
Dyalog for Microsoft Windows
.NET Framework Interface Guide

Dyalog version 20.0

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2025 by Dyalog Limited
All rights reserved.

Dyalog for Microsoft Windows .NET Framework Interface Guide

Dyalog version: 20.0
Document Revision: 2025-10-30 main:e0843eae32

Unless stated otherwise, all examples in this document assume that ⎕IO ⎕ML ← 1

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle®, MySQL, and Java™ are registered trademarks of Oracle and/or its affiliates.
JavaScript™ is a trademark of Oracle Corporation.
Unicode is a registered trademarks of Unicode, Inc. in the U.S. and other countries.
UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively
through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark of Microsoft Corporation in the U.S. and other
countries.
macOS® and OS X® (operating system software) are registered trademarks of Apple Inc.
in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Except where otherwise noted, this content is licensed under a Creative Commons
Attribution 4.0 International licence.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

2025-10-30 (main:e0843eae32) Page 4

Contents

1 Overview .. 10

1.1 Introduction .. 10

1.2 Prerequisites ... 12

1.3 Files Installed with Dyalog .. 12

2 Accessing .Net Classes ... 14

2.1 Introduction .. 14

2.2 Locating NET Classes and Assemblies ... 14

2.3 Using NET Classes ... 17

2.4 Browsing .NET Classes .. 20

2.5 Value Tips for External Functions .. 29

2.6 Advanced Techniques ... 30

2.7 More Examples ... 37

2.8 Enumerations .. 40

2.9 Handling Pointers with Dyalog ByRef .. 42

2.10 DECF Conversion ... 44

3 Using Windows.Forms ... 45

3.1 Introduction .. 45

3.2 Creating GUI Objects ... 45

3.3 Object Hierarchy ... 45

3.4 Positioning and Sizing Forms and Controls ... 46

3.5 Modal Dialog Boxes .. 46

3.6 Non Modal Forms ... 51

4 WPF .. 53

4.1 Introduction .. 53

4.2 Temperature Converter .. 54

4.2.1 Introduction .. 54

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 5

4.2.2 Using XAML .. 54

4.2.3 Using Code .. 66

4.3 Data Binding .. 74

4.3.1 Text Example ... 74

4.3.2 FontSize Example .. 77

4.3.3 Text and FontSize using Code ... 79

4.3.4 Text and FontSize using XAML .. 83

4.3.5 Filtered List Example ... 85

4.3.6 NetObject Example ... 90

4.3.7 DateTime Example .. 92

4.3.8 DataGrid Example ... 95

4.3.9 DataGrid Matrix Example ... 100

4.4 SyncFusion Introduction ... 110

4.5 SyncFusion CircularGauge Example .. 111

5 APLScript .. 116

5.1 Introduction .. 116

5.2 The APLScript Compiler .. 116

5.3 Creating an APLScript File ... 119

5.4 Transferring code from the Dyalog APL Session .. 120

5.5 General principles of APLScript ... 121

5.6 Creating Programs with APLScript .. 122

5.7 Creating NET Classes with APLScript ... 126

5.8 Creating ASP NET Classes with APLScript .. 135

6 Writing .Net Classes ... 138

6.1 Introduction .. 138

6.2 Assemblies Namespaces and Classes ... 138

6.3 Getting Started .. 139

6.4 Example 1 ... 141

6.5 Example 2 ... 145

6.6 Example 2a .. 149

6.7 Example 3 ... 152

6.8 Example 4 ... 155

6.9 Example 5 ... 160

6.10 Interfaces .. 165

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 6

7 Dyalog APL and IIS ... 167

7.1 Introduction .. 167

7.2 IIS Installation Dependency .. 167

7.3 IIS Applications and Virtual Directories ... 168

7.4 Internet Services Manager .. 169

8 Writing Web Services ... 171

8.1 Introduction .. 171

8.2 Web Service Scripts .. 171

8.3 Compilation .. 172

8.4 Exporting Methods ... 173

8.5 Web Service Data Types .. 174

8.6 Execution .. 175

8.7 Global.asax and Application and Session Objects ... 175

8.8 Sample Web Service EG1 .. 176

8.9 Sample Web Service LoanService ... 178

8.10 Sample Web Service GolfService .. 182

8.11 Sample Web Service EG2 .. 201

9 Calling Web Services .. 205

9.1 Introduction .. 205

9.2 MakeProxy function .. 205

9.3 Using LoanService from Dyalog APL ... 206

9.4 Using GolfService from Dyalog APL .. 206

9.5 Exploring Web Services ... 211

9.6 Asynchronous Use .. 212

10 Writing ASP.NET Web pages ... 216

10.1 Introduction .. 216

10.2 Your first APL Web Page .. 217

10.3 The Page_Load Event .. 222

10.4 Code Behind .. 225

10.5 Workspace Behind .. 228

11 Writing Custom Controls for ASP.NET .. 245

11.1 Introduction .. 245

11.2 The SimpleCtl Control ... 246

11.3 The TemperatureConverterCtl1 Control ... 248

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 7

11.4 The TemperatureConverterCtl2 Control ... 253

11.5 The TemperatureConverterCtl3 Control ... 261

12 Implementation Details ... 265

12.1 Introduction .. 265

12.2 Isolation Mode .. 265

12.3 Workspace Size ... 266

12.4 Structure of the Active Workspace ... 266

12.5 Threading .. 270

12.6 Debugging an APL NET Class ... 272

12.7 ASP.NET Configuration .. 275

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 8

2025-10-30 (main:e0843eae32) Page 9

1 Overview

1.1 Introduction

This manual describes the Dyalog interface to the Microsoft .NET Framework. This
document does not attempt to explain the features of the .NET Framework, except in
terms of their APL interfaces. For information concerning the .NET Framework, see the
documentation, articles and help files, which are available from Microsoft and other
sources.

The .NET interface features include:

the ability to create and use objects that are instances of .NET Classes.
the ability to define new .NET Classes in Dyalog that can then be used from
other .NET languages such as C# and VB.NET.
the ability to write Web Services in Dyalog.
the ability to write ASP.NET web pages in Dyalog.

.NET Classes

The .NET Framework defines a so-called Common Type System. This provides a set of
data types, permitted values, and permitted operations. All cooperating languages are
supposed to use these types so that operations and values can be checked (by the
Common Language Runtime) at run time. The .NET Framework provides its own built-in
class library that provides all the primitive data types, together with higher-level classes
that perform useful operations.

Dyalog allows you to create and use instances of .NET Classes, thereby gaining access to
a huge amount of component technology that is provided by the .NET Framework.

It is also possible to create Class Libraries (Assemblies) in Dyalog. This allows you to
export APL technology packaged as .NET Classes, which can then be used from
other .NET programming languages such as C# and Visual Basic.

The ability to create and use classes in Dyalog also provides you with the possibility to
design APL applications built in terms of APL (and non-APL) components. Such an
approach can provide benefits in terms of reliability, software management and re-
usage, and maintenance.

•
•

•
•

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 10

GUI Programming with System.Windows.Forms

One of the most important .NET class libraries is called System.Windows.Forms, which
is designed to support traditional Windows GUI programming. Visual Studio .NET,
which is used to develop GUI applications in Visual Basic and C#, produces code that
uses System.Windows.Forms. Dyalog allows you to use System.Windows.Forms,
instead of (and in some cases, in conjunction with) the built-in Dyalog GUI objects such
as the Dyalog Grid, to program the Graphical User Interface.

Web Services

Web Services are programmable components that can be called by different
applications. Web Services have the same goal as COM, but are technically platform
independent and use HTTP as the communications protocol with an application. A Web
Service can be used either internally by a single application or exposed externally over
the Internet for use by any number of applications.

ASP.NET and WebForms

ASP.NET is a new version of Microsoft Active Server Page technology that makes it
easier to develop and deploy dynamic Web applications. To supplement ASP.NET, there
are some important new .NET class libraries, including WebForms which allow you to
build browser-based user interfaces using the same object-oriented mechanism as you
use Windows.Forms for the Windows GUI. The use of these component libraries
replaces basic HTML programming.

ASP.NET pages are server-side scripts, that are usually written in C# or Visual Basic.
However, you can also employ Dyalog directly as a scripting language (APLScript) to
write ASP.NET web pages. In addition, you can call Dyalog workspaces directly from
ASP.NET pages, and write custom server-side controls that can be incorporated into
ASP.NET pages.

These features give you a wide range of possibilities for using Dyalog to build browser-
based applications for the Internet, or for your corporate Intranet.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 11

1.2 Prerequisites

The Dyalog version 20.0 .NET Framework interface requires version 4.0 or greater of
Microsoft .NET Framework. It does not operate with earlier versions of the .NET
Framework. In addition:

.NET Framework version 4.5 is needed for full Data Binding support (including
support for the INotifyCollectionChanged interface, which is used by Dyalog
to notify a data consumer when the contents of a variable, that is data bound as
a list of items, changes).
IIS needs to be installed before installing Dyalog APL in order to access the
examples in the Samples/asp.net sub-directory – if IIS and ASP.NET are not
present, the asp.net sub-directory will not be installed during the Dyalog
installation.

Note that .NET Framework is specific to Microsoft Windows; the cross-platform .NET is
also supported (see below).

1.3 Files Installed with Dyalog

NET Interface Components

The components used to support the .NET interface are summarised below. Different
versions of each component are supplied according to the target platform.

The Bridge DLL. This is the interface library through which all calls between
Dyalog and the .NET Framework are processed
The DyalogProvider DLL. This DLL performs the initial processing of an
APLScript.
The APLScript Compiler. This is itself written in Dyalog and packaged as an
executable.
The DyalogNet DLL; a subsidiary library
The Dyalog DLL. This is the engine that executes all APL code that is hosted by
and called from another .NET application.

For a list of the files associated with each of these components, see Installation/
Configuration: Files And Directories .

•

•

•

•

•

•
•

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 12

Code Samples

The samples subdirectory contains several sub-directories relating to the .NET
interface:

aplclasses; a sub-directory that contains examples of .NET classes written in
APL.
aplscript; a sub-directory that contains APLScript examples.
asp.net; a sub-directory that is mapped to the IIS Virtual Directory dyalog.net,
and contains various sample APL Web applications.
winforms; a sub-directory that contains sample applications that use the
System.Windows.Forms GUI classes.
web.config: this file specifies Dyalog configuration parameters for ASP.NET. See
Section 12.7.

•

•
•

•

•

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 13

2 Accessing .Net Classes

2.1 Introduction

.NET classes are implemented as part of the Common Type System. The Type System
provides the rules by which different languages can interact with one another. Types
include interfaces, value types and classes. The .NET Framework provides built-in
primitive types plus higher-level types that are useful in building applications.

A Class is a kind of Type (as distinct from interfaces and value types) that encapsulates
a particular set of methods, events and properties. The word object is usually used to
refer to an instance of a class. An object is typically created by calling the system
function ⎕NEW, with the class as the first element of the argument.

Classes support inheritance in the sense that every class (but one) is based upon
another so-called Base Class.

An assembly is a file that contains all of the code and metadata for one or more classes.
Assemblies can be dynamic (created in memory on-the-fly) or static (files on disk). For
the purposes of this document, the term Assembly refers to a file (usually with a .DLL
extension) on disk.

2.2 Locating .NET Classes and Assemblies

Unlike COM objects, which are referenced via the Windows Registry, .NET assemblies
and the classes they contain, are generally self-contained independent entities (they
can be based upon classes in other assemblies). In simple terms, you can install a class
on your system by copying the assembly file onto your hard disk and you can de-install
it by erasing the file.

Although classes are arranged physically into assemblies, they are also arranged
logically into namespaces. These have nothing to do with Dyalog namespaces and, to
avoid confusion, are henceforth referred to in this document as .NET namespaces.

Often, a single .NET namespace maps onto a single assembly and usually, the name of
the .NET namespace and the name of its assembly file are the same; for example,
the .NET namespace System.Windows.Forms is contained in an assembly named
System.Windows.Forms.dll.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 14

However, it is possible for a .NET Namespace to be implemented by more than one
assembly; there is not a one-to-one-mapping between .NET Namespaces and
assemblies. Indeed, the main top-level .NET Namespace, System, is spread over a
number of different assembly files.

Within a single .NET Namespace there can be any number of classes, but each has its
own unique name. The full name of a class is the name of the class itself, prefixed by
the name of the .NET namespace and a dot. For example, the full name of the
DateTime class in the .NET namespace System is System.DateTime.

There can be any number of different versions of an assembly installed on your
computer, and there can be several .NET namespaces with the same name,
implemented in different sets of assembly files; for example, written by different
authors.

To use a .NET Class, it is necessary to tell the system to load the assembly (dll) in
which it is defined. In many languages (including C#) this is done by supplying the
names of the assemblies or the pathnames of the assembly files as a compiler
directive.

Secondly, to avoid the verbosity of programmers having to always refer to full class
names, the C# and Visual Basic languages allow the .NET namespace prefix to be
elided. In this case, the programmer must declare a list of .NET namespaces with Using
(C#) and Imports (Visual Basic) declaration statements. This list is then used to resolve
unqualified class names referred to in the code.

In either language, when the compiler encounters the unqualified name of a class, it
searches the specified .NET namespaces for that class.

In Dyalog, this mechanism is implemented by the ⎕USING system variable. ⎕USING
performs the same two tasks that Using/Imports declarations and compiler directives
provide in C# and Visual Basic; namely to give a list of .NET namespaces to be searched
for unqualified class names, and to specify the assemblies which are to be loaded.

⎕USING is a vector of character vectors each element of which contains 1 or 2 comma-
delimited strings. The first string specifies the name of a .NET namespace; the second
specifies the pathname of an assembly file. This may be a full pathname or a relative
one, but must include the file extension (.dll). If just the file name is specified, it is
assumed to be located in the standard .NET Framework directory that was specified
when the .NET Framework was installed (for example, C:
\Windows\Microsoft.NET\Framework64\v4.0.30319)

It is convenient to treat .NET namespaces and assemblies in pairs. For example:

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 15

Note that because Dyalog APL automatically loads mscorlib.dll (which contains the
most commonly used classes in the System Namespace), it is not actually necessary to
specify it explicitly in ⎕USING.

⎕USING has Namespace scope, that is, each Dyalog namespace, class or instance has its
own value of ⎕USING that is initially inherited from its parent space but which may be
separately modified. ⎕USING may also be localised in a function header, so that
different functions can declare different search paths for .NET namespaces/assemblies.

If ⎕USING is empty (⎕USING←0⍴⊂''), APL will not search for .NET classes in order to
resolve names which would otherwise give a VALUE ERROR.

Assigning a simple character vector to ⎕USING is equivalent to setting it to the enclose
of that vector. The statement (⎕USING←'') does not empty ⎕USING, it sets it to a single
empty element, which gives access to mscorlib.dll and the Bridge DLL without a
namespace prefix.

Within a Class script, you may instead employ one or more :Using statements to
specify the .NET search path. Each of these statements is equivalent to appending an
enclosed character vector to ⎕USING.

Classes also inherit from the namespace they are contained in. The statement

Is equivalent to

…and allows a class to clear the inherited value before appending to ⎕USING, or to state
that no .NET assemblies should be loaded.

The equivalent to ⎕USING←'' is a :Using statement followed by a comma separator but
no namespace prefix and no assembly name:

⎕USING←'System,mscorlib.dll'
⎕USING,←⊂'System.Windows.Forms,System.Windows.Forms.dll'
⎕USING,←⊂'System.Drawing,System.Drawing.dll'

:Using System,mscorlib.dll
:Using System.Windows.Forms,System.Windows.Forms.dll
:Using System.Drawing,System.Drawing.dll

:Using

⎕USING←0⍴⊂''

:Using ,

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 16

2.3 Using .NET Classes

To create a Dyalog object as an instance of a .NET class, you use the ⎕NEW system
function. The ⎕NEW system function is monadic. It takes a 1 or 2-element argument, the
first element being a class.

If the argument is a scalar or a 1-element vector, an instance of the class is created
using the constructor that takes NO argument.

If the argument is a 2-element vector, an instance of the class is created using the
constructor whose argument matches the disclosed second element.

For example, to create a DateTime object whose value is the 30th April 2008:

The result of ⎕NEW is an reference to the newly created instance:

If you format a reference to a .NET Object, APL calls its ToString method to obtain a
useful description or identification of the object. This topic is discussed in more detail
later in this chapter.

If you want to use fully qualified class names instead, one of the elements of ⎕USING
must be an empty vector. For example:

When creating an instance of the DateTime class, you are required to provide an
argument with two elements: (the class and the constructor argument, in our case a 3-
element vector representing the date). Many classes provide a default constructor
which takes no arguments. From Dyalog, the default constructor is called by calling
⎕NEW with only a reference to the class in the argument. For example, to obtain a
default Button object, we only need to write:

⎕USING←'System'

mydt←⎕NEW DateTime (2008 4 30)

⎕NC ⊂'mydt'
9.2

mydt
30/04/2008 00:00:00

⎕USING←,⊂''

mydt←⎕NEW System.DateTime (2008 4 30)

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 17

The above statement assumes that you have defined ⎕USING correctly; there must be a
reference to System.Windows.Forms.dll, and a namespace prefix which allows the
name Button to be recognised as System.Windows.Forms.Button.

The mechanism by which APL associates the class name with a class in a .NET
namespace is described below.

Constructors and Overloading

Each .NET Class has one or more constructor methods. A constructor is a method which
is called to initialise an instance of the Class. Typically, a Class will support several
constructor methods - each with a different set of parameters. For example,
System.DateTime supports a constructor that takes three Int32 parameters (year,
month, day), another that takes six Int32 parameters (year, month, day, hour, minute,
second), and so forth. These different constructor methods are not distinguished by
having different names but by the different sets of parameters they accept.

This concept, which is known as overloading, may seem somewhat alien to the APL
programmer. After all, we are used to defining functions that accept a whole range of
different arguments. However, type checking, which is fundamental to the .NET
Framework, requires that a method is called with the correct number of parameters,
and that each parameter is of a predefined type. Overloading solves this issue.

When you create an instance of a class in C#, you do so using the new operator. This is
automatically mapped to the appropriate constructor method by matching the
parameters you supply to the various forms of the constructor. A similar mechanism is
implemented in Dyalog using the ⎕NEW system function.

How the ⎕NEW System Function is implemented

When APL executes an expression such as:

the following logic is used to resolve the reference to DateTime correctly.

The first time that APL encounters a reference to a non-existent name (that is, a name
that would otherwise generate a VALUE ERROR), it searches the .NET namespaces/
assemblies specified by ⎕USING for a .NET class of that name. If found, the name (in this
case DateTime) is recorded in the APL symbol table with a name class of 9.6 and is

mybtn←⎕NEW Button

mydt←⎕NEW DateTime (2008 4 30)

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 18

associated with the corresponding .NET namespace. If not, VALUE ERROR is reported as
usual. Note that this search ONLY takes place if ⎕USING has been assigned a value.

Subsequent references to that symbol (in this case DateTime) are resolved directly and
do not involve any assembly searching.

If you use ⎕NEW with only a class as argument, APL will attempt to call the version of its
constructor that is defined to take no arguments. If no such version of the constructor
exists, the call will fail with a LENGTH ERROR.

Otherwise, if you use ⎕NEW with a class as argument and a second element, APL will call
the version of the constructor whose parameters match the second element you have
supplied to ⎕NEW. If no such version of the constructor exists, the call will fail with a
LENGTH ERROR.

Notes

The value of ⎕USING is only used when an object is instantiated. Changing the
value of ⎕USING has no effect on objects that have already been instantiated in
the active workspace.
When a workspace containing .Net objects is saved, the names of the Net
objects are saved with it but they are not automatically re-instantiated when the
workspace is loaded or copied. A reference to such an orphaned object will
report (NULL).
Some functionality might work with .NET Framework or .NET but not both, for
example, SharpPlot requires the .NET Framework and does not work with .NET
itself.

Displaying a .NET Object

When you display a reference to a .NET object, APL calls the object's ToString method
and displays the result. All objects provide a ToString method because all objects
ultimately inherit from the .NET class System.Object. Many .NET classes will provide
their own ToString that overrides the one inherited from System.Object, and return
a useful description or identifier for the object in question. ToString usually supports a
range of calling parameters, but APL always calls the version of ToString that is
defined to take no calling parameters. Monadic format (⍕) and monadic ⎕FMT have
been extended to provide the same result, and provides a quick shorthand method to
call ToString in this way. The default ToString supplied by System.Object returns the
name of the object's Type. This can be changed using the system function ⎕DF. For
example,

•

•

•

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 19

Note that if you want to check the type of an object, this can be obtained using the
GetType method, which is supported by all .NET objects.

Disposing of .NET Objects

.NET objects are managed by the .NET Common Language Runtime (CLR). The
CLR allocates memory for an object when it is created, and de-allocates this memory
when it is no longer required.

When the (last) reference from Dyalog to a .NET object is expunged by ⎕EX or by
localisation, the system marks the object as unused, leaving it to the CLR to de-allocate
the memory that it had previously allocated to it, when appropriate. Note that even
though Dyalog has de-referenced the APL name, the object could potentially still be
referenced by another .NET class.

De-allocated memory may not actually be re-used immediately and may indeed never
be re-used, depending upon the algorithms used by the CLR garbage disposal.

Furthermore, a .NET object may allocate unmanaged resources (such as window
handles) which are not automatically released by the CLR.

To allow the programmer to control the freeing of resources associated with .NET
objects in a standard way, objects implement the IDisposable interface which provides
a Dispose() method. The C# language provides a using control structure that
automates the freeing of resources. Crucially, it does so however the flow of execution
exits the control structure, even as a result of error handling. This obviates the need for
the programmer to call Dispose() explicitly wherever it may be required.

This programming convenience is provide in Dyalog by the
:Disposable ... :EndDisposable control structure. For further information, see
Programming: Disposable

2.4 Browsing .NET Classes

Microsoft supplies a tool for browsing .NET Class libraries called ILDASM.EXE1 .

z←⎕NEW DateTime ⎕TS
z.(⎕DF(⍕DayOfWeek),,'G< 99:99>'⎕FMT 100⊥Hour Minute)
z

Saturday 09:17

1 ILDASM.EXE can be found in the .NET SDK and is distributed with Visual Studio

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 20

As a convenience, the Dyalog APL Workspace Explorer has been extended to perform a
similar task as ILDASM so that you can gain access to the information within the context
of the APL environment.

The information that describes .NET classes, which is known as its Metadata, is part of
the definition of the class and is stored with it. This Metadata corresponds to Type
Information in COM, which is typically stored in a separate Type Library.

To gain information about one or more .NET Classes, open the Workspace Explorer,
right click the Metadata folder, and choose Load.

This brings up the Browse .NET Assembly dialog box as shown below. Navigate to
the .NET assembly of your choice, and click Open.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 21

The .NET Classes provided with the .NET Framework are typically located in C:
\WINDOWS\Microsoft.NET\Framework64\V4.0.30319 (on a 64-bit computer). The last
named folder is the Version number.

The most commonly used classes of the .NET Namespace System are stored in this
directory in an Assembly named mscorlib.dll, along with a number of other
fundamental .NET Namespaces.

The result of opening this Assembly is illustrated in the following screen shot. The
somewhat complex tree structure that is shown in the Workspace Explorer merely
reflects the structure of the Metadata itself.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 22

Opening the System/ Classes sub-folder causes the Explorer to display the list of classes
contained in the .NET Namespace System as shown in the picture below.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 23

The Constructors folder shows you the list of all of the valid constructors and their
parameter sets with which you may create a new instance of the Class by calling New.
The constructors are those named .ctor; you may ignore the one named .cctor, (the
class constructor) and any labelled as Private.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 24

For example, you can deduce that DateTime.New may be called with three numeric
(Int32) parameters, or six numeric (Int32) parameters, and so forth. There are in fact
seven different ways that you can create an instance of a DateTime.

For example, the following statement may be used to create a new instance of
DateTime (09:30 in the morning on 30th April 2001):

The Properties folder provides a list of the properties supported by the Class. It shows
the name of the property followed by its data type. For example, the DayOfYear
property is defined to be of type Int32.

mydt←⎕NEW DateTime (2001 4 30 9 30 0)

mydt
30/04/2001 09:30:00

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 25

You can query a property by direct reference:

mydt.DayOfWeek
Monday

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 26

Notice too that the data types of some properties are not simple data types, but
Classes in their own right. For example, the data type of the Now property is itself
System.DateTime. This means that when you reference the Now property, you get back
an object that represents an instance of the System.DateTime object:

The Methods folder lists the methods supported by the Class. The Explorer shows the
data type of the result of the method, followed by the name of the method and the
types of its arguments. For example, the IsLeapYear method takes an Int32
parameter (year) and returns a Boolean result.

mydt.Now
07/11/2001 11:30:48

⎕TS
2001 11 7 11 30 48 0

mydt.IsLeapYear 2000
1

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 27

Many of the reported objects are listed as Private, which means they are inaccessible
to users of the class – you are not able to call them or inspect their value. For more
information about classes, see Programming: Introducing Classes.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 28

2.5 Value Tips for External Functions

Value Tips can also be used to investigate the syntax of external functions. If you hover
over the name of an external function, the Value Tip displays its Function Signature.

For example, in the example below, the mouse is hovered over the external function
dt.AddMonths and shows that it requires a single integer as its argument.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 29

Should the external function provide more than one signature, they are all shown in
the Value Tip as illustrated below. Here the function ToString has four different
overloads.

2.6 Advanced Techniques

Shared Members

Certain .NET Classes provide methods, fields and properties, that can be called directly
without the need to create an instance of the Class first. These members are known as
shared, because they have the same definition for the class and for any instance of the
class.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 30

The methods Now and IsLeapYear exported by System.DateTime fall into this category.
For example:

APL language extensions for .NET objects

The .NET Framework provides a set of standard operators (methods) that are
supported by certain classes. These operators include methods to compare two .NET
objects and methods to add and subtract objects.

In the case of the DateTime Class, there are operators to compare two DateTime
objects. For example:

The op_Addition and op_Subtraction operators add and subtract TimeSpan objects
to DateTime objects. For example:

⎕USING←,⊂'System'

DateTime.Now
07/11/2008 11:30:48

DateTime.IsLeapYear 2000
1

DT1←⎕NEW DateTime (2008 4 30)
DT2←⎕NEW DateTime (2008 1 1)

⍝ Is DT1 equal to DT2 ?
DateTime.op_Equality DT1 DT2

0

DT3←DateTime.Now
DT3

07/11/2008 11:33:45

TS←⎕NEW TimeSpan (1 1 1)
TS

01:01:01

DateTime.op_Addition DT3 TS
07/11/2008 12:34:46

DateTime.op_Subtraction DT3 TS
07/11/2008 10:32:44

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 31

The corresponding APL primitive functions have been extended to accept .NET objects
as arguments and simply call these standard .NET methods internally. The methods and
the corresponding APL primitives are shown in the table below.

Note that calculations and comparisons performed by .NET methods are performed
independently from the values of APL system variables (such as ⎕FR and ⎕CT).

.NET Method APL Primitive Function

op_Addition +

op_Subtraction -

op_Multiply ×

op_Division ÷

op_Equality =

op_Inequality ≠

op_LessThan <

op_LessThanOrEqual ≤

op_GreaterThan >

op_GreaterThanOrEqual ≥

So instead of calling the appropriate .NET method to compare two objects, you can use
the familiar APL primitive instead. For example:

Apart from being easier to use, the primitive functions automatically handle arrays and
support scalar extension; for example:

DT1=DT2
0

DT1>DT2
1

DT3+TS
07/11/2008 12:34:46

DT3-TS
07/11/2008 10:32:44

DT1>DT2 DT3
1 0

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 32

In addition, the monadic form of Grade Up (⍋) and Grade Down (⍒), and the Minimum
(⌊) and Maximum (⌈) primitive functions have been extended to work on arrays of
references to .NET objects. Note that the argument(s) must be a homogeneous set of
references to objects of the same .NET class, and in the case of Grade Up and Grade
Down, the argument must be a vector. For example:

Exceptions

When a .NET object generates an error, it does so by throwing an exception. An
exception is in fact a .NET class whose ultimate base class is System.Exception.

The system constant ⎕EXCEPTION returns a reference to the most recently generated
exception object.

For example, if you attempt to create an instance of a DateTime object with a year that
is outside its range, the constructor throws an exception. This causes APL to report a
(trappable) EXCEPTION error (error number 90) and access to the exception object is
provided by ⎕EXCEPTION.

⍋DT1 DT2 DT3
2 1 3

⌊/DT1 DT2 DT3
01/01/2008 00:00:00

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 33

Specifying Overloads and Casts

If a .NET function is overloaded in terms of the types of arguments it accepts, Dyalog
chooses which overload to call depending upon the data types of the arguments
passed to it. For example, if a .NET function foo() is declared to take a single argument
either of type int or of type double APL would call the first version if you called it with
an integer value and the second version if you called it with a non-integer value.

In some circumstances it may be desirable to override this mechanism and explicitly
specify which overload to use.

A second requirement is to be able to specify to what .NET types APL should coerce
arrays before calling a .NET function. For example, if a parameter to a .NET function is
declared as type System.Object, it might be necessary to force the APL argument to
be cast to a particular type of Object before the function is called.

Both these requirements are met by calling the function via the Variant operator ⍠.
There are two options, OverloadTypes (the Principle Option) and CastToTypes. Each
option takes an array of refs to .NET types, the same length as the number of
parameters to the function.

⎕USING←'System'
DT←⎕NEW DateTime (100000 0 0)

EXCEPTION
DT←⎕NEW DateTime (100000 0 0)

⎕EN
90

⎕EXCEPTION.Message
Year, Month, and Day parameters describe an un-representable DateTime.

⎕EXCEPTION.Source
mscorlib

⎕EXCEPTION.StackTrace
at System.DateTime.DateToTicks(Int32 year,

Int32 month,
Int32 day)

at System.DateTime..ctor(Int32 year,
Int32 month,
Int32 day)

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 34

OverloadTypes Examples

To force APL to call the double version of function foo() regardless of the type of the
argument val:

or more simply:

Note that Double is a ref to the .NET type System.Double.

Taking this a stage further, suppose that foo() is defined with 5 overloads as follows:

The following statements will call the niladic, double, (double, int) and double[]
overloads respectively.

Note that in the niladic case, an enclosed empty vector is used to represent a null
reference to a .NET type.

CastToTypes Example

The .NET function Array.SetValue() sets the value of a specified element (or
elements) of an array. The first argument, the new value, is declared as
System.Object, but the value supplied must correspond to the type of the Array in
question. APL has no means to know what this is and will therefore pass the value as is,
that is, in whatever internal format it happens to be at the time. For example:

(foo ⍠('OverloadTypes'Double))val

(foo ⍠Double)val

⎕USING←'System'
Double

(System.Double)

foo()
foo(int i)
foo(double d)
foo(double d, int i)
foo(double[] d)

(foo ⍠ (⊂⍬)) ⍬ ⍝ niladic
(foo ⍠ Double) 1 ⍝ double
(foo ⍠(⊂Double Int32))1 1 ⍝ double,int
(foo ⍠(Type.GetType ⊂'System.Double[]'))⊂1 1 ⍝ double[]

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 35

The above expression failed because APL passed the first argument 1 ,unchanged from
its current internal representation, as a 1-byte integer which does not fit into a Boolean
element.

To rectify the situation, APL must be told to cast the argument to a Boolean as follows:

Overloaded Constructors

If a class provides constructor overloads, a similar mechanism is used to specify which
of the constructors is to be used when an instance of the class is created using ⎕NEW.

For example, if MyClass is a .NET class with an overloaded constructor, and one of its
constructors is defined to take two parameters; a double and an int, the following
statement would create an instance of the class by calling that specific constructor
overload:

⎕USING←'System'

⍝ create a Boolean array with 2 elements
BA←Array.CreateInstance Boolean 2
BA.GetValue 0 ⍝ get the 0th element

0

⍝ attempt to set the 0th element to 1 (AKA true)

BA.SetValue 1 0
EXCEPTION: Cannot widen from source type to target type
either because the source type is a not a primitive type or the conversi
on cannot be accomplished.
test[5] BA.SetValue 1 0

∧

(BA.SetValue ⍠ ('CastToTypes'(Boolean Int32)))1 0
BA.GetValue 0 ⍝ get the 0th element

1

(⎕NEW ⍠ (⊂Double Int32)) MyClass (1 1)

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 36

2.7 More Examples

Directory and File Manipulation

The .NET Namespace System.IO (also in the Assembly mscorlib.dll) provides some
useful facilities for manipulating files. For example, you can create a DirectoryInfo
object associated with a particular directory on your computer, call its GetFiles
method to obtain a list of files, and then get their Name and CreationTime properties.

d is an instance of the Directory Class, corresponding to the directory c:\Dyalog2 .

The GetFiles method returns a list of files; actually, FileInfo objects, that represent
each of the files in the directory: Its optional argument specifies a filter; for example:

The Name property returns the name of the file associated with the File object:

And the CreationTime property returns its creation time, which is a DateTime object:

01/04/2004 09:37:01 01/04/2004 09:37:01 08/06/2004 ...

If you call GetFiles without an argument (in APL, with an argument of ⍬), it returns a
complete list of files:

⎕USING←,⊂'System.IO'
d←⎕NEW DirectoryInfo (⊂'C:\Dyalog')

d
C:\Dyalog

d.GetFiles ⊂'*.exe'
evalstub.exe exestub.exe dyalog.exe dyalogrt.exe

(d.GetFiles ⊂'*.exe').Name
evalstub.exe exestub.exe dyalog.exe dyalogrt.exe

(d.GetFiles ⊂'*.exe').CreationTime

files←d.GetFiles ⍬

2 In this document, we will refer to the location where Dyalog is installed as C:\Dyalog.
Your installation of Dyalog might be in a different folder or even on a different drive but the
examples should work just the same it you replace C:\Dyalog by your folder name

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 37

Taking advantage of namespace reference array expansion, an expression to display file
names and their creation times is as follows.

Sending an email

The .NET Namespace System.Web.Mail provides objects for handing email.

You can create a new email message as an instance of the MailMessage class, set its
various properties, and then send it using the SmtpMail class.

Please note that these examples will only work if your computer is configured to allow
you to send email in this way.

However, note that the Send method of the SmtpMail object is overloaded and may be
called with a single parameter of type System.Web.Mail.MailMessage as above, or
four parameters of type System.String:

So instead, you can just say:

files,[1.5]files.CreationTime
relnotes.hlp 03/02/2004 11:47:02
relnotes.cnt 03/02/2004 11:47:02
def_uk.dse 22/03/2004 12:13:31
DIALOGS.HLP 22/03/2004 12:13:31
dyares32.dll 22/03/2004 12:13:40
...

⎕USING←'System.Web.Mail,System.Web.dll'
m←⎕NEW MailMessage
m.From←'tony.blair@uk.gov'
m.To←'sales@dyalog.com'
m.Subject←'order'
m.Body←'Send me 100 copies of Dyalog now'

SmtpMail.Send m

SmtpMail.Send 'tony.blair@uk.gov'
'sales@dyalog.com'
'order'
'Send me the goods'

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 38

Web Scraping

The .NET Framework provides a whole range of classes for accessing the internet from
a program. The following example illustrates how you can read the contents of a web
page. It is complicated, but realistic, in that it includes code to cater for a firewall/proxy
connection to the internet. It is only 9 lines of APL code, but each line requires careful
explanation.

First we need to define ⎕USING so that it specifies all of the .NET Namespaces and
Assemblies that we require.

The WebRequest class in the .NET Namespace System.Net implements the .NET
Framework's request/response model for accessing data from the Internet. In this
example we create a WebRequest object associated with the URI https://
www.example.com. Note that WebRequest is an example of a static class. You don't
make instances of it; you just use its methods.

In fact (and somewhat confusingly) if the URI specifies a scheme of "http://" or
"https://", you get back an object of type HttpWebRequest rather than a plain and
simple WebRequest. So, at this stage, wrq is an HttpWebRequest object.

This class has a Proxy property through which you specify the proxy information for a
request made through a firewall. The value assigned to the Proxy property has to be an
object of type System.Net.WebProxy. So first we must create a new WebProxy object
specifying the hostname and port number for the firewall. You will need to change this
statement to suit your own internet configuration (it may even not be necessary to do
this).

Having set up the WebProxy object as required, we then assign it to the Proxy property
of the HttpRequest object wrq.

⎕USING←'System,System.dll' 'System.Net' 'System.IO'

wrq←WebRequest.Create ⊂'https://www.example.com'

wrq
System.Net.HttpWebRequest

PX←⎕NEW WebProxy(⊂'http://dyagate.dyadic.com:8080')
PX

System.Net.WebProxy

wrq.Proxy←PX

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 39

The HttpRequest class has a GetResponse method that returns a response from an
internet resource. No it's not HTML (yet), the result is an object of type
System.Net.HttpWebResponse.

The HttpWebResponse class has a GetResponseStream method whose result is of type
System.Net.ConnectStream. This object, whose base class is System.IO.Stream,
provides methods to read and write data both synchronously and asynchronously from
a data source, which in this case is physically connected to a TCP/IP socket.

However, there is yet another step to consider. The Stream class is designed for byte
input and output; what we need is a class that reads characters in a byte stream using a
particular encoding. This is a job for the System.IO.StreamReader class. Given a
Stream object, you can create a new instance of a StreamReader by passing it the
Stream as a parameter.

Finally, we can use the ReadToEnd method of the StreamReader to get the contents of
the page.

Note that to avoid running out of connections, it is necessary to close the Stream:

2.8 Enumerations

An enumeration is a set of named constants that may apply to a particular operation.
For example, when you open a file you typically want to specify whether the file is to
be opened for reading, for writing, or for both. A method that opens a file will take a
parameter that allows you to specify this. If this is implemented using an enumerated

wr←wrq.GetResponse
wr

System.Net.HttpWebResponse

str←wr.GetResponseStream
str

System.Net.ConnectStream

rdr←⎕NEW StreamReader str
rdr

System.IO.StreamReader

s←rdr.ReadToEnd
⍴s

45242

str.Close

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 40

constant, the parameter may be one of a specific set of (typically) integer values; for
example, 1=read, 2=write, 3=both read and write. However, to avoid using meaningless
numbers in code, it is conventional to use names to represent particular values. These
are known as enumerated constants or, more simply, as enums.

In the .NET Framework, enums are implemented as classes that inherit from the base
class System.Enum. The class as a whole represents a set of enumerated constants;
each of the constants themselves is represented by a static field within the class.

The next chapter deals with the use of System.Windows.Forms to create and
manipulate the user interface. The classes in this .NET Namespace use enums
extensively.

For example, there is a class named System.Windows.Forms.FormBorderStyle that
contains a set of static fields named None, FixedDialog, Sizeable, and so forth. These
fields have specific integer values, but the values themselves are of no interest to the
programmer.

