
Dyalog for Microsoft Windows
Interfaces Guide

Dyalog version 20.0

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2025 by Dyalog Limited
All rights reserved.

Dyalog for Microsoft Windows Interfaces Guide

Dyalog version: 20.0
Document Revision: 2025-10-30 main:e0843eae32

Unless stated otherwise, all examples in this document assume that ⎕IO ⎕ML ← 1

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle®, MySQL, and Java™ are registered trademarks of Oracle and/or its affiliates.
JavaScript™ is a trademark of Oracle Corporation.
Unicode is a registered trademarks of Unicode, Inc. in the U.S. and other countries.
UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively
through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark of Microsoft Corporation in the U.S. and other
countries.
macOS® and OS X® (operating system software) are registered trademarks of Apple Inc.
in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Except where otherwise noted, this content is licensed under a Creative Commons
Attribution 4.0 International licence.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

2025-10-30 (main:e0843eae32) Page 4

Contents

1 Introduction ... 10

1.1 Overview ... 10

1.2 Concepts ... 10

1.3 Creating Objects ... 16

1.4 Properties ... 19

1.5 User Interaction and Events .. 25

1.6 Methods .. 33

1.7 High-Priority Callback Functions ... 34

1.8 GUI Objects as Namespaces ... 36

1.9 Modal Dialog Boxes .. 42

1.10 Multi Threading with Objects ... 43

1.11 The Coordinate System ... 44

1.12 High DPI Support ... 46

1.13 Colour ... 50

1.14 Fonts ... 51

1.15 Drag and Drop ... 52

1.16 Debugging ... 53

1.17 Creating Objects using NEW ... 53

1.18 Native Look and Feel ... 55

1.19 Gestures .. 57

2 GUI Tutorial .. 60

2.1 Introduction .. 60

2.2 Some Concepts ... 60

2.3 Creating a Form .. 61

2.4 Adding a Fahrenheit Label .. 61

2.5 Adding a Fahrenheit Edit Field .. 62

2.6 Adding a Centigrade Label Edit Field .. 63

2.7 Adding Calculate Buttons .. 63

Interface Guide

2025-10-30 (main:e0843eae32) Page 5

2.8 Closing the Application Window ... 65

2.9 Adding a Quit Button .. 65

2.10 The Calculation Functions ... 66

2.11 Testing the Application ... 67

2.12 Making the Enter Key Work .. 68

2.13 Introducing a ScrollBar .. 69

2.14 Adding a Menu ... 71

2.15 Running from Desktop .. 73

2.16 Using NEW instead of WC ... 76

2.17 Temperature Converter Class .. 78

2.18 Dual Class Example ... 82

3 Graphics ... 88

3.1 Introduction .. 88

3.2 Drawing Lines .. 89

3.3 Drawing in a Bitmap .. 90

3.4 Multiple Graphical Items .. 90

3.5 Unnamed Graphical Objects ... 92

3.6 Bitmaps and Icons ... 93

3.7 Metafiles ... 94

3.8 Picture Buttons ... 96

3.9 Using Icons .. 99

4 Composite Controls ... 101

4.1 ToolControl and ToolButton Objects ... 101

4.2 CoolBar and CoolBand Objects ... 112

4.3 TabControl and TabButton Objects ... 120

4.4 StatusBar Object ... 129

5 Hints and Tips .. 134

5.1 Using Hints .. 134

5.2 Using Tips .. 136

5.3 Hints and Tips Combined .. 137

6 Grid Object ... 139

6.1 Using the Grid Object ... 139

6.2 Defining Overall Appearance .. 140

6.3 Row and Column Titles ... 141

Interface Guide

2025-10-30 (main:e0843eae32) Page 6

6.4 Displaying and Editing Values in Grid Cells ... 143

6.5 Specifying Individual Cell Attributes ... 148

6.6 Drawing Graphics on a Grid .. 152

6.7 Controlling User Input ... 155

6.8 TreeView Feature .. 159

6.9 Grid Comments ... 163

7 MDI .. 167

7.1 Multiple Document Interface Applications ... 167

7.2 MDI Behaviour .. 168

7.3 Menus in MDI Applications ... 170

7.4 Defining a Window Menu ... 170

7.5 Arranging Child Forms and Icons .. 171

8 Docking .. 173

8.1 Introduction .. 173

8.2 Docking Events .. 174

8.3 Docking a Form inside another ... 176

8.4 Docking a Form into a CoolBar ... 180

8.5 Undocking a SubForm or a CoolBand ... 182

8.6 Docking and Undocking a ToolControl .. 183

9 OLE Client ... 187

9.1 Introduction .. 187

9.2 Using an OLE Server .. 188

9.3 Loading an ActiveX Control ... 189

9.4 Type Information .. 190

9.5 Methods .. 199

9.6 Properties ... 202

9.7 Events ... 204

9.8 OLE Objects without Type Information ... 205

9.9 Collections .. 207

9.10 Null Values .. 208

9.11 Additional Interfaces ... 210

9.12 Writing Classes based on OLEClient .. 210

10 OLE Server .. 212

10.1 Introduction .. 212

Interface Guide

2025-10-30 (main:e0843eae32) Page 7

10.2 In process OLE Servers .. 215

10.3 Out of process OLE Servers ... 216

10.4 The LOAN Workspace ... 219

10.5 Implementing an Object Hierarchy ... 231

10.6 The CFILES Workspace .. 231

10.7 Configuring an out of process OLEServer for DCOM ... 248

10.8 Calling an OLE Function Asynchronously .. 251

11 ActiveX Control .. 256

11.1 Introduction .. 256

11.2 Overview ... 256

11.3 The Dual Control Tutorial .. 260

12 DDE .. 283

12.1 Introduction .. 283

12.2 Shared Variable Principles .. 284

12.3 APL and DDE in Practice .. 289

12.4 State and Access Control .. 292

12.5 Communication Between APLs ... 299

12.6 Excel as the Server .. 301

12.7 Excel as the Client ... 302

12.8 APL as Compute Server for Excel .. 304

12.9 Restrictions and Limitations .. 305

Interface Guide

2025-10-30 (main:e0843eae32) Page 8

2025-10-30 (main:e0843eae32) Page 9

1 Introduction

1.1 Overview

This manual describes various interfaces between Dyalog APL and Windows.

Chapter 1 introduces the concepts of the Dyalog APL Graphical User Interface (GUI) and
describes, in outline, how the system works.

Chapter 2 contains a tutorial which takes you step-by-step through the implementation
of a simple GUI application.

Chapters 3 explains how to draw graphics using primitive graphical objects such as Poly,
Bitmap and Metafile objects.

Chapter 4 describes how to use toolbars, tab controls and status bars.

Chapter 6 covers the important Grid object that provides a spreadsheet interface for
displaying and editing tables of data and

Chapters 7 and 8 describe the Multiple Document Interface (MDI) and docking. Further
GUI material is provided in the WTUTOR, WTUTOR95 and WDESIGN workspaces.

Chapters 9-11 describe the various ways in which Dyalog APL may communicate with
other Windows applications using Component Object Model (COM) interfaces. These
interfaces allow APL to act as an OLE Automation server and client, and allow you to
write ActiveX controls in Dyalog APL.

Chapter 12 describes the DDE interface which is implemented using (traditional) APL
shared variables. However, please note that DDE has all but been replaced by COM,
and is no longer promoted as a major technology by Microsoft.

1.2 Concepts

The Dyalog APL GUI is based upon four important concepts; objects, properties, events
and methods.

