
Dyalog for UNIX
Installation and Configuration Guide

Dyalog version 20.0

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2025 by Dyalog Limited
All rights reserved.

Dyalog for UNIX Installation and Configuration Guide

Dyalog version: 20.0
Document Revision: 2025-10-30 main:e0843eae32

Unless stated otherwise, all examples in this document assume that ⎕IO ⎕ML ← 1

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle®, MySQL, and Java™ are registered trademarks of Oracle and/or its affiliates.
JavaScript™ is a trademark of Oracle Corporation.
Unicode is a registered trademarks of Unicode, Inc. in the U.S. and other countries.
UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively
through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark of Microsoft Corporation in the U.S. and other
countries.
macOS® and OS X® (operating system software) are registered trademarks of Apple Inc.
in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Except where otherwise noted, this content is licensed under a Creative Commons
Attribution 4.0 International licence.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

2025-10-30 (main:e0843eae32) Page 4

Contents

1 Installation ... 6

1.1 Introduction .. 6

1.2 Installation .. 7

2 Dyalog Serial Number .. 13

3 Konsole .. 15

4 APL VNC RDP .. 17

5 PuTTY ... 18

6 Configuration Parameters .. 20

6.1 Introduction .. 20

6.2 Configuration Files .. 20

6.3 Environment Variables .. 23

7 Configuring the Editor .. 31

8 Starting from scripts .. 34

9 Magic ... 36

10 SE and SALT .. 40

11 HOME dyalog directory .. 41

12 QuadNA and UNIX ... 42

13 Miscellaneous .. 45

14 BuildID ... 46

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 5

1 Installation

1.1 Introduction

This manual is designed to assist users of Dyalog APL on platforms other than Microsoft
Windows. For further information, see the Dyalog UNIX and Linux forum.

The Dyalog for UNIX UI Guide and the Dyalog for Raspberry Pi User Guide are also non-
Windows specific. Users should also review the Dyalog Version 20.0 Release Notes and
the file dyalog_readme.htm. All of these files and the other Dyalog-supplied
documentation can be found in the directory $DYALOG/help, and are available online at
https://docs.dyalog.com/20.0. https://help.dyalog.com/20.0 contains an online help
system for the Dyalog APL documentation. These websites are updated from time to
time, and have the latest revisions of the documentation.

Version 20.0 supports Ride, the Dyalog Remote IDE, versions 3 or 4. Ride 3 is available
for Windows and macOS (it is the default interface on macOS), and Ride D4 is available
on Windows, Linux, macOS and Raspberry Pi; over time Dyalog intends to make Ride
the default interface under windows managers on all platforms. For more information
about Ride, see the Ride User Guide for more information.

Throughout the document the directory in which Dyalog APL has been installed is
referred to as $DYALOG; this is because it is the name of an environment variable,
whose value can most easily found by running the following expression in Dyalog:

Two versions of the interpreter are shipped with each Dyalog APL release: the
development version and the server version.

The server version has the same functionality as the development version, other than
that any attempt to read from the session, or use ⎕SM or use ⎕ARBIN will result in an
EOF INTERRUPT. It is mainly intended for using Dyalog APL as a server process, where
all I/O is processed using TCPSockets, or possibly via an auxiliary processor written by
the user. Dyalog recommends using Conga in preference to native TCPSockets.

There are different licences associated with the development and server versions,
which affects how each might be distributed. For more information, please contact
sales@dyalog.com.

+2 ⎕NQ '.' 'GetEnvironment' 'DYALOG'

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 6

https://forums.dyalog.com/viewforum.php?f=20
https://docs.dyalog.com/16.0
https://help.dyalog.com/16.0
https://dyalog.github.io/ride

All examples are written assuming that the Korn shell is being used.

1.2 Installation

This manual covers the installation of the non-GUI version of Dyalog APL on AIX, and on
Linux distributions which use either .rpm or .deb files for installing software. If you are
using a Linux distribution which uses some other method, or you wish to have a non-
default installation, then there are some suggestions about how such an installation
might be completed.

Dyalog APL version 20.0 is supplied in either 32 or 64 bit versions, and in either Classic
or Unicode editions. The installation procedure for Dyalog APL is the same in each case.
Note that the 64-bit versions of Dyalog APL will only run on a 64-bit operating systems;
the 32-bit versions of Dyalog APL will run on both 32 and 64 bit operating systems.

It is assumed that in all cases the installation image has been downloaded into /tmp on
the local machine.

The default installation subdirectory will be formed as:

or, in the case of AIX:

So for example, Dyalog APL Version 20.0 32 bit Unicode for POWER6 hardware on AIX
will by default be installed into

whereas on a Linux distribution the equivalent version would be installed in

This naming convention began with Version 12.0, and is planned to continue into the
future. This ensures that all versions and releases of Dyalog APL can be installed in
parallel.

As part of installing Dyalog on Linux (including Pi) the script /usr/bin/dyalog is created;
this is a copy of the $DYALOG/mapl script and can be used to start Dyalog APL. Note
that this script will start the most recently installed version of Dyalog APL. This script is
used in the target of the Dyalog APL icon on Linux desktops. If preferable, Dyalog can
be started by calling the script mapl in the appropriate Dyalog installation directory.

/opt/mdyalog/20.0/<APLWidth>/<APLEdition>

/opt/mdyalog/20.0/<APLWidth>/<APLEdition>/<platform>

/opt/mdyalog/20.0/32/unicode/p6

/opt/mdyalog/20.0/32/Unicode

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 7

When supplying updates or fixes, Dyalog issues a full installation image; this means that
any file under the installation subdirectory may be overwritten. It is therefore strongly
recommended that users do not alter issued files, as those changes could be lost if an
update is installed.

Dyalog APL version 20.0 for Linux is supplied as a zip file which contains both a .deb-
and a .rpm-based installation image.

Installing under AIX

For each version of Dyalog APL on AIX three separate hardware-specific builds are
created for each of the four combinations of 32 or 64 bit versions, Classic or Unicode
editions. For version 20.0 specific builds for p5, p6 and p7 are created.

Dyalog APL is now installed. To run as any user, type

Version 20.0 is compiled on AIX6.1.

Installing on an RPM-based Linux Distribution

Dyalog APL is now installed. To run as any user, type

or

$ su -
cd /opt
cpio -icdvum </tmp/dyalog-20090901-64-unicode-p6.cpi
/opt/mdyalog/20.0/64/unicode/p6/make_scripts
exit

$ /opt/mdyalog/20.0/64/unicode/p6/mapl

Note

$ unzip linux_64_15.0.26964_unicode.zip
$ sudo rpm --install linux_64_15.0.26964_unicode.x86_64.rpm

$ dyalog

$ /opt/mdyalog/15.0/64/unicode/mapl

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 8

It may be necessary to use the --force flag or equivalent if an earlier version of
Dyalog APL is to be installed on the same server as a later version. This is safe
since the versions have no files in common.
It has been noticed that in some circumstances the 32-bit installs fail on 64-bit
operating systems due to a missing ncurses package. However, it appears that
that package is indeed installed. What is required however is the 32-bit version:
once installed, Dyalog APL will then install.

