Shared Code Files
User Guide

Dyalog version 20.0

JDYALOC

The tool of thought for software solutions

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2025 by Dyalog Limited
All rights reserved.

Shared Code Files User Guide

Dyalog version 20.0
Document Revision: 20250703_200

Unless stated otherwise, all examples in this document assume that JI0 OML « 1

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https.//www.dyalog.com

TRADEMARKS:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.

Oracle®, MySQL, and Java™ are registered trademarks of Oracle and/or its affiliates.
JavaScript™ is a trademark of Oracle Corporation.

Unicode is a registered trademarks of Unicode, Inc. in the United States and other
countries.

UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively
through X/Open Company Limited.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows?® is a registered trademark of Microsoft Corporation in the U.S. and other
countries.

macOS® and 0OS X® (operating system software) are registered trademarks of Apple
Inc. in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Shared Code Files User Guide

Contents

1 About This Document 1
1.1 AUdIENCE 1
1.2 CoNVENTIONS Lo 1

2 Introduction 3
2.1 Benefits Offered by Shared Code Files ... 3
2.2 Fundamental Limitations 4
2.3 Temporary Limitations ... 5
2.4 Summary of Limitations ... 7

3 PerfOrmMaNCe .. .o 8
3.0 L0adiNg oo 8
3.2 Code EXECULION . . 8

4 Technical Reference ... 10
4.1 Save Shared Code File 10
4.2 Attach Shared Code File 11
4.3 Assimilate Shared Code Files ... 12
4.4 Detach Shared Code Files ... 12
4.5 List Shared Code Files ... 13
4.6 List Attached Names 13

5 Technical Details ... 15
5.1 Shared Code Filesare Read Only ... 15
5.2 Attaching, Assimilating and Detaching Shared Code Files 16

A Worked Example ... 21

INdeX 24

revision 20250703_200 i

Shared Code Files User Guide

1 About This Document

This document is intended as an introduction to shared code files, introduced for the
purpose of improving the performance of large applications while reducing their
memory consumption and initialisation time.

@ The exact specification of shared code files is subject to change from time to
time. Dyalog Ltd recommends that code that loads and creates shared code
files is embedded in utility functions that can easily be modified as required.

1.1 Audience

It is assumed that the reader has a reasonable understanding of Dyalog.

For information on the resources available to help develop your Dyalog knowledge,
see https://www.dyalog.com/introduction.htm.

1.2 Conventions

Unless explicitly stated otherwise, all examples in Dyalog documentation assume that
[I0 and [OML are both 1.

Various icons are used in this document to emphasise specific material.
General note icons, and the type of material that they are used to emphasise, include:

Hints, tips, best practice and recommendations from Dyalog Ltd.

@ Material of particular significance or relevance.

revision 20250703_200 1

https://www.dyalog.com/introduction.htm

Shared Code Files User Guide

Legacy information pertaining to behaviour in earlier releases of Dyalog or to
functionality that still exists but has been superseded and is no longer

recommended.

Warnings about actions that can impact the behaviour of Dyalog or have
unforeseen consequences.

A full list of the platforms on which Dyalog version 20.0 is supported is available at
https://www.dyalog.com/dyalog/current-platforms.htm. Although the Dyalog
programming language is identical on all platforms, differences do exist in the way
some functionality is implemented and in the tools and interfaces that are available.
Differences in behaviour between operating systems are identified with the following
icons (representing macQOS, Linux, Microsoft Windows and UNIX respectively):

G

revision 20250703_200 2

https://www.dyalog.com/dyalog/current-platforms.htm

Shared Code Files User Guide

2 Introduction

While a standard Dyalog workspace (a .dws file) needs to be read by the interpreter
and loaded in its entirety, a shared code file (a .dwx file) has a structure that allows it
to be attached to the active workspace with a minimum of file operations. This
significantly decreases the start time of application processes, especially when several
processes run on the same machine.