Interface Guide

2025-10-30 (main:e0843eae32) Page 10

Objects

Objects are instances of classes that contain information and provide functionality.
Most Dyalog APL objects are GUI objects that may be displayed on the screen and with
which you can interact. An example of an object is a push-button (an instance of class
Button) which you may press to cause the program to take a particular action. Objects
are defined in hierarchies.

Objects are also namespaces and may contain functions, variables, and indeed other
namespaces. This allows you to store the code and data that is required by a given
object within that object. Functions and variables stored in an object are hidden and
protected from conflicts with functions and variables in the outside workspace and
with those in other objects.

Properties

Each object has an associated set of properties which describe how it looks and
behaves. For example, a Button has a property called Caption which defines the
character string to be displayed in it. It also has a property called Type which may be
Push (the button appears to move in and out when it is pressed), Radio (the button has
two states and may be toggled on and off); and so forth.

Events

During interaction with the user, an object is capable of generating events. There are
essentially two types of event, raw events and object events. Raw events are typically
associated with a particular hardware operation. Pressing a mouse button, pressing a
key on the keyboard, or moving the mouse pointer are examples of raw events. An
object event is generated by some action that is specific to the object in question, but
which may typically be achieved by a variety of hardware operations.

An example is the Select event. For a Button object, this event is generated when the
user presses the Button. In MS-Windows, this can be done in several ways. Firstly, the
user may click the left mouse button over the object. Secondly, under certain
circumstances, the Select event can be generated when the user presses the Enter key.
Finally, the event will occur if the user presses a "short-cut" (mnemonic) key that is
associated with the Button.

Methods

Methods are effectively functions that an object provides; they are things that you may
invoke to make the object do something for you. In Dyalog APL, the distinction between

Interface Guide

2025-10-30 (main:e0843eae32) Page 11

methods and events is tenuous, because events also make objects perform actions and
you may generate events under program control. For example, a Scroll event is
generated by a scrollbar when the user moves the thumb. Conversely, you can make a
scrollbar scroll by generating a Scroll event. Nevertheless, the concept of a method is
useful to describe functions that can only be invoked by a program and are not directly
accessible to the user.

Objects

The following objects are supported.

Interface Guide

2025-10-30 (main:e0843eae32) Page 12

System Objects

Object Reference: Root system-level object

Object Reference: Printer for hard-copy output

Object Reference: Clipboard provides access to Windows clipboard

Container Objects

Object Reference: Coolband represents a band in a CoolBar

Object Reference: Coolbar a container for CoolBand objects

Object Reference: Form top-level Window

Object Reference: Mdiclient container for MDI windows

Object Reference: Subform acts as an MDI window or a constrained Form

Object Reference: Group a frame for grouping Buttons and other objects

Object Reference: Static a frame for drawing and clipping graphics

Object Reference: Statusbar ribbon status bar

Object Reference: Tabbar contains TabBtns (tabs)

Object Reference: Tabcontrol contains TabButtons (tabs)

Object Reference: Toolbar ribbon tool bar

Object Reference: Toolcontrol standard Windows tool control

Object Reference:
Propertysheet contains PropertyPages

Object Reference:
Propertypage tabbed or paged container for other controls

Object Reference: Splitter divides a container into panes

Menu

Object Reference: Menubar pull-down menu bar

Object Reference: Menu pop-up menu

Object Reference: Menuitem selects an option or action

Object Reference: Separator separator between items

Action

Object Reference: Button selects an option

Interface Guide

2025-10-30 (main:e0843eae32) Page 13

System Objects

Object Reference: Toolbutton performs an action or selects an option

Object Reference: Tabbtn selects a tabbed SubForm

Object Reference: Tabbutton selects a tabbed SubForm

Object Reference: Scroll scroll bar

Object Reference: Updown spin buttons

Object Reference: Locator graphical (positional) input device

Object Reference: Timer generates events at regular intervals

Information

Object Reference: Label displays static text

Object Reference: Statusfield displays status information

Object Reference: Msgbox displays a message box

Object Reference: Tipfield displays pop-up context sensitive help

Object Reference: Progressbar displays the progress of a lengthy operation

Input & Selection

Object Reference: Calendar displays a month calendar control

Object Reference: Grid displays a data matrix as a spreadsheet

Object Reference: Edit text input field

Object Reference: Richedit text input with word-processing capabilities

Object Reference: Spinner input field with spin buttons

Object Reference: List for selecting an item

Object Reference: Listview displays a collection of items for selection

Object Reference: Combo edit field with selectable list of choices

Object Reference: Treeview displays a hierarchical collection of items

Object Reference: Trackbar a slider control for analogue input/output

Object Reference: Filebox prompts user to select a file

Resource

Object Reference: Font loads a font

Interface Guide

2025-10-30 (main:e0843eae32) Page 14

System Objects

Object Reference: Bitmap defines a bitmap

Object Reference: Icon defines an icon

Object Reference: Imagelist defines a collection of bitmaps or icons

Object Reference: Metafile loads a Windows Metafile

Object Reference: Cursor defines a cursor

Graphical Output

Object Reference: Circle draws a circle

Object Reference: Ellipse draws an ellipse

Object Reference: Marker draws a series of polymarkers

Object Reference: Poly draws lines

Object Reference: Rect draws rectangles

Object Reference: Image displays Bitmaps, Icons and Metafiles

Object Reference: Text draws graphical text

Miscellaneous

Object Reference:
Activexcontainer

represents the application hosting a Dyalog
ActiveXControl

Object Reference:
Activexcontrol represents an ActiveX control written in Dyalog

Object Reference:
Htmlrenderer displays HTML content

Object Reference: Netclient provides access to .NET Classes

Object Reference: Netcontrol instantiates a .NET Control.

Object Reference: Nettype exports an APL namespace as a Net Class

Object Reference: Ocxclass provides access to OLE Custom Controls

Object Reference: Oleclient provides access to OLE Automation objects

Object Reference: Oleserver enables APL to act as an OLE Automation server

Object Reference: Sm specifies a window for ⎕SM (character mode
interface)

Interface Guide

2025-10-30 (main:e0843eae32) Page 15

System Objects

Object Reference: Tcpsocket provides an interface to TCP/IP sockets

Implementation Overview

The Dyalog APL GUI is implemented by the following system functions :

Dyalog APL Language:
Dq Dequeue processes user actions, invoking

callbacks

Dyalog APL Language:
Nq Enqueue generates an event under program

control

Dyalog APL Language:
Wc Create Object creates new object with specified

properties

Dyalog APL Language:
Wg

Get
Properties gets values of properties from an object

Dyalog APL Language:
Wn

Object
Names

reports names of all children of an
object

Dyalog APL Language:
Ws

Set
Properties sets values of properties for an object

GUI Objects are a special type of namespace and have a name class of 9. They may
therefore be managed like any other workspace object. This means that they can be
localised in function headers and erased with ⎕EX. GUI objects are saved with your
workspace and reappear when it is loaded or copied.

1.3 Creating Objects

You create objects using ⎕WC. Its left argument is a character vector that specifies the
name of the object to be created. Its right argument specifies the object's Type and
various other properties. Its (shy) result is the full pathname of the newly created
object.

The following statement creates a Form called 'f1' with the title "A Default Form" and
with default size, position, etc.

'f1' ⎕WC 'Form' 'A Default Form'

Interface Guide

2025-10-30 (main:e0843eae32) Page 16

Naming Objects

Objects are created in a hierarchy. The Form we have just created is a "top-level" object
to which we can attach other child objects, like buttons, scrollbars and so forth. You can
create any number of top-level objects like this, up to a limit imposed by MS-Windows
and your system configuration.