Installing on a DEB-based Linux Distribution

Dyalog APL is now installed. To run as any user, type

or

It may be necessary to use the --force flag or equivalent if an earlier version of
Dyalog APL is to be installed on the same server as a later version. This is safe
since the versions have no files in common.
If dpkg generates dependency errors, run apt-get install -f (as root)
It has been noticed that in some circumstances the 32-bit installs fail on 64-bit
operating systems due to a missing ncurses package. However, it appears that
that package is indeed installed. What is required however is the 32-bit version:
once installed, Dyalog APL will then install.

Installing in a non-default location

It is possible to install Dyalog APL for UNIX in non-default locations, without the need
for root privileges.

For all UNIXes,

Note

•

•

$ unzip linux_64_15.0.26964_unicode.zip
$ sudo dpkg --install linux_64_15.0.26964_unicode.x86_64.deb

$ dyalog

$ /opt/mdyalog/15.0/64/unicode/mapl

Note

•

•
•

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 9

For AIX:

For .deb based Linux distributions:

For .rpm based Linux distributions

For all UNIXes:

This last step generates the mapl script; should you chose to move the installation
directory, it will be necessary to re-run the make_scripts script so that the environment
variable $DYALOG is set correctly.

Deinstalling Dyalog APL

In the following examples, it is assumed that only Dyalog APL 14.0 64-bit Unicode is
installed on the server; the commands to delete directories will need to be more
specific if multiple versions of Dyalog APL are installed.

Should it be necessary to deinstall Dyalog APL, then the process is:

Deinstalling under AIX

Deinstalling on an RPM-based Linux Distribution

cd <directory under which I wish to install Dyalog APL>

cpio -icvdum <installation_image.cpi

/usr/bin/dpkg --extract installation_image.deb

rpm2cpio installation_image.rpm | cpio -icdvum

find opt/mdyalog -name make_scripts -exec {} \;

su -
cd /opt
rm -rf mdyalog/14.0

su -
rpm -e dyalog.32.classic-14.0-20090901
cd /opt
rm -rf mdyalog/14.0
exit

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 10

Deinstalling on a DEB-based Linux Distribution

Upgrading APL

Applying a later release of the same version

In general Dyalog will issue a new installation image if a problem is discovered which
requires a new version of the interpreter. Dyalog recommends that the entire
installation image is installed over the existing installation, but that is not essential.
Particularly in a live environment it may be preferable to install only a revised
interpreter. This can be done by extracting the individual files from the installation
image, and copying them into the correct place in the installation directory tree. To
apply a fix image, run the appropriate installation command with the -force option if
appropriate. Be aware: the process of installing a later installation image over an
already installed version of Dyalog APL WILL result in all files being overwritten. If you
have changed any, it will be necessary to take copies of them, and then to reapply local
alterations to the new files. Please contact support@dyalog.com for further advice.

For rpm-based installation, run

For deb-based installation, run

See https://packages.dyalog.com/ for details of updating on the Pi.

Upgrading from an earlier version

Newer versions of Dyalog APL will be placed in new subdirectories, rather than in the
same location as the currently installed versions. This means that both old and new
versions can be run in parallel, but extra disk space in /opt will be required to cater for
the multiple releases. Note however that once a workspace has been saved in a later
version of Dyalog APL, it is most likely that it will not be possible to)LOAD or)COPY the

sudo su -
apt-get purge dyalog-unicode-140
cd /opt
rm -rf mdyalog/14.0
exit

sudo --Uvh <new installation image>

sudo dpkg -i <new installation image>

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 11

workspace by an earlier version. Once happy with the new version, then de-install the
earlier version.

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 12

2 Dyalog Serial Number

If you have registered your copy of Dyalog or have a commercial licence then you will
have been sent a Dyalog serial number; this serial number is individual to you and
corresponds to the type of licence that you are entitled to use.

Dyalog Ltd recommends setting the serial number either by editing a file containing the
serial number directly or by running a function in a Dyalog Session to update the file
containing the serial number. The next time Dyalog is started after setting the serial
number, the DYALOG_SERIAL environment variable is set to the contents of this file.
However, if the DYALOG_SERIAL environment variable already exists and has a non-
empty value, then its value is not updated.

In a multi-user environment it might be desirable to set the DYALOG_SERIAL
environment variable in a system configuration file so that the serial number is held in
a single location.

To set your Dyalog serial number by editing the serial number file directly, edit the
$HOME/.dyalog/serial1 text file so that it contains just the string serialnumber,
where serialnumber is your Dyalog serial number.

To set your Dyalog serial number from within a Session:

where serialnumber is your Dyalog serial number. This updates the value stored in the
serial number file $HOME/.dyalog/serial. To complete the process you must exit and
restart the Session.

When you start a Session, your serial number is displayed in the banner . To see your
serial number at any time, enter:

or

⎕SE.Dyalog.Serial serialnumber

+2⎕NQ'.' 'GetEnvironment' 'DYALOG_SERIAL'

1 $HOME/.dyalog/serial is the default location for your serial number file but you can set
the DYALOG_SERIALFILE environment variable to point to any other valid location.

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 13

Using or entering a serial number other than the one issued to you is not

permitted. Transferring the serial number to anyone else is not permitted.For the

full licence terms and conditions, see: https://www.dyalog.com/uploads/

documents/Terms_and_Conditions.pdf

⎕SE.Dyalog.Serial ''

Note

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 14

https://www.dyalog.com/uploads/documents/Terms_and_Conditions.pdf
https://www.dyalog.com/uploads/documents/Terms_and_Conditions.pdf

3 Konsole

In order to support Dyalog APL for UNIX in a console/terminal window under a Linux
window manager, it is necessary to install and configure the Dyalog APL keyboard
support. Additionally it is possible to install the APL385 Unicode font, to be used
instead of the built in fonts which include APL characters.

3.1 Keyboard support

Dyalog submitted APL Language keyboard support to Xorg at the end of 2011; most
Linux distributions released after mid-2012 have the Dyalog APL keyboard support
included with the distribution. Such distributions include openSUSE 12.2, Ubuntu 12.10
and Fedora 17.

Support for the Key character was submitted to Xorg in mid-2014; if your distribution
does not support this character, contact Dyalog support for assistance.