When a shared code file is attached to the active workspace, a list of all the names of
the functions, operators and variables that it contains is loaded into the active
workspace. However, the definitions and values of these names are only paged into
virtual memory the first time that the names are referenced, and they are not loaded
into the active workspace unless their content is modified. In addition, because
shared code files are memory-mapped by the operating system, the definitions and
values are shared by concurrent processes. This means that, if a shared code file is
already in use by one Dyalog application, then the name list can be loaded from
shared memory by another application; the same is true for any of the names that are
already in use (unless the system is low on memory, in which situation memory
mapped pages are flushed from memory).

@ The use of shared code files is only supported on 64-bit Unicode interpreters
and there are no current plans to extend this support. Shared code files are
memory mapped, and they can only be attached by interpreters that use
exactly the same memory layout as the system that generated them.

2.1 Benefits Offered by Shared Code Files

Many large applications are currently forced to load more code than is necessary
because it is difficult to predict precisely what code will be used. The main benefit of
shared code files is that applications only load code and data on demand.

revision 20250703_200 3

Shared Code Files User Guide

BENEFIT 1: Significantly reduced start-up times for applications

Similarly, computational sub-processses (such as isolates) can be launched in a
fraction of the time that would otherwise be required.

BENEFIT 2: Reduced workspace usage

Workspace size can be reduced or more space can be used to execute code more
efficiently. A shared code file is materialised one page at a time, as memory is
referenced. This means that the contents of comments, which are typically in a
separate part of the file from the actual code lines, are usually only read from file if
the code is edited. Similarly, running a compiled function is unlikely to require loading
the source of the function into virtual memory.

BENEFIT 3: Reduced file I/O and memory consumption

This is most apparent on machines that run several processes using the same code
and is due to the sharing of memory-mapped files.

BENEFIT 4: More efficient application execution

Objects residing in a shared code file remain outside the dynamic portion of the
workspace unless they are modified. In some applications, this means that the
complexity of the active workspace is significantly reduced. As a result, memory
allocations are generally cheaper and less memory needs to be inspected and moved
around when compactions occur.

2.2 Fundamental Limitations
Despite the benefits offered by shared code files, they will not replace the standard

Dyalog workspace due to some fundamental limitations.

RESTRICTION 1: Shared code files are read only

Multiple processes can memory-map shared code files simultaneously; each process
that uses a shared code file is using the contents of that shared code file directly as
memory. This means that a shared code file cannot be updated while it is in use.

revision 20250703_200 4

Shared Code Files User Guide

Instead, when an application modifies an object that resides in a shared code file, a
copy of the relevant part of the shared code file is made in workspace memory and
the original file is not modified.

RESTRICTION 2: Shared code files each have a fixed virtual memory address

A shared code file contains pointers to absolute memory locations contained within it.
This means that the virtual memory address to which it is memory mapped must be
fixed when the memory-mapping occurs. When a shared code file is created, a
parameter specifies the virtual memory address at which it will be loaded and all
pointers contained within it are adjusted to fit this address. If an application uses
more than one shared code file, each shared code file must have a different address.

RESTRICTION 3: Shared code files cannot be shared across architectures

A shared code files cannot be converted in any way when it is used. This means that,
unlike workspaces, component files and arrays transmitted using TCP objects or
CONGA, shared code files cannot be shared between different platforms or versions
of Dyalog.

RESTRICTION 4: Shared code files are not workspaces

A shared code file is not a workspace; it is not possible to [JCY or) COPY from them.

RESTRICTION 4: 64-bit Unicode only

The benefits of memory mapping are only realisable in 64-bit address spaces. This,
combined with the other fundamental limitations, means that shared code files are
only supported for 64-bit Unicode systems; there are no current plans to extend this
support.

2.3 Temporary Limitations

There are several restrictions when using shared code files that could be removed in
future Dyalog versions.

revision 20250703_200 5

Shared Code Files User Guide

RESTRICTION 1: All objects saved must be visible from the root of the current
workspace

The following cannot be saved in a shared code file:

e GUI namespaces and their derivatives
e Functions created by starting an auxiliary processor

o External functions created using name association ([JNA)
e [ISM

RESTRICTION 2: It is not possible to have more than 8 shared code files simultaneously
attached

A maximum of 8 virtual memory addresses are available for shared code files; these
slots have identifiers 1 to 8. In a future release this limit could be significantly
increased, but the fundamental issue of needing a separate slot for each shared code
file simultaneously will remain.