For reasons which will become apparent later, there is a single Root object whose name
is '.' (dot) or '#'. It acts a bit like the root directory in a Windows system file
structure, and is the implied parent of all the top-level objects you create.

When you create a top-level object, you don't actually have to specify that it is a child
of the Root; this is implied. For any other object, you specify its position in the
hierarchy by including the names of its "parent", "grand-parent", and so forth in its
name.

Object names are specified in the form:

where the "." character is used to separate the individual parts of the name. There is no
explicit limit to the depth of the object hierarchy; although in practice it is limited by
the rules governing which objects may be children of which others.

'grandparent.parent.child'

Interface Guide

2025-10-30 (main:e0843eae32) Page 17

Complete object names must be unique, although you could use the same sub-name
for two objects that have different parents. For example, it would be valid to have
'form1.btn1' and 'form2.btn1'.

Apart from the "." separator, names may include any of the characters A-Z, a-z, and 0-9.
They are case-sensitive, so 'Form1' is not the same name as 'form1'.

For graphical objects, it is permissible to omit the last part of the name, although the
parent name must be specified followed by a "." (dot). Further information is given
later in this chapter.

Specifying Properties

The right argument of ⎕WC is a list of properties for the object being created. Apart from
trivial cases, it is always a nested vector. The first item in the list must specify the
object's Type. Other properties take default values and need not always be defined.
Properties are discussed more fully in the next section.

Saving Objects

GUI Objects are namespaces with nameclass 9.2. Like any other namespace they are
saved in the workspace when it is saved and rebuilt when the workspace is re-loaded.
The expression)OBJECTS or ⎕NL 9.2 may be used to report their names. Like other
namespaces, GUI objects may be copied from a saved workspace using)COPY or ⎕CY.

The Object Hierarchy

This example illustrates how an object hierarchy is defined. The following statements
create a Form called 'accounts' which contains a Group called 'type' and some
Buttons called 'PLAN', 'BUDGET' and 'ACTUAL'. The embedded spaces in these
statements are intended only to improve clarity. The numbers refer to the object's
position within its parent. This will be discussed in detail later.

'accounts' ⎕WC 'Form' 'Accounts'
'accounts.type' ⎕WC 'Group' 'Account Type'
'accounts.type.PLAN' ⎕WC 'Button' 'PLAN' (20 35)
'accounts.type.BUDGET' ⎕WC 'Button' 'BUDGET' (45 30)
'accounts.type.ACTUAL' ⎕WC 'Button' 'ACTUAL' (70 32)

Interface Guide

2025-10-30 (main:e0843eae32) Page 18

Schematically, this object structure looks as follows:

1.4 Properties

Properties may be set using the system functions ⎕WC and ⎕WS and their values may be
retrieved using ⎕WG.

If the system variable ⎕WX is set to 1, properties may be set using assignment and
referenced by name as if they were variables. This is generally faster and more
convenient than using ⎕WS and ⎕WG.

Certain properties, in particular the Type property, can only be set using ⎕WC. There is
no obvious rule that determines whether or not a property can only be set by ⎕WC; it is
a consequence of the Windows API.

However, any property that can be set by ⎕WS can be set using assignment and the
values of all properties can be retrieved by direct reference or using ⎕WG.

 __ACTUAL
 .___accounts___type___BUDGET
 __PLAN

Interface Guide

2025-10-30 (main:e0843eae32) Page 19

Setting Properties with Assignment

You may set the value of a property using the assignment arrow ←. For example:

The following statement sets the Caption property to the string "Hello World":

Strand assignment may be used to set several properties in a single statement:

However, distributed assignment is even more concise:

Normal namespace path rules apply, so the following are all equivalent:

Notice however, that used directly in this way, Property names are case-sensitive. The
following expressions assign values to variables in F and have no effect on the Caption
property.

Retrieving property values by reference

You may obtain the value of a property as if it were a variable, by simply referring to
the property name. For example:

'F' ⎕WC 'Form'

F.Caption←'Hello World'

F.Size F.Posn←(40 50)(10 10)

F.(Size Posn)←(40 50)(10 10)

#.F.Caption←'Hello World'

)CS F
#.F

Caption←'Hello World'
:With 'F'

Caption←'Hello World'
Posn←40 50
Size←10 10
...

:EndWith

F.caption←'Hello World'
F.CAPTION←'Hello World'

Interface Guide

2025-10-30 (main:e0843eae32) Page 20

You can retrieve the values of several properties in one statement using strand
notation:

Although, once again, the use of parentheses is even more concise:

Although setting and referencing a Property appears to be no different to setting and
referencing a variable, it is not actually the same thing at all. When you set a Property
(whether by assignment or using ⎕WC or ⎕WS) to a particular value you are making a
request to Windows to do so; there is no guarantee that it will be honoured.

For example, having asked for a Font with face name of "Courier New", you cannot
change its Fixed property to 0, because the Courier New font is always fixed pitch.

Setting Properties with ⎕WC

Properties may also be set by the right argument of ⎕WC. In these cases, they may be
specified in one of two ways; either by their position in the argument, or by a keyword
followed by a value. The keyword is a character vector containing the name of the
property. Its value may be any appropriate array. Property names and value keywords
are not case sensitive; thus 'Form' could be spelled 'form', 'FORM', or even 'fOrM'

The Type property, which specifies the type of the object, applies to all objects and is
mandatory. It is therefore the first to be specified in the right argument to ⎕WC, and is
normally specified without the Type keyword. The value associated with the Type
property is a character vector.

F.Caption←'Hello World'

F.Caption
Hello World

F.Caption F.Posn F.Size
Hello World 40 50 10 10

F.(Caption Posn Size)
Hello World 40 50 10 10

'F'⎕WC'Font' 'Courier New'
1

F.Fixed←0
F.Fixed

1

Interface Guide

2025-10-30 (main:e0843eae32) Page 21

With the exception of Type, all other properties have default values and need only be
specified if you want to override the defaults. For example, the following statements
would give you a default Button in a default Group in a default Form:

Properties are specified in a sequence chosen to put the most commonly used ones
first. In practice, this allows you to specify most properties by position, rather than by
keyword/value pairs. For example, the Caption property is deemed to be the "most
used" property of a Button and is specified second after Type. The following two
statements are therefore equivalent:

The third and fourth properties are (usually) Posn, which specifies the position of a
child within its parent, and Size which specifies its size. The following statements all
create a Form with an empty title bar, whose top left corner is 10% down and 20%
across from the top left corner of the screen, and whose height is 60% of the screen
height and whose width is 40% of the screen width.

Changing Property Values with ⎕WS

Once you have created an object using ⎕WC, you are free to alter most of its properties
using ⎕WS. However in general, those properties that define the overall structure of an
object's window cannot be altered using ⎕WS. Such immutable properties include Type
and (for some objects) Style. Note that if you find that you do need to alter one of
these properties dynamically, it is a simple matter to recreate the object with ⎕WC.

The syntax for ⎕WS is identical to that of ⎕WC. The following examples illustrate how the
properties of a Button can be altered dynamically. Note that you can use ⎕WS in a
callback function to change the properties of any object, including the one that
generated the event.