Details of how to configure the keyboard under KDE4 appear below; keyboard support
for other window managers (such as Gnome and Unity) is in a state of flux. The latest
information about the process of installing and configuring Dyalog APL keyboard
support for such environments can be found at:

https://www.dyalog.com/forum/viewtopic.php?f=20&t=210

or by contacting Dyalog support. The same resources can be used to obtain information
and guidance on installing keyboard support for earlier Linux distributions.

3.2 Configuring the APL keyboard under KDE4

(These instructions were drawn up using openSUSE 12.2; other KDE4 environments
may vary slightly)

Select Configure Desktop
Select Input Devices
Select Keyboard
Select Layouts
Select the "Configure layouts" tickbox

•
•
•
•
•

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 15

Select Add
In the Add Layout dialog box, select the Layout "APL Keyboard Symbols", and
then the "dyalog" option
Close the Add Layout dialog box
The list of layouts should now include APL Keyboard Symbols, with one of the
dyalog variants.
Click on "Main shortcuts" in the "Shortcuts for Switching Layout" group; where
possible, Dyalog recommends selecting "Any Win key (while pressed)" so that
either Windows key causes APL characters to be generated.

3.3 APL font support

APL characters are available under Linux window managers. However some of the
characters may appear inelegant; most noticeable are very small "⋄" and overly large
"⌶". To resolve this, it is possible to use the Freemono fonts (these are installed by
default on some distributions (such as openSUSE)), or to download and install the
APL385 Unicode font. This font is freely downloadable from:

https://www.dyalog.com/apl-font-keyboard.htm

Details of how to install the font will appear in the documentation for your window
manager.

•
•

•
•

•

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 16

https://www.dyalog.com/apl-font-keyboard.htm

4 APL VNC RDP

Due to the different ways that Microsoft Windows and Linux/UNIX handle keyboards, it
is not possible to use RDP or VNC or X-Windows from a Windows client to control a
Dyalog APL session running under a UNIX window manager. In particular, all of the X-
Window clients that Dyalog is aware of do not fully support xkb key mappings.

It is possible to use VNC from a Linux client to connect to a remote Linux desktop and
control an APL session running there; the keyboard support will however need to be
added to the local machine.

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 17

5 PuTTY

Dyalog APL for UNIX comes with support for the PuTTY terminal emulator. PuTTY is
freely downloadable, supports ssh and telnet protocols, and supports Unicode
keystrokes and fonts. To be able to generate and see APL characters it is also necessary
to install the Dyalog UnicodeIME and the APL385 Unicode font.

5.1 Downloading and installing the Dyalog UnicodeIME

The UnicodeIME can be freely downloaded from https://www.dyalog.com/apl-font-
keyboard.htm. It is also included with all Unicode Windows versions of Dyalog from
13.0 onwards. There are two versions of the UnicodeIME; one for 32 bit Windows, and
one for 64 bit; please ensure that the correct version is downloaded.

Details of how to install the UnicodeIME are on the download webpage.

5.2 Downloading and installing the APL385 font

The APL385 can be freely downloaded from https://www.dyalog.com/apl-font-
keyboard.htm. Details of how to install the font appear on the download webpage.

5.3 Downloading and Installing PuTTY

PuTTY is available from https://www.chiark.greenend.org.uk/~sgtatham/putty. Full
details of how to download and install PuTTY, along with the licence terms and
conditions are available from the above URL.

5.4 Configuring PuTTY to support Dyalog APL for UNIX

Firstly ensure that you are able to login to the UNIX server which has Dyalog APL
installed on it. If you are using an AIX server, it is recommended that in the Keyboard
category you set the backspace key to Control-H.

For APL support the follow settings are required:

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 18

Window/Appearance Font settings/Font: set to APL385 Unicode

Window/Translation/Character set translation on received data: set Received data
assumed to be in which character set to UTF-8

You should ensure that Terminal/Keyboard/The Backspace key is set appropriately for
the remote operating system. AIX defaults to Ctrl-h whereas most other operating
systems default to Ctrl-?

Having set these values, it is recommended that you save the settings; if you will need
to connect to multiple servers, it is recommended that you save the above settings as
the default options (Highlight the "Default Settings" in Saved Sessions and click on
Save).

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 19

6 Configuration Parameters

6.1 Configuration Parameters

Dyalog can be customised using configuration parameters. These can be set in various
ways; if a configuration parameter is set in multiple places the following descending
order of precedence applies:

command line settings
application configuration file settings
environment variable settings
user configuration file settings
built-in defaults

This provides a great deal of flexibility, enabling a user to override one setting with
another. For example, a "usual" workspace size (MAXWS) can be defined in the user
configuration file, but be temporarily superseded by entering a different value when
starting a Dyalog Session from the command line.

For more information on configuration files, see Section 6.2. For more information on
environment variables, see Section 6.3.

6.2 Configuration Files

A configuration file is a text file containing configuration parameters and values. It can
cascade, that is, it can extend (inherit) configuration values from other configuration
files, and supplement and/or override them. Configuration files use JSON5 (a superset
of standard JSON) syntax and are portable across all systems supported by Dyalog.

The key benefits of defining configuration parameters using configuration files include:

Configuration files are text-based. They are, therefore, easily managed along
with the source code for an application, using industry standard tools for source
code management and continuous integration.
Application configuration files can be placed in application folders and define the
configuration settings for a specific application.
User configuration files provide settings that are the same for all applications.
Typically, these files are used to configure the development environment.

1.
2.
3.
4.
5.

•

•

•

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 20

Interpreter configuration can be performed in the same way across all supported
platforms.
Dyalog can be launched from a text file that defines a function, namespace or
class. If a configuration file exists with the same name as this file (but with a
.dcfg extension), then Dyalog will detect this on launching and use the
configuration parameter settings it defines.
Configuration files are easy to read, and can be written directly or by using ⎕JSON
(which supports JSON5).
Both application and user configuration files can cascade, overriding settings
defined in a more generic configuration file; this simplifies the configuration of
components which share some configuration.

Dyalog Ltd recommends that configuration files are used for all run-time applications,
and that the use of environment variables for this purpose is eliminated.

There are two different types of configuration file:

A user configuration file – this defines configuration values for the current
(possibly only) user of the system. The first time a new version of Dyalog is
launched it creates and initialises a user configuration file called \
$HOME/.dyalog/dyalog.<version-specific>.dcfg, where the version-specific
information comprises the version number, edition and width. For example, a
64‑bit Unicode edition of Dyalog version 18.0 will be identified as 180U64. The
name of this file should not be changed.
An application configuration file – this contains configuration values associated
with a specific application. This is created by the user and should be saved at the
same level as the application. It can either be given the same name as the
workspace/script that is loaded when the application starts (but with the
extension .dcfg) or the name should be stored in the CONFIGFILE parameter.

