The tool of thought for software solutions
I | [

The JSON_APL
Shared Object

Version 20.0

Dyalog Limited

Minchens Court, Minchens Lane
Bramley, Hampshire
RG26 5BH
United Kingdom

tel: +44 1256 830030
fax: +44 1256 830031
email: support@dyalog.com
https://www.dyalog.com

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2025

e : TR

o=

-]
=,
2l

mailto:support@dyalog.com
https://www.dyalog.com/

The JSON_APL Shared Object

Dyalog is a trademark of Dyalog Limited
Copyright © 1982 — 2025 by Dyalog Limited.
All rights reserved.

Version 20.0
Revision: 20250703_200

Dyalog Limited makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied
warranties of merchantability or fitness for any particular purpose. Dyalog Limited reserves the right to revise this publication

without notification.

Raspberry Pi is a trademark of the Raspberry Pi Foundation.

Oracle® , MySQL, and Java™ are registered trademarks of Oracle and/or its affiliates. JavaScript™ is a trademark of Oracle
Corporation.

Unicode is a registered trademarks of Unicode, Inc. in the United States and other countries.

UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Windows® is a registered trademark of Microsoft Corporation in the U.S. and other countries.

macOS® and OS X® (operating system software) are registered trademarks of Apple Inc. in the U.S. and other countries

All other trademarks and copyrights are acknowledged.

The JSON_APL Shared Object 3

Contents
1 ABOUT THIS DOCUMENT .ttt et 4
1.1 AUIBNCE ..ttt sttt ettt s 4
2 INTRODU CTION e et e et ettt e e eeaaas 5
3 ENT RY POINT S i et et ettt eeaaeas 6
31 CAUNCHIONS 1.ttt 6
3.2 APL FUNCHIONS ..ottt 7
4 THE CALL_JSON_APL.C SAMPLE .ot 9

5 THE JSON_APL.PY SAMPLE ..ot 11

The JSON_APL Shared Object

1 About This Document

This document describes the JSON_APL Shared Object (included with standard
installations of Dyalog version 17.1 onwards). The JSON_APL Shared Object allows
the user to execute APL statements in the Dyalog interpreter from any programming
language that can access native shared libraries.

JSON_APL is a specific example of more general tools for wrapping APL applications
as shared libraries, as documented in APL as a Shared library. Only the binary shared
object library file and Python example are included with a standard Dyalog
installation; the source code is provided as one of several samples that can be
downloaded from https://github.com/dyalog/NativeLib.

1.1 Audience

It is assumed that the reader has a reasonable understanding of Dyalog, knowledge of
the APL application to be called, the mechanisms used by the client language to make
calls to shared libraries (typically called the "foreign function interface") and how to
create and use JSON strings in that environment.

https://github.com/dyalog/NativeLib

The JSON_APL Shared Object

2 Introduction

JSON_APL is an interface that allows any programming language to execute APL
expressions and call APL functions. Arguments are passed and results are received as
character strings in a format known as JSON (JavaScript Object Notation). For
example, to sum the first 5 even numbers using APL, the caller would need to create
the strings "+/" and " [2,4,6,8,10] " and invoke the function Cal1JSON,
passing those strings as parameters. The result will be the string "30", which is the
JSON representation of the numeric scalar result.

JSON_APL is included with standard installations of Dyalog version 17.1 or later in
the [DYALOG]/Samples directory. It is provided in the form of a shared library with
an extension appropriate for each platform (.dll under Microsoft Windows, .so under
Linux or .dylib under macOS). Examples of how to use it to call APL from C and
Python are included in this document, and the source code can be downloaded from
https://github.com/dyalog/NativeLib. The Python example (also included with
standard installations of Dyalog) is only compatible with Python 3.

JSON_APL is initialised by specifying APL start-up parameters and the location of the
APL code that is to be made available. It can be used to make any APL code available
without changes to the APL application as long as all arguments and results can be
represented in JSON. Unfortunately, JSON cannot represent multi-dimensional arrays,
so these typically need to be split into vectors of vectors and re-assembled into arrays.
Apart from this limitation, the vast majority of APL arrays can be represented.

https://github.com/dyalog/NativeLib

The JSON_APL Shared Object

3 Entry points

This chapter describes the functions used for setting the active workspace parameters,
loading APL code into the workspace and accessing the APL functions using JSON.
Apart from the ITnitialise function, all entry points call APL functions that have
been compiled into the shared object. The source for these functions is not included in
a standard installation but can be downloaded separately from
https://github.com/dyalog/NativeLib. The source file
JSON_APL/JSON_APL/JSON_APL/JSON_APL.dyalog contains the APL
functions described in Section 3.2, which are used to execute the function calls in the
workspace.