Create "OK" button at (10,10) that calls FOO when pressed

'form' ⎕WC 'Form'
'form.g' ⎕WC 'Group'
'form.g.b1' ⎕WC 'Button'

'F1.B1' ⎕WC 'Button' 'OK'
'F1.B1' ⎕WC 'Button' ('Caption' 'OK')

'form' ⎕WC 'Form' '' (10 20) (60 40)
'form' ⎕WC 'Form' '' ('Posn' 10 20) ('Size' 60 40)
'form' ⎕WC 'Form' '' ('Posn' 10 20) (60 40)
'form' ⎕WC 'Form' ('Posn' 10 20) (60 40)

'form.b1' ⎕WC 'Button' 'OK' (10 10)

Interface Guide

2025-10-30 (main:e0843eae32) Page 22

Some time later, change caption and size

Note that if the right argument to ⎕WS specifies a single property, it is not necessary to
enclose it. How the Property List is Processed

The system is designed to give you as much flexibility as possible in specifying property
values. You should find that any "reasonable" specification will be accepted. However,
you may find the following explanation of how the right argument of ⎕WC and ⎕WS is
parsed, useful. The casual reader may wish to skip this page.

Items in the right argument are processed one by one. If the next array in the argument
is a simple array, or a nested array whose first element is not a character vector, the
array is taken to be the value of the next property, taking the properties in the order
defined for that object type.

When the system encounters a nested array whose first element is a character vector,
it is checked against the list of property names. If it is not a property name, the entire
array is taken to define the value of the next property as above.

If the first element is a property name, the remainder of the nested array is taken to be
the value of the corresponding property. For convenience, considerable latitude is
allowed in how the structure of the property value is specified.

After assigning the value, the parser resets its internal pointer to the property following
the one named. Thus in the third and fourth examples on the preceding page, omitting
the Size keyword is acceptable, because Size is the next property after Posn.

In the reference section for each object, you will find the list of properties applicable to
that object, given in the order in which they are to be specified. This information is also
reported by the PropList property, which applies to all objects. The list of properties
may also be obtained by executing the system command)PROPS in an object's
namespace.

The Event Property

Of the many different properties supported, the Event property is rather special. Most
of the other properties determine an object's appearance and general behaviour. The
Event property, however, specifies how the application reacts to the user.
Furthermore, unlike most other properties, it takes not a single value, but a set of
values, each of which determines the action to be taken when a particular event
occurs. In simple terms, an event is something that the user can do. For example,

'form.b1' ⎕WS ('Caption' 'Yes') ('Size' 20 15)

Interface Guide

2025-10-30 (main:e0843eae32) Page 23

pressing a mouse button, pressing a key, selecting an item from a menu, are all
examples of events.

Like any other property, the Event property may be set by assignment or using ⎕WC and
⎕WS. Using assignment, you can specify settings for the entire set of events, or you can
set individual events one by one.

Each type of event has a name and a number. Although you may identify an event
either by its name or by its number, the use of its name is generally preferable. The
exception to this is user-defined events which may only be specified by number.

The list of events supported by a particular object is available from its EventList
property, or by executing the system command)EVENTS in an object's namespace.

To specify an individual event, you assign the action to the event name which is
optionally prefixed by the string 'on'. For example, the name for the event that occurs
when a user presses a key is 'KeyPress'. To this you assign an action. Event actions are
described in detail later in this chapter, but most commonly action is a character vector
containing the name of a function. This is termed a callback function, because it will be
automatically called for you when the corresponding event occurs. So if F1 is a Form,
the statement:

specifies that the system is to call the function CHECK_KEY whenever the user presses a
key when F1 has the input focus.

Using ⎕WC and ⎕WS, the same effect can be obtained by:

or

When a callback function is invoked, the system supplies an event message as its right
argument, and (optionally) an array that you specify, as its left argument. The event
message is a nested vector that contains information about the event. The first element
of the event message is always either a namespace reference to the object that
generated the event or a character vector containing its name.

To instruct the system to pass the object name instead of a reference, you must use the
event name on its own (omitting the 'on' prefix) or the event number. This method is

F1.onKeyPress←'CHECK_KEY'

'F1'⎕WC'Form' ('Event' 'onKeyPress' 'CHECK_KEY')

'F1'⎕WS 'Event' 'onKeyPress' 'CHECK_KEY'

Interface Guide

2025-10-30 (main:e0843eae32) Page 24

retained for compatibility with previous versions of Dyalog APL that did not support
namespace references.

For example, either of the following statements will associate the callback function
'CHECK_KEY' with the KeyPress event. However, when 'CHECK_KEY' is called, it will be
called with the character string 'F1' in the first element of the right argument (the
event message) instead of a direct reference to the object F1.

Note that by default, all events are processed automatically by APL, and may be
ignored by your application unless you want to take a specific action. Thus, for
example, you don't have to handle Configure events when the user resizes your Form;
you can just let APL handle them for you.

Before looking further into events, it is necessary to describe how control is passed to
the user, and to introduce the concept of the event queue.

For further details, see the description of the Event property in the Object Reference.

1.5 User Interaction & Events

Giving Control to the User

As we have seen, ⎕WC and ⎕WS are used to build up the definition of the user-interface
as a hierarchy of objects with properties. Notice that the interface is defined not only
in terms of its appearance and general behaviour, but also by specification of the Event
property, in terms of how it reacts to user actions.

Once you have defined your interface, you are ready to give control to the user. This is
simply done by calling ⎕DQ. Alternatively, you may use the Wait method (if appropriate)
which is identical to ⎕DQ in its operation.

⎕DQ performs several tasks. Firstly, it displays all objects that have been created but not
yet drawn. When you create objects, Dyalog APL/W automatically buffers the output so
as to avoid unpleasant flashing on the screen. Output is flushed when APL requires
input (at the 6-space prompt) and by ⎕DQ. Thus if you write a function that creates a
Form containing a set of controls, nothing is drawn until, later on in the function, you
call ⎕DQ. At this point the Form and its contents are displayed in a single screen update,
which is visually more pleasing than if they were drawn one by one. A second task for
⎕DQ is to cause the system to wait for user events. Objects that you create are

F1.Event←'KeyPress' 'CHECK_KEY'
'F1'⎕WS 'Event' 'KeyPress' 'CHECK_KEY'
'F1'⎕WS 'Event' 22 'CHECK_KEY'

Interface Guide

2025-10-30 (main:e0843eae32) Page 25

immediately active and capable of generating events. During development and testing,
you can immediately use them without an explicit wait. However, unless your
application uses the Session in conjunction with GUI objects you must call ⎕DQ to cause
the application to wait for user input. In a run-time application, ⎕DQ is essential.

The argument to ⎕DQ specifies the objects with which the user may interact. Objects
may be specified by name or by reference. If the argument is #, '#' or '.', the user
may interact with all active objects owned by the current thread and with any new
objects which are created in callback functions. If not, the argument should specify refs
to or names of one or more top-level objects such as Form, PropertySheet, Clipboard,
or a single modal object such as FileBox, Locator, MsgBox or Menu. All specified objects
must be owned by the current thread.

In general, ⎕DQ first updates the screen with any pending changes, then hands control
to the user and waits for an event. If its argument is #, '#', or '.', ⎕DQ processes
events for all active objects, that is, for those objects and their children whose Active
property is 1. If the right argument specifies one or more top-level objects (such as
Form, PropertySheet), ⎕DQ processes events for all of these objects and their children,
and (if the current thread is thread 0) for the Root object, but ignores any others, even
though they may be currently active.

If the right argument specifies a single modal object, ⎕DQ activates the object, handles
user-interaction with it, and then deactivates it when the user has finished. An event is
generated according to the manner in which the user terminated.

Events are managed by both the Operating System and by ⎕DQ using a queue. A
detailed understanding of how the queue works is not absolutely necessary, and you
may skip the following explanation. However, if you are planning to develop major
applications using the GUI, please continue.

