Dyalog for UNIX
Ul Guide

Dyalog version 20.0

DYALOC

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2025 by Dyalog Limited
All rights reserved.

Dyalog for UNIX Ul Guide

Dyalog version: 20.0
Document Revision: 2025-10-30 main:e0843eae32

Unless stated otherwise, all examples in this document assume that 010 OML « 1

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Dyalog Limited reserves the right to revise this publication

without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.

Oracle®, MySQL, and Java™ are registered trademarks of Oracle and/or its affiliates.
JavaScript™ is a trademark of Oracle Corporation.

Unicode is a registered trademarks of Unicode, Inc. in the U.S. and other countries.
UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively
through X/Open Company Limited.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark of Microsoft Corporation in the U.S. and other
countries.

macOS°® and OS X® (operating system software) are registered trademarks of Apple Inc.

in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Except where otherwise noted, this content is licensed under a Creative Commons

Attribution 4.0 International licence.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

2025-10-30 (main:e0843eae32) Page 4

UNIX User Guide

Contents

T INEFOAUCTION ettt eeeabre e e e e eeabee e e s eeabareeeseeasareeeeeesnreseeas 6

1.1 Overview

1.2 ENLEIING CRArACLELSuveivieiieieeieeieete et ete et e st et ste e bt etesbeesessbessaesssessaessaesseensansseessessseassesssanns 7
1.3 ENtErinNg COMMANGSccuveetieiieitieiieeteeieeteeteseesseesteesseeseeseessesssesssesssassaessseseessassseessesssenssesseens 9
2 INPULE WINAOWS ..ottt e tee et e e e ette e eetee e s taeeebae e e saaeesasaeaensasesassasssseaans 11
3 DriviNg the thy VEISION ..c..eeiieeeeceeee ettt et ae e et e e ae e e s aae e enaeaenn 12
A SEATTING APL ...ttt et e ee e e e et e e e tte e eetbaeeeaee e e saeeeesseeeeasaeeebeeeenreeenneas 21
5 CoNfigUING the EAILOF .eeceeiiiiieeeeeee ettt et te e e re e e a e e e sae e eanaaeens 24
6 File Permissions and FSTACc..coceiiiiiriiiiniiieitereetcteeit ettt enesneens 27
7 Calling UNIX COMMANGS ...ooeeviiieiiieeeiieeeiieeeiteeeeiteeeeteeeeveeeeareeeesaasenssaeeeasssessssasessaaans 28
R F={ g =1 T o Vo I =Y o T USRS 30
D BUIIID ettt ettt ettt et st e ae st be st e b et e be et e b eas 32
10 Core and APLCOIE FilEScouirieeieieeieiteieiteteeitete ettt ettt ae e 34
TLAPPENAIX A ..ottt ettt eeetee e e e eeetaeeeeeeeetsreeeeeesaraeeeeesenssssseeeesssseessenssressennnnnnes 35
T2 APPENAIX B .ottt e et e e e e te e e e te e e e bae e e tbae e tbseeeabeeeenaaeeenbaeeesaeeenraas 39
TS APPENAIX C .ottt ettt e eeeree e e eeetar e e e eeestareeeeeessraseeeesesssseeeesesssrasessesssreeeensnsnnes 43

2025-10-30 (main:e0843eae32) Page 5

UNIX User Guide

1 Introduction

1.1 Overview

Dyalog APL was originally written for use with serially attached character based
terminals, which had a fixed-sized viewing window, and a limited number of keystrokes.

This tty version is now usually run using either a terminal window in a GUI-based
windows manager, or a terminal emulation application such as PuTTY. Although these
allow for a greater range of keystrokes, and for the resizing of the terminal window in
which Dyalog APL is running, they still emulate the original ASCII terminals, so the same
techniques for controlling the display still apply.

Note: From Version 14.1 onwards Dyalog Ride (Remote-IDE) can be used as the front-
end for Dyalog running on any platform; Ride itself is currently supported on Windows,
Linux and macOS. For macOS, Ride is the default front-end for Dyalog, and is
documented in https://dyalog.github.io/ride. Ride can be downloaded from https://
my.dyalog.com. Be aware that Ride 2.0 works only with version 14 interpreters, and
that Ride 3 works only with version 15.0 interpreters onwards. Dyalog intends that this
will be the last time that such an incompatibility will be introduced.

It is possible to support most terminals or terminal emulators with the Dyalog APL tty
version, and it is possible for any user to define their own input translate table so that
the keystrokes to enter commands or characters can be unique to their environment
(similarly the output translate table defines the colour scheme etc.). As such, this
document does not in general refer to the actual keystrokes which are used to control
Dyalog APL, but rather the keycodes to which keystrokes are mapped.

Indeed, much of the interface to Dyalog APL can be customised; this manual is written
assuming that no changes have been made to the default configuration.

Appendix A lists the mapping between keystrokes and keycodes for all commands used
when running under a terminal emulator/console under Linux; Appendix B lists the
keystrokes and keycodes used when running PuTTY, a windows terminal emulator.
Some keycodes are not relevant to the current tty versions of Dyalog APL; they may
have been used in previous tty versions, or used in versions no longer supported, or are
used in GUI-based versions of Dyalog APL. They are listed for completeness in Appendix

2025-10-30 (main:e0843eae32) Page 6

https://dyalog.github.io/ride
https://dyalog.github.io/ride
https://my.dyalog.com/
https://my.dyalog.com/

UNIX User Guide

C, but attempting to make use of them may lead to unexpected and/or undesirable
results.

The keyboard is used for two purposes: to enter text and to enter commands. In classic
editions text is limited to characters defined in 0Av, in Unicode editions text can consist
of any valid Unicode character. The main issue which has to be resolved is how to
locate these characters and commands on the keyboard in such a way that they can be
entered in a consistent manner, and without conflicts with other characters or
functionality.

Given that the number of different characters and commands far exceeds the number
of keys on a keyboard, different methods are supported for allowing one key to be used
for more than one character or command. There are three methods that can be used,
and that can be combined:

1. Use a metakey with the keystroke. The metakey is held down at the same time
as the key to be pressed. Examples of metakeys are the Shift key, the Control
(Ctrl) key and the Windows Key (WindowsKey).

