
Dyalog for Microsoft Windows
UI Guide

Dyalog version 20.0

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2025 by Dyalog Limited
All rights reserved.

Dyalog for Microsoft Windows UI Guide

Dyalog version: 20.0
Document Revision: 2025-10-30 main:e0843eae32

Unless stated otherwise, all examples in this document assume that ⎕IO ⎕ML ← 1

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle®, MySQL, and Java™ are registered trademarks of Oracle and/or its affiliates.
JavaScript™ is a trademark of Oracle Corporation.
Unicode is a registered trademarks of Unicode, Inc. in the U.S. and other countries.
UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively
through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark of Microsoft Corporation in the U.S. and other
countries.
macOS® and OS X® (operating system software) are registered trademarks of Apple Inc.
in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Except where otherwise noted, this content is licensed under a Creative Commons
Attribution 4.0 International licence.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

2025-10-30 (main:e0843eae32) Page 4

Contents

1 Introduction ... 8

2 APL Keyboards ... 9

3 Session Manager .. 12

4 Session Gutter .. 15

5 Multi-line Session Input ... 16

6 Unicode Edition Keyboard ... 18

7 IME Configuration .. 19

8 Classic Edition Keyboard .. 23

9 Keyboard Shortcuts .. 24

10 Session Colour Scheme .. 31

11 The Session Window .. 33

12 Language Bar ... 41

13 Entering and Executing Expressions ... 43

14 Value Tips ... 47

15 Value Tips for External Functions ... 49

16 Configuring Value Tips ... 51

17 Session GUI .. 52

18 Session MenuBar ... 53

19 Session Popup Menu ... 63

20 The Session Toolbars .. 67

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 5

21 Session StatusBar ... 73

22 Status Window ... 75

23 Workspace Explorer ... 77

24 Browsing Classes .. 88

25 Browsing Type Libraries ... 94

26 Browsing .Net Classes .. 104

27 Find Objects Tool ... 113

28 Object Properties Dialog .. 117

29 Editor ... 123

30 Find and Replace Dialogs ... 157

31 Editing Scripts and Text Files .. 160

32 Source as Typed ... 164

33 The Tracer .. 166

33.1 The Tracer ... 166

33.2 Inline Tracing ... 175

34 The Threads Tool .. 182

35 Debugging Threads .. 186

36 The Event Viewer ... 190

37 The Session Object ... 197

37.1 Introduction .. 197

37.2 AfterFix ... 204

37.3 Fix .. 205

37.4 Format .. 206

37.5 SessionPrint Event .. 207

37.6 SessionTrace ... 208

37.7 WorkspaceLoaded Event ... 210

37.8 Configuring the Session .. 211

37.9 Session Initialisation ... 216

38 User Commands .. 218

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 6

39 File Explorer Integration .. 219

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 7

1 Introduction

The Dyalog Development Environment includes a Session Manager, an Editor, and a
Tracer all of which operate in windows on the screen. The session window is created
when you start APL and is present until you terminate your APL session. In addition
there may be a number of edit and/or trace Windows, which are created and destroyed
dynamically as required. All APL windows are under the control of Windows and may
be selected, moved, resized, maximised and minimised using the standard facilities that
Windows provides.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 8

2 APL Keyboards

The Classic and Unicode Editions of Dyalog APL for Windows use different techniques
for mapping keystrokes to APL characters and to special command shortcuts.

The Classic Edition uses a proprietary technique for these mappings.

By default, the Unicode Edition uses Microsoft's IME (Input Method Editor) technology.
Many other applications use the same technology, which means that the Dyalog
Unicode IME may be used not only with Dyalog APL for Windows Unicode Edition, but
also with word processing applications, spreadsheets, terminal emulators etc.
Therefore, with the Dyalog Unicode IME installed, and with a suitable font selected,
APL characters can be entered and viewed in many other applications.

As an alternative to the Dyalog Unicode IME, whose installation requires Administrator
privileges, the key mapping for the Unicode Edition may be specified in the Windows
registry.

See the section Unicode Edition and the Registry Keyboard below.

In both Classic and Unicode Editions APL characters are generated when the user
presses certain combinations of meta keys in conjunction with the normal character
keys. Meta keys include Shift, Ctrl and Alt.

For both input techniques it is possible to alter the mapping of keystrokes to APL
characters, and to add support for new languages. It is also possible to alter the
keystrokes which define special command keyboard shortcuts. For further details, see
Chapter 6 or Chapter 8

2.1 Unicode Edition and the Dyalog Unicode IME

The Dyalog Unicode IME is the default input mechanism for generating APL characters
for Unicode editions of Dyalog APL. The version of the IME supplied with version 20.0
can be used with version 12.1 and later, provided that they are patched to a version
created on or after 1st April 2011.

The Dyalog Unicode IME defines the mapping of keystrokes to Unicode characters. Only
keystrokes which resolve to characters that either do not appear on the standard

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 9

keyboard or which differ from those that appear on the standard keyboard are included
in the selectable translate table. In effect the Dyalog Unicode IME can be regarded as
an overlay of the standard keyboard which contains just APL characters.

The Dyalog Unicode IME supplied with Version 20.0 includes support for Belgian,
Danish, Finnish, French, German, Italian, Spanish Swedish and British and American
English keyboards, based on the Dyalog hardware keyboard layout; these keyboard
layouts are described here.

Note that for Danish, British and American English keyboards the older layouts, based
on the Dyalog APL Ctrl Keyboard, are included in the UnicodeIME\aplkeys directory.

The default keyboard mapping for unsupported languages is American English.

The IME translate tables include mappings for the special command keystrokes used by
Dyalog APL.

These command keystroke mappings are ignored by applications unless the application
is explicitly named in the Dyalog Unicode IME configuration. It is expected that only
terminal emulators used for running UNIX-based versions of Dyalog APL will use this
feature.

In particular, Dyalog APL for Windows Unicode Edition does not use the mappings in
the translate tables; the mappings are defined under Options/Configure/Keyboard
Shortcuts (see Installation/Configuration: Configuration Dialog Keyboard Shortcuts
Tab).

Note that the Dyalog Unicode IME replaces any previous IME, as well as the Dyalog Ctrl
and Dyalog AltGr keyboards.

2.2 Unicode Edition and the Registry Keyboard

The Registry Keyboard provides an alternative mechanism for the Unicode Edition. This
feature maps keystrokes to APL characters using entries in the Windows Registry.
Dyalog supports the mechanism but does not provide the mappings which must
therefore be defined by the user.

Note that the Dyalog IME is used if it is available; the Registry Keyboard mechanism is
used only if the Dyalog IME is not installed.

The mappings are defined in the Registry sub-folder :

Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Dyalog\Dyalog APL/W-64 20.0
Unicode\KeyboardShortcuts\chars

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 10

https://dfns.dyalog.com/n_keyboards.htm

Each entry consists of theUnicode code point of an APL character followed by the
keystroke to which it is mapped.

The keystroke is defined by 4 hexadecimal values which specify the key, the shift-state,
and 2 zeros. The key is represented by the Unicode code point of the symbol engraved
upon it, so (on a UK keyboard) the <1> key is hex 31 and the <A> key is hex 41. The
Shift-states values are the sum of 1 (Shift), 2 (Ctrl), 4 (Alt).

In the first entry, the APL character is Unicode code point 230A which is ⌊. The key is
<D> (hex 44) and the shift-state is Ctrl (hex 02).

In the second entry, the APL character is Unicode code point 235F which is ⍟. The
character is entered by pressing <*> (hex 38) with Shift + Ctrl (hex 03).

2.3 Classic Edition

The mapping for each of the ⎕AV positions and its associated keystroke is defined by a
selectable translate table. ⎕AV includes all the APL symbols used by Dyalog APL as well
as all the (non-APL) characters which appear on a standard keyboard. This mapping
only works with Classic Edition.

The Classic Edition installation also includes the Dyalog Unicode IME (described below)
so that users may enter APL characters into other applications; the Dyalog Unicode IME
is however not used by the Classic Edition itself.

The Classic Edition includes support for Danish, Finnish, French, German, Italian,
Swedish, and both British and American English keyboards. The default keyboard
mapping for unsupported languages is American English.

2.4 Backtick Keyboard

In addition to the standard APL keyboards, the Ride keyboard may be used natively. See
Chapter 7.

"0x230A"=hex:44,02,00,00
"0x235F"=hex:38,03,00,00

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 11

3 Session Manager

The Dyalog APL/W session is fully configurable. Not only can you change the
appearance of the menus, tool bars and status bars, but you can add new objects of
your choice and attach your own APL functions and expressions to them. Functions and
variables can be stored in the session namespace. This is independent of the active
workspace; so there is no conflict with workspace names, and your utilities remain
permanently accessible for the duration of the session. Finally, you may set up different
session configurations for different purposes which can be saved and loaded as
required.

The session window is defined by an object called ⎕SE. This is very similar to a Form
object, but has certain special properties. The menu bar, tool bar and status bars on the
session window are in fact MenuBar, ToolControl and StatusBar objects owned by ⎕SE.
All of the other components such as menu items and tool buttons are also standard
GUI objects. You may use ⎕WC to create new session objects and you may use ⎕WS to
change the properties of existing ones. ⎕WG and ⎕WN may also be used with ⎕SE and its
children.

Components of the session that perform actions (MenuItem and Button objects) do so
because their Event properties are defined to execute system operations or APL
expressions. System operations comprise a pre-defined set of actions that can be
performed by Dyalog APL/W. These are coded as keywords within square brackets. For
example, the system operation [WSClear] produces a clear ws, after first displaying a
dialog box for confirmation. You may customise your session by adding or deleting
objects and by attaching system operations or APL expressions to them.

Like any other object, ⎕SE is a namespace that may contain functions and variables.
Furthermore, ⎕SE is independent of the active workspace and is unaffected by)LOAD
and)CLEAR. It is therefore sensible to store commonly used utilities, particularly those
utilities that are invoked by events on session objects, in ⎕SE itself, rather than in each
of your application workspaces.

The possibility of configuring your APL session so extensively leads to the requirement
to have different sessions for different purposes. To meet this need, sessions are stored
in special files with a .DSE (Dyalog Session) extension. The default session (that is, the
one loaded when you start APL) is specified by the session_file parameter. You may

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 12

customise this session and then save it over the default one or in a separate file. You
can load a new session from file at any stage without affecting your active workspace.

3.1 Positioning the Cursor

The cursor may be positioned within the current APL window by moving the mouse
pointer to the desired location and then clicking the Left Button. The APL cursor will
then move to the character under the pointer.

3.2 Selection

Dragging the mouse selects the text from the point where the mouse button is
depressed to the point where the button is released. When you select multiple lines,
the use of the left mouse button always selects text from the start of the line. A
contiguous block of text can be selected by dragging with the right mouse button.

Double-clicking the left mouse button to the left of a line selects the whole line,
including the end-of-line character.

3.3 Scrolling

Data can be scrolled in a window using the mouse in conjunction with the scrollbar.

3.4 Invoking the Editor

The Editor can be invoked by placing the mouse pointer over the name of an editable
object and double-clicking the left button on the mouse. If you double-click on the
empty Input Line it acts as "Naked Edit" and opens an edit window for the suspended
function (if any) on the APL stack. For further details, see Chapter 29. See also
"Installation and Configuration Guide: DoubleClickEdit".

3.5 The Current Object

If you position the input cursor over the name of an object in the session window, that
object becomes the current object. This name is stored in the CurObj property of the
Session object and may be used by an application or a utility program. This means that
you can click the mouse over a name and then select a menu item or click a button that
executes code that accesses the name.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 13

3.6 The Session Pop-up Menu

Clicking the right mouse button brings up the Session pop-up menu. This is described
later in this chapter.

3.7 Drag-and-Drop Editing

Drag-and-Drop editing is the easiest way to move or copy a selection a short distance
within an edit window or between edit windows.

3.7.1 To move text using drag-and-drop editing

Select the text you want to move.
Point to the selected text and then press and hold down the left mouse button.
When the drag-and-drop pointer appears, drag the cursor to a new location.
Release the mouse button to drop the text into place.

3.7.2 To copy text using drag-and-drop editing

Select the text you want to move.
Hold down the Ctrl key, point to the selected text and then press and hold down
the left mouse button. When the drag-and-drop pointer appears, drag the cursor
to a new location.
Release the mouse button to drop the text into place.

If you drag-and-drop text within the Session window, the text is copied and not moved
whether or not you use the Ctrl key.

3.8 Interrupts

To generate an interrupt, click on the Dyalog icon in the Windows System Tray; then
choose Weak Interrupt or Strong Interrupt. To close the menu, click Cancel.
Alternatively, to generate a weak interrupt, press Ctrl+Break, or select Interrupt from
the Action menu on the Session Window.

1.
2.

3.

1.
2.

3.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 14

4 Session Gutter

The first column of the Session Window (the Session Gutter) is by default reserved to
display the following information:

A small red circle. This indicator is used on every line that is modified in the
session, including old ones (for example, if you move up the session and modify
them, without pressing <ER>) . The indicators show which session lines will be
re-executed when you subsequently press <ER>.
A left bracket [to identify groups of default output. Note that other forms of
output are not identified in this way.

The Session Gutter may be enabled and disabled using the DYALOG_GUTTER_ENABLE
parameter. It is disabled by default in the TTY interface.

•

•

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 15

5 Multi-line Session Input

The Session allows multi-line input. This feature is optional, and is controlled by the
value of the Dyalog_LineEditor_Mode configuration parameter (default is 1, meaning
that multi-line input is enabled). To disable multi-line input, set
Dyalog_LineEditor_Mode to 0.

See Installation/Configuration: Dyalog Lineeditor Mode

On Microsoft Windows, multi-line input can be enabled and disabled using the Enable
Multiline Input checkbox on the Session tab of the Configuration dialog box. See
Installation/Configuration: Configuration Dialog Session Tab.

5.1 When Multi-line Input is Enabled

The session considers all related lines to be a group.
Grouped lines are syntax coloured as a whole.
If a change is made to one or more lines in a group then the whole group is
marked to be re-executed when <ER> is pressed.
Lines can be inserted into a group with the <IL> keystroke.
The current line can be cleared with the <EL> keystroke. (It is not possible to
UNDO a delete line in the session).
if the interpreter detects an un-terminated control structure or dfn on a single
line of input it:
enters a new multi-line mode which accumulates lines until the control structure
or dfn is terminated.
executes a completed block of lines as if it were within a niladic defined
function.
enters a new multi-line mode which accumulates lines until the control structure
or dfn is terminated.
executes a completed block of lines as if it were within a niladic defined
function.

Multi-line input can be terminated by correctly terminating the input. For example, if
you started a block of multi-line input with a { character, then a matching and similarly
nested } character terminates it. Similarly, if you started a block of multi-line input with

•
•
•

•
•

•

•

•

•

•

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 16

:If then a matching and similarly nested :EndIf terminates it. Issuing a weak interrupt
aborts the multi-line input and all changes are lost.

On Microsoft Windows and in Ride, one or more lines from a group can be executed
separately by selecting the entire line or lines before pressing <ER>.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 17

6 Unicode Edition Keyboard

6.1 Introduction

Unicode Edition supports the use of standard Windows keyboards that have the
additional capability to generate APL characters when the user presses Ctrl, Alt, AltGr
(or some other combination of meta keys) in combination with the normal character
keys.

Dyalog is supplied with the Dyalog Unicode IME keyboard for a range of different
languages as listed below. The intention is that only APL characters and characters that
appear in locations different from the underlying keyboard are defined; any other
keystroke is passed through as is.

6.2 Installation

During the Installation of Dyalog Unicode Edition, setup installs the Dyalog Unicode IME
(IME). For any given Input Language the IME consists of an additional service for that
Input Language, and a translate table which maps keystrokes for the appropriate
keyboard to Unicode code points for APL characters

An IME service is installed for every Input Language that the user who installs Dyalog
has defined, as well as every Input Language for which Dyalog has support.

The keyboard mappings are defined for the following national languages: Belgian,
Danish, Finnish, French, German, Italian, Spanish, Swedish, and British and American
English.

These mappings are described at https://dfns.dyalog.com/n_keyboards.htm.

For any other Input Language the American English translate table is selected. Note
that some Input Languages are defined to be substitutes for other Input Languages; for
example Australian English Input is a substitute for American English Input, Austrian
German Input a substitute for German German Input. In these cases the IME will install
the appropriate translate table. It is also possible to create support for new languages
or to modify the existing support. See the IME User Guide for further details.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 18

https://dfns.dyalog.com/n_keyboards.htm

7 IME Configuration

The Dyalog Unicode IME is added as an additional service to all keyboards defined to
the user and the administrator at the time that the IME was installed.

For each IME the underlying keyboard layout file will be the same as that defined for
the base keyboard. The layout file is a DLL created by Microsoft.

The language specified in the description of the IME is the name of the IME translate
table that has been associated with the IME for the specific keyboard. In the case of
languages not supported by the IME the keyboard will default to en-US.

7.1 IME Properties

To change the properties of the IME go to Options/Configure/Unicode Input tab and
select Configure Layout:

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 19

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 20

7.2 Input translate table

The translate table defines the mapping between APL characters and the keystrokes
that generate those APL characters. It is possible to alter the mapping or to create
support for new keyboards by altering the translate table, or by selecting a different
translate table. See the IME User Guide for more details.

7.3 Backtick Keyboard

The Backtick keyboard provided by Ride may be used natively. By default it is disabled.
To enable it, check the box labelled Enable Backtick Keyboard introducer. You may
replace the backtick character (`) with an alternative character to act as the introducer
for APL glyphs, but take care to choose a character that is otherwise unused.

For information on using this keyboard interface, see Ride User Guide.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 21

https://dyalog.github.io/ride

7.4 Overstrikes

In the original implementations of APL, many of the special symbols could only be
generated by overstriking one character on top of another as is reflected in the
appearance of the glyphs. For example, the symbol for Grade Up (⍋) is actually the
symbol for delta (∆) superimposed on the symbol for vertical bar (|)

In Dyalog, such symbols can be generated either by a single keystroke, or (in Replace
mode) by overtyping one symbol with another. For example ⍋ may be generated using
Shift+Ctrl+4, or by switching to Replace mode and typing the three keystrokes Ctrl+h,
Left-Cursor, Ctrl+m.

Using the Dyalog Unicode IME the character can also be entered by pressing Ctrl+Bksp,
Ctrl+m, Ctrl+h. Note that Ctrl+Bksp is the default Overstrike Introducer Key (key code
OS).

7.5 Use Overstrike popup

With this option selected, when the character following the Overstrike Introducer Key is
pressed, a popup box displays all the overstrikes which contain the last character typed:
in the example below Ctrl+Bksp has been followed by Ctrl+h:

Note the fine (red) line under the ∆. This indicates that an overstrike creation operation
is in progress.

The input of the symbol ⍋ can be completed by pressing Ctrl+m, or by moving the
selection up and down the pop-up list using Cursor-Up or Cursor-Down.

7.6 Overstrikes do not require the OS introducer key

With this option selected, the IME identifies characters which are part of a valid
overstrike, and when such a character is entered into the session, begins an overstrike
creation operation.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 22

8 Classic Edition Keyboard

The standard Classic Edition keyboard tables are files supplied in the aplkeys sub-
directory named cc.din where cc is the standard 2-character country code, for example,
uk.din.

Note that the standard tables do not support the entry of APL underscored characters
⍙ⒶⒷⒸⒹⒺⒻⒼⒽⒾⒿⓀⓁⓂⓃⓄⓅⓆⓇⓈⓉⓊⓋⓌⓍⓎⓏ.

The standard table supports two modes of use; traditional (mode 0) and unified (mode
1). The keyboard starts in mode 1 and may be switched between modes by clicking the
Uni/Apl field in the status bar or by keying * on the Numeric-Keypad.

The Classic Edition keyboard layout is close to that of the Unicode Edition, but does not
include certain symbols which are only provided in the Unicode Edition.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 23

9 Keyboard Shortcuts

The terms keyboard shortcut (Unicode Edition) and command (Classic Edition) are used
herein to describe a keystroke that generates an action, rather than one that produces
a symbol.

9.1 Unicode Edition

Unicode Edition provides a number of shortcut keys that may be used to perform
actions. For compatibility with Classic Edition and with previous versions of Dyalog,
these are identified by 2-character codes; for example the action to start the Tracer is
identified by the code , and mapped to user-configurable keystrokes.

In the Unicode Edition, Keyboard Shortcuts are defined using Options/Configure/
Keyboard Shortcuts and stored in the Windows Registry. Note that the Unicode IME
translate tables have definitions for the Keyboard Shortcuts too; these are ignored by
the interpreter, and are intended for use with terminal emulators being used in
conjunction with non-GUI versions of Dyalog.