The Event Queue

There are in fact two separate queues, one maintained by Windows and one internal to
APL. The Windows queue is used to capture all events that APL needs to process. These
include events for your GUI objects as well as other events concerned with APL's own
Session Window, Edit Windows, etc. At various points during execution, APL reads
events from the Windows queue and either processes them immediately or, if they are
events concerned with objects you have defined with ⎕WC, APL places them on its own
internal queue. It is this queue to which ⎕DQ looks for its next event.

When ⎕DQ receives an event, it can either ignore it, process it internally, execute a
string, call a callback function, or terminate according to the action you have defined

Interface Guide

2025-10-30 (main:e0843eae32) Page 26

for that event. The way you define different actions is described in detail later in this
Chapter.

If you have disabled a particular event by setting its action code to ¯1, ⎕DQ simply
ignores it. For example, if you set the action code of a KeyPress event to ¯1, keystrokes
in that object will be ignored. If you have told ⎕DQ to process an event normally (the
default action code of 0) ⎕DQ performs the default processing for the event in question.
For example, the default processing for a KeyPress event in an Edit object is to display
the character and move the input cursor.

If you have associated a string or a callback function with a particular event in a
particular object, ⎕DQ executes the string or invokes the callback function for you.
During the execution of the string or the callback function, the user may cause other
events. If so, these are added to APL's internal queue but they are not acted upon
immediately. When the execution of the string or the callback function terminates,
control returns to ⎕DQ which once more looks to the internal queue. If another event
has been added while the callback function was running, this is read and acted upon. If
not, ⎕DQ looks to the Windows queue and waits for the next event to occur.

If you have associated an asynchronous callback function with an event (by appending
the character "&" to the name of the function), ⎕DQ starts the callback function in a
new thread and is then immediately ready to process the next event; ⎕DQ does not wait
for an asynchronous callback function to complete.

If ⎕DQ reads an event with an associated action code of 1, it terminates and returns the
event message which was generated by the event, as a result. The normal processing
for the event is not actioned. During the time between ⎕DQ terminating and you calling
it again, events are discarded. Events are only stored up in the queue if ⎕DQ is active
(that is, there is a ⎕DQ in the state indicator). It is therefore usually better to process
events using callback functions.

Assignment and reference to the Event Property

There are a number of special considerations when using assignment and reference to
the Event property.

You can set the action for a single event by prefixing the Event name by "on". For
example, to set the action of a MouseUp event on a Form F to execute the callback
function FOO:

F.onMouseUp←'UP'
F.onMouseUp

#.UP

Interface Guide

2025-10-30 (main:e0843eae32) Page 27

Notice that the value returned (#.UP) is not necessarily exactly the same as you set it
(UP).

If you reference the Event property, you will obtain all the current settings, reported in
order of their internal event number. Notice the use of distributed strand notation to
set more than one event in the same statement.

If you set the Event property using assignment, all the event actions are redefined, that
is, previous event settings are lost. For example:

The All event can also be set by assignment, and it too clears previous settings. Notice
too that a subsequent reference to a specific event using the "on" prefix, will report the
"All" setting, unless it is specifically reset.

If no events are set, the result obtained by ⎕WG and the result obtained by referencing
Event directly are different:

F.(onMouseUp onMouseDown)←'UP' ('DOWN' 42)
F.Event

onMouseDown #.DOWN 42 onMouseUp #.UP

F.(onMouseUp onMouseDown)←'UP' ('DOWN' 42)
F.Event

onMouseDown #.DOWN 42 onMouseUp #.UP

F.Event←'onMouseMove' 'MOVE'
F.Event

onMouseMove #.MOVE

F.(onMouseUp onMouseDown)←'UP' ('DOWN' 42)
F.Event

onMouseDown #.DOWN 42 onMouseUp #.UP

F.onAll←'FOO'
F.Event

onAll #.FOO

F.onMouseMove
#.FOO

F.Event←'onMouseMove' 'MOVE'
F.Event

onMouseMove #.MOVE

Interface Guide

2025-10-30 (main:e0843eae32) Page 28

Callback Functions

By setting the action code to 1 for all the events you are interested in, you could write
the control loop in your application as:

However, such code can be error prone and difficult to maintain. Another limitation is
that events that occur between successive calls on ⎕DQ are discarded.

An alternative is to use callback functions. Not only do they encourage an object-
oriented modular approach to programming, but they can also be used to validate the
user's actions and prevent something untoward happening. For example, a callback
function can prevent the user from terminating the application at an inappropriate
point. The use of callback functions will also produce applications that execute faster
than those that process events by exiting ⎕DQ and looping back again as above.

You associate a callback function with a particular event or set of events in a given
object. There is nothing to prevent you from using the same callback function with
several objects, but it only makes sense to do so if the processing for the event(s) is
common to all of them. The object that caused the event is identified by the first
element of the right argument when the callback is invoked.

'F'⎕WC'Form'
DISPLAY 'F'⎕WG'Event'

.→--.
|0 0|
'~--'

DISPLAY F.Event
.⊖------------.
| .→--------. |
	.⊖. .⊖.					
	'-' '-'					
'∊--------'						
.∊------------.

Loop: Event ← ⎕DQ 'system'
test Event[1] (object name)
and Event[2] (event code)
→Label

Label: process event for object
→Loop

Interface Guide

2025-10-30 (main:e0843eae32) Page 29

When an event occurs that has an action set to a character vector, the system looks for
a function with that name. If none exists ⎕DQ terminates with a VALUE ERROR. If the
function does exist, it is called. If the callback function was called FOO and it stopped on
line [1], the state indicator would be:

A callback function may be defined with any syntax, that is, it may be dyadic, monadic,
or niladic. If it is monadic or dyadic, ⎕DQ calls it with the event message as its right
argument. If the function is dyadic, its left argument will contain the value of the array
that was associated with the event.

A callback function is otherwise no different from any other function that you can
define. Indeed there is nothing to prevent you from calling one explicitly in your code.
For example, a callback function that is invoked automatically could call a second
callback function directly, perhaps to simulate another event.

By default, a callback function is run synchronously. This means that ⎕DQ waits for it to
return a result before attempting to process any other events. Events that are
generated by Windows while the callback function is running are simply queued.

Alternatively, you may specify that a callback function is to be run asynchronously. In
this case, ⎕DQ starts the function in a new thread, but instead of waiting for it to
complete, proceeds immediately to the next event in the queue. See Asynchronous
Callbacks for further information.

Modifying or Inhibiting the Default Processing

It is often desirable to inhibit the normal processing of an event, and it is occasionally
useful to substitute some other action for the default. One way of inhibiting an event is
to set its action code to ¯1. However this mechanism is non-selective and is not always
applicable. You can use it for example to ignore all keystrokes, but not to ignore
particular ones.

Synchronous callback functions provide an additional mechanism which allows you to
selectively inhibit default processing of an event. The mechanism also allows you to
modify the event in order to achieve a different effect.

For example, you can use a callback function to ignore a particular keystroke or set of
keystrokes, or even to replace the original keystroke with a different one. Similarly, you

)SI
FOO[1]*
⎕DQ
...

Interface Guide

2025-10-30 (main:e0843eae32) Page 30

can use a callback function to selectively ignore a LostFocus event to prevent the user
from leaving an input field if the data in the field is invalid. Callback functions therefore
give you much finer control over event processing. The mechanism uses the result
returned by the callback function and operates as follows.

When an event occurs that has a synchronous callback function attached, ⎕DQ invokes
the callback function (passing it the event message as its right argument) before
performing any other action and waits for the callback to complete. When the callback
function terminates (exits) ⎕DQ examines its result.