2. Define multiple modes for the keyboard. Certain keystrokes are reserved for
swapping between modes; the effect of hitting any other key differs depending
on the current mode. This was extensively used for earlier versions of Dyalog
APL, which used Ctrl-o and Ctrl-n to swap between ASCIl and APL entry modes.

3. Define multiple temporary modes for the keyboard, those modes last for one
keystroke only. This is used for entering many commands in the tty version.

1.2 Entering Characters

It is necessary to select a metakey which is to be used to enter characters. In this
document this metakey is represented by the string "APL". In a terminal window under
a Linux GUI Dyalog recommends using the Windows key as the metakey to generate
APL characters; with PuTTY and the Unicode IME the Ctrl key is used (similarly to the
Windows Unicode edition of Dyalog APL). For example, in a terminal window
WindowsKey+agenerates an a; when using PUTTY the same APL character is entered
by using Ctrl+a.

2025-10-30 (main:e0843eae32) Page 7

UNIX User Guide

Note

Under PuTTY, Ctrl+xcv are reserved for the operating system; we shall see
later that Ct r'l+xX is used for another purpose. Rather than Ct rl+xcv you must
use Shift+Ctrl+xcv.

Linux Window managers are in generally in a state of flux, so it is best to look at the
following article on the Dyalog Forum for the latest information about keyboard
configuration:

https://www.dyalog.com/forum/viewtopic.php?f=20&t=210

Recently-added Glyphs

Newly-added glyphs are not always added to the keymap (keyboard mapping file)
included in Linux distributions before they start to be used within Dyalog.

The following glyphs are not yet present in the distributed Linux keymap:

e o (Jot Underbar, Unicode character "APL FUNCTIONAL SYMBOL JOT
UNDERBAR"). Used from Dyalog v20.0 for the Dyalog APL Language: Behind
operator.

In this situation, there are several methods in which such glyphs can be typed. For o,
you can do any of the following:

e Update the keyboard mapping file manually (see below).

¢ Define a Compose key and enter » by pressing Compose Jot Underscore.

o Within the Session, use the Insert command <IN> to change to overstrike mode,
enter Jot « Underscore, and enter <IN> again to return to insert mode.

¢ In Ride, use the Prefix key and F.

To update the keyboard mapping file

1. Open the keyboard mapping file. By default, this is located in /usr/share/X11/
xkb/symbols/apl

2. Search for the text xkb_symbols "dyalog_base"

3. Replace
key <AC04> { [underscore] }; // low line

2025-10-30 (main:e0843eae32) Page 8

https://www.dyalog.com/forum/viewtopic.php?f=20&t=210
https://en.wikipedia.org/wiki/Compose_key
https://en.wikipedia.org/wiki/Compose_key

UNIX User Guide

with:
key <AC04> { [underscore, U235b] }; // low line, jot underbar
4. Log out and back in again.

Be aware that:

e there are multiple occurrences of ACO4 within the keyboard mapping file - you
should only amend the one in the Dyalog APL section.

e any changes made to the keyboard mapping file might be lost if you update the
operating system.

1.3 Entering Commands

Commands are either entered using the keys on the keyboard in conjunction with O or
more metakeys, or when using the keyboard in different modes. A separate keystroke is
used to move from one mode to the next; by default this is defined to be Ctrl+x.
When Dyalog APL is started, you are in mode 0. Except Move/Resize in the editor/
tracer, all mode changes are effective for one keystroke only.

Example

e assume that you have just started APL

e assume that the Windows key is used to enter APL characters

e + represents one keystroke, so Ct rl+xp means: first hit Ct r'l and X together,
then p

2025-10-30 (main:e0843eae32) Page 9

UNIX User Guide

Keystrokes entered

How described in
documentation

Outcome in Dyalog APL session

p

p

p appears in the session

Shift+p

p

P appears in the session

Windows+p

APL p

* appears in the session

Windows+Shift+p

APLP

¥ appears in the session

Ctrl+xp

Cmd-p

No noticeable effect. This is the
command "Previous" (PV) used for
search/replace. Note how Nrm in
status line changes to Cmd when
Ctrl+xis hit and then back to Nrm
when the p is hit.

Ctrl+xCtrl+xp

CMD-p

No noticeable effect. This is the
command "Paste" (PT). Note how Nrm
in status line changes to Cmd when
Ctrl+xis hit, and then changes to
CMD when Ctrl+x hit again, and
then back to Nrm when the p is hit.

Ctrl+x

N/A

Nothing; this is an invalid character in
Cmd mode. Note how Nrm in status
line changes to Cmd when Ctrl+xis
hit, and then back to Nrm when the g
is hit.

Notes

1. the words "Nrm", "Cmd" and "CMD" are configurable.
2. in this example each mode is temporary, lasting for only one subsequent

keystroke.

2025-10-30 (main:e0843eae32)

Page 10

UNIX User Guide

2 Input Windows

The tty version of Dyalog APL comprises of four different types of window:

2.1 The Session window

There is one and only one session window. It is always present (although may be
obscured by other windows. It cannot be resized from within APL (the terminal window
or PUTTY session can be resized, and APL will respond to the resize event. Note that the
contents of the window, including the status bar, may not correctly update until input is
next received by the interpreter).

2.2 Edit windows

Multiple edit windows can be open at any time, each on a separate object. The
contents of edit windows can be altered, and these windows can be resized using the
Move/Resize (MR) command.

2.3 Trace windows

Multiple trace windows can be open at any time, one for each item on the stack. These
windows are read-only, but these windows can be resized using the Move/Resize (MR)
command.

2.4 psv (Screen manager) window

There can be only one OsSM window; it exists only when OsM is not empty, and becomes
visible either when waiting for user input (using OSR) or can be toggled to using the
HotKey (HK) command.

2025-10-30 (main:e0843eae32) Page 11

UNIX User Guide

3 Driving the tty version

The session window always occupies the whole of the APL "screen"; it may however be
obscured by other windows. The session shows the expressions that have been
entered, along with any output generated by those expressions. History cannot in
general be altered or deleted; it is possible to alter lines in the history, but when Enter
(ER) is hit, the altered line is added to the bottom of the history, and the altered line is
reset to its original state.