To the right of the last symbol in the Language Bar is the Keyboard Shortcut icon

. If you hover the mouse over this icon, a pop-up tip is displayed to remind you of your
keyboard shortcuts as illustrated below.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 24

9.2 Classic Edition

Commands fall into four categories, namely cursor movement, selection, editing
directives and special operations, and are summarised in the following tables. The
input codes in the first column of the tables are the codes by which the commands are
identified in the Input Translate Table.

Table: Cursor Movement Commands

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 25

Input
Code Keystroke Description

LS Ctrl+PgUp Scrolls left by a page

RS Ctrl+PgDn Scrolls right by a page

US PgUp Scrolls up by a page

DS PgDn Scrolls down by a page

LC Left Arrow Moves the cursor one character position to the left

RC Right Arrow Moves the cursor one character position to the right

DC Down Arrow Moves the cursor to the current character position on
the line below the current line

UC Up Arrow Moves the cursor to the current character position on
the line above the current line

UL Ctrl+Home Move the cursor to the top-left position in the
window

DL Ctrl+End Moves the cursor to the bottom-right position in the
window

RL End

Moves the cursor right to the first of:

- the six space prompt (only when the cursor is on a
blank line)

- the end of the content of the line excluding space
characters

- the end of the content of the line including space
characters

Pressing RL multiple times progresses through the list
in the order shown above.

LL Home

Moves the cursor left to the first of:

- the start of the content of the line

- the six space prompt (except when in the Editor, in
which case this is skipped)

- the left edge of the session

Pressing LL multiple times progresses through the list
in the order shown above.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 26

Input
Code Keystroke Description

LW Ctrl+Left Arrow Moves the cursor to the beginning of the word to the
left of the cursor

RW Ctrl+Right
Arrow

Moves the cursor to the end of the word to the right
of the cursor

TB Ctrl+Tab Switches to the next session/edit/trace window

BT Ctrl+Shift+Tab Switches to the previous session/edit/trace window

Table: Selection Commands

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 27

Input
Code Keystroke Description

Lc Shift+Left Arrow Extends the selection one character position to
the left

Rc Shift+Right Arrow Extends the selection one character position to
the right

Lw Ctrl+Shift+Left
Arrow

Extends the selection to the beginning of the
word to the left of the cursor

Rw Ctrl+Shift+Right
Arrow

Extends the selection to the end of the word to
the right of the cursor

Uc Shift+Up Arrow Extends the selection to the current character
position on the line above the current line

Dc Shift+Down Arrow Extends the selection to the current character
position on the line below the current line

Ll Shift+Home Extends the selection to the beginning of the
current line

Rl Shift+End Extends the selection to the end of the current
line

Ul Ctrl+Shift+Home Extends the selection to the beginning of the first
line in the window

Dl Ctrl+Shift+End Extends the selection to the end of the last line in
the window

Us Shift+PgUp Extends the selection up by a page

Ds Shift+PgDn Extends the selection down by a page

Table: Editing Directives

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 28

Input
Code Keystroke Description

DI Delete Deletes the selection

DK Ctrl+Delete Deletes the current line in an Edit window. Deletes
selected lines in the Session Log

CT Shift+Delete Removes the selection and copies it to the clipboard

CP Ctrl+Insert Copies the selection into the clipboard

FD Ctrl+Shift+Enter Reapplies the most recent undo operation

BK Ctrl+Shift+Bksp Performs an undo operation

PT Shift+Insert Copies the contents of the clipboard into a window
at the location selected

OP Ctrl+Shift+Insert Inserts a blank line immediately after the current one
(editor only)

HT Tab Indents text

TH Shift+Tab Removes indentation

RD Keypad-slash Reformats a function (editor only)

TL Ctrl+Alt+L Toggles localisation of the current name

GL Ctrl+Alt+G Go to [line]

AO Ctrl+Alt+, Add Comments

DO Ctrl+Alt+. Delete Comments

AC Align Comments

Table: Special Operations

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 29

Input Code Keystroke Description

IN Insert Insert on/off

LN Keypad-minus Line numbers on/off

ER Enter Execute

ED Shift+Enter Edit

TC Ctrl+Enter Trace

EP Esc Exit

QT Shift+Esc Quit

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 30

10 Session Colour Scheme

Within the Development Environment, different colours are used to identify different
types of information. These colours are normally defined by registry entries and may be
changed using the Colour Configuration dialog box as described later in this chapter.

In the Classic Edition, colours may alternatively be defined in the Output Translate Table
(normally WIN.DOT). This table recognises up to 256 foreground and 256 background
colours which are referenced by colour indices 0-255. These colour indices are mapped
to physical colours in terms of their Red, Green and Blue intensities (also 0-255).
Foreground and background colours are specified independently as Cnnn or Bnnn. For
example, the following entry in the Output Translate Table defines colour 250 to be red
on magenta.

The first table below shows the colours used for different session components. The
second table shows how different colours are used to identify different types of data in
edit windows.

Table 10-1: Default Colour Scheme - Session

Colour Used for Default

249 Input and marked lines Red on White

250 Session log Black on White

252 Tracer : Suspended Function Yellow on Black

253 Tracer : Pendent Function Yellow on Dark Grey

245 Tracer : Current Line White on Red

 C250: 255 0 0 + Red foreground
 B250: 255 0 255 + Magenta background

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 31

Table 10-2: Default Colour Scheme Edit windows

Colour Array Type Editable Default

236 Simple character matrix Yes Green on Black

239 Simple numeric No White on Dk Grey

241 Simple mixed No Cyan on Dk Grey

242 Character vector of vectors Yes Cyan on Black

243 Nested array No Cyan on Dk Grey

245 ⎕OR object No White on Red

248 Function or Operator No White on Dk Cyan

254 Function or Operator Yes White on Blue

10.1 Syntax Colouring in the Session

As an adjunct to the overall Session Colour Scheme, you may choose to apply a syntax
colouring scheme to the current Session Input line(s). You may also extend syntax
colouring to previously entered input lines, although this only applies to input lines in
the current session; syntax colouring information is not remembered in the Session
Log.

Syntax colouring may be used to highlight the context of names and other elements
when the line was entered. For example, you can identify global names and local
names by allocating them different colours.

See Installation/Configuration: Colour Selection Dialog for further details.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 32

11 The Session Window

The primary purpose of the session window is to provide a scrolling area within which
you may enter APL expressions and view results. This area is described as the session
log. Normally, the session window will have a menu bar at the top with a tool bar
below it. At the bottom of the session window is a status bar. However, these
components of the session may be extensively customised and, although this chapter
describes a typical session layout, your own session may look distinctly different. A
typical Session is illustrated below.

11.1 Window Management

When you start APL, the session is loaded from the file specified by the session_file
parameter. The position and size of the session window are defined by the Posn and
Size properties of the Session object ⎕SE, which will be as they were when the session
file was last saved.1

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 33

The name of the active workspace is shown in the title bar of the window, and changes
if you rename the workspace or)LOAD another.

You can move, resize, minimise or maximise the Session Window using the standard
Windows facilities.

In addition to the Session Window itself, there are various subsidiary windows which
are described later in the Chapter. In general, these subsidiary windows may be docked
inside the Session window, or may be stand-alone floating windows. You may dock and
undock these windows as required. The standard Session layout illustrated above,
contains docked Editor, Tracer and SIStack windows.

Note that the session window is only displayed when it is required, that is, when APL
requests input from or output to the session. This means that end-user applications
that do not interact with the user through the session will not have an APL session
window.

11.2 Docking

Nearly all of the windows used in the Dyalog IDE may be docked in the Session window
or be stand-alone floating windows. When windows are docked in the Session, the
Session window is split into resizable panes, separated by splitters. The following
example, using the Status window, illustrates the principles involved. (The use of the
Status window is described later in this Chapter.)

To start with, the Status window is hidden. You may display it by selecting the Status
menu item from the Tools menu. It initially appears as a floating (undocked) window as
shown below.

1 In a Windows shortcut to an application, the Run: state may be one of "Normal
window", "Minimised" and "Maximised". There are other states which can be set when a
process is spawned. If the Run: state is Normal or Default, Dyalog will use the settings in the
current session file to determine the state and size of the session on startup; for all other
states (including Maximised and Minimised) these states will be used, superseding the
settings in the current session file.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 34

If you press the left mouse button down over the Status window title bar, and drag it,
you will find that when the mouse pointer is close to an edge of the Session window,
the drag rectangle indicates a docking zone as shown below. This indicates the space
that the window will occupy if you now release the mouse button to dock it.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 35

The next picture shows the result of the docking operation. The Session window is now
split into 2 panes, with the Status window in the upper pane and the Session log
window in the lower pane. You can resize the panes by dragging with the mouse.

You will notice that a docked window has a title bar (in this case, the caption is Status)
and 3 buttons which are used to Minimise, Maximise and Close the docked window.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 36

The next picture shows the result of minimising the Status window pane. All that
remains of it is its title bar. The Minimise button has changed to a Restore button,
which is used to restore the pane to its original size.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 37

You can pick up a docked window and then re-dock it along a different edge of the
Session as illustrated below.

Docking the Status window along the left edge of the Session causes the Session
window to be split into two vertical panes. Notice how the title bar is now drawn
vertically.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 38

If you click the right mouse button over any window, its context menu is displayed. If
the window is dockable, the context menu contains the following options:

Undock Undocks the docked window. The window is displayed at whatever
position and size it occupied prior to being docked

Hide
Caption Hides the title bar of the docked window

Dockable
Specifies whether the window is currently dockable or is locked in its
current state. You can use this to prevent the window from being
docked or undocked accidentally

The last picture shows the effect of using Hide Caption to remove the title bar. In this
state, you can resize the pane with the mouse, but the Minimise, Maximise and Close
buttons are not available. However, you can restore the object's title bar using its
context menu.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 39

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 40

12 Language Bar

The Language Bar is an optional window which is initially docked to the Session
Window, to make it easy to pick APL symbols without using the keyboard.

If you hover the mouse pointer over a symbol in the Language Bar, a pop-up tip is
displayed to remind you of its usage. If you click on a symbol in the Language Bar, that
symbol is inserted at the cursor in the current line in the Session.

12.1 Popup Menu

If you click the right mouse button in the Language Bar, the context menu displays the
following options:

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 41

Item Description

Insert Space
Before Inserts a blank space before the current symbol (or blank)

Delete Deletes the current symbol (or blank)

Help Displays the (F1) help topic for the current symbol.

Use the
Session font

Displays the symbols using the current Session font (by default
the symbols are displayed using a small font)

Revert to
defaults

Removes all user customisation and reverts to the standard
Language Bar.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 42

13 Entering and Executing
Expressions

13.1 Introduction

The session contains the input line and the session log. The input line is the last line in
the session, and is (normally) the line into which you type an expression to be
evaluated.

The session log is a history of previously entered expressions and the results they
produced.

If you are using a log file, the Session log is loaded into memory when APL is started
from the file specified by the log_file parameter. When you close your APL session, the
Session log is written back out to the log file, replacing its previous contents.

In general you type an expression into the input line, then press Enter (ER) to run it.
After execution, the expression and any displayed results become part of the session
log.

You can move around in the session using the scrollbar, the cursor keys, and the PgUp
and PgDn keys. In addition, Ctrl+Home (UL) moves the cursor to the beginning of the
top-line in the Log and Ctrl+End (DL) moves the cursor to the end of the last (that is,
the current) line in the session log. Home (LL) and End (RL) move the cursor to the
beginning and end respectively of the content on the line containing the cursor. That is,
if a line of text starts or ends with multiple spaces, Home (LL) and End (RL) move the
cursor to the left/right end of the text respectively, ignoring the multiple spaces.
Repeating the keystroke will move to the limit of the line, including the spaces.

13.2 Deleting Lines

You may delete one or more lines from the Session using the DK command
(Ctrl+Delete). This action removes the current line or the selected block of lines from
the Session window and from the Session log. The removal is permanent and you will
be prompted to confirm:

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 43

13.3 Auto Complete

As you start to enter characters in an APL expression, the Auto Complete suggestions
pop-up window (AC for short) offers you a choice based upon the characters you have
already entered and the current context.

For example, if you enter a ⎕, AC displays a list of all the system functions and variables.
If you then enter the character r, the list shrinks to those system functions and
variables beginning with the letter r, namely ⎕REFS, ⎕RL, ⎕RSI, and ⎕RTL. Instead of
entering the remaining characters, you may select the appropriate choice in the AC list.
This is done by pressing the right cursor key.

If you begin to enter a name, AC will display a list of namespaces, variables, functions,
operators that are defined in the current namespace. If you are editing a function, AC
will also include names that are localised in the function header.

If the current space is a GUI namespace, the list will also include Properties, Events and
Methods exposed by that object.

As an additional refinement, AC remembers a certain number of previous auto
complete operations, and uses this information to highlight the most recent choice you
made.

For example, suppose that you enter the two characters)C. AC offers you)CLEAR thru'
)CS, and you choose)CS from the list. The next time you enter the two characters)C,
AC displays the same list of choices, but this time)CS is pre-selected.

You can disable or customise Auto Completion from the Auto Complete page in the
Configuration dialog box which is described later in this chapter.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 44

13.4 Executing an Expression

To execute an expression, you type it into the input line, then press Enter (ER).
Alternatively, you can select Execute from the Action menu. Following execution, the
expression and any displayed results become part of the session log.

Instead of entering a new expression in the input line, you can move back through the
session log and re-execute a previous expression (or line of a result) by simply pointing
at it with the cursor and pressing Enter. Alternatively, you can select Execute from the
Action menu. You may alter the line before executing it. If you do so, it will be displayed
using colour 249 (Red on White), the same as that used for the input line. When you
press Enter the new line is copied to the input line prior to being executed. The original
line is restored and redisplayed in the normal session log colour 250 (Black on White).

An alternative way to retrieve a previously entered expression is to use Ctrl+Shift+Bksp
(BK) and Ctrl+Shift+Enter (FD). These commands cycle backwards and forwards through
the input history, successively copying previously entered expressions over the current
line. When you reach the expression you want, simply press Enter to re-run it. These
operations may also be performed from the Edit menu in the session window.

13.5 Executing Several Expressions

You can execute several expressions, by changing more than one line in the session log
before pressing Enter. Each line that you change will be displayed using colour 249 (Red
on White). When you press Enter, these marked lines are copied down and executed in
the order they appear in the log.

Note that you don't actually have to change a line to mark it for re-execution; you can
mark it by overtyping a character with the same character, or by deleting a leading
space for instance.

It is also possible to execute a contiguous block of lines. To do this, you must first select
the lines (by dragging the mouse or using the keyboard) and then copy them into the
clipboard using Shift+Delete (CT) or Ctrl+Insert (CP). You then paste them back into the
session using Shift+Insert (PT). Lines pasted into the session are always marked (Red on
White) and will therefore be executed when you press Enter. To execute lines from an
edit window, you use a similar procedure. First select the lines you want to execute,
then cut or copy the selection to the clipboard. Then move to the session window and
paste them in, then press Enter to execute them.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 45

13.6 Session Print Width (PW)

Throughout its history, APL has used a system variable ⎕PW to specify the width of the
user's terminal or screen. Session output that is longer than ⎕PW is automatically
wrapped and split into multiple lines on the display. This feature of APL was designed in
the days of hard-copy terminals and has become less relevant in modern Windows
environments.

Dyalog continues to support the traditional use of ⎕PW, but also provides an alternative
option to have the system wrap Session output according to the width of the Session
Window. This behaviour may be selected by checking the Auto PW checkbox in the
Session tab of the Configuration dialog box.

13.7 Using Find/Replace in the Session

The search and replace facilities work not just in the Editor as you would expect, but
also in the Session. For example, if you have just entered a series of expressions
involving a variable called SALES and you want to perform the same calculations using
NEWSALES, the following commands will achieve it:

Enter SALES in the Find box, and NEWSALES in the Replace box. Now click the Replace All
button. You will see all occurrences of SALES change to NEWSALES. Furthermore, each
changed line in the session becomes marked (Red on White). Now click on the session
and press Enter (or select Execute from the Action menu).

Once displayed, the Find or Find/Replace dialog box remains on the screen until it is
either closed or replaced by the other. This is particularly convenient if the same
operations are to be performed over and over again, and/or in several windows. Find
and Find/Replace operations are effective in the window that previously had the focus.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 46

14 Value Tips

If you hover the mouse pointer over a name in the Session or Debugger window, APL
will display a pop-up window containing the value of the symbol under the mouse
pointer.

For example, in the following picture the mouse pointer was moved over the name of
the variable HW in the Session window.

The next picture illustrates the Value Tip displayed when the mouse is hovered over the
name of the variable MAT.

Similarly, if you hover the mouse pointer over the name of a function, the system
displays the body of the function as a pop-up, as illustrated below.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 47

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 48

15 Value Tips for External
Functions

Value Tips can also be used to investigate the syntax of external functions. If you hover
over the name of an external function, the Value Tip displays its Function Signature.

For example, in the example below, the mouse is hovered over the external function
dt.AddMonths and shows that it requires a single integer as its argument.

Should the external function provide more than one signature, they are all shown in
the Value Tip as illustrated below. Here the function ToString has four different
overloads.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 49

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 50

16 Configuring Value Tips

You may enable/disable Value Tips and select other options from the General tab of the
Configuration dialog box as shown below.

You may experiment by changing the value of the delay before which Value Tips are
displayed, until you find a comfortable setting.

Note that the colour scheme used to display the Value Tip for a function need not
necessarily be the same colour scheme as you use for the function editor.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 51

17 Session GUI

As distributed, the Session object ⎕SE contains two CoolBar objects. The first, named
⎕SE.cbtop runs along the top of the Session window and contains the toolbars. The
second, named ⎕SE.cbbot, runs along the bottom of the Session windows and contains
the statusbars.

The menubar is implemented by a MenuBar object named ⎕SE.mb.

The toolbars in ⎕SE.cbtop are implemented by four CoolBand objects, bandtb1,
bandtb2, bandtb3 and bandtb4 each containing a ToolControl named tb.

The statusbars in ⎕SE.cbbot are implemented by two CoolBand objects, bandtb1 and
bandtb2, each containing a StatusBar named sb.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 52

18 Session MenuBar

The Session MenuBar (⎕SE.mb) contains a set of menus as follows. Note that, unless
specified, the descriptions refer to the Unicode Edition and the keyboard short-cuts will
be different in Classic Edition.

18.1 The File Menu

The File menu (⎕SE.mb.file) provides a means to execute those APL System
Commands that are concerned with the active and saved workspaces. The contents of
a typical File menu and the operations they perform are illustrated below.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 53

Table 18-1: File Menu Operations

Item Action Description

New [WSClear]
Prompts for confirmation, then clears
the workspace

Open [WSLoad]
Prompts for a workspace file name, then
loads it

Copy [WSCopy]
Prompts for a workspace file name, then
copies it

Save [WSSave] Saves the active workspace

Save As [WSSaveas]
Prompts for a workspace file name, then
saves it

Export [Makeexe]

Creates a bound executable, an OLE
Server, an ActiveX Control, or a .NET
Assembly. See Installation/
Configuration: Creating Executables

Export to
Memory [MakeMemoryAssembly] Creates an in-memory .NET Assembly

Close
AppDomain [CloseAppDomain] Closes .NET App Domain

Drop [WSDrop]
Prompts for a workspace file name, then
erases it

Edit Text File [EditTextFile]

Displays the Open Source File dialog to
select Dyalog script file (.dyalog) or an
arbitrary text file to open in the Editor.
See Editing Scripts and Text Files

Print [PrintFnsInNS]
Prints functions and operators in current
namespace

Print Setup [PrintSetup] Invokes the print set-up dialog box

Continue [Continue]
Saves the active workspace in
CONTINUE.DWS and exits APL

Exit [Off] Exits APL

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 54

18.2 The Edit Menu

The Edit menu (⎕SE.mb.edit) provides a means to recall previously entered input lines
for re-execution and for copying text to and from the clipboard.