Typically, you use an enumerated constant as a parameter to a method or to specify the
value of a property. For example, to create a Form with a particular border style, you
would set its BorderStyle property to one of the members of the FormBorderStyle
class, viz.

An enum has a value, which you may use in place of the enum itself when such usage is
unambiguous. For example, the FormBorderStyle.Fixed3D enum has an underlying
value is 2:

You could set the border style of the Form f1 to FormBorderStyle.Fixed3D with the
expression:

⎕USING←'System'
⎕USING,←⊂'System.Windows.Forms,system.windows.forms.dll'

f1←⎕NEW Form
f1.BorderStyle←FormBorderStyle.FixedDialog
FormBorderStyle.⎕NL ¯2 ⍝ List enum members
Fixed3D FixedDialog FixedSingle FixedToolWindow None
Sizable SizableToolWindow

Convert.ToInt32 FormBorderStyle.Fixed3D
2

f1.BorderStyle←2

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 41

However, this practice is not recommended. Not only does it make your code less clear,
but also if a value for a property or a parameter to a method may be one of several
different enum types, APL cannot tell which is expected and the call will fail.

For example, when the constructor for System.Drawing.Font is called with 3
parameters, the 3rd parameter may be either a FontStyle enum or a GraphicsUnit
enum. If you were to call Font with a 3rd parameter of 1, APL cannot tell whether this
refers to a FontStyle enum, or a GraphicsUnit enum, and the call will fail.

2.9 Handling Pointers with Dyalog.ByRef

Certain .NET methods take parameters that are pointers.

An example is the DivRem method that is provided by the System.Math class. This
method performs an integer division, returning the quotient as its result, and the
remainder in an address specified as a pointer by the calling program.

APL does not have a mechanism for dealing with pointers, so Dyalog provides a .NET
class for this purpose. This is the Dyalog.ByRef class, which is a provided by an
Assembly that is loaded automatically by the Dyalog program.

Firstly, to gain access to the Dyalog .NET Namespace, it must be specified by ⎕USING.
Note that you need not specify the Assembly (DLL) from which it is obtained (the
Bridge DLL), because (like mscorlib.dll) it is automatically loaded by when APL starts.

The Dyalog.ByRef class represents a pointer to an object of type System.Object. It
has a number of constructors, some of which are used internally by APL itself. You only
need to be concerned about two of them; the one that takes no parameters, and the
one that takes a single parameter of type System.Object. The former is used to create
an empty pointer; the latter to create a pointer to an object or some data.

For example, to create an empty pointer:

Or, to create pointers to specific values,

⎕USING←'System' 'Dyalog'

ptr1←⎕NEW ByRef

ptr2←⎕NEW ByRef 0
ptr3←⎕NEW ByRef (⊂⍳10)
ptr4←⎕NEW ByRef (⎕NEW DateTime (2000 4 30))

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 42

Notice that a single parameter is required, so you must enclose it if it is an array with
several elements. Alternatively, the parameter may be a .NET object.

The ByRef class has a single property called Value.

Note that if you reference the Value property without first setting it, you get a VALUE
ERROR.

Returning to the example, we recall that the DivRem method takes 3 parameters:

the numerator
the denominator
a pointer to an address into which the method will write the remainder after
performing the division.

In some cases a .NET method may take a parameter that is an Array and the method
expects to fill in the array with appropriate values. In APL there is no syntax to allow a
parameter to a function to be modified in this way. However, we can use the
Dyalog.ByRef class to call this method. For example, the System.IO.FileStream class
contains a Read method that populates its first argument with the bytes in the file.

ptr2.Value
0

ptr3.Value
1 2 3 4 5 6 7 8 9 10

ptr4.Value
30/04/2000 00:00:00

ptr1.Value
VALUE ERROR

ptr1.Value
^

1.
2.
3.

remptr←⎕NEW ByRef
remptr.Value

VALUE ERROR
remptr.Value
^
Math.DivRem 311 99 remptr

3
remptr.Value

14

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 43

2.10 DECF Conversion

Incoming .NET data types VT_DECIMAL (96-bit integer) and VT_CY (currency value
represented by a 64-bit two's complement integer, scaled by 10,000) are converted to
126-bit decimal numbers (DECFs). This conversion is performed independently of the
value of ⎕FR.

If you want to perform arithmetic on values imported in this way, then you should set
⎕FR to 1287, at least for the duration of the calculations.

Note that the .NET interface converts System.Decimal to DECFs but does not convert
System.Int64 to DECFs.

⎕USING←'System.IO' 'Dyalog' 'System'
fs←⎕NEW FileStream ('c:\tmp\jd.txt' FileMode.Open)
fs.Length

25
fs.Read(arg←⎕NEW ByRef,⊂⊂25⍴0)0 25

25
arg.Value

104 101 108 108 111 32 102 114 111 109 32 106 111 104 110 32 100 97 105
110 116 114 101 101 10

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 44

3 Using Windows.Forms

3.1 Introduction

System.Windows.Forms is a .NET namespace that provides a set of classes for creating
the Graphical User Interface for Windows applications.

As an alternative to the built-in Dyalog GUI, Windows Forms has been superseded by
Windows Presentation Foundation which is described in the next Chapter. This section
is included to support existing Dyalog applications that make use of Windows Forms.

Unless otherwise specified, all the examples described in this Chapter may be found in
the samples\winforms\winforms.dws workspace.

3.2 Creating GUI Objects

GUI objects are represented by .NET classes in the .NET Namespace
System.Windows.Forms. In general, these classes correspond closely to the GUI objects
provided by Dyalog, which are themselves based upon the Windows API.

For example, to create a form containing a button and an edit field, you would create
instances of the Form, Button and TextBox classes.

3.3 Object Hierarchy

The most striking difference between the Windows.Forms GUI and the Dyalog GUI is
that in Windows.Forms the container hierarchy represented by forms, group boxes, and
controls is not represented by an object hierarchy. Instead, objects that represent GUI
controls are created stand-alone (that is, without a parent) and then associated with a
container, such as a Form, by calling the Add method of the parent’s Controls collection.
Notice too that Windows.Forms objects are associated with APL symbols that are
namespace references, but Windows.Forms objects do not have implicit names.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 45

3.4 Positioning and Sizing Forms and Controls

The position of a form or a control is specified by its Location property, which is
measured relative to the top left corner of the client area of its container.

Location has a data type of System.Drawing.Point. To set Location, you must first
create an object of type System.Drawing.Point then assign that object to Location.

Similarly, the size of an object is determined by its Size property, which has a data type
of System.Drawing.Size. This time, you must create a System.Drawing.Size object
before assigning it to the Size property of the control or form.

Objects also have Top(Y) and Left(X) properties that may be specified or referenced
independently. These accept simple numeric values.

The position of a Form may instead be determined by its DeskTopLocation property,
which is specified relative to the taskbar. Another alternative is to set the
StartPosition property whose default setting is WindowsDefaultLocation, which
represents a computed best location.

3.5 Modal Dialog Boxes

Dialog Boxes are displayed modally to prevent the user from performing tasks outside
of the dialog box.

To create a modal dialog box, you create a Form, set its BorderStyle property to
FixedDialog, set its ControlBox, MinimizeBox and MaximizeBox properties to false,
and display it using ShowDialog.

A modal dialog box has a DialogResult property that is set when the Form is closed, or
when the user presses OK or Cancel. The value of this property is returned by the
ShowDialog method, so the simplest way to handle user actions is to check the result
of ShowDialog and proceed accordingly. Example 1 illustrates a simple modal dialog
box.

Example 1

Function EG1 illustrates how to create and use a simple modal dialog box. Much of the
function is self-explanatory, but the following points are noteworthy.

EG1[1-2] set ⎕USING to include the .NET Namespaces System.Windows.Forms and
System.Drawing.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 46

EG1[6,8,9] create a Form and two Button objects. As yet, they are unconnected. The
constructor for both classes is defined to take no arguments, so the ⎕NEW system
function is only called with a class argument.

EG1[14] shows how the Location property is set by first creating a new Point object
with a specific pair of (x and y) values.

EG1[18] computes the values for the Point object for button2.Location, from the
values of the Left, Height and Top properties of button1; thus positioning button2
relative to button1.

EG1[21,23] sets the DialogResult property of button1 and button2 to
DialogResult.OK and DialogResult.Cancel respectively. Note that DialogResult is
an enumeration with a predefined set of member values.

Similarly, EG1[32] defines the BorderStyle property of the form using the
FormBorderStyle enumeration.

EG1[38 40] defines the AcceptButton and CancelButton properties of the Form to
button1 and button2 respectively. These have the same effect as the Dyalog GUI
Default and Cancel properties.

∇ EG1;form1;button1;button2;true;false;⎕USING;Z
[1] ⎕USING←,⊂'System.Windows.Forms,
 System.Windows.Forms.dll'
[2] ⎕USING,←⊂'System.Drawing,System.Drawing.dll'
[3] true false←1 0
[4]
[5] ⍝ Create a new instance of the form.
[6] form1←⎕NEW Form
[7] ⍝ Create two buttons to use as the accept and cancel btns
[8] button1←⎕NEW Button
[9] button2←⎕NEW Button
[10]
[11] ⍝ Set the text of button1 to "OK".
[12] button1.Text←'OK'
[13] ⍝ Set the position of the button on the form.
[14] button1.Location←⎕NEW Point,⊂10 10
[15] ⍝ Set the text of button2 to "Cancel".
[16] button2.Text←'Cancel'
[17] ⍝ Set the position of the button relative to button1.
[18] button2.Location←⎕NEW Point,

⊂button1.Left button1.(Height+Top+10)
[19]

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 47

EG1[42] sets the StartPosition of the Form to be centre screen. Once again this is
specified using an enumeration; FormStartPosition.

EG1[45 46] associate the buttons with the Form. The Controls property of the Form
returns an object of type Form.ControlCollection. This class has an Add method that
is used to add a control to the collection of controls that are owned by the Form.

EG1[50] calls the ShowDialog method (with no argument; hence the ⍬). The result is
an object of type Form.DialogResult, which is an enumeration.

EG1[52] compares the result returned by ShowDialog with the enumeration member
DialogResult.OK (note that the primitive function = has been extended to compare
objects).

[20] ⍝ Make button1's dialog result OK.
[21] button1.DialogResult←DialogResult.OK
[22] ⍝ Make button2's dialog result Cancel.
[23] button2.DialogResult←DialogResult.Cancel
[24]
[25]
[26] ⍝ Set the title bar text of the form.
[27] form1.Text←'My Dialog Box'
[28] ⍝ Display a help button on the form.
[29] form1.HelpButton←true
[30]
[31] ⍝ Define the border style of the form to that of a

dialog box.
[32] form1.BorderStyle←FormBorderStyle.FixedDialog
[33] ⍝ Set the MaximizeBox to false to remove the

maximize box.
[34] form1.MaximizeBox←false
[35] ⍝ Set the MinimizeBox to false to remove the

minimize box.
[36] form1.MinimizeBox←false
[37] ⍝ Set the accept button of the form to button1.
[38] form1.AcceptButton←button1
[39] ⍝ Set the cancel button of the form to button2.
[40] form1.CancelButton←button2
[41] ⍝ Set the start position of the form to the centre

of the screen.
[42] form1.StartPosition←FormStartPosition.CenterScreen
[43]

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 48

The use of modal forms in .NET can lead to problematic situations while

debugging. As the control is passed to .NET the APL interpreter cannot regain

control in the event of an unforeseen error. It is advisable to change the code to

something like the following until the code is fully tested:

Example 2

Functions EG2 and EG2A illustrate how the Each operator (¨) and the extended
namespace reference syntax in Dyalog may be used to produce more succinct, and no
less readable, code.

[44] ⍝ Add button1 to the form.
[45] form1.Controls.Add button1
[46] ⍝ Add button2 to the form.
[47] form1.Controls.Add button2
[48]
[49] ⍝ Display the form as a modal dialog box.
[50] Z←form1.ShowDialog ⍬
[51] ⍝ Determine if the OK button was clicked on the

dialog box.
[52] :If Z=DialogResult.OK
[53] ⍝ Display a message box saying that the OK

button was clicked.
[54] Z←MessageBox.Show⊂'The OK button on the form
 was clicked.'
[55] :Else
[56] ⍝ Display a message box saying that the Cancel

button was clicked.
[57] Z←MessageBox.Show⊂'The Cancel button on the
 form was clicked.'
[58] :EndIf

∇

Warning

[52] form1.Visible←1
[53] :While form1.Visible ⋄ :endwhile

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 49

EG2A[7] takes advantage of the fact that .NET classes are namespaces, so the
expression Form TextBox Label is a vector of namespace refs, and the expression
⎕NEW¨Form TextBox Label runs the ⎕NEW system function on each of them.

Similarly, EG2A[10 11 12] combine the use of extended namespace reference and the
Each operator to set the Text, Location and Size properties in several objects
together.

∇ EG2;form1;label1;textBox1;true;false;⎕USING;Z
[1] ⎕USING←,⊂'System.Windows.Forms,
 System.Windows.Forms.dll'
[2] ⎕USING,←⊂'System.Drawing,System.Drawing.dll'
[3] true false←1 0
[4]
[5] ⍝ Create a new instance of the form.
[6] form1←⎕NEW Form
[7]
[8] textBox1←⎕NEW TextBox
[9] label1←⎕NEW Label
[10]
[11] ⍝ Initialize the controls and their bounds.
[12] label1.Text←'First Name'
[13] label1.Location←⎕NEW Point (48 48)
[14] label1.Size←⎕NEW Size (104 16)
[15] textBox1.Text←''
[16] textBox1.Location←⎕NEW Point (48 64)
[17] textBox1.Size←⎕NEW Size (104 16)
[18]
[19] ⍝ Add the TextBox control to the form's control

collection.
[20] form1.Controls.Add textBox1
[21] ⍝ Add the Label control to the form's control

collection.
[22] form1.Controls.Add label1
[23]
[24] ⍝ Display the form as a modal dialog box.
[25] Z←form1.ShowDialog ⍬

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 50

3.6 Non-Modal Forms

Non-modal Forms are displayed using the Run method of the
System.Windows.Forms.Application object. This method is designed to be called
once, and only once, during the life of an application and this poses problems during
APL development. Fortunately, it turns out that, in practice, the restriction is that
Application.Run may only be run once on a single system thread. However, it may be
run successively on different system threads. During development, you may therefore
test a function that calls Application.Run, by running it on a new APL thread using
Spawn (&). See Chapter 13 for further details.

DataGrid Examples

Three functions in the samples\winforms\winforms.dws workspace provide examples
of non-modal Forms. These examples also illustrate the use of the WinForms.DataGrid
class.

Function Grid1 is an APL translation of the example given in the help file for the
DataGrid class in the .NET SDK Beta1. The original code has been slightly modified to
work with the current version of the SDK.

∇ EG2A;form1;label1;textBox1;true;false;⎕USING;Z
[1] ⍝ Compact version of EG2 taking advantage of ref

syntax and ¨
[2] ⎕USING←'System.Windows.Forms,System.Windows.Forms.dll'
[3] ⎕USING,←⊂'System.Drawing,System.Drawing.dll'
[4] true false←1 0
[5]
[6] ⍝ Create a new instance of the form, TextBox and Label.
[7] (form1 textBox1 label1)←⎕NEW¨Form TextBox Label
[8]
[9] ⍝ Initialize the controls and their bounds.
[10] (label1 textBox1).Text←'First Name' ''
[11] (label1 textBox1).Location←⎕NEW¨Point,¨⊂¨(48 48)(48 64)
[12] (label1 textBox1).Size←⎕NEW¨Size,¨⊂¨(104 16)(104 16)
[13]
[14] ⍝ Add the Label and TextBox controls to the form's

control collection.
[15] form1.Controls.AddRange⊂label1 textBox1
[16]
[17] ⍝ Display the form as a modal dialog box.
[18] Z←form1.ShowDialog ⍬

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 51

Function Grid2 is an APL translation of the example given in the help file for the
DataGrid class in the .NET SDK Beta2.

Function Grid is an APL translation of the example given in the file:

This example uses Microsoft SQL Server 2000 to extract sample data from the sample
NorthWind database. To run this example, you must have SQL Server running and you
must modify function Grid_Load to specify the name of your server.

GDIPLUS Workspace

The samples\winforms\gdiplus.dws workspace contains a sample that demonstrates
the use of non-rectangular Forms. It is a direct translation into APL from a C# sample
(WinForms-Graphics-GDIPlusShape) that was distributed on the Visual Studio .NET Beta
2 Resource CD.

TETRIS Workspace

The samples\winforms\tetris.dws workspace contains a sample that demonstrates
the use of graphics. It is a direct translation into APL from a C# sample (WinForms-
Graphics-Tetris) that was distributed on the Visual Studio .NET Beta 2 Resource CD.

WEBSERVICES Workspace

An example of a non-modal Form is provided by the WFGOLF function in the
samples\asp.net\webservices\webservices.dws workspace. This function performs
exactly the same task as the GOLF function in the same workspace, but it uses
Windows.Forms instead of the built-in Dyalog GUI.

WFGOLF, and its callback functions WFBOOK and WFSS perform exactly the same task, with
almost identical dialog box appearance, of GOLF and its callbacks BOOK and SS that are
described in Chapter 7.

Note that when you run WFGOLF or GOLF for the first time, you must supply an
argument of 1 to force the creation of the proxy class for the GolfService web service.

C:\Program Files\Microsoft.NET\SDK\v1.1\...
QuickStart\winforms\samples\Data\Grid\vb\Grid.vb

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 52

4 WPF

4.1 Introduction

Windows Presentation Foundation is a graphical system that includes a programmable
Graphical User Interface. It is supplied as a set of Microsoft .NET assemblies and is
supported on all current Windows platforms.

The WPF GUI is in many ways more sophisticated and powerful than either Dyalog's
own built-in GUI or the GUI provided by Windows Forms.

Like any other set of .NET classes, WFP can be integrated into Dyalog applications via
the .NET interface. Dyalog users may therefore develop GUI applications that are based
upon WPF as an alternative to the built-in Dyalog GUI or Windows Forms.

Quite apart from its advanced GUI capabilities, WPF supports data binding. This is a
complex subject, but putting it very simply, data binding allows a property of a user-
interface object (such as the Text property of a TextBox object) to be bound to some
data. When the data changes, the bound property of the object changes and vice versa.

Dyalog includes a data binding function (2015⌶3) which supports data binding to APL
arrays and namespaces.

A WPF GUI can be built dynamically by creating a set of component objects (using
⎕NEW) in a similar way to the Dyalog GUI and Windows Forms. However, the same user-
interface can instead be specified statically using XAML, a text markup system that
describes the GUI using XML. Along with data binding, this feature allows the
application logic and the user-interface to be developed and maintained separately.

The examples described in this section are provided in the workspace WPFIntro.dws

3 This function may remain as an I-beam or be replaced by one or more system functions
in a future Version of Dyalog.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 53

4.2 Temperature Converter

4.2.1 Temperature Converter Tutorial

This tutorial illustrates how to go about developing a simple WPF application in Dyalog.
It is functionally identical to the GUI tutorial example that illustrates how to develop a
GUI application using the built-in Dyalog Graphical User Interface. See Interface Guide:

GUI Tutorial.

Like the GUI Tutorial, this is necessarily an elementary example, but illustrates the
principles that are involved. The example is a simple Temperature Converter.

The user may enter a temperature value in either Fahrenheit or Centigrade and have it
converted to the other scale.

No attempt has been made to update the WPF example, in terms of its user-interface,
from the original version which was developed for Windows 3. This allows a direct
comparison to be made between using the WPF and using the built-in Dyalog GUI.

There are two versions provided. The first uses XAML to describe the user-interface
with code to drive it. The second version is written entirely in APL code. The two
versions of this example may be found in WPFIntro.dws in the namespaces
UsingXAML and UsingCode respectively.

4.2.2 Using XAML

The functions and data for this example are provided in the workspace WPFIntro.dws
in the namespace WPF.UsingXAML. To run the example:

Arguably the easiest way to create a WPF GUI is to define it using XAML. The XAML
defines the structure, layout and appearance of the user-interface in a very concise
manner. It is still necessary to write code to display the XAML and to respond to user
actions, but the amount of code involved is minimal.

The XAML for the Temperature Converter is shown below.

)LOAD wpfintro
WPF.UsingXAML.TempConverter

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 54

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="WPF Temperature Converter"
SizeToContent="WidthandHeight">
<DockPanel LastChildFill="False">

<Menu DockPanel.Dock="Top">
<MenuItem Header="_Scale">

<MenuItem Name="mnuFahrenheit" Header="_Fahrenheit"
IsCheckable="True" IsChecked="True"/>

<MenuItem Name="mnuCentigrade" Header="_Centigrade"
IsCheckable="True"/>

</MenuItem>
</Menu>
<Grid Width="230" Margin="40,10,10,10">

<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>

<ColumnDefinition Width="Auto"/>
<ColumnDefinition Width="80"/>
<ColumnDefinition Width="60"/>

</Grid.ColumnDefinitions>
<Label Grid.Row="0" Grid.Column="0" Content="Fahrenheit"/>
<Label Grid.Row="1" Grid.Column="0" Content="Centigrade"/>
<TextBox Name="txtFahrenheit" Grid.Row="0" Grid.Column="1"
Margin="5"/>

<TextBox Name="txtCentigrade" Grid.Row="1" Grid.Column="1"
Margin="5"/>

<Button Name="btnF2C" Grid.Row="0" Grid.Column="2"
Content="F>C" Margin="5"/>

<Button Name="btnC2F" Grid.Row="1" Grid.Column="2"
Content="C>F" Margin="5"/>

<Button Name="btnQuit" Grid.Row="2" Grid.Column="1"
Content="Quit" Margin="5"/>

</Grid>
<ScrollBar Name="scrTemp" DockPanel.Dock="Right" Width="20"
Orientation="Vertical" Minimum="1" Maximum="213">

</ScrollBar>
</DockPanel>

</Window>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 55

The window defined by this XAML is illustrated in the screen image shown above. Let
us examine the XAML, component by component.

Parent and Child Controls

First, notice how the structure of the GUI is defined by enclosing the child components
inside the opening and closing tags of its parent. So:

specifies a Window control that contains a DockPanel control.

Similarly,

defines a Menu that contains a MenuItem, that itself contains two other MenuItem
objects.

<Window
...

<DockPanel>
...

</DockPanel>
</Window>

<Menu>
<MenuItem ... >

<MenuItem ... />
<MenuItem ... />

</MenuItem>
</Menu>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 56

Named and Un-named Controls

Secondly, notice that certain objects are named whereas others are not. For example:
TextBox Name="mnuFahrenheit defines a TextBox named txtFahenheit; whereas
<DockPanel ...> defines an unnamed DockPanel object.

Objects are given names so that they can be referenced from the code that displays
content in the user-interface or handles the user actions. In this case, the code will read
the content of the txtFahrenheit TextBox but has no need to reference the DockPanel.

The Main Window

This extract of XAML defines a Window control; a top-level window that is equivalent
to a Dyalog GUI Form.

The xmlns attributes define the XML namespaces (effectively the vocabulary of the xml
scheme) and are mandatory in an XAML document.

The name of the TextBox is Temp, and its caption is WFP Temperature Converter. The
SizeToContent property is set to "WidthandHeight", which causes the TextBox to
automatically size itself to fit its content in both horizontal and vertical directions.

The DockPanel

WPF provides a number of layout controls. These are containers whose only purpose is
to arrange child controls in a particular way, and to dictate how they are re-arranged
when the parent window is resized. The DockPanel is one of the simplest of the
WPF layout controls.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="WPF Temperature Converter"
SizeToContent="WidthandHeight">

...
</Window>

<DockPanel LastChildFill="False">
..
</DockPanel>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 57

In this case, the DockPanel is controlling 3 child windows a Menu, a Grid and a
ScrollBar.

The attachment of a particular child control is specified by setting its DockPanel.Dock
property. By default, the last control added to a DockPanel is stretched to fill the
remaining space when the window is expanded. In this case, the requirement is for a
fixed-width scrollbar attached to the right edge, so the default is overridden by setting
the LastChildFill property to "False".

The Menu

The above extract from the XAML defines a Menu. Setting Dock to "Top" causes the
Menu as a whole to be docked, so that it appears like a menubar, along the top of the
DockPanel. The Menu contains a single MenuItem labelled Scale which itself contains
two sub-items labelled Fahrenheit and Centigrade respectively. The IsCheckable
property specifies whether or not the user can check the MenuItem, and the IsChecked
property sets and reports its checked state. The underscore characters (for example, as
in "_Scale") identify the following character as a keyboard shortcut.

<Menu DockPanel.Dock="Top">
<MenuItem Header="_Scale">

<MenuItem Name="mnuFahrenheit" Header="_Fahrenheit"
IsCheckable="True" IsChecked="True"/>

<MenuItem Name="mnuCentigrade" Header="_Centigrade"
IsCheckable="True"/>

</MenuItem>
</Menu>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 58

The Grid

The Grid object is another WPF layout control that organises other controls in rows and
columns. Here, the XAML defines a Grid with a width of 230; a left margin if 40, and a
top, right and bottom margin of 10. As there is no explicit unit specified, the system
uses the default device-independent unit (px) of 1/96th inch.

The rows and columns of a Grid are defined by collections of RowDefinition and
ColumnDefinition objects.

Here the XAML specifies that the Grid contains 3 rows, each of which has a Height set
to "Auto" which means that its height depends upon the height of its content.

Similarly, there are 3 columns. The first column (which will contain labels) takes its
width from its content, that is, it will be just wide enough to display the longest label.
The other columns for the edit boxes and buttons are specified to be 80px and 60px
wide respectively. In this case, the content (TextBox and Button objects) will take their
widths from that of the column.

The Label Objects(Column 1)

Here the XAML specifies Label objects Fahrenheit and Centigrade. Because they are
defined within the <Grid> ...</Grid> tags, they are child objects of the Grid. In

<Grid Width="230" Margin="40,10,10,10">
...
</Grid>

<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition Width="80"/>
<ColumnDefinition Width="60"/>

</Grid.ColumnDefinitions>

<Label Grid.Row="0" Grid.Column="0" Content="Fahrenheit"/>
<Label Grid.Row="1" Grid.Column="0" Content="Centigrade"/>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 59

addition it is necessary to specify in which cells they are displayed using their Grid.Row
and Grid.Column properties. Note that the cell coordinates have zero origin.

The TextBox Objects(Column 2)

The XAML specifies two TextBox objects named txtFahrenheit and txtCentigrade
respectively. Setting Margin to "5" means that a margin of 5px is applied around each
edge; otherwise the text boxes would occupy the entire width of the column (80px).
The effective width of each TextBox will therefore be 70px (80-2×5).

The Button Objects (Column 3)

The XAML specifies three named Button controls. Note that the caption on a Button is
specified by its Content property.

The ScrollBar Object

This example uses a ScrollBar which the user may scroll to input a value, either in
Fahrenheit or Centigrade depending upon which of the two menu items (Fahrenheit or
Centigrade) is checked.4

<TextBox Name="txtFahrenheit" Grid.Row="0" Grid.Column="1"
Margin="5"/>

<TextBox Name="txtCentigrade" Grid.Row="1" Grid.Column="1"
Margin="5"/>

<Button Name="btnF2C" Grid.Row="0" Grid.Column="2"
Content="F>C" Margin="5"/>

<Button Name="btnC2F" Grid.Row="1" Grid.Column="2"
Content="C>F" Margin="5"/>

<Button Name="btnQuit" Grid.Row="2" Grid.Column="1"
Content="Quit" Margin="5"/>

<ScrollBar Name="scrTemp" DockPanel.Dock="Right" Width="20"
Orientation="Vertical" Minimum="1" Maximum="213">

</ScrollBar>

4 A ScrollBar is not the ideal choice of control for this type of user interation, but this
example is designed to look and behave like the original Dyalog GUI example, which was
written for the original version of Dyalog for Microsoft Windows.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 60

This XAML snippet defines a ScrollBar named scrTemp.

Setting DockPanel.Dock to "Right" means that it will be docked (aligned) on the right
edge of the DockPanel. It will be a vertical scrollbar, have a fixed width of 20px and a
default height. The range of the ScrollBar is defined by its Minimum and Maximum
properties which are set so that the ScrollBar will specify a value in Fahrenheit.

Note that in order to cause the ScrollBar to be docked (aligned) along the right edge of
the DockPanel it is necessary to set LastChildFill to "False" (for the DockPanel) and Dock
to "Right" (for the ScrollBar), because the value of LastChildFill (default "True")
overrides the Dock value of the last defined child of the DockPanel.

The XAML that defines this user-interface is at the same time both simple and

complex. It is simple because (in this case) it is readily understood. It is complex

because in order to write it, the user-interface designer must understand

precisely how the various controls and their properties behave and work

together. For these details, you should refer to the appropriate documentation

and check out the large number of examples published on the internet.

The Code to display the XAML

The function TempConverter shown below contains the code needed to display and
operate the user interface whose layout is defined by the XAML described above.

Note

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 61

The variable XAML (a character vector) contains the XAML described previously.

Note that apart from the names given to the objects by the XAML and used by the
function, the XAML and the code are independent.

TempConverter[7-8] create a XamlReader object from the character vector via
StringReader and XmlTextReader objects.

TempConverter[9] instantiates the XAML content by calling its Load method, which
returns a reference win to the top-level control (in this case a Window) defined therein.
The Window is not yet visible.

∇
TempConverter;str;xml;win;txtFahrenheit;txtCentigrade;mnuFahrenheit;mnuC
entigrade;btnF2C;btnC2F;btnQuit;scrTemp;sink
[1] ⎕USING←'System'
[2] ⎕USING,←⊂'System.IO'
[3] ⎕USING,←⊂'System.Windows.Markup'
[4] ⎕USING,←⊂'System.Xml,system.xml.dll'
[5] ⎕USING,←⊂'System.Windows.Controls.Primitives,WPF/
PresentationFramework.dll'
[6]
[7] str←⎕NEW StringReader(⊂XAML)
[8] xml←⎕NEW XmlTextReader str
[9] win←XamlReader.Load xml
[10]
[11] txtFahrenheit←win.FindName⊂'txtFahrenheit'
[12] txtCentigrade←win.FindName⊂'txtCentigrade'
[13] mnuFahrenheit←win.FindName⊂'mnuFahrenheit'
[14] mnuFahrenheit.onClick←'SET_F'
[15] mnuCentigrade←win.FindName⊂'mnuCentigrade'
[16] mnuCentigrade.onClick←'SET_C'
[17] (btnF2C←win.FindName⊂'btnF2C').onClick←'f2c'
[18] (btnC2F←win.FindName⊂'btnC2F').onClick←'c2f'
[19] (btnQuit←win.FindName⊂'btnQuit').onClick←'Quit'
[20] (scrTemp←win.FindName⊂'scrTemp').onScroll←'F2C'
[21] sink←win.ShowDialog

∇

[7] str←⎕NEW StringReader(⊂XAML)
[8] xml←⎕NEW XmlTextReader str

[9] win←XamlReader.Load xml

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 62

Earlier, it was explained that objects defined by the XAML must be named in order that
they can be referenced (used) by the code. The mechanism to achieve this is to call the
FindName method of the Window, which returns a reference to the specified (named)
object. So these statements:

obtain refs (in this case named txtFahrenheit and txtCentigrade) to objects named
txtFahrenheit and txtCentigrade. It is convenient (but not essential) to use the same
name for the ref as is used for the control.

Most of the remaining statements obtain refs to the MenuItem, Button and ScrollBar
objects and attach callback functions to their Click and Scroll events respectively.

Finally the code displays the Window and hands it over to the user by calling the
ShowDialog method of the top-level Window.

ShowDialog displays the Window modally; that is, until it is closed, the user may
interact only with that Window. It is equivalent to ⎕DQ win or win.Wait in the Dyalog
built-in GUI.

The CallBack Functions

The callback functions are named as they are in the basic Dyalog GUI example and are
remarkably similar. See Interface Guide:

GUI Tutorial.

Callback function f2c which is attached to the Click event of the btnF2C button
(labelled F>C) reads the character string in the txtFahrenheit TextBox, converts it to a
number using Text2Num, calculates the equivalent in centigrade and then displays the
result in the txtCentigrade TextBox.

[11] txtFahrenheit←win.FindName⊂'txtFahrenheit'
[12] txtCentigrade←win.FindName⊂'txtCentigrade'

[13] mnuFahrenheit←win.FindName⊂'mnuFahrenheit'
[14] mnuFahrenheit.onClick←'SET_F'
[15] mnuCentigrade←win.FindName⊂'mnuCentigrade'
[16] mnuCentigrade.onClick←'SET_C'
[17] (btnF2C←win.FindName⊂'btnF2C').onClick←'f2c'
[18] (btnC2F←win.FindName⊂'btnC2F').onClick←'c2f'
[19] (btnQuit←win.FindName⊂'btnQuit').onClick←'Quit'
[20] (scrTemp←win.FindName⊂'scrTemp').onScroll←'F2C'

[21] sink←win.ShowDialog

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 63

For completeness, the Text2Num function is shown below. Note that if the user enters
an invalid number, Text2Num returns an empty vector, and the callback displays the text
invalid instead.

The c2f function converts from Centigrade to Fahrenheit when the user presses the
button labelled C>F.

The callbacks F2C and C2F, one of which at a time is attached to the Scroll event of the
ScrollBar object are shown below. The argument Msg contains two items, namely:

[1] Object a ref to the ScrollBar object

[2] Object a ref to an object of type
System.Windows.Controls.Primitives.ScrollEventArgs

In this case the code uses the NewValue property of the ScrollEventArgs object. An
alternative would be to refer to the Value property of the ScrollBar object

∇ f2c;value
[1] ⍝ Callback to convert Fahrenheit to Centigrade
[2] :If 1=⍴,value←Text2Num txtFahrenheit.Text
[3] txtCentigrade.Text←2⍕(value-32)×5÷9
[4] :Else
[5] txtCentigrade.Text←'invalid'
[6] :EndIf

∇

∇ num←Text2Num txt;val
[1] val num←⎕VFI txt
[2] num←val/num

∇

∇ c2f;value
[1] ⍝ Callback to convert Centigrade to Fahrenheit
[2] :If 1=⍴,value←Text2Num txtCentigrade.Text
[3] txtFahrenheit.Text←2⍕32+value÷5÷9
[4] :Else
[5] txtFahrenheit.Text←'invalid'
[6] :EndIf

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 64

The callbacks SET_F and SET_C which are attached to the Click events of the two
MenuItem objects are shown below.

Finally, the callback function Quit which is attached to the Click event on the Quit
button, simply calls the Close method of the Window:

Notice that unlike its equivalent in the Dyalog GUI, it is not appropriate to close the
Window using the expression ⎕EX 'win'. This would expunge the ref to the Window
but have no effect on the Window itself.

∇ F2C Msg;C;F;val
[1] ⍝ Callback for Fahrenheit input via scrollbar
[2] txtFahrenheit.Text←2⍕val←213-(2⊃Msg).NewValue
[3] txtCentigrade.Text←2⍕(val-32)×5÷9

∇

∇ C2F Msg;C;F;val
[1] ⍝ Callback for Centigrade input via scrollbar
[2] txtCentigrade.Text←2⍕val←101-(2⊃Msg).NewValue
[3] txtFahrenheit.Text←2⍕32+val÷5÷9

∇

∇ SET_F
[1] ⍝ Sets the scrollbar to work in Fahrenheit
[2] scrTemp.(Minimum Maximum)←1 213
[3] scrTemp.onScroll←'F2C'
[4] mnuFahrenheit.IsChecked←1
[5] mnuCentigrade.IsChecked←0

∇

∇ SET_C
[1] ⍝ Sets the scrollbar to work in Centigrade
[2] scrTemp.(Minimum Maximum)←1 101
[3] scrTemp.onScroll←'C2F'
[4] mnuCentigrade.IsChecked←1
[5] mnuFahrenheit.IsChecked←0

∇

∇ Quit arg
[1] win.Close

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 65

4.2.3 Using Code

The functions for this example are provided in the workspace WPFIntro.dws in the
namespace WPF.UsingCode. To run the example:

The following function TempConverter performs exactly the same task of defining and
manipulating the user-interface for the Temperature Converter example using XAML
which was discussed previously.

The callback functions it uses are identical.

)LOAD wpfintro
WPF.UsingCode.TempConverter

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 66

∇
TempConverter;⎕USING;win;dp;mnu;mnuFahrenheit;mnuCentigrade;gr;tn;rd1;rd
2;rd3;rc1;rc2;rc3;l1;l2;txtFahrenheit;txtCentigrade;btnF2C;btnC2F;btnQui
t;sink;mnuScale;scrTemp
[1]
[2] ⎕USING←,⊂'System.Windows.Controls,WPF/PresentationFramework.dll'
[3] ⎕USING,←⊂'System.Windows.Controls.Primitives,WPF/
PresentationFramework.dll'
[4] ⎕USING,←⊂'System.Windows,WPF/PresentationFramework.dll'
[5] ⎕USING,←⊂'System.Windows,WPF/PresentationCore.dll'
[6]
[7] win←⎕NEW Window
[8] win.SizeToContent←SizeToContent.WidthAndHeight
[9] win.Title←'WPF Temperature Converter'
[10]
[11] dp←⎕NEW DockPanel
[12] dp.LastChildFill←0
[13]
[14] mnu←⎕NEW Menu
[15]
[16] mnuScale←⎕NEW MenuItem
[17] mnuScale.Header←'_Scale'
[18] sink←mnu.Items.Add mnuScale
[19]
[20] mnuFahrenheit←⎕NEW MenuItem
[21] mnuFahrenheit.Header←'Fahrenheit'
[22] mnuFahrenheit.IsCheckable←1
[23] mnuFahrenheit.IsChecked←1
[24] mnuFahrenheit.onClick←'SET_F'
[25] sink←mnuScale.Items.Add mnuFahrenheit
[26]
[27] mnuCentigrade←⎕NEW MenuItem
[28] mnuCentigrade.Header←'_Centigrade'
[29] mnuCentigrade.IsCheckable←1
[30] mnuCentigrade.IsChecked←0
[31] mnuCentigrade.onClick←'SET_C'
[32] sink←mnuScale.Items.Add mnuCentigrade
[33]
[34] sink←dp.Children.Add mnu
[35] dp.SetDock mnu Dock.Top
[36]
[37] gr←⎕NEW Grid
[38] gr.Width←230
[39] gr.Margin←⎕NEW Thickness(40 10 10 10)

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 67

[40]
[41] rd1←⎕NEW RowDefinition
[42] rd1.Height←GridLength.Auto
[43] rd2←⎕NEW RowDefinition
[44] rd2.Height←GridLength.Auto
[45] rd3←⎕NEW RowDefinition
[46] rd3.Height←GridLength.Auto
[47] gr.RowDefinitions.Add¨rd1 rd2 rd3
[48]
[49] rc1←⎕NEW ColumnDefinition
[50] rc1.Width←GridLength.Auto
[51] rc2←⎕NEW ColumnDefinition
[52] rc2.Width←⎕NEW GridLength 80
[53] rc3←⎕NEW ColumnDefinition
[54] rc3.Width←⎕NEW GridLength 60
[55] gr.ColumnDefinitions.Add¨rc1 rc2 rc3
[56]
[57] l1←⎕NEW Label
[58] l1.Content←'Fahrenheit'
[59] sink←gr.Children.Add l1
[60] gr.SetRow l1 0
[61] gr.SetColumn l1 0
[62]
[63] l2←⎕NEW Label
[64] l2.Content←'Centigrade'
[65] sink←gr.Children.Add l2
[66] gr.SetRow l2 1
[67] gr.SetColumn l2 0
[68]
[69] txtFahrenheit←⎕NEW TextBox
[70] txtFahrenheit.Margin←⎕NEW Thickness 5
[71] sink←gr.Children.Add txtFahrenheit
[72] gr.SetRow txtFahrenheit 0
[73] gr.SetColumn txtFahrenheit 1
[74]
[75] txtCentigrade←⎕NEW TextBox
[76] txtCentigrade.Margin←⎕NEW Thickness 5
[77] sink←gr.Children.Add txtCentigrade
[78] gr.SetRow txtCentigrade 1
[79] gr.SetColumn txtCentigrade 1
[80]
[81] btnF2C←⎕NEW Button
[82] btnF2C.Content←'F>C'
[83] btnF2C.Margin←⎕NEW Thickness 5

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 68

Although this approach appears at first sight to be considerably more verbose than
using XAML (a 120-line function compared with a 21-line function and a 44-line block
of XAML) each line of code performs only one very simple task, and no attempt has
been made to write utility functions to perform the same task for similar controls, as
might be done in a real application.

