The tool of thought for software solutions

HTMLRenderer

User Guide
Dyalog APL Version 20.0

Dyalog Limited

Minchens Court, Minchens Lane
Bramley, Hampshire
RG26 5BH
United Kingdom

tel: +44 1256 830030

fax: +44 1256 830031
email: support@dyalog.com
http://www.dyalog.com

mailto:support@dyalog.com

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2025
All rights reserved.

HTMLRenderer User Guide

Dyalog Version 20.0
Document Revision: 20250903_200

Unless stated otherwise, all examples in this document assume that (IO OML) <« 1

No part of this publication may be reproduced in any form by any means without the prior written
permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents hereof and
specifically disclaims any implied warranties of merchantability or fitness for any particular purpose.
Dyalog Limited reserves the right to revise this publication without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.

Oracle®, MySQL, and Java™ are registered trademarks of Oracle and/or its affiliates. JavaScript™ is a
trademark of Oracle Corporation

Unicode is a registered trademark of Unicode, Inc. in the United States and other countries.

UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively through X/Open
Company Limited.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Windows® is a registered trademark of Microsoft Corporation in the U.S. and other countries.

macOS® and OS X® (operating system software) are registered trademarks of Apple Inc. in the U.S. and
other countries.

All other trademarks and copyrights are acknowledged.

Contents

1

INTRODU CTION Lottt ettt e et e e e et e e e e e e e e e naeees 1
1.1 HEHO WOKI oottt sttt et e st sabeesaneeen 2
0 14 1= gl 2o TV [o Y TR 3
13 USEE EVENTS ..ottt e e e s e e e e e e s 3
1.4 Platform Variationseocueeeieeiieenieeiieeniee ettt ettt et sane e e 3
15 UTF-8 SUPPOIT c..eeeieiiiiiie ittt e e s e 3
1.6 Integration with the Dyalog GUI on WiNdOWScccceeeviieeiiiieeeesiiee e 3
SIM P LE EXAM P LLES oo e e e e et e 5
2.1 Render a SharpPlot Chartccooieriiiieeeee e 5
2.2 An application With 2 PAgEScccuiiiiiiieeeciiee ettt e et 6
2.3 AFOrm With @ BULEON c.eeiiiiiiie et e e et 7
2.4 Using HRUt i L's with HTMLRENAEIErcocueiiiiiiiiieiieeiit et 8
GENERATING HT ML coii it ettt et e s 10
TECHNICAL OVERVIEW .oiiiiiiiiiiiiiiiei it 11
4.1 HTMLRenderer on non-Windows platforms.........ccceeceerieeniieiieenieenieeniees 11
4.2 CEF/Chromium Command Line SWItChesccccovveveieiiiieeeceeeecee e 12
4.3 Controlling Light and Dark Modecc.ueeeiiiiieeeiiiie et 12
4.4 Disabling POPUP BIOCKINGeovuveriiiiiiiiiiienieeee et 12
HTMLRENDERER REFERENCE ..iiuiiiiiiiiiit i it eniae e e 13
5.1 [oY 01T o 1= PP PPPPPPPPPIRE 13
5.2 Properties Available by PIatformcccoocveiieeiiiiee e 13
53 Properties With Behavior Specific to HTMLRenderer........ccccceeevcvveeeecveeeennee. 14
5.4 YT o | £ PP PUPT PP 16
5.5 Events Specific to HTMLRENAEIErceveviieeieiieeciiee ettt evee e e see e 17
5.6 IMBENOAS ..ttt et s e e s bae e e 19
5.7 Methods Specific to HTMLRENUEIENccccviieieiiieeiiee et evee e e 20
WEBSOCKET SUPP O RT 1ttttttit ettt vttt e e naaeeeens 23
6.1 WebSOCKET OVEIVIEWeiiiiiiiiieiiii ettt st 23
6.2 WEDbSOCKET EVENTS....ccitiiiiieniiieiee sttt ettt st 24
6.3 WebSocket Methods.......ccoiiiiiiiiiiiiiiee e 25
6.4 WebSocketSample fUNCLIONcccuiiiiiiiee e e 26
I Tt 27
7.1 OVEBIVIBW ...ttt ettt e e ettt e e e e e sttt e e e e e s e aasbbeeeeeeseannbeneeeeeaesannnes 27
7.2 HRUtils.HttpRequest class.....cccoiiiiiiiiiiiiii 27
7.3 HRUtils.HttpResSpoNse classcccoiminienieiinieneneeeeeee e 28
7.4 HRUL T LS .COOKTE Class..ccciiiiieiiiiiiieciieciee sttt 29
7.5 HRUt 1 Ls Utility FUNCLIONS....ccoiieiieeeciiee et e s 29

8 RUNNING HTMLRENDERER UNDER A WINDOWS RUNTIME

N 2 = I 0 N0 1 1 31
9 RESOURCES AND REFERENCES ..ttt ittt it 32
10 CHANGE HIST O RY ittt et ettt ettt ee e ie e aaeas 33
RV =] 3 T 0720 1 PN 33
VEISION 1.0 oeuniiiiiiiiiiie ettt ree e e e e e e et e e e e e e e eeaa b e eeeeesessasaaseeesesssssannseeeseneres 33
VEISION 18.2 ittt ettt e e e e e e et aa e e e e e e e eesa b e eeeesessasaaseeessessssannseeeseesres 33
RV =] 3 T T < 7 RN 33

VEISION 17.1 oottt e e e e e ettt e e e e e e e eeea e e e eeeeesbataseaessessssannseeeseeeres 34

1

HTMLRenderer User Guide

Introduction

HTMLRenderer is a built-in Dyalog object which provides a cross-platform mechanism
for producing Graphical User Interfaces (GUIs), based on Hypertext Markup Language
(HTML). As of Dyalog version 18.0 HTMLRenderer is available on Microsoft Windows,
Apple mac0S, and Linux (excluding the Raspberry Pi). Using HTMLRenderer, your
application can use the same code to provide a consistent user interface across
platforms.

HTMLRenderer is a built-in class, instances of which are created and managed using the
Dyalog GUI framework functions OWC/0OWS/OWG/OONEW and ODQ/ONQ. User interfaces
are defined using HTML, which can, in turn, make references to code and data in a
number of additional formats such as JavaScript to manage highly interactive content,
Cascading Style Sheets (CSS) for both simple and sophisticated styling, and SVG, JPG or
BMP for images.

On all platforms, the creation of an HTMLRenderer object causes APL to open a new
window and run a copy of the Chromium Embedded Framework (CEF). HTMLRenderer
manages the communication between your APL code and CEF.

The HTMLRenderer can be disabled by setting the ENABLE_CEF environment variable to
0; if ENABLE_CEF is not set or is set to 1 then the HTMLRenderer is enabled (the
default).

On the Linux and MacOS platforms the use of HTMLRenderer and APs (Auxilliary
Processors) is mutually exclusive. With ENABLE_CEF set to 1 (which is the default), you
will be able to use HTMLRenderer but you cannot use APs. Attempting to using an AP
with ENABLE_CEF set to 1 will cause the AP to hang. With ENABLE_CEF set to 0, you will
be able to use APs but not HTMLRenderer.

Attempting to create an instance of HTMLRenderer on a platform where ENABLE_CEF
when ENABLE_CEF is O will cause a "LIMIT ERROR: The object could not
be created" errorto be signalled. See section 4, Technical Overview for more
information on enabling the HTMLRenderer on various platforms.

