
Dyalog for UNIX
UI Guide

Dyalog version 20.0

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2025 by Dyalog Limited
All rights reserved.

Dyalog for UNIX UI Guide

Dyalog version: 20.0
Document Revision: 2025-10-30 main:e0843eae32

Unless stated otherwise, all examples in this document assume that ⎕IO ⎕ML ← 1

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle®, MySQL, and Java™ are registered trademarks of Oracle and/or its affiliates.
JavaScript™ is a trademark of Oracle Corporation.
Unicode is a registered trademarks of Unicode, Inc. in the U.S. and other countries.
UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively
through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark of Microsoft Corporation in the U.S. and other
countries.
macOS® and OS X® (operating system software) are registered trademarks of Apple Inc.
in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Except where otherwise noted, this content is licensed under a Creative Commons
Attribution 4.0 International licence.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

2025-10-30 (main:e0843eae32) Page 4

Contents

1 Introduction ... 6

1.1 Overview ... 6

1.2 Entering Characters ... 7

1.3 Entering Commands ... 9

2 Input Windows .. 11

3 Driving the tty version .. 12

4 Starting APL .. 21

5 Configuring the Editor .. 24

6 File Permissions and FSTAC .. 27

7 Calling UNIX Commands .. 28

8 Signals and Trap ... 30

9 BuildID ... 32

10 Core and APLCore Files .. 34

11 Appendix A ... 35

12 Appendix B ... 39

13 Appendix C ... 43

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 5

1 Introduction

1.1 Overview

Dyalog APL was originally written for use with serially attached character based
terminals, which had a fixed-sized viewing window, and a limited number of keystrokes.

This tty version is now usually run using either a terminal window in a GUI-based
windows manager, or a terminal emulation application such as PuTTY. Although these
allow for a greater range of keystrokes, and for the resizing of the terminal window in
which Dyalog APL is running, they still emulate the original ASCII terminals, so the same
techniques for controlling the display still apply.

Note: From Version 14.1 onwards Dyalog Ride (Remote-IDE) can be used as the front-
end for Dyalog running on any platform; Ride itself is currently supported on Windows,
Linux and macOS. For macOS, Ride is the default front-end for Dyalog, and is
documented in https://dyalog.github.io/ride. Ride can be downloaded from https://
my.dyalog.com. Be aware that Ride 2.0 works only with version 14 interpreters, and
that Ride 3 works only with version 15.0 interpreters onwards. Dyalog intends that this
will be the last time that such an incompatibility will be introduced.

It is possible to support most terminals or terminal emulators with the Dyalog APL tty
version, and it is possible for any user to define their own input translate table so that
the keystrokes to enter commands or characters can be unique to their environment
(similarly the output translate table defines the colour scheme etc.). As such, this
document does not in general refer to the actual keystrokes which are used to control
Dyalog APL, but rather the keycodes to which keystrokes are mapped.

Indeed, much of the interface to Dyalog APL can be customised; this manual is written
assuming that no changes have been made to the default configuration.

Appendix A lists the mapping between keystrokes and keycodes for all commands used
when running under a terminal emulator/console under Linux; Appendix B lists the
keystrokes and keycodes used when running PuTTY, a windows terminal emulator.
Some keycodes are not relevant to the current tty versions of Dyalog APL; they may
have been used in previous tty versions, or used in versions no longer supported, or are
used in GUI-based versions of Dyalog APL. They are listed for completeness in Appendix

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 6

https://dyalog.github.io/ride
https://dyalog.github.io/ride
https://my.dyalog.com/
https://my.dyalog.com/

C, but attempting to make use of them may lead to unexpected and/or undesirable
results.

The keyboard is used for two purposes: to enter text and to enter commands. In classic
editions text is limited to characters defined in ⎕AV, in Unicode editions text can consist
of any valid Unicode character. The main issue which has to be resolved is how to
locate these characters and commands on the keyboard in such a way that they can be
entered in a consistent manner, and without conflicts with other characters or
functionality.

Given that the number of different characters and commands far exceeds the number
of keys on a keyboard, different methods are supported for allowing one key to be used
for more than one character or command. There are three methods that can be used,
and that can be combined:

Use a metakey with the keystroke. The metakey is held down at the same time
as the key to be pressed. Examples of metakeys are the Shift key, the Control
(Ctrl) key and the Windows Key (WindowsKey).
Define multiple modes for the keyboard. Certain keystrokes are reserved for
swapping between modes; the effect of hitting any other key differs depending
on the current mode. This was extensively used for earlier versions of Dyalog
APL, which used Ctrl-o and Ctrl-n to swap between ASCII and APL entry modes.
Define multiple temporary modes for the keyboard, those modes last for one
keystroke only. This is used for entering many commands in the tty version.

1.2 Entering Characters

It is necessary to select a metakey which is to be used to enter characters. In this
document this metakey is represented by the string "APL". In a terminal window under
a Linux GUI Dyalog recommends using the Windows key as the metakey to generate
APL characters; with PuTTY and the Unicode IME the Ctrl key is used (similarly to the
Windows Unicode edition of Dyalog APL). For example, in a terminal window
WindowsKey+agenerates an ⍺; when using PuTTY the same APL character is entered
by using Ctrl+a.

1.

2.

3.

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 7

Under PuTTY, Ctrl+xcv are reserved for the operating system; we shall see

later that Ctrl+x is used for another purpose. Rather than Ctrl+xcv you must

use Shift+Ctrl+xcv.

Linux Window managers are in generally in a state of flux, so it is best to look at the
following article on the Dyalog Forum for the latest information about keyboard
configuration:

https://www.dyalog.com/forum/viewtopic.php?f=20&t=210

Recently-added Glyphs

Newly-added glyphs are not always added to the keymap (keyboard mapping file)
included in Linux distributions before they start to be used within Dyalog.

