Dyalog for Microsoft Windows
.NET Framework Interface Guide

Dyalog version 20.0

A HHHIImm , ' NN

DYALOC

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2025 by Dyalog Limited
All rights reserved.

Dyalog for Microsoft Windows .NET Framework Interface Guide

Dyalog version: 20.0
Document Revision: 2025-10-30 main:e0843eae32

Unless stated otherwise, all examples in this document assume that 010 OML « 1

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Dyalog Limited reserves the right to revise this publication

without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.

Oracle®, MySQL, and Java™ are registered trademarks of Oracle and/or its affiliates.
JavaScript™ is a trademark of Oracle Corporation.

Unicode is a registered trademarks of Unicode, Inc. in the U.S. and other countries.
UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively
through X/Open Company Limited.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark of Microsoft Corporation in the U.S. and other
countries.

macOS°® and OS X® (operating system software) are registered trademarks of Apple Inc.

in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Except where otherwise noted, this content is licensed under a Creative Commons

Attribution 4.0 International licence.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

2025-10-30 (main:e0843eae32) Page 4

.NET Framework Interface Guide

Contents

T OVEIVIEW ooeeeeeiieieeeeeiteee e ceettteeeeeeeteeeeeeeebareeeeeessseseeeessssaseeeesassasesessesssssessenssreesesensnres 10

1.1 Introduction

1.2 Prerequisites

1.3 Files Installed With DYalOgcc.eccueeiieieeieeieseetete ettt ettt sre e s e e sreesreeveeaesvessaesesessaensean 12
2 ACCESSING INEL CIASSES ..uuviiieiiieeiiieeeieeceiieeetteeeeteeeetee e e teeeeette e e abeeesasaseensesesssasesseaans 14
2.1 INEFOAUCEION ettt ettt e s e e bt e bt et e b e s besbesabesatessaesseensasnsesnsesasenns 14
2.2 Locating NET Classes and ASSEMDBIIEScccviiriiiiiiiiiieiieecieeciee ettt eveeeereesveessvaeeaneenanes 14
2.3 USING NET ClASSES ...uvviieuiiieiieeiieiiteesieeeiteeeetteesteesseeessaessssesssseessasessssessseesssessssssessssesssesssssesssnes 17
2.4 BrOWSING NET ClASSES ...veieiiiiiiiiiiiieiieeeitteeeteesteesseeeesaeesssessseesseesssseesssessssesssssesssseesssssssssessnnes 20
2.5 Value Tips for EXternal FUNCHONSc.viiiviiiiiiieieecieccteete ettt veeevne e aveesvaeeaneennes 29
2.6 AdVaNCed TECHNIGUESooeiiieiieceecee ettt ettt et te e e bee e tae e s tbe e saeeseaeessaeesnsaesnsneannes 30
2.7 MOIE EXAMPIES ..eveieiiieiieeeiee et et et e et e etee e tae e e te e e bae e saeesaseesabaeensaeessseesnseeasseessseesssaeasseannnes 37
2.8 ENUMETALIONS ..uveeivieiierieeienteetesitesttesteseteestestestesasesstesseenseensesnsaessesssesssesssesseesseenseensesssesnsesnsenns 40
2.9 Handling Pointers with Dyalog BYREScccuiiioiiiiiiecieete ettt et eaaeeanes 42
2.10 DECF CONVEISION ..eeutiriieeierieeeereeenstessessseesuessesssessesseesssesseessesssesssesssesssesssesssesseesseessesssesssesssenns 44
B USING WINAOWS.FOIMSvviieiieeiiiieecceireeeeeeecreeeeeeeetreeeeeeeeerreeeeeenaeeeeeeensseeeeeennsraseeeenes 45
1 00 B a1 1 e Yo 11 o n T o TR
3.2 Creating GUI Objects
3.3 0DJECE HIEIArCRYoeeeeeeeeeee ettt et et e et e e tee e e ae e e ae e e aeeeesaeeenseeeseeeesseeenseean 45
3.4 Positioning and Sizing FOrms and CONIOISc.ccveeierieiierieeieeieeie et e e see e aeeaeeees 46
3.5 MOdal DIAlOZ BOXESueeeeeeeeiereeeriieirieiteeiteeteetestesseesseesseesseesseassesssenssesssesssesssessesssesssenssesssesannne 46
3.6 NON MOAAI FOIMSoieiiiieciieeieecieeieesteete et e eteete st esee e te e se et e enseessesssesssessaasssesseassesnsensseessenssennen 51
B WNPE ettt ettt e e e e e s e e e e et e e e e e e e e e e e e e eesese s et rbataaaaataaaeeeaeeeeeeeeesasssssnnrnnn 53
AL INEFOAUCHION vttt ettt et ettt s sbe s bt s ae st et et et e be st e besbasbessesseessensensensensans 53
4.2 TEMPEIaAtUre CONVEITEL ...uuviiiiiieeeeieeceeccccciiirteeeeeeeeeeeeeeeeerraaaeeeeseeeeeeeseesnnssssssasasaeeseseessenassssssanes 54
4.2, 1 INEFOAUCHION .ttt st sttt et ettt et et e st et et et et et e b et et et e e et et eneeneene 54

2025-10-30 (main:e0843eae32) Page 5

.NET Framework Interface Guide

4.2.2 USINZ XAML ..o eeeees e e e e seeeeaeeseseseseseeeeeeeseseseeeseeeseseseseseeesaeeseseseseseeeseessesesenes 54
4.2.3 USING COUE ..eouvieniieiieeiecieeteete et et este st e et e s e e beebe et e esaesseesseebesssassaenseasseensesasasssesseensaessesssesseessennsen 66
4.3 DAta BINAING oottt e e et eete e e ta e e aa e e e baeeae e e raeeeabaeebae e taeeaataeenaeaenns 74
4.3 L TEXE EXAMPIE vttt ettt e st e st e st et st et e b et et e s e s et e s se s entessensensensensensensennenseneans 74
4.3.2 FONESIZE EXAMPIE .eeeiiieiieieeieeieeeteeete et et e st et eteetesseesseesbeesseessessaessaessesssesasasseenseessasssesssenseessensen 77
4.3.3 Text and FONESIZE USING COURcouvivuieiieeiieteeieeteeteetee et steeteeae e e e steeaeessesasessaebeesbeesseessessaesseennen 79
4.3.4 Text and FONESIZE USING XAMLcciiviiiiiiiieieenieeiteteete st esteesteetesseesseessesbesasessaesseessesssesssesseessessen 83
4.3.5 Filtered LiSt EXAMPIEc.occveeieeeeecieeie ettt ettt e et e ste et s e e eseeaeesaesasessa e beensaesseessessaeseennen 85
4.3.6 NEtODJECE EXAMPIEveiiieieeieeiteeteete ettt ettt ettt esae et e s e e ste e beebesasassaesbeenbaessesssasseensesnsen 90
4.3.7 DAteTIME EXAMPIE ..ocuviirieieeieeteeeteete et ettt e te et e ete e s e e steebeesaeeseesseesseersesasesssenbeensasssesssessaeseennen 92
4.3.8 DAtaGrid EXAMPIE ...c..eoueruiriieiiriiriieienienteetesie st tete st steste st st et s st este st e ss et e b et et et et et et et e e et et e e eneene 95
4.3.9 DataGrid MatriX EXAMPIEc.eecuieirieiieieeeeeieeieetee ettt eee et esteeveebe s s e sseeeseessesasesssenseessaessessnenns 100
4.4 SyNCFUSION INErOUCHION ...ouviiiiiiiiiiietetete ettt ettt sbe sttt et aes 110
4.5 SyncFusion CircularGauge EXamPlecccoouevieruirirenenieieteteteteste ettt et 111
5 APLSCIIPE cnveeiieeieeeieeteeete st st st st e st s it e s be e st e sbe e s b e e beesabe s beesate s saessaesabaesnbesbaenns 116
5.1 INEFOAUCHION .ottt b et et b et st et ae e eneeene
5.2 The APLSCIIPt COMPIIET .ooeieierieeeeeiieeeeectreeeeeetteeeeetreeeeeetreeeeesreeeeessssesessessasesessssssenessseessnssnnes
5.3 Creating an APLScript File
5.4 Transferring code from the Dyalog APL SESSIONccccueieiiiriiiiiiieeniieeieeesteesveeeieessneessneesnnes 120
5.5 General prinCiples Of APLSCIIPE ..cccouvveieeeiiieeeecieee et eeceetreeeeeireeeeeeareeeessseeeeessnseeeeessseessnssnnes 121
5.6 Creating Programs With APLSCEIPtoocuiiiiiiiieiiicieccreeeie et ettt e estaeessaeesvee s aaeessnaasnnes 122
5.7 Creating NET Classes With APLSCIIPL ...cccuviieiiieiieeieceieceie ettt eevae e e s vee e vaesssneeennes 126
5.8 Creating ASP NET Classes With APLSCEIPLceccuiieiiiiiiieieiiecee ettt eevaeeseveesveesvneessneeeanes 135
6 WIITING INEL CLASSESeeeeeeiieeeieeeeeee ettt ettt et eette e e e e e v e e eeraeeeaaeeeetreeeeaseeeeaneas 138
6.1 INEFOAUCHION ettt ettt s sb e sttt et et sae b b nes 138
6.2 Assemblies Namespaces and ClaSSESccciieeiieeiiieeiieecieeeiee e eeteeereeeeteeeesaeesreeeeveeesneens 138
6.3 GELEING STAMTEA ...ttt et e et e e et e e tee e aae e s beeebee e saeeeabeeebaaesaaanns 139
B A EXAMPIE L oottt et e et e et e e et e e e be e e ta e e aae e e bae e baa e raeeenteeebeaeasaaeenbeeeraaesaaanns 141
B.5 EXAMPIE 2 oottt e et e et e e et e e e ae e e ba e e tae e e be e e baaeataaeeateeebaaeasaaeebeeeraaesaaanns 145
6.6 EXAMPIE 28 ..ttt ettt et e e et e e e te e e ta e e aae e e be e e taaeetaaeeateeebaeeasaeeanbeeesaaesaaans 149
6.7 EXAMPIE 3 oottt ettt e et e et e e et e e e eae e e beeeeaae e e bee e bae e aaeeebeeebaeeasaeeebeeeraaeneaens 152
BB EXAMPIE 4 .ottt e et ee e e et e e e ae e e be e e e aae e e bee e raeeaaaeeebeeeebaeeasteeeteeeraaeseaens 155
6.9 EXAMPIE 5 oottt ettt e te e et e et e e et e e e teeeetaeeeaaeeebee e raeeasteeereeeabaeeasaeeeseeeraaeasreens 160
.10 INEEITACES ..ttt ettt ettt et e e st e st esae e s e se e bt e se e s e s aeesanesneenaeen 165

2025-10-30 (main:e0843eae32) Page 6

.NET Framework Interface Guide

7 DYalOg APL QNA LIS ..ottt ceetre e e eeree e e e e e baae e e e eeanreeeeeennraeaeeeennnraaeas 167
2% 13 o T [¥ ot T o IS 167
7.2 11S InStallation DEPENAENCYueieueeeeiiieeiee ettt et et e e et e e e e e ae e e reeeereeeesaeesseeesaeessaenns 167
7.3 11S Applications and Virtual DIF€CLOIIEScceeeeveeeiiieieeeie ettt ettt e e re e e v e eeaee e 168
7.4 INternNet SErVICES MANAZENuvieieeeiieeeeecteeeeectee e e eeteeeeebaeeeeesaeeesesssaeeeesssaeaeassaseessnssssannnes 169
B WIHING WED SEIVICES ...ooieeieeeeiiieeee ettt ettt e e et e e ee e e ta e e s naa e e sae e e nsaeennenas 171
8L INEFOAUCTION .ttt ettt ettt sb e s b s b s bt et e et e e e saesbabenas

8.2 Web Service Scripts ...

8.3 Compilation

8.4 Exporting Methods

8.5 WED SEIVICE Data TYPES ...vvveeeeireeeeeeireeeeeitreeeeeetreeeeeeiseeeeesesreeeeessseeeesssssseesssssssesesssssessssssssesennes 174
8.6 EXECULION ..ottt st sb s bbbt bt sttt et b e b bbb 175
8.7 Global.asax and Application and Session ODJECESccceeeiiiriiieiiieeiiieeeeere e 175
8.8 SamPle WED SErviCe EGLcooiiiiieeiieceecte ettt eeiteesae e s ve e e vae e aaeesveesbae e saaessseeessaasnssaenns 176
8.9 Sample Web Service LOANSEIVICEccviieuiiiiiieiiieeiieecteesteeeteeeeiaeesaeesreessvaesseaeesseessaassssaens 178
8.10 Sample Web Service GOIfSEIVICEuiiiiiiiiiieiiecteccteecte ettt eevr e e re e s ve e s svaaeene e e 182
8.11 Sample WED SEIVICE EG2ceviiiiieeiieeeeeeteeeteeette et ettt e e vae e v e e s ve e stae s aaeessbeeevaaensnaenns 201
9 CalliNg WED SEIVICES ...oeeeeeieeeeee ettt ettt ee e eeetee e et eeteeeearaeeeeaaaeeetveeeenseeeenneas 205
9. L INEFOAUCEION .ottt ettt sttt ettt sa e bbb s e st sae b saesbesbeas 205
9.2 MaKEPIOXY fUNCLION ..eeiiiiiiiciie ettt et et e e e tae e e te e sbeeeetaeeesaeeesseeensaeensaaennnes 205
9.3 Using LoanService from DYalOg APLcouiieiiieiiiieeieeeiee ettt et et eetaeeeaeeeveeeevaeessaaaennes 206
9.4 Using GolfService from DYalog APLoooviieiieeieeeie ettt e eveeeetaeeeae e e ree e vae e naeeennes 206
9.5 EXPIOIING WED SEIVICES ...ttt ettt e e e tte e et e e te e e taeeesaeeessee e saeeesaaaennes 211
9.6 ASYNCNIONOUS USE ...ttt ettt e et ee e e ete e s tee e ateeesteeebeeeesaesessaasnseeesaeenssaeannes 212
10 Writing ASP.NET WED PAZESeeeeeiiieiiieeiieeeiteeeeee et e st eesveeesvaeeseseesnaeessnsaeennns 216
10,2 INEFOAUCTION ..ttt et et b e bt ettt ettt et st s b s b s bt et se st et et e bebenbensenee 216
10.2 Your first APL Web Page 217
10.3 The Page_Load Event 222
10.4 COAE BERING ...ttt ettt et ettt sb e s b s b st e et et et et e besbeee 225
10.5 WOrKSPace BENINGccuveeeieiieiieeeeeteee ettt ettt et et e e e e saeeaeeae s b e ssaessaessaessaenseensaans 228
11 Writing Custom Controls for ASP.NETc..oviiiiiieeiee et et eeteeeevee e eeeeeeiaee e vae e 245
L1212 INErOAUCTION ..viiiiiiiiiiiicicrcetct ettt bbb bttt et sb b esbesnesne 245
11.2 The SIMPIECEI CONLIOL .c.eeeeeeeeeeeeeeeeee ettt eeetre et e e e e etreeeeeareeeeensaseeeessseeeeesnnneeens 246
11.3 The TemperatureConverterCtll CONtrolccocvieeciieiiienieeeiteeee et aeeeaee s 248

2025-10-30 (main:e0843eae32) Page 7

.NET Framework Interface Guide

11.4 The TemperatureConverterCtl2 CONLrolcoocveeieeeiieeececeeeeeeeree et eeereeeeeeerreeeeeareeeens 253
11.5 The TemperatureConverterCtl3 CONLIOlcoocviiieeeiieeieereeececree e ceereeeeeeerre e e e aaeeeens 261
12 Implementation DEtailSc.eeeeuiiiiiiiecee ettt ettt are e e be e e 265
12,1 INEFOAUCHION ettt ettt ettt e e e e e ba e e b e e e abeeebaeesabeessseeessaeensseensseessssaasseeas 265

12.2 Isolation Mode 265
12.3 Workspace Sizecccoeeeeeeeveeennenn, .. 266

12.4 Structure of the Active WOTrKSPACEcoocuviiiiiiciiectecceeceeete ettt aneeanes .. 266
L2.5 TRIEAMING «.eeeeieeeiiie ettt ettt e st e et e e e te e e bee e tbeeeabeeesseesseessseeessaeensaeenssaassseaenseens 270
12.6 Debugging an APL NET Classcccvuiieiiieeiieeiieeiteeeiteeeiteeeseeesteeessseessseessveesssesssseessssesssesnsees 272
12.7 ASP.INET CONFIUIAtiON ...oooeviieiiieeiieeceeecteette ettt te e e te e e ete e e e aaeesaaaeesaeeeaaeeenasaensneas 275

2025-10-30 (main:e0843eae32) Page 8

2025-10-30 (main:e0843eae32) Page 9

.NET Framework Interface Guide

1 Overview

1.1 Introduction

This manual describes the Dyalog interface to the Microsoft .NET Framework. This
document does not attempt to explain the features of the .NET Framework, except in
terms of their APL interfaces. For information concerning the .NET Framework, see the
documentation, articles and help files, which are available from Microsoft and other
sources.

The .NET interface features include:

o the ability to create and use objects that are instances of .NET Classes.

e the ability to define new .NET Classes in Dyalog that can then be used from
other .NET languages such as C# and VB.NET.

e the ability to write Web Services in Dyalog.

e the ability to write ASP.NET web pages in Dyalog.

.NET Classes

The .NET Framework defines a so-called Common Type System. This provides a set of
data types, permitted values, and permitted operations. All cooperating languages are
supposed to use these types so that operations and values can be checked (by the
Common Language Runtime) at run time. The .NET Framework provides its own built-in
class library that provides all the primitive data types, together with higher-level classes
that perform useful operations.

Dyalog allows you to create and use instances of .NET Classes, thereby gaining access to
a huge amount of component technology that is provided by the .NET Framework.

It is also possible to create Class Libraries (Assemblies) in Dyalog. This allows you to
export APL technology packaged as .NET Classes, which can then be used from
other .NET programming languages such as C# and Visual Basic.

The ability to create and use classes in Dyalog also provides you with the possibility to
design APL applications built in terms of APL (and non-APL) components. Such an
approach can provide benefits in terms of reliability, software management and re-
usage, and maintenance.

2025-10-30 (main:e0843eae32) Page 10

.NET Framework Interface Guide

GUI Programming with System.Windows.Forms

One of the most important .NET class libraries is called System.Windows.Forms, which
is designed to support traditional Windows GUI programming. Visual Studio .NET,
which is used to develop GUI applications in Visual Basic and C#, produces code that
uses System.Windows.Forms. Dyalog allows you to use System.Windows.Forms,
instead of (and in some cases, in conjunction with) the built-in Dyalog GUI objects such
as the Dyalog Grid, to program the Graphical User Interface.

Web Services

Web Services are programmable components that can be called by different
applications. Web Services have the same goal as COM, but are technically platform
independent and use HTTP as the communications protocol with an application. A Web
Service can be used either internally by a single application or exposed externally over
the Internet for use by any number of applications.

ASP.NET and WebForms

ASP.NET is a new version of Microsoft Active Server Page technology that makes it
easier to develop and deploy dynamic Web applications. To supplement ASP.NET, there
are some important new .NET class libraries, including WebForms which allow you to
build browser-based user interfaces using the same object-oriented mechanism as you
use Windows . Forms for the Windows GUI. The use of these component libraries
replaces basic HTML programming.

ASP.NET pages are server-side scripts, that are usually written in C# or Visual Basic.

However, you can also employ Dyalog directly as a scripting language (APLScript) to
write ASP.NET web pages. In addition, you can call Dyalog workspaces directly from
ASP.NET pages, and write custom server-side controls that can be incorporated into
ASP.NET pages.

These features give you a wide range of possibilities for using Dyalog to build browser-
based applications for the Internet, or for your corporate Intranet.

2025-10-30 (main:e0843eae32) Page 11

.NET Framework Interface Guide

1.2 Prerequisites

The Dyalog version 20.0 .NET Framework interface requires version 4.0 or greater of
Microsoft .NET Framework. It does not operate with earlier versions of the .NET
Framework. In addition:

o .NET Framework version 4.5 is needed for full Data Binding support (including
support for the INotifyCol lectionChanged interface, which is used by Dyalog
to notify a data consumer when the contents of a variable, that is data bound as
a list of items, changes).

¢ |IS needs to be installed before installing Dyalog APL in order to access the
examples in the Samples/asp.net sub-directory - if [IS and ASP.NET are not
present, the asp.net sub-directory will not be installed during the Dyalog
installation.

Note that .NET Framework is specific to Microsoft Windows; the cross-platform .NET is
also supported (see below).

1.3 Files Installed with Dyalog

NET Interface Components

The components used to support the .NET interface are summarised below. Different
versions of each component are supplied according to the target platform.

o The Bridge DLL. This is the interface library through which all calls between
Dyalog and the .NET Framework are processed

o The DyalogProvider DLL. This DLL performs the initial processing of an
APLScript.

o The APLScript Compiler. This is itself written in Dyalog and packaged as an
executable.

e The DyalogNet DLL; a subsidiary library

e The Dyalog DLL. This is the engine that executes all APL code that is hosted by
and called from another .NET application.

For a list of the files associated with each of these components, see Installation/
Configuration: Files And Directories .

2025-10-30 (main:e0843eae32) Page 12

.NET Framework Interface Guide

Code Samples

The samp les subdirectory contains several sub-directories relating to the .NET
interface:

e aplclasses; a sub-directory that contains examples of .NET classes written in
APL.

® aplscript; a sub-directory that contains APLScript examples.

® asp.net; a sub-directory that is mapped to the IIS Virtual Directory dyalog.net,
and contains various sample APL Web applications.

e vinforms; a sub-directory that contains sample applications that use the
System.Windows.Forms GUI classes.

e web.config: this file specifies Dyalog configuration parameters for ASP.NET. See
Section 12.7.

2025-10-30 (main:e0843eae32) Page 13

.NET Framework Interface Guide

2 Accessing .Net Classes

2.1 Introduction

.NET classes are implemented as part of the Common Type System. The Type System
provides the rules by which different languages can interact with one another. Types
include interfaces, value types and classes. The .NET Framework provides built-in
primitive types plus higher-level types that are useful in building applications.

A Class is a kind of Type (as distinct from interfaces and value types) that encapsulates
a particular set of methods, events and properties. The word object is usually used to
refer to an instance of a class. An object is typically created by calling the system
function ONEW, with the class as the first element of the argument.

Classes support inheritance in the sense that every class (but one) is based upon
another so-called Base Class.

An assembly is a file that contains all of the code and metadata for one or more classes.
Assemblies can be dynamic (created in memory on-the-fly) or static (files on disk). For
the purposes of this document, the term Assembly refers to a file (usually with a .DLL
extension) on disk.

2.2 Locating .NET Classes and Assemblies

Unlike COM objects, which are referenced via the Windows Registry, .NET assemblies
and the classes they contain, are generally self-contained independent entities (they
can be based upon classes in other assemblies). In simple terms, you can install a class
on your system by copying the assembly file onto your hard disk and you can de-install
it by erasing the file.

Although classes are arranged physically into assembilies, they are also arranged
logically into namespaces. These have nothing to do with Dyalog namespaces and, to
avoid confusion, are henceforth referred to in this document as .NET namespaces.

Often, a single .NET namespace maps onto a single assembly and usually, the name of
the .NET namespace and the name of its assembly file are the same; for example,

the .NET namespace System.Windows.Forms is contained in an assembly named
System.Windows.Forms.dlL.

2025-10-30 (main:e0843eae32) Page 14

.NET Framework Interface Guide

However, it is possible for a .NET Namespace to be implemented by more than one
assembly; there is not a one-to-one-mapping between .NET Namespaces and
assemblies. Indeed, the main top-level .NET Namespace, System, is spread over a
number of different assembly files.

Within a single .NET Namespace there can be any number of classes, but each has its
own unique name. The full name of a class is the name of the class itself, prefixed by
the name of the .NET namespace and a dot. For example, the full name of the
DateTime class in the .NET namespace Systemis System.DateTime.

There can be any number of different versions of an assembly installed on your
computer, and there can be several .NET namespaces with the same name,
implemented in different sets of assembly files; for example, written by different
authors.

To use a .NET Class, it is necessary to tell the system to load the assembly (dL 1) in
which it is defined. In many languages (including C#) this is done by supplying the
names of the assemblies or the pathnames of the assembly files as a compiler
directive.

Secondly, to avoid the verbosity of programmers having to always refer to full class
names, the C# and Visual Basic languages allow the .NET namespace prefix to be
elided. In this case, the programmer must declare a list of .NET namespaces with Using
(C#) and Imports (Visual Basic) declaration statements. This list is then used to resolve
unqualified class names referred to in the code.

In either language, when the compiler encounters the unqualified name of a class, it
searches the specified .NET namespaces for that class.

In Dyalog, this mechanism is implemented by the JUSING system variable. QUSING
performs the same two tasks that Using/Imports declarations and compiler directives
provide in C# and Visual Basic; namely to give a list of .NET namespaces to be searched
for unqualified class names, and to specify the assemblies which are to be loaded.

OUSING is a vector of character vectors each element of which contains 1 or 2 comma-
delimited strings. The first string specifies the name of a .NET namespace; the second
specifies the pathname of an assembly file. This may be a full pathname or a relative
one, but must include the file extension (. dL). If just the file name is specified, it is
assumed to be located in the standard .NET Framework directory that was specified
when the .NET Framework was installed (for example, C:
\Windows\Microsoft.NET\Framework64\vl.0.30319)

It is convenient to treat .NET namespaces and assemblies in pairs. For example:

2025-10-30 (main:e0843eae32) Page 15

.NET Framework Interface Guide

OQUSING<«'System,mscorlib.dll’
JUSING,«c'System.Windows.Forms,System.Windows.Forms.dL L'
QUSING,«c'System.Drawing,System.Drawing.dll'

Note that because Dyalog APL automatically loads mscorlib.dLl (which contains the
most commonly used classes in the System Namespace), it is not actually necessary to
specify it explicitly in QUSING.

OUSING has Namespace scope, that is, each Dyalog namespace, class or instance has its
own value of QUSING that is initially inherited from its parent space but which may be
separately modified. QUSING may also be localised in a function header, so that
different functions can declare different search paths for .NET namespaces/assemblies.

If DUSING is empty (QUSING«0p<'"'), APL will not search for .NET classes in order to
resolve names which would otherwise give a VALUE ERROR.

Assigning a simple character vector to QUSING is equivalent to setting it to the enclose
of that vector. The statement (QUSING<'"') does not empty OUSING, it sets it to a single
empty element, which gives access tomscorlib.dll and the Bridge DLL without a
namespace prefix.

Within a Class script, you may instead employ one or more :Using statements to
specify the .NET search path. Each of these statements is equivalent to appending an
enclosed character vector to QUSING.

:Using System,mscorlib.dll
:Using System.Windows.Forms,System.Windows.Forms.dl!l
:Using System.Drawing,System.Drawing.dll

Classes also inherit from the namespace they are contained in. The statement
:Using

Is equivalent to
JQUSING«0pc"'

...and allows a class to clear the inherited value before appending to JUSING, or to state
that no .NET assemblies should be loaded.

The equivalent to QUSING«' ' is a :Using statement followed by a comma separator but
no namespace prefix and no assembly name:

:Using ,

2025-10-30 (main:e0843eae32) Page 16

.NET Framework Interface Guide

2.3 Using .NET Classes

To create a Dyalog object as an instance of a .NET class, you use the ONEW system
function. The ONEW system function is monadic. It takes a 1 or 2-element argument, the
first element being a class.

If the argument is a scalar or a 1-element vector, an instance of the class is created
using the constructor that takes NO argument.

If the argument is a 2-element vector, an instance of the class is created using the
constructor whose argument matches the disclosed second element.

For example, to create a DateTime object whose value is the 30t April 2008:
JQUSING«'System'

mydt<[JNEW DateTime (2008 4 30)

The result of ONEW is an reference to the newly created instance:

ONC <'mydt'
9.2

If you format a reference to a .NET Object, APL calls its ToString method to obtain a
useful description or identification of the object. This topic is discussed in more detail
later in this chapter.

mydt
30/04/2008 00:00:00

If you want to use fully qualified class names instead, one of the elements of DUSING
must be an empty vector. For example:

QUSING«,<c""'
mydt<[INEW System.DateTime (2008 4 30)

When creating an instance of the DateTime class, you are required to provide an
argument with two elements: (the class and the constructor argument, in our case a 3-
element vector representing the date). Many classes provide a default constructor
which takes no arguments. From Dyalog, the default constructor is called by calling
ONEW with only a reference to the class in the argument. For example, to obtain a
default Button object, we only need to write:

2025-10-30 (main:e0843eae32) Page 17

.NET Framework Interface Guide

mybtn<[OJNEW Button

The above statement assumes that you have defined DUSING correctly; there must be a
reference to System.Windows.Forms.dl L, and a namespace prefix which allows the
name Button to be recognised as System.Windows.Forms.Button.

The mechanism by which APL associates the class name with a class in a .NET
namespace is described below.

Constructors and Overloading

Each .NET Class has one or more constructor methods. A constructor is a method which
is called to initialise an instance of the Class. Typically, a Class will support several
constructor methods - each with a different set of parameters. For example,
System.DateTime supports a constructor that takes three Int32 parameters (year,
month, day), another that takes six Int32 parameters (year, month, day, hour, minute,
second), and so forth. These different constructor methods are not distinguished by
having different names but by the different sets of parameters they accept.

This concept, which is known as overloading, may seem somewhat alien to the APL
programmer. After all, we are used to defining functions that accept a whole range of
different arguments. However, type checking, which is fundamental to the .NET
Framework, requires that a method is called with the correct number of parameters,
and that each parameter is of a predefined type. Overloading solves this issue.

When you create an instance of a class in C#, you do so using the new operator. This is
automatically mapped to the appropriate constructor method by matching the
parameters you supply to the various forms of the constructor. A similar mechanism is
implemented in Dyalog using the ONEW system function.

How the ONEW System Function is implemented

When APL executes an expression such as:
mydt<[INEW DateTime (2008 4 30)
the following logic is used to resolve the reference to DateTime correctly.

The first time that APL encounters a reference to a non-existent name (that is, a name
that would otherwise generate a VALUE ERROR), it searches the .NET namespaces/
assemblies specified by QUSING for a .NET class of that name. If found, the name (in this
case DateTime) is recorded in the APL symbol table with a name class of 9.6 and is

2025-10-30 (main:e0843eae32) Page 18

.NET Framework Interface Guide

associated with the corresponding .NET namespace. If not, VALUE ERROR is reported as
usual. Note that this search ONLY takes place if QUSING has been assigned a value.

Subsequent references to that symbol (in this case bateTime) are resolved directly and
do not involve any assembly searching.

If you use ONEW with only a class as argument, APL will attempt to call the version of its
constructor that is defined to take no arguments. If no such version of the constructor
exists, the call will fail with a LENGTH ERROR.

Otherwise, if you use ONEW with a class as argument and a second element, APL will call
the version of the constructor whose parameters match the second element you have
supplied to ONEW. If no such version of the constructor exists, the call will fail with a
LENGTH ERROR.

Notes

¢ The value of QUSING is only used when an object is instantiated. Changing the
value of QUSING has no effect on objects that have already been instantiated in
the active workspace.

e When a workspace containing .Net objects is saved, the names of the Net
objects are saved with it but they are not automatically re-instantiated when the
workspace is loaded or copied. A reference to such an orphaned object will
report (NULL).

e Some functionality might work with .NET Framework or .NET but not both, for
example, SharpPlot requires the .NET Framework and does not work with .NET
itself.

Displaying a .NET Object

When you display a reference to a .NET object, APL calls the object's ToString method
and displays the result. All objects provide a ToString method because all objects
ultimately inherit from the .NET class System.0bject. Many .NET classes will provide
their own ToString that overrides the one inherited from System.0Object, and return
a useful description or identifier for the object in question. ToString usually supports a
range of calling parameters, but APL always calls the version of ToString that is
defined to take no calling parameters. Monadic format (s) and monadic OFMT have
been extended to provide the same result, and provides a quick shorthand method to
call ToString in this way. The default ToString supplied by System.0Object returns the
name of the object's Type. This can be changed using the system function ODF. For
example,

2025-10-30 (main:e0843eae32) Page 19

.NET Framework Interface Guide

z«[INEW DateTime 0TS
z. ([IDF (sDayOfWeek),, 'G< 99:99>'[JFMT 100LHour Minute)
z

Saturday 09:17

Note that if you want to check the type of an object, this can be obtained using the
GetType method, which is supported by all .NET objects.

Disposing of .NET Objects

.NET objects are managed by the .NET Common Language Runtime (CLR). The
CLR allocates memory for an object when it is created, and de-allocates this memory
when it is no longer required.

When the (last) reference from Dyalog to a .NET object is expunged by OEX or by
localisation, the system marks the object as unused, leaving it to the CLR to de-allocate
the memory that it had previously allocated to it, when appropriate. Note that even
though Dyalog has de-referenced the APL name, the object could potentially still be
referenced by another .NET class.

De-allocated memory may not actually be re-used immediately and may indeed never
be re-used, depending upon the algorithms used by the CLR garbage disposal.

Furthermore, a .NET object may allocate unmanaged resources (such as window
handles) which are not automatically released by the CLR.

To allow the programmer to control the freeing of resources associated with .NET
objects in a standard way, objects implement the IDisposable interface which provides
a Dispose() method. The C# language provides a using control structure that
automates the freeing of resources. Crucially, it does so however the flow of execution
exits the control structure, even as a result of error handling. This obviates the need for
the programmer to call Dispose() explicitly wherever it may be required.

This programming convenience is provide in Dyalog by the
:Disposable ... :EndDisposable control structure. For further information, see
Programming: Disposable

2.4 Browsing .NET Classes

Microsoft supplies a tool for browsing .NET Class libraries called ILDASM. EXE?™.

1 ILDASM.EXE can be found in the .NET SDK and is distributed with Visual Studio

2025-10-30 (main:e0843eae32) Page 20

.NET Framework Interface Guide

As a convenience, the Dyalog APL Workspace Explorer has been extended to perform a
similar task as ILDASM so that you can gain access to the information within the context

of the APL environment.

The information that describes .NET classes, which is known as its Metadata, is part of

the definition of the class and is stored with it. This Metadata corresponds to Type

Information in COM, which is typically stored in a separate Type Library.

To gain information about one or more .NET Classes, open the Workspace Explorer,

right click the Metadata folder, and choose Load.

@ CLEAR WS Exploring []
File Edit Options
WX L3

Workspace Tree

View Tools

IEEIaEIR TR RO

- E #

& OSE

Elﬁ Typelibs
Load
Unload

There is no viewable content for the selected item

0 object(s). 254.5Mb free.

0 bytes used (0 bytes selected)

This brings up the Browse .NET Assembly dialog box as shown below. Navigate to

the .NET assembly of your choice, and click Open.

2025-10-30 (main:e0843eae32)

Page 21

€« v

Organize v New folder
Microsoft.NET
assembly
authman
Framework
Framework64
1032
v2.0.50727
v3.0
v3.5
v4.0.30319
Managed DirectX
Migration
Minidump
ModemLogs
OCR
* Panther
Performance
PLA
PolicyDefinitions

v

.NET Framework Interface Guide

> ThisPC » OS(C:) > Windows > Microsoft NET > Framework64 > v4.0.30319

Name
|4} Microsott.VisualBasic.dll

|%] Microsoft.VisualC.DII

3] Microsoft.Visual C.STLCLR.dII

%] Microsoft.Win32.Primitives.dIl

|%] Microsoft.Windows.ApplicationServer.Ap...
|%] MmcAspExt.dil

|%] mscordacwks.dll

<] mscordbi.dil

| mscoreei.dll

Date modified
3/2019 4

|%] mscoreeis.dil

|%] mscorlib.dil

<] mscorpe.dil

|%] mscorpehost.dil
%] mscorrc.dll

%] mscorsecimpl.dil
|%] mscorsn.dil

|2 mscorsve.dil

|%] netstandard.dll
%] ngentasklauncher.dll
*| PerfCounter.dll
2l neverifu dll

- @ @

Type Size

Application exten... 625 KB
Application exten... 30KB
Application exten... 50 KB
Application exten.. 28KB
Application exten.. 137KB
Application exten.. 114 KB

Application exten..
Application exten...

Application exten...

Application exten..

5,312 KB

Application exten..

File name: | mscorlib.dll

Application exten.. 101 KB
Application exten... 190 KB
Application exten... 380 K8
ication exten... 131KB
Application exten.. 29KB
Application exten.. 552 KB
Application exten.. 104 KB
Application exten... 29K8
ication exten... 261KB
Annlicatinn evten A7 KR

v | | NET Assemblies (il v

Cancel

The .NET Classes provided with the .NET Framework are typically located in C:
\WINDOWS\Microsoft.NET\Framework64\V4.0.30319 (on a 64-bit computer). The last
named folder is the Version number.

The most commonly used classes of the .NET Namespace System are stored in this
directory in an Assembly named mscorlib.dl L, along with a number of other
fundamental .NET Namespaces.

The result of opening this Assembly is illustrated in the following screen shot. The
somewhat complex tree structure that is shown in the Workspace Explorer merely
reflects the structure of the Metadata itself.

2025-10-30 (main:e0843eae32)

Page 22

.NET Framework Interface Guide

@ CLEAR WS Exploring [] — m| X

File Edit Options View Tools
MEX PE E BEEE MDA
Workspace Tree

&) OSE
-4 Typelibs
= MetaData
=% Loaded Metadata
=2 mscorlib
=2 Modules
Bt CA\Windows\Microsoft. NET\Framework64\v4.0.30319\mscorlib.dll
=R Namespaces
[Unnamed]
Microsoft.Win32
Microsoft.Win32.SafeHandles
System
System.Collections
System.Collections.Concurrent
System.Collections.Generic
System.Collections.ObjectModel
System.Configuration.Assemblies
System.Deployment.Internal
System.Deployment.Internal.lsolation

ERORORE

oo
1t 3 £ 4

+

RERERORE

0 object(s). 254.5Mb free. 0 bytes used (0 bytes selected)

Opening the System/ Classes sub-folder causes the Explorer to display the list of classes

contained in the .NET Namespace System as shown in the picture below.

2025-10-30 (main:e0843eae32)

Page 23

.NET Framework Interface Guide

@ CLEAR WS Exploring [] =

Workspace Tree

File Edit Options View Tools
mE X L3

i EEEE AU

.

[+
T 45 48 48 48 40 30 40 3 3 O O U U U U U U 3R 3 3 3 3 4

<

ERsd Classes

System._ComObject
System._AppDomain
System.AccessViolationException
System.Action

System.Action™

System.Action’2

System.Action’3

System.Action’4

System.Action’s

System.Action’®

System.Action’7

System.Action’8
System.ActivationContext
System.Activator
System.AggregateException
System.AppContext

System.AppDomain
System.AppDomain+CAPTCASearcher
System.AppDomain+EvidenceCollection
System.AppDomain+NamespaceResolverForintrospection
System.AppDomainlnitializer
System.AppDomaininitializerinfo+Iteminfo
System.AppDomainManager
System.AppDomainSetup

0 object(s). 254.5Mb free. 0 bytes used (0 bytes selected)

The Constructors folder shows you the list of all of the valid constructors and their

parameter sets with which you may create a new instance of the Class by calling New.

The constructors are those named .ctor; you may ignore the one named .cctor, (the

class constructor) and any labelled as Private.

2025-10-30 (main:e0843eae32)

Page 24

.NET Framework Interface Guide

For example, you can deduce that DateTime.New may be called with three numeric
(Int32) parameters, or six numeric (Int32) parameters, and so forth. There are in fact
seven different ways that you can create an instance of a DateTime.

@ CLEAR WS Exploring [] - m] X
File Edit Options View Tools

HEX P @ EEERE MAAU
Workspace Tree

System.ContextBoundObject "
System.ContextMarshalException

System.ContextStaticAttribute

System.Convert

System.Converter’2

System.CrossAppDomainDelegate

System.DataMisalignedException

System.DateTime

%% Base Class

el Constructors|

* (Private)Void .cctor()

: (Private)Void .ctor(Int64, System.DateTimeKind, Boolean)

> (Private)Void .ctor(System.Runtime.Serialization.SerializationInfo, System.Runtime.Serialization.StreamingContext)
* (Private)Void .ctor(UInt64)

: Void .ctor(Int32, Int32, Int32)

: Void .ctor(Int32, Int32, Int32, Int32, Int32, Int32)

: Void .ctor(Int32, Int32, Int32, Int32, Int32, Int32, Int32)

* Void .ctor(Int32, Int32, Int32, Int32, Int32, Int32, Int32, System.Globalization.Calendar, System.DateTimeKind)

* Void .ctor(Int32, Int32, Int32, Int32, Int32, Int32, Int32, System.Globalization.Calendar)

* Void .ctor(Int32, Int32, Int32, Int32, Int32, Int32, Int32, System.DateTimeKind)

* Void .ctor(Int32, Int32, Int32, Int32, Int32, Int32, System.DateTimeKind)

* Void .ctor(Int32, Int32, Int32, Int32, Int32, Int32, System.Globalization.Calendar)

* Void .ctor(Int32, Int32, Int32, System.Globalization.Calendar)

* Void .ctor(Int64)

.ctor(Int64, System.DateTimeKind) v

®
m-E- 4% 4 4 4 4 3 34 3

FE R R R R R R R R R R R R e e

<
9,
a

0 object(s). 254.5Mb free. 0 bytes used (0 bytes selected)

For example, the following statement may be used to create a new instance of
DateTime (09:30 in the morning on 30t April 2001):

mydt<[OJNEW DateTime (2001 4 30 9 30 0)

mydt
30/04/2001 09:30:00

The Properties folder provides a list of the properties supported by the Class. It shows
the name of the property followed by its data type. For example, the DayofYear
property is defined to be of type Int32.

2025-10-30 (main:e0843eae32) Page 25

.NET Framework Interface Guide

& CLEAR WS Exploring [] - O X
File Edit Options View Tools
HEX PZ @ EEEE| YA
Workspace Tree
=%t System.DateTime
-2 Base Class
Z Constructors
-2 Fields
-2 Methods
i
-5t (Private)internalKind : System.UInt64
----- %% (Private)internalTicks : System.Int64
-4 Date : System.DateTime
----- %' Day : System.Int32
- DayOfWeek : System.DayOfWeek
----- % DayOfvear : System.Int32
- Hour : System.Int32
----- %+ Kind : System.DateTimeKind
-4 Millisecond : System.Int32
----- % Minute : System.Int32
-4t Month : System.Int32
----- %+ Now : System.DateTime
%% Second : System.Int32
----- %+ Ticks : System.Int64
- TimeOfDay : System.TimeSpan
----- %+ Today : System.DateTime
- UtcNow : System.DateTime
----- %+ Year : System.Int32
< 3
0 object(s). 254.5Mb free. 0 bytes used (0 bytes selected)

You can query a property by direct reference:

mydt.DayOfWeek
Monday

2025-10-30 (main:e0843eae32) Page 26

.NET Framework Interface Guide

Notice too that the data types of some properties are not simple data types, but
Classes in their own right. For example, the data type of the Now property is itself
System.DateTime. This means that when you reference the Now property, you get back
an object that represents an instance of the System.DateTime object:

mydt.Now
07/11/2001 11:30:48
grs
2001 11 7 11 30 48 O

The Methods folder lists the methods supported by the Class. The Explorer shows the
data type of the result of the method, followed by the name of the method and the
types of its arguments. For example, the IsLeapYear method takes an Int32
parameter (year) and returns a Boolean result.

mydt.IsLeapYear 2000

2025-10-30 (main:e0843eae32) Page 27

.NET Framework Interface Guide

@ CLEAR WS Exploring [] - O X

tH o X P
Workspace Tree

File Edit Options

2

View Tools

| BEEEE YA

<

LT OF OF 3 OF 3 OF 4 OF 4 38 4 38 4 33 43

Boolean Equals(System.DateTime) A
Boolean Equals(System.DateTime, System.DateTime)
Boolean Equals(System.Object)

Boolean IsDaylightSavingTime()

Boolean op_Equality(System.DateTime, System.DateTi
Boolean op_GreaterThan(System.DateTime, System.D
Boolean op_GreaterThanOrEqual(System.DateTime, S
Boolean op_Inequality(System.DateTime, System.Date
Boolean op_LessThan(System.DateTime, System.Date’
Boolean op_LessThanOrEqual(System.DateTime, Syst¢
Boolean TryParse(System.String, System.DateTime Byl
Boolean TryParse(System.String, System.IFormatProvi
Boolean TryParseExact(System.String, System.String, ¢
Boolean TryParseExact(System.String, System.String[],
Double ToOADate()

0 object(s). 254.5Mb free.

0 bytes used (0 bytes selected)

Many of the reported objects are listed as Private, which means they are inaccessible

to users of the class - you are not able to call them or inspect their value. For more

information about classes, see Programming: Introducing Classes.

2025-10-30 (main:e0843eae32)

Page 28

.NET Framework Interface Guide

@ CLEAR WS Exploring [] = O X

tHE X P
Workspace Tree

File Edit Options

—

<

T OF 4 8 4F 38 OF 38 OF 3 OF 4 38 40 38 OF 33 OF 33 33 43

View Tools

' EEEE I YA Y

(Private)Void Finalize()

(Private)Void GetDatePart(Int32 ByRef, Int32 ByRef, Int

(Private)Void GetSystemTimeWithLeapSecondsHandli

(Private)Void System.Runtime.Serialization.ISerializabl

Boolean Equals(System.DateTime)

Boolean Equals(System.DateTime, System.DateTime)

Boolean Equals(System.Object)

Boolean IsDaylightSavingTime()

Boolean IsLeapYear(Int32)

Boolean op_Equality(System.DateTime, System.DateTi

Boolean op_GreaterThan(System.DateTime, System.D

Boolean op_GreaterThanOrEqual(System.DateTime, S

Boolean op_Inequality(System.DateTime, System.Date

Boolean op_LessThan(System.DateTime, System.Date’

Boolean op_LessThanOrEqual(System.DateTime, Syst¢

Boolean TryParse(System.String, System.DateTime Byl

Boolean TryParse(System.String, System.IFormatProvi

Boolean TryParseExact(System.String, System.String, ¢

Boolean TryParseExact(System.String, System.String[],

Double ToOADate()

Int32 Compare(System.DateTime, System.DateTime)
>

v

0 object(s). 254.5Mb free.

0 bytes used (0 bytes selected)

2.5 Value Tips for External Functions

Value Tips can also be used to investigate the syntax of external functions. If you hover

over the name of an external function, the Value Tip displays its Function Signature.

For example, in the example below, the mouse is hovered over the external function
dt.AddMonths and shows that it requires a single integer as its argument.

2025-10-30 (main:e0843eae32)

Page 29

clear ws

.NET Framework Interface Guide

[JUSING+'System’
dt+-DateTime.Now
dt.MethodList

Add AddDays
nMonth
TypeCode
ileTime

AddHours AddMilliseconds AddMinutes AddMonths

Equals FromBinary FromfFileTime FromFileTimeUtc

IsDaylightSavingTime IslLeapYear Parse ParseExa
ToFileTimeUtec TolocalTime TolongDateString Tolo

ing ToString ToUniversalTime TryParse TryParseExact

dt.AddMonth

System.DateTime AddMonths(Int32)

Function Signature

Should the external function provide more than one signature, they are all shown in
the Value Tip as illustrated below. Here the function ToString has four different

overloads.

clear ws

OUSING+'System’
dt+DateTime.Now

)CS dt
#.[System.DateTime]

JMETHODS
Add AddDays AddHours AddMilliseconds AddMinutes AddMonths
AddSeconds AddTicks AddYears Compare CompareTo DaysInMonth
Equals FromBinary FromFileTime FromFileTimeUtc FromOADate
GetDateTimeFormats GetHashCode GetType GetTypeCode IsDaylightSavingTime
IsLeapYear Parse ParseExact ReferenceEquals SpecifyKind Subtract
ToBinary ToFileTime ToFileTimeUtc TolLocalTime ToLongDateString
TolLongTimeString ToOADate ToShortDateString ToShortTimeString
Tostr—i Tall I D I D L i

System.String
System.String
System.String
System.String

. s
ToString()

ToString(System.String)
ToString(System.IFormatProvider)
ToString(System.String, System.IFormatProvider)

Function Signature

2.6 Advanced Techniques

Shared Members

Certain .NET Classes provide methods, fields and properties, that can be called directly
without the need to create an instance of the Class first. These members are known as
shared, because they have the same definition for the class and for any instance of the

class.

2025-10-30 (main:e0843eae32)

Page 30

.NET Framework Interface Guide

The methods Now and IsLeapYear exported by System.DateTime fall into this category.
For example:

OUSING«,c'System'

DateTime.Now
07/11/2008 11:30:48

DateTime.IsLeapYear 2000

APL language extensions for .NET objects

The .NET Framework provides a set of standard operators (methods) that are
supported by certain classes. These operators include methods to compare two .NET
objects and methods to add and subtract objects.

In the case of the DateTime Class, there are operators to compare two DateTime
objects. For example:

DT1<[INEW DateTime (2008 4 30)
DT2<[JNEW DateTime (2008 1 1)

A Is DT1 equal to DT2 ?
DateTime.op_Equality DT1 DT2
0

The op_Addition and op_Subtraction operators add and subtract TimeSpan objects
to DateTime objects. For example:

DT3«DateTime.Now
DT3
07/11/2008 11:33:45

TS<[ONEW TimeSpan (1 1 1)
TS
01:01:01

DateTime.op_Addition DT3 TS
07/11/2008 12:34:46

DateTime.op_Subtraction DT3 TS
07/11/2008 10:32:44

2025-10-30 (main:e0843eae32) Page 31

.NET Framework Interface Guide

The corresponding APL primitive functions have been extended to accept .NET objects
as arguments and simply call these standard .NET methods internally. The methods and
the corresponding APL primitives are shown in the table below.

Note that calculations and comparisons performed by .NET methods are performed
independently from the values of APL system variables (such as OFR and OCT).

.NET Method APL Primitive Function

op_Addition +

op_Subtraction -

op_Multiply x
op_Division +
op_Equality =
op_Inequality #
op_LessThan <

op_LessThanOrEqual

IA

op_GreaterThan >

v

op_GreaterThanOrEqual

So instead of calling the appropriate .NET method to compare two objects, you can use
the familiar APL primitive instead. For example:

DT1=DT2
0
DT1>DT2
1
DT3+TS
07/11/2008 12:34:46
DT3-TS

07/11/2008 10:32:44

Apart from being easier to use, the primitive functions automatically handle arrays and
support scalar extension; for example:

DT1>DT2 DT3

2025-10-30 (main:e0843eae32) Page 32

.NET Framework Interface Guide

In addition, the monadic form of Grade Up (4) and Grade Down (¥), and the Minimum
(L) and Maximum () primitive functions have been extended to work on arrays of
references to .NET objects. Note that the argument(s) must be a homogeneous set of
references to objects of the same .NET class, and in the case of Grade Up and Grade
Down, the argument must be a vector. For example:

ADT1 DT2 DT3

L/DT1 DT2 DT3
01/01/2008 00:00:00

Exceptions

When a .NET object generates an error, it does so by throwing an exception. An
exception is in fact a .NET class whose ultimate base class is System.Exception.