RESTRICTION 3: Cannot) SAVE or [JSAVE a workspace that has shared code files
attached

It is not possible to) SAVE or JSAVE the current workspace if any shared code files
are attached (they must be assimilated or detached first — see Section 4.3 and Section 4.4
respectively).

RESTRICTION 4: Attaching a shared code file containing namespaces copies all the
namespaces (functions and arrays remain in the shared space)

Attaching shared code files results in data being copied from the shared code files as
needed (see Section 4.4). However, namespaces are always copied.

RESTRICTION 5: Only certain content can be saved in a shared code files

The content of a shared code file is limited to namespaces, nested arrays, simple
arrays, tradfns, tradops, dfns, dops and derived functions (futures and external
variables are instantiated and become arrays). If other content (for example, .NET
objects, shared variables and COM objects) is present in a workspace then that
workspace cannot be saved as a shared code file (see Section 4.1).

revision 20250703_200 6

Shared Code Files User Guide

2.4 Summary of Limitations

Fundamental limitations:
e Shared code files are read only
e Shared code files have a fixed virtual memory address
o Shared code files cannot be shared across architectures
e Shared code files are not workspaces
e 64-bit Unicode only

Temporary limitations:

o All objects saved must be visible from the root of the current workspace

e ltis not possible to have more than 8 shared code files simultaneously
attached

e Cannot)SAVE or [JSAVE a workspace that has shared code files attached

o Attaching a shared code file containing namespaces copies all the namespaces
(functions and arrays remain in the shared space)

e Only certain content can be saved in a shared code file

revision 20250703_200 7

Shared Code Files User Guide

3 Performance

The main purpose of shared code files is to reduce the execution time and memory
consumption of APL applications.

3.1 Loading

Unless an application uses a large proportion of its constituent code soon after start-
up, it is significantly faster to start that application in a nearly empty workspace and
attach shared code files containing the rest of the code. This also reduces the memory
footprint of the application.

The performance improvement is most noticeable in an environment where several
processes run the same application on a single machine, for example, applications
using isolates and/or running on Citrix servers or other servers. This is because:

e shared code files are memory-mapped; once one process has caused a part of
the application to be paged in, subsequent processes have very fast access to
the same part of that application.

¢ as the memory-mapped files are shared, only a small part of a function needs
to be copied into each active workspace that shares them; this reduces the
overall memory usage across all processes.

3.2 Code Execution

Code or data that is located in a shared code file is paged into virtual memory the first
time that it is used. This incurs a performance overhead; however, subsequent calls to
that code or data (or anything else on the same page) by the same or any other
process do not experience the same performance impact.

revision 20250703_200 8

Shared Code Files User Guide

Similarly, the first time that the content of a name (function, operator or variable) in a
shared code file is amended also involves a performance overhead (the content of a
shared code files is read-only; modifying the content of a name causes it to be copied
into the active workspace). However, subsequent writes to that the content of that
name by the same process do not experience the same performance impact.

Not only do subsequent calls/writes not experience the same performance impact,
their performance is often improved when compared with performing the same
operations without shared code files. This is due to the workspace memory manager
running more efficiently when it has a smaller set of data in the main workspace than
if everything was in the main workspace. Specifically:

e more workspace is available for application data, making it easier for memory
manager algorithms to allocate memory.

e the contents of the shared code files are ignored by compaction and garbage
collection algorithms.

revision 20250703_200 9

4

Shared Code Files User Guide

Technical Reference

The operations that comprise the shared code file mechanism are implemented using
three I-Beams — 86591, 86661 and 86671I. Specifically:

4.1

[names](86671){slot}{file}
save shared code file — see Section 4.1

[nameclasses](86661I){file}
attach shared code files — see Section 4.2

(8666T)NULL

assimilate shared code files — see Section 4.3
(8666I)0pc'"

detach shared code files — see Section 4.4
R<(86591)8

list shared code files — see Section 4.5

R«{slot}(86591){ncs}
list attached names — see Section 4.6

Save Shared Code File

Purpose: Saves a shared code file.