Table 18-2: Edit menu operations

Item Action Description

Back [Undo]

Displays the previous input line. Repeated use of
this command cycles back through the input
history

Forward [Redo]

Displays the next input line. Repeated use of this
command cycles forward through the input
history

Cut [Delete] Cuts the selected text to the clipboard

Copy [Copy] Copies the selection to the clipboard

Paste [Paste]

Pastes the text contents of the clipboard into the
session log at the current location. The new lines
are marked and may be executed by pressing
Enter

Paste
Unicode [PasteUnicode]

Same as Paste , but gets the Unicode text from
the clipboard and converts to ⎕AV . Classic Edition
only

Paste Non-
Unicode [PasteAnsi]

Same as Paste , but gets the ANSI text from the
clipboard and converts to ⎕AV . Classic Edition
only

Find [Find] Displays the Find dialog

Replace [Replace] Displays the Find/Replace dialog box

18.3 The View Menu

The View menu (⎕SE.mb.view) toggles the visibility of the Session Toolbar, StatusBar,
and Language Bar.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 55

Table 18-3: View menu operations

Item Action Description

Toolbar Shows/Hides Session toolbars

Statusbar Shows/Hides Session status bars

LanguageBar Shows/Hides Language Bar

18.4 The Window Menu

This contains a single action (⎕SE.mb.windows) which is to close all of the Edit and
Trace windows and the Status window.

Table 18-4: Window menu operations

Item Action Description

Close all Windows [CloseAll] Closes all Edit and Trace windows

Note that [CloseAll] removes all Trace windows but does not reset the state
indicator.

In addition, the Window menu will contain options to switch the focus to any subsidiary
windows that are docked in the Session as illustrated above.

18.5 The Session Menu

The Session menu (⎕SE.mb.session) provides access to the system operations that
allow you to load a session (⎕SE) from a session file and to save your current session
(⎕SE) to a session file. If you use these facilities rarely, you may wish to move them to
(say) the Options menu or even dispense with them entirely.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 56

Table 18-5: Session menu operations

Item Action Description

Open [SELoad]

Prompts for a session file name, then loads the session from
it, replacing the current one. Sets the File property of ⎕SE to
the name of the file from which the session was loaded

Save [SESave]
Saves the current session (as defined by ⎕SE) to the session
file specified by the File property of ⎕SE

Save
As [SESaveAs]

Prompts for a session file name, then saves the current
session (as defined by ⎕SE) in it. Resets the File property of
⎕SE

18.6 The Log Menu

The Log menu (⎕SE.mb.log) provides access to the system operations that manipulate
Session log files.

Table 18-6: Log menu operations

Item Action Description

Clear [NewLog]
Prompts for confirmation, then empties the current
Session log

Open [OpenLog]
Prompts for a Session log file, then loads it into memory,
replacing the current Session log

Save [SaveLog]
Saves the current Session log in the current log file,
replacing its previous contents

Save
As [SaveLogAs]

Prompts for a file name, then saves the current Session
log in it

Print [PrintLog] Prints the contents of the Session log

18.7 The Action Menu

The Action menu (⎕SE.mb.action) may be used to perform a variety of operations on
the current object or the current line. The current object is the object whose name
contains the cursor. The current line is that line that contains the cursor. The Edit, Copy
Object, Paste Object and Print Object items operate on the current object. For example,
if the name SALES appears in the session and the cursor is placed somewhere within it,

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 57

SALES is the current object and will be copied to the clipboard by selecting Copy object
or opened up for editing by selecting Edit.

Table 18-7: Action menu operations

Item Action Description

Edit [Edit] Edit the current object

Trace [Trace]
Executes the current line under the control of the
Tracer

Execute [Execute] Executes the current line

Copy
Object [ObjCopy]

Copies the contents of the current object to the
clipboard

Paste
Object [ObjPaste]

Pastes the contents of the clipboard into the current
object, replacing its previous value

Print
Object [ObjPrint]

Prints the current object. Note that if the object is
being edited, the version of the object displayed in the
edit window is printed

Clear
Stops [ClearTSM] Clears all ⎕STOP , ⎕MONITOR and ⎕TRACE settings

Interrupt [Interrupt] Generates a weak interrupt

Reset [Reset] Performs)RESET

18.8 The Options Menu

The Options menu (⎕SE.mb.options) provides configuration options.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 58

Table 18-8: Options menu operations

Item Action Description

Expose GUI
Properties [ExposeGUI]

Exposes the names of properties,
methods and events in GUI
objects

Expose Root
Properties [ExposeRoot]

Exposes the names of the
properties, methods and events
of the Root object

Expose
Session
Properties

[ExposeSession]

Exposes the names of the
properties, methods and events
of ⎕SE

Line
Numbers [LineNumbers]

Toggle the display of line
numbers in edit and trace
windows on/off

Disable traps
in session [DisableTrapsAtSuspension]

Disables the error trapping
mechanism used by :Trap and
⎕TRAP. This can be useful in
debugging applications

Configure [Configure]
Displays the Configuration dialog
box

Colours [ChooseColors]
Displays the Colours Selection
dialog box

The values associated with the Expose GUI, Expose Root and Expose Session options
reflect the values of these settings in your current workspace and are saved in it. When
you change these values through the Options menu, you are changing them in the
current workspace only.

The default values of these items are defined by the parameters default_wx,
PropertyExposeRoot and PropertyExposeSE which may be set using the Object Syntax
tab of the Configuration dialog.

18.9 The Tools Menu

The Tools menu (⎕SE.mb.tools) provides access to various session tools and dialog
boxes.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 59

Table 18-9: Tools Menu Operations

Item Action Description

Explorer [Explorer] Displays the Workspace Explorer tool

Search [WSSearch] Displays the Workspace Search tool

Status [Status] Displays or hides the Status window

AutoStatus [AutoStatus]
Toggle; if checked, causes the Status window to be
displayed when a new message is generated for it

Event
Viewer [EventViewer] Displays or hides the Event Viewer

Properties [ObjProps] Displays a property sheet for the current object

18.10 The Threads Menu

The Threads menu (⎕SE.mb.threads) provides access to various session tools and
dialog boxes.

Table 18-10: Threads Menu Operations

Item Action Description

Show Threads [Threads] Displays the Threads Tool

Show Stack [Stack] Displays the SI Stack window

Show Token
Pool [TokenPool] Displays the Token Pool window

Auto Refresh [ThreadsAutoRefresh]
Refreshes the Threads Tool on every
thread switch

Pause on Error [ThreadsPauseOnError] Pauses all threads on error

Pause all
Threads [ThreadsPauseAll] Pauses all threads

Resume all
Threads [ThreadsResumeAll] Resumes all threads

Restart all
Threads [ThreadsRestartAll] Restarts all threads

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 60

18.11 The Layout Menu

The Layout menu (⎕SE.mb.layout) provides layout options for the Debugger.

Table 18-11: Layout Menu Operations

Item Action Description

Classic APL
callback Detaches the Debugger window

Debugger at the
bottom

APL
callback

Docks the Debugger at the bottom
(default)

Debugger on the left APL
callback Docks the Debugger on the left

The selected option does not persist if you restart the session.

18.12 The Help Menu

The Help menu (⎕SE.mb.help) provides access to the help system which is packaged as
a single Microsoft HTML Help compiled help file named help\dyalog.chm.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 61

Table 18-12: Help menu operations

Label Action Description

Getting Started [GettingStarted]
Opens your web browser on the getting-
started page on the Dyalog web site

Dyalog Help [WelcomeHelp]
Opens help\dyalog.chm , starting at the
Welcome page

Language
Elements [LangHelp]

Opens help\dyalog.chm , starting at the
first topic in the Language Reference
section

GUI Overview [GuiHelp]
Opens help\dyalog.chm , starting at the
first topic in the Object Reference section

Documentation
Centre [DocCenter]

Opens your web browser on
help\index.html which displays an index
to the on-line PDF documentation and
selected internet links

Dyalog Web Site [DyalogWeb]
Opens your web browser on the Dyalog
home page

Email Dyalog [DyalogEmail]
Opens your email client and creates a new
message to Dyalog Support

Latest
Enhancements [RelNotes]

Opens help\dyalog.chm , starting at the
first topic in the Version 20.0 Release
Notes section. Previous Release Notes are
also included for your convenience.

Read Me [ReadMe]

Opens help\dyalog_readme.htm in your
default web browser. Note that
setup_readme.htm is also included in this
directory

Third Party
Licences [LicenceHelp]

Opens help\dyalog.chm , starting at the
first topic in the Licences for third-party
components

About [About] Displays an About dialog box

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 62

19 Session Popup Menu

The Session popup menu (⎕SE.popup) is displayed by clicking the right mouse button
anywhere in the Session or Editor window.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 63

If the mouse pointer is over a visible object name, the popup menu allows you to edit,
print, delete it or view its properties. Note that the name of the pop-up menu is
specified by the Popup property of ⎕SE.

Table: Session popup menu operations

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 64

Item Action Description

Edit [Edit] Edits the current object

Chart
Wizard ⎕SE.Dyalog.Chart.DoChart

Opens Chart Wizard on current
object

Print [ObjPrint]

Prints the current object. Note that
if the object is being edited, the
version of the object displayed in
the edit window is printed.

Delete [ObjDelete] Erases the current object

Properties [GUIHelp]
Displays the Object Properties dialog
box for the current object

Help [Help]

Displays the help topic associated
with the current object or the APL
symbol under the cursor

Select All [selectall] Selects all text (Editor only)

Cut [Cut] Deletes selected text

Copy [Copy]
Copies the selection to the
clipboard

Paste [Paste]

Pastes the text contents of the
clipboard into the session log at the
current location. The new lines are
marked and may be executed by
pressing Enter.

Paste
Unicode [PasteUnicode]

Same as Paste , but gets the
Unicode text from the clipboard and
converts to ⎕AV

Paste Non-
Unicode [PasteAnsi]

Same as Paste , but gets the ANSI
text from the clipboard and converts
to ⎕AV

Copy Object [ObjCopy]
Copies the contents of the current
object to the clipboard

Paste Object [ObjPaste]
Pastes the contents of the clipboard
into the current object

[LineNumbers] Toggles line numbers on/off

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 65

Item Action Description

Line
Numbers

Align
Comments [AlignComments] Aligns Comments to current column

Explorer [Explorer] Displays the Workspace Explorer

Search [WSSearch] Displays the Find Objects tool

Event
Viewer [EventViewer] Displays the Event Viewer

Threads [Threads] Displays the Threads Tool

Status [Status] Displays the Status window

Colours [ChooseColors] Displays the Colour Selection dialog

Interrupt [Interrupt] Generates a weak interrupt

Open link [OpenLink]

Opens the URL or link using the
appropriate program. Unicode
Edition only.

Copy link to
clipboard [CopyLink]

Copies the URL or link to the
Windows Clipboard. Unicode Edition
only.

For the last two items, see Installation/Configuration: Configuration Dialog General
Tab.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 66

20 The Session Toolbars

The Session toolbars are contained by four separate CoolBand objects, allowing you to
configure their order in whichever way you choose. The tool buttons appear differently
according to whether or not Native Look and Feel is enabled.

The bitmaps for the buttons displayed on the session tool bar are implemented by
three ImageList objects owned by the CoolBar ⎕SE.cbtop. These represent the
ToolButton images in their normal, highlighted and inactive states and are named iln,
ilh and ili respectively. These images derive from three bitmap resources contained
in dyalog.exe named tb_normal, tb_hot and tb_inactive.

If Native Look and Feel is enabled all three bitmap resources are mapped to a different
set of images which are capable of reflecting the Visual Styles in use.

20.1 Native Look and Feel Enabled

20.2 Native Look and Feel Disabled

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 67

20.3 Workspace (WS) Operations

Button Operation Description

Clear
Workspace

Executes the system operation [WSClear] which asks for
confirmation, then clears the workspace

Load
Workspace

Executes the system operation [WSLoad] which displays a
file selection dialog box and loads the selected workspace

Copy
Workspace

Executes the system operation [WSCopy] which displays a
file selection dialog box and copies the (entire) selected
workspace

Save
Workspace

Executes the system operation [WSSaveas] which displays
a file selection dialog box and saves the workspace in the
selected file

Export
Workspace

Executes the system operation [MakeExe] which re-
exports the workspace using the settings, parameters and
options that were previously selected using the Create
Bound File dialog

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 68

20.4 Object Operations

Button Operation Description

Copy Object Executes the system operation [ObjCopy] which copies
the contents of the current object to the clipboard

Paste Object
Executes the system operation [ObjPaste] which copies
the contents of the clipboard into the current object,
replacing its previous value

Print Object

Executes the system operation [ObjPrint] . Prints the
current object. Note that if the object is being edited,
the version of the object displayed in the edit window is
printed.

Edit Object Executes the system operation [Edit] which edits the
current object using the standard system editor

Edit using
Array
Notation

Edits the object using Programming: Array Notation.
(With Native Look and Feel disabled the button is blank.)

SharpPlot
Executes a defined function in ⎕SE that runs the Chart
Wizard to plot the current object using the]chart User
Command.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 69

20.5 Tools

Button Operation Description

Search Executes the system operation [WSSearch] which displays
the Workspace Search tool

Explorer Executes the system operation [Explorer] which displays
the Workspace Explorer tool

Clear all
Stops

Executes the system operation [ClearTSM] which clears all
⎕STOP , ⎕MONITOR and ⎕TRACE settings

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 70

20.6 Edit Operations

Button Operation Description

Copy
Selection

Executes the system operation [Copy] which copies the
selected text to the clipboard

Paste
Selection

Executes the system operation [Paste] which pastes the
text in the clipboard into the current window at the
insertion point

Recall Last Executes the system operation [Undo] which recalls the
previous input line from the input history stack

Recall Next Executes the system operation [Redo] which recalls the
next input line from the input history stack

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 71

20.7 Session Operations

Button Operation Description

Load
Session

Executes the system operation [SELoad] which
displays a file selection dialog box and loads the
selected Session File

Boxing On/
Off

Executes the user command]boxing to toggle
boxing on/off.

Select Font Selects the font to be used in the Session window

Select Font
Size

Selects the size of the font to be used in the Session
window

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 72

21 Session StatusBar

The session status bar is represented by two CoolBands each of which contains a
StatusBar object. There are a number of StatusFields as illustrated below. Your own
status bar may be configured differently.

Classic Edition

Unicode Edition

The StatusField objects owned by the session StatusBar may have special values of
Style, which are used for operations relevant only to the Session. These styles are
summarised in the tables shown below.

Table: Session status fields: first row

StatusField Style Description

hint None Displays hints for the session objects, or "Ready..." when
APL is waiting for input

insrep InsRep Displays the mode of the Insert key (Ins or Rep)

mode KeyMode
Displays the keyboard mode. This is applicable only to a
multi-mode keyboard. The text displayed is defined by
the Mn= string in the Input Table. Classic Edition Only

num NumLock Indicates the state of the Num Lock key. Displays "NUM"
if Num Lock is on, blank if off

caps CapsLock Indicates the state of the Caps Lock key. Displays "Caps" if
Caps Lock is on, blank if off

pause Pause Displays a flashing red "Pause" message when the Pause
key is used to halt session output

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 73

Table: Session status fields: second row

StatusField Style Description

curobj CurObj Displays the name of the current object (the name
last under the input cursor)

tc ThreadCount Displays the number of threads currently running
(minimum is 1)

dqlen DQLen Displays the number of events in the APL event queue

trap Trap Turns red if ⎕TRAP is set

si SI Displays the length of ⎕SI . Turns red if non-zero

io IO Displays the value of ⎕IO . Turns red if ⎕IO is not equal
to the value of the default_io parameter

ml ML Displays the value of ⎕ML . Turns red if ⎕ML is not equal
to the value of the default_ml parameter

21.1 Toggle Status Fields

In the default Session files distributed with this release, the Statusfields used to display
the value of ⎕IO, the state of the Insert key (Ins/Rep) and the current keyboard mode
(for example, Apl/Uni) have callback functions attached to MouseDblClick. This means
that you can toggle the state of these fields by double-clicking with the left mouse
button.

If you dislike this behaviour, you may set the Event property of the StatusFields to 0 and
re-save the Session file. Alternatively, you may modify the buildse workspace and
rebuild the Session from scratch.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 74

22 Status Window

The Status window is used to display system messages and supplementary information.
These include the operations that take place when you register an OLEServer or
ActiveXControl.

The Status window is also used to display supplementary information about errors. For
example if you attempt to use a .NET method with incorrect argument(s) you will get a
suitable error message in the Status window, in addition to the DOMAIN ERROR message
in the Session.

Example

The Status window can be explicitly displayed or hidden using the [Status] system
operation which is associated with the Tools/Status menu item. There is also an option
to have the Status window appear automatically whenever a new message is written to
it. This option is selected using the [AutoStatus] system operation which is associated
with the Tools/AutoStatus menu item.

⎕USING←'System'
bd←⎕NEW DateTime(2015 4) ⍝ Typo (2015 4 30)

DOMAIN ERROR
bd←⎕NEW DateTime(2015 4) ⍝ Typo (2015 4 30)

∧

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 75

Note that when you close the Status window, all the system messages in it are cleared.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 76

23 Workspace Explorer

The Explorer tool is a modeless dialog box that may be toggled on and off by the
system action [Explorer]. In a default Session, this is attached to a MenuItem in the
Tools menu and a Button on the session toolbar.

The Explorer contains two sub-windows. The one on the left displays the namespace
structure of your workspace using a TreeView. The right-hand window is a ListView that
displays the contents of the namespace that is selected in the TreeView.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 77

The Explorer is closely modelled on the Windows Explorer in Windows and the facilities
it provides are very similar. For Windows users, the operation of this tool is probably
self-explanatory. However, other users may find the following discussion useful.

23.1 Exploring the Workspace

The TreeView displays the structure of your workspace. Initially it shows the root and
Session namespaces # and ⎕SE. The icon for # is open indicating that its contents are
those that appear in the ListView. You can expand or collapse the TreeView of the
workspace structure by clicking on the mini-buttons (labelled + and -) or by double-
clicking the icons. A single click on a namespace icon opens it and causes its contents to
be displayed in the ListView. Another way to open a namespace is to double-click its
icon in the ListView. Only one namespace can be open at a time. The icons used in the
display are described below.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 78

Class

Namespace

GUI Namespace

Function

Variable

Operator

Indicates an object that has been erased

Type Library

.NET object

23.2 Viewing and Arranging Objects

The ListView displays the contents of a namespace in one of four different ways namely
Large Icons view, Small Icons view, List Icons view or Details view. You can switch
between views using the View menu or the tool buttons that are provided. In the first

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 79

three views, the system displays the name of the object together with an icon that
identifies its type. In Details view, the system displays several columns of additional
information. You may resize the column widths by dragging or double-clicking the lines
in the header. To hide a column, drag its width to the far left. The additional columns
are:

Location
This is the namespace containing the object. By definition, this is the
same for all of the objects shown in the ListView and is normally
hidden.

Type Type of object.

Description

For a function or operator, this is the function header stripped of
localised names and comment. For a variable, the description
indicates its rank, shape and data type. For a namespace, the
description indicates the nature of the namespace; a plain
namespace is described as namespace, a GUI Form object is
described as Form, and so forth.

Size The size of the object as reported by ⎕SIZE.

Modified
on

For functions and operators, this is the timestamp when the object
was last fixed. For other objects this field is empty.

Modified
by

For functions and operators, this is the name of the user who last
fixed the object. For other objects this field is empty.

In any view, you may arrange the objects in ascending order of name, size, timestamp
or class by clicking the appropriate tool button. In Details view, you may sort in
ascending or descending order by clicking on the appropriate column heading. The first
click sorts in ascending order; the second in descending order.

23.3 Moving and Copying Objects

You can move and copy objects from one namespace to another using drag-drop or
from the Edit menu.

To move one or more objects using drag-and-drop editing:

Select the objects you want to move in the ListView.
Point to one of the selected objects and then press and hold down the left
mouse button. When the drag-and-drop pointer appears, drag the object(s) to
another namespace in the TreeView. To indicate which of the namespaces is the

1.
2.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 80

current target, its name will be highlighted as you drag the selected object(s)
over the TreeView.
Release the mouse button to drop the objects into place. The objects will
disappear from the ListView because they have been moved to another
namespace.

To copy one or more objects using drag-and-drop editing, the procedure is the same
except that you must press and hold the Ctrl key before you release the mouse button.

You may also move and copy objects using the Edit menu. To do so, select the object(s)
and then choose Move or Copy from the Edit menu. You will be prompted for the name
of the namespace into which the objects are to be moved or copied. Enter the
namespace and click OK.

23.4 Editing and Renaming Objects

You can open up an edit window for a function or variable by double-clicking its icon, or
by selecting it and choosing Edit from the Edit menu or from the popup menu. You may
rename an object by clicking its name (as opposed to its icon) and then editing this
text. You may also select the object and choose Rename from the Edit menu or from
the popup menu. Note that when you rename an object, the original name is
discarded. Unlike changing a function name in the editor, this is not a copy operation.