[84] btnF2C.onClick←'f2c'
[85] sink←gr.Children.Add btnF2C
[86] gr.SetRow btnF2C 0
[87] gr.SetColumn btnF2C 2
[88]
[89] btnC2F←⎕NEW Button
[90] btnC2F.Content←'C>F'
[91] btnC2F.Margin←⎕NEW Thickness 5
[92] btnC2F.onClick←'c2f'
[93] sink←gr.Children.Add btnC2F
[94] gr.SetRow btnC2F 1
[95] gr.SetColumn btnC2F 2
[96]
[97] btnQuit←⎕NEW Button
[98] btnQuit.Content←'Quit'
[99] btnQuit.Margin←⎕NEW Thickness 5
[100] btnQuit.onClick←'Quit'
[101] sink←gr.Children.Add btnQuit
[102] gr.SetRow btnQuit 2
[103] gr.SetColumn btnQuit 1
[104]
[105] sink←dp.Children.Add gr
[106]
[107] scrTemp←⎕NEW ScrollBar
[108] scrTemp.Width←20
[109] scrTemp.Orientation←Orientation.Vertical
[110] scrTemp.Minimum←1
[111] scrTemp.Maximum←213
[112] scrTemp.onScroll←'F2C'
[113]
[114] sink←dp.Children.Add scrTemp
[115] dp.SetDock scrTemp Dock.Right
[116]
[117] win.Content←dp
[118]
[119] sink←win.ShowDialog

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 69

As before, let us examine the code line-by-line.

TempConverter[2-5] define ⎕USING so that the appropriate .NET assemblies are on
the search-path. Note that the ScrollBar control is in
System.Windows.Controls.Primitives and not System.Windows.Controls like the
others.

TempConverter[8-9] creates a Window and sets its SizeToContent and Title properties
as in the XAML example. Notice however that whereas using XAML the string
SizeToContent="WidthandHeight" is sufficient, when using code it is necessary to get
the Type right. In this case, the SizeToContent property must be set to a specific
member (in this case WidthAndHeight) of the System.Windows.SizeToContent
enumeration. Other members of this Type are Width, Height and Manual (the default).

TempConverter[11-12] create a DockPanel control and set its LastChildFill property to
0. In this case the APL value 0 is used instead of the string "False" in XAML.

TempConverter[14] creates a Menu control.

TempConverter[16-18] create a MenuItem control with the caption Scale, and then
add the control to the Items collection of the main Menu using its Add method. This
illustrates one significant difference between using XAML and code. In XAML, the
parent/child relationships between controls are defined by the structure and order of
the XML. Using code, child controls must be explicitly added to the appropriate list of
child controls managed by the parent.

[2] ⎕USING←,⊂'System.Windows.Controls,WPF/PresentationFramework.dll'
[3] ⎕USING,←⊂'System.Windows.Controls.Primitives,WPF/
PresentationFramework.dll'
[4] ⎕USING,←⊂'System.Windows,WPF/PresentationFramework.dll'
[5] ⎕USING,←⊂'System.Windows,WPF/PresentationCore.dll'

[7] win←⎕NEW Window
[8] win.SizeToContent←SizeToContent.WidthAndHeight
[9] win.Title←'WPF Temperature Converter'

[11] dp←⎕NEW DockPanel
[12] dp.LastChildFill←0

[14] mnu←⎕NEW Menu

[16] mnuScale←⎕NEW MenuItem
[17] mnuScale.Header←'_Scale'
[18] sink←mnu.Items.Add mnuScale

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 70

TempConverter[20-25] create a MenuItem control labelled Fahrenheit. The
IsCheckable and IsChecked properties are set to 1, which is equivalent to "True" in
XAML. The callback function SET_F is assigned to the Click event exactly as in the
XAML version of this example. The last line in this section makes the Fahrenheit
MenuItem a child of the Scale MenuItem.

The code used to create the Centigrade MenuItem is more or less the same.

TempConverter[34-35] adds the top-level Menu to the DockPanel. Note that in the
case of a DockPanel, the list of its child controls is represented by its Children property.
Furthermore, to define how it is docked this is done, using code, by the SetDock
method of the DockPanel. This contrasts with the way this is achieved using XAML
(DockPanel.Dock="Top"). Note too that the argument to SetDock is not just a simple
string as in XAML, but a member of the System.Windows.Controls.Dock enumeration.

TempConverter[37-39] create the Grid control. Its Width property will accept a simple
numeric value, but its Margin property must be given an instance of a
System.Windows.Thickness structure. In this case, the ThickNess constructor is given a
4-element numeric vector that specifies its Left, Top, Right and Bottom members
respectively.

TempConverter[41-47] create instances of 3 RowDefinition classes and add them to
the RowDefinitions collection of the Grid. Note that whereas in XAML the Height can be
specified as a string, using code it is necessary once again to use the correct Type. In
this case, Height must be specified by a member of the System.Windows.GridLength
structure.

[20] mnuFahrenheit←⎕NEW MenuItem
[21] mnuFahrenheit.Header←'Fahrenheit'
[22] mnuFahrenheit.IsCheckable←1
[23] mnuFahrenheit.IsChecked←1
[24] mnuFahrenheit.onClick←'SET_F'
[25] sink←mnuScale.Items.Add mnuFahrenheit

[34] sink←dp.Children.Add mnu
[35] dp.SetDock mnu Dock.Top

[37] gr←⎕NEW Grid
[38] gr.Width←230
[39] gr.Margin←⎕NEW Thickness(40 10 10 10)

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 71

Similarly, TempConverter[49-55] create instances of 3 ColumnDefinition classes and
add them to the ColumnDefinitions collection of the Grid. Note that The Width
property will not accept a simple numeric value, it must be a member of the
GridLength structure. To set the Width to 80, it is necessary first to create an instance
of a GridLength structure giving this value as the argument to its constructor.

TempConverter[57-61] create a Label control with the caption Fahrenheit. To display
the Label in a Grid it is necessary to first add it to the Children collection of the Grid,
and then set its position in the Grid using its SetRow and SetColumn methods. Similar
code is used to create and position the second Label.

TempConverter[69-73] create and position a TextBox control, in the same way as the
Label controls. Notice that in this case, the constructor for the Thickness structure is
given a single value that specifies all four of its Left, Top, Right and Bottom members.

TempConverter[81-87] create and position a Button control. The callback function f2c
is attached to the Click event in the same way as in the XAML version of this example.

[41] rd1←⎕NEW RowDefinition
[42] rd1.Height←GridLength.Auto
[43] rd2←⎕NEW RowDefinition
[44] rd2.Height←GridLength.Auto
[45] rd3←⎕NEW RowDefinition
[46] rd3.Height←GridLength.Auto
[47] gr.RowDefinitions.Add¨rd1 rd2 rd3

[49] rc1←⎕NEW ColumnDefinition
[50] rc1.Width←GridLength.Auto
[51] rc2←⎕NEW ColumnDefinition
[52] rc2.Width←⎕NEW GridLength 80
[53] rc3←⎕NEW ColumnDefinition
[54] rc3.Width←⎕NEW GridLength 60
[55] gr.ColumnDefinitions.Add¨rc1 rc2 rc3

[57] l1←⎕NEW Label
[58] l1.Content←'Fahrenheit'
[59] sink←gr.Children.Add l1
[60] gr.SetRow l1 0
[61] gr.SetColumn l1 0

[69] txtFahrenheit←⎕NEW TextBox
[70] txtFahrenheit.Margin←⎕NEW Thickness 5
[71] sink←gr.Children.Add txtFahrenheit
[72] gr.SetRow txtFahrenheit 0
[73] gr.SetColumn txtFahrenheit 1

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 72

TempConverter[105] adds the Grid to the list of Children to be managed by the
DockControl.

TempConverter[107-112] create a ScrollBar control. Its Width, Minimum and
Maximum properties all accept simple numeric values. However, its Orientation
property must be set to a member of the System.Windows.Controls.Orientation
enumeration.

TempConverter[114-115] add the ScrollBar to the list of Children managed by the
DockPanel, and use its SetDock method to cause it to be right-aligned.

Finally, the DockPanel is assigned to the Content property of the Window, and the
Window displayed as in the XAML version of this example. Note that a Window may
contain just one control.

[81] btnF2C←⎕NEW Button
[82] btnF2C.Content←'F>C'
[83] btnF2C.Margin←⎕NEW Thickness 5
[84] btnF2C.onClick←'f2c'
[85] sink←gr.Children.Add btnF2C
[86] gr.SetRow btnF2C 0
[87] gr.SetColumn btnF2C 2

[105] sink←dp.Children.Add gr

[107] scrTemp←⎕NEW ScrollBar
[108] scrTemp.Width←20
[109] scrTemp.Orientation←Orientation.Vertical
[110] scrTemp.Minimum←1
[111] scrTemp.Maximum←213
[112] scrTemp.onScroll←'F2C'

[114] sink←dp.Children.Add scrTemp
[115] dp.SetDock scrTemp Dock.Right

[117] win.Content←dp
[118]
[119] sink←win.ShowDialog

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 73

4.3 Data Binding

4.3.1 Example 1

This example illustrates data binding using XAML to specify the user-interface coupled
with an APL function to drive it and handle the data binding.

The XAML

The XAML shown below, describes a Window containing a TextBox.

It contains a data binding expression, namely:

This specifies that the Text property of the TextBox is bound to a value in the Binding
Source (which has yet to be defined) whose path is txtSource. The binding mode is set
to TwoWay which means that any change in the TextBox will be reflected in a new value
in the Binding Source, and vice-versa. The value in the Binding Source will be updated
when the property (in this case the Text Property) changes.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="Data Binding (Text)"
SizeToContent="WidthandHeight">

<TextBox Name="txt" Width="300" Margin="5"
Text="{Binding txtSource,Mode=TwoWay,

 UpdateSourceTrigger=PropertyChanged}"/>
</Window>

Text="{Binding txtSource,Mode=TwoWay,
UpdateSourceTrigger=PropertyChanged}"

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 74

The APL Code

The function Text which generates this example is shown below.

The argument txt is the text to be displayed initially in the TextBox. Note that the
variable XAML_Text contains the XAML that describes the user-interface listed above.

The utility function LoadXAML incorporates the 3 lines of code, used to create a WPF
window from XAML, that were coded in-line in previous examples in this chapter.

Text[1] defines the .NET search path needed to access the WPF controls.

Text[2-3] uses the utility function LoadXAML to load a WPF user-interface from the
XAML and then uses the FindName method to obtain a reference to the object named
txt.

∇ Text txt;⎕USING;str;xml;win
[1] ⎕USING←,⊂'System.Windows.Controls,WPF/PresentationFramework.dll'
[2] win←LoadXAML XAML
[3] win.txtBox←win.FindName⊂'txt'
[4]
[5] ⎕EX'txtSource'
[6] txtSource←txt
[7] win.txtBox.DataContext←2015⌶'txtSource'
[8]
[9] win.Show

∇

∇ win←LoadXAML xaml;⎕USING;str;xml
[1] ⎕USING←'System.IO'
[2] ⎕USING,←⊂'System.Windows.Markup'
[3] ⎕USING,←⊂'System.Xml,system.xml.dll'
[4] ⎕USING,←⊂'System.Windows.Controls,
 WPF/PresentationFramework.dll'
[5] str←⎕NEW StringReader(⊂xaml)
[6] xml←⎕NEW XmlTextReader str
[7] win←XamlReader.Load xml

∇

[1] ⎕USING←,⊂'System.Windows.Controls,WPF/PresentationFramework.dll'

[2] win←LoadXAML XAML
[3] win.txtBox←win.FindName⊂'txt'

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 75

Text[5-6] initialise a new global variable named txtSource to the value of the
argument. When using a global variable as a data binding source, it is generally
advisable to establish a new variable by first expunging it.5

Text[7]creates a Binding Source object using 2015⌶ and assigns it to the DataContext
property of the TextBox object. Because it is a character vector, the exported Type for
the bound variable txtSource is System.String which is appropriate for the Text
property of a TextBox.

Text[9] displays the Window. Note that although the APL local variable win goes out
of scope when the function terminates, the Window remains visible until the user has
closed it.

Testing the Data Binding

The following expressions may be used to explore the effect of data binding.

[5] ⎕EX'txtSource'
[6] txtSource←txt

[7] win.txtBox.DataContext←2015⌶'txtSource'

[9] win.Show

)LOAD wpfintro
)CS DataBinding.Text

Text 'Hello World'

txtSource←⌽txtSource

5 This is because its binding type (the exported type of the data bound variable) is stored
in the workspace along with its value, and the binding type (were it to be incorrect) may not
be changed once it has been established.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 76

Typing into the TextBox changes the value of the bound variable.

4.3.2 Example 2

This example illustrates the use of the optional left argument to 2015⌶ to specify the
data type used to export the value of the bound variable.

The XAML

The XAML shown below, describes the same Window containing a TextBox as before.

This time, the data binding expression is:

This specifies that the FontSize property of the TextBox is bound to a value in the
Binding Source (which has yet to be defined) whose path is sizeSource. The binding
mode is set to OneWay which means that the FontSize property depends on the data
value but not vice versa. Were the FontSize to change for any external reason (which is

txtSource
What is in txtSource now?

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="Data Binding (FontSize)"
SizeToContent="WidthandHeight">

<TextBox Name="txt" Text="Hello World" Width="300"
Margin="5"
FontSize="{Binding sizeSource,Mode=OneWay}"/>

</Window>

FontSize="{Binding sizeSource,Mode=OneWay}"/>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 77

admittedly unlikely in the case of FontSize), it would not alter the value in sizeSource
to which it is bound.

The APL Code

The function FontSize is almost identical to the function Text which is described in
Example 1.

The key difference is in FontSize[8]. Here the left argument of (2015⌶) is Int32. This
means that the exported Type of the variable sizeSource will be Int32. This Type (a 32-
bit integer) is required by the FontSize property of a TextBox; no other Type will do. If
this were omitted, APL would export the value of the variable using a Type dependent
on its internal format (most likely Int16) and the binding would fail.

Testing the Data Binding

∇ FontSize size;⎕USING;win
[1] ⎕USING←'System'
[2] ⎕USING,←⊂'System.Windows.Controls,WPF/PresentationFramework.dll'
[3] win←LoadXAML XAML
[4] win.txtBox←win.FindName⊂'txt'
[5]
[6] ⎕EX'sizeSource'
[7] sizeSource←size
[8] win.txtBox.DataContext←Int32(2015⌶)'sizeSource'
[9]
[10] win.Show

∇

[8] win.txtBox.DataContext←Int32(2015⌶)'sizeSource'

)LOAD wpfintro
)CS DataBinding.FontSize

FontSize 12

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 78

4.3.3 Example 3

This example uses APL code to both build the user-interface (instead of using XAML)
and handle the data binding. In this case both the Text and the FontSize properties are
bound to APL variables. The function is shown below:

sizeSource
12

sizeSource←30

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 79

Apart from the code that creates the controls, the only material difference between
this and the previous examples is the way that the bindings are handled.

∇ TextFontSize(txt size);⎕USING;win;sink
[1] ⎕USING←'System'
[2] ⎕USING,←,⊂'System.Windows.Controls,WPF/PresentationFramework.dll'
[3] ⎕USING,←⊂'System.Windows.Controls.Primitives,WPF/
PresentationFramework.dll'
[4] ⎕USING,←⊂'System.Windows,WPF/PresentationFramework.dll'
[5] ⎕USING,←⊂'System.Windows,WPF/PresentationCore.dll'
[6]
[7] ⍝ Create a Window, DockPanel and TextBox
[8] win←⎕NEW Window
[9] win.SizeToContent←SizeToContent.WidthAndHeight
[10] win.Title←'Data Binding (Text and FontSize)'
[11] win.txtBox←⎕NEW TextBox
[12] win.txtBox.Width←350
[13] win.Content←win.txtBox
[14]
[15] ⍝ Define data binding from variable "txtSource"
[16] ⍝ to the Text property of TextBox win.txtBox
[17] ⎕EX'txtSource'
[18] txtSource←txt
[19] win.txtbinding←⎕NEW Data.Binding(⊂'txtSource')
[20] win.txtbinding.Source←2015⌶'txtSource'
[21] win.txtbinding.Mode←Data.BindingMode.TwoWay
[22] win.txtbinding.UpdateSourceTrigger←Data.UpdateSourceTrigger.Prope
rtyChanged
[23] sink←win.txtBox.SetBinding TextBox.TextProperty win.txtbinding
[24]
[25] ⍝ Define data binding from variable "sizeSource"
[26] ⍝ to the FontSize property of TextBox win.txtBox
[27] ⎕EX'sizeSource'
[28] sizeSource←size
[29] win.fntbinding←⎕NEW Data.Binding(⊂'sizeSource')
[30] win.fntbinding.Source←Int32(2015⌶)'sizeSource'
[31] win.fntbinding.Mode←Data.BindingMode.OneWay
[32] sink←win.txtBox.SetBinding TextBox.FontSizeProperty win.fntbindin
g
[33]
[34] win.Show

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 80

In code (as opposed to using XAML) this is done using explicit Binding objects6 The code
for binding the Text property to the txtSource variable is as follows:

Line [19] creates a Binding object, passing the constructor the name of the APL variable
txtSource as the Path to the binding value.

Line [20] creates a Binding Source object using 2015⌶ as before, but this time assigns it
to the Source property of the Binding object.

Line [21] sets the Mode property of the Binding object to TwoWay (a field of the
BindingMode Type). As in Example 1, this specifies two-way binding.

Line [22] sets the UpdateSourceTrigger property of the Binding object to
PropertyChanged (a field of the UpdateSourceTrigger Type). This causes the value in
the Binding Source (in this case txtSource) to be changed whenever the property (in
this case the Text property) of the TextBox changes. This will occur on every keystroke.

(Note that the three types Binding, BindingMode and UpdateSourceTrigger are located
in System.Windows.Data)

The code that establishes the binding between the sizeSource variable and the
FontSize property is very similar.

[19] win.txtbinding←⎕NEW Data.Binding(⊂'txtSource')
[20] win.txtbinding.Source←2015⌶'txtSource'
[21] win.txtbinding.Mode←Data.BindingMode.TwoWay
[22] win.txtbinding.UpdateSourceTrigger←Data.UpdateSourceTrigger.Prope
rtyChanged
[23] sink←win.txtBox.SetBinding TextBox.TextProperty win.txtbinding

[19] win.txtbinding←⎕NEW Data.Binding(⊂'txtSource')

[20] win.txtbinding.Source←2015⌶'txtSource'

[21] win.txtbinding.Mode←Data.BindingMode.TwoWay

[22]
win.txtbinding.UpdateSourceTrigger←Data.UpdateSourceTrigger.PropertyChan
ged

6 Binding objects are implicit in all binding operations, but are created declaratively when
using XAML.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 81

Note however that (as in Example 2) the left-argument to (2015⌶) specifies that the
exported data type of the sizeSource variable is to be Int32.

Testing the Data Binding

As in previous examples, when the user changes the text, the new text appears in
txtSource.

[29] win.fntbinding←⎕NEW Data.Binding(⊂'sizeSource')
[30] win.fntbinding.Source←Int32(2015⌶)'sizeSource'
[31] win.fntbinding.Mode←Data.BindingMode.OneWay
[32] sink←win.txtBox.SetBinding

TextBox.FontSizeProperty win.fntbinding

)LOAD wpfintro
)CS DataBinding.TextFontSizeCode

TextFontSize 'Hello World' 30

txtSource sizeSource←(⌽txtSource) 18

txtSource
Learn to play the bouzouki!

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 82

It is perhaps worth mentioning that if you want to bind two properties of the

same object to two APL variables, it has to be done by writing code as shown in

this example, using two separate Binding Source objects. This is because using

XAML you may only associate a single Binding Source to an object.

However, this minor restriction is easily surmounted by using an APL namespace

as a Binding Source as illustrated in the next Example.

4.3.4 Example 4

This example uses XAML to specify the user-interface and the main components of the
data binding.

The XAML

The XAML is much the same as in Example 1 and 2 except that it connects two
properties Text and FontSize of the same TextBox to two Paths txtSource and
sizeSource.

The APL Code

The function TextFontSize is shown below.

Note

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="Data Binding (Text and FontSize)"
SizeToContent="WidthandHeight">

<TextBox Name="txt" Width="350" Margin="5"
Text="{Binding txtSource,Mode=TwoWay,

 UpdateSourceTrigger=PropertyChanged}"
FontSize="{Binding sizeSource,Mode=OneWay}"/>

</Window>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 83

Lines [6-7] create a new namespace src containing two variables txtSource and
sizeSource which are initialised to the arguments of the function.

Line [8] creates a local variable named options which will be used as the left argument
of 2015⌶). It is a 2-column matrix. The first column is a list of the names of the
variables which are to be exported by the namespace when used as a Binding Source.
The second column specifies their data types.

Line [10] creates a Binding Source object from the namespace src and a left argument
options and assigns it to the DataContext property of the Window win.

An alternative would be to assign it to the DataContext property of the TextBox object,
but this would require one further line of code to identify it. The reason this works is
that the DataContext property of a TextBox (and many other controls) is inherited from
its parent Window. This feature allows a single Binding Source namespace to be used to
specify data bindings between its component variables and any number of properties
of any number of controls in the same Window.

As shown before, the left argument of 2015⌶) is optional. Without it, the namespace
would export all its variables using default binding types. In this case, because the
binding type of sizeSource must be specified as Int32, it is necessary to use a left
argument, which means specifying all the variables involved.

∇ TextFontSize(txt size);⎕USING;str;xml;win;options
[1] ⎕USING←'System'
[2] ⎕USING,←⊂'System.Windows,WPF/PresentationFramework.dll'
[3]
[4] win←LoadXAML XAML
[5]
[6] src←⎕NS''
[7] src.(txtSource sizeSource)←txt size
[8] options←2 2⍴'txtSource'String'sizeSource'Int32
[9]
[10] win.DataContext←options(2015⌶)'src'
[11]
[12] win.Show

∇

[6] src←⎕NS''
[7] src.(txtSource sizeSource)←txt size

[8] options←2 2⍴'txtSource'String'sizeSource'Int32

[10] win.DataContext←options(2015⌶)'src'

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 84

Testing the Data Binding

As in previous examples, when the user changes the text, the new text appears in
txtSource.

4.3.5 Example 5

WPF data binding provides the means to bind controls that display lists of items, such
as the ListBox, ListView, and TreeView controls, to collections of data. These controls
are all based upon the ItemsControl class. To bind an ItemsControl to a collection
object, you use its ItemsSource property.

If the right argument of 2015⌶ names a variable, or a namespace containing a variable,
that is a vector other than a simple character vector, it returns a Binding Source object
that provides the necessary interfaces to bind the variable as a collection to the
ItemSource property of an ItemsControl.

)LOAD wpfintro
)CS DataBinding.TextFontSizeXAML

DB_Text_FontSize_XAML'Hello World' 30

src.(txtSource sizeSource←(⌽txtSource) 18)

src.txtSource
Learn to play the bouzouki!

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 85

The APL variable will normally contain a vector of character vectors, because most
ItemsControl objects deal with collections of strings. However, any APL vector other
than a simple character vector will be treated in this way.

This example illustrates binding between a variable containing a vector of character
vectors, to the items of a ListBox.

Incidentally, the ItemsSource property overrides the Items collection as a means to
specify the content of the ItemsControl. When the ItemsSource property is set, the
Items collection becomes read-only and of fixed-size. Note that the ItemsSource
property supports OneWay binding by default.

The XAML

The variable XAML_FilteredList, shown below, contains XAML to specify a Window
containing a StackPanel. The StackPanel control is a WPF layout control that organises
child controls in a single line, by default vertically. In this example, the StackPanel
contains a TextBox and, below it, a WrapPanel, and below that a TextBlock. The
WrapPanel is also a layout control that organises its child controls sequentially from left
to right. The WrapPanel contains two ListBox controls.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Filtered List Example"
SizeToContent="WidthAndHeight"
Topmost="true">
<StackPanel>

<TextBox Name="filter" Margin="5"
Text="{Binding Filter,Mode=TwoWay,

 UpdateSourceTrigger=PropertyChanged}"/>
<WrapPanel>

<ListBox Name="all" Width="135" Height="440"
Margin="5" ItemsSource="{Binding DyalogNames}"/>

<ListBox Name="filtered" Width="135" Height="440"
Margin="5" ItemsSource="{Binding FilteredList}"/>

</WrapPanel>
<TextBlock Text="Dyalog WPF Demo" Margin="5"/>

</StackPanel>
</Window>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 86

The Code

Like the previous example, this example uses a namespace MySource containing the
bound variables Filter, FilteredList and DyalogNames.

FilteredList[8] creates a Binding Source object and assigns it to the DataContext
property of the Window win.

The DataContext property is inherited by all child controls, so they all share the same
Binding Source. Their different Paths to different values in the Binding Source are
specified in the XAML as follows.

The Text property of the TextBox named filter is bound to the variable Filter by the
expression Text="{Binding Filter,...

The ItemsSource property of the ListBox named all is bound to the variable
DyalogNames by the expression ItemsSource="{Binding DyalogNames}"

Thirdly, the ItemsSource property of the ListBox named filtered is bound to the variable
FilteredList by the expression ItemsSource="{Binding FilteredList}"

∇ FilteredList;MySource;win;sink
[1]
[2] MySource←⎕NS''
[3] MySource.Filter←''
[4] MySource.FilteredList←0⍴⊂''
[5] MySource.DyalogNames←DyalogNames
[6]
[7] win←LoadXAML XAML_FilteredList
[8] win.DataContext←2015⌶'MySource'
[9] (win.FindName⊂'filter').onTextChanged←

'FilteredList_TextChanged'
[10] sink←win.ShowDialog

∇

[8] win.DataContext←2015⌶'MySource'

<TextBox Name="filter" Margin="5"
Text="{Binding Filter,Mode=TwoWay,

<ListBox Name="all" Width="135" Height="440"
Margin="5" ItemsSource="{Binding DyalogNames}"/>

<ListBox Name="filtered" Width="135" Height="440"
Margin="5" ItemsSource="{Binding FilteredList}"/>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 87

Testing the Data Binding

If the user types a single character, in this case "e", into the TextBox, this fires a
TextChanged event which in turn fires the callback function shown below:

FilteredList

∇ FilteredList_TextChanged a;hits
[1] hits←(⊂MySource.Filter){∨/⍺⍷⍵}¨DyalogNames
[2] MySource.FilteredList←hits/DyalogNames

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 88

When the callback runs, the variable MySource.Filter, which is bound to the Text
property of the TextBox, will contain "e". The function calculates a mask hits which
identifies which members of the variable DyalogNames contain this string. It then
assigns that subset to the variable MySource.FilteredList. This is bound to the
ItemsSource property of the right-hand ListBox, so the result is as follows:

Similarly, typing "er" into the TextBox reduces the number of hits as shown below:

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 89

4.3.6 Example 6

This example illustrates data binding using a vector of .NET objects, in this case
DateTime objects.

The XAML

The XAML shown below, describes a Window containing a StackPanel, inside which is a
ListBox.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 90

The APL Code

The function NetObjects is shown below.

NetObjects[3] uses FindName to obtain a ref to the ListBox (defined in the XAML)
named EasterDates:

The global variable Easter contains a vector of 3-element numeric vectors
representing the dates of forthcoming Orthodox Easter Sundays.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="NetObjects (DateTime) Example"
SizeToContent="WidthAndHeight" >
<StackPanel>

<TextBlock Text="Dates of forthcoming Orthodox Easters"
FontSize="18" Margin="5"/>

<ListBox Name="EasterDates" Height="100"
Margin="5" />

</StackPanel>
</Window>

∇ NetObjects;⎕USING;win;dt
[1] ⎕USING←'System'
[2] win←LoadXAML XAML
[3] win.dates←win.FindName⊂'EasterDates'
[4] dt←{⎕NEW DateTime ⍵}¨Easter
[5] win.dates.ItemsSource←2015⌶'dt'
[6] sink←win.ShowDialog

∇

[3] win.dates←win.FindName⊂'EasterDates'

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 91

NetObjects[4] creates a vector of DateTime objects from the global variable Easter.

Then, NetObjects[5] creates a binding source object from this array and assigns it to
the ItemsSource property of the ListBox.

Testing the Data Binding

4.3.7 Example 6a (Casting to DateTime)

This example is similar to Example 6 but illustrates how numeric data in ⎕TS format can
be converted to DateTime type.

↑Easter
2015 4 12
2016 5 1
2017 4 16
2018 4 8
2019 4 28
2020 4 19
2021 5 2
2022 4 24
2023 4 16
2024 5 5

[4] dt←{⎕NEW DateTime ⍵}¨Easter

[5] win.dates.ItemsSource←2015⌶'dt'

)LOAD wpfintro
DataBinding.NETObjects.NETObjects

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 92

The XAML

The XAML shown below describes a Window containing a StackPanel, inside which is a
ListBox.

The APL Code

The function Tides is shown below.

Tides[3] uses FindName to obtain a ref to the ListBox (defined in the XAML) named
TideTimes:

Tides[4-5] creates a vector of integer vectors each of which species the time and date
of a high tide at Portsmouth. Tides[6] extends each to 7-elements, which is required
to represent a DateTime object.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="DateTimes using ⎕TS data"
SizeToContent="WidthAndHeight" >
<StackPanel>

<TextBlock Text="Some High Tides at Portsmouth, England"
FontSize="18" Margin="5"/>

<ListBox Name="TideTimes" Height="200"
Margin="5" />

</StackPanel>
</Window>

∇ Tides;⎕USING;win;dt;Highs
[1] ⎕USING←'System'
[2] win←LoadXAML XAML_Tides
[3] win.times←win.FindName⊂'TideTimes'
[4] Highs←(⊂2016 2 18),¨(7 9)(8 44)(19 47)(21 47)
[5] Highs,←(⊂2016 2 19),¨(8 17)(10 12)(20 51)(22 51)
[6] dt←7↑¨Highs
[7] win.times.ItemsSource←DateTime(2015⌶)'dt'
[8] sink←win.ShowDialog

∇

[3] win.times←win.FindName⊂'TideTimes'

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 93

Then, Tides[7] creates a binding source object from this array and assigns it to the
ItemsSource property of the ListBox. Note that the left argument DateTime specifies
that the data be cast to that type.

Testing the Data Binding

Tides[3] uses FindName to obtain a ref to the ListBox (defined in the XAML) named
TideTimes:

Tides[4-5] creates a vector of integer vectors each of which species the time and date
of a high tide at Portsmouth. Tides[6] extends each to 7-elements, which is required
to represent a DateTime object.

Then, Tides[7] creates a binding source object from this array and assigns it to the
ItemsSource property of the ListBox. Note that the left argument DateTime specifies
that the data be cast to that type.

[7] win.times.ItemsSource←DateTime(2015⌶)'dt'

)LOAD wpfintro
DataBinding.NetObjects.Tides

[3] win.times←win.FindName⊂'TideTimes'

[7] win.times.ItemsSource←DateTime(2015⌶)'dt'

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 94

Testing the Data Binding

4.3.8 Example 7

This example illustrates data binding using a vector of namespaces.

Each row in the WPF DataGrid control is represented by an object, and each column as
a property of that object. Each row in the DataGrid is bound to an object in the data
source, and each column in the data grid is bound to a property of the data object.

)LOAD wpfintro
DataBinding.NetObjects.Tides

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 95

The XAML

The XAML shown below, describes a Window containing a DockPanel, inside which is a
DataGrid.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 96

The phrase ItemsSource="{Binding}" states that the content of the DataGrid is
bound to a data source, which in this case will be inherited from the DataContext
property of the parent Window.

Binding="{Binding Name}" specifies that the contents of the first column are bound
to a Path named Name in the data source.

Similarly, Binding="{Binding Price, StringFormat=C}" specifies that the Path for
the second column is Price (StringFormat=C merely specifies the default currency
format).

The APL Code

The function Grid is shown below.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="DataGrid Example" Height="500"
SizeToContent="Width"
Topmost="true">
<DockPanel>

<DataGrid Name="DG1" ItemsSource="{Binding}"
AutoGenerateColumns="False" >

<DataGrid.Columns>
<DataGridTextColumn Header="Wine"
Binding="{Binding Name}"/>

<DataGridTextColumn Header="Price"
Binding="{Binding Price, StringFormat=C}" />

</DataGrid.Columns>
</DataGrid>

</DockPanel>
</Window>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 97

The global variable Wines contains a vector of character vectors, each of which is the
name of a wine. Grid[2-4] creates winelist, a vector of namespaces, of the same
length, each of which contains two variables c Name and Price.

Testing the Data Binding

∇ Grid;⎕USING;MySource;win
[1] ⎕USING←'System'
[2] winelist←⎕NS¨(⍴Wines)⍴⊂''
[3] winelist.Name←Wines
[4] winelist.Price←0.01×10000+?(⍴Wines)⍴10000
[5]
[6] win←LoadXAML XAML
[7] win.DataContext←2015⌶'winelist'
[8] win.Show

∇

)LOAD wpfintro
)CS DataBinding.DataGrid
Grid

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 98

Let's round the prices to the nearest $5.

winelist.Price←5×⌊0.5+winelist.Price÷5

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 99

4.3.9 Example 8

This example illustrates data binding using a matrix and is practically identical to
Example 7 except that it uses a matrix instead of a vector of namespaces.

Each row in the WPF DataGrid control is represented by an object, and each column as
a property of that object. Each row in the DataGrid is bound to an object in the data
source, and each column in the data grid is bound to a property of the data object.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 100

The XAML

The XAML shown below, describes a Window containing a DockPanel, inside which is a
DataGrid. The XAML is identical to the XAML in Example 7, except for the window
caption.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 101

The phrase ItemsSource="{Binding}" states that the content of the DataGrid is
bound to a data source, which in this case will be inherited from the DataContext
property of the parent Window.

Binding="{Binding Name}" specifies that the contents of the first column are bound
to a Path named Name in the data source.

Similarly, Binding="{Binding Price, StringFormat=C}" specifies that the Path for
the second column is Price (the phrase StringFormat=C merely specifies the default
currency format).

The APL Code

The function Grid is shown below.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="DataGrid Matrix Example" Height="500"
SizeToContent="Width"
Topmost="true">
<DockPanel>

<DataGrid Name="DG1" ItemsSource="{Binding}"
AutoGenerateColumns="False" >

<DataGrid.Columns>
<DataGridTextColumn Header="Wine"
Binding="{Binding Name}"/>

<DataGridTextColumn Header="Price"
Binding="{Binding Price, StringFormat=C}" />

</DataGrid.Columns>
</DataGrid>

</DockPanel>
</Window>

∇ Grid;⎕USING;MySource;win;info
[1] ⎕USING←'System'
[2] ⎕EX'winelist'
[3] winelist←Wines,[1.5]0.01×10000+?(⍴Wines)⍴10000
[4] win←LoadXAML XAML
[5] info←(⍪'Name' 'Price'),⊂Object
[6] win.DataContext←info(2015⌶)'winelist'
[7] win.Show

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 102

As in Example 7, the global variable Wines contains a vector of character vectors, each
of which is the name of a wine.

Grid[2-4] creates a matrix winelist, whose first column contains the names of the
wines, and whose second column their (randomly generated) prices. As this is a global
variable, the variable is expunged before being used in order to remove any previous
data binding information that was associated with it.

Grid[5]creates the left argument for (2015⌶) which defines the names and data types
of the properties which the columns of the matrix winelist will be exposed as. In this
case, the names of the paths are Name and Price, and their data types are both
System.Object. So the first column will be exposed as Name and the second as Price,
matching the path names specified in the XAML:

Testing the Data Binding

<DataGridTextColumn Header="Wine"
Binding="{Binding Name}"/>
<DataGridTextColumn Header="Price"
Binding="{Binding Price, StringFormat=C}" />

)LOAD wpfintro
)CS DataBinding.DataGridMatrix
Grid

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 103

Let's round the prices to the nearest $5.

winelist[;2]←5×⌊0.5+winelist[;2]÷5

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 104

Using Code

The same result can be achieved using code instead of XAML as illustrated by the
function GridCodeNoFmt. The function is so-named because this code is insufficient to
display the second column in currency format.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 105

This is because by default the DataGrid generates its columns automatically with
default formatting.