The following glyphs are not yet present in the distributed Linux keymap:

⍛ (Jot Underbar, Unicode character "APL FUNCTIONAL SYMBOL JOT
UNDERBAR"). Used from Dyalog v20.0 for the Dyalog APL Language: Behind
operator.

In this situation, there are several methods in which such glyphs can be typed. For ⍛,
you can do any of the following:

Update the keyboard mapping file manually (see below).
Define a Compose key and enter ⍛ by pressing Compose Jot Underscore.
Within the Session, use the Insert command <IN> to change to overstrike mode,
enter Jot ← Underscore, and enter <IN> again to return to insert mode.
In Ride, use the Prefix key and F.

To update the keyboard mapping file

Open the keyboard mapping file. By default, this is located in /usr/share/X11/
xkb/symbols/apl
Search for the text xkb_symbols "dyalog_base"
Replace
key <AC04> { [underscore] }; // low line

Note

•

•
•
•

•

1.

2.
3.

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 8

https://www.dyalog.com/forum/viewtopic.php?f=20&t=210
https://en.wikipedia.org/wiki/Compose_key
https://en.wikipedia.org/wiki/Compose_key

with:
key <AC04> { [underscore, U235b] }; // low line, jot underbar
Log out and back in again.

Be aware that:

there are multiple occurrences of AC04 within the keyboard mapping file – you
should only amend the one in the Dyalog APL section.
any changes made to the keyboard mapping file might be lost if you update the
operating system.

1.3 Entering Commands

Commands are either entered using the keys on the keyboard in conjunction with 0 or
more metakeys, or when using the keyboard in different modes. A separate keystroke is
used to move from one mode to the next; by default this is defined to be Ctrl+x.
When Dyalog APL is started, you are in mode 0. Except Move/Resize in the editor/
tracer, all mode changes are effective for one keystroke only.

Example

assume that you have just started APL
assume that the Windows key is used to enter APL characters
+ represents one keystroke, so Ctrl+xp means: first hit Ctrl and x together,
then p

4.

•

•

•
•
•

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 9

Keystrokes entered How described in
documentation Outcome in Dyalog APL session

p p p appears in the session

Shift+p P P appears in the session

Windows+p APL p * appears in the session

Windows+Shift+p APL P ⍣ appears in the session

Ctrl+xp Cmd-p

No noticeable effect. This is the
command "Previous" (PV) used for
search/replace. Note how Nrm in
status line changes to Cmd when
Ctrl+x is hit and then back to Nrm
when the p is hit.

Ctrl+xCtrl+xp CMD-p

No noticeable effect. This is the
command "Paste" (PT). Note how Nrm
in status line changes to Cmd when
Ctrl+x is hit, and then changes to
CMD when Ctrl+x hit again, and
then back to Nrm when the p is hit.

Ctrl+x N/A

Nothing; this is an invalid character in
Cmd mode. Note how Nrm in status
line changes to Cmd when Ctrl+x is
hit, and then back to Nrm when the g
is hit.

Notes

the words "Nrm", "Cmd" and "CMD" are configurable.
in this example each mode is temporary, lasting for only one subsequent
keystroke.

1.
2.

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 10

2 Input Windows

The tty version of Dyalog APL comprises of four different types of window:

2.1 The Session window

There is one and only one session window. It is always present (although may be
obscured by other windows. It cannot be resized from within APL (the terminal window
or PuTTY session can be resized, and APL will respond to the resize event. Note that the
contents of the window, including the status bar, may not correctly update until input is
next received by the interpreter).

2.2 Edit windows

Multiple edit windows can be open at any time, each on a separate object. The
contents of edit windows can be altered, and these windows can be resized using the
Move/Resize (MR) command.

2.3 Trace windows

Multiple trace windows can be open at any time, one for each item on the stack. These
windows are read-only, but these windows can be resized using the Move/Resize (MR)
command.

2.4 ⎕SM (Screen manager) window

There can be only one ⎕SM window; it exists only when ⎕SM is not empty, and becomes
visible either when waiting for user input (using ⎕SR) or can be toggled to using the
HotKey (HK) command.

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 11

3 Driving the tty version

The session window always occupies the whole of the APL "screen"; it may however be
obscured by other windows. The session shows the expressions that have been
entered, along with any output generated by those expressions. History cannot in
general be altered or deleted; it is possible to alter lines in the history, but when Enter
(ER) is hit, the altered line is added to the bottom of the history, and the altered line is
reset to its original state.

The bottom line of the APL window is reserved for the status line. The status line is
considered at all times to be 79 characters wide. It is divided into several fields, whose
widths are fixed:

The string "Search:"
The current search string
The string "Replace:"
The current replace string
The latest error message (is removed on next keystroke)
The "name" field: this may contain the name of the workspace, or while in the
editor or tracer, the name of the current object
The name of the current keyboard input mode (see later)
Whether input is in insert or overwrite (replace) mode

Some error conditions generate text that does not become part of the session, yet is
written to the terminal. Additionally, it is possible that other applications may write to
the terminal. In such cases, and when the emulator window is resized, it may be
necessary to perform a Screen Refresh (SR) which causes APL to rewrite the entire
terminal emulator window according to what it believes should be present; this will
effectively remove all extraneous text.

The session and the edit and trace windows form a loop; to cycle forwards between
windows use the command Windows Tab (TB), to cycle backwards use the command
Reverse Windows Tab (BT). At any time you can use the command Jump (JP) to toggle
between the current edit/trace window and the session. Escape (EP) closes the current
window, having saved any changes (where appropriate); QuiT (QT) closes the current
window, but without saving any changes.