23.5 Using the Explorer as an Editor

If you open the Fns/Ops item, the names of the functions and operators in the
namespace are displayed below it alphabetically in the left (tree view) pane. When you
select one of these names, the function itself is opened in the right (list view) pane.

3.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 81

You may use this feature to quickly cycle through the functions (or variables) in a
namespace, pressing cursor up and cursor down in the left (tree view) pane to move
from one to another.

You may also edit the function directly in the right (list view) pane before moving on to
another.

23.6 The File Menu

The File menu, illustrated above, provides the following actions. All but Print setup and
Close act on the object or objects that are currently selected in the ListView.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 82

Print Prints the object(s). Note that if an object is open in the editor, the
version shown in the edit window is printed.

Print
setup Displays the Print Configuration dialog box.

Delete Erases the object(s).

Rename Renames the object. This option only applies when a single object is
selected.

Properties Displays a property sheet; one for each object that is selected.

Close Closes the Explorer

23.7 The Edit Menu

The Edit menu, illustrated above, provides the following actions. The Edit, Copy and
Move operations act on the object or objects that are currently selected in the
ListView.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 83

Edit Opens an edit window for each of the objects selected.

Copy Prompts for a namespace and copies the object(s) there.

Move Prompts for a namespace and moves the object(s) there.

Select
Functions Selects all of the functions and operators in the ListView.

Select
Variables Selects all of the variables in the ListView.

Select None Deselects all of the objects in the ListView.

Select All Selects all of the objects in the ListView.

Invert
Selection

Deselects the selected objects and selects all those that were
not selected.

23.8 The Options Menu

The Options menu, illustrated above, provides the following actions.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 84

Toolbar Displays or hides the Explorer toolbar.

Toolbar
Captions Displays or hides the button captions on the Explorer toolbar.

StatusBar Displays or hides the Explorer statusbar.

Type
Libraries Enables/disables the exploring of Type Libraries

Expand All
Expands all namespaces and sub-namespaces in the TreeView,
providing a complete view of the workspace structure, including or
excluding the Session object ⎕SE .

Refresh
Now

Redisplays the TreeView and ListView with the current structure
and contents of the workspace. Used if Auto Refresh is not enabled.

Auto
Refresh

Specifies whether or not the Explorer immediately reflects changes
in the active workspace.

If Auto Refresh is checked the Explorer is updated every time APL returns to desk-
calculator mode. This means that it is always in step with the active workspace. If you
have a large number of objects displayed in the Explorer, the update may take a few
seconds and you may wish to prevent this by un-checking this menu item If you do so,
the Explorer must be explicitly updated by selecting the Refresh Now action.

23.9 The View Menu

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 85

The View menu, illustrated above, provides the following actions.

Columns Allows you to select which columns you wish to display.

Large Icons Selects Large Icons view in the ListView.

Small Icons Selects Small Icons view in the ListView.

List Icons Selects List Icons view in the ListView.

Details Selects Details view in the ListView.

Scope Allows you to choose whether the Explorer displays objects in local
scope or in global scope.

Arrange
Icons Sorts the items in the ListView by name, type, size or date.

Line up
Icons Rearranges the icons into a regular grid.

Auto
Arrange

If checked, the icons are automatically re-arranged when
appropriate

.

23.10 The Tools Menu

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 86

The Tools menu, illustrated above, provides the following actions.

Find Displays the Find Objects Tool

Go to Prompts for a namespace and then opens that namespace in the
TreeView, displaying its contents in the ListView

Go to Session
Space

Opens the namespace in the TreeView control corresponding to
the current space in the Session.

Set Session
Space

Sets the current space in the Session to be the namespace that is
currently open in the TreeView.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 87

24 Browsing Classes

Classes are represented by

icons. The picture below shows 3 classes: Bird, Parrot and DomesticParrot.

If you open the # node in the left-hand pane, you see the contents of # as a tree.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 88

24.1 Browsing Class Scripts

Selecting DomesticParrot in the left-hand pane brings up its Class Script in the right-
hand pane.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 89

… and selecting Parrot in the left-hand pane brings up the Class Script for Parrot.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 90

… and finally, selecting Bird in the left-hand pane brings up the Class Script for Bird.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 91

If you open a Class node, a tree appears to help you to navigate within the Class script.
In the picture below, the user has opened the [Methods] node and then clicked on
Speak. The system has responded by scrolling to (if necessary) and highlighting the
appropriate section of the script.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 92

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 93

25 Browsing Type Libraries

When the View/Type Libraries option is enabled, the Workspace Explorer allows you to:

Browse the Type Libraries for all the COM server objects that are installed on
your computer, whether or not they are loaded in your workspace.
Load Type Libraries for COM objects
Browse the Type Library associated with an OLEClient object that is already
instantiated in the workspace.

If the Microsoft .NET Framework is installed, you may in addition:

Load Metadata for specific .NET classes
Browse the loaded Metadata, viewing information about classes, methods,
properties and so forth.

If the Type Libraries option is enabled, the Workspace Explorer displays a folder labelled
TypeLibs which, when opened, displays two others labelled Loaded Libraries and
Registered Libraries as shown below.

•

•
•

•
•

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 94

25.1 Browsing Registered Libraries

If you open the Registered Libraries folder, the Workspace Explorer will display in the
tree view pane the names of all the Type Libraries associated with the COM Server
objects that are installed on your computer.

If you select one of these Library names, some summary information is displayed in the
list view pane.

For example, the result of selecting the Microsoft Excel 16.0 Object Library is illustrated
below.

If instead, you select the Registered Libraries folder itself, the list of Registered Type
Libraries is displayed in the list view pane

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 95

25.2 Loading a Type Library

You can load a library shown in the tree view pane by selecting Load from its context
menu.

In either case, a message box will appear asking you to confirm. The operation to load a
Type Library may take a few moments to complete.

Notice that if the selected Library references any other libraries, they too will be
loaded. For example, loading the Microsoft Excel 16.0 Object Library brings in the
Microsoft Office 16.0 Object Library and the Microsoft Visual Basic for Applications
Extensibility 5.3 Library too. It also contains references to a general library called the
OLE Automation Type Library, so this is also loaded.

When you)SAVE your workspace, all of the Type Libraries that you have loaded will be
saved with it. Note that type library information can take up a considerable amount of
workspace.

25.3 Browsing Loaded Libraries

If you have already loaded any Type Libraries into the workspace, using the Workspace
Explorer or as a result of creating one or more OLEClient objects, you can select and
open the Loaded Libraries folder.

The picture below illustrates the effect of having loaded the Microsoft Excel 16.0 Object
Library.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 96

Notice that any external references to other libraries causes these to be brought in too.

If you select a loaded Type Library, summary information is displayed in the list view
pane.

If you open a loaded Type Library, four sub-folders appear named Object CoClasses,
Objects, Enums and Event Sets respectively.

25.4 Object CoClasses

A Type Library describes a number of objects. Typically, all of the objects have
properties and methods, but only some of them, perhaps just a few, generate events.
Objects which generate events are represented by CoClasses, each of which has a
pointer to the object itself and a pointer to an event set.

For example, the Microsoft Excel 16.0 Object Library contains seven CoClasses named
Application, Chart, Global etc as shown below.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 97

Opening the Application folder you can see that the Application CoClass comprises the
_Application object coupled with the AppEvents event set as shown below.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 98

The specific methods, properties and events supported by the CoClass object can be
examined by opening the appropriate sub-folder. The same information for these and
other objects is also accessible from the Objects and Event Sets folders as discussed
below.

25.5 Objects

The Objects folder contains several sub-folders each of which represents a named
object defined in the library.

Each object folder contains two sub-folders named Methods and Properties. Selecting
one of these causes the list of Methods or Properties to be displayed in the list view
pane. The picture below shows the Methods exposed by the Microsoft Excel 16.0
Range object.

If you open the Methods or Properties subfolder, you can display more detailed
information about individual Methods and Properties. For example, the following
picture shows information about the SaveAs method exposed by the Microsoft Excel
16.0 Worksheet object.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 99

This tells you that the SaveAs method takes up to 10 parameters of which the first,
Filename, is mandatory and is of data type VT_BSTR (a character string). Note that [in]
indicates that the parameter is an input parameter.

Incidentally, the optional Fileformat parameter is an example of a parameter whose
value must be one of a list of Enumerated Constants. Even without looking at the
documentation, the possible values can be deduced by browsing the Enums folder, with
the results shown below.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 100

You can therefore deduce that the following expression, executed in the namespace
associated with the currently active worksheet, will save the sheet in comma-separated
format (CSV) in a file called mysheet.csv:

or

25.6 Event Sets

The Event Sets folder contains several sub-folders each of which represents a named
set of events generated by the objects defined in the library.

If you open one of these event sets, the names of the events it contains are displayed
in the tree view pane. If you then select one of the events, its details are displayed in
the list view pane as shown below.

SaveAs 'MYSHEET.CSV' xlCSV

SaveAs 'MYSHEET.CSV' 6

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 101

This example shows that when it fires, the SheetActivate event invokes your callback
function with a single argument named Sh whose datatype is VT_DISPATCH (in practice,
a Worksheet object).

25.7 Enums

The Enums folder will typically contain several sub-folders each of which represents a
named set of enumerated constants.

If you select one of these sets, the names and values of the constants it contains are
displayed in the list view pane as shown below.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 102

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 103

26 Browsing .Net Classes

Microsoft supplies a tool for browsing .NET Class libraries called ILDASM.EXE2 .

As a convenience, the Dyalog APL Workspace Explorer has been extended to perform a
similar task as ILDASM so that you can gain access to the information within the context
of the APL environment.

The information that describes .NET classes, which is known as its Metadata, is part of
the definition of the class and is stored with it. This Metadata corresponds to Type
Information in COM, which is typically stored in a separate Type Library.

To gain information about one or more .NET Classes, open the Workspace Explorer,
right click the Metadata folder, and choose Load.

This brings up the Browse .NET Assembly dialog box as shown below. Navigate to
the .NET assembly of your choice, and click Open.

2 ILDASM.EXE can be found in the .NET SDK and is distributed with Visual Studio

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 104

The .NET Classes provided with the .NET Framework are typically located in C:
\WINDOWS\Microsoft.NET\Framework64\V4.0.30319 (on a 64-bit computer). The last
named folder is the Version number.

The most commonly used classes of the .NET Namespace System are stored in this
directory in an Assembly named mscorlib.dll, along with a number of other
fundamental .NET Namespaces.

The result of opening this Assembly is illustrated in the following screen shot. The
somewhat complex tree structure that is shown in the Workspace Explorer merely
reflects the structure of the Metadata itself.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 105

Opening the System/ Classes sub-folder causes the Explorer to display the list of classes
contained in the .NET Namespace System as shown in the picture below.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 106

The Constructors folder shows you the list of all of the valid constructors and their
parameter sets with which you may create a new instance of the Class by calling New.
The constructors are those named .ctor; you may ignore the one named .cctor, (the
class constructor) and any labelled as Private.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 107

For example, you can deduce that DateTime.New may be called with three numeric
(Int32) parameters, or six numeric (Int32) parameters, and so forth. There are in fact
seven different ways that you can create an instance of a DateTime.

For example, the following statement may be used to create a new instance of
DateTime (09:30 in the morning on 30th April 2001):

The Properties folder provides a list of the properties supported by the Class. It shows
the name of the property followed by its data type. For example, the DayOfYear
property is defined to be of type Int32.

mydt←⎕NEW DateTime (2001 4 30 9 30 0)

mydt
30/04/2001 09:30:00

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 108

You can query a property by direct reference:

mydt.DayOfWeek
Monday

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 109

Notice too that the data types of some properties are not simple data types, but
Classes in their own right. For example, the data type of the Now property is itself
System.DateTime. This means that when you reference the Now property, you get back
an object that represents an instance of the System.DateTime object:

The Methods folder lists the methods supported by the Class. The Explorer shows the
data type of the result of the method, followed by the name of the method and the
types of its arguments. For example, the IsLeapYear method takes an Int32
parameter (year) and returns a Boolean result.

mydt.Now
07/11/2001 11:30:48

⎕TS
2001 11 7 11 30 48 0

mydt.IsLeapYear 2000
1

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 110

Many of the reported objects are listed as Private, which means they are inaccessible
to users of the class – you are not able to call them or inspect their value. For more
information about classes, see Object Oriented ProgrammingProgramming: Introducing
Classes.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 111

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 112

27 Find Objects Tool

The Find Objects tool is a modeless dialog box that may be toggled on and off by the
system action [WSSearch]. In a default Session, this action is attached to a MenuItem
in the Tools menu and a Button on the session toolbar.

The Find Objects tool allows you to search the active workspace for objects that satisfy
various criteria.

27.1 Name

The Named field is used to search for objects with a particular name and is case-
insensitive.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 113

27.2 Containing Text

The Containing Text field is used to search for objects that contain a particular text
string. The string search is controlled by the fields Match Case, Use Regular
Expressions, Match Whole Word and As Symbol Reference.

Match Case specifies whether or not the string search (for name and/or contents) is
case sensitive.

Use Regular Expressions specifies whether or not regular expressions are applicable.
For example, if you enter FOO* into the field labelled Containing Text and check this
box, the system will find objects that contain any text string starting with the 3
characters FOO.

If this box is not checked, the system will find objects that contain the 4 characters
FOO*.

Text searches are performed using PCRE. If the Use Regular Expressions box is checked,
the full range of regular expressions provided by PCRE are available for use. See Dyalog
APL Language: Pcre Specifications.

Match Whole Word specifies whether or not the search is restricted to entire words.

As Symbol Reference specifies whether or not the search is restricted to APL symbols. If
so, matching text in comments and other strings is ignored.

27.3 Object Criteria

Four check boxes are provided for you to specify the types of objects you wish to
locate. For example, if you clear Variables, Operators and Namespaces, the system will
only search for functions.

To make the search dependent upon modification, you must check the Modified
Objects check box.

To locate objects modified by a particular user, enter the user name in the field labelled
Modified by. Otherwise leave this blank.

To find objects which have been modified at a certain time or within a specified period
of time, check the appropriate radio button and enter the appropriate dates or time
spans.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 114

If you wish to restrict the search to find only objects whose size is within a given range,
check the box labelled Size is between and enter values into the fields provided.

27.4 Location Criteria

You can restrict the search to a particular namespace by typing its name into the field
labelled Look in. You can further restrict the search by clearing the Include sub-
namespaces and Include Session namespace check boxes. Clearing the former restricts
the search to the root namespace or to the namespace that you have specified in Look
in, and does not search within any sub-namespaces contained therein. Clearing the
latter causes the system to ignore ⎕SE in its search.

When you press the Find Now button, the system searches for objects that satisfy all of
the criteria that you have specified on all 3 pages of the dialog box and displays them in
a ListView. The example below illustrates the result of searching the workspace for all
objects containing references to the symbol Speak.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 115

You may change the way in which the objects are displayed in the ListView using the
View menu or the tool buttons, in the same manner as for objects displayed in the
Workspace Explorer. You may also edit, delete and rename objects in the same way.
Furthermore, objects can be copied or moved by dragging from the ListView in the
Search tool to the TreeView in the Explorer.

If you wish to specify a completely new set of criteria, press the New Search button.
This will reset all of the various controls of the dialog box to their default values.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 116

28 Object Properties Dialog

The Object Properties dialog box displays detailed information for an APL object. It is
displayed by executing the system action [ObjProps]. In a default Session, this is
provided in the Tools menu, the Session popup menu and from the Explorer. An
example (for a function) is shown below.

28.1 Properties Tab

The Properties tab displays general information about the object. For a function, this
includes an extract from its header line, when it was last modified, and by whom.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 117

28.2 Value Tab

For a variable, the Values tab displays the value of the variable. For a function, it
displays its canonical representation.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 118

28.3 Monitor Tab

The Monitor tab applies only to a function and displays the result of ⎕MONITOR. The
Reset button resets ⎕MONITOR for the lines on which it is currently set. The Set All Lines
button sets ⎕MONITOR to monitor all the lines in the function. The Clear All Lines
switches ⎕MONITOR off.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 119

28.4 COM Properties Tab

The COM Properties tab applies only to a function in an OLEServer or ActiveXControl
namespace. The tab is used to define arguments and data types for an exported
Method or Property. For further information, see Interface Guide.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 120

28.5 Net Properties Tab

The Net Properties tab applies only to a function in a NetType namespace. The tab is
used to define arguments and data types for an exported Method or Property. For
further information, see .

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 121

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 122

29 Editor

29.1 Invoking the Editor

The editor may be invoked in several ways. From the session, you can use the system
command)ED or the system function ⎕ED, specifying the names(s) of the object(s) to
be edited. You can also type the name of the object and then press Shift+Enter (ED),
click the Edit tool on the tool bar, or select Edit from the Action menu. If you invoke the
editor when the cursor is positioned on the empty input line, with a suspended
function in the state indicator, the editor is invoked on the suspended function and the
cursor is positioned on the line at which it is suspended. This is termed naked edit.
These ways of invoking the editor apply only in the session window

In addition, there is a general point-and-edit facility which works in edit and trace
windows too. Simply position the input cursor over a name and double-click the left
mouse button. Alternatively, you can press Shift+Enter or select Edit from the File
menu. The name can appear in the Session, in an Edit window, or in a Trace window;
the effect is the same. Note that, in the Session, typing a name and pressing Shift+Enter
is actually a special case of point-and-edit. Note also that a naked edit can be invoked
by double-clicking the left mouse button in the empty input line.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 123

The type of a new object defaults to function/operator unless the object is shadowed,
in which case it defaults to a variable (vector of character vectors). You can however
specify the type of a new object explicitly using)ED or ⎕ED. For example, typing ")ED
∊LIST -MAT" in a CLEAR WS would create Edit windows for a vector of character vectors
named LIST and a character matrix called MAT. See)ED or ⎕ED for details.

If the name is not already being edited, it is assigned a new edit window. If you edit a
name which is already being edited, the system focuses on the existing edit window
rather than opening a new one. Edit windows are displayed using the colour
combination associated with the type of the object being edited.

If the name is followed by a line-number in square brackets, for example, MyFn[1000],
the Editor will position the cursor on the specified line. This applies to all methods of
invoking the Editor, except ⎕ED. There must not be a space between the last character
of the name and the "[".

29.2 Window Management (Standard)

Unless Classic Dyalog mode is selected (Options/Configure/Trace/Edit), the Editor is a
Multiple Document Interface (MDI) window that may be a stand-alone window, or be
docked in the Session window. Each of the objects being edited is displayed in a
separate sub-window. Individual edit windows are managed using standard MDI
facilities.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 124

The first edit sub-window window is created at the position specified by the
edit_first_y and edit_first_x parameters which are specified in terms of the size of a
character in the current font relative to the top-left corner of the main Editor window.
Subsequent ones are staggered according to the values of the edit_offset_y and
edit_offset_x parameters.

The initial size of an edit window is specified by the edit_rows and edit_cols
parameters.

Note that the blue triangles indicate that the line of text is longer than can be displayed
in the current Edit window.

By default, the Session has the Editor docked along the right edge of the Session
window. When you edit a function, the Editor window automatically springs into view
as illustrated below.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 125

You can resize the Editor pane to view more or less of the Session itself, by dragging its
title bar.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 126

Using the buttons in the title bar, you can instantly maximise the Editor pane to allow
you to concentrate on editing, or minimise it to reveal the entire Session. In either case,
the restore button quickly restores the 2-pane layout.

The picture below shows the effect of maximising the Editor. The BUILD_SESSION edit
window is itself maximised within the Editor too.

Note that when the Editor has the focus, the Editor menubar is displayed in place of
the Session menubar.

29.3 Window Management (Classic Dyalog mode)

If Classic Dyalog mode is selected (Options/Configure/Trace/Edit) each Edit window is a
top-level window created as a child of the Session window. This means that normally
Edit windows appear on top of the Session. However, if the SessionOnTop parameter is
set, the Session window, when given the focus, will appear on top of Edit windows.

When the first Edit window is opened, its position is determined as follows:

If the ClassicModeSavePosition parameter is set, the first Edit window is
displayed at the position that was previously occupied by the most recently
saved Edit window.

•

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 127

If not, the first edit window is created at the position specified by the
edit_first_y and edit_first_x parameters which are specified in terms of the size
of a character in the current font relative to the top-left corner of the screen.

The initial size of an edit window is specified by the edit_rows and edit_cols
parameters.

Subsequent ones are staggered according to the values of the edit_offset_y and
edit_offset_x parameters.