∇ GridCodeNoFmt;⎕USING;MySource;win;info;fmt
[1] ⎕USING←'System'
[2] ⎕USING,←,⊂'System.Windows.Controls,WPF/PresentationFramework.dll'
[3] ⎕USING,←⊂'System.Windows.Controls.Primitives,WPF/
PresentationFramework.dll'
[4] ⎕USING,←⊂'System.Windows,WPF/PresentationFramework.dll'
[5] ⎕USING,←⊂'System.Windows,WPF/PresentationCore.dll'
[6]
[7] ⎕EX'winelist'
[8] winelist←Wines,[1.5]0.01×10000+?(⍴Wines)⍴10000
[9] win←⎕NEW Window
[10] win.Title←'DataGrid Matrix (Code)'
[11] win.grid←⎕NEW DataGrid
[12] info←(⍪'Name' 'Price'),⊂Object
[13] win.grid.ItemsSource←info(2015⌶)'winelist'
[14] win.grid.Height←500
[15] win.Content←win.grid
[16] win.SizeToContent←SizeToContent.WidthAndHeight
[17] win.Show

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 106

In order to apply special formatting to one or more columns, it is necessary to set the
AutoGenerateColumns property to 0, and to generate the columns programmatically as
is shown in the second version of the function, GridCode.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 107

In this version of the function, lines [19-25] create the two columns Name and Price,
applying currency format to the Price column.

∇ GridCode;⎕USING;MySource;win;info;fmt
[1] ⎕USING←'System'
[2] ⎕USING,←,⊂'System.Windows.Controls,WPF/PresentationFramework.dll'
[3] ⎕USING,←⊂'System.Windows.Controls.Primitives,WPF/
PresentationFramework.dll'
[4] ⎕USING,←⊂'System.Windows,WPF/PresentationFramework.dll'
[5] ⎕USING,←⊂'System.Windows,WPF/PresentationCore.dll'
[6]
[7] ⎕EX'winelist'
[8] winelist←Wines,[1.5]0.01×10000+?(⍴Wines)⍴10000
[9] win←⎕NEW Window
[10] win.Title←'DataGrid Matrix (Code with Formatting)'
[11] win.grid←⎕NEW DataGrid
[12] info←(⍪'Name' 'Price'),⊂Object
[13] win.grid.ItemsSource←info(2015⌶)'winelist'
[14] win.grid.Height←500
[15] win.grid.AutoGenerateColumns←0
[16] win.Content←win.grid
[17] win.SizeToContent←SizeToContent.WidthAndHeight
[18] ⍝ Add columns and set format
[19] win.grid.Columns.Add¨'' 'C'{
[20] col←⎕NEW DataGridTextColumn
[21] col.Header←⍵
[22] col.Binding←⎕NEW Data.Binding(⊂⍵)
[23] col.Binding.StringFormat←,⍺
[24] col
[25] }¨'Name' 'Price'
[26]
[27] win.Show

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 108

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 109

4.4 Syncfusion Libraries

Dyalog does not include the Syncfusion library of WPF controls. A separate licence is
required from Syncfusion to use these in application development and to distribute
them with run-time applications.

From Dyalog v20.0 onwards, you must not use the Syncfusion libraries that were

distributed with previous versions of Dyalog.

Requirements

To use the Syncfusion libraries you must be using Microsoft .NET Version 4.6.

In addition, to use the controls contained in these assemblies it is necessary to perform
one or both of the following steps.

Using XAML

If using XAML, the XAML must include the appropriate xmlns statements that specify
where the Syncfusion controls are to be found. For example:

The above statement defines the prefix syncfusion to mean the specified Syncfusion
namespace and assembly that contains the various Gauge controls. When the prefix
syncfusion is subsequently used in front of a control in the XAML, the system knows
where to find it. For example:

⎕USING

In common with all .NET types, when a Syncfusion control is loaded using XAML or
using ⎕NEW it is essential that the current value of ⎕USING identifies the .NET
namespace and assembly in which the control will be found. For example:

Note

xmlns:syncfusion="clr-namespace:Syncfusion.Windows.Gauge;
assembly=Syncfusion.Gauge.WPF"

<syncfusion:CircularGauge Name="fahrenheit" Margin="10">

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 110

https://www.syncfusion.com/

This statement tells APL to search the .NET namespace named
Syncfusion.Windows.Gauge, which is located in the assembly file whose path depends
on your specific Syncfusion installation.

4.5 Syncfusion Circular Gauge Example

Dyalog does not include the Syncfusion library of WPF controls. A separate licence is
required from Syncfusion to use these in application development and to distribute
them with run-time applications.

From Dyalog v20.0 onwards, you must not use the Syncfusion libraries that were

distributed with previous versions of Dyalog.

⎕USING,←⊂'Syncfusion.Windows.Gauge,YOUR_INSTALL_PATH/
Syncfusion.Gauge.WPF.dll'

Note

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 111

https://www.syncfusion.com/

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 112

The XAML

Like most Syncfusion controls, the CircularGauge is made up of a complex structure of
objects, and the XAML (see variable XAML_SF) is too extensive to describe in detail
herein. It was created from the sample XAML from the Syncfusion documentation for
this control entitled Essential Gauge for WPF, which may be downloaded from https://
help.syncfusion.com/wpf/gauge.

The key statements in the XAML are as follows:

The above statement defines the prefix syncfusion to mean the specified Syncfusion
namespace and assembly. When the prefix syncfusion is subsequently used in front of
a control in the XAML, the system knows where to find it.

The next two statements define CircularPointer controls (the needles on the gauges);
one for the Fahrenheit gauge (named f_pointer) and one for the Centigrade gauge
(named c_pointer).

The APL Code

The following functions were used to produce the example illustrated above. The main
function is SF_TC_XAML.

xmlns:syncfusion="clr-
namespace:Syncfusion.Windows.Gauge;assembly=Syncfusion.Gauge.WPF"

<syncfusion:CircularPointer Name="f_pointer" BorderWidth="0.3"
PointerLength="100" PointerPlacement="Inside" PointerWidth="20"
Value="32"/>

<syncfusion:CircularPointer Name="c_pointer" BorderWidth="0.3"
PointerLength="100" PointerPlacement="Inside" PointerWidth="20"
Value="0"/

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 113

https://help.syncfusion.com/wpf/gauge
https://help.syncfusion.com/wpf/gauge

After creating the Window from the text in XAML_SF, the function SF_TC_XAML obtains
refs to the two CircularPointer controls named f_pointer (in the Fahrenheit gauge) and
c_pointer (in the Centigrade gauge). It then attaches the MouseEnter callback to each
of these objects.

In this example, the user grabs one of the gauge needles and moves it around the face
of the gauge. When the user moves the mouse into one of these needles, the
MouseEnter callback fires. The function MouseEnter receives the CircularPointer object
that generated the event this as the first item in its argument.

The code simply attaches the callback function TempChanged to this, and disables any
callback on the other CircularPointer object.

Note that if both CircularPointer objects had callbacks on TempChanged at the same
time, the system would enter a callback loop.

The LoadXAML function used in this example is subtly different from previous examples.

∇ SF_TC_XAML;⎕USING;win;f_pointer;c_pointer;sink
[1]
[2] win←LoadXAML XAML_SF
[3]
[4] f_pointer←win.FindName⊂'f_pointer'
[5] c_pointer←win.FindName⊂'c_pointer'
[6]
[7] f_pointer.onMouseEnter←'MouseEnter'
[8] c_pointer.onMouseEnter←'MouseEnter'
[9]
[10] sink←win.ShowDialog

∇

∇ MouseEnter(this ev);ptrs
[1] ptrs←f_pointer c_pointer
[2] ptrs.onValueChanged←(ptrs⍳this)⌽0 'TempChanged'

∇

∇ TempChanged(obj ev)
[1] :Select obj
[2] :Case f_pointer
[3] c_pointer.Value←(obj.Value-32)×5÷9
[4] :Case c_pointer
[5] f_pointer.Value←32+obj.Value÷5÷9
[6] :EndSelect

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 114

In particular, it contains the all-important statement:

This statement tells APL to search the .NET namespace named
Syncfusion.Windows.Gauge, which is located in the assembly file whose path depends
on your exact Syncfusion installation.

∇ win←LoadXAML xaml;⎕USING;str;xml
[1] ⎕USING←'System.IO'
[2] ⎕USING,←⊂'System.Windows.Markup'
[3] ⎕USING,←⊂'System.Xml,system.xml.dll'
[4] ⎕USING,←⊂'System.Windows.Controls,WPF/PresentationFramework.dll'
[5] ⎕USING,←⊂'Syncfusion.Windows.Gauge,YOUR_INSTALL_DIR/
Syncfusion.Gauge.WPF.dll'
[6] str←⎕NEW StringReader(⊂xaml)
[7] xml←⎕NEW XmlTextReader str
[8] win←XamlReader.Load xml

∇

[5] ⎕USING,←⊂'Syncfusion.Windows.Gauge,
 YOUR_INSTALL_DIR/Syncfusion.Gauge.WPF.dll'

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 115

5 APLScript

5.1 Introduction

APLScript is a Dyalog scripting language. It was originally designed specifically to
program ASP.NET Web Pages and Web Services, but it has been extended to be of more
general use outside the Microsoft .NET environment.

APLScript is not workspace oriented (although you can call workspaces from it) but is
simply a character file containing function bodies and expressions.

APLScript files may be viewed and edited using any character-based editor which
supports Unicode text files, such as Notepad. APLScript files may also be edited using
Microsoft Word, although they must be saved as text files without any Word
formatting.

APLScript files employ Unicode encoding so you need a Unicode font with APL
symbols, such as APL385 Unicode, to view them. In order to type Dyalog symbols into
an APLScript file, you also need the Dyalog Input Method Editor (IME), or other APL
compatible keyboard.

If you choose to use the Dyalog IME it can be configured from the Dyalog Configuration
dialog. You may change the associated .DIN file and various other options. See Unicode
Input Tab (Unicode Edition Only).

There are basically three types of APLScript files that may be identified by three
different file extensions. APLScript files with the extension .aspx and .asmx
specify .NET classes that represent ASP.NET Web Pages and Web Services respectively.
APLScript files with the extension .apl may specify .NET classes or may simply
represent an APL application in a script format as opposed to a workspace format. Such
applications do not necessarily require the Microsoft .NET Framework.

5.2 The APLScript Compiler

APLScript files are compiled into executable code by the APLScript compiler whose
name is given in the table below.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 116

Unicode Edition Classic Edition

32-Bit dyalogc_unicode.exe dyalogc.exe

64-Bit dyalogc64_unicode.exe dyalogc64.exe

This program is called automatically by ASP.NET when a client application requests a
Web Page (.aspx) or Web Service (.asmx) and in these circumstances always generates
the corresponding .NET class. However, the Script Compiler may also be used to:

Compile an APLScript into a workspace (.dws) that you may subsequently run
using dyalog.exe or dyalogrt.exe in the traditional manner.
Compile an APLScript into a .NET class (.dll) which may subsequently be used
by any other .NET compatible host language such as C# or Visual Basic.
Compile an APLScript into a native Windows executable program (.exe), which
may be run as a stand-alone executable. This program may be distributed, along
with the Dyalog runtime DLL, as a packaged application, and does not require
any of the additional support files and registry entries that are typically needed
by the Dyalog run-time dyalogrt.exe. Note too that the Dyalog dynamic link
library does not use MAXWS but instead allocates workspace dynamically as
required. See the Dyalog for Microsoft Windows Installation and Configuration
Guide: Run-Time Applications and Components for further details.
Compile a Dyalog workspace (.dws) into a native Microsoft Windows executable
program, with the same characteristics and advantages described above.

The Script is designed to be run from a command prompt. If in the 64-bit Unicode
Edition change to the appropriate directory and type dyalogc64_unicode /? (to query
its usage) the following output is displayed:

•

•

•

•

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 117

Note that the isolation mode specified by the /i option overrides the setting in
web.config. See Section 12.7.

The /a option is used to specify the name of a JSON file that contains assembly info.
For example:

c:\Program Files\Dyalog\Dyalog APL-64 18.0 Unicode>dyalogc64_unicode /?
Dyalog APLScript compiler 64 bit. Unicode Mode. Version 18.0.38524.0
Copyright Dyalog Ltd 2000-2020

dyalogc.exe command line options:

/? Usage
/r:file Add reference to assembly
/o[ut]:file Output file name
/res:file Add resource to output file
/icon:file File containing main program icon
/q Operate quietly
/v Verbose
/s Treat warnings as errors
/nonet Creates a binary that does not use Microsoft .Net
/runtime Build a non-debuggable binary
/lx:expression Specify entry point (Latent Expression)
/t:library Build .Net library (.dll)
/t:nativeexe Build native executable (.exe). Default
/t:workspace Build dyalog workspace (.dws)
/nomessages Process does not use windows messages. Use when
creating
 a process to run under IIS
/console Creates a console application
/c Creates a console application
/multihost Support multi-hosted interpreters
/unicode Creates an application that runs in a Unicode
intepreter
/wx:[0|1|3] Sets ⎕WX for default code
/a:file Specifies a JSON file containing attributes to be
attached
 to the binary
/i:Process Set the isolation mode of a .NET Assembly
/i:Assembly Set the isolation mode of a .NET Assembly
/i:AppDomain Set the isolation mode of a .NET Assembly
/i:Local Set the isolation mode of a .NET Assembly

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 118

where c:/tmp/atts.json contains:

5.3 Creating an APLScript File

Conceptually, the simplest way to create an APLScript file is with Notepad, although
you may use many other tools including Microsoft Visual Studio as described in the
next Chapter.

Start Notepad
Choose Format/Font from the Menu Bar and select an appropriate Unicode font
that contains APL symbols, such as APL 385 Unicode.
Select an APL keyboard by clicking on your keyboard selector in the System Tray.
Note that this keyboard setting (and button) is associated only with the current
instance of Notepad. If you start another instance of Notepad, or another editor,
you will have to select the APL keyboard for it separately and there will be two
floating toolbars on your display.
Now type in your APL code. If you use a Ctrl keyboard, you will discover that
Ctrl+ keystrokes generate APL symbols For example, Ctrl+n generates ⊤.
Choose File/Save. When the Save As dialog appears, ensure that Encoding is set
to Unicode and Save as type: is set to All Files. Enter the name of the file, adding
the extension .asmx or .aspx, and then click Save. Note that you have to save
the .asmx file somewhere in an IIS Virtual Directory structure.

dyalogc64_unicode.exe /t:library j:/ws/attributetest.dws /a:c:/tmp/
atts.json

{
"AssemblyVersion": "1.2.2.2",
"AssemblyFileVersion": "2.1.1.4",
"AssemblyProduct": "My Application",
"AssemblyCompany": "My Company",
"AssemblyCopyright": "Copyright 2020",
"AssemblyDescription": "Provides a text description for an

assembly.",
"AssemblyTitle": "My Assembly Title",
"AssemblyTrademark": "Your Legal Trademarks"

}

1.
2.

3.

4.

5.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 119

5.4 Copying code from the Dyalog Session

You may find it easier to write APL code using the Dyalog APL function or class editor
that is provided by the Dyalog APL Session. Or you may already have code in a
workspace that you want to copy into an APLScript file.

If so, you can transfer code from the Session into your APLScript editor (for example,
Notepad) using the clipboard. Notice that because APLScript requires Unicode
encoding (for APL symbols), you must ensure that character data is written to the
clipboard in Unicode.

In the Unicode interpreter this is always done. In the Classic interpreter this is
controlled by a parameter called UnicodeToClipboard that specifies whether or not
data is transferred to and from the Windows clipboard as Unicode. This parameter may
be changed using the Trace/Edit page of the Configure dialog box.

If set (the default), APL text pasted to the clipboard from the Session is written as
Unicode and APL requests Unicode data back from the clipboard when it is required.
This makes it easy to transfer APL code between the Session and an APLScript editor.

In the Classic interpreter when pasting code into the Dyalog editor, there are two menu
items under the Edit menu, which allow you to explicitly select whether the Unicode
mapping should be used, or the old mapping which corresponds to the Dyalog Std TT
or Dyalog Alt TT fonts. You should use "Paste non-Unicode" when transferring text from
the on line help, or text copied from earlier versions of Dyalog APL without the Unicode
option.

Unless you explicitly want to have line numbers in your APLScript, the simplest way to
paste APL code from the Session into an APLScript text editor is as follows:

open the function in the function editor
select all the lines of code, or just the lines you want to copy
select Edit/Copy or press Ctrl+Ins
switch to your APLScript editor and select Edit/Paste or press Shift+Ins.
insert Del (∇) symbols at the beginning and end of the function.

If you want to preserve line numbers (this is allowed, but not recommended in
APLScript files), you may use the following technique:

in the Session window, type a del (∇) symbol followed by the name of the
function, followed by another del (∇) and then press Enter. This causes the
function to be displayed, with line numbers, in the Session window.

1.
2.
3.
4.
5.

1.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 120

select the function lines, including the surrounding Dels (∇) and choose Edit/
Copy or press Ctrl+Insert.
switch to your APLScript editor and select Edit/Paste or press Shift+Ins.

5.5 General principles of APLScript

The layout of an APLScript file differs according to whether the script defines a Web
Page, a Web Service, a .NET class, or an APL application that may have nothing to do
with the .NET Framework. However, within the APLScript, the code layout rules are
basically the same.

An APLScript file contains a sequence of function bodies and executable statements
that assign values to variables. In addition, the file typically contains statements that
are directives to the APLScript compiler. If the script is a Web Page or Web Service, it
may also contain directives to ASP.NET. The former all start with a colon symbol (:) in
the manner of control structures. For example, the :Namespace statement tells the
APLScript compiler to create, and change into, a new namespace. The :EndNamespace
statement terminates the definition of the contents of a namespace and changes back
from whence it came.

Assignment statements are used to set up system variables, such as ⎕ML, ⎕IO, ⎕USING
and arbitrary APL variables. For example:

These statements are extracted from the APLScript and executed by the compiler in
the order that they appear. It is important to recognise that they are executed at
compile time, and not at run-time, and may therefore only be used for initialisation.

Notice that it is acceptable to execute ⎕CY to bring in functions and variables from a
workspace that are to be incorporated into the code. This is especially useful to import
a set of utilities. Note also that it is possible to export these functions as methods
of .NET classes if the functions contain the appropriate colon statements.

2.

3.

⎕ML←2
⎕IO←0
⎕USING∪←⊂'System.Data'

A←88
B←'Hello World'

⎕CY'MYWS'

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 121

The APLScript compiler will in fact execute any valid APL expression that you include.
However, the results may not be useful and may indeed simply terminate the compiler.
For example, it is not sensible to execute statements such as ⎕LOAD, or ⎕OFF.

Function bodies are defined between opening and closing del (∇) symbols. These are
fixed by the APLScript compiler using ⎕FX. Line numbers and white space formatting
are ignored.

5.6 Creating Programs (.exe) with APLScript

The following examples, which illustrate how you can create an executable program
(.exe) direct from an APLScript file, may be found in the directory samples\aplscript.

A simple GUI example

The following APLScript illustrates the simplest possible GUI application that displays a
message box containing the string "Hello World".

This example, which is saved in the file eg1.apl, is compiled to a Windows executable
(.exe) using dyalogc.exe and run from the same command window as shown below.
Notice that it is essential to surround the code with :Namespace / :EndNamespace
statements and to define a ⎕LX either in the APLScript itself, or as a parameter to the
dyalogc command.

:Namespace N
⎕LX←'N.RUN'
∇RUN;M
'M'⎕WC'MsgBox' 'A GUI exe' 'Hello World'
⎕DQ'M'
∇
:EndNamespace

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 122

You can associate the .exe with a desktop icon, and it will run stand-alone, without a
Command Prompt window. Furthermore, any default APL output that would normally
be displayed in the session window will simply be ignored.

A simple console example

The following APLScript illustrates the simplest possible application that displays the
text "Hello World".

This example, which is saved in the file eg2.apl, is compiled to a Windows executable
(.exe) and run from a command window as shown below. Notice that the /console
flag is used to tell the APLScript compiler to create a console application that runs from
a command prompt. In this case, default APL output that would normally be displayed
in the session window turns up in the command window from which the program was
run.

Once more, it is essential to surround the code with :Namespace/:EndNamespace
statements and to define a ⎕LX either in the APLScript itself, or as a parameter to the
dyalogc command.

:Namespace N
⎕LX←'N.RUN'
∇RUN
'Hello World'
∇
:EndNamespace

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 123

Defining Namespaces

Namespaces are specified in an APLScript using the :Namespace and :EndNamespace
statements. Although you may use ⎕NS and ⎕CS within functions inside an APLScript,
you should not use these system functions outside function bodies. Note that such use
is not prevented, but that the results will be unpredictable.

introduces a new namespace called Name relative to the current space.

terminates the definition of the current namespace. Subsequent statements and
function bodies are processed in the context of the original space.

It is imperative that at least ONE namespace be specified.

All functions specified between the :Namespace and :EndNamespace statements are
fixed in that namespace. Similarly, all assignments define variables inside that
namespace.

The following example illustrates how APL namespace usage is handled in APLScript.
The program, contained in the file eg3.apl, is as follows:

:Namespace Name

:EndNamespace

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 124

This somewhat contrived example illustrates how a namespace is defined inside
another namespace using :NameSpace and :EndNamespace statements. The
namespace NS contains a single function called START, which is called from the main
function RUN.

Notice that ⎕PATH is defined dynamically in function RUN. If it were defined outside a
function in a static statement in the script (say, after the statement that sets ⎕LX), it
would not be honoured when the application was run.

This program is shown, compiled and run as a console application, below.

:Namespace N
⎕LX←'N.RUN'

∇RUN
⎕PATH←'↑'
NS.START
END
∇
∇R←CURSPACE
R←⊃⎕NSI
∇
∇END
'Ending in ',CURSPACE
∇

:NameSpace NS
∇START
'Starting in ',CURSPACE
∇
:EndNameSpace
:EndNameSpace

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 125

5.7 Creating .NET Classes with APLScript

It is possible to define and use new .NET classes within an APLScript.

A class is defined by :Class and :EndClass statements. The methods provided by the
class are defined as function bodies enclosed within these statements. Please see the
Language Reference for a complete discussion of writing classes in Dyalog. This chapter
will only provide a brief introduction to the subject, aimed specifically at APLScript.

You may also define sub-classes or nested classes using nested :Class and :EndClass
statements.

Declares a new class called Name, which is based upon the Base Class Type, which may
be any valid .NET Class.

Terminates a class definition block

A class specified in this way will automatically support the methods, properties and
events that it inherits from its Base Class, together with any new public methods that
you care to specify.

However, the new class only inherits a default constructor (which is called with no
parameters) and does not inherit all of the other private constructors from its Base
Class. You can define a method to be a constructor using the :Implements
Constructor declarative comment. Constructor overloading is supported and you may
define any number of different constructor functions in this way, but they must have
unique parameter sets for the system to distinguish between them.

You can create and use instances of a class by using the ⎕NEW system function in
statements elsewhere in the APLScript.

Exporting Functions as Web Methods

Within a :Class definition block, you may define private functions and public
functions. A public function is one that is exposed as a method and may be called by a
client that creates an instance of your class. Public functions must have a section of
declaration statements. Other functions are purely internal to the class and are not
directly accessible by a client application.

:Class Name: Type

:EndClass

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 126

The declaration statements for public functions perform the same task for an
APLScript that is performed using the .NET Properties dialog box, or by executing
SetMethodInfo in the Dyalog Session, prior to creating a .NET assembly. The following
declaration statements may be used.

Specifies that the function is callable. This statement applies only to a .NET class or to a
Web Page and is not applicable to a Web Service.

Specifies that the function is callable as a Web Method. This statement applies only to
a Web Service (.asmx). From version 11.0, the statement is equivalent to:

Specifies that the function is a constructor for a new .NET class. This function must
appear between :Class and :EndClass statements and this applies only to a Web
Page (.aspx). See Defining Classes in APLScript for further details. A constructor is called
when you execute the New method in the class.

Declares the result of the method to have a given data type, if any. It also declares
parameters to the method to have given data types and names. Namex is optional and
may be any well-formed name that identifies the parameter. This name will appear in
the metadata and is made available to a client application as information. It is therefore
sensible to choose meaningful names. The names you allocate to parameters have no
other meaning and are not associated with the names of local variables that you may
choose to receive them. However, it is not a bad idea to use the same local names as
the public names of your parameters.

A .NET Class example

The following APLScript illustrates how you may create a .NET Class using APLScript.
The example class is the same as Example 1 in Chapter 5. The APLScript code, saved in
the file samples\aplclasses\aplclasses6.apl, is as follows:

:Access Public

:Access WebMethod

:Access Public
:Attribute System.Web.Services.WebMethodAttribute
:Implements Constructor

:Signature result←fn type1 Name1, type2 Name2,..

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 127

This APLScript code defines a namespace called APLClasses. This simply acts as a
container and is there to establish a .NET namespace of the same name within the
resulting .NET assembly. Within APLClasses is defined a .NET class called Primitives
whose base class is System.Object. This class has a single public method named
IndexGen, which takes a parameter called number whose data type is Int32, and
returns an array of Int32 as its result.

aplclasses6.apl is compiled to a .NET Assembly using the APLScript compiler with
the /t:library flag. For details, see the file aplclasses6\framework\build.bat.

Using VS, open the solution file d:
\aplclasses\aplclasses6\Framework\project.sln and view aplclasses6.dll.

:Namespace APLClasses

:Class Primitives: Object
⎕USING←,⊂'System'

:Access public

∇ R←IndexGen N
:Access Public
:Signature Int32[]←IndexGen Int32 number
R←⍳N

∇
:EndClass

:EndNamespace

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 128

This shows that aplclasses6.dll contains a .NET namespace called APLClasses, which
in turn contains the Primitives class. Primitives has a single method named IndexGen()
which takes a number (an int).

Next, Display the c# program program.cs. This is the same program as in Example1.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 129

Now click Debug/Start Without debugging (or press Ctrl+F5) to run the program. The
results are shown in a console window.

This .NET Class can also be called from APL just like any other. For example:

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 130

Defining Properties

Properties are defined by :Property and :EndProperty statements. A property
pertains to the class in which it is defined.

Declares a new property called Name whose data type is System.Double. The latter
may be any valid .NET type which can be located through ⎕USING.

Terminates a property definition block

Within a :Property block, you must define the accessors of the property. The
accessors specify the code that is associated with referencing and assigning the value of
the property. No other function definitions or statements are allowed inside a
:Property block.

The accessor used to reference the value of the property is represented by a function
named get that is defined within the :Property block. The accessor used to assign a
value to the property is represented by a function named set that is defined within the
:Property block.

The get function is used to retrieve the value of the property and must be a niladic
result returning function. The data type of its result determines the Type of the
property. The set function is used to change the value of the property and must be a
monadic function with no result. The argument to the function will have a data type

)CLEAR
clear ws

'APLClasses, D:
\aplclasses\aplclasses6\framework\bin\aplclasses6.dll'

APL←⎕NEW Primitives
APL.IndexGen 10

1 2 3 4 5 6 7 8 9 10

:Property Name
∇ C←get

[1] :Access public
[2] :Signature Double←get
[3] C←...

∇

:EndProperty

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 131

Type specified by the :Signature statement. A property that contains a get function
but no set function is effectively a read-only property.

The following APLScript, saved in the file samples\aplclasses\aplclasses7.apl,
shows how a property called IndexOrigin can be added to the previous example.
Within the :Property block there are two functions defined called get and set which
are used to reference and assign a new value respectively. These functions have the
fixed names and syntax specified for property get and property set functions as
described above.

Using VS, open the solution file d:
\aplclasses\aplclasses7\Framework\project.sln and view aplclasses7.dll.

:Namespace APLClasses

:Class Primitives: Object
⎕USING←,⊂'System'

:Access public

∇ R←IndexGen N
:Access Public
:Signature Int32[]←IndexGen Int32 number
R←⍳N

∇

:Property IndexOrigin
∇ io←get

:Signature Int32←get Int32 number
io←⎕IO

∇

∇ set io
:Signature set Int32 number
:If io∊0 1

⎕IO←io
:EndIf

∇
:EndProperty

:EndClass

:EndNamespace

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 132

This shows that aplclasses7.dll contains a .NET namespace called APLClasses, which
in turn contains the Primitives class. Primitives has a single method named IndexGen()
which takes a number (an int) and a property named IndexOrigin.

Next, Display the c# program program.cs. Notice that the main program calls a
subroutine iota twice to calculate ⍸5 in origin 0 and 1.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 133

Now click Debug/Start Without debugging (or press Ctrl+F5) to run the program. The
results are shown in a console window.

This .NET Class can also be called from APL just like any other. For example:

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 134

Indexers

An indexer is a property of a class that enables an instance of that class (an object) to
be indexed in the same way as an array, if the host language supports this feature.
Languages that support object indexing include C# and Visual Basic. Dyalog does also
allow indexing to be used on objects. This means that you can define an APL class that
exports an indexer and you can use the indexer from C#, Visual Basic, or Dyalog.

Indexers are defined in the same way as properties, between :Property Default and
:EndProperty statements. There may be only one indexer defined for a class.

Note: the :Property Default statement in Dyalog is closely modelled on the indexer
feature in C# and employs similar syntax. If you use ILDASM to browse a .NET class
containing an indexer, you will see the indexer as the default property of that class,
which is how it is actually implemented.

5.8 Creating ASP.NET Classes with APLScript

As mentioned previously, the original purpose of APLScript was to provide the ability to
write ASP.NET Web Pages and Web Services in Dyalog. Both these applications are
based upon script files.

Web Page Layout

An ASP.NET Web Page typically consists of a mixture of HTML and code written in a
scripting language. The script code is separated from the HTML by being embedded
within tags and normally appears in the section of the page. Only one block of script is

)CLEAR
clear ws

'APLClasses, D:
\aplclasses\aplclasses7\framework\bin\aplclasses7.dll'

APL←⎕NEW Primitives
APL.IndexGen 10

1 2 3 4 5 6 7 8 9 10
APL.IndexOrigin

1
APL.IndexOrigin←0
APL.IndexGen 10

0 1 2 3 4 5 6 7 8 9

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 135

allowed in a page. The script block normally consists of a collection of functions, which
are invoked by some event on the page, or on an element of the page.

APLScript code starts with a statement:

and finishes with:

Typically, the APLScript code consists of callback functions that are attached to server-
side events on the page.

For further information, see Section 12.7.

Web Service Layout

The first line in a Web Service script must be a declaration statement such as:

where ServiceName is an arbitrary name that identifies your Web Service.

The next statement must be a :Class statement that declares the name of the Web
Service and its Base Class from which it inherits. The base class will normally be
System.Web.Services.WebService. For example:

The last line in the script must be:

Although it may appear awkward to have to specify the name of your Web Service
twice, this is necessary because the two statements are being processed quite
separately by different software components. The first statement is processed by
ASP.NET. When it sees Language="Dyalog", it then calls the Dyalog APLScript
compiler, passing it the remainder of the script file. The :Class statement tells the
APLScript compiler the name of the Web Service and its base class. :Class and
:EndClass statements are private directives to the APLScript compiler and are not
relevant to ASP.NET.

<script language="Dyalog" runat=server>

</script>

<%@ WebService Language="Dyalog" Class="ServiceName" %>

:Class ServiceName: System.Web.Services.WebService

:EndClass

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 136

How APLScript is processed by ASP.NET

Like any other Web Page or Web Service, an APLScript file is processed by ASP.NET.

The first time ASP.NET processes a script file, it first performs a compilation process
whose output is a .NET assembly. ASP.NET then calls the code in this assembly to
generate the HTML (for a Web Page) or to run a method (for a Web Service).

ASP.NET associates the compiled assembly with the script file, and only recompiles it if/
when it has changed.

ASP.NET does not itself compile a script; it delegates this task to a specialised compiler
that is associated with the language declared in the script. This association is made
either in the application's web.config file or in the global machine.config file. Dyalog
Installs a default web.config file which includes these settings in the samples\asp.net
folder.

The APLScript compiler is itself written in Dyalog.

Although the compilation process takes some time, it is typically only performed once,
so the performance of an APLScript Web Service or Web Page is not compromised.
Once it has been compiled, ASP.NET redirects all subsequent requests for an APLScript
to its compiled assembly.

Please note that the use of the word compile in this process does not imply that your
APL code is actually compiled into Microsoft Intermediate Language (MSIL). Although
the process does in fact generate some MSIL, your APL code will still be interpreted by
the Dyalog DLL engine at run-time. The word compile is used only to be consistent with
the messages displayed by ASP.NET when it first processes the script.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 137

6 Writing .Net Classes

6.1 Introduction

Dyalog allows you to build new .NET Classes, components and controls. .NET classes
created by Dyalog may be hosted by any application or programming language that
supports .NET.

A component is a class with emphasis on cleanup and containment and implements
specific interfaces.

A control is a component with user interface capabilities.

With one exception, every .NET Class inherits from exactly one base class. This means
that it begins with all of the behaviour of the base class, in terms of the base class
properties, methods and events. You add functionality by defining new properties,
methods and events on top of those inherited from the base class or by overriding base
class methods with those of your own.

6.2 Assemblies, Namespaces and Classes

To create a .NET class in Dyalog, you simply create a standard APL Class and export the
workspace as a Microsoft .NET Assembly (.dll)*.

.NET Classes are organised in .NET Namespaces. If you wrap your Class (or Classes)
within an APL namespace, the name of that namespace will be used to identify the
name of the corresponding .NET Namespace in your Assembly.

If a Class is to be based upon a specific .NET Class, the name of that .NET Class must be
specified as the Base Class in the :Class statement, and the :Using statements must
correctly locate the base class. If not, the Class is assumed to be based upon
System.Object. If you use any .NET Types within your Class, you must ensure that these
too are located by :Using.

Once you have defined the functionality of your .NET classes, you are ready to save
them in an assembly. This is simply achieved by selecting Export from the Session File
menu.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 138

You will be prompted to specify the directory and name of the assembly (DLL) and it
will then be created and saved. Your .NET class is now ready for use by any .NET
development environment, including APL itself.

When a Dyalog .NET class is invoked by a host application, it automatically loads the
Dyalog DLL, the developer/debug or run-time dynamic link library version of Dyalog.
You decide which of these DLLs is to be used according to the setting of the Runtime
application checkbox in the Create bound file dialog box. Note however that the
Dyalog .NET class, and all the Dyalog DLLs on which it depends, reside in the same
directory as the host program.

Note that if you wish to include a Dyalog .NET class in a Visual Studio application it is
recommended that you add the Bridge DLL as a reference in a Visual Studio .NET
project.

If you want to repeat the most recent export after making changes to the class, you can
click on the icon to the right of the save icon on the WS button bar at the top of the
session. Note that the workspace itself is not saved when you do an export, so if you
want the export options to be remembered you must)SAVE the workspace after you
have exported it.

6.3 Getting Started

This tutorial, as provided, supports the 64-bit Unicode version of Dyalog only.

The tutorial described in this Chapter was originally designed (for Dyalog Version 10) to
be exercised in a console window, with the user invoking the C# compiler directly using
a command-line interface. It was originally envisaged to be run in-situ in the
samples\aplclasses sub-directory.

Today, the samples\aplclasses sub-directory is read-only, and direct access to the C#
compiler via a command-line interface is problematical. Another consideration is the
change in requirement for dependent Dyalog DLLs, which must now reside in the same
directory as the host program.

The tutorial has therefore been re-factored to use Microsoft Visual Studio. The
samples\aplclasses sub-directory has been expanded to support .NET Core (now
renamed simply .NET) which is cross-platform as well as the original .NET Framework
which is Windows only.

All the examples are to be executed as simple console applications written in C# in the
framework of Microsoft Visual Studio Community 2022 (hereafter referred to as VS). To
run the examples as described herein, you should install VS, taking care to include all

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 139

the components needed to create a C# console application. suitable VS project files are
included in the samples\aplclasses sub-directory.

Initialisation

The first step is to copy the samples\aplclasses sub-directory into a directory to
which you have write access. For example, into d:\aplclasses.

Each of the sub-directories contained in aplclasses, namely aplclasses1 -
aplclasses7, represents a separate example application. Within each one the file
structure is as follows:

aplclasses[n].dws APL workspace

Framework Files for the .NET Framework

Framework\program.cs C# program

Framework\project.sln VS solution file

Framework\project.csproj. C# project file

Framework\bin Directory containing the C# program and DLLs

When the application is executed by VS it will be run in the bin sub-diredctory.

It is mandatory that the Dyalog .NET class, and all the Dyalog DLLs on which it
depends, reside in the same directory as the host program.

Therefore, copies of the requisite Dyalog DLLs are provided in the binsub-directory.
These DLLs are:

Development DLL and/or Run-Time DLL (this tutorial uses the Development DLL)
Bridge DLL
DyalogNet DLL

Running the Tutorial

Each example consists of two parts. First you will)LOAD a workspace, examine the
code, and then export it as a DLL. The second (optional) part is to run the VS solution
that hosts the DLL and view the results.

Each workspace contains a .NET Namespace called APLClasses which itself contains a
single .NET Class called Primitives that exports a single method called IndexGen.

•
•
•

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 140

6.4 Example 1

Load the workspace aplclasses1.dws, then view the Primitives class:

The character before the name APLClasses.Primitives , ○ , is typically

obtained with Ctrl-O. It is used to tell the editor to edit a class.

Primitives contains one public method/function named IndexGen.

The public characteristics for the exported method are included in the definition of the
class and its functions. Those are specified in the :Signature statement.

Its syntax is:

that is: The type of the result returned by the function - followed by arrow - if any, the
exported name (it can be different from the APL function name but it must be
provided), and, if any arguments are to be supplied, their types and optional names,
each type-name pair separated from the next by a comma. In the example above the
function returns an array of 32-bit integers and takes a single integer as its argument.
For further details, see Programming: Signature.

)LOAD D:\aplclasses\aplclasses1\aplclasses1.dws
D:\aplclasses\aplclasses1\aplclasses1.dws ⍝ saved ...

)ED ○APLClasses.Primitives

Note

:Class Primitives
:Using System

∇ r←IndexGen n
:Access public
:Signature Int32[]←IndexGen Int32 n
r←⍳n

∇
:EndClass

:Signature [return type←] fnname [arg1type [arg1name]
 [,argNtype [argNname]]*]

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 141

Note that, when the class is fixed, APL will try to find the .NET data types you have
specified for the result and for the parameters. If one or more of the data types are not
recognised as available .NET Types, you will be informed in the status window and APL
will refuse to fix the class. If you see such a warning you have either entered an
incorrect data type name, or you have not set :Using correctly, or some other syntax
problem has been detected (for example the function is missing a terminating ∇. In the
previous example, the only data type used is System.Int32. Since we have set :Using
System, the name Int32 is found in the right place and all is well.

It should be noted that in the previous release of Dyalog the statements :Returns
and :ParameterList were used instead of :Signature. They are still accepted for
backwards compatibility but are considered deprecated. Their syntax will not be
documented here but a list can be found in Appendix A.

Now you are ready to create the assembly. This is done by selecting Export… from the
Session File menu. This displays the following dialog box.

This gives you the opportunity to change the name or path of the assembly. The
Runtime application checkbox allows you to choose to which if the two versions of the
Dyalog dynamic link library the assembly will be bound. In this tutorial we will use the

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 142

Development version. The Isolation Mode Combo box allows you to choose which
Isolation Mode you require.