•
•
•
•
•
•

•
•

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 12

It is possible to move and to resize an edit or a trace window; hit Move/Resize (MR) to
swap into this mode. In this mode the cursor keys move the current window around
(note that when the window reaches the edge of the screen, its size will in many cases
reduce as the opposite edge continues to move in the direction of movement. Up one
Screen (US), Down one Screen (DS), Left one Screen (LS) and Right one Screen (RS)
cause the right or bottom margin to extend or reduce as appropriate. Note that if the
right or bottom edge is against the right or bottom edge of the session, then the
window is made larger by "pushing" the left or top edge away as applicable.

Trace windows are read-only; however, it is possible to edit the currently traced object
by hitting Edit (ED) while the cursor is on the first column of any line or by hitting ED
while the cursor is on the name of the object. However, both in the Editor and Trace
windows individual breakpoints (aka Stops) can be set and unset using the Toggle
Breakpoint (BP) command. The Clear Breakpoints (CB) command will cause all
breakpoints in the current object to be cleared. Note that by default there is no visible
indication that either of these commands has been run; however, the output from
⎕STOP will show whether either of these commands has been run. See "Configuring the
Editor" for more details.

Edit windows and the session are read-write. By default input lines are in insert mode.
It is possible to toggle to overwrite mode by using the Insert Toggle (IN) command.
Note that this mode allows you to generate those overstrike APL characters which are
supported by Dyalog APL; attempting to overwrite an existing character with one that
does not form a valid APL character results in the original character being replaced with
the newly-typed one. Destructive Backspace (DB) and Delete Item (DI) delete the
character immediately before the cursor and the character under the cursor
respectively. It is possible to define keycodes for Insert Item (II) and Non-destructive
Backspace (NB) and Non-destructive Space (NS) but these are not in general use.
Destructive Space (DP) is mapped to the Spacebar.

In an edit window Toggle Localisation (TL) will add the name currently under the cursor
to the end of the header line so as to localise that name if it was not already present in
the header; if the name is present in the header, it is removed from the header. Redraw
(RD) causes the function to be reformatted, with indentations added etc.

It is possible to move or copy a line or a block of lines from one window to the other. It
is also possible to Cut (CT) from the cursor position to the end of the line and to Paste
(PT) the cut text; however, there is no other mechanism for selecting parts of a line,
although you can use the mouse and the facilities of the terminal window or emulator
to move partial lines around. In this case you may find that it is best to have the editor
or tracer windows maximised to avoid copying the line drawing characters that form
the outline of the edit or trace windows too; Zoom (ZM) toggles windows between
maximised and standard size.

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 13

Use the Tag (TG) command to select contiguous lines of text; identify the initial line
with TG, move to the last line you wish to highlight and hit TG again. The next TG
command only removes the tagging from the currently tagged block - it does not clear
and initiate another selection. For Copy (CP) or Move (MV) move to the line
immediately above where the text is to be placed, and hit CP or MV as appropriate. Use
Delete Block (DK) to delete the highlighted lines. Note that it is possible to copy or
move text between edit windows and the session.

Comments can be aligned to the column where the cursor is by hitting Align Comments
(AC). Comments that appear in columns which precede the first tabstop are aligned to
column 1.

Text searches can be made in all windows; the Search (SC) command defines the search
string; hitting Enter (ER) to complete the definition also moves the cursor to the next
instance of the search string in a forward direction. The Next (NX) and Previous (PV)
commands moves the cursor to the next or previous instance of the search string;
when there are no more instances in the specified direction the error field will contain
either No Match→ or ←No Match.

Strings can be replaced in the Editor and Session windows; the cursor must be at the
start of an instance of the search string. Replace (RP) command is used to specify the
replacement string; if the cursor is at the start of an instance of the search string, that
instance will be replaced with the replacement string. The Repeat (RP) command (also
called Do) is used to make additional replacements. The Repeat All (RA) command will
replace all instances of the search string with the replacement string in the current
object, both forwards and backwards from the current position; in this case the cursor
does not need to be at the start of an instance of the search string.

For both the Search and Replace commands EP is used to clear the definition of the
appropriate string; the entire field will be removed from the status line.

Dyalog APL responds to weak and strong interrupts; the kill operating system
command can be used to send a signal 2 (SIGINT) or 3 (SIGQUIT) respectively, or the
user can hit the intr or quit keystrokes. The current mappings for these two keystrokes
can be seen by running the operating system command stty -a. The most common
keystrokes for intr and quit are Ctrl-C and Ctrl-\ respectively. Note that when using
PuTTY it will be necessary to swap out of the APL keyboard to generate these
keystrokes.

The tables below show the keystrokes that can be used in the different windows.

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 14

3.1 Commands Common to all Window Types

Command Code Description

Cursor Move

LC
RC
UC
DC

Left/Right/Up/Down one character

LS
RS
US
DS

Left/Right/Up/Down one screen

LL
RL
UL
DL

UL/DL move the cursor up/down (respectively) to the limit
in that direction.
LL moves the cursor left to the first of:

the start of the content of the line
the six space prompt (except when in the Editor, in
which case this is skipped)
the left edge of the session

RL moves the cursor right to the first of:

the end of the content of the line excluding space
characters
the end of the content of the line including space
characters
the six space prompt (only when the cursor is on a
blank line)

Pressing LL or RL multiple times progresses through the list
in the order shown above.

HO Home Cursor either to the six space prompt in the Session
or to the top left corner of the object.

Toggle line
numbers LN Turn line numbers on or off in all trace and edit windows.

