SALT
User Guide

SALT version 2.9

JDYALOC

The tool of thought for software solutions

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2025 by Dyalog Limited
All rights reserved.

SALT User Guide

SALT version 2.9
Document Revision: 20250703_290

Unless stated otherwise, all examples in this document assume that JI0 OML « 1

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https.//www.dyalog.com

TRADEMARKS:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.

Oracle®, MySQL, and Java™ are registered trademarks of Oracle and/or its affiliates.
JavaScript™ is a trademark of Oracle Corporation.

Unicode is a registered trademarks of Unicode, Inc. in the United States and other
countries.

UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively
through X/Open Company Limited.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows?® is a registered trademark of Microsoft Corporation in the U.S. and other
countries.

macOS® and 0OS X® (operating system software) are registered trademarks of Apple
Inc. in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

SALT User Guide

Contents

1 About ThisDocument 1
1.1 Audience ... 1
1.2 Conventions 1

2 Introduction ... 3
2.0 HIS Oy 3
2.2 The Benefits of SALT ... 4
2.3 SALT as a Source Code Management System 4

3 USING SALT 5
3.1 Installation ..l 5
3.2 Configuration 5
3.3 Structure within Dyalog ... 6

3.3.1 Defining the SALT Environment Variable ... 6
3.4 File Format ... 8
3.4.1 dyapp Files ... 9
3.4.2 .dyalog Files 9
3.5 NaMECIasSeS .. 10
3.6 TaglInformation 10
3.7 SALT Applications 11
3.7.1 Autostarting SALT Applications ... 11
3.8 Class Dependencies ... 13
3.9 File Comparison 15
3.10 Version Management 15

4 SALT Functions 16

4.1 Calling SALT FUNCLIONS ... o 17
4.1.1 Pathsand Filenames 18
4.2 Boot Function 19
A2, SYN AX 19
4.2.2 USE o 20
4.3 Clean FUNCHION ... 20
4.3, L SYN AX 20
4.3.2 USE o 21
4.4 Compare FUNCHION 21
A4 SYN AX 22
A.4.2 USE oo 23
4.5 List FUNCYION ... 24
A, 5. L SYN AX 24
4.5.2 USE o 26
4.6 Load Function ... 27
4,61 SYN AX 28

revision 20250703_290 i

SALT User Guide

4.6.2 USe . 29

4.7 New Function 30
A 7.1 SYN AX 31

7.2 USe . 31

4.8 RemoveVersions FUNCLION 31
A.8.1 SYN AX 32

A.8.2 USe 33

4.9 Save Function 33
A.9.1 SYN AX 34

4.0, USe 35

4.10 Settings FUNCHION ... 36
4001 SYN AX L. 36
4.00.2 USe 37
4.10.2.1 Parameters 38

4.1 Snap FUNCHION 41
A0 SYN AX 41
4.00.2 USe 44

A Configuration Options 47
A.1 Configuration Dialog BOX ... 48
B SALT Function Syntax Summary ... 49
C Example: SALT in USe ... 51
I X 56

revision 20250703_290 ii

SALT User Guide

1 About This Document

This document is intended as an introduction to SALT and a reference guide for its
functions, their syntax, modifiers and modifier values.

Although the behaviour of SALT is independent of the operating system and whether
a classic/Unicode installation is used, some of the information in this document is
operating system-specific (for example, the location of global parameters). The
differences between this document and the SALT experience on a UNIX operating
system are detailed in the Dyalog for UNIX Installation and Configuration Guide and
the Dyalog for UNIX Ul Guide.

@ Although SALT is still fully supported, Dyalog Ltd expects that Link will replace
SALT as the mechanism for using text files as APL source code and recommends
migrating from SALT to Link as soon as is convenient to do so. For more
information, see the Link User Guide.

1.1 Audience

It is assumed that the reader has a reasonable understanding of Dyalog and possesses
basic computer skills.

For information on the resources available to help develop your Dyalog knowledge,
see https://www.dyalog.com/introduction.htm.

1.2 Conventions

Unless explicitly stated otherwise, all examples in Dyalog documentation assume that
010 and OML are both 1.

Various icons are used in this document to emphasise specific material.

revision 20250703_290 1

https://www.dyalog.com/introduction.htm

SALT User Guide

General note icons, and the type of material that they are used to emphasise, include:

Hints, tips, best practice and recommendations from Dyalog Ltd.

Material of particular significance or relevance.

functionality that still exists but has been superseded and is no longer
recommended.

Warnings about actions that can impact the behaviour of Dyalog or have
unforeseen consequences.

Legacy information pertaining to behaviour in earlier releases of Dyalog or to

A full list of the platforms on which Dyalog version 20.0 is supported is available at
https://www.dyalog.com/dyalog/current-platforms.htm. Although the Dyalog
programming language is identical on all platforms, differences do exist in the way
some functionality is implemented and in the tools and interfaces that are available.
Differences in behaviour between operating systems are identified with the following
icons (representing macQOS, Linux, Microsoft Windows and UNIX respectively):

i

revision 20250703_290 2

https://www.dyalog.com/dyalog/current-platforms.htm

SALT User Guide

2 Introduction

@ Although SALT is still fully supported, Dyalog Ltd expects that Link will replace
SALT as the mechanism for using text files as APL source code and recommends
migrating from SALT to Link as soon as is convenient to do so. For more
information, see the Link User Guide.

SALT — the Simple APL Library Toolkit — is a technology for storing variables, functions,
operators, namespaces and classes in a human-readable form in standard
operating-system text files. These files can subsequently be manipulated using a
programming interface (API) or by a set of user commands.

User commands are separate from SALT but a group of them perform the same
actions as the SALT functions. For more information on user commands, see the User
Commands User Guide.

2.1 History

The first version of SALT was introduced with Dyalog version 11.0; this introduced
scripts representing entire namespaces and classes. Each script was saved as an
individual file. However, for many APL users the individual function is a more natural
unit and SALT now has the capacity to store scripts representing functions and
variables. One of SALT's functions, Snap, also enables the construction of a directory
structure corresponding to the namespace structure of a workspace, where each file
in the structure contains the script of an APL object in the workspace.

Dyalog version 18.0 introduced new mechanisms for launching the APL interpreter
from APL source files — the LOAD and LX configuration parameters (for more
information on these parameters, see the Dyalog for Microsoft Windows Installation
and Configuration Guide). This superseded the use of .dyapp files described in
Section 3.4.1, which remain supported for backwards compatibility.

revision 20250703_290 3

SALT User Guide

From Dyalog version 18.2, the recommended mechanism for using and managing text
files as APL source code changed from SALT to Link. For more information on Link, see
the Link User Guide (this includes the advantages of using Link over SALT, and
guidelines for migrating from SALT to Link).

2.2 The Benefits of SALT

With SALT, the source code (script) of each APL object is stored in a single Unicode
(UTF-8) text file — these files can subsequently be loaded into an APL session to
recreate the code. Multiple versions of each file can be created and managed locally,
and third-party distributed version control and source code management systems can
act as repositories for them.

The common file format means that APL users can develop and share code in open
source libraries and the files (and their constituent APL source code) can be
manipulated by a wide variety of industry standard tools. Each file can be transferred
to any version of Dyalog, easily imported into other APL systems, emailed to another
user, viewed and edited in a variety of editors or compared with other files (or
versions of the same file) using standard comparison tools.

SALT makes it straightforward to use code management systems like Microsoft Visual
Studio, Apache Subversion or Git to manage APL source code. SALT is designed to
allow the use of these tools without changing the way in which many APL developers
often trace and edit code into existence. Whenever a SALTed function, class or
namespace is edited using the built-in Dyalog code editor, the changes can
automatically be written back to the external source file and then committed to the
external repository at some later stage, as appropriate; it is not necessary to bring the
system back to a rest state to save code changes.

2.3 SALT as a Source Code Management System

SALT's mechanism for storing and comparing multiple versions of the same source file
uses a simple file naming technique that inserts version numbers into the filenames.
Although this is sufficient for small projects, for larger projects Dyalog Ltd
recommends the use of external source code management systems, for example, Git,
Apache Subversion, Concurrent Versions System (CVS) or Microsoft Visual Studio;
these include much more sophisticated mechanisms for managing branches, releases
and conflict resolution, essential when multiple people are working on the same
project.

revision 20250703_290 4

SALT User Guide

3 Using SALT

This chapter introduces some of the concepts that underpin SALT in Dyalog.

3.1 Installation

SALT is installed automatically with Dyalog.

3.2 Configuration

By default, opening a Dyalog session window activates SALT (after start-up, having
SALT active has no performance impact on Dyalog). However, if SALT needs to be
disabled for any reason then it can be. Disabling SALT has no impact on Dyalog other
than the inability to automatically save edited code, for example, user commands can
still be run.

SALT can be enabled/disabled by enabling functions in the SALT workspace (a specific
workspace that should only be used for enabling/disabling SALT), specifically:

JLOAD SALT
enableSALT

or:

JLOAD SALT
disableSALT

respectively.

On the Microsoft Windows operating system, SALT can also be
enabled/disabled through the Configuration dialog box — this allows additional
configuration options to be set at the same time (see Section A.1).

This document assumes that SALT is enabled.

revision 20250703_290 5

SALT User Guide

3.3 Structure within Dyalog

Within [SALT] (by default, this is the [DYALOG]\SALT directory) are five
sub-directories:

o the core directory contains SALT's source code

o the lib directory contains SALT utilities

e the spice directory contains basic user commands (for more information on
user commands, see the User Commands User Guide)

o the study directory contains code that is referenced in the Dyalog
documentation set

o the tools directory contains developer tools

The SALT directory can be moved to a different location. However, in this situation an
environment variable called SALT must be created to inform Dyalog of the SALT
directory's new location (see Section 3.3.1).

@ The structure under the SALT directory must not be modified and the five
sub-directories must not be renamed.

SALT comprises a series of programs stored in one class and three namespaces, all
within the system namespace [JSE. When SALT is enabled, the latest versions of the
SALTUtils.dyalog, SALT.dyalog, Parser.dyalog and Utils.dyalog files are loaded from
the [SALT]\core directory into OSE — these files must not be removed if SALT is going
to be used.

3.3.1 Defining the SALT Environment Variable

If the SALT directory is moved to a different location (see Section 3.3) then an
environment variable called SALT must be created to inform Dyalog of the SALT
directory's new location.

Defining an environment variable is operating system-specific.

To define the SALT environment variable on Microsoft Windows (permanent
method)

1. Do one of the following (can be version-dependent):
i. Inthe Start menu, right-click on Computer and select Properties from
the drop-down menu.

ii. Pressthe keyand Pause key together.

revision 20250703_290 6

SALT User Guide

The System window is displayed.
2. Inthe Control Panel Home pane, click Advanced system settings.
The System Properties window is displayed.
3. Navigate to the Advanced tab of the System Properties window.
4. Click Environment Variables....
The Environment Variables dialog box is displayed.
5. In the User variables for <user> pane, click New....
The New User Variable dialog box is displayed.
In the Variable name field, enter SALT.