D VA L O C HTMLRenderer User Guide

1.1 Hello World

Below is a simple HTMLRenderer example. The first line defines the HTML body, and
uses the <h1> (heading level 1) tag create the large, bolded, "Hello World" followed by
more text containing some APL characters. The second and third lines define the size
and coordinate system. The last line creates an HTMLRenderer using the HTML, Size
and Coord properties:

html«'<hi>Hello World</h1>This is an apl page.'

size«150 250

coord«'ScaledPixel’

'hr' OWC 'HTMLRenderer' ('HTML' html)('Size' size)('Coord' coord)

The resulting window on various platforms looks like:

T eoo
Hello World

Linux (Ubuntu)
This is an ap| page.

Hello World

This is an ap| page.

macOS (Catalina)

Hello World

This 1s an apl page.

Windows 10

Screenshots throughout this document will be captured from different platforms on different
machines with different screen resolutions.

HTMLRenderer User Guide

1.2 Other Resources

All HTML applications are based on an initial HTML document. Most modern HTML-
based user interfaces will reference other resources, such as JavaScript and CSS files
which contain code that can influence the way the base HTML is rendered, image files,
and of course hyperlinks to other pages.

If the HTML contains references to other resources, the CEF will retrieve each one by
making an HTTP request. Each request with a URL that matches a triggering pattern in
InterceptedURLs will generate an HTTPRequest event on the instance of
HTMLRenderer, which can be directed to a callback function in APL. Requests with URLs
that do not match a patternin InterceptedURLs or that match a pattern with a O in
the second column will cause the CEF to push the request out to the network and see
whether an external server is able to service it. InterceptedURLs allows an APL
application to decide how which content it wants to provide, and to what extent it
wants to act as a portal for other services that will provide the rest of the data.

1.3 User Events

When a user submits an HTML form for processing, or a user interface component which
is being managed by JavaScript code wishes to make a server request, this is also done
by making an HTTP request. These requests will also be directed through the same
InterceptedURLs mechanism. This makes it possible to develop interactive
applications where your APL code is responding to user input, as well as providing the
content of resources needed to render the UL.

1.4 Platform Variations

Under Microsoft Windows, HTMLRenderer objects can be used as children of normal
OwC forms. Some properties such as MinButton, MaxButton, and Sizeab le are not
available on all platforms. See Properties Available by Platform.

1.5 UTF-8 Support

UTF-8 is the default character set for HTML5. Prior to version 18.0, Unicode code points
greater than 127 would need to be converted to their equivalent HTML entities. For
instance, 1 would need to be encoded as ⍁. In version 18.0 onwards this
requirement has been removed prepending a UTF-8 byte order mark (BOM) to the
HTML content sent to CEF. Content that should not have the BOM prepended (for
example, an image) should be sent as integer datatype 83. This is a breaking change
from previous versions of HTMLRenderer.

1.6 Integration with the Dyalog GUI on Windows

The following code illustrates how HTMLRenderer objects can be used as children of normal
[OwcC forms under Microsoft Windows. By setting the AsChild property of an HTMLRenderer
object to 1, we request that the HTMLRenderer window be embedded as a sub-form of
another window.

'pco’ [CY 'dfns'

"f1'0OWC'Form' 'Important Stuff' ('Coord' 'ScaledPixel')('Size' 820 1100)
‘fi.label1l' [OWC 'Label' 'Primes < 100' (10 40)

'fi.primes' OWC 'Grid' ('x' @ (Oepco) 10 10pt100) ('Posn' 40 40)
fi.primes.(TitleHeight TitleWidth CellWidths Size)«0 0 25 (200 255)

HTMLRenderer User Guide

'fi.label2' OWC 'Label' 'Has the Large Hadron Collider destroyed the world yet?' (360 40)
'fi.areWeStillHere' [OWC 'HTMLRenderer' ('AsChild' 1) ('Posn' 390 40)('Size' 400 500)
fi.areWeStillHere.URL«'http://hasthelargehadroncolliderdestroyedtheworldyet.com'
twitter«'"'
twitter,«'Tweets by dyalogapl'

twitter,«'<script async src="//platform.twitter.com/widgets.js" charset="utf-8"></script>'
'fi.twitter' OWC 'HTMLRenderer' ('AsChild' 1) ('Posn' 40 570)('Size' 750 500)
fl.twitter.HTML«twitter

The result after clicking on the "Tweets by dyalogapl" link can be seen below; a form that

contains a Windows grid showing prime numbers between 1 and 100 as well as provides live

feeds from two external sites. Note that no callbacks have been assigned; in this case the
HTMLRenderer always goes to the network to satisfy requests for data.

@ Important Stuff = o X
Primes < 100
. PR 5° 70t
Ne 1 s o+ 17e 1 L 4 Q Search Twitter
S I i
< I I A .
o+ mge s+ o+ o+ g
B1* + v v v g s
n- 13 N . N . n - D*’IQUaCklI ‘
LR L p -~
=T F rﬂ‘ll!.

| Follow)

Has the Large Hadron Colider destroyed the worid yat?

Dyalog

dyalogap

The Definitive APL System for Windows, Linux, OS X and Unix

ey, UK & [Joined April 2009
g 530 Followers
Tweets Tweets & replies Media Likes
¥ .
Dyalog @dyalogapl - Mar v

In these extraordinary times, the well-being of our staff and
customers is our top priority. Our main offices are closed
but our business is such that we can operate remotely
without issue and will continue to support our customers.

DVYALOC

HTMLRenderer User Guide

2 Simple Examples

2.1 Render a SharpPlot chart

SharpPlot charts can be rendered as SVG which in turn can be visually rendered with
HTMLRenderer.

JLOAD sharpplot

saved..
"HR' OWC 'HTMLRenderer' ('Size' 75 50)
HR.HTML«#.Samples.Sample.RenderSvg #.SvgMode.FixedAspect
ece

Financial Summary for Current Year

$M
30

70 4
60
50
40~,,,,,,,,,,,,,,,7L g

30

20

Jan Feb Mar Apr] July August
(part)

[Revenue - - Invoiced Sales)

HTMLRenderer User Guide 6

2.2 An application with 2 Pages

The function on the next page creates a very simple application with 2 pages: A home page
called main and another page called clicked which is displayed if the user follows a link.
Initialise the application by calling myapp with an empty right argument; this will cause it to
create a namespace containing all the resources, and then create an HTMLRenderer and set
the URL property so that it navigates to the first page — and itself as the callback function.

If called with a non-empty argument, the function handles callbacks. It extracts the page name
from the URL, which corresponds to a variable in the namespace and returns the value of that
variable as the response to the request.