Browse to the Framework\bin sub-diectory.
Clear the Runtime application checkbox

Finally, click Save. APL now makes the assembly and, as it does so, displays information
in the Status window as shown below. If any errors occur during this process, the Status
window will inform you.

•
•

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 143

program.cs

The following C# source, called aplclasses1Framework\program.cs, will be used to
call our Dyalog.NET Class.

The using statements specify the names of .NET namespaces to be searched for
unqualified class names.

The program creates an object named apl of type Primitives by calling the new
operator on that class. Then it calls the IndexGen method with a parameter of 10.

Using VS, open the solution file d:
\aplclasses\aplclasses1\Framework\project.sln and view program.cs.

using System;
using APLClasses;
public class MainClass

{
public static void Main()

{
Primitives apl = new Primitives();
int[] rslt = apl.IndexGen(10);
for (int i=0;i<rslt.Length;i++)
Console.WriteLine(rslt[i]);

}
}

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 144

Now click Debug/Start Without debugging (or press Ctrl+F5) to run the program.
The results are shown in a console window.

6.5 Example 2

In Example 1, we said nothing about a constructor used to create an instance of the
Primitives class. In Example 2, we will show how this is done.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 145

In fact, in Example 1, APL supplied a default constructor, which is inherited from the
base class (System.Object) and is called without arguments.

Example 2 will extend Example 1 by adding a constructor that specifies the value of
⎕IO.

Load the workspace aplclasses2.dws from aplclasses2, then display the
Primitives class:

This version of Primitives contains a constructor function called CTOR that simply sets
⎕IO to the value of its argument. The name of this function is purely arbitrary.

Using this version, build a new .NET Assembly using File/Export… as before. Remember
that the Build runtime assembly checkbox is unchecked.

↑⎕SRC APLClasses.Primitives
:Class Primitives
:Using System

∇ CTOR IO
:Implements constructor
:Access public
:Signature CTOR Int32 IO
⎕IO←IO

∇

∇ R←IndexGen N
:Access public
:Signature Int32[]←IndexGen Int32
R←⍳N

∇

:EndClass ⍝ Primitives

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 146

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 147

program.cs

The following C# source, called aplclasses2\Framework\program.cs, will be used to
call the new version of our Dyalog.NET class.

The program is the same as in the previous example, except that the code that creates
an instance of the Primitives class is simply changed to specify an argument; in this
case 0.

Using VS, open the solution file d:
\aplclasses\aplclasses2\Framework\project.sln and view program.cs.

using System;
using APLClasses;
public class MainClass

{
public static void Main()

{
Primitives apl = new Primitives(0);
int[] rslt = apl.IndexGen(10);

for (int i=0;i<rslt.Length;i++)
Console.WriteLine(rslt[i]);
}

}

Primitives apl = new Primitives(0);

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 148

Then click Debug/Start Without debugging (or press Ctrl+F5) to run the program.
The results are shown in a console window.

6.6 Example 2a

In Example 2, the argument to CTOR, the constructor for the Primitives class, was
defined to be Int32. This means that the .NET Framework will allow a client to specify
any integer when it creates an instance of the Primitives class. What happens if the

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 149

client uses a parameter of 2? Clearly this is going to cause an APL DOMAIN ERROR when
used to set ⎕IO.

To investigate this case, change the line of code in program.cs that creates an instance
of the Primitives class, passing the argument 2, like this:

Then click Debug/Start Without debugging (or press Ctrl+F5) to run the program.

… as we have built the Dyalog .NET class to use the Development DLL, the APL Session
appears, and the Tracer can be used to debug the problem. You can see that the
constructor CTOR has stopped with a DOMAIN ERROR. Meanwhile, the C# program is still
waiting for the call (to create an instance of Primitives) to finish.

Primitives apl = new Primitives(2);

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 150

Notice that in Dyalog, the)SI System Command provides information about the entire
calling stack, including the .NET function calls that are involved. Notice too that the
CTOR function, the constructor for this APL .NET class, is running here in APL thread 1,
which is associated with the system thread 30732.

In this case, debugging is simple, and you can simply type:

Now, the CTOR function completes, the program continues and the output is displayed.

IO←1
→⎕LC

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 151

6.7 Example 3

The correct .NET behaviour when an APL function fails with an error is to throw an
exception, and this example shows how to do it.

In the .NET Framework, exceptions are implemented as .NET Classes. The base
exception is implemented by the System.Exception class, but there are a number of
super classes, such as System.ArgumentException and
System.ArithmeticException that inherit from it.

⎕SIGNAL may be used to throw an exception. To do so, its right argument should be 90
and its left argument should be an object of type System.Exception or an object that
inherits from System.Exception.

When you create the instance of the Exception class, you may specify a string (which
will turn up in its Message property) containing information about the error.

aplclasses3.dws contains an improved version of the CTOR constructor function.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 152

Load aplclasses3.dws and export aplclasses3.dll as before.

∇ CTOR IO;EX
[1] :Access public
[2] :Signature CTOR Int32 IO
[3] :Implements constructor
[4] :If IO∊0 1
[5] ⎕IO←IO
[6] :Else
[7] EX←⎕NEW ArgumentException,⊂⊂'IndexOrigin must be
 0 or 1'
[8] EX ⎕SIGNAL 90
[9] :EndIf

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 153

program.cs

The following C# source, called aplclasses2\Framework\program.cs, contains code
to catch the exception and to display the exception message.

using System;
using APLClasses;
public class MainClass

{
public static void Main()

{
try

{
Primitives apl = new Primitives(2);
int[] rslt = apl.IndexGen(10);

for (int i=0;i<rslt.Length;i++)
Console.WriteLine(rslt[i]);

}
catch (Exception e)

{
Console.WriteLine(e.Message);
}

}

}

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 154

Using VS, open the solution file d:
\aplclasses\aplclasses3\Framework\project.sln and view program.cs.

Click Debug/Start Without debugging (or press Ctrl+F5) to run the program. The
results are shown in a console window.

6.8 Example 4

This example builds on Example 3 and illustrates how you can implement constructor
overloading, by establishing several different constructor functions.

By way of an example, when a client application creates an instance of the Primitives
class, we want to allow it to specify the value of ⎕IO or the values of both ⎕IO and ⎕ML.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 155

The simplest way to implement this is to have two public constructor functions CTOR1
and CTOR2, which call a private constructor function CTOR.

aplclasses4.dws contains a new version of the Primitives class with these
additions:

The :Signature statements for these three functions show that CTOR1 is defined as a
constructor that takes a single Int32 parameter, CTOR2 is defined as a constructor that
takes two Int32 parameters, and CTOR has no .NET Properties defined at all. Note that
in .NET terms, CTOR is not a Private Constructor; it is simply an internal function that is
invisible to the outside world.

Next, a function called GetIOML is defined and exported as a Public Method. It simply
returns the current values of ⎕IO and ⎕ML.

∇ CTOR1 IO
[1] :Implements constructor
[2] :Access public
[3] :Signature CTOR1 Int32 IO
[4] CTOR IO 0

∇

∇ CTOR2 IOML
[1] :Implements constructor
[2] :Access public
[3] :Signature CTOR2 Int32 IO,Int32 ML
[4] CTOR IOML

∇

∇ CTOR IOML;EX
[1] IO ML←IOML
[2] :If ~IO∊0 1
[3] EX←⎕NEW ArgumentException,⊂⊂'IndexOrigin must
 be 0 or 1'
[4] EX ⎕SIGNAL 90
[5] :EndIf
[6] :If ~ML∊0 1 2 3
[7] EX←⎕NEW ArgumentException,⊂⊂'MigrationLevel
 must be 0, 1, 2 or 3'
[8] EX ⎕SIGNAL 90
[9] :EndIf
[10] ⎕IO ⎕ML←IO ML

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 156

Load aplclasses4.dws and export a new version of aplclasses.dll as before.

∇ R←GetIOML
[1] :Access public
[2] :Signature Int32[]←GetIOML
[3] R←⎕IO ⎕ML

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 157

program.cs

aplclasses4\Framework\program.cs contains code to invoke the two different
constructor functions CTOR1 and CTOR2 :

using System;
using APLClasses;
public class MainClass

{
public static void Main()

{
Primitives apl10 = new Primitives(1);
int[] rslt10 = apl10.GetIOML();
for (int i=0;i<rslt10.Length;i++)

Console.WriteLine(rslt10[i]);

Primitives apl03 = new Primitives(0,3);
int[] rslt03 = apl03.GetIOML();
for (int i=0;i<rslt03.Length;i++)

Console.WriteLine(rslt03[i]);
}

}

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 158

Here the code creates two instances of the Primitives class named apl10 and apl03.
The first is created with a constructor parameter of (1); the second with a constructor
parameter of (0,3).

The C# compiler matches the first call with CTOR1, because CTOR1 is defined to accept a
single Int32 parameter. The second call is matched to CTOR2 because CTOR2 is defined
to accept two Int32 parameters.

Using VS, open the solution file d:
\aplclasses\aplclasses4\Framework\project.sln and view program.cs.

Click Debug/Start Without debugging (or press Ctrl+F5) to run the program. The
results are shown in a console window.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 159

6.9 Example 5

This example takes things a stage further and illustrates how you can implement
method overloading.

In this example, the requirement is to export three different versions of the IndexGen
method; one that takes a single number as an argument, one that takes two numbers,
and a third that takes any number of numbers. These are represented by three
functions named IndexGen1, IndexGen2 and IndexGen3 respectively. Because monadic
⍳ performs all of these operations, the three APL functions are in fact identical.
However, their public interfaces, as defined in their :Signature statement, are all
different.

The overloading is achieved by entering the same name for the exported method
(IndexGen) in the box provided, for each of the three APL functions.

aplclasses5.dws contains a new version of the Primitives class with three different
versions of IndexGen as shown below:

This is the version we have seen before. The method is defined to take a single
argument of type Int32, and to return a 1-dimensional array (vector) of type Int32.

This version is defined to take two arguments of type Int32, and to return a 2-
dimensional array, each of whose elements is a 1-dimensional array (vector) of type
Int32.

∇ R←IndexGen1 N
[1] :Access public
[2] :Signature Int32[]←IndexGen Int32 N
[3] R←⍳N

∇

∇ R←IndexGen2 N
[1] :Access public
[2] :Signature Int32[][,]←IndexGen Int32 N1, Int32 N2
[3] R←⍳N

∇

∇ R←IndexGen3 N
[1] :Access public
[2] :Signature Array←IndexGen Int32[] N
[3] R←⍳N

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 160

In principle, we could define 7 more different versions of the method, taking 3, 4, 5 etc.
numeric parameters. Instead, this method is defined more generally, to take a single
parameter that is a 1-dimemsional array (vector) of numbers, and to return a result of
type Array. In practice we might use this version alone, but for a C# programmer, this is
harder to use than the two other specific cases.

Notice also that all function use the same descriptive name, <IndexGen>.

Load aplclasses5.dws and export aplclasses5.dll as before.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 161

program.cs

samples\APLClasses\aplfns5.cscontains code to invoke the three different variants
of IndexGen, in the new aplclasses.dll. Notice that it uses a local sub-routine
PrintArray().

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 162

using System;
using APLClasses;
public class MainClass

{
static void PrintArray(int[] arr)
{

for (int i=0;i<arr.Length;i++)
{
Console.Write(arr[i]);
if (i!=arr.Length-1)

Console.Write(",");
}

}

public static void Main()
{
Primitives apl = new Primitives(0);
int[] rslt = apl.IndexGen(10);
PrintArray(rslt);
Console.WriteLine("");

int[,][] rslt2 = apl.IndexGen(2,3);
for (int i=0;i<2;i++)

{
for (int j=0;j<3;j++)

{
int[] row = rslt2[i,j];
Console.Write("(");
PrintArray(row);
Console.Write(")");
}

Console.WriteLine("");
}

int[] args = new int[3];
args[0]=2;
args[1]=3;
args[2]=4;
Array rslt3 = apl.IndexGen(args);
Console.WriteLine(rslt3);

}

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 163

Using VS, open the solution file d:
\aplclasses\aplclasses2\Framework\project.sln and view program.cs.

Click Debug/Start Without debugging (or press Ctrl+F5) to run the program. The
results are shown in a console window.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 164

It is possible for a function to have several :Signature statements. Given that our
three functions perform exactly the same operation, it might have made more sense to
use a single function:

6.10 Interfaces

Interfaces define additional sets of functionality that classes can implement; however,
interfaces contain no implementation, except for static methods and static fields. An
interface specifies a contract that a class implementing the interface must follow.
Interfaces can contain shared (known as "static" in many compiled languages) or
instance methods, shared fields, properties, and events. All interface members must be
public. Interfaces cannot define constructors. The .NET runtime allows an interface to
require that any class that implements it must also implement one or more other
interfaces.

When you define a class, you list the interfaces which it supports following a colon after
the class name. The value of ⎕USING (possibly set by :Using) is used to locate Interface
names.

If you specify that your class implements a certain Interface, you must provide all of
the members (methods, properties, and so forth) defined for that Interface. However,
some Interfaces are only marker Interfaces and do not actually specify any members.

An example is the TemperatureControlCtl2 custom control described in Chapter 11,
which derives from System.Web.UI.Control. The first line of this class definition
reads:

Following the colon, the first name is the base class. Following the (optional) base class
name is the list of interfaces which are implemented. The TemperatureControlCtl2
custom control implements two interfaces named IPostBackDataHandler and
IPostBackEventHandler. These interfaces are required for a custom control that

∇ R←IndexGen1 N
[1] :Access public
[2] :Signature Int32[]←IndexGen Int32 N
[3] :Signature Int32[][,]←IndexGen Int32 N1, Int32 N2
[4] :Signature Array←IndexGen Int32[] N
[5] R←⍳N

∇

:Class TemperatureConverterCtl2: System.Web.UI.Control,
System.Web.UI.IPostBackDataHandler,
System.Web.UI.IPostBackEventHandler

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 165

intends to render the HTML for its own form elements in a Web page. These interfaces
define certain methods that get called at the appropriate time by the page framework
when a Web page is constructed for the browser. It is therefore essential that the class
implements all the methods specified by the interface, even if they do nothing.

The base class, System.Web.UI.Control, defines an optional Interface called
INamingContainer. A class based on Control that implements INamingContainer
specifies that its child controls are to be assigned unique ID attributes within an entire
application. This is a marker interface with no methods or properties defined for it.

See these examples in Chapter 11 for further details.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 166

7 Dyalog APL and IIS

7.1 Introduction

Microsoft Internet Information Services (IIS) is a comprehensive Web Server software
package that allows you to publish information on your Intranet, or on the World Wide
Web. IIS is included with Professional and Server versions of all recent Windows
operating systems; all you need add is a network connection to run your own Web site.

IIS includes Active Server Page (ASP) technology. The basic idea of ASP is to permit web
pages to be created dynamically by the web server. An ASP file is a character file that
contains a mixture of HTML and scripts. When IIS receives a request for an ASP file, it
executes the server-side scripts contained in the file to build the Web page that is to be
sent to the browser. In addition to server-side scripts, ASP files can contain HTML
(including related client-side scripts) as well as calls to components that can perform a
variety of tasks such as database lookup, calculations, and business logic.

Basically, each script inside an ASP page generates a stream of HTML. The server runs
the scripts and assembles the resulting HTML into a single stream (Web page) that is
sent to the browser.

ASP.NET is a new version of ASP and is based upon the Microsoft .NET Framework
technology. It offers significantly better performance and a host of new features
including support for Web Services.

7.2 IIS Installation Dependency

During installation, Dyalog registers itself with ASP.NET as an ASP.NET programming
language. Among other things, this allows ASP.NET web pages to be written in Dyalog.
The Dyalog installation program also registers the Dyalog asp.net sample applications
as IIS Virtual Directories.

It is not practical for the Dyalog setup.exe to perform these tasks unless IIS and
ASP.NET are already installed. Furthermore, unless IIS and ASP.NET are already installed
and activated on the system, the Dyalog sub-directory Samples/asp.net will not even
be copied onto the system, because the samples it contains would be inoperable.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 167

If IIS is installed after Dyalog, it is necessary to de-install and then re-install Dyalog to
enable the registration of Dyalog as an ASP.NET Programming language to occur, and
for the Samples/asp.net sub-directory to be copied onto the system and the samples
registered as IIS Virtual Directories.

7.3 IIS Applications, Virtual Directories, Application
Pools

IIS supports the concept of an Application. An application is a logically separate service
or web site. IIS can run any number of Applications concurrently. The files associated
with an application are stored in a physical directory on disk, which is linked to an IIS
Virtual Directory. The name of the Virtual Directory is the name of the Application or
Web Site.

The Dyalog APL distribution contains a directory named Dyalog\Samples\asp.net and
a set of sub-directories each of which contains a sample application.

During the installation of Dyalog APL, these are automatically registered as IIS Virtual
Directories, under a common root. The name of the root begins dyalog.net followed
by the Dyalog Version number, the edition (Unicode or classic), and the architecture
(32-bit or 64-bit). For example, dyalog.net.15.0.unicode.64 7 . The name of the root
application is referred to henceforth as dyalog.net.

IIS applications run in application pools. An application pool is a group of one or more
URLs that are served by the same worker process or set of worker processes which are
separate from the worker process that services another application pool. This
mechanism isolates applications from one another, providing resilience should any one
application fail.

Each dyalog.net application is associated with an application pool named Dyalog APL
xx (.NET v4.0 Classic8), where xx is 32 or 64) which is created if required during
installation.

When you want to run the Web Services and Web Page examples, you do so by
specifying the URL http://localhost/dyalog.net.xxxx/

These samples can be easily found by selecting the Documentation Centre menu item
from the Help menu on the Dyalog session, and scrolling down to the Tutorials section.

7 Versions of Dyalog APL prior to Version 11.0 created Virtual Directories under apl.net .
8 The term NET v4.0 Classic refers to the name of a standard application pool on which it

is based, and has nothing to do with the Classic variant of Dyalog.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 168

7.4 Internet Services Manager

As its name suggests, Internet Services Manager is a tool for managing IIS. If you are
developing Web Pages and/or Web Services, you will be using this tool a lot, and it
makes sense to add it as a shortcut on your desktop.

To do this, open Control Panel, then open Administrative Tools, right-click Internet
Information Services (IIS) Manager, and select Send To Desktop (create shortcut).

The dyalog.net Application

Following a successful installation of Dyalog APL, the dyalog.net Application should
appear in Internet Services Manager as shown below.

Note that the golf, temp and webservices sub-directories in the dyalog.net
application represent separate IIS applications.

The dyalog Application Pool will appear in the list of Applications Pools as shown below.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 169

The Advanced Settings of the dyalog.net Application are shown below.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 170

8 Writing Web Services

8.1 Introduction

A Web Service can be thought of as a Remote Procedure Call. However, it is a remote
procedure call that can be made over the Internet using character-based messages.

Web Services are implemented using Simple Object Access Protocol (SOAP), Extensible
Mark-up Language (XML) and Hypertext Transfer Protocol (HTTP). Web Services do not
require proprietary network protocols or software. Web Service calls and responses can
successfully be transmitted over the Internet without the need to specially configure
firewalls.

A Web Service is a class that may be called by any program running on the computer,
any program running on a computer on the same LAN, or any program running on any
computer on the internet.

Web Services are hosted (that is, executed) by ASP.NET running under Microsoft IIS.
Any one Web Service sits on a single server computer and runs there under ASP.NET/
IIS. The messages that invoke the Web Service, pass its arguments, and return its
results, utilise standard HTTP/SOAP/XML protocols.

A Web Service consists of a single text script file, with the extension .asmx, in an IIS
Virtual Directory on the server computer.

A Web Service may expose a number of Methods and Properties. Methods may be
called synchronously (the calling process waits for the result) or asynchronously (the
calling process invokes the method, continues for a bit, and then subsequently checks
for the result of the previous call).

8.2 Web Service (.asmx) Scripts

Web Services may be written in a variety of languages, including APLScript, the
scripting version of Dyalog APL. See Section 5.1.

The first statement in the script file declares the language and the name of the service.
For example, the following statement declares a Dyalog APL Web Service named
GolfService.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 171

Note that Language="Dyalog" is specifically connected to the Dyalog APL script
compiler through the application's web.config file or through the global ASP.NET
system file Machine.config. Note that versions of Dyalog prior to 11.0 used
Language="APL".

The syntax of this first line is common to all Web Services, regardless of the language in
which they are written.

A Dyalog APL Web Service script starts with a :Class statement and ends with an
:EndClass statement. These statements are directives used by the Dyalog APL script
compiler and are specific to Dyalog APL.

The :Class statement declares the name of the Class (which must be the same as the
name declared in the WebService statement) and the Base Class from which it inherits,
which is normally System.Web.Services.WebService.

Following the :Class statement, there may appear any number of APL expressions and
function bodies. Following these there must be a :EndClass statement. Internal sub-
classes (nested classes) may also be defined within the main :Class ... :EndClass
block.

Because the functions usually take arguments and return results whose types must be
known, the statement

must almost always appear immediately after the :Class statement to locate them.

8.3 Compilation

When the Web Service, specified by the .asmx file, is called for the first time, ASP.NET
invokes the appropriate language compiler (in this case, the Dyalog Script compiler)
whose job is to produce an Assembly that defines and describes a class. When the Web
Service is used subsequently, the request is satisfied by creating and using an instance
of the class. However, ASP.NET detects if the .asmx script has been modified, and
recompiles it in this case.

The Dyalog Script compiler creates a DLL containing a workspace, which itself contains
the Web Service class. The class contains all the functions, which are defined within the

<%@ WebService Language="Dyalog" Class="GolfService" %>

:Class GolfService: System.Web.Services.WebService

:Using System

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 172

script, together with any variables that were established by expressions in the script. A
single function comprises all the statements enclosed within a pair of del (∇) symbols.

For example, the following script would define a class, instances of which would run
using ⎕ML←2, containing a single function FOO and a variable X.

Note that all expressions in the class script are executed by the script compiler when it
creates the assembly. They are not executed when the Web Service is invoked.

If your script contains a ⎕CY statement, it will be executed by the compiler when
establishing the class. This may be used to import functions from other workspaces and
obviate the need to include them in the .asmx file.

8.4 Exporting Methods

Your Web Service will be of no use unless it exports at least one method. To export a
function as a method, you must include declaration statements. Such declarations may
be supplied anywhere within the function body, but it is recommended that they
appear together as the first block of statements in your code. All declaration
statements begin with the colon (:) character and the following declaration statements
are supported:

This statement causes the function to be exported as a method and must be present.

This statement declares the data type of the result and the arguments of the method
where type may specify any valid .NET type that is supported by Web Services. Note
that the assignment arrow (←) is necessary if the function returns a result.

The declaration of each parameter of the method is separated from the next by a
comma. Each name may be any ASCII character string. Note that names are optional.

:Class MyClass
⎕ML←2
X←10
∇ Z←FOO Y

Z←Y+X
∇

:EndClass

:Access WebMethod

:Signature type ← fnname type name1, type name2, ...

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 173

Add1

The Add1 function defined above is exported as a method named Add, that takes
exactly (and only) two parameters of type Int32 and returns a result of type Int32.
Armed with this definition, which is recorded in the metadata associated with the class,
the .NET Framework guarantees that the method will only be called in this way.

Add2

The Add2 function defined above is exported as a method that takes an array of Double
and returns a result of type Double. Depending on the type of the arguments provided
when the method is invoked, .NET and Dyalog will call Add1 or Add2 - or generate an
exception if the argument does not match any of the signatures.

8.5 Web Service Data Types

In principle, Web Services are designed to support most, if not all, of the data types
supported by the .NET Framework, and to support any new .NET classes that you
choose to define.

In practice, the current set of data types supported by Web Services is somewhat
restricted; in particular:

Multi-dimensional arrays are not supported; only vectors.
Arbitrary nested arrays are not supported.

However, despite these restrictions, it is possible to build effective Web Services, as you
will see in the following examples.

∇ R←Add1 args
:Access WebMethod
:Signature Int32←Add Int32 arg1,Int32 arg2
R←+/args

∇

∇ R←Add2 arg
:Access WebMethod
:Signature Double←Add Double[] arg1
R←+/arg

∇

•
•

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 174

8.6 Execution

When your Web Service (or Page) is invoked, ASP.NET requests an instance of the
corresponding Class from the Assembly (DLL) that was created when it was compiled.
The first time this happens for any Dyalog Web Service or Web Page, the Dyalog
dynamic link library is loaded into the ASP.NET host process and the namespace
corresponding to your Web Service class is)COPYed from the Assembly. The Dyalog
dynamic link library then delivers an instance of this namespace to the client (calling)
process. See Section 12.1 for further details.

In general, every call on a method in a Web Service causes a new instance of the Web
Server class to be created. If you need to maintain/update variables between calls, you
need to write them to permanent storage.

If a client invokes a different Dyalog Web Service or Web Page, its class is)COPYed from
its Assembly into the workspace managed by the Dyalog dynamic link library. When
you export a class, you can select one of three Isolation Modes:

Each host process has a single workspace
Each AppDomain has its own workspace
Each Assembly has its own workspace

In this context, "workspace" is synonymous with "Dyalog process": Each workspace is
managed by a separate process running dyalog.dll. Under option 1, all Dyalog APL Web
Services (and Web Pages) hosted by the IIS host process share the same workspace
when they are invoked.

The isolation mode selected has implications for the way that you access and manage
global resources such as component files. Finer isolation modes may be implemented
in future versions of Dyalog.

8.7 Global.asax, Application and Session Objects

When a Web Service runs, it has access to the Application and Session objects. These
are objects provided by ASP.NET through which you can manage the execution of the
Web Service. ASP.NET creates an Application object when it first starts the Application,
that is, when any client requests any Web Service or Web Page stored in the same IIS
Virtual Directory. It also creates a Session object for each client process.

When the first request comes in for an ASP.NET application, ASP.NET checks for an
optional file named global.asax, and if it is there it compiles it. The application's
global.asax instance is then used to apply application events.

1.
2.
3.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 175

global.asax typically defines callback functions to be executed on the various
Application and Session events, such as Application_Start, Application_End,
Session_Start, Session_End and so forth.

Dyalog allows you to use APL functions in the global.asax script. This allows you to
initialise your APL application when it is first invoked, and to close it down cleanly when
it is terminated.

For example, you can use global.asax to tie a component file on start-up, and untie it
on termination.

8.8 Sample Web Service: EG1

The first APLExample sample is supplied in samples\asp.net\webservices\eg1.asmx
which is mapped via an IIS Virtual Directory to the URL:

The Add function defined above is exported as a method that takes exactly (and only)
two parameters of type Int32 and returns a result of type Int32.

Line [3] could in fact be coded as:

because .NET guarantees that a client can only call the method by providing two 32-bit
integers as parameters.

http://localhost/dyalog.net.15.0.unicode.32/webservices/eg1.asmx

<%@ WebService Language="Dyalog" Class="APLExample" %>

:Class APLEXample: System.Web.Services.WebService
:Using System

∇ R←Add args
:Access WebMethod
:Signature Int32←Add Int32 arg1,Int32 arg2
R←+/args

∇

:EndClass

R←args[1]+args[2]

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 176

Testing APLExample from a Browser

If you connect to a URL that represents a Web Service, the browser displays a page that
provides information about the service and the methods that it contains. In certain
cases, but by no means all, the page also contains form fields that let you invoke a
method from the browser.

The screen shot below shows the page displayed by Google Chrome when it is pointed
at eg1.asmx. It shows that the Web Service is called APLExample, and that it exports a
single method called Add. Furthermore, the Add method takes two parameters of type
int, named arg1 and arg2.

The following screen shot shows the result of entering the values 23 and 19 into the
form fields and then pressing the Invoke button.

In this case, the method returns an int value 42.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 177

It is important to understand what is happening here.

Accessed in this way from a browser, a Web Service appears to be behaving like a Web
Server; this is not the case.

It is simply that the browser detects that the target URL is a Web Service, and invokes
an ASP+ page named DefaultSdlHelpGenerator.aspx that inspects the compiled
class and returns an HTML view of the Web service.

8.9 Sample Web Service: LoanService

The LoanService sample is supplied in Dyalog\Samples\asp.net\Loan\Loan.asmx,
which is mapped via an IIS Virtual Directory to the URL:

This APLScript sample defines a class named LoanService that is based upon
System.Web.Services.WebService. The LoanService class defines a sub-class called
LoanResult and a method called CalcPayments.

http://localhost/dyalog.net.15.0.unicode.32/Loan/Loan.asmx

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 178

CalcPayments takes five integer parameters (see comments for their descriptions) and
returns an object of type LoanResult.

Note that the block of APLScript that defines the sub-class LoanResult must reside
between the :Class and :EndClass statements of the main class, LoanService. You
may define any number of internal classes in this way.

<%@ WebService Language="Dyalog" Class="LoanService" %>
:Class LoanService: System.Web.Services.WebService
:Using System

:Class LoanResult
:Access public

:Field Public Int32[] Periods
:Field Public Double[] InterestRates
:Field Public Double[] Payments

:EndClass

∇ R←CalcPayments X;LoanAmt;LenMax;LenMin;IntrMax;
IntrMin;PERIODS;INTEREST;NI;NM

[1] :Access WebMethod
[2] :Signature LoanResult←CalcPayments Int32 LoanAmt,

Int32 LenMax,Int32 LenMin,
Int32 IntrMax,Int32 IntrMin

[3]
[4] ⍝ Calculates loan repayments
[5] ⍝ Argument X specifies:
[6] ⍝ LoanAmt Loan amount
[7] ⍝ LenMax Maximum loan period
[8] ⍝ LenMin Minimum loan period
[9] ⍝ IntrMax Maximum interest rate
[10] ⍝ IntrMin Minimum interest rate
[11]
[12] LoanAmt LenMax LenMin IntrMax IntrMin←X
[13] R←⎕NEW LoanResult
[14] R.Periods←¯1+LenMin+⍳1+LenMax-LenMin
[15] R.InterestRates←0.5×¯1+(2×IntrMin)+⍳1+2×

IntrMax-IntrMin
[16] NI←⍴INTEREST←R.InterestRates÷100×12
[17] NM←⍴PERIODS←R.Periods×12
[18] R.Payments←,(LoanAmt)×((NI,NM)⍴NM/INTEREST)÷

1-1÷(1+INTEREST)∘.*PERIODS
∇

:EndClass

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 179

The LoanResult class is made up only of Fields and it does not export any methods or
properties. Furthermore, there are no constructor methods defined and it relies solely
on its default constructor that is inherited from its base class, System.Object. The
default constructor is called without any parameters and in fact does nothing except to
create an instance of the class. In particular, the fields it contains initialised to zero. In
this case, that is sufficient, as all the fields will be filled in explicitly later.

The :Class statement starts the definition of a new class and specifies its name. The
:EndClass statement terminates it definition.

The three :Field declaration statements specify the names and data types of three
public fields. The Public attributes are necessary to make the fields visible to methods
within the LoanService class as a whole, as well as to external clients.

The Periods field is defined to be an array of integers; the InterestRates field an
array of Double. Both these arrays are 1-dimensional, that is, vectors. These will
contain the numbers of years, and the different interest rates, to which the repayments
matrix applies.

Notice however that Payments is also defined to be 1-dimensional when in fact it is,
more naturally, a 2-dimesional matrix. The reason for this is that, currently, Web
Services do not support multi-dimensional arrays. This is a .NET restriction and not a
Dyalog restriction.

CalcPayments[13] gets a new instance of the LoanResult class by doing ⎕NEW
LoanResult. It then assigns values to each of the three fields in lines [14], [15] and
[18].

Testing LoanService from a Browser

Like the methods exported by the APLEXample Web Services described above, the
CalcPayments method exported by LoanService is callable from a browser and the
page that is displayed when you point a browser at it is shown below.

:Class LoanResult
:Access public

:Field Public Int32[] Periods
:Field Public Double[] InterestRates
:Field Public Double[] Payments

:EndClass

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 180

To test the CalcPayments method, you can enter numbers into the form fields in this
page, as shown in the screen shot above, and then press the Invoke button. The result
of the method is then displayed in a separate window as illustrated below.

Notice that the result is described using XML, which is in fact the very language used to
invoke a Web Service and return its result.

You can see that the result is of type LoanResult, and it contains 3 fields named
Payments, InterestRates and Periods. This information was derived by our definition
of the LoanResult class in the APLScript file.

As you can see, the InterestRates field shows that it contains a vector of floating-
point values (double) from the minimum rate to the maximum rate that we specified
on the input form. This time, the increment is 0.5.

Similarly, the Payments field contains the calculated repayment values.

Finally the Periods field, contains a vector of integers from the minimum period to the
maximum period that we specified on the input form, in increments of 1.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 181

8.10 Sample Web Service: GolfService

GolfService is an example Web Service that resides in the directory
samples\asp.net\Golf and is associated with the IIS Virtual Directory dyalog.net/
Golf. This example makes extensive use of internal classes to define data structures
that are appropriate for a client application, such as C# or VB.

The directory contains a global.asax script, which is used to initialise the application.

The Golf Web Service example manages the reservation of tee-times at golf courses. All
the data is held in a component file called GolfData.dcf. This file may be initialised
using the function Golf.INITFILE in the workspace

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 182

samples\asp.net\webservices\webservices.dws. You may need to alter the file
path first.

Each golf course managed by the application has a unique code (integer) and a name
(string). This is handled by defining a class (structure) called GolfCourse with two
fields, Code and Name.

GolfService provides 3 methods:

Returns a list of Golf Courses (CourseCode and CourseName). The result of this method
is an array of GolfCourse objects.

Returns the starting sheet for a specified golf course on a given day. A starting sheet is a
list of starting times with a list of the golfers booked to start their round at that time.
The result of this method is a StartingSheet object.

Requests a tee reservation at the course specified by CourseCode. TeeTime is a
DateTime object that specifies the requested date and time. GimmeNearest is Boolean.
If 1, requests the nearest tee-time to that specified; if 0, requests only the specified
tee-time. Name1-4 are strings specifying up to 4 players. Note that all parameters are
required. The result of this method is a Booking object.

GetCourses()

GetStartingSheet(CourseCode,Date)

MakeBooking(CourseCode,TeeTime,GimmeNearest, Name1,Name2,Name3,Name4))

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 183

GolfService: Global.asax

The Application_Start function is called when the GolfService Web Service is
invoked for the first time. It ties the GolfData component file then stores the tie
number in a new Item called GOLFID in the Application object. This item is then
subsequently available to methods in the GolfService for the duration of the
application.

The Application_End function is invoked when the GolfService Web Service
terminates. It unties the GolfData component file.

This example may be considered slightly weak in that the location of the data file is
hard-coded in the application's Global.asax file. An alternative is to store this
information in the <appsettings> section of the appropriate web.config file or in the
global machine.config file. This is preferable if the resource (in this case a file name) is
to be accessed from more than one script. For further information on ASP.NET config
files, see the documentation for the .NET Framework SDK.

Note that the GolfData file may be initialised using the function Golf.INITFILE in the
samples\asp.net\webservices\webservices.dws workspace. The function will
prompt you for the path of the file, initialize it and update the Global.asax file
accordingly.

<script language="Dyalog" runat=server>

∇ Application_Start;GOLFID
:Access Public
GOLFID←'c:\Dyalog\samples\asp.net\golf\GolfData' ⎕FTIE 0[^1]
Application[⊂'GOLFID']←GOLFID

∇

∇ Application_End;GOLFID
:Access Public
:Trap 6

GOLFID←Application[⊂'GOLFID']
⎕FUNTIE GOLFID

:EndTrap
∇
</script>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 184

GolfService: GolfCourse class

The GolfCourse class is effectively a structure with two fields named Code and Name.
Code is an integer code that provides a shorthand way to refer to a specific golf course;
Name is a String containing its full name.

The GolfCourse class provides two constructors. The first, named ctor_def, takes no
arguments and therefore overrides the default constructor that is inherited from
System.Object. ctor_def calls ctor to initialise the instance with a Code of ¯1 and an
empty Name.

The constructor named ctor accepts two parameters named CourseCode (an integer)
and CourseName (a string), and simply assigns these values into the corresponding
fields.

Therefore, valid ways to create an instance of a GolfCourse are:

Or, more simply

:Class GolfCourse
:Access Public
:Field Public Int32 Code
:Field Public String Name

∇ ctor args
:Implements Constructor
:Access public
:Signature fn Int32, String
Code Name←args

∇
∇ ctor_def
:Implements Constructor
:Access public
ctor ¯1 ''

∇
:EndClass

GC←⎕NEW GolfCourse
GC.(Code Name)←1 'St Andrews'

GC←⎕NEW GolfCourse (1 'St Andrews')

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 185

Note that the names of the constructor functions are not visible outside the class.
Constructors are identified by their signatures (basically, the :Implements
Constructor statement) and not by their names.

GolfService: Slot class

The Slot class is effectively a structure with two fields named Time and Players. Time
is a DateTime object that represents a time that can be reserved on the first tee.
Players is an array of (up to 4) strings that contains the names of the golfers who have
reserved to start their round of golf at that time.

This class provides two constructor functions named ctor1 and ctor2. However, for
internal reasons, if a class defines any constructor functions, it is currently necessary to
provide a dummy default constructor (the form of the constructor that takes no
parameters); hence ctor_def.

The constructor ctor1 accepts a single DateTime parameter, which it assigns to the
Time, field, and initialises the Players field to an empty array.

:Class Slot
:Access Public
:Field Public DateTime Time
:Field Public String[] Players

∇ ctor1 arg
:Implements Constructor
:Access public
:Signature fn DateTime
Time←arg
Players← 0⍴⊂''

∇
∇ ctor2 args
:Implements Constructor
:Access public
:Signature fn DateTime, String[]
Time Players←args

∇
∇ ctor_def
:Implements Constructor
:Access public

∇
:EndClass

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 186

The constructor ctor2 accepts two arguments, a specified tee time, and an array of
strings that contains golfers' names. It assigns these parameters to Time and Players
respectively.

GolfService: Booking class

The Booking class represents the result of the MakeBooking method. It contains 4
fields named OK, Course, TeeTime and Message.

OK is Boolean and indicates whether or not the attempt to make a reservation was
successful. If OK is false (0), the Message field (a string) indicates the reason for failure.

If OK is true (1) the Course field contains an instance of a GolfCourse object, and the
TeeTime field contains an instance of a Slot object. Together, these objects identify the
reserved golf course and starting slot. The latter specifies both the starting time, and
the names of all the golfers who have been allocated that starting time and who will
therefore play together.

This class provides a single constructor method, which must be called with values for all
four fields.