If the callback function returned no result, or returned a scalar 1 or the identical event
message with which it was invoked, ⎕DQ then carries out the default processing for the
event in question. If the callback function returned a 0, ⎕DQ takes no further action.
Finally, if the callback returns a different event message (from the one supplied as its
right argument), ⎕DQ performs the default processing associated with the new event
rather than with the original one.

For example, consider a callback function attached to a KeyPress event in an Edit
object. When the user presses a key, for the sake of example, the unshifted "a" key, ⎕DQ
invokes the callback function, passing it the corresponding event message as its right
argument. This event message includes information about which key was pressed, in
this case "a". The various possibilities are:

If the callback function returns a value of 1 or the same event message with
which it was invoked, ⎕DQ carries out the default processing for the original
event. In this case a lower-case "a" is displayed in the field.
If the callback function returns a value of 0, ⎕DQ takes no further action and
(unless code in the callback function actions the keystroke directly) the keystroke
is ignored.
If the callback function modifies the event message and changes the key from an
"a" to a "b", ⎕DQ carries out the default processing associated with the new
event, and displays a lower-case "b" instead.

Note that asynchronous callback functions may not be used to modify or inhibit the
default processing because their results are ignored.

See also: Section 1.7.

Generating Events using ⎕NQ

The ⎕NQ system function is used to generate events under program control and has
several uses.

•

•

•

Interface Guide

2025-10-30 (main:e0843eae32) Page 31

Firstly, it can be used to do something automatically for the user. For example, the
following expression gives the input focus to the object Form1.ED1.

Secondly, ⎕NQ can be used to generate user-defined events which trigger special actions
either by invoking callback functions or by causing ⎕DQ to terminate. For example, if you
were to define the Event property on 'Form1' as:

The expression:

would cause ⎕DQ to invoke the function FOO, passing it the entire event message
(#.Form1 1001 'Hello' 42) as its right argument. Similarly, the expression:

would cause ⎕DQ to terminate with the array ('Form1' 1002 23.59) as its result.

⎕NQ can be used to generate events in one of three ways which affect the context in
which the event is processed.

If it is used monadically as in the examples above, or with a left argument of 0, ⎕NQ
adds the event specified in its right argument onto the bottom of the event queue. The
event is then processed by ⎕DQ when it reaches the head of the queue. You can add
events to the queue prior to calling ⎕DQ, or from within a callback function which is
itself called by ⎕DQ. In either case, the context in which the event is finally processed
may be completely different from the context in which the event was placed on the
queue. When used in this way, the result of ⎕NQ is always an empty character vector.

If you use ⎕NQ with a left argument of 1, the event is processed there and then by ⎕NQ
itself. If there is a callback function attached to the event, ⎕NQ invokes it directly. Thus
like ⎕DQ, ⎕NQ can appear in the state indicator ⎕SI or)SI. This use of ⎕NQ is used to
generate an event for an object that is not currently included in a ⎕DQ, and is the usual
way of generating the special (non-user) events on the Printer and other objects. It is
also used when you want to cause an event to occur immediately without waiting for
any events already in the queue to be processed first. When used in this way, the result
of ⎕NQ is either an empty character vector, or the result of the callback function if one is
attached.

If you use ⎕NQ with a left argument of 2, APL immediately performs the default
processing (if any) for the event, bypassing any callback function. This case of ⎕NQ is

⎕NQ Form1.ED1 'GotFocus'

'Form1' ⎕WS ('Event' 1001 'FOO')('Event' 1002 1)

⎕NQ Form1 1001 'Hello' 42

⎕NQ 'Form1' 1002 23.59

Interface Guide

2025-10-30 (main:e0843eae32) Page 32

often used within a callback function to put the object into the state that it would
otherwise be in when the callback terminated. When used in this way, the result of ⎕NQ
is 1. To avoid processing the event twice, the callback function should return 0.

The use of ⎕NQ with a left argument of 2, is the same as calling the event as a method,
and this is discussed in the next section.

A left argument of 4 is a special case that is used by an ActiveXControl or NetType
object to generate an event in its host application. See Section 11.1 for details.

1.6 Methods

Calling Methods

A method is similar to a function in that it may or may not take an argument, perform
some action, and return a result.

Examples are the Print, NewPage, Setup and Abort methods, all of which cause a
Printer object to take a particular action.

If the system variable ⎕WX is 1, you may invoke an object's method using exactly the
same syntax as you would use to call a function in that object.

For example, to execute the IDNToDate method of a Calendar object named F.CAL, you
can use the expression:

When you call a method in this way, the method name is case-sensitive and if you spell
it incorrectly, you will get a VALUE ERROR.

Invoking Methods with ⎕NQ

Methods may also be called using ⎕NQ with a left argument of 2, indeed if ⎕WX is 0, this
is the only way to call a method.

The result of the method is returned by ⎕NQ. Note however that the result is shy.

F.CAL.IDNToDate 36525
2000 1 1 5

F.CAL.idntodate 36525
VALUE ERROR

F.C.idntodate 36525
^

Interface Guide

2025-10-30 (main:e0843eae32) Page 33

For example, for a TreeView object you can obtain status information about a particular
item in the object using the GetItemState method:

Or you can call the IDNToDate method of a Calendar object F.C as follows:

When you call a method using 2 ⎕NQ, the method name is not case-sensitive.

Events as Methods

Methods and events are closely related and most events can be invoked as methods.

For example, you can reposition and resize a Form in one step by calling its Configure
event as a method. The argument you supply is the same as the event message
associated with the event, but with the first two items (Object and Event code)
omitted.

Or, using 2 ⎕NQ

Notice that when you call an event as a method, you are executing the default
processing associated with the event. The setting for the Event property is ignored and,
in particular, any callback associated with the event is not executed.

1.7 High-Priority Callback Functions

A high-priority callback function is one that is invoked by a high-priority event which
demands that Dyalog must return a result to the operating system before it may
process any other event. Such high-priority events include Configure, ExitWindows,
DateTimeChange, DockStart, DockCancel, DropDown, GetTipText, GesturePan,
GestureZoom, GestureRotate, GestureTwoFingerTap, GesturePressAndTap.

⎕←2 ⎕NQ 'f.tv' 'GetItemState' 6
96

⎕←2 ⎕NQ 'F.CAL' 'IDNToDate' 36525
2000 1 1 5

⎕←2 ⎕NQ 'F.CAL' 'idntodate' 36525
2000 1 1 5

F.Configure 10 10 30 20

2 ⎕NQ 'F' 'Configure' 10 10 30 20

Interface Guide

2025-10-30 (main:e0843eae32) Page 34

If a high-priority callback function is traced or stops for any reason, the system is in
limbo until the windows notification has been actioned. This will occur only when the
callback exits. During this time, it is not possible to reset the state indicator or save the
workspace.

In the following example, there is a deliberate error on GenCB[2] which is assigned as
the callback function for the GesturePan event on object f.s1.

[user drags finger in object]

The only way to restore the situation to normal is to force the callback function to exit.
For example:

f.s1.onGesturePan←'GenCB'

∇ GenCB m
[1] m
[2] ∘

∇

#.f.s1 GesturePan 1 84 103 0 0
SYNTAX ERROR
GenCB[2] ∘

∧
)SI

#.GenCB[2]*
⎕DQ

→
DOMAIN ERROR: Operation cannot be completed with an "external" call on t
he stack

→
∧
)RESET

Can't)RESET with external call on the stack.
)CLEAR
Can't)CLEAR with external call on the stack.

)SAVE
Cannot perform operation with calls to or from external functions or cer
tain callbacks.