7. Inthe Variable value field, enter <full path>\<directory name> where the
SALT directory is now located.

8. Click OK to create the new environment variable and exit the New User
Variable dialog box.

9. Click OK to exit the Environment Variables dialog box.
10. Click OK to exit the System Properties window.
11. Close the System window.

To define the SALT environment variable on Microsoft Windows (temporary
method - for session duration only)
1. Openthe cmd.exe application.

2. At the command prompt, enter:
dyalog.exe SALT=[SALT]

where [SALT] is the new <full path>\<directory name> of the SALT directory.

To define the SALT environment variable on UNIX (temporary method - for session
duration only)

1. Openashell.

2. At the command prompt, enter:
SALT=[SALT] dyalog

where [SALT] is the new <full path>\<directory name> of the SALT directory.

revision 20250703_290 7

SALT User Guide

To define the SALT environment variable on macOS (permanent method)

1. Open the SHOME/.dyalog/dyalog.config file in your preferred text editor.

2. Add the following:
export SALT=[SALT]

where [SALT] is the new <full path>\<directory name> of the SALT directory.

3.4 File Format

For ease of use, Dyalog recommends that the name of a file is the same as the
name of the SALTed item it contains.

SALT works with any files, but files with the following extensions are of particular
interest:

o .dyapp — see Section 3.4.1.
o .dyalog — see Section 3.4.2.

Although .dyapp files are supported for backwards compatibility, Dyalog Ltd
recommends launching the interpreter directly from any APL source or
configuration file (functionality introduced with Dyalog version 18.0) rather
than through the now-superseded .dyapp file mechanism.

If an extension is not specified when using SALT to save a script file, then .dyalog is
appended.

By default, double-clicking on a .dyapp file opens it using dyalog.exe and
double-clicking on a .dyalog files opens it using dyalogrt.exe (that is, the
standalone editor).

Files with these extensions are Unicode text files that use UTF-8 character encoding.
This means that they can store any text that uses Unicode characters. This format
includes most of the world's languages and the Dyalog character set, and is supported
by many software applications. By using text files as a storage mechanism, SALT and
other tools written using Dyalog can be combined with industry-standard tools for
source code management.

@ APL objects that have been saved using SALT (that is, by calling either the Save
or the Snap function — see Section 4.9 and Section 4.11 respectively) are
referred to as SALTed.

revision 20250703_290 8

SALT User Guide

3.4.1 .dyapp Files

Although .dyapp files are supported for backwards compatibility, Dyalog Ltd
recommends launching the interpreter directly from any APL source or

configuration file (functionality introduced with Dyalog version 18.0) rather
than through the now-superseded .dyapp file mechanism.

Files with the .dyapp extension comprise a .dyapp script, each line of which is either a
Load instruction, a Target instruction or a Run instruction:

e Load instructions specify the full path and filename of the file to be loaded
e Target instructions change the target environment
e Run instructions specify the name of the method to run

The .dyapp script must include at least one Run command.

For example, a .dyapp file could consist of the following lines:

Target #

Load study\files\ComponentFile
Load study\files\KeyedFile
Load MyApp

Run MyApp.Main

Files with the .dyapp extension can also contain a niladic or monadic tradfn;
double-clicking on these files allows bootstrap loading of a Dyalog application.

Starting a .dyapp file that has been created by the user runs that file in a clear
workspace. If the .dyapp file has been created by the Snap SALT function then it runs
in a workspace with the same name as the workspace from which it was created. For
more information on the Snap function, see Section 4.11.

3.4.2 .dyalog Files

Files with the .dyalog extension contain the source for a single APL object (that is,
variable, function, operator, interface, namespace or class) — SALT identifies the
content from the initial characters of the file (for more information on source files,
including declaration statements and permitted constructs, see the Dyalog
Programming Reference Guide).

revision 20250703_290 9

SALT User Guide

3.5 Nameclasses

The specific subclasses of nameclasses that can be manipulated using SALT functions
comprise:

e nameclass 2 (arrays) — 2.1 (variables)

e nameclass 3 (functions) — 3.1 (tradfns), 3.2 (dfns)

e nameclass 4 (operators) — 4.1 (tradops), 4.2 (dops)

e nameclass 9 (namespaces) — 9.1 (namespaces), 9.4 (classes), 9.5 (interfaces)

@ Nameclasses 3.3 (primitive or derived function) and 4.3 (primitive or derived
operator) cannot be manipulated using SALT — attempting to do so can result in
a loss of data.

The source code for each APL object is stored in a single Unicode text file with a
default file extension of .dyalog. SALT also supports the loading and starting of
applications from an application file with an extension of .dyapp.

3.6 Tag Information

When SALT first saves an APL object, it applies a tag to that object; subsequent saves
of the SALTed object update the information contained in the tag. Tag information
includes the source filename, the version number (if applicable) and the last write
time of the file when it was loaded (which is used to prevent accidental updates of
the same version by two different users or from two different sessions). This tag
information is recorded in different locations depending on the nameclass:

o for nameclass 2 (variables) the tag information is recorded in a special

namespace under # called SALT_Var_Data. This comprises a table with one
row pertaining to each variable maintained in SALT.

o for nameclass 3 (functions) and nameclass 4 (operators) the tag information is
recorded in a special comment that is appended to the code.

o for nameclass 9 (namespaces) the tag information is recorded in variables
within a special namespace named SALT_Data. No tag information is recorded
for non-scripted namespaces.

@ The namespace names SALT_Data and SALT_Var_Data are reserved for this

purpose — no user-defined namespace should use these names.

SALT uses the information stored in the tag to determine where to save any changes
to the object, whether a new version is required and whether the original file has
been modified externally since it was loaded.

revision 20250703_290 10

SALT User Guide

@ Tags should never be changed manually — removing or altering a tag can cause
SALT to behave unpredictably or fail.

3.7 SALT Applications

In addition to managing individual source code files, SALT can load and run
applications that are defined by files with an extension of .dyapp (for information on
the format of .dyapp files, see Section 3.4.1). SALT starts these applications in Dyalog.

3.7.1 Autostarting SALT Applications

@ Although .dyapp files are supported for backwards compatibility, Dyalog Ltd
recommends launching the interpreter directly from any APL source or
configuration file (functionality introduced with Dyalog version 18.0) rather
than through the now-superseded .dyapp file mechanism.

Defining the DYAPP environment variable is operating system-specific.

By default, every Dyalog session opens with a clear workspace — this default can be
changed by adding DYAPP="<path and name of a .dyapp file>"tothe
command line that starts Dyalog. In this situation, SALT calls the Boot function (see
Section 4.2) on the specified .dyapp file.

To define the DYAPP environment variable on Microsoft Windows

1. Right-click on the Dyalog icon and select Properties from the pop-up menu that
is displayed.

The Properties dialog box is displayed.

2. Inthe Shortcut tab of the Properties dialog box, add DYAPP="<path and
name of a .dyapp file>" to the end of the path specified in the Target
field.

General | Shortcut | Compatibility | Security | Details | Previous Versions

dyalog.exe - Shortcut
5

Targettype: Application
Targetlocation: Dyalog APL 14.0 Unicode

Target 1g.exe” DYAPP="C:\Users\fiona\Desktopltestdyapp”

3. Click OK to close the Properties dialog box.

Opening Dyalog from the icon now automatically loads and runs the specified
.dyapp file.

revision 20250703_290 11

SALT User Guide

or:

1. Do one of the following (can be version-dependent):
i. Inthe Start menu, right-click on Computer and select Properties from
the drop-down menu.

ii. Pressthe key and Pause key together.
The System window is displayed.
2. Inthe Control Panel Home pane, click Advanced system settings.
The System Properties window is displayed.
3. Navigate to the Advanced tab of the System Properties window.
4. Click Environment Variables....
The Environment Variables dialog box is displayed.
5. Inthe User variables for <user> pane, click New....
The New User Variable dialog box is displayed.
6. Inthe Variable name field, enter SALT.

In the Variable value field, enter <full path>\<directory name> where the
SALT directory is now located.

8. Click OK to create the new environment variable and exit the New User
Variable dialog box.

9. Click OK to exit the Environment Variables dialog box.
10. Click OK to exit the System Properties window.
11. Close the System window.

To define the DYAPP environment variable on Linux

1. Open ashell.

2. At the command prompt, enter:
DYAPP=<path>\<filename>.dyapp [DYALOG]\mapl

where <path>\<filename> is that of the .dyapp file.

revision 20250703_290 12

SALT User Guide

To define the DYAPP environment variable on macOS

1. Open the SHOME/.dyalog/dyalog.config file in your preferred text editor.

2. Add the following:
export DYAPP=<path>\<filename>.dyapp [DYALOG]\mapl

where <path>\<filename> is that of the .dyapp file.

This means that a .dyapp file can be used to auto-start (load and run) Dyalog
applications that are based on SALT.

@ Once an application has been started in this way, additional source code can be
added using the [JCY system function or other mechanisms; it is not necessary
for SALT to be used to include additional source code.

3.8 Class Dependencies

Classes can be defined in a hierarchical structure. A single script file does not have to
contain a complete class hierarchy, but can be limited to a single class with zero or
more dependencies. This means that a single script file can include a class that has
dependencies on another class without the class on which it is dependent being
present in the file.

However, SALT cannot successfully load a file that includes dependencies on another
class/namespace unless the depended-on class/namespace is already present in the
namespace that the file is being loaded to.

SALT does not perform any dependency analysis, therefore, to ensure that the
necessary base class/namespace is loaded before a dependent class/namespace, SALT
must be instructed to load the pertinent script file to fulfil the class's/namespace's
dependency criteria. This is done by adding a statement in the dependent
class's/namespace's script file that takes the following format:

:Require file://<path/filename>.dyalog

where path/filename.dyalogis the path (relative to the location of the
dependent class's/namespace's script file) and filename of the script file containing
the necessary base class/namespace.

revision 20250703_290 13

SALT User Guide

Prior to Dyalog version 15.0, the now-deprecated syntax was
AV:require path/filename.dyalogandthe path could be set to = if the

file was in the same directory as the script calling it.

SALT follows the path and loads the specified file, thereby satisfying the dependency.
This instruction should be included whenever a dependent class is present in a script
file — SALT can progress through multiple files and instructions.

EXAMPLE

Class D is derived from base class B. In the .dyalog script file that defines class D, this
relationship is specified in the initial statement as:

:Class D : B
:EndClass

Classes B and D both exist in the current workspace; this means that, when class D is
edited, the reference to class B is found immediately.

SALT is used to store classes B and D as text files.

If an attempt is made to load class D in a clear workspace, then the attempt will be
unsuccessful — class D cannot be created because base class B is not present in the
clear workspace (class B must be loaded before class D can be loaded).