The system constant DEXCEPTION returns a reference to the most recently generated
exception object.

For example, if you attempt to create an instance of a DateTime object with a year that
is outside its range, the constructor throws an exception. This causes APL to report a
(trappable) EXCEPTION error (error number 90) and access to the exception object is
provided by JEXCEPTION.

2025-10-30 (main:e0843eae32) Page 33

.NET Framework Interface Guide

[USING<«'System'

DT«[INEW DateTime (100000 0 0)
EXCEPTION

DT<[INEW DateTime (100000 0 0)

OEN
90
JEXCEPTION.Message
Year, Month, and Day parameters describe an un-representable DateTime.

[JEXCEPTION.Source
mscorlib

JEXCEPTION.StackTrace
at System.DateTime.DateToTicks(Int32 year,
Int32 month,
Int32 day)

at System.DateTime..ctor(Int32 year,
Int32 month,
Int32 day)

Specifying Overloads and Casts

If a .NET function is overloaded in terms of the types of arguments it accepts, Dyalog
chooses which overload to call depending upon the data types of the arguments
passed to it. For example, if a .NET function foo () is declared to take a single argument
either of type int or of type double APL would call the first version if you called it with
an integer value and the second version if you called it with a non-integer value.

In some circumstances it may be desirable to override this mechanism and explicitly
specify which overload to use.

A second requirement is to be able to specify to what .NET types APL should coerce
arrays before calling a .NET function. For example, if a parameter to a .NET function is
declared as type System.0Object, it might be necessary to force the APL argument to
be cast to a particular type of object before the function is called.

Both these requirements are met by calling the function via the Variant operator [.
There are two options, OverloadTypes (the Principle Option) and CastToTypes. Each
option takes an array of refs to .NET types, the same length as the number of
parameters to the function.

2025-10-30 (main:e0843eae32) Page 34

.NET Framework Interface Guide

OverloadTypes Examples

To force APL to call the double version of function foo () regardless of the type of the
argument val:

(foo [I('OverloadTypes'Double))val
or more simply:
(foo [IDouble)val
Note that Doub Le is a ref to the .NET type System.Double.

[QUSING<«'System'
Double
(System.Double)

Taking this a stage further, suppose that foo() is defined with 5 overloads as follows:

fool()

foo(int i)
foo(double d)
foo(double d, int i)
foo(double[] d)

The following statements will call the niladic, double, (double, int) and double[]
overloads respectively.

(foo [(<8)) & A niladic
(foo [[] Double) 1 A double
(foo [l(cDouble Int32))1 1 A double,int

(foo [(Type.GetType c'System.Double[]"'))ct 1 A double[]

Note that in the niladic case, an enclosed empty vector is used to represent a null
reference to a .NET type.

CastToTypes Example

The .NET function Array.SetValue() sets the value of a specified element (or
elements) of an array. The first argument, the new value, is declared as
System.Object, but the value supplied must correspond to the type of the Array in
question. APL has no means to know what this is and will therefore pass the value as is,
that is, in whatever internal format it happens to be at the time. For example:

2025-10-30 (main:e0843eae32) Page 35

.NET Framework Interface Guide

[USING<«'System'

A create a Boolean array with 2 elements
BA«Array.CreateInstance Boolean 2
BA.GetValue 0 A get the Oth element

A attempt to set the Oth element to 1 (AKA true)

BA.SetValue 1 0
EXCEPTION: Cannot widen from source type to target type
either because the source type is a not a primitive type or the conversi
on cannot be accomplished.
test[5] BA.SetValue 1 0

A

The above expression failed because APL passed the first argument 1 ,unchanged from
its current internal representation, as a 1-byte integer which does not fit into a Boolean
element.

To rectify the situation, APL must be told to cast the argument to a Boolean as follows:

(BA.SetValue [] ('CastToTypes'(Boolean Int32)))1 0
BA.GetValue 0 A get the Oth element

Overloaded Constructors

If a class provides constructor overloads, a similar mechanism is used to specify which
of the constructors is to be used when an instance of the class is created using ONEW.

For example, if MyClass is a .NET class with an overloaded constructor, and one of its
constructors is defined to take two parameters; a double and an int, the following
statement would create an instance of the class by calling that specific constructor
overload:

(ONEW [] (cDouble Int32)) MyClass (1 1)

2025-10-30 (main:e0843eae32) Page 36

.NET Framework Interface Guide

2.7 More Examples

Directory and File Manipulation

The .NET Namespace System.I0 (also in the Assembly mscorlib.dl L) provides some
useful facilities for manipulating files. For example, you can create aDirectoryInfo
object associated with a particular directory on your computer, call its GetFiles
method to obtain a list of files, and then get their Name and CreationTime properties.

[JUSING«,c'System.IO"'
d<[INEW DirectoryInfo (c'C:\Dyalog"')

d is an instance of the Directory Class, corresponding to the directory c:\Dyalog?.

d
C:\Dyalog

The GetFiles method returns a list of files; actually, Fi leInfo objects, that represent
each of the files in the directory: Its optional argument specifies a filter; for example:

d.GetFiles c'x.exe'
evalstub.exe exestub.exe dyalog.exe dyalogrt.exe

The Name property returns the name of the file associated with the Fi Le object:

(d.GetFiles c'x.exe').Name
evalstub.exe exestub.exe dyalog.exe dyalogrt.exe

And the CreationTime property returns its creation time, which is a DateTime object:
(d.GetFiles c'x.exe').CreationTime
01/04/2004 09:37:01 01/04/2004 09:37:01 08/06/2004 ...

If you call GetFiles without an argument (in APL, with an argument of 8), it returns a
complete list of files:

files«d.GetFiles &

2 In this document, we will refer to the location where Dyalog is installed as C:\Dyalog.
Your installation of Dyalog might be in a different folder or even on a different drive but the
examples should work just the same it you replace C:\Dyalog by your folder name

2025-10-30 (main:e0843eae32) Page 37

.NET Framework Interface Guide

Taking advantage of namespace reference array expansion, an expression to display file

names and their creation times is as follows.

files,[1.5]files.CreationTime

relnotes.hlp 03/02/2004
relnotes.cnt 03/02/2004
def_uk.dse 22/03/2004%
DIALOGS.HLP 22/03/2004%
dyares32.dll 22/03/2004

Sending an email

11
11

12:
12:
12:

47
HUY
13:
13:
13:

02
02
31
31
40

The .NET Namespace System.Web.Mai l provides objects for handing email.

You can create a new email message as an instance of the Mai IMessage class, set its
various properties, and then send it using the SmtpMai L class.

Please note that these examples will only work if your computer is configured to allow

you to send email in this way.

JUSING<«'System.Web.Mail,System.Web.dl L'

m<[DJNEW MailMessage

m.From«<'tony.blair@uk.gov'

m.To«'sales@dyalog.com'
m.Subject<«'order’

m.Body«'Send me 100 copies of Dyalog now'

SmtpMail.Send m

However, note that the send method of the smtpMai L object is overloaded and may be
called with a single parameter of type System.Web.Mail .Mai [Message as above, or

four parameters of type System.String:

So instead, you can just say:

SmtpMail.Send 'tony.blair@uk.gov'

'sales@dyalog.com’

'order'

‘Send me the goods'

2025-10-30 (main:e0843eae32)

Page 38

.NET Framework Interface Guide

Web Scraping

The .NET Framework provides a whole range of classes for accessing the internet from
a program. The following example illustrates how you can read the contents of a web
page. It is complicated, but realistic, in that it includes code to cater for a firewall/proxy
connection to the internet. It is only 9 lines of APL code, but each line requires careful
explanation.

First we need to define QUSING so that it specifies all of the .NET Namespaces and
Assemblies that we require.

JUSING<«'System,System.dll' 'System.Net' 'System.IO'

The WebRequest class in the .NET Namespace System.Net implements the .NET
Framework's request/response model for accessing data from the Internet. In this
example we create a WebRequest object associated with the URI https://
www.example.com. Note that WebRequest is an example of a static class. You don't
make instances of it; you just use its methods.

wrg«WebRequest.Create c'https://www.example.com'

In fact (and somewhat confusingly) if the URI specifies a scheme of "http://" or
"https://", you get back an object of type Htt pWebRequest rather than a plain and
simple WebRequest. So, at this stage, wrq is an Ht tpWebRequest object.

wrq
System.Net.HttpWebRequest

This class has a Proxy property through which you specify the proxy information for a
request made through a firewall. The value assigned to the Proxy property has to be an
object of type System.Net.WebProxy. So first we must create a new WebProxy object
specifying the hostname and port number for the firewall. You will need to change this
statement to suit your own internet configuration (it may even not be necessary to do
this).

PX<[ONEW WebProxy(c'http://dyagate.dyadic.com:8080")
PX
System.Net.WebProxy

Having set up the WebProxy object as required, we then assign it to the Proxy property
of the HttpRequest object wrq.

wrqg.Proxy<«PX

2025-10-30 (main:e0843eae32) Page 39

.NET Framework Interface Guide

The HttpRequest class has a GetResponse method that returns a response from an
internet resource. No it's not HTML (yet), the result is an object of type
System.Net.HttpWebResponse.

wr<wrq.GetResponse
wr
System.Net.HttpWebResponse

The HttpWebResponse class has a GetResponseStream method whose result is of type
System.Net.ConnectStream. This object, whose base class is System.I0.Stream,
provides methods to read and write data both synchronously and asynchronously from
a data source, which in this case is physically connected to a TCP/IP socket.

str<wr.GetResponseStream
str
System.Net.ConnectStream

However, there is yet another step to consider. The Stream class is designed for byte
input and output; what we need is a class that reads characters in a byte stream using a
particular encoding. This is a job for the System.I0.StreamReader class. Given a
Stream object, you can create a new instance of a StreamReader by passing it the
Stream as a parameter.

rdr<[INEW StreamReader str
rdr
System.IO.StreamReader

Finally, we can use the ReadToEnd method of the StreamReader to get the contents of
the page.

s«rdr.ReadToEnd
ps
45242

Note that to avoid running out of connections, it is necessary to close the Stream:

str.Close

2.8 Enumerations

An enumeration is a set of named constants that may apply to a particular operation.
For example, when you open a file you typically want to specify whether the file is to
be opened for reading, for writing, or for both. A method that opens a file will take a
parameter that allows you to specify this. If this is implemented using an enumerated

2025-10-30 (main:e0843eae32) Page 40

.NET Framework Interface Guide

constant, the parameter may be one of a specific set of (typically) integer values; for
example, 1=read, 2=write, 3=both read and write. However, to avoid using meaningless
numbers in code, it is conventional to use names to represent particular values. These
are known as enumerated constants or, more simply, as enums.

In the .NET Framework, enums are implemented as classes that inherit from the base
class System.Enum. The class as a whole represents a set of enumerated constants;
each of the constants themselves is represented by a static field within the class.

The next chapter deals with the use of System.Windows.Forms to create and
manipulate the user interface. The classes in this .NET Namespace use enums
extensively.

For example, there is a class named System.Windows.Forms.FormBorderStyle that
contains a set of static fields named None, FixedDialog, Sizeable, and so forth. These
fields have specific integer values, but the values themselves are of no interest to the
programmer.

Typically, you use an enumerated constant as a parameter to a method or to specify the
value of a property. For example, to create a Form with a particular border style, you
would set its BorderSty Le property to one of the members of the FormBorderStyle
class, viz.

[JUSING«'System'
JUSING,«c'System.Windows.Forms,system.windows.forms.dl L'

f1<[INEW Form

f1.BorderStyle«FormBorderStyle.FixedDialog

FormBorderStyle.[JINL "2 A List enum members

Fixed3D FixedDialog FixedSingle FixedToolWindow None

Sizable SizableToolWindow

An enum has a value, which you may use in place of the enum itself when such usage is
unambiguous. For example, the FormBorderStyle.Fixed3D enum has an underlying
value is 2:

Convert.ToInt32 FormBorderStyle.Fixed3D
You could set the border style of the Form f1 to FormBorderStyle.Fixed3D with the
expression:

fi1.BorderStyle<«2

2025-10-30 (main:e0843eae32) Page 41

.NET Framework Interface Guide

However, this practice is not recommended. Not only does it make your code less clear,
but also if a value for a property or a parameter to a method may be one of several
different enum types, APL cannot tell which is expected and the call will fail.

For example, when the constructor for System.Drawing.Font is called with 3
parameters, the 3™ parameter may be either a FontStyle enum or a GraphicsUnit
enum. If you were to call Font with a 3" parameter of 1, APL cannot tell whether this
refersto a FontStyle enum, or a GraphicsUnit enum, and the call will fail.

2.9 Handling Pointers with Dyalog.ByRef
Certain .NET methods take parameters that are pointers.

An example is the DivRem method that is provided by the System.Math class. This
method performs an integer division, returning the quotient as its result, and the
remainder in an address specified as a pointer by the calling program.

APL does not have a mechanism for dealing with pointers, so Dyalog provides a .NET
class for this purpose. This is the Dyalog.ByRef class, which is a provided by an
Assembly that is loaded automatically by the Dyalog program.

Firstly, to gain access to the Dyalog .NET Namespace, it must be specified by QUSING.
Note that you need not specify the Assembly (DLL) from which it is obtained (the
Bridge DLL), because (like mscorlib.dl L) it is automatically loaded by when APL starts.

OUSING«'System' 'Dyalog’

The Dyalog.ByRef class represents a pointer to an object of type System.Object. It
has a number of constructors, some of which are used internally by APL itself. You only
need to be concerned about two of them; the one that takes no parameters, and the
one that takes a single parameter of type System.0Object. The former is used to create
an empty pointer; the latter to create a pointer to an object or some data.

For example, to create an empty pointer:
ptri<[NEW ByRef

Or, to create pointers to specific values,
ptr2<[NEW ByRef 0

ptr3<[NEW ByRef (ct10)
ptr4<[INEW ByRef ([DNEW DateTime (2000 4 30))

2025-10-30 (main:e0843eae32) Page 42

.NET Framework Interface Guide

Notice that a single parameter is required, so you must enclose it if it is an array with
several elements. Alternatively, the parameter may be a .NET object.

The ByRef class has a single property called Value.

ptr2.Value
0
ptr3.Value
123456738910
ptri.Value

30/04/2000 00:00:00

Note that if you reference the Value property without first setting it, you get a VALUE
ERROR.

ptri.Value
VALUE ERROR
ptri.Value

A

Returning to the example, we recall that the bivRem method takes 3 parameters:

1. the numerator

2. the denominator

3. a pointer to an address into which the method will write the remainder after
performing the division.

remptr<[ONEW ByRef
remptr.Value
VALUE ERROR

remptr.Value
A

Math.DivRem 311 99 remptr

remptr.Value
14

In some cases a .NET method may take a parameter that is an Array and the method
expects to fill in the array with appropriate values. In APL there is no syntax to allow a
parameter to a function to be modified in this way. However, we can use the
Dyalog.ByRef class to call this method. For example, the System.I0.FileStreamclass
contains a Read method that populates its first argument with the bytes in the file.

2025-10-30 (main:e0843eae32) Page 43

.NET Framework Interface Guide

OUSING«'System.IO' 'Dyalog' 'System'
fs«[DNEW FileStream ('c:\tmp\jd.txt' FileMode.Open)
fs.Length
25
fs.Read(arg<«[JNEW ByRef,cc25p0)0 25
25
arg.Value
104 101 108 108 111 32 102 114 111 109 32 106 111 104 110 32 100 97 105
110 116 114 101 101 10

2.10 DECF Conversion

Incoming .NET data types VT_DECIMAL (96-bit integer) and VT_CY (currency value
represented by a 64-bit two's complement integer, scaled by 10,000) are converted to
126-bit decimal numbers (DECFs). This conversion is performed independently of the
value of OFR.

If you want to perform arithmetic on values imported in this way, then you should set
OFR to 1287, at least for the duration of the calculations.

Note that the .NET interface converts System.Decimal to DECFs but does not convert
System.Int64 to DECFs.

2025-10-30 (main:e0843eae32) Page 44

.NET Framework Interface Guide

3 Using Windows.Forms

3.1 Introduction

System.Windows.Forms is a .NET namespace that provides a set of classes for creating
the Graphical User Interface for Windows applications.

As an alternative to the built-in Dyalog GUI, Windows Forms has been superseded by
Windows Presentation Foundation which is described in the next Chapter. This section
is included to support existing Dyalog applications that make use of Windows Formes.

Unless otherwise specified, all the examples described in this Chapter may be found in
the samples\winforms\winforms.dws workspace.

3.2 Creating GUI Objects

GUI objects are represented by .NET classes in the .NET Namespace
System.Windows.Forms. In general, these classes correspond closely to the GUI objects
provided by Dyalog, which are themselves based upon the Windows API.

For example, to create a form containing a button and an edit field, you would create
instances of the Form, Button and TextBox classes.

3.3 Object Hierarchy

The most striking difference between the Windows.Forms GUI and the Dyalog GUI is
that in Windows . Forms the container hierarchy represented by forms, group boxes, and
controls is not represented by an object hierarchy. Instead, objects that represent GUI
controls are created stand-alone (that is, without a parent) and then associated with a
container, such as a Form, by calling the Add method of the parent’s Controls collection.
Notice too that Windows .Forms objects are associated with APL symbols that are
namespace references, but Windows . Forms objects do not have implicit names.

2025-10-30 (main:e0843eae32) Page 45

.NET Framework Interface Guide

3.4 Positioning and Sizing Forms and Controls

The position of a form or a control is specified by its Locat ion property, which is
measured relative to the top left corner of the client area of its container.

Location has a data type of System.Drawing.Point. To set Location, you must first
create an object of type System.Drawing.Point then assign that object to Location.

Similarly, the size of an object is determined by its Size property, which has a data type
of System.Drawing.Size. This time, you must create a System.Drawing.Size object
before assigning it to the Size property of the control or form.

Objects also have Top(Y) and Left (X) properties that may be specified or referenced
independently. These accept simple numeric values.

The position of a Form may instead be determined by its DeskTopLocation property,
which is specified relative to the taskbar. Another alternative is to set the
StartPosition property whose default setting is WindowsDefaul tLocation, which
represents a computed best location.

3.5 Modal Dialog Boxes

Dialog Boxes are displayed modally to prevent the user from performing tasks outside
of the dialog box.

To create a modal dialog box, you create a Form, set its BorderSty le property to
FixedDialog, setits ControlBox, MinimizeBox and MaximizeBox properties to false,
and display it using ShowDialog.

A modal dialog box has aDialogResult property that is set when the Form is closed, or
when the user presses OK or Cancel. The value of this property is returned by the
ShowDialog method, so the simplest way to handle user actions is to check the result
of ShowDialog and proceed accordingly. Example 1 illustrates a simple modal dialog
box.

EXAMPLE 1

Function €G1 illustrates how to create and use a simple modal dialog box. Much of the
function is self-explanatory, but the following points are noteworthy.

EG1[1-2] set JUSING to include the .NET Namespaces System.Windows.Forms and
System.Drawing.

2025-10-30 (main:e0843eae32) Page 46

.NET Framework Interface Guide

EG1[6,8,9] create a Form and two Button objects. As yet, they are unconnected. The
constructor for both classes is defined to take no arguments, so the ONEW system
function is only called with a class argument.

EG1[14] shows how the Location property is set by first creating a new Point object
with a specific pair of (x and y) values.

EG1[18] computes the values for the Point object for button2.Location, from the
values of the Left, Height and Top properties of button1; thus positioning button2
relative to buttoni.

V EG1;formil;buttonl;button2;true;false;[JUSING:Z
[1] JUSING«,c'System.Windows.Forms,
System.Windows.Forms.dlL'
[2] [(USING,«c'System.Drawing,System.Drawing.dll"'

[3] true false«l 0

[4]

[5] A Create a new instance of the form.

[6] form1<[JNEW Form

[7] A Create two buttons to use as the accept and cancel btns

[8] button1<«[JNEW Button
[9] button2<[NEW Button
[10]
[11] A Set the text of buttonl to "OK".
[12] buttonl.Text«'OK'
[13] p Set the position of the button on the form.
[14] buttonl.Location«[JNEW Point,c10 10
[15] A Set the text of button2 to "Cancel".
[16] button2.Text«'Cancel'
[17] A Set the position of the button relative to buttoni.
[18] button2.Location<[JNEW Point,
cbuttonl.Left buttonl.(Height+Top+10)
[19]

EG1[21,23] setsthe DialogResult property of buttoni and button2 to
DialogResult.OK and DialogResult.Cancel respectively. Note that DialogResult is
an enumeration with a predefined set of member values.

Similarly, EG1[32] defines the BorderSty Le property of the form using the
FormBorderStyle enumeration.

EG1[38 40] defines the AcceptButton and CancelButton properties of the Form to
button1 and button2 respectively. These have the same effect as the Dyalog GUI
Default and Cancel properties.

2025-10-30 (main:e0843eae32) Page 47

.NET Framework Interface Guide

EG1[42] sets the StartPosition of the Form to be centre screen. Once again this is
specified using an enumeration; FormStartPosition.

[20]
[21]
[22]
(23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

[32]
[33]

[34]
[35]

[36]
[37]
[38]
[39]
[4+0]
[41]

[4+2]
[43]

A Make

buttonl's dialog result OK.

buttonl.DialogResult«DialogResult.OK

A Make

button2's dialog result Cancel.

button2.DialogResult«DialogResult.Cancel

A Set
formi.

the title bar text of the form.
Text«'My Dialog Box'

A Display a help button on the form.

formi.

A Defi

formi.
A Set

forml.
A Set

formi.
A Set
formi
A Set
formi.
A Set

formi.

HelpButton<«true

ne the border style of the form to that of a

dialog box.

BorderStyle«FormBorderStyle.FixedDialog
the MaximizeBox to false to remove the

maximize box.

MaximizeBox«false
the MinimizeBox to false to remove the

minimize box.

MinimizeBox<«false
the accept button of the form to buttont.

.AcceptButton<«buttonil

the cancel button of the form to button2.
CancelButton«button2
the start position of the form to the centre

of the screen.

StartPosition«FormStartPosition.CenterScreen

EG1[45 46] associate the buttons with the Form. The Controls property of the Form
returns an object of type Form.ControlCol lection. This class has an Add method that

is used to add a control to the collection of controls that are owned by the Form.

EG1[50] calls the ShowDialog method (with no argument; hence the 8). The result is
an object of type Form.DialogResult, which is an enumeration.

EG1[52] compares the result returned by ShowDialog with the enumeration member
DialogResult.OK (note that the primitive function = has been extended to compare
objects).

2025-10-30 (main:e0843eae32)

Page 48

[k]
[u5]
[46]
[47]
(48]
[49]
[50]
[51]

[52]
[53]

[54]

[55]
[56]

[57]

[58]

.NET Framework Interface Guide

A Add button!l to the form.
forml.Controls.Add buttonl
A Add button2 to the form.
formil.Controls.Add button2

A Display the form as a modal dialog box.
Z«<formil.ShowDialog &
A Determine if the OK button was clicked on the
dialog box.
:If Z=DialogResult.OK
A Display a message box saying that the OK
button was clicked.
Z+MessageBox.Showc'The OK button on the form
was clicked.
:Else
A Display a message box saying that the Cancel
button was clicked.
Z+MessageBox.Showc'The Cancel button on the
form was clicked.
:EndIf

Warning

The use of modal forms in .NET can lead to problematic situations while
debugging. As the control is passed to .NET the APL interpreter cannot regain
control in the event of an unforeseen error. It is advisable to change the code to

something like the following until the code is fully tested:

[52] forml.Visible«1
[53] :While forml.Visible ¢ :endwhile
EXAMPLE 2

Functions G2 and EG2A illustrate how the Each operator (') and the extended
namespace reference syntax in Dyalog may be used to produce more succinct, and no
less readable, code.

2025-10-30 (main:e0843eae32)

Page 49

.NET Framework Interface Guide

V EG2;forml;labell;textBox1l;true;false;[JUSING:Z
[1] [JUSING«,c'System.Windows.Forms,
System.Windows.Forms.dlL'
[2] OUSING,«c'System.Drawing,System.Drawing.dll"'

[3] true false«l 0

[4]

[5] A Create a new instance of the form.

[6] form1«<[NEW Form

[7]

[8] textBox1<«[JNEW TextBox

[9] Label1«[IJNEW Label

[10]

[11] A Initialize the controls and their bounds.

[12] labell.Text«'First Name'

[13] labell.Location<[INEW Point (48 48)

[14] labell.Size«[INEW Size (104 16)

[15] textBox1.Text«""

[16] textBox1.Location<[INEW Point (48 64)

[17] textBox1.Size«[INEW Size (104 16)

[18]

[19] A Add the TextBox control to the form's control
collection.

[20] forml.Controls.Add textBox1

[21] A Add the Label control to the form's control
collection.

[22] forml.Controls.Add label1l

[23]

[24] A Display the form as a modal dialog box.

[25] Z«forml.ShowDialog @

v

EG2A[7] takes advantage of the fact that .NET classes are namespaces, so the
expression Form TextBox Label is a vector of namespace refs, and the expression
ONEW 'Form TextBox Label runsthe ONEW system function on each of them.

Similarly, EG2A[10 11 12] combine the use of extended namespace reference and the
Each operator to set the Text, Location and Size properties in several objects
together.

2025-10-30 (main:e0843eae32) Page 50

.NET Framework Interface Guide

V EG2A;forml;labell;textBoxl;true;false;[JUSING:Z
[1] A Compact version of EG2 taking advantage of ref
syntax and =
[2] JUSING<«'System.Windows.Forms,System.Windows.Forms.dl L'
[3] [JUSING,«c'System.Drawing,System.Drawing.dll'

[u] true false«l 0

[5]

[6] A Create a new instance of the form, TextBox and Label.
[7] (forml textBoxl labell)<[JNEW Form TextBox Label

[8]

[9] A Initialize the controls and their bounds.

[10] (labell textBoxl).Text<«'First Name' "'

[11] (labell textBox1).Location<«[JNEW Point, < (48 48)(48 64)

[12] (labell textBox1).Size<[INEW 'Size, e (104 16) (104 16)

[13]

[14] A Add the Label and TextBox controls to the form's
control collection.

[15] formi.Controls.AddRangeclabell textBox1

[16]

[17] A Display the form as a modal dialog box.

[18] Z«forml.ShowDialog €

3.6 Non-Modal Forms

Non-modal Forms are displayed using the Run method of the
System.Windows.Forms.Application object. This method is designed to be called
once, and only once, during the life of an application and this poses problems during
APL development. Fortunately, it turns out that, in practice, the restriction is that
Application.Run may only be run once on a single system thread. However, it may be
run successively on different system threads. During development, you may therefore
test a function that calls Application.Run, by running it on a new APL thread using
Spawn (&). See Chapter 13 for further details.

DataGrid Examples

Three functions in the samples\winforms\winforms.dws workspace provide examples
of non-modal Forms. These examples also illustrate the use of the WinForms.DataGrid
class.

Function Grid1 is an APL translation of the example given in the help file for the
DataGrid class in the .NET SDK Betal. The original code has been slightly modified to
work with the current version of the SDK.

2025-10-30 (main:e0843eae32) Page 51

.NET Framework Interface Guide

Function Grid2 is an APL translation of the example given in the help file for the
DataGrid class in the .NET SDK Beta2.

Function Grid is an APL translation of the example given in the file:

C:\Program Files\Microsoft.NET\SDK\v1.1\...
QuickStart\winforms\samples\Data\Grid\vb\Grid.vb

This example uses Microsoft SQL Server 2000 to extract sample data from the sample
NorthWind database. To run this example, you must have SQL Server running and you
must modify function Grid_Load to specify the name of your server.

GDIPLUS Workspace

The samples\winforms\gdiplus.dws workspace contains a sample that demonstrates
the use of non-rectangular Forms. It is a direct translation into APL from a C# sample
(WinForms-Graphics-GDIPlusShape) that was distributed on the Visual Studio .NET Beta
2 Resource CD.

TETRIS Workspace

The samples\winforms\tetris.dws workspace contains a sample that demonstrates
the use of graphics. It is a direct translation into APL from a C# sample (WinForms-
Graphics-Tetris) that was distributed on the Visual Studio .NET Beta 2 Resource CD.

WEBSERVICES Workspace

An example of a non-modal Form is provided by the WFGOLF function in the
samples\asp.net\webservices\webservices.dws workspace. This function performs
exactly the same task as the GOLF function in the same workspace, but it uses
Windows.Forms instead of the built-in Dyalog GUIL.

WFGOLF, and its callback functions WFB0OOK and WFSS perform exactly the same task, with
almost identical dialog box appearance, of GOLF and its callbacks BOOK and ss that are
described in Chapter 7.

Note that when you run WFGOLF or GOLF for the first time, you must supply an
argument of 1 to force the creation of the proxy class for the Gol fService web service.

2025-10-30 (main:e0843eae32) Page 52

.NET Framework Interface Guide

4 WPF

4.1 Introduction

Windows Presentation Foundation is a graphical system that includes a programmable
Graphical User Interface. It is supplied as a set of Microsoft .NET assemblies and is
supported on all current Windows platforms.

The WPF GUI is in many ways more sophisticated and powerful than either Dyalog's
own built-in GUI or the GUI provided by Windows Forms.

Like any other set of .NET classes, WFP can be integrated into Dyalog applications via
the .NET interface. Dyalog users may therefore develop GUI applications that are based
upon WPF as an alternative to the built-in Dyalog GUI or Windows Forms.

Quite apart from its advanced GUI capabilities, WPF supports data binding. This is a
complex subject, but putting it very simply, data binding allows a property of a user-
interface object (such as the Text property of a TextBox object) to be bound to some
data. When the data changes, the bound property of the object changes and vice versa.

Dyalog includes a data binding function (20151%) which supports data binding to APL
arrays and namespaces.

A WPF GUI can be built dynamically by creating a set of component objects (using
ONEW) in a similar way to the Dyalog GUI and Windows Forms. However, the same user-
interface can instead be specified statically using XAML, a text markup system that
describes the GUI using XML. Along with data binding, this feature allows the
application logic and the user-interface to be developed and maintained separately.

The examples described in this section are provided in the workspace WPFIntro.dws

3 This function may remain as an I-beam or be replaced by one or more system functions
in a future Version of Dyalog.

2025-10-30 (main:e0843eae32) Page 53

.NET Framework Interface Guide

4.2 Temperature Converter

4.2.1 Temperature Converter Tutorial

This tutorial illustrates how to go about developing a simple WPF application in Dyalog.
It is functionally identical to the GUI tutorial example that illustrates how to develop a
GUI application using the built-in Dyalog Graphical User Interface. See Interface Guide:

GUI Tutorial.

Like the GUI Tutorial, this is necessarily an elementary example, but illustrates the
principles that are involved. The example is a simple Temperature Converter.

The user may enter a temperature value in either Fahrenheit or Centigrade and have it
converted to the other scale.

No attempt has been made to update the WPF example, in terms of its user-interface,
from the original version which was developed for Windows 3. This allows a direct
comparison to be made between using the WPF and using the built-in Dyalog GUI.

There are two versions provided. The first uses XAML to describe the user-interface
with code to drive it. The second version is written entirely in APL code. The two
versions of this example may be found in WPFIntro.dws in the namespaces
UsingXAML and UsingCode respectively.

4.2.2 Using XAML

The functions and data for this example are provided in the workspace WPFIntro.dws
in the namespace WPF.UsingXAML. To run the example:

)JLOAD wpfintro
WPF .UsingXAML.TempConverter

Arguably the easiest way to create a WPF GUI is to define it using XAML. The XAML
defines the structure, layout and appearance of the user-interface in a very concise
manner. It is still necessary to write code to display the XAML and to respond to user
actions, but the amount of code involved is minimal.

The XAML for the Temperature Converter is shown below.

2025-10-30 (main:e0843eae32) Page 54

.NET Framework Interface Guide

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="WPF Temperature Converter"
SizeToContent="WidthandHeight">
<DockPanel LastChildFill="False">
<Menu DockPanel .Dock="Top">
<MenuItem Header="_Scale">
<MenuItem Name="mnuFahrenheit" Header="_Fahrenheit"
IsCheckable="True" IsChecked="True"/>
<MenuItem Name="mnuCentigrade" Header="_Centigrade"
IsCheckable="True"/>
</Menultem>
</Menu>
<Grid Width="230" Margin="40,10,10,10">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition Width="80"/>
<ColumnDefinition Width="60"/>
</Grid.ColumnDefinitions>
<Label Grid.Row="0" Grid.Column="0" Content="Fahrenheit"/>
<Label Grid.Row="1" Grid.Column="0" Content="Centigrade"/>
<TextBox Name="txtFahrenheit" Grid.Row="0" Grid.Column="1"
Margin="5"/>
<TextBox Name="txtCentigrade" Grid.Row="1" Grid.Column="1"
Margin="5"/>
<Button Name="btnF2C" Grid.Row="0" Grid.Column="2"
Content="F>C" Margin="5"/>
<Button Name="btnC2F" Grid.Row="1" Grid.Column="2"
Content="C>F" Margin="5"/>
<Button Name="btnQuit" Grid.Row="2" Grid.Column="1"
Content="Quit" Margin="5"/>
</Grid>

<ScrollBar Name="scrTemp" DockPanel.Dock="Right" Width="20"

Orientation="Vertical" Minimum="1" Maximum="213">
</ScrollBar>
</DockPanel>
</Window>

2025-10-30 (main:e0843eae32)

Page 55

.NET Framework Interface Guide

-
gp WPF Temperature Converter =RNCN X

Scale

Fahrenheit | [F>C ’ =

Centigrade [C>E

| Quit |

The window defined by this XAML is illustrated in the screen image shown above. Let
us examine the XAML, component by component.

Parent and Child Controls

First, notice how the structure of the GUI is defined by enclosing the child components
inside the opening and closing tags of its parent. So:

<Window
<DockPanel>

</DockPanel>
</Window>

specifies a Window control that contains a DockPanel control.

Similarly,
<Menu>
<Menultem ... >
<Menultem ... />
<Menultem ... />
</Menultem>
</Menu>

defines a Menu that contains a Menultem, that itself contains two other Menultem
objects.

2025-10-30 (main:e0843eae32) Page 56

.NET Framework Interface Guide

Named and Un-named Controls

Secondly, notice that certain objects are named whereas others are not. For example:
TextBox Name="mnuFahrenheit defines a TextBox named txtFahenheit; whereas
<DockPanel ...> defines an unnamed DockPanel object.

Objects are given names so that they can be referenced from the code that displays
content in the user-interface or handles the user actions. In this case, the code will read
the content of the txtFahrenheit TextBox but has no need to reference the DockPanel.

The Main Window

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"

Title="WPF Temperature Converter"

SizeToContent="WidthandHeight">

</Window>

This extract of XAML defines a Window control; a top-level window that is equivalent
to a Dyalog GUI Form.

The xmins attributes define the XML namespaces (effectively the vocabulary of the xml
scheme) and are mandatory in an XAML document.

The name of the TextBox is Temp, and its caption is WFP Temperature Converter. The
SizeToContent property is set to "WidthandHeight", which causes the TextBox to
automatically size itself to fit its content in both horizontal and vertical directions.

The DockPanel

<DockPanel LastChildFill="False">

</DockPanel >

WPF provides a number of layout controls. These are containers whose only purpose is
to arrange child controls in a particular way, and to dictate how they are re-arranged
when the parent window is resized. The DockPanel is one of the simplest of the

WPF layout controls.

2025-10-30 (main:e0843eae32) Page 57

.NET Framework Interface Guide

In this case, the DockPanel is controlling 3 child windows a Menu, a Grid and a
ScrollBar.

The attachment of a particular child control is specified by setting its DockPanel.Dock
property. By default, the last control added to a DockPanel is stretched to fill the
remaining space when the window is expanded. In this case, the requirement is for a
fixed-width scrollbar attached to the right edge, so the default is overridden by setting

the LastChildFill property to "False".
The Menu

<Menu DockPanel.Dock="Top">
<MenuItem Header="_Scale">
<MenuItem Name="mnuFahrenheit" Header="_Fahrenheit"

IsCheckable="True" IsChecked="True"/>
<MenuItem Name="mnuCentigrade" Header="_Centigrade"
IsCheckable="True"/>
</Menultem>
</Menu>

-
fﬂ WPF Temperature Converter =N X

Scale

v Fahrenheit

| F>C |

Centigrade
Lentigrade | C>F ’

| Quit |

The above extract from the XAML defines a Menu. Setting Dock to "Top" causes the
Menu as a whole to be docked, so that it appears like a menubar, along the top of the
DockPanel. The Menu contains a single Menultem labelled Scale which itself contains
two sub-items labelled Fahrenheit and Centigrade respectively. The IsCheckable
property specifies whether or not the user can check the Menultem, and the IsChecked
property sets and reports its checked state. The underscore characters (for example, as
in "_Scale") identify the following character as a keyboard shortcut.

2025-10-30 (main:e0843eae32) Page 58

.NET Framework Interface Guide

The Grid

<Grid Width="230" Margin="40,10,10,10">

</Grid>
The Grid object is another WPF layout control that organises other controls in rows and
columns. Here, the XAML defines a Grid with a width of 230; a left margin if 40, and a

top, right and bottom margin of 10. As there is no explicit unit specified, the system
uses the default device-independent unit (px) of 1/96t inch.

The rows and columns of a Grid are defined by collections of RowDefinition and
ColumnDefinition objects.

Here the XAML specifies that the Grid contains 3 rows, each of which has a Height set
to "Auto" which means that its height depends upon the height of its content.

<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>

</Grid.RowDefinitions>

Similarly, there are 3 columns. The first column (which will contain labels) takes its
width from its content, that is, it will be just wide enough to display the longest label.
The other columns for the edit boxes and buttons are specified to be 80px and 60px
wide respectively. In this case, the content (TextBox and Button objects) will take their
widths from that of the column.

<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition Width="80"/>
<ColumnDefinition Width="60"/>

</Grid.ColumnDefinitions>

The Label Objects(Column 1)

<Label Grid.Row="0" Grid.Column="0" Content="Fahrenheit"/>
<Label Grid.Row="1" Grid.Column="0" Content="Centigrade"/>

Here the XAML specifies Label objects Fahrenheit and Centigrade. Because they are
defined within the <Grid> ...</Grid> tags, they are child objects of the Grid. In

2025-10-30 (main:e0843eae32) Page 59

.NET Framework Interface Guide

addition it is necessary to specify in which cells they are displayed using their Grid.Row
and Grid.Column properties. Note that the cell coordinates have zero origin.

The TextBox Objects(Column 2)

<TextBox Name="txtFahrenheit" Grid.Row="0" Grid.Column="1"
Margin="5"/>
<TextBox Name="txtCentigrade" Grid.Row="1" Grid.Column="1"
Margin="5"/>

The XAML specifies two TextBox objects named txtFahrenheit and txtCentigrade
respectively. Setting Margin to "5" means that a margin of 5px is applied around each
edge; otherwise the text boxes would occupy the entire width of the column (80px).
The effective width of each TextBox will therefore be 70px (80-2x5).

The Button Objects (Column 3)

<Button Name="btnF2C" Grid.Row="0" Grid.Column="2"
Content="F>C" Margin="5"/>

<Button Name="btnC2F" Grid.Row="1" Grid.Column="2"
Content="C>F" Margin="5"/>

<Button Name="btnQuit" Grid.Row="2" Grid.Column="1"
Content="Quit" Margin="5"/>

The XAML specifies three named Button controls. Note that the caption on a Button is
specified by its Content property.

The ScrollBar Object

This example uses a ScrollBar which the user may scroll to input a value, either in
Fahrenheit or Centigrade depending upon which of the two menu items (Fahrenheit or
Centigrade) is checked.*

<ScrollBar Name="scrTemp" DockPanel.Dock="Right" Width="20"
Orientation="Vertical" Minimum="1" Maximum="213">
</ScrollBar>

4 A ScrollBar is not the ideal choice of control for this type of user interation, but this
example is designed to look and behave like the original Dyalog GUI example, which was
written for the original version of Dyalog for Microsoft Windows.

2025-10-30 (main:e0843eae32) Page 60

.NET Framework Interface Guide

This XAML snippet defines a ScrollBar named scrTemp.

Setting DockPanel.Dock to "Right" means that it will be docked (aligned) on the right
edge of the DockPanel. It will be a vertical scrollbar, have a fixed width of 20px and a
default height. The range of the ScrollBar is defined by its Minimum and Maximum
properties which are set so that the ScrollBar will specify a value in Fahrenheit.

Note that in order to cause the ScrollBar to be docked (aligned) along the right edge of
the DockPanel it is necessary to set LastChildFill to "False" (for the DockPanel) and Dock
to "Right" (for the ScrollBar), because the value of LastChildFill (default "True")
overrides the Dock value of the last defined child of the DockPanel.

Note

The XAML that defines this user-interface is at the same time both simple and
complex. It is simple because (in this case) it is readily understood. It is complex
because in order to write it, the user-interface designer must understand
precisely how the various controls and their properties behave and work
together. For these details, you should refer to the appropriate documentation

and check out the large number of examples published on the internet.

The Code to display the XAML

The function TempConverter shown below contains the code needed to display and
operate the user interface whose layout is defined by the XAML described above.

2025-10-30 (main:e0843eae32) Page 61

.NET Framework Interface Guide

v
TempConverter;stri:xml;win;txtFahrenheit;txtCentigrade;mnuFahrenheit:;mnuC
entigrade;btnF2C:;btnC2F:btnQuit;scrTemp:sink
[1] [QUSING«'System'

[2] JUSING,«c'System.IO'
[3] QUSING,«c'System.Windows.Markup'
[4] [JUSING,«c'System.Xml,system.xml.dl L'
[5] JUSING,«c'System.Windows.Controls.Primitives,WPF/
PresentationfFramework.dll'
[6]
[7] str<[JNEW StringReader (cXAML)
[8] xml<[INEW XmlTextReader str
[9] win«XamlReader.Load xml
[10]
[11] txtFahrenheit«win.FindNamec'txtFahrenheit'
[12] txtCentigrade«win.FindNamec'txtCentigrade'
[13] mnuFahrenheit«win.FindNamec 'mnuFahrenheit'
[14] mnuFahrenheit.onClick«'SET_F'
[15] mnuCentigrade«win.FindNamec 'mnuCentigrade’
[16] mnuCentigrade.onClick«'SET_C'
[17] (btnF2C«win.FindNamec'btnF2C"').onClick<«'f2c"'
[18] (btnC2F<«win.FindNamec'btnC2F').onClick<«'c2f"'
[19] (btnQuit<«win.FindNamec'btnQuit').onClick«'Quit’
[20] (scrTemp«win.FindNamec'scrTemp').onScroll«'F2C'
[21] sink«win.ShowDialog
v

The variable XAML (a character vector) contains the XAML described previously.

Note that apart from the names given to the objects by the XAML and used by the
function, the XAML and the code are independent.

TempConverter[7-8] create a XamlReader object from the character vector via
StringReader and XmlTextReader objects.

[7] str<[JNEW StringReader (cXAML)
[8] xml<[ONEW XmlTextReader str

TempConverter[9] instantiates the XAML content by calling its Load method, which
returns a reference win to the top-level control (in this case a Window) defined therein.
The Window is not yet visible.

[9] win«XamlReader.Load xml

2025-10-30 (main:e0843eae32) Page 62

.NET Framework Interface Guide

Earlier, it was explained that objects defined by the XAML must be named in order that
they can be referenced (used) by the code. The mechanism to achieve this is to call the
FindName method of the Window, which returns a reference to the specified (named)
object. So these statements:

[11] txtFahrenheit«win.FindNamec'txtFahrenheit'
[12] txtCentigrade«win.FindNamec'txtCentigrade'

obtain refs (in this case named txtFahrenheit and txtCentigrade) to objects named
txtFahrenheit and txtCentigrade. It is convenient (but not essential) to use the same
name for the ref as is used for the control.

Most of the remaining statements obtain refs to the Menultem, Button and ScrollBar
objects and attach callback functions to their Click and Scroll events respectively.

[13] mnuFahrenheit«win.FindNamec'mnuFahrenheit'

[14] mnufFahrenheit.onClick«'SET_F'

[15] mnuCentigrade«win.FindNamec 'mnuCentigrade'’

[16] mnuCentigrade.onClick«'SET_C'

[17] (btnF2C«win.FindNamec'btnF2C"').onClick<«'f2c'
[18] (btnC2F<«win.FindNamec'btnC2F').onClick«'c2f"'
[19] (btnQuit«win.FindNamec'btnQuit').onClick«'Quit'
[20] (scrTemp«win.FindNamec'scrTemp').onScroll«'F2C'

Finally the code displays the Window and hands it over to the user by calling the
ShowDialog method of the top-level Window.

[21] sink«win.ShowDialog

ShowDialog displays the Window modally; that is, until it is closed, the user may
interact only with that Window. It is equivalent to0DQ win or win.Wait in the Dyalog
built-in GUI.

The CallBack Functions

The callback functions are named as they are in the basic Dyalog GUI example and are
remarkably similar. See Interface Guide:

GUI Tutorial.

Callback function f2c which is attached to the Click event of the btnF2¢ button
(labelled F>C) reads the character string in the txtFahrenheit TextBox, converts it to a
number using Text2Num, calculates the equivalent in centigrade and then displays the
result in the txtCentigrade TextBox.

2025-10-30 (main:e0843eae32) Page 63

.NET Framework Interface Guide

vV f2c:value

[1] A Callback to convert Fahrenheit to Centigrade
[2] :If 1=p,value«Text2Num txtFahrenheit.Text
[3] txtCentigrade.Text«2s(value-32)x5+9
[4] tElse
[5] txtCentigrade.Text«'invalid'
[6] :EndIf
v

For completeness, the Text2Num function is shown below. Note that if the user enters
an invalid number, Text2Num returns an empty vector, and the callback displays the text
invalid instead.

V num«Text2Num txt:val
[1] val num<[JVFI txt
[2] num<val/num

\4

The c2f function converts from Centigrade to Fahrenheit when the user presses the
button labelled C>F.

V c2f:value
[1] A Callback to convert Centigrade to Fahrenheit

[2] :If 1=p,value«Text2Num txtCentigrade.Text
[3] txtFahrenheit.Text«2532+value+5+9
(4] :Else
[5] txtFahrenheit.Text«'invalid'
[6] :EndIf
v

The callbacks F2¢ and c2F, one of which at a time is attached to the Scroll event of the
ScrollBar object are shown below. The argument Msg contains two items, namely:

[1]|Object | a ref to the ScrollBar object

a ref to an object of type

[21 | Object System.Windows.Controls.Primitives.ScrollEventArgs

In this case the code uses the NewValue property of the ScrollEventArgs object. An
alternative would be to refer to the Value property of the ScrollBar object

2025-10-30 (main:e0843eae32) Page 64

.NET Framework Interface Guide

vV F2C Msg:C:;F:val

[1] A Callback for Fahrenheit input via scrollbar
[2] txtFahrenheit.Text«2sval«213-(25Msg).NewValue
[3] txtCentigrade.Text«2s(val-32)x5+9

v

vV C2F Msg:C:F:val
[1] A Callback for Centigrade input via scrollbar
[2] txtCentigrade.Text«2sval«101-(25Msg).NewValue
[3] txtFahrenheit.Text«2332+val+5+9

v

The callbacks SET_F and SET_c which are attached to the Click events of the two
Menultem objects are shown below.

vV SET_F
[1] A Sets the scrollbar to work in Fahrenheit
[2] scrTemp. (Minimum Maximum)<«1i 213
[3] scrTemp.onScroll«'F2C'

[4] mnuFahrenheit.IsChecked«!
[5] mnuCentigrade.IsChecked<«0

v

vV SET_C
[1] A Sets the scrollbar to work in Centigrade
[2] scrTemp. (Minimum Maximum)<«1 101
[3] scrTemp.onScrol l«'C2F"'

[4] mnuCentigrade.IsChecked<«1
[5] mnuFahrenheit.IsChecked<«0
\4

Finally, the callback function Quit which is attached to the Click event on the Quit
button, simply calls the Close method of the Window:

V Quit arg
[1] win.Close
\4

Notice that unlike its equivalent in the Dyalog GUI, it is not appropriate to close the
Window using the expression JEX 'win'. This would expunge the ref to the Window
but have no effect on the Window itself.

2025-10-30 (main:e0843eae32) Page 65

.NET Framework Interface Guide

4.2.3 Using Code

The functions for this example are provided in the workspace WPFIntro.dws in the
namespace WPF .UsingCode. To run the example:

)JLOAD wpfintro
WPF .UsingCode.TempConverter

The following function TempConverter performs exactly the same task of defining and
manipulating the user-interface for the Temperature Converter example using XAML
which was discussed previously.

The callback functions it uses are identical.