Syntax: [names] (86671) {slot} {file}

where:

names is a vector of character vectors or a matrix specifying the names to save;
this list of names of functions, operators and variables restricts the names in
the shared code file that are saved.

s lot is the slot identifier (an integer in the range 1-8) for the unique fixed
virtual memory address at which to load the shared code file.

fi leis a character vector of the filename for the shared code file. If a filename
extension is not provided, then .dwx is used. If a file of this name already
exists, or the file cannot be created for any reason, then the operation will fail.

revision 20250703_200 10

Shared Code Files User Guide

0S| A multi-user development team might need a strategy for creating (and

o attaching) cycles of shared code files as shared code files could remain
in use for some time by members of the development team. This should
not be an issue with distributed applications.

This creates a shared code file, optionally based on a list of names of functions,
operators or variables. Restrictions apply to the location and structure of objects that
can be placed into a shared code file; most importantly, the names must all be visible
in the root (#) of the active workspace. For a complete list of restrictions, see

Section 2.4.

4.2 Attach Shared Code File

Purpose: Attaches one or more shared code files to the active workspace.
Syntax: [nameclasses] (86661) {file}

where:

e nameclasses is a list of nameclass identifiers to be brought over (cannot
include sub-classes). The defaultis 2 3 4 9 (variables, functions, operators
and namespaces respectively).

o fileisavector of character vectors of shared code files to load, or a single
character vector (a character scalar is not acceptable). If filename extensions
are not provided, then .dwx is used. The path can be absolute or relative to
current location; there is no sensitivity to WSPATH.

The effect of attaching shared code files is analogous to performing a)PCOPY
(protected copy) from the shared code files, that is:

¢ names that already have a definition are preserved unaltered; if the same

name appears in more than one shared code file, then the files are searched in
the specified order and the first occurrence of the name is used.

e names in attached files immediately affect the results of system functions that
provide metadata, such as ONL or [INC.

If any shared code files are already attached, then they are detached from the active
workspace before new shared code files are attached (see Section 4.4). Multiple
shared code files cannot be attached using separate calls to 86661.

revision 20250703_200 11

Shared Code Files User Guide

4.3 Assimilate Shared Code Files

Purpose: Copies referenced objects in the shared code files into the active workspace.
Syntax: (8666T)[INULL

When the right argument to (86661) is ONULL, all referenced objects in the shared
code files are copied into the active workspace. The active workspace then contains
all the code and data that was visible to it when the shared code files were attached;
it can then be saved and used independently of the shared code files. The shared
code files that are attached to the active workspace are then disconnected from the
active workspace.

@ Significant space might be required to assimilate all the code in the shared
code files into the active workspace. If a WSFULL error occurs then the
operation will fail; it cannot be rolled back and leaves the workspace in an
indeterminate (but consistent) state. In this situation, the shared code files are
not disconnected from the active workspace as doing so could result in further
errors.

@ Only things that are the current referent copied. The process is driven from the
data not the name; this means that if multiple shared code files that include
the same names are attached, then only the first of these names is external
and that is the one that gets copied.

4.4 Detach Shared Code Files

Purpose: Detaches all shared code files from the active workspace.
Syntax: (86661)0pc"'"’

When the right argument to (86661I) is Opc' ' (that s, a zero-length list of names),
any existing attached shared code files are detached.

@ Detaching shared code files results in data being copied from the shared code
files as needed. However, namespaces are always copied when a shared code
file is first attached.