To instruct SALT that class B is required and must be loaded whenever class D is
needed, the following line should be added near the top of class D's declaration (must
not be within a function):

:Require file://<path to B>/.dyalog

If B is located in the same directory as class D, then the path to class B can be
omitted, that is:

:Require file://.dyalog

The .dyalog script file that defines class D is, therefore, specified as:

:Class D : B
:Require file://.dyalog

:EndClass

In this situation, class D and class B can both be moved to a different directory
without having to change the .dyalog script file that defines class D.

revision 20250703_290 14

SALT User Guide

3.9 File Comparison

SALT has an integral comparison tool that can identify the differences between two
different versions of the same script file (or two different script files) and display the
results in the active workspace. However, any Unicode-capable file comparison tool
that can be launched using a command which takes as its arguments the name of the
two files to be compared can be used instead.

To change the file comparison tool used by SALT, call the Settings SALT function
(see Section 4.10). For example:

OSE.SALT.Settings 'compare path/filename of tool'

To perform a comparison, SALT appends the names of the files to be compared and
calls the specified comparison tool. If this tool is not available, then the task will fail.

3.10 Version Management

By default, SALT maps an APL object to a single file — any change made to the APL
object is saved by overwriting that file. However, SALT allows versioning to be applied
to files. Versioning is switched on for a file by including the -version modifier,
optionally with a numerical modifier value, when saving that file (see Section 4.9). In
this situation, SALT saves the file with the specified name and adds a version number
immediately before the .dyalog extension, for example, MyClass.3.dyalog. The List
SALT function shows this number in [], for example, [3] (see Section 4.5).

Each time that an APL object within a versioned file is changed, SALT creates a new
file with an incremented number. Over time, this can result in a large number of
superfluous files —the RemoveVersions SALT function can be used to delete a
specified range of these (see Section 4.8).

@ If a SALTed function is updated or created in any way other than through the
editor (for example, using F X or creating a single-line dfn or dop by direct
assignment), then SALT does not create a new version of the file.

Once versioning has been switched on for a file, it remains switched on until
specifically switched off. To switch off versioning and return to a single instance of the
file, the RemoveVersions SALT function must be called with the -al | modifier and
without the -col Lapse modifier (see Section 4.8); this removes the version number
from the latest (highest numbered) file and deletes all other versions of that file.

revision 20250703_290 15

SALT User Guide

4 SALT Functions

SALT's functionality is accessed through the functions summarised in Table 4-1.

An example including calls to all SALT's functions is described in Appendix C.

Table 4-1: SALT Functions

Function Description

Boot Executes a script file or loads and initialises an application
using a script instead of a saved workspace.

Clean Removes the tag information from an object.
Compares two versions of an APL object or two different APL

Compare .
objects.

List Lists the files and/or directories in a specified location.

Load Loads an APL object from a file.

New Instantiates an object from a class without naming the class

in the workspace.

RemoveVersions

Deletes a version (or range of versions) of a versioned file.

Save Saves an APL object to a file.
Settings Reports/Changes session/external repository settings.
Snap Saves all the new and modified APL objects in a workspace

to files.

This chapter details these functions, their syntax, modifiers and modifier values.

revision 20250703_290

16

SALT User Guide

The Compare and RemoveVersions functions have been deprecated in
favour of third-party version control software.

4.1 Calling SALT Functions

SALT functions are called with the following syntax:

OSE.SALT.<function> <arguments> <-modifiers>

Within this syntax, SALT and <function> are case sensitive but [JSE,
<arguments>and <-modifiers> are not.

Modifiers and their associated modifier values must be separated by the = character,
for example -version=3 or -format=APL. A modifier that cannot have a modifier
value but can only be present or absent is sometimes referred to as a flag.

When multiple modifiers are included in a SALT function call, the order in which they
are specified is irrelevant.

When including a modifier, the name of the modifier does not always need to be
entered in full — as long as enough of the modifier's name is entered for it to be
interpreted unambiguously. For example, if a function has a modifier called
-version and does not have any other modifiers starting with the letter v then the
function can be successfully called with modifiers -version, -vers, -v and so on.

@ Although functions can be successfully called with abbreviated modifiers, good
practice dictates that function calls within programs should always use the full
name of the modifier — this future-proofs the calling code against
enhancements that might otherwise result in ambiguity.

The notation used when describing the syntax for a SALT function in this document is
as follows:

e square brackets [] indicate an optional modifier

e curly braces {} indicate a mandatory modifier

e avertical line | separates mutually exclusive modifiers

o italic text indicates an element that must be populated by the user

Calling any SALT function with an argument of ' ? ' returns a list of all available
modifiers for that function. The Load and RemoveVersions functions return shy
results, so a + should also be included before [JSE to view the list of all available
modifiers, for example, [JSE.SALT.Load '?".

revision 20250703_290 17

SALT User Guide

4.1.1 Paths and Filenames

Most SALT functions require the file on which they are to act to be specified by
providing a path and filename. The path can either be an absolute path or a relative
path following a specific convention:

e ./<relative path starting from the current directory>

To identify the current directory, enter the]CD user command — the value
returned is the absolute path to the current directory and can be replaced in
your absolute path by ..

For example, if JCD returns a value of c: /Users/Andy, then . is
c:/Users/Andy.

e ../<relative path starting from the directory that is the
parent of the current directory>
To identify the directory that is the parent of the current directory, enter the
]CD user command — the value returned is the absolute path to the current
directory. This, when truncated by one level, can be replaced in your absolute
path by . ..

For example, if 1CD returns a value of c: /Users/Andy, then .. isc:/Users.

e [ws]/<relative path starting from the directory containing
the active workspace>

A previous convention that used w/ instead of [ws]/ has been
deprecated; although still supported in this version of SALT, support will
be removed in a later version and Dyalog Ltd does not encourage its use.

To identify the directory containing the active workspace, enter the)WSID
system command — the value returned is the absolute path and name of the
active workspace, the path component of which can be replaced in your
absolute path by [ws]/.

For example, if)WSID returns avalue of c: /Users/Vince/myworkspace,
then [ws]isc:/Users/Vince.

@ If YWSID returns a value that does not have a path (that is, only the
name of the workspace is returned), then [ws]/ acts in the same way
as ./.

e <relative path starting from the first directory named in
the workdir session parameter> (for details of this session parameter,
see Section 4.10.2.1)

To identify the first directory named in the workdir session parameter, enter

the [JSE.SALT.Settings 'workdir' function call.

revision 20250703_290 18

SALT User Guide

When specifying a path as an argument:

o SALT accepts either \ or / as the separator character.

Dyalog Ltd recommends using / as the separator character for
cross-platform compatibility

« if the path (or filename) contains space characters, then the entire path and
filename should be enclosed within single or double quotation marks.

If no extension is specified for a filename, then the file is assumed to be a .dyalog file.

When saving a file using the Save or Snap functions, omitting the filename and
specifying the path with a trailing \ or / separator character sets the filename(s) to be
the same as the name of the SALTed item it contains.

4.2 Boot Function

The Boot function either executes a .dyalog script file containing a function or uses a
.dyapp file to describe the loading and initialisation of an application instead of a
saved workspace.

Although .dyapp files are supported for backwards compatibility, Dyalog Ltd
recommends launching the interpreter directly from any APL source or

configuration file (functionality introduced with Dyalog version 18.0) rather
than through the now-superseded .dyapp file mechanism.

@ If a .dyalog script file is used then it can only comprise a single niladic or
monadic traditional function.

The Boot function does not return any results although the executed function might;
in this situation the result returned by the executed function is ignored.

4.2.1 Syntax

for a .dyapp file:
OSE.SALT.Boot '{path/filename}[.dyapp]’

for a .dyalog file:
OSE.SALT.Boot '{path/filename}{.dyalog} [-xload]' ['argument']

where:

e path/filename is the full path and filename (without an extension) of the
script file to load and initialise.

revision 20250703_290 19

SALT User Guide

» -xload prevents the information recorded by [LX from being executed when
recreating a workspace.

e argument is the right hand argument to supply to the monadic function in the
.dyalog script file.

4.2.2 Use

When the Boot function is called to execute a .dyalog script file containing a function,
the function could be a monadic traditional function. In this situation the function
requires a right argument before it can be executed. For example:

OSE.SALT.Boot 'c:\longpath\myFn.dyalog' 'ABC'

The Boot function passes the value 'ABC' as a right argument to the function
resulting from the load of the myFn.dyalog file. No result is required, so any returned
value is discarded. If the function within the myFn.dyalog file does not take an
argument then the specified argument is ignored.

In practice, the Boot function is often used in conjunction with the Snap function
(see Section 4.11). In this situation the code includes a statement to execute [JLX. To
prevent [JLX from executing, the modifier -x Load must be specified.

4.3 Clean Function

SALT maintains the links between SALTed objects and their external source files using
tags (see Section 3.6). The Clean function can be used to safely remove the tag
information from an object (something that should not be done manually), breaking
its link with all external source files.

4.3.1 Syntax
OSE.SALT.Clean '[objects] [-deletefiles]’

where:

e objects is a space-separated list of the specific objects in the current
namespace from which tag information is to be removed. Objects can be
namespaces, scripts, or variables. By default, tag information is removed from
all objects in the current namespace.

e -deletefiles deletes the files that were associated with the specified
objects (in addition to removing the tag information from the objects).

revision 20250703_290 20

SALT User Guide

@ Unlike most modifiers, the name of the -deletefi les modifier must
be entered in full. This is to reduce the risk of deleting files
unintentionally.

4.3.2 Use

When in the root namespace, all tags on all objects in the workspace can be removed
with:

[JSE.SALT.Clean ''

The Clean function works recursively, so removing tags from objects at the root
namespace level also removes tags from objects in all namespaces beneath the root
level.

The removal of tags can be limited to only those on specific objects in the current
namespace. For example, to remove the tags from objects A and B:

OSE.SALT.Clean 'A B'

In addition to removing the tag information from objects in the namespace, the files
that were associated with those objects can be deleted completely. For example, to
remove the tag information from objects A and B and delete the files that were
previously associated with them:

[JSE.SALT.Clean 'A B -deletefiles'

4.4 Compare Function

The Compare function has been deprecated in favour of third-party version
control software.