3.1 C functions

int LIBCALL Initialise(unsigned int runtime, unsigned int
len, wchar t **args)

The Initialise function takes a Boolean flag runtime to indicate
whether to use the runtime interpreter (1) or development interpreter (0). If
the development interpreter is used then (on Microsoft Windows) any
untrapped errors in the APL code will cause the Dyalog Development
Environment to be displayed. In other scenarios, the RIDE_INIT environment
variable, or 3502] (manage RIDE connections) can be used to configure the
interpreter to allow RIDE connections for debugging.

An array of pointers to wide character strings args is used to set interpreter
environment variables (for example, "MAXWS=512Mb" or "-Dcw"). The
integer len specifies how many entries are in the args array.

The function starts the APL interpreter with the specified configuration and
returns O if successful.

int LIBCALL CallJSON (wchar t *fname, wchar t *in, wchar t
*out, unsigned int len)

The CallJSON function executes APL statements and calls APL functions,
passing arguments and receiving results as wide character strings in JSON
format.

The wide character string fname is the name of the function in the APL
workspace. This can be either one of the built-in functions described in
Section 3.2 or one that has been loaded into the workspace using the
LoadAPL function.

The wide character string in is either:

e A JSON object, represented as a wide character string, containing:
o A "Function" string of a monadic or dyadic APL function.
o Anoptional "Right" string, numeric or list for the right argument
to the function.

https://github.com/dyalog/NativeLib

The JSON_APL Shared Object

o Anoptional "Left" string, numeric or list for the left argument to
the dyadic function.
For example: Sum the first five integers

{"Function": "+/", "Right": [1,2,3,4,5]1}

For example: Apply a Boolean mask to a character array
{"Function": "/", "Left": [1,0,1,1,0], "Right":
"APPLE"}

e A wide character string representing a complete APL statement
For example: Sum the first five integers
"+/15" (or "+/\\u23739" with explicit Unicode code points)

The wide character buffer out is used to store the result of the APL
statement. The integer 1en specifies the length of out and out must be
large enough to store the string representation of the APL statement result as
otherwise the result could be truncated.

The function returns an integer error code as described in APL as a Shared
Library.

int LIBCALL ExecAPL(wchar t *statement, wchar t *result)

The ExecAPL function calls the APL function Exec described Section 3.2.
The wide character string statement is the complete APL statement to be
executed. The wide character buffer result must be large enough to
contain the text-formatted result of the APL statement as otherwise the result
could be truncated.

The function returns an integer error code as described in APL as a Shared
Library.

int LIBCALL GetEnv(const wchar t *name, wchar t *value,
size t len)

The GetEnv function calls the APL function Get Env described in Section
3.2. The wide character string name is the name of an interpreter
environment variable (for example, "MAXWS"). The wide character string
value is the returned value of the named environment variable. The size t
len is the size of the wide character buffer used to return the value; it must
be large enough to store the string representation of that value.

3.2 APL functions

The built-in APL functions, found in JSON_APL/JSON_APL/JSON_APL.dyalog
inside the source code for the JSON_APL Shared Object (downloadable from
https://github.com/dyalog/NativeLib), are compiled into the Shared Object to make
calling APL using JSON more convenient. Unless otherwise specified, if there is an
error in execution there will be no result but the Cal1JSON function (see Section 3.1)
will return an error code (as described in APL as a Shared Library, positive error
codes are Dyalog error codes) as its result. The APL functions are described below:

V r«Load APLCode

The Load function brings APL code into the active workspace from a
binary .dws workspace or an APL text source file. APLCode is a simple
character vector representing the file path (relative or absolute) of the
APL code source. Text source files must have one of the file extensions
.dyalog, .aplf, .aplo, .apln, .aplc or .apli. The .dyalog extension is an

https://github.com/dyalog/NativeLib

The JSON_APL Shared Object

APL text source file which may contain a class, namespace, interface or
standalone APL statements, while the other extensions refer to source
files created by Link (https://github.com/Dyalog/link) which correspond
to specific name classes as described in Table 1. The Load function can
be used multiple times to bring multiple APL functions or objects into
the workspace.

The output, r, is the numeric scalar 0 if the APL source file or
workspace loaded successfully, and 1 otherwise.

Table 1: APL text source file extensions and corresponding name classes

Name class Extension
3 .aplf
4 .aplo
9.1 .apln
9.4 .aplc
9.5 .apli

V out«Exec APL
Exec is used to execute APL statements.

APL is one of the following:

e A JSON object containing a character vector property Funct ion that
represents the APL function statement, and optional properties Right
and Lef t that contain the right and left arguments respectively.

e A simple character vector describing a complete APL statement.

If the function executes successfully then the result out is a simple character
vector of the function result. Otherwise there is no result, but the Cal1JSON
function (see Section 3.1) will return an error code (error codes are described
in APL as a Shared Library).