:Class Booking
:Access Public
:Field Public Boolean OK
:Field Public GolfCourse Course
:Field Public Slot TeeTime
:Field Public String Message

∇ ctor args
:Implements Constructor
:Access public
:Signature fn Boolean, GolfCourse, Slot, String
OK Course TeeTime Message←args

∇
∇ ctor_def
:Access public
:Implements Constructor

∇
:EndClass

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 187

GolfService: StartingSheet class

The StartingSheet class represents the result of the GetStartingSheet method. It
contains 5 fields named OK, Course, Date, Slots and Message. OK is Boolean and
indicates whether or not a starting sheet is available for the specified course and date.

If OK is false (0), the Message field (a string) indicates the reason for failure.

If OK is true (1) the Course field contains an instance of a GolfCourse object, the Date
field contains the date in question, and the Slots field contains an array of Slot
objects. Each Slot object specifies a starting time and the names of golfers who are
booked to play at that time.

Like the Booking class, the StartingSheet class provides a single constructor method.
In this case, the constructor is called with values for just 3 of the fields; the values of
the other fields are expected to be assigned later.

:Class StartingSheet
:Access Public
:Field Public Boolean OK
:Field Public GolfCourse Course
:Field Public DateTime Date
:Field Public Slot[] Slots
:Field Public String Message

∇ ctor args
:Implements Constructor
:Access public
:Signature fn Boolean, GolfCourse, DateTime
OK Course Date←args

∇

∇ ctor_def
:Implements Constructor
:Access public

∇
:EndClass

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 188

GolfService: GetCourses function

The GetCourses function retrieves the tie number of the GolfData component file
from the Application object and reads its first component.

The function then creates a GolfCourse object for each of the courses recorded on the
file, and returns the array of GolfCourse objects as its result.

GolfService: GetStartingSheet function

The GetStartingSheet function retrieves the tie number of the GolfData component
file from the Application object and reads its first component. Line [10] creates an
instance of a StartingSheet object and uses it to initialise the result R. The value of
the OK field is set to zero to indicate failure.

It then validates the requested CourseCode. If invalid, it simply sets the Message field in
the result and returns it. Similarly, it checks to see if there is a starting sheet on file for
the requested date. If not, it sets the Message field to indicate this, and returns.

Note that line [15] extracts the Year, Month and Day properties from the requested tee
time, a DateTime object, and converts them to an IDN. This is used to index the
component containing the starting sheet for that day.

∇ R←GetCourses;COURSECODES;COURSES;INDEX;GOLFID
[1] ⍝
[2] :Access WebMethod
[3] :Signature GolfCourse[]←fn
[4]
[5] GOLFID←Application[⊂'GOLFID']
[6] COURSECODES COURSES INDEX←⎕FREAD GOLFID 1
[7] R←⎕NEW¨GolfCourse,¨⊂¨↓⍉↑COURSECODES COURSES

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 189

Line[23] sets the OK field of the result to 1 (success).

Line[24] converts the stored tee times (in minutes) to DateTime objects.

Line[25] combines the tee times and golfers into a vector of 2-element arrays, and
creates a Slot object for each of them. The result is assigned to the Slots field of the
result R.

∇ R←GetStartingSheet ARGS;CODE;COURSE;DATE;GOLFID;
COURSECODES;COURSES;INDEX;COURSEI;IDN;DATES;COMPS;
IDATE;TEETIMES;GOLFERS;I;T

[1] ⍝
[2] :Access WebMethod
[3] :Signature StartingSheet←fn Int32 CCode,

DateTime Date
[4]
[5] CODE DATE←ARGS
[6] GOLFID←Application[⊂'GOLFID']
[7] COURSECODES COURSES INDEX←⎕FREAD GOLFID 1
[8] COURSEI←COURSECODES⍳CODE
[9] COURSE←⎕NEW GolfCourse (CODE(COURSEI⊃COURSES,⊂''))
[10] R←⎕NEW StartingSheet (0 COURSE DATE)
[11] :If COURSEI>⍴COURSECODES
[12] R.Message←'Invalid course code'
[13] :Return
[14] :EndIf
[15] IDN←2 ⎕NQ'.' 'DateToIDN',DATE.(Year Month Day)
[16] DATES COMPS←⎕FREAD GOLFID,COURSEI⊃INDEX
[17] IDATE←DATES⍳IDN
[18] :If IDATE>⍴DATES
[19] R.Message←'No Starting Sheet available'
[20] :Return
[21] :EndIf
[22] TEETIMES GOLFERS←⎕FREAD GOLFID,IDATE⊃COMPS
[23] R.OK←1
[24] T←⎕NEW¨DateTime,¨⊂¨(⊂DATE.(Year Month Day)),¨

3↑¨↓[1]24 60⊤TEETIMES
[25] R.Slots←⎕NEW¨Slot,¨⊂¨T,∘⊂¨↓GOLFERS

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 190

GolfService: MakeBooking function

The MakeBooking function checks that the requested tee-time is available, for the
specified number of players and updates the starting sheet accordingly. The result of
the function is a Booking object.

MakeBooking first retrieves the tie number of the GolfData component file from the
Application object and reads its first component.

Lines[13 14] create instances of GolfCourse and Slot objects, which at this stage are
not validated. Line[15] then initialises the result R, a Booking object, which includes
these instances. At this stage, R.OK is 0 indicating failure.

Line[16] validates the requested CourseCode, and, if invalid, simply sets R.Message and
returns.

Similarly, lines [20 23] check that the requested tee time is within the next 30 days
from now. If not, the function assigns the appropriate error message to R.Message and
returns. Note that these two statements employ the APL primitive function > (rather
that the op_GreaterThan method) to compare the requested tee time (a DateTime
object) with a new DateTime object that represents now and now+30 days respectively.

Notice that line[24] uses the AddDays method to create a new DateTime object that
represents now + 30 days. An alternative expression, to get now+30 days is:

Lines[28-47] are concerned with retrieving the appropriate component from the file,
initialising it or re-using an old one, if it is not present. Each component represents the
starting sheet for a particular course on a particular day.

Lines[48-63] check whether or not the requested slot is available (for the specified
number of golfers). If not it returns an error message as before or, if GimmeNearest is 1
(true), it attempts to allocate the slot closest to the requested time.

If an appropriate slot is found, Lines[72 73] update the Slot object with the assigned
time and names of the golfers. Line[74] then inserts the modified Slot object into the
result, and sets the OK field to 1 (true) to indicate success.

TEETIME.Now+⎕NEW TimeSpan (30 0 0 0)

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 191

∇ R←MakeBooking ARGS;CODE;COURSE;SLOT;TEETIME;GOLFID;
COURSECODES;COURSES;INDEX;COURSEI;IDN;
DATES;COMPS;IDATE;TEETIMES;GOLFERS;
OLD;COMP;HOURS;MINUTES;NEAREST;TIME;
NAMES;FREE;FREETIMES;I;J;DIFF

[1] ⍝
[2] :Access WebMethod
[3] :Signature Booking←Int32 CourseCode,

DateTime TeeTime,
Boolean GimmeNearest,
String Name1,
String Name2,
String Name3,
String Name4

[4]
[5]
[6] ⍝ If GimmeNearest=0, books (or fails) for specified time
[7] ⍝ If GimmeNearest=1, books (or fails) for nearest to

specified time
[8]
[9] CODE TEETIME NEAREST←3↑ARGS
[10] GOLFID←Application[⊂'GOLFID']
[11] COURSECODES COURSES INDEX←⎕FREAD GOLFID 1
[12] COURSEI←COURSECODES⍳CODE
[13] COURSE←⎕NEW GolfCourse,⊂CODE(COURSEI⊃COURSES,⊂'')
[14] SLOT←⎕NEW Slot TEETIME
[15] R←⎕NEW Booking (0 COURSE SLOT '')
[16] :If COURSEI>⍴COURSECODES
[17] R.Message←'Invalid course code'
[18] :Return
[19] :EndIf
[20] :If TEETIME.Now>TEETIME
[21] R.Message←'Requested tee-time is in the past'
[22] :Return
[23] :EndIf
[24] :If TEETIME>TEETIME.Now.AddDays 30
[25] R.Message←'Requested tee-time is more than
 30 days from now'
[26] :Return
[27] :EndIf
[28] IDN←2 ⎕NQ'.' 'DateToIDN',TEETIME.(Year Month Day)
[29] DATES COMPS←⎕FREAD GOLFID,COURSEI⊃INDEX
[30] IDATE←DATES⍳IDN
[31] :If IDATE>⍴DATES

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 192

[32] TEETIMES←(60×7)+10×¯1+⍳1+8×6
⍝ 10 minute intervals, 07:00 to 15:00

[33] GOLFERS←((⍴TEETIMES),4)⍴⊂''
⍝ up to 4 golfers allowed per tee time

[34] :If 0=OLD←⊃(DATES<
2 ⎕NQ'.' 'DateToIDN',3↑⎕TS)/⍳⍴DATES

[35] COMP←(TEETIMES GOLFERS)⎕FAPPEND GOLFID
[36] DATES,←IDN
[37] COMPS,←COMP
[38] (DATES COMPS)⎕FREPLACE GOLFID,COURSEI⊃INDEX
[39]

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 193

Testing GolfService from a Browser

If you point your browser at the URL:

:Else
[40] DATES[OLD]←IDN
[41] (TEETIMES GOLFERS)⎕FREPLACE

GOLFID,COMP←OLD⊃COMPS
[42] DATES COMPS ⎕FREPLACE GOLFID,COURSEI⊃INDEX
[43] :EndIf
[44] :Else
[45] COMP←IDATE⊃COMPS
[46] TEETIMES GOLFERS←⎕FREAD GOLFID COMP
[47] :EndIf
[48] HOURS MINUTES←TEETIME.(Hour Minute)
[49] NAMES←(3↓ARGS)~⍬''
[50] TIME←60⊥HOURS MINUTES
[51] TIME←10×⌊0.5+TIME÷10 ⍝ Round to nearest

10-minute interval
[52] :If ~NEAREST
[53] I←TEETIMES⍳TIME
[54] :If I>⍴TEETIMES
[55] :OrIf (⍴NAMES)>⊃,/+/0=⍴¨GOLFERS[I;]
[56] R.Message←'Not available'
[57] :Return
[58] :EndIf
[59] :Else
[60] :If ~∨/FREE←(⍴NAMES)≤⊃,/+/0=⍴¨GOLFERS
[61] R.Message←'Not available'
[62] :Return
[63] :EndIf
[64] FREETIMES←(FREE×TEETIMES)+32767×~FREE
[65] DIFF←|FREETIMES-TIME
[66] I←DIFF⍳⌊/DIFF
[67] :EndIf
[68] J←(⊃,/0=⍴¨GOLFERS[I;])/⍳4
[69] GOLFERS[I;(⍴NAMES)↑J]←NAMES
[70] (TEETIMES GOLFERS)⎕FREPLACE GOLFID COMP
[71] TEETIME←⎕NEW DateTime,⊂TEETIME.(Year Month Day),

3↑24 60⊤I⊃TEETIMES
[72] SLOT.Time←TEETIME
[73] SLOT.Players←(⊃,/0<⍴¨GOLFERS[I;])/GOLFERS[I;]
[74] R.(OK TeeTime)←1 SLOT

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 194

GolfService will be compiled and ASP.NET will fabricate a page about it for the
browser to display as shown below.

The three methods exposed by GolfService are listed.

Invoking the GetCourses method generates the following output.

Notice that the data type of the result is ArrayOfGolfCourse, and the data type of
each element of the result is GolfCourse. Furthermore, the public fields defined for
the GolfCourse object are clearly named.

All this information is derived from the declarations in the Golf.asmx script.

As supplied, the GolfData component file contains only 3 golf courses as shown below.

http://localhost/dyalog.net.15.0.unicode.32/Golf/Golf.asmx

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 195

ASP.NET generates a Form containing fields that allow the user to invoke the
MakeBookings method as shown below.

Notice the way a DateTime value is specified. Note too that the GimmeNearest
parameter is Boolean, so you must enter "True"" or "False". If you enter 0 or 1, it will
cause an error and the application will refuse to try to call MakeBookings because you
have specified the wrong type for a parameter.

When you try this yourself, remember to enter a date that is within the next 30 days,
and a time between 07:00 and 15:00. Alternatively, you may wish to experiment with
invalid data to check the error handling.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 196

The result of invoking MakeBooking with this data is shown below.

Notice how all the information about the Booking object structure, including the
structure of the sub-objects, is provided.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 197

The following picture shows data suitable for invoking the GetStartingSheet method.

If you try this for yourself, choose a course and date on which you have made at least
one successful booking.

Finally, the result of the GetStartingSheet function is illustrated below.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 198

The output clearly shows that the result, a StartingSheet object, contains an array of
Slot objects, each of which contains a Time field and a Players field.

Using GolfService from C

The csharp sub-directory in samples\asp.net\golf contains sample files for accessing
the GolfService Web Service from C#. The C# source code in Golf.cs is shown below.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 199

The following example shows how you may run the C# program golf.exe from a
Command Prompt window. Please remember to specify a reasonable date and time
rather than the one used in this example.

using System;

class MainClass {

static void Main(String[] args)
{
GolfService golf = new GolfService();
int nArgs = args.Length;
Booking booking;

booking=golf.MakeBooking(
/* Course Code */ 1,
/* Desired Tee Time */ DateTime.Parse(args[0]),
/* nearest is OK */ true,
/* player 1 */ (nArgs > 1) ? args[1] : "",
/* player 2 */ (nArgs > 2) ? args[2] : "",
/* player 3 */ (nArgs > 3) ? args[3] : "",
/* player 4 */ (nArgs > 4) ? args[4] : ""

);

Console.WriteLine(booking.OK);
Console.WriteLine(booking.TeeTime.Time.ToString());
foreach (String player in booking.TeeTime.Players)

Console.WriteLine(player);
}

}

csharp>golf 2006-08-07T08:00:00 T.Woods A.Palmer P.Donnelly
True
25/08/2008 08:00:00
T.Woods
A.Palmer
P.Donnelly

csharp>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 200

8.11 Sample Web Service: EG2

In all the previous examples, we have relied upon ASP.NET to compile the APLScript
into a .NET class prior to running it. This sample illustrates how you can make a .NET
class yourself.

For this example, the Web Service script, which is supplied in the file
samples\asp.net\webservices\eg2.asmx (mapped via an IIS Virtual Directory to the
URL http://localhost/dyalog.net/webservices/eg2.asmx)is reduced to a single
statement that merely invokes the pre-defined class called APLServices.Example.

The entire file, viewed in Notepad, is shown below.

Given this instruction, ASP.NET will locate the APLServices.Example Web Service by
searching the bin sub-directory for assemblies. Therefore, to make this work, we have
only to create a .NET assembly in samples\asp.net\aplservices\bin. The assembly
should contain a .NET Namespace named APLServices, which in turn defines a class
named Example.

The procedure for creating .NET classes and assemblies in Dyalog APL was discussed in
Section 6.1. Making a WebService class is done in exactly the same way.

Note that the sub-directory samples\asp.net\aplservices\bin already contains
copies of the dependent Dyalog DLLs that are required to execute the code.

Start Dyalog as Administrator. This is essential both to allow you to create an assembly.

Starting with a CLEAR WS, create a namespace called APLServices. This will act as the
container corresponding to a .NET Namespace in the assembly.

Within APLServices, create a class called Example that inherits from
System.Web.Services.WebService. This is the Web Service class.

)NS APLServices
#.APLServices

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 201

Within APLServices.Example, we have a function called Add that will represent the
single method to be exported by this Web Service.

Fix the class, then click File/Save As ... in the Session menubar and save the workspace
in samples\asp.net\aplwebservices\bin.

Select the Export… item from the Session File menu, and save the assembly as eg2.dll
in the same directory, that is, samples\asp.net\webservices\bin.

)CS APLServices
#.APLServices

)ED ○Example

:Class Example: WebService
:Using System
:Using System.Web.Services,System.Web.Services.dll

∇ R←Add arg
:Access webmethod
:Signature Int32←Add Int32 arg1, Int32 arg2
R←+/arg

∇
:EndClass

C:\Program Files\Dyalog\Dyalog APL 15.0
Unicode\Samples\asp.net\webservices\bin\eg2.dws saved Mon Sep 26 15:31:5
6 2016

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 202

When you click Save, the Status Window displays the following information to confirm
that the assembly has been created correctly.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 203

Testing EG2 from a Browser

If you point your browser at the URL:

ASP.NET will fabricate a page about it for the browser to display as shown below.

The Add method exposed by APLServices.Example is shown, together with a Form
from which you can invoke it.

If you enter the numbers 123 and 456 in the fields provided, then press Invoke, the
method will be called and the result displayed as shown below.

http://localhost/dyalog.net.15.0.unicode.32/webservices/eg2.asmx

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 204

9 Calling Web Services

9.1 Introduction

In order to call a Web Service, you need a "proxy class" on the client, which exposes the
same methods and properties as the web service. The proxy creates the illusion that
the web service is present on the client. Client applications create instances of the
proxy class, which in turn communicate with the Web Service via IIS, using TCP/IP and
HTTP/XML protocols.

Microsoft provides a utility called WSDL.EXE that queries the metadata (Web Service
Definition Language) of a Web Service and generate C# source code for a matching
proxy class.

9.2 The MakeProxy function

The MakeProxy function is provided in the supplied workspace
samples\asp.net\webservices\webservices.dws.

MakeProxy is monadic and its argument specifies the URL of the Web Service to which
you want to connect. For example, the following expressions uses MakeProxy to
connect to the LoanService sample Web Service provided with Dyalog .NET:

MakeProxy runs the Microsoft utility WSDL.EXE passing the name of your URL to it as an
argument. The utility then creates a C# source code file in your current directory that
contains the code necessary to create a proxy class. The name of the C# file is the name
of the Web Service (as declared in its header line) followed by the extension .cs.

MakeProxy then calls the C# compiler to compile this file, creating an assembly with the
same name, but with a .dll extension, in your current directory. This assembly contains
a .NET class of the same name.

MakeProxy attempts to determine the correct path for WSDL.EXE and CSC.EXE, but
future versions of Microsoft.NET or Visual Studio require changes, in which case you
will have to modify this function to locate these tools.

MakeProxy'http://localhost/dyalog.net/Loan/Loan.asmx'

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 205

9.3 Using LoanService from Dyalog APL

For example, the above call to MakeProxy will create a C# source code file called
LoanService.cs, and an assembly called LoanService.dll in your current directory.
The name of the proxy class in LoanService.dll is LoanService.

You use this proxy class in exactly the same way that you use any .NET class. For
example:

Notice that, as expected, the result of CalcPayments is an object of type LoanResult.
For convenience, we will assign this to LR and then reference its fields:

The Payments field is, of course, a vector because it was defined that way. However, as
can be seen above, it is easy to give it the "right" shape.

When you execute the CalcPayments method in the proxy class, the class transforms
and packages up your arguments into an appropriate SOAP/XML stream and sends
them, using TCP/IP, to the URL that represents the Web Service wherever that URL is on
the internet or your Intranet. It then decodes the SOAP/XML that comes back, and
returns the response as the result of the method.

Note that, depending upon the speed of your connection, and the logical distance away
of the Web Service itself, calling a Web Service method can take a significant amount of
time; regardless of how much time it actually takes to execute on its server.

9.4 Using GolfService from Dyalog APL

The workspace samples\asp.net\webservices\webservices contains functions that
present a GUI interface to the GolfService web service.

⎕USING ←,⊂',.\LoanService.dll'
LN←⎕NEW LoanService
LN.CalcPayments 100000 20 10 15 2

LoanResult

LR←LN.CalcPayments 100000 20 10 15 2
LR.Periods

10 11 12 13 14 15 16 17 18 19 20
LR.InterestRates

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 ...
LR.(((⍴InterestRates),⍴Periods)⍴Payments)

920.1345384 844.5907851 781.6836919 728.4970675 682.947 ...

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 206

The GOLF function accesses GolfService through a proxy class. GOLF is called with an
argument of 0 or 1. Use 1 to force GOLF to create or rebuild the proxy class, which it
does by calling MakeProxy. You must use an argument of 1 the first time you call GOLF,
or if you ever change the GolfService APL code.

Note that you cannot make the proxy for GolfService unless the Web Server class has
been compiled on the server. At present, the only way to trigger the compilation of
golf.asmx into a Web Service is to visit the page once using Internet Explorer as
described in the previous chapter.

The first few lines of the function are listed below. If the argument is 1, line [2] makes
the proxy class GolfService.DLL in the current directory; if not it is assumed to be
there already. Line [6] defines ⎕USING to use it, and Line [7] creates a new instance
which is assigned to GS. Line [8] calls the GetCourses method, which returns a vector
of GolfCourse objects. Notice how namespace reference array expansion is used to
extract the course codes and names from the Code and Name fields respectively.

The following screen shot illustrates the user interface provided by GOLF. In this
example, the user has typed the names of two golfers (one rather more famous than
the other - at least in APL circles) and then presses the Book it! button.

∇ GOLF FORCE;F;DLL;COURSES;COURSECODES;N;GS;⎕USING
[1] :If FORCE≢0
[2] DLL←MakeProxy

'http://localhost/dyalog.net/golf/golf.asmx'
[3] :Else
[4] DLL←'.\GolfService.dll'
[5] :EndIf
[6] ⎕USING←'System'(',',DLL)
[7] GS←⎕NEW GolfService
[8] COURSECODES COURSES←↓⍉↑GS.GetCourses.(Code Name)

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 207

This action fires the BOOK callback function which is shown below.

∇ BOOK;CCODE;YMD;HOUR;MINUTES;FLAG;NAMES;BOOKING;M
[1] CCODE←⊃F.COURSE.SelItems/COURSECODES
[2] YMD←3↑F.DATE.(IDNToDate⊃DateTime)
[3] HOUR MINUTES←2↑1↓F.TIME.DateTime
[4] FLAG←1=F.Nearest.State
[5] NAMES←F.(Name1 Name2 Name3 Name4).Text
[6] BOOKING←GS.MakeBooking CCODE

(⎕NEW DateTime (YMD,HOUR MINUTES 0)),FLAG,NAMES
[7] 'M'⎕WC'MsgBox'
[8] :If BOOKING.OK
[9] M.Text←'Tee reserved for
 ',¯2↓⊃,/BOOKING.TeeTime.Players,¨⊂', '
[10] M.Text,←' at ',BOOKING.Course.Name
[11] M.Text,←' on ',BOOKING.TeeTime.Time.

(ToLongDateString,' at ',ToShortTimeString)
[12] :Else
[13] M.Text←BOOKING.(Course.Name,'',

TeeTime.Time.(ToLongDateString,
' at ',ToShortTimeString),' ',Message)

[14] :EndIf
[15] ⎕DQ'M'

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 208

Line [6] calls the MakeBooking method of the GS object, passing it the data entered by
the user. The result, a Booking object, is assigned to BOOKING. Line [8] checks its OK
field to tell whether or not the reservation was successful. If so, lines [9-11] display the
message box illustrated below.

Notice how the various fields are extracted and notice how the ToLongDateString and
ToShortTime String methods are employed.

Pressing the Starting Sheet button runs the SS callback listed below.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 209

Line [3] calls the GetStartingSheet method of the GS object. The result, a
StartingSheet object, is assigned to SHEET. Line [4] checks its OK field to see if the call
succeeded. If so, lines [5-12] display the result in a Grid, which is illustrated below.

∇ SS;CCODE;YMD;M;SHEET;OK;COURSE;TEETIME;S;DATA;N
;TIMES

[1] CCODE←⊃F.COURSE.SelItems/COURSECODES
[2] YMD←3↑F.DATE.(IDNToDate⊃DateTime)
[3] SHEET←GS.GetStartingSheet CCODE(⎕NEW DateTime YMD)
[4] :If SHEET.OK
[5] DATA←↑(SHEET.Slots).Players
[6] TIMES←(SHEET.Slots).Time
[7] 'S'⎕WC'Form'('Starting Sheet for ',

SHEET.Course.Name,' ',
SHEET.Date.ToLongDateString)
('Coord' 'Pixel')('Size' 400 480)

[8] 'S.G'⎕WC'Grid'DATA(0 0)(S.Size)
[9] S.G.RowTitles←TIMES.ToShortTimeString
[10] S.G.ColTitles←'Player 1' 'Player 2'

'Player 3' 'Player 4'
[11] S.G.TitleWidth←60
[12] ⎕DQ'S'
[13] :Else
[14] 'M'⎕WC'MsgBox'('Starting Sheet for ',

SHEET.Course.Name,' ',
SHEET.Date.ToLongDateString)

('Style' 'Error')
[15] M.Text←SHEET.Message
[16] ⎕DQ'M'
[17] :EndIf

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 210

9.5 Exploring Web Services

You can use the Workspace Explorer to browse the proxy class associated with a Web
Service, in exactly the same way that you can browse any other .NET Assembly. The
following screen shots show the Metadata for LoanService, loaded from the
LoanService.dll proxy.

Remember, LoanService was written in APLScript, but it appears and behaves just
like any other .NET class.

The first picture displays the structure of the LoanResult class.

The second picture shows the methods exposed by LoanService. In addition to
CalcPayments, which was written in APLScript, there are a large number of other
methods, which have been inherited from the base class.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 211

9.6 Asynchronous Use

Web Services provide both synchronous (client calls the function and waits for a result)
and asynchronous operation.

Each method is exposed as a function with the same name (the synchronous version)
together with a pair of functions with that name prefixed with Begin and End
respectively.

The Beginxxx functions take two additional parameters; a delegate class that
represents a callback function and a state parameter.

To initiate the call, you execute the Beginxxx method using the standard parameters
followed by two objects. The first is an object of type System.AsyncCallback that
represents an asynchronous callback, that is, a callback to be invoked when the
asynchronous call is complete. The second is an object which is used to supply extra
information. We will see how callbacks are used later in this section. If you are not

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 212

using a callback, these items should be null object references. You can specify a
reference to a null object using the expression (⎕NS''). For example, using the
LoanService sample as above:

The result is an object of type WebClientAsynchResult.

Then, some time later, you call the Endxxx method with this object as a parameter. For
example:

You can execute several asynchronous calls in parallel:

Using a callback

The simple approach described above is not always practical. If it can take a significant
amount of time for the web service to respond, you may prefer to have the system
notify you, via a callback function, when the result from the method is available.

The example function TestAsyncLoan in the workspace
samples\asp.net\webservices\webservices.dws illustrates how you can do this. It
is somewhat artificial, but hopefully explains the mechanism that is involved.

TestAsyncLoan itself is just a convenience function that calls AsyncLoan with suitable
arguments. TestAsyncLoan takes an argument of 1 or 0 that determines whether or
not a Proxy class for LoanService is to be built.

A←LN.BeginCalcPayments 10000 16 10 12
9(⎕NS'')(⎕NS'')

A
System.IAsyncResult ⎕CLASS System.Web.Services.Protocols.WebClientAsyncR
esult

LN.EndCalcPayments A
LoanResult

A1←LN.BeginCalcPayments 20000 20 10 15
7(⎕NS'')(⎕NS'')

A2←LN.BeginCalcPayments 30000 10 8 12
3(⎕NS'')(⎕NS'')

LN.EndCalcPayments A1
LoanResult

LN.EndCalcPayments A2
LoanResult

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 213

The AsyncLoan function and its callback function GetLoanResult are more interesting.

The effect of running TestAsyncLoan is as follows:

∇ TestAsyncLoan MAKEPROXY
[1] (⍕MAKEPROXY),' AsyncLoan 10000 10 8 5 3'
[2] MAKEPROXY AsyncLoan 10000 10 8 5 3

∇

∇ {MAKEPROXY}AsyncLoan ARGS;DLL;SINK;LN;AS;AR
[1] :If 2≠⎕NC'MAKEPROXY' ⋄ MAKEPROXY←0 ⋄ :EndIf
[2] :If MAKEPROXY
[3] DLL←MakeProxy'http://localhost/dyalog.net/loan/
 loan.asmx'
[4] :Else
[5] DLL←'.\LoanService.dll'
[6] :EndIf
[7] ⎕USING←'System'(',',DLL)
[8] LN←⎕NEW LoanService
[9] AS←⎕NEW System.AsyncCallback,⊂⎕OR'GetLoanResult'
[10] AR←LN.BeginCalcPayments ARGS,AS,LN
[11] 'AsyncLoan waits for async call to complete'
[12] :While 0=AR.IsCompleted
[13] ⍞←'.'
[14] :EndWhile

∇
∇ GetLoanResult arg;OBJ;LR;RSLT

[1] 'GetLoanResult callback fires ...'
[2] OBJ←arg.AsyncState
[3] LR←OBJ.EndCalcPayments arg
[4] RSLT←LR.(((⍴Periods),(⍴InterestRates))⍴Payments)
[5] RSLT←((⊂''),LR.Periods),(LR.InterestRates),[1]RSLT
[6] 'Result is'
[7] ⎕←RSLT

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 214

AsyncLoan[8] creates a new instance of the LoanService class called LN. The next line
creates an object of type System.AsyncCallback named AS. This object, which is
termed a delegate, identifies the callback function that is to be invoked when the
asynchronous call to CalcPayments is complete. In this case, the name of the callback
function is GetLoanResult. Note that ⎕OR is necessary because the AsyncCallback
constructor must be called with a parameter of type System.Object. The line
AsyncLoan[10] calls BeginCalcPayments with the parameters for CalcPayments,
followed by references to AS (which identifies the callback) and LN, which identifies the
object in question. The latter will turn up in the argument supplied to the
GetLoanResult callback. Lines[12-14] loop, displaying dots, until the asynchronous call
is complete. GetLoanResult will be invoked during or immediately after this loop, and
will be executed in a different APL thread.

When the GetLoanResult callback is invoked, its argument arg is an object of type
System.Web.Services.Protocols.WebClientAsyncResult. It is in fact a reference to
the same object AR that was the result returned by BeginCalcPayments.

This object has an AsyncState property that references the LoanService object LN
that we passed as the final parameter to BeginCalcPayments. GetLoanResult[2]
retrieves this object and assigns it to OBJ. GetLoanResult[3] calls the
EndCalcPayments method, passing it arg as the AsyncResult parameter as before.
The resulting LoanResult object is then formatted and displayed.

TestAsyncLoan 0
0 AsyncLoan 10000 10 8 4 3

...AsyncLoan waits for async call to complete...

...GetLoanResult callback fires ...

...Result is
3 3.5 4

8 117.2957193 105.7694035 96.5607447
9 119.5805173 108.0741442 98.88586746

121.892753 110.409689 101.2451382

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 215

10 Writing ASP.NET Web pages

10.1 Introduction

Under Microsoft IIS, a static web page is defined by a simple text file with the
extension .htm or .html that contains simple HTML. When a browser requests such a
page, IIS simply reads it and sends its content back to the client. The contents of a static
web page are constant and, until somebody changes it, the page appears the same to
all users at all times.

A dynamic web page is represented by a simple text file with the extension .aspx. Such
a file may contain a mixture of (static) HTML, ASP.NET objects and a server-side script.
ASP.NET objects are built-in .NET classes that generate HTML when the page is
processed. Scripts contain functions and subroutines that are invoked by events (such
as the Page_Load event) or by user interaction.

Typically, a script will generate HTML dynamically, when the page is loaded. For
example, a script could perform a database operation and return an HTML table
containing a list of products and prices. A script may also contain code to process user
interaction, for example to process the contents of a Form that is filled in and then
submitted by the user. These scripts are referred to as server-side scripts because they
are executed on the server. The browser sees only the results produced by the scripts
and not the scripts themselves. Code in a server-side script always involves the
generation of a new page by the server for display in the browser.

The first time ASP.NET processes a .NET web page, it compiles the entire page into
a .NET Assembly. Subsequently, it calls the code in the assembly directly. The language
used to compile the page is defined in the <script> section, which is typically defined at
the top of the page. If the <script> section is omitted, or if it fails to explicitly specify
the language attribute, the page is compiled using the default scripting language. This is
configurable, but is typically VB or C#.

This Chapter is made up almost entirely of examples, the source code of which is
supplied in the samples\asp.net directory and the sub-directories it contains. This
directory is mapped as an IIS Virtual Directory named dyalog.net, so you may execute
the examples by specifying the URL http://localhost/dyalog.net/ followed by the
name of the sub-directory and page. You can get an overview of the samples by starting
on the page http://localhost/dyalog.net/index.htm and follow links from there.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 216

To use APLScript effectively in Web Pages, you need to have a thorough understanding
of how ASP.NET works.

In the first example, an outline description ASP.NET technology is provided. For further
information, see the Microsoft .NET Framework documentation and Beginning ASP.NET
using VB.NET, Wrox Press Ltd, ISBN 1861005040.

10.2 Your first APL Web Page

The first web page example is tutorial/intro1.aspx, which is listed below. This page
displays a button whose text is reversed each time you press it.

Note that the example is intended to be run in the framework of the tutorial and
contains two lines of code (shown in italic) that refer to this framework and should be
ignored.

<%@Register TagPrefix="tutorial" Namespace="Tutorial"
Assembly="tutorial" %>
<script language="Dyalog" runat="server">

∇Reverse args
:Access public
:Signature Reverse Object,EventArgs
(⊃args).Text←⌽(⊃args).Text
∇

</script>

<html>
<body>
<Form runat=server>
 <asp:Button id="Pressme"
 Text="Press Me"
 runat="server"
 OnClick="Reverse"
 />
</form>
<tutorial:index runat="server"/>
</body>
</html>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 217

In this example, the page language is defined in the <script> section to be "Dyalog".
This in turn is mapped to the APLScript compiler via information in the application's
web.config file or the global IIS configuration file, machine.config.

The page layout is described in the section between the <html> and </html> tags. This
page contains a Form in which there is a Button labelled (initially) "Press Me"

The Form and Button page elements may appear to be simple HTML, but in fact there is
more to them than meets the eye and they are actually both types of ASP.NET intrinsic
controls.

Firstly, the runat="server" attribute indicates that an HTML element should be parsed
and treated as an HTML server control. Instead of being handled as pure text that is to
be transmitted to the browser "as is", an HTML server control is effectively compiled
into statements that then generate HTML when executed. Furthermore, an HTML
server control can be accessed programmatically by code in the Script, whereas a pure
HTML element cannot. On its own, runat="server" identifies the HTML element as a
so-called basic intrinsic control.

When you add runat="server" to a Form, ASP.NET automatically adds other attributes
that cause the values of its controls to be POSTed back to the same page. In addition,
ASP.NET adds a HIDDEN control to the form and stores state information in it. This
means that when the page is reloaded into the browser the state and contents of some
or all of its controls can be maintained, without the need for you to write additional
code.

The asp: prefix for the Button, identifies the control as a special ASP.NET intrinsic
control. These are fully-fledged .NET Classes in the .NET Namespace
System.Web.UI.WebControls that expose properties corresponding to the standard
attributes that are available for the equivalent HTML element. You manipulate the
control as an object, while it, at runtime, emits HTML that is inserted into the page.

At this point, it is instructive to study what happens when the page is first loaded and
the appearance of the page is illustrated below.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 218

The HTML that is transmitted to the browser is:

Firstly, notice that, as expected, the contents of the <script> section are not present.
Secondly, because the Form and Button are intrinsic controls, ASP.NET has added
certain attributes to the HTML that were not specified in the source code.

The Button now has the added attribute input type="submit", which means that
pressing the Button causes the contents of the Form to be transmitted back to the
sever.

The Form now has method="post" and action="intro1.aspx" attributes, which
means that, when the Form is submitted, the data is POSTed back to intro1.aspx, the
page that generated the HTML in the first place.

So when the user presses the button, the browser sends back a POST statement, with
the contents of the Form, including the value of the HIDDEN field, requesting the
browser to load intro1.aspx.

In the server, ASP.NET reloads the page and processes it again. In fact, because of the
stateless nature of HTTP, the server does not know that it is reprocessing the same
page, except that it is being executed by a POST command with the hidden data
embedded in the Form that it put there the first time around. This is the mechanism by
which ASP.NET remembers the state of a page from one invocation to another.

This time, because a POST back is loading the page, and because the Pressme button
caused the POST, ASP.NET executes the function associated with its onClick attribute,
namely the APLScript function Reverse.

When it is called, the argument supplied to Reverse contains two items. The first of
these is an object that represents the control that generated the onClick event; the
second is an object that represents the event itself. In fact, Reverse and its argument
are very similar to a standard Dyalog callback function.

<html>
<body>

<form name="ctrl1" method="post" action="intro1.aspx" id="ctrl1">
<input type="hidden" name="__VIEWSTATE"
value="YTB6NTQ3ODg0MjcyX19feA==5725bd57" />

<input type="submit" name="Pressme" value="Press Me"
id="Pressme" />

</form>
</body>
</html>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 219

The code in the Reverse function is simple. The expression (⊃args) is a namespace
reference (ref) to the Button, and (⊃args).Text refers to its Text property whose value is
reversed. Note that Reverse could just as easily refer to the Button by name, and use
Pressme.Text instead.

After pressing the button, the page is redisplayed as shown below:

This time, the HTML generated by intro1.aspx is:

Returning to the Reverse function, note that the declaration statements at the top of
the function are essential to make it callable in this context.

∇Reverse args
:Access public
:Signature Reverse Object,EventArgs
(⊃args).Text←⌽(⊃args).Text
∇

<html>
<body>

<form name="ctrl1" method="post" action="intro1.aspx" id="ctrl1">
<input type="hidden" name="__VIEWSTATE"
value="YTB6NTQ3ODg0MjcyX2Ewel9oejV6MXhfYTB6X2h6NXoxeF9hMHph
MHpoelRlXHh0X2VNIHNzZXJQeF9feF9feHhfeHhfeF9feA==45acf576"
/>

<input type="submit" name="Pressme" value="eM sserP"
id="Pressme" />

</form>
</body>
</html>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 220

Firstly the Reverse function must be declared as a public member of the script. This is
achieved with the statement.

Secondly, the .NET runtime will only call the function if it possesses the correct
signature, which is derived from its parameters and their types.

The required signature for a method connected to an event, such as the OnClick event
of a Button, is that it takes two parameters; the first of which is of type System.Object
and the second is of type System.EventArgs. The Reverse function declares its
parameters with the statements:

Note that the parameter declarations do not include the System prefix. This is because
when the script is compiled the names are resolved using the current value of ⎕USING.
When the APLScript is compiled, the default value for ⎕USING is automatically defined
to contain System along with most of the other namespaces that will be used when
writing web pages

(Strictly speaking, the first argument is expected to be of type
System.Web.UI.WebControls.Button, but as this type inherits ultimately from
System.Object the function signature is satisfied.)

Note that if the Reverse function is defined with a signature that does not match that
expected signature for the OnClick callback, the function will not be run.

Furthermore, if the function associated with the OnClick statement is not defined as a
public method in the APLScript the page will appear to compile but the Reverse
function will not get executed.

Note that unlike Web Services, there is no requirement for a :Class or :EndClass
statement in the script. This is because a file with an .aspx extension implicitly
generates a class that inherits from System.Web.UI.Page.