V r<myapp args;root;evt;url;size;coord;objsopsint;sc;st;mime;hdr;data;meth;page
[1] A Serve up a small 2 page application

[3] A If you set the root to something other than http://dyalog_root/
[4] A then you need to use InterceptedURLs to indicate APL is to handle the request
[5] root«'http://dyalog_root/' n set the root, requests from CEF will start with this

[7] :If Oepargs A empty args means we're doing Setup
(8]
[9] A define the "app" in MyApp, 2 static HTML pages
[10] #.MyApp<INS "'
[11] A HTML for the "main" page
[12] #.MyApp.main<'Hello APLers
Click here!"'
[13] A HTML for the "clicked" page
[14] #.MyApp.clicked«'Thank youl!
Click here to go back!
[15] A whenever we get a request for a resource, call myapp (this function)
[16] evt«'Event' 'HTTPRequest' 'myapp’
[17] A set the initial URL to the "main" page
[18] url<'URL'(root, 'main')
[19] A set some window parameters
[20] size«'Size' (150 300) ¢ coord«'Coord' 'ScaledPixel'
[21] A and off we go...
[22] "hr'0OWC'HTMLRenderer'url evt size coord
[23]
[24] :Else A handle the HTTPRequest event
[25]
[26] (obj evt op int sc st mime url hdr data meth)«iitargs
[27] A extract the page name
[28] page<«(#root)iurl
[29] A does the page exist?
[30] :If 2=#.MyApp.ONC page
[31] A set the HTTP status and text for a successful request
[32] (sc st)«200 'OK'
[33] A set the response data to the new page's HTML
[34] data<#.MyApp¢page
[35] :Else
[36] A set the HTTP status and text for a failed (not found)
[37] (sc st)«40O4 'Not Found'
[38] data«'<h2>Page not found!</h2>'
[39] tEndIf
[40] A set the MIME type for the response
[41] mime<«'text/html’'
[42] A indicate that we've intercepted and handled this request
[43] intel
[44] r<obj evt op int sc st mime url hdr data
[45] :EndIf
v
dyalog_root/main Yol < After running dyalog_root/clicked
Hello APLers Thank you!
Click here! myapp ' Click here to go back!

clicking the links will toggle
between these two pages

D VA LO C HTMLRenderer User Guide

2.3 A Form with a Button
Define a callback function:

V r<my_callback args;objs;evt;op;sc;sti;mimes;url;hdr;datas;int;meth
[1] A Our first HTTPRequest callback function

[2] (obj evt op int sc st mime url hdr data meth)<«ilitargs
[3] int«l A indicate we've intercepted this call
[4] (sc st mime)«200 'OK' 'text/html' A HTTP success code
[5] url<hdr<"' A no url or headers

[6] data«'<title>Thank Youl</title><h2>Thank you!<h2>' @A response Data
[7] r<(obj evt op int sc st mime url hdr data)

Now, define a form and set up the callback:
"hr' OWC 'HTMLRenderer' '<title>Hello</title><p>Hello, APLers!</p>'
hr.(Coord Size Posn)<«'Pixel'(200 450)(20 20)

hr.HTML,«'<form action="#"><button>Click Me!</button></form>"'
hr.onHTTPRequest<«'my_cal lback'

The form should look like this:

W Hello

Hello, APLers!

Click Me!
|

If you click on the button, the content should be replaced:

[Thank You!

Thank you!

HTMLRenderer User Guide

2.4 Using HRUt i L's with HTMLRenderer

[1]
[2]
[3]
4]
[5]
(6]
[7]
[8]
[91]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

HRUt i Ls is a utility namespace provided with Dyalog APL v18.0 and later. It contains classes
and functions to streamline handling of HTMLRender's HTTPRequest events.

Another utility namespace, Ht tpUti L s, which was released with Dyalog v16.0 was designed
to provide a more consistent interface for managing HTTP requests whether using Conga or
HTMLRenderer. Of the two, we recommend using HRUt i L s for HTMLRenderer applications.

Both HRUti Ls and HttpUti Ls are distributed in the /Library/Conga/ folder in your Dyalog
installation and can be loaded using the SALT Load command. Both of the following

statements will load HttpUtils, though the latter is suitable for running under program control.

Jload HRUtils
OSE.SALT.Load 'HRUtils'

HRUt i Ls is maintained in the Dyalog GitHub repository found at
https://github.com/Dyalog/library-conga. There you can see the revision history and you may
participate in the development community by reporting issues and by posting questions and
suggestions.

The following example shows a simple HTML form with 2 input fields and a submit button.
The callback is processed using the Ht t pRequest class found in HRUt i Ls.

V r<Simpleform args;evt;html;req;resp;who
:If Oepargs A Setup

html«'<title>A Simple Form</title>'

html,«'<form method="post" action="SimpleForm"><table>"
html,«'<tr><td>First: </td><td><input name="first"/></td></tr>"'
html,«'<tr><td>Last: </td><td><input name="last"/></td></tr>"'

html,«'<tr><td colspan="2"><button>Click Me</button></td></tr>"
html,«'</table></form>"'

evt«'Event' 'HTTPRequest' 'SimpleForm'
"hr'OWC'HTMLRenderer' ('HTML 'html)('Coord' 'ScaledPixel')('Size'(200 400))evt

:Else A handle the callback

req«#.HRUtils.Request args A create a request from the callback args
who<req.Get”'first' 'last' A retrieve from the form data

who«e' ',"who

req.Response.Content«'<h2>Welcome’',who,'!</h2>' A set the content for the response
r<req.Respond A return the formatted response

:EndIf

Running SimpleForm '' displays the form. After filling in the form and clicking the button,
SimpleFormis called again as the callback function for the HTTPRequest event, but this time
args is non-empty and the callback portion lines [11-15] are executed.

W A Simple Form = O X
First:
Last:
Click Me
[11] req«#.HttpUtils.Request args A create a request from the callback

args
The Request function creates an instance of the HttpRequest class from the event message,
parsing the message data and extracting the various elements into a more useful and
accessible format.

8

https://github.com/Dyalog/library-conga

HTMLRenderer User Guide 9

[12] who<req.Get " 'first' 'last' A retrieve from the form data
The HttpRequest class has extracted the HTML form field values into FormData which can
be accessed using the Ht tpRequest's Get method The values are retrievable by their field
names in the HTML form, in thiscase 'first' and 'last'. Refertolines [4-5] in
SimpleForm to see where the field names were originally assigned.

[13] who<«e' ',"who

[14] req.Response.Content«'<h2>Welcome',who,'l</h2>' A set the content for

the response
We now set Content in the response to be our new content for the page. The default

content type is 'text/html', but other content types can be specified as appropriate for your
application.

[15] r<req.Respond A return the formatted response
Finally, the Respond method formats and populates a result appropriate for the callback and
our friendly message is displayed.

W dyalog_root/SimpleForm — O X

Welcome Drake Mallard!

HTMLRenderer User Guide 10

3 Generating HTML

Dyalog provides a number of tools to help you generate HTML.
SharpPlot

The SVG data produced by the RenderSVG method can be assigned directly to the HTML
property of an HTMLRenderer object. The CEF accepts SVG in place of HTML and is able to
render it without further intervention. You can also use the various Save... functions in
SharpPlot to save graphs in SVG or other formats, and link to them using an HTML img tag.