An additional configuration file called \$HOME/.dyalog/dyalog.dcfg is also created the
first time any version of Dyalog is run. This can be edited to include configuration
parameter values that should always be applied irrespective of Dyalog version so that
they do not have to be redefined in multiple version-specific user configuration files.

Prior to Dyalog version 18.0, configuration parameters could be specified as
environment variables and set in the \$HOME/.dyalog/dyalog.config script. This is no
longer referenced, and any settings that should be retained must be re-entered in the
appropriate \$HOME/.dyalog/dyalog.<version-specific>.dcfg configuration file.

•

•

•

•

•

•

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 21

Configuration File Structure

Configuration files define configuration parameters using JSON5. A JSON object
contains data in the form of key/value pairs and other JSON objects. The keys are
strings and the values are the JSON types. A key and its value are seperated by a colon
(:) character. Entries (key/value pairs) are separated by comma (,) characters.

The top-level object defines an optional key called Extend and an optional object called
Settings:

Extend is a string value containing the name of a configuration file to import.
The extended (imported) file can extend another configuration file.
Configuration values from the imported file(s) can be overridden by redefining
them. The file name is implicitly relative to the name of the file that imports it
(any file name extension must be explicitly specified).
Settings is an object containing the names of configuration parameters and
their values. The values can be a string, a number or an array of strings.

The names and values correspond to configuration parameters, and names are not case
sensitive. Any named values can be defined; an APL application could query the values
using +2⎕NQ'.' 'GetEnvironment' <name> or using the]Config user command.

If the same name is defined multiple times within a configuration file then the first
definition will be used and a warning will be generated.

Arrays

An array can be used to define file paths, for example, WSPATH: ["/dir1", "/dir2"].
The only parameters which can be defined as arrays are WSPATH, WSEXT and CFEXT.

References to other Configuration Parameters

Configuration parameters that are string values can include references to other
configuration parameters (irrespective of where they are defined) using square bracket
delimiters. For example, MySetting: "[DYALOG]/MyFile" will replace [DYALOG] with
the value of the DYALOG configuration parameter.

If the referenced configuration parameter is not defined then no substitution will take
place; the reference, including the square bracket delimiters, will remain in place.

To include literal square brackets in a string, prefix them with a \ character.

•

•

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 22

Nested Structures

Configuration files support nested parameter structures by defining an object that
corresponds to the structure. For example:

Example Configuration File Content

6.3 Environment Variables

Environment variables are used to configure various aspects of Dyalog APL. The
complete list appears in the Dyalog for Microsoft Windows Installation and
Configuration Guide: Configuration Parameters; this section discusses those variables
which are of particular importance to the Non-GUI versions of Dyalog APL, and lists
those that have meaning to the UNIX versions. Additionally there some non-GUI-
specific variables which are described below and some which either do not apply, or
may not work as the user might at first expect.

Under UNIX, all environment variables should appear in UPPER CASE. For example, to
set the default value of ⎕ML to 3, then

Captions: {
 Session: "My Dyalog Session"
 Status: "My Status window"
}

+2 ⎕NQ '.' 'GetEnvironment' 'Captions\Session'
My Dyalog Session

{
 Extend: "my_default_configuration.dcfg",
 Settings: {
 // maximum workspace
 MAXWS: "2GB",
 WSPATH: ["/dir1", "/dir2", ""],
 UserOption: 123,
 ROOTDIR: "/my/root/directory",
 // references to other configuration parameters
 FNAME: "[rootdir]/filename",
 }
}

$ export DEFAULT_ML=3

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 23

If a configuration parameter described in the Dyalog for Microsoft Windows Installation
and Configuration Guide has a backslash "\" in its name (strictly speaking, appears in a
subkey of the Dyalog key in the Windows Registry), this should be replaced with an
underscore in the equivalent environment variable. This applies for example to
SALT\CommandFolder.

Many of these environment variables are set in the mapl script; their values are either
appropriate for the installation location of Dyalog APL, or are set to define reasonable
default values.

The environment variables are broken down into several tables:

Table 1: The most commonly defined and used for non-GUI versions of Dyalog
APL under UNIX. Most of these variables are essential for a usable APL session
Table 2: Variables used to control default values in the workspace
Table 3: Variables used to configure the Session
Table 4: Miscellaneous Variables used by non-GUI Dyalog APL
Table 5: Editor-related environment variables
Table 6: Tracer-related environment variables
Table 7: Ride-related environment variables
Table 8: SALT and User Command-related environment variables

Table: Commonly used Variables

•

•
•
•
•
•
•
•

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 24

Variable Notes

TERM
APLK
APLK0
APLT
APLTn

Define the input and output translate tables used
by Dyalog APL. The values of APLK0 and APLTn
override the values of APLK and APLT if set, and
they in turn override the value of (Unicode)
default, or (Classic) TERM if set.

APLK is for input translation, APLT for output
translation.

These are used in conjunction with ..

APLKEYS APLTTRANS

Define the search path for the input and output
translate tables respectively. If unset, the
interpreter will default to $DYALOG; if $DYALOG too
is not set, will default to /usr/dyalog.

APLNID

This variable is ignored by the UNIX versions of
Dyalog APL: ⎕AI and ⎕AN pick up their values from
the user's uid and /etc/passwd.

APLSTATUSFD

If set, this defines the stream number on which all
messages for the Status Window appear. It is then
possible to redirect this output when APL is
started.

If unset, the output will appear in the same
terminal window as the APL session, although it is
not part of the session; such output can be
removed by hitting SR (Screen Redraw - often
defined to be Ctrl-L).

DYALOG_NETCORE
This parameter is a Boolean value with a default
value of 1. If set to 0, it disables the .NET interface.

DYALOG_SERIAL

This parameter contains your Dyalog serial
number. This must be set to the serial number
issued to you. If not set, then the software is
unregistered. For the full licence terms and
conditions, see https://www.dyalog.com/uploads/
documents/Terms_and_Conditions.pdf .

DYALOG_SERIALFILE
This parameter specifies the full path to the text
file containing your Dyalog serial number.

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 25

https://www.dyalog.com/uploads/documents/Terms_and_Conditions.pdf
https://www.dyalog.com/uploads/documents/Terms_and_Conditions.pdf

Variable Notes

ENABLE_CEF

This parameter is a Boolean value with a default
value of 1. If set to 0, it disables the Chromium
Embedded Framework (CEF) and at attempt to
create an HTMLRenderer object (see Object
Reference: Htmlrenderer) will fail with an error
message. See Note (below).

ERRORONEXTERNALEXCEPTION

By default, any error when calling ⎕NA will result in
APL terminating; if ERRORONEXTERNALEXCEPTION is
set to 1, then APL will instead generate an event
91: EXTERNAL DLL EXCEPTION . Be aware however
that the workspace may become corrupted. This is
best used when developing ⎕NA code rather than
in production.