•

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 128

29.3.1 Moving around an edit window

You can move around in the edit window using the scrollbar, the cursor keys, and the
PgUp and PgDn keys. In addition, Ctrl+Home (UL) moves the cursor to the beginning of
the top-line in the object and Ctrl+End moves the cursor to the end of the last line in
the object. Home (LL) and End (RL) move the cursor to the beginning and end
respectively of the content on the line containing the cursor. That is, if a line of text
starts or ends with multiple spaces, Home (LL) and End (RL) move the cursor to the left/
right end of the text respectively, ignoring the multiple spaces. Repeating the keystroke
will move to the limit of the line, including the spaces.

29.3.2 Closing an edit window

Closing an edit window from its System Menu has the same effect as choosing Exit from
the File Menu; namely that it fixes the object in the workspace and then closes the edit
window.

29.3.3 Minimising an edit window

Minimising an edit window causes it to be displayed as a Dyalog Edit icon, with the
name of the object underneath. The edit window can be restored in the normal way, or
by an attempt to re-edit the same name.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 129

29.4 Selecting Text

You may select text in an Editor window by clicking the left or right mouse button over
any character, dragging out a highlighed area, and then releasing the mouse button.
When using the left button, moving up or down one line extends the selection from the
beginning of that line, so the selection may be ragged. The right button selects a
rectangular box.

29.4.1 Editor ToolBar

The buttons on the Editor toolbar vary according to what you are editing:

Array

Function or operator

Class or namespace script

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 130

Button Description

Toggle line numbers

Toggles Line numbers on/off

Toggle tree view

Toggles the treeview on/off. See Editing Classes .

Edit in Array
Notation

Switches Editor to Array Notation syntax if possible.

Previous Location

Certain operations (such as selecting an item in the
treeview) reposition the caret in the Editor window. This
button moves the caret back to its previous location.

Comment selected
text

Inserts a comment symbol to the left of the selection in
each of the selected lines.

Uncomment
selected text

Removes the comment symbol (if present) from the left-
most column of the selection in each of the selected lines.

Saves changes and closes the current edit window

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 131

Button Description

Save changes and
return

Search Box

Enter search text and click one of the following two buttons

Search for Next
Match

Locates the next occurrence of the search text

Search for Previous
Match

Locates the previous occurrence of the search

Search hidden text

Determines whether or not the search examines collapsed
blocks

Match case

Specifies whether or not the search is case-sensitive

Match whole word

Specifies whether or not the search matches a whole word

Specifies whether or not the search uses PCRE regular
expressions

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 132

Button Description

Use Regular
Expressions

Refactor text as
method

Inserts a Method template for the selected name

Refactor text as
field

Inserts a Field template for the selected name

Refactor text as
property

Inserts a Property template for the selected name

29.4.2 The File Menu

The File menu is displayed when editing a simple object and provides the following
options.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 133

Item Description

Fix

Fixes the object in the workspace, but leaves the edit window
open. Edit history is also preserved. If the data has changed and
the confirm_fix parameter is set, you will be prompted to
confirm.

Fix whole
script (Disabled unless editing a script)

Open File Allows you to edit a Dyalog script file or an arbitrary text file.

Save Saves the file being edited.

Save As Renames and saves the file being edited.

Always ask on
close Toggles the value of the confirm_fix parameter.

Edit Opens an Edit window on the name under the cursor (Disabled
when there is no such name).

Print Prints the current contents of the edit window

Print Setup Displays the Print Configuration dialog box

Properties Displays the Object Properties dialog box for the current object

Exit (and Fix)
Fixes the object in the workspace and closes the edit window. If
the data has changed and the confirm_exit parameter is set, you
will be prompted to confirm

Exit (and fix
script) (Disabled unless editing a script)

Exit and
discard
changes

Closes the edit window, but does not fix the object in the
workspace. If the data has changed and the confirm_abort
parameter is set, you will be prompted to confirm.

29.4.3 The File Menu (editing a script)

When a script is being edited, the File menu shows these items:

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 134

Fix whole script Fixes the entire script

Fix only functions Fixes only the functions in the script.

Exit and fix whole script Fixes the entire script, and exits the Editor.

Exit and fix only
functions

Fixes only the functions in the script and exits the
Editor.

Editing Scripts

Suppose that you have a Class that manages a list of items in a shared Field, so
somewhere in the script would appear a line such as:-

You run your application for a bit, and List, which was initially empty, gets updated as
new instances of the Class are created. You then edit the Class to add a new function,
or fix a bug. In this instance, when you exit the editor you may not want List to be
reset back to the empty vector although you do want the new version of the
function(s) in the Class to be fixed.

Nevertheless whenever you edit the Class when it is not suspended, you probably
always want the entire script to be re-fixed, and List re-initialised.

The options in the File menu shown above provide for these alternatives.

In addition, the Configuration Dialog (see Installation/Configuration: Configuration
Dialog Trace Edit Tab) allows you to define the behaviour of the keystrokes and for both
the suspended case and the non-suspended case. This association will be displayed
against the appropriate action according to the state of the script you are editing.

29.4.4 The Edit Menu

The Edit menu provides a means to execute those commands that are concerned with
editing text. The Edit menu and the actions it provides are described below.

:Field shared public List←⍬

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 135

Item Description

Reformat Reformats the function body in the edit window, indenting
control structures as appropriate.

Reformat Scripts
Automatically

If checked, the Editor will automatically reformat a Dyalog
script when it loads it.

Undo
Undoes the last change made to the object. Repeated use of
this command sequentially undoes each change made since
the edit window was opened.

Redo Re-applies the previous undone change. Repeated use of this
command sequentially restores every undone change.

Select All Selects and highlights the entire contents of the Edit window.

Cut Copies the selected text to the clipboard and removes it from
the object.

Copy Copies the selected text to the clipboard.

Paste Copies the text in the clipboard into the object at the current
location of the input cursor.

Paste Unicode Same as Paste , but gets the Unicode text from the clipboard
and converts to ⎕AV

Paste Non-
Unicode

Same as Paste , but gets the ANSI text from the clipboard and
converts to ⎕AV .

Clear Deletes the selection or the character under the cursor. Has
no effect on the clipboard

Open Line Inserts a blank line immediately below the current one.

Delete Line Deletes the current line.

Goto Line Prompts for a line number, then positions the cursor on that
line.

Find Displays the Find dialog box.

Replace Displays the Replace dialog box.

Highlight All
Matches

If checked, all strings in the object being edited that match
the search string are highlighted. The highlightedted items
change dynamically as the search string is entered or
changed.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 136

Item Description

Comment
selected lines

Adds a comment symbol to the beginning of all selected
lines.

Uncomment
selected lines

Removes a comment symbol from the beginning of all
selected lines.

Toggle Local name Adds or removes the name under the cursor to/from the
function header line.

The Find and Replace items are used to display the Find dialog box and the Find/
Replace dialog box respectively. These boxes are used to perform search and replace
operations and are described later in this Chapter.

Once displayed, each of the two dialog boxes remains on the screen until it is either
closed or replaced by the other. This is convenient if the same operations are to be
performed over and over again, and/or in several windows. Find and Find/Replace
operations are effective in the window that previously had the focus.

29.4.5 The Syntax Menu

The Syntax menu provides options related to the display of data in the Edit window.
The initial items are concerned with syntax colouring; for workspace objects, the
default is APL for functions and operators, and Nothing for variables. The final item
toggles how arrays are displayed in the Editor.

Item

Nothing

Colour as APL

Colour as JSON

Colour as XML

Show as Array Notation

29.4.6 The Window Menu

The Window menu provides a means to control the display of the various edit
windows. The Window menu and the actions it provides are described below.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 137

Item Description

Close All
Windows

Closes all the edit windows. If Confirm on Edit Window Closed is
checked, you will be prompted to confirm for any objects that
you have changed.

Cascade Arranges the edit windows in overlapping fashion.

Tile Vertically Arranges the edit windows tiled one above the other.

Tile
Horizontally Arranges the edit windows tiled alongside one another.

Arrange Icons Arranges any minimised edit windows.

Editor Allows you to Select the edit window corresponding to the
named object.

29.4.7 The Refactor Menu

The Refactor menu appears only when editing a Class and provides the following
options. In each case, you must highlight a name in the Edit window, and then select
one of these options to insert the appropriate template for that name into the body of
the Class.

Item Description

Add text as Field Inserts a Field template for the selected name.

Add text as Property Inserts a Property template for the selected name.

Add text as Method Inserts a Method template for the selected text name.

29.4.8 The View Menu

The View menu provides the following actions.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 138

Item Description

Trace Displays a column to the left of the function that displays ⎕TRACE
settings

Stop Displays a column to the left of the function that displays ⎕STOP
settings

Monitor Displays a column to the left of the function that displays
⎕MONITOR settings

Line Numbers Toggles the display of line numbers on/off.

Function Line
Numbers

Toggles the display of line numbers on individual functions on/off.
This option is only enabled when editing a Class, Namespace
script or Interface.

Tree View Toggles the display of the treeview in the left-hand pane.

Compiler
Errors

If enabled, the Editor identifies which lines of code would not
compile. These are identified by a red vertical line to the left.
Hovering over the red bar gives you a pop-up telling you what the
compiler didn't like about that line of the function.

Outlining Turns outlining on and off.

Expand All
Outlines Expands all outlines.

Collapse All
Outlines Collapses all outlines

Expand all
Outlines
below here

Expands all outlines below the level of the current line.

Function Line Numbers

The Function Line Numbers option in the Editor menu provides an additional level of
line-numbering. If selected, line numbers are displayed independently on each
individual function (or operator) in the Class. This option is only enabled when you are
editing a Class, Namespace script or Interface, and is disabled for all other types of
object.

Note that function line-numbering and general line-numbering are independent
options and it is possible to have the entire Class numbered (from [0] to the number of
lines in the Class) in addition to having line-numbering on each individual function.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 139

29.5 Using the Editor

29.5.1 Creating a New Function

Type the name of your function and invoke the editor. To do this you may press
Shift+Enter, or select Edit from the Action menu, or double-click the left button on your
mouse, or click the Edit tool in the tool bar. A new window will appear on the screen
with the name you have chosen displayed in the top border. The name is also inserted
in the function header and the cursor positioned to the right. The new window is
automatically given the input focus.

29.5.2 Line-Numbers on/off

Try changing the line numbers setting by clicking on the Line Numbers option in the
Options menu. Note that line-numbering on/off is effective for all edit windows.

29.5.3 Adding Lines

If the keyboard is in Insert mode, pressing Enter at the end of a line opens you a new
blank line under the current one and positions the cursor there ready for input. You can
also open a new blank line by pressing Ctrl+Shift+Insert (OP).

If the cursor is at the end of the last line in the function, pressing Enter adds another
line even if the keyboard is in Replace mode.

29.5.4 Indenting Text

Dyalog allows you to insert leading spaces in lines of a function and (unless the
AutoFormat parameter is set) preserves these spaces between editing sessions.
Embedded spaces are however discarded. You can enter spaces using the space bar or
the Tab key. Pressing Tab inserts spaces up to the next tab stop corresponding to the
value of the TabStops parameter. If the AutoIndent parameter is set, new lines are
automatically indented the same amount as the preceding line.

29.5.5 Reformatting

The RD command (which by default is mapped to Keypad-Slash) reformats a function
according to your AutoFormat and TabStops settings. See Installation/Configuration:
Configuration Dialog Trace Edit Tab.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 140

29.5.6 Deleting Lines

To delete a block of lines, select them by dragging the mouse or using the keyboard and
then press Delete or select Clear from the Edit menu. A quick way to delete the current
line without selecting it first is to press Ctrl+Delete (DK) or select Delete Line from the
Edit menu.

29.5.7 Copying Lines

Select the lines you wish to copy by dragging the mouse or using the keyboard. Then
press Ctrl+Insert or select Copy from the Edit menu. This action copies the selection to
the clipboard. Now position the input cursor where you wish to make the copy and
press Shift+Insert, or select Paste from the Edit menu. You can also use this method to
duplicate a ragged block of text.

To copy text using drag-and-drop editing:

Select the text you want to move.
Hold down the Ctrl key, point to the selected text and then press and hold down
the left mouse button. When the drag-and-drop pointer appears, drag the cursor
to a new location.
Release the mouse button to drop the text into place.

29.5.8 Moving Lines

Select the lines you wish to copy by dragging the mouse or using the keyboard. Then
press Shift+Delete or select Cut from the Edit menu. This action copies the selection to
the clipboard and removes it. Now position the input cursor at the new location and
press Shift+Insert, or select Paste from the Edit menu. You can also use this method to
move a ragged block of text.

To move text using drag-and-drop editing:

Select the text you want to move.
Point to the selected text and then press and hold down the left mouse button.
When the drag-and-drop pointer appears, drag the cursor to a new location.
Release the mouse button to drop the text into place.

29.5.9 Joining and Splitting Lines

To join a line to the previous one: select Insert mode; position the cursor on the first
character in the line; press Bksp.

1.
2.

3.

1.
2.

3.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 141

To split a line: select Insert mode; position the cursor at the place you want it split;
press Return.

29.5.10 Toggling Localisation

The TL command (which by default is mapped to Ctrl+Up) toggles the localisation of
the name under the cursor. If the name is currently global, pressing Ctrl+Up causes the
name to be added to the list of locals in the function header. If the name is already
localised, pressing Ctrl+Alt+l removes it from the header.

29.5.11 Matching Occurences

When you position the caret over a name, control word, or simple text or to the right of
a parenthesis, bracket, or brace, matching occurrences are identified (by a thin box). In
particular :

matching occurrences of the word under the caret (except the actual instance
under the caret)
matching parentheses, brackets and braces
all control words associated with the one under the caret. For example, if the
caret is on :If, then nested :AndIf, :OrIf, :Else and the final :Endif are
identified.

29.5.12 Aligning Comments

When you press the key, or select Align Comments in the Editor's context menu, the
alignment of the comments in every line in the function will be changed so that the
left-most comment (Lamp) symbol is in the same column as the cursor, except that:

Comment symbols that are preceded only by white space, that is, comments in
lines that contain no code, are ignored and are not adjusted in any way.
Comment symbols that lie between the first column and the first tab stop will
remain in or be moved to the first column. For information on setting tab stops,
see Dyalog for Microsoft Windows Installation and Configuration Reference
Guide: Installation/Configuration: Configuration Dialog Trace Edit Tab.
Comment symbols will not move further left than the end of the statement.

When a comment is re-aligned, text to the right of the left-most comment symbol
(including spaces and other comment symbols) will remain fixed in relation to that
symbol.

•

•
•

•

•

•

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 142

Note that there is no keystroke associated with this command by default; you must
define one. See Dyalog for Microsoft Windows Installation and Configuration Reference
Guide: Installation/Configuration: Configuration Dialog Keyboard Shortcuts Tab.

29.5.13 Stop, Trace and Monitor Controls

If any of the Stop, Trace, and Monitor options of the View menu are set, the Editor
displays an area to the left of the function body containing up to 3 columns. If a
function line is enabled by ⎕TRACE,⎕STOP or ⎕MONITOR the corresponding column
displays a yellow circle (trace), red circle (stop) or clock symbol (monitor).

When you move the mouse-pointer over this area, the pointer displays the appropriate
symbol and you can toggle the corresponding setting on and off by clicking the mouse.

29.5.14 White Space in Source Code

Settings that impact the automatic reformatting of code can cause changes to
whitespace – this can be interpreted as changes to the source code. This means that:

opening a scripted object in the Edit window can cause the source of that object
to change (when closing an Edit window, you might be prompted to save a
function even though you have not made any changes to it).
viewing an object can change its file timestamp; source code management
systems can subsequently report changes due to the changed file timestamp.
source code changes resulting from reformatting will be evident in the results of
system functions such as ⎕AT, ⎕SRC, ⎕CR, ⎕VR and ⎕NR.

•

•

•

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 143

29.5.15 Outlining

When you are editing a function, outlining identifies the blocks of code within control
structures, and allows you to collapse and expand these blocks so that you can focus
your attention on particular parts of the code

The picture below shows the result of opening the function ⎕SE.cbtop.TB_POPUP.

Notice that the various control structure blocks are delineated by a treeview diagram.

When you hover the mouse pointer over one of the boxes that mark the start of
a block, the line marking the extent of that block becomes highlighted, as shown
above.
If you click on a

)ED ⎕SE.cbtop.TB_POPUP

•

•

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 144

box, the corresponding section collapses, so that only the first line of the block is
displayed, as shown below.
If you click on a

box, the corresponding section is expanded.

29.5.16 Sections

Functions and scripted objects (classes, namespaces etc.) can be subdivided into
Sections with :Section and :EndSection statements. Both statements may be
followed by an optional and arbitrary name or description. The purpose is to split the
function up into sections that you can open and close in the Editor, thereby aiding
readability and code management. Sections have no effect on the execution of the
code, but must follow the nesting rules of other control structures.

•

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 145

The following picture illustrates the use of sections in a function called DumpWindow.
The function is divided into 5 sections named Comments, Init, NAs, MakeBitmap and
CopyToClipBoard.

The first picture shows the function with all sections closed.

The next picture shows the effect of opening the Comments section. Notice how this is
delineated by the statements:

And with the Init section opened too:

:Section Comments
...
:EndSection Comments

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 146

Finally, with all the sections opened:

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 147

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 148

29.5.17 Array Notation

The Editor allows you to edit arbitrary arrays using Programming: Array Notation.

Any of the following invokes it:

Within the Editor, invoke the Edit command (<ED>) when the cursor is not over
any name.
In the session, call the system command)ED and prefix the variable name with a
diamond character, for example,)ED ⋄foo.
In the session, call the system function ⎕ED with a left argument '⋄', for
example, '⋄' ⎕ED 'foo'.
In the Object toolbar, click the

button when the cursor is over the name of an array. This opens the array in the
Editor in the same way as)ED ⋄foo.
In the Editor’s toolbar, click the

button. This toggles whether the Editor contents are displayed using array
notation.
From the Editor’s Syntax menu select Show as Array Notation.

The Editor presents the array for you to edit in array notation.

When using array notation in the Editor, the Reformat command (<RD>) evaluates the
content and regenerates it using array notation.

•

•

•

•

•

•

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 149

You can include APL expressions: the Editor will evaluate them when you fix or format
the array. This allows you to insert the value of one array into another by typing its
name and pressing <RD>.

For example, in the session:

In the Editor, insert ⎕C:

It reformats as

and fixes as

x←[
(
'HELLO'

)
(
'WORLD'

)
]
)ED ⋄ x

⎕C[
(
'HELLO'

)
(
'WORLD'

)
]

[
(
'hello'

)
(
'world'

)
]

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 150

29.5.18 Editing Classes

The picture below shows the result of opening the ComponentFile class. Notice how
each function is delineated separately and that each function is individually line-
numbered.

x
┌─────┐
│hello│
├─────┤
│world│
└─────┘

)ED ComponentFile

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 151

The outlining feature really comes into its own when editing classes because you can
collapse and expand whole functions. The picture below shows the effect of collapsing
all but the Append method.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 152

When you edit a class, a separate treeview is optionally displayed in the left pane to
make it easy to navigate within the class. When you click on a name in the treeview, the
editor automatically scrolls the appropriate section into view (if necessary) and
positions the edit cursor at its start. The picture below illustrates the result of opening
the [Methods] section and then clicking on Rename.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 153

29.5.19 Sections within Scripts

Scripts can also be subdivided into Sections using :Section and :EndSection
statements. As with single functions, the purpose is only to split the script up into
sections that you can open and close in the Editor. Sections have no effect on the
execution of the code.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 154

The following picture illustrates a Class named actuarial which, for editing purposes,
has been sub-divided into five separate Sections named Main, MenuHandlers,
Validation, Utilities and OldCode. In this picture, all the Sections are closed.

The next picture shows the effect of opening just the Main section.

Notice that this section is delimited by the two statements:

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 155

In this picture the 3 functions within the Main section are temporarily closed.

Similarly, the section called Validation is delimited by:

:Section Main
...
:EndSection Main

:Section Validation
...
:EndSection Validation

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 156

30 Find and Replace Dialogs

The Find and Find/Replace dialog boxes are used to locate and modify text in an Edit
window.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 157

Search For

Enter the text string that you want to find. Note that the text
from the last 10 searches is available from the drop-down list. If
appropriate, the search text is copied from the Find Objects tool.
This makes it easy to first search for functions containing a
particular string, and then to locate the same string in the
functions.

Replace With
Enter the text string that you want to use as a replacement. Note
that the text from the last 10 replacements is available from the
drop-down list.

Match Case Check this box if you want the search to be case-sensitive.

Match Whole
Word

Check this box if you want the search to only match only whole
words.