DUI - Dyalog User Interface Utility Library

DUl is an evolving library to assist in creating HTML content. Originally a part of MiServer, DUI
is designed to enable you to create HTML that can be run locally with HTMLRenderer or on
the net with MiServer — without changing your code. DUI contains APL code that is able to
generate HTML, CSS and JavaScript based widgets based on the HTML5 widget set, Syncfusion
controls (which are bundled with Dyalog), jQueryUl and other third-party widgets. DUl is
currently available from the Dyalog GitHub repository at https://github.com/Dyalog/DUI. To
use DUI, you will need to download or clone the repository. To illustrate the DUI style of
coding, the following code should produce a form with two input fields and a button:

Jload /path_to_DUI/DUI

DUI.Initialize

page<[INEW Page

page.Add _.title 'Hello World!'

page.Add _.Style 'body' ('font-family' 'Verdana')
page.Add _.h3 'Hello World!'

form«page.Add _.Form

"fn' form.Add _.Input 'text' 'Drake' 'First Name: '
"Ln' form.Add _.Input 'text' 'Mallard' ' :Last Name' 'right’
pl«<'pl' form.Add _.p "'

bi«'bl' form.Add _.Button 'Press Me'
bi.style«'color:purple’

page.Size<«200 600

page.Run
W Hello World! — O X
Hello World!
First Name: Drake Mallard :Last Name

Press Me

https://github.com/Dyalog/DUI

HTMLRenderer User Guide 11

4 Technical Overview

The HTML Renderer is implemented using the Chromium Embedded Framework (CEF); for
more information on CEF visit

https://en.wikipedia.org/wiki/Chromium Embedded Framework.

4.1 HTMLRenderer on non-Windows platforms

The HTMLRenderer on non-Microsoft Windows platforms is an X-Windows application. As
such there are a set of pre-requisites that are needed on the operating system instance on
which the Dyalog interpreter is running (this in X-Windows terms is the server) and a set of
pre-requisites that are needed on the operating system instance where the output will be
displayed (in X-Windows terms the client). In most cases these two sets of functionality run in
the same operating system instance. However, this means that a typical non-GUI installation
of a Linux distribution is unlikely to allow you to create an HTMLRenderer object even if you
are trying to display it elsewhere by setting the DISPLAY variable appropriately.

For Linux, we have tried creating the HTMLRenderer on several common distributions and
versions. See https://forums.dyalog.com/viewtopic.php?f=20&t=1505 which details what pre-
requisites are needed for the HTMLRenderer on those distributions.

If you get a LIMIT ERROR when attempting to create an HTMLRenderer object and you are
either using a distribution/version that is not in the list below, or have ensured that you have
met the pre-requisites mentioned below, then run the following expression from within

Dyalog APL:

)sh Ldd $DYALOG/lib/htmlrenderer.so | grep found

This should list any missing prerequisites. Please let Dyalog know so that we can update the
supported versions matrix.

https://en.wikipedia.org/wiki/Chromium_Embedded_Framework
https://forums.dyalog.com/viewtopic.php?f=20&t=1505

HTMLRenderer User Guide 12

4.2 CEF/Chromium Command Line Switches

There are very many command line switches that can be used with CEF to alter behavior, help
debugging or aid in experimenting. These switches need to be set using the —cef or -
cef all options when Dyalog APL is started. If you're setting a single CEF command line
switch, you can use:
-cef —--command-line-switch
If you're setting more than one CEF command line switch, then you either need to prefix each
on with —cef or place them at the end the Dyalog command line preceded by ~cef all as
in:
-cef --command-line-switchl -cef --command-line-switch2
-cef all --command-line-switchl --command-line-switch2
Note that the command line switches begin with a double dash (--).

One common command line switch is to enable a remote debugging port for CEF so that you
can attach a browser to CEF and open the Developer Tools Console.

-cef —--remote-debugging-port=12345

Then open a browser and navigate to the address of the computer where HTMLRenderer is
running and the port indicated by ——remote-debugging-port.

A fairly comprehensive list of command line switches can be found at
https://peter.sh/experiments/chromium-command-line-switches/.

4.3 Controlling Light and Dark Mode

Adding <meta name="color-scheme" content="light dark"/> in the <head> element of your
HTML will enable HTMLRenderer to use the mode set by your operating system (if your
operating system supports light and dark modes). You can control which mode is used by
setting the DYALOG_CEF_DARK_MODE configuration setting prior to starting APL.
DYALOG_CEF_DARK_MODE can be set as follows:

e DYALOG_CEF_DARK_MODE=0 will force light mode

e DYALOG_CEF_DARK_MODE=1 will force dark mode

e DYALOG_CEF_DARK_MODE=2 or not setting DYALOG_CEF_DARK_MODE will use the
operating system's default mode.

You can also create your own modes using CSS.

4.4 Disabling Popup Blocking

By default, popups are disabled (blocked) in HTMLRenderer. To disable popup blocking, set
the configuration setting DYALOG_CEF_ALLOW_POPUPS=1 prior to starting APL.

https://peter.sh/experiments/chromium-command-line-switches/

HTMLRenderer User Guide 13

5 HTMLRenderer Reference

This section highlights specific aspects the HTMLRenderer. For a complete description of the
Properties, Events and Methods for the HTMLRenderer object, please refer to the object
reference guide at http://docs.dyalog.com/20.0/object-reference/objects/htmlirenderer.

5.1 Properties

As HTMLRenderer is an object in the Dyalog GUI framework, it has many of the expected
properties for a OWC GUI control. The properties for HTMLRenderer are found in table 1, with
properties specific to HTMLRenderer highlighted in red.

Table 1. HTMLRenderer properties

Type HTML Posn

Size URL Coord

Border Visible Event

Sizeable Moveable SysMenu
MaxButton MinButton IconObj

Data Attach Translate
KeepOnClose AsChild InterceptedURLs
CEFVersion Caption AllowContextMenu
IsLoading MethodList ChildList
EventList PropList

5.2 Properties Available by Platform

Not all properties are available on all platforms. The table below illustrates the properties that
vary by platform. Properties listed as N/A are specific specific to Windows and do not have
equivalent counterparts under macOS or Linux.

Table 2. HTMLRenderer properties by platform

Property Windows macO0S Linux
Type Y Y Y
HTML Y Y Y
Posn Y Y Y
Size Y Y Y
Coord Y Y Y
Border Only when using AsChild N/A N/A
Visible Y Y Y
Sizeable Y

Moveable N N

http://docs.dyalog.com/20.0/object-reference/objects/htmlrenderer

HTMLRenderer User Guide

14

SysMenu Y N/A

MaxButton Y N

MinButton Y Y

IconObj Y N/A N/A
Attach Only when using AsChild N/A N/A
Translate Classic Only N/A N/A
KeepOnClose Y Y Y
AsChild Y N/A N/A
CEFVersion Y Y Y
Caption Y Y Y
AllowContextMenu Y Y Y
IsLoading Y Y Y

5.3 Properties With Behavior Specific to HTMLRenderer

The properties are presented here in an order intended provide context for how certain

properties interrelate.

HTML

The HTML property is the payload to be sent to CEF from APL. In general, it will be the HTML

content that will be rendered in the HTMLRenderer window. But it could also be other content
like an image file, a JavaScript file, or a CSS stylesheet. When sending HTML, the data is

assumed to be UTF-8 and you can simply assign your character vector to the property. When
the content is not UTF-8, like an image, you will need to send the data as single-byte integer

(datatype 83).

URL

The URL property is a character vector representing the "root" URL of the object. If not
specified, 'http://dyalog_root/' is the implied value of URL. If subsequent requests for

resources are received via the HTTPRequest event, the URL element of the callback arguments
can be examined to see if it begins with the "root". If so, the content is intended to be
provided locally by your application, otherwise, it should be retrieved from the URL element of

the argument.

Relationship between the HTML and URL properties

In general, either the HTML or URL property will be specified, but not both. If URL is non-
empty, it will take precedence over HTML, even if the resource specified by the URL is not
found. If neither HTML or URL is specified, HTMLRenderer will trigger an HTTPRequest event

forthe URL 'http://dyalog_root/".