LIBPATH

A suitable entry for the Conga libraries needs to be
added to the LIBPATH variable if Conga is to be
used. For more information see the Conga Guide.

MAXWS

Defines the size of the workspace that will be
presented to the user when Dyalog APL is started.
A simple integer value will be treated as being in
KB. K, M and G can be appended to the value to
indicate KiB, MiB and GiB (binary) respectively. If
unset, the default value is 256M.

WSPATH

Defines the search path for both workspaces and
Auxiliary processors.

If unset, there is no default value. Workspaces and
APs that are not on the WSPATH can be accessed
using absolute or relative pathnames.

Note

Currently the value of the Enable_CEF parameter defined in the Windows Registry or in
a Configuration file is ignored. Only the value set in the command line or as an
environment variable is honoured. If not defined in this way, the default value is used.

Under macOS and Linux, if the configuration parameter ENABLE_CEF is 1, Auxiliary
Processors cannot be used (they hang on error). The default value is 1 unless you are

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 26

https://en.wikipedia.org/wiki/Chromium_Embedded_Framework
https://en.wikipedia.org/wiki/Chromium_Embedded_Framework

not running under a desktop (for example, you are running Dyalog in a PuTTY session
when the default is 0).

Table: Default workspace values

Variable Notes

DEFAULT_DIV Default value for ⎕DIV in a clear workspace.

DEFAULT_IO Default value for ⎕IO in a clear workspace.

DEFAULT_ML Default value for ⎕ML in a clear workspace.

DEFAULT_PP Default value for ⎕PP in a clear workspace.

AUTO_PW

DEFAULT_PW

⎕PW is set by the interpreter when it starts, or when the session
window is resized. Under UNIX if the terminal window is resized,
the session will be resized when the interpreter next checks for
input.

DEFAULT_RTL Default value for ⎕RTL in a clear workspace.

DEFAULT_WX

Default value for ⎕WX in a clear workspace. Note that although
the UNIX versions of Dyalog APL do not have GUI objects, ⎕SE is
present, and the value of ⎕WX will affect the programmer's ability
to run expressions such as ⎕SE.PropList.

For numeric values, the interpreter takes the value of the environment variable, and
prepends a "0" to that string. It then parses the string, accepting characters until the
first non-digit character is reached.

This string, now of digits only, is converted into an integer. If the resulting value is valid,
then that is the value that will be used in the workspace. If the resulting value is invalid,
then the default value will be used instead.

Table: Variables used to configure the Session

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 27

Variable Notes

APLAN_FOR_OUTPUT
Enable or disable use of Programming: Array Notation
for session output

DYALOGLINK Specifies the directory for Link

DYALOGSTARTUPSE
Specifies one or more Session initialisation directories
that contain APL code to be installed in ⎕SE

DYALOGSTART_X
Specifies whether the Run function is executed during
Session startup

DYALOG_GUTTER_ENABLE Enable or disable Session Gutter

HISTORY_SIZE The size of the prior line buffer

INPUT_SIZE
The size of the buffer used to store lines marked for
execution

LOG_FILE

LOG_FILE_INUSE

LOG_SIZE

These three variables determine the name of the
session log file (default ~/.dyalog/
session_log_<DyalogMajor><DyalogMinor><U|

C><bits>_*.dlf, for example, ~/.dyalog/
session_log_190U64_*.dlf), whether a log file is
created or not, and the size of the log file in KB. Be
aware: the session log file is not interchangeable
between the different editions and widths of APL; in a
mixed environment it is strongly recommended to use
a different log file for each version.

PFKEY_SIZE

The size of the buffer used to hold PFKEY definitions: if
this is too small, an attempt to add a new definition will
result in a LIMIT ERROR.

SESSION_FILE

Defines the location of your session file; session file
support was added in Dyalog 13.1. The default value is
$DYALOG/default.dse

To set values, use K to indicate KB. Note that the buffers will contain other information,
so the buffer size will not be exact. Note also that multibyte Unicode characters will
take up more space than single byte characters, and that 32 and 64 bit versions of
Dyalog APL can require different amounts of space for holding the same information.

Example:

HISTORY_SIZE=4K my_apl_startup_script

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 28

Table: Miscellaneous Variables used by non-GUI Dyalog APL

Variable Notes

APL_TEXTINAPLCORE

If set with the value 1 the "Interesting Information"
section is included in an aplcore file. Otherwise this
section is omitted. By default the interpreter has
this set to 0; it is the default APL script which sets it
to 1.

AUTOFORMAT TABSTOPS

If AUTOFORMAT is 1, then control structures will be
shown with indents, set at TABSTOPS spaces; the
changes are reflected in the editor window when
the RD (ReDraw) command key is hit.

AUTOINDENT
If AUTOINDENT is set to 1, then if a line is added it is
indented the same as the previous line.

AUTO_PW

Introduced in 13.0. With AUTO_PW=0 ⎕PW remains
fixed at the size of the terminal window when APL
was started. When set to 1, or unset, ⎕PW alters
each time the terminal window is resized.

DYALOG

This variable is defined in the supplied mapl startup
script, and is used to form the default values for
APLKEYS, APLTRANS, WSPATH etc. If it is necessary to
identify the location of the Dyalog executable, then
a more reliable method is to determine the full path
name from the appropriate file in the /proc/
<process_id_of_APL_session>/ subdirectory or
from the output of ps.

DYALOG_SHELL_SUBPROCESS

On AIX, if DYALOG_SHELL_SUBPROCESS is 1 (the
default on AIX), the interpreter starts a (small) child
process that handles calls to ⎕SHELL.

These are the remaining variables listed in the Dyalog for Microsoft Windows
Installation and Configuration Guide which are effective in the non-GUI UNIX versions
of Dyalog APL

Table: Editor-related environment variables

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 29

Variable Notes

APLAN_FOR_EDITOR
Enable or disable use of Programming: Array
Notation for editing arrays

EDITOR_COLUMNS_*

See Configuring the Editor. Can be one of
EDITOR_COLUMNS_CHARACTER_ARRAY

EDITOR_COLUMNS_CLASS

EDITOR_COLUMNS_FUNCTION

EDITOR_COLUMNS_NAMESPACE

EDITOR_COLUMNS_NUMERIC_ARRAY

DYALOG_DISCARD_FN_SOURCE
Specifies whether source code is retained in the
workspace

Table: Tracer-related environment variables

Variable Notes

TRACE_ON_ERROR
With this is set to 1 (the default) the tracer is opened if an
untrapped error occurs.

Table: Ride-related environment variables

Variable Notes

RIDE_INIT
Enables and configures Ride; see the Ride User Guide for more
information.