2025-10-30 (main:e0843eae32) Page 66

.NET Framework Interface Guide

TempConverter ;[JUSING:win:dp:mnu;mnuFahrenheit:mnuCentigrade:;gr:tn;rdi;rd
2:rd3:rcl:rc2:rc3;l1:1l2:txtFahrenheit:txtCentigrade;btnF2C;btnC2F ;btnQui
t:sink:mnuScale;scrTemp

[1]
[2]
[3]

[JUSING«,c'System.Windows.Controls,WPF/PresentationfFramework.dll'
[JUSING,«c'System.Windows.Controls.Primitives,WPF/

PresentationfFramework.dll'

(4]

(5]

[é]

(7]

[8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]

[JUSING,«c'System.Windows ,WPF/PresentationFramework.dll"'
JUSING,«c'System.Windows ,WPF/PresentationCore.dll’'

win<[ONEW Window
win.SizeToContent«SizeToContent.WidthAndHeight
win.Title«'WPF Temperature Converter'

dp<[JNEW DockPanel
dp.LastChildFill«0

mnu<[ONEW Menu

mnuScale<[JNEW MenuItem
mnuScale.Header«'_Scale'
sink«mnu.Items.Add mnuScale

mnufFahrenheit«[JNEW Menultem
mnufFahrenheit.Header«'Fahrenheit'
mnuFahrenheit.IsCheckable<«l
mnuFahrenheit.IsChecked«1l
mnufFahrenheit.onClick«'SET_F'
sink<mnuScale.Items.Add mnuFahrenheit

mnuCentigrade<(JNEW MenuItem
mnuCentigrade.Header«'_Centigrade'
mnuCentigrade.IsCheckable<«l
mnuCentigrade.IsChecked<«0
mnuCentigrade.onClick«'SET_C'
sink«mnuScale.Items.Add mnuCentigrade

sink<dp.Children.Add mnu
dp.SetDock mnu Dock.Top

gr<[NEW Grid
gr.Width«230
gr.Margin«<[NEW Thickness(40 10 10 10)

2025-10-30 (main:e0843eae32) Page 67

[40]
[41]
[42]
[43]
[4t]
[45]
[46]
[47]
(48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]
[73]
[74%]
[75]
[76]
[77]
(78]
[79]
[80]
[81]
[82]
[83]

.NET Framework Interface Guide

rd1«<[JNEW RowDefinition
rdl.Height«GridLength.Auto
rd2«<[JNEW RowDefinition
rd2.Height«GridLength.Auto
rd3«<[JNEW RowDefinition
rd3.Height«GridLength.Auto
gr.RowDefinitions.Add 'rd1 rd2 rd3

rc1<[NEW ColumnDefinition
rcl.Width«GridLength.Auto

rc2«<[DNEW ColumnDefinition
rc2.Width<[JNEW GridLength 80
rc3«[JNEW ColumnDefinition
rc3.Width<[JNEW GridLength 60
gr.ColumnDefinitions.Add 'rcl rc2 rc3

L1«[INEW Label
L1.Content«'Fahrenheit'
sink<gr.Children.Add L1
gr.SetRow L1 0
gr.SetColumn L1 0

L2«[INEW Label
L2.Content«'Centigrade’
sink<gr.Children.Add L2
gr.SetRow L2 1
gr.SetColumn L2 0

txtFahrenheit«[INEW TextBox
txtFahrenheit.Margin<[JNEW Thickness 5
sink<gr.Children.Add txtFahrenheit
gr.SetRow txtFahrenheit 0
gr.SetColumn txtFahrenheit 1

txtCentigrade«[INEW TextBox
txtCentigrade.Margin<[INEW Thickness 5
sink<gr.Children.Add txtCentigrade
gr.SetRow txtCentigrade 1
gr.SetColumn txtCentigrade 1

btnF2C«[NEW Button
btnF2C.Content<«'F>C'
btnF2C.Margin<[INEW Thickness 5

2025-10-30 (main:e0843eae32) Page 68

[84]
[85]
[86]
[87]
[88]
[89]
[90]
[91]
[92]
[93]
[9%]
[95]
[96]
[97]
[98]
[99]
[100]
[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
[110]
[111]
[112]
[113]
[114]
[115]
[116]
[117]
[118]
[119]

.NET Framework Interface Guide

btnF2C.onClick<«'f2c'
sink<gr.Children.Add btnF2C
gr.SetRow btnF2C 0
gr.SetColumn btnF2C 2

btnC2F<[INEW Button
btnC2F.Content«'C>F'

btnC2F .Margin<[INEW Thickness 5
btnC2F.onClick«'c2f"'
sink<gr.Children.Add btnC2F
gr.SetRow btnC2F 1
gr.SetColumn btnC2F 2

btnQuit<«[NEW Button
btnQuit.Content«'Quit'
btnQuit.Margin<[NEW Thickness 5
btnQuit.onClick«'Quit'
sink<gr.Children.Add btnQuit
gr.SetRow btnQuit 2
gr.SetColumn btnQuit 1

sink«dp.Children.Add gr

scrTemp«[DNEW ScrollBar

scrTemp.Width«20
scrTemp.Orientation«Orientation.Vertical
scrTemp.Minimum<«1

scrTemp.Maximum«213
scrTemp.onScroll«'F2C'

sink«dp.Children.Add scrTemp
dp.SetDock scrTemp Dock.Right

win.Content<«dp

sink«win.ShowDialog

Although this approach appears at first sight to be considerably more verbose than
using XAML (a 120-line function compared with a 21-line function and a 44-line block
of XAML) each line of code performs only one very simple task, and no attempt has
been made to write utility functions to perform the same task for similar controls, as
might be done in a real application.

2025-10-30 (main:e0843eae32) Page 69

.NET Framework Interface Guide

As before, let us examine the code line-by-line.

TempConverter[2-5] define QUSING so that the appropriate .NET assemblies are on
the search-path. Note that the ScrollBar control is in
System.Windows.Controls.Primitives and not System.Windows.Controls like the
others.

[2] JUSING«,c'System.Windows.Controls,WPF/PresentationfFramework.dll'
[3] [USING,«c'System.Windows.Controls.Primitives,WPF/
PresentationfFramework.dLll'

[4] JUSING,«c'System.Windows ,WPF/PresentationfFramework.dll'

[5] [QUSING,«c'System.Windows ,WPF/PresentationCore.dll’

TempConverter[8-9] creates a Window and sets its SizeToContent and Title properties
as in the XAML example. Notice however that whereas using XAML the string
SizeToContent="WidthandHeight" is sufficient, when using code it is necessary to get
the Type right. In this case, the SizeToContent property must be set to a specific
member (in this case WidthAndHeight) of the System.Windows.SizeToContent
enumeration. Other members of this Type are Width, Height and Manual (the default).

[7] win<[ONEW Window
[8] win.SizeToContent«SizeToContent.WidthAndHeight
[9] win.Title«'WPF Temperature Converter'

TempConverter[11-12] create a DockPanel control and set its LastChildFill property to
0. In this case the APL value 0 is used instead of the string "False" in XAML.

[11] dp<[NEW DockPanel
[12] dp.LastChildFill<«0

TempConverter[14] creates a Menu control.
[14] mnu<[JNEW Menu

TempConverter[16-18] create a Menultem control with the caption Scale, and then
add the control to the Items collection of the main Menu using its Add method. This
illustrates one significant difference between using XAML and code. In XAML, the
parent/child relationships between controls are defined by the structure and order of
the XML. Using code, child controls must be explicitly added to the appropriate list of
child controls managed by the parent.

[16] mnuScale<[JNEW MenuItem
[17] mnuScale.Header<+'_Scale'
[18] sinkemnu.Items.Add mnuScale

2025-10-30 (main:e0843eae32) Page 70

.NET Framework Interface Guide

TempConverter[20-25] create a Menultem control labelled Fahrenheit. The
IsCheckable and IsChecked properties are set to 1, which is equivalent to "True" in
XAML. The callback function SET_F is assigned to the Click event exactly as in the
XAML version of this example. The last line in this section makes the Fahrenheit
Menultem a child of the Scale Menultem.

[20] mnufFahrenheit<«[JNEW Menultem

[21] mnuFahrenheit.Header«'Fahrenheit'
[22] mnufFahrenheit.IsCheckable<«l

[23] mnuFahrenheit.IsChecked«1

[24] mnuFahrenheit.onClick«'SET_F'

[25] sink«mnuScale.Items.Add mnuFahrenheit

The code used to create the Centigrade Menultem is more or less the same.

TempConverter[34-35] adds the top-level Menu to the DockPanel. Note that in the
case of a DockPanel, the list of its child controls is represented by its Children property.
Furthermore, to define how it is docked this is done, using code, by the SetDock
method of the DockPanel. This contrasts with the way this is achieved using XAML
(DockPanel .Dock="Top"). Note too that the argument to SetDock is not just a simple
string as in XAML, but a member of the System.Windows.Controls.Dock enumeration.

[34] sink«dp.Children.Add mnu
[35] dp.SetDock mnu Dock.Top

TempConverter[37-39] create the Grid control. Its Width property will accept a simple
numeric value, but its Margin property must be given an instance of a
System.Windows.Thickness structure. In this case, the ThickNess constructor is given a
4-element numeric vector that specifies its Left, Top, Right and Bottom members
respectively.

[37] gr<ONEW Grid
[38] gr.Width«230
[39] gr.Margin<[IJNEW Thickness(40 10 10 10)

TempConverter[41-47] create instances of 3 RowDefinition classes and add them to
the RowDefinitions collection of the Grid. Note that whereas in XAML the Height can be
specified as a string, using code it is necessary once again to use the correct Type. In
this case, Height must be specified by a member of the System.Windows.GridLength
structure.

2025-10-30 (main:e0843eae32) Page 71

.NET Framework Interface Guide

[41] rd1«<[JNEW RowDefinition

[42] rdi.Height<«GridLength.Auto

[43] rd2<[JNEW RowDefinition

[44] rd2.Height«GridLength.Auto

[45] rd3«[JNEW RowDefinition

[46] rd3.Height«GridLength.Auto

[47] gr.RowDefinitions.Add 'rdl rd2 rd3

Similarly, TempConverter[49-55] create instances of 3 ColumnDefinition classes and
add them to the ColumnDefinitions collection of the Grid. Note that The Width
property will not accept a simple numeric value, it must be a member of the
GridLength structure. To set the Width to 80, it is necessary first to create an instance
of a GridLength structure giving this value as the argument to its constructor.

[49] rci1<[NEW ColumnDefinition

[50] rcl.Width«GridLength.Auto

[51] rc2«<[JNEW ColumnDefinition

[52] rc2.Width<[NEW GridLength 80

[53] rc3<[NEW ColumnDefinition

[54%] rc3.Width<[INEW GridLength 60

[55] gr.ColumnDefinitions.Add rcl rc2 rc3

TempConverter[57-61] create a Label control with the caption Fahrenheit. To display
the Label in a Grid it is necessary to first add it to the Children collection of the Grid,
and then set its position in the Grid using its SetRow and SetColumn methods. Similar
code is used to create and position the second Label.

[57] L1«<[INEW Label

[58] L1.Content«'Fahrenheit"
[59] sink«gr.Children.Add (1
[60] gr.SetRow L1 0O

[61] gr.SetColumn 1 0O

TempConverter[69-73] create and position a TextBox control, in the same way as the
Label controls. Notice that in this case, the constructor for the Thickness structure is
given a single value that specifies all four of its Left, Top, Right and Bottom members.

[69] txtFahrenheit«[ONEW TextBox

[70] txtFahrenheit.Margin<[JNEW Thickness 5
[71] sink«gr.Children.Add txtFahrenheit
[72] gr.SetRow txtFahrenheit 0

[73] gr.SetColumn txtFahrenheit 1

TempConverter[81-87] create and position a Button control. The callback function f2c
is attached to the Click event in the same way as in the XAML version of this example.

2025-10-30 (main:e0843eae32) Page 72

.NET Framework Interface Guide

[81] btnF2C<«[NEW Button

[82] btnF2C.Content«'F>C'

[83] btnF2C.Margin<[NEW Thickness 5
[84] btnF2C.onClick«'f2c'

[85] sink<gr.Children.Add btnF2C
[86] gr.SetRow btnF2C 0

[87] gr.SetColumn btnF2C 2

TempConverter[105] adds the Grid to the list of Children to be managed by the
DockControl.

[105] sink<«dp.Children.Add gr

TempConverter[107-112] create a ScrollBar control. Its Width, Minimum and
Maximum properties all accept simple numeric values. However, its Orientation
property must be set to a member of the System.Windows.Controls.Orientation
enumeration.

[107] scrTemp<«[NEW ScrollBar

[108] scrTemp.Width<«20

[109] scrTemp.Orientation«Orientation.Vertical
[110] scrTemp.Minimum<«1

[111] scrTemp.Maximum<«213

[112] scrTemp.onScroll«'F2C'

TempConverter[114-115] add the ScrollBar to the list of Children managed by the
DockPanel, and use its SetDock method to cause it to be right-aligned.

[114] sink«dp.Children.Add scrTemp
[115] dp.SetDock scrTemp Dock.Right

Finally, the DockPanel is assigned to the Content property of the Window, and the
Window displayed as in the XAML version of this example. Note that a Window may
contain just one control.

[117] win.Content<«dp

[118]
[119] sink«win.ShowDialog

2025-10-30 (main:e0843eae32) Page 73

.NET Framework Interface Guide

4.3 Data Binding

4.3.1 Example 1

This example illustrates data binding using XAML to specify the user-interface coupled
with an APL function to drive it and handle the data binding.

fp Data Binding (Text) E@I-g_hj

Hello World

The XAML

The XAML shown below, describes a Window containing a TextBox.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="Data Binding (Text)"
SizeToContent="WidthandHeight">

<TextBox Name="txt" Width="300" Margin="5"

Text="{Binding txtSource,Mode=TwoWay,

UpdateSourceTrigger=PropertyChanged}"/>

</Window>

It contains a data binding expression, namely:

Text="{Binding txtSource,Mode=TwoWay,
UpdateSourceTrigger=PropertyChanged}"

This specifies that the Text property of the TextBox is bound to a value in the Binding
Source (which has yet to be defined) whose path is txtSource. The binding mode is set
to TwoWay which means that any change in the TextBox will be reflected in a new value
in the Binding Source, and vice-versa. The value in the Binding Source will be updated
when the property (in this case the Text Property) changes.

2025-10-30 (main:e0843eae32) Page 74

.NET Framework Interface Guide

The APL Code

The function Text which generates this example is shown below.

The argument txt is the text to be displayed initially in the TextBox. Note that the
variable XAML_Text contains the XAML that describes the user-interface listed above.

Vv Text txt:;[JUSING;str:xml:win
[1] [JUSING«,c'System.Windows.Controls,WPF/PresentationfFramework.dll'
[2] win<LoadXAML XAML

[3] win.txtBox«win.FindNamec'txt'
(4]
[5] JEX'txtSource'
[6] txtSource«txt
[7] win.txtBox.DataContext«20151'txtSource’
[8]
[9] win.Show
\4

The utility function LoadXAML incorporates the 3 lines of code, used to create a WPF
window from XAML, that were coded in-line in previous examples in this chapter.

vV win«LoadXAML xaml:;[JUSING;str:xml
[1] [JUSING«'System.IO"'
[2] [(USING,«c'System.Windows.Markup'
[3] JUSING,«c'System.Xml,system.xml.dll"'
[4] [USING,«c'System.Windows.Controls,
WPF/PresentationFramework.dl L'
[5] str<[JNEW StringReader(cxaml)
[6] xml<[JNEW XmlTextReader str
[7] win«XamlReader.Load xml
v

Text[1] defines the .NET search path needed to access the WPF controls.
[1] JUSING«,c'System.Windows.Controls,WPF/PresentationfFramework.dll'

Text[2-3] uses the utility function LoadXAML to load a WPF user-interface from the
XAML and then uses the FindName method to obtain a reference to the object named
txt.

[2] win«LoadXAML XAML
[3] win.txtBox«win.FindNamec'txt'

2025-10-30 (main:e0843eae32) Page 75

.NET Framework Interface Guide

Text[5-6] initialise a new global variable named txtSource to the value of the
argument. When using a global variable as a data binding source, it is generally
advisable to establish a new variable by first expunging it.>

[5] OJex'txtSource'
[6] txtSource«txt

Text[7]creates a Binding Source object using 20151 and assigns it to the DataContext
property of the TextBox object. Because it is a character vector, the exported Type for
the bound variable txtSource is System.String which is appropriate for the Text
property of a TextBox.

[7] win.txtBox.DataContext«2015I"'txtSource’

Text[9] displays the Window. Note that although the APL local variable win goes out
of scope when the function terminates, the Window remains visible until the user has
closed it.

[9] win.Show

Testing the Data Binding

The following expressions may be used to explore the effect of data binding.

)JLOAD wpfintro
)CS DataBinding.Text

Text 'Hello World'

) Data Binding (Text) (eoulo s b

Hello World

txtSource«dtxtSource

ﬁ Data Binding (Text) l o | & I&J

dlroW olleH

s This is because its binding type (the exported type of the data bound variable) is stored
in the workspace along with its value, and the binding type (were it to be incorrect) may not
be changed once it has been established.

2025-10-30 (main:e0843eae32) Page 76

.NET Framework Interface Guide

Typing into the TextBox changes the value of the bound variable.

fP Data Binding (Text) (e o5 b

What is in txtSource now?

txtSource
What is in txtSource now?

4.3.2 Example 2

This example illustrates the use of the optional left argument to 2015z to specify the
data type used to export the value of the bound variable.

B Data Binding (Text) (ecoulo(E): IS

Hello World

The XAML

The XAML shown below, describes the same Window containing a TextBox as before.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="Data Binding (FontSize)"
SizeToContent="WidthandHeight">

<TextBox Name="txt" Text="Hello World" Width="300"

Margin="5"

FontSize="{Binding sizeSource,Mode=0OneWay}"/>
</Window>

This time, the data binding expression is:
FontSize="{Binding sizeSource,Mode=0OneWay}"/>

This specifies that the FontSize property of the TextBox is bound to a value in the
Binding Source (which has yet to be defined) whose path is sizeSource. The binding
mode is set to OneWay which means that the FontSize property depends on the data
value but not vice versa. Were the FontSize to change for any external reason (which is

2025-10-30 (main:e0843eae32) Page 77

.NET Framework Interface Guide

admittedly unlikely in the case of FontSize), it would not alter the value in sizeSource
to which it is bound.

The APL Code

The function FontSize is almost identical to the function Text which is described in
Example 1.

V FontSize size;JUSING;win
[1] [JQUSING«'System'
[2] [JUSING,<«c'System.Windows.Controls,WPF/PresentationfFramework.dll'
[3] win<LoadXAML XAML

[u] win.txtBox«win.FindNamec'txt'
[5]
[6] JEX'sizeSource'
[7] sizeSource<«size
[8] win.txtBox.DataContext«Int32(20151) ' 'sizeSource’
[9]
[10] win.Show
\4

The key difference is in FontSize[8]. Here the left argument of (20151) is Int32. This
means that the exported Type of the variable sizeSource will be Int32. This Type (a 32-
bit integer) is required by the FontSize property of a TextBox; no other Type will do. If
this were omitted, APL would export the value of the variable using a Type dependent
on its internal format (most likely Int16) and the binding would fail.

[8] win.txtBox.DataContext«Int32(2015T) 'sizeSource’

Testing the Data Binding

)JLOAD wpfintro
)CS DataBinding.FontSize

FontSize 12

ﬁ Data Binding (FontSize) l o | & I-s;hl

Hello World

2025-10-30 (main:e0843eae32) Page 78

.NET Framework Interface Guide

sizeSource
12

sizeSource<«30

§> Data Binding (FontSize) l o | & Iix-l
Hello World

4.3.3 Example 3

This example uses APL code to both build the user-interface (instead of using XAML)
and handle the data binding. In this case both the Text and the FontSize properties are
bound to APL variables. The function is shown below:

2025-10-30 (main:e0843eae32) Page 79

[1]
[2]
(3]

v

.NET Framework Interface Guide

TextFontSize(txt size):JUSING:win;:sink

[JUSING<«'System'
[JUSING,«,c'System.Windows.Controls,WPF/PresentationfFramework.dll"'
OUSING,«c'System.Windows.Controls.Primitives,WPF/

PresentationfFramework.dll'

[4] [JUSING,«c'System.Windows ,WPF/PresentationFramework.dll'
[5] [JUSING,«c'System.Windows ,WPF/PresentationCore.dll’'

6]

[7] A Create a Window, DockPanel and TextBox

[8] win<[INEW Window

[9] win.SizeToContent«SizeToContent.WidthAndHeight

[10] win.Title«<'Data Binding (Text and FontSize)'

[11] win.txtBox«[INEW TextBox

[12] win.txtBox.Width«350

[13] win.Content<«win.txtBox

[14]

[15] @ Define data binding from variable "txtSource"

[16] A to the Text property of TextBox win.txtBox

[17] OJEX'txtSource'

[18] txtSource«txt

[19] win.txtbinding«[INEW Data.Binding(c'txtSource")

[20] win.txtbinding.Source«2015x'txtSource’

[21] win.txtbinding.Mode«Data.BindingMode.TwoWay

[22] win.txtbinding.UpdateSourceTrigger«Data.UpdateSourceTrigger.Prope
rtyChanged

[23] sink<win.txtBox.SetBinding TextBox.TextProperty win.txtbinding
[24]

[25] @ Define data binding from variable "sizeSource"

[26] A to the FontSize property of TextBox win.txtBox

[27] JEX'sizeSource'

[28] sizeSource<«size

[29] win.fntbinding«[INEW Data.Binding(c'sizeSource')

[30] win.fntbinding.Source«Int32(2015x) " 'sizeSource’

[31] win.fntbinding.Mode«Data.BindingMode.OneWay

[32] sink<win.txtBox.SetBinding TextBox.FontSizeProperty win.fntbindin
9

[33]

[34] win.Show

v

Apart from the code that creates the controls, the only material difference between
this and the previous examples is the way that the bindings are handled.

2025-10-30 (main:e0843eae32) Page 80

.NET Framework Interface Guide

In code (as opposed to using XAML) this is done using explicit Binding objects® The code
for binding the Text property to the txtSource variable is as follows:

[19] win.txtbinding«[INEW Data.Binding(c'txtSource")

[20] win.txtbinding.Source«2015x'txtSource’

[21] win.txtbinding.Mode<«Data.BindingMode.TwoWay

[22] win.txtbinding.UpdateSourceTrigger<«Data.UpdateSourceTrigger.Prope
rtyChanged

[23] sink«win.txtBox.SetBinding TextBox.TextProperty win.txtbinding

Line [19] creates a Binding object, passing the constructor the name of the APL variable
txtSource as the Path to the binding value.

[19] win.txtbinding«[INEW Data.Binding(c'txtSource')

Line [20] creates a Binding Source object using 20151 as before, but this time assigns it
to the Source property of the Binding object.

[20] win.txtbinding.Source«20151'txtSource’

Line [21] sets the Mode property of the Binding object to TwoWay (a field of the
BindingMode Type). As in Example 1, this specifies two-way binding.

[21] win.txtbinding.Mode<«Data.BindingMode.TwoWay

Line [22] sets the UpdateSourceTrigger property of the Binding object to
PropertyChanged (a field of the UpdateSourceTrigger Type). This causes the value in
the Binding Source (in this case txtSource) to be changed whenever the property (in
this case the Text property) of the TextBox changes. This will occur on every keystroke.

[22]
win.txtbinding.UpdateSourceTrigger«Data.UpdateSourceTrigger.PropertyChan
ged

(Note that the three types Binding, BindingMode and UpdateSourceTrigger are located
in System.Windows.Data)

The code that establishes the binding between the sizeSource variable and the
FontSize property is very similar.

6 Binding objects are implicit in all binding operations, but are created declaratively when
using XAML.

2025-10-30 (main:e0843eae32) Page 81

.NET Framework Interface Guide

[29] win.fntbinding«[ONEW Data.Binding(c'sizeSource')

[30] win.fntbinding.Source«Int32(20151) " 'sizeSource’

[31] win.fntbinding.Mode«Data.BindingMode.OneWay

[32] sink«win.txtBox.SetBinding
TextBox.FontSizeProperty win.fntbinding

Note however that (as in Example 2) the left-argument to (2015z) specifies that the
exported data type of the sizeSource variable is to be Int32.

Testing the Data Binding

)JLOAD wpfintro
)CS DataBinding.TextFontSizeCode

TextFontSize 'Hello World' 30

ﬁ Data Binding (Text and FontSize)LElElg
Hello World

txtSource sizeSource«(¢txtSource) 18

ﬁ Data Binding (Text and FontSize)E@lﬂ

dlroW olleH

As in previous examples, when the user changes the text, the new text appears in

txtSource.

ﬁ Data Binding (Text and FontSize)E@g

Learn to play the bouzouki!

txtSource
Learn to play the bouzouki!

2025-10-30 (main:e0843eae32) Page 82

.NET Framework Interface Guide

Note

It is perhaps worth mentioning that if you want to bind two properties of the
same object to two APL variables, it has to be done by writing code as shown in
this example, using two separate Binding Source objects. This is because using

XAML you may only associate a single Binding Source to an object.

However, this minor restriction is easily surmounted by using an APL namespace

as a Binding Source as illustrated in the next Example.

4.3.4 Example 4

This example uses XAML to specify the user-interface and the main components of the
data binding.

The XAML

The XAML is much the same as in Example 1 and 2 except that it connects two
properties Text and FontSize of the same TextBox to two Paths txtSource and
sizeSource.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="Data Binding (Text and FontSize)"
SizeToContent="WidthandHeight">
<TextBox Name="txt" Width="350" Margin="5"
Text="{Binding txtSource,Mode=TwoWay,
UpdateSourceTrigger=PropertyChanged}"
FontSize="{Binding sizeSource,Mode=0OneWay}"/>
</Window>

The APL Code

The function TextFontSize is shown below.

2025-10-30 (main:e0843eae32) Page 83

.NET Framework Interface Guide

V TextFontSize(txt size):;[JUSING:;str:xml:win:options
[1] [JUSING<«'System'
[2] [USING,«c'System.Windows ,WPF/PresentationFramework.dll'
[3]
[4] win<LoadXAML XAML

[5]

[6] src«[NS "'

[7] src.(txtSource sizeSource)«txt size

[8] options<«2 2p'txtSource'String'sizeSource'Int32
[9]

[10] win.DataContext«options(20151) 'src’

[11]

[12] win.Show

v

Lines [6-7] create a new namespace src containing two variables txtSource and
sizeSource which are initialised to the arguments of the function.

[6] src«[INS "'
[7] src.(txtSource sizeSource)«txt size

Line [8] creates a local variable named options which will be used as the left argument
of 20151). It is a 2-column matrix. The first column is a list of the names of the
variables which are to be exported by the namespace when used as a Binding Source.
The second column specifies their data types.

[8] options«2 2p'txtSource'String'sizeSource'Int32

Line [10] creates a Binding Source object from the namespace src and a left argument
options and assigns it to the DataContext property of the Window win.

[10] win.DataContext«options(20151) 'src'

An alternative would be to assign it to the DataContext property of the TextBox object,
but this would require one further line of code to identify it. The reason this works is
that the DataContext property of a TextBox (and many other controls) is inherited from
its parent Window. This feature allows a single Binding Source namespace to be used to
specify data bindings between its component variables and any number of properties
of any number of controls in the same Window.

As shown before, the left argument of 20151) is optional. Without it, the namespace
would export all its variables using default binding types. In this case, because the
binding type of sizeSource must be specified as Int32, it is necessary to use a left
argument, which means specifying all the variables involved.

2025-10-30 (main:e0843eae32) Page 84

.NET Framework Interface Guide

Testing the Data Binding

)JLOAD wpfintro
)CS DataBinding.TextFontSizeXAML

DB_Text_FontSize_XAML'Hello World' 30

§b Data Binding (Text and FontSize)l =) lﬁl
Hello World

src.(txtSource sizeSource«(dtxtSource) 18)

gp Data Binding (Text and FontSize)@M
dlroW olleH

As in previous examples, when the user changes the text, the new text appears in
txtSource.

f Data Binding (Text and FontSize) (e o (IS

Learn to play the bouzouki!

src.txtSource
Learn to play the bouzouki!

4.3.5 Example 5

WPF data binding provides the means to bind controls that display lists of items, such
as the ListBox, ListView, and TreeView controls, to collections of data. These controls
are all based upon the ItemsControl class. To bind an ItemsControl to a collection
object, you use its ItemsSource property.

If the right argument of 20151 names a variable, or a namespace containing a variable,
that is a vector other than a simple character vector, it returns a Binding Source object
that provides the necessary interfaces to bind the variable as a collection to the
ItemSource property of an ItemsControl.

2025-10-30 (main:e0843eae32) Page 85

.NET Framework Interface Guide

The APL variable will normally contain a vector of character vectors, because most
ItemsControl objects deal with collections of strings. However, any APL vector other
than a simple character vector will be treated in this way.

This example illustrates binding between a variable containing a vector of character
vectors, to the items of a ListBox.

Incidentally, the ItemsSource property overrides the Items collection as a means to
specify the content of the ItemsControl. When the ItemsSource property is set, the
Items collection becomes read-only and of fixed-size. Note that the ItemsSource
property supports OneWay binding by default.

The XAML

The variable XAML_Fi lteredList, shown below, contains XAML to specify a Window
containing a StackPanel. The StackPanel control is a WPF layout control that organises
child controls in a single line, by default vertically. In this example, the StackPanel
contains a TextBox and, below it, a WrapPanel, and below that a TextBlock. The
WrapPanel is also a layout control that organises its child controls sequentially from left
to right. The WrapPanel contains two ListBox controls.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Filtered List Example"
SizeToContent="WidthAndHeight"
Topmost="true">
<StackPanel>
<TextBox Name="filter" Margin="5"
Text="{Binding Filter,Mode=TwoWay,
UpdateSourceTrigger=PropertyChanged}"/>
<WrapPanel>
<ListBox Name="all" Width="135" Height="440"
Margin="5" ItemsSource="{Binding DyalogNames}"/>
<ListBox Name="filtered" Width="135" Height="u440"
Margin="5" ItemsSource="{Binding FilteredList}"/>
</WrapPanel>
<TextBlock Text="Dyalog WPF Demo" Margin="5"/>
</StackPanel>
</Window>

2025-10-30 (main:e0843eae32) Page 86

.NET Framework Interface Guide

The Code

V FilteredList:MySource:win:sink
[1]
[2] MySource<«[INS"'"'
[3] MySource.Filter<'
[u] MySource.FilteredList«0Opc'"'
[5] MySource.DyalogNames+DyalogNames
[6]
[7] win<LoadXAML XAML_FilteredList
[8] win.DataContext«20151'MySource’
[9] (win.FindNamec'filter').onTextChanged<«

'FilteredList_TextChanged'

[10] sink«win.ShowDialog
v

Like the previous example, this example uses a namespace MySource containing the
bound variables Filter, FilteredList and DyalogNames.

FilteredList[8] creates a Binding Source object and assigns it to the DataContext
property of the Window win.

[8] win.DataContext«20151'MySource’

The DataContext property is inherited by all child controls, so they all share the same
Binding Source. Their different Paths to different values in the Binding Source are
specified in the XAML as follows.

The Text property of the TextBox named filter is bound to the variable Filter by the
expression Text="{Binding Filter,...

<TextBox Name="filter" Margin="5"
Text="{Binding Filter,Mode=TwoWay,

The ItemsSource property of the ListBox named all is bound to the variable
DyalogNames by the expression ItemsSource="{Binding DyalogNames}"

<ListBox Name="all" Width="135" Height="L440"
Margin="5" ItemsSource="{Binding DyalogNames}"/>

Thirdly, the ItemsSource property of the ListBox named filtered is bound to the variable
FilteredList by the expression ItemsSource="{Binding FilteredList}"

<ListBox Name="filtered" Width="135" Height="440"
Margin="5" ItemsSource="{Binding FilteredList}"/>

2025-10-30 (main:e0843eae32) Page 87

.NET Framework Interface Guide

Testing the Data Binding

FilteredList

$ Filtered List Example - O El

Andy Shiers

Fiona Smith
Richard Smith

Jay Foad
Jonathan Manktelow
Bjern Christensen
John Scholes
Vibeke Ulmann
Jason Rivers

Liam Flanagan
Karen Shaw

Pat Buteux

John Daintree
Brian Becker
Roger Hui

Morten Kromberg
Gitte Christensen
Dan Baronet

Nicolas Delcros

Dyalog WPF Demo
If the user types a single character, in this case "e", into the TextBox, this fires a
TextChanged event which in turn fires the callback function shown below:
V FilteredList_TextChanged a:hits

[1] hits«(cMySource.Filter){v/aew} DyalogNames
[2] MySource.FilteredList«hits/DyalogNames

2025-10-30 (main:e0843eae32) Page 88

.NET Framework Interface Guide

When the callback runs, the variable MySource.Filter, which is bound to the Text
property of the TextBox, will contain "e". The function calculates a mask hits which
identifies which members of the variable DyalogNames contain this string. It then
assigns that subset to the variable MySource.FilteredList. Thisis bound to the
ItemsSource property of the right-hand ListBox, so the result is as follows:

$ Filtered List Example

—

e

|

Andy Shiers

Fiona Smith
Richard Smith
Jay Foad
Jonathan Manktelow
Bjern Christensen
John Scholes
Vibeke Ulmann
Jason Rivers

Liam Flanagan
Karen Shaw

Pat Buteux

John Daintree
Brian Becker
Roger Hui

Morten Kromberg
Gitte Christensen
Dan Baronet

Nicolas Delcros

Dyalog WPF Demo

Andy Shiers
Jonathan Manktelow
Bjern Christensen
John Scholes
Vibeke Ulmann
Jason Rivers
Karen Shaw

Pat Buteux

John Daintree
Brian Becker
Roger Hui

Morten Kromberg
Gitte Christensen
Dan Baronet

Nicolas Delcros

Similarly, typing "er" into the TextBox reduces the number of hits as shown below:

2025-10-30 (main:e0843eae32)

Page 89

.NET Framework Interface Guide

§ Filtered List Example - U

ler

|

Andy Shiers

Fiona Smith
Richard Smith

Jay Foad
Jonathan Manktelow
Bjern Christensen
John Scholes
Vibeke Ulmann
Jason Rivers

Liam Flanagan
Karen Shaw

Pat Buteux

John Daintree
Brian Becker
Roger Hui

Morten Kromberg
Gitte Christensen
Dan Baronet

Nicolas Delcros

Dyalog WPF Demo

4.3.6 Example 6

Andy Shiers
Jason Rivers

Brian Becker
Roger Hui
Morten Kromberg

This example illustrates data binding using a vector of .NET objects, in this case

DateTime objects.

The XAML

The XAML shown below, describes a Window containing a StackPanel, inside which is a

ListBox.

2025-10-30 (main:e0843eae32)

Page 90

.NET Framework Interface Guide

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="NetObjects (DateTime) Example"
SizeToContent="WidthAndHeight" >
<StackPanel>
<TextBlock Text="Dates of forthcoming Orthodox Easters"
FontSize="18" Margin="5"/>
<ListBox Name="EasterDates" Height="100"
Margin="5" />
</StackPanel>
</Window>

The APL Code

The function NetObjects is shown below.

V NetObjects:[QUSING:win:dt
[1] [JUSING<«'System'
[2] win«LoadXAML XAML
[3] win.dates«win.FindNamec'EasterDates'
[u] dt«<{(ONEW DateTime w} Easter
[5] win.dates.ItemsSource«2015x'dt"
[6] sink«win.ShowDialog
\4

NetObjects[3] uses FindName to obtain a ref to the ListBox (defined in the XAML)
named EasterDates:

[3] win.dates«win.FindNamec'EasterDates'

The global variable Easter contains a vector of 3-element numeric vectors
representing the dates of forthcoming Orthodox Easter Sundays.

2025-10-30 (main:e0843eae32) Page 91

.NET Framework Interface Guide

tEaster
2015 4 12
2016 5 1
2017 4 16
2018 4+ 8
2019 4 28
2020 4 19
2021 5 2
2022 4 24
2023 4 16
2024 5 5

NetObjects[4] creates a vector of DateTime objects from the global variable Easter.
[4] dt<{(DNEW DateTime w} Easter

Then, NetObjects[5] creates a binding source object from this array and assigns it to
the ItemsSource property of the ListBox.

[5] win.dates.ItemsSource«20151'dt"
Testing the Data Binding

)JLOAD wpfintro
DataBinding.NETObjects.NETObjects

(ﬁ NetObjects (DateTime) Example l =N Iﬁl‘
Dates of forthcoming Orthodox Easters

4/12/2015 -
5/1/2016
4/16/2017
4/8/2018
4/28/2019
4/19/2020 ~

m

4.3.7 Example 6a (Casting to DateTime)

This example is similar to Example 6 but illustrates how numeric data in OTS format can
be converted to DateTime type.

2025-10-30 (main:e0843eae32) Page 92

.NET Framework Interface Guide

The XAML

The XAML shown below describes a Window containing a StackPanel, inside which is a
ListBox.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="DateTimes using [OTS data"
SizeToContent="WidthAndHeight" >
<StackPanel>
<TextBlock Text="Some High Tides at Portsmouth, England"
FontSize="18" Margin="5"/>
<ListBox Name="TideTimes" Height="200"
Margin="5" />
</StackPanel>
</Window>

The APL Code

The function Tides is shown below.

vV Tides:;[JUSING:win:;dt:Highs
[1] [JUSING<«'System'
[2] win<LoadXAML XAML_Tides
[3] win.times<«win.FindNamec'TideTimes'
[4] Highs«<(c2016 2 18),7 (7 9)(8 44)(19 47)(21 47)
[5] Highs,«(<c2016 2 19),7(8 17)(10 12)(20 51)(22 51)
[6] dt<7t Highs
[7] win.times.ItemsSource«DateTime(20151) 'dt"'
[8] sink«win.ShowDialog
v

Tides[3] uses FindName to obtain a ref to the ListBox (defined in the XAML) named
TideTimes:

[3] win.times«win.FindNamec'TideTimes'

Tides[4-5] creates a vector of integer vectors each of which species the time and date
of a high tide at Portsmouth. Tides[6] extends each to 7-elements, which is required
to represent a DateTime object.

2025-10-30 (main:e0843eae32) Page 93

.NET Framework Interface Guide

Then, Tides[7] creates a binding source object from this array and assigns it to the
ItemsSource property of the ListBox. Note that the left argument DateTime specifies
that the data be cast to that type.

[7] win.times.ItemsSource«DateTime(20151) 'dt"'

Testing the Data Binding

)JLOAD wpfintro
DataBinding.NetObjects.Tides

v DateTimes using OTS data

Some High Tides at Portsmouth, England

2/18/2016 7:09 AM
2/18/2016 8:44 AM
2/18/2016 7:47 PM
2/18/2016 9:47 PM
2/19/2016 8:17 AM
2/19/2016 10:12 AM
2/19/2016 8:51 PM
2/19/2016 10:51 PM

Tides[3] uses FindName to obtain a ref to the ListBox (defined in the XAML) named
TideTimes:

[3] win.times<«win.FindNamec'TideTimes'

Tides[4-5] creates a vector of integer vectors each of which species the time and date
of a high tide at Portsmouth. Tides[6] extends each to 7-elements, which is required
to represent a DateTime object.

Then, Tides[7] creates a binding source object from this array and assigns it to the
ItemsSource property of the ListBox. Note that the left argument DateTime specifies
that the data be cast to that type.

[7] win.times.ItemsSource«DateTime(20151) 'dt'

2025-10-30 (main:e0843eae32) Page 94

.NET Framework Interface Guide

Testing the Data Binding

)JLOAD wpfintro
DataBinding.NetObjects.Tides

W DateTimes using OTS data = a X

Some High Tides at Portsmouth, England

2/18/2016 7:09 AM
2/18/2016 8:44 AM
2/18/2016 7:47 PM
2/18/2016 9:47 PM
2/19/2016 8:17 AM
2/19/2016 10:12 AM
2/19/2016 8:51 PM
2/19/2016 10:51 PM

4.3.8 Example 7
This example illustrates data binding using a vector of namespaces.

Each row in the WPF DataGrid control is represented by an object, and each column as
a property of that object. Each row in the DataGrid is bound to an object in the data
source, and each column in the data grid is bound to a property of the data object.

2025-10-30 (main:e0843eae32) Page 95

.NET Framework Interface Guide

Chateau Cote-Daugay-ex-Madeleine | $185.80

Chateau Coutet

$199.22

Chateau Cure-Bon-La-Madeleine $133.16

Chateau Faurie-de-Soutard $151.28
Chateau Fonplegade $195.43
Clos Fourtet $189.00
Chateau Franc-Mayne $195.77
Chateau Franc-Pourret $130.77
Domaine du Grand-Faurie $133.13
Chateau Grand-Mayne $156.58
Chateau Grand-Ponet $116.63
Chateau Grandes Murailles $150.82
Chateau Guadet-Saint-Julien $147.74
Chateau GueyrotHaut-Cadet $134.54
Chateau Haut-Pontet $154.69
Chateau Haut-Simard $182.55
Chateau Haut-Trimoulet $153.00

[5 DataGrid Example = | E
Wine Price
Chateau Canon-La-Gafferiere $105.39| «
Chateau Cantenac $110.10
Chateau Cap-Le-Mourlin $156.53
Chateau Cardinal-Villemaurine $150.46
Chateau Cassevert $134.56(
Chateau Chapelle-Madeleine $184.46

m

The XAML

The XAML shown below, describes a Window containing a DockPanel, inside which is a

DataGrid.

2025-10-30 (main:e0843eae32)

Page 96

.NET Framework Interface Guide

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="DataGrid Example" Height="500"
SizeToContent="Width"
Topmost="true">
<DockPanel>
<DataGrid Name="DG1" ItemsSource="{Binding}"
AutoGenerateColumns="False" >
<DataGrid.Columns>
<DataGridTextColumn Header="Wine"
Binding="{Binding Name}"/>
<DataGridTextColumn Header="Price"
Binding="{Binding Price, StringFormat=C}" />
</DataGrid.Columns>
</DataGrid>
</DockPanel>
</Window>

The phrase ItemsSource="{Binding}" states that the content of the DataGrid is
bound to a data source, which in this case will be inherited from the DataContext
property of the parent Window.

Binding="{Binding Name}" specifies that the contents of the first column are bound
to a Path named Name in the data source.

Similarly, Binding="{Binding Price, StringFormat=C}" specifies that the Path for
the second column is Price (StringFormat=C merely specifies the default currency
format).

The APL Code

The function Grid is shown below.

2025-10-30 (main:e0843eae32) Page 97

.NET Framework Interface Guide

V Grid;[JUSING:;MySource:win
[1] [JUSING<«'System'
[2] winelist«[ONS (pWines)pc'"'

[3] winelist.Name<Wines
[4] winelist.Price«0.01x10000+?(pWines)p10000
[5]

[6] win«<LoadXAML XAML
[7] win.DataContext«2015T'winelist"
[8] win.Show

v

The global variable Wines contains a vector of character vectors, each of which is the
name of a wine. Grid[2-4] creates winelist, a vector of namespaces, of the same
length, each of which contains two variables c Name and Price.

Testing the Data Binding

)JLOAD wpfintro
)CS DataBinding.DataGrid
Grid

2025-10-30 (main:e0843eae32) Page 98

.NET Framework Interface Guide

§b DataGrid Example = | E
Wine Price
Chateau Canon-La-Gafferiere $105.39| «
Chateau Cantenac $110.10
Chateau Cap-Le-Mourlin $156.53
Chateau Cardinal-Villemaurine $150.46
Chateau Cassevert $134.56(
Chateau Chapelle-Madeleine $184.46
Chateau Cote-Daugay-ex-Madeleine | $185.80
Chateau Coutet $199.22| =
Chateau Cure-Bon-La-Madeleine $133.16
Chateau Faurie-de-Soutard $151.28
Chateau Fonplegade $19543|
Clos Fourtet $189.00
Chateau Franc-Mayne $195.77
Chateau Franc-Pourret $130.77
Domaine du Grand-Faurie $133.13
Chateau Grand-Mayne $156.58
Chateau Grand-Ponet $116.63
Chateau Grandes Murailles $150.82
Chateau Guadet-Saint-Julien $147.74
Chateau GueyrotHaut-Cadet $134.54
Chateau Haut-Pontet $154.69
Chateau Haut-Simard $182.55
Chateau Haut-Trimoulet $153.00| =

Let's round the prices to the nearest $5.

winelist.Price«5x|0.5+winelist.Price<5

2025-10-30 (main:e0843eae32)

Page 99

.NET Framework Interface Guide

.
§b DataGrid Example

|‘:]@Ig

Wine Price

Chateau Canon-La-Gafferiere $105.00
Chateau Cantenac $110.00
Chateau Cap-Le-Mourlin $155.00
Chateau Cardinal-Villemaurine $150.00
Chateau Cassevert $135.00
Chateau Chapelle-Madeleine $185.00

Chateau Cote-Daugay-ex-Madeleine | $185.00

Chateau Coutet

$200.00

m

Chateau Cure-Bon-La-Madeleine $135.00

Chateau Faurie-de-Soutard $150.00
Chateau Fonplegade $195.00
Clos Fourtet $190.00
Chateau Franc-Mayne $195.00
Chateau Franc-Pourret $130.00
Domaine du Grand-Faurie $135.00
Chateau Grand-Mayne $155.00
Chateau Grand-Ponet $115.00
Chateau Grandes Murailles $150.00
Chateau Guadet-Saint-Julien $150.00
Chateau GueyrotHaut-Cadet $135.00
Chateau Haut-Pontet $155.00
Chateau Haut-Simard $185.00
Chateau Haut-Trimoulet $155.00

4.3.9 Example 8

This example illustrates data binding using a matrix and is practically identical to
Example 7 except that it uses a matrix instead of a vector of namespaces.

Each row in the WPF DataGrid control is represented by an object, and each column as
a property of that object. Each row in the DataGrid is bound to an object in the data

source, and each column in the data grid is bound to a property of the data object.

2025-10-30 (main:e0843eae32)

Page 100

.NET Framework Interface Guide

[T — EENEER
Wine Price
Chateau Canon-La-Gafferiere $105.39| «
Chateau Cantenac $110.10
Chateau Cap-Le-Mourlin $156.53
Chateau Cardinal-Villemaurine $150.46
Chateau Cassevert $134.56(
Chateau Chapelle-Madeleine §184.46
Chateau Cote-Daugay-ex-Madeleine | $185.80
Chateau Coutet $199.22||=
Chateau Cure-Bon-La-Madeleine $133.16
Chateau Faurie-de-Soutard $151.28
Chateau Fonplegade §19543|
Clos Fourtet $189.00
Chateau Franc-Mayne $195.77
Chateau Franc-Pourret $130.77
Domaine du Grand-Faurie $133.13
Chateau Grand-Mayne $156.58
Chateau Grand-Ponet $116.63
Chateau Grandes Murailles $150.82
Chateau Guadet-Saint-Julien $147.74
Chateau GueyrotHaut-Cadet $134.54
Chateau Haut-Pontet $154.69
Chateau Haut-Simard $182.55
Chateau Haut-Trimoulet $153.00| =

The XAML

The XAML shown below, describes a Window containing a DockPanel, inside which is a
DataGrid. The XAML is identical to the XAML in Example 7, except for the window
caption.

2025-10-30 (main:e0843eae32) Page 101

.NET Framework Interface Guide

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="DataGrid Matrix Example" Height="500"
SizeToContent="Width"
Topmost="true">
<DockPanel>
<DataGrid Name="DG1" ItemsSource="{Binding}"
AutoGenerateColumns="False" >
<DataGrid.Columns>
<DataGridTextColumn Header="Wine"
Binding="{Binding Name}"/>
<DataGridTextColumn Header="Price"
Binding="{Binding Price, StringFormat=C}" />
</DataGrid.Columns>
</DataGrid>
</DockPanel>
</Window>

The phrase ItemsSource="{Binding}" states that the content of the DataGrid is
bound to a data source, which in this case will be inherited from the DataContext
property of the parent Window.

Binding="{Binding Name}" specifies that the contents of the first column are bound
to a Path named Name in the data source.

Similarly, Binding="{Binding Price, StringFormat=C}" specifies that the Path for
the second column is Price (the phrase StringFormat=C merely specifies the default
currency format).

The APL Code

The function Grid is shown below.

V Grid:[JUSING:MySource:win;info
[1] [JUSING<«'System'
[2] OEX'winelist'
[3] winelist«Wines,[1.5]0.01x10000+?(pWines)p10000
[4] win«LoadXAML XAML
[5] info<«(s'Name' 'Price'),cObject
[6] win.DataContext«info(2015T) 'winelist'
[7] win.Show

2025-10-30 (main:e0843eae32) Page 102

.NET Framework Interface Guide

As in Example 7, the global variable Wines contains a vector of character vectors, each
of which is the name of a wine.

Grid[2-4] creates a matrix winelist, whose first column contains the names of the
wines, and whose second column their (randomly generated) prices. As this is a global
variable, the variable is expunged before being used in order to remove any previous
data binding information that was associated with it.

Grid[5]creates the left argument for (20151) which defines the names and data types
of the properties which the columns of the matrix winelist will be exposed as. In this
case, the names of the paths are Name and Price, and their data types are both
System.Object. So the first column will be exposed as Name and the second as Price,
matching the path names specified in the XAML:

<DataGridTextColumn Header="Wine"
Binding="{Binding Name}"/>
<DataGridTextColumn Header="Price"
Binding="{Binding Price, StringFormat=C}" />

Testing the Data Binding

JLOAD wpfintro
)CS DataBinding.DataGridMatrix
Grid

2025-10-30 (main:e0843eae32) Page 103

.NET Framework Interface Guide

§b DataGrid Example = | E
Wine Price
Chateau Canon-La-Gafferiere $105.39| «
Chateau Cantenac $110.10
Chateau Cap-Le-Mourlin $156.53
Chateau Cardinal-Villemaurine $150.46
Chateau Cassevert $134.56(
Chateau Chapelle-Madeleine $184.46
Chateau Cote-Daugay-ex-Madeleine | $185.80
Chateau Coutet $199.22| =
Chateau Cure-Bon-La-Madeleine $133.16
Chateau Faurie-de-Soutard $151.28
Chateau Fonplegade $19543|
Clos Fourtet $189.00
Chateau Franc-Mayne $195.77
Chateau Franc-Pourret $130.77
Domaine du Grand-Faurie $133.13
Chateau Grand-Mayne $156.58
Chateau Grand-Ponet $116.63
Chateau Grandes Murailles $150.82
Chateau Guadet-Saint-Julien $147.74
Chateau GueyrotHaut-Cadet $134.54
Chateau Haut-Pontet $154.69
Chateau Haut-Simard $182.55
Chateau Haut-Trimoulet $153.00| =

Let's round the prices to the nearest $5.

winelist[;2]«5%x|0.5+winelist[;2]+5

2025-10-30 (main:e0843eae32)

Page 104

.NET Framework Interface Guide

[T — EENEER
Wine Price
Chateau Canon-La-Gafferiere $105.00| “
Chateau Cantenac $110.00
Chateau Cap-Le-Mourlin $155.00
Chateau Cardinal-Villemaurine $150.00
Chateau Cassevert $135.00(
Chateau Chapelle-Madeleine $185.00
Chateau Cote-Daugay-ex-Madeleine | $185.00
Chateau Coutet $200.00(=
Chateau Cure-Bon-La-Madeleine $135.00
Chateau Faurie-de-Soutard $150.00
Chateau Fonplegade $195.00|
Clos Fourtet $190.00
Chateau Franc-Mayne $195.00
Chateau Franc-Pourret $130.00
Domaine du Grand-Faurie $135.00
Chateau Grand-Mayne $155.00
Chateau Grand-Ponet $115.00
Chateau Grandes Murailles $150.00
Chateau Guadet-Saint-Julien $150.00
Chateau GueyrotHaut-Cadet $135.00
Chateau Haut-Pontet $155.00
Chateau Haut-Simard $185.00
Chateau Haut-Trimoulet $155.00| =

Using Code

The same result can be achieved using code instead of XAML as illustrated by the
function GridCodeNoFmt. The function is so-named because this code is insufficient to
display the second column in currency format.

2025-10-30 (main:e0843eae32) Page 105

[1]
[2]
[3]

v

.NET Framework Interface Guide

GridCodeNoFmt ;[JUSING;MySource:win;info;fmt

[JUSING<«'System'
[JUSING,«,c'System.Windows.Controls,WPF/PresentationfFramework.dll"'
OUSING,«c'System.Windows.Controls.Primitives,WPF/

PresentationfFramework.dll'

(4]
(5]
[é]
[7]
(8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

v

[JUSING,«c'System.Windows ,WPF/PresentationFramework.dll'
[JUSING,«c'System.Windows ,WPF/PresentationCore.dll’'

OeEX'winelist'
winelist«Wines,[1.5]0.01x10000+?(pWines)p10000
win<[ONEW Window

win.Title«'DataGrid Matrix (Code)'
win.grid«<[JNEW DataGrid

info«(s;'Name' 'Price'),cObject
win.grid.ItemsSource«info(20151) 'winelist’
win.grid.Height«500

win.Content«win.grid
win.SizeToContent«SizeToContent.WidthAndHeight
win.Show

This is because by default the DataGrid generates its columns automatically with
default formatting.