Knowledge of the differences between two different versions of the same file or
between two similar but distinct files can be a useful analytical tool. The Compare
function can be called to perform either of these comparisons as long as the specified
files are scripted.

revision 20250703_290 21

SALT User Guide

SALT's integral comparison tool can be used to perform the analysis or a comparison
tool of the user's choice can be specified instead. If SALT's integral comparison tool is
used, then the output produced states the APL objects compared and emphasises the
lines of text that differ between the two files. For example, output generated using
SALT's integral comparison tool could resemble the following:
OSE.SALT.Compare'\tmp\MyProd'

Comparing \tmp\myprod.3.dyalog
with \tmp\myprod.4.dyalog

[0] :Namespace MyProd
-[1] rlb<{(+/A\"' '=w)iw}
+ rib«{(+/A\' '=w)tw} A rem lead ' '
-[2] rtbe{wi=1=' '=w}
+ rtbe{wi=1=' '=w} A rem last ' '
[3] :EndNamespace

4.4.1 Syntax

OSE.SALT.Compare '{path/filename} [-version{=vers}] [-using
{=program}] [-permanent] [-window{=(ines}] [-trim] [-symbols
{=symbols}]'

where:

o path/filename specifies the full path and filename of the versioned APL
object whose versions are to be compared. If two different APL objects are to
be compared, then the full path and filename of each APL object should be
specified separated by a space character.

e -version must have a modifier value (vers) that specifies the versions of the
file that are to be compared:
o a modifier value of n compares the previous version (that is n-1) with
version n

o a modifier value of n1, n2 compares version n1 with version n2

o a modifier value of ws compares the version currently in the active
workspace with the latest saved version

o a modifier value of ws n compares the version currently in the active
workspace with version n
If this modifier is not included then the two most recent (highest numbered)
versions of the file are compared.

e -using must have a modifier value (program) that specifies the full path of
the program to use to perform the comparison. If this modifier is not specified
then SALT performs the comparison using the comparison tool named in the

revision 20250703_290 22

SALT User Guide

compare session parameter (for details of this session parameter, see
Section 4.10.2.1).

e -permanent changes the program named in the compare session parameter
to be the program specified by the -us ing modifier.

e -window must have a modifier value ([i nes) that specifies the number of
lines of code from the script to display in the results of the comparison before
and after each line of the script that has been changed. If this modifier is not
specified then the default value of 2 is used. Only relevant if SALT's integral
comparison tool is being used.

e -trimremoves leading and trailing spaces from each line of the script prior to
performing the comparison. Only relevant if SALT's integral comparison tool is
being used.

e -symbols must have a modifier value (symbo [s) that specifies the two
symbols to use in the results of the comparison to indicate whether a line has
been deleted or inserted (by default these are - and + respectively). Must be
used with a modifier value comprising the deletion indicator followed by the
addition indicator without a separating space, for example, -+. Only relevant if
SALT's integral comparison tool is being used.

4.4.2 Use

When specifying the -version modifier, a modifier value of n1,n2 compares
version n1 with version n2. If n is a negative number then it is subtracted from the
highest version number. For example, if there are 5 versions of the specified file, then
-version=1,~3 compares version 1 with version 2.

The -version modifier can also be used when two different files are compared. In
this situation, a modifier value that specifies one version number results in that
version of each of the files being compared. For example:

OSE.SALT.Compare '\firstpath\firstfile.dyalog
\secondpath\secondfile.dyalog -version=3"

This compares firstfile.3.dyalog with secondfile.3.dyalog. However, if the modifier
value specifies two version numbers, then the first version number is applied to the
first specified APL object and the second version number is applied to the second
specified APL object — these two files are then compared. For example:

OSE.SALT.Compare '\firstpath\firstfile.dyalog
\secondpath\secondfile.dyalog -version=3,7'

revision 20250703_290 23

SALT User Guide

To perform a comparison using (for example) Beyond Compare (a comparison tool
available from http://www.scootersoftware.com/download.php) rather than SALT's
integral comparison tool, specify the location and executable name for your Beyond
Compare installation; make this the permanent comparison tool by including the
-permanent modifier in the call. For example:

OSE.SALT.Compare '[ws]\classes\firstclass.dyalog
-using="c:\Program Files\BC\BC2.exe" -permanent'

If the first element of -version is ws then the contents of the specified object in the
active workspace are compared with the latest saved version of the file containing
that object. For example:

OSE.SALT.Compare 'NS -version=ws'
This identifies the changes made to namespace NS since it was last saved. It is not

necessary to specify a path to the object being compared as SALT uses the tag
information on the object to locate the file (see Section 3.6).

4.5 List Function

The directories and .dyalog files under a specified directory can be listed using the
L1ist function. By default, a single path leading to a directory name returns the
following information for the directories and .dyalog files in the specified location:

e type (<DIR> for directories, blank for .dyalog files)

e name

o version (the number of versions of the file) — files only

e size (in bytes) — files only

o date of last update

The same information is returned if the path leads to a .dyalog file, but relates to that
file only.

This information can be filtered or amended using modifiers.

4.5.1 Syntax

OSE.SALT.List '[directory|.dyalog file] [-folders] [-versions]
[-extension[=ext]] [-full[=valuel] [-recursive] [-raw] [-type]’

revision 20250703_290 24

http://www.scootersoftware.com/download.php

SALT User Guide

where:

directory|.dyalog fi le specifies either the full path to the directory
whose contents are to be listed or the .dyalog file whose versions are to be
listed. If no path is specified then the first directory named in the workdir
session parameter is used (for details of this session parameter, see

Section 4.10.2.1). If the path specifies a .dyalog file then the extension does not
have to be included.

-folders restricts the list to directories.

-versions displays each item's version number in the list. If this modifier is
not specified, then versioned files are indicated by having the total number of
versions displayed in the version column.

-extension can have a modifier value (ex t) that restricts the files included in
the list to files with the extension specified by the modifier value. If no modifier
value is specified or the modifier value is * then all the files are listed with their
extension displayed. Unless this modifier is specified, no extensions are
displayed in the list. Only one extension can be specified. Wildcards cannot be
used.

-ful l can have a modifier value (va [ue) that specifies the pathname origin
for each item's Name information in the list:
o a modifier value of 1 (or no modifier value) displays the full pathname
from the specified directory.

° a modifier value of 2 displays the full pathname from root.

-recursive expands the list to include all directories and files within the
specified directory recursively.

-raw removes the titles and automatic formatting from all items in the list,
thereby making it easier for APL functions to process the returned data.

-type displays the type of each .dyalog file. SALT examines a file's script to
identify its content from the start and end statements, determining whether it
comprises a variable, function, operator, interface, namespace or class — if
SALT cannot identify the type, then a value of Fn is reported. Although this
information can be useful, the -type modifier adversely impacts performance.

@ For more information on scripted files, including declaration statements
and permitted constructs, see the Dyalog Programming Reference
Guide.

revision 20250703_290 25

SALT User Guide

4.5.2 Use

Calling the L1 st function without an argument returns a list of all the top-level
directories and .dyalog files within the first directory named in the workdir session
parameter (for details of this session parameter, see Section 4.10.2.1).

For example:

OSE.SALT.List "'
Type Name Versions Size Last Update

If a directory is specified as the argument then a list of all the top-level directories and
.dyalog files within this directory is returned.
For example:

OSE.SALT.List '[SALT]'
Type Name Versions Size Last Update

<DIR> core 2013/04/22 16:02:34
<DIR> Lib 2013/04/22 16:02:34
<DIR> spice 2013/04/22 16:02:34
<DIR> study 2013/04/22 16:02:34
<DIR> tools 2013/04/22 16:02:34

This is the content of the SALT directory itself. For more information on this content,
modifiers must be specified. The -recursive modifier can be included in the call to
provide details of the content of each directory and the -type modifier can be
included to identify the type of APL object in each .dyalog file, for example:

OSE.SALT.List '[SALT] -recursive -type'

Type Name Versions Size Last Update

<DIR> core 2013/04/22 16:02:34
cl core\Parser 11442 2013/01/30 17:15:20
Cl core\SALT 61386 2013/01/30 17:15:20
Ns core\SALTUtils 64605 2013/01/30 17:15:20
cl tools\special\asymmetric 8234 2013/01/30 17:15:18
Ns tools\special\crTools 1163 2013/01/30 17:15:18
cl tools\special\symmetric 7446 2013/01/30 17:15:18

Other modifiers, such as -folders and -raw, can change the filters applied to the
list and how it is presented. Two of the modifiers that can be specified with the Load
function can take modifier values. The -ful L modifier specifies the pathname origin

revision 20250703_290 26

SALT User Guide

for each item's Name information in the list — setting this to 2 (when no value is
supplied it is assumed to be 1) means that the full pathname from root is displayed
instead of the full pathname from the specified directory. For example:

OSE.SALT.List '[SALT] -full=2"'

This changes the Name information in the list from core, 1ib, spice, study and
tools (see first example output) to:

:\Program Files\Dyalog\Dyalog APL 13.
:\Program Files\Dyalog\Dyalog APL 13.
:\Program Files\Dyalog\Dyalog APL 13.
:\Program Files\Dyalog\Dyalog APL 13.
:\Program Files\Dyalog\Dyalog APL 13.

Unicode\SALT\core
Unicode\SALT\Llib
Unicode\SALT\spice
Unicode\SALT\study
Unicode\SALT\tools

OO0O0O0O0
NNDNDNN

The -extension modifier can be specified without a modifier value to include all
files in the list with their extensions displayed (effectively, a directory listing).
Alternatively, a modifier value of a specific extension can be included to restrict the
files included in the list to those that match the specified extension. For example:

OSE.SALT.List '\project\test -extension'

Type Name Versions Size Last Update
first.dyalog 19130 2013/01/30 17:16:31
process.docx 14632 2013/01/30 17:16:31
review.docx 75776 2013/01/30 17:16:31
Dyalog.flprj 359 2013/01/30 17:16:31

<DIR> images 11731 2013/01/30 17:16:31

OSE.SALT.List '\project\test -extension=docx'

Type Name Versions Size Last Update
process 14632 2013/01/30 17:16:31
review 75776 2013/01/30 17:16:31

<DIR> images 11731 2013/01/30 17:16:31

4.6 Load Function

The Load function can be called to load the latest (highest numbered) version of an
APL object into the namespace that the Load function is called from, irrespective of
whether the APL object is SALTed. By default, the Load function maintains the link
between the loaded APL object and its source and assigns the loaded APL object a tag.
Various modifiers can be specified to qualify this functionality.

revision 20250703_290 27

SALT User Guide

Depending on the nameclass of the APL object loaded, the Load function returns a
shy result of:

o areference to the loaded namespace(s)/class
¢ the name of the function/variable/operator loaded

4.6.1 Syntax

OSE.SALT.Load '{path/name} [-target{=namespace}] [-noname]
[-disperse[=objects]|-nolink] [-protect] [-version{=vers}]
[-source[=no]]"

where:

e path/name specifies either the full path and name of the file to load or the full
path and single pattern that identifies the APL objects to load (a single pattern
can result in multiple APL objects being loaded).

e -target must have a modifier value (namespace) that specifies the full path
and name of the appropriate namespace into which the APL object should be
loaded. If this modifier is not specified then the APL object is loaded into the
namespace that the Load function is called from. If the specified namespace
does not exist (or is not a namespace), then the function call fails.

e -noname causes the Load function to return the value of the specified object
instead of creating it in the workspace. For a class or namespace a reference is
returned; for a function or operator, its [JOR is returned with the
function/operator inside. As no name is defined, no tag can be associated with
the object.

e -disperse imports the APL objects within the specified file directly into the
target namespace rather than importing the namespace contained by the
specified file. When used without a modifier value, all objects in the specified
namespace are imported into the target namespace along with the values of
the system variables JCT, OFR, OIO, OML, PP and OWX. If only a subset of the
APL objects in the specified file are required, then the modifier value
(objects)can beincluded to state which APL object or APL objects (separated
with the , character) are required. If this modifier is specified then a shy
message is returned by the Load function indicating the number of APL objects
successfully loaded. Only relevant if the file loaded contains a namespace.

e -nolink removes the link between a loaded APL object and its source file.
Using this modifier prevents SALT from managing the source for the APL object
after loading it into the workspace — changes to the APL object will not be
automatically saved until either the Save or Snap function has been called to
save the APL object again.

revision 20250703_290 28

SALT User Guide

e -protect prevents the specified APL object from being loaded if an APL object
of that name is already defined in the namespace that the APL object is being
loaded into. This modifier protects existing APL objects from being redefined.

e -version must have a modifier value (vers) that specifies the version to
load. Only relevant if a version other than the latest version is required.

e -source returns the specified namespace as a nested vector instead of
defining it in the workspace. If a modifier value of no is included, then a non-
scripted version of the scripted namespace is loaded. Only relevant if the file
loaded contains a namespace.