→0
)SI

Interface Guide

2025-10-30 (main:e0843eae32) Page 35

Thread-Switching and :Hold

Dyalog cannot perform thread-switching during the execution of a high-priority
callback.

:Hold with a non-zero number of tokens is not permitted in a high-priority callback and
an attempt to use it will cause the error:

1.8 GUI Objects as Namespaces

GUI objects are a special type of namespace and this has several useful implications.
Firstly, instead of creating the children of an object from outside in the workspace, you
can use)CS to change to an object and create them from within. The only restriction is
that you can only create GUI objects that are valid as children of the current object. A
second benefit is that you can put the callback functions, together with any global
variables they require, into the objects to which they apply. Consider the following
example.

First make a Form F1

Then change to the Form's namespace

Now you can create a Group (or any other child object), but because you are already
inside the Form, the name you give to the Group will be taken as being relative to the
Form. In other words, you must specify the part of the name that applies to the Group
itself, leaving out the 'F1.' prefix that you would use if you executed the statement
outside in the workspace.

You can continue to create other objects

DOMAIN ERROR: Cannot :Hold within high priority callback

'F1' ⎕WC 'Form' 'GUI Objects as Namespaces'
('Size' 25 50)

)CS F1
#.F1

'CH' ⎕WC 'Group' 'Counter' (10 10)(70 60)

'OK' ⎕WC 'Button' '&Ok' (20 80)(⍬ 15)
'CAN' ⎕WC 'Button' '&Cancel' (60 80) (⍬ 15)
'FNT' ⎕WC 'Font' 'Arial' 16 ('Weight' 700)

Interface Guide

2025-10-30 (main:e0843eae32) Page 36

If you ask for a list of objects, you will see only those within the current namespace

When you are inside an object you can also set (or get) a property directly, so you can
set the FontObj property for the Form with the following statement.

You can achieve the same with ⎕WS by omitting its left argument:

You can create a child of the Group from outside it ...

or you can change to it and create others from within...

Once again, if you request a list of objects you will see only those in the current
namespace.

You can create functions and variables in a GUI namespace in exactly the same way as
in any other. So, for example, you could create a variable called COUNT and a function
CHANGE to update it:

You can also make CHANGE a callback function for the two Buttons.

)OBJECTS
CAN CH FNT OK

FontObj←'FNT'

⎕WS 'FontObj' 'FNT'

'CH.UP' ⎕WC 'Button' '+1' (20 10)(30 20)

)CS CH
#.F1.CH

'DOWN' ⎕WC 'Button' '-1' (60 10)(30 20)
'FNT' ⎕WC 'Font' 'Arial' 32
'CTR' ⎕WC 'Label' ('FieldType' 'Numeric')

('FontObj' 'FNT')

)OBJECTS
CTR DOWN FNT UP

COUNT ← 0

∇ INCR CHANGE MSG
[1] COUNT←COUNT+INCR
[2] CTR.Value←COUNT

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 37

Notice that because you were in the F1.CH namespace when you made this
association, the event will fire the function CHANGE in the F1.CH namespace and,
furthermore, it will execute it within that namespace. Hence the names referenced by
the function are the local names, that is, the variable COUNT and the Label CTR, within
that namespace.

So if you now switch back to the outer workspace

and click on the buttons...

The result will appear approximately as shown below

Attaching GUI Objects to Namespaces

Monadic ⎕WC is used to attach a GUI component to an existing object. The existing
object must be a pure namespace or an appropriate GUI object (one that can
legitimately be placed at that point in the object hierarchy). The operation may be
performed by changing space to the object or by running ⎕WC inside the object using
the dot syntax. For example, the following statements are equivalent.

UP.onSelect←'CHANGE' 1
DOWN.onSelect←'CHANGE' ¯1

)CS
#

Interface Guide

2025-10-30 (main:e0843eae32) Page 38

Monadic ⎕WC is often used in conjunction with the KeepOnClose property. This property
specifies whether or not an object remains in existence when its parent Form (or in the
case of a Form, the Form itself) is closed by the user or receives a Close event.

This facility is particularly useful if you wish to have functions and variables
encapsulated within your Forms. You may want to save these structures in your
workspace, but you do not necessarily want the Forms to be visible when the
workspace is loaded.

An alternative way to achieve this is to prevent the user from closing the Form and
instead make it invisible. This is achieved by intercepting the Close event on the Form
and set its Visible property to 0. Then, when the Form is subsequently required, its
Visible property is set back to 1. However, if the Form needs adjustment because the
workspace was loaded on a PC with different screen resolution or for other reasons, it
may not be easy to achieve the desired result using ⎕WS. Monadic ⎕WC is generally a
better solution.

Namespace References and GUI Objects

The use of a GUI name in an expression is a reference to the GUI object, or ref for
short. If you assign a ref or call a function with a ref as an argument, the reference to
the GUI object is copied, not the GUI object itself.

So for example, if you have a Form named F:

Assigning F to F1, does not create a second Form F1; it simply creates a second
reference (F1) to the Form F. Subsequently, you can manipulate the Form F using either
F or F1.

)CS F
#.F

⎕WC 'Form' ⍝ Attach a Form to this namespace

)CS
#

F.⎕WC'Form' ⍝ Attach a Form to namespace F

'F'⎕WC 'Form'

Interface Guide

2025-10-30 (main:e0843eae32) Page 39

Similarly, if you call a function with F as the argument, the local argument name
becomes a second reference to the Form, and a new Form is not created:

Here is a simple function which approximately centres a Form in the middle of the
screen:

The function can be called using either F or F1 (or any other Form) as an argument:

A ref to a GUI object can conveniently be used as the argument to :With; for example,
the SHOW_CENTRE function can instead be written as follows:

If instead, you actually want to duplicate (clone) a GUI object, you may do so by calling
⎕WC with a ref as the right argument and the new name as the left argument.

For example:

F1←F
F1

#.F
F1.Caption←'Hello World'
F.Caption

Hello World

∇ R←SHOW_CENTRE FORM;OLD;SCREEN
[1] SCREEN←⊃'.'⎕WG'DevCaps'
[2] OLD←FORM.Coord
[3] FORM.Coord←'Pixel'
[4] R←FORM.Posn←⌊0.5×SCREEN-FORM.Size
[5] FORM.Coord←OLD

∇

SHOW_CENTRE F
287 329

SHOW_CENTRE F1
287 329

∇ R←SHOW_CENTRE FORM;OLD;SCREEN
[1] SCREEN←⊃'.'⎕WG'DevCaps'
[2] :With FORM
[3] OLD←Coord
[4] Coord←'Pixel'
[5] R←Posn←⌊0.5×SCREEN-Size
[6] Coord←OLD
[7] :EndWith

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 40

Then, instead of creating a second Group for selecting Foreground colour line by line as
before, you can clone the "Background" Group as follows:

The new Group F.F is an exact copy of F.B and will have the same Posn, Size and
Caption, as well as having identical children. To achieve the desired result, it is
therefore only necessary to change its Posn and Caption properties; for example:

The result is illustrated below.

Note that when a namespace is cloned in this way, the objects (functions, variables and
other namespaces) within it are not necessarily duplicated. Instead, the objects in
cloned namespaces are in effect just pointers to the original objects. However, if you
subsequently change the clone, or the original object to which it refers, the two are de-
coupled and a second copy ensues. This mechanism makes it possible to create large
numbers of instances of a single class namespace without consuming an excessive
amount of workspace.