InterceptedURLs

The InterceptedURLs property is a 2-column matrix what action HTMLRenderer will take

on an HTTPRequest or a WebSocketUpgrade request. The first column contains wild-carded
character vectors containing URL patterns to match. The second column is an integer where:

e 0 indicates HTMLRenderer should attempt to retrieve the resource over the net.

e 1lindicates HTMLRenderer should trigger an HTTPRequest event for a URL matching the

corresponding pattern

HTMLRenderer User Guide 15

e 2 indicates that a WebSocketUpgrade event triggered a matching URL should be manually
verified.

InterceptedURLs may contain any number of rows and the first matching pattern for a
requested URL will determine how the request is routed. URLs matching the pattern
'x://dyalog_root/*"' orthat have a 1 in the second column will trigger an HTTPRequest
event; all other URLs will be attempted to be retrieved over the net. The default value for
InterceptedURLsis0 2p'"' 0.

Examples:
The following will trigger an HTTPRequest event for all requested URLs
InterceptedURLs « 1 2p'x' 1

The following will attempt to retrieve from the net URLs containing '.dyalog.com' and trigger
an HTTPRequest event for all other requested URLS
InterceptedURLs « 2 2p'x.dyalog.comx' 0 'x' 1

AsChild
This property has an effect only on Microsoft Windows platforms.

The AsChild property is a Boolean indicating how the HTMLRenderer object should be
treated. Possible values are:
e 1-the HTMLRenderer object should be treated as a child of its parent object.
e 0-the HTMLRenderer object should be treated as a top level object similar to how a
Form object is treated.
The default is 0.

CEFVersion

Returns version information about the CEF. This is used primarily for support and debugging
purposes.

Table 3. Elements of CEFVersion

Formatted CEF release number. This is the primary identifier
[1] -
for a version of CEF.

[2] CEF major version

[3] Commit number

[4] Chromium version number
[5] Chromium version number
[6] Chromium version number
[7] Chromium version number

[8] GIT hash
[9] GIT hash
[10] GIT hash

Caption

Note that the caption appearing in the title bar of the HTMLRenderer window can be set
either with the Caption property or by a <title> element within the HTML for the page. If
both are set, the <title> element takes priority. For example:

DVYALOC

HTMLRenderer User Guide 16

html«'<title>Title Winsl</title>Test'
"hr' OWC 'HTMLRenderer'('HTML' html)('Caption' 'Caption Wins!')('Size' (10 20))

W Title Wins!

Test

It is recommended that you use <title> to control the caption on the title bar element because
changes to the HTML <title> will be reflected in the Caption property. However, the
converse is not true — changes to the Caption property are not reflected in the document's
<title> element.

AllowContextMenu

Controls whether right-clicking will display the context menu. Possible values are:
e 1-the context menu will be displayed by right-clicking on the HTMLRenderer
window as shown below
e 0-the context menu will not be displayed by right-clicking on the HTMLRenderer
window
The defaultis 1.

Back

Forward

Print...

View page source

IsLoading

Returns 1 if HTMLRenderer is currently loading content into a frame and 0 otherwise. Note
that for pages with multiple frames, IsLoading only indicates that there is no frame
currently loading, not that all frames have been loaded. A LoadEnd event is signalled
whenever a frame has finished loading.

5.4 Events

The events for HTMLRenderer are found in table 4, with events specific to HTMLRenderer
highlighted in red.

Table 4. HTMLRenderer events

Close Create LoadEnd
HTTPRequest WebSocketUpgrade WebSocketReceive
WebSocketClose WebSocketError DoPopup
SelectCertificate

HTMLRenderer User Guide 17

5.5 Events Specific to HTMLRenderer

HTTPRequest

An HTTPRequest event is raised whenever content is required that is not provided by the
HTML property. This could be generated by a form submission, clicking on a hyperlink, an AJAX
request or a link to a resource like a stylesheet, image or JavaScript file.

The event message reported as the result of [JDQ or supplied as the right argument to your
callback function, is a 11-element vector as described in table 5.

NOTE: the event message only had 10 elements in version 16.0. Application code should not
assume a specific length for this, or indeed any other event messages.

Table 5. Explanation of the 11-element vector HTTPRequest event message

[1] HTMLRenderer object name or reference

[2] Event name 'HTTPRequest' or 840

[3] Constant 'ProcessRequest'’
(4] 0
[5] 0
(6] .
(7] .

[8] Requested URL

[9] HTTP Request Headers

[10] | HTTP Request Body

[11] | HTTP Method - Typically this will be 'GET' or 'POST'.

When preparing a response, certain elements of the event message need to be updated.
Specifically:

Set to 1 to update the rendering window based on the updated elements of the
event arguments.

(4]

[5] Set to the HTTP status code for the response. Success is indicated by code 200.

Set to the HTTP status message for the response. Success is indicated by the
message 'OK"'.

(6]

[7] Set to the MIME type of the response. If not specified, 'text/html ' is assumed.

[9] Set to any HTTP response headers necessary for the response.

Set to the body of the response. If the body is not UTF-8 text, convert it to single-

10
[10] byte integer (datatype 83).

WebSocketUpgrade, WebSocketReceive, WebSocketClose, WebSocketEnd
Please refer to Section 6, WebSocket support for more information.

DoPopup

A DoPopup event is raised whenever the CEF client executes a request for a new window to
be opened. This would typically be when a link element <a> specifies a target attribute of

" blank" or a framename, or when a name is specified when a new window is opened using
the JavaScript window.open() method:

HTMLRenderer User Guide 18

or
window.open ("http://www.dyalog.com™)
window.open ("http:..www.dyalog.com", "dyalog window")

When a DoPopup event occurs, the application should inspect the request and open another
HTMLRenderer as appropriate.

Elements of the DoPopup event message

[1] HTMLRenderer object name or reference

[2] Event 'DoPopup' or 846
[3] The requested URL

[4] 7-element vector of requested window attributes

[5] Character vector framename

Attributes vector in element[4] of the DoPopup event message

[1] 2-element vector of top, left positions
positions not specified are &

2-element vector of height,width
positions not specified are &

(2]

Integer "WindowDisposition". See
[3] https://magpcss.org/ceforum/apidocs3/projects/(default)/cef window open disp
osition t.html

[4] Boolean menubar (default=1)

[5] Boolean scrollbar (default=1)

[6] Boolean statusbar (default=1)

[7] Boolean location/toolbar (default=1)

The attributes vector contains requested attributes for the new window. These are typically
specified as paramters in a JavaScript window.open() method. The two attributes of most
interest are the position element [1], and size element [2]. You can use these attributes to set
the posn and size attributes of the new HTMLRenderer window. Note that these
parameters are specified in pixels so you will need to convert to if you are using 'coord'
‘prop'. HTMLRenderer currently has no mechanism to make use of attribute elements [3-7].

If a framename other than '_blank’,'_top', '_self' or'_parent' was specified in client, it is
passed as the fifth element of the DoPopup callback arguments. This can be used to identify a
specific window that is being opened in the case where a page might open multiple windows.

LoadEnd

A LoadEnd event is raised when a particular frame has finished loading. Multiple frames may
be loading at the same time. Sub-frames may start or continue to load even after the main
frame has finished loading. A common technique is to wait for the main frame to finish
loading before further interaction with the HTMLRenderer instance. In this case, you should
set up an event handler on the LoadEnd event and check the 4™ element which indicates if
the loaded frame is the main frame.