The bottom line of the APL window is reserved for the status line. The status line is
considered at all times to be 79 characters wide. It is divided into several fields, whose
widths are fixed:

e The string "Search:"

e The current search string

e The string "Replace:"

e The current replace string

e The latest error message (is removed on next keystroke)

e The "name" field: this may contain the name of the workspace, or while in the
editor or tracer, the name of the current object

e The name of the current keyboard input mode (see later)

e Whether input is in insert or overwrite (replace) mode

Some error conditions generate text that does not become part of the session, yet is
written to the terminal. Additionally, it is possible that other applications may write to
the terminal. In such cases, and when the emulator window is resized, it may be
necessary to perform a Screen Refresh (SR) which causes APL to rewrite the entire
terminal emulator window according to what it believes should be present; this will
effectively remove all extraneous text.

The session and the edit and trace windows form a loop; to cycle forwards between
windows use the command Windows Tab (TB), to cycle backwards use the command
Reverse Windows Tab (BT). At any time you can use the command Jump (JP) to toggle
between the current edit/trace window and the session. Escape (EP) closes the current
window, having saved any changes (where appropriate); QuiT (QT) closes the current
window, but without saving any changes.

2025-10-30 (main:e0843eae32) Page 12

UNIX User Guide

It is possible to move and to resize an edit or a trace window; hit Move/Resize (MR) to
swap into this mode. In this mode the cursor keys move the current window around
(note that when the window reaches the edge of the screen, its size will in many cases
reduce as the opposite edge continues to move in the direction of movement. Up one
Screen (US), Down one Screen (DS), Left one Screen (LS) and Right one Screen (RS)
cause the right or bottom margin to extend or reduce as appropriate. Note that if the
right or bottom edge is against the right or bottom edge of the session, then the
window is made larger by "pushing" the left or top edge away as applicable.

Trace windows are read-only; however, it is possible to edit the currently traced object
by hitting Edit (ED) while the cursor is on the first column of any line or by hitting ED
while the cursor is on the name of the object. However, both in the Editor and Trace
windows individual breakpoints (aka Stops) can be set and unset using the Toggle
Breakpoint (BP) command. The Clear Breakpoints (CB) command will cause all
breakpoints in the current object to be cleared. Note that by default there is no visible
indication that either of these commands has been run; however, the output from
OsTop will show whether either of these commands has been run. See "Configuring the
Editor" for more details.

Edit windows and the session are read-write. By default input lines are in insert mode.
It is possible to toggle to overwrite mode by using the Insert Toggle (IN) command.
Note that this mode allows you to generate those overstrike APL characters which are
supported by Dyalog APL; attempting to overwrite an existing character with one that
does not form a valid APL character results in the original character being replaced with
the newly-typed one. Destructive Backspace (DB) and Delete Item (DI) delete the
character immediately before the cursor and the character under the cursor
respectively. It is possible to define keycodes for Insert Item (I) and Non-destructive
Backspace (NB) and Non-destructive Space (NS) but these are not in general use.
Destructive Space (DP) is mapped to the Spacebar.

In an edit window Toggle Localisation (TL) will add the name currently under the cursor
to the end of the header line so as to localise that name if it was not already present in

the header; if the name is present in the header, it is removed from the header. Redraw
(RD) causes the function to be reformatted, with indentations added etc.

It is possible to move or copy a line or a block of lines from one window to the other. It
is also possible to Cut (CT) from the cursor position to the end of the line and to Paste
(PT) the cut text; however, there is no other mechanism for selecting parts of a line,
although you can use the mouse and the facilities of the terminal window or emulator
to move partial lines around. In this case you may find that it is best to have the editor
or tracer windows maximised to avoid copying the line drawing characters that form
the outline of the edit or trace windows too; Zoom (ZM) toggles windows between
maximised and standard size.

2025-10-30 (main:e0843eae32) Page 13

UNIX User Guide

Use the Tag (TG) command to select contiguous lines of text; identify the initial line
with TG, move to the last line you wish to highlight and hit TG again. The next TG
command only removes the tagging from the currently tagged block - it does not clear
and initiate another selection. For Copy (CP) or Move (MV) move to the line
immediately above where the text is to be placed, and hit CP or MV as appropriate. Use
Delete Block (DK) to delete the highlighted lines. Note that it is possible to copy or
move text between edit windows and the session.

Comments can be aligned to the column where the cursor is by hitting Align Comments
(AC). Comments that appear in columns which precede the first tabstop are aligned to
column 1.

Text searches can be made in all windows; the Search (SC) command defines the search
string; hitting Enter (ER) to complete the definition also moves the cursor to the next
instance of the search string in a forward direction. The Next (NX) and Previous (PV)
commands moves the cursor to the next or previous instance of the search string;
when there are no more instances in the specified direction the error field will contain
either No Match~ or «No Match.

Strings can be replaced in the Editor and Session windows; the cursor must be at the
start of an instance of the search string. Replace (RP) command is used to specify the
replacement string; if the cursor is at the start of an instance of the search string, that
instance will be replaced with the replacement string. The Repeat (RP) command (also
called Do) is used to make additional replacements. The Repeat All (RA) command will
replace all instances of the search string with the replacement string in the current
object, both forwards and backwards from the current position; in this case the cursor
does not need to be at the start of an instance of the search string.

For both the Search and Replace commands EP is used to clear the definition of the
appropriate string; the entire field will be removed from the status line.

Dyalog APL responds to weak and strong interrupts; the ki L | operating system
command can be used to send a signal 2 (SIGINT) or 3 (SIGQUIT) respectively, or the
user can hit the intr or quit keystrokes. The current mappings for these two keystrokes
can be seen by running the operating system command stty -a. The most common
keystrokes for intr and quit are Ctrl-C and Ctrl-\ respectively. Note that when using
PUTTY it will be necessary to swap out of the APL keyboard to generate these
keystrokes.

The tables below show the keystrokes that can be used in the different windows.