Table: SALT and user commands related environment variables

Variable Notes

SESSION_FILE
Specifies the location of the file containing ⎕SE . The default
value is $DYALOG/default.dse

UCMDCACHEFILE

Specifies the location of the user command cache file. Defaults
to "UserCommand{UcmdMajor}{UcmdMinor}.{DyalogMajor}
{DyalogMinor}{U|C}{bits}.cache" , for example,
UserCommand25.182U64.cache in the dyalog directory.

Further information about SALT and user commands appear in the User Commands
User Guide and the SALT User Guide.

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 30

https://dyalog.github.io/ride

7 Configuring the Editor

The editor in non-GUI versions of Dyalog APL can be considered to have 5 separate
functional columns. Below is the contents of the editor window, which shows the
namespace ns, which has two traditional-style functions and one dfn. The statement 5
⎕STOP 'ns.fn1' has been run too:

This is formed of 5 separate columns:

[0] :Namespace ns
[1] [0] ├ ∇ r←fn1 a
[2] [1] ├ :If a=1
[3] [2] │ r←1
[4] [3] │ :Else
[5] [4] ├ :If today≡'Friday'
[6] [5] ○│ r←2
[7] [6] ├ :EndIf
[8] [7] ├ :EndIf
[9] [8] ├ ∇
[10]
[11] [0] dfn←{⍺+⍵}
[12]
[13] [0] ├ ∇ r←a fn2 w
[14] [1] │ r←a+w
[15] [2] ├ ∇
[16] :EndNamespace

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 31

Functional
Column

Value (see
below) Purpose

C1 4 Line numbers for entire object

C2 64 Line numbers for functions etc. within scripted
namespaces

C3 2 Trace/Stop points

C4 8 Control Structure Outlining

C5 16 Text (or content)This value is ignored; this
column is always present

It is possible to control at startup time which of these columns are visible. By default,
for all types of object, only the text column is visible; this can be overridden on a per-
object basis by setting one or more of the EDITOR_COLUMNS_ variables listed in Table
E5. The value of these variables is the sum of the values for each of the columns which
are desired.

┌────┬───┬───┬──┬────────────────────────────┐
│C1 │C2 │C3 │C4│C5 │
├────┼───┼───┼──┼────────────────────────────┤
│[0] │ │ │ │:Namespace ns │
│[1] │[0]│ │├ │ ∇ r←fn1 a │
│[2] │[1]│ │├ │ :If a=1 │
│[3] │[2]│ ││ │ r←1 │
│[4] │[3]│ ││ │ :Else │
│[5] │[4]│ │├ │ :If today≡'Friday'│
│[6] │[5]│ ○││ │ r←2 │
│[7] │[6]│ │├ │ :EndIf │
│[8] │[7]│ │├ │ :EndIf │
│[9] │[8]│ │├ │ ∇ │
│[10]│ │ │ │ │
│[11]│[0]│ │ │ dfn←{⍺+⍵} │
│[12]│ │ │ │ │
│[13]│[0]│ │├ │ ∇ r←a fn2 w │
│[14]│[1]│ ││ │ r←a+w │
│[15]│[2]│ │├ │ ∇ │
│[16]│ │ │ │:EndNamespace │
└────┴───┴───┴──┴────────────────────────────┘

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 32

Examples

EDITOR_COLUMNS_NAMESPACE=94 shows all columns (the first example in this
section)

Various values for EDITOR_COLUMNS_FUNCTION

Value Editor window appearance

0

22

26

40

fn1 a
:If a=1
 b←2
:EndIf

[0] fn1 a
[1] :If a=1
[2] ○ b←2
[3] :EndIf

 fn1 a
 ├ :If a=1
○│ b←2
 ├ :EndIf

[0] fn1 a
[1] ├ :If a=1
[2] ○│ b←2
[3] ├ :EndIf

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 33

8 Starting from scripts

8.1 Running from scripts

Dyalog APL can be run with input being directed from a script file, and output being
redirected as well.

The script file needs to be built in such a way that it contains valid input according to
the input translate table that is defined in the APLK variable.

The classic edition of Dyalog APL expects that the input script by default uses Ctrl-O
and Ctrl-N to swap between APL and ASCII characters, and Ctrl-H is used to create
overstrikes. Be aware that when editing such an input file, cut and paste of ^H, ^N or
^O may well result in the two character sequences being copied, rather than the single
character Ctrl-H, Ctrl-N and Ctrl-O.

The Unicode edition by default expects that the input file has Unicode characters in it; a
Unicode-aware editor is therefore required. Note however that applications such as
Notepad will add BOMs (Byte Order Markers) to the Unicode text; these must be
removed as the Dyalog APL input translate table does not have BOMs defined in it.

The example below shows the same set of APL expressions as they would appear in a
script file for classic and Unicode editions: it is rather easier to read the Unicode
edition's input !

8.1.1 Classic example

^O(2^NLnqK.K K^OGetBuildID^NK^O),(^NK.KLwgK^OAPLVersion^NK^O)
^Ovar^N[1+1 J^HC^O Check input from file: Classic
)SI
^N"si
^Nloff

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 34

8.1.2 Unicode example

(+2⎕NQ'.' 'GetBuildID'),('.'⎕WG'APLVersion')
var←1÷1 ⍝ Check input from file: Unicode
)SI
)SI
⎕OFF

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 35

9 Magic

All Dyalog APL binary files have a unique magic number: the first byte is always 0xAA
(decimal 170), and the second identifies the type of Dyalog file. Additional bytes may in
some cases be used to further identify the type, version and state of the file. UNIX
systems include the file command which use the information in the magic file to
describe the contents of files.

9.1 magic and AIX

AIX still uses a very early version of magic, so it is not possible to give as much
information about Dyalog APL files as on Linux.

Dyalog provides a file, magic, which is located in the top level installation directory of
Dyalog APL. To use this file to extend the capabilities of the file command either run

or catenate the contents of /opt/mdyalog/20.0/32/classic/p5/magic onto /etc/magic,
and then run

file -m /opt/mdyalog/20.0/32/classic/p5/magic *

file *

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 36

Example

9.1.1 magic and Linux

Most Linux distributions include details about Dyalog-related files in their magic files;
Dyalog has submitted two versions of the magic file for inclusion in distributions. To
check whether your Linux distribution has the more recent version, create a journaled
component file and then run the file command against that component file. The two
examples below show the output with the earlier and later versions of magic in use.