2025-10-30 (main:e0843eae32) Page 106

.NET Framework Interface Guide

i
fB DataGrid Matrix (Code) (e o5l

Name

Chateau Ausone

Price
19841+

Clos de I'Angelus

127.08

Chateau Baleau

140.68

Chateau Balestard-La-Tonnelle

137.52

Chateau Beau-Mazerat

199.09

Chateau Belair

19401

Chateau Bellevue

161.19

Chateau Bergat

150.88

Chateau Berliquet

17741

Chateau Bragard

167.79

Chateau Cadet-Bon

119.93

Chateau Cadet-Peychez

162.74

Chateau Cadet-Piola

187.38

Chateau Canon

175.19

Chateau Canon-La-Gafferiere

178.71

Chateau Cantenac

135.82

Chateau Cap-Le-Mourlin

1024

Chateau Cardinal-Villemaurine

155.95

Chateau Cassevert

139.18

Chateau Chapelle-Madeleine

19445

Chateau Cote-Daugay-ex-Madeleine

157.21

Chateau Coutet

119.03

Chateau Cure-Bon-La-Madeleine

101.76

Chateau Faurie-de-Soutard

122.21

Chateau Fonplegade

153.16| ~

In order to apply special formatting to one or more columns, it is necessary to set the
AutoGenerateColumns property to 0, and to generate the columns programmatically as
is shown in the second version of the function, GridCode.

2025-10-30 (main:e0843eae32)

Page 107

.NET Framework Interface Guide

vV GridCode:;:[QUSING:MySource;win;info;fmt
[1] [JUSING<«'System'
[2] [JUSING,«,c'System.Windows.Controls,WPF/PresentationfFramework.dll"'
[3] OUSING,«c'System.Windows.Controls.Primitives,WPF/
PresentationfFramework.dll'
[4] [JUSING,«c'System.Windows ,WPF/PresentationFramework.dll'
[5] [JUSING,«c'System.Windows ,WPF/PresentationCore.dll’'
[6]
[7] OEX'winelist'
[8] winelist«Wines,[1.5]0.01x10000+?(pWines)p10000
[9] win<[INEW Window
[10] win.Title«'DataGrid Matrix (Code with Formatting)'
[11] win.grid«<[JNEW DataGrid
[12] info«(s'Name' 'Price'),cObject
[13] win.grid.ItemsSource«info(20151) 'winelist’
[14] win.grid.Height«500
[15] win.grid.AutoGenerateColumns<«0
[16] win.Content<«win.grid
[17] win.SizeToContent«SizeToContent.WidthAndHeight
[18] A Add columns and set format

[19] win.grid.Columns.Add"'"' 'C'{
[20] col«[IJNEW DataGridTextColumn
[21] col.Header«w
[22] col.Binding«[INEW Data.Binding(cw)
[23] col.Binding.StringFormat+«,a
[24] col
[25] } "'Name' 'Price’
[26]
[27] win.Show
v

In this version of the function, lines [19-25] create the two columns Name and Price,
applying currency format to the Price column.

2025-10-30 (main:e0843eae32) Page 108

.NET Framework Interface Guide

§ DataGrid Matrix (Code+Fmt) L=/ (=]

Name Price

Chateau Ausone $159.62
Clos de I'Angelus §102.14
Chateau Baleau $110.31
Chateau Balestard-La-Tonnelle $115.72
Chateau Beau-Mazerat $137.46
Chateau Belair $129.27
Chateau Bellevue $106.04
Chateau Bergat $189.44
Chateau Berliquet $101.26
Chateau Bragard §172.14
Chateau Cadet-Bon $143.27
Chateau Cadet-Peychez $116.36
Chateau Cadet-Piola $152.97
Chateau Canon $174.25
Chateau Canon-La-Gafferiere $155.95
Chateau Cantenac $107.56
Chateau Cap-Le-Mourlin $180.33
Chateau Cardinal-Villemaurine $138.34
Chateau Cassevert $190.48
Chateau Chapelle-Madeleine $119.01
Chateau Cote-Daugay-ex-Madeleine | $179.26
Chateau Coutet $166.12
Chateau Cure-Bon-La-Madeleine $114.33
Chateau Faurie-de-Soutard $159.73
Chateau Fonplegade $182.68

2025-10-30 (main:e0843eae32)

Page 109

.NET Framework Interface Guide

4.4 Syncfusion Libraries

Dyalog does not include the Syncfusion library of WPF controls. A separate licence is
required from Syncfusion to use these in application development and to distribute
them with run-time applications.

Note

From Dyalog v20.0 onwards, you must not use the Syncfusion libraries that were

distributed with previous versions of Dyalog.

Requirements

To use the Syncfusion libraries you must be using Microsoft .NET Version 4.6.

In addition, to use the controls contained in these assemblies it is necessary to perform
one or both of the following steps.

Using XAML

If using XAML, the XAML must include the appropriate xmlns statements that specify
where the Syncfusion controls are to be found. For example:

xmlns:syncfusion="clr-namespace:Syncfusion.Windows.Gauge;
assembly=Syncfusion.Gauge.WPF"

The above statement defines the prefix syncfusion to mean the specified Syncfusion
namespace and assembly that contains the various Gauge controls. When the prefix
syncfusion is subsequently used in front of a control in the XAML, the system knows
where to find it. For example:

<syncfusion:CircularGauge Name="fahrenheit" Margin="10">
[USING
In common with all .NET types, when a Syncfusion control is loaded using XAML or

using ONEW it is essential that the current value of JUSING identifies the .NET
namespace and assembly in which the control will be found. For example:

2025-10-30 (main:e0843eae32) Page 110

https://www.syncfusion.com/

.NET Framework Interface Guide

QUSING,«c'Syncfusion.Windows.Gauge,YOUR_INSTALL_PATH/
Syncfusion.Gauge.WPF.dl L'

This statement tells APL to search the .NET namespace named
Syncfusion.Windows.Gauge, which is located in the assembly file whose path depends
on your specific Syncfusion installation.

4.5 Syncfusion Circular Gauge Example
Dyalog does not include the Syncfusion library of WPF controls. A separate licence is

required from Syncfusion to use these in application development and to distribute
them with run-time applications.

Note

From Dyalog v20.0 onwards, you must not use the Syncfusion libraries that were

distributed with previous versions of Dyalog.

2025-10-30 (main:e0843eae32) Page 111

https://www.syncfusion.com/

.NET Framework Interface Guide

$ SyncFusion CircularGauge - =] x

2025-10-30 (main:e0843eae32) Page 112

.NET Framework Interface Guide

The XAML

Like most Syncfusion controls, the CircularGauge is made up of a complex structure of
objects, and the XAML (see variable XAML_SF) is too extensive to describe in detail
herein. It was created from the sample XAML from the Syncfusion documentation for
this control entitled Essential Gauge for WPF, which may be downloaded from https://
help.syncfusion.com/wpf/gauge.

The key statements in the XAML are as follows:

xmlns:syncfusion="clr-
namespace:Syncfusion.Windows.Gauge;assembly=Syncfusion.Gauge.WPF"

The above statement defines the prefix syncfusion to mean the specified Syncfusion
namespace and assembly. When the prefix syncfusion is subsequently used in front of
a control in the XAML, the system knows where to find it.

The next two statements define CircularPointer controls (the needles on the gauges);
one for the Fahrenheit gauge (named f_pointer) and one for the Centigrade gauge
(named c_pointer).

<syncfusion:CircularPointer Name="f_pointer" BorderWidth="0.3"
PointerLength="100" PointerPlacement="Inside" PointerWidth="20"
Value="32"/>

<syncfusion:CircularPointer Name="c_pointer" BorderWidth="0.3"
PointerLength="100" PointerPlacement="Inside" PointerWidth="20"
Value="0"/

The APL Code

The following functions were used to produce the example illustrated above. The main
function is SF_TC_XAML.

2025-10-30 (main:e0843eae32) Page 113

https://help.syncfusion.com/wpf/gauge
https://help.syncfusion.com/wpf/gauge

.NET Framework Interface Guide

vV SF_TC_XAML:[USING:win;f_pointer;c_pointer;sink

[1]
[2] win«LoadXAML XAML_SF
[3]
[4] f_pointer«win.FindNamec'f_pointer'
[5] c_pointer«win.FindNamec'c_pointer'
(6]
[7] f_pointer.onMouseEnter«'MouseEnter’
[8] c_pointer.onMouseEnter<«'MouseEnter"'
[9]
[10] sink«win.ShowDialog

v

After creating the Window from the text in XAML_SF, the function SF_TC_XAML obtains
refs to the two CircularPointer controls named f_pointer (in the Fahrenheit gauge) and
c_pointer (in the Centigrade gauge). It then attaches the MouseEnter callback to each
of these objects.

V MouseEnter(this ev):ptrs

[1] ptrs«f_pointer c_pointer

[2] ptrs.onValueChanged«(ptrstthis)$0 'TempChanged'
v

In this example, the user grabs one of the gauge needles and moves it around the face
of the gauge. When the user moves the mouse into one of these needles, the
MouseEnter callback fires. The function MouseEnter receives the CircularPointer object
that generated the event this as the first item in its argument.

The code simply attaches the callback function TempChanged to this, and disables any
callback on the other CircularPointer object.

Note that if both CircularPointer objects had callbacks on TempChanged at the same
time, the system would enter a callback loop.

vV TempChanged(obj ev)

[1] :Select obj
[2] :Case f_pointer
[3] c_pointer.Value«(obj.Value-32)x5+9
(4] :Case c_pointer
[5] f_pointer.Value«32+obj.Value+5+9
[6] :EndSelect

v

The LoadXAML function used in this example is subtly different from previous examples.

2025-10-30 (main:e0843eae32) Page 114

.NET Framework Interface Guide

vV win<LoadXAML xaml;[JUSING;str;xml
[1] [JUSING<«'System.IO'
[2] QUSING,«c'System.Windows.Markup'
[3] JUSING,«c'System.Xml,system.xml.dll"'
[4] JUSING,<«c'System.Windows.Controls,WPF/PresentationfFramework.dll'
[5] QUSING,«c'Syncfusion.Windows.Gauge,YOUR_INSTALL_DIR/
Syncfusion.Gauge .WPF.dLl L'
[6] str<[JNEW StringReader(cxaml)
[7] xml<[OJNEW XmlTextReader str
[8] win«XamlReader.Load xml
v

In particular, it contains the all-important statement:

[5] JUSING,«c'Syncfusion.Windows.Gauge,
YOUR_INSTALL_DIR/Syncfusion.Gauge.WPF.dlLl'

This statement tells APL to search the .NET namespace named
Syncfusion.Windows.Gauge, which is located in the assembly file whose path depends
on your exact Syncfusion installation.

2025-10-30 (main:e0843eae32) Page 115

.NET Framework Interface Guide

5 APLScript

5.1 Introduction

APLScript is a Dyalog scripting language. It was originally designed specifically to
program ASP.NET Web Pages and Web Services, but it has been extended to be of more
general use outside the Microsoft .NET environment.

APLScript is not workspace oriented (although you can call workspaces from it) but is
simply a character file containing function bodies and expressions.

APLScript files may be viewed and edited using any character-based editor which
supports Unicode text files, such as Notepad. APLScript files may also be edited using
Microsoft Word, although they must be saved as text files without any Word
formatting.

APLScript files employ Unicode encoding so you need a Unicode font with APL
symbols, such as APL385 Unicode, to view them. In order to type Dyalog symbols into
an APLScript file, you also need the Dyalog Input Method Editor (IME), or other APL
compatible keyboard.

If you choose to use the Dyalog IME it can be configured from the Dyalog Configuration
dialog. You may change the associated .DIN file and various other options. See Unicode
Input Tab (Unicode Edition Only).

There are basically three types of APLScript files that may be identified by three
different file extensions. APLScript files with the extension .aspx and .asmx

specify .NET classes that represent ASP.NET Web Pages and Web Services respectively.
APLScript files with the extension . apl may specify .NET classes or may simply
represent an APL application in a script format as opposed to a workspace format. Such
applications do not necessarily require the Microsoft .NET Framework.

5.2 The APLScript Compiler

APLScript files are compiled into executable code by the APLScript compiler whose
name is given in the table below.

2025-10-30 (main:e0843eae32) Page 116

.NET Framework Interface Guide

Unicode Edition Classic Edition
32-Bit dyalogc_unicode.exe dyalogc.exe
64-Bit dyalogcébl_unicode.exe dyalogcélk.exe

This program is called automatically by ASP.NET when a client application requests a
Web Page (.aspx) or Web Service (.asmx) and in these circumstances always generates
the corresponding .NET class. However, the Script Compiler may also be used to:

e Compile an APLScript into a workspace (. dws) that you may subsequently run
using dyalog.exe or dyalogrt.exe in the traditional manner.

e Compile an APLScript into a .NET class (. d L) which may subsequently be used
by any other .NET compatible host language such as C# or Visual Basic.

e Compile an APLScript into a native Windows executable program (. exe), which
may be run as a stand-alone executable. This program may be distributed, along
with the Dyalog runtime DLL, as a packaged application, and does not require
any of the additional support files and registry entries that are typically needed
by the Dyalog run-time dyalogrt.exe. Note too that the Dyalog dynamic link
library does not use MAXWS but instead allocates workspace dynamically as
required. See the Dyalog for Microsoft Windows Installation and Configuration
Guide: Run-Time Applications and Components for further details.

e Compile a Dyalog workspace (.dws) into a native Microsoft Windows executable
program, with the same characteristics and advantages described above.

The Script is designed to be run from a command prompt. If in the 64-bit Unicode
Edition change to the appropriate directory and type dyalogcél4_unicode /? (to query
its usage) the following output is displayed:

2025-10-30 (main:e0843eae32) Page 117

.NET Framework Interface Guide

c:\Program Files\Dyalog\Dyalog APL-64 18.0 Unicode>dyalogcébi4_unicode /?

Dyalog APLScript compiler 64 bit. Unicode Mode. Version 18.0.38524.0

Copyright Dyalog Ltd 2000-2020

dyalogc.exe command line options:

/?

/r:file
/o[ut]:file
/res:file
/icon:file

/q

/v

/s

/nonet
/runtime
/lx:expression
/t:library

/t:nativeexe
/t:workspace
/nomessages
creating

/console

/c
/multihost
/unicode
intepreter
/wx:[0]1]3]
/a:file
attached

Usage

Add reference to assembly
Output file name
Add resource to output file

File containing main program icon

Operate quietly

Verbose

Treat warnings as errors
Creates a binary that does not use Microsoft .Net

Build a non-debuggable binary

Specify entry point (Latent Expression)
Build .Net Llibrary (.dll)
Build native executable (.exe).

Build dyalog workspace (.dws)

Default

Process does not use windows messages. Use when

a process to run under IIS
Creates a console application
Creates a console application
Support multi-hosted interpreters

Creates an application that runs in a Unicode

Sets (WX for default code
Specifies a JSON file containing

to the binary

/i:Process
/i:Assembly
/i:AppDomain
/i:Local

Set the
Set the
Set the
Set the

isolation
isolation
isolation
isolation

mode
mode
mode
mode

of
of
of
of

0 0O O o

NET
NET
CNET
NET

attributes to be

Assembly
Assembly
Assembly
Assembly

Note that the isolation mode specified by the /i option overrides the setting in
web.config. See Section 12.7.

The /a option is used to specify the name of a JSON file that contains assembly info.

For example:

2025-10-30 (main:e0843eae32)

Page 118

.NET Framework Interface Guide

dyalogcébh4_unicode.exe /t:library j:/ws/attributetest.dws /a:c:/tmp/
atts.json

where c:/tmp/atts. json contains:

{

"AssemblyVersion": "1.2.2.2",

"AssemblyFileVersion": "2.1.1.4",

"AssemblyProduct": "My Application",

"AssemblyCompany": "My Company",

"AssemblyCopyright": "Copyright 2020",

"AssemblyDescription": "Provides a text description for an
assembly.",

"AssemblyTitle": "My Assembly Title",

"AssemblyTrademark": "Your Legal Trademarks"

5.3 Creating an APLScript File

Conceptually, the simplest way to create an APLScript file is with Notepad, although
you may use many other tools including Microsoft Visual Studio as described in the
next Chapter.

1. Start Notepad

2. Choose Format/Font from the Menu Bar and select an appropriate Unicode font
that contains APL symbols, such as APL 385 Unicode.

3. Select an APL keyboard by clicking on your keyboard selector in the System Tray.
Note that this keyboard setting (and button) is associated only with the current
instance of Notepad. If you start another instance of Notepad, or another editor,
you will have to select the APL keyboard for it separately and there will be two
floating toolbars on your display.

4. Now type in your APL code. If you use a Ctrl keyboard, you will discover that
Ctrl+ keystrokes generate APL symbols For example, Ctrl+n generates .

5. Choose File/Save. When the Save As dialog appears, ensure that Encoding is set
to Unicode and Save as type: is set to All Files. Enter the name of the file, adding
the extension .asmx or .aspx, and then click Save. Note that you have to save
the .asmx file somewhere in an 1IS Virtual Directory structure.

2025-10-30 (main:e0843eae32) Page 119

.NET Framework Interface Guide

5.4 Copying code from the Dyalog Session

You may find it easier to write APL code using the Dyalog APL function or class editor
that is provided by the Dyalog APL Session. Or you may already have code in a
workspace that you want to copy into an APLScript file.

If so, you can transfer code from the Session into your APLScript editor (for example,
Notepad) using the clipboard. Notice that because APLScript requires Unicode
encoding (for APL symbols), you must ensure that character data is written to the
clipboard in Unicode.

In the Unicode interpreter this is always done. In the Classic interpreter this is
controlled by a parameter called UnicodeToClipboard that specifies whether or not
datais transferred to and from the Windows clipboard as Unicode. This parameter may
be changed using the Trace/Edit page of the Configure dialog box.

If set (the default), APL text pasted to the clipboard from the Session is written as
Unicode and APL requests Unicode data back from the clipboard when it is required.
This makes it easy to transfer APL code between the Session and an APLScript editor.

In the Classic interpreter when pasting code into the Dyalog editor, there are two menu
items under the Edit menu, which allow you to explicitly select whether the Unicode
mapping should be used, or the old mapping which corresponds to the Dyalog Std TT
or Dyalog Alt TT fonts. You should use "Paste non-Unicode" when transferring text from
the on line help, or text copied from earlier versions of Dyalog APL without the Unicode
option.

Unless you explicitly want to have line numbers in your APLScript, the simplest way to
paste APL code from the Session into an APLScript text editor is as follows:

. open the function in the function editor

. select all the lines of code, or just the lines you want to copy

. select Edit/Copy or press Ctrl+Ins

. switch to your APLScript editor and select Edit/Paste or press Shift+Ins.
. insert Del (v) symbols at the beginning and end of the function.

G N WN P

If you want to preserve line numbers (this is allowed, but not recommended in
APLScript files), you may use the following technique:

1. in the Session window, type a del (v) symbol followed by the name of the
function, followed by another del (v) and then press Enter. This causes the
function to be displayed, with line numbers, in the Session window.

2025-10-30 (main:e0843eae32) Page 120

.NET Framework Interface Guide

2. select the function lines, including the surrounding Dels (v) and choose Edit/
Copy or press Ctrl+Insert.
3. switch to your APLScript editor and select Edit/Paste or press Shift+Ins.

5.5 General principles of APLScript

The layout of an APLScript file differs according to whether the script defines a Web
Page, a Web Service, a .NET class, or an APL application that may have nothing to do
with the .NET Framework. However, within the APLScript, the code layout rules are
basically the same.

An APLScript file contains a sequence of function bodies and executable statements
that assign values to variables. In addition, the file typically contains statements that
are directives to the APLScript compiler. If the script is a Web Page or Web Service, it
may also contain directives to ASP.NET. The former all start with a colon symbol (:) in
the manner of control structures. For example, the :Namespace statement tells the
APLScript compiler to create, and change into, a new namespace. The :EndNamespace
statement terminates the definition of the contents of a namespace and changes back
from whence it came.

Assignment statements are used to set up system variables, such as OML, 010, QUSING
and arbitrary APL variables. For example:

OML<2
J10<«0
(QUSINGu«c'System.Data'

A<88
B«'Hello World'

gcy 'Myws'

These statements are extracted from the APLScript and executed by the compiler in
the order that they appear. It is important to recognise that they are executed at
compile time, and not at run-time, and may therefore only be used for initialisation.

Notice that it is acceptable to execute (OCY to bring in functions and variables from a
workspace that are to be incorporated into the code. This is especially useful to import
a set of utilities. Note also that it is possible to export these functions as methods

of .NET classes if the functions contain the appropriate colon statements.

2025-10-30 (main:e0843eae32) Page 121

.NET Framework Interface Guide

The APLScript compiler will in fact execute any valid APL expression that you include.
However, the results may not be useful and may indeed simply terminate the compiler.
For example, it is not sensible to execute statements such as OLOAD, or [JOFF.

Function bodies are defined between opening and closing del (v) symbols. These are
fixed by the APLScript compiler using OF X. Line numbers and white space formatting
are ignored.

5.6 Creating Programs (.exe) with APLScript

The following examples, which illustrate how you can create an executable program
(.exe) direct from an APLScript file, may be found in the directory samples\aplscript.

A simple GUI example

The following APLScript illustrates the simplest possible GUI application that displays a
message box containing the string "Hello World".

:Namespace N

OLX«<'N.RUN'

VRUN:M

'M'OWC'MsgBox' 'A GUI exe' 'Hello World'
0oQ'M’

v

:EndNamespace

This example, which is saved in the file eg1.apl, is compiled to a Windows executable
(.exe) using dyalogc.exe and run from the same command window as shown below.
Notice that it is essential to surround the code with :Namespace / :EndNamespace
statements and to define a OLX either in the APLScript itself, or as a parameter to the
dyalogc command.

s C:\WINDOWS\system32\cmd.exe - [o] x|
C:\Program Files\Dyalog\Dyalog APL 11.0\Samples\aplscript>dyalogc egl.apl =
Dyalog APLScript compiler. Uersion 11.0

Copyright Dyalog Ltd 2086

C:\Program Files\Dyalog\Dyalog APL 11.60\Samples\aplscriptegl

C:\Program Files\Dyalog\Dyalog APL 11.0\Samples\aplscript>

2025-10-30 (main:e0843eae32) Page 122

.NET Framework Interface Guide

Hello World

You can associate the . exe with a desktop icon, and it will run stand-alone, without a
Command Prompt window. Furthermore, any default APL output that would normally
be displayed in the session window will simply be ignored.

A simple console example

The following APLScript illustrates the simplest possible application that displays the
text "Hello World".

This example, which is saved in the file eg2.apl, is compiled to a Windows executable
(.exe) and run from a command window as shown below. Notice that the /console
flag is used to tell the APLScript compiler to create a console application that runs from
a command prompt. In this case, default APL output that would normally be displayed
in the session window turns up in the command window from which the program was
run.

:Namespace N
OLX«'N.RUN'
VRUN

'Hello World'
v
:EndNamespace

Once more, it is essential to surround the code with :Namespace/:EndNamespace
statements and to define a 0LX either in the APLScript itself, or as a parameter to the
dyalogc command.

ev C:\WINDOWS\system32\cmd.exe !EE

C:\Program Files\Dyalog\Dyalog APL 11.0\Samples\aplscript>dyalogc /console eg2.a

1Y
Dyalog APLScript compiler. Uersion 11.0
Copyright Dyalog Ltd 2006

C:\Program Files\Dyalog\Dyalog APL 11.0\Samples\aplscript eg2
Hello YWorld

C:\Program Files\Dyalog\Dyalog APL 11.0\Samples\aplscript>

2025-10-30 (main:e0843eae32) Page 123

.NET Framework Interface Guide

Defining Namespaces

Namespaces are specified in an APLScript using the :Namespace and :EndNamespace
statements. Although you may use ONS and [0cs within functions inside an APLScript,
you should not use these system functions outside function bodies. Note that such use
is not prevented, but that the results will be unpredictable.

:Namespace Name
introduces a new namespace called Name relative to the current space.
:EndNamespace

terminates the definition of the current namespace. Subsequent statements and
function bodies are processed in the context of the original space.

It is imperative that at least ONE namespace be specified.

All functions specified between the :Namespace and :EndNamespace statements are
fixed in that namespace. Similarly, all assignments define variables inside that
namespace.

The following example illustrates how APL namespace usage is handled in APLScript.
The program, contained in the file eg3. apl, is as follows:

2025-10-30 (main:e0843eae32) Page 124

.NET Framework Interface Guide

:Namespace N
OLX«'N.RUN'

VRUN
OPATH«'1t'
NS.START
END

v
VR<CURSPACE
R<>[NSI

v

VEND
"Ending in ',CURSPACE
\'4

:NameSpace NS

VSTART

‘Starting in ',CURSPACE
v

:EndNameSpace
:EndNameSpace

This somewhat contrived example illustrates how a namespace is defined inside
another namespace using :NameSpace and : EndNamespace statements. The
namespace NS contains a single function called START, which is called from the main
function RUN.

Notice that OPATH is defined dynamically in function RUN. If it were defined outside a
function in a static statement in the script (say, after the statement that sets OLX), it
would not be honoured when the application was run.

This program is shown, compiled and run as a console application, below.

et C:\WINDOWS\system32\cmd.exe

C:\Program Files\Dyalog\Dyalog APL 11.8\Samples\aplscript>dyalogc /console eg3.a|

pl
Dyalog APLScript compiler. Uersion 11.0

Copyright Dyalog Ltd 2086

IC:\Program Files\Dyalog\Dyalog APL 11 .6\Samples\aplscript eg3
Starting in #.N.NS
Ending in #.N

C:\Program Files\Dyalog\Dvalog APL 11.8\Samples\aplscript>

2025-10-30 (main:e0843eae32) Page 125

.NET Framework Interface Guide

5.7 Creating .NET Classes with APLScript

It is possible to define and use new .NET classes within an APLScript.

A class is defined by :Class and :EndClass statements. The methods provided by the
class are defined as function bodies enclosed within these statements. Please see the
Language Reference for a complete discussion of writing classes in Dyalog. This chapter
will only provide a brief introduction to the subject, aimed specifically at APLScript.

You may also define sub-classes or nested classes using nested :Class and :EndClass
statements.

:Class Name: Type

Declares a new class called Name, which is based upon the Base Class Type, which may
be any valid .NET Class.

:EndClass
Terminates a class definition block

A class specified in this way will automatically support the methods, properties and
events that it inherits from its Base Class, together with any new public methods that
you care to specify.

However, the new class only inherits a default constructor (which is called with no
parameters) and does not inherit all of the other private constructors from its Base
Class. You can define a method to be a constructor using the :Implements
Constructor declarative comment. Constructor overloading is supported and you may
define any number of different constructor functions in this way, but they must have
unique parameter sets for the system to distinguish between them.

You can create and use instances of a class by using the ONEW system function in
statements elsewhere in the APLScript.

Exporting Functions as Web Methods

Within a :Class definition block, you may define private functions and public
functions. A public function is one that is exposed as a method and may be called by a
client that creates an instance of your class. Public functions must have a section of
declaration statements. Other functions are purely internal to the class and are not
directly accessible by a client application.

2025-10-30 (main:e0843eae32) Page 126

.NET Framework Interface Guide

The declaration statements for public functions perform the same task for an
APLScript that is performed using the .NET Properties dialog box, or by executing
SetMethodInfo in the Dyalog Session, prior to creating a .NET assembly. The following
declaration statements may be used.

tAccess Public

Specifies that the function is callable. This statement applies only to a .NET class or to a
Web Page and is not applicable to a Web Service.

:Access WebMethod

Specifies that the function is callable as a Web Method. This statement applies only to
a Web Service (.asmx). From version 11.0, the statement is equivalent to:

tAccess Public
:Attribute System.Web.Services.WebMethodAttribute
:Implements Constructor

Specifies that the function is a constructor for a new .NET class. This function must
appear between :Class and :EndClass statements and this applies only to a Web
Page (.aspx). See Defining Classes in APLScript for further details. A constructor is called
when you execute the New method in the class.

:Signature result«fn typel Namel, type2 Name2,..

Declares the result of the method to have a given data type, if any. It also declares
parameters to the method to have given data types and names. Namex is optional and
may be any well-formed name that identifies the parameter. This name will appear in
the metadata and is made available to a client application as information. It is therefore
sensible to choose meaningful names. The names you allocate to parameters have no
other meaning and are not associated with the names of local variables that you may
choose to receive them. However, it is not a bad idea to use the same local names as
the public names of your parameters.

A .NET Class example
The following APLScript illustrates how you may create a .NET Class using APLScript.

The example class is the same as Example 1 in Chapter 5. The APLScript code, saved in
the file samples\aplclasses\aplclassesé.apl, is as follows:

2025-10-30 (main:e0843eae32) Page 127

.NET Framework Interface Guide

:Namespace APLClasses

:Class Primitives: Object
[QUSING<«<,c'System'
:Access public

V R«IndexGen N
:Access Public
:Signature Int32[]«IndexGen Int32 number
R«tN
v
:EndClass

:EndNamespace

This APLScript code defines a namespace called APLClasses. This simply acts as a
container and is there to establish a .NET namespace of the same name within the
resulting .NET assembly. Within APLClasses is defined a .NET class called Primitives
whose base class is System.0bject. This class has a single public method named
IndexGen, which takes a parameter called number whose data type is Int32, and
returns an array of Int32 as its result.

aplclassesé6.apl is compiled to a .NET Assembly using the APLScript compiler with
the /t: Library flag. For details, see the file aplclasses6\framework\build.bat.

Using VS, open the solution file d:
\aplclasses\aplclasses6\Framework\project.slnand view aplclassesé6.dll.

2025-10-30 (main:e0843eae32) Page 128

.NET Framework Interface Guide

0 File Edt View Gt Project Bulld Debug Test Analyze Tools Extensions Window Help project - o x

o E-EBE| - |[ou pe | bse-b G- |m|E, G e B

Object Browser + X £ Solutio o
Browse: | My Solution MEIRCHORE-1 - ol o--0ad =
| <Search> +] 2 2= [search Solution Explorer (Ctri+:) A~
4 »B aplclassest @ ~Primitives(F Solution ‘project’ (1 of 1 project)
4 () APLClasses [:M IndexGen(int) 4 Project
4 %3 Primitives @ Primitives() b &8 References
3 Base Types @ System.IDisposable.SDispose() b C# Program.cs
b {} Dyalog

b =8 bridge190-64_unicode

b =B dyalognet

b =® Microsoft.CSharp

b =B mscorlib

b [Project

b =B System

b =m System.Core

b =B System.Data

b =B System.Data.DataSetExtension,
b =B System.NetHttp

b =B System.Xml Solution Explorer
b * System.Xml.Ling public int[] IndexGen(int number)
Member of APLClasses Primitives

[=]2 | #

4 »

Show output from: e | =

Breakpoints

This shows that aplclassesé.dl Ll contains a .NET namespace called APLClasses, which
in turn contains the Primitives class. Primitives has a single method named IndexGen()
which takes a number (an int).

Next, Display the c# program program.cs. This is the same program as in Example1.

2025-10-30 (main:e0843eae32) Page 129

.NET Framework Interface Guide

w File

Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help Search.. P project - a x
-0 |E-BBE|9 - -|[pebug ~|[xes e s> G- BB 2 LiveShare &

Object Browser

[Project ~|| %g MainClass ~|| @ Main0 -
=lusing System;
using APLClasses;
0 references
=lpublic class MainClass

{

“static void Main()

Primitives apl = new Primitives();
int[] rslt = apl.IndexGen(10);

for (int i=0;i<rslt.Length;i++)

Program.cs X

Solution Explorer

Q.

-s0A@| o £=]

Search Solution Explorer (Ctrl+

[Solution ‘project’ (1 of 1 project)

4 Project

b &G References

4 C# Program.cs

}

{ @ No issues found

Console.WriteLine(rslt[il);

Properties

‘.\ g;

Show output from:

[FEAERY Ereakpoints

] Ready

Custom Tool

B Misc

File Name
Full Path

Misc

Copy to Output Directory

b #3z MainClass

Solution Explorer [[CXSLE S

Program.cs File Properties

Do not copy

Custom Tool Namespace

Program.cs
DAaplclasses\aplclassesé\framework\Pro

v

1 Addto Source Control + [Select Repository +

Now click Debug/Start Without debugging (or press Ctrl+F5) to run the program. The
results are shown in a console window.

- C\Windows\system32\cmd.exe

Vi H WN =

()]

O 00 ~

%
ress any key to continue .

0 =

This .NET Class can also be called from APL just like any other. For example:

2025-10-30 (main:e0843eae32)

Page 130

.NET Framework Interface Guide

)CLEAR
clear ws

"APLClasses, D:
\aplclasses\aplclassesé6\framework\bin\aplclassesé.dll"’

APL<[INEW Primitives

APL.IndexGen 10
1234567 89 10

Defining Properties

Properties are defined by :Property and :EndProperty statements. A property
pertains to the class in which it is defined.

:Property Name

V C«get
[1] :Access public
[2] :Signature Double<«get
[3] Ce...

v

Declares a new property called Name whose data type is System.Double. The latter
may be any valid .NET type which can be located through OQUSING.

:EndProperty
Terminates a property definition block

Within a :Property block, you must define the accessors of the property. The
accessors specify the code that is associated with referencing and assigning the value of
the property. No other function definitions or statements are allowed inside a
:Property block.

The accessor used to reference the value of the property is represented by a function
named get that is defined within the :Property block. The accessor used to assign a
value to the property is represented by a function named set that is defined within the
:Property block.

The get function is used to retrieve the value of the property and must be a niladic
result returning function. The data type of its result determines the Type of the
property. The set function is used to change the value of the property and must be a
monadic function with no result. The argument to the function will have a data type

2025-10-30 (main:e0843eae32) Page 131

.NET Framework Interface Guide

Type specified by the :Signature statement. A property that contains a get function
but no set function is effectively a read-only property.

The following APLScript, saved in the file samples\aplclasses\aplclasses7.apl,
shows how a property called IndexOrigin can be added to the previous example.
Within the :Property block there are two functions defined called get and set which
are used to reference and assign a new value respectively. These functions have the
fixed names and syntax specified for property get and property set functions as
described above.

:Namespace APLClasses

:Class Primitives: Object
JUSING«,c'System'
:Access public

V R«IndexGen N
:Access Public
:Signature Int32[]«IndexGen Int32 number
R<tN

:Property IndexOrigin

V io<«get
:Signature Int32«get Int32 number
io«JIO
v
vV set io
:Signature set Int32 number
:If joe0 1
010<«io
:EndIf
v
:EndProperty
:EndClass
:EndNamespace

Using VS, open the solution file d:
\aplclasses\aplclasses7\Framework\project.slnand view aplclasses7.dll.

2025-10-30 (main:e0843eae32) Page 132

.NET Framework Interface Guide

0Q File FEdt View Gt Poject Buld Debug Test Analyze Tooks Extensions Window Help project - o x

Object Browser + X

Browse: | My Solution

e l®

sa21nog ejeq R

| <Search>

o BE| - |f JfE] bseeb o mlE, & teshae

~ % Solution Explorer

ando--0a6 =

Search Solution Explorer (Ctrl+;)

4 B aplclasses7

4 {} APLClasses

b #3 Primitives

b {} Dyalog
b =B bridge190-64_unicode
b = dyalognet
b =B Microsoft.CSharp
b =B mscorlib
b [Project
b =B System
b =B System.Core
b =W System.Data
b =B System.Data.DataSetExtension,
b =B System.Net.Http
b =§ System.Xml
b =B System.Xml.Ling

Output

@ ~Primitives()

@ IndexGen(int)

@ Primitives()

@ System.IDisposable.SDispose()
»

IndexOrigin

FR Solution ‘project’ (1 of 1 project)
3 Project

public int IndexOrigin { get; set; }

Member of APLClasses Primitives

Show output from:

SIGINE Breakpoints
] Ready

Solution Explorer [[XSLE S

Properties

1 AddtoSource Control +] Select Repository « [

This shows that aplclasses7.dl L contains a .NET namespace called APLClasses, which
in turn contains the Primitives class. Primitives has a single method named IndexGen()
which takes a number (an int) and a property named IndexOrigin.

Next, Display the c# program program.cs. Notice that the main program calls a
subroutine iota twice to calculate 15 in origin 0 and 1.

2025-10-30 (main:e0843eae32)

Page 133

.NET Framework Interface Guide

0Q Fle Edt View Gt Project Buld Debug Test Anahze Tools Extensions Window Help |[Seorch.. O] project - o x
- B-280 ~ '« |[Debug ~|[x64 MELE R -~ . & LiveShare &7

Object Browser Solution Explorer v BXx
[Project «||%g MainClass ~|| @giota(int n, int io) - aplo-s
—lusing System; e So—r |
using APLClasses; Search Solution Explorer (¢ |
0 references - FR Solution 'project’ (1 of 1 prd
ic class MainClass 4 Project

_{ - b &G References
;)rlvate static void iota(int n,int io) —
.

| Primitives apl = new Primitives();
apl.IndexOrigin=io;

int[] rslt = apl.IndexGen(n);

Console.WriteLine("Result with IndexOrigin "+apl.IndexOrigin.ToString());
for (int i=0;i<rslt.Length;i++)

Console.WriteLine(rslt[i]);
}

;Jublic “static void Main()

{
iota(s,0);
iota(s,1);
}

}

& @ Noissues found ¥ E i1 TABS CRLF Build Actior Compile
Copy to Ou Do not copy
Custom Toc
Custom Toc

B Misc
File Name Proaram.cs

Advanced

Show output from:

[FEUERY Ereakpoints

] Ready 1 Addto Source Control 4 [Select Repository +

Now click Debug/Start Without debugging (or press Ctrl+F5) to run the program. The
results are shown in a console window.

sn. C:\Windows\system32\cmd.exe

=
m
wn
[—
o
t

t with IndexOrigin ©

esult with IndexOrigin 1

%)
il
2
4
R
il
2
4
5
p

y key to continue .

This .NET Class can also be called from APL just like any other. For example:

2025-10-30 (main:e0843eae32) Page 134

.NET Framework Interface Guide

)CLEAR
clear ws

"APLClasses, D:
\aplclasses\aplclasses7\framework\bin\aplclasses7.dll"’

APL<[INEW Primitives

APL.IndexGen 10
12345678910

APL.IndexOrigin

APL.IndexOrigin«0
APL.IndexGen 10
0123456789

Indexers

An indexer is a property of a class that enables an instance of that class (an object) to
be indexed in the same way as an array, if the host language supports this feature.
Languages that support object indexing include C# and Visual Basic. Dyalog does also
allow indexing to be used on objects. This means that you can define an APL class that
exports an indexer and you can use the indexer from C#, Visual Basic, or Dyalog.

Indexers are defined in the same way as properties, between :Property Default and
:EndProperty statements. There may be only one indexer defined for a class.

Note: the :Property Default statement in Dyalog is closely modelled on the indexer
feature in C# and employs similar syntax. If you use ILDASM to browse a .NET class
containing an indexer, you will see the indexer as the default property of that class,
which is how it is actually implemented.

5.8 Creating ASP.NET Classes with APLScript

As mentioned previously, the original purpose of APLScript was to provide the ability to
write ASP.NET Web Pages and Web Services in Dyalog. Both these applications are
based upon script files.

Web Page Layout
An ASP.NET Web Page typically consists of a mixture of HTML and code written in a

scripting language. The script code is separated from the HTML by being embedded
within tags and normally appears in the section of the page. Only one block of script is

2025-10-30 (main:e0843eae32) Page 135

.NET Framework Interface Guide

allowed in a page. The script block normally consists of a collection of functions, which
are invoked by some event on the page, or on an element of the page.

APLScript code starts with a statement:
<script language="Dyalog" runat=server>
and finishes with:

</script>

Typically, the APLScript code consists of callback functions that are attached to server-
side events on the page.

For further information, see Section 12.7.
Web Service Layout

The first line in a Web Service script must be a declaration statement such as:
<%@ WebService Language="Dyalog" Class="ServiceName" %>
where ServiceName is an arbitrary name that identifies your Web Service.

The next statement must be a : Class statement that declares the name of the Web
Service and its Base Class from which it inherits. The base class will normally be
System.Web.Services.WebService. For example:

:Class ServiceName: System.Web.Services.WebService
The last line in the script must be:
:EndClass

Although it may appear awkward to have to specify the name of your Web Service
twice, this is necessary because the two statements are being processed quite
separately by different software components. The first statement is processed by
ASP.NET. When it sees Language="Dyalog", it then calls the Dyalog APLScript
compiler, passing it the remainder of the script file. The :Class statement tells the
APLScript compiler the name of the Web Service and its base class. :Class and
:EndClass statements are private directives to the APLScript compiler and are not
relevant to ASP.NET.

2025-10-30 (main:e0843eae32) Page 136

.NET Framework Interface Guide

How APLScript is processed by ASP.NET

Like any other Web Page or Web Service, an APLScript file is processed by ASP.NET.

The first time ASP.NET processes a script file, it first performs a compilation process
whose output is a .NET assembly. ASP.NET then calls the code in this assembly to
generate the HTML (for a Web Page) or to run a method (for a Web Service).

ASP.NET associates the compiled assembly with the script file, and only recompiles it if/
when it has changed.

ASP.NET does not itself compile a script; it delegates this task to a specialised compiler
that is associated with the language declared in the script. This association is made
either in the application's web.config file or in the global machine.config file. Dyalog
Installs a default web.config file which includes these settings in the samples\asp.net
folder.

The APLScript compiler is itself written in Dyalog.

Although the compilation process takes some time, it is typically only performed once,
so the performance of an APLScript Web Service or Web Page is not compromised.
Once it has been compiled, ASP.NET redirects all subsequent requests for an APLScript
to its compiled assembly.

Please note that the use of the word compile in this process does not imply that your
APL code is actually compiled into Microsoft Intermediate Language (MSIL). Although
the process does in fact generate some MSIL, your APL code will still be interpreted by
the Dyalog DLL engine at run-time. The word compile is used only to be consistent with
the messages displayed by ASP.NET when it first processes the script.

2025-10-30 (main:e0843eae32) Page 137

.NET Framework Interface Guide

6 Writing .Net Classes

6.1 Introduction

Dyalog allows you to build new .NET Classes, components and controls. .NET classes
created by Dyalog may be hosted by any application or programming language that
supports .NET.

A component is a class with emphasis on cleanup and containment and implements
specific interfaces.

A control is a component with user interface capabilities.

With one exception, every .NET Class inherits from exactly one base class. This means
that it begins with all of the behaviour of the base class, in terms of the base class
properties, methods and events. You add functionality by defining new properties,
methods and events on top of those inherited from the base class or by overriding base
class methods with those of your own.

6.2 Assemblies, Namespaces and Classes

To create a .NET class in Dyalog, you simply create a standard APL Class and export the
workspace as a Microsoft .NET Assembly (.dll)*.

.NET Classes are organised in .NET Namespaces. If you wrap your Class (or Classes)
within an APL namespace, the name of that namespace will be used to identify the
name of the corresponding .NET Namespace in your Assembly.

If a Class is to be based upon a specific .NET Class, the name of that .NET Class must be
specified as the Base Class in the : Class statement, and the :Using statements must
correctly locate the base class. If not, the Class is assumed to be based upon
System.Object. If you use any .NET Types within your Class, you must ensure that these
too are located by :Using.

Once you have defined the functionality of your .NET classes, you are ready to save
them in an assembly. This is simply achieved by selecting Export from the Session File
menu.

2025-10-30 (main:e0843eae32) Page 138

.NET Framework Interface Guide

You will be prompted to specify the directory and name of the assembly (DLL) and it
will then be created and saved. Your .NET class is now ready for use by any .NET
development environment, including APL itself.

When a Dyalog .NET class is invoked by a host application, it automatically loads the
Dyalog DLL, the developer/debug or run-time dynamic link library version of Dyalog.
You decide which of these DLLs is to be used according to the setting of the Runtime
application checkbox in the Create bound file dialog box. Note however that the
Dyalog .NET class, and all the Dyalog DLLs on which it depends, reside in the same
directory as the host program.

Note that if you wish to include a Dyalog .NET class in a Visual Studio application it is
recommended that you add the Bridge DLL as a reference in a Visual Studio .NET
project.

If you want to repeat the most recent export after making changes to the class, you can
click on the icon to the right of the save icon on the WS button bar at the top of the
session. Note that the workspace itself is not saved when you do an export, so if you
want the export options to be remembered you must) SAVE the workspace after you
have exported it.

6.3 Getting Started

This tutorial, as provided, supports the 64-bit Unicode version of Dyalog only.

The tutorial described in this Chapter was originally designed (for Dyalog Version 10) to
be exercised in a console window, with the user invoking the C# compiler directly using
a command-line interface. It was originally envisaged to be run in-situ in the
samples\aplclasses sub-directory.

Today, the samples\aplclasses sub-directory is read-only, and direct access to the C#
compiler via a command-line interface is problematical. Another consideration is the
change in requirement for dependent Dyalog DLLs, which must now reside in the same
directory as the host program.

The tutorial has therefore been re-factored to use Microsoft Visual Studio. The
samples\aplclasses sub-directory has been expanded to support .NET Core (now
renamed simply .NET) which is cross-platform as well as the original .NET Framework
which is Windows only.

All the examples are to be executed as simple console applications written in C# in the
framework of Microsoft Visual Studio Community 2022 (hereafter referred to as VS). To
run the examples as described herein, you should install VS, taking care to include all

2025-10-30 (main:e0843eae32) Page 139

.NET Framework Interface Guide

the components needed to create a C# console application. suitable VS project files are
included in the samples\aplclasses sub-directory.

Initialisation

The first step is to copy the samples\aplclasses sub-directory into a directory to
which you have write access. For example, into d:\aplclasses.

Each of the sub-directories contained in aplclasses, namely aplclassesi -
aplclasses7, represents a separate example application. Within each one the file
structure is as follows:

aplclasses[n].dws APL workspace

Framework Files for the .NET Framework
Framework\program.cs C# program
Framework\project.sln VS solution file

Framework\project.csproj. |C# project file

Framework\bin Directory containing the C# program and DLLs

When the application is executed by VS it will be run in the bin sub-diredctory.

It is mandatory that the Dyalog .NET class, and all the Dyalog DLLs on which it
depends, reside in the same directory as the host program.

Therefore, copies of the requisite Dyalog DLLs are provided in the binsub-directory.
These DLLs are:

e Development DLL and/or Run-Time DLL (this tutorial uses the Development DLL)

o Bridge DLL
e DyalogNet DLL

Running the Tutorial
Each example consists of two parts. First you will) LOAD a workspace, examine the

code, and then export it as a DLL. The second (optional) part is to run the VS solution
that hosts the DLL and view the results.

Each workspace contains a .NET Namespace called APLClasses which itself contains a
single .NET Class called Primitives that exports a single method called IndexGen.

2025-10-30 (main:e0843eae32) Page 140

.NET Framework Interface Guide

6.4 Example 1

Load the workspace aplclassesi.dws, then view the Primitives class:

JLOAD D:\aplclasses\aplclassesi\aplclassesl.dws
D:\aplclasses\aplclassesi\aplclassesl.dws A saved ...

JED oAPLClasses.Primitives

Note

The character before the name APLClasses.Primitives , o ,istypically
obtained with Ctr1-0. It is used to tell the editor to edit a class.

:Class Primitives
:Using System
V r<«IndexGen n
:Access public
:Signature Int32[]J«IndexGen Int32 n
r<in
v
:EndClass

Primitives contains one public method/function named IndexGen.

The public characteristics for the exported method are included in the definition of the
class and its functions. Those are specified in the : Signature statement.

Its syntax is:

:Signature [return type<«] fnname [arglitype [arginame]
[,argNtype [argNname]]x]

that is: The type of the result returned by the function - followed by arrow - if any, the
exported name (it can be different from the APL function name but it must be
provided), and, if any arguments are to be supplied, their types and optional names,
each type-name pair separated from the next by a comma. In the example above the
function returns an array of 32-bit integers and takes a single integer as its argument.
For further details, see Programming: Signature.

2025-10-30 (main:e0843eae32) Page 141

.NET Framework Interface Guide

Note that, when the class is fixed, APL will try to find the .NET data types you have
specified for the result and for the parameters. If one or more of the data types are not
recognised as available .NET Types, you will be informed in the status window and APL
will refuse to fix the class. If you see such a warning you have either entered an
incorrect data type name, or you have not set :Using correctly, or some other syntax
problem has been detected (for example the function is missing a terminating v. In the
previous example, the only data type used is System.Int32. Since we have set :Using
System, the name Int32 is found in the right place and all is well.

It should be noted that in the previous release of Dyalog the statements :Returns
and :ParameterlList were used instead of :Signature. They are still accepted for
backwards compatibility but are considered deprecated. Their syntax will not be
documented here but a list can be found in Appendix A.

Now you are ready to create the assembly. This is done by selecting Export... from the
Session File menu. This displays the following dialog box.

@ Create bound file X

Save in: [aplclasses1 v J @ Al E~
% Name - Date modified Type Size
) framework 17/08/2023 16:53 File folder
Cickaccess net 17/08/2023 16:53 File folder
Desktop
| |
Libraries
This PC
Nets;vork
File name: [v ‘ I Save I
Save as type: Microsoft .NET Assembly (*.dll) v Cancel
Runtime application [] Use External Workspace [Sign Assembly Delay Sian] Enable Multihost Support Wi
Browse
Command Line: I
Isolation Mode: | Each host process has a single workspace v

This gives you the opportunity to change the name or path of the assembly. The
Runtime application checkbox allows you to choose to which if the two versions of the
Dyalog dynamic link library the assembly will be bound. In this tutorial we will use the

2025-10-30 (main:e0843eae32) Page 142

Development version. The Isolation Mode Combo box allows you to choose which
Isolation Mode you require.

e Browse to the Framework\bin sub-diectory.
e Clear the Runtime application checkbox

® Create bound file

.NET Framework Interface Guide

Key File

Command Line: |

|solation Mode: | Each host process has a single workspace

Savein: l bin Vl @ ? » '
* Name - Date medified Type Size
) x64 17/08/2023 16:53 File folder
Quick access & aplclassesl.dil 18/08/2023 11:26 Application exten... 41KB
- & bridge190-64_unicode.dll 16/08/2023 21:09 Application exten... 2,331KB
& dyalog190_64_unicode.dll 16/08/2023 21:11 Application exten... 13,024 KB
Desktop & dyalog190_64rt_unicode.dll 16/08/2023 21:11 Application exten... 13,005 KB
- :] dyalognet.dll 16/08/2023 21:09 Application exten... 19KB
m
Libraries
This PC
Net;/ork
File name: aplclasses1.dll v | I Save I
Save as type: Microsoft .NET Assembly (" dll) v Cancel
[] Runtime application [] Use External Workspace [Sign Assembly Delay Sian [] Enable Multihost Support -
Browse

Finally, click Save. APL now makes the assembly and, as it does so, displays information
in the Status window as shown below. If any errors occur during this process, the Status

window will inform you.