2025-10-30 (main:e0843eae32) Page 14

UNIX User Guide

3.1 Commands Common to all Window Types

Command |Code Description

LC

RC
ucC
DC

Left/Right/Up/Down one character

LS
RS
us
DS

Left/Right/Up/Down one screen

UL/DL move the cursor up/down (respectively) to the limit
in that direction.
LL moves the cursor left to the first of:

e the start of the content of the line

e the six space prompt (except when in the Editor, in
Cursor Move which case this is skipped)

o the left edge of the session

LL
RL RL moves the cursor right to the first of:
UL
DL o the end of the content of the line excluding space
characters
¢ the end of the content of the line including space
characters
e the six space prompt (only when the cursorison a
blank line)
Pressing LL or RL multiple times progresses through the list
in the order shown above.
HO Home Cursor either to the six space prompt in the Session
or to the top left corner of the object.
Toggle line Turn line numbers on or off in all trace and edit windows.
LN . .
numbers This can be done from the session too

Causes APL to redraw the session, removing all extraneous
SR text that has come from external sources and resetting the
session display

Screen
Refresh

2025-10-30 (main:e0843eae32) Page 15

UNIX User Guide

3.2 Window Commands

Command

Code

Description

Move between

B

Move to next window in loop

Windows BT Move to previous window in loop
JP Jump - toggle between session and current window
ZM | Zoom - toggle window to full size and back
Move/Resize:
) LC/RC/UC/DC: move window in that direction
Alter Windows
MR

LS/RS/US/DS: move bottom right hand corner in
selected direction relative to top left hand corner

EP: exit move/resize mode

3.3 Session Commands

Command Code Description
FD Show next line in input history
Redo/Undo
BK Show previous line in input history

2025-10-30 (main:e0843eae32)

Page 16

UNIX User Guide

3.4 Editor Commands

Command |Code Description
ED |Start Editor
Start/Stop EP Fix and Close
QT | Abort and Close
Fix function | EX Cau:f,es the function to be fixed, without quitting the edit
session
FD Reapply last change
Redo/Undo
BK Undo last change (where possible)
MO When on the first or last line of a control structure, move
Outlines to the opposite end
TO | Open/Close outlined blocks
For traditional functions, the name under the cursor is
Toggle local |TL either added or removed from the list of localised names
on the function's header line
Toggle . .
Breakpoint BP | Toggles a breakpoint on the current line
Clear L .
. CB | Clears all breakpoints in the current object
Breakpoints
Opens a line underneath the current line; in insert mode
Open Line OP [moving to the end of the line and hitting ER is equally
effective
Causes the function to be reformatted, with corrected
Reformat RD . .
indentation etc.
AC | Align comments to current column
AO Add comment symbol at start of each tagged or current
Comments line
Remove comment symbol which is first non-space
DO .
character on each tagged or current line

2025-10-30 (main:e0843eae32)

Page 17

UNIX User Guide

Note

1. The editor can also be started using) ED or JED. Hitting ED in the session with a
suspended function on the stack will open the editor on that function; this is
called Naked Edit.

2. By default, outlines are not shown. See "Configuring the Editor" for further
details.

3. By default, there is no visual indication that a breakpoint has been set, although
OsTopr will show the breakpoints. However, it is possible to view breakpoints -
see "Configuring the Editor" for further details.

4. AO, DO, RD only work in 13.1 onwards

3.5 Tracer Commands

Command Code Description

TC Start Tracer

Start/Stop Cut stack back to calling function; close all windows to

EP

match new stack status

ER Execute current line

TC Trace into any and all functions on current line
Execution

FD Skip over current line

BK [Skip back one line
Toggle . .
Breakpoint BP | Toggles a breakpoint on the current line
Clear

. CB Clears all breakpoints in the current object
Breakpoints

RM Resume Execution - do not show trace windows on next
Continue error or stop

BH [Run to Exit - but show trace windows on error or stop

2025-10-30 (main:e0843eae32) Page 18

Note

3.6 Search and Replace Commands

UNIX User Guide

1. Hitting TC in the session with a suspended function on the stack will open one
trace window for each function on the stack; this is called Naked Trace.

2. By default, there is no visual indication that a breakpoint has been set, although
OsTop will show the breakpoints. However, it is possible to view breakpoints -
see "Configuring the Editor" for further details.

Command

Code

Description

SC

Search: having hit Search, type string to search for, and ER

to find first occurrence. EP clears the field

Define string

Replace: having hit Replace, type string to replace current

2025-10-30 (main:e0843eae32)

RP | search with; change will be effective once ER is hit. EP clears
the field
NX | Locate next match downwards
Find and PV Locate previous match upwards
Replace RT |Repeat (Do) the same action again
RA |Repeat all - in both directions
Note

1. Applies to session, editor and tracer
2. Applies to the session and editor only
3. Caution: the Repeat All replaces ALL matches in the current object

Page 19

UNIX User Guide

3.7 Session-related Commands

Command |Code Description

Tag (highlight) blocks of text. Hit TG on initial line, move to
Selection TG last line to be tagged and hit TG again. Next TG clears the
current tagging rather than initiating a new tag

Ccp Copy highlighted block to below current line

Block DK | Delete highlighted block
commands
MV | Move the highlighted block to below the current line
Cut and CT Cut from current cursor position to end of line
Paste PT |Paste last Cut text immediately after cursor

3.8 Screen Manager Commands

Command Code Description

With non-empty 0OsM, toggle between OsSM
window and trace/edit/session window. HK is a
valid exit key for SR , but using it as such can be
confusing !

Move between [ISM
and session/trace/ HK
edit windows

EP QT

Exit k
xit keys ER

Default exit keys for OSR

2025-10-30 (main:e0843eae32) Page 20

UNIX User Guide

4 Starting APL

By default, to start the non-GUI versions of Dyalog APL, run the mapl script which is in
the installation directory of Dyalog APL.

EXAMPLE
$ /opt/mdyalog/20.0/6%/unicode/mapl

The mapl script is supplied so that the user can start to use Dyalog APL immediately
once the terminal environment has been setup. However, it should be treated more as
a template for creating a startup script more appropriate for the environment and
purposes that Dyalog will be used for.