This can be done from the session too

Screen
Refresh SR

Causes APL to redraw the session, removing all extraneous
text that has come from external sources and resetting the
session display

•
•

•

•

•

•

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 15

3.2 Window Commands

Command Code Description

Move between
Windows

TB Move to next window in loop

BT Move to previous window in loop

JP Jump - toggle between session and current window

Alter Windows

ZM Zoom - toggle window to full size and back

MR

Move/Resize:

LC/RC/UC/DC: move window in that direction

LS/RS/US/DS: move bottom right hand corner in
selected direction relative to top left hand corner

EP: exit move/resize mode

3.3 Session Commands

Command Code Description

Redo/Undo
FD Show next line in input history

BK Show previous line in input history

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 16

3.4 Editor Commands

Command Code Description

Start/Stop

ED Start Editor

EP Fix and Close

QT Abort and Close

Fix function FX Causes the function to be fixed, without quitting the edit
session

Redo/Undo
FD Reapply last change

BK Undo last change (where possible)

Outlines
MO When on the first or last line of a control structure, move

to the opposite end

TO Open/Close outlined blocks

Toggle local TL
For traditional functions, the name under the cursor is
either added or removed from the list of localised names
on the function's header line

Toggle
Breakpoint BP Toggles a breakpoint on the current line

Clear
Breakpoints CB Clears all breakpoints in the current object

Open Line OP
Opens a line underneath the current line; in insert mode
moving to the end of the line and hitting ER is equally
effective

Reformat RD Causes the function to be reformatted, with corrected
indentation etc.

Comments

AC Align comments to current column

AO Add comment symbol at start of each tagged or current
line

DO Remove comment symbol which is first non-space
character on each tagged or current line

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 17

The editor can also be started using)ED or ⎕ED. Hitting ED in the session with a
suspended function on the stack will open the editor on that function; this is
called Naked Edit.
By default, outlines are not shown. See "Configuring the Editor" for further
details.
By default, there is no visual indication that a breakpoint has been set, although
⎕STOP will show the breakpoints. However, it is possible to view breakpoints -
see "Configuring the Editor" for further details.
AO, DO, RD only work in 13.1 onwards

3.5 Tracer Commands

Command Code Description

Start/Stop

TC Start Tracer

EP Cut stack back to calling function; close all windows to
match new stack status

Execution

ER Execute current line

TC Trace into any and all functions on current line

FD Skip over current line

BK Skip back one line

Toggle
Breakpoint BP Toggles a breakpoint on the current line

Clear
Breakpoints CB Clears all breakpoints in the current object

Continue
RM Resume Execution - do not show trace windows on next

error or stop

BH Run to Exit - but show trace windows on error or stop

Note

1.

2.

3.

4.

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 18

Hitting TC in the session with a suspended function on the stack will open one
trace window for each function on the stack; this is called Naked Trace.
By default, there is no visual indication that a breakpoint has been set, although
⎕STOP will show the breakpoints. However, it is possible to view breakpoints -
see "Configuring the Editor" for further details.

3.6 Search and Replace Commands

Command Code Description

Define string

SC Search: having hit Search, type string to search for, and ER
to find first occurrence. EP clears the field

RP
Replace: having hit Replace, type string to replace current
search with; change will be effective once ER is hit. EP clears
the field

Find and
Replace

NX Locate next match downwards

PV Locate previous match upwards

RT Repeat (Do) the same action again

RA Repeat all - in both directions

Applies to session, editor and tracer
Applies to the session and editor only
Caution: the Repeat All replaces ALL matches in the current object

Note

1.

2.

Note

1.
2.
3.

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 19

3.7 Session-related Commands

Command Code Description

Selection TG
Tag (highlight) blocks of text. Hit TG on initial line, move to
last line to be tagged and hit TG again. Next TG clears the
current tagging rather than initiating a new tag

Block
commands

CP Copy highlighted block to below current line

DK Delete highlighted block

MV Move the highlighted block to below the current line

Cut and
Paste

CT Cut from current cursor position to end of line

PT Paste last Cut text immediately after cursor

3.8 Screen Manager Commands

Command Code Description

Move between ⎕SM
and session/trace/
edit windows

HK

With non-empty ⎕SM , toggle between ⎕SM
window and trace/edit/session window. HK is a
valid exit key for ⎕SR , but using it as such can be
confusing !

Exit keys EP QT
ER Default exit keys for ⎕SR

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 20

4 Starting APL

By default, to start the non-GUI versions of Dyalog APL, run the mapl script which is in
the installation directory of Dyalog APL.

Example

The mapl script is supplied so that the user can start to use Dyalog APL immediately
once the terminal environment has been setup. However, it should be treated more as
a template for creating a startup script more appropriate for the environment and
purposes that Dyalog will be used for.

The startup script usually sets a number of environment variables, and then calls the
interpreter with one or more of its parameters. Although all the examples are written
using the Korn shell, any shell can be used.

Note that under Microsoft Windows parameters appear after the name of the
executable; this is not supported under UNIX, where values must be passed as
environment variables.

The parameters are listed in the table below; the more frequently used environment
variables are included in the following section.

Table: Parameters for the mapl or dyalog script:

$ /opt/mdyalog/20.0/64/unicode/mapl

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 21

Parameter Purpose

-tty
Start APL using the terminal development environment. This is not
necessary unless the wine (-wine) or MainWin (-mainwin) versions
are installed too.

-c -rt -
server

Causes dyalog.rt (the server version) to be started. This parameter is
for backwards compatibility; the use of the -rt or -server parameter
is recommended. See also the Note at the bottom of this table.

-*
Any other parameter that starts with a "-" will be passed to the
interpreter; all parameters that start with a "-" will be passed before
any parameters that do not start with a "-".

*

This is usually the name of the workspace that is to be loaded when
the interpreter is started. Unless the "-x" flag is passed to the
interpreter, the latent expression in the workspace will be executed
once the workspace has been loaded.