∇Reverse args
:Access public
:Signature Reverse Object,EventArgs
(⊃args).Text←⌽(⊃args).Text
∇

:Access Public

:Signature Reverse Object,EventArgs

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 221

10.3 The Page_Load Event

Intro3.aspx illustrates how you can dynamically initialise the contents of a Web Page
using the Page_Load event. This example also introduces another type of Web Control,
the DropDownList object.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 222

When an ASP.NET web page is loaded, it generates a Page_Load event. You can use this
event to perform initialisation simply by defining a public function called Page_Load in

<%@Register TagPrefix="tutorial" Namespace="Tutorial"
Assembly="tutorial" %>
<script language="Dyalog" runat="server">

∇Page_Load
:Access Public
list.Items.Add ⊂'Apples'
list.Items.Add ⊂'Oranges'
list.Items.Add ⊂'Bananas'
∇

∇Select (obj ev)
:Access Public
:Signature Select Object obj, EventArgs ev
out.Text←'You selected ',list.SelectedItem.Text
∇
</script>

<html>
<head>
<title>Initialising the contents of the Page using the Page_Load
method</title>
<link rel="stylesheet" type="text/css" href="apl.css">
</head>

<body>
<h1>intro3: The Page_Load method</h1>
<form runat="server">
<asp:DropDownList id="list" runat="server"/>
<p>
<asp:Label id="out" runat="server" />
</p>
<asp:Button id="btn"
 Text="Submit"
 runat="server"
 OnClick="Select"/>
</form>
<tutorial:index runat="server"/>
</body>
</html>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 223

your APLScript. This function will automatically be called every time the page is
loaded. The Page_Load function should be niladic.

Note that, if the page employs the technique illustrated in Intro1.aspx, whereby the
page is continually POSTed back to itself by user interaction, your Page_Load function
will be run every time the page is loaded and you may not wish to repeat the
initialisation every time. Fortunately, you can distinguish between the initial load, and a
subsequent load caused by the post back, using the IsPostBack property. This
property is inherited from the System.Web.UI.Page class, which is the base class for
any .aspx page.

The Page_Load function in this example checks the value of IsPostBack. If 0 (the page
is being loaded for the first time) it initialises the contents of the list object, adding 3
items "Apples", "Oranges" and "Bananas". The explanation for the statement:

is that the DropDownList WebControl has an Items property that is a collection of
ListItem objects. The collection implements an Add function that takes a String
Argument that can be used to add an item to the list.

Notice that the name of the object list is defined by the id="list" attribute of the
DropDownList control that is defined in the page layout section of the page.

In this example, the page is processed by a POST back caused by pressing the Submit
button. As it stands, changing the selection in the list object does not cause the text
in the out object to be changed; you have to press the Submit button first.

list.Items.Add ⊂'...'

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 224

However, you can make this happen automatically by adding the following attributes to
the list object (see intro4.aspx):

AutoPostback causes the object to generate HTML that will provoke a post back
whenever the selection is changed. When it does so, the OnSelectedIndexChanged
event will be generated in the server-side script which in turn will call Select, which in
turn will cause the text in the out object to change.

Note that this technique, which can be used with most of the ASP.NET controls
including CheckBox, RadioButton and TextBox controls, relies on a round trip to the
server every time the value of the control changes. It will not perform well except on a
fast connection to a lightly loaded server.

10.4 Code Behind

It is often desirable to separate the code content of a page completely from the HTML
and other text, layout or graphical information by placing it in a separate file. In
ASP.NET parlance, this technique is known as code behind.

The intro5.aspx example illustrates this technique.

AutoPostback="true"
OnSelectedIndexChanged="Select"/>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 225

The statement

says that this page, when compiled, should inherit from a class called FruitSelection.
Furthermore, the FruitSelection class is written in the "Dyalog" language, and its
source code resides in a file called fruit.apl. FruitSelection is effectively the base
class for the .aspx page.

In this case, fruit.apl is simply another text file containing the APLScript code and is
shown below.

<%@Page Language="Dyalog"
 Inherits="FruitSelection"
 src="fruit.apl" %>
<%@Register TagPrefix="tutorial" Namespace="Tutorial"
Assembly="tutorial" %>
<html>
<head>
<title>Code behind: separating your code from the page layout</title>
<link rel="stylesheet" type="text/css" href="apl.css">
</head>
<body>
<h1>intro5: Code Behind</h1>
<p>This example illustrates how you can separate your code from the page
layout.</p>
<form runat="server" >
<asp:DropDownList id="list"
 runat="server"
 autopostback="true"
 OnSelectedIndexChanged="Select"/>
<p>
<asp:Label id="out" runat="server" /></p>
</form>
</body>
<tutorial:index runat="server"/>
</html>

%@Page Language="Dyalog" Inherits="FruitSelection" src="fruit.apl" %>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 226

The first thing to notice is that the file requires :Class and :EndClass statements.
These are required to tell the APLScript compiler the name of the class being defined,
and the name of its base class. When the source code is in a .aspx file, this information
is provided automatically by the APLScript compiler.

The name of the class, in this case FruitSelection, must be the same name as is
referenced in the .aspx web page file itself (intro5.aspx). The base class must be
System.Web.UI.Page

The body of the script is just the same as the script section from the previous example.
Only the names of the fruit have been changed so that it is clear which example is
being executed.

:Class FruitSelection: System.Web.UI.Page
:Using System

∇Page_Load
:Access Public
:if 0=IsPostBack

list.Items.Add ⊂'Pears'
list.Items.Add ⊂'Nectarines'
list.Items.Add ⊂'Strawberries'

:endif
∇

∇Select args
:Access public
:Signature Select Object,EventArgs
out.Text←'You selected ',list.SelectedItem.Text
∇
:EndClass

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 227

10.5 Workspace Behind

The previous section discussed how APL logic can be separated from page layout, by
placing it in a separate APLScript file which is referred to from the .aspx web page. It is
also possible to have the code reside in a separate workspace. This allows you to
develop web pages using a traditional workspace approach, and it is probably the
quickest way to give an HTML front-end to an existing Dyalog APL application.

In the previous example, you saw that the fruit.apl file defined a new class called
FruitSelection that inherits from System.Web.UI.Page. This class contains a
Page_Load function that (by virtue of its name) overrides the Page_Load method of the
underlying base class and will be called every time the web page is loaded or posted
back. The Page_Load function takes whatever action is required; for example,
initialisation. The class also contained a callback function to perform some action when
the user pressed a button.

A similar technique is employed when the code behind the web page is implemented in
a separate workspace. The workspace should contain a class that inherits from
System.Web.UI.Page. This class may contain a Page_Load function that will be invoked
every time the corresponding web page is loaded, and as many callback functions as
are required to provide the application logic. The workspace is hooked up to one or
more web pages by the Inherits="<classname>" and src="<workspace>"
declarations in the Page directive statement that appears at the beginning of the web
page script.

The ACTFNS subdirectory in samples\asp.net contains some examples of Dyalog APL
systems that have been converted to run as Web applications using this technique.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 228

Dyalog is grateful to David Hughes who provided the original workspaces and advised
on their conversion.

The two workspaces are named ACTFNS.DWS and PROJ.DWS. The original code used the
Dyalog APL GUI to display an input Form, collect and validate the user's input, and
calculate and display the results. The original logic supported field level validation and
results were immediately recalculated whenever any field was changed. With some
exceptions, this has been changed so that the user must press a button to tell the
system to recalculate the results. This approach is more appropriate in an Internet
application, especially when connection speed is low. Apart from this change, the
applications run more-or-less as originally designed.

The diagram above illustrates the structure of the web application and the various files
involved. The starting page, actfns.htm, simply provides a menu of choices which link
to various .aspx web pages. These pages in turn are linked to one of the two
workspaces via the src="" declaration

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 229

The actfns.htm start page offers 3 application choices

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 230

The result of choosing Tabulate single life insurance and annuity values

When you choose the first option, the system loads sla_tab.aspx. This defines the
screen layout in terms of ASP.NET controls, including the DataGrid control for
tabulating the results. The sla_tab.aspx script contains the declarations
Inherits="actuarial" src="actfns.dws", so ASP.NET loads the actuarial class
from this workspace (via a call to Dyalog APL). When the page is loaded, it generates a
Page_Load event, which in turn calls its Page_Load method. This populates the ASP
controls with data, and the resulting web page is displayed. The mechanism is
described below.

For further details, see the sla_tab.aspx script and ACTFNS.DWS workspace.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 231

Converting an Existing Workspace

The steps involved in converting the workspaces were as follows:

Replace the Dyalog APL GUI with the equivalent HTML Forms, which are defined
in one or more separate .aspx web pages. To retain consistency, it is helpful to
give the ASP controls the same names as the original GUI controls, which they
are replacing.
Attach the names of APL callback functions to the appropriate ASP controls;
essentially, any controls that will be involved in a postback operation, such as the
Submit button.

Starting with a CLEAR WS, create a Class that represents a .NET class based
upon System.Web.UI.Page. For example, in converting the ACTFNS workspace,
we started by creating the class:

then defining ⎕USING as follows:

The name you choose for this class will replace classname in the
Inherits="classname" declaration in the .aspx web page(s) that call it.

Create a namespace, change into it, and copy the workspace to be converted; in
this case, the starting point was a workspace named DH_ACTFNS:

Modify the code as appropriate, inserting a Page_Load function and whatever
callback functions that are required.

Make sure the class 'actuarial' has an :Include actuarial_utils statement

1.

2.

3.

)ED ○actuarial

4.

:Using System
:Using System.Web.UI,system.web.dll
:Using System.Web.UI.WebControls
:Using System.Web.UI.HtmlControls
:Using System.Data,system.data.dll

5.

)NS actuarial_utils
)CS actuarial_utils

#.actuarial_utils
)COPY DH_ACTFNS

DH_ACTFNS saved ...

6.

7.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 232

The Page_Load function

The Page_Load function must be declared as :Access Public. Page_Load must be spelled
correctly as it is this name that causes the function to supersede the base class
Page_Load method of the same name.

For example, the Page_Load function of the actuarial class in ACTFNS.DWS is shown
below:

∇ Page_Load;INT;AGE;DUR;TERM;TAB_DURS;MPC1;INT1;INT2;
INTY;RUN_OPTION;OPT

:Access public
:Signature Page_Load

⍝ Overrides Page_Load method of Page class
⍝ Called when Page is loaded or re-loaded after postback
⍝ Initialise fields and calculate on initial load only
:If 0=IsPostBack

RUN_OPTION←GET_RUN_OPTION
:Select RUN_OPTION
:Case 1

EINT.Text←⍕INT←3.25
EAGE.Text←⍕AGE←30
EDUR.Text←⍕DUR←0
ETRM.Text←⍕TERM←10
TA.Checked←TAB_DURS←1
CHANGE_TABLES ⍬

:Case 2
CPLAN.Items.Clear
:For OPT :In ↓⊃OPTSPLAN
CPLAN.Items.Add{82∊⎕DR 1⍴⍵:⊂⍵ ⋄ ⍵}DETRAIL OPT
:EndFor
EMPC1.Text←⍕MPC1←100
EINT1.Text←⍕INT1←3.25
EINT2.Text←⍕INT2←3.25
EINTY.Text←⍕INTY←99
EAGE.Text←⍕AGE←30
EDUR.Text←⍕DUR←0
ETRM.Text←'N/A'
CHANGE_TABLES ⍬

:EndSelect
:EndIf

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 233

If exported correctly, Page_Load will be called every time the calling web page is
loaded. This occurs when the page is loaded for the first time, and whenever the page
is submitted back to the web server by the browser (postback). A postback will occur
whenever a callback function is involved, and potentially at other times.

The Page_Load function may determine whether it is being invoked by a first time load,
or by a postback, from the value of the IsPostBack property. This is a property that it
inherits from its base class System.Web.UI.Page.

The Page_Load example shown above uses this property to control the initialisation of
the controls in the calling web page. The names EINT, EAGE, EDUR and so forth refer to
names of controls in the calling web page. When Page_Load is executed, the
actuarial object is associated with the web page itself, and so the names of all its
controls are visible as sub-objects within it.

Note that the actuarial class is used by two different web pages, and the function
GET_RUN_OPTION function determines which of these are involved. (It does so by
detecting the presence or otherwise of a particular control on the page).

Callback functions

The actuarial class in ACTFNS.DWS provides four callback functions named
CALC_FSLTAB_RESULTS, CALC_FSL_RESULTS, CHANGE_TABLES and
CHANGE_TABLE_FORMAT. The first two of these functions are attached as callbacks to the
Calculate button in each of two separate web pages sla_tab.aspx and
sla_disp.aspx. For example, the statement that defines the button in sla_tab.aspx
is:

The third callback, CHANGE_TABLES, is called by sla_tab.aspx when the user selects a
different set of Mortality Tables from the three provided. CHANGE_TABLE_FORMAT is
called when the user clicks either of the two radio buttons that select how the output is
to be displayed.

Like the Page_Load function, callback functions must be declared as being Public
methods. This is done using the :Access statement.

In addition, and this is essential, APL callback functions must be declared to have the
correct signature expected of .NET callback functions. This means that they must be
monadic, and their argument must be declared to be a 2-element nested array

<asp:Button id=Button1 runat="server" Text="Calculate"
onClick="CALC_FSLTAB_RESULTS"></asp:Button>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 234

containing two .NET objects; the object that generated the event, and an object that
represents the arguments to the event.

Specifically, these parameters must be of type System.Object and System.EventArgs
respectively. However, as our ⎕USING contains System, it is not necessary to include the
System prefix.

For example, the statements for the function CALC_FSLTAB_RESULTS is shown below:

Validation functions

In a Dyalog APL web page application, there are basically two approaches to validation.
You can handle it entirely yourself or you can exploit the various validation controls that
come with ASP.NET. The sample application uses the latter approach by way of
illustration. For example:

These ASP.NET statements associate a RequiredFieldValidator named RFVINT with
the EINT field, the field used to enter Interest Rate. If the user leaves this field blank,
the system will automatically generate the specified error message. The page defines a
separate ValidationSummary control as follows:

The ValidationSummary control collects error messages from all the other validation
controls on the page, and displays them together. In this case, a pop-up message box is
used. One advantage of this approach is that this type of validation can be carried out

:Access Public
:Signature CALC_FSLTAB_RESULTS Object obj, EventArgs ev

<asp:TextBox id=EINT runat="server"></asp:TextBox>
<asp:RequiredFieldValidator id="RFVINT"

ControlToValidate="EINT"
ErrorMessage="Interest Rate must be a number

 between 0 and 20"
Text="*"
runat="server"/></td>

<asp:ValidationSummary id="Summary1"
HeaderText="Please enter a value in the following fields"
Font-Size="smaller"
ShowSummary="false"
ShowMessageBox="true"
EnableClientScript="true"
runat="server"/>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 235

client-side by local JavaScript that is generated automatically on the server and
incorporated in the HTML that is sent to the browser.

Logical field validation for this page is carried out on the server by APL functions that
are attached to CustomValidator controls. For example:

These ASP.NET statements associate a CustomValidator control named
CustomValidator_INT with the Interest Rate field EINT. The statement
OnServerValidate="VALIDATE_INT" specifies that VALIDATE_INT is the validation
function for the CustomValidator_INT object.

The VALIDATE_INT function and its .NET Properties page are shown below.

To make the VALIDATE_INT function available to the calling web page, it is exported as
a method. Its calling signature, namely that it takes two parameters of type
System.Object and System.Web.UI.WebControls.ServerValidateEventArgs
respectively, identifies it as a validation function. All these factors are essential in
making it recognizable and callable.

VALIDATE_INT[4] assigns its (2-element) argument to source and args respectively.
Both are namespace references to .NET objects. source is the object that fired the
event (CustomValidator_INT). args is an object that represents the event. Its Value

<asp:CustomValidator id="CustomValidator_INT"
OnServerValidate="VALIDATE_INT"
ControlToValidate="EINT"
Display="Dynamic"
ErrorMessage="Interest Rate must be a number between 0 and 20"
runat="server"/>

∇ VALIDATE_INT MSG;source;args
[1] ⍝ Validates Interest Rate
[2] :Access Public
[3] :Signature VALIDATE_INT Object source,

ServerValidateEventArgs args
[4] source args←MSG
[5] :Trap 0
[6] INT←Convert.ToDouble args.Value
[7] :Else
[8] args.IsValid←0
[9] :Return
[10] :EndTrap
[11] args.IsValid←(0≤INT)^20≥INT

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 236

property returns the text in the control being validated, in this case the control named
EINT1.

VALIDATE_INT[6] converts the text in the EINT control to a number, using the
ToDouble method of the System.Convert class. You could of course use ⎕VFI, but the
Convert methods automatically cater for National Language numerical formats. This
statement is executed within a :Trap control structure because the method will
generate a .NET exception if the data in the field is not a valid number.

VALIDATE_INT[8 11] set the IsValid property of the ServerValidateEventArgs
object args to 0 or 1 accordingly. This also sets the IsValid property of the validation
control represented by source. The system will automatically display the error message
associated with any validation control whose IsValid property is 0. Furthermore, the
page itself has an IsValid property, which is the logical-and of all the IsValid
properties of all the validation controls on the page. This is used later by the calculation
function CALC_FSLTAB_VALUES.

In this case, the validation function stores the numeric value of the control in a variable
INT, which will subsequently be used by the calculation functions.

When the page is posted back to the server, ASP.NET executes its own built-in
validation controls and then calls the functions associated with the CustomValidator
controls, in the order they are defined on the page. In addition to the VALIDATE_INT
function, there are eight other custom validation functions. Three of these, which
validate the Initial Age, Endowment Term and Initial Duration fields, are listed below.
Note that all of the VALIDATE_xxx functions have the same .NET signature as
VALIDATE_INT.

∇ VALIDATE_AGE MSG;source;args
[1] ⍝ Validates Age
[2] :Access Public
[3] :Signature VALIDATE_AGE Object source,

ServerValidateEventArgs args
[4] source args←MSG
[5] :Trap 0
[6] AGE←Convert.ToInt32 args.Value
[7] :Else
[8] args.IsValid←0
[9] :Return
[10] :EndTrap
[11] args.IsValid←(10≤AGE)^80≥AGE

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 237

VALIDATE_AGE is similar to VALIDATE_INT, except that, because it expects an integer
value, it uses the ToInt32 method instead of the ToDouble method.

VALIDATE_TERM, which validates the Endowment Term field, is slightly more interesting
because there are two levels of checking involved. The first check that the user has
entered an integer number, is performed by lines [10-15] in the same way as in the
previous examples, using the ToInt32 method of the System.Convert class within a
:Trap control structure. However, validation of the Endowment Term field depends
upon the value of another field, namely Initial Age.

Not only must the user enter an integer, but also its value must be between 10 and (90-
AGE) where AGE is the value in the Initial Age field. However, if the user has entered an
incorrect value in the Initial Age field, this, the second level of validation cannot be
performed.

∇ VALIDATE_TERM MSG;source;args
[1] ⍝ Validates Endowment Term
[2] :Access Public
[3] :Signature VALIDATE_TERM Object source,

ServerValidateEventArgs args
[4] source args←MSG
[5] :If ^/(RFVAGE CustomValidator_AGE).IsValid
[6] source.ErrorMessage←'Endowment Term must
 be an integer between 10 and ',(⍕90-AGE),

' (90-Age)'
[7] :Else
[8] source.ErrorMessage←'Endowment Term must
 be an integer between 10 and (90-Age)'
[9] :EndIf
[10] :Trap 0
[11] TERM←Convert.ToInt32 args.Value
[12] :Else
[13] args.IsValid←0
[14] :Return
[15] :EndTrap
[16] :If ^/(RFVAGE CustomValidator_AGE).IsValid
[17] args.IsValid←(TERM≥10)^TERM≤90-AGE
[18] :EndIf

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 238

At this stage it is worth reviewing the sequence of events that occurs when a user
action in the browser causes a postback to the server.

The page, including all the contents of its fields, is sent back to the ASP.NET
server using an http POST command.
The postback causes the creation of a new instance of the page; which is
represented by a new clone of the actuarial namespace.
The creation of a new page instance raises the Page_Load event which in turn
invokes the Page_Load method associated with the Page class, or an override
method is one is specified. In this case, it calls our Page_Load function in the
newly cloned instance of the actuarial namespace. The Page_Load function
typically deals with initialisation, such as opening a component file or
establishing a connection to a data source. In this case, it does nothing on a
postback.
Because the Calculate button was pressed (see Forcing Validation), each of the
CustomValidator controls on the page raises an OnServerValidate event,
which in turn calls the associated function in the current instance of the page.
These events occur in the order the controls are defined within the page. Note
that built-in validation controls, including any RequiredFieldValidator
controls, are invoked first, potentially in the browser prior to the postback.
Because the Calculate button was pressed (see Forcing Validation), each of the
CustomValidator controls on the page raises an OnServerValidate event,
which in turn calls the associated function in the current instance of the page.
These events occur in the order the controls are defined within the page. Note
that built-in validation controls, including any RequiredFieldValidator
controls, are invoked first, potentially in the browser prior to the postback.
The control that caused the postback raises an appropriate event, which in turn
fires the associated callback function.
After all the control events have been raised and processed the Page_UnLoad
event is raised and the associated function (if any) is invoked. This function is a
good place to implement termination code, such as closing a component file or
data source.
The instance of the page is destroyed. Any global variables in the namespace
that were defined by the Page_Load function, the validation functions and the
callback function are lost because the clone of the actuarial namespace
disappears.

This means that within the life of the cloned instance of the actuarial namespace, the
system runs our Page_Load function followed by VALIDATE_INT, followed by
VALIDATE_AGE, VALIDATE_TERM, VALIDATE_DUR etc. and finally by
CALC_FSLTAB_RESULTS. These functions take their input from the values passed in their
arguments (as in the case of the VALIDATE_xxx functions) or from the properties of any

1.

2.

3.

4.

5.

6.

7.

8.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 239

of the controls on the Page. They perform output by modifying these properties, or by
invoking standard methods on the Page.

Notice that, if successful, the VALIDATE_INT function set up a global variable (strictly
speaking, only global within the current instance of the actuarial namespace) called
INT that contains the value in the Interest Rate field. Similarly, VALIDATE_AGE defines a
variable called AGE. These variables are subsequently available for use by the
calculation function.

This technique, of having each validation function define a variable for its associated
field, saves repeating the conversion work in the calculation routine
CALC_FSLTAB_RESULTS that will be called when the validation is complete. It also saves
repeating the conversion work in a validation routine that needs to know the value of a
previously validated field.

Returning to the explanation of VALIDATE_TERM, line [16] checks to see that both the
RequiredFieldValidator and CustomValidator controls for the Initial Age field
register that the value in the field is valid, before attempting to perform the second
stage of the validation which depends upon AGE. Note that AGE must exist (and be a
reasonable value) if CustomValidator_AGE.IsValid is true. Notice too that it is
insufficient just to check the CustomValidator control, because its validation function
will not be invoked (and the control will register that the field is valid) if the field is
empty.

Line [5] uses similar logic to set up an appropriate error message, which is assigned to
the ErrorMessage property of the corresponding CustomValidator control,
represented by source.

VALIDATE_DUR, which validates the Initial Duration field, uses similar logic to check that
the value in the Endowment Term field is correct and that TERM, on which it depends, is
therefore defined. In addition, in line [8] it refers to the Checked property of the
RadioButton controls named TA and TB respectively.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 240

Forcing Validation

Validation controls are automatically invoked when the user activates a Button control,
but not when other postbacks occur. For example, when the user selects a different
Mortality Table (represented by a RadioButtonList control), the page calls the
CHANGE_TABLES function.

∇ VALIDATE_DUR MSG;source;args;DT
[1] ⍝ Validates Initial Duration
[2] :Access Public
[3] :Signature VALIDATE_DUR Object source,

ServerValidateEventArgs args
[4] source args←MSG
[5] :If 2=GET_RUN_OPTION
[6] DT←1
[7] :Else
[8] DT←+/10 1×(TA TB).Checked
[9] :EndIf
[10] :If ^/(RFVTRM CustomValidator_TERM).IsValid

[11] source.ErrorMessage←'Initial Duration must be an
 integer between 0 and ',(⍕TERM-DT),

' (TERM-',(⍕DT),')'
[12] :Else
[13] source.ErrorMessage←'Initial Duration must be an
 integer between 0 and (Term-',(⍕DT),')'
[14] :EndIf
[15] :Trap 0
[16] DUR←Convert.ToInt32 args.Value
[17] :Else
[18] args.IsValid←0
[19] :Return
[20] :EndTrap
[21] :If ^/(RFVTRM CustomValidator_TERM).IsValid
[22] args.IsValid←(0≤DUR)^DUR≤TERM-DT
[23] :EndIf

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 241

A RadioButtonList control does not cause validation to occur, so this must be done
explicitly. This is easily achieved by calling the Validate method of the Page itself as
shown in CHANGE_TABLES[11] below.

<asp:RadioButtonList id=MT runat="server"
RepeatDirection="Vertical" RepeatRows="3" tabIndex=1
onSelectedIndexChanged="CHANGE_TABLES"
AutoPostBack="true">

<asp:ListItem Value="UK Assured Lives">
Selected="True">UK Assured Lives</asp:ListItem>

<asp:ListItem Value="UK Immediate Annuitant">
UK Immediate Annuitant</asp:ListItem>

<asp:ListItem Value="UK Pension Annuitant">
UK Pension Annuitant</asp:ListItem>

</asp:RadioButtonList>

∇ CHANGE_TABLES ARGS;TableNames;TableName;OPTSMORT;
MORT_OPTION;RUN_OPTION

[1] :Access public
[2] :Signature CHANGE_TABLES Object obj, EventArgs ev
[3] RUN_OPTION←GET_RUN_OPTION
[4] MORT_OPTION←1+MT.SelectedIndex
[5] OPTSMORT←MORT_OPTION⊃OPTSMORT_ASS OPTSMORT_ANNI

OPTSMORT_ANNP
[6] TableNames←⊃OPTSMORT ⍝ Assured lives/term

assurance tables
[7] TableNames←↓(2=⎕NC 0 1↓3⊃OPTSMORT)⌿TableNames
[8] TableNames←TableNames~¨' '
[9] CMTAB.Items.Clear
[10] :For TableName :In TableNames
[11] CMTAB.Items.Add TableName
[12] :EndFor
[13] Page.Validate ⍝ Force page validation
[14] :Select RUN_OPTION
[15] :Case 1
[16] CALC_FSLTAB_RESULTS ⍬
[17] :Case 2
[18] CALC_FSL_RESULTS ⍬
[19] :EndSelect

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 242

Calculating and Displaying Results

The function CALC_FSLTAB_RESULTS, which for brevity is only partially shown below, is
used by the sla_tab.aspx page to calculate and display results.

The results of the calculation are displayed in a DataGrid object named fsl. This is
defined within the sla_tab.aspx page as follows:

∇ CALC_FSLTAB_RESULTS ARGS;X;ULT;MORTOPT;QTAB;TABLE;
TAB_DURS;RUN_OPTION;MORT_OPTION;UNIX;DOS;
CURRENTDATE;CURRENTTIME;OPTSMORT;TABLES;MSG;data

[1] :If IsValid ⍝ Is page valid ?
...
[6] MORT_OPTION←1+MT.SelectedIndex
[7] OPTSMORT←MORT_OPTION⊃OPTSMORT_ASS

OPTSMORT_ANNI
OPTSMORT_ANNP

[8]
[9] TABLES←↓3⊃OPTSMORT
[10] MORTOPT←(⍴TABLES)⍴0
[11] MORTOPT[1+CMTAB.SelectedIndex]←1
[12] TABLE←⊃MORTOPT/TABLES
...
[15] TAB_DURS←TA.Checked
...
[41] FSLT←((⍴X)⍴(3 0)(3 0)(3 0)(11 4)(11 6)(12 4)

(11 6)(8 0))⍕¨X
[42] FSLT←FSLT~¨' '
[43] :With data←⎕NEW DataTable
[44] cols←Columns.Add¨⊂¨##.FSL_HEADER
[45] {
[46] row←NewRow ⍬
[47] row.ItemArray←⍵
[48] Rows.Add row
[49] }¨↓##.FSLT
[50] :EndWith
[51] fsl.DataSource←⎕NEW DataView data
[52] fsl.DataBind
[53] fsl.Visible←1
[54] :Else
[55] fsl.Visible←0
[56] :EndIf

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 243

CALC_FSLTAB_RESULTS[1] checks to see if the user input is valid. If not, [55] hides the
DataGrid object fsl so that no results are displayed in the page. The display of error
messages is handled separately, and automatically, by the ValidationSummary control
on the page.

CALC_FSLTAB[11 15] obtain the values of the CMTAB (DropDownList) and TA
(RadioButton) controls on the page.

CALC_FSLTAB[43-53] store the calculated data table FSLT in the DataGrid fsl.

<asp:DataGrid id="fsl" runat="server" Width="700"
AllowPaging="false" BorderColor="black" CellPadding="3"
CellSpacing="0" Font-Size="9pt" PageSize="10">
<ItemStyle HorizontalAlign="right" Width="100">
</ItemStyle>
<HeaderStyle HorizontalAlign="center"
Font-Size="12pt" Font-Bold="true" BackColor="#17748A"
ForeColor="#FFFFFF"></HeaderStyle>
</asp:DataGrid>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 244

11 Writing Custom Controls for
ASP.NET

11.1 Introduction

The previous chapter showed how you can build ASP.NET Web Pages by combining APL
code with the Web Controls provided in the .NET Namespace
System.Web.UI.WebControls. These controls are in fact just ordinary .NET classes. In
particular, they are extensible components that can be used to develop more complex
controls that encapsulate additional functionality.

This chapter describes how you can go about building custom server-side controls, for
deployment in ASP.NET Web Pages.

A custom control is simply a .NET class that inherits from the Control class in the .NET
Namespace System.Web.UI, or inherits from a higher class that is itself based upon the
Control class. Like any other .NET class, a custom control is implemented in an
assembly, physically as a DLL file. This chapter explores three different ways to
implement a custom control.

The Control class provides a Render method whose job is to generate the HTML that
defines appearance of the control. The first example, the SimpleCtl control, overrides
the Render method to display a simple string "Hello World" in the browser.

The TemperatureConverterCtl1 control is an example of a compositional control, that
is, one that is composed of other standard controls packaged with special functionality.
The TemperatureConverterCtl2 control, uses the basic approach of the SimpleCtl
control, but provides the same functionality as TemperatureConverterCtl1. The
TemperatureConverterCtl3 control illustrates how to generate events for the hosting
page to catch and process.

These examples, which are based upon a series of articles called Advanced ASP.NET
Server-Side Controls by George Shepherd that appeared in the msdn magazine
(October 2000, January 2001 and March 2001 issues), are implemented as Dyalog
classes in a namespace called DyalogSamples in the workspace
samples\asp.net\temp\bin\temp.dws. The corresponding .NET Assembly
samples\asp.net\temp\bin\temp.dll was generated from this workspace.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 245

11.2 The SimpleCtl Control

The SimpleCtl Class is illustrated below:

The Render function supercedes (see Programming: Access) the Render method that
SimpleCtl has inherited from its base class, System.Web.UI.Control.

The Render method defined by the System.Web.UI.Control base class is void and
takes a parameter of type HtmlTextWriter. When the SimpleCtl control is referenced
in a Web Page, ASP.NET creates an instance of it and calls its Render method because it
is a Control and is expected to have one. Moreover, ASP.NET supplies an object of type
HtmlTextWriter as its parameter. You do not need to worry where this object came

)LOAD "C:\Program Files (x86)\Dyalog\Dyalog APL 15.0
Unicode\Samples\asp.net\temp\bin\temp.dws"

C:\Program Files (x86)\Dyalog\Dyalog APL 15.0
Unicode\Samples\asp.net\temp\bin\temp.dws saved Tue Nov 22 15:04:11 2016

)OBS
DyalogSamples
)CS DyalogSamples
#.DyalogSamples
)CLASSES
SimpleCtl TemperatureConverterCtl1
TemperatureConverterCtl2 TemperatureConverterCtl3

:Class SimpleCtl: Control
:Access public
:Using System
:Using System.Collections.Specialized,System.dll
:Using System.Web,System.Web.dll
:Using System.Web.UI
:Using System.Web.UI.WebControls
:Using System.Web.UI.HtmlControls

∇ Render output;HTML
:Access public override
:Signature Render HtmlTextWriter output
HTML←'<h3>Hello World</h3>'
output.WriteLine⊂HTML

∇

:EndClass ⍝ SimpleCtl

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 246

from, or what it actually represents. You need only know that an HtmlTextWriter
provides a method called WriteLine that may be used to output a text string to the
browser. The mechanics of how this actually happens are handled by the
HtmlTextWriter object itself.

In APL terms, the argument to our Render function, output, will be a namespace
reference, and the function can simply call its WriteLine method with a character
vector argument. This argument can contain any valid HTML string and defines the
appearance of the SimpleCtl control.

Using the :Signature statement, the Render function is defined to have the same
syntax as the method it overrides, that is, it does not return a result void and takes a
single parameter of type HtmlTextWriter. Note that to successfully replace the base
class method, the Render function must have exactly this :Signature.

Using SimpleCtl

Our SimpleCtl control may now be included in any .NET Web Page from which
temp.dll is accessible. The file samples\asp.net\temp\Simple.aspx is simply an
example. The fact that this control is written in Dyalog is immaterial.

The first line of the script specifies that any controls referenced later in the script that
are prefixed by Dyalog:, refer to custom controls in the .NET Namespace called
DyalogSamples which is located in the Assembly temp.dll in the bin subdirectory.

<%@ Register TagPrefix="Dyalog"
Namespace="DyalogSamples" Assembly="temp" %>

<html>
<body>
<Dyalog:SimpleCtl runat=server/>
</body>
</html>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 247

11.3 The TemperatureConverterCtl1 Control

The TemperatureConverterCtl1 control is an example of a compositional control, that
is, a server-side custom control that is composed of other standard controls.

In this example, The TemperatureConverterCtl1 control gathers together two
textboxes and two push buttons into a single component as illustrated below. Type a
number into the Centigrade box, click the Centigrade To Fahrenheit button, and the
control converts accordingly. If you click the Fahrenheit To Centigrade button, the
reverse conversion is performed.

The TemperatureConverterCtl1 control contains other standard controls as child
controls. A control that acts as a container must implement an interface called
INamingContainer.

This interface does not in fact require any methods; it merely acts as a marker. So the
:Class statement specifies that it provides this interface:

:Class TemperatureConverterCtl1: Control,
System.Web.UI.INamingContainer

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 248

Child Controls

Whenever ASP.NET initialises a Control, it calls its CreateChildControls method. The
default CreateChildControls method does nothing). So we simply define a function
called CreateChildControls with the appropriate public interface (no arguments and
no result) as shown below.

Line[4] creates an instance of a LiteralControl (a label) containing the text
"Fahrenheit" with an HTML tag "<h3>". Controls is a property of the Control class
(from which TemperatureConverterCtl1 inherits) that returns a ControlCollection
object This has an Add method whose job is to add the specified control to the list of
child controls managed by the object.

Lines[5-6] create a TextBox child control containing the text "0", and Line[7] adds it to
the child control list.

Line[8] adds a second LiteralControl to terminate the "<h3>" tag.

∇ CreateChildControls
[1] :Access Public override
[2] :Signature CreateChildControls
[3]
[4] Controls.Add ⎕NEW LiteralControl,⊂⊂'<h3>Fahrenheit: '
[5] m_FahrenheitTextBox←⎕NEW TextBox
[6] m_FahrenheitTextBox.Text←,'0'
[7] Controls.Add m_FahrenheitTextBox
[8] Controls.Add ⎕NEW LiteralControl,⊂⊂'</h3>'
[9]
[10] Controls.Add ⎕NEW LiteralControl,⊂⊂'<h3>Centigrade: '
[11] m_CentigradeTextBox←⎕NEW TextBox
[12] m_CentigradeTextBox.Text←,'0'
[13] Controls.Add m_CentigradeTextBox
[14] Controls.Add ⎕NEW LiteralControl,⊂⊂'</h3>'
[15]
[16] F2CButton←⎕NEW Button
[17] F2CButton.Text←'Fahrenheit To Centigrade'
[18] F2CButton.onClick←⎕OR'F2CConvertBtn_Click'
[19] Controls.Add F2CButton
[20]
[21] C2FButton←⎕NEW Button
[22] C2FButton.Text←'Centigrade To Fahrenheit'
[23] C2FButton.onClick←⎕OR'C2FConvertBtn_Click'
[24] Controls.Add C2FButton

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 249

Lines [10-14] do the same for Centigrade.

Lines[16-17] create a Button control labelled "Fahrenheit To Centigrade". Line[18]
associates the callback function F2CConvertBtn_Click with the button's onClick
event. Note that it is necessary to assign the ⎕OR of the function rather than its name.
Line[19] adds the button to the list of child controls.

Lines[21-24] create a Centigrade button in the same way.

This function is run every time the page is loaded; however in a postback situation,
other code steps in to modify the values in the textboxes, as we shall see.

Fahrenheit and Centigrade Values

The TemperatureConverterCtl1 maintains two public properties named
CentigradeValue and FahrenheitValue, which may be accessed by a client
application. These properties are not exposed directly as variables, but are obtained
and set via property get (or accessor) and property set (or mutator) functions. (This is
recommended practice for C#, so the example shows how it is done in APL). In this
case, the values are simply stored in or obtained directly from the corresponding
textboxes set up by CreateChildControls.

Notice that the Get function uses ⍎ to convert the text in the textbox to a numeric
value. Clearly something more robust would be called for in a real application

Similar functions to handle the Fahrenheit property are provided but are not shown
here.

:Property CentigradeValue
∇ C←get

:Access Public
:Signature Double←get_CentigradeValue
C←⍎m_CentigradeTextBox.Text

∇

∇ set C
:Access Public
:Signature set_CentigradeValue Double Value
m_CentigradeTextBox.Text←⍕C.NewValue

∇
:EndProperty ⍝ CentigradeValue

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 250

Responding to Button presses

We have seen how APL callback functions have been attached to the onClick events in
the two buttons. The C2FconvertBtn_Click callback function simply obtains the
CentigradeValue property, converts it to Fahrenheit using C2F, and then sets the
FahrenheitValue property.

The F2CconvertBtn_Click callback function converts from Fahrenheit to Centigrade.
Note that the functions C2F and F2C are internal functions that are private to the
control, and it is therefore not necessary to define public interfaces for them.

Using the Control on the Page

The text of the script file samples\temp\temp1.aspx is shown below. There is really no
difference between this example and the simple.aspx described earlier.