The startup script usually sets a number of environment variables, and then calls the
interpreter with one or more of its parameters. Although all the examples are written
using the Korn shell, any shell can be used.

Note that under Microsoft Windows parameters appear after the name of the
executable; this is not supported under UNIX, where values must be passed as
environment variables.

The parameters are listed in the table below; the more frequently used environment
variables are included in the following section.

Table: Parameters for the mapl or dyalog script:

2025-10-30 (main:e0843eae32) Page 21

UNIX User Guide

Parameter Purpose

Start APL using the terminal development environment. This is not
-tty necessary unless the wine (-wine) or MainWin (-mainwin) versions
are installed too.

Causes dyalog.rt (the server version) to be started. This parameter is
for backwards compatibility; the use of the -rt or -server parameter
is recommended. See also the Note at the bottom of this table.

-c-rt-
server

Any other parameter that starts with a "-" will be passed to the
-* interpreter; all parameters that start with a "-" will be passed before
any parameters that do not start with a "-".

This is usually the name of the workspace that is to be loaded when
the interpreter is started. Unless the "-x" flag is passed to the
interpreter, the latent expression in the workspace will be executed
once the workspace has been loaded.

Note

The -c parameter has different uses depending on whether it is passed to the

mapl script, or to the dyalog executable.

Table: Parameters for the Dyalog interpreter:

2025-10-30 (main:e0843eae32) Page 22

UNIX User Guide

Parameter Purpose

A Start in "User mode". If not present, then APL will start in
"Prog(rammer) mode". See the section on 1/0 for further details.

-b Suppress the banner in the session.
Comment: the "-¢" and anything following it will be treated as a
comment, but will show up in a long process listing. By adding a

-C suitable comment the user or system administrator can uniquely
identify the individual APL processes. See also the Note above this
table.

-Dw Check workspace integrity on return to session input.

DW Check workspace integrity after every line of APL (application will run
slowly as a result)

-DK Log session keystrokes in (binary) file ./apllog .
Continue to run even if an error causes a return to the six-space

-q prompt. Used when redirecting input to the session from a pipe or
file.

N A return to the six-space prompt will result in the interpreter

d terminating.

-S Turn off the session: APL acts similarly to a scrolling terminal.

+s forces APL to enable the session.
Do not execute the latent expression of any workspace that is) LOAD

-X ed or OLOAD ed. This applies to every) LOAD or OLOAD during the life
of the APL session.
This is assumed to be a workspace which will be loaded once the

ws interpreter has started. Unless the -x parameter is included on the
command line, the latent expression will be run.

-cef / -apl |See the Dyalog Version 17.0 Release Notes for more information

EXAMPLES
mapl dfns

MAXWS=2G mapl dfns
MAXWS=2G DEFAULT_IO=0 mapl -x dfns

2025-10-30 (main:e0843eae32) Page 23

UNIX User Guide

5 Configuring the Editor

The editor in non-GUI versions of Dyalog APL can be considered to have 5 separate
functional columns. Below is the contents of the editor window, which shows the
namespace ns, which has two traditional-style functions and one dfn. The statement 5
OSTOP 'ns.fn1' has been run too:

[o] :Namespace ns

(1] [o] F V r<fnl a

[21 [11 } :If a=1

[31 [21 | rei

(4] [3] | :Else

[5] [4] F :If today='Friday'
[6] [5] o re2
[71 [61 } :EndIf
(81 [71 } :EndIf

[9]1 [8] F v

[10]

[11] [0] dfn<{o+w}
[12]

[13] [0] F V rea fn2 w
[14] [1]1 | rea+w

[15] [2] |} v

[16] :EndNamespace

This is formed of 5 separate columns:

2025-10-30 (main:e0843eae32) Page 24

UNIX User Guide

[T T T T 1
[c1 |c2 |c3 |cu|cs |
I —t+—+— |
[[o1 | | | |:Namespace ns |
[[1]1 |Co]] [F | V r<fnl a |
[[21 |C1]] [k | (If a=t |
|C31 [r21] || | r+1 |
[fw1 |C3]]] | :Else |
[[51 |[4]] [k | :If today='Friday'|
|te1 [rs1] o] | r«2 |
|71 ltell |+ | :EndIf |
lt81 [t71] |} | :EndIf |
Co1	81 [F]	v	
ctol]			
tee1fco1]		dfne{a+w}	
ce21]			
[[131]C0]] [F	V r<a fn2 w		
Ceed	Ce2]		
C1s1fc21] [k v			
[[16]] | | |:EndNamespace |
L | | | | |
Functional Value (see Purpose
Column below)
C1 4 Line numbers for entire object
2 64 Line numbers for functions etc. within scripted
namespaces
C3 2 Trace/Stop points
c4 8 Control Structure Outlining
5 16 Text (or content)This value is ignored; this
column is always present

It is possible to control at startup time which of these columns are visible. By default,
for all types of object, only the text column is visible; this can be overridden on a per-
object basis by setting one or more of the EDITOR_COLUMNS_ variables listed in Table
E5. The value of these variables is the sum of the values for each of the columns which
are desired.

2025-10-30 (main:e0843eae32)

Page 25

EXAMPLES

UNIX User Guide

EDITOR_COLUMNS_NAMESPACE=94 shows all columns (the first example in this

section)

Various values for EDITOR_COLUMNS_FUNCTION

Value

Editor window appearance

fnl a

(I a=1
b2

:EndIf

22

[0] fnl a
[1] :If a=1
[2] © b2
[3] :EndIf

26

fnl a

(If a=1
o) be2

:EndIf

40

[0] fnl a

[2] ©
[3]

[1] [If a=1

b2
:EndIf

2025-10-30 (main:e0843eae32)

Page 26

UNIX User Guide

6 File Permissions and FSTAC

Dyalog APL is a well behaved UNIX program and honours all standard UNIX file
permissions. Commands such as OFLIB and)LIB read the magic number (the first few
bytes) of each file in the directory in order to determine whether each file is a
component file or workspace respectively; if the APL process cannot read those bytes,
then it will assume that the file is not a component file or workspace.