Before a shared code file is disconnected from the active workspace:

o if a name that was brought into the active workspace when the shared code
file was attached has not had its associated code/data changed, then the name
is expunged from the active workspace.

revision 20250703_200 12

Shared Code Files User Guide

o if a name in the active workspace embeds references to objects residing in a
shared code file, then the entire definitions of the referenced objects are
copied (assimilated) into the active workspace. This includes (for example),
tacit functions that are derived from functions in a shared code file and arrays

that contain references to data in a shared code file. These objects must still be

functional following the disconnect.

As shared code files are read-only, they cannot be updated while they are in

L use. Instead, if a shared code file needs to be updated, it must be rebuilt.
When a new version of a shared code file becomes available, anyone using the
old version should detach it and attach the new one instead as soon as is
practical.

4.5 List Shared Code Files

Purpose: Lists the shared code files that are attached to the current workspace.
Syntax: R«(86591)¢€

where:

e Ris a 2-column matrix listing the shared code files that are attached to the
current workspace:

o [;1] isthe slot identifier for the fixed virtual memory address of the
shared code file.

°o [;2]is the name (including the filename extension) of the shared code
file that was loaded.

The rows of the matrix (one row for each shared code file) are ordered to correspond
to the order in which the shared code files were specified when they were originally
attached, that is, in the right argument to 86661 (see Section 4.2).

4.6 List Attached Names

Purpose: Lists the names in the shared code file identified by the specified memory
address.

Syntax: R<{slot}(86591){ncs}

revision 20250703_200

13

Shared Code Files User Guide

where:

e slot is the slot identifier (an integer in the range 1-8) for the unique fixed
virtual memory address of the shared code file.

e ncs is an integer vector that would be a valid right argument to ONL; it
identifies the nameclasses and subclasses for which the names should be
listed.

R lists the names in the shared code file identified by slot. If any element of ncs is
negative, then positive values in ncs are treated as if they were negative and R is a
vector of character vectors. Otherwise, R is a simple character matrix.

revision 20250703_200 14

Shared Code Files User Guide

5 Technical Details

This section contains discussions intended to clarify the functionality of shared code
file support.

5.1 Shared Code Files are Read Only

A shared code file is a read-only repository. Items within it can be modified, but doing
so can result in data being copied into the main workspace.

Consider these cases where item A is modified:
1. Aisafunction
e B<«A will introduce a new name B into the main workspace but no new
data.
e When A is edited or otherwise re-fixed, the new version will be stored in
the main workspace.
2. Aisasimplearraysuchas1 2 3 4.
e B<«A will introduce a new name B into the main workspace but no new
data.
e C<«A,1 willintroduce a new name C and new data into the main
workspace.
e A,<«1 will create new data in the main workspace.
3. Aisanestedarraysuchas 'AB' 'CD'.
e B<«A will introduce a new name B into the main workspace but no new
data.

e A[1]«c'XY" will introduce some new data into the main workspace.

In each of these cases, the content of the attached shared code file remains
unaltered. This means that, if names of items in a shared code file are expunged using
OEX and the shared code file(s) are detached and reattached, then the items in the
shared code file will be restored to their original values. The only way to change the
values in a shared code file is to recreate the entire file.

revision 20250703_200 15

Shared Code Files User Guide

Although a shared code files can contain data, these values should either be constants
or initial values for structures that will be copied into the workspace as soon as the
application modifies them.

5.2 Attaching, Assimilating and Detaching
Shared Code Files

When one or more shared code files is attached, the following rules apply:

e When items with the same name exist in multiple workspaces, the one that is
used in the active workspace is the first one found when going through the
workspaces in the following order:

1. the active workspace

2. the shared code file specified first when attaching (see Section 4.2)
3. the shared code file specified second when attaching, etc.

e When the shared code files are assimilated:
o all references to each shared code file are resolved by copying data from
the shared code file to the active workspace as required.

e When the shared code files are detached:
© names in the active workspace that reference data in a shared code file
are deleted (namespace references are not deleted).

o all remaining references to the shared code file are resolved by copying
data from the shared code file to the active workspace as required.