V r<GetEnv n

The GetEnv function is a wrapper for2 NQ '.' 'GetEnvironment'
var and is used to verify that the interpreter has been initialised correctly
with the specified environment variables.

n is a simple character vector giving the name of an environment variable
(for example, 'MAXWS ', 'RIDE_INIT')and r is a simple character vector
representation of that variable's value.

https://github.com/Dyalog/link

The JSON_APL Shared Object

4 The call_JSON_APL.c Sample

This sample demonstrating how to call APL functions using the JSON APL Shared
Object in C is built alongside the JSON_APL Shared Object. The source code is not
included with standard Dyalog installations but is available from
https://github.com/dyalog/NativeLib. It can be built using Visual Studio on Microsoft
Windows or using make on Linux, macOS or on Windows using Cygwin. Details of
how to build the sample are documented in APL as a Shared Library.

The examples below demonstrate how to use the entry points described in Section 3.1.
The layout for each example is:

Function declaration (function arguments);
Variable declaration and function call;

extern int LIBCALL Initialise(int runtime, unsigned int
len, wchar t **args);

const wchar t *WSargs[] = {
L"MAXWS=256Mb",
L"SESSION_FILE=JSON_APL .dse"
b
Initialise (1, sizeof (WSargs) / sizeof (WSargs([0]),
WSargs) ;

extern int LIBCALL CallJSON(wchar t *function, wchar t
*in, wchar t *out, unsigned int len);

// Load a .dyalog script

APL = L"\"sign.dyalog\"";

err = CallJSON(L"Load", APL, buf, 256);

wprintf (L"CallJSON Load: %ls\nError: %i\n", buf,
err);

// Execute an APL function called using JSON

APL =
L"{\"Left\":[1,0,1,1,0],\"Statement\":\"/\",\"Right\
":\"APPLE\"}";

err = CallJSON(L"Exec", APL, buf, 256);

wprintf (L"CallJSON Exec: %ls\nError: %i\n", buf,
err);

extern int LIBCALL ExecAPL (wchar t *statement, wchar t
*result) ;

// Execute wchar APL statement (expects wide char
return so format required) :

#define STR_FMT L"\x2355"

wchar t *APL = STR FMT L"+/1 2 3 4";

err = ExecAPL (APL, buf);

https://github.com/dyalog/NativeLib

DVA LO C The JSON_APL Shared Object 10

wprintf (L"ExecAPL: %1s\n%ls\nError: %i\n", APL, buf,
err) ;

extern int LIBCALL GetEnv(const wchar t *name, wchar t
*value, size t len);

// Query MAXWS
err = GetEnv (L"MAXWS", buf, 256);
wprintf (L"GetEnv MAXWS: %$1s\nError: %i\n", buf,

err) ;

The JSON_APL Shared Object

5 TheJSON_APL.py Sample

The Python example JSON_APL.py includes simple wrapper functions for accessing
the shared library. These are:

InitAPL (runtime, WSargs)

Initialise the Dyalog interpreter with custom environment variables. The
Boolean runtime tells the library whether to use the runtime interpreter (1)
or development interpreter (0). WSargs is a list of Unicode strings that set
environment variables, for example: "MAXWS=512Mb".

If the Python example is suspended partway through execution (for example,
by using an input () statement) then the active workspace can be accessed
using the RIDE.

CallJSON (function, parms)

Call a function in the active workspace. This includes functions brought in
using the APL function Load and those from JSON_APL.dyalog described
in Section 3.2. The function Exec (in JSON_APL.dyalog) can process APL
statements in JSON format. Either a whole statement can be passed as a
single Unicode string (for example,

CallJSON ("Exec","+7 (13)o.+15")), or a dictionary containing a
"Function" value and, optionally, "Right" and "Left" values
(corresponding to an APL function, right and left arguments respectively) can
be passed. The dictionary construct allows Python numeric variables and lists
to be passed as arguments to APL.

CallJSON returns a two-element list containing the function result and an
error code (as described in APL as a Shared Library). It is often useful to
retrieve numeric values in Python using json.loads (result). Note:
Only arrays of rank 1 or less can be passed using CallJSON (nested arrays
are allowed).

GetEnv (var)
This is a wrapper for the APL function GetEnv described in Section 3.2.

The Python example uses the ctypes create unicode buffer () function to
allocate mutable memory in which the shared library can store the results of function
calls. Python is garbage-collected at the end of a run, but for languages that do not
garbage-collect automatically the caller program is responsible for allocating and
deallocating memory for the results of shared library calls.

The script detects the current platform (Microsoft Windows, macOS or Linux) and
refers to the appropriate shared library and Conga paths given in platformpaths.py.
To access the workspace using the RIDE, platformpaths.py must include the correct
path to the Conga shared library.

1