Under UNIX, the first element of OAI is the user's effective uid, and OAN reports the
user's real name, as it appears in /etc/passwd. When a component file is newly
created, its UNIX file permissions will be defined by the umask for the effective user id.
The APL file access matrix will be (0 3p0), which means that even if the user's UNIX
file permissions are such that anyone can read and write to the file, only the user in
question will be able to access the file using Dyalog APL component file system
functions. To allow any user to access the file (assuming that the UNIX file permissions
are suitable) then run

(1 3p0 ~1 O)OFSTAC tieno

Any user with an effective uid O will be able to access any component file, irrespective
of the file access matrix.

2025-10-30 (main:e0843eae32) Page 27

UNIX User Guide

7 Calling UNIX Commands

Note that OSH calls /bin/sh; this cannot be altered.

If the command, or command pipe issued using OSH exits with a non-zero exit code,
then 0OsH will terminate with a DOMAIN ERROR, and all output from the command will be
lost. To avoid this, add an exit 0 to the end of the command string, and the DOMAIN
ERROR will be suppressed. However, this technique does require that some other
method is used to determine that the command pipe failed. Example:

pSH 'grep no_such_user /etc/passwd'
DOMAIN ERROR
pSH 'grep no_such_user /etc/passwd'

A

but

pOSH 'grep no_such_user /etc/passwd ; exit O
0

If you are interested in the exit code from the command pipe, rather than any partial
output, then, in Version20.0 onwards [DMX . Message has the exit code at the end of the
text. Dyalog intends that this value will appear in a more user-friendly form in JbMX at
some point.

Example:

z+«JSH 'exit 17'
DOMAIN ERROR
[DMX .Message
Command interpreter returned failure code 17

OsH only captures stdout; unless redirected, any output on stderr will appear in the
same terminal window as the session; hitting RD (default Ctrl-L) will force a screen
redraw, thereby returning the session to its state before the error output appeared.

2025-10-30 (main:e0843eae32) Page 28

UNIX User Guide

7.1 osw and starting jobs in background

It is possible to run tasks from within APL using OSH:
(SH'myjob'

However, in this case, APL will wait until myjob has completed, and will return the
output from myjob (assuming that is that myjob completes with a non-zero exit code).
It is possible to start a job that will run in background, without APL waiting for that job
to complete, with the job continuing even if APL is terminated:

Example:
0OSH 'sleep 40000 </dev/null >/dev/null 2>&1 &'

More useful might be to save the stdout and stderr of the command, and pipe the
input in from a file; it might also be useful to have the job continue to run even after
the user has both quit APL and logs out from the server:

0OSH 'nohup myjob <my.in >my.out 2>my.err &'

2025-10-30 (main:e0843eae32) Page 29

UNIX User Guide

8 Signals and Trap

8.1 Signals and orrae

Certain signals sent to a Dyalog APL process can be trapped and an event issued. These
signals are:

1 SIGHUP
2 SIGINT

3 SIGQUIT
15 SIGTERM

No other signal is trapped by the interpreter; their default action will occur. For
example when a Dyalog APL process receives a SIGSEGV (11) then it will terminate with
a segmentation fault. Note that SIG_USR1 is used by the interface between Dyalog APL
and Auxiliary Processors: sending this signal to the interpreter may have "interesting"
consequences.

The mapping between these signals and the event issued is non-trivial:

o |f a SIGHUP is received, then the input stream is closed immediately, and an
event 1002 will be issued at the end of the current line of code. Any subsequent
attempt to read from the session will result in an EOF INTERRUPT being issued.

o If a SIGINT is received, then execution will end at the end of the current line of
code. An event 1002 will be issued.

e If a SIGQUIT is received, then APL will terminate executing the current line of
code as soon as possible - usually at the end of the current built-in command,
and an event 1003 will be issued. However, if the end of the current line is
reached, then an event 1002 will be signalled too.

o |[f a SIGTERM is received, then the input stream is closed immediately, and an
event 1002 will be issued at the end of the current line of code. Any subsequent
attempt to read from the session will result in an EOF INTERRUPT being issued.

2025-10-30 (main:e0843eae32) Page 30

UNIX User Guide

8.2 uo07:

To aid the programmer in determining which signal was issued, the newly implemented
system operator, z (I-Beam) has been extended to report this information.

WARNING: Although documentation is provided for I-Beam functions, any service
provided using I-Beam should be considered as "experimental" and subject to change -
without notice - from one release to the next. Any use of I-Beams in applications
should therefore be carefully isolated in cover-functions that can be adjusted if
necessary.

400716 can be used to identify which signals have been received by the APL process
and how many of them have been received. A side effect of calling 400718 is to reset all
counters to 0.

400716 returns a vector of integers; the length is dependent on the APL interpreter and
the operating system, but is typically 63 or 255 elements long. Each element is a count
number of each signal received and processed by the interpreter. Note that when a
SIGQUIT is received by APL the count for both SIGINT and SIGQUIT will be incremented
by one.

EXAMPLE

81400716
15300000

This means that since either the start of the current APL process, or since the last
invocation of 4007z APL has processed 1 SIGHUP, 2 SIGINTs and 3 SIGQUITs.

It is recommended that rather than trapping either event 1002 or 1003, the user traps
event 1000, and queries the vector returned by 400718. In particular if a SIGHUP or a
SIGTERM has been received, then the user's code should terminate the application as
soon as possible, and should be careful to avoid requiring input. SIGHUP has either
been issued using the kill(1) command, or because either the device at the other end of
the connection or the connection has terminated. This used to be common with serial
or dialup terminals, but is now most frequently seen when terminal emulators or the
PCs on which they run are terminated.

2025-10-30 (main:e0843eae32) Page 31

UNIX User Guide

9 BuildID

Each interpreter has its own unique BuildID. This is a 32-bit checksum of the program
file which is the Dyalog APL interpreter. This checksum allows Dyalog Ltd. support staff
to uniquely identify the interpreter and from that determine the version, edition,
platform etc. of the interpreter.

For that reason, Dyalog Ltd. support staff ask that whenever an issue is raised with
them that the BuildID is included in all communications.