Use Regular
Expressions Check this box if you want to use Regular Expressions.

Move Dialog if
Hiding Match

If checked, the Find or Find/Replace dialog box will automatically
position itself so as not to obscure a matched search string in the
edit window.

Find Next
After Replace

If checked, following a replace operation, the selection will move
to the next occurrence of the target string in the edit window.

Direction Select Up or Down to control the direction of search.

30.1 Using Find and Replace

Find and Replace work on the concept of a current search string and a current replace
string which are entered using the Find and Find/Replace Dialog boxes. These boxes
also contain buttons for performing search/replace operations.

Suppose that you want to search through a function for references to the string
"Adam". It is probably best to work from the start of the function, so first position the
cursor there (by pressing Ctrl+Home). Then select Find from the Edit menu. The Find
Dialog box will appear on your screen with the input cursor positioned in the edit box
awaiting your input. Type "Adam" and click the Find Next button (or press Return), and
the cursor will locate the first occurrence. Clicking Find Next again will locate the
second occurrence. You can change the direction of the search by selecting Up instead
of Down. You could search another function for "Adam" by opening a new Edit window
for it and clicking Find Next. You do not have to redefine the search string.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 158

Now let us suppose that you wish to replace all occurrences of "Adam" with "Amanda".
First select Replace from the Edit menu. This will cause the Find Dialog box to be
replaced by the Find/Replace Dialog box. Enter the string "Amanda" into the box
labelled Replace With, then click Replace All. All occurrences of "Adam" in the current
Edit window are changed to "Amanda". To repeat the same global change in another
function, simply open an edit window and click Replace All again. If instead you only
want to change particular instances of "Adam" to "Amanda" you may use Find Next to
locate the ones you want, and then Replace to make each individual alteration.

Text searches are performed using PCRE. If the Use Regular Expressions box is checked,
the full range of regular expressions provided by PCRE are available for use. See Dyalog
APL Language: Pcre Specifications.

30.2 Saving and Quitting

To save the function and terminate the edit, press Esc (EP) or select Exit from the File
menu. The new version of the function replaces the previous one (if any) and the edit
window is destroyed.

Alternatively, you can select Fix from the File menu. This fixes the new version of the
function in the workspace, but leaves the edit window open. Note that the history is
also retained, so you can subsequently undo some changes and fix the function again.

To abandon the edit, press Shift+Esc (QT) or select Abort from the File menu. This
destroys the edit window but does not fix the function. The previous version (if any) is
unchanged.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 159

31 Editing Scripts and Text Files

The Editor may also be used to edit Dyalog script files (.dyalog files) and general text
files.

There are two ways to choose the file to be edited. If the file exists, you can select it
from the Open source file dialog by clicking File/Edit Text File from the Session menu
bar.

Alternatively, type)ED followed by the pathname to the file. To identify the name given
as a file, it must either contain a slash character ("\" or "/") or be preceded by one.

Examples

If the named file does not exist, you will be asked whether or not you want to create it:

If you edit a Dyalog script file, the editor will treat it as such and provide the same
formatting and syntax colouring as if it were a script in the workspace.

Otherwise, the file will be edited as if it were a character vector with embedded new-
lines.

)ED c:\myfiles\myscript.dyalog

)ED c:\myfiles\pete.txt

)ED \x.txt ⍝ x.txt in current directory

)ED / x.txt ⍝ ditto

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 160

When you exit the editor with Exit and fix, you will be offered a number of alternatives
depending upon the type of file, as shown below.

Saving a Text file

Note that if you choose Save as text in the workspace, information about the file and
the text variable associated with it is retained in the workspace. This information may
be obtained using 5176⌶ and 5177⌶. See Dyalog APL Language: List Loaded Files and
Dyalog APL Language: List Loaded File Objects.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 161

Saving a Script file

Note that if you choose Fix as code in the workspace or Save as text in the workspace,
information about the file and the text variable associated with it is retained in the
workspace. This information may be obtained using 5176⌶ and 5177⌶. See Dyalog APL
Language: List Loaded Files and Dyalog APL Language: List Loaded File Objects.

31.1 Fix as code in the workspace

If you choose this option, the file will be updated and the script will also be fixed in the
workspace. Note that if the script refers to a base class or other external elements, it
cannot be fixed unless these elements are also present in the workspace.

31.2 Save as text in the workspace

If you choose this option, the file will be updated and the contents of the file will also
be saved to a variable in the workspace. First you will see the following warning dialog,
which may be disabled subsequently by checking Do not ask this question again.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 162

Then you will be prompted to supply its name, which may be a new name or the name
of an existing variable:

31.3 Only save file to disk

If you choose this option, the file will be updated but nothing will be changed in the
workspace.

31.4 Discard changes

If you choose this option, all changes will be discarded and nothing saved.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 163

32 Source as Typed

32.1 Historical Introduction

When an object containing executable code such as a function, operator, class, or
namespace is defined in a workspace either by an editor or by the system function ⎕FX,
the object is tokenised into an internal form. Historically, this was the only form of the
object, and both the editor and system functions like ⎕CR, ⎕VR, ⎕NR reconstitute the
source code from the internal form. This reconstituted source lacks extraneous white
space and the precise numerical formatting that the user originally entered, for
example.

When classes and scripted namespaces were introduced, the source code was stored in
text form for these objects, as it was typed, in addition to the tokens which were still
used at runtime. The function ⎕SRC was added to return this text, and a new function
⎕FIX was added to define objects that also have source code.

Subsequently, ⎕FIX was extended to allow the definition of functions and operators
which include source code, as well as the use of source files outside the workspace to
store the source code of an object. However, unless a function or operator was defined
using an external file, the editor continued to only store the tokenised form in the
workspace, in order to save space.

32.2 Current Behaviour

From version 19.0 onwards, the default is that the editor stores source code as it was
typed in by the user for all objects, in addition to the tokenised form. When an object is
defined from an external source file using ⎕FIX, a copy of the source is also retained in
the workspace.

In order to maintain backwards compatibility with applications that rely on the
canonical representation returned by ⎕CR, ⎕VR , ⎕NR, these functions continue to
reconstitute the source from tokens; and ⎕FX continues to only store the tokenised
form. If you wish to access the source as typed, you should use ⎕SRC, or 60 ⎕ATX, and
you should use ⎕FIX, to define not only namespaces and classes but functions and
operators as well.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 164

When the user opens an object in the Editor, the saved source code is presented if it
exists. If the object was defined from a file and the source held in the workspace differs
from the contents of the file, the user will be asked to decide whether to use the file or
break the link and use the source in the workspace. If no source code is available, it is
reconstituted from the internal form.

Note however, that there is no mechanism to reconstitute a script, as a whole, from its
tokenised form. If there is no source code, the Namespace or Class appears as if it were
created using ⎕NS rather than having originated from a script. It cannot be opened in
the Editor and the result of ⎕SRC is empty. However, the source code for individual
functions and operators within the Namespace or Class will be reconstituted from their
individual tokenised code when required.

The functions ⎕SRC and 62 ⎕ATX (most precise available source) use the same logic as
described above to generate a result.

Source code saved in the workspace is compressed to minimise space usage.

Note that the white space in comment statements is retained in both the compiled
form and compiled form of a function.

The Boolean parameter DYALOG_DISCARD_FN_SOURCE (default 0) and 5172⌶ (Discard
Source Information) allow the user to enable or disable this feature for functions and
operators. The AutoFormat Functions option is automatically disabled if the
DYALOG_DISCARD_FN_SOURCE parameter is 1. Note that the user can format code on
demand).

5171⌶ (Discard Source Information) discards source code and file information for
scripted objects, namespaces, classes, functions, and operators that is saved in the
workspace.

Note that, to ensure that they can be used by Classic Edition, the source code has been
discarded from all the workspaces supplied by Dyalog as part of the distribution.

See also: Dyalog APL Language: Discard Source Code and Dyalog APL Language:
Discard Source Information.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 165

33 The Tracer

33.1 The Tracer

The Tracer is a visual debugging aid that allows you to step through an application line
by line. During a Trace you can track the path taken through your code, display
variables in edit windows and watch them change, skip forwards and backwards in a
function. You can cutback the stack to a calling function and use the Session and Editor
to experiment with and correct your code. The Tracer may be invoked in several ways
as discussed below.

Tracing an expression

Firstly, you may explicitly trace an expression that executes one or more defined
functions or operators by typing the expression then pressing Ctrl+Enter (<TC>) or
by selecting Trace from the Action menu. This lets you step through the execution of an
expression from the beginning.

In the same way as when you execute a statement by pressing Enter, the expression
is (if necessary) copied down to the input line and then executed. However, if the
expression includes a reference to an unlocked defined function or operator, execution
halts at its first line and a Trace window containing the suspended function or operator
is displayed on the screen. The cursor is positioned to the left of the first line which is
highlighted.

Naked Trace

The second way to invoke the Tracer is when you have a suspended function in the
state indicator and you press Ctrl+Enter (<TC>) on the empty input line. This is
termed naked trace. The same thing can be achieved by selecting Trace from the Action
menu on the Session Window.

The effect of naked trace is to open the Tracer and to position the cursor on the
currently suspended line. It is exactly as if you had traced to that point from the Input
Line expression whose execution caused the suspension.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 166

Automatic Trace

The third way to invoke the Tracer is to have the system do it automatically for you
whenever an error occurs. This is achieved by setting the Show trace stack on error
option in the Trace/Edit tab of the Configuration dialog (Trace_on_error parameter).
When an error occurs, the system will automatically deploy the Tracer. Note that this
means that when an error occurs, the Trace window will then receive the input focus
and not the Session window.

Tracer Options

From Version 10.1 onwards, the Tracer is designed to be docked in the Session window.

In previous versions of Dyalog, the Tracer was implemented as a stack of separate
windows (one per function on the calling stack) or as a single, but still separate,
window.

There are three available layout modes (each of which can be adjusted and configured).
They are available under the Debugger Layout menu:

Floating
At the bottom
On the left

The layout is a matter of preference; the functionality is the same. The default
behaviour is Debugger at the bottom.

The Floating layout mode detaches the Tracer window, allowing it to be positioned
according to preference.

•
•
•

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 167

The At the bottom layout mode:

The To the left layout mode:

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 168

In the latter two layout modes, the Tracer is docked into the main window.

In Floating mode,

The trace window contains a combo box whose drop-down displays the contents
of the SI stack. This box is not provided if there are multiple trace windows.
The trace window is re-used when tracing into, or returning from, a called
function. This means that there is never more than one trace window present.
When the last function in a traced suspension exits, the trace window
disappears.
If you click the Quit this function button in the Trace Tools window, or press Esc,
the current function is removed from the stack and the trace window reused to
display the calling function if there is one.
If you move or resize the trace window, Dyalog APL remembers its position, so
that it reappears in the same position when next used.

The Trace Window

The Tracer is implemented as a single dockable window that displays the function that
is currently being executed. There are several subsidiary information panes which are
also fully dockable. The first of these (SIStack) displays the current function calling
stack; the second (Threads) displays a list of running threads.

•

•

•

•

•

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 169

There are also two docked, but minimised panes, named Left Argument and Right
Argument. They will open up automatically if you Section 33.2.

In the default Session files, the Tracer is docked along the bottom edge of the Session
window. When you invoke the Tracer, it springs up as illustrated below. In this example,
the function being traced is ⎕SE.UCMD, which is invoked by typing a user-command, in
this case]APLCart.

In the default layout, the SIstack window is displayed alongside the main Tracer
window, although this can be hidden or made to appear as a separate floating window,
as required.

Trace Tools

The Tracer may be controlled from the keyboard, or by using the Trace Tools which are
arranged along the title bar of the Debugger window. Note that the button names are
solely for reference purposes in the description that follows.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 170

Button Name Key
Code Keystroke Description

Exec <ER> Enter Execute expression

Trace <TC> Ctrl+Enter Trace expression

Inline
Trace <IT> Ctrl+Alt+Enter Trace inline

Back <BK> Ctrl+Shift+Bksp Go back one line

Fwd <FD> Ctrl+Shift+Enter Skip current line

Continue <BH> Stop on next line of calling
function

Restart <RM> →⎕LC
Continue execution of this
thread

Restart all Continue execution of all
threads

Edit <ED> Shift+Enter Edit name

Exit <EP> Esc Quit this function

Intr Ctrl+Pause Interrupt

Reset <CB> Clear trace/stop/monitor
for this object

<LN> Toggle line numbers

Search for next match

Search for previous match

Search hidden text

Match case

Match whole word

Use Regular Expressions

Using the Trace Tools, you can single-step through the function or operator by clicking
the Exec and/or Trace buttons. If you click Exec the current line of the function or
operator is executed and the system halts at the next line. If you click Trace, the current
line is executed but any defined functions or operators referenced on that line are
themselves traced. After execution of the line the system again halts at the next one.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 171

Using the keyboard, the same effect can be achieved by pressing Enter or
Ctrl+Enter.

The illustration below shows the state of execution having clicked Exec, Trace, Exec 19
times:

The next illustration shows the result of clicking Trace at this point. This caused the
system to trace into ⎕SE.Dyalog.APLCart, the function called from ⎕SE.UCMD[35].

Notice how each function call on the stack is represented by an item in the SIstack
window.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 172

At this stage, the state indicator is as follows:

See also the section on Section 33.2.

Controlling Execution

The point of execution may be moved by clicking the Back and Fwd buttons in the Trace
Tools window or, using the keyboard, by pressing Ctrl+Shift+Bksp and
Ctrl+Shift+Enter. Notice however that these buttons do not themselves change
the state indicator or the display in the SIStack window. This happens only when you
restart execution from the new point.

You can cut back the stack by clicking the <EP> button in the Trace Tools window. This
causes execution to be suspended at the start of the line which was previously traced.
The same effect can be achieved using the keyboard by pressing Esc. It can also be
done by selecting Exit from the File menu on the Trace Window or by selecting Close
from its system menu.

)SI
⎕SE.Dyalog.Utils.APLcart[1]*
⎕SE.input.c.APLcart.Run[47]
⍎
⎕SE.SALTUtils.CallUserCode[0]
⎕SE.UCMD[2]

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 173

The <RM> button removes the Trace window and resumes execution. The same is
achieved by the expression →⎕LC.

The <BH> button continues execution until the current function has run to completion
and control has returned to the calling function. It leaves the Trace window displayed
and allows you to watch execution progress.

Using the Session and the Editor

Whilst using the Tracer you can skip to the Session or to any Edit window and back
again. While it is docked, you may resize the Tracer pane by dragging its title bar, and
you may use the buttons provided to maximise, minimise and restore the Tracer pane
within the Session window.

Unless you move it, the cursor is positioned to the left of the suspended line in the top
Trace window.

Depending where the cursor is in the tracer window, pressing Shift+Enter (<ED>)
or selecting Edit from the File menu may cause an edit window to open. If the cursor is
in the first column of the Trace window, or on whitespace, the Editor is opened on
function or operator on top of the stack. If the cursor in on a name, the Editor is
opened on the name under the cursor (point-and-edit). With the cursor in any other
location, no action is undertaken.

When you finish editing, the window reverts to a trace window with the new definition
of the function or operator displayed.

You may also open a new edit window from within the Tracer using point-and-edit.

You can copy text from a trace window to the session for editing and execution or for
experimentation.

It is possible to skip from the Tracer to the Session and then re-invoke the Tracer on a
different expression.

Setting Breakpoints

Breakpoints are defined by ⎕STOP and may be toggled on and off in an Edit or Trace
window by clicking in the appropriate column. The example below illustrates a function
with a ⎕STOP breakpoint set on line [5].

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 174

⎕STOP breakpoints set or cleared in an Edit window are not established until the
function is fixed. ⎕STOP breakpoints set or cleared in a Trace window are established
immediately.

Clearing All Break-Points

You can clear all breakpoints by pressing the above button in the Trace Tools window.
This in fact resets ⎕STOP for all functions in the workspace.

33.2 Inline Tracing

Inline Tracing is an extension to the Tracer that allows you to step through the
execution of individual primitives within expressions, examining intermediate results
and arguments of sub-expressions. It enables an in-depth inspection of complex
expressions typed directly into the session, and can be used in conjunction with the
traditional tracing mode to skip over lines you're not interested in and step through
primitive-by-primitive in complex expressions where required.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 175

Inline Tracing is tracing with the (approximate) granularity of primitives, though it

does stop on non-primitives, such as user-defined functions.

Getting started

There is a command <IT> called Inline Trace with the default keyboard shortcut
ctrl+alt+enter which is used to trace inline.

To start inline tracing, position the cursor within an expression and do one of the
following:

enter the Inline Trace command (<IT>) in the session.
select Action > Trace Inline… from the Session menu bar.
select Action > Trace Inline… from the Session window's context menu.
click the Next Primitive icon in the Tracer toolbar.

The Tracer opens with primitive tracing activated.

Example

In a Session, enter the expression (+/÷≢)⍳10 and start inline tracing.

Note

•
•
•
•

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 176

The red outline around the ⍳ in the Tracer shows the next primitive to be executed.
Enter <IT> or click the Next Primitive icon in the Tracer toolbar to see how the
execution progresses through the expression.

The Next Primitive icon is always present in the Tracer. The <IT> command lets you
open a Tracer on an expression that has been typed directly in the Session.

Aspect Panes

When tracing inline, there are several more aspects of an expression that can be
inspected beyond the default ones for left and right arguments, available under the
Windows menu in the Tracer. These are divided into two sections; items 1-4 apply to
the current function, and items 5-9 apply to the previously-executed function. They
are:

Left Argument

As you step through an expression, this displays the left argument that is about
to be passed to the highlighted function. Enabled (but minimised) by default.

Current Function

1.

2.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 177

The function that is highlighted with a red outline in the Tracer. Opening a
dedicated aspect pane allows you to select different presentation modes; see
Aspect Pane Options for more information.

Right Argument

As you step through an expression, this displays the right argument that is about
to be passed to the highlighted function. Enabled (but minimised) by default.

Axis Specification

The bracket axis applied to the current function (if any).

Previous Result

The result of the function evaluation immediately before the highlighted
function.

Previous Left

The left argument of the function evaluation immediately before the highlighted
function.

Previous Function

The function that was evaluated immediately before the highlighted function.

Previous Right

The right argument of the function evaluation immediately before the
highlighted function.

Previous Axis

The bracket axis applied to the function evaluation immediately before the
highlighted function (if any).

The relationship between these panes can be illustrated as

3.

4.

5.

6.

7.

8.

9.

 Left Arg ┐ ┌─ Axis Specification
 │ ┌─┐ │ ┌──────┬─ Right Arg / Prev Result
 a │B│[1] c D[2] e
 └┬┘ │ │ │ └ Previous Right
Current Function ┘ │ │ └ Previous Axis
 Previous Left ┘ └ Previous Function

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 178

Each of these options corresponds to a new pane in the Tracer. Having all panes

enabled and visible can result in the interface becoming cluttered and

information being hard to locate; Dyalog Ltd recommends enabling these on a

case-by-case basis.

Aspect Pane Options

When a docked aspect pane is the focus, the Session's Options menu enables
configuration of the behaviour of that aspect pane (for floating panes, the Options
menu is within the aspect pane). The options are:

Show Status Bars

Whether status bars are displayed beneath the aspect pane.

Minimise until first use

Whether a saved layout should minimise aspect panes until they are activated.
For complex layouts this can improve usability.

Show functions as trees

When using the Current/Previous Function panes, whether Show functions as
trees uses the same display mode as]Boxing on -trains=tree. If this option
is not selected, the display mode is]Boxing on -trains=box. This can be
helpful when investigating tacit expressions.

Trace idioms

Whether specific expressions that the interpreter might treat as special cases
(for example, idioms) are included when tracing inline. If this option is not
selected, such expressions are treated as atomic functions.

Use Array Notation

Whether APL array notation is used to display arguments and results.

Note

•

•

•

•

•

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 179

The following screenshot illustrates the effect of choosing Show functions as trees on
the Current Function pane:

Tracing Diamond-Separated Expressions

A line of code can comprise a set of expressions separated by diamonds. In this
situation, you might only want to trace into some of them and skip others; this can be
done by using the command <ER> (by default, this is enter).

For example, consider a line that consists of three diamond-separated expressions; you
want to skip the first two, and trace into the third one:

Enter the expressions in the Session, and start inline tracing. You should see:

a ← 3 3⍴⍳9 ⋄ b ← ⍉a ⋄ a + b

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 180

with the first expression highlighted (red outline). Enter <ER> (enter) to execute the
single expression before the first diamond separator:

The second expression is now highlighted. Enter <ER> (enter) again to execute the
second expression, then enter <IT> (ctrl+alt+enter) to start tracing the primitives
in the third expression:

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 181

34 The Threads Tool

The Threads Tool is used to monitor and debug multi-threaded applications. To display
the Threads Tool, select Show Threads Tool from the Session Threads menu, or Threads
from the Session pop-up menu.