Elements of the DoPopup event message

‘ [1] ‘ HTMLRenderer object name or reference

https://magpcss.org/ceforum/apidocs3/projects/(default)/cef_window_open_disposition_t.html
https://magpcss.org/ceforum/apidocs3/projects/(default)/cef_window_open_disposition_t.html

HTMLRenderer User Guide 19

[2] Event 'LoadEnd' or 836

[3] The URL of the loaded frame

[4] 1 if the loaded frame is the "main" frame, 0 otherwise

[5] The HTTP status code as a result of loading the frame

SelectCertificate

A SelectCertificate eventisraised whenever a resource is requested from a server
that requires a certificate for security. The available certificates are in element [7] of the
callback arguments. The application should select one of the certificates and set element [3]
to its origin-0 index in the Certificates element.

Elements of the SelectCertificate event message

[1] HTMLRenderer object name or reference

[2] Event 'SelectCertificate' or 848

[3] Certificate index (result only)
[4] Host address
[5] Host port

[6] "is proxy'

[7] Certificates (see below)

Certificates is a vector of namespaces, each of which represents a certificate and contains the
following variables:

Name Description

DER The DER-encoded certificate

Subject A.namespace containing Y:.:\riables C'ommonName, CountryName and
DisplayName for the certificate subject.

lssuer A namespace containing variables CommonName, CountryName and

DisplayName for the certificate issuer.

SerialNumber | Character vector certificate serial number

5.6 Methods

The methods for HTMLRenderer are found in table 6, with events specific to HTMLRenderer
highlighted in red.

Table 6. HTMLRenderer methods

Detach ExecuteJavaScript GetZoomLevel

PrintToPDF SetZoomLevel ShowDevTools

Wait WebSocketClose WebSocketSend

HTMLRenderer User Guide 20

5.7 Methods Specific to HTMLRenderer

ExecuteJavaScript (Method 839)

The ExecuteJavaScript method is used send a character vector containing JavaScript
code to CEF to be executed. At present this is a one-way communication, and the shy result is
always 1. No assumptions should be made about the result.

Example:

'hr' OWC 'HTMLRenderer'
hr.ExecuteJavaScript 'alert("Hello")'

GetZoomLevel (Method 838)
Returns the current CEF ZoomLevel. The defaultis 0.

SetZoomLevel (Method 837)

Sets the CEF ZoomLevel. The default (unzoomed) level is 0. Setting a positive value will
increase the zoom, whereas setting a negative will decrease the zoom. The zoom scale is not
linear —increasing ZoomLevel from 1 to 2 will not result in a doubling effect. Rather the
effective scaling is approximately 1.2xlevel —so, setting the ZoomLevel to 1 will result in an
approximate 20% size increase. ZoomLevel affects all instances of HTMLRenderer windows; it
is not possible to have different ZoomLevels for individual windows. The images below show
the relative sizes at ZoomLevels of "2, 0, and 2.

SetZoomLevel 72 S §
SetZoomLevel 0 SetZoomLevel 2

WebSocketClose (Method 843), WebSocketSend (Method 847)
Please refer to section 6, WebSocket Support, later in this document.

PrintToPDF (Method 845)
The PrintToPDF method is used to render the contents of the HTMLRenderer window to an
Adobe PDF file.

'hr' OWC 'HTMLRenderer' ('URL' ...)
r <« hr.PrintToPDF filename [args]

The only required argument is the name of the PDF file to be generated. Other positional
arguments may follow.

HTMLRenderer User Guide

21

[1] Filename The name of the PDF file to be generated
The specification for the header to be printed on
each page of the PDF file.
Header One of:
[2] (see notes e HTML specifying the content of the header
below) (see below)
e '' for no header
e [NULL to use the default header
The specification for the footer to be printed on
each page of the PDF file.
Footer One of:
[3] (see notes e HTML specifying the content of the footer
below) (see below)
e '' for no footer
e [NULL to use the default footer
[4] | Width Desired page width in inches. Use 0 for default.
[5] Height Desired page height in inches. Use 0 for default.
The page margins in inches
One of:
[6] Margins e 1 to use the default margins
e Empty vector for no margins
e L-element numeric vector specifying the
left, top, right and bottom margins
A string specifying the page ranges to include.
[71] Pages An empty vector specifies to include all pages.
Examples: '1-3' '1,3,5-7'
One of:
[8] | Orientation e 0 for portrait (the default)
e 1 for landscape
Scaling factor. 0 < Scaling < 1
[9] Scaling 0.5 means 50% scaling
Default is 1 for 100%
Use 1 to prefer the page size as defined by CSS
[10] | Prefer CSS Use 0 (the default) for content to be scaled to
fit the paper size
Use 1 (the default) to print background graphics
[11] | Background () . P ! 9 9 P !
Use 0 to suppress printing background graphics
. Use 1 to generate a document outline
[12] | Outline .
The default is 0
Use 1 to generate a tagged (accessible) PDF
[13] | Tagged I] 99
The default is 0

Formatting PDF Headers and Footers

Unless otherwise specified, PrintToPDF will print a default header and footer. The default
header consists of the file print timestamp and the document title, if any is specified by a

HTMLRenderer User Guide 22

<title> element in the HTML source. The default footer contains the URL for the document,
the current page number, and the total number of pages.

You can suppress the printing of the header and/or footer by using ' ' for the respective
elements of the argument to PrintToPDF . Use ONULL to specify the default header and/or
footer.

You can specify your own header and/or footer by supplying an HTML string that specifies the
content. You can insert the URL, document title, print timestamp, current page number and
total number of pages by creating specifying , substituting element
with url, title, date, pageNumber or totalPages respectively. Additionally, you will also need to
specify style attributes to format your header or footer. For example, specifying the footer as:

Page of

Will insert a centered, 20 pixel footer with the text "Page n of m" where n and m are the
current page number and total number of pages respectively.

HTMLRenderer User Guide 23

6 WebSocket support

6.1 WebSocket Overview

In a typical HTTP application, all communication originates from the client which sends
requests to the server which in turn sends back a response. When an application wanted to
"push" information from the server to the client, the typical way to fake this was to have the
client periodically poll the server so the server could send back any information that it had to
offer. With the use of websockets, true asynchronous, bi-directional transmission between
the client and server is possible.

HTMLRenderer presents a straightforward API to use websockets. A typical scenario would
look something like this:

1.

The client initiates an HTTP "upgrade" request to the server. After some validation
and handshaking with the server, the websocket is established. With
HTMLRenderer, the validation and handshaking are currently done behind the
scenes and by the time you receive a WebSocketUpgrade event, the websocket is
already established.

Once the websocket is established, either the client or the server can send
information which will trigger a "receive" event on the other end. No response is
expected as a part of the websocket protocol. Whatever response you send (or
don't) is up to your specific application.

Either side can close the websocket.

WebSocket error events may be triggered when an unexpected error, like disruption
in the connection, occurs.

JavaScript in the CEF client

HTMLRenderer in the workspace

ws = new websocket(url); - | WebSocketUpgrade event
Initiate the request The websocket is established
ws.send("message"); - | WebSocketReceive event
ws.onmessage event & | WebSocketSend method
ws.close() - | WebSocketClose event
ws.onclose event & | WebSocketClose method

ws.onerror event
is triggered when there is some error
like the connection going down

WebSocketError event
occurs when there is some error like
the connection going down

HTMLRenderer User Guide 24

The client may request multiple upgrades resulting in multiple websockets, each with its own
unique id.