The -c parameter has different uses depending on whether it is passed to the

mapl script, or to the dyalog executable.

Table: Parameters for the Dyalog interpreter:

Note

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 22

Parameter Purpose

-a Start in "User mode". If not present, then APL will start in
"Prog(rammer) mode". See the section on I/O for further details.

-b Suppress the banner in the session.

-c

Comment: the "-c" and anything following it will be treated as a
comment, but will show up in a long process listing. By adding a
suitable comment the user or system administrator can uniquely
identify the individual APL processes. See also the Note above this
table.

-Dw Check workspace integrity on return to session input.

-DW Check workspace integrity after every line of APL (application will run
slowly as a result)

-DK Log session keystrokes in (binary) file ./apllog .

-q
Continue to run even if an error causes a return to the six-space
prompt. Used when redirecting input to the session from a pipe or
file.

+q A return to the six-space prompt will result in the interpreter
terminating.

-s Turn off the session: APL acts similarly to a scrolling terminal.

+s forces APL to enable the session.

-x
Do not execute the latent expression of any workspace that is)LOAD
ed or ⎕LOAD ed. This applies to every)LOAD or ⎕LOAD during the life
of the APL session.

ws
This is assumed to be a workspace which will be loaded once the
interpreter has started. Unless the -x parameter is included on the
command line, the latent expression will be run.

-cef / -apl See the Dyalog Version 17.0 Release Notes for more information

Examples

mapl dfns
MAXWS=2G mapl dfns
MAXWS=2G DEFAULT_IO=0 mapl -x dfns

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 23

5 Configuring the Editor

The editor in non-GUI versions of Dyalog APL can be considered to have 5 separate
functional columns. Below is the contents of the editor window, which shows the
namespace ns, which has two traditional-style functions and one dfn. The statement 5
⎕STOP 'ns.fn1' has been run too:

This is formed of 5 separate columns:

[0] :Namespace ns
[1] [0] ├ ∇ r←fn1 a
[2] [1] ├ :If a=1
[3] [2] │ r←1
[4] [3] │ :Else
[5] [4] ├ :If today≡'Friday'
[6] [5] ○│ r←2
[7] [6] ├ :EndIf
[8] [7] ├ :EndIf
[9] [8] ├ ∇
[10]
[11] [0] dfn←{⍺+⍵}
[12]
[13] [0] ├ ∇ r←a fn2 w
[14] [1] │ r←a+w
[15] [2] ├ ∇
[16] :EndNamespace

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 24

Functional
Column

Value (see
below) Purpose

C1 4 Line numbers for entire object

C2 64 Line numbers for functions etc. within scripted
namespaces

C3 2 Trace/Stop points

C4 8 Control Structure Outlining

C5 16 Text (or content)This value is ignored; this
column is always present

It is possible to control at startup time which of these columns are visible. By default,
for all types of object, only the text column is visible; this can be overridden on a per-
object basis by setting one or more of the EDITOR_COLUMNS_ variables listed in Table
E5. The value of these variables is the sum of the values for each of the columns which
are desired.

┌────┬───┬───┬──┬────────────────────────────┐
│C1 │C2 │C3 │C4│C5 │
├────┼───┼───┼──┼────────────────────────────┤
│[0] │ │ │ │:Namespace ns │
│[1] │[0]│ │├ │ ∇ r←fn1 a │
│[2] │[1]│ │├ │ :If a=1 │
│[3] │[2]│ ││ │ r←1 │
│[4] │[3]│ ││ │ :Else │
│[5] │[4]│ │├ │ :If today≡'Friday'│
│[6] │[5]│ ○││ │ r←2 │
│[7] │[6]│ │├ │ :EndIf │
│[8] │[7]│ │├ │ :EndIf │
│[9] │[8]│ │├ │ ∇ │
│[10]│ │ │ │ │
│[11]│[0]│ │ │ dfn←{⍺+⍵} │
│[12]│ │ │ │ │
│[13]│[0]│ │├ │ ∇ r←a fn2 w │
│[14]│[1]│ ││ │ r←a+w │
│[15]│[2]│ │├ │ ∇ │
│[16]│ │ │ │:EndNamespace │
└────┴───┴───┴──┴────────────────────────────┘

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 25

Examples

EDITOR_COLUMNS_NAMESPACE=94 shows all columns (the first example in this
section)

Various values for EDITOR_COLUMNS_FUNCTION

Value Editor window appearance

0

22

26

40

fn1 a
:If a=1
 b←2
:EndIf

[0] fn1 a
[1] :If a=1
[2] ○ b←2
[3] :EndIf

fn1 a
 ├ :If a=1
○│ b←2
 ├ :EndIf

[0] fn1 a
[1] ├ :If a=1
[2] ○│ b←2
[3] ├ :EndIf

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 26

6 File Permissions and FSTAC

Dyalog APL is a well behaved UNIX program and honours all standard UNIX file
permissions. Commands such as ⎕FLIB and)LIB read the magic number (the first few
bytes) of each file in the directory in order to determine whether each file is a
component file or workspace respectively; if the APL process cannot read those bytes,
then it will assume that the file is not a component file or workspace.

Under UNIX, the first element of ⎕AI is the user's effective uid, and ⎕AN reports the
user's real name, as it appears in /etc/passwd. When a component file is newly
created, its UNIX file permissions will be defined by the umask for the effective user id.
The APL file access matrix will be (0 3⍴0), which means that even if the user's UNIX
file permissions are such that anyone can read and write to the file, only the user in
question will be able to access the file using Dyalog APL component file system
functions. To allow any user to access the file (assuming that the UNIX file permissions
are suitable) then run

Any user with an effective uid 0 will be able to access any component file, irrespective
of the file access matrix.