$ file -m /opt/mdyalog/20.0/32/classic/p6/magic *
1_apl_j1: Dyalog APL component file 64-bit level 1 journaled non-
checksummed
1_apl_j2: Dyalog APL component file 64-bit level 2 journaled checksummed
1_apl_qfile: Dyalog APL component file 64-bit non-journaled non-
checksummed
1_big1: Dyalog APL component file 64-bit level 2 journaled checksummed
1_big2: Dyalog APL component file 64-bit level 1 journaled checksummed
apl64u: Dyalog APL workspace type 12 subtype 4 64-bit unicode big-endian
aplout: Dyalog APL workspace type 12 subtype 0 32-bit classic little-
endian
aplcore: Dyalog APL workspace type 12 subtype 4 32-bit classic little-
endian
colours: Dyalog APL workspace type 12 subtype 4 32-bit classic little-
endian
core: data or International Language text
signals: Dyalog APL workspace type 12 subtype 4 32-bit classic little-
endian
utf8: Dyalog APL workspace type 12 subtype 4 32-bit unicode little-
endian

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 37

9.2 Example, using the older default magic file

9.2.1 Example, with more recent magic file

The most recent version of the magic file can be found in the top level of the
installation directory; see the man page for the file command for details of how to
update the system magic file, or use the syntax described in the /etc/magic and AIX

$ file *
1_apl_j1: data
1_apl_j2: data
1_apl_qfile: data
1_big1: data
1_big2: data
apl64u: \012- Dyalog APL\012- workspace\012- version 12\012- .4
aplout: \012- Dyalog APL\012- workspace\012- version 12\012- .0
aplcore: \012- Dyalog APL\012- workspace\012- version 12\012- .4
colours: \012- Dyalog APL\012- workspace\012- version 12\012- .4
core: ELF 32-bit LSB core file Intel 80386, version 1 (SYSV), SVR4-style
signals: \012- Dyalog APL\012- workspace\012- version 12\012- .4
utf8: \012- Dyalog APL\012- workspace\012- version 12\012- .4

$ file *
1_apl_j1: Dyalog APL component file 64-bit level 1 journaled non-
checksummed
1_apl_j2: Dyalog APL component file 64-bit level 2 journaled checksummed
1_apl_qfile: Dyalog APL component file 64-bit non-journaled non-
checksummed
1_big1: Dyalog APL component file 64-bit level 2 journaled checksummed
1_big2: Dyalog APL component file 64-bit level 1 journaled checksummed
apl64u: Dyalog APL workspace type 12 subtype 4 64-bit unicode big-endian
aplout: Dyalog APL workspace type 12 subtype 0 32-bit classic little-
endian
aplcore: Dyalog APL workspace type 12 subtype 4 32-bit classic little-
endian
colours: Dyalog APL workspace type 12 subtype 4 32-bit classic little-
endian
core: ELF 32-bit LSB core file Intel 80386, version 1 (SYSV), SVR4-
style, from '/opt/mdyalog/14.0/32/classic/dyalog'
signals: Dyalog APL workspace type 12 subtype 4 32-bit classic little-
endian
utf8: Dyalog APL workspace type 12 subtype 4 32-bit unicode little-
endian

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 38

section above to override the default magic file with the one supplied in the installation
directory.

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 39

10 SE and SALT

10.1 Summary

Support for user commands is included in non-Windows versions of Dyalog APL. Many
of the user commands which were originally written for running under Microsoft
Windows will run under the various flavours of UNIX.

Under UNIX there is no autocompletion of user command names.

The SALT code resides in ⎕SE, which is saved in a session file. The location of the session
file is controlled by the environment variable SESSION_FILE; by default this file is
$DYALOG/default.dse. Setting SESSION_FILE=/dev/null results in an empty ⎕SE and
SALT being disabled.

See the User Commands User Guide and the SALT User Guide for more information.

10.2 Caching User Command information

When a Dyalog APL session is started, SALT is loaded, and checks the details of all of the
files which contain user commands with a previously cached version of this
information. If Dyalog APL has never been run before, or the cache file does not exist,
SALT rebuilds the cache file. This can take a few seconds, especially on the Raspberry Pi.

By default the cache file is called $HOME/.dyalog/UserCommand20.cache.

This can be overridden by specifying the environment variable UCMDCACHEFILE.

It is expected that the structure of files in ~/.dyalog will change in future versions of
Dyalog APL.

10.3 Assigning Contents of Session Log

It is possible to assign the contents of the Session Log to a variable:

z←'⎕SE'⎕WG'Log'

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 40

11 HOME dyalog directory

In Version 20.0 Dyalog APL by default creates a directory to hold various configuration
and log files; in previous versions these files were located in differing directories. The
contents of this directory are expected to be extended in future versions of Dyalog APL,
and allow for multiple versions and editions of Dyalog APL to be run concurrently.

On Linux (including Raspberry Pi), macOS and AIX this directory is called .dyalog and is
located in the user's home directory.

The default Dyalog startup script checks for the existence of the directory, and if it does
not exist, creates it.

This directory now contains:

the user configuration files dyalog.dcfg and dyalog..dcfg, where the version-
specific information comprises the version number, edition and width. For
example, a 64-bit Unicode edition of Dyalog version 18.0 will be identified as
180U64. The names/locations of these files should not be changed.
the session log, which by default is called default.dlf
the user command cache file, which by default is called UserCommand20.cache
the file containing the SALT settings which is called SALT.settings

Note that many of the default names and locations can be altered. Remember that
earlier versions of Dyalog will generate/use copies of these files in other locations: you
may need to move or delete earlier versions of these files, or change the default values
of their names and/or locations in earlier versions of Dyalog APL.

•

•
•
•

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 41

12 QuadNA and UNIX

⎕NA is fully supported under UNIX; the Conga communications package for example is a
shared library on all platforms.

⎕NA supports user-written shared libraries and also system-supplied shared libraries.
Dyalog APL under UNIX is supplied with a shared library, dyalog32.so or dyalog64.so
which contains the same functions as the DLLs which are described in the ⎕NA
documentation in the Dyalog Language Reference Guide. Additionally, the function
getlasterror is included; this returns the error code at the point when the called
function failed (which may be different from its value at the point where a previous
error occurred).

It is necessary to specify the complete name of the file containing the shared library, no
extension is added by Dyalog APL.

When developing code using ⎕NA it may be useful to set the environment variable
ERRORONEXTERNALEXCEPTION= 1. When this is set, Dyalog APL will generate an event
91, EXTERNAL DLL EXCEPTION rather than a syserror should a call on a functions
defined by ⎕NA be ill-specified. It should be noted however that the workspace may
become corrupt, so it is not recommended to run in production with this variable set.

12.1 System Shared Libraries

On AIX many system library functions appear in libc.a.

When calling system shared libraries under AIX, you must refer to them as:

64-bit: libc.a(shr_64.o)

32-bit: libc.a(shr.o)

It is not always possible to access all library functions - on AIX for example it is not
possible to access memcpy() or strncpy(). it is for this reason that dyalog*.so includes
MEMCPY and STRNCPY.