4.6.2 Use

The Load function takes either a filename or a filename pattern as its argument and
retrieves the APL object defined in the specified path/file or all APL objects defined in
files that match the specified filename pattern in the specified path. For example, the
function call:

OSE.SALT.Load 'study\files\ComponentFile'

loads the APL object defined in the ComponentFile file (containing a class) from the
study\files directory into the namespace, and the function call:

OSE.SALT.Load '\myutils\guix'

loads all the APL objects that are defined in files with names starting with GUI in the
\myutils directory into the current namespace. This works recursively — if \myutils
contains other directories that include files with names starting with GUI then the APL
objects in those files will also be loaded.

If the APL object should be loaded into a namespace other than the namespace that
the Load function is called from, then the modifier -target must be used with a
modifier value that defines the destination namespace. For example:

OSE.SALT.Load 'study\files\ComponentFile -target=MyFiles'

loads the APL object defined in the ComponentFile file from the study\files directory
into the MyFiles namespace within the current namespace (a relative path was
specified).

revision 20250703_290 29

SALT User Guide

By default, the loaded APL object is assigned a tag pertaining to its original APL object.
To instantiate a class in the ComponentFile file in the study\files directory using the
argument c:\temp\cfile without naming the ComponentFile class in the namespace,
either the Load function or the New function can be called. The following statement
performs this action by calling the Load function:

ONEW (OSE.SALT.Load 'study\files\ComponentFile -NoName')
‘c:\temp\cfile'

Alternatively, the following statement performs this action in one step rather than
two by calling the New function (see Section 4.7):

OSE.SALT.New 'study\files\ComponentFile' 'c:\temp\cfile'

An APL object can be a namespace containing other APL objects, only a subset of
which should be loaded. In this situation, the -di sperse modifier can specify exactly
which APL objects should be extracted from the specified file and loaded into the
target namespace. For example, if a namespace in file NS1 contains APL objects called
Obj1, Obj2, Obj3, Obj4, Obj5 and Obj6, then the following command would bring the
APL objects with even numbers in their names into the current namespace:

OSE.SALT.Load 'study\files\NS1 -disperse=0bj2,0bj4,0bj6"'

If the -disperse modifier is not used, then the -nol i nk modifier can be specified
(these modifiers are mutually exclusive). This removes the link between a loaded APL
object and its source file (the tag), thereby preventing SALT from managing the source
for the APL object after loading it into the workspace. It has the effect that editing the
APL object does not result in automatic saves; either the Save or Snap function has
to be called to save the APL object again.

4.7 New Function

When instantiating an object from a class (object oriented programming), it can be
beneficial to avoid naming the class in the namespace; this avoids potential name
clashes. Although this can be achieved by calling the Load function within the ONEW
system function (see Section 4.6), it is more computationally efficient to call the New
function.

The New function returns an instance of the class, for example, #.[classname].

revision 20250703_290 30

SALT User Guide

4.7.1 Syntax

OSE.SALT.New '{path/filename}[.ext] [-version{=vers}]' ['argl
(args)']

where:

e path/filename is the full path and filename of the class to instantiate.

e -version must have a modifier value (vers) that specifies the version
number of the .dyalog file to instantiate the object from. If no version number
is specified and the file containing the class to instantiate is a versioned file,
then the latest (highest numbered) version is used.

e arg specifies any arguments needed to instantiate the class (in object oriented
terminology this specifies the arguments that are passed to the constructor of
the class). If more than one argument is required, then the list of arguments
must be contained within parentheses.

4.7.2 Use

To instantiate a class in the ComponentFile file in the study\files directory using the
argument c:\temp\cfile without naming the ComponentFile class in the namespace,
either the Load function or the New function can be called. The following statement
performs this action by calling the Load function (see Section 4.6):

ONEW (OSE.SALT.Load 'study\files\ComponentFile -NoName')
‘c:\temp\cfile'

Alternatively, the following statement performs this action in one step rather than
two by calling the New function:

OSE.SALT.New 'study\files\ComponentFile' 'c:\temp\cfile'

4.8 RemoveVersions Function

The RemoveFunctions function has been deprecated in favour of third-party
version control software.

Editing an APL object that has been saved within a versioned file results in SALT saving
a new version of the file (unless specifically instructed not to). This can result in
numerous file versions being created. Once a stable version of the file has been
achieved, these superfluous versions can be deleted using the RemoveVersions
function.

revision 20250703_290 31

SALT User Guide

The RemoveVersions function returns the number of versions that have been
deleted.

4.8.1 Syntax

OSE.SALT.RemoveVersions '{path/filename}[.ext] [-version
{=vers}l-all] [-collapse] [-noprompt]"

where:

e path/filename specifies the full path and filename (without the version
number) of the versioned file that has superfluous versions.

e extension indicates the file's entension. If no extension is specified then an
extension of .dyalog is assumed.

e -version must have a modifier value (vers) that specifies the version or
range of versions to delete:
° nonlyversion n is deleted

o >nall versions higher than n are deleted

o <nall versions lower than n are deleted

o n-mall versions in the range n to m (inclusive) are deleted
e -all removes all versions except the latest version.

e -col lapse renumbers the latest version of the file with the lowest available
version number following the specified deletion. Only relevant in either of the
following situations:

o all versions except the latest one are deleted, either by specifying the
-version modifer with a modifier value of =>0 or by specifying the
-al Ll modifier.

o trailing versions except the last one are deleted by specifying the
-version modifer with a modifier value of =>N—in this situation the
remaining file is assigned the lowest available version number and
versioning resumes from this number.

@ If all the versions are removed (either by specifying the -al L modifier or
by specifying -version=>0) but the -col Lapse modifier is not
specified, then this has the effect of switching off versioning for the file.

e -noprompt implicitly accepts all the changes that the call to the

RemoveVersions function makes — omitting this modifier means that the user
is prompted to confirm the deletion.

revision 20250703_290 32

SALT User Guide

4.8.2 Use

Inclusion of the -version modifier with the -range modifier value deletes a
specified version (or range of versions) of that file. In this situation, SALT deletes all
versions of the file within the specified range. For example:

OSE.SALT.RemoveVersions 'path/MyClass -version=<5"'

deletes all versions of the MyClass.dyalog file that have a version number less than 5.
If there were only five versions of the MyClass.dyalog prior to the deletion, then the
single remaining file retains its name of MyClass.5.dyalog. To rename this file so that
it has a version number of 1, the -col Lapse modifier can be specified:

(SE.SALT.RemoveVersions 'path/MyClass -version=>0
-col lapse’

The single remaining file is now called MyClass.1.dyalog — versioning is still switched
on for this file, so the next time it is saved a new MyClass.2.dyalog version is created.

If the -al Ll modifier had been specified instead of the -version modifier then
specifying the -col Lapse modifier has the same effect as when specifying
-version to remove all versions except the latest one, that is:

(OSE.SALT.RemoveVersions 'path/MyClass -all -collapse'’

results in a single remaining file called MyClass.1.dyalog — versioning is still switched
on for this file, so the next time it is saved a new MyClass.2.dyalog version is created.
However, if the -col Lapse modifier is not specified with the -al L modifier (or with
the -version=>0 modifier) then the version number is removed from the single
remaining file and versioning is switched off.

4.9 Save Function

When an APL object is ready to be saved, the Save function can be called to save it in
a native text file.

@ The Save function cannot save APL objects of certain nameclasses — for a list of
the types of nameclass that can be saved see Section 3.5.

The first time that an APL object is saved, the location must be specified. If the APL
object has already been saved by calling the Save/Snap function, then subsequent
saves of that APL object do not need to specify a location — by default, it is saved in
the same location as it was previously (SALT achieves this using the APL object's tag
information). If a different location is specified and the file is versioned, then a new

revision 20250703_290 33

SALT User Guide

version number must be specified for versioning to continue. For non-scripted
namespaces a location must be specified every time the Save function is called as
SALT cannot retain tag information on non-scripted APL objects.

When saving a SALTed file, Dyalog Ltd recommends that:

e the chosen filename is restricted to alphanumeric characters as
non-alphanumeric characters can cause issues on some operating
systems.

e the filename is the same as the name of the SALTed item it contains (for
ease of use)

The Save function returns the full path and name of the file that it saves.

When defining an APL object, it is good practice to define any system settings
that could affect the object (for example, JI0 and [OML) at the start of the
script. If this is not done then the script picks up these values from the
environment, which could result in unexpected behaviour.

49.1 Syntax

OSE.SALT.Save '{objectname} [[path/]filenamell.extension]
[-version[=vers]] [-convert] [-banner{=top}][-noprompt]
[-makedir] [-format[=APL|XML]]"'

for an unnamed namespace:

OSE.SALT.Save {objectref} '[[path/]filename][.extension]
[-version[=vers]] [-convert] [-banner{=top}][-noprompt]
[-makedir] [-format[=APL|XML]]'

where:

objectname is the name of the APL object that is to be saved.
objectref is the APL object reference of the APL object that is to be saved.

path/filename is the full path and filename (without an extension) under
which to save the script file. If the file has previously been saved through SALT,
then this can be omitted; in this situation the file will be saved to the same
location as before by default.

extension indicates the file's entension. If no extension is specified then an
extension of .dyalog is assumed.