The BuildID is included in binary form in any aplcore that is generated; if a core file is
created, then is it possible to identify the BuildID using the following command:

$ strings -a -n 14 core | grep "BuildID="

Additionally, the BuildID is included in the "Interesting Information" section of aplcore
files provided that the environment variable APL_TEXTINAPLCORE is set to 1.

The BuildID can be identified both from within the interpreter (using the GetBuildID
method), and also from the BuildID executable which is supplied with the product on
UNIX.

Both of these methods can be used for any file; they are useful and very fast ways of
keeping track of workspaces versions etc. although md5sum and others may be more
appropriate.

EXAMPLES

At the command line:

$ cd /opt/mdyalog/12.1/32/classic/pé
$./BuildID dyalog

70a3k4k46e

$./BuildID magic
0a744663

In APL:

2025-10-30 (main:e0843eae32) Page 32

UNIX User Guide

+2 ONQ '.' 'GetbuildID'

70a3k4k6e
magicfile«'/opt/mdyalog/12.1/32/classic/p6/magic'
+2 [ONQ '.' 'GetBuildID' magicfile

0a744663
)SH

$ echo $PPID

$ kill -11 $PPID

/opt/mdyalog/12.1/32/classic/p6/mapl[58]: 274434 Segmentation fault(core
dump)

$ strings -a -ni4 core | grep BuildID=

BuildID=70a34k46e

2025-10-30 (main:e0843eae32) Page 33

UNIX User Guide

10 Core and APLCore Files

When Dyalog APL encounters an unexpected problem it is likely that the interpreter
will terminate and generate either a core file or an aplcore file. Under Linux core files
are not created by default; it is necessary to enable their creation.

An aplcore file contains the workspace at the point where the interpreter terminated,
along with debug information that may enable Dyalog to identify and rectify the
problem.

The Dyalog support department (support@dyalog.com, other means of contact on the
Dyalog website) should be contacted if an aplcore file is generated. More immediately
it may be possible to copy the contents of the aplcore into a new Dyalog process by
running

)COPY aplcore

Note however that it is possible that the)copy itself will cause another aplcore; it is
best to rename the original aplcore before attempting this course of action.

From Version 13.2 onwards in situations where a core file is generated, an aplcore file
will be generated too; this is done by forking the failing APL process, so an additional
APL process will appear in any process listing while the aplcore is being created. If the
environment variable APL_TEXTINAPLCORE is set and has the value 1 then an
"Interesting Information" section is appended to the aplcore which contains
information such as the APL stack, the WSID of the originating workspace etc. This
section can be extracted from an aplcore using

sed -n '/======== Interesting Information/,$p' aplcore

2025-10-30 (main:e0843eae32) Page 34

UNIX User Guide

11 Appendix A

Keycodes, their common keystrokes, and the keystrokes specific to terminal emulators
under Linux GUIs.

11.1 Notes

1. APL represents the metakey used as the APL character and command shift

2. Cmd represents the keystroke Ct ril+x

3. CMD represents the keystrokes Ctrl+x Ctril+x

4. The file $DYALOG/aplkeys/xterm is certain to be up to date and should be
treated as the definitive source of the keycode-keystroke translations

2025-10-30 (main:e0843eae32) Page 35

UNIX User Guide

Keycode Command Common keystrokes | Terminal Emulator
AC Align Comments Cmda

AO Comment Out Cmd,

BH Run to Exit Cmd < APL+Left

BK Back Cmdb APL+Up

BP Toggle Breakpoint CMDb APL+Backspace
BT Back Tab Window CMD Tab Shift+APL+Tab
CA Cut to Capsule

CB Clear Breakpoints CMDB Shift+APL+Backspace
Ccp Copy Cmdc APL+Insert

CcT Cut CMD ¢ Shift+APL+Delete
DB Backspace Backspace

DC Down Cursor Down

DI Delete Item Delete

DK Delete Block Cmd Delete APL+Delete

DL Down Limit Ctrl+Down Shift+APL+PgDn
DO Uncomment Cmd.

DS Down Screen Shift+Down APL+PgDn

ED Edit Cmde APL+Enter

EL Empty line

EP Escape Esc Esc

ER Enter Enter

FA Save File (As) in Editor

FD Forward Cmd f APL+Down

FS Save File in Editor

FT Cycle Focus

FX Fix Cmd x

HK Hot Key (0OSM) Cmdu

2025-10-30 (main:e0843eae32)

Page 36

UNIX User Guide

Keycode Command Common keystrokes | Terminal Emulator
HO Home Cursor Cmdh

IG Ignore next

IL Insert Line

IN Insert Mode Cmdi

IT Inline Tracing Cmd k

JP Jump Cmdj

LC Left Cursor Cursor Left

LL Left Limit Ctrl+Left Shift+APL+Home
LN Line Numbers Cmd| APL+Numpad+-
LS Left Screen Shift+Left APL+Home

MA Resume All Threads

MO Move to Outline CMD % Shift+APL+Space
MR Move/Resize CMD m

MV Move block Cmdm

NX Next Cmdn

OF Open File

oP Open line Cmdo

PL Previous Location

PT Paste CMDp Shift+APL+Insert
PV Previous Cmdp

QT Quit Cmdq APL+Esc

RA Repeat All CMDd

RC Cursor Right Right

RD Redraw Function CMDr APL+Numpad-/
RL Right Limit Ctrl+Right Shift+APL+End
RM Resume All Threads Cmd > APL+Right

Rn Replace, Move Next

2025-10-30 (main:e0843eae32)

Page 37

UNIX User Guide

Keycode Command Common keystrokes | Terminal Emulator
RP Replace String Cmdr

Rp Replace, Move Previous

RS Right Screen Shift+Right APL+End

RT Repeat (Do) Cmdd

S1 Fix Script, Exit

S2 Fix Script, Remain

SA Select All

SC Search Cmds

SR Redraw Screen Ctrl+ @

B Tab Window Cmd Tab APL+Tab

TC Trace Cmd Enter Shift+APL+Enter
TG Tag Cmdt APL+Numpad-*
TL Toggle Localisation CMD | APL+Numpad-+
TO Toggle Outline CMDo APL+Space

T Toggle Treeview

ucC Cursor Up Cursor Up

UL Up Limit Ctrl+Up Shift+APL+PgUp
us Up Screen Shift+Up APL+PgUp

M Zoom Cmd z Shift+APL+F12

2025-10-30 (main:e0843eae32)

Page 38

UNIX User Guide

12 Appendix B

Keycodes, their common keystrokes, and the keystrokes specific to the PUuTTY terminal
emulator.