(1 3⍴0 ¯1 0)⎕FSTAC tieno

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 27

7 Calling UNIX Commands

Note that ⎕SH calls /bin/sh; this cannot be altered.

If the command, or command pipe issued using ⎕SH exits with a non-zero exit code,
then ⎕SH will terminate with a DOMAIN ERROR, and all output from the command will be
lost. To avoid this, add an exit 0 to the end of the command string, and the DOMAIN
ERROR will be suppressed. However, this technique does require that some other
method is used to determine that the command pipe failed. Example:

but

If you are interested in the exit code from the command pipe, rather than any partial
output, then, in Version20.0 onwards ⎕DMX.Message has the exit code at the end of the
text. Dyalog intends that this value will appear in a more user-friendly form in ⎕DMX at
some point.

Example:

⎕SH only captures stdout; unless redirected, any output on stderr will appear in the
same terminal window as the session; hitting RD (default Ctrl-L) will force a screen
redraw, thereby returning the session to its state before the error output appeared.

⍴⎕SH 'grep no_such_user /etc/passwd'
DOMAIN ERROR

⍴⎕SH 'grep no_such_user /etc/passwd'
∧

⍴⎕SH 'grep no_such_user /etc/passwd ; exit 0'
0

z←⎕SH 'exit 17'
DOMAIN ERROR

⎕DMX.Message
Command interpreter returned failure code 17

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 28

7.1 ⎕SH and starting jobs in background

It is possible to run tasks from within APL using ⎕SH:

However, in this case, APL will wait until myjob has completed, and will return the
output from myjob (assuming that is that myjob completes with a non-zero exit code).
It is possible to start a job that will run in background, without APL waiting for that job
to complete, with the job continuing even if APL is terminated:

Example:

More useful might be to save the stdout and stderr of the command, and pipe the
input in from a file; it might also be useful to have the job continue to run even after
the user has both quit APL and logs out from the server:

⎕SH'myjob'

⎕SH 'sleep 40000 </dev/null >/dev/null 2>&1 &'

⎕SH 'nohup myjob <my.in >my.out 2>my.err &'

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 29

8 Signals and Trap

8.1 Signals and ⎕TRAP

Certain signals sent to a Dyalog APL process can be trapped and an event issued. These
signals are:

1 SIGHUP

2 SIGINT

3 SIGQUIT

15 SIGTERM

No other signal is trapped by the interpreter; their default action will occur. For
example when a Dyalog APL process receives a SIGSEGV (11) then it will terminate with
a segmentation fault. Note that SIG_USR1 is used by the interface between Dyalog APL
and Auxiliary Processors: sending this signal to the interpreter may have "interesting"
consequences.

The mapping between these signals and the event issued is non-trivial:

If a SIGHUP is received, then the input stream is closed immediately, and an
event 1002 will be issued at the end of the current line of code. Any subsequent
attempt to read from the session will result in an EOF INTERRUPT being issued.
If a SIGINT is received, then execution will end at the end of the current line of
code. An event 1002 will be issued.
If a SIGQUIT is received, then APL will terminate executing the current line of
code as soon as possible - usually at the end of the current built-in command,
and an event 1003 will be issued. However, if the end of the current line is
reached, then an event 1002 will be signalled too.
If a SIGTERM is received, then the input stream is closed immediately, and an
event 1002 will be issued at the end of the current line of code. Any subsequent
attempt to read from the session will result in an EOF INTERRUPT being issued.

•

•

•

•

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 30

8.2 4007⌶

To aid the programmer in determining which signal was issued, the newly implemented
system operator, ⌶ (I-Beam) has been extended to report this information.

WARNING: Although documentation is provided for I-Beam functions, any service
provided using I-Beam should be considered as "experimental" and subject to change -
without notice - from one release to the next. Any use of I-Beams in applications
should therefore be carefully isolated in cover-functions that can be adjusted if
necessary.

4007⌶⍬ can be used to identify which signals have been received by the APL process
and how many of them have been received. A side effect of calling 4007⌶⍬ is to reset all
counters to 0.

4007⌶⍬ returns a vector of integers; the length is dependent on the APL interpreter and
the operating system, but is typically 63 or 255 elements long. Each element is a count
number of each signal received and processed by the interpreter. Note that when a
SIGQUIT is received by APL the count for both SIGINT and SIGQUIT will be incremented
by one.

Example

This means that since either the start of the current APL process, or since the last
invocation of 4007⌶ APL has processed 1 SIGHUP, 2 SIGINTs and 3 SIGQUITs.

It is recommended that rather than trapping either event 1002 or 1003, the user traps
event 1000, and queries the vector returned by 4007⌶⍬. In particular if a SIGHUP or a
SIGTERM has been received, then the user's code should terminate the application as
soon as possible, and should be careful to avoid requiring input. SIGHUP has either
been issued using the kill(1) command, or because either the device at the other end of
the connection or the connection has terminated. This used to be common with serial
or dialup terminals, but is now most frequently seen when terminal emulators or the
PCs on which they run are terminated.

8↑4007⌶⍬
1 5 3 0 0 0 0 0

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 31

9 BuildID

Each interpreter has its own unique BuildID. This is a 32-bit checksum of the program
file which is the Dyalog APL interpreter. This checksum allows Dyalog Ltd. support staff
to uniquely identify the interpreter and from that determine the version, edition,
platform etc. of the interpreter.

For that reason, Dyalog Ltd. support staff ask that whenever an issue is raised with
them that the BuildID is included in all communications.

The BuildID is included in binary form in any aplcore that is generated; if a core file is
created, then is it possible to identify the BuildID using the following command:

Additionally, the BuildID is included in the "Interesting Information" section of aplcore
files provided that the environment variable APL_TEXTINAPLCORE is set to 1.