2025-10-30 (main:e0843eae32)

Page 143

.NET Framework Interface Guide

O stotus

File Options

Declared Assembly aplclassesi
Declared Module aplclassesi in file D:\aplclasses\aplclassesi\framework\bin\aplclassesi.dll
Declared Type APLClasses.Primitives
Compiling Method "IndexGen"
Parameter type "Int32" resolved to System.Int32
Result type "Int32[]" resolved to System.Int32[]
Compiled Method "IndexGen"
Emitted Type APLClasses.Primitives
Emitted Assembly to file "D:\aplclasses\aplclassesi\framework\bin\aplclassesi.dll"

program.cs

The following C# source, called aplclassesiFramework\program.cs, will be used to
call our Dyalog.NET Class.

The using statements specify the names of .NET namespaces to be searched for
unqualified class names.

The program creates an object named apl of type Primitives by calling the new
operator on that class. Then it calls the IndexGen method with a parameter of 10.

using System;
using APLClasses;
public class MainClass

{
public static void Main()
{
Primitives apl = new Primitives();
int[] rslt = apl.IndexGen(10);
for (int i=0ji<rslt.Length;i++)
Console.WriteLine(rslt[i]);
}
}

Using VS, open the solution file d:
\aplclasses\aplclassesi\Framework\project.sln and view program.cs.

2025-10-30 (main:e0843eae32) Page 144

.NET Framework Interface Guide

File Edit View Git Project Build Debug Test Analyze Extensions Window Help | Search p] project — O X
H-2BE ~ '« |[Debug ~|[x64 st D - BB EI e Bl 22| R L 2 LiveShare B

Program.cs i X [gc RIS s

[& Project ¢ 0@ o-5008 o /‘
=lusing System; . . -
using APLClasses; - | Search Solution Explorer (Ctrl+

s321n0¢ 1R

0 references [Solution ‘project’ (1 of 1 project)
=lpublic class MainClass 4 Project

oL - b &8 References
b C# Program.cs

el : ;;ub

Primitives apl = new Primitives();
int[] rslt = apl.IndexGen(10);

for (int i=0;i<rslt.Length;i++)
Console.WriteLine(rslt[i]);
}

} Solution Explorer (RS TS

Properties

100% ~|&{ @ No issues found

Show output from:

Error List Breakpoints JelliINg
/| Addto Source Control « fiij Select Repository «

Now click Debug/Start Without debugging (or press Ct r1+F5) to run the program.
The results are shown in a console window.

] C:\Windows\system32\cmd.exe

U R W N

Press any key to continue

6.5 Example 2

In Example 1, we said nothing about a constructor used to create an instance of the

Primitives class. In Example 2, we will show how this is done.

2025-10-30 (main:e0843eae32)

Page 145

.NET Framework Interface Guide

In fact, in Example 1, APL supplied a default constructor, which is inherited from the
base class (System.0Object) and is called without arguments.

Example 2 will extend Example 1 by adding a constructor that specifies the value of
gro.

Load the workspace aplclasses2.dws from aplclasses2, then display the
Primitives class:

t0OSRC APLClasses.Primitives
:Class Primitives
:Using System

v CTOR IO
:Implements constructor
:Access public
:Signature CTOR Int32 IO
0I0+IO

V R«IndexGen N
:Access public
:Signature Int32[]«IndexGen Int32
R<1N

:EndClass A Primitives

This version of Primi tives contains a constructor function called CTOR that simply sets
010 to the value of its argument. The name of this function is purely arbitrary.

Using this version, build a new .NET Assembly using File/Export... as before. Remember
that the Build runtime assembly checkbox is unchecked.

2025-10-30 (main:e0843eae32) Page 146

.NET Framework Interface Guide

® Create bound file

Savein: | bin V| (<] 2 e Er

* Name Date modified Type
) x64 17/08/2023 16:59 File folder
Quick access D aplclasses2.dll 18/08/2023 15:48 Application exten...
- D bridge190-64_unicode.dll 16/08/2023 21:09 Application exten...
E] dyalog190_64_unicode.dll 16/08/2023 21:11 Application exten...
Desktop E] dyalog190_64rt_unicode.dll 16/08/2023 21:11 Application exten...
= E] dyalognet.dll 16/08/2023 21:09 Application exten...
m

Libraries

8

This PC

@

Network

43 KB
2,331KB
13,024 KB
13,005 KB
19KB

File name: aplclasses2.dil

Saveastype: | Microsoft NET Assembly (".dl)

Cancel

[] Runtime application [] Use External Workspace [Sign Assembly Delay Sian] Enable Multihost Support

Key File

Command Line: I

|solation Mode: ‘ Each host process has a single workspace

File Options

Wersion

Browse

Declared Assembly aplclasses2

Declared Type APLClasses.Primitives
Compiling Constructor "CTOR"
Parameter type "Int32" resolved to System.Int32
Result type "<empty>" resolved to System.Void
Compiled Constructor "CTOR"
Compiling Method "IndexGen"
Parameter type "Int32" resolved to System.Int32
Result type "Int32[]" resolved to System.Int32[]
Compiled Method "IndexGen"
Emitted Type APLClasses.Primitives
Emitted Assembly to file "D:\aplclasses\aplclasses2\framework\bin\aplclasses2.dll"

2025-10-30 (main:e0843eae32)

Declared Module aplclasses2 in file D:\aplclasses\aplclasses2\framework\bin\aplclasses2.dll

Page 147

.NET Framework Interface Guide

program.cs

The following C# source, called aplclasses2\Framework\program.cs, will be used to
call the new version of our Dyalog.NET class.

using System;
using APLClasses;
public class MainClass

{

public static void Main()
{
Primitives apl = new Primitives(0);
int[] rslt = apl.IndexGen(10);
for (int i=0si<rslt.Length;i++)
Console.WriteLine(rslt[i]);
}

}

The program is the same as in the previous example, except that the code that creates
an instance of the Primitives class is simply changed to specify an argument; in this
case 0.

Primitives apl = new Primitives(0);

Using VS, open the solution file d:
\aplclasses\aplclasses2\Framework\project.sln and view program.cs.

2025-10-30 (main:e0843eae32) Page 148

.NET Framework Interface Guide

File Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help |Search P‘ project = (m] X

B-e2E8A ~ '~ | |Debug v\ x64 ~| B start ~ > - | B R 12 & LiveShare &

g Program.cs & X Al Solution Explorer v ix
Aoz 3 m Ty L e
A Poject g MainClass ® Main() ad o-s0AA| &=
A -lusing System; | Search Solution Explorer (Ctrl+ Pl
L using APLClasses; e
0 references o0 aplclasses2 =
=lpublic class MainClass o0 bridge190-64_unicode.dll
f o0 dyalognet
L1 pub 0 Microsoft.CSharp
. o0 System

o0 System.Core

o0 System.Data

o0 System.Data.DataSetExtensions

for (int i=0;i<rslt.Length;i++) o0 System.Net.Http
Console.WriteLine(rslt[i]);

Primitives apl = new Primitives(0);
int[] rslt = apl.IndexGen(10);

o0 System.Xml
00 System.Xml.Ling
3 b C# Program.cs

}

Solution Explorer [elY@GERTE

Properties v 1 x
Project Project Properties -

- (B2

100% -|§ © No issues found ¥~ Ln:1 Ch:1 TABS CRL

Show output from:

Project File Project.csproj
Project Folder D:\aplclasses\aplclasses2\framework
Misc

Error List Breakpoints JelliINg

1 AddtoSource Control « [Select Repository « £

Then click Debug/Start Without debugging (or press Ct rl+F5) to run the program.
The results are shown in a console window.

ea] C:\Windows\system32\cmd.exe

Vi HE WNEO®

0N Oy

O

key to cont

6.6 Example 2a

In Example 2, the argument to CTOR, the constructor for the Primitives class, was
defined to be Int32. This means that the .NET Framework will allow a client to specify
any integer when it creates an instance of the Primitives class. What happens if the

2025-10-30 (main:e0843eae32)

Page 149

.NET Framework Interface Guide

client uses a parameter of 27 Clearly this is going to cause an APL DOMAIN ERROR when
used to set O10.

To investigate this case, change the line of code in program. cs that creates an instance
of the Primitives class, passing the argument 2, like this:

Primitives apl = new Primitives(2);

0{ File Edt View Git Project Build Debug Test Analyze Tools Extensions Window Help project = o X
I L TRl a— R LR T R T .
~ & Solution Explorer
<[l &g MainClass aflo-s0aB| o ;

Flusing System; - . .
lusing APLClasses; H: Search Solution Explorer (Ctrl+;)

0 references - 4 Project
Elpublic class MainClass 4 88 References
i & Analyzers

sa2nog ejeq SR

0 references
public static void Main()

o0 aplclasses?
0 bridge190-64_unicode.dll

Primitives apl = new Primitives(2); o0 dyalognet

int[] rslt = apl.IndexGen(10); o0 Microsoft.CSharp

o0 System

for (int i=0;i<rslt.Length;i++) o0 System.Core
Console.uWriteLine(rslt[il); o0 System.Data

¥ o0 System.Data.DataSetExtensions

o0 System.Net.Http

Solution Explorer [IRSILE S

v

@ No issues found Y~ Ln:7 Ch:36 Colk42 T
> X

Properties

Show output from: Build -E s
Build started... .
1> Build started: Project: Project, Configuration: Debug x64
1> Project -> D:\aplclasses\aplclasses2\framework\bin\x64\Debug\Pr
Build: 1 succeeded, @ failed, @ up-to-date, @ skippe
Build started at 4:80 PM and took ©0.219 seconds ===

Fa e Output

] Ready 1N Add to Source Control « [Select Repository «

Then click Debug/Start Without debugging (or press Ct rl+F5) to run the program.

... as we have built the Dyalog .NET class to use the Development DLL, the APL Session
appears, and the Tracer can be used to debug the problem. You can see that the
constructor CTOR has stopped with a DOMAIN ERROR. Meanwhile, the C# program is still
waiting for the call (to create an instance of Primitives) to finish.

2025-10-30 (main:e0843eae32) Page 150

.NET Framework Interface Guide

@ aplclasses2 (AppDomain_Project_exe.Assembly_aplclasses2.APLClasses.[Primitives])- Dyalog APL/W-64

File Edit View Window Session Log Action Options Tools Threads Help
ws g I 5l bl QW | Ovject B Bl B AT N W | Tool IR T B | Edit ThL B g [N Session T
Language Bar X | X
[EILLLeRRl] (TR EEs[bREE [1[<ll<[0elt] [:[s[ele]][] [I=llélels] (L [[<[ele] [EoEalelelv] s | 2
Dyalog APL/W-6% Version 19.0.47742 "
Serial number: 000042 - pre-release software
Fri Aug 18 16:00:11 2023
1:DOMAIN ERROR
CTOR[4] OIO~IO
A
)si
[#.AppDomain_Project_exe.Assembly_aplclassesZ.APLClasses.[Primitives]] #.AppDomain_Project_exe.Assem
CTOR[4]*
*There was an error retrieving the external stack.
&1 (system thread:30732)
v
Debugger -0 X
Tid:1 X [CTOR[4+]+010+I0
ARASENC0 S0 mE EE S |search .. x E:
(= #.AppDomain_Project | :Implements constructor "
(- [Constructors] :Access public
- [Methods] :Signature CTOR Int32 IO
[0I0+10
\ =
=
v R+IndexGen N :
LT :Access public v| | E
< > 3 i - — B > E é
Class Pos: 7/17,0 @ =
Ready... Ins
CurObj: 8:2 0pQ:0 OTRAP [OSI:1 [OIO:4 [OML:0

Notice that in Dyalog, the)SI System Command provides information about the entire
calling stack, including the .NET function calls that are involved. Notice too that the
CTOR function, the constructor for this APL .NET class, is running here in APL thread 1,
which is associated with the system thread 30732.

In this case, debugging is simple, and you can simply type:

I0«1
~{LC

Now, the cTOR function completes, the program continues and the output is displayed.

2025-10-30 (main:e0843eae32) Page 151

.NET Framework Interface Guide

C\Windows\system32\cmd.exe ——

1
2
E
4
5
6
7
8
9
1
p

any key to continue

6.7 Example 3

The correct .NET behaviour when an APL function fails with an error is to throw an
exception, and this example shows how to do it.

In the .NET Framework, exceptions are implemented as .NET Classes. The base
exception is implemented by the System.Exception class, but there are a number of
super classes, such as System.ArgumentException and
System.ArithmeticException that inherit from it.

OSIGNAL may be used to throw an exception. To do so, its right argument should be 90
and its left argument should be an object of type System.Exception or an object that
inherits from System.Exception.

When you create the instance of the Exception class, you may specify a string (which
will turn up in its Message property) containing information about the error.

aplclasses3.dws contains an improved version of the CTOR constructor function.

2025-10-30 (main:e0843eae32) Page 152

.NET Framework Interface Guide

v CTOR IO:EX
[1] :Access public
[2] :Signature CTOR Int32 IO

[3] :Implements constructor
[4] :If I0e0 1
[5] (1o<I10
[6] :Else
[7] EX<[JNEW ArgumentException,cc'IndexOrigin must be
0 or t'
[8] EX OSIGNAL 90
[9] :EndIf
v

Load aplclasses3.dws and export aplclasses3.dl L as before.

® Create bound file

Savein:| bin v| QT @

* Name Date modified Type Size
) C] aplclasses3.dll 16/08/2023 21:12 Application exten... 45KB
Quick access [2] bridge190-64_unicode.dll 16/08/2023 21:09 Application exten... 2331k8
- C] dyalog190_64_unicode.dIl 16/08/2023 21:11 Application exten... 13,024 KB
C] dyalog190_64rt_unicode.dll 16/08/2023 21:11 Application exten... 13,005 KB
Desktop 5] dyalognet.di 16/08/2023 21:09 Application exten... 19KB

Libraries

File name: | aplclasses3 I Save

Saveastype: | Microsoft NET Assembly (".dl) | Cancel

[[] Runtime application [] Use Extemal Workspace [] Sign Assembly Delay Sign (] Enable Multihost Support Wit

Key File Browse

Command Line: I

Isolation Mode: | Each host process has a single workspace

2025-10-30 (main:e0843eae32) Page 153

.NET Framework Interface Guide

File Options

Declared Assembly aplclasses3
Declared Module aplclasses3 in file D:\aplclasses\aplclasses3\framework\bin\aplclasses3.dll
Declared Type APLClasses.Primitives
Compiling Constructor "CTOR"
Parameter type "Int32" resolved to System.Int32
Result type "<empty>" resolved to System.Void
Compiled Constructor "CTOR"
Compiling Method "IndexGen"
Parameter type "Int32" resolved to System.Int32
Result type "Int32[]" resolved to System.Int32[]
Compiled Method "IndexGen"
Emitted Type APLClasses.Primitives
Emitted Assembly to file "D:\aplclasses\aplclasses3\framework\bin\aplclasses3.dll"

Close

program.cs

The following C# source, called aplclasses2\Framework\program.cs, contains code
to catch the exception and to display the exception message.

using System;
using APLClasses;
public class MainClass

{
public static void Main()
{
try
{
Primitives apl = new Primitives(2);
int[] rslt = apl.IndexGen(10);
for (int i=0si<rslt.Length;i++)
Console.WriteLine(rslt[i]);
}
catch (Exception e)
{
Console.WritelLine(e.Message);
}
}
}

2025-10-30 (main:e0843eae32) Page 154

Using VS, open the solution file d:

.NET Framework Interface Guide

\aplclasses\aplclasses3\Framework\project.sln and view program.cs.

Output

Show output from:

BT output

] Ready

File Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help project = o X
-0 |1H- ~ '« |[Debug ~|[x64 BT R -~ & LiveShare &
g Program.cs # X mSolution Explorer v AEXx
b
Pl = Project - %8 MainClass -] @ Maing 1 * ado-s0EAE o &=
a =lusing System; | Search Solution Explorer (Ctrl+:) Al
2 using APLClasses; Search Solution Explorer (Ctr
0 references o0 aplclasses3 -
=lpublic class MainClass o0 bridge190-64_unicode.dIl
{ o0 dyalognet
0 references
=) public static void Main() e Cshaip
: ' { o0 System
atry | o0 System.Core
: i o0 System.Data
i Primitives apl = new Primitives(2); o0 System.Data.DataSetExtensions
int[] rslt = apl.IndexGen(10); o0 System.Net.Http
o0 System.Xml
o0 .Xml.|
for (int i=0;i<rslt.Length;i++) 50 SytemAmlLing
Console.WriteLine(rslt[i]); DRRcElbrograics -
} : Solution Explorer [EEIJEIERRTES
catch (Exception e)
g Properties X
Console.WriteLine(e.Message); Program.cs File Properties -
} [}
Ly [E]m | #
Custom Tool a
[Custom Tool Namespace
v B Misc
100% /& © Noissues found File Name

Full Path

N

Program.cs

D:\aplclasses\aplclasses3\framework\Pro

Add to Source Control « [Select Repository « L

Click Debug/Start Without debugging (or press Ct rl+F5) to run the program. The

results are shown in a console window.

3] C:\Windows\system32\cmd.exe

IndexOrigin must be © or 1
Press any key to continue

6.8 Example 4

This example builds on Example 3 and illustrates how you can implement constructor
overloading, by establishing several different constructor functions.

By way of an example, when a client application creates an instance of the Primitives
class, we want to allow it to specify the value of 010 or the values of both 010 and OML.

2025-10-30 (main:e0843eae32)

Page 155

.NET Framework Interface Guide

The simplest way to implement this is to have two public constructor functions CTOR1
and cTOR2, which call a private constructor function CTOR.

aplclasseskt.dws contains a new version of the Primitives class with these
additions:

v CTOR1 IO
[1] :Implements constructor
[2] :Access public
[3] :Signature CTOR!1 Int32 IO
(4] CTOR IO 0

v

v CTOR2 IOML

[1] :Implements constructor
[2] :Access public
[3] :Signature CTOR2 Int32 IO,Int32 ML
[4] CTOR IOML
v

v CTOR IOML:EX
[1] IO ML<IOML

[2] :If ~I0e0 1
[3] EX<[JNEW ArgumentException,cc'IndexOrigin must
be 0 or 1

[4] EX OSIGNAL 90

[5] :EndIf

[6] :If ~MLeO 1 2 3

[7] EX<[JNEW ArgumentException,cc'MigrationLevel
must be 0, 1, 2 or 3'

[8] EX OSIGNAL 90

[9] :EndIf

[10] OIO OML«IO ML

v

The :Signature statements for these three functions show that cToR1 is defined as a
constructor that takes a single Int32 parameter, CTOR2 is defined as a constructor that
takes two Int32 parameters, and CTOR has no .NET Properties defined at all. Note that
in .NET terms, CTOR is not a Private Constructor; it is simply an internal function that is
invisible to the outside world.

Next, a function called GetI0ML is defined and exported as a Public Method. It simply
returns the current values of J10 and OML.

2025-10-30 (main:e0843eae32) Page 156

.NET Framework Interface Guide

V R«GetIOML
[1] :Access public
[2] :Signature Int32[]«GetIOML
[3] R<JIO [OML

v

Load aplclassesk.dws and export a new version of aplclasses.dll as before.

@ Create bound file

Savein: | bin V| @ ’ 7 '

* Name Date modified Type Size
) D aplclassesd.dll 16/08/2023 21:13 Application exten... 43 KB
Quickaccess [] bridge190-64_unicode.dll 16/08/2023 21:09 Application exten... 2331KB
- D dyalog190_64_unicode.dll 16/08/2023 21:11 Application exten... 13,024 KB
D dyalog190_64rt_unicode.dll 16/08/2023 21:11 Application exten... 13,005 KB
Desktop D dyalognet.dll 16/08/2023 21:09 Application exten... 19KB
m

Libraries

File name: | aplclassesd

Saveastype: | Microsoft NET Assembly (*dl) | Cancel

[[] Runtime application [] Use Extemal Workspace [] Sign Assembly Delay Sian (] Enable Multihost Support Version

Key File: Browse

Command Line: |

Isolation Mode: | Each host process has a single workspace

2025-10-30 (main:e0843eae32) Page 157

.NET Framework Interface Guide

(I) Status

File Options

Declared Assembly aplclasseshk
Declared Module aplclassesk in file D:\aplclasses\aplclassesk\framework\bin\aplclassesk.dll
Declared Type APLClasses.Primitives
Compiling Constructor "CTOR1"
Parameter type "Int32" resolved to System.Int32
Result type “"<empty>" resolved to System.Void
Compiled Constructor "CTOR1"
Compiling Constructor "CTOR2"
Parameter type "Int32" resolved to System.Int32
Parameter type "Int32" resolved to System.Int32
Result type “"<empty>" resolved to System.Void
Compiled Constructor "CTOR2"
Compiling Method "GetIOML"
Result type "Int32[]" resolved to System.Int32[]
Compiled Method "GetIOML"
Compiling Method "IndexGen"
Parameter type "Int32" resolved to System.Int32
Result type "Int32[]" resolved to System.Int32[]
Compiled Method "IndexGen"
Emitted Type APLClasses.Primitives
Emitted Assembly to file "D:\aplclasses\aplclassesk\framework\bin\aplclassesk.dll"

program.cs

aplclassesk\Framework\program.cs contains code to invoke the two different
constructor functions CTOR1 and CTOR2 :

using System;
using APLClasses;
public class MainClass
{
public static void Main()
{
Primitives apl10 = new Primitives(1);
int[] rslt10 = apl10.GetIOML();
for (int i=05i<rslt10.Length;i++)
Console.WriteLine(rslt10[i]);

Primitives apl03 = new Primitives(0,3);

int[] rslt03 = apl03.GetIOML();

for (int i=03i<rslt03.Length;i++)
Console.WriteLine(rslt03[i]);

2025-10-30 (main:e0843eae32) Page 158

.NET Framework Interface

Guide

Here the code creates two instances of the Primitives class named apl10 and apl03.
The first is created with a constructor parameter of (1); the second with a constructor

parameter of (0, 3).

The C# compiler matches the first call with cTOR1, because CTOR1 is defined to accept a
single Int32 parameter. The second call is matched to CTOR2 because CTOR2 is defined

to accept two Int32 parameters.

Using VS, open the solution file d:
\aplclasses\aplclassest\Framework\project.sln and view program.cs.

using APLClasses;

0Q Fie Edt View Gt Project Buld Debug Test Analyze Tools Extensions Window Help [Search.. £ | project - o X

H B-£B8a8 ~ & - | [Debug -|[x64 Pt D - BB R < |2 LiveShare &)

g Program.cs X mSDlution Explorer v ax
Pt - FMainClass -|| @ Maing -+ a8 o-s00@ ;

a Susing System; Search Solution Explorer (Ctrl+;) A~

4

Project

4 @ References
& Analyzers
o0 aplclassesd
©-0 bridge190-64_unicode.dll

0 references
=lpublic class MainClass

0 references

public static void Main()

Primitives apll€ = new Primitives(1); o0 dyalognet
int[] rslt1le = aplie.GetIOML(); o0 Microsoft.CSharp
for (int i=0;i<rsltle.Length;i++) o0 System

Console.WriteLine(rslt10[il); o0 System.Core
o0 System.Data
o0 System.Data.DataSetExtensions

o0 System.Net.Hitp

Primitives aple3 = new Primitives(®,3)

int[] rslte3 = aple3.GetIOML();

for (int i=0;i<rslt@3.Length;i++)
Console.WriteLine(rslte3[il);

}

Solution Explorer [[XSLE Ty

Properties
Project Project Properties

[En | &
B Misc
Project File

Project Folder

100% ~| & @ No issues found

Output Project.csproj

Daplclasses\aplclassesd\framework

Show output from:

B Output

8

/N Add to Source Control «

[Select Repository =

Click Debug/Start Without debugging (or press Ct rl+F5) to run the program. The
results are shown in a console window.

65 C:\Windows\system32\cmd.exe

continue

2025-10-30 (main:e0843eae32)

Page 159

.NET Framework Interface Guide

6.9 Example 5

This example takes things a stage further and illustrates how you can implement
method overloading.

In this example, the requirement is to export three different versions of the IndexGen
method; one that takes a single number as an argument, one that takes two numbers,
and a third that takes any number of numbers. These are represented by three
functions named IndexGen1, IndexGen2 and IndexGen3 respectively. Because monadic
1 performs all of these operations, the three APL functions are in fact identical.
However, their public interfaces, as defined in their : Signature statement, are all
different.

The overloading is achieved by entering the same name for the exported method
(IndexGen) in the box provided, for each of the three APL functions.

aplclasses5.dws contains a new version of the Primitives class with three different
versions of IndexGen as shown below:

V R«IndexGenl N
[1] :Access public
[2] :Signature Int32[]«IndexGen Int32 N
[3] R<tN

v

This is the version we have seen before. The method is defined to take a single
argument of type Int32, and to return a 1-dimensional array (vector) of type Int32.

V R«IndexGen2 N
[1] :Access public
[2] :Signature Int32[][, J«IndexGen Int32 N1, Int32 N2
[3] R«<tN

v

This version is defined to take two arguments of type Int32, and to return a 2-
dimensional array, each of whose elements is a 1-dimensional array (vector) of type
Int32.

V R«IndexGen3 N
[1] :Access public
[2] :Signature Array«IndexGen Int32[] N
[3] R<tN

2025-10-30 (main:e0843eae32) Page 160

.NET Framework Interface Guide

In principle, we could define 7 more different versions of the method, taking 3, 4, 5 etc.
numeric parameters. Instead, this method is defined more generally, to take a single
parameter that is a 1-dimemsional array (vector) of numbers, and to return a result of
type Array. In practice we might use this version alone, but for a C# programmer, this is
harder to use than the two other specific cases.

Notice also that all function use the same descriptive name, <IndexGen>.

Load aplclasses5.dws and export aplclasses5.dl L as before.

® Create bound file X
Savein: l bin Vl (< 5 Al
* Name - Date modified Type Size
) 4] aplclassess.dil 16/08/2023 21:13 Application exten... 51KB
Quick access] bridge190-64_unicode.dIl 16/08/2023 21:09 Application exten... 2,331KB
- [dyalog190_64_unicode.dIl 16/08/2023 21:11 Application exten... 13,024 KB
4] dyalog190_64rt_unicode.dll 16/08/2023 21:11 Application exten... 13,005 KB
Desktop 4] dyalognet.dil 16/08/2023 21:09 Application exten... 19KB
m
Libraries
This PC
Network
File name: | aplclasses5 v | I Save I
Save as type: Microsoft .NET Assembly (*.dll) v Cancel
[[] Runtime application [] Use Extemal Workspace [] Sign Assembly Delay Sian [Enable Multihost Support Wi
Key File: Browse
Command Line: I
Isolation Mode: | Each host process has a single workspace v
2025-10-30 (main:e0843eae32) Page 161

.NET Framework Interface Guide

(i) Status

File Options

Declared Assembly aplclassesS
Declared Module aplclassesS in file D:\aplclasses\aplclassesS\framework\bin\aplclasses5.dll
Declared Type APLClasses.Primitives
Compiling Constructor "CTOR1"
Parameter type "Int32" resolved to System.Int32
Result type "<empty>" resolved to System.Void
Compiled Constructor "CTOR1"
Compiling Constructor "CTOR2"
Parameter type "Int32" resolved to System.Int32
Parameter type "Int32" resolved to System.Int32
Result type "<empty>" resolved to System.Void
Compiled Constructor "CTOR2"
Compiling Method "GetIOML"
Result type "Int32[]" resolved to System.Int32[]
Compiled Method “GetIOML"
Compiling Method "IndexGeni"
Parameter type "Int32" resolved to System.Int32
Result type "Int32[]" resolved to System.Int32[]
Compiled Method "IndexGeni"
Compiling Method "IndexGen2"
Parameter type "Int32" resolved to System.Int32
Parameter type "Int32" resolved to System.Int32
Result type "Int32[][,]" resolved to System.Int32[][,]
Compiled Method “IndexGen2"
Compiling Method "IndexGen3"
Parameter type "Int32[]" resolved to System.Int32[]
Result type "Array" resolved to System.Array
Compiled Method "IndexGen3"
Emitted Type APLClasses.Primitives
Emitted Assembly to file "D:\aplclasses\aplclassesS\framework\bin\aplclasses5.dll"

program.cs

samples\APLClasses\aplfns5.cscontains code to invoke the three different variants

of IndexGen, in the new aplclasses.dl L. Notice that it uses a local sub-routine
PrintArray().

2025-10-30 (main:e0843eae32)

Page 162

.NET Framework Interface Guide

using System;

using APLClasses;
public class MainClass

{

static void PrintArray(int[] arr)

{

for (int i=0si<arr.Length;i++)
{
Console.Write(arr[i]);
if (il=arr.Length-1)
Console.Write(",");

public static void Main()

2025-10-30 (main:e0843eae32)

{

Primitives apl = new Primitives(0);
int[] rslt = apl.IndexGen(10);
PrintArray(rslt);
Console.WriteLine("");

int[,]J[] rslt2 = apl.IndexGen(2,3);
for (int i=05i<2;i++)

{

for (int j=03;3j<3;j++)
{
int[] row = rslt2[i,j];
Console.Write("(");
PrintArray(row);
Console.Write(")");
}

Console.WriteLine("");
}

int[] args = new int[3];
args[0]=2;

args[1]=3;

args[2]=4;

Array rslt3 = apl.IndexGen(args);
Console.WritelLine(rslt3);

Page 163

Using VS, open the solution file d:

.NET Framework Interface Guide

\aplclasses\aplclasses2\Framework\project.sln and view program.cs.

File Edit View Git Project Build Tools

-olm-sBE o -

Debug

Test Analyze

x64 ~| P Start ~ D> -

Window

B8

Extensions Help project - (m] X

| Live Share

m X m Solution Explorer
+
g2

v ax

adlo-s0ad o £[=]

g Program.cs
&
) & Project -/l 4 MainClass ~ || @g PrintArray(int{] arr) ~
a -lusing System; -
L using APLClasses; -
0 references -

=lpublic class MainClass

¢

2 references

static void PrintArray(int[] arr)

{
=N for (int i=0;i<arr.Length;i++) ——
i Do -
: Console.uWrite(arr[il); -
if (it=arr.Length-1)Console.Write(| =
[
1

0 references
public static void Main()

.

Primitives apl = new Primitives(®);
int[] rslt = apl.IndexGen(10);

PrintArray(rslt);
Console.WriteLine("");

int[,1[] rslt2 = apl.IndexGen(2,3);

Search Solution Explorer (Ctrl+;)

-

fR Solution ‘project’ (1 of 1 project)
4 Project
4 86 References
& Analyzers

o0 aplclassess

o0 bridge190-64_unicode.dIl
o0 dyalognet

o0 Microsoft.CSharp

o0 System

o0 System.Core

o0 System.Data

o0 System.Data.DataSetExtensions
o0 System.Net.Http

o0 System.Xml

o0 System.Xml.Ling

b C= Program.cs

for (int i=0;i<2;i++)

=i b for (dnt j=0;j<3;j++)
: poten s

int[] row = rslt2[i,jl;
| i Console.Write("(");
i PrintArray(row);
i i Console.Write(")");
.
Console.WriteLine("");

int[] args = new int[3];
args[0]=2;
args[1
args[2]=4;

Array rslt3 = apl.IndexGen(args);

Console.WriteLine(rslt3);

}

T

] Window floated: Output

Solution Explorer [[XSLE TS

Properties

Program.cs File Properties B

[E]3 | #

B Advanced
Build Action Compile
Copy to Output Directory Do not copy
Custom Tool
Custom Tool Namespace
B Misc
File Name Program.cs
Full Path DAaplcl S\framework\Progra

/N Addto Source Control « i Select Repository « [y

Click Debug/Start Without debugging (or press Ct rl+F5) to run the program. The

results are shown in a console window.

2025-10-30 (main:e0843eae32)

Page 164

.NET Framework Interface Guide

It is possible for a function to have several : Signature statements. Given that our
three functions perform exactly the same operation, it might have made more sense to
use a single function:

V R«IndexGenl N
[1] :Access public
[2] :Signature Int32[J«IndexGen Int32 N
[3] :Signature Int32[][,]«IndexGen Int32 N1, Int32 N2
[4] :Signature Array«IndexGen Int32[] N
[5] R<tN

6.10 Interfaces

Interfaces define additional sets of functionality that classes can implement; however,
interfaces contain no implementation, except for static methods and static fields. An
interface specifies a contract that a class implementing the interface must follow.
Interfaces can contain shared (known as "static" in many compiled languages) or
instance methods, shared fields, properties, and events. All interface members must be
public. Interfaces cannot define constructors. The .NET runtime allows an interface to
require that any class that implements it must also implement one or more other
interfaces.

When you define a class, you list the interfaces which it supports following a colon after
the class name. The value of QUSING (possibly set by :Using) is used to locate Interface
names.

If you specify that your class implements a certain Interface, you must provide all of
the members (methods, properties, and so forth) defined for that Interface. However,
some Interfaces are only marker Interfaces and do not actually specify any members.

An example is the TemperatureControlCt 2 custom control described in Chapter 11,
which derives from System.Web.UI.Control. The first line of this class definition
reads:

:Class TemperatureConverterCtl2: System.Web.UI.Control,
System.Web.UI.IPostBackDataHandler,
System.Web.UI.IPostBackEventHandler

Following the colon, the first name is the base class. Following the (optional) base class
name is the list of interfaces which are implemented. The TemperatureControlCt(2
custom control implements two interfaces named IPostBackDataHandler and
IPostBackEventHandler. These interfaces are required for a custom control that

2025-10-30 (main:e0843eae32) Page 165

.NET Framework Interface Guide

intends to render the HTML for its own form elements in a Web page. These interfaces
define certain methods that get called at the appropriate time by the page framework
when a Web page is constructed for the browser. It is therefore essential that the class
implements all the methods specified by the interface, even if they do nothing.

The base class, System.Web.UI.Control, defines an optional Interface called
INamingContainer. A class based on Control that implements INamingContainer
specifies that its child controls are to be assigned unique ID attributes within an entire
application. This is a marker interface with no methods or properties defined for it.

See these examples in Chapter 11 for further details.

2025-10-30 (main:e0843eae32) Page 166

.NET Framework Interface Guide

7 Dyalog APL and IIS

7.1 Introduction

Microsoft Internet Information Services (11S) is a comprehensive Web Server software
package that allows you to publish information on your Intranet, or on the World Wide
Web. IIS is included with Professional and Server versions of all recent Windows
operating systems; all you need add is a network connection to run your own Web site.

1S includes Active Server Page (ASP) technology. The basic idea of ASP is to permit web
pages to be created dynamically by the web server. An ASP file is a character file that
contains a mixture of HTML and scripts. When 1IS receives a request for an ASP file, it
executes the server-side scripts contained in the file to build the Web page that is to be
sent to the browser. In addition to server-side scripts, ASP files can contain HTML
(including related client-side scripts) as well as calls to components that can perform a
variety of tasks such as database lookup, calculations, and business logic.

Basically, each script inside an ASP page generates a stream of HTML. The server runs
the scripts and assembles the resulting HTML into a single stream (Web page) that is
sent to the browser.

ASP.NET is a new version of ASP and is based upon the Microsoft .NET Framework
technology. It offers significantly better performance and a host of new features
including support for Web Services.

7.2 1IS Installation Dependency

During installation, Dyalog registers itself with ASP.NET as an ASP.NET programming
language. Among other things, this allows ASP.NET web pages to be written in Dyalog.
The Dyalog installation program also registers the Dyalog asp.net sample applications
as lIS Virtual Directories.

It is not practical for the Dyalog setup.exe to perform these tasks unless IIS and
ASP.NET are already installed. Furthermore, unless 11S and ASP.NET are already installed
and activated on the system, the Dyalog sub-directory Samples/asp.net will not even
be copied onto the system, because the samples it contains would be inoperable.

2025-10-30 (main:e0843eae32) Page 167

.NET Framework Interface Guide

If IS is installed after Dyalog, it is necessary to de-install and then re-install Dyalog to
enable the registration of Dyalog as an ASP.NET Programming language to occur, and
for the Samples/asp.net sub-directory to be copied onto the system and the samples
registered as IIS Virtual Directories.

7.3 1IS Applications, Virtual Directories, Application
Pools

IS supports the concept of an Application. An application is a logically separate service
or web site. 1IS can run any number of Applications concurrently. The files associated
with an application are stored in a physical directory on disk, which is linked to an IIS
Virtual Directory. The name of the Virtual Directory is the name of the Application or
Web Site.

The Dyalog APL distribution contains a directory named Dyalog\Samples\asp.net and
a set of sub-directories each of which contains a sample application.

During the installation of Dyalog APL, these are automatically registered as IIS Virtual
Directories, under a common root. The name of the root begins dyalog.net followed
by the Dyalog Version number, the edition (Unicode or classic), and the architecture
(32-bit or 64-bit). For example, dyalog.net.15.0.unicode.64 ’. The name of the root
application is referred to henceforth as dyalog.net.

[IS applications run in application pools. An application pool is a group of one or more
URLs that are served by the same worker process or set of worker processes which are
separate from the worker process that services another application pool. This
mechanism isolates applications from one another, providing resilience should any one
application fail.

Each dyalog.net application is associated with an application pool named Dyalog APL
xx (.NET v4.0 Classic®), where xx is 32 or 64) which is created if required during
installation.

When you want to run the Web Services and Web Page examples, you do so by
specifying the URL http://localhost/dyalog.net.xxxx/

These samples can be easily found by selecting the Documentation Centre menu item
from the Help menu on the Dyalog session, and scrolling down to the Tutorials section.

7 Versions of Dyalog APL prior to Version 11.0 created Virtual Directories under apl.net .
8 The term NET v4.0 Classic refers to the name of a standard application pool on which it
is based, and has nothing to do with the Classic variant of Dyalog.

2025-10-30 (main:e0843eae32) Page 168

7.4 Internet Services Manager

.NET Framework Interface Guide

As its name suggests, Internet Services Manager is a tool for managing IIS. If you are
developing Web Pages and/or Web Services, you will be using this tool a lot, and it
makes sense to add it as a shortcut on your desktop.

To do this, open Control Panel, then open Administrative Tools, right-click Internet
Information Services (11S) Manager, and select Send To Desktop (create shortcut).

The dyalog.net Application

Following a successful installation of Dyalog APL, the dyalog.net Application should
appear in Internet Services Manager as shown below.

™ Internet Information Services (1IS) Manager = [m] X
7— ’) » HP » Sites » Default Web Site » dyalog.net.15.0.unicode.64 » 7 f"h @ v
File View Help
- f’ /dyalog.net.15.0.unicode.64 Content 3 . . .
ta} (= @ ‘dyalog.net.15.0.unicode.64" Tasks
v HF (HP\Pe@] Filter: v W Go ~ (5 Show All | Group by: 5 2gplication
2} Application Pools = & switch to Features Vie
v -[8] Sites Name Type
v & Default Web Site T actfns File Folder .
e :sp"ﬁ-c”e"f) “Ibin File Folder
=¥ dyalog.net.15.0.unicode.64 3 data File Folder
_| epidemic File Folder
(D golf Application ~
“Iloan File Folder
_| spider File Folder
3’ temp Application
? tutorial Application
Jwap File Folder
(D webservices Application "
ﬂ DYALOG.NET Unicode 15.0 Tutorial.url Internet Shortcut @ Hel
™ dyalog_logo.gif GIF File
€ indexhtm Chrome HTML Document
| web.config CONFIG File
< >
[Features View
Ready - E

Note that the gol f, temp and webservices sub-directories in the dyalog.net
application represent separate IS applications.

The dyalog Application Pool will appear in the list of Applications Pools as shown below.

2025-10-30 (main:e0843eae32)

Page 169

.NET Framework Interface Guide

“E Intemet Information

& 2 HP » Application Pools

EEEICE

File View Help

Connections
” G‘i Application Pools
[
v ”,': (HP\Pete) This page lets you view and manage the lst of application pools on the server. Application pools are associated with worker
{2 Application Pools processes, contain one or more applications, and provide isolation among different applications.
v -8l Sites
v € Default Web Site Filter: + ¥ Go - ShowAll | Groupby: No Grouping -
> :SP;’E‘-C"‘;“SO codest Name Status NETCLRV.. Managed Pipel.. Identity Applications
> @ alog.net.15.0.unicode.
7 deleg D NETV20 Stated V20 Integrated ApplicationPoolldentity 0
2 NET 2.0 Classic Stated V20 Classic ApplicationPoolldentity 0
O NETVAS Stated V4.0 Integrated ApplicationPoolldentity 0
2 NET v45 Classic Started V40 Classic ApplicationPoolldentity 0
(DASP.NET V4D Stated V40 Integrated ApplicationPoolldentity 0
(D ASP.NET v40 Classic Stated V40 Classic ApplicationPoolldentity 0
2 Classic NET AppPool Stated V20 Classic ApplicationPoolldentity 0
(2 DefaultAppPool Stated V40 Integrated ApplicationPoolldentity 4
{L/Dyalog APL 64 (NET vA0 Ciassic) Started V40 Classic ApplicationPoolidentity 6
< >
Features View | /4 Content View

Ready

dd Application Pool.
Set Application Pool Defaults,

Application Pool Tasks

Stop

Recycle

Edit Application Pool
Basic Settings.
Recycling

Advanced Settings.
Rename

Remove

Applications

@ Hep

The Advanced Settings of the dyalog.net Application are shown below.

Ad

ed Settings

v (General)
Application Pool Dyalog APL 64 (.NET v4.0 Classic)

Physical Path Credentials
Physical Path Credentials Logon Type ClearText

Physical Path C:\Program Files\Dyalog\Dyalog APL-64 15.0 Unicode\Samples\asp.net

Preload Enabled False

Virtual Path /dyalog.net.15.0.unicode.64
v Behavior

Enabled Protocols http
Virtual Path

[path] URL path for the application.

OK

Cancel

2025-10-30 (main:e0843eae32)

Page 170

.NET Framework Interface Guide

8 Writing Web Services

8.1 Introduction

A Web Service can be thought of as a Remote Procedure Call. However, it is a remote
procedure call that can be made over the Internet using character-based messages.

Web Services are implemented using Simple Object Access Protocol (SOAP), Extensible
Mark-up Language (XML) and Hypertext Transfer Protocol (HTTP). Web Services do not
require proprietary network protocols or software. Web Service calls and responses can
successfully be transmitted over the Internet without the need to specially configure
firewalls.

A Web Service is a class that may be called by any program running on the computer,
any program running on a computer on the same LAN, or any program running on any
computer on the internet.

Web Services are hosted (that is, executed) by ASP.NET running under Microsoft IIS.
Any one Web Service sits on a single server computer and runs there under ASP.NET/
[IS. The messages that invoke the Web Service, pass its arguments, and return its
results, utilise standard HTTP/SOAP/XML protocols.

A Web Service consists of a single text script file, with the extension . asmx, in an IIS
Virtual Directory on the server computer.

A Web Service may expose a number of Methods and Properties. Methods may be
called synchronously (the calling process waits for the result) or asynchronously (the
calling process invokes the method, continues for a bit, and then subsequently checks
for the result of the previous call).

8.2 Web Service (.asmx) Scripts

Web Services may be written in a variety of languages, including APLScript, the
scripting version of Dyalog APL. See Section 5.1.

The first statement in the script file declares the language and the name of the service.
For example, the following statement declares a Dyalog APL Web Service named

GolfService.

2025-10-30 (main:e0843eae32) Page 171

.NET Framework Interface Guide

<%@ WebService Language="Dyalog" Class="GolfService" %>

Note that Language="Dyalog" is specifically connected to the Dyalog APL script
compiler through the application's web.config file or through the global ASP.NET
system file Machine.config. Note that versions of Dyalog prior to 11.0 used
Language="APL".

The syntax of this first line is common to all Web Services, regardless of the language in
which they are written.

A Dyalog APL Web Service script starts with a :Class statement and ends with an
:EndClass statement. These statements are directives used by the Dyalog APL script
compiler and are specific to Dyalog APL.

The :Class statement declares the name of the Class (which must be the same as the
name declared in the WebService statement) and the Base Class from which it inherits,
which is normally System.Web.Services.WebService.

:Class GolfService: System.Web.Services.WebService

Following the :Class statement, there may appear any number of APL expressions and
function bodies. Following these there must be a :EndClass statement. Internal sub-
classes (nested classes) may also be defined within the main :Class ... :EndClass
block.

Because the functions usually take arguments and return results whose types must be
known, the statement

:Using System

must almost always appear immediately after the :Class statement to locate them.

8.3 Compilation

When the Web Service, specified by the . asmx file, is called for the first time, ASP.NET
invokes the appropriate language compiler (in this case, the Dyalog Script compiler)
whose job is to produce an Assembly that defines and describes a class. When the Web
Service is used subsequently, the request is satisfied by creating and using an instance
of the class. However, ASP.NET detects if the . asmx script has been modified, and
recompiles it in this case.

The Dyalog Script compiler creates a DLL containing a workspace, which itself contains
the Web Service class. The class contains all the functions, which are defined within the

2025-10-30 (main:e0843eae32) Page 172

.NET Framework Interface Guide

script, together with any variables that were established by expressions in the script. A
single function comprises all the statements enclosed within a pair of del (v) symbols.

For example, the following script would define a class, instances of which would run
using OML<2, containing a single function F00 and a variable X.

:Class MyClass
OML<2
X«10
V Z<FOO Y
Z«Y+X
v
:EndClass

Note that all expressions in the class script are executed by the script compiler when it
creates the assembly. They are not executed when the Web Service is invoked.

If your script contains a CY statement, it will be executed by the compiler when
establishing the class. This may be used to import functions from other workspaces and
obviate the need to include them in the . asmx file.

8.4 Exporting Methods

Your Web Service will be of no use unless it exports at least one method. To export a
function as a method, you must include declaration statements. Such declarations may
be supplied anywhere within the function body, but it is recommended that they
appear together as the first block of statements in your code. All declaration
statements begin with the colon (:) character and the following declaration statements
are supported:

:Access WebMethod
This statement causes the function to be exported as a method and must be present.
:Signature type « fnname type namel, type name2,

This statement declares the data type of the result and the arguments of the method
where type may specify any valid .NET type that is supported by Web Services. Note
that the assignment arrow (<) is necessary if the function returns a result.

The declaration of each parameter of the method is separated from the next by a
comma. Each name may be any ASCII character string. Note that names are optional.

2025-10-30 (main:e0843eae32) Page 173

.NET Framework Interface Guide

Add1

V R«<Addl args
:Access WebMethod
:Signature Int32«Add Int32 argl,Int32 arg2
R«+/args

\4

The Add1 function defined above is exported as a method named Add, that takes
exactly (and only) two parameters of type Int32 and returns a result of type Int32.
Armed with this definition, which is recorded in the metadata associated with the class,
the .NET Framework guarantees that the method will only be called in this way.

Add2

V R«Add2 arg
:Access WebMethod
:Signature Double«Add Double[] argl
R«+/arg

v

The Add2 function defined above is exported as a method that takes an array of Double
and returns a result of type Doub le. Depending on the type of the arguments provided
when the method is invoked, .NET and Dyalog will call Add1 or Add2 - or generate an
exception if the argument does not match any of the signatures.

8.5 Web Service Data Types

In principle, Web Services are designed to support most, if not all, of the data types
supported by the .NET Framework, and to support any new .NET classes that you
choose to define.

In practice, the current set of data types supported by Web Services is somewhat
restricted; in particular:

e Multi-dimensional arrays are not supported; only vectors.
e Arbitrary nested arrays are not supported.

However, despite these restrictions, it is possible to build effective Web Services, as you
will see in the following examples.

2025-10-30 (main:e0843eae32) Page 174

.NET Framework Interface Guide

8.6 Execution

When your Web Service (or Page) is invoked, ASP.NET requests an instance of the
corresponding Class from the Assembly (DLL) that was created when it was compiled.
The first time this happens for any Dyalog Web Service or Web Page, the Dyalog
dynamic link library is loaded into the ASP.NET host process and the namespace
corresponding to your Web Service class is)COPYed from the Assembly. The Dyalog
dynamic link library then delivers an instance of this namespace to the client (calling)
process. See Section 12.1 for further details.

In general, every call on a method in a Web Service causes a new instance of the Web
Server class to be created. If you need to maintain/update variables between calls, you
need to write them to permanent storage.

If a client invokes a different Dyalog Web Service or Web Page, its class is) coPYed from
its Assembly into the workspace managed by the Dyalog dynamic link library. When
you export a class, you can select one of three Isolation Modes:

1. Each host process has a single workspace
2. Each AppDomain has its own workspace
3. Each Assembly has its own workspace

In this context, "workspace" is synonymous with "Dyalog process": Each workspace is
managed by a separate process running dyalog.dll. Under option 1, all Dyalog APL Web
Services (and Web Pages) hosted by the IIS host process share the same workspace
when they are invoked.

The isolation mode selected has implications for the way that you access and manage
global resources such as component files. Finer isolation modes may be implemented
in future versions of Dyalog.

8.7 Global.asax, Application and Session Objects

When a Web Service runs, it has access to the Application and Session objects. These
are objects provided by ASP.NET through which you can manage the execution of the
Web Service. ASP.NET creates an Application object when it first starts the Application,
that is, when any client requests any Web Service or Web Page stored in the same IIS
Virtual Directory. It also creates a Session object for each client process.

When the first request comes in for an ASP.NET application, ASP.NET checks for an
optional file named global.asax, and if it is there it compiles it. The application's
global.asax instance is then used to apply application events.

2025-10-30 (main:e0843eae32) Page 175

.NET Framework Interface Guide

global.asax typically defines callback functions to be executed on the various
Application and Session events, such as Application_Start, Application_End,
Session_Start, Session_End and so forth.

Dyalog allows you to use APL functions in the global.asax script. This allows you to
initialise your APL application when it is first invoked, and to close it down cleanly when
it is terminated.

For example, you can use global .asax to tie a component file on start-up, and untie it
on termination.

8.8 Sample Web Service: EG1

The first APLExample sample is supplied in samples\asp.net\webservices\egl.asmx
which is mapped via an IIS Virtual Directory to the URL:

http://localhost/dyalog.net.15.0.unicode.32/webservices/egl.asmx

<%@ WebService Language="Dyalog" Class="APLExample" %>

:Class APLEXample: System.Web.Services.WebService
:Using System

V R<Add args
:Access WebMethod

:Signature Int32«Add Int32 argl,Int32 arg2
R«+/args

:EndClass

The Add function defined above is exported as a method that takes exactly (and only)
two parameters of type Int32 and returns a result of type Int32.

Line [3] could in fact be coded as:
Reargs[1]+args[2]

because .NET guarantees that a client can only call the method by providing two 32-bit
integers as parameters.

