode_buffer() function to

allocate mutable memory in which the shared library can store the results of function

calls. Python is garbage-collected at the end of a run, but for languages that do not

garbage-collect automatically the caller program is responsible for allocating and

deallocating memory for the results of shared library calls.

The script detects the current platform (Microsoft Windows, macOS or Linux) and

refers to the appropriate shared library and Conga paths given in platformpaths.py.

To access the workspace using the RIDE, platformpaths.py must include the correct

path to the Conga shared library.