The BuildID can be identified both from within the interpreter (using the GetBuildID
method), and also from the BuildID executable which is supplied with the product on
UNIX.

Both of these methods can be used for any file; they are useful and very fast ways of
keeping track of workspaces versions etc. although md5sum and others may be more
appropriate.

Examples

At the command line:

In APL:

$ strings -a -n 14 core | grep "BuildID="

$ cd /opt/mdyalog/12.1/32/classic/p6
$./BuildID dyalog
70a3446e
$./BuildID magic
0a744663

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 32

+2 ⎕NQ '.' 'GetbuildID'
70a3446e

magicfile←'/opt/mdyalog/12.1/32/classic/p6/magic'
+2 ⎕NQ '.' 'GetBuildID' magicfile

0a744663
)SH

$ echo $PPID
$ kill -11 $PPID
/opt/mdyalog/12.1/32/classic/p6/mapl[58]: 274434 Segmentation fault(core
dump)
$ strings -a -n14 core | grep BuildID=
BuildID=70a3446e

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 33

10 Core and APLCore Files

When Dyalog APL encounters an unexpected problem it is likely that the interpreter
will terminate and generate either a core file or an aplcore file. Under Linux core files
are not created by default; it is necessary to enable their creation.

An aplcore file contains the workspace at the point where the interpreter terminated,
along with debug information that may enable Dyalog to identify and rectify the
problem.

The Dyalog support department (support@dyalog.com, other means of contact on the
Dyalog website) should be contacted if an aplcore file is generated. More immediately
it may be possible to copy the contents of the aplcore into a new Dyalog process by
running

Note however that it is possible that the)COPY itself will cause another aplcore; it is
best to rename the original aplcore before attempting this course of action.

From Version 13.2 onwards in situations where a core file is generated, an aplcore file
will be generated too; this is done by forking the failing APL process, so an additional
APL process will appear in any process listing while the aplcore is being created. If the
environment variable APL_TEXTINAPLCORE is set and has the value 1 then an
"Interesting Information" section is appended to the aplcore which contains
information such as the APL stack, the WSID of the originating workspace etc. This
section can be extracted from an aplcore using

)COPY aplcore

sed -n '/======== Interesting Information/,$p' aplcore

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 34

11 Appendix A

Keycodes, their common keystrokes, and the keystrokes specific to terminal emulators
under Linux GUIs.

11.1 Notes

APL represents the metakey used as the APL character and command shift
Cmd represents the keystroke Ctrl+x
CMD represents the keystrokes Ctrl+x Ctrl+x
The file $DYALOG/aplkeys/xterm is certain to be up to date and should be
treated as the definitive source of the keycode-keystroke translations

1.
2.
3.
4.

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 35

Keycode Command Common keystrokes Terminal Emulator

AC Align Comments Cmd a

AO Comment Out Cmd ,

BH Run to Exit Cmd < APL+Left

BK Back Cmd b APL+Up

BP Toggle Breakpoint CMD b APL+Backspace

BT Back Tab Window CMD Tab Shift+APL+Tab

CA Cut to Capsule

CB Clear Breakpoints CMD B Shift+APL+Backspace

CP Copy Cmd c APL+Insert

CT Cut CMD c Shift+APL+Delete

DB Backspace Backspace

DC Down Cursor Down

DI Delete Item Delete

DK Delete Block Cmd Delete APL+Delete

DL Down Limit Ctrl+Down Shift+APL+PgDn

DO Uncomment Cmd .

DS Down Screen Shift+Down APL+PgDn

ED Edit Cmd e APL+Enter

EL Empty line

EP Escape Esc Esc

ER Enter Enter

FA Save File (As) in Editor

FD Forward Cmd f APL+Down

FS Save File in Editor

FT Cycle Focus

FX Fix Cmd x

HK Hot Key (⎕SM) Cmd u

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 36

Keycode Command Common keystrokes Terminal Emulator

HO Home Cursor Cmd h

IG Ignore next

IL Insert Line

IN Insert Mode Cmd i

IT Inline Tracing Cmd k

JP Jump Cmd j

LC Left Cursor Cursor Left

LL Left Limit Ctrl+Left Shift+APL+Home

LN Line Numbers Cmd l APL+Numpad+-

LS Left Screen Shift+Left APL+Home

MA Resume All Threads

MO Move to Outline CMD % Shift+APL+Space

MR Move/Resize CMD m

MV Move block Cmd m

NX Next Cmd n

OF Open File

OP Open line Cmd o

PL Previous Location

PT Paste CMD p Shift+APL+Insert

PV Previous Cmd p

QT Quit Cmd q APL+Esc

RA Repeat All CMD d

RC Cursor Right Right

RD Redraw Function CMD r APL+Numpad-/

RL Right Limit Ctrl+Right Shift+APL+End

RM Resume All Threads Cmd > APL+Right

Rn Replace, Move Next

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 37

Keycode Command Common keystrokes Terminal Emulator

RP Replace String Cmd r

Rp Replace, Move Previous

RS Right Screen Shift+Right APL+End

RT Repeat (Do) Cmd d

S1 Fix Script, Exit

S2 Fix Script, Remain

SA Select All

SC Search Cmd s

SR Redraw Screen Ctrl+l (1)

TB Tab Window Cmd Tab APL+Tab

TC Trace Cmd Enter Shift+APL+Enter

TG Tag Cmd t APL+Numpad-*

TL Toggle Localisation CMD l APL+Numpad-+

TO Toggle Outline CMD o APL+Space

TT Toggle Treeview

UC Cursor Up Cursor Up

UL Up Limit Ctrl+Up Shift+APL+PgUp

US Up Screen Shift+Up APL+PgUp

ZM Zoom Cmd z Shift+APL+F12

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 38

12 Appendix B

Keycodes, their common keystrokes, and the keystrokes specific to the PuTTY terminal
emulator.