2025-10-30 (main:e0843eae32) Page 176

.NET Framework Interface Guide

Testing APLExample from a Browser

If you connect to a URL that represents a Web Service, the browser displays a page that
provides information about the service and the methods that it contains. In certain
cases, but by no means all, the page also contains form fields that let you invoke a
method from the browser.

The screen shot below shows the page displayed by Google Chrome when it is pointed
at eg1.asmx. It shows that the Web Service is called APLExamp le, and that it exports a
single method called Add. Furthermore, the Add method takes two parameters of type
int, named arg1 and arg2.

[APLExample Web Service X

& C | ® localhost/dyalog.ne

APLExample

Click here for a complete list of operations.

Add

Test

To test the operation using the HTTP POST protocol, click the 'Invoke' button.
Parameter Value

argl: 23

arg2: 19 ‘

Invoke

The following screen shot shows the result of entering the values 23 and 19 into the
form fields and then pressing the Invoke button.

In this case, the method returns an int value 42.

' [APLExample Web Service X | [3 localhost/dyalog.net.15.0 X ‘ ﬂ

C | ® localhost/dyalog.net.15.0.unicode.32/webservices/eg1.asmx/Add w

This XML file does not appear to have any style information associated with 1t. The
document tree 1s shown below.

<int xmlns="http://tempuri.org/">42</int>

2025-10-30 (main:e0843eae32) Page 177

.NET Framework Interface Guide

It is important to understand what is happening here.

Accessed in this way from a browser, a Web Service appears to be behaving like a Web
Server; this is not the case.

It is simply that the browser detects that the target URL is a Web Service, and invokes
an ASP+ page named DefaultSdlHelpGenerator.aspx that inspects the compiled
class and returns an HTML view of the Web service.

8.9 Sample Web Service: LoanService

The LoanService sample is supplied in Dyalog\Samples\asp.net\Loan\Loan.asmx,
which is mapped via an IIS Virtual Directory to the URL:

http://localhost/dyalog.net.15.0.unicode.32/Loan/Loan.asmx

This APLScript sample defines a class named LoanService that is based upon
System.Web.Services.WebService. The LoanService class defines a sub-class called
LoanResult and a method called CalcPayments.

2025-10-30 (main:e0843eae32) Page 178

.NET Framework Interface Guide

<%@ WebService Language="Dyalog" Class="LoanService" %>
:Class LoanService: System.Web.Services.WebService
:Using System
:Class LoanResult
:Access public
:Field Public Int32[] Periods
:Field Public Double[] InterestRates
:Field Public Double[] Payments
:EndClass

V R«<CalcPayments X:;LoanAmt:;LenMax:LenMin;IntrMax:
IntrMin;PERIODS; INTEREST:NI:NM
[1] :Access WebMethod
[2] :Signature LoanResult«CalcPayments Int32 LoanAmt,
Int32 LenMax,Int32 LenMin,
Int32 IntrMax,Int32 IntrMin

[3]

[4] A Calculates loan repayments

[5] A Argument X specifies:

[6] ~n LoanAmt Loan amount

[7] =~ LenMax Maximum loan period
[8] n LenMin Minimum loan period
[9] ~n IntrMax Maximum interest rate
[10] n IntrMin Minimum interest rate
[11]

[12] LoanAmt LenMax LenMin IntrMax IntrMin<X

[13] R«[INEW LoanResult

[14] R.Periods« 1+LenMin+itl+LenMax-LenMin

[15] R.InterestRates«0.5x 1+ (2xIntrMin)+11+2x
IntrMax-IntrMin

[16] NI«pINTEREST«R.InterestRates+100x12

[17] NM«<pPERIODS«R.Periodsx12

[18] R.Payments<, (LoanAmt)x((NI,NM)pNM/INTEREST)+
1-1+(1+INTEREST)e.*PERIODS

\4
:EndClass

CalcPayments takes five integer parameters (see comments for their descriptions) and
returns an object of type LoanResult.

Note that the block of APLScript that defines the sub-class LoanResult must reside
between the :Class and :EndClass statements of the main class, LoanService. You
may define any number of internal classes in this way.

2025-10-30 (main:e0843eae32) Page 179

.NET Framework Interface Guide

The LoanResult class is made up only of Fields and it does not export any methods or
properties. Furthermore, there are no constructor methods defined and it relies solely
on its default constructor that is inherited from its base class, System.0Object. The
default constructor is called without any parameters and in fact does nothing except to
create an instance of the class. In particular, the fields it contains initialised to zero. In
this case, that is sufficient, as all the fields will be filled in explicitly later.

:Class LoanResult

:Access public
:Field Public Int32[] Periods
:Field Public Double[] InterestRates
:Field Public Double[] Payments

:EndClass

The :Class statement starts the definition of a new class and specifies its name. The
:EndClass statement terminates it definition.

The three :Field declaration statements specify the names and data types of three
public fields. The Pub L i c attributes are necessary to make the fields visible to methods
within the LoanService class as a whole, as well as to external clients.

The Periods field is defined to be an array of integers; the InterestRates field an
array of Doub L e. Both these arrays are 1-dimensional, that is, vectors. These will
contain the numbers of years, and the different interest rates, to which the repayments
matrix applies.

Notice however that Payments is also defined to be 1-dimensional when in fact it is,
more naturally, a 2-dimesional matrix. The reason for this is that, currently, Web
Services do not support multi-dimensional arrays. This is a .NET restriction and not a
Dyalog restriction.

CalcPayments[13] gets a new instance of the LoanResul t class by doing ONEW
LoanResult. It then assigns values to each of the three fields in lines [14], [15] and
[18].

Testing LoanService from a Browser

Like the methods exported by the APLEXample Web Services described above, the
CalcPayments method exported by LoanService is callable from a browser and the
page that is displayed when you point a browser at it is shown below.

2025-10-30 (main:e0843eae32) Page 180

.NET Framework Interface Guide

[LoanService Web Service X

& C | ® localhost/dyalog.net.15.0.unicode.32/loan/loan.asmx?op=CalcPayments ¥¥

LoanService

Click here for a complete list of operations.

CalcPayments
Test

To test the operation using the HTTP POST protocol, click the 'Invoke' button.
Parameter Value

LoanAmt: 100000

LenMax: 12

LenMin: 10
IntrMax: 3
IntrMin: 1 }

Invoke

To test the CalcPayments method, you can enter numbers into the form fields in this
page, as shown in the screen shot above, and then press the Invoke button. The result
of the method is then displayed in a separate window as illustrated below.

Notice that the result is described using XML, which is in fact the very language used to
invoke a Web Service and return its result.

You can see that the result is of type LoanResult, and it contains 3 fields named
Payments, InterestRates and Periods. This information was derived by our definition
of the LoanResult class in the APLScript file.

As you can see, the InterestRates field shows that it contains a vector of floating-
point values (doub Le) from the minimum rate to the maximum rate that we specified
on the input form. This time, the increment is 0.5.

Similarly, the Payments field contains the calculated repayment values.

Finally the Periods field, contains a vector of integers from the minimum period to the
maximum period that we specified on the input form, in increments of 1.

2025-10-30 (main:e0843eae32) Page 181

.NET Framework Interface Guide

' [LoanService Web Service X | [localhost/dyalog.net.15.0 X ! n

C | ® localhost/dyalog.net.15.0.unicode.32/loan/loan.asmx/CalcPayments Y| ¢

This XML file does not appear to have any style information associated with it. The document
tree 1s shown below.

v<LoanResult xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"” xmlns="http://tempuri.org/">
v<InterestRates>
<double>1</double>
<double>1.5</double>
<double>2</double>
<double>2.5</double>
<double>3</double>
</InterestRates>
v <Payments>
<double>876.041213701641</double>
<double>800.32145394954341</double>
<double>737.23320941408917</double>
<double>897.91499795031632</double>
<double>822.266042599729</double>
<double>759.25120113057892</double>
<double>920.1345384255726</double>
<double>844.59078506699518</double>
<double>781.68369185089932</double>
<double>942.69901703959488</double>
<double>867.29464305512761</double>
<double>804.5293838@979788</double>
<double>965.60744698391056</double>
<double>890.37635433798073</double>
<double>827.786689448@519</double>
</Payments>
v <Periods>
<int>1@</int>
<int>11</int>
<int>12</int>
</Periods>
</LoanResult>

8.10 Sample Web Service: GolfService

GolfService is an example Web Service that resides in the directory
samples\asp.net\Golf and is associated with the IIS Virtual Directory dyalog.net/
Gol f. This example makes extensive use of internal classes to define data structures
that are appropriate for a client application, such as C# or VB.

The directory contains a global . asax script, which is used to initialise the application.

The Golf Web Service example manages the reservation of tee-times at golf courses. All
the data is held in a component file called Gol fData.dcf. This file may be initialised
using the function Go L f . INITFILE in the workspace

2025-10-30 (main:e0843eae32) Page 182

.NET Framework Interface Guide

samples\asp.net\webservices\webservices.dws. You may need to alter the file
path first.

Each golf course managed by the application has a unique code (integer) and a name
(string). This is handled by defining a class (structure) called Go L fCourse with two
fields, Code and Name.

GolfService provides 3 methods:
GetCourses()

Returns a list of Golf Courses (CourseCode and CourseName). The result of this method
is an array of Gol fCourse objects.

GetStartingSheet(CourseCode,Date)

Returns the starting sheet for a specified golf course on a given day. A starting sheet is a
list of starting times with a list of the golfers booked to start their round at that time.
The result of this method is a StartingSheet object.

MakeBooking(CourseCode,TeeTime,GimmeNearest, Namel,Name2,Name3,Namek))

Requests a tee reservation at the course specified by CourseCode. TeeTime is a
DateTime object that specifies the requested date and time. GimmeNearest is Boolean.
If 1, requests the nearest tee-time to that specified; if 0, requests only the specified
tee-time. Name1-4 are strings specifying up to 4 players. Note that all parameters are
required. The result of this method is a Booking object.

2025-10-30 (main:e0843eae32) Page 183

.NET Framework Interface Guide

GolfService: Global.asax

<script language="Dyalog" runat=server>

V Application_Start;GOLFID
:Access Public
GOLFID+«'c:\Dyalog\samples\asp.net\golf\GolfData' OFTIE 0O[~1]
Application[<'GOLFID']«GOLFID

v

V Application_End;GOLFID
tAccess Public
:Trap 6
GOLFID<«Application[<'GOLFID']
OFUNTIE GOLFID
:EndTrap
v
</script>

The Application_Start function is called when the GolfService Web Service is
invoked for the first time. It ties the Gol fData component file then stores the tie
number in a new Item called GOLFID in the Application object. This item is then
subsequently available to methods in the Gol fService for the duration of the
application.

The Application_End function is invoked when the Go L fService Web Service
terminates. It unties the Gol fData component file.

This example may be considered slightly weak in that the location of the data file is
hard-coded in the application's Global . asax file. An alternative is to store this
information in the <appsettings> section of the appropriate web.config file orin the
global machine.config file. This is preferable if the resource (in this case a file name) is
to be accessed from more than one script. For further information on ASP.NET config
files, see the documentation for the .NET Framework SDK.

Note that the Gol fData file may be initialised using the function Golf . INITFILE in the
samples\asp.net\webservices\webservices.dws workspace. The function will
prompt you for the path of the file, initialize it and update the Global . asax file
accordingly.

2025-10-30 (main:e0843eae32) Page 184

.NET Framework Interface Guide

GolfService: GolfCourse class

The Gol fCourse class is effectively a structure with two fields named Code and Name.
Code is an integer code that provides a shorthand way to refer to a specific golf course;
Name is a String containing its full name.

:Class GolfCourse
tAccess Public
:Field Public Int32 Code
:Field Public String Name

V ctor args
:Implements Constructor
:Access public
:Signature fn Int32, String
Code Name<«args

V ctor_def
:Implements Constructor
:Access public
ctor 71 "'
v

:EndClass

The Gol fCourse class provides two constructors. The first, named ctor_def, takes no
arguments and therefore overrides the default constructor that is inherited from
System.Object. ctor_def calls ctor to initialise the instance with a Code of ~1 and an
empty Name.

The constructor named ctor accepts two parameters named CourseCode (an integer)
and CourseName (a string), and simply assigns these values into the corresponding
fields.

Therefore, valid ways to create an instance of a Gol fCourse are:

GC+[INEW GolfCourse
GC.(Code Name)<«!1 'St Andrews'

Or, more simply

GC<+[INEW GolfCourse (1 'St Andrews')

2025-10-30 (main:e0843eae32) Page 185

.NET Framework Interface Guide

Note that the names of the constructor functions are not visible outside the class.
Constructors are identified by their signatures (basically, the : Implements
Constructor statement) and not by their names.

GolfService: Slot class

The Slot class is effectively a structure with two fields named Time and Players. Time
is a DateTime object that represents a time that can be reserved on the first tee.
Players is an array of (up to 4) strings that contains the names of the golfers who have
reserved to start their round of golf at that time.

:Class Slot
:Access Public
:Field Public DateTime Time
:Field Public String[] Players

vV ctorl arg
:Implements Constructor
:Access public
:Signature fn DateTime
Time<«arg
Players< Opc''

V ctor2 args
:Implements Constructor
:Access public
:Signature fn DateTime, Stringl]
Time Players<«args

V ctor_def
:Implements Constructor
:Access public
v
:EndClass

This class provides two constructor functions named ctor1 and ctor2. However, for
internal reasons, if a class defines any constructor functions, it is currently necessary to
provide a dummy default constructor (the form of the constructor that takes no
parameters); hence ctor_def.

The constructor ctor1 accepts a single bateTime parameter, which it assigns to the
Time, field, and initialises the Players field to an empty array.

2025-10-30 (main:e0843eae32) Page 186

.NET Framework Interface Guide

The constructor ctor2 accepts two arguments, a specified tee time, and an array of
strings that contains golfers' names. It assigns these parameters to Time and Players
respectively.

GolfService: Booking class

The Booking class represents the result of the MakeBooking method. It contains 4
fields named 0K, Course, TeeTime and Message.

OK is Boolean and indicates whether or not the attempt to make a reservation was
successful. If oK is false (0), the Message field (a string) indicates the reason for failure.

If OK is true (1) the Course field contains an instance of a Gol fCourse object, and the
TeeTime field contains an instance of a Slot object. Together, these objects identify the
reserved golf course and starting slot. The latter specifies both the starting time, and
the names of all the golfers who have been allocated that starting time and who will
therefore play together.

:Class Booking
tAccess Public
:Field Public Boolean OK
:Field Public GolfCourse Course
:Field Public Slot TeeTime
:Field Public String Message

V ctor args
:Implements Constructor
:Access public
:Signature fn Boolean, GolfCourse, Slot, String
OK Course TeeTime Message<«args

V ctor_def
:Access public
:Implements Constructor
v
:EndClass

This class provides a single constructor method, which must be called with values for all
four fields.

2025-10-30 (main:e0843eae32) Page 187

.NET Framework Interface Guide

GolfService: StartingSheet class

The StartingSheet class represents the result of the GetStartingSheet method. It
contains 5 fields named 0K, Course, Date, Slots and Message. OK is Boolean and
indicates whether or not a starting sheet is available for the specified course and date.

If oK is false (0), the Message field (a string) indicates the reason for failure.

If OK is true (1) the Course field contains an instance of a Gol fCourse object, the Date
field contains the date in question, and the Slots field contains an array of Slot
objects. Each Slot object specifies a starting time and the names of golfers who are
booked to play at that time.

:Class StartingSheet
tAccess Public
:Field Public Boolean OK
:Field Public GolfCourse Course
:Field Public DateTime Date
:Field Public Slot[] Slots
:Field Public String Message

V ctor args
:Implements Constructor
:Access public
:Signature fn Boolean, GolfCourse, DateTime
OK Course Date<«args

V ctor_def
:Implements Constructor
:Access public
v
:EndClass

Like the Booking class, the StartingSheet class provides a single constructor method.
In this case, the constructor is called with values for just 3 of the fields; the values of
the other fields are expected to be assigned later.

2025-10-30 (main:e0843eae32) Page 188

.NET Framework Interface Guide

GolfService: GetCourses function

V R«GetCourses;COURSECODES :;COURSES; INDEX;GOLFID

[1] =

[2] :Access WebMethod

[3] :Signature GolfCourse[J«fn
[4]

[5] GOLFID+Application[<'GOLFID"']

[6] COURSECODES COURSES INDEX<«[JFREAD GOLFID 1

[7] R<[JNEW GolfCourse, < 4®1COURSECODES COURSES
v

The GetCourses function retrieves the tie number of the Gol fData component file
from the Application object and reads its first component.

The function then creates a Go L fCourse object for each of the courses recorded on the
file, and returns the array of Gol fCourse objects as its result.

GolfService: GetStartingSheet function

The GetStartingSheet function retrieves the tie number of the Gol fData component
file from the Application object and reads its first component. Line [10] creates an
instance of a StartingSheet object and uses it to initialise the result R. The value of
the oK field is set to zero to indicate failure.

It then validates the requested CourseCode. If invalid, it simply sets the Message field in
the result and returns it. Similarly, it checks to see if there is a starting sheet on file for
the requested date. If not, it sets the Message field to indicate this, and returns.

Note that line [15] extracts the Year, Month and Day properties from the requested tee
time, a DateTime object, and converts them to an IDN. This is used to index the
component containing the starting sheet for that day.

2025-10-30 (main:e0843eae32) Page 189

.NET Framework Interface Guide

V R«GetStartingSheet ARGS:;CODE:;COURSE;:DATE;GOLFID;
COURSECODES ; COURSES ; INDEX; COURSEI ; IDN:DATES ; COMPS s
IDATE;TEETIMES ;GOLFERS:I:T

(1] =

[2] :Access WebMethod

[3] :Signature StartingSheet«fn Int32 CCode,
DateTime Date

(4]

[5] CODE DATE<«ARGS

[6] GOLFID<«Application[<'GOLFID']

[7] COURSECODES COURSES INDEX<«[JFREAD GOLFID 1

[8] COURSEI«COURSECODES1CODE

[9] COURSE<[INEW GolfCourse (CODE(COURSEI-COURSES,c''))

[10] R«[ONEW StartingSheet (0 COURSE DATE)

[11] :If COURSEI>pCOURSECODES

[12] R.Message+«'Invalid course code'

[13] :Return

[14] :EndIf

[15] IDN«2 [ONQ'."' 'DateToIDN',DATE.(Year Month Day)

[16] DATES COMPS<[JFREAD GOLFID,COURSEI>INDEX
[17] IDATE«DATEStIDN
[18] :If IDATE>pDATES
[19] R.Message«'No Starting Sheet available'
[20] :Return
[21] tEndIf
[22] TEETIMES GOLFERS<«[JFREAD GOLFID,IDATE>COMPS
[23] R.0OK<«1
[24] T<«[ONEW DateTime, ' (<DATE.(Year Month Day)),"
3174[1]24 60TTEETIMES
[25] R.Slots<«[JNEW Slot, ¢ 'T,oc GOLFERS
v

Line[23] sets the oK field of the result to 1 (success).
Line[24] converts the stored tee times (in minutes) to DateTime objects.

Line[25] combines the tee times and golfers into a vector of 2-element arrays, and
creates a Slot object for each of them. The result is assigned to the Slots field of the
result R.

2025-10-30 (main:e0843eae32) Page 190

.NET Framework Interface Guide

GolfService: MakeBooking function

The MakeBooking function checks that the requested tee-time is available, for the
specified number of players and updates the starting sheet accordingly. The result of
the function is a Booking object.

MakeBooking first retrieves the tie number of the Gol fData component file from the
Application object and reads its first component.

Lines[13 14] create instances of GolfCourse and S Lot objects, which at this stage are
not validated. Line[15] then initialises the result R, a Booking object, which includes
these instances. At this stage, R.0K is O indicating failure.

Line[16] validates the requested CourseCode, and, if invalid, simply sets R .Message and
returns.

Similarly, lines [20 23] check that the requested tee time is within the next 30 days
from now. If not, the function assigns the appropriate error message to R .Message and
returns. Note that these two statements employ the APL primitive function > (rather
that the op_GreaterThan method) to compare the requested tee time (a DateTime
object) with a new DateTime object that represents now and now+30 days respectively.

Notice that line[24] uses the AddDays method to create a new DateTime object that
represents now + 30 days. An alternative expression, to get now+30 days is:

TEETIME.Now+[INEW TimeSpan (30 0 0 0)

Lines[28-47] are concerned with retrieving the appropriate component from the file,
initialising it or re-using an old one, if it is not present. Each component represents the
starting sheet for a particular course on a particular day.

Lines[48-63] check whether or not the requested slot is available (for the specified
number of golfers). If not it returns an error message as before or, if GimmeNearest is 1
(true), it attempts to allocate the slot closest to the requested time.

If an appropriate slot is found, Lines[72 73] update the Slot object with the assigned
time and names of the golfers. Line[74] then inserts the modified s Lot object into the
result, and sets the oK field to 1 (true) to indicate success.

2025-10-30 (main:e0843eae32) Page 191

[1]
[2]
[3]

(4]
[5]
(6]
[7]

(8]

(9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
(23]
[24]
[25]

[26]
[27]
[28]
[29]
[30]
[31]

V R«<MakeBooking ARGS;CODE;COURSE;SLOT:TEETIME:GOLFID:
COURSECODES ; COURSES ; INDEX; COURSEI ; IDN:

A

A
A

.NET Framework Interface Guide

DATES ;COMPS ; IDATE; TEETIMES ; GOLFERS
OLD;COMP ; HOURS ;MINUTES ; NEAREST ; TIME ;
NAMES ; FREE; FREETIMES;I;J;:DIFF

:Access WebMethod

:Signature Booking«Int32 CourseCode,
DateTime TeeTime,
Boolean GimmeNearest,
String Namel,
String Name2,
String Name3,
String Namel

If GimmeNearest=0, books (or fails) for specified time
If GimmeNearest=1, books (or fails) for nearest to
specified time

CODE TEETIME NEAREST<«3tARGS
GOLFID<«Application[<'GOLFID']
COURSECODES COURSES INDEX<[JFREAD GOLFID 1
COURSEI«COURSECODES1CODE
COURSE<[INEW GolfCourse,<CODE(COURSEI>COURSES,c"'")
SLOT<[INEW Slot TEETIME
R«[JNEW Booking (0 COURSE SLOT '")
:If COURSEI>pCOURSECODES
R.Message<«'Invalid course code'
:Return
tEndIf
:If TEETIME.Now>TEETIME
R.Message«'Requested tee-time is in the past'
:Return
:EndIf
:If TEETIME>TEETIME.Now.AddDays 30
R.Message<«'Requested tee-time is more than
30 days from now'
:Return
:EndIf
IDN«2 [ONQ'.' 'DateToIDN',TEETIME.(Year Month Day)
DATES COMPS<[JFREAD GOLFID,COURSEI>INDEX
IDATE<DATEStIDN
:If IDATE>pDATES

2025-10-30 (main:e0843eae32)

Page 192

.NET Framework Interface Guide

[32] TEETIMES«(60x7)+10x"1+11+8x6

A 10 minute intervals, 07:00 to 15:00
[33] GOLFERS«((pTEETIMES),4)pc""

A up to 4 golfers allowed per tee time
[34] :If 0=0OLD«>(DATES<

2 ONQ'.' 'DateToIDN',3t[TS)/1pDATES

[35] COMP«(TEETIMES GOLFERS)OFAPPEND GOLFID
[36] DATES,«<IDN
[37] COMPS , <«COMP
[38] (DATES COMPS)[FREPLACE GOLFID,COURSEI-INDEX
[39]

2025-10-30 (main:e0843eae32) Page 193

[uo]
[41]

[42]
[43]
[k]
[45]
[46]
[47]
(48]
[49]
[50]
[51]

[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]

[72]
(73]
[74]

.NET Framework Interface Guide

:Else
DATES[OLD]<«IDN
(TEETIMES GOLFERS)FREPLACE
GOLFID,COMP+OLD>COMPS
DATES COMPS [JFREPLACE GOLFID,COURSEI-INDEX
:EndIf
:Else
COMP<IDATE>COMPS
TEETIMES GOLFERS<«[JFREAD GOLFID COMP
:EndIf
HOURS MINUTES«TEETIME. (Hour Minute)
NAMES<«(3+ARGS)~8""
TIME«60LHOURS MINUTES
TIME«10%x|0.5+TIME+10 A Round to nearest
10-minute interval
:If ~NEAREST
I«TEETIMESt1TIME
:If I>pTEETIMES
:0rIf (pNAMES)>>,/+/0=p GOLFERS[I:]
R.Message<«'Not available'
:Return
tEndIf
:Else
:If ~v/FREE«(pNAMES)<>,/+/0=p GOLFERS
R.Message«'Not available'
:Return
:EndIf
FREETIMES«(FREExXTEETIMES)+32767x~FREE
DIFF<«|FREETIMES-TIME
I«DIFFt|l/DIFF
:EndIf
J<(>,/0=p "GOLFERS[I;])/14
GOLFERS[I:(pNAMES)tJ]«NAMES
(TEETIMES GOLFERS)OFREPLACE GOLFID COMP
TEETIME<[JNEW DateTime,<TEETIME.(Year Month Day),
3t24 60TI-TEETIMES
SLOT.Time«TEETIME
SLOT.Players<«(>,/0<p 'GOLFERS[I;])/GOLFERS[I;]
R.(OK TeeTime)<«1 SLOT

Testing GolfService from a Browser

If you point your browser at the URL:

2025-10-30 (main:e0843eae32) Page 194

.NET Framework Interface Guide

http://localhost/dyalog.net.15.0.unicode.32/Golf/Golf.asmx

GolfService will be compiled and ASP.NET will fabricate a page about it for the
browser to display as shown below.

The three methods exposed by Gol fService are listed.

[GolfService Web Service X

& C | @ localhost/dyalog.net.15.0.unicode.32/golf/golf.asmx Y | @

GolfService ‘n

The following operations are supported. For a formal definition, please review the
Service Description.

e GetCourses

e GetStartingSheet

« MakeBooking

Invoking the GetCourses method generates the following output.

Notice that the data type of the result is Array0fGol fCourse, and the data type of
each element of the result is Gol fCourse. Furthermore, the public fields defined for
the Gol fCourse object are clearly named.

All this information is derived from the declarations in the Gol f . asmx script.

As supplied, the Gol fData component file contains only 3 golf courses as shown below.

2025-10-30 (main:e0843eae32) Page 195

[GolfService Web Service X

[localhost/dyalog.net.15

X

.NET Framework Interface Guide

document tree 1s shown below.

C | ® localhost/dyalo

g.net.15.0.unicode.32/golf/golf.asmx/GetCourses

32

This XML file does not appear to have any style information associated with 1t. The

% ¢

v <GolfCourse>
<Code>1</Code>
<Name>St Andrews</Name>
</GolfCourse>
v <GolfCourse>
<Code>2</Code>
<Name>Hindhead</Name>
</GolfCourse>
v <GolfCourse>
<Code>3</Code>
<Name>Basingstoke</Name>
</GolfCourse>
</ArrayO0fGolfCourse>

v <Array0fGolfCourse xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"”
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema” xmlns="http://tempuri.org/">

ASP.NET generates a Form containing fields that allow the user to invoke the

MakeBookings method as shown

below.

Notice the way a DateTime value is specified. Note too that the GimmeNearest

parameter is Boolean, SO you must enter "True

or "False". If you enter O or 1, it will

cause an error and the application will refuse to try to call MakeBookings because you
have specified the wrong type for a parameter.

When you try this yourself, remember to enter a date that is within the next 30 days,
and a time between 07:00 and 15:00. Alternatively, you may wish to experiment with

invalid data to check the error ha

2025-10-30 (main:e0843eae32)

ndling.

Page 196

.NET Framework Interface Guide

[GolfService Web Service X

& C | ® localhost/dyalog.net.15.0.unicod golf.asmx?op=MakeBooking ¥¢
) S g

Click here for a complete list of operations.

GolfService

MakeBooking
Test
To test the operation using the HTTP POST protocol, click the 'Invoke' button.
Parameter Value
CourseCode: 3
TeeTime: 2016/10/23

GimmeNearest: True

Namel: T.Woods

Name2: B.Hogan

Name3: P.Donnelly]
Name4:

Invoke

The result of invoking MakeBooking with this data is shown below.

Notice how all the information about the Booking object structure, including the
structure of the sub-objects, is provided.

2025-10-30 (main:e0843eae32)

Page 197

.NET Framework Interface Guide

[} GolfService Web Service X Y [localhost/dyalog.net.15.0 X

C | ® localhost/dyalog.net.15.0.unicode.32/golf/golf.asmx/MakeBooking v

This XML file does not appear to have any style information associated with i1t. The
document tree 1s shown below.

v <Booking xmlns:xsi="http://www.w3.0org/2@01/XMLSchema-instance”
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"” xmlns="http://tempuri.org/">
v<Course>

<Code>3</Code>
<Name>Basingstoke</Name>
</Course>
<Message/>
<OK>true</0OK>
v<TeeTime>
v<Players>
<string>T.Woods</string>
<string>B.Hogan</string>
<string>P.Donnelly</string>
</Players>
<Time>2016-10-23T07:00:00</Time>
</TeeTime>
</Booking>

The following picture shows data suitable for invoking the GetStartingSheet method.

If you try this for yourself, choose a course and date on which you have made at least

one successful booking.

[GolfService Web Service X

& C | ® localhost/dyalog.net.15.0.unicode.32/golf/golf.asmx?op=GetStartingSheet ¥

Click here for a complete list of operations.

GetStartingSheet

Test

To test the operation using the HTTP POST protocol, click the 'Invoke' button.
Parameter Value

CourseCode: :3

Date: 2016/10/23 |

Invoke

GolfService

P

Finally, the result of the GetStartingSheet function is illustrated below.

2025-10-30 (main:e0843eae32)

Page 198

.NET Framework Interface Guide

The output clearly shows that the result, a StartingSheet object, contains an array of
Slot objects, each of which contains a Time field and a PLayers field.

' [GolfService Web Service X | [3 localhost/dyalog.net.15.0 X ! ﬂ

C | ® localhost/dyalog.net.15.0.unicode.32/golf/golf.asmx/GetStartingSheet Y| @

This XML file does not appear to have any style information associated with 1t. The document
tree 1s shown below.

v<StartingSheet xmlns:xsi="http://www.w3.0org/20@1/XMLSchema-instance”
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema” xmlns="http://tempuri.org/">
v<Course>
<Code>3</Code>
<Name>Basingstoke</Name>
</Course>
<Date>2016-10-23T00:00:00</Date>
<OK>true</0K>
v<Slots>
v<Slot>
v<Players>
<string>T.Woods</string>
<string>B.Hogan</string>
<string>P.Donnelly</string>
<string/>
</Players>
<Time>2@16-10-23T07:20:00</Time>
</Slot>
v<Slot>
v<Players>
<string/>
<string/>
<string/>
<string/>
</Players>
<Time>2016-10-23T07:10:00</Time>
</Slot>

Using GolfService from C

The csharp sub-directory in samples\asp.net\golf contains sample files for accessing
the Gol fService Web Service from C#. The C# source code in Golf.cs is shown below.

2025-10-30 (main:e0843eae32) Page 199

.NET Framework Interface Guide

using System;:
class MainClass {

static void Main(String[] args)
{
GolfService golf = new GolfService():
int nArgs = args.lLength;
Booking booking:

booking=golf.MakeBooking(

/% Course Code x/ 1,

/* Desired Tee Time */ DateTime.Parse(args[0]),

/* nearest is OK x/ true,

/* player 1 */ (nArgs > 1) ? args[1] : "",
/* player 2 */ (nArgs > 2) ? args[2] : "",
/* player 3 x/ (nArgs > 3) ? args[3] : "",
/* player &4 */ (nArgs > 4) ? args[4] : ""

)8

Console.WriteLine(booking.OK):

Console.WriteLine(booking.TeeTime.Time.ToString()):

foreach (String player in booking.TeeTime.Players)
Console.WriteLine(player):

}

The following example shows how you may run the c# program golf.exe from a

Command Prompt window. Please remember to specify a reasonable date and time

rather than the one used in this example.

csharp>golf 2006-08-07T08:00:00 T.Woods A.Palmer P.Donnelly
True

25/08/2008 08:00:00

T.Woods

A.Palmer

P.Donnel ly

csharp>

2025-10-30 (main:e0843eae32)

Page 200

.NET Framework Interface Guide

8.11 Sample Web Service: EG2

In all the previous examples, we have relied upon ASP.NET to compile the APLScript
into a .NET class prior to running it. This sample illustrates how you can make a .NET
class yourself.

For this example, the Web Service script, which is supplied in the file
samples\asp.net\webservices\eg2.asmx (mapped via an IS Virtual Directory to the
URL http://localhost/dyalog.net/webservices/eg2.asmx)is reduced to a single
statement that merely invokes the pre-defined class called APLServices.Example.

The entire file, viewed in Notepad, is shown below.

B eg2.asmx - Notepad = O X
File Edit Format View Help

<%@ WebService (Class="APLServices.Example"” %>

Given this instruction, ASP.NET will locate the APLServices.Example Web Service by
searching the bin sub-directory for assemblies. Therefore, to make this work, we have
only to create a .NET assembly in samples\asp.net\aplservices\bin. The assembly
should contain a .NET Namespace named APLServices, which in turn defines a class
named Example.

The procedure for creating .NET classes and assemblies in Dyalog APL was discussed in
Section 6.1. Making a WebService class is done in exactly the same way.

Note that the sub-directory samples\asp.net\aplservices\bin already contains
copies of the dependent Dyalog DLLs that are required to execute the code.

Start Dyalog as Administrator. This is essential both to allow you to create an assembly.

Starting with a CLEAR WS, create a namespace called APLServices. This will act as the
container corresponding to a .NET Namespace in the assembly.

JNS APLServices
#.APLServices

Within APLServices, create a class called Examp Le that inherits from
System.Web.Services.WebService. This is the Web Service class.

2025-10-30 (main:e0843eae32) Page 201

.NET Framework Interface Guide

)CS APLServices
#.APLServices
)JED oExample

:Class Example: WebService
:Using System
:Using System.Web.Services,System.Web.Services.dll
V R<Add arg
:Access webmethod
:Signature Int32«Add Int32 argl, Int32 arg2
R«+/arg
v
:EndClass

Within APLServices.Example, we have a function called Add that will represent the
single method to be exported by this Web Service.

Fix the class, then click File/Save As ... in the Session menubar and save the workspace
in samples\asp.net\aplwebservices\bin.

C:\Program Files\Dyalog\Dyalog APL 15.0

Unicode\Samples\asp.net\webservices\bin\eg2.dws saved Mon Sep 26 15:31:5
6 2016

Select the Export... item from the Session File menu, and save the assembly as eg2.dl
in the same directory, that is, samples\asp.net\webservices\bin.

2025-10-30 (main:e0843eae32) Page 202

.NET Framework Interface Guide

® Create bound file X

Save in: l bin LI = 5 Ev
l Name a Date modified Type

Quick access bridge150-64_unicode.dll 28/07/2016 18:11 Applicatic

dyalognet.dll 28/07/2016 1&:11 Applicatic

Val dyalogprovider.dll 28/07/201618:11 Applicatic

Desktop eg2.dll 26/09/2016 15:24 Applicatic

M
Libraries
This PC
Ne;(work
<

.

File name: |692 LI fha
Saveastype: |Microsoft NET Assembly (*dl) | Cancel

™ Runtime application [~ Use Extemal Workspace 7 Signhssembly [~ DelavSion version

i

Key File I Browse

Command Line: |

|solation Mode: IEach host process has a single workspace LI

V

When you click Save, the Status Window displays the following information to confirm
that the assembly has been created correctly.

D status m}
File Options

Declared Assembly eg?
Declared Module eg2 in file C:\Program Files\Dyalog\Dyalog APL-6% 15.0 Unicode\Samples\asp.net\webservices\bin\eg2.dll
Declared Type APLServices.Example
Compiling WebMethod "Add”
Parameter type "Int32" resolved to System.Int32
Parameter type "Int32" resolved to System.Int32
Result type "Int32" resolved to System.Int32
Compiled WebMethod "Add”
Emitted Type APLServices.Example
Emitted Assembly to file "C:\Program Files\Dyalog\Dyalog APL-64 15.0 Unicode\Samples\asp.net\webservices\bin\eg2.dll"

2025-10-30 (main:e0843eae32) Page 203

.NET Framework Interface Guide

Testing EG2 from a Browser

If you point your browser at the URL:
http://localhost/dyalog.net.15.0.unicode.32/webservices/eg2.asmx
ASP.NET will fabricate a page about it for the browser to display as shown below.

The Add method exposed by APLServices.Example is shown, together with a Form
from which you can invoke it.

[Example Web Service X
t\

< C | ® localhost/dyalog.net.15.0.unicode.32

eampe |

Click here for a complete list of operations.

ervices/eg2.asmx?op=Add Y| :

Add

Test

To test the operation using the HTTP POST protocol, click the 'Invoke' button.
Parameter Value

argl: 123

arg2: 456 I

Invoke .

If you enter the numbers 123 and 456 in the fields provided, then press Invoke, the
method will be called and the result displayed as shown below.

' [Example Web Service X | [localhost/dyalog.net.15.0 X ‘ ﬂ

C | ® localhost/dyalog.net.15.0.unicode.32

vebservices/eg2.asmx/Add w :

This XML file does not appear to have any style information associated with it. The
document tree 1s shown below.

<int xmlns="http://tempuri.org/">579</int>

2025-10-30 (main:e0843eae32) Page 204

.NET Framework Interface Guide

9 Calling Web Services

9.1 Introduction

In order to call a Web Service, you need a "proxy class" on the client, which exposes the
same methods and properties as the web service. The proxy creates the illusion that
the web service is present on the client. Client applications create instances of the
proxy class, which in turn communicate with the Web Service via IIS, using TCP/IP and
HTTP/XML protocols.

Microsoft provides a utility called wsbL . EXE that queries the metadata (Web Service
Definition Language) of a Web Service and generate C# source code for a matching
proxy class.

9.2 The MakeProxy function

The MakeProxy function is provided in the supplied workspace
samples\asp.net\webservices\webservices.dws.

MakeProxy is monadic and its argument specifies the URL of the Web Service to which
you want to connect. For example, the following expressions uses MakeProxy to
connect to the LoanService sample Web Service provided with Dyalog .NET:

MakeProxy'http://localhost/dyalog.net/Loan/Loan.asmx’

MakeProxy runs the Microsoft utility wsbL . EXE passing the name of your URL to it as an
argument. The utility then creates a C# source code file in your current directory that
contains the code necessary to create a proxy class. The name of the C# file is the name
of the Web Service (as declared in its header line) followed by the extension .cs.

MakeProxy then calls the C# compiler to compile this file, creating an assembly with the
same name, but with a .dll extension, in your current directory. This assembly contains
a .NET class of the same name.

MakeProxy attempts to determine the correct path for wsSDL.EXE and CSC.EXE, but
future versions of Microsoft.NET or Visual Studio require changes, in which case you
will have to modify this function to locate these tools.

2025-10-30 (main:e0843eae32) Page 205

.NET Framework Interface Guide

9.3 Using LoanService from Dyalog APL

For example, the above call to MakeProxy will create a C# source code file called
LoanService.cs, and an assembly called LoanService.dll in your current directory.
The name of the proxy class in LoanService.dll is LoanService.

You use this proxy class in exactly the same way that you use any .NET class. For
example:

QUSING «,c',.\LoanService.dll"'

LN«<[INEW LoanService

LN.CalcPayments 100000 20 10 15 2
LoanResult

Notice that, as expected, the result of calcPayments is an object of type LoanResult.
For convenience, we will assign this to LR and then reference its fields:

LR«<LN.CalcPayments 100000 20 10 15 2
LR.Periods
10 11 12 13 14 15 16 17 18 19 20
LR.InterestRates
2 2.533.5444.555,566.577.588.59 9.5 10 10.5 ...
LR.(((pInterestRates),pPeriods)pPayments)
920.1345384% 844 ,5907851 781.6836919 728.4970675 682.947 ...

The Payments field is, of course, a vector because it was defined that way. However, as
can be seen above, it is easy to give it the "right" shape.

When you execute the CalcPayments method in the proxy class, the class transforms
and packages up your arguments into an appropriate SOAP/XML stream and sends
them, using TCP/IP, to the URL that represents the Web Service wherever that URL is on
the internet or your Intranet. It then decodes the SOAP/XML that comes back, and
returns the response as the result of the method.

Note that, depending upon the speed of your connection, and the logical distance away
of the Web Service itself, calling a Web Service method can take a significant amount of
time; regardless of how much time it actually takes to execute on its server.

9.4 Using GolfService from Dyalog APL

The workspace samples\asp.net\webservices\webservices contains functions that
present a GUl interface to the GolfService web service.

2025-10-30 (main:e0843eae32) Page 206

.NET Framework Interface Guide

The GOLF function accesses Gol fService through a proxy class. GOLF is called with an
argument of 0 or 1. Use 1 to force GOLF to create or rebuild the proxy class, which it
does by calling MakeProxy. You must use an argument of 1 the first time you call GOLF,
or if you ever change the GolfService APL code.

Note that you cannot make the proxy for Gol fService unless the Web Server class has
been compiled on the server. At present, the only way to trigger the compilation of
golf.asmx into a Web Service is to visit the page once using Internet Explorer as
described in the previous chapter.

The first few lines of the function are listed below. If the argument is 1, line [2] makes
the proxy class GolfService.DLL in the current directory; if not it is assumed to be
there already. Line [6] defines QUSING to use it, and Line [7] creates a new instance
which is assigned to GS. Line [8] calls the GetCourses method, which returns a vector
of Gol fCourse objects. Notice how namespace reference array expansion is used to
extract the course codes and names from the Code and Name fields respectively.

vV GOLF FORCE;F:;DLL;COURSES;COURSECODES:N;GS;[JUSING

[1] :If FORCEZ#0

[2] DLL«MakeProxy
‘http://localhost/dyalog.net/golf/golf.asmx'

[3] :Else

[u] DLL«'.\GolfService.dll'

[5] :EndIf

[6] [JUSING«'System'(',"',DLL)
[7] GS<+[INEW GolfService
[8] COURSECODES COURSES<«{%1GS.GetCourses.(Code Name)

The following screen shot illustrates the user interface provided by GOLF. In this
example, the user has typed the names of two golfers (one rather more famous than
the other - at least in APL circles) and then presses the Book it! button.

2025-10-30 (main:e0843eae32) Page 207

.NET Framework Interface Guide

B Dyalog APL Tee Reservation Service = O X
Select a Course ISt Andrews Ll
Date&Tme [21/06/2016 ~| [07:0000 =

Player 1 |Rmdemw

Player 2 |Peter Donnelly|

Player 3 I

Player 4 I

v Give me the nearest slot if my chosen time is unavailable

| Book it! I Starting Sheet Cancel

This action fires the 8ook callback function which is shown below.

vV BOOK ; CCODE ; YMD; HOUR :MINUTES: FLAG;NAMES ; BOOKING:M
[1] CCODE<«>F .COURSE.SelItems/COURSECODES
[2] YMD«3+tF .DATE. (IDNToDate-DateTime)
[3] HOUR MINUTES<«2t14F.TIME.DateTime
[4] FLAG«1=F .Nearest.State
[5] NAMES<«F . (Namel Name2 Name3 Namel).Text
[6] BOOKING«+GS.MakeBooking CCODE

(ONEW DateTime (YMD,HOUR MINUTES 0)),FLAG,NAMES

[7] 'M'0OWC'MsgBox '

[8] :If BOOKING.OK

[9] M.Text<«'Tee reserved for
',72y>,/BOOKING.TeeTime.Players, ', '

[10] M.Text,«' at ',BOOKING.Course.Name

[11] M.Text,«' on ',BOOKING.TeeTime.Time.

(TolLongDateString,' at ',ToShortTimeString)
[12] :Else

[13] M.Text«BOOKING. (Course.Name, '"',
TeeTime.Time.(ToLongDateString,
' at ',ToShortTimeString),' ',Message)
[14] tEndIf
[15] [OpbQ'M’
v

2025-10-30 (main:e0843eae32) Page 208

.NET Framework Interface Guide

Line [6] calls the MakeBooking method of the GS object, passing it the data entered by
the user. The result, a Booking object, is assigned to BOOKING. Line [8] checks its ok
field to tell whether or not the reservation was successful. If so, lines [9-11] display the
message box illustrated below.

Notice how the various fields are extracted and notice how the ToLongDateString and
ToShortTime String methods are employed.

Tee reserved for Rory Mcllroy, Peter Donnelly at St Andrews on 21 June 2016 at
07:00

oK

Pressing the Starting Sheet button runs the ss callback listed below.

2025-10-30 (main:e0843eae32) Page 209

[1]
[2]
[3]
(4]
(5]
[é]
(7]

8l
[91]
[10]

[11]
[12]
[13]
[14]

[15]
[16]
[17]

.NET Framework Interface Guide

VvV SS;CCODE;YMD:M;SHEET:OK;COURSE; TEETIME ;S:DATA:N

s TIMES
CCODE<«>F .COURSE .SelItems/COURSECODES
YMD<«3+tF .DATE. (IDNToDate>DateTime)
SHEET«GS.GetStartingSheet CCODE ([DNEW DateTime YMD)
:If SHEET.OK
DATA«t(SHEET.Slots).Players
TIMES«(SHEET.Slots).Time
'S'OWC'Form' ('Starting Sheet for ',
SHEET.Course.Name, ' ',
SHEET.Date.ToLongDateString)
('Coord' 'Pixel')('Size' 400 480)
'S.G'OWC'Grid'DATA(O 0)(S.Size)
S.G.RowTitles«TIMES.ToShortTimeString
S.G.ColTitles«'Player 1' 'Player 2'
'Player 3' 'Player 4'
S.G.TitleWidth«60
goQ's’
:Else
'M'OWC'MsgBox ' ('Starting Sheet for ',
SHEET.Course.Name,' ',
SHEET.Date.ToLongDateString)
('Style' 'Error')
M.Text«SHEET.Message
oQ'M'
:EndIf

Line [3] calls the GetStartingSheet method of the GS object. The result, a
StartingSheet object, is assigned to SHEET. Line [4] checks its OK field to see if the call
succeeded. If so, lines [5-12] display the result in a Grid, which is illustrated below.

g Sheet fo Andre e 2016 [
Player 1 Player 2 Player 3 Player 4 A
07:00 Rory Mcliroy Peter Donnelly
07:10
07:20
07:30
07:40 v

2025-10-30 (main:e0843eae32) Page 210

.NET Framework Interface Guide

9.5 Exploring Web Services

You can use the Workspace Explorer to browse the proxy class associated with a Web
Service, in exactly the same way that you can browse any other .NET Assembly. The
following screen shots show the Metadata for LoanService, loaded from the
LoanService.dll proxy.

Remember, LoanService was written in APLScript, but it appears and behaves just
like any other .NET class.

The first picture displays the structure of the LoanResult class.

B C:\Dyalog15.0\WEBSERVICES.dws Exploring [] = O X
File Edit Options View Tools

BRXQHE | o EEEE das

Workspace Tree

& OsE
i:l Typelibs
Elg MetaData
E|g Loaded Metadata
E]Q LoanService
E]g Modules
E]Q C:\Users\Pete\Desktop\LoanService.dll
E]Q Namespaces
EIQ [Unnamed]
EIQ Classes
Q CalcPaymentsCompletedEventArgs
i-{2) CalcPaymentsCompletedEventHandler
Eg LoanResult
g Base Class
9 Constructors
E)Q Fields
3 Q (Private)interestRatesField : System.Double[]
£ g (Private)paymentsField : System.Double[]
P a (Private)periodsField : System.Int32[]
g Methods
Q Properties
[],,,g LoanService

22 object(s). 62.44Mb free. 112320 bytes used (0 bytes selected) 4

The second picture shows the methods exposed by LoanService. In addition to
CalcPayments, which was written in APLScript, there are a large number of other
methods, which have been inherited from the base class.

2025-10-30 (main:e0843eae32) Page 211

.NET Framework Interface Guide

BN C:\Dyalog15.0\WEBSERVICES.dws Exploring [] = O X
File Edit Options View Tools
EBRXQH o BEEEEA g alsl

'Vorkspace Tree

E]a LoanService N

g Base Class

Q Constructors

g Events

@-) Fields
=-E) Methods

{2} (Private)Boolean CanCastToXmlType(System.String, System.String)
a (Private)Boolean get_CanRaiseEvents()
(Private)Boolean get_CanRaiseEventsInternal()
(Private)Boolean get_DesignMode()
(Private)Boolean IsInstanceOfType(System.Type)
(Private)IntPtr GetComIUnknown(Boolean)
(Private)System.Collections.Hashtable get_AsyncInvokes()
(Private)System.ComponentModel.EventHandlerList get_Events()
(Private)System.IAsyncResult BeginInvoke(System.String, System.Objec
(Private)System.IAsyncResult BeginSend(System.Uri, System.Web.Servic
(Private)System.MarshalByRefObject MemberwiseClone(Boolean)
(Private)System.Net.WebRequest get_PendingSyncRequest()
(Private)System.Net.WebRequest GetWebRequest(System.Uri)
(Private)System.Net.WebResponse EndSend(System.IAsyncResult, System.
(Private)System.Net.WebResponse GetWebResponse(System.Net.WebRequesi
(Private)System.Net.WebResponse GetWebResponse(System.Net.WebRequesi,,

OOOOOOOOOOOOOO

< >
22 object(s). 62.44Mb free. [112320 bytes used (0 bytes selected) Y/

9.6 Asynchronous Use

Web Services provide both synchronous (client calls the function and waits for a result)
and asynchronous operation.

Each method is exposed as a function with the same name (the synchronous version)
together with a pair of functions with that name prefixed with Begin and End
respectively.

The Beginxxx functions take two additional parameters; a delegate class that
represents a callback function and a state parameter.

To initiate the call, you execute the Beginxxx method using the standard parameters
followed by two objects. The first is an object of type System.AsyncCal lback that
represents an asynchronous callback, that is, a callback to be invoked when the
asynchronous call is complete. The second is an object which is used to supply extra
information. We will see how callbacks are used later in this section. If you are not

2025-10-30 (main:e0843eae32) Page 212

.NET Framework Interface Guide

using a callback, these items should be null object references. You can specify a
reference to a null object using the expression (ONS' '). For example, using the
LoanService sample as above:

A<LN.BeginCalcPayments 10000 16 10 12
9(ONS' ") (ONS' ")

The result is an object of type WebClientAsynchResult.

A
System.IAsyncResult [JCLASS System.Web.Services.Protocols.WebClientAsyncR
esult

Then, some time later, you call the Endxxx method with this object as a parameter. For
example:

LN.EndCalcPayments A
LoanResult

You can execute several asynchronous calls in parallel:

Al«<LN.BeginCalcPayments 20000 20 10 15
7(ONS" ") (ONS"' ")
A2<LN.BeginCalcPayments 30000 10 8 12
3(ONS"' ") (ONS' ")

LN.EndCalcPayments Al
LoanResult

LN.EndCalcPayments A2
LoanResult

Using a callback

The simple approach described above is not always practical. If it can take a significant
amount of time for the web service to respond, you may prefer to have the system
notify you, via a callback function, when the result from the method is available.