12.1 Notes

1. APL represents the metakey used as the APL character and command shift

2. Cmd represents the keystroke Ct ril+x

3. CMD represents the keystrokes Ctrl+x Ctril+x

4. The file $DYALOG\aplkeys\xterm is certain to be uptodate and should be treated
as the definitive source of the keycode-keystroke translations

2025-10-30 (main:e0843eae32) Page 39

UNIX User Guide

Keycode Command Common keystrokes PuTTY
AC Align Comments Cmda

AO Comment Out Cmd,

BH Run to Exit Cmd <

BK Back Cmdb Shift+Ctrl+Backspace
BP Toggle Breakpoint CMDb Shift+End

BT Back Tab Window CMD Tab Shift+Ctrl+Tab
CB Clear Breakpoints CMDB

cp Copy Cmdc Ctrl+Insert

CT Cut CMD ¢ Shift+Delete

DB Backspace Backspace Backspace

DC Down Cursor Down

DI Delete Item Delete

DK Delete Block Cmd Delete Ctrl+Delete

DL Down Limit Ctrl+Down Ctrl+End

DO Uncomment Cmd.

DS Down Screen Shift+Down PgDn

ED Edit Cmde Shift+Enter

EP Escape Esc Esc

ER Enter Enter Enter

FD Forward Cmd f Shift+Ctrl+Enter
FX Fix Cmd x

HK Hot Key (0OsM) Cmdu

HO Home Cursor Cmdh

IN Insert Mode Cmd i

IT Inline Tracing Cmd k Alt+Ctrl+Enter
JP Jump Cmdj Shift+Ctrl+Home
LC Left Cursor Cursor Left

2025-10-30 (main:e0843eae32)

Page 40

UNIX User Guide

Keycode Command Common keystrokes PuTTY
LL Left Limit Ctrl+Left

LN Line Numbers Cmd |

LS Left Screen Shift+Left Ctrl+Left

MO Move to Outline CMD % Shift+Ctrl+Up
MR Move/Resize CMDm

MV Move block Cmdm Shift+Ctrl+Delete
NX Next Cmdn Shift+Ctrl+Right
oP Open line Cmdo Shift+Ctrl+Insert
PT Paste CMDp Shift+Insert

PV Previous Cmdp Shift+Ctrl+Left
QT Quit Cmdq Shift+Esc

RA Repeat All CMDd Ctrl+Down

RC Cursor Right Right

RD Redraw Function CMDr Shift+PgUp

RL Right Limit Ctrl+Right

RM Resume All Threads |Cmd >

RP Replace String Cmdr

RS Right Screen Shift+Right Ctrl+PgDn

RT Repeat (Do) Cmdd Shift+Ctrl+Down
SC Search Cmd s

SR Redraw Screen Ctrl+ @

B Tab Window Cmd Tab Ctrl+Tab

TC Trace Cmd Enter Ctrl+Enter

TG Tag Cmdt

TL Toggle Localisation CMD | Ctrl+Up

TO Toggle Outline CMDo Shift+Up

ucC Cursor Up Cursor Up

2025-10-30 (main:e0843eae32)

Page 41

UNIX User Guide

Keycode Command Common keystrokes PuTTY

UL Up Limit Ctrl+Up Ctrl+Home

uUs Up Screen Shift+Up PgUp

M Zoom Cmd z Shift+Ctrl+PgUp
12.2 Notes

o If you are using PUTTY or another emulator that uses the Dyalog Unicode IME, it
will be necessary to swap to a non-Dyalog APL keyboard before hitting Ctrl-I;
hitting Ctrl-1 while in a Dyalog APL keyboard will generate a Quad symbol.

2025-10-30 (main:e0843eae32)

Page 42

UNIX User Guide

13 Appendix C

Keycodes defined for Dyalog APL, but not used or should not be used in the Dyalog APL
tty version

2025-10-30 (main:e0843eae32) Page 43

UNIX User Guide

Key Code Command
AB Abort Changes (effectively same as QT)
CB Clear stop/trace/monitor
CH Change Hint
Dc Down with selection
DD Drag and Drop
DH Delete Highlighted section
DI Down Limit with selection
Dn Down Mouse keyn,ne 12345
Ds Down Screen with selection
EN End of Line
GL Goto Line
HT Horizontal Tab
IF Insert Off
Lc Left with selection
LI Left Limit with selection
LW Left Word
Lw Left Word with selection
MC Mode Change
PA Paste ANSI
PR Properties
PU Paste Unicode
Rc Right with selection
RI Right Limit with selection
RW Right Word
Rw Right Word with selection
ST Start of Line
TH Reverse Horizontal Tab

2025-10-30 (main:e0843eae32)

Page 44

UNIX User Guide

Key Code Command
UA Undo All
Uc Up with selection
ul Up Limit with selection
Un Up Mousekeyn,ne 12345
Us Up Screen with selection

2025-10-30 (main:e0843eae32)

Page 45

	Dyalog for UNIX
	UI Guide
	Contents

	Introduction
	Overview
	Entering Characters
	Recently-added Glyphs

	Entering Commands
	Notes

	Input Windows
	The Session window
	Edit windows
	Trace windows
	⎕SM (Screen manager) window

	Driving the tty version
	Commands Common to all Window Types
	Window Commands
	Session Commands
	Editor Commands
	Tracer Commands
	Search and Replace Commands
	Session-related Commands
	Screen Manager Commands

	Starting APL
	Configuring the Editor
	File Permissions and FSTAC
	Calling UNIX Commands
	⎕SH and starting jobs in background

	Signals and Trap
	Signals and ⎕TRAP
	4007⌶

	BuildID
	Core and APLCore Files
	Appendix A
	Notes

	Appendix B
	Notes
	Notes

	Appendix C