WebSockets require JavaScript in the client to function.

6.2 WebSocket Events

WebSocketUpgrade
This event is triggered when the client attempts to upgrade the HTTP connection to use the
WebSocket protocol. The event message is a 6-element vector containing:

Elements of the WebSocketUpgrade event message

[1] HTMLRenderer object name or reference

[2] Event 'WebSocketUpgrade' or 841

[3] Character vector WebSocket ID

[4] Requested URL

[5] Request/Response headers

"auto' or 'manual' depending on InterceptedURLs setting of 1
[6] or 2 respectively for the pattern that matched the URL in
element [4]

The protocol for establishing the connection is defined by InterceptedURLs and is reported by
the 6th element of the event message.

If the element matches 'auto', the handshake is handled internally and this event is
reported when the connection has already been made. In this case the result, if any, of the
callback function is ignored.

If the element matches 'manual ', a callback function for WebSocketUpgrade is
mandatory and is responsible for completing (or denying) the connection. This is achieved by
setting the 5th element (headers) of the event message to indicate an appropriate positive or
negative response to the request and returning the entire event message as its result. Each
header must be followed by CRLF. If a valid response is not generated in this way, the
connection will time-out causing a WebSocketError event.

The WebSocket ID is used when sending data to the client using the WebSocketSend
method or when closing the WebSocket with the WebSocketClose method.

WebSocketReceive

This event is triggered when the client sends data over the WebSocket. The result, if any, of
the callback function is ignored. ShowDevTools method is used to open or close the
Chromium Developer Tools console. Its only argument is a Boolean as in:

Elements of the WebSocketReceive event message

[1] HTMLRenderer object name or reference

[2] Event 'WebSocketReceive' or 842

[3] Character vector WebSocket ID

[4] Data from the client

[5] Boolean - 1 indicates the entire message has been received, 0
indicates there is more data to follow.

[6] Datatype - 1 indicates character (UTF-8), 2 indicates numeric
in the range ~128-127

HTMLRenderer User Guide 25

WebSocketError

This event is triggered when an error occurs on the WebSocket. The result, if any, from the
callback function is ignored.

Elements of the WebSocketError event message

[1] HTMLRenderer object name or reference

[2] Event 'WebSocketError' or 84k

[3] Character vector WebSocket ID

[4] Character vector error message

WebSocketClose

This event is triggered when the client closes the WebSocket. The result, if any, from the
callback function is ignored.

Elements of the WebSocketClose event message

[1] HTMLRenderer object name or reference

[2] Event 'WebSocketClose' or 843

[3] Character vector WebSocket ID

[4] Integer status code. 1000 indicates normal closure

[5] Character vector reason

6.3 WebSocket Methods

WebSocketSend (Method 847)
Use this method to send data to the client over the WebSocket. The argument can bea 2, 3 or
4-element vector.

Elements of the WebSocketUpgrade method argument
[1] Character vector WebSocket ID

[2] Data to send - either character (UTF-8) or integer vector

FIN flag - 1 indicates the message is complete, 0 indicates
[3] there is more data to come. This is not currently supported by
CEF and should always be 1.

Datatype - 1 for character (UTF-8) data, 2 for binary

[4] (numeric) data in the range ~128-255 which maps to 128-255,0-
255 in the client, or 0 to indicate continuation of previous

message fragment.

The WebSocket protocol provides for messages to be sent in multiple fragments where the
FIN flag is set to O for all but the last fragment. Currently CEF does not support fragmented
messaging, but we include the FIN flag for possible future expansion.

The integer datatype range may seem a bit strange. It was implemented this way so that the
user could conserve space by using single-byte integers (datatype 83) in the range "128-127,
whereas some might find it more convenient to use the range 0-255. In either case both
ranges translate to value 0-255 in the client.

HTMLRenderer User Guide 26

WebSocketClose (Event 843)
This event is used to close the WebSocket from APL triggered when the client closes the
WebSocket.

Elements of the WebSocketClose method arguments
[1] Character vector WebSocket ID

[2] Integer status code. 1000 indicates normal closure

[3] Character vector reason (max length 123 bytes)

6.4 WebSocketSample function

The code necessary to demostrate HTMLRenderer's WebSockets is larger than can be
presented conveniently here. We have provided a sample function, WebSocketSample.dyalog
found in the Dyalog Samples repository at
https://raw.githubusercontent.com/Dyalog/Samples/master/HTMLRenderer/WebSocketSamp
le.dyalog.

Once you've loaded WebSocketSample, you can start it by running
WebSocketSample "'

W webSocket Sample = m] x

WebSocket Sample

Open Send Close Toggle Instructions | Clear Log

From there you can click "Toggle Instructions" to see instructions.

Clicking "Open" will create a WebSocket. Once a WebSocket is created, you can enter text in
the input area and click "Send". When you create a WebSocket using "Open",
WebSocketSample defines a Send function in your workspace that you can then use to send
data from APL to CEF as in

Send 'Hello from APL!'

The event message elements for every handled WebSocket event are displayed in your APL
session. Every event handled by CEF is displayed in the output (log) area of the page.

https://raw.githubusercontent.com/Dyalog/Samples/master/HTMLRenderer/WebSocketSample.dyalog
https://raw.githubusercontent.com/Dyalog/Samples/master/HTMLRenderer/WebSocketSample.dyalog

7 HRUtils

7.1 Overview

HTMLRenderer User Guide 27

HRULtils is a namespace that contains utilities for working with HTMLRenderer's HTTPRequest
event. The steps to use HRUtils are as follows:

Within your callback function:

1.

Initialize
When you receive an HTTPRequest event, call HRUt i ls.Request, passing the 11-
element event message as its right argument

reqg<#.HRUtils.Request evtMsg
This creates an instance of a class called Ht t pRequest which in turn parses the
elements of the event message and creates several conveniently accessible fields.

Process

Examine/use the data in the fields of req to process the request as appropriate.

For example, use the Get method to retrieve data elements passed in the request:
who<req.Get”'fname' 'lname' A retrive 2 fields

Or check the Uri field to see what resource is being requested.

Compose

If the requested resource is a file, you can set the F i LeName field of the response:
req.Response.FileName<«'c:/images/duck.png'
‘content-type' req.SetHeader 'image/png'

Or, if appropriate, compose the HTML for your response:
req.Response.Content«'Hi',e' ', who

Respond

Then return the result of req.Respond as the result of your callback function.
r<req.Respond

HRUtils will take care of properly formatting and assigning the appropriate elements

of the response.

7.2 HRUtils.HttpRequest class

The fundamental unit of work for HRUtils is the Ht t pRequest.

HttpRequest Fields

The HTTP method for the request (generally ‘'get' or
"post')

The URI (URL) for the requested resource

2-column matrix of [;1] header names, [;2] header

Headers

values

2-column matrix of [;1] names, [;2] values of
QueryData parameters (if any) passed in the query string of

the request

HTMLRenderer User Guide 28

2-column matrix of [;1] names, [;2] values of form
FormData fields either passed in the body of the request, or
in the case of a 'get' Method, this is a copy of
QueryData
Cookies 2-column matrix of [;1] names, [;2] values of
cookies passed with the request
An instance of the HttpResponse class created using
Response
elements of the event message
HTMLRendererArgs A namespace containing the original event message
elements
HttpRequest Methods
value<«req.GetHeader 'name'’
GetHeader return the value of the header named 'name' or ''
if such a header doesn't exist.
value«table req.Get 'name'’
return the corresponding value for 'name' or '' if
Get name does not exist.
table can be any of Headers, QueryData, FormData,
or Cookies
callbackResult«req.Respond
Respond convert the Response instance into a format
P acceptable for the result of the HTTPRequent event
callback

7.3 HRUtils.HttpResponse class

The HttpResponse contains what is sent back to CEF in response to the request.