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 42

On Linux, it is a little more difficult to location the libc.so file; the function libc in the
supplied workspace quadna (which contains two namespaces, Windows and
NonWindows)can be used to locate this file.

12.1.1 Definitions

In the remainder of this section references are made to the APL variables sharedlib
and dyalib; the definitions for both vary between AIX and Linux, and between 32 and
64 bit interpreters.

Under AIX, sharedlib is defined as:

Under Linux, it is necessary to identify the shared library:

For all UNIX platforms, the dyalog shared library is identified as

12.2 Example 1

getpid() is common to all UNIX platforms; it returns an int which is the process ID of the
current process. It is defined to be

pid_t getpid(void)

where pid_t is a 4-byte integer.

The APL code to instantiate this function is

12.3 Example 2

This is a slightly more complex example, which uses the STRNCPY function in the
Dyalog-supplied shared library to retrieve the value of a variable which is referenced by
a pointer, returned from the system library function:

sharedlib←'libc.a(shr_64.o)' ⍝ 64 bit
sharedlib←'libc.a(shr.o)' ⍝ 32 bit

)COPY quadna NonWindows.libc
sharedlib←libc ⍬

dyalib←'dyalog64.so' ⍝ 64 bit
dyalib←'dyalog32.so' ⍝ 32 bit

⎕NA 'I4 ',sharedlib,'|getpid'

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 43

getenv()returns a pointer to the value of the environment variable which is the
argument of the function. It is defined to be

char getenv(const char name)

The call to STRNCPY has been defined to return a vector of integers so that the

result can be passed directly to ⎕UCS .

12.4 geterrno

The dyalog shared libary under UNIX includes the function geterrno. This returns the
current value of errno; be aware that it may not have the same value as at the point
when the error was raised. To use this function:

12.5 Shared libraries and APL threads

Any shared library function must mask out all signals for new threads which it creates.
Failure to do so will result in a catastrophic failure of APL's signal handling.

∇r←GetEnv envvar;getenv;P;get
r←''
⎕NA'P ',sharedlib,'|getenv <0T1[]'
'get'⎕NA dyalib,'|STRNCPY >0U1[] P U4'
P←getenv⊂'UTF-8'⎕UCS ⎕UCS envvar
→0⍴⍨P=0
r←'UTF-8'⎕UCS get 4096 P 4096

∇

GetEnv'MAXWS'
4G

Note

⎕NA 'I ',dyalib,'|geterrno'
geterrno

5

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 44

13 Miscellaneous

By default the session logfile is called default.dlf. By default this file is created as
~/.dyalog/default.dlf on Linux, AIX and macOS, and in ~/.config/dyalog/default.dlf on
the Pi. This can be overridden by setting the environment variable LOGFILE.

13.1 Status window output

By default under UNIX what would appear in the status window in the GUI versions
appears in the same terminal window as the APL session, but the text is not part of the
session. If such text appears, the APL session can be redrawn using the SR command,
thus removing the status window text.

It is possible to redirect the status window output; to do so select an unused stream
number as the stream have the status window output appear on, and then redirect
that stream. Note that it will be necessary to associate a valid output translate table
(usually apltrans/file) with that stream.

Example:

More useful may be to redirect the status window output into a file, and in another
terminal window run tail -f on that file.

$ export APLSTATUSFD=9
$ export APLT9=file
$ mapl 9>/dev/null

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 45

14 BuildID

Each interpreter has its own unique BuildID. This is a 32-bit checksum of the program
file which is the Dyalog APL interpreter. This checksum allows Dyalog Ltd. support staff
to uniquely identify the interpreter and from that determine the version, edition,
platform etc. of the interpreter.

For that reason, Dyalog Ltd. support staff ask that whenever an issue is raised with
them that the BuildID is included in all communications.

The BuildID is included in binary form in any aplcore that is generated; if a core file is
created, then is it possible to identify the BuildID using the following command:

Additionally, the BuildID is included in the "Interesting Information" section of aplcore
files provided that the environment variable APL_TEXTINAPLCORE is set to 1.

The BuildID can be identified both from within the interpreter (using the GetBuildID
method), and also from the BuildID executable which is supplied with the product on
UNIX.

Both of these methods can be used for any file; they are useful and very fast ways of
keeping track of workspaces versions etc. although md5sum and others may be more
appropriate.

Examples

At the command line:

In APL:

$ strings -a -n 14 core | grep "BuildID="

$ cd /opt/mdyalog/12.1/32/classic/p6
$./BuildID dyalog
70a3446e
$./BuildID magic
0a744663

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 46

+2 ⎕NQ '.' 'GetbuildID'
70a3446e

magicfile←'/opt/mdyalog/12.1/32/classic/p6/magic'
+2 ⎕NQ '.' 'GetBuildID' magicfile

0a744663
)SH

$ echo $PPID
$ kill -11 $PPID
/opt/mdyalog/12.1/32/classic/p6/mapl[58]: 274434 Segmentation fault(core
dump)
$ strings -a -n14 core | grep BuildID=
BuildID=70a3446e

UNIX Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 47

	Dyalog for UNIX
	Installation and Configuration Guide
	Contents

	Installation
	Introduction
	Installation
	Installing under AIX
	Installing on an RPM-based Linux Distribution
	Installing on a DEB-based Linux Distribution
	Installing in a non-default location
	Deinstalling Dyalog APL
	Deinstalling under AIX
	Deinstalling on an RPM-based Linux Distribution
	Deinstalling on a DEB-based Linux Distribution
	Upgrading APL
	Applying a later release of the same version
	Upgrading from an earlier version

	Dyalog Serial Number
	Konsole
	Keyboard support
	Configuring the APL keyboard under KDE4
	APL font support

	APL VNC RDP
	PuTTY
	Downloading and installing the Dyalog UnicodeIME
	Downloading and installing the APL385 font
	Downloading and Installing PuTTY
	Configuring PuTTY to support Dyalog APL for UNIX

	Configuration Parameters
	Configuration Parameters
	Configuration Files
	Configuration File Structure
	Arrays
	References to other Configuration Parameters
	Nested Structures
	Example Configuration File Content

	Environment Variables
	Note

	Configuring the Editor
	Starting from scripts
	Running from scripts
	Classic example
	Unicode example

	Magic
	magic and AIX
	magic and Linux

	Example, using the older default magic file
	Example, with more recent magic file

	SE and SALT
	Summary
	Caching User Command information
	Assigning Contents of Session Log

	HOME dyalog directory
	QuadNA and UNIX
	System Shared Libraries
	Definitions

	Example 1
	Example 2
	geterrno
	Shared libraries and APL threads

	Miscellaneous
	Status window output

	BuildID