The above picture illustrates a situation using the lift.dws workspace after executing
the function RUN. The Pause on Error option was enabled and a Stop was set on
RUN[63]. When RUN suspended at this point, all other threads (1-8) were automatically
Paused. Note that all other threads happen to be Paused in the middle of calls to
system functions

The columns of the Threads Tool display the following information.

Column Description

Tid The Thread ID (⎕TID) and name (⎕TNAME) if set

Location The currently executing line of function code

State Indicates what the thread is doing. (see below)

Flags Normal or Paused.

Treq The Thread Requirements (⎕TREQ)

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 182

34.1 Thread States

State Description

Pending Not yet running

Initializing Not yet running

Defined function Between lines of a defined function

Dfn Between lines of a dfn

Suspended Indicates that the thread is suspended and is able to accept
input from the Session window.

Session Indicates that Session window is connected to this thread.

(no stack)
Indicates that the thread has no SI stack and the Session is
connected to another thread. This state can only occur for
Thread 0.

Exiting About to be terminated

:Hold Waiting for a :Hold token

:EndHold Waiting for a :Hold token

⎕DL Executing ⎕DL

⎕DQ Executing ⎕DQ

⎕NA Waiting for a DLL (⎕NA) call to return.

⎕TGET Executing ⎕TGET, waiting for a token

⎕TGET (Ready to
continue) Executing ⎕TGET, having got a token

⎕TSYNC Waiting for another thread to terminate

Awaiting request Indicates a thread that is associated with a .NET system
thread, but is currently unused

Called .NET Waiting for a call to .NET to return.

34.2 Paused/Normal

In addition to the thread state as described above, a thread may be Paused or Normal
as shown in the Flags column. A Paused thread is one that has temporarily been

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 183

removed from the list of threads that are being scheduled by the thread scheduler. A
Paused thread is effectively frozen.

34.3 Threads Tool Pop-Up Menu

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 184

Switch to
Selecting this item causes APL to attempt to suspend (if
necessary) and switch to the selected thread, connecting it to
the Session and Debugger windows.

Interrupt
Causes a (STRONG) interrupt in the selected thread the next time
it is scheduled, essentially it allows you to target an interrupt at a
specific thread.

Ignore
Interrupts

Allows you to specify that the selected thread should ignore
weak interrupts.

Refresh Now Refreshes the Threads Tool display to show the current position
and state of each thread.

Auto Refresh
Selecting this item causes the Threads Tool to be updated
continuously, so that it shows the latest position and state of
each thread.

Pause Threads
on Error

If this item is checked, APL automatically Pauses all other threads
when a thread suspends due to an error or an interrupt.

Paused This item toggles a thread between being Paused and Normal . It
Pauses a Normal thread and resumes a Paused thread.

Pause All This item causes all threads to be Paused .

Resume All This item resumes all threads.

Restart All This item resumes all Paused threads, restarts all suspended
threads, and closes the Debugger.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 185

35 Debugging Threads

The Debugger provides a tabbed interface that allows you to easily switch between
suspended threads for debugging purposes. To keep things simple for non-threaded
applications, Tabs are only displayed if there is a thread suspended that is other than
Thread 0. The following picture shows the Debugger open on a multi-threaded
application (LIFT.DWS) when only Thread 0 is suspended. This has been achieved by
setting a stop on RUN[63]

In the next picture, the user has chosen to display the Threads Tool and then dock it
between the Session and Debugger windows. Note that only one thread, thread 0 (Run)
is suspended. All the other threads are Paused (because Pause on Error is enabled).

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 186

The user then uses the context menu to Switch To Thread 14 (whose name is Lady 14)
which was Paused on PERSON[7] in the middle of a ⎕TGET. The act of switching to this
thread caused it to be suspended at the beginning of its current line PERSON[7] and the
Debugger now displays two Tabs to represent the two suspended threads. Note that
both the thread id and the thread name are displayed on the Tabs.

Note also that the Session window is connected to the thread indicated by the selected
Tab. In this case, typing MYFLOOR into the Session window displays the value of the local
variable MYFLOOR in Thread 14 (Lady 14).

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 187

You can use the Tabs to switch between the suspended threads, so clicking the Tab
labelled 0:Run causes the display to change to the picture shown below. The Session is
now connected to Thread 0 (Run), so the value of ⎕LC is 63.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 188

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 189

36 The Event Viewer

The Event Viewer can be used to monitor events on Dyalog APL GUI objects. To display
the Event Viewer, select Event Viewer from the Session Tools menu.

You can choose:

which types of events you want to monitor
which objects you want to monitor

In the example illustrated above, the user has chosen to monitor events on a Form #.f.
Furthermore, the user has chosen to monitor GotFocus, LostFocus, MouseUp,
MouseDblClick and Configure events.

Entries in the Action column report the action that was associated with the event at the
time it was placed in the queue. This may or may not be the same as the action that is
associated with the event when it reaches the top of the event queue and is processed.

•
•

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 190

36.1 The Spy Menu

The Spy menu, illustrated above, provides the following options and actions.

Item Description

Clear Clears all of the event information that is currently displayed in
the Event Viewer .

Copy Copies the highlighted rows to the clipboard.

All
In this mode all the events are displayed in the Event Viewer as
they occur, whether or not there is an action associated with
them.

When Placed
in Object's
Queue

In this mode only events that have associated actions are
displayed in the event viewer. Note that KeyPress events are
always queued and therefore always appear, even if there is no
associated action.

Current
Queue State

In this mode the Event Viewer displays a snapshot of the internal
event queue. Only those events that are currently in the internal
APL event queue waiting to be processed are displayed.

Enable
Logging This item switches event logging on and off.

Close Closes the Event Viewer

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 191

36.2 The Columns Menu

The Columns menu allows you to choose which information is displayed for the events
you are monitoring.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 192

Item Description

ObjectName If checked, this item displays the name of the object on which the
event occurred.

ObjectType If checked, this item displays the type of the object on which the
event occurred.

Event Name If checked, this item displays the name of the event that occurred.

Event
Number

If checked, this item displays the event number of the event that
occurred.

Parameters
If checked, this item displays the parameters for the event that
occurred. These are the items that would be passed in the
argument to a callback function.

Action
If checked, this item displays the action associated with the event
when the event is placed in the event queue, for example the
name of a callback function, or an expression to be executed.

Thread ID If checked, this item displays the thread id of the thread in which
the event occurred

NQed
If checked, this item displays 0 or 1 according to whether or not
the event occurred naturally or was generated programmatically
by ⎕NQ .

Event ID If checked, this item displays the event id of the event that
occurred. This id is used internally.

TimeStamp If checked, this item displays the timestamp of the event that
occurred.

36.3 The Select Menu

The Select menu allows you to highlight certain events in the Event Viewer. For
example, if you are monitoring TCP/IP events on a number of TCPSockets, you can
highlight just the events for a particular socket.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 193

Item Description

Select All Highlights all the events.

Select Matching
Events

Highlights all the events that have the same Object and
Event Name (or Event Number) as the currently selected
event.

Select All Events
on This Object

Highlights all the events that have the same Object as the
currently selected event.

Select All Events of
this Type

Highlights all the events that have the same Event Name (or
Event Number) as the currently selected event

These items are also available from the pop-up menu that appears when you press the
right mouse button over an event displayed in the Event Viewer window.

36.4 The Options Menu

The Options menu allows you to choose which information is displayed for the events
you are monitoring.

Item Description

Always on
Top

If checked, this item causes the Event Viewer window to be displayed
above all other windows (including other application windows).

Use APL
font

If checked, this item causes the information displayed in the Event
Viewer window to be displayed using the APL font (the same font as
is used in the Session window). If not, the system uses the
appropriate Windows font.

Settings... Displays the Event Viewer Options Dialog Box.

36.5 Options Dialog Box

The Event Viewer Options dialog box allows you to select the objects and events that
you wish to monitor.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 194

36.6 Events to view

The list box shows all the events that are support by the Dyalog APL GUI and allows you
to select which events are to be monitored. User defined events may be selected by
checking the User defined events box. Only those events that are selected will be
reported. You can sort the events by name or by event number by clicking the
appropriate column header.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 195

36.7 Objects to view

Item Description

Find Tool
Select
from List

This tool allows you to choose a single specific Dyalog APL GUI object
that you want to monitor. To use it, drag the Find Tool and move it
over your Dyalog APL GUI objects. As you drag it, the individual
objects are highlighted and their details displayed in the Name, Type ,
Thread ID and Handle fields. Drop the Find Tool on the object of your
choice. Clicking the Select from List button brings up a dialog box that
displays the entire Dyalog APL GUI structure as a tree view. You can
choose a single object by selecting it.

Parent
Object Enables event reporting on the selected object's immediate parent.

Child
Objects

Enables event reporting on the all selected object's descendants (at
any level).

Same
Thread

Enables event reporting on all the objects in the same thread as the
selected object.

All
Objects Enables event reporting on all Dyalog APL GUI objects.

Objects of
Type
Select
from List

Activates the adjoining Select button and disables all other Object
selection mechanisms. Clicking the Select from List button brings up a
dialog box that allows you to choose which types of Dyalog APL GUI
objects you want to monitor.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 196

37 The Session Object

37.1 The Session Object

Purpose:
The Session object ⎕SE is a special system object that represents the
session window and acts as a parent for the session menus, tool
bar(s) and status bar.

Children

Form, MenuBar, Menu, MsgBox, Font, FileBox, Printer, Bitmap, Icon,
Cursor, Clipboard, Locator, Timer, Metafile, ToolBar, StatusBar,
TipField, TabBar, ImageList, PropertySheet, OLEClient, TCPSocket,
CoolBar, ToolControl, BrowseBox

Properties

Type, Caption, Posn, Size, File, Coord, State, Event, FontObj, YRange,
XRange, Data, TextSize, Handle, HintObj, TipObj, CurObj, CurPos,
CurSpace, Log, Input, Popup, RadiusMode, LogFile, MethodList,
ChildList, EventList, PropList

Methods ChooseFont, FileRead, FileWrite

Events Close, Create, FontOK, FontCancel, WorkspaceLoaded, SessionPrint,
SessionTrace

Description

There is one (and only one) object of type Session and it is called ⎕SE. You may use ⎕WG,
⎕WS and ⎕WN to perform operations on ⎕SE, but you cannot expunge it with ⎕EX nor can
you recreate it using ⎕WC. You may however expunge all its children. This will result in a
bare session with no menu bar, tool bar or status bar.

⎕SE is loaded from a session file when APL starts. The name of the session file is
specified by the session_file parameter. If no session file is defined, ⎕SE will have no
children and the session will be devoid of menu bar, tool bar and status bar
components.

An additional feature is provided to establish code in the Session; for more information,
see the Installation/Configuration: Dyalogstartupse configuration parameter.

You may use all of the standard GUI system functions to build or configure the
components of the Session to your own requirements. You may also control the Session
by changing certain of its properties.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 197

Note that the Session reports a Create event when APL is first started, and a Section
37.7 event when a workspace is loaded or on a clear ws.

The Session reports a Section 37.5 event when certain types of output are about to be
displayed. This may be used to alter the normal default display. The Session also
reports a Section 37.6 event when executing when an expression is execute with trace
control. This may be used to alter the normal default trace.

Read-Only Properties

The following properties of ⎕SE are read-only and may not be set using ⎕WS:

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 198

Property Description

Type A character vector containing 'Session'

Caption A character vector containing the current caption in the title bar of
the Session window.

TextSize Reports the bounding rectangle for a text string. For a full
description, see TextSize in Object Reference.

CurObj A character vector containing the name of the current object. This is
the name under or immediately to the left of the input cursor.

CurPos

A 2-element integer vector containing the position of the input
cursor (row and column number) in the session log. This is ⎕IO
dependent. If ⎕IO is 1, and the cursor is positioned on the character
at the beginning of the first (top) line in the log, CurPos is (1 1). If
⎕IO is 0, its value would be (0 0).

CurSpace

A character vector which identifies the namespace from which the
current expression was executed. If the system is not executing
code, CurSpace is the current space and is equivalent to the result of
⊃''⎕NS'' .

Handle The window handle of the Session window.

Log
A vector of character vectors containing the most recent set of lines
(input statements and results) that are recorded in the session log.
The first element contains the top line in the log.

Input
A vector of character vectors containing the most recent set of input
statements (lines that you have executed) contained in the input
history buffer.

LogFile The name of the session log file in use.

ChildList A vector of character vectors containing the types of object that can
be created as a child of ⎕SE .

MethodList A vector of character vectors containing the names of the methods
associated with ⎕SE .

EventList A vector of character vectors containing the names of the events
generated by ⎕SE

PropList A vector of character vectors containing the names of the properties
associated with ⎕SE .

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 199

Read/Write Properties

The following properties of ⎕SE may be changed using ⎕WS:

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 200

Property Description

Caption A character vector containing the current caption in the title bar of the
Session window. See Session Caption .

Coord Specifies the co-ordinate system for the session window.

Data May be used to associate arbitrary data with the session object ⎕SE .

Event
You may use this property to attach an expression or callback function
to the Create event or to user-defined events. A callback attached to
the Create event can be used to initialise the Session when APL starts.

File
The full pathname of the session file that is associated with the current
session. This is the file name used when you save or load the session
by invoking the FileRead or FileWrite method.

FontObj

Specifies the APL font. In general, the FontObj property may specify a
font in terms of its face name, size, and so forth or it may specify the
name of a Font object. For applications, the latter method is
recommended as it will result in better management of font resources.
However, in the case of the Session object, it is recommended that the
former method be used.

HintObj

Specifies the name of the object in which hints are displayed. Unless
you specify HintObj individually for session components, this object
will be used to display the hints associated with all of the menu items,
buttons, and so forth in the session. The object named by this property
is also used to display the message "Ready..." when APL is waiting for
input.

Popup A character vector that specifies the name of a popup menu to be
displayed when you click the right mouse button in a Session window.

Posn

A 2-element numeric vector containing the position of the top-left
corner of the session window relative to the top-left corner of the
screen. This is reported and set in units specified by the Coord
property.

Size A 2-element numeric vector containing the height and width of the
session window expressed in units specified by the Coord property.

State

An integer that specifies the window state (0=normal, 1=minimised,
2=maximised). You may wish to use this property to minimise and later
restore the session under program control. If you save your session
with State set to 2, your APL session will start off maximised.

TipObj

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 201

Property Description

Specifies the name of the object in which tips are displayed. Unless
you specify TipObj individually for session components, this object will
be used to display the tips associated with all of the menu items,
buttons, and so forth in the session.

XRange See Object Reference

YRange See Object Reference

Special Properties

The following properties of ⎕SE are used internally by Dyalog tools such as SALT. They
are not intended nor supported for general use and are not reported by PropList.

StatusWindow
This read-only property returns a reference to the Status
Window. The expression: (⎕SE.⎕WG'StatusWindow')⎕WG'Text'
returns the (read-only) contents of the status window.

Editor
This read-only property returns a reference to the Editor
Window. The Editor generates the special events Fix , AfterFix
and Format .

Special Events

The following special events are generated by ⎕SE or its child objects. They are used
internally by Dyalog tools such as SALT. They are not intended nor supported for
general use.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 202

AfterFix
This event is reported by the Editor after it has successfully
fixed a new object, or a new version of an object, in the
workspace.

Fix This event is reported by the Editor when the user attempts
to fix an object.

Format This event is reported by the Editor when the user attempts
to format an object.

SessionPrint

This event is reported when a value is about to be displayed
in the Session window. The default display of the value may
be intercepted by a callback function and displayed
differently. This event is used by the]box and]rows user
commands.

SessionTrace

This event is reported when an expression is executed with
trace control. The trace behaviour may be intercepted by a
callback function and altered. This event is used by the]box
and]rows user commands.

WorkspaceLoaded This event is generated when a workspace is loaded or upon
)CLEAR .

Session Caption

The Caption property of the Session may be set dynamically to a character vector
comprising free text and field names. Field names must be enclosed in braces and are
replaced in-situ by corresponding values.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 203

Field Name Description

{TITLE} the window specific text

{WSID} ⎕WSID

{NSID} current namespace

{SNSID} short version of namespace (no # .)

{PRODUCT} for example, Dyalog APL/W

{VER_A} for example, 19

{VER_B} for example, 0

{VER_C} for example, 47586 (SVN revision)

{PID} process ID (decimal)

{CHARS} "Classic" or "Unicode"

{BITS} "32" or "64"

{TID} current thread

Example

The Session caption in a CLEAR WS will change to:

Note that Caption returns the codified string used to set it.

37.2 AfterFix Event 822

Applies To: Editor

Description

If enabled, this event is reported immediately after the Editor has successfully fixed a
new object, or a new version of an object, in the workspace.

⎕SE.Caption←'Pete: {WSID} {Product} {VER_A}.{VER_B}'

 Pete: CLEAR WS Dyalog APL/W-64 19.0

⎕SE.Caption
Pete: {WSID} {Product} {VER_A}.{VER_B}

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 204

You may not nullify or modify the event with a 0-returning callback, nor may you
generate the event using ⎕NQ, or call it as a method. However, returning 0 from a
callback will cause the Edit window to remain open if the user action was Fix and Exit
(EP).

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 7-element vector as follows :

[1] Object ref to the Editor object

[2] Event 'AfterFix' or 822

[3] Contents the contents of the Edit window, as a vector of character vectors

[4] Space ref to the namespace in which the object will be fixed

[5] Old Name a character vector containing the original name of the object
when it was opened by the Editor

[6]
New
Name

a character vector containing the name of the object which was
fixed. This is empty if the object is a variable.

[7] File Name a character vector containing the name of the file (if any)
associated with the object.

37.3 Fix Event 820

Applies To: Editor

Description

If enabled, this event is reported when the user attempts to fix an object from the
Editor window. It is reported immediately, before the user's action is processed in any
way by the Editor.

The default action is to check whether the object has changed. If not, no further action
takes place. If the object has changed, the system validates the contents of the Edit
window, and either displays an error dialog or fixes a new version of the object in the
workspace. If the user action was to fix and exit (EP), the Edit window is closed unless
the validation failed.

If the callback function returns 0, the default action is aborted in its entirety (not even
the validation takes place) and the Edit window remains open.

You may not generate the event using ⎕NQ, or call it as a method.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 205

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 7-element vector as follows :

[1] Object ref to the Editor object

[2] Event 'Fix' or 820

[3] Contents the contents of the Edit window, as a vector of character vectors

[4] Space ref to the namespace in which the object will be fixed

[5] Old Name a character vector containing the original name of the object
when it was opened by the Editor

[6]
New
Name

a character vector containing the new name of the object. This
is empty if the object is a variable.

[7] File Name a character vector containing the name of the file (if any)
associated with the object.

For objects whose names are part of the content of the Edit window, this event is not
reported if the name is missing or invalid. Instead the system will display an error dialog
box.

37.4 Format Event 821

Applies To: Editor

Description

If enabled, this event is reported when the user attempts to format an object in the
Editor window.

If the callback function returns 0, the contents of the Edit window are not reformatted.

You may not generate the event using ⎕NQ, or call it as a method.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 206

[1] Object ref to the Editor object

[2] Event 'Format' or 821

[3] Contents the contents of the Edit window, as a vector of character vectors

[4] Space ref to the namespace in which the object will be fixed

[5] Old Name a character vector containing the original name of the object
when it was opened by the Editor

[6]
New
Name

a character vector containing the new name of the object. This
is empty if the object is a variable.

37.5 SessionPrint Event 526

Applies To: Session

Description

If enabled, this event is reported when a value is about to be displayed in the Session. It
is generated by the display of a variable or the result of a function including system
variables and functions. Error messages and output from system commands do not
generate this event.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object ref or character vector

[2] Event 'SessionPrint' or 526

The attachment of a callback function intercepts and annuls the normal display of any
value.

Note that this event may be extended in future; in particular the number of elements
in the event message may be increased, and the event may be generated by some
system commands. You should therefore allow for such extensions in any code which
refers to SessionPrint.

When the event is generated, the left argument of the callback function contains the
value which was about to be displayed. The callback function may display this or any
other value, using default output or by assignment to ⎕. If so, this output will be

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 207

processed normally, without generating a subsequent SessionPrint event. If the
callback fails to explicitly display anything, nothing will appear in the Session.

Example

The result (if any) of the callback function is ignored.