-version turns on versioning for the file (see Section 3.10). Optionally it can
take a modifier value (vers) that identifies a specific version number to use

revision 20250703_290 34

SALT User Guide

(this is included in the file's name) — if this modifier value is not included then a
value one greater than the highest value currently saved is used.

e -convert retains the scripted format given to a previously unscripted
namespace by SALT. Only relevant when saving a previously unscripted
namespace.

e -banner adds a banner to the top of a namespace when it is saved,
irrespective of whether -convert is specified. Must have a modifier value
(top) that either specifies the text to use or executes (¢) a variable containing
the text to use. If the banner includes space characters then the entire modifier
value must be contained within " marks. Only relevant when saving unscripted
namespaces.

e -noprompt specifies that SALT is not to prompt the user for confirmation
before saving the file each time its content is amended. Specifying this modifier
means that the file (or a new version of the file is versioning is on) will be saved
automatically every time the content is amended. This modifier can be
specified with unversioned or versioned files.

e -makedir creates any necessary directories to satisfy the specified path.

o -format identifies the format in which to save the APL object. By default, APL
objects are saved in XML format, but a modifier value (APL) can be specified to
save the APL object in APL format.

4.9.2 Use

Inclusion of the -version modifier when saving a file turns on versioning for that
file. In this situation, SALT saves the file as a new file with the specified name and
adds a version number immediately before the .dyalog extension — if the modifier
value number is included then the number specified becomes the version number,
otherwise 1 is used. For example:

OSE.SALT.Save 'MyClass path\MyClassDir -version=3'

saves the APL object in the specified path as a script file called MyClass.3.dyalog. If a
file of that name already exists and the -noprompt modifier has not been specified
then SALT will ask for confirmation to overwrite the file; if -noprompt has been
specified then the file will be overwritten automatically.

When saving an unscripted namespace, the Save function constructs a temporary
script that is discarded after the namespace has been saved (unless the -convert
modifier is specified). This script is used to save the namespace as a scripted
namespace. Specifying the -convert modifier retains the constructed script; this
means that SALT can identify (and save) subsequent changes made to the namespace
through the editor.

revision 20250703_290 35

SALT User Guide

The -banner modifier adds the specified text to the top of the converted namespace
when saving it. For a single line banner, the text can be entered directly as a modifier
value, for example, -banner=text. If the required banner text is multiple lines in
length then it must be defined as a variable and the modifier value must be set to
execute that variable. For example, a variable called TITLE can be defined in the
workspace and assigned to be:

% %k %k k k k k k k k k k k k k k k k k k %

x Copyright ABC XYZ x
* 2000 - 2013 *

% %k %k k k k k k k k k k k k k k k k k k k

Setting the modifier —-banner=¢TITLE makes the defined text block appear at the
top of the namespace in the file.

If the APL object being saved is a variable, then the format in which it is saved can be
a valid consideration. Serialising variables using the APL format can result in
executable expressions that exceed Dyalog's limit for executing an APL statement,
especially if the variable comprises a nested array. As an alternative in this situation,
the XML format can be used. Changing from the default XML format to APL format is
achieved by specifying the -format modifier with the APL modifier value.

4.10 Settings Function

Some of SALT's functions take values from global parameters. These are retrieved
from the external repository and loaded into SALT at the start of a Dyalog session.
They remain active for the session unless they are modified by calling the Settings
function.

@ The external repository stores configuration settings and options and is
operating-system-dependent:

e On Microsoft Windows, it is the registry (global functions can also be
modified in the Configuration dialog box — see Appendix A).

e On UNIX it is the SHOME/.dyalog/SALT.settings file.

e On Mac OS it is the Users/<name>/.dyalog/SALT.settings file (only
created the first time a settings change is made).

4.10.1 Syntax

OSE.SALT.Settings '[parameter] [value] [-reset] [-permanent]’

revision 20250703_290 36

SALT User Guide

where:

e parameter specifies the session parameter to retrieve/update (see
Section 4.10.2.1).

e value specifies a value for the session parameter.

e -reset reloads the values from the external repository, replacing the session
parameter values with the global parameter values.

e -permanent saves the values of the session parameters to the external
repository, replacing the global parameter values.

@ OSE.SALT.Set can be used as an alias for JSE.SALT.Settings.

4.10.2 Use

Calling the Settings function without any arguments or modifiers returns a list of all
the session parameters and their current values. For example:

OSE.SALT.Settings '

Calling the Settings function with a single argument (one parameter only) returns
the current session value for that parameter.

A session parameter can be modified by calling the Settings function with a single

argument that comprises a parameter and a value. For example:
OSE.SALT.Settings 'editor \myprogs\vi.exe'

This modified session parameter is active throughout the Dyalog session but is not

saved for subsequent Dyalog sessions unless the value is propagated to the global

parameter in the external repository by specifying the -permanent modifier. For
example:

OSE.SALT.Settings 'editor -permanent'’

The session parameter can be replaced with the global parameter using the -reset
modifier. For example:

OSE.SALT.Settings 'editor -reset'

Whenever a setting is changed, the Settings function returns the previous value of
that setting.

revision 20250703_290 37

SALT User Guide

4.10.2.1 Parameters

The possible session parameters are:

e cmddir — specifies the full path to the directory or list of directories from which
to retrieve user commands. Multiple directories are specified using an
operating-system-specific character:

© On Linux the separator is : (thatis, a colon)
© On Mac OS the separator is : (that is, a colon)
° On Microsoft Windows the separator is ; (thatis, a semi-colon)

If multiple directories are specified, then SALT searches them in order and
retrieves the first user command it finds with the specified name.

Earlier versions of Dyalog allowed the use of the o character as a
separator — this has been superseded by the operating-system-specific

characters and should no longer be used.

To add a new directory to the list of directories, precede its path with a comma
(,) character. For example:

OSE.SALT.Settings 'cmddir ,\ucmdi\ci'

This adds the new directory to the start of the list of directories and it becomes
the default location for fetching user commands.

To remove a directory from the list of directories, precede its path with a tilde
(~) character. For example:
(SE.SALT.Settings 'cmddir ~\ucmdi\cil'

e compare — states the full path to the comparison program to use.

e debug - specifies the level of debugging that SALT should use. Possible values
are:
° 0:no debugging and report errors in the environment. This is the
default value.

o >0 :stop if an error is encountered
e editor — states the full path to the editing tool to use.

o edprompt — specifies whether a user is prompted for confirmation to overwrite
the file when modifying a script or remove a file when deleting versions.
Possible values are:

© 0orn:the useris never prompted for confirmation

o 1 ory: the useris prompted for confirmation each time a script is
modified or a version is deleted. This is the default value.

e fndels — specifies whether v characters are used to enclose a new
tradfn/tradop when saving it (a useful way of identifying tradfns/tradops).

revision 20250703_290 38

SALT User Guide

Possible values are:
o 0:do not use v characters to enclose a new tradfn/tradop when saving
it. This is the default value.

o 1:useV characters to enclose a new tradfn/tradop when saving it.

When saving a tradfn/tradop:
o setting fndels to 1 means the tradfn/tradop cannot be loaded in a

version of Dyalog prior to version 17.0 using the JSE.SALT.Load

function or the JLoad user command, but can be loaded using
20FIX.

o setting fndels to 0 means the tradfn/tradop cannot be loaded in a
version of Dyalog prior to version 17.0 using 20F IX but can be
loaded using the JSE.SALT.Load function or the JLoad user
command.

mapprimitives — specifies whether the glyphs that cannot be displayed in
classic mode (B, B, ¢, 1, <, B) are automatically translated from Unicode into
their JUxxxx classic mode equivalent forms when loading/saving scripts.
Possible values are:
© 0:do not translate the glyphs — the APL interpreter will fail if these
Unicode glyphs are present in a script in classic mode or if their QUxxxx
form is used in a Unicode interpreter.

o 1:automatically translate the glyphs, making code fully portable
between Unicode and classic versions of Dyalog. This is the default
value.

newcmd — specifies when new user commands become effective in the user
interface. Possible values are:
© auto : new user commands are detected automatically. This is the
default value.

°o manual : new user commands do not become effective until the user
command JUReset is run. For more information on user commands,
see the User Commands User Guide.

track — specifies the element tracking mechanism to use (basic information is
always tracked). Possible values are:

o compiled : preserves the 4001 state of SALTed objects (even though
L00T directives are not a visible part of a function's code). The
information is reinstated when an object is loaded into the workspace
by SALT.

o atinfo : retrieves the function, user and timestamp information (as
recorded by the monadic system function [JAT) pertaining to the last
time that the function was saved. The information is reinstated when a
function is loaded into the workspace by SALT. Can only be used for
traditional functions and operators.

revision 20250703_290

39

SALT User Guide

o new : tracks unSALTed objects; when these objects are edited using the
default editor, they are saved in the first directory named in the workdir
session parameter.

Multiple values can be selected using the comma character as a separator —in
this situation the list of values should be enclosed in single or double quotation
marks.

When returning a list of multiple objects, the space character is used as a
separator.

o varfmt — specifies the format in which variables are saved. Possible values are:
o APL

o XML : this is the default value.

o workdir — specifies the full path to the directory or list of directories from
which to retrieve files. Multiple directories are specified using an operating-
system-specific character:

© On Linux the separator is : (that is, a colon)
© On Mac OS the separator is : (thatis, a colon)
o On Microsoft Windows the separator is ; (that is, a semi-colon)

If multiple directories are specified, then SALT searches them in order and
retrieves the first user command it finds with the specified name.

Earlier versions of Dyalog allowed the use of the o character as a
separator — this has been superseded by the operating-system-specific

characters and should no longer be used.

To add a new directory to the list of directories, precede its path with a,
character. For example:

OSE.SALT.Settings 'workdir ,\proj\pt'
This adds the new directory to the start of the list of directories and it becomes
the default location for storing files.

To remove a directory from the list of directories, precede its path with a ~
character. For example:

OSE.SALT.Settings 'workdir ~\proj\pt'

@ SALT's files are always assumed to be in [SALT] (by default, this is
[DYALOG]/SALT) even if that directory is not explicitly included in the
list of working directories (that is, workdir).

revision 20250703_290 40

SALT User Guide

4.11 Snap Function

Although the Save function enables individual APL objects to be saved, saving all the
APL objects in a workspace using the Save function would be a repetitive process.
Instead, the Snap function can be called to perform a bulk save of every APL object in
the workspace in individual files — all new APL objects are saved to the specified
directory and all modified APL objects are saved to the appropriate location.

@ The Snap function cannot save APL objects of certain nameclasses — for a list of
the types of nameclass that can be saved see Section 3.5. It is the user's
responsibility to ensure that unscripted namespaces do not include APL objects
of these nameclasses; failure to do so can result in a loss of data.

To do this, the Snap function identifies all APL objects that need to be saved. It then
determines which ones have been modified and which ones are new by reviewing the
special tag associated with each APL object (see Section 3.6 for tag information). If an
APL object needs to be saved, or if SALT cannot determine if an APL object needs to
be saved (for example, a non-scripted namespaces), then the Snap function calls the
Save function to save that APL object (see Section 4.9 for Save function information).