12.1 Notes

APL represents the metakey used as the APL character and command shift
Cmd represents the keystroke Ctrl+x
CMD represents the keystrokes Ctrl+x Ctrl+x
The file $DYALOG\aplkeys\xterm is certain to be uptodate and should be treated
as the definitive source of the keycode-keystroke translations

1.
2.
3.
4.

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 39

Keycode Command Common keystrokes PuTTY

AC Align Comments Cmd a

AO Comment Out Cmd ,

BH Run to Exit Cmd <

BK Back Cmd b Shift+Ctrl+Backspace

BP Toggle Breakpoint CMD b Shift+End

BT Back Tab Window CMD Tab Shift+Ctrl+Tab

CB Clear Breakpoints CMD B

CP Copy Cmd c Ctrl+Insert

CT Cut CMD c Shift+Delete

DB Backspace Backspace Backspace

DC Down Cursor Down

DI Delete Item Delete

DK Delete Block Cmd Delete Ctrl+Delete

DL Down Limit Ctrl+Down Ctrl+End

DO Uncomment Cmd .

DS Down Screen Shift+Down PgDn

ED Edit Cmd e Shift+Enter

EP Escape Esc Esc

ER Enter Enter Enter

FD Forward Cmd f Shift+Ctrl+Enter

FX Fix Cmd x

HK Hot Key (⎕SM) Cmd u

HO Home Cursor Cmd h

IN Insert Mode Cmd i

IT Inline Tracing Cmd k Alt+Ctrl+Enter

JP Jump Cmd j Shift+Ctrl+Home

LC Left Cursor Cursor Left

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 40

Keycode Command Common keystrokes PuTTY

LL Left Limit Ctrl+Left

LN Line Numbers Cmd l

LS Left Screen Shift+Left Ctrl+Left

MO Move to Outline CMD % Shift+Ctrl+Up

MR Move/Resize CMD m

MV Move block Cmd m Shift+Ctrl+Delete

NX Next Cmd n Shift+Ctrl+Right

OP Open line Cmd o Shift+Ctrl+Insert

PT Paste CMD p Shift+Insert

PV Previous Cmd p Shift+Ctrl+Left

QT Quit Cmd q Shift+Esc

RA Repeat All CMD d Ctrl+Down

RC Cursor Right Right

RD Redraw Function CMD r Shift+PgUp

RL Right Limit Ctrl+Right

RM Resume All Threads Cmd >

RP Replace String Cmd r

RS Right Screen Shift+Right Ctrl+PgDn

RT Repeat (Do) Cmd d Shift+Ctrl+Down

SC Search Cmd s

SR Redraw Screen Ctrl+l (1)

TB Tab Window Cmd Tab Ctrl+Tab

TC Trace Cmd Enter Ctrl+Enter

TG Tag Cmd t

TL Toggle Localisation CMD l Ctrl+Up

TO Toggle Outline CMD o Shift+Up

UC Cursor Up Cursor Up

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 41

Keycode Command Common keystrokes PuTTY

UL Up Limit Ctrl+Up Ctrl+Home

US Up Screen Shift+Up PgUp

ZM Zoom Cmd z Shift+Ctrl+PgUp

12.2 Notes

If you are using PuTTY or another emulator that uses the Dyalog Unicode IME, it
will be necessary to swap to a non-Dyalog APL keyboard before hitting Ctrl-l;
hitting Ctrl-l while in a Dyalog APL keyboard will generate a Quad symbol.

•

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 42

13 Appendix C

Keycodes defined for Dyalog APL, but not used or should not be used in the Dyalog APL
tty version

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 43

Key Code Command

AB Abort Changes (effectively same as QT)

CB Clear stop/trace/monitor

CH Change Hint

Dc Down with selection

DD Drag and Drop

DH Delete Highlighted section

Dl Down Limit with selection

Dn Down Mouse key n, n ∊ 1 2 3 4 5

Ds Down Screen with selection

EN End of Line

GL Goto Line

HT Horizontal Tab

IF Insert Off

Lc Left with selection

Ll Left Limit with selection

LW Left Word

Lw Left Word with selection

MC Mode Change

PA Paste ANSI

PR Properties

PU Paste Unicode

Rc Right with selection

Rl Right Limit with selection

RW Right Word

Rw Right Word with selection

ST Start of Line

TH Reverse Horizontal Tab

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 44

Key Code Command

UA Undo All

Uc Up with selection

Ul Up Limit with selection

Un Up Mouse key n, n ∊ 1 2 3 4 5

Us Up Screen with selection

UNIX User Guide

2025-10-30 (main:e0843eae32) Page 45

	Dyalog for UNIX
	UI Guide
	Contents

	Introduction
	Overview
	Entering Characters
	Recently-added Glyphs

	Entering Commands
	Notes

	Input Windows
	The Session window
	Edit windows
	Trace windows
	⎕SM (Screen manager) window

	Driving the tty version
	Commands Common to all Window Types
	Window Commands
	Session Commands
	Editor Commands
	Tracer Commands
	Search and Replace Commands
	Session-related Commands
	Screen Manager Commands

	Starting APL
	Configuring the Editor
	File Permissions and FSTAC
	Calling UNIX Commands
	⎕SH and starting jobs in background

	Signals and Trap
	Signals and ⎕TRAP
	4007⌶

	BuildID
	Core and APLCore Files
	Appendix A
	Notes

	Appendix B
	Notes
	Notes

	Appendix C