∇ C2FConvertBtn_Click args
:Access Public
:Signature C2FConvertBtn_Click Object,EventArgs
FahrenheitValue←C2F CentigradeValue

∇

∇ f←C2F c
[1] f←32+c×1.8

∇

∇ F2CConvertBtn_Click args
:Access Public
:Signature F2CConvertBtn_Click Object ,EventArgs
CentigradeValue←F2C FahrenheitValue

∇

∇ c←F2C f
[1] c←(f-32)÷1.8

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 251

The HTML generated by the control at run-time is shown below. Notice that in place of
the server-side control declaration in temp1.aspx, there are two edit controls with
numerical values in them, and two push buttons to submit data entered on the form to
the server.

<%@ Register TagPrefix="Dyalog" Namespace="DyalogSamples"
Assembly="TEMP"%>

<html>
<body bgcolor="yellow">

<center>
<h2>Temperature Control</h2>

<form runat=server>
<Dyalog:TemperatureConverterCtl1 id=TempCvtCtl1 runat=server/>
</form>
</center>
</body>
</html>

<html>
<body bgcolor="yellow">

<center>
<h2>Temperature Control</h2>

<form name="ctrl1" method="post" action="temp1.aspx" id="ctrl1">
<input type="hidden" name="__VIEWSTATE" value="YTB6MTc3MzAxNzYxNF9fX3g=0
3f01d88" />

<h2>Fahrenheit: <input name="TempCvtCtl1:ctrl1" type="text" value="32" /
></h2><h2>Centigrade: <input name="TempCvtCtl1:ctrl4" type="text"
value="0" /></h2><input type="submit" name="TempCvtCtl1:ctrl6" value="Fa
hrenheit To Centigrade" /><input type="submit" name="TempCvtCtl1:ctrl7"
value="Centigrade To Fahrenheit" />
</form>

</center>
</body>
</html>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 252

11.4 The TemperatureConverterCtl2 Control

The previous example showed how to compose an ASP.NET custom control from other
standard controls. This example shows how you can instead generate standard form
elements on the browser by rendering the HTML for them directly.

In the composite temperature control TemperatureConverterCtl1, discussed
previously, all the data transfers between the browser and the server, relating to the
standard child controls that it contains, are handled automatically by the controls
themselves. Rendered controls require a bit more programming because it is up to the
control developer to do the data transfer. The data transfer is managed through two
interfaces, namely IPostBackDataHandler and IPostBackEventHandler. We will see
how these interfaces are used later.

The :Class statement for TemperatureConverterCtl2 specifies that it provides these
interfaces.

Fahrenheit and Centigrade Values

Like the previous TemperatureConverterCtl1 control, the
TemperatureConverterCtl2 maintains two public properties named
CentigradeValue and FahrenheitValue using property get and property set
functions.

This time, the control manages the current temperature values in two internal variables
named _CentigradeValue and _FahrenheitValue, which we must initialise.

The CentigradeValue's get function simply returns the current value of
_CentigradeValue. Its .NET Properties are defined as shown so that it is exported as a
property get function for the CentigradeValue property, and returns a Double.

:Class TemperatureConverterCtl2: Control,
System.Web.UI.IPostBackDataHandler,
System.Web.UI.IPostBackEventHandler

_CentigradeValue←0
_FahrenheitValue←0

∇ C←get
:Access Public
:Signature Double←get
C←_CentigradeValue

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 253

The CentigradeValue's set function simply resets the value of _CentigradeValue to
that of its argument. Its .NET Properties are defined as shown so that it is exported as a
property set function for the CentigradeValue property, and takes a Double.

The property get and property set functions for the FahrenheitValue property are
similarly defined. The .signatures for these functions are similar to those for the
CentigradeValue functions and are not shown.

Rendering the Control

Like the SimpleCtl example described earlier in this Chapter, the
TemperatureConverterCtl2 control has a Render function that generates the HTML to
represent its appearance, and in this case its behaviour too.

∇ set C
:Access Public
:Signature set Double Value
_CentigradeValue←C.NewValue

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 254

As we saw in the SimpleCtl example, the Render method will be called by ASP.NET
with a parameter that represents an HtmlTextWriter object. This is represented by the
APL local name output.

Lines[4-9] and lines [11-16] generate HTML that defines two text boxes in which the
user may enter the Fahrenheit and centigrade values respectively. Lines[9&16] use the
Write method of the HtmlTextWriter object to output the HTML.

Lines[5&12] obtain the fully qualified identifier for this particular instance of the
TemperatureConverterCtl2 control from its UniqueID property. This is a property,

∇ Render output;C;F;BF;CF
[1] :Access Public override
[2] :Signature Render HtmlTextWriter output
[3]
[4] F←'<h3>Fahrenheit <input name='
[5] F,←UniqueID
[6] F,←' id=FahrenheitValue type=text value='
[7] F,←⍕_FahrenheitValue
[8] F,←'></h3>'
[9] output.Write⊂F
[10]
[11] C←'<h3>Centigrade <input name='
[12] C,←UniqueID
[13] C,←' id=CentigradeValueKey type=text value='
[14] C,←⍕_CentigradeValue
[15] C,←'></h3>'
[16] output.Write⊂C
[17]
[18] BF←'<input type=button value=FahrenheitToCentigrade '
[19] BF,←' onClick="jscript:'
[20] BF,←Page.GetPostBackEventReference ⎕THIS'FahrenheitToCentigrade'
[21] BF,←'">'
[22] output.Write⊂BF
[23]
[24] CF←'<input type=button value=CentigradeToFahrenheit '
[25] CF,←' onClick="jscript:'
[26] CF,←Page.GetPostBackEventReference ⎕THIS'CentigradeToFahrenheit'
[27] CF,←'">'
[28] output.Write⊂CF
[29]
[30] output.WriteLine∘⊂¨'' '
' '
'

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 255

which it inherits from Control and is therefore also a property of the current (APL)
namespace.

Lines[18-22] and Lines[24-28] generate and output the HTML to represent the two
buttons that convert from Fahrenheit to Centigrade and from Centigrade to Fahrenheit
respectively.

Lines[19-20] and [25-26]generate HTML that wires the buttons up to JavaScript
handlers to be executed by the browser. The JavaScript simply causes the browser to
execute a postback, that is, send the page contents back to the server.
GetPostBackEventReference is a (shared) method provided by the
System.Web.UI.Page class that generates a reference to a client-side script function. In
this case it is called with two parameters, an object that represents the current
instance of the TemperatureConverterCtl2 control, and a string that will be passed to
the server to indicate the cause of the postback (that is, which button was pressed).
The first parameter is a reference to the current object, which is returned by the system
function ⎕THIS.

The client-side script is itself generated, and inserted into the HTML stream
automatically.

To help to understand this process fully, it is instructive to examine the HTML that is
generated by these functions. We will do this a bit later in the Chapter.

Loading the Posted Data

Once the server-side control has rendered the HTML for the browser, the user is free to
type numbers into the text boxes and to press the buttons.

When the user presses a button, the browser runs the client-side JavaScript code that
in turn generates a postback to the server.

The :Class statement for TemperatureConverterCtl2 specifies that it supports the
IPostBackDataHandler interface. This interface must be implemented by controls that
want to receive postback data (that is, the contents of Form fields that the user may
have entered or changed) IpostBackDataHandler has two methods LoadPostData
and RaisePostDataChangedEvent. LoadPostData is automatically invoked when a
postback occurs, and the postback data is supplied as a parameter.

So when the postback occurs, the server reloads the original page and, because this is a
postback situation and our control has advertised the fact that it implements
IPostBackDataHandler, ASP.NET invokes its LoadPostBack method. This method is
called with two parameters. The first is a key and the second is a collection of name/

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 256

value pairs. This contains the names of all the Form fields on the page (and there may
be others not directly associated with our custom control) and the values they had
when the user pressed the button. The key provides the means to extract the relevant
part of this collection. The LoadPostData function is shown below.

Line[2] obtains the two parameters from the argument and Line[3] uses the key to
extract the appropriate data from the collection. ControlValues is a comma-delimited
string containing name/value pairs. The function ParseControlValues simply extracts
the values from this string, that is, the contents of the Fahrenheit and Centigrade text
boxes.

Postback Events

The result of LoadPostData is Boolean and indicates whether or not any of the values
in a control have changed. If the result is True (1), ASP.NET will next call the
RaisePostDataChanged method. This method is called with no parameters and merely
signals that something has changed. The control knows what has changed by
comparing the old with the new, as in LoadPostData[5].

Finally, the page framework calls the RaisePostBackEvent method, passing it a string
that identifies the page element that caused the post back.

The objective of these calls is to provide the control with the information it requires to
synchronise its internal state with its appearance in the browser.

In this case, we are not interested in which of the two text box values the user has
altered; what matters is which of the two buttons FarenheitToCentigrade or
CentigradeToFarenheit was pressed. Therefore, in this case, the control uses
RaisePostBackEvent rather than RaisePostDataChanged (or indeed, LoadPostData
itself, which is another option). The reason is that RaisePostBackEvent receives the
name of the button as its argument.

∇ R←LoadPostData args;postDataKey;values;controlValues;new
[1] :Signature Boolean←IPostBackDataHandler.LoadPostData String postD
ataKey,NameValueCollection values
[2] postDataKey values←args
[3] controlValues←values[⊂postDataKey]
[4] new←ParseControlValues controlValues
[5] R←∨/new=_FahrenheitValue _CentigradeValue
[6] _FahrenheitValue _CentigradeValue←new

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 257

So in our case, the RaisePostDataChanged function does nothing. Nevertheless, it is
essential that the function is provided and essential that it supports the correct public
interface, namely that it takes no arguments are returns no result (Void).

The RaisePostBackEvent function simply switches on its argument, which is the name
of the button that the user pressed, and recalculates _CentigradeValue or
_FahrenheitValue accordingly.

Finally, the page framework calls the OnPreRender and Render functions again, which
generate new HTML for the browser.

Using the Control on a Page

So long as it has access to this DLL, our custom control may be accessed from any
ASP.NET Web Page, and a simple example is shown below.

∇ RaisePostDataChangedEvent
[1] :Access public
[2] :Signature RaisePostDataChangedEvent
[3] ⍝ Do nothing

∇

∇ RaisePostBackEvent eventArgument
[1] :Access public
[2] :Signature RaisePostBackEvent String eventArg
[3] :Select eventArgument
[4] :Case 'FahrenheitToCentigrade'
[5] _CentigradeValue←F2C _FahrenheitValue
[6] :Case 'CentigradeToFahrenheit'
[7] _FahrenheitValue←C2F _CentigradeValue
[8] :EndSelect

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 258

The HTML that is generated by the control is illustrated below. Notice the presence of a
JavaScript function named __doPostBack. This is generated by the
RegisterPostBackScript method called from the OnPreRender function. The code
that wires the buttons to this function was generated by the
GetPostBackEventReference method called from the Render function.

<%@ Register TagPrefix="Dyalog" Namespace="DyalogSamples"
Assembly="TEMP" %>

<html>
<body bgcolor="yellow">
<center>
<h2>
Temperature Control</h3>
<h3>
Server-Side Noncompositional control</h4>

<form runat=server>
<Dyalog:TemperatureConverterCtl2 id=TempCvtCtl2
runat=server/>
</form>

</center>
</body>
</html>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 259

<html>
<body bgcolor="yellow">
<center>
<h2>Temperature Control</h2>
<h4>Server-Side Noncompositional
control</h4>

<form name="ctrl1" method="post" action="temp2.aspx" id="ctrl1">
<input type="hidden" name="__EVENTTARGET" value="" />
<input type="hidden" name="__EVENTARGUMENT" value="" />
<input type="hidden" name="__VIEWSTATE" value="YTB6MTc3MzAxNzYxM19fX3g=9
cfcfa5c" />

<script language="javascript">
<!--

function __doPostBack(eventTarget, eventArgument) {
var theform = document.ctrl1
theform.__EVENTTARGET.value = eventTarget
theform.__EVENTARGUMENT.value = eventArgument
theform.submit()

}
// -->
</script>

<h2>Fahrenheit <input name=TempCvtCtl2 id=FahrenheitValue type=text valu
e=0></h2><h2>Centigrade <input name=TempCvtCtl2 id=CentigradeValueKey ty
pe=text value=0></h2><input type=button value=FahrenheitToCentigrade on
Click="jscript:__doPostBack('TempCvtCtl2','FahrenheitToCentigrade')"><in
put type=button value=CentigradeToFahrenheit onClick="jscript:__doPostB
ack('TempCvtCtl2','CentigradeToFahrenheit')">

</form>

</center>
</body>
</html>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 260

11.5 The TemperatureConverterCtl3 Control

In the previous examples, events generated by control have been internal events, that
is, events that have been detected and processed internally by the control itself.

A separate requirement is to be able to design a custom control that generates external
events, that is, events that can be detected and handled by the page that is hosting the
control. This example illustrates how to do this.

The TemperatureConverterCtl3 namespace is a copy of TemperatureConverterCtl2 with
a couple of changes.

The first change is that it describes an event that the control is going to generate. This
is done using ⎕NQ inside TemperatureConverterCtl3 like this:

In this case, the name of the event is Export and it will report two parameters named
Fahrenheit and Centigrade which are both of data type Double.

2 ⎕NQ '' 'SetEventInfo' 'Export'
(('Double' 'Fahrenheit')
('Double' 'Centigrade'))

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 261

This version of the control presents a slightly different appearance to the previous one.
The control itself is wrapped up in an HTML Table, with the conversion buttons
arranged in a column. These buttons generate internal events that are caught and
handled by the control itself. The third row of the table contains an additional button
labelled Export which will generate the Export event when pressed. The Render
function is shown below.

Notice that Render[18] causes the Export button to generate a Postback event which
will call RaisePostBackEvent with the argument 'Export'. Up to now, this is just an
internal event just like the events generated by the conversion buttons.

The RaisePostBackEvent propagates this event to the host page.

∇ Render output;TableRow;HTML;SET
[1] :Access public override
[2] :Signature Render HtmlTextWriter output
[3] TableRow←{
[4] HTML←'<tr><td>',⍺,'</td><td><input name=',UniqueID
[5] HTML,←' id=',⍺,'Value type=text '
[6] HTML,←'value=',(⍕⍵),'></td>'
[7] HTML,←'<td><input type=button value=Convert'
[8] HTML,←' onClick="jscript:'
[9] HTML,←(Page.GetPostBackEventReference ⎕THIS ⍺),'"></td></tr>'
[10] HTML
[11] }
[12]
[13] HTML←''
[14] HTML←'<table>'
[15] HTML,←'Fahrenheit'TableRow _FahrenheitValue
[16] HTML,←'Centigrade'TableRow _CentigradeValue
[17]
[18] SET←'<tr><td><input type=button value=Export '
[19] SET,←' onClick="jscript:'
[20] SET,←Page.GetPostBackEventReference ⎕THIS'Export'
[21] SET,←'"></td></tr>'
[22] HTML,←SET,'</table>'
[23] output.Write⊂HTML

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 262

This is simply done by the third :Case statement, so that when the function is invoked
with the argument 'Export', it fires an Export event. This is done by line [8] using 4
⎕NQ. The elements of the right argument are:

[1] ''
Specifies that the event is generated by this instance of
the control

[2] 'Export' The name of the event to be generated

[3] _FahrenheitValue The value of the first parameter, Fahrenheit

[4] _CentigradeValue The value of the second parameter, Centigrade

It is then up to the page that is hosting the control to respond to the event in whatever
way it deems appropriate.

Hosting the Control on a Page

The following example illustrates an ASP.NET web page that hosts the
TemperatureConverterCtl3 custom control and responds to its Export event. The page
uses a section of the page. It simply sets the Text property of two Label controls to
display the parameters reported by the event.

The picture below illustrates what happens when you run the page. Notice that the
user can independently convert values between the two temperature scales and export
these values from the control, to the host page, by pressing the Export button.

∇ RaisePostBackEvent eventArgument
[1] :Signature IPostBackEventHandler.RaisePostBackEvent String eventA
rg
[2] :Select eventArgument
[3] :Case 'Fahrenheit'
[4] _CentigradeValue←F2C _FahrenheitValue
[5] :Case 'Centigrade'
[6] _FahrenheitValue←C2F _CentigradeValue
[7] :Case 'Export'
[8] 4 ⎕NQ'' 'Export'_FahrenheitValue _CentigradeValue
[9] :EndSelect

∇

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 263

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 264

12 Implementation Details

12.1 Introduction

The Dyalog DLL is the Dyalog APL engine that hosts the execution of all .NET classes
that have been written in Dyalog APL, including APL Web Pages and APL Web Services.
The Dyalog DLL provides the interface between client applications (such as ASP.NET)
and your APL code. It receives calls from client applications, and executes the
appropriate APL code. It also works the other way, providing the interface between
your APL code and any .NET classes that you may call.

The Development DLL (the full developer version of the Dyalog DLL) contains the APL
Session, Editor, Tracer and so forth, and may be used to develop and debug an APL .NET
class while it is executing. Note that to gain access to the various workspace tools, such
as the Workspace Explorer and the Search/Replace Dialog, the corresponding DyaRes
DLL must be present alongside (in the same directory as) the Development DLL.

The Run-Time DLL (the re-distributable run-time version of the Dyalog DLL) contains no
debugging facilities.

For the names of these files corresponding to the version of Dyalog that you are using,
see Installation/Configuration: Files And Directories.

12.2 Isolation Mode

For each application which uses a class written in Dyalog APL, at least one copy of the
development or run-time version of the Dyalog DLL will be started in order to host and
execute the appropriate APL code. Each of these engines will have an APL workspace
associated with it, and this workspace will contain classes and instances of these
classes. The number of engines (and associated workspaces) which are started will
depend on the Isolation Mode which was selected when the APL assemblies used by
the application were generated. Isolation modes are:

Each host process has a single workspace
Each appdomain has its own workspace
Each assembly has its own workspace

•
•
•

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 265

Note that, in this context, Microsoft Internet Information Services (IIS) is a single
process, even though it may be hosting a large number of different web pages. Each
ASP.NET application will be running in a separate AppDomain, a mechanism used
by .NET to provide isolation within an application. Other .NET applications may also be
divided into different AppDomains.

In other words, if you use the first option, ALL classes and instances used by any IIS web
page will be hosted in the same workspace and share a single copy of the interpreter.
The second option will start a new Dyalog engine for each ASP.NET application; the final
option an engine for each assembly containing APL classes.

12.3 Workspace Size

By default, there is no limit placed upon the size of the workspace used by the Dyalog
DLL and it will grow (and shrink) according to user demand.

The maximum workspace size may be specified by the maxws parameter that is used to
control the workspace size in the development and run-time versions of the Dyalog
program. The difference is that the maxws parameter must be specified for the host
application, the application in which the Dyalog DLL is embedded.

This is achieved by defining a Registry key named:

or on 64-bit Windows:

where <appname> is the name of the application, containing a String Value named
maxws set to the desired size.

The name of the ASP.NET application is aspnet_wp.exe or w3wp.exe ((IIS 6 and above).

An additional way is to set the maxws parameter on the command line of the Assembly
at export time. That might be be useful if you know that you are only using one Dyalog
assembly or the IsolationMode is "Each Assembly". For more information, see Section
12.2.

12.4 Structure of the Active Workspace

Each engine which is started has a workspace associated with it that contains all the
APL objects it is currently hosting.

HKLM\Software\Dyalog\Embedded\<appname>

HKLM\Software\Wow6432Node\Dyalog\Embedded\<appname>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 266

Unless the highest isolation mode, Each assembly has its own workspace has been
selected, the workspace will contain one or more namespaces associated with .NET
AppDomains. When .NET calls Dyalog APL to process an APL class, it specifies the
AppDomain in which it is to be executed. To maintain AppDomain isolation and scope,
Dyalog APL associates each different AppDomain with a namespace whose name is that
of the AppDomain, prefixed by AppDomain_.

Within each AppDomain_ namespace, there will be one or more namespaces associated
with the different Assemblies from which the APL classes have been loaded. These
namespaces are named by the Assembly name prefixed by Assembly_. If the APL class
is a Web Page or a Web Service, the corresponding Assembly is created dynamically
when the page is first loaded. In this case, the name of the Assembly itself is
manufactured by .NET. Below the Assembly_ namespace is a namespace that
corresponds to the .NET Namespace that represents the container of your class. If the
APL class is a Web Page or Web Service, this namespace is called ASP. Finally, the
namespace tree ends with a namespace that represents the APL class. This will have
the same name as the class. In the case of a Web Page or Web Service, this is the name
of the .aspx or .asmx file.

Note that in the manufactured namespace names, characters that would be invalid
symbols in a namespace name are replaced by underscores.

The following picture shows the namespace tree that exists in the Dyalog DLL
workspace when the first example (see Section 6.4) in the chapter Writing .Net Classes
is executed under Visual Studio. However, to cause the suspension, an error has been
introduced in the method IndexGen.

In this case, there is a single AppDomain involved whose name, DyApp_vshost_exe is
specified by .NET. APL has made a corresponding namespace called
AppDomain_DyApp_vshost_exe. Next, there is a namespace associated with the
Assembly aplclasses, named Assembly_aplclasses. Beneath this is a namespace
called APLClasses associated with the .NET Namespace of the same name. Finally,
there is the APL Class called Primitives .

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 267

Notice that the state indicator displays the entire .NET calling structure, and not just
the APL stack. In this case, the state indicator shows that IndexGen was called from
MainClass.Main, which combines the class and method names specified in aplfns.cs.
Note that .NET calls are slightly indented.

Notice too that IndexGen has been started on APL thread 1 which, in this case, is
associated with system thread 8752. If the client application were to call IndexGen on

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 268

multiple system threads, this would be reflected by multiple APL threads in the
workspace. This topic is discussed in further detail below.

The possibility for the client to execute code in several instances of an object at the
same time requires that each executing instance is separated from all the others. Each
instance will be created as an unnamed object in the workspace, within the relevant
appdomain and assembly namespaces.

The picture below shows the workspace structure when the assembly was generated
with isolation mode set to Each assembly has its own workspace. In this case, the
AppDomain and Assembly structure is not created above the classes in the workspace,
so the workspace structure is somewhat simpler:

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 269

12.5 Threading

The .NET Framework is inherently a multi-threaded environment. For example, ASP.NET
runs its own thread pool from which it allocates system threads to its clients. Calls from
ASP.NET into APL Web Pages and Web Services will typically be made from different
system threads. This means that APL will receive calls from .NET while it is processing a
previous call. The situation is further complicated when you write an APL Web Page
that calls an APL Web Service, both of which may be hosted by a single Dyalog DLL
inside ASP.NET. In these circumstances, ASP.NET may well allocate different system

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 270

threads to the .NET calls, which are made into the two separate APL objects. Although
in the first example (multiple clients) APL could theoretically impose its own queuing
mechanism for incoming calls, it cannot do so in the second case without causing a
deadlock situation.

It is important to remember that whether running as DYALOG.EXE, or as the Dyalog
DLL, the Dyalog interpreter executes in a single system thread. However, APL does
provide the ability to run several APL threads at the same time. If you are unfamiliar
with APL threads, see Language Reference, Chapter 1 for an introduction to this topic.

To resolve this situation, Dyalog automatically allocates APL threads to .NET system
threads and maintains a thread synchronisation table so that calls on the same system
thread are routed to the same APL thread, and vice versa. This is important because a
GUI object (cf. System.Winforms) is owned by the system thread that created it and
can only be accessed by that thread.

The way that system threads are allocated to APL threads differs between the case
where APL is running as the primary executable (DYALOG.EXE) or as a DLL hosted by
another program. The latter is actually the simpler of the two and will be considered
first.

DYALOG DLL Threading

In this case, all calls into the Dyalog DLL are initiated by Microsoft .NET.

When a .NET system thread first needs to run an APL function, APL starts a new APL
thread for it, and executes the function in that APL thread. For example, if the first call
is a request to create a new instance of an APL .NET object, its constructor function will
be run in APL thread 1. An entry is made in the internal thread table that associates the
originating system thread with APL thread 1. When the constructor function
terminates, the APL thread is retained so that it is available for a subsequent call on its
associated system thread. In this respect, the automatically created APL thread differs
from an APL thread that was created using the spawn operator & (See Language
Reference).

When a subsequent call comes in, APL locates the originating system thread in its
internal thread table, and runs the appropriate APL function in the corresponding APL
thread. Once again, when the function terminates, the APL thread is retained for future
use. If a call comes in on a new system thread, a new APL thread is created.

Notice that under normal circumstances, APL thread 0 is never used in the Dyalog DLL.
It is only ever used if, during debugging, the APL programmer explicitly changes to
thread 0 by executing)TID 0 and then runs an expression.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 271

Periodically, APL checks the existence of all of the system threads in the internal thread
table, and removes those entries that are no longer running. This prevents the situation
arising that all APL threads are in use.

DYALOG.EXE Threading

In these cases, all calls to Microsoft .NET are initiated by Dyalog. However, these calls
may well result in calls being made back from .NET into APL.

When you make a .NET call from APL thread 0, the .NET call is run on the same system
thread that is running APL itself.

When you make a .NET call from any other APL thread, the .NET call is run on a
different system thread. Once again, the correspondence between the APL thread
number and the associated system thread is maintained (for the duration of the APL
thread) so that there are no thread/GUI ownership problems. Furthermore, APL
callbacks invoked by .NET calls back into APL will automatically be routed to the
appropriate APL thread. Notice that, unlike a call to a DLL via ⎕NA, there is no way to
control whether or not the system uses a different system thread for a .NET call. It will
always do so if called from an APL thread other than APL thread 0.

Thread Switching

Dyalog will potentially thread switch, that is, switch execution from one APL thread to
another, at the start of any line of APL code. In addition, Dyalog will potentially thread
switch when a .NET method is called or when a .NET property is referenced or assigned
a value. If the .NET call accesses a relatively slow device, such as a disk or the internet,
this feature can improve overall throughput by allowing other APL code while a .NET
call is waiting. On a multi-processor computer, APL may truly execute in parallel with
the .NET code.

Note that when running DYALOG.EXE, .NET calls made from APL thread 0 will prevent
any switching between APL threads. This is because the .NET code is being executed in
the same system thread as APL itself. If you want to use APL multi-threading in
conjunction with .NET calls, it is therefore advisable to perform all of the .NET calls
from threads other than APL thread 0.

12.6 Debugging an APL.NET Class

All DYALOG.NET objects are executed by the Dyalog DLL. The full development version
of the Dyalog DLL contains all of the development and debug facilities of the APL
Session, including the Editors and Tracer. The run-time version contains no debugging

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 272

facilities at all. The choice of which version of the Dyalog DLL is used is made when the
assembly is exported from APL using the File|Export menu, or compiled using
dyalogc.exe.

If an APL .NET object that is bound to the full development version generates an
untrapped APL error (such as a VALUE ERROR) and the client application is configured
so that it is allowed to interact with the desktop, the APL code will suspend and the APL
Session window will be displayed. Otherwise, it will throw an exception.

If an APL .NET object that is bound to the run-time version of the Dyalog DLL generates
an untrapped APL error it will throw an exception.

Specifying the DLL

There are a number of different ways that you choose to which of the two versions of
the Dyalog DLL your DYALOG.NET class will be bound. Note that the appropriate DLL
must be available when the class is subsequently invoked. If the DLL to which the
APL .NET class is bound is not present, it will throw an exception.

If you build a .NET class from a workspace using the File/Export menu item, you use the
Runtime application checkbox. If Runtime application is unchecked, the .NET Class will
be bound to the full development version. If Runtime application is checked, the .NET
Class will be bound to the run-time version.

If you build a .NET class using the APLScript compiler, it will by default be bound to the
full development version. If you specify the /runtime flag, it will be bound to the run-
time version.

If your APL .NET class is a Web Page or a Web Service, you specify to which of the two
DLLs it will be bound using the Debug attribute. This is specified in the opening
declaration statement in the .aspx, .asax or .asmx file. If the statement specifies
"Debug=true", the Web Page or Web Service will be bound to the full development
version. If it specifies "Debug=false", the Web Page or Web Service will be bound to
the run-time version.

If you omit the Debug= attribute in your Web page, the value will be determined from
the various .NET config files on your computer.

Forcing a suspension

If an APL error occurs in an APL .NET object, a suspension will occur and the Session
will be available for debugging. But what if you want to force this to happen so that you
can Trace your code and see what is happening?

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 273

If your APL class is built directly from a workspace, you can force a suspension by
setting stops in your code before using Export to build the DLL. If your class is a Web
Page or Web Service where the code is contained in a workspace using the workspace
behind technique (See Chapter 8), you can set stops in this workspace before you
)SAVE it.

If your APL class is defined entirely in a Web Page, Web Service, or an APLScript file, the
only way to set a break point is to insert a line that sets a stop explicitly using ⎕STOP. It
is essential that this line appears after the definition of the function in the script. For
example, to set a stop in the Intro\intro1.aspx example discussed in Chapter 8, the
script section could be as follows:

As an alternative, you can always insert a deliberate error into your code!

Finally, you can usually force a suspension by generating a Weak Interrupt. This is done
from the pop-up menu on the APL icon in the System Tray that is associated with the
full development version of the Dyalog DLL. Note that selecting Weak Interrupt from
this menu will not have an immediate effect, but it sets a flag that will cause Dyalog APL
to suspend when it next executes a line of APL code. You will need to activate your
object in some way, for example, by calling a method, for this to occur. Note that this
technique may not work if the Dyalog DLL is busy because a thread switch
automatically resets the Weak Interrupt flag. In these circumstances, try again.

The run-time version of the Dyalog DLL does not display an icon in the System Tray.

Using the Session, Editor and Tracer

When an DYALOG.NET object suspends execution, all other active APL .NET objects
bound to the full development version of the Dyalog DLL that are currently being
executed by the same client application will also suspend. Furthermore, all the classes

<script language="dyalog" runat="server">

∇Rotate args
:Access Public
:Signature Reverse Object,EventArgs

(⊃args).Text←⌽Pressme.Text
∇

3 ⎕STOP 'Rotate'

</script>

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 274

currently being hosted by the Dyalog DLL are visible to the APL developer whether
active (an instance is currently being executed) or not. Note that if a client application,
such as ASP.NET, is also hosting APL .NET objects bound to the runtime version of the
Dyalog DLL, these objects will be hosted in a separate workspace attached to the run-
time version of the Dyalog DLL and will not be visible to the developer.

Debugging a running DYALOG.NET object is substantially the same process as
debugging a stand-alone multi-threaded APL application. However, there are some
important things to remember.

Firstly, the namespace structure above your APL class should be treated as being
inviolate. There is nothing to prevent you from deleting namespaces, renaming
namespaces, or creating new ones in the workspace. However, you do so at your peril!

Similarly, you should not alter, delete or rename any functions that have been
automatically generated on your behalf by the APLScript compiler. These functions are
also inviolate.

If execution in the Dyalog DLL is suspended, you may not execute)CLEAR or)RESET.
You may execute)OFF or ⎕OFF, but if you do so, the client application will terminate. If
you attempt to close the APL Session window, you will be warned that this will
terminate the client application and you may cancel the operation or continue (and
exit).

If you fix a problem in a suspended function and then press Resume or Continue
(Tracer) or execute a branch, and the execution of the currently invoked method
succeeds, you will be left with an empty state indicator (assuming that no other threads
are actively involved). The Dyalog DLL is at this stage idle, waiting for the next client
request and the state indicator will be empty.

If, at this point, you close the APL Session window, a dialog box will give you the option
of terminating the (client) application, or simply hiding the APL Session Window. If you
execute)OFF or ⎕OFF the client application will terminate.

Note that in the discussion above, a reference to terminating the client application
means that APL executes Application.Exit(). This may cause the application to
terminate cleanly (as with ASP.NET) or it may cause it to crash.

12.7 The web.config file

ASP.NET configuration parameters are defined in a file named web.config located in or
above the root directory of an ASP.NET application. Parameters defined in these files
supplement or override ASP.NET parameters which are defined system-wide.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 275

The web.config file provided with Dyalog is located in the Dyalog sub-directory
samples\asp.net and applies to all the examples residing in child directories of this
directory. If you create a Dyalog ASP.NET application elsewhere on your system, you will
need to copy this web.config into the application root directory. The parameters
defined in the Dyalog web.config file are described below. Further details are provided
in comments in the file.

DyalogBinDirectory

This specifies the full path to the Dyalog binaries (DLLs and script compiler).

dyalog (compiler)

This section defines an ASP.NET language named dyalog so that the expression
Language = "dyalog" in a script file associates that script with the Dyalog APLScript
compiler dyalogc.exe. Subsidiary parameters and keys for the dyalog compiler are:

debug "true" (default) or "false" to bind the script to the
Development DLL or the Run-time DLL

DyalogCompilerEncoding "classic" or "unicode"..

DyalogCompilerOptions
This is used to define options for the script
compiler. For example, to set []WX to 1 use "/wx:
1".

DyalogCompilerEmitPragmas Must be "true" if you are using workspace behind.

DyalogIsolationMode

This parameter specifies the isolation method. See Section 12.2 for further details.

DyalogCacheDirectory may be used to define the directory used to save the cached
files.

.NET Framework Interface Guide

2025-10-30 (main:e0843eae32) Page 276

	Dyalog for Microsoft Windows
	.NET Framework Interface Guide
	Contents

	Overview
	Introduction
	.NET Classes
	GUI Programming with System.Windows.Forms
	Web Services
	ASP.NET and WebForms

	Prerequisites
	Files Installed with Dyalog
	NET Interface Components
	Code Samples

	Accessing .Net Classes
	Introduction
	Locating .NET Classes and Assemblies
	Using .NET Classes
	Constructors and Overloading
	How the ⎕NEW System Function is implemented
	Notes
	Displaying a .NET Object
	Disposing of .NET Objects

	Browsing .NET Classes
	Value Tips for External Functions
	Advanced Techniques
	Shared Members
	APL language extensions for .NET objects
	Exceptions
	Specifying Overloads and Casts
	OverloadTypes Examples
	CastToTypes Example
	Overloaded Constructors

	More Examples
	Directory and File Manipulation
	Sending an email
	Web Scraping

	Enumerations
	Handling Pointers with Dyalog.ByRef
	DECF Conversion

	Using Windows.Forms
	Introduction
	Creating GUI Objects
	Object Hierarchy
	Positioning and Sizing Forms and Controls
	Modal Dialog Boxes
	Non-Modal Forms
	DataGrid Examples
	GDIPLUS Workspace
	TETRIS Workspace
	WEBSERVICES Workspace

	WPF
	Introduction
	Temperature Converter
	Temperature Converter Tutorial
	Using XAML
	Parent and Child Controls
	Named and Un-named Controls
	The Main Window
	The DockPanel
	The Menu
	The Grid
	The Label Objects(Column 1)
	The TextBox Objects(Column 2)
	The Button Objects (Column 3)
	The ScrollBar Object
	The Code to display the XAML
	The CallBack Functions

	Using Code

	Data Binding
	Example 1
	The XAML
	The APL Code
	Testing the Data Binding

	Example 2
	The XAML
	The APL Code
	Testing the Data Binding

	Example 3
	Testing the Data Binding

	Example 4
	The XAML
	The APL Code
	Testing the Data Binding

	Example 5
	The XAML
	The Code
	Testing the Data Binding

	Example 6
	The XAML
	The APL Code
	Testing the Data Binding

	Example 6a (Casting to DateTime)
	The XAML
	The APL Code
	Testing the Data Binding
	Testing the Data Binding

	Example 7
	The XAML
	The APL Code
	Testing the Data Binding

	Example 8
	The XAML
	The APL Code
	Testing the Data Binding
	Using Code

	Syncfusion Libraries
	Requirements
	Using XAML
	⎕USING

	Syncfusion Circular Gauge Example
	The XAML
	The APL Code

	APLScript
	Introduction
	The APLScript Compiler
	Creating an APLScript File
	Copying code from the Dyalog Session
	General principles of APLScript
	Creating Programs (.exe) with APLScript
	A simple GUI example
	A simple console example
	Defining Namespaces

	Creating .NET Classes with APLScript
	Exporting Functions as Web Methods
	A .NET Class example
	Defining Properties
	Indexers

	Creating ASP.NET Classes with APLScript
	Web Page Layout
	Web Service Layout
	How APLScript is processed by ASP.NET

	Writing .Net Classes
	Introduction
	Assemblies, Namespaces and Classes
	Getting Started
	Initialisation
	Running the Tutorial

	Example 1
	program.cs

	Example 2
	program.cs

	Example 2a
	Example 3
	program.cs

	Example 4
	program.cs

	Example 5
	program.cs

	Interfaces

	Dyalog APL and IIS
	Introduction
	IIS Installation Dependency
	IIS Applications, Virtual Directories, Application Pools
	Internet Services Manager
	The dyalog.net Application

	Writing Web Services
	Introduction
	Web Service (.asmx) Scripts
	Compilation
	Exporting Methods
	Add1
	Add2

	Web Service Data Types
	Execution
	Global.asax, Application and Session Objects
	Sample Web Service: EG1
	Testing APLExample from a Browser

	Sample Web Service: LoanService
	Testing LoanService from a Browser

	Sample Web Service: GolfService
	GolfService: Global.asax
	GolfService: GolfCourse class
	GolfService: Slot class
	GolfService: Booking class
	GolfService: StartingSheet class
	GolfService: GetCourses function
	GolfService: GetStartingSheet function
	GolfService: MakeBooking function
	Testing GolfService from a Browser
	Using GolfService from C

	Sample Web Service: EG2
	Testing EG2 from a Browser

	Calling Web Services
	Introduction
	The MakeProxy function
	Using LoanService from Dyalog APL
	Using GolfService from Dyalog APL
	Exploring Web Services
	Asynchronous Use
	Using a callback

	Writing ASP.NET Web pages
	Introduction
	Your first APL Web Page
	The Page_Load Event
	Code Behind
	Workspace Behind
	Converting an Existing Workspace
	The Page_Load function
	Callback functions
	Validation functions
	Forcing Validation
	Calculating and Displaying Results

	Writing Custom Controls for ASP.NET
	Introduction
	The SimpleCtl Control
	Using SimpleCtl

	The TemperatureConverterCtl1 Control
	Child Controls
	Fahrenheit and Centigrade Values
	Responding to Button presses
	Using the Control on the Page

	The TemperatureConverterCtl2 Control
	Fahrenheit and Centigrade Values
	Rendering the Control
	Loading the Posted Data
	Postback Events
	Using the Control on a Page

	The TemperatureConverterCtl3 Control
	Hosting the Control on a Page

	Implementation Details
	Introduction
	Isolation Mode
	Workspace Size
	Structure of the Active Workspace
	Threading
	DYALOG DLL Threading
	DYALOG.EXE Threading
	Thread Switching

	Debugging an APL.NET Class
	Specifying the DLL
	Forcing a suspension
	Using the Session, Editor and Tracer

	The web.config file
	DyalogBinDirectory
	dyalog (compiler)
	DyalogIsolationMode