HttpResponse Fields

HttpStatus The Tnteger HTTP status for the response
200 is success

The character HTTP status message for the response
HttpStatusText .

OK' is success

A namespace containing the original event message
HTMLRenderArgs elements (same as HttpRequest)
FileName If the requested resource is a file, assign

! FileName to the actual file name.

If the requested resource is not a file, compose
Content . .

your response data and assign it to Content.
Headers 2-column matrix of [;1] names, [;2] values of

cookies to be sent with the response

A vector of instances (if any) of the Cookie class
Cookies representing cookies that are to be set in the

client.

HttpResponse Methods

‘name' req.Response.AddGetHeader 'value'

AddHeader Add a name/value pair to the response headers unless a
header of the same name already exists.

HTMLRenderer User Guide

29

req.Response.AddCookie arg

arg is either

A character vector representing a formatted cookie
string

A 2-7 element vector of

AddCookie Name - cookie name
Value - cookie value
Expires - cookie expiration datetime
Domain - hosts allowed to see the cookie
Path - path that must exist for cookie to be sent
Secure - cookie may only be sent using HTTPS
HttpOnly - cookie cannot be read by JavaScript
callbackResult«req.Response.Respond
convert the Response instance into a format acceptable
Respond for the result of the HTTPRequent event callback

req.Respond is essentially the same thing, but more
convenient (less typing) to call

7.4 HRUtils.Cookie class

The fundamental unit of work for HRUTtils is the Ht t pRequestt.

See https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies for more

information on cookies

Cookie Fields
Name The name of the cookie (required)
Value The value of the cookie (required)
Expires The OTS format expiration (optional)
Domain Hosts allowed to see this cookie. (optional)
Path that must exist for this cookie to be sent.
Path .
(optional)
Secure Boolean indicating this cookie may only be sent
using HTTPs (optional)
HttpOnl Boolean indicating that this cookie cannot be read
punty by JavaScript. (optional)

7.5 HRUti Ls Utility Functions

There are several utility functions HRUt i L's to aid in parsing and formatting response data.

r<{cpo} Baseéb4Decode vec - decode a Baseébl encoded string

r<{cpo} Base6b4Encode vec

an integer ([JDR=83) vector

cpo - optional left argument (for code points only), is useful for encoding raw data like

images.

Both Base6b4Decode and Baseb4Encode assume that the data is UTF-8. (setting cpo defeats

this) This is useful for exchanging APL code and foreign characters.

Examples:

Baseé64Encode
1 Baseb4Encode [ONREAD ~1 83 ~1 A where a .png file is tied to "1

'apl’ A use default UTF-8

- Baseblt encode a character vector, or

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

HTMLRenderer User Guide

r<UrlDecode vec - decodes a URL-encoded character vector
r<{name} UrlEncode arg - URL-encodes string(s)

arg can be one of
- a simple character vector (name may be supplied as left argument)
- a vector of character vectors of name/value pairs
- a 2-column matrix of name/value pairs
- a namespace containing named variables
name - optional left argument name

Both UrlDecode and UrlEncode assume that the data is UTF-8

Examples:

UrlEncode 'Hello World!'
Hel lo%20Wor ld%21

UrlEncode 'phrase' 'Hello World!'
phrase=Hel lo%20World%21

UrlEncode 'company' 'dyalog' 'language' 'APL'
company=dyalog&language=APL

UrlEncode 2 2p'company' ‘'dyalog' 'language' 'APL'
company=dyalog&language=APL

30

HTMLRenderer User Guide 3

8 Running HTMLRenderer under a Windows
Runtime Application

To run HTMLRenderer under a Windows runtime interpreter (dyalogrt.exe) you should:

1.

Create your runtime environment as described in the Dyalog for Microsoft Windows
Installation and Configuration Guide

Copy the following items from the Dyalog installation folder into the same folder as
the dyalogrt.exe:

Files:
chrome_100_percent.pak
chrome_200_percent.pak
chrome_elf.dll
d3dcompiler_47.dll
htmlrenderer.dll
icudtl.dat

libcef.dll

libEGL.dII

libGLESv2.dll
resources.pak
snapshot_blob.bin
v8_context_snapshot.bin

Folders:
locales
swiftshader

HTMLRenderer User Guide

9 Resources and References

The Dyalog webinar “Something Old, Something New & Something Experimental” includes a discussion
and demonstration of the HTMLRenderer; it can be viewed at https://dyalog.tv/webinar.

Code samples can be copied-and-pasted from an HTML version of this document at
https://docs.dyalog.com/20.0/files/HTMLRenderer User Guide.pdf.

32

https://dyalog.tv/webinar
https://docs.dyalog.com/20.0/files/HTMLRenderer_User_Guide.pdf

HTMLRenderer User Guide

10 Change History

This section details the changes made to HTMLRenderer by release of Dyalog APL.

Version 20.0

This version provides:

Support for a new environment variable, DYALOG_CEF_ALLOW_POPUPS, which when set to
1 will enable popups. By default, popups are disabled in CEF.

Additional options for the Print ToPDF method giving you control over features including
headers, footers, page size, margins, background image.

Improved stability and bug fixes.

Version 19.0

This version provides:

A new property, IsLoading, which returns 1 while page content is loading and 0 if no
loading if presently taking place.

A new method, LoadEnd, which is triggered when the page content is completely loaded.
Improved stability and bug fixes.

Version 18.2

This version provides:

A new fifth element in the callback argument for the DoPopup event which is the name of
the window, if any, assigned by the client code.

Two new methods, SetZoomLevel and GetZoomLevel used to respectively set and query
the

Improved stability and bug fixes.

Version 18.0

This version provides:

More convenient UTF-8 support. The HTML property can now contain Unicode code points
greater than 127 without additional translation or formatting. However, this is a potentially
breaking change for applications written using earlier versions of HTMLRenderer. See UTF-8
Support.

Improved WebSocket support.

An ExecuteJavaScript method which allows you to send JavaScript statements to be
executed in the rendering window.

The default behavior for the InterceptedURLs property has been changed such that, in
many cases, it will be unnecessary to set InterceptedURLs.

33

HTMLRenderer User Guide

Version 17.1

This version provides:

e Support for websockets, allowing asynchronous, bi-directional communication between the
APL session and the CEF client window.

e A DoPopup event that is triggered when the CEF client issues a request for a new window.

e ASelectCertificate eventthatistriggered when the CEF client issues a request for a
resource that requires a certificate.

e A ShowDevTools method that will toggle the visibility of the Chromium Developer Tools to
inspect and debug from the CEF client.

e Support for several WC properties including Caption, SysMenu, MinButton, MaxButton,
Sizeable and Moveable. Some properties may not be available on a particular platform
because that platform does not have underlying support for the property; setting such a
property will have no effect, nor will it cause an error.