When saving a SALTed file, Dyalog Ltd recommends that the chosen filename is
restricted to alphanumeric characters as non-alphanumeric characters can
cause issues on some operating systems.

The Snap function returns a list of the names of the APL objects that have been
successfully saved. If the Snap function stops for any reason, then everything in the
same Snap call that has already been saved remains saved and a list of the names of
the APL objects that have been successfully saved is returned.

When defining an APL object, it is good practice to define any system settings
that could affect the object (for example, JI0 and [OML) at the start of the
script. If this is not done then the script picks up these values from the
environment, which could result in unexpected behaviour.

4.11.1 Syntax

OSE.SALT.Snap '[fullpath] [-class{=nameclass}] [-convert]
[-clean] [-banner{=top}] [-fileprefix{=prefix}] [-loadfn[=

revision 20250703_290 41

SALT User Guide

[+]path]] [-nosource] [-noprompt] [-makedir] [-show[=details]]
[-aAa{=chars}] [-patterns{=string}] [-version[=vers]] [-format
[=APL|XML]]"'

where:

o ful lpath specifies the full path under which to save the new script files
(modified versions of previously saved files are saved in their original location).
If a full path is not included, then the first directory named in the workdir
session parameter is used (for details of this session parameter, see
Section 4.10.2.1).

If this modifier is not included and the first directory named in the
workdir session parameter is the [SALT] directory, then the Snap
function will generate an error message and neither the new nor the
modified files will be saved. This is to prevent the creation of extraneous
files in the SALT directory.

e -class selects APL objects of the nameclass or nameclasses specified by the
mandatory modifier value (namec [ass). The modifier value can be 2
(variables), 3 (functions), 4 (operators) or 9 (namespaces) — finer granularity
values are also accepted (see Section 3.5 for information on valid nameclasses
and subclasses). Multiple nameclasses can be included using a comma as a
separator.

Specific nameclasses/subclasses can be excluded by using the ~ prefix.

e -convert retains the scripted format given to a previously unscripted
namespace by SALT. Only relevant when saving a previously unscripted
namespace. Specifying this modifier means that the -banner modifier can,
optionally, be included.

e -cleanrunsthe Clean function on the objects to be saved.

e -banner adds a banner to the top of a namespace when it is converted from
an unscripted namespace and saved as a scripted namespace. Must have a
modifier value (top) that either specifies the text to use or executes (¢) a
variable containing the text to use. If the banner includes space characters
then the entire modifier value must be contained within " marks. Only relevant
if the ~convert modifier is also included in the Snap function call.

o -fileprefix musthave a modifier value (prefix) that specifies the string
with which to prefix to APL object names when saving them to file (by default
the filenames used are the same as each APL object's name followed by

.dyalog).

e -loadfn generates a <load_ws> function that, when executed, redefines
every APL object in the current workspace and runs the [OL X for the workspace.
By default, the function is called load_ws.dyalog and it is stored in the same
location as the new script files. Optionally, a modifier value (path) can be

revision 20250703_290 42

SALT User Guide

specified that identifies the full path to a different directory or .dyalog file in
which to store the <load_ws> function. If the APL objects include class
dependencies, this modifier automatically takes account of those
dependencies (see Section 3.8

Specifying the - Loadfn modifier means that the -nosource modifier can,
optionally, be included.

e -nosource instructs SALT that the <load_ws> function being created should
exclude scripts from namespaces when used to recreate a workspace. Only
relevant if the -loadfn modifier is also included in the Snap function call.

e -noprompt specifies that SALT is not to prompt the user for confirmation
before saving the file each time its content is amended. Specifying this modifier
means that the file (or a new version of the file is versioning is on) will be saved
automatically every time the content is amended. This modifier can be
specified with unversioned or versioned files.

e -makedir creates any necessary directories to satisfy the specified path.

e -show does not save any APL objects but returns a list of the APL objects that
would be saved by calling the Snap function with the specified modifiers.
Optionally, can include the modifier value detai [s to display the full path for
each APL object that would be saved.

e -AA must have a modifier value (chars) that specifies the two characters to
use in filenames instead of the A and A in the APL object's name. By default, %
and = are used.

e -patterns only selects APL objects of the specified pattern. Must have a
modifier value (s tring) that is an APL object name and can contain the
wildcard x, for example, a modifier value of GUI* would select all APL objects
with names starting with GUI. The modifier value can include multiple APL
object names each separated by a space character (in which case the entire
modifier value must be contained within " marks) — each APL object name can
include multiple wildcards.

Specific patterns can be excluded by using the ~ prefix.

e -version turns on versioning for the file (see Section 3.10). Optionally it can
take a modifier value (vers) to identify a specific version number to include in
the file's name — if this modifier value is not included then a value of 1 is used.
If a modifier value is specified then this number is used as the version number
for all the APL objects being saved.

o -format identifies the format in which to save the APL object. By default APL
objects are saved in XML format, but a modifier value (APL) can be specified to
save the APL object in APL format.

revision 20250703_290 43

SALT User Guide

4.11.2 Use

Each new APL object is saved with the filename <objectname>.dyalog, where the
name of the file is the same as the APL object's name:

e Any letter that has an accent in the APL object's name will not have the accent
in the file's name.

e Any A or A character in the APL object's name will be replaced by % and =
respectively unless alternative characters have been specified using the -Aa
modifier.

Multiple new APL objects could have the same filename, for example, if a namespace
contains a new class called FOO and a new function called Foo, then the Snap
function would try to assign each the filename foo.dyalog. To avoid this contention,
the Snap function appends numbers preceded by a dash to the filenames:

e version numbering example: myclass.3.dyalog

e Snap function numbering example: myclass-1.dyalog

e both: myclass-1.3.dyalog

If the -~convert modifier is specified, then the Snap function saves an unscripted
namespace by converting it into a scripted namespace (replacing the unscripted
version in the workspace with the scripted one) and then tracking changes made to it.
If the -~convert modifier is not specified, then the Snap function creates a directory
in the specified location and gives it the same name as the unscripted namespace.
The APL objects within the unscripted namespace are then saved in individual
(scripted) files in this directory.

@ The treatment of unscripted namespaces is the only way in which the Save
and Snap functions differ when saving APL objects.
With the -convert modifier specified:

e Save function: saves as scripted namespace and tracks changes
e Snap function: saves as scripted namespace and tracks changes

Without the -convert modifier specified:

e Save function: saves as scripted namespace but cannot track changes

e Snap function: saves as directory containing files for individual APL
objects and cannot track changes

The -banner modifier adds the specified text to the top of the namespace when
saving it. For a single line banner, the text can be entered directly as a modifier value,
for example, -banner=text. If the required banner text is multiple lines in length

revision 20250703_290 44

SALT User Guide

then it must be defined as a variable and the modifier value must be set to execute
that variable. For example, a variable called TITLE can be defined in the workspace
and assigned to be:

% %k %k %k %k %k k k k k k k k k k k k k k k k

*x Copyright ABC XYZ x
* 2000 - 2013 *

% % %k %k %k %k %k k k k k k k k k k k k k k k

Setting the modifier ~-banner=¢TITLE makes the defined text block appear at the
top of the namespace in the file.

A prefix can be applied to the names of all the new files by specifying the required
prefix as a modifier value of the -f i Leprefix modifier. If the prefix should only be
applied to a subset of the new files, then those files should be saved first using an
appropriate pattern/class. For example:

OSE.SALT.Snap '\ws\utils -patterns=GUI* -fileprefix=Win'

This saves all the new APL objects that have names starting with 'GUI' to files starting
with 'Win', therefore the function GUImenu is saved in the \ws\utils directory as a file
called Winguimenu.dyalog. If the requirement was that all APL objects except dfns
should be prefixed with 'nonDFN', then the function call could have been:

OSE.SALT.Snap '\ws\utils -class=~3.2 -fileprefix=nonDFN'

Specifying the - Loadfn modifier creates a new <load_ws> script file called (by
default) load_ws.dyalog. When executed, this script redefines every APL object in the
current workspace and runs the [JLX for the workspace. A modifier value can be
included to define a different location/name for the load_ws.dyalog file, although the
file must have the extension .dyapp or .dyalog. For example:

OSE.SALT.Snap '\ws\utils -loadfn'
creates a file called load_ws.dyalog in the same directory as the other new files
created by the Snap function call (that is, \ws\utils), whereas:

OSE.SALT.Snap '\ws\utils -loadfn=\ws\ldscpts\ldit.dyalog'

creates a file called Idit.dyalog in the \ws\ldscpts directory.

@ The script created by the - Loadfn modifier can be used with the Boot
function to automatically start Dyalog with the workspace and all its
constituent APL objects loaded. For more information on the Boot function,
see Section 4.2.

revision 20250703_290 45

SALT User Guide

Inclusion of the -version modifier turns on versioning for all files included in the
Snap function. In this situation, SALT saves each file as a new file with a version
number immediately before the .dyalog extension — if the modifier value numberis
included then the number specified becomes the version number, otherwise 1 is
used. For example:

OSE.SALT.Snap '\ws\utils -version=3"'

saves each APL object as a script file called <objectname>.3.dyalog. If a file of that
name already exists and the -noprompt modifier has not been specified then SALT
will ask for confirmation to overwrite the file; if -noprompt has been specified then
the file will be overwritten automatically.

If the APL object being saved is a variable, then the format in which it is saved can be
a valid consideration. Serialising variables using the APL format can result in
executable expressions that exceed Dyalog's limit for executing an APL statement,
especially if the variable comprises a nested array. As an alternative in this situation,
the XML format can be used. Changing from the default XML format to APL format is
achieved by specifying the -format modifier with the APL modifier value.

revision 20250703_290 46

SALT User Gui

A Configuration Options

The global parameters that SALT takes as session parameters can be amended by
defining new values through the Settings SALT function (see Section 4.10).

[VTIIEN In the Microsoft Windows operating system, some of these values can also be
amended in the SALT tab of the Configuration dialog box (see Section A.1).

Table A-1 details the configuration options that are available.

@ Although the values can also be amended by editing the external repository
strings directly, Dyalog Ltd does not recommend this method.

Table A-1: Configuration options for global/session parameter values

de

Settings Function Configuration Dialog

Parameter Name Box Field
Enable/disable SALT n/a Enable SALT check
box
User command location cmddir User Command tab
. Compare command
Comparison program compare line
Debugging level debug n/a
Editing tool editor E.dltor command
line
Frequency of overwrite prompts | edprompt n/a
Tradfn/Tradop v delimitation | fndels n/a
Mapping of prlm.ltlves to Oxxxx mapprimitives n/a
for classic users

revision 20250703_290

47

SALT User Guide

Table A-1: Configuration options for global/session parameter values (continued)

Settings Function

Configuration Dialog

Parameter Name Box Field
New user command detection | newcmd n/a
Element tracking mechanism track n/a
Variable storage format varfmt n/a
SALT source files' search paths | workdir Source folders

A.1 Configuration Dialog Box

(0S| The Configuration dialog box is only available when using the Microsoft

WIN

Windows operating system.