The example function TestAsyncLoan in the workspace
samples\asp.net\webservices\webservices.dws illustrates how you can do this. It
is somewhat artificial, but hopefully explains the mechanism that is involved.

TestAsyncLoan itself is just a convenience function that calls AsyncLoan with suitable
arguments. TestAsyncLoan takes an argument of 1 or O that determines whether or
not a Proxy class for LoanService is to be built.

2025-10-30 (main:e0843eae32) Page 213

.NET Framework Interface Guide

V TestAsyncLoan MAKEPROXY
[1] (sMAKEPROXY),' AsyncLoan 10000 10 8 5 3'
[2] MAKEPROXY AsyncLoan 10000 10 8 5 3

v

The AsyncLoan function and its callback function GetLoanResult are more interesting.

v {MAKEPROXY}AsyncLoan ARGS;DLL;SINK;LN;AS:AR

[1] :If 2#[NC'MAKEPROXY' ¢ MAKEPROXY<«0 ¢ :EndIf

[2] :If MAKEPROXY

[3] DLL+MakeProxy'http://localhost/dyalog.net/loan/
loan.asmx'

[4] :Else

[5] DLL«'.\LoanService.dll'

[6] tEndIf

[7] OQUSING«'System'(',"',DLL)

[8] LN«[INEW LoanService

[9] AS<[INEW System.AsyncCal lback,<[JOR'GetLoanResult'
[10] AR«<LN.BeginCalcPayments ARGS,AS,LN

[11] "AsyncLoan waits for async call to complete’
[12] :While 0=AR.IsCompleted
[13] Oe'.'
[14] :EndWhile
v
V GetLoanResult arg:;OBJ:LR:RSLT
[1] 'GetLoanResult callback fires ...'
[2] OBJ<«arg.AsyncState
[3] LR«OBJ.EndCalcPayments arg

[u] RSLT«LR.(((pPeriods),(pInterestRates))pPayments)
[5] RSLT«((c"''),LR.Periods),(LR.InterestRates),[1]RSLT
[6] 'Result is'
[7] O«RSLT

\4

The effect of running TestAsyncLoan is as follows:

2025-10-30 (main:e0843eae32)

Page 214

.NET Framework Interface Guide

TestAsynclLoan 0
0 AsynclLoan 10000 10 8 4 3

...AsyncLoan waits for async call to complete...
...GetLoanResult callback fires

...Result is

3 3.5 4
8 117.2957193 105.7694035 96.5607447
9 119.5805173 108.074+1442 98.88586746
121.892753 110.409689 101.2451382

AsyncLoan[8] creates a new instance of the LoanService class called LN. The next line
creates an object of type System.AsyncCal lback named AS. This object, which is
termed a delegate, identifies the callback function that is to be invoked when the
asynchronous call to CalcPayments is complete. In this case, the name of the callback
function is GetLoanResult. Note that [JOR is necessary because the AsyncCal lback
constructor must be called with a parameter of type System.0Object. The line
AsynclLoan[10] calls BeginCalcPayments with the parameters for CalcPayments,
followed by references to AS (which identifies the callback) and LN, which identifies the
object in question. The latter will turn up in the argument supplied to the
GetLoanResult callback. Lines[12-14] loop, displaying dots, until the asynchronous call
is complete. GetLoanResult will be invoked during or immediately after this loop, and
will be executed in a different APL thread.

When the GetLoanResult callback is invoked, its argument arg is an object of type
System.Web.Services.Protocols.WebClientAsyncResult. Itisin fact a reference to
the same object AR that was the result returned by BeginCalcPayments.

This object has an AsyncState property that references the LoanService object LN
that we passed as the final parameter to BeginCalcPayments. GetLoanResult[2]
retrieves this object and assigns it to 0OBJ. GetLoanResult[3] calls the
EndCalcPayments method, passing it arg as the AsyncResult parameter as before.
The resulting LoanResul t object is then formatted and displayed.

2025-10-30 (main:e0843eae32) Page 215

.NET Framework Interface Guide

10 Writing ASP.NET Web pages

10.1 Introduction

Under Microsoft IIS, a static web page is defined by a simple text file with the

extension .htm or .html that contains simple HTML. When a browser requests such a
page, IS simply reads it and sends its content back to the client. The contents of a static
web page are constant and, until somebody changes it, the page appears the same to
all users at all times.

A dynamic web page is represented by a simple text file with the extension .aspx. Such
a file may contain a mixture of (static) HTML, ASP.NET objects and a server-side script.
ASP.NET objects are built-in .NET classes that generate HTML when the page is
processed. Scripts contain functions and subroutines that are invoked by events (such
as the Page_Load event) or by user interaction.

Typically, a script will generate HTML dynamically, when the page is loaded. For
example, a script could perform a database operation and return an HTML table
containing a list of products and prices. A script may also contain code to process user
interaction, for example to process the contents of a Form that is filled in and then
submitted by the user. These scripts are referred to as server-side scripts because they
are executed on the server. The browser sees only the results produced by the scripts
and not the scripts themselves. Code in a server-side script always involves the
generation of a new page by the server for display in the browser.

The first time ASP.NET processes a .NET web page, it compiles the entire page into

a .NET Assembly. Subsequently, it calls the code in the assembly directly. The language
used to compile the page is defined in the <script> section, which is typically defined at
the top of the page. If the <script> section is omitted, or if it fails to explicitly specify
the language attribute, the page is compiled using the default scripting language. This is
configurable, but is typically VB or C#.

This Chapter is made up almost entirely of examples, the source code of which is
supplied in the samples\asp.net directory and the sub-directories it contains. This
directory is mapped as an IS Virtual Directory named dyalog.net, SO you may execute
the examples by specifying the URL http://localhost/dyalog.net/ followed by the
name of the sub-directory and page. You can get an overview of the samples by starting
on the page http://localhost/dyalog.net/index.htm and follow links from there.

2025-10-30 (main:e0843eae32) Page 216

.NET Framework Interface Guide

To use APLScript effectively in Web Pages, you need to have a thorough understanding
of how ASP.NET works.

In the first example, an outline description ASP.NET technology is provided. For further
information, see the Microsoft .NET Framework documentation and Beginning ASP.NET
using VB.NET, Wrox Press Ltd, ISBN 1861005040.

10.2 Your first APL Web Page

The first web page example is tutorial/introt.aspx, which is listed below. This page
displays a button whose text is reversed each time you press it.

Note that the example is intended to be run in the framework of the tutorial and
contains two lines of code (shown in italic) that refer to this framework and should be
ignored.

<%@Register TagPrefix="tutorial" Namespace="Tutorial"
Assembly="tutorial" %>
<script language="Dyalog" runat="server">

VReverse args

:Access public

:Signature Reverse Object,EventArgs
(2args).Text«d(2args).Text

v

</script>

<html>

<body>

<Form runat=server>
<asp:Button id="Pressme"
Text="Press Me"
runat="server"
OnClick="Reverse"
/>

</form>

<tutorial:index runat="server"/>

</body>

</html>

2025-10-30 (main:e0843eae32) Page 217

.NET Framework Interface Guide

In this example, the page language is defined in the <script> section to be "Dyalog".
This in turn is mapped to the APLScript compiler via information in the application's
web.config file or the global IIS configuration file, machine.config.

The page layout is described in the section between the <html> and </html(> tags. This
page contains a Form in which there is a Button labelled (initially) "Press Me"

The Form and Button page elements may appear to be simple HTML, but in fact there is
more to them than meets the eye and they are actually both types of ASP.NET intrinsic
controls.

Firstly, the runat="server" attribute indicates that an HTML element should be parsed
and treated as an HTML server control. Instead of being handled as pure text that is to
be transmitted to the browser "as is", an HTML server control is effectively compiled
into statements that then generate HTML when executed. Furthermore, an HTML
server control can be accessed programmatically by code in the Script, whereas a pure
HTML element cannot. On its own, runat="server" identifies the HTML element as a
so-called basic intrinsic control.

When you add runat="server" to a Form, ASP.NET automatically adds other attributes
that cause the values of its controls to be POSTed back to the same page. In addition,
ASP.NET adds a HIDDEN control to the form and stores state information in it. This
means that when the page is reloaded into the browser the state and contents of some
or all of its controls can be maintained, without the need for you to write additional
code.

The asp: prefix for the Button, identifies the control as a special ASP.NET intrinsic
control. These are fully-fledged .NET Classes in the .NET Namespace
System.Web.UI.WebControls that expose properties corresponding to the standard
attributes that are available for the equivalent HTML element. You manipulate the
control as an object, while it, at runtime, emits HTML that is inserted into the page.

At this point, it is instructive to study what happens when the page is first loaded and
the appearance of the page is illustrated below.

[Attaching an APL functic X

& C | ® localhost/dyalog.net.15.0.unicode.32/tutorial/intro1.aspx w

introl: Your first APL Web Page

Press Me |

2025-10-30 (main:e0843eae32) Page 218

.NET Framework Interface Guide

The HTML that is transmitted to the browser is:

<html>
<body>

<form name="ctrl1" method="post" action="introl.aspx" id="ctrl1">
<input type="hidden" name="__VIEWSTATE"
value="YTB6NTQ30DgOMjcyX19feA==5725bd57" />

<input type="submit" name="Pressme" value="Press Me"
id="Pressme" />
</form>
</body>
</html>

Firstly, notice that, as expected, the contents of the <script> section are not present.
Secondly, because the Form and Button are intrinsic controls, ASP.NET has added
certain attributes to the HTML that were not specified in the source code.

The Button now has the added attribute input type="submit", which means that
pressing the Button causes the contents of the Form to be transmitted back to the
sever.

The Form now has method="post" and action="introtl.aspx" attributes, which
means that, when the Form is submitted, the data is POSTed back to intro1.aspx, the
page that generated the HTML in the first place.

So when the user presses the button, the browser sends back a POST statement, with
the contents of the Form, including the value of the HIDDEN field, requesting the
browser to load introl.aspx.

In the server, ASP.NET reloads the page and processes it again. In fact, because of the
stateless nature of HTTP, the server does not know that it is reprocessing the same
page, except that it is being executed by a POST command with the hidden data
embedded in the Form that it put there the first time around. This is the mechanism by
which ASP.NET remembers the state of a page from one invocation to another.

This time, because a POST back is loading the page, and because the Pressme button
caused the POST, ASP.NET executes the function associated with its onClick attribute,
namely the APLScript function Reverse.

When it is called, the argument supplied to Reverse contains two items. The first of
these is an object that represents the control that generated the onClick event; the
second is an object that represents the event itself. In fact, Reverse and its argument
are very similar to a standard Dyalog callback function.

2025-10-30 (main:e0843eae32) Page 219

.NET Framework Interface Guide

VReverse args

:Access public

:Signature Reverse Object,EventArgs
(oargs).Text«d(>args).Text

v

The code in the Reverse function is simple. The expression (~args) is a namespace
reference (ref) to the Button, and (sargs).Text refers to its Text property whose value is
reversed. Note that Reverse could just as easily refer to the Button by name, and use
Pressme.Text instead.

After pressing the button, the page is redisplayed as shown below:

[Attaching an APL functic X

& C | ® localhost/dyalog.net.15.0.unicode.32/tutorial/intro1.aspx Y|

introl: Your first APL Web Page

| eM sserP |

This time, the HTML generated by introt.aspx is:

<html>
<body>
<form name="ctrl1" method="post" action="introl.aspx" id="ctrl1">
<input type="hidden" name="__VIEWSTATE"
value="YTB6NTQ30DgOMjcyX2Ewe l90ejVEMXhfYTB6X2h6NXoxeF 9hMHph
MHpoe LRLXHhOX2VNIHNzZXJQeF9feF9feHhfeHhfeF9feA==45acf576"
/>

<input type="submit" name="Pressme" value="eM sserP"
id="Pressme" />
</form>
</body>
</html>

Returning to the Reverse function, note that the declaration statements at the top of
the function are essential to make it callable in this context.

2025-10-30 (main:e0843eae32) Page 220

.NET Framework Interface Guide

VReverse args

:Access public

:Signature Reverse Object,EventArgs
(oargs).Text«d(>args).Text

v

Firstly the Reverse function must be declared as a public member of the script. This is
achieved with the statement.

:Access Public

Secondly, the .NET runtime will only call the function if it possesses the correct
signature, which is derived from its parameters and their types.

The required signature for a method connected to an event, such as the OnClick event
of a Button, is that it takes two parameters; the first of which is of type System.Object
and the second is of type System.EventArgs. The Reverse function declares its
parameters with the statements:

:Signature Reverse Object,EventArgs

Note that the parameter declarations do not include the System prefix. This is because
when the script is compiled the names are resolved using the current value of JUSING.
When the APLScript is compiled, the default value for QUSING is automatically defined
to contain System along with most of the other namespaces that will be used when
writing web pages

(Strictly speaking, the first argument is expected to be of type
System.Web.UI.WebControls.Button, but as this type inherits ultimately from
System.Object the function signature is satisfied.)

Note that if the Reverse function is defined with a signature that does not match that
expected signature for the OnClick callback, the function will not be run.

Furthermore, if the function associated with the OnClick statement is not defined as a
public method in the APLScript the page will appear to compile but the Reverse
function will not get executed.

Note that unlike Web Services, there is no requirement for a :Class or :EndClass
statement in the script. This is because a file with an . aspx extension implicitly
generates a class that inherits from System.Web.UI.Page.

2025-10-30 (main:e0843eae32) Page 221

.NET Framework Interface Guide

10.3 The Page_Load Event

Intro3.aspx illustrates how you can dynamically initialise the contents of a Web Page
using the Page_Load event. This example also introduces another type of Web Control,

the DropDownL ist object.

2025-10-30 (main:e0843eae32) Page 222

.NET Framework Interface Guide

<%@Register TagPrefix="tutorial" Namespace="Tutorial"
Assembly="tutorial" %>
<script language="Dyalog" runat="server">

VPage_Load

tAccess Public
list.Items.Add <'Apples'
list.Items.Add <'Oranges'
list.Items.Add <'Bananas'
v

vSelect (obj ev)

tAccess Public

:Signature Select Object obj, EventArgs ev
out.Text<«<'You selected ',list.SelectedItem.Text
v

</script>

<html>

<head>

<title>Initialising the contents of the Page using the Page_Load
method</title>

<link rel="stylesheet" type="text/css" href="apl.css">

</head>

<body>
<h1>intro3: The Page_Load method</h1>
<form runat="server">
<asp:DropDownList id="list" runat="server"/>
<p>
<asp:Label id="out" runat="server" />
</p>
<asp:Button id="btn"

Text="Submit"

runat="server"

OnClick="Select"/>
</form>
<tutorial:index runat="server"/>
</body>
</html>

When an ASP.NET web page is loaded, it generates a Page_Load event. You can use this
event to perform initialisation simply by defining a public function called Page_Load in

2025-10-30 (main:e0843eae32) Page 223

.NET Framework Interface Guide

your APLScript. This function will automatically be called every time the page is
loaded. The Page_Load function should be niladic.

Note that, if the page employs the technique illustrated in Intro1.aspx, whereby the
page is continually POSTed back to itself by user interaction, your Page_Load function
will be run every time the page is loaded and you may not wish to repeat the
initialisation every time. Fortunately, you can distinguish between the initial load, and a
subsequent load caused by the post back, using the IsPostBack property. This
property is inherited from the System.Web.UI.Page class, which is the base class for
any .aspx page.

The Page_Load function in this example checks the value of IsPostBack. If O (the page
is being loaded for the first time) it initialises the contents of the List object, adding 3
items "Apples”, "Oranges" and "Bananas". The explanation for the statement:

list.Items.Add <'..."'

is that the bropDownList WebControl has an Items property that is a collection of
ListItem objects. The collection implements an Add function that takes a String
Argument that can be used to add an item to the list.

Notice that the name of the object List is defined by the id="list" attribute of the
DropDownList control that is defined in the page layout section of the page.

[Initialising the contents = X

& C | ® localhost/dyalog.net.15.0.unicode.32/tutorial/intro3.aspx w

intro3: The Page_Load method

Apples v

| Submit |

In this example, the page is processed by a POST back caused by pressing the Submi t
button. As it stands, changing the selection in the List object does not cause the text
in the out object to be changed; you have to press the submit button first.

2025-10-30 (main:e0843eae32) Page 224

.NET Framework Interface Guide

[Initialising the contents © X

& C | ® localhost/dyalog.net.15.0.unicode.32/tutorial/intro3.aspx Dk e
intro3: The Page_Load method
Bananas v

You selected Bananas

| Submit |

However, you can make this happen automatically by adding the following attributes to
the Llist object (see introk.aspx):

AutoPostback="true"
OnSelectedIndexChanged="Select"/>

AutoPostback causes the object to generate HTML that will provoke a post back
whenever the selection is changed. When it does so, the OnSelectedIndexChanged
event will be generated in the server-side script which in turn will call Select, which in
turn will cause the text in the out object to change.

Note that this technique, which can be used with most of the ASP.NET controls
including CheckBox, RadioButton and TextBox controls, relies on a round trip to the
server every time the value of the control changes. It will not perform well except on a
fast connection to a lightly loaded server.

10.4 Code Behind

It is often desirable to separate the code content of a page completely from the HTML
and other text, layout or graphical information by placing it in a separate file. In
ASP.NET parlance, this technique is known as code behind.

The intro5.aspx example illustrates this technique.

2025-10-30 (main:e0843eae32) Page 225

.NET Framework Interface Guide

<%@Page Language="Dyalog"
Inherits="FruitSelection"
src="fruit.apl" %>
<%@Register TagPrefix="tutorial" Namespace="Tutorial"
Assembly="tutorial" %>
<html>
<head>
<title>Code behind: separating your code from the page layout</title>
<link rel="stylesheet" type="text/css" href="apl.css">
</head>
<body>
<h1>intro5: Code Behind</hi1>
<p>This example illustrates how you can separate your code from the page
layout.</p>
<form runat="server" >
<asp:DropDownList id="list"
runat="server"
autopostback="true"
OnSelectedIndexChanged="Select"/>
<p>
<asp:Label id="out" runat="server" /></p>
</form>
</body>
<tutorial:index runat="server"/>
</html>

The statement
%@Page Language="Dyalog" Inherits="FruitSelection" src="fruit.apl" %>

says that this page, when compiled, should inherit from a class called FruitSelection.
Furthermore, the FruitSelection class is written in the "Dyalog" language, and its
source code resides in afile called fruit.apl. FruitSelection is effectively the base
class for the . aspx page.

In this case, fruit.apl is simply another text file containing the APLScript code and is
shown below.

2025-10-30 (main:e0843eae32) Page 226

.NET Framework Interface Guide

:Class FruitSelection: System.Web.UI.Page
:Using System

VPage_Load

:Access Public

:if 0=IsPostBack
list.Items.Add <'Pears'
list.Items.Add <'Nectarines'
list.Items.Add c'Strawberries’

tendif

v

vSelect args

:Access public

:Signature Select Object,EventArgs
out.Text«'You selected ',list.SelectedItem.Text
v

:EndClass

The first thing to notice is that the file requires :Class and :EndClass statements.
These are required to tell the APLScript compiler the name of the class being defined,
and the name of its base class. When the source code is in a . aspx file, this information
is provided automatically by the APLScript compiler.

The name of the class, in this case FruitSelection, must be the same name as is
referenced in the . aspx web page file itself (intro5.aspx). The base class must be
System.Web.UI.Page

The body of the script is just the same as the script section from the previous example.
Only the names of the fruit have been changed so that it is clear which example is
being executed.

[Code behind: separatinc X

< C | ® localhost/dyalog.net.15.0.unicode.32/tutorial/intro5.aspx w o

intro5: Code Behind

This example illustrates how you can separate your code from
the page layout.

Pears v

2025-10-30 (main:e0843eae32) Page 227

.NET Framework Interface Guide

[Code behind: separatinc X

& C | ® localhost/dyalog.net.15.0.unicode.32/tutorial/intro5.aspx ph e
intro5: Code Behind

This example illustrates how you can separate your code from
the page layout.

Strawberries ¥

You selected Strawberries

10.5 Workspace Behind

The previous section discussed how APL logic can be separated from page layout, by
placing it in a separate APLScript file which is referred to from the .aspx web page. It is
also possible to have the code reside in a separate workspace. This allows you to
develop web pages using a traditional workspace approach, and it is probably the
quickest way to give an HTML front-end to an existing Dyalog APL application.

In the previous example, you saw that the fruit.ap! file defined a new class called
FruitSelection that inherits from System.Web.UI.Page. This class contains a
Page_Load function that (by virtue of its name) overrides the Page_Load method of the
underlying base class and will be called every time the web page is loaded or posted
back. The Page_Load function takes whatever action is required; for example,
initialisation. The class also contained a callback function to perform some action when
the user pressed a button.

A similar technique is employed when the code behind the web page is implemented in
a separate workspace. The workspace should contain a class that inherits from
System.Web.UI.Page. This class may contain a Page_Load function that will be invoked
every time the corresponding web page is loaded, and as many callback functions as
are required to provide the application logic. The workspace is hooked up to one or
more web pages by the Inherits="<classname>" and src="<workspace>"
declarations in the Page directive statement that appears at the beginning of the web
page script.

The ACTFNS subdirectory in samples\asp.net contains some examples of Dyalog APL
systems that have been converted to run as Web applications using this technique.

2025-10-30 (main:e0843eae32) Page 228

.NET Framework Interface Guide

Dyalog is grateful to David Hughes who provided the original workspaces and advised
on their conversion.

The two workspaces are named ACTFNS.DWS and PROJ.DWS. The original code used the
Dyalog APL GUI to display an input Form, collect and validate the user's input, and
calculate and display the results. The original logic supported field level validation and
results were immediately recalculated whenever any field was changed. With some
exceptions, this has been changed so that the user must press a button to tell the
system to recalculate the results. This approach is more appropriate in an Internet
application, especially when connection speed is low. Apart from this change, the
applications run more-or-less as originally designed.

actfns.htm
4
sla_tab.aspx sla_disp.asp proj.aspx
4
proj_x<x.asp
4
ACTFNS.DWS PROJ.DWS

The diagram above illustrates the structure of the web application and the various files
involved. The starting page, actfns.htm, simply provides a menu of choices which link
to various .aspx web pages. These pages in turn are linked to one of the two
workspaces via the src="" declaration

2025-10-30 (main:e0843eae32) Page 229

.NET Framework Interface Guide

[Dyalog.NET Actuarial Ex= X

& C ‘ @® localhost/dyalog.net.15.0.unicode.32/actfns/actfns.htm ¥¥ ‘ :

Dyalog.NET Actuarial Examples

Tabulate single life assurance and annuity values
Display single life assurance and annuity values
Projected Value Quotations

Copyright © 2001 D.G. Hughes

The actfns.htm start page offers 3 application choices

2025-10-30 (main:e0843eae32) Page 230

.NET Framework Interface Guide

[ACTFNS Example

& C | ® localhost/dyalog.net.15.0.unicode.32/actfns/sla_tab.aspx

Single Life Assurance and Annuity Values

Mortality Table A1967-70(2)select ¥

Mortality Tables Interest Rate 3.25

® UK Assured Lives Initial Age 30
UK Immediate Annuitant Endowment Term [10
UK Pension Annuitant

Initial Duration 0

Back | Calculate |

Table Format @® Age x, durs t-t+10 © Ages x - x+10, dur t

At At Apyptnt Apxjtnt
237359 0252864 8.6708 0.252864
234851 0260758 7.9236 0260758
232292 0268313 71527 0268813
229677 0277045 6.3571 0.277045
226984 0.285521 55353 0.285521
224214 0.294243 46864 0.294243
221365 0.303210 3.8095 0.303210
218439 0.312420 29035 0.312420
215436 0321872 19674 0321872
212357 0.331565 1.0000 0.331565
209202 0.341494 0.0000 0341494

o|la|Nv|jwla|lo|o|~]w|o

The result of choosing Tabulate single life insurance and annuity values

When you choose the first option, the system loads sla_tab.aspx. This defines the
screen layout in terms of ASP.NET controls, including the DataGrid control for
tabulating the results. The sla_tab.aspx script contains the declarations
Inherits="actuarial" src="actfns.dws", so ASP.NET loads the actuarial class
from this workspace (via a call to Dyalog APL). When the page is loaded, it generates a
Page_Load event, which in turn calls its Page_Load method. This populates the ASP
controls with data, and the resulting web page is displayed. The mechanism is
described below.

For further details, see the sla_tab.aspx script and ACTFNS.DWS workspace.

2025-10-30 (main:e0843eae32) Page 231

.NET Framework Interface Guide

Converting an Existing Workspace

The steps involved in converting the workspaces were as follows:

1. Replace the Dyalog APL GUI with the equivalent HTML Forms, which are defined
in one or more separate . aspx web pages. To retain consistency, it is helpful to
give the ASP controls the same names as the original GUI controls, which they
are replacing.

2. Attach the names of APL callback functions to the appropriate ASP controls;
essentially, any controls that will be involved in a postback operation, such as the
Submit button.

3. Starting with a CLEAR WS, create a Class that represents a .NET class based
upon System.Web.UI.Page. For example, in converting the ACTFNS workspace,
we started by creating the class:

)JED oactuarial
4. then defining DUSING as follows:

:Using System

:Using System.Web.UI,system.web.dll
:Using System.Web.UI.WebControls
:Using System.Web.UI.HtmlControls
:Using System.Data,system.data.dl!l

The name you choose for this class will replace classname in the
Inherits="classname" declaration in the .aspx web page(s) that call it.

5. Create a namespace, change into it, and copy the workspace to be converted; in
this case, the starting point was a workspace named DH_ACTFNS:

JNS actuarial_utils

)CS actuarial_utils
#.actuarial_utils

)COPY DH_ACTFNS
DH_ACTFNS saved ...

6. Modify the code as appropriate, inserting a Page_Load function and whatever
callback functions that are required.

7. Make sure the class 'actuarial' has an :Include actuarial_utils statement

2025-10-30 (main:e0843eae32) Page 232

.NET Framework Interface Guide

The Page_Load function

The Page_Load function must be declared as :Access Public. Page_Load must be spelled
correctly as it is this name that causes the function to supersede the base class
Page_Load method of the same name.

For example, the Page_Load function of the actuarial class in ACTFNS.DWS is shown
below:

V Page_Load:;INT;AGE:;DUR;TERM: TAB_DURS:;MPC1:INT1:INT2;
INTY;RUN_OPTION;OPT
:Access public
:Signature Page_Load
A Overrides Page_Load method of Page class
A Called when Page is loaded or re-loaded after postback
A Initialise fields and calculate on initial load only
:If 0=IsPostBack
RUN_OPTION«GET_RUN_OPTION
:Select RUN_OPTION
:Case 1
EINT.Text«sINT«3.25
EAGE.Text«sAGE«30
EDUR.Text«sDUR«O
ETRM.Text«sTERM«10
TA.Checked«TAB_DURS<«1
CHANGE_TABLES &
:Case 2
CPLAN.Items.Clear
:For OPT :In ¢>0PTSPLAN
CPLAN.Items.Add{82¢e[DR lpw:cw ¢ w}DETRAIL OPT
:EndFor
EMPC1.Text«sMPC1+«100
EINT1.Text«sINT1«3.25
EINT2.Text«sINT2«3.25
EINTY.Text«sINTY«99
EAGE.Text«sAGE«30
EDUR.Text«sDUR<«0O
ETRM.Text«'N/A’
CHANGE_TABLES &
:EndSelect
:EndIf

2025-10-30 (main:e0843eae32) Page 233

.NET Framework Interface Guide

If exported correctly, Page_Load will be called every time the calling web page is
loaded. This occurs when the page is loaded for the first time, and whenever the page
is submitted back to the web server by the browser (postback). A postback will occur
whenever a callback function is involved, and potentially at other times.

The Page_Load function may determine whether it is being invoked by a first time load,
or by a postback, from the value of the IsPostBack property. This is a property that it
inherits from its base class System.Web.UI.Page.

The Page_Load example shown above uses this property to control the initialisation of
the controls in the calling web page. The names EINT, EAGE, EDUR and so forth refer to
names of controls in the calling web page. When Page_Load is executed, the
actuarial object is associated with the web page itself, and so the names of all its
controls are visible as sub-objects within it.

Note that the actuarial class is used by two different web pages, and the function
GET_RUN_OPTION function determines which of these are involved. (It does so by
detecting the presence or otherwise of a particular control on the page).

Callback functions

The actuarial class in ACTFNS.DWS provides four callback functions named
CALC_FSLTAB_RESULTS, CALC_FSL_RESULTS, CHANGE_TABLES and
CHANGE_TABLE_FORMAT. The first two of these functions are attached as callbacks to the
Calculate button in each of two separate web pages sla_tab.aspx and
sla_disp.aspx. For example, the statement that defines the buttonin sla_tab.aspx
is:

<asp:Button id=Buttonl runat="server" Text="Calculate"
onClick="CALC_FSLTAB_RESULTS"></asp:Button>

The third callback, CHANGE_TABLES, is called by sla_tab.aspx when the user selects a
different set of Mortality Tables from the three provided. CHANGE_TABLE_FORMAT is
called when the user clicks either of the two radio buttons that select how the output is
to be displayed.

Like the Page_Load function, callback functions must be declared as being Public
methods. This is done using the :Access statement.

In addition, and this is essential, APL callback functions must be declared to have the
correct signature expected of .NET callback functions. This means that they must be
monadic, and their argument must be declared to be a 2-element nested array

2025-10-30 (main:e0843eae32) Page 234

.NET Framework Interface Guide

containing two .NET objects; the object that generated the event, and an object that
represents the arguments to the event.

Specifically, these parameters must be of type System.0Object and System.EventArgs
respectively. However, as our JUSING contains System, it is not necessary to include the
System prefix.

For example, the statements for the function CALC_FSLTAB_RESULTS is shown below:

:Access Public
:Signature CALC_FSLTAB_RESULTS Object obj, EventArgs ev

Validation functions

In a Dyalog APL web page application, there are basically two approaches to validation.
You can handle it entirely yourself or you can exploit the various validation controls that
come with ASP.NET. The sample application uses the latter approach by way of
illustration. For example:

<asp:TextBox id=EINT runat="server"></asp:TextBox>
<asp:RequiredFieldValidator id="RFVINT"
ControlToValidate="EINT"
ErrorMessage="Interest Rate must be a number
between 0 and 20"
Text="x"

runat="server"/></td>

These ASP.NET statements associate a RequiredFieldValidator named RFVINT with
the EINT field, the field used to enter Interest Rate. If the user leaves this field blank,
the system will automatically generate the specified error message. The page defines a
separate ValidationSummary control as follows:

<asp:ValidationSummary id="Summaryl"
HeaderText="Please enter a value in the following fields"
Font-Size="smal ler"
ShowSummary="false"
ShowMessageBox="true"
EnableClientScript="true"
runat="server"/>

The validationSummary control collects error messages from all the other validation
controls on the page, and displays them together. In this case, a pop-up message box is
used. One advantage of this approach is that this type of validation can be carried out

2025-10-30 (main:e0843eae32) Page 235

.NET Framework Interface Guide

client-side by local JavaScript that is generated automatically on the server and
incorporated in the HTML that is sent to the browser.

Logical field validation for this page is carried out on the server by APL functions that
are attached to CustomValidator controls. For example:

<asp:CustomValidator id="CustomValidator_INT"
OnServerValidate="VALIDATE_INT"
ControlToValidate="EINT"
Display="Dynamic"
ErrorMessage="Interest Rate must be a number between 0 and 20"
runat="server"/>

These ASP.NET statements associate a CustomValidator control named
CustomValidator_INT with the Interest Rate field EINT. The statement
OnServerValidate="VALIDATE_INT" specifies that VALIDATE_INT is the validation
function for the CustomValidator_INT object.

The VALIDATE_INT function and its .NET Properties page are shown below.

V VALIDATE_INT MSG;source;args
[1] A Validates Interest Rate

[2] :Access Public

[3] :Signature VALIDATE_INT Object source,
ServerValidateEventArgs args

[4] source args<+MSG

[5] :Trap O

[6] INT«Convert.ToDouble args.Value

[7] :Else

[8] args.IsValid<«0

[9] :Return

[10] :EndTrap
[11] args.IsValid«(0<INT)A20>INT
v

To make the VALIDATE_INT function available to the calling web page, it is exported as
a method. Its calling signature, namely that it takes two parameters of type
System.Object and System.Web.UI.WebControls.ServerValidateEventArgs
respectively, identifies it as a validation function. All these factors are essential in
making it recognizable and callable.

VALIDATE_INT[4] assigns its (2-element) argument to source and args respectively.
Both are namespace references to .NET objects. source is the object that fired the
event (CustomValidator_INT). args is an object that represents the event. Its Value

2025-10-30 (main:e0843eae32) Page 236

.NET Framework Interface Guide

property returns the text in the control being validated, in this case the control named
EINT1.

VALIDATE_INT[6] converts the text in the EINT control to a number, using the
ToDouble method of the System.Convert class. You could of course use OVFI, but the
Convert methods automatically cater for National Language numerical formats. This
statement is executed within a : Trap control structure because the method will
generate a .NET exception if the data in the field is not a valid number.

VALIDATE_INT[8 11] setthe Isvalid property of the ServervalidateEventArgs
object args to 0 or 1 accordingly. This also sets the Isvalid property of the validation
control represented by source. The system will automatically display the error message
associated with any validation control whose IsValid property is 0. Furthermore, the
page itself has an Isvalid property, which is the logical-and of all the Isvalid
properties of all the validation controls on the page. This is used later by the calculation
function CALC_FSLTAB_VALUES.

In this case, the validation function stores the numeric value of the control in a variable
INT, which will subsequently be used by the calculation functions.

When the page is posted back to the server, ASP.NET executes its own built-in
validation controls and then calls the functions associated with the Customvalidator
controls, in the order they are defined on the page. In addition to the VALIDATE_INT
function, there are eight other custom validation functions. Three of these, which
validate the Initial Age, Endowment Term and Initial Duration fields, are listed below.
Note that all of the VALIDATE _xxx functions have the same .NET signature as
VALIDATE_INT.

V VALIDATE_AGE MSG:source;args

[1] A Validates Age
[2] :Access Public
[3] :Signature VALIDATE_AGE Object source,

ServerValidateEventArgs args
[4] source args<«MSG

[5] :Trap 0

[6] AGE«<Convert.ToInt32 args.Value
[7] :Else

[8] args.IsValid<«0

[9] :Return

[10] :EndTrap
[11] args.IsValid«(10<AGE)~80>AGE

2025-10-30 (main:e0843eae32) Page 237

.NET Framework Interface Guide

VALIDATE_AGE is similar to VALIDATE_INT, except that, because it expects an integer
value, it uses the ToInt32 method instead of the TobDoub le method.

VALIDATE_TERM, which validates the Endowment Term field, is slightly more interesting
because there are two levels of checking involved. The first check that the user has
entered an integer number, is performed by lines [10-15] in the same way as in the
previous examples, using the ToInt32 method of the System.Convert class within a

: Trap control structure. However, validation of the Endowment Term field depends
upon the value of another field, namely Initial Age.

Not only must the user enter an integer, but also its value must be between 10 and (90-
AGE) where AGE is the value in the Initial Age field. However, if the user has entered an
incorrect value in the Initial Age field, this, the second level of validation cannot be
performed.

V VALIDATE_TERM MSG:source:args

[1] A Validates Endowment Term
[2] :Access Public
[3] :Signature VALIDATE_TERM Object source,
ServerValidateEventArgs args
[4] source args+MSG
[5] :If A/(RFVAGE CustomValidator_AGE).IsValid
[6] source.ErrorMessage<«'Endowment Term must
be an integer between 10 and ', (3s90-AGE),
' (90-Age)'
[7] tElse
[8] source.ErrorMessage<«'Endowment Term must
be an integer between 10 and (90-Age)'
[9] :EndIf
[10] :Trap O
[11] TERM«Convert.ToInt32 args.Value
[12] :Else
[13] args.IsValid<«0
[14] :Return

[15] :EndTrap

[16] :If A/(RFVAGE CustomValidator_AGE).IsValid
[17] args.IsValid«(TERM>10)ATERM<90-AGE
[18] :EndIf

2025-10-30 (main:e0843eae32) Page 238

.NET Framework Interface Guide

At this stage it is worth reviewing the sequence of events that occurs when a user
action in the browser causes a postback to the server.

1. The page, including all the contents of its fields, is sent back to the ASP.NET
server using an http POST command.

2. The postback causes the creation of a new instance of the page; which is
represented by a new clone of the actuarial namespace.

3. The creation of a new page instance raises the Page_Load event which in turn
invokes the Page_Load method associated with the Page class, or an override
method is one is specified. In this case, it calls our Page_Load function in the
newly cloned instance of the actuarial namespace. The Page_Load function
typically deals with initialisation, such as opening a component file or
establishing a connection to a data source. In this case, it does nothing on a
postback.

4. Because the Calculate button was pressed (see Forcing Validation), each of the
CustomValidator controls on the page raises an OnServerValidate event,
which in turn calls the associated function in the current instance of the page.
These events occur in the order the controls are defined within the page. Note
that built-in validation controls, including any RequiredfieldValidator
controls, are invoked first, potentially in the browser prior to the postback.

5. Because the Calculate button was pressed (see Forcing Validation), each of the
CustomValidator controls on the page raises an OnServerValidate event,
which in turn calls the associated function in the current instance of the page.
These events occur in the order the controls are defined within the page. Note
that built-in validation controls, including any RequiredFieldValidator
controls, are invoked first, potentially in the browser prior to the postback.

6. The control that caused the postback raises an appropriate event, which in turn
fires the associated callback function.

7. After all the control events have been raised and processed the Page_UnLoad
event is raised and the associated function (if any) is invoked. This function is a
good place to implement termination code, such as closing a component file or
data source.

8. The instance of the page is destroyed. Any global variables in the namespace
that were defined by the Page_Load function, the validation functions and the
callback function are lost because the clone of the actuarial namespace
disappears.

This means that within the life of the cloned instance of the actuarial namespace, the
system runs our Page_Load function followed by VALIDATE_INT, followed by
VALIDATE_AGE, VALIDATE_TERM, VALIDATE_DUR etc. and finally by
CALC_FSLTAB_RESULTS. These functions take their input from the values passed in their
arguments (as in the case of the VALIDATE_xxx functions) or from the properties of any

2025-10-30 (main:e0843eae32) Page 239

.NET Framework Interface Guide

of the controls on the Page. They perform output by modifying these properties, or by
invoking standard methods on the Page.

Notice that, if successful, the VALIDATE_INT function set up a global variable (strictly
speaking, only global within the current instance of the actuarial namespace) called
INT that contains the value in the Interest Rate field. Similarly, VALIDATE_AGE defines a
variable called AGE. These variables are subsequently available for use by the
calculation function.

This technique, of having each validation function define a variable for its associated
field, saves repeating the conversion work in the calculation routine
CALC_FSLTAB_RESULTS that will be called when the validation is complete. It also saves
repeating the conversion work in a validation routine that needs to know the value of a
previously validated field.

Returning to the explanation of VALIDATE_TERM, line [16] checks to see that both the
RequiredFieldValidator and CustomValidator controls for the Initial Age field
register that the value in the field is valid, before attempting to perform the second
stage of the validation which depends upon AGE. Note that AGE must exist (and be a
reasonable value) if CustomValidator_AGE.IsValid istrue. Notice too that it is
insufficient just to check the customValidator control, because its validation function
will not be invoked (and the control will register that the field is valid) if the field is
empty.

Line [5] uses similar logic to set up an appropriate error message, which is assigned to
the ErrorMessage property of the corresponding Customvalidator control,
represented by source.

VALIDATE_DUR, which validates the Initial Duration field, uses similar logic to check that
the value in the Endowment Term field is correct and that TERM, on which it depends, is
therefore defined. In addition, in line [8] it refers to the Checked property of the
RadioButton controls named TA and TB respectively.

2025-10-30 (main:e0843eae32) Page 240

[1]
(2]
[3]

(4]
(5]
[é]
[7]
(8]
[9]
[10]

[11]

[12]
[13]

[14]
[15]
[16]
(17]
(18]
[19]
[20]
[21]
[22]
(23]

.NET Framework Interface Guide

vV VALIDATE_DUR MSG:source:;args;DT

A Validates Initial Duration
:Access Public
:Signature VALIDATE_DUR Object source,
ServerValidateEventArgs args
source args«MSG
:If 2=GET_RUN_OPTION
DT«1

:Else

DT«+/10 1x(TA TB).Checked

:EndIf
:If ~/(RFVTRM CustomValidator_TERM).IsValid

source.ErrorMessage«'Initial Duration must be an
integer between 0 and ', (sTERM-DT),
" (TERM-"',(sDT), ")’

tElse

source.ErrorMessage«'Initial Duration must be an
integer between 0 and (Term-',(sDT),")

:EndIf
:Trap O

DUR«Convert.ToInt32 args.Value

:Else

args.IsValid<«0
:Return

:EndTrap
:If ~/(RFVTRM CustomValidator_TERM).IsValid

args.IsValid«(0<DUR)ADUR<TERM-DT

:EndIf

Forcing Validation

Validation controls are automatically invoked when the user activates a Button control,
but not when other postbacks occur. For example, when the user selects a different
Mortality Table (represented by a RadioButtonList control), the page calls the
CHANGE_TABLES function.

2025-10-30 (main:e0843eae32) Page 241

<asp:

<asp:

<asp:

<asp:

.NET Framework Interface Guide

RadioButtonList id=MT runat="server"
RepeatDirection="Vertical" RepeatRows="3" tabIndex=1
onSelectedIndexChanged="CHANGE_TABLES"
AutoPostBack="true">

ListItem Value="UK Assured Lives">

Selected="True">UK Assured Lives</asp:ListItem>
ListItem Value="UK Immediate Annuitant">

UK Immediate Annuitant</asp:ListItem>

ListItem Value="UK Pension Annuitant">

UK Pension Annuitant</asp:ListItem>

</asp:RadioButtonList>

ARadioButtonList control does not cause validation to occur, so this must be done
explicitly. This is easily achieved by calling the validate method of the Page itself as
shown in CHANGE_TABLES[11] below.

[1]
[2]
[3]
(4]
[5]

(6]

(7]

(8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]

V CHANGE_TABLES ARGS:TableNames:TableName;OPTSMORT:
MORT_OPTION;:RUN_OPTION
:Access public
:Signature CHANGE_TABLES Object obj, EventArgs ev
RUN_OPTION«GET_RUN_OPTION
MORT_OPTION«1+MT.SelectedIndex
OPTSMORT«MORT_OPTION->OPTSMORT_ASS OPTSMORT_ANNI
OPTSMORT_ANNP
TableNames«>0PTSMORT A Assured lives/term
assurance tables

TableNames<{ (2=[DJNC 0 143>0PTSMORT)#TableNames
TableNames<«TableNames~""' '
CMTAB.Items.Clear
:For TableName :In TableNames

CMTAB.Items.Add TableName
:EndFor
Page.Validate A Force page validation
:Select RUN_OPTION
:Case 1

CALC_FSLTAB_RESULTS &
:Case 2

CALC_FSL_RESULTS &
:EndSelect

2025-10-30 (main:e0843eae32) Page 242

.NET Framework Interface Guide

Calculating and Displaying Results

The function CALC_FSLTAB_RESULTS, which for brevity is only partially shown below, is
used by the sla_tab.aspx page to calculate and display results.

V CALC_FSLTAB_RESULTS ARGS;X:ULT:;MORTOPT;QTAB:TABLE:
TAB_DURS :RUN_OPTION:;MORT_OPTION:;UNIX:DOS;:
CURRENTDATE ; CURRENTTIME ;OPTSMORT : TABLES:MSG:data

[1] :If IsValid A Is page valid ?
[6] MORT_OPTION<«1+MT.SelectedIndex
[7] OPTSMORT«MORT_OPTION-OPTSMORT_ASS

OPTSMORT_ANNI
OPTSMORT_ANNP

[8]

[9] TABLES<«{3>0PTSMORT

[10] MORTOPT<«(pTABLES)p0

[11] MORTOPT[1+CMTAB.SelectedIndex]«1

[12] TABLE«>MORTOPT/TABLES

[15] TAB_DURS<«TA.Checked

[41] FSLT«((pX)p(3 0)(3 0)(3 0)(11 4)(11 6)(12 4)
(11 6)(8 0))s X

[42] FSLT«FSLT~"" '

[43] :With data<[INEW DataTable

[44] cols«Columns.Add e ##.FSL_HEADER

[45] {

[46] row<NewRow &

[u47] row.ItemArray<«w

[48] Rows.Add row

[49] YoI##OFSLT

[50] :EndWith

[51] fsl.DataSource«[INEW DataView data

[52] fsl.DataBind

[53] fsl.Visible«l

[54] :Else

[55] fsl.Visible<«0

[56] :EndIf

v

The results of the calculation are displayed in a DataGrid object named fs . This is
defined within the sla_tab.aspx page as follows:

2025-10-30 (main:e0843eae32) Page 243

.NET Framework Interface Guide

<asp:DataGrid id="fsl" runat="server" Width="700"
AllowPaging="false" BorderColor="black" CellPadding="3"
CellSpacing="0" Font-Size="9pt" PageSize="10">
<ItemStyle HorizontalAlign="right" Width="100">
</ItemStyle>
<HeaderStyle HorizontalAlign="center"
Font-Size="12pt" Font-Bold="true" BackColor="#17748A"
ForeColor="#FFFFFF"></HeaderStyle>
</asp:DataGrid>

CALC_FSLTAB_RESULTS[1] checks to see if the user input is valid. If not, [55] hides the
DataGrid object fsl so that no results are displayed in the page. The display of error
messages is handled separately, and automatically, by the validationSummary control
on the page.

CALC_FSLTAB[11 15] obtain the values of the CMTAB (DropDownList) and TA
(RadioButton) controls on the page.

CALC_FSLTAB[43-53] store the calculated data table FSLT in the DataGrid fsl.

2025-10-30 (main:e0843eae32) Page 244

.NET Framework Interface Guide

11 Writing Custom Controls for
ASP.NET

11.1 Introduction

The previous chapter showed how you can build ASP.NET Web Pages by combining APL
code with the Web Controls provided in the .NET Namespace
System.Web.UI.WebControls. These controls are in fact just ordinary .NET classes. In
particular, they are extensible components that can be used to develop more complex
controls that encapsulate additional functionality.

This chapter describes how you can go about building custom server-side controls, for
deployment in ASP.NET Web Pages.

A custom control is simply a .NET class that inherits from the Control class in the .NET
Namespace System.Web.UI, or inherits from a higher class that is itself based upon the
Control class. Like any other .NET class, a custom control is implemented in an
assembly, physically as a DLL file. This chapter explores three different ways to
implement a custom control.

The Control class provides a Render method whose job is to generate the HTML that
defines appearance of the control. The first example, the SimpleCt | control, overrides
the Render method to display a simple string "Hello World" in the browser.

The TemperatureConverterCtl1 control is an example of a compositional control, that
is, one that is composed of other standard controls packaged with special functionality.
The TemperatureConverterCt 2 control, uses the basic approach of the SimpleCtl
control, but provides the same functionality as TemperatureConverterctl1. The
TemperatureConverterCt 3 control illustrates how to generate events for the hosting
page to catch and process.

These examples, which are based upon a series of articles called Advanced ASP.NET
Server-Side Controls by George Shepherd that appeared in the msdn magazine
(October 2000, January 2001 and March 2001 issues), are implemented as Dyalog
classes in a namespace called DyalogSamples in the workspace
samples\asp.net\temp\bin\temp.dws. The corresponding .NET Assembly
samples\asp.net\temp\bin\temp.dll was generated from this workspace.

2025-10-30 (main:e0843eae32) Page 245

.NET Framework Interface Guide

JLOAD "C:\Program Files (x86)\Dyalog\Dyalog APL 15.0
Unicode\Samples\asp.net\temp\bin\temp.dws"

C:\Program Files (x86)\Dyalog\Dyalog APL 15.0
Unicode\Samples\asp.net\temp\bin\temp.dws saved Tue Nov 22 15:04:11 2016

)OBS
DyalogSamples

)CS DyalogSamples
#.DyalogSamples

JCLASSES
SimpleCtl TemperatureConverterCtl1
TemperatureConverterCtl2 TemperatureConverterCtl3

11.2 The SimpleCtl Control

The simplect! Class is illustrated below:

:Class SimpleCtl: Control

:Access public

:Using System

:Using System.Collections.Specialized,System.dll
:Using System.Web,System.Web.dl!l

:Using System.Web.UI

:Using System.Web.UI.WebControls

:Using System.Web.UI.HtmlControls

vV Render output:HTML
:Access public override
:Signature Render HtmlTextWriter output
HTML<«'<h3>Hello World</h3>'
output .WriteLinecHTML
v

:EndClass A SimpleCtl

The Render function supercedes (see Programming: Access) the Render method that
SimpleCtl has inherited from its base class, System.Web.UI.Control.

The Render method defined by the System.Web.UI.Control base classis void and
takes a parameter of type Html TextWriter. When the SimpleCt | control is referenced
in a Web Page, ASP.NET creates an instance of it and calls its Render method because it
isa Control and is expected to have one. Moreover, ASP.NET supplies an object of type
HtmlTextWriter as its parameter. You do not need to worry where this object came

2025-10-30 (main:e0843eae32) Page 246

.NET Framework Interface Guide

from, or what it actually represents. You need only know that an Html TextWriter
provides a method called WriteL ine that may be used to output a text string to the
browser. The mechanics of how this actually happens are handled by the
HtmlTextWriter object itself.

In APL terms, the argument to our Render function, output, will be a namespace
reference, and the function can simply call its Writel ine method with a character
vector argument. This argument can contain any valid HTML string and defines the
appearance of the SimplecCt L control.

Using the :Signature statement, the Render function is defined to have the same
syntax as the method it overrides, that is, it does not return a result void and takes a
single parameter of type Htm(lTextWriter. Note that to successfully replace the base
class method, the Render function must have exactly this :Signature.

Using SimpleCtl

Our SimplecCtl control may now be included in any .NET Web Page from which
temp.dL L is accessible. The file samples\asp.net\temp\Simple.aspx is simply an
example. The fact that this control is written in Dyalog is immaterial.

<%@ Register TagPrefix="Dyalog"
Namespace="DyalogSamples" Assembly="temp" %>

<html>
<body>
<Dyalog:SimpleCtl runat=server/>
</body>
</html>

The first line of the script specifies that any controls referenced later in the script that
are prefixed by Dyalog:, refer to custom controls in the .NET Namespace called
DyalogSamples which is located in the Assembly temp.dll in the bin subdirectory.