EXAMPLE

The active workspace MAIN is populated using the following assignments:

FN1 « {w x 1}
FN2 « {w x 2}

NS1 « [INS "'

NS1.A « 1
Name | Parent Value
FN1 # {w x 1}
FN2 | # {w x 2}
NS1 # Namespace ref
A NS1 1

revision 20250703_200 16

Shared Code Files User Guide

Shared code files DWS1 is populated using the following assignments:

FN1 « {w x 1.1}
FN3 « {w x 3}

V « 'AB' 'CD'

NS1 <« [NS '

NS1.A « 2

NS1.B « 3
Name | Parent Value
FN1 # {w x 1.1}
FN3 | # {w x 3}
v # "AB' 'CD'
NS1 # Namespace ref
A NS1 2
B NS1 3

Shared code files DWS2 is populated using the following assignments:

FN3 « {w x 3.1}

FNG « {w x 4}

NS2 « [INS '

NS2.A « 4

NS3 « [INS '

NS3.A « 5
Name | Parent Value
FN3 # {w x 3.1}
FNy | # {w x 4}
NS2 # Namespace ref
A NS2 4
NS3 # Namespace ref
A NS3 5

revision 20250703_200

17

Shared Code Files User Guide

After attaching DWX1 and DWX2 (in that order) to MAIN the following will be

accessible:
Name | Parent Value Location of Value Notes
FN1 # {w x 1} WS FN1 in DWX1 is inaccessible
FN2 # {w x 2} WS
FN3 # {w x 3} DWX1 FN3 in DWX2 in inaccessible
FN4 # {w x 4} DWX2
\ # "AB' 'CD' DWX1
NS1 # Namespace ref
S L us o s naccessible
NS2 # Namespace ref
A NS2 4 DWX2
NS3 # Namespace ref
A NS3 5 DWX2
Following these assignments:
FN3 « {w x 3.2}
FN5 « FN&
V[1] « <'XY'
NS2.B « 6
The following are now accessible:
Name | Parent Value Location of Value Notes
FN1 # {w x 1} WS
FN2 # {w x 2} WS
FN3 # {w x 3.2} WS Updated value
FNG4 # {w x 4} DWX2

revision 20250703_200

18

Shared Code Files User Guide

Name | Parent Value Location of Value Notes
FN5 # {w x 4} DWX2

Vv # 'Xy' 'co' Split between WS and DWX1

NS1 # Namespace ref

A NS1 1 WS

NS2 # Namespace ref

A NS2 4 DWX2

B NS2 6 WS New value
NS3 # Namespace ref

A NS3 5 DWX2

The shared code files are now disconnected. This is achieved either by assimilating
them into the active workspace or by detaching them; the result of each of these

operations is shown below.

Following assimilation of the shared code files, the main workspace will contain:

Name | Parent Value Notes

FN1 # {w x 1}

FN2 | # {w x 2}

FN3 # {w x 3.2}

FN4 # {w x 4} Copied into WS

FN5 # {w x 4} Copied into WS

Vv # ‘Xy' 'co' Partially copied into WS
NS1 # Namespace ref

A NS1 1

NS2 # Namespace ref

revision 20250703_200

19

Shared Code Files User Guide

Name | Parent Value Notes
A NS2 L4 Copied into WS
B NS2 6

NS3 # Namespace ref

A NS3 5 Copied into WS

Alternatively, following detachment of the shared code files, the main workspace will
contain the following values:

Name | Parent Value Notes
FN1 # {w x 1}
FN2 | # {w x 2}
FN3 # {w x 3.2}
FN5S # {w x 4} Copied into WS
Vv # 'Xy' 'co' Partially copied into WS
NS1 # Namespace ref
A NS1 1
NS2 # Namespace ref
A NS2 4 Copied into WS, namespace has changed
B NS2 5
All namespaces in shared code files are
NS3 # Namespace ref | retained
(see Section 2.3)
A NS3 5 Copied into WS

revision 20250703_200

20

Shared Code Files User Guide

A Worked Example

This appendix comprises an annotated example that demonstrates the use of some of
the cases of the I-Beam functions described in Chapter 4 (examples of assimilate and
detach are not included).