To amend the options in the Configuration dialog box

1. Inthe Dyalog session window, select Options > Configure....

The Configuration dialog box is displayed.

2. Inthe SALT tab of the Configuration dialog box, amend the required settings.

3. Click OK to save your changes and return to the session window.

The amendments take effect immediately.

The settings that can be amended in the SALT tab of the Configuration dialog box are:

¢ Enable Salt — select this check box to enable SALT or uncheck it to disable SALT.
e Compare command line — the full path to the comparison program to use.

e Editor command line — the full path to the editing tool to use.

e Source folders — the full path to the directory (or list of directories) from which

to retrieve SALT files.

revision 20250703_290

48

SALT User Guide

B SALT Function Syntax Summary

Boot function syntax:

for a .dyalog file:
OSE.SALT.Boot '{path/filename}{.dyalog} [-xload]' ['argument']

Clean function syntax:

OSE.SALT.Clean '[objects] [-deletefiles]'

List function syntax:

OSE.SALT.List '[directory|.dyalog file] [-folders] [-versions]
[-extension[=ext]] [-fulll[=valuel] [-recursive] [-raw] [-typel

Load function syntax:

OSE.SALT.Load '{path/name} [-target{=namespace}] [-noname]
[-disperse[=objects]|-nolink] [-protect] [-version{=vers}]
[-source[=no]]"

New function syntax:

OSE.SALT.New '{path/filename}[.ext] [-version{=vers}]' ['argl
(args)']

revision 20250703_290 49

SALT User Guide

Save function syntax:

OSE.SALT.Save '{item} [[path/]1filename][.extension] [-version
[=vers]] [-convert] [-banner{=top}][-noprompt] [-makedir]
[-format[=APL|XML]]"

for objects:

OSE.SALT.Save {objectref} '[[path/]filename][.extension]
[-version[=vers]] [-convert] [-banner{=top}][-noprompt]
[-makedir] [-format[=APL|XML]]"

Settings function syntax:

OSE.SALT.Settings '[parameter] [value] [-reset] [-permanent]’

Snap function syntax:

OSE.SALT.Snap '[fullpath] [-class{=nameclass}] [-convert]
[-clean] [-banner{=top}] [-fileprefix{=prefix}] [-loadfn[=
[+1path]l] [-nosource] [-noprompt] [-makedir] [-show[=details]]
[-aAa{=chars}] [-patterns{=string}] [-version[=vers]] [-format
[=APL|XML]]"

revision 20250703_290 50

SALT User Guide

C Example: SALT in Use

@ Although SALT is still fully supported, Dyalog Ltd expects that Link and third-
party tools will replace SALT as the mechanism for using and managing text
files as APL source code an recommends migrating from SALT to Link and third-
party tools as soon as is convenient to do so. For more information, see the
Link User Guide.

@ This example has been created as an illustration of SALT's source code
management capabilities and the flexibility of its functions. To achieve this it
does not necessarily follow an efficient workflow process or best coding
practice.

Three employees of a company are working on the same project. All have access to
the shared directory in which SALT saves APL objects.
John opens Dyalog and creates a function:
Vreport
[1] doWork
v
John saves the report function as version 1 in a new directory called project:
OSE.SALT.Save 'report \project\report -makedir -version'
\project\report.1i.dyalog
Dan opens Dyalog and creates a namespace called uti L's within the root namespace:
JNS utils
#.utils

Dan retrieves the report function from the project directory and adds it into the
new utils namespace:

+[SE.SALT.Load '\project\report -target=utils'
report

revision 20250703_290 51

SALT User Guide

Dan creates and edits a class in the uti l s namespace:

JED outils.regex

Dan saves all changes in the uti Ll s workspace to the project directory:

OSE.SALT.Snap '\project'
#.utils.regex

Only the regex class is new, so that is the only APL object saved.

Dan checks the entire contents of the project directory:

OSE.SALT.List '\project -recursive'

Type Name Versions Size Last Update
project\report 1 19 2013/06/07 15:12:19

<DIR> projectl\utils 2013/06/07 15:16:48
project\utils\regex 31 2013/06/07 15:16:48

Brian opens Dyalog and does not want to be prompted when changes are made to
files that have been saved using SALT:

OSE.SALT.Settings 'edprompt n'
0

This confirms that no prompts will now be given.

Brian sets his working directory to the project directory:

OSE.SALT.Settings 'workdir \project'
\project

Brian brings report.dyalog into his workspace, calling the Load function with an
argument of rx as there are no other files in the directory with a name starting with
the letter r:

OSE.SALT.Load 'rx'
report

OVR'report'
V report
[1] doWork
[2] Avx§\project\report.dyalogS§1§ 2013 6 7 15 12 19 822
S§aaaals80
\'4

Brian edits the report function in his workspace several times, which produces a
new file each time (as versioning is on).

revision 20250703_290 52

SALT User Guide

Meanwhile, John edits the report function. Upon completion the following message
is displayed:

- '\.

You have modified report £3

A Create a new source file for "report"?
¥' MOTE: ** this is NOT the latest version!
If you choose YES, file <\project\report.5.dyalog= will be created.

If you choose MO, the changes won't be filed

Figure C-1: Changed function message

John was not previously aware that the file had been worked on since he saved it. He
clicks No and compares his version with the latest version:

OSE.SALT.Compare 'report -version=ws'
Comparing function <report> in the ws with the one in
\project\report.4.dyalog

[0] report

+ do some more Work
-[1] doWork for John

+ and again

As [JAT tracking is not turned on, John does not know who made the modification. He
talks to his teammates and finds out Brian made the modifications — they agree that
John should merge his changes with Brian’s changes using the editor. John does this,
but before SALT saves the new version the following message is displayed:

-

=+ THISIS NOT THE MOST RECENT VERSION !t £

This is version 1, the latest is 4
l % Do you still want to save it as V57

Figure C-2: Warning message when saving a superseded version

revision 20250703_290 53

SALT User Guide

John clicks Yes and SALT saves report.5.dyalog.

John wants to clear up the unnecessary versions, so he checks what exists:

OSE.SALT.List '\project -recursive -versions'

Type Name Version Size Last Update
project\report [5] 21 2013/06/09 12:43:37
project\report [4] 21 2013/06/08 22:32:30
project\report [3] 21 2013/06/08 22:19:18
project\report [2] 21 2013/06/08 22:13:05
project\report [1] 19 2013/06/08 21:16:13

<DIR> projectl\utils 2013/06/08 21:17:57
project\utils\regex 32 2013/06/08 21:17:56

John removes all but the latest version:

OSE.SALT.RemoveVersions \project\report -all -collapse

SALT prompts for confirmation of the removal:

Forget Versions of report EZ

l Confirm deletion of 4 versions:
3

Versions [1] [2] [3] [4]

..

Yes Mo

..

Figure C-3: Confirmation of version removal request

John clicks Yes and SALT deletes version 1, 2, 3 and 4.

4 versions deleted.

John instantiates the regex class anonymously and checks what has become
available by doing this:

reg<[JSE.SALT.New '\project\utils\regex'
reg.ONL ~3
run

The run function is available (a method in object oriented programming).

John tests this function to check whether it works:

reg.run
33

revision 20250703_290 54

SALT User Guide

The returned value indicates that the run function is working correctly.

Dan clears his workspace and loads the contents of the project directory:

)JCLEAR
CLEAR WS

OSE.SALT.Load \project\x
report #.utils.regex

SALT loads two files (the report function and the regex class) inthe utils
namespace.

Dan creates a function to load the contents of the project directory:
OSE.SALT.Snap '\project -loadfn=projX.dyapp'
*%x WARNING: [LX is empty

This warning tells Dan that although the projX.dyapp file will recreate the workspace
as it is now, nothing in the workspace will be executed as [JLX has not been set.

Dan tests whether the projX.dyapp file works on a clear workspace:
JCLEAR
CLEAR WS

OSE.SALT.Boot '\project\projX.dyapp'
Loaded: report
Loaded: #.regex

As [ILX was empty, nothing is executed. However, the APL objects have been
successfully imported:

JFNS
report

)JCLASSES
regex

revision 20250703_290 55

Index

.dyalogfiles 9
dyappfiles 9
Autostarting 11

B
Boot function 19

C
Clean function 20
Compare function 21
Configuration 47

D
Directory structure 6
DYAPP Environment Variable 11

Environment Variables

File extensions

Jdyalog ... 9
Ayapp 9
File format 8
Flags See Modifiers

revision 20250703_290

SALT User Guide

|
Installation 5
L
List function 24
Load function 27
M
Modifiers ... 17
N
New function 30
R
RemoveVersions function 31
S
SALT Environment Variable 6
SALT functions 16
Boot function 19
Clean function 20
Compare function 21
List function 24
Load function 27
Modifiers 17
New function 30
Notation when calling 17
RemoveVersions function 31
Save function 33
56

Settings function 36

Snap function 41
Save function 33
Session parameters 37

Configuration 47
Set function See Settings function
Settings function 36
Snap function 41
Summary of syntax 49
Switches See Modifiers
Tags ... 10
Version management 15

revision 20250703_290

SALT User Guide

57

	1 About This Document
	1.1 Audience
	1.2 Conventions

	2 Introduction
	2.1 History
	2.2 The Benefits of SALT
	2.3 SALT as a Source Code Management System

	3 Using SALT
	3.1 Installation
	3.2 Configuration
	3.3 Structure within Dyalog
	3.3.1 Defining the SALT Environment Variable

	3.4 File Format
	3.4.1 .dyapp Files
	3.4.2 .dyalog Files

	3.5 Nameclasses
	3.6 Tag Information
	3.7 SALT Applications
	3.7.1 Autostarting SALT Applications

	3.8 Class Dependencies
	3.9 File Comparison
	3.10 Version Management

	4 SALT Functions
	4.1 Calling SALT Functions
	4.1.1 Paths and Filenames

	4.2 Boot Function
	4.2.1 Syntax
	4.2.2 Use

	4.3 Clean Function
	4.3.1 Syntax
	4.3.2 Use

	4.4 Compare Function
	4.4.1 Syntax
	4.4.2 Use

	4.5 List Function
	4.5.1 Syntax
	4.5.2 Use

	4.6 Load Function
	4.6.1 Syntax
	4.6.2 Use

	4.7 New Function
	4.7.1 Syntax
	4.7.2 Use

	4.8 RemoveVersions Function
	4.8.1 Syntax
	4.8.2 Use

	4.9 Save Function
	4.9.1 Syntax
	4.9.2 Use

	4.10 Settings Function
	4.10.1 Syntax
	4.10.2 Use
	4.10.2.1 Parameters

	4.11 Snap Function
	4.11.1 Syntax
	4.11.2 Use

	A Configuration Options
	A.1 Configuration Dialog Box

	B SALT Function Syntax Summary
	C Example: SALT in Use
	Index