[localhost/dyalog.net.15.0 X

= C | ® localhost/dyalog.net.15.0.unicode.32

Hello World

2025-10-30 (main:e0843eae32) Page 247

.NET Framework Interface Guide

11.3 The TemperatureConverterCtl1 Control

The TemperatureConvertercCtl1 control is an example of a compositional control, that
is, a server-side custom control that is composed of other standard controls.

In this example, The TemperatureConvertercCt 1 control gathers together two
textboxes and two push buttons into a single component as illustrated below. Type a
number into the Centigrade box, click the Centigrade To Fahrenheit button, and the
control converts accordingly. If you click the Fahrenheit To Centigrade button, the
reverse conversion is performed.

[localhost/dyalog.net.15.0 X

< C | ® localhost/dyalog.net.15.0.unicode.32/temp/templ.aspx ¥

Temperature Control

Fahrenheit: 86
Centigrade: 30

' Fahrenheit To Centigrade | Centigrade To Fahrenheit |

The TemperatureConvertercCt 1 control contains other standard controls as child
controls. A control that acts as a container must implement an interface called
INamingContainer.

This interface does not in fact require any methods; it merely acts as a marker. So the
:Class statement specifies that it provides this interface:

:Class TemperatureConverterCtll: Control,
System.Web.UI.INamingContainer

2025-10-30 (main:e0843eae32) Page 248

.NET Framework Interface Guide

Child Controls

Whenever ASP.NET initialises a Control, it calls its CreateChi ldControls method. The
default CreatecChildControls method does nothing). So we simply define a function
called createChildControls with the appropriate public interface (no arguments and
no result) as shown below.

V CreateChildControls

[1] :Access Public override

[2] :Signature CreateChildControls

[3]

[4] Controls.Add [ONEW LiteralControl,cc'<h3>Fahrenheit: '
[5] m_FahrenheitTextBox«[JNEW TextBox

[6] m_FahrenheitTextBox.Text«,'0’

[7] Controls.Add m_FahrenheitTextBox

[8] Controls.Add [ONEW LiteralControl,cc'</h3>"

[9]

[10] Controls.Add [ONEW LiteralControl,cc'<h3>Centigrade: '
[11] m_CentigradeTextBox«[JNEW TextBox

[12] m_CentigradeTextBox.Text«,'0’

[13] Controls.Add m_CentigradeTextBox

[14] Controls.Add [ONEW LiteralControl,cc'</h3>"

[15]

[16] F2CButton<«[INEW Button

[17] F2CButton.Text«'Fahrenheit To Centigrade'
[18] F2CButton.onClick<[JOR'F2CConvertBtn_Click'
[19] Controls.Add F2CButton

[20]

[21] C2FButton<«[INEW Button

[22] C2FButton.Text«'Centigrade To Fahrenheit'
[23] C2FButton.onClick«[JOR'C2FConvertBtn_Click"'
[24] Controls.Add C2FButton

v

Line[4] creates an instance of a LiteralControl (alabel) containing the text
"Fahrenheit" with an HTML tag "<h3>". Controls is a property of the Control class
(from which TemperatureConverterct L1 inherits) that returns a ControlCollection
object This has an Add method whose job is to add the specified control to the list of
child controls managed by the object.

Lines[5-6] create a TextBox child control containing the text "0", and Line[7] adds it to
the child control list.

Line[8] adds a second LiteralControl to terminate the "<h3>" tag.

2025-10-30 (main:e0843eae32) Page 249

.NET Framework Interface Guide

Lines [10-14] do the same for Centigrade.

Lines[16-17] create a But ton control labelled "Fahrenheit To Centigrade". Line[18]
associates the callback function F2CConvertBtn_CLlick with the button's onClick
event. Note that it is necessary to assign the OOR of the function rather than its name.
Line[19] adds the button to the list of child controls.

Lines[21-24] create a Centigrade button in the same way.

This function is run every time the page is loaded; however in a postback situation,
other code steps in to modify the values in the textboxes, as we shall see.

Fahrenheit and Centigrade Values

The TemperatureConverterCtl1 maintains two public properties named
CentigradeValue and FahrenheitValue, which may be accessed by a client
application. These properties are not exposed directly as variables, but are obtained
and set via property get (or accessor) and property set (or mutator) functions. (This is
recommended practice for C#, so the example shows how it is done in APL). In this
case, the values are simply stored in or obtained directly from the corresponding
textboxes set up by CreateChildControls.

:Property CentigradeValue
vV C«get
:Access Public
:Signature Double<«get_CentigradeValue
C<2m_CentigradeTextBox.Text
v

VvV set C
:Access Public
:Signature set_CentigradeValue Double Value
m_CentigradeTextBox.Text«sC.NewValue
v
:EndProperty a CentigradeValue

Notice that the Get function uses ¢ to convert the text in the textbox to a numeric
value. Clearly something more robust would be called for in a real application

Similar functions to handle the Fahrenheit property are provided but are not shown
here.

2025-10-30 (main:e0843eae32) Page 250

.NET Framework Interface Guide

Responding to Button presses

We have seen how APL callback functions have been attached to the onClick events in
the two buttons. The C2FconvertBtn_click callback function simply obtains the
CentigradeValue property, converts it to Fahrenheit using c2F, and then sets the
FahrenheitValue property.

VvV C2FConvertBtn_Click args
:Access Public
:Signature C2FConvertBtn_Click Object,EventArgs
FahrenheitValue<«C2F CentigradeValue

v

vV f«C2F c
[1] f«32+cx1.8

V F2CConvertBtn_Click args
:Access Public
:Signature F2CConvertBtn_Click Object ,EventArgs
CentigradeValue«F2C FahrenheitValue

v
vV c«<F2C f

[1] c«(f-32)+1.8
v

The F2CconvertBtn_Click callback function converts from Fahrenheit to Centigrade.
Note that the functions c2F and F2c are internal functions that are private to the
control, and it is therefore not necessary to define public interfaces for them.

Using the Control on the Page

The text of the script file samples\temp\temp!.aspx is shown below. There is really no
difference between this example and the simple.aspx described earlier.

2025-10-30 (main:e0843eae32) Page 251

.NET Framework Interface Guide

<%@ Register TagPrefix="Dyalog" Namespace="DyalogSamples"
Assembly="TEMP"%>

<html>

<body bgcolor="yellow">

<center>

<h2>Temperature Control</h2>

<form runat=server>

<Dyalog:TemperatureConverterCtll id=TempCvtCtll runat=server/>
</form>

</center>

</body>

</html>

The HTML generated by the control at run-time is shown below. Notice that in place of
the server-side control declaration in temp?. aspx, there are two edit controls with
numerical values in them, and two push buttons to submit data entered on the form to
the server.

<html>

<body bgcolor="yellow">

<center>

<h2>Temperature Control</h2>

<form name="ctrl1" method="post" action="templ.aspx" id="ctrli1">
<input type="hidden" name="__VIEWSTATE" value="YTB6MTc3MzAxNzYxNF9fX3g=0
3f01d488" />

<h2>Fahrenheit: <input name="TempCvtCtlil:ctrll" type="text" value="32" /
></h2><h2>Centigrade: <input name="TempCvtCtli:ctrli4" type="text"
value="0" /></h2><input type="submit" name="TempCvtCtli:ctrl6" value="Fa
hrenheit To Centigrade" /><input type="submit" name="TempCvtCtlil:ctrl7"
value="Centigrade To Fahrenheit" />

</form>

</center>

</body>
</html>

2025-10-30 (main:e0843eae32) Page 252

.NET Framework Interface Guide

11.4 The TemperatureConverterCti2 Control

The previous example showed how to compose an ASP.NET custom control from other
standard controls. This example shows how you can instead generate standard form
elements on the browser by rendering the HTML for them directly.

In the composite temperature control TemperatureConvertercCtl1, discussed
previously, all the data transfers between the browser and the server, relating to the
standard child controls that it contains, are handled automatically by the controls
themselves. Rendered controls require a bit more programming because it is up to the
control developer to do the data transfer. The data transfer is managed through two
interfaces, namely IPostBackDataHandler and IPostBackEventHandler. We will see
how these interfaces are used later.

The :Class statement for TemperatureConvertercCt (2 specifies that it provides these
interfaces.

:Class TemperatureConverterCtl2: Control,
System.Web.UI.IPostBackDataHandler,
System.Web.UI.IPostBackEventHandler

Fahrenheit and Centigrade Values

Like the previous TemperatureConvertercCt 1 control, the
TemperatureConverterCtl2 maintains two public properties named
CentigradeValue and FahrenheitValue using property get and property set
functions.

This time, the control manages the current temperature values in two internal variables
named _CentigradeValue and _FahrenheitValue, which we must initialise.

_CentigradeValue<«0
_FahrenheitValue<«0

The CentigradeValue's get function simply returns the current value of
_CentigradeValue. Its .NET Properties are defined as shown so that it is exported as a
property get function for the CentigradeValue property, and returns a Doub Le.

V C«get
tAccess Public
:Signature Double<«get
C«_CentigradeValue

v

2025-10-30 (main:e0843eae32) Page 253

.NET Framework Interface Guide

The CentigradeValue's set function simply resets the value of _CentigradeValue to
that of its argument. Its .NET Properties are defined as shown so that it is exported as a
property set function for the CentigradeValue property, and takes a Doub Le.

vV set C

:Access Public

:Signature set Double Value
_CentigradeValue«C.NewValue
v

The property get and property set functions for the FahrenheitValue property are
similarly defined. The .signatures for these functions are similar to those for the
CentigradeValue functions and are not shown.

Rendering the Control
Like the simpleCt | example described earlier in this Chapter, the

TemperatureConverterCtl2 control has a Render function that generates the HTML to
represent its appearance, and in this case its behaviour too.

2025-10-30 (main:e0843eae32) Page 254

[1]

(2]

[3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
(28]
[29]
[30]

v

v

.NET Framework Interface Guide

Render output:C:;F;BF;CF
:Access Public override
:Signature Render HtmlTextWriter output

F«'<h3>Fahrenheit <input name='
F,«UniqueID

F,«' id=FahrenheitValue type=text value='
F,«s_FahrenheitValue

F,«'></h3>'

output.WritecF

C«'<h3>Centigrade <input name='

C,«UniquelD

C,«' id=CentigradeValueKey type=text value='
C,«3_CentigradeValue

C,«'></h3>"'

output .WritecC

BF«'<input type=button value=FahrenheitToCentigrade '

BF,«' onClick="jscript:"'

BF ,«Page.GetPostBackEventReference [OTHIS'FahrenheitToCentigrade'
BF,«'">'

output.WritecBF

CF«'<input type=button value=CentigradeTofFahrenheit '

CF,«' onClick="jscript:'

CF,«Page.GetPostBackEventReference [JTHIS'CentigradeToFahrenheit'
CF,«"">"'

output.WritecCF

output.WriteLineoc” '
' '
'

As we saw in the SimpleCt | example, the Render method will be called by ASP.NET
with a parameter that represents an Html TextWr i ter object. This is represented by the
APL local name output.

Lines[4-9] and lines [11-16] generate HTML that defines two text boxes in which the
user may enter the Fahrenheit and centigrade values respectively. Lines[9&16] use the
Write method of the Html TextWriter object to output the HTML.

Lines[5&12] obtain the fully qualified identifier for this particular instance of the
TemperatureConverterCtl2 control from its UniqueID property. This is a property,

2025-10-30 (main:e0843eae32) Page 255

.NET Framework Interface Guide

which it inherits from Control and is therefore also a property of the current (APL)
namespace.

Lines[18-22] and Lines[24-28] generate and output the HTML to represent the two
buttons that convert from Fahrenheit to Centigrade and from Centigrade to Fahrenheit
respectively.

Lines[19-20] and [25-26]generate HTML that wires the buttons up to JavaScript
handlers to be executed by the browser. The JavaScript simply causes the browser to
execute a postback, that is, send the page contents back to the server.
GetPostBackEventReference is a (shared) method provided by the
System.Web.UI.Page class that generates a reference to a client-side script function. In
this case it is called with two parameters, an object that represents the current
instance of the TemperatureConverterCtl2 control, and a string that will be passed to
the server to indicate the cause of the postback (that is, which button was pressed).
The first parameter is a reference to the current object, which is returned by the system
function OTHIS.

The client-side script is itself generated, and inserted into the HTML stream
automatically.

To help to understand this process fully, it is instructive to examine the HTML that is
generated by these functions. We will do this a bit later in the Chapter.

Loading the Posted Data

Once the server-side control has rendered the HTML for the browser, the user is free to
type numbers into the text boxes and to press the buttons.

When the user presses a button, the browser runs the client-side JavaScript code that
in turn generates a postback to the server.

The :Class statement for TemperatureConvertercCt (2 specifies that it supports the
IPostBackDataHandler interface. This interface must be implemented by controls that
want to receive postback data (that is, the contents of Form fields that the user may
have entered or changed) IpostBackDataHandler has two methods LoadPostData
and RaisePostDataChangedEvent. LoadPostData is automatically invoked when a
postback occurs, and the postback data is supplied as a parameter.

So when the postback occurs, the server reloads the original page and, because this is a
postback situation and our control has advertised the fact that it implements
IPostBackDataHandler, ASP.NET invokes its LoadPostBack method. This method is
called with two parameters. The first is a key and the second is a collection of name/

2025-10-30 (main:e0843eae32) Page 256

.NET Framework Interface Guide

value pairs. This contains the names of all the Form fields on the page (and there may
be others not directly associated with our custom control) and the values they had
when the user pressed the button. The key provides the means to extract the relevant
part of this collection. The LoadPostData function is shown below.

V R«LoadPostData args;:;postDataKey:values:controlValues:new

[1] :Signature Boolean«IPostBackDataHandler.LoadPostData String postD
ataKey,NameValueCollection values
[2] postDataKey values<«args
[3] controlValues+values[cpostDataKey]
[4] new+ParseControlValues controlValues
[5] R«v/new=_FahrenheitValue _CentigradeValue
[6] _FahrenheitValue _CentigradeValue<«new
v

Line[2] obtains the two parameters from the argument and Line[3] uses the key to
extract the appropriate data from the collection. ControlValues is a comma-delimited
string containing name/value pairs. The function ParseControlValues simply extracts
the values from this string, that is, the contents of the Fahrenheit and Centigrade text
boxes.

Postback Events

The result of LoadPostData is Boolean and indicates whether or not any of the values
in a control have changed. If the result is True (1), ASP.NET will next call the
RaisePostDataChanged method. This method is called with no parameters and merely
signals that something has changed. The control knows what has changed by
comparing the old with the new, as in LoadPostData[5].

Finally, the page framework calls the RaisePostBackEvent method, passing it a string
that identifies the page element that caused the post back.

The objective of these calls is to provide the control with the information it requires to
synchronise its internal state with its appearance in the browser.

In this case, we are not interested in which of the two text box values the user has
altered; what matters is which of the two buttons FarenheitToCentigrade or
CentigradeToFarenheit was pressed. Therefore, in this case, the control uses
RaisePostBackEvent rather than RaisePostDataChanged (or indeed, LoadPostData
itself, which is another option). The reason is that RaisePostBackEvent receives the
name of the button as its argument.

2025-10-30 (main:e0843eae32) Page 257

.NET Framework Interface Guide

So in our case, the RaisePostDataChanged function does nothing. Nevertheless, it is
essential that the function is provided and essential that it supports the correct public
interface, namely that it takes no arguments are returns no result (Void).

V RaisePostDataChangedEvent
[1] :Access public
[2] :Signature RaisePostDataChangedEvent
[3] na Do nothing

v

The RaisePostBackEvent function simply switches on its argument, which is the name
of the button that the user pressed, and recalculates _CentigradeValue or
_FahrenheitValue accordingly.

V RaisePostBackEvent eventArgument

[1] :Access public
[2] :Signature RaisePostBackEvent String eventArg
[3] :Select eventArgument
[4] :Case 'FahrenheitToCentigrade'
[5] _CentigradeValue«F2C _FahrenheitValue
[6] :Case 'CentigradeToFahrenheit’
[7] _FahrenheitValue«C2F _CentigradeValue
[8] :EndSelect
v

Finally, the page framework calls the OnPreRender and Render functions again, which
generate new HTML for the browser.

Using the Control on a Page

So long as it has access to this DLL, our custom control may be accessed from any
ASP.NET Web Page, and a simple example is shown below.

2025-10-30 (main:e0843eae32) Page 258

.NET Framework Interface Guide

<%@ Register TagPrefix="Dyalog" Namespace="DyalogSamples"
Assembly="TEMP" %>

<html>

<body bgcolor="yellow">

<center>

<h2>
Temperature Control</h3>

<h3>
Server-Side Noncompositional control</hk>

<form runat=server>
<Dyalog:TemperatureConverterCtl2 id=TempCvtCtl2
runat=server/>

</form>

</center>
</body>
</html>

The HTML that is generated by the control is illustrated below. Notice the presence of a
JavaScript function named __doPostBack. This is generated by the
RegisterPostBackScript method called from the OnPreRender function. The code
that wires the buttons to this function was generated by the
GetPostBackEventReference method called from the Render function.

2025-10-30 (main:e0843eae32) Page 259

.NET Framework Interface Guide

<html>

<body bgcolor="yellow">

<center>

<h2>Temperature Control</h2>
<ht>Server-Side Noncompositional
control</hk>

<form name="ctrl1" method="post" action="temp2.aspx" id="ctrl1">

<input type="hidden" name="__EVENTTARGET" value="" />

<input type="hidden" name="__EVENTARGUMENT" value="" />

<input type="hidden" name="__VIEWSTATE" value="YTB6MTc3MzAxNzYxM19fX3g=9
cfcfabc" />

<script language="javascript">
<l-=
function __doPostBack(eventTarget, eventArgument) {
var theform = document.ctrl1l
theform.__EVENTTARGET.value = eventTarget
theform.__EVENTARGUMENT.value = eventArgument
theform.submit ()
}
J) ==
</script>

<h2>Fahrenheit <input name=TempCvtCtl2 id=FahrenheitValue type=text valu
e=0></h2><h2>Centigrade <input name=TempCvtCtl2 id=CentigradeValueKey ty
pe=text value=0></h2><input type=button value=FahrenheitToCentigrade on
Click="jscript:__doPostBack('TempCvtCtl2', 'FahrenheitToCentigrade')"><in
put type=button value=CentigradeToFahrenheit onClick="jscript:__doPostB
ack('TempCvtCtl2', 'CentigradeToFahrenheit')">

</form>
</center>

</body>
</html>

2025-10-30 (main:e0843eae32) Page 260

.NET Framework Interface Guide

[localhost/dyalog.net.15.0 X

& C | ® localhost/dyalog.net.15.0.unicode.32/temp/templ.aspx ¥

Temperature Control

Fahrenheit: 86
Centigrade: 30

| Fahrenheit To Centigrade] Centigrade To Fahrenheit |

11.5 The TemperatureConverterCti3 Control

In the previous examples, events generated by control have been internal events, that
is, events that have been detected and processed internally by the control itself.

A separate requirement is to be able to design a custom control that generates external
events, that is, events that can be detected and handled by the page that is hosting the
control. This example illustrates how to do this.

The TemperatureConverterCtl3 namespace is a copy of TemperatureConverterCtl2 with
a couple of changes.

The first change is that it describes an event that the control is going to generate. This
is done using ONQ inside TemperatureConverterCtI3 like this:

2 ONQ "' 'SetEventInfo' 'Export'
(('Double' 'Fahrenheit')
('Double' 'Centigrade'))

In this case, the name of the event is Export and it will report two parameters named
Fahrenheit and Centigrade which are both of data type Doub Le.

2025-10-30 (main:e0843eae32) Page 261

.NET Framework Interface Guide

This version of the control presents a slightly different appearance to the previous one.
The control itself is wrapped up in an HTML Table, with the conversion buttons
arranged in a column. These buttons generate internal events that are caught and
handled by the control itself. The third row of the table contains an additional button
labelled Export which will generate the Export event when pressed. The Render
function is shown below.

vV Render output:;TableRow;HTML;SET

[1] :Access public override

[2] :Signature Render HtmlTextWriter output

[3] TableRow<«{

[4] HTML«'<tr><td>',a,"'</td><td><input name=',UniquelD
[5] HTML,«' id=',a, 'Value type=text '

[6] HTML,«'value=", (sw), '></td>"'

[7] HTML,«'<td><input type=button value=Convert'

[8] HTML,«' onClick="jscript:'

[9] HTML,«(Page.GetPostBackEventReference [THIS a),"'"></td></tr>"
[10] HTML

(111}

[12]

[13] HTML<""'
[14] HTML«'<table>"'
[15] HTML,<«'Fahrenheit'TableRow _FahrenheitValue
[16] HTML,«'Centigrade'TableRow _CentigradeValue
[17]
[18] SET«'<tr><td><input type=button value=Export
[19] SET,«' onClick="jscript:'
[20] SET,«Page.GetPostBackEventReference [JTHIS'Export'
[21] SET,«'"></td></tr>"'
[22] HTML,«SET, '</table>'
[23] output.WritecHTML

v

Notice that Render[18] causes the Export button to generate a Postback event which
will call RaisePostBackEvent with the argument 'Export'. Up to now, this is just an
internal event just like the events generated by the conversion buttons.

The RaisePostBackEvent propagates this event to the host page.

2025-10-30 (main:e0843eae32) Page 262

.NET Framework Interface Guide

V RaisePostBackEvent eventArgument

[1] :Signature IPostBackEventHandler.RaisePostBackEvent String eventA
rg
[2] :Select eventArgument
[3] :Case 'Fahrenheit'
[u] _CentigradeValue<«F2C _FahrenheitValue
[5] :Case 'Centigrade'’
[6] _FahrenheitValue«C2F _CentigradeValue
[7] :Case 'Export'
[8] 4 ONQ'' 'Export'_FahrenheitValue _CentigradeValue
[9] :EndSelect
v

This is simply done by the third : Case statement, so that when the function is invoked
with the argument 'Export ', it fires an Export event. This is done by line [8] using
ONQ. The elements of the right argument are:

Specifies that the event is generated by this instance of

[1] the control

[2]]| 'Export’ The name of the event to be generated

[3]|_FahrenheitValue | The value of the first parameter, Fahrenheit

[4]]|_CentigradeValue | The value of the second parameter, Centigrade

It is then up to the page that is hosting the control to respond to the event in whatever
way it deems appropriate.

Hosting the Control on a Page

The following example illustrates an ASP.NET web page that hosts the
TemperatureConverterCtl3 custom control and responds to its Export event. The page
uses a section of the page. It simply sets the Text property of two Label controls to
display the parameters reported by the event.

The picture below illustrates what happens when you run the page. Notice that the
user can independently convert values between the two temperature scales and export
these values from the control, to the host page, by pressing the Export button.

2025-10-30 (main:e0843eae32) Page 263

.NET Framework Interface Guide

[localhost/dyalog.net.15.0 X

& c ‘ @ localhost/dyalog.net.15.0.unicode.32/temp/temp3.aspx ¥ ‘ :

Fahrenheit]212 H Convert |
Centigrade [100 H Convert |

Export

Temperature Control

Generating Events

Exported values are:

Fahrenheit: 212
Centigrade: 100

2025-10-30 (main:e0843eae32)

Page 264

.NET Framework Interface Guide

12 Implementation Details

12.1 Introduction

The Dyalog DLL is the Dyalog APL engine that hosts the execution of all .NET classes
that have been written in Dyalog APL, including APL Web Pages and APL Web Services.
The Dyalog DLL provides the interface between client applications (such as ASP.NET)
and your APL code. It receives calls from client applications, and executes the
appropriate APL code. It also works the other way, providing the interface between
your APL code and any .NET classes that you may call.

The Development DLL (the full developer version of the Dyalog DLL) contains the APL
Session, Editor, Tracer and so forth, and may be used to develop and debug an APL .NET
class while it is executing. Note that to gain access to the various workspace tools, such
as the Workspace Explorer and the Search/Replace Dialog, the corresponding DyaRes
DLL must be present alongside (in the same directory as) the Development DLL.

The Run-Time DLL (the re-distributable run-time version of the Dyalog DLL) contains no
debugging facilities.

For the names of these files corresponding to the version of Dyalog that you are using,
see Installation/Configuration: Files And Directories.

12.2 Isolation Mode

For each application which uses a class written in Dyalog APL, at least one copy of the
development or run-time version of the Dyalog DLL will be started in order to host and
execute the appropriate APL code. Each of these engines will have an APL workspace
associated with it, and this workspace will contain classes and instances of these
classes. The number of engines (and associated workspaces) which are started will
depend on the Isolation Mode which was selected when the APL assemblies used by
the application were generated. Isolation modes are:

e Each host process has a single workspace
e Each appdomain has its own workspace
e Each assembly has its own workspace

2025-10-30 (main:e0843eae32) Page 265

.NET Framework Interface Guide

Note that, in this context, Microsoft Internet Information Services (l1S) is a single
process, even though it may be hosting a large number of different web pages. Each
ASP.NET application will be running in a separate AppDomain, a mechanism used

by .NET to provide isolation within an application. Other .NET applications may also be
divided into different AppDomains.

In other words, if you use the first option, ALL classes and instances used by any 1IS web
page will be hosted in the same workspace and share a single copy of the interpreter.
The second option will start a new Dyalog engine for each ASP.NET application; the final
option an engine for each assembly containing APL classes.

12.3 Workspace Size

By default, there is no limit placed upon the size of the workspace used by the Dyalog
DLL and it will grow (and shrink) according to user demand.

The maximum workspace size may be specified by the maxws parameter that is used to
control the workspace size in the development and run-time versions of the Dyalog
program. The difference is that the maxws parameter must be specified for the host
application, the application in which the Dyalog DLL is embedded.

This is achieved by defining a Registry key named:

HKLM\Sof tware\Dyalog\Embedded\<appname>

or on 64-bit Windows:
HKLM\Software\Wow6432Node\Dyalog\Embedded\<appname>

where <appname> is the name of the application, containing a String Value named
maxws set to the desired size.

The name of the ASP.NET application is aspnet_wp.exe or w3wp.exe ((IIS 6 and above).

An additional way is to set the maxws parameter on the command line of the Assembly
at export time. That might be be useful if you know that you are only using one Dyalog
assembly or the IsolationMode is "Each Assembly". For more information, see Section
12.2.

12.4 Structure of the Active Workspace

Each engine which is started has a workspace associated with it that contains all the
APL objects it is currently hosting.

2025-10-30 (main:e0843eae32) Page 266

.NET Framework Interface Guide

Unless the highest isolation mode, Each assembly has its own workspace has been
selected, the workspace will contain one or more namespaces associated with .NET
AppDomains. When .NET calls Dyalog APL to process an APL class, it specifies the
AppDomain in which it is to be executed. To maintain AppDomain isolation and scope,
Dyalog APL associates each different AppDomain with a namespace whose name is that
of the AppDomain, prefixed by AppDomain_.

Within each AppDomain_ namespace, there will be one or more namespaces associated
with the different Assemblies from which the APL classes have been loaded. These
namespaces are named by the Assembly name prefixed by Assemb Ly_. If the APL class
is a Web Page or a Web Service, the corresponding Assembly is created dynamically
when the page is first loaded. In this case, the name of the Assembly itself is
manufactured by .NET. Below the Assembly_ namespace is a namespace that
corresponds to the .NET Namespace that represents the container of your class. If the
APL class is a Web Page or Web Service, this namespace is called AsP. Finally, the
namespace tree ends with a namespace that represents the APL class. This will have
the same name as the class. In the case of a Web Page or Web Service, this is the name
of the .aspx or .asmx file.

Note that in the manufactured namespace names, characters that would be invalid
symbols in a namespace name are replaced by underscores.

The following picture shows the namespace tree that exists in the Dyalog DLL
workspace when the first example (see Section 6.4) in the chapter Writing .Net Classes
is executed under Visual Studio. However, to cause the suspension, an error has been
introduced in the method IndexGen.

In this case, there is a single AppDomain involved whose name, DyApp_vshost_exe is
specified by .NET. APL has made a corresponding namespace called
AppDomain_DyApp_vshost_exe. Next, there is a namespace associated with the
Assembly aplclasses, named Assembly_aplclasses. Beneath this is a namespace
called APLClasses associated with the .NET Namespace of the same name. Finally,
there is the APL Class called Primitives .

2025-10-30 (main:e0843eae32) Page 267

.NET Framework Interface Guide

® aplclasses - Dyalog APL/W = m} X
File Edit View Windows Session Log Action Options Tools Threads Help
lws D) 5 08 & & |[obiect B BB V B IS HTool Q@ e HEdit (B 0 o ||Session (5 [TEEIGERE || 16
Language Bar x| ﬁ
[CEREEC) (ML FEEPRER MR REERN (el [N LRl (FF-LF DoEE&E | w
aplclasses Exploring [# AppDomain_DyApp_vshost_exe Assembly_aplclasses. APLClasses] Zlalx|
ERXQHF o EEEE A a s
Workspace Tree Contents of #.AppDomain_DyApp_vshost_exe.Assembly_aplclasses.AP
Bl # Name Location I Type I Description
: E‘D AppDomain_DyApp_vshost_exe EPrimitives #.AppDomai... Class BaseType:System
=] Assembly_aplclasses
E-(] APLClasses
] B Primitives
(& OSE
] Typelibs
sﬁ'l MetaData < >
1 object(s). 766.7Mb free. ‘5523 bytes used (0 bytes selected)
Dyalog APL/W Version 15.0.27982 A
Serial No : 000042
Unicode Edition
Tue Dec 13 14%:29:24% 2016
1:SYNTAX ERROR
IndexGen[3] o
A
)SI
[#.AppDomain_DyApp_vshost_exe.Assembly_aplclasses.APLClasses.[Primitives]] #.AppDomain_DyApp_vshost_e
IndexGen[3]*
- MainClass.Main[]
System.AppDomain._nExecuteAssembly[]
System.AppDomain.ExecuteAssembly[]
Microsoft.VisualStudio.HostingProcess.HostProc.RunUsersAssembly[]
System.Threading.ThreadHelper.ThreadStart_Context[]
System.Threading.ExecutionContext.RunInternal[]
System.Threading.ExecutionContext.Run[]
System.Threading.ExecutionContext.Run[]
- System.Threading.ThreadHelper.ThreadStart[]
&1 (system thread:8752) v
< >
Debugger ~=lolx|
Tid:1 I ﬂ IndexGen[3]%e
o
STUM D> P DPE XN A R
-0 #. AppDomain_D :Class Primitives ~
-3 [Methods] Using System
VR+~IndexGen N =
:access public 5
signature Int32[]+~IndexGen Int32 =
&
RN =
v VS =
< > & S
oo, k=]
‘ Class Pos: 5/9,0 %) w
J [Ready. . Ins |NUM
|[curobj: [e:2 [OpQ:0 [OTRAP [OSI:0 [OTO:1 [OML:1

Notice that the state indicator displays the entire .NET calling structure, and not just
the APL stack. In this case, the state indicator shows that IndexGen was called from

MainClass.Main, which combines the class and method names specified in aplfns.cs.
Note that .NET calls are slightly indented.

Notice too that IndexGen has been started on APL thread 1 which, in this case, is
associated with system thread 8752. If the client application were to call IndexGen on

2025-10-30 (main:e0843eae32)

Page 268

.NET Framework Interface Guide

multiple system threads, this would be reflected by multiple APL threads in the
workspace. This topic is discussed in further detail below.

The possibility for the client to execute code in several instances of an object at the
same time requires that each executing instance is separated from all the others. Each
instance will be created as an unnamed object in the workspace, within the relevant
appdomain and assembly namespaces.

The picture below shows the workspace structure when the assembly was generated
with isolation mode set to Each assembly has its own workspace. In this case, the
AppDomain and Assembly structure is not created above the classes in the workspace,
so the workspace structure is somewhat simpler:

2025-10-30 (main:e0843eae32) Page 269

.NET Framework Interface Guide

® aplclasses - Dyalog APL/W = [m] X
File Edit View Windows Session Log Action Options Tools Threads Help

jws D eS8 & & ||obiect B B 55 V B IR || Tool Q[b1 M ||Edt Ba (B o o || Session (5 [TEEAGERE || 16—

Language Bar x| ﬁ
(LI eel'T2) (I PR VAR [0y (el [NA [Llelelel] [FF-I-¢ bheE&
aplclasses Exploring [# APLClasses] Zlalx|
EBXQHE o HEEE a8l
Workspace Tree Contents of #.APLClasses (Global Scope)
B # | Name | Location | Type | Description
| BE-({3APLClasses EPrimitives #.APLClasses Class BaseType:System
H A primitives
(& OSE
3 Typelibs
&iﬂ MetaData < >
1 object(s). 958.7Mb free. ‘5528 bytes used (0 bytes selected)
Serial No : 000042 A

Unicode Edition

Mon Dec 19 14:18:07 2016

1:SYNTAX ERROR

IndexGen[3] o

A
)SI

[#.APLClasses.[Primitives]] #.APLClasses.Primitives.IndexGen[3]*
MzinClass.Main[]
System.AppDomain._nExecuteAssembly[]
System.AppDomain.ExecuteAssembly[]
Microsoft.VisualStudio.HostingProcess.HostProc.RunUsersAssembly[]
System.Threading.ThreadHelper.ThreadStart_Context[]
System.Threading.ExecutionContext.RunInternal[]
System.Threading.ExecutionContext.Run[]
System.Threading.ExecutionContext.Run[]

- System.Threading.ThreadHelper.ThreadStart[]

&1 (system thread:9768)

Debugg ~=lBlx|
Tid:1 I X|IndexGen[3]%e

= |
STUMD P PEXN " g b

vR+IndexGen N A
access public
signature Int32[]+~IndexGen Int32

=B #.APLClasses. [[0]
2%t [Methods]

R+1N

5
=
[5] v he]
EndClass A Primitives =
v x
S .
< > o) 2
o k=]
Class Pos: 5/9,0 w w
| ‘Ready. . Ins |NUM
|[curobj: 2:2 [OpQ:0 [OTRAP [OSI:0 |0IO:1 |OML:1

12.5 Threading

The .NET Framework is inherently a multi-threaded environment. For example, ASP.NET
runs its own thread pool from which it allocates system threads to its clients. Calls from
ASP.NET into APL Web Pages and Web Services will typically be made from different
system threads. This means that APL will receive calls from .NET while it is processing a
previous call. The situation is further complicated when you write an APL Web Page
that calls an APL Web Service, both of which may be hosted by a single Dyalog DLL
inside ASP.NET. In these circumstances, ASP.NET may well allocate different system

2025-10-30 (main:e0843eae32) Page 270

.NET Framework Interface Guide

threads to the .NET calls, which are made into the two separate APL objects. Although
in the first example (multiple clients) APL could theoretically impose its own queuing
mechanism for incoming calls, it cannot do so in the second case without causing a
deadlock situation.

It is important to remember that whether running as DYALOG.EXE, or as the Dyalog
DLL, the Dyalog interpreter executes in a single system thread. However, APL does
provide the ability to run several APL threads at the same time. If you are unfamiliar
with APL threads, see Language Reference, Chapter 1 for an introduction to this topic.

To resolve this situation, Dyalog automatically allocates APL threads to .NET system
threads and maintains a thread synchronisation table so that calls on the same system
thread are routed to the same APL thread, and vice versa. This is important because a
GUI object (cf. System.Winforms) is owned by the system thread that created it and
can only be accessed by that thread.

The way that system threads are allocated to APL threads differs between the case
where APL is running as the primary executable (DYALOG.EXE) or as a DLL hosted by
another program. The latter is actually the simpler of the two and will be considered
first.

DYALOG DLL Threading

In this case, all calls into the Dyalog DLL are initiated by Microsoft .NET.

When a .NET system thread first needs to run an APL function, APL starts a new APL
thread for it, and executes the function in that APL thread. For example, if the first call
is a request to create a new instance of an APL .NET object, its constructor function will
be run in APL thread 1. An entry is made in the internal thread table that associates the
originating system thread with APL thread 1. When the constructor function
terminates, the APL thread is retained so that it is available for a subsequent call on its
associated system thread. In this respect, the automatically created APL thread differs
from an APL thread that was created using the spawn operator & (See Language
Reference).

When a subsequent call comes in, APL locates the originating system thread in its
internal thread table, and runs the appropriate APL function in the corresponding APL
thread. Once again, when the function terminates, the APL thread is retained for future
use. If a call comes in on a new system thread, a new APL thread is created.

Notice that under normal circumstances, APL thread 0O is never used in the Dyalog DLL.
It is only ever used if, during debugging, the APL programmer explicitly changes to
thread 0 by executing)TID 0 and then runs an expression.

2025-10-30 (main:e0843eae32) Page 271

.NET Framework Interface Guide

Periodically, APL checks the existence of all of the system threads in the internal thread
table, and removes those entries that are no longer running. This prevents the situation
arising that all APL threads are in use.

DYALOG.EXE Threading

In these cases, all calls to Microsoft .NET are initiated by Dyalog. However, these calls
may well result in calls being made back from .NET into APL.

When you make a .NET call from APL thread 0, the .NET call is run on the same system
thread that is running APL itself.

When you make a .NET call from any other APL thread, the .NET call is runon a
different system thread. Once again, the correspondence between the APL thread
number and the associated system thread is maintained (for the duration of the APL
thread) so that there are no thread/GUI ownership problems. Furthermore, APL
callbacks invoked by .NET calls back into APL will automatically be routed to the
appropriate APL thread. Notice that, unlike a call to a DLL via ONA, there is no way to
control whether or not the system uses a different system thread for a .NET call. It will
always do so if called from an APL thread other than APL thread 0.

Thread Switching

Dyalog will potentially thread switch, that is, switch execution from one APL thread to
another, at the start of any line of APL code. In addition, Dyalog will potentially thread
switch when a .NET method is called or when a .NET property is referenced or assigned
avalue. If the .NET call accesses a relatively slow device, such as a disk or the internet,
this feature can improve overall throughput by allowing other APL code while a .NET
call is waiting. On a multi-processor computer, APL may truly execute in parallel with
the .NET code.

Note that when running DYALOG.EXE, .NET calls made from APL thread 0 will prevent
any switching between APL threads. This is because the .NET code is being executed in
the same system thread as APL itself. If you want to use APL multi-threading in
conjunction with .NET calls, it is therefore advisable to perform all of the .NET calls
from threads other than APL thread 0.

12.6 Debugging an APL.NET Class

All DYALOG.NET objects are executed by the Dyalog DLL. The full development version
of the Dyalog DLL contains all of the development and debug facilities of the APL
Session, including the Editors and Tracer. The run-time version contains no debugging

2025-10-30 (main:e0843eae32) Page 272

.NET Framework Interface Guide

facilities at all. The choice of which version of the Dyalog DLL is used is made when the
assembly is exported from APL using the File| Export menu, or compiled using
dyalogc.exe.

If an APL .NET object that is bound to the full development version generates an
untrapped APL error (such as a VALUE ERROR) and the client application is configured
so that it is allowed to interact with the desktop, the APL code will suspend and the APL
Session window will be displayed. Otherwise, it will throw an exception.

If an APL .NET object that is bound to the run-time version of the Dyalog DLL generates
an untrapped APL error it will throw an exception.

Specifying the DLL

There are a number of different ways that you choose to which of the two versions of
the Dyalog DLL your DYALOG.NET class will be bound. Note that the appropriate DLL
must be available when the class is subsequently invoked. If the DLL to which the
APL .NET class is bound is not present, it will throw an exception.

If you build a .NET class from a workspace using the File/Export menu item, you use the
Runtime application checkbox. If Runtime application is unchecked, the .NET Class will
be bound to the full development version. If Runtime application is checked, the .NET
Class will be bound to the run-time version.

If you build a .NET class using the APLScript compiler, it will by default be bound to the
full development version. If you specify the /runtime flag, it will be bound to the run-
time version.

If your APL .NET class is a Web Page or a Web Service, you specify to which of the two
DLLs it will be bound using the Debug attribute. This is specified in the opening
declaration statement in the . aspx, .asax or .asmx file. If the statement specifies
"Debug=true", the Web Page or Web Service will be bound to the full development
version. If it specifies "Debug=false", the Web Page or Web Service will be bound to
the run-time version.

If you omit the bebug= attribute in your Web page, the value will be determined from
the various .NET confi g files on your computer.

Forcing a suspension

If an APL error occurs in an APL .NET object, a suspension will occur and the Session
will be available for debugging. But what if you want to force this to happen so that you
can Trace your code and see what is happening?

2025-10-30 (main:e0843eae32) Page 273

.NET Framework Interface Guide

If your APL class is built directly from a workspace, you can force a suspension by
setting stops in your code before using Export to build the DLL. If your class is a Web
Page or Web Service where the code is contained in a workspace using the workspace
behind technique (See Chapter 8), you can set stops in this workspace before you
)SAVE it.

If your APL class is defined entirely in a Web Page, Web Service, or an APLScript file, the
only way to set a break point is to insert a line that sets a stop explicitly using OSTOP. It
is essential that this line appears after the definition of the function in the script. For
example, to set a stop in the Intro\introl.aspx example discussed in Chapter 8, the
script section could be as follows:

<script language="dyalog" runat="server">

VRotate args
:Access Public
:Signature Reverse Object,EventArgs

(2args).Text«pPressme.Text
v

3 (STOP 'Rotate'
</script>
As an alternative, you can always insert a deliberate error into your code!

Finally, you can usually force a suspension by generating a Weak Interrupt. This is done
from the pop-up menu on the APL icon in the System Tray that is associated with the
full development version of the Dyalog DLL. Note that selecting Weak Interrupt from
this menu will not have an immediate effect, but it sets a flag that will cause Dyalog APL
to suspend when it next executes a line of APL code. You will need to activate your
object in some way, for example, by calling a method, for this to occur. Note that this
technique may not work if the Dyalog DLL is busy because a thread switch
automatically resets the Weak Interrupt flag. In these circumstances, try again.

The run-time version of the Dyalog DLL does not display an icon in the System Tray.
Using the Session, Editor and Tracer
When an DYALOG.NET object suspends execution, all other active APL .NET objects

bound to the full development version of the Dyalog DLL that are currently being
executed by the same client application will also suspend. Furthermore, all the classes

2025-10-30 (main:e0843eae32) Page 274

.NET Framework Interface Guide

currently being hosted by the Dyalog DLL are visible to the APL developer whether
active (an instance is currently being executed) or not. Note that if a client application,
such as ASP.NET, is also hosting APL .NET objects bound to the runtime version of the
Dyalog DLL, these objects will be hosted in a separate workspace attached to the run-
time version of the Dyalog DLL and will not be visible to the developer.

Debugging a running DYALOG.NET obiject is substantially the same process as
debugging a stand-alone multi-threaded APL application. However, there are some
important things to remember.

Firstly, the namespace structure above your APL class should be treated as being
inviolate. There is nothing to prevent you from deleting namespaces, renaming
namespaces, or creating new ones in the workspace. However, you do so at your peril!

Similarly, you should not alter, delete or rename any functions that have been
automatically generated on your behalf by the APLScript compiler. These functions are
also inviolate.

If execution in the Dyalog DLL is suspended, you may not execute)CLEAR or)RESET.
You may execute)OFF or JOFF, but if you do so, the client application will terminate. If
you attempt to close the APL Session window, you will be warned that this will
terminate the client application and you may cancel the operation or continue (and
exit).

If you fix a problem in a suspended function and then press Resume or Continue
(Tracer) or execute a branch, and the execution of the currently invoked method
succeeds, you will be left with an empty state indicator (assuming that no other threads
are actively involved). The Dyalog DLL is at this stage idle, waiting for the next client
request and the state indicator will be empty.

If, at this point, you close the APL Session window, a dialog box will give you the option
of terminating the (client) application, or simply hiding the APL Session Window. If you
execute)OFF or JOFF the client application will terminate.

Note that in the discussion above, a reference to terminating the client application
means that APL executes Application.Exit(). This may cause the application to
terminate cleanly (as with ASP.NET) or it may cause it to crash.

12.7 The web.config file

ASP.NET configuration parameters are defined in a file named web.config located in or
above the root directory of an ASP.NET application. Parameters defined in these files
supplement or override ASP.NET parameters which are defined system-wide.

2025-10-30 (main:e0843eae32) Page 275

.NET Framework Interface Guide

The web.config file provided with Dyalog is located in the Dyalog sub-directory
samples\asp.net and applies to all the examples residing in child directories of this
directory. If you create a Dyalog ASP.NET application elsewhere on your system, you will
need to copy this web.config into the application root directory. The parameters
defined in the Dyalog web . config file are described below. Further details are provided

in comments in the file.

DyalogBinDirectory

This specifies the full path to the Dyalog binaries (DLLs and script compiler).

dyalog (compiler)

This section defines an ASP.NET language named dyalog so that the expression
Language = "dyalog" in a script file associates that script with the Dyalog APLScript
compiler dyalogc.exe. Subsidiary parameters and keys for the dyalog compiler are:

debug

"true" (default) or "false" to bind the script to the
Development DLL or the Run-time DLL

DyalogCompilerEncoding

"classic" or "unicode"..

DyalogCompilerOptions

This is used to define options for the script
compiler. For example, to set [JWX to 1 use "/wx:
1".

DyalogCompilerEmitPragmas

Must be "true" if you are using workspace behind.

DyaloglsolationMode

This parameter specifies the isolation method. See Section 12.2 for further details.

DyalogCacheDirectory may be used to define the directory used to save the cached

files.

2025-10-30 (main:e0843eae32)

Page 276

	Dyalog for Microsoft Windows
	.NET Framework Interface Guide
	Contents

	Overview
	Introduction
	.NET Classes
	GUI Programming with System.Windows.Forms
	Web Services
	ASP.NET and WebForms

	Prerequisites
	Files Installed with Dyalog
	NET Interface Components
	Code Samples

	Accessing .Net Classes
	Introduction
	Locating .NET Classes and Assemblies
	Using .NET Classes
	Constructors and Overloading
	How the ⎕NEW System Function is implemented
	Notes
	Displaying a .NET Object
	Disposing of .NET Objects

	Browsing .NET Classes
	Value Tips for External Functions
	Advanced Techniques
	Shared Members
	APL language extensions for .NET objects
	Exceptions
	Specifying Overloads and Casts
	OverloadTypes Examples
	CastToTypes Example
	Overloaded Constructors

	More Examples
	Directory and File Manipulation
	Sending an email
	Web Scraping

	Enumerations
	Handling Pointers with Dyalog.ByRef
	DECF Conversion

	Using Windows.Forms
	Introduction
	Creating GUI Objects
	Object Hierarchy
	Positioning and Sizing Forms and Controls
	Modal Dialog Boxes
	Non-Modal Forms
	DataGrid Examples
	GDIPLUS Workspace
	TETRIS Workspace
	WEBSERVICES Workspace

	WPF
	Introduction
	Temperature Converter
	Temperature Converter Tutorial
	Using XAML
	Parent and Child Controls
	Named and Un-named Controls
	The Main Window
	The DockPanel
	The Menu
	The Grid
	The Label Objects(Column 1)
	The TextBox Objects(Column 2)
	The Button Objects (Column 3)
	The ScrollBar Object
	The Code to display the XAML
	The CallBack Functions

	Using Code

	Data Binding
	Example 1
	The XAML
	The APL Code
	Testing the Data Binding

	Example 2
	The XAML
	The APL Code
	Testing the Data Binding

	Example 3
	Testing the Data Binding

	Example 4
	The XAML
	The APL Code
	Testing the Data Binding

	Example 5
	The XAML
	The Code
	Testing the Data Binding

	Example 6
	The XAML
	The APL Code
	Testing the Data Binding

	Example 6a (Casting to DateTime)
	The XAML
	The APL Code
	Testing the Data Binding
	Testing the Data Binding

	Example 7
	The XAML
	The APL Code
	Testing the Data Binding

	Example 8
	The XAML
	The APL Code
	Testing the Data Binding
	Using Code

	Syncfusion Libraries
	Requirements
	Using XAML
	⎕USING

	Syncfusion Circular Gauge Example
	The XAML
	The APL Code

	APLScript
	Introduction
	The APLScript Compiler
	Creating an APLScript File
	Copying code from the Dyalog Session
	General principles of APLScript
	Creating Programs (.exe) with APLScript
	A simple GUI example
	A simple console example
	Defining Namespaces

	Creating .NET Classes with APLScript
	Exporting Functions as Web Methods
	A .NET Class example
	Defining Properties
	Indexers

	Creating ASP.NET Classes with APLScript
	Web Page Layout
	Web Service Layout
	How APLScript is processed by ASP.NET

	Writing .Net Classes
	Introduction
	Assemblies, Namespaces and Classes
	Getting Started
	Initialisation
	Running the Tutorial

	Example 1
	program.cs

	Example 2
	program.cs

	Example 2a
	Example 3
	program.cs

	Example 4
	program.cs

	Example 5
	program.cs

	Interfaces

	Dyalog APL and IIS
	Introduction
	IIS Installation Dependency
	IIS Applications, Virtual Directories, Application Pools
	Internet Services Manager
	The dyalog.net Application

	Writing Web Services
	Introduction
	Web Service (.asmx) Scripts
	Compilation
	Exporting Methods
	Add1
	Add2

	Web Service Data Types
	Execution
	Global.asax, Application and Session Objects
	Sample Web Service: EG1
	Testing APLExample from a Browser

	Sample Web Service: LoanService
	Testing LoanService from a Browser

	Sample Web Service: GolfService
	GolfService: Global.asax
	GolfService: GolfCourse class
	GolfService: Slot class
	GolfService: Booking class
	GolfService: StartingSheet class
	GolfService: GetCourses function
	GolfService: GetStartingSheet function
	GolfService: MakeBooking function
	Testing GolfService from a Browser
	Using GolfService from C

	Sample Web Service: EG2
	Testing EG2 from a Browser

	Calling Web Services
	Introduction
	The MakeProxy function
	Using LoanService from Dyalog APL
	Using GolfService from Dyalog APL
	Exploring Web Services
	Asynchronous Use
	Using a callback

	Writing ASP.NET Web pages
	Introduction
	Your first APL Web Page
	The Page_Load Event
	Code Behind
	Workspace Behind
	Converting an Existing Workspace
	The Page_Load function
	Callback functions
	Validation functions
	Forcing Validation
	Calculating and Displaying Results

	Writing Custom Controls for ASP.NET
	Introduction
	The SimpleCtl Control
	Using SimpleCtl

	The TemperatureConverterCtl1 Control
	Child Controls
	Fahrenheit and Centigrade Values
	Responding to Button presses
	Using the Control on the Page

	The TemperatureConverterCtl2 Control
	Fahrenheit and Centigrade Values
	Rendering the Control
	Loading the Posted Data
	Postback Events
	Using the Control on a Page

	The TemperatureConverterCtl3 Control
	Hosting the Control on a Page

	Implementation Details
	Introduction
	Isolation Mode
	Workspace Size
	Structure of the Active Workspace
	Threading
	DYALOG DLL Threading
	DYALOG.EXE Threading
	Thread Switching

	Debugging an APL.NET Class
	Specifying the DLL
	Forcing a suspension
	Using the Session, Editor and Tracer

	The web.config file
	DyalogBinDirectory
	dyalog (compiler)
	DyalogIsolationMode