First, load the dfns workspace:

JLOAD dfns
C:\...\ws\dfns.dws saved Sun Apr 12 17:18:38 2015

An assortment of D Functions and Operators.

tree #

t710t4attrib Onl 3 4
snhotes find 'Word'
OJed'notes.contents'

Workspace map.
What's new?
Apropos "Word".

A
A
A
A Workspace overview.

Now compute the size of all the functions, variables and namespaces in the
workspace (approximately 6 MB):

+/0SIZE ONL 10
5947936

Define a helper function called saveDWX to create a shared code file:
saveDWX«86671I

Create a shared code file containing everything in the dfns workspace, mapped at
virtual memory address 1:

saveDWX 1 'dfns.dwx'

revision 20250703_200 21

Shared Code Files User Guide

If this fails due to the file already existing, then erase it and try again:

saveDWX 1 'dfns.dwx'
DOMAIN ERROR: Shared code file already exists
saveDWX 1 'dfns.dwx'

A

[ONDELETE 'dfns.dwx'
saveDWX 1 'dfns.dwx'

Clear the workspace and define two new helper functions, attachDWX and listDWX:

JCLEAR
clear ws

attachDWX<«8666T
LlistDWX«8659T

Attach the shared code file to the active workspace and compute how much
workspace was consumed in doing so:

wa<[IWA
attachDWX 'dfns.dwx'

(OWA-wa
“64320

(rather than consuming space, 64 KB was released due to workspace reorganisation)

Check how many names are now visible in the workspace and call the easter
function to find the date for Easter Sunday in 2015 (to prove that functions in the
attached shared code file can be run successfully):

Z0ONL 110
273

easter 2015
20150405

revision 20250703_200

22

Shared Code Files User Guide

List the shared code files that are attached to the active workspace (the first column
shows the slot identifier). Next, display the first 5 names made available by the shared
code file in slot identifier 1:

listDWX &
1 dfns.dwx

5t1 ListDWX 110
Cholesky
NormRand
UndoRedo
X
_fk

Finally, verify that the result of ONL and the names exposed by the shared code file
are identical (the only difference should be the three names defined since the
)CLEAR operation):

(ONL t10)=1 LlistDWX 110

0
pl ListDWX 110
270 12
pONL 110
273 12
(+4ONL 110)~41 ListDWX 110
attachDWX ListDWX wa

revision 20250703_200 23

Index

#
8659 I-beam ... 13
8666 I-beam ... 11-12
8667 I-beam ... 10
A
Assimilating in active workspace 12
Attaching to active workspace ... 11
B
Benefits ... 3
D

Detaching from active

workspace ... 12
F

Fundamental limitations 4
|

I-Beams

8659 — List Attached Names ... 13
8659 — List shared code files ... 13
8666 — Assimilate shared code

file ... 12
8666 — Attach shared code file 11
8666 — Detach shared code file 12
8667 — Save shared code file ... 10

revision 20250703_200

Shared Code Files User Guide

L
Limitations
Fundamental 4
summary ..o 7
Temporary 5
List Attached Names 13
Listing ... 13
P
Performance improvements
Application start-up 8
Code execution 8
S
Saving ... 10
Summary of limitations 7
T
Temporary limitations 5
w
Worked example 21
24

	1 About This Document
	1.1 Audience
	1.2 Conventions

	2 Introduction
	2.1 Benefits Offered by Shared Code Files
	2.2 Fundamental Limitations
	2.3 Temporary Limitations
	2.4 Summary of Limitations

	3 Performance
	3.1 Loading
	3.2 Code Execution

	4 Technical Reference
	4.1 Save Shared Code File
	4.2 Attach Shared Code File
	4.3 Assimilate Shared Code Files
	4.4 Detach Shared Code Files
	4.5 List Shared Code Files
	4.6 List Attached Names

	5 Technical Details
	5.1 Shared Code Files are Read Only
	5.2 Attaching, Assimilating and Detaching Shared Code Files

	A Worked Example
	Index