You may not disable the event (by setting its action to ¯1), nor generate the event using
⎕NQ, nor call it as a method.

37.6 SessionTrace Event 527

Applies To: Section 37.1

Description

If enabled, this event is reported when an expression is executed with trace control.
See Dyalog APL Language: Set Trace. Error messages and output from system
commands do not generate this event.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

⎕VR'⎕SE.TimeStamp'
∇ VAL TimeStamp EV

[1] ⎕TS VAL
∇

'⎕SE'⎕WS'Event' 'SessionPrint' '⎕SE.TimeStamp'

2
2014 9 18 16 20 38 318 2

⎕A
2014 9 18 16 20 44 668 ABCDEFGHIJKLMNOPQRSTUVWXYZ

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 208

Pos Description Type

[1] Object ref or character vector

[2] Event 'SessionTrace' or 527

[3] Function Character vector ('' if none)

[4] Line number Numeric scalar (0 if none)

The attachment of a callback function intercepts and annuls the normal display of
function name, line numbers and any value.

Note that this event may be extended in the future; in particular the number of

elements in the event message may be increased. You should therefore allow for

such extensions in any code which refers to SessionTrace.

When the event is generated, the left argument of the callback function contains the
result value of the expression, if any. The callback function may display this or any other
value, using default output or by assignment to ⎕. If so, this output will be processed
normally, without generating any SessionTrace or Section 37.5 events. If the callback
fails to explicitly display anything, nothing will appear in the Session.

If the expression has no value, then the callback function will be called monadically. It is
therefore required that the callback function is ambivalent (can be called both
monadically and dyadically).

Example

Note

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 209

The result (if any) of the callback function is ignored.

You may not disable the event (by setting its action to ¯1), nor generate the event using
⎕NQ, nor call it as a method.

37.7 WorkspaceLoaded Event 525

Applies To: Session

Description

If enabled, this event is reported when a workspace is loaded or on a clear ws. You
may not nullify or modify the event with a 0-returning callback, nor may you generate
the event using ⎕NQ, or call it as a method.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

)CS ⎕SE
⎕SE

∇ {VAL}TimeStamp EV
[1] ⍞←⎕TS(2↑2↓EV)
[2] :If 0≠⎕NC'VAL'
[3] ⍞←VAL
[4] :EndIf
[5] ⍞←⎕UCS 13

∇
)CS

#
'⎕SE'⎕WS'Event' 'SessionTrace' '⎕SE.TimeStamp'

∇ Foo
[1] ⍝ just a comment
[2] global←⎕A

∇

1 2 ⎕TRACE'Foo'
Foo

2020 7 3 14 2 37 762 Foo 1
2020 7 3 14 2 37 763 Foo 2 ABCDEFGHIJKLMNOPQRSTUVWXYZ

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 210

[1] Object ref or character vector

[2] Event 'WorkspaceLoaded' or 525

This event is fired immediately after a workspace has been loaded and before the
execution of ⎕LX.

The callback function you attach should be defined in ⎕SE.

37.8 Configuring the Session

As supplied, your default session will have a menu bar, a tool bar and a status bar.
There are many ways in which you may configure this set-up, including the following:

You may select a different APL font or character size.

You may alter the appearance of the menus by changing the Caption properties of the
various Menu and MenuItem objects. For example, you may prefer the menus to
appear in your own language.

You may alter the structure of the menus. For example, you may wish to create a
Search menu directly on the menu bar rather than having Find and Replace as part of
the Edit menu.

You may add new Menu and MenuItem objects to the menu bar, or new Button objects
to the tool bar, that execute APL functions or expressions for you. You can store the
code inside the ⎕SE namespace so that it is remains available when you switch from
one workspace to another.

You may add other objects to the tool bar to allow you to provide input for your
functions or to display output. For example, you may display a Combo object that offers
you a selection of names applicable to a particular task.

You may add additional toolbars.

You may remove objects too; for example, you can remove fields from the StatusBar or
even delete it entirely. Indeed, you may dispense with the menu bar and/or tool bar as
well.

This section illustrates how you can configure your session using worked examples. The
examples are by no means exhaustive, but are designed to demonstrate the principles.
Please note that the structure and names of the objects used in these examples may
not be identical to your default session as supplied. Before you attempt to change your

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 211

session, please check the structure and the object names using ⎕WN and ⎕WG. The
supplied session was created using the function BUILD_SESSION in the workspace
BUILDSE. If you wish to make substantial changes to your session, you may find it most
convenient to edit the functions in this workspace, re-run BUILD_SESSION, and then
save it.

Please note that these examples assume that Expose Session Properties is enabled.

Changing the Font

The APL session font is defined by the Font property of ⎕SE. To change the font
permanently, you should select a different Font and/or size of Font using the combo
and spinner boxes on the Session toolbar, and save your Session.

Classic Edition is distributed with bitmap fonts suitable for use on your screen, and
TrueType fonts for your printer. You can use the TrueType font on the screen, but it is
less attractive than the bitmap fonts at low resolutions. The bitmap fonts come in two
sizes (16 x 8 and 22 x 11) and two weights (normal and bold). You may select other
sizes, so long as the height is a multiple of 16 or 22. The scaling is performed
automatically by Windows.

Changing Menu Appearance

The name of the Session MenuBar is '⎕SE.mb'. To simplify the specification of object
names, we will first change space to the MenuBar itself:

The names of the Menu objects owned by the MenuBar are given by the expression:

The current caption on the file menu is:

To change the Caption to Workspace:

)CS ⎕SE.mb
⎕SE.mb

'Menu' ⎕WN ''
file edit view windows session log action options tools
threads help

file.Caption
&File

file.Caption←'Workspace'

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 212

To change the colour of the New option in the File menu to red:

Reorganising the Menu Structure

This example shows how you may alter the structure of the session menus by adding a
Search menu to the menu bar to provide access to the Find and Find/Replace dialog
boxes and removing these options from the Edit menu.

To simplify the process, we will first change space into the MenuBar object itself:

Then we can begin by adding the Search menu. You can specify where the new menu is
to be added using its Posn property. In this case, Search will be added at position 3
(after Edit).

Next we will remove the Find and Replace MenuItem objects from the Edit menu. Their
names can be obtained from ⎕WN:

It is worth noting that these MenuItems perform their actions because their Event
property is set to execute the system operations [Find] and [Replace] respectively
when they are selected.

The following statement removes them from the Edit menu:

and the following statements add them to the Search menu:

file.clear.FCol←255 0 0

)CS ⎕SE.mb
⎕SE.mb

'search'⎕WC 'Menu' '&Search' 3

'MenuItem'⎕WN'edit'
edit.prev edit.next edit.clear edit.copy edit.paste
edit.find edit.replace

edit.find.Event
Select [Find]

edit.replace.Event
Select [Replace]

⎕EX¨'edit.find' 'edit.replace'

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 213

Adding your own MenuItem

This example shows how you can add a menu item that executes an APL expression. In
this case we will do something very simple; namely add a Time option to the Tools
menu which will execute ⎕TS. Notice that the statement also defines a Hint. This will be
displayed when you select the option, prior to releasing the mouse button to action it.

Once again, we will start by changing space into the Tools menu itself

Then we will define a new MenuItem to perform the action we require:

The ⍎ symbol is very important and distinguishes an expression to be executed
immediately, as in this case, from a callback function. The resulting Tools menu now
appears as follows:

A customised Tools menu

Selecting Time produces the following output in the session:

'search.find' ⎕WC 'MenuItem' '&Find'
('Event' 'Select' '[Find]')

'search.replace' ⎕WC 'MenuItem' '&Replace'
('Event' 'Select' '[Replace]')

)CS ⎕SE.mb.tools
⎕SE.mb.tools

'ts'⎕WC'MenuItem' '&Time'
('Event' 'Select' '⍎⎕TS')
('Hint' 'Display Timestamp')

2007 12 10 17 10 2 0

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 214

Adding your own Tool Button

This example shows how you can add a button to the session tool bar that executes an
APL function called XREF.

XREF analyses the function whose name is under the cursor, listing the names of the
other functions that it calls in a Form.

XREF[1] gets the value of the CurObj property of ⎕SE which reports the name under
the cursor.

XREF[3] prefixes this name by its pathname which comes from the CurSpace property
which reports the user's current namespace.

To make this function available from a Session tool button, we need to do a number of
things. Firstly, we must install the function in ⎕SE so that it is always there, regardless of
the current active workspace. This is easily achieved using the Explorer or ⎕NS.

Next we will add a new button to the tool bar in the Tools CoolBand. Ideally we would
use a suitable bitmap, but to simplify the example, we will use a standard text button:

∇ XREF;REFS;FN
[1] :If 0<⍴FN←'⎕SE'⎕WG'CurObj'
[2] :AndIf 3=⎕NC FN
[3] REFS←⎕REFS('⎕SE'⎕WG'CurSpace'),'.',FN
[4] REFS←(↓REFS)~¨' '
[5] REFS←(3.1=⎕NC REFS)/REFS
[6] REFS←REFS~⊂FN
[7] :If 0<⍴REFS
[8] 'F'⎕WC'Form'('Functions called by ',FN)
[9] F.FontObj←⎕SE.FontObj
[10] 'F.L'⎕WC'List'REFS(0 0)(100 100)
[11] :EndIf
[12] :EndIf

∇

'⎕SE' ⎕NS 'XREF'

)CS ⎕SE.cbtop.bandtb3.tb
⎕SE.cbtop.bandtb3.tb

'xref' ⎕WC 'Button' 'XREF'
'xref' ⎕WS 'Event' 'Select' '⍎⎕SE.XREF'

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 215

Adding a tool button

All that remains is to save the new Session.

37.9 Session Initialisation

Introduction

Each time Dyalog starts it loads and loads an initialisation file whose name is defined by
the DyalogStartup parameter. The code defined in this file performs Session
initialisation. If DyalogStartup is undefined, the system uses the first file it finds named
StartupSession with file extension .aplf, .apln or .aplc in the Dyalog directory. If
the file has the .aplf extension, it is executed. If it has a .apln or .aplc extension, the
system instantiates the namespace or class and executes its Run function (if it exists).

At the end of the initialisation, the function defined by the .aplf file (or the Run
function of the namespace or class) becomes the niladic function
⎕SE.StartupSession, which be called to re-run the session initialisation procedures.

Implementation

Code to be installed in ⎕SE is specified in APL source code files contained in Session
initialisation directories identified by the DyalogStartupSE parameter. If this parameter
is not specified, the default is a directory named StartupSession located in three
standard locations as described below. See Installation/Configuration: Dyalogstartupse
for more details.

Only content stored in files matching the wildcard patterns *.dyalog and *.apl? will
be loaded. All such files must be appropriate for ⎕FIX.

For each subdirectory in a Session initialisation directory, a corresponding namespace is
created in ⎕SE. Any source code files in these subdirectories will be fixed in their
respective corresponding namespaces, and nested subdirectories become nested
namespaces, recursively

Every top-level directory that is loaded as a namespace in ⎕SE can have a Run function
which (depending on the value of the DyalogStartup_X parameter, will be called after
everything has been loaded. This does not apply to sub-namespaces. See Installation/
Configuration: Dyalogstartup X.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 216

This requires Link which is available by default. A custom version of Link can be used.
See Installation/Configuration: Dyaloglink.

The Session initialisation directories are processed in alphabetical order and code
defined in each directory will replace code with the same name defined previously. In
effect, this means that user-supplied content can replace content supplied by Dyalog
Ltd. and version-specific content can replace version-agnostic content.

Default Session Initialisation Directories

If the DyalogStartupSE parameter is undefined, APL looks for Session initialisation
directories named StartupSession in the following three locations, and processes
them in that order:

The Dyalog installation directory (which contains the dyalog executable)
A version-agnostic subdirectory in the user directory (the standard directory for
user-related Dyalog APL files)
A version-specific subdirectory in the user directory, whose name is derived as
described below.

Under Windows these might be:

C:\Program Files\Dyalog\Dyalog APL-64 19.0 Unicode

C:\Users\Pete\Documents\Dyalog APL Files

C:\Users\Pete\Documents\Dyalog APL-64 19.0 Unicode Files

The version-specific name is :

where:

{bit} is "-64" if 64-bit version, otherwise nothing
{version} is the main and secondary version numbers of dyalog.exe separated by
".".
{edition} is "Unicode" for the Unicode Edition, otherwise nothing

1.
2.

3.

1.

2.

3.

 Dyalog APL{bit} {version} {edition}

•
•

•

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 217

38 User Commands

Dyalog includes a mechanism to define User Commands.

User commands are developer tools, written in APL, which can be executed without
having to explicitly copy code into your workspace and/or save it in every workspace in
which you want to use it.

A User Command is a name prefixed by a closing square bracket, which may be niladic
or take an argument. A User Command executes APL code that is typically stored
somewhere outside the current active workspace.

By default, the existing SPICE command processor is hooked up to the user command
mechanism, and a number of new SPICE commands have been added. For example:

The implementation of User Commands is very simple: If a line of input begins with a
closing square bracket (]), and there exists a function by the name ⎕SE.UCMD, then the
interpreter will call that function, passing the input line (without the bracket) as the
right argument.

To add a user command, drop a new Spice command file in the folder SALT\Spice.

]display 'hello' (⍪'world')
┌→────────────┐
│ ┌→────┐ ┌→┐ │
│ │hello│ ↓w│ │
│ └─────┘ │o│ │
│ │r│ │
│ │l│ │
│ │d│ │
│ │w│ │
│ └─┘ │
└∊────────────┘

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 218

39 File Explorer Integration

39.1 File Associations

During installation, Dyalog establishes the following file associations:

Type File Extension Application

Shell Scripts .apls

Dyalog script
execution
engine via
Windows
Power Shell

Sources .aplc, .aplf, .apli, .apln, .aplo, .dyalog Dyalog Editor

Configuration .dcfg Dyalog Editor

SALT apps .dyapp Dyalog

Workspaces .dws Dyalog

When you double-click on a file with one of the above extensions, the file is opened
with the corresponding application.

In addition, two items are added to the Windows Explorer context menu for
directories, namely Load with Dyalog and Run with Dyalog. Both these items start
Dyalog and attempt to import code from the corresponding directory using Link. The
Run with Dyalog option also calls the function named Run if it exists. See Installation/
Configuration: Load.

For more information about Link, see https://dyalog.github.io/link/.

The]fileAssociations user command may be employed to alter these settings. For
details, enter:

]fileassociations -?

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 219

https://dyalog.github.io/link/

39.2 Browsing Workspaces and Source Files

39.2.1 (Unicode Edition Only)

You can browse the contents of workspaces and Dyalog source files using the preview
pane of Windows File Explorer. The following example show what you see in the
preview pane when you select the supplied workspace ddb.dws.

When you move the cursor to the next workspace in the list, dfns.dws, the preview
pane is immediately updated to show its contents.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 220

If you open the Fns/Ops node and click on a function name, the function is displayed.
The next picture shows the function assign.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 221

You can also browse Dyalog source files. The following picture shows what you see
when you select the fileUtils.dyalog file.

Note that you may only view workspace objects and scripts in the preview pane, it is
not possible to edit them in the preview pane.

39.2.2 Editing Dyalog Source Files

You may edit a source file from File Explorer by first selecting the source file and then
choosing Edit from the File Explorer context menu.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 222

This brings up the standard Dyalog Editor, in a stand-alone window, just as it would
appear if undocked from the Session, as shown in the next picture.

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 223

Windows UI Guide

2025-10-30 (main:e0843eae32) Page 224

	Dyalog for Microsoft Windows
	UI Guide
	Contents

	Introduction
	APL Keyboards
	Unicode Edition and the Dyalog Unicode IME
	Unicode Edition and the Registry Keyboard
	Classic Edition
	Backtick Keyboard

	Session Manager
	Positioning the Cursor
	Selection
	Scrolling
	Invoking the Editor
	The Current Object
	The Session Pop-up Menu
	Drag-and-Drop Editing
	To move text using drag-and-drop editing
	To copy text using drag-and-drop editing

	Interrupts

	Session Gutter
	Multi-line Session Input
	When Multi-line Input is Enabled

	Unicode Edition Keyboard
	Introduction
	Installation

	IME Configuration
	IME Properties
	Input translate table
	Backtick Keyboard
	Overstrikes
	Use Overstrike popup
	Overstrikes do not require the OS introducer key

	Classic Edition Keyboard
	Keyboard Shortcuts
	Unicode Edition
	Classic Edition

	Session Colour Scheme
	Syntax Colouring in the Session

	The Session Window
	Window Management
	Docking

	Language Bar
	Popup Menu

	Entering and Executing Expressions
	Introduction
	Deleting Lines
	Auto Complete
	Executing an Expression
	Executing Several Expressions
	Session Print Width (PW)
	Using Find/Replace in the Session

	Value Tips
	Value Tips for External Functions
	Configuring Value Tips
	Session GUI
	Session MenuBar
	The File Menu
	The Edit Menu
	The View Menu
	The Window Menu
	The Session Menu
	The Log Menu
	The Action Menu
	The Options Menu
	The Tools Menu
	The Threads Menu
	The Layout Menu
	The Help Menu

	Session Popup Menu
	The Session Toolbars
	Native Look and Feel Enabled
	Native Look and Feel Disabled
	Workspace (WS) Operations
	Object Operations
	Tools
	Edit Operations
	Session Operations

	Session StatusBar
	Toggle Status Fields

	Status Window
	Workspace Explorer
	Exploring the Workspace
	Viewing and Arranging Objects
	Moving and Copying Objects
	Editing and Renaming Objects
	Using the Explorer as an Editor
	The File Menu
	The Edit Menu
	The Options Menu
	The View Menu
	The Tools Menu

	Browsing Classes
	Browsing Class Scripts

	Browsing Type Libraries
	Browsing Registered Libraries
	Loading a Type Library
	Browsing Loaded Libraries
	Object CoClasses
	Objects
	Event Sets
	Enums

	Browsing .Net Classes
	Find Objects Tool
	Name
	Containing Text
	Object Criteria
	Location Criteria

	Object Properties Dialog
	Properties Tab
	Value Tab
	Monitor Tab
	COM Properties Tab
	Net Properties Tab

	Editor
	Invoking the Editor
	Window Management (Standard)
	Window Management (Classic Dyalog mode)
	Moving around an edit window
	Closing an edit window
	Minimising an edit window

	Selecting Text
	Editor ToolBar
	The File Menu
	The File Menu (editing a script)
	Editing Scripts

	The Edit Menu
	The Syntax Menu
	The Window Menu
	The Refactor Menu
	The View Menu
	Function Line Numbers

	Using the Editor
	Creating a New Function
	Line-Numbers on/off
	Adding Lines
	Indenting Text
	Reformatting
	Deleting Lines
	Copying Lines
	Moving Lines
	Joining and Splitting Lines
	Toggling Localisation
	Matching Occurences
	Aligning Comments
	Stop, Trace and Monitor Controls
	White Space in Source Code
	Outlining
	Sections
	Array Notation
	Editing Classes
	Sections within Scripts

	Find and Replace Dialogs
	Using Find and Replace
	Saving and Quitting

	Editing Scripts and Text Files
	Fix as code in the workspace
	Save as text in the workspace
	Only save file to disk
	Discard changes

	Source as Typed
	Historical Introduction
	Current Behaviour

	The Tracer
	The Tracer
	Tracing an expression
	Naked Trace
	Automatic Trace
	Tracer Options
	The Trace Window
	Trace Tools
	Controlling Execution
	Using the Session and the Editor
	Setting Breakpoints
	Clearing All Break-Points

	Inline Tracing
	Getting started
	Aspect Panes
	Aspect Pane Options

	Tracing Diamond-Separated Expressions

	The Threads Tool
	Thread States
	Paused/Normal
	Threads Tool Pop-Up Menu

	Debugging Threads
	The Event Viewer
	The Spy Menu
	The Columns Menu
	The Select Menu
	The Options Menu
	Options Dialog Box
	Events to view
	Objects to view

	The Session Object
	The Session Object
	Read-Only Properties
	Read/Write Properties
	Special Properties
	Special Events
	Session Caption

	AfterFix
	Fix
	Format
	SessionPrint
	SessionTrace
	WorkspaceLoaded
	Configuring the Session
	Changing the Font
	Changing Menu Appearance
	Reorganising the Menu Structure
	Adding your own MenuItem
	Adding your own Tool Button

	Session Initialisation
	Introduction
	Implementation
	Default Session Initialisation Directories

	User Commands
	File Explorer Integration
	File Associations
	Browsing Workspaces and Source Files
	(Unicode Edition Only)
	Editing Dyalog Source Files