'F' ⎕WC 'Form' 'Cloning Example'
'F.B' ⎕WC 'Group' 'Background' (10 10)(80 30)
'F.B.R' ⎕WC 'Button' 'Red' (20 10)('Style' 'Radio')
'F.B.B' ⎕WC 'Button' 'Blue' (50 10)('Style' 'Radio')
'F.B.G' ⎕WC 'Button' 'Green' (80 10)('Style' 'Radio')

'F.F' ⎕WC F.B

F.F.Caption F.F.Posn ← 'ForeGround' (10 60)

Interface Guide

2025-10-30 (main:e0843eae32) Page 41

1.9 Modal Dialog Boxes

Up to now, it has been assumed that your user has constant access to all of the
interface features and controls that you have provided. The user is in charge; your
application merely responds to his requests.

Although this is generally considered desirable, there are times when a particular
operation must be allowed to complete before anything else can be done. For example,
an unexpected error may occur and the user must decide upon the next course of
action (for example, Continue, Restart, Quit). In these situations, a modal dialog box is
required. A modal dialog box is one to which the user must respond before the
application will continue. While the modal dialog box is in operation, interaction with
all other objects is inhibited.

A modal dialog box is simply achieved by calling ⎕DQ with just the name of the
corresponding Form in its argument. This can be done from within a callback function
or indeed from any point in an application. To make the local ⎕DQ terminate, you may
specify an action code of 1 for an event. Alternatively, if you wish to make exclusive use
of callback functions to process events, you can cause the ⎕DQ to terminate by erasing
the Form from a callback function.

For example, suppose that you want the user to close the dialog box by clicking an "OK"
button. You would specify the Event property for the Button as:

... and the function EXIT is simply...

Note that this function is fairly general, as it gets the name of the Form from the name
of the object that generated the event.

The MsgBox and FileBox Objects

The MsgBox and FileBox objects are standard MS-Windows dialog boxes and are strictly
modal. The following discussion refers to the way a MsgBox is used, but applies equally
to a FileBox.

('Event' 'Select' 'EXIT')

∇ EXIT Msg;BTN;Form
[1] ⍝ Terminate modal ⎕DQ by erasing Form
[2] OBJ←⍕⊃Msg
[3] Form←(¯1+OBJ⍳'.')↑OBJ ⍝ Get Form name
[4] ⎕EX Form

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 42

The MsgBox is a pop-up modal dialog box with a title bar (defined by the Caption
property), an icon (defined by the Style property), some text (defined by the Text
property) and up to three buttons (defined by the Btns property).

The MsgBox does not appear on the screen when you create it with ⎕WC. Instead, it
pops up ONLY when you call ⎕DQ with the name of the MsgBox as its sole right
argument. Furthermore, the MsgBox automatically pops down when the user clicks on
any one of its buttons; you don't actually have to enable any events to achieve this. For
example:

creates an invisible MsgBox with the title (Caption) 'Input Error', no text, and a Style
of 'Error'. This gives it a "Stop sign" icon. When you want to issue an error message
to your user, you simply call a function (let's call it ERRMSG) which is defined as follows:

Note that ⎕DQ will terminate automatically when the user clicks one of the buttons in
the MsgBox object.

In this case we were not interested in the particular button that the user pressed. If you
are interested in this information, you can enable special events associated with these
buttons. For details, see the description of the MsgBox and FileBox objects in the
Object Reference.

1.10 Multi-Threading with Objects

The following rules apply when using threads and objects together.

All events generated by an object are reported to the thread that owns the
object and cannot be detected by any other threads. A thread owns an object if
it has created it or inherited it. If a thread terminates without destroying an
object, the ownership of the object and its events passes to the parent thread.
The Root object '.' and the Session object ⎕SE are owned by thread 0. Events
on these objects will be only be detected and processed by ⎕DQ running in
thread 0, or by the implicit ⎕DQ that runs in the Session during development.

'ERR' ⎕WC 'MsgBox' 'Input Error' '' 'Error'

∇ ERRMSG Msg
[1] ⍝ Displays 'ERR' message box
[2] ERR.Text←Msg ⍝ Put Msg in box
[3] ⎕DQ 'ERR'

∇

1.

2.

Interface Guide

2025-10-30 (main:e0843eae32) Page 43

Several threads may invoke ⎕DQ concurrently. However, each thread may only
use ⎕DQ on objects that it owns. If a thread attempts to invoke ⎕DQ on an object
owned by another thread, it will fail with DOMAIN ERROR.
Any thread may execute the expression ⎕DQ '.', however:

In thread 0, the expression ⎕DQ '.' will detect and process events on the
Root object and on any Forms and other top-level objects owned by
thread 0 or created by callbacks running in thread 0. The expression will
terminate if there are no active and visible top level objects and there are
no callbacks attached to events on Root.
In any other thread, the expression ⎕DQ '.' will detect and process
events on any Forms and other top-level objects owned by that thread or
created by callbacks running in that thread. The expression will terminate
if there are no active and visible top level objects owned by that thread.

A thread may use ⎕NQ to post an event to an object owned by another thread, or
to invoke the default processing for an event, or to execute a method in such an
object. This means that the following uses of ⎕NQ are allowed when the object in
question is owned by another thread:

The only use of ⎕NQ that is prohibited in these circumstances is

which will generate a DOMAIN ERROR.

While a thread is waiting for user response to a strictly modal object such as a
MsgBox, FileBox, Menu or Locator object, any other threads that are running
remain suspended. APL is not able to switch execution to another thread in
these circumstances.

1.11 The Co-ordinate System

Each object has a Coord property that determines the units in which its Posn and Size
properties are expressed. For full details, see Object Reference: Coord.

Coord may be set to one of the following values :

3.

4.
1.

2.

5.

⎕NQ object event...
0 ⎕NQ object event...
2 ⎕NQ object event...
2 ⎕NQ object method...
3 ⎕NQ ole_object method...
4 ⎕NQ activexcontrol event...

1 ⎕NQ object event...

6.

Interface Guide

2025-10-30 (main:e0843eae32) Page 44

'Inherit'

this means that the object assumes the same co-ordinate
system as its parent. This is the default for all objects except the
Root object.

'Prop'
the position and size of the object are expressed as a
percentage of the dimensions of its parent.

'Pixel'

The position and size of the object are expressed in pixels,
which are interpreted as either 'ScaledPixel' or 'RealPixel'
according to the value of the DYALOG_PIXEL_TYPE parameter.

'ScaledPixel'

The position and size of the object are expressed in pixels but
these metrics are scaled according to the user's chosen scaling
factor.

'RealPixel' The position and size of the object are expressed in pixels.

'User'

the position and size of the object are expressed in units
defined by the YRange and XRange properties of the object's
parent.

'Cell'
the position and size of the object are expressed in cell
coordinates (applies only to Grid and its graphical children).

By default, the value of Coord for the Root object is 'Prop'. For all other objects, the
default is 'Inherit'. This means that the default co-ordinate system is a proportional
one.

You can change Coord from one value to another as you require. It only affects the
units in which Size and Posn are currently expressed. The physical position and size are
unaffected. Note that if you set Posn and/or Size in the same ⎕WC or ⎕WS statement as
you set Coord, it is the old value of Coord that is applied.

The co-ordinate system is also independent of the way in which objects are
reconfigured when their parent is resized. This is perhaps not immediately obvious, as
it might be expected that objects which are specified using Pixel co-ordinates will be
unaffected when their parent is resized. This is not necessarily the case as the manner
in which objects respond to their parent being resized is determined independently by
the AutoConf and Attach properties.

The User co-ordinate system is useful not only to automate scaling for graphics, but
also to perform scrolling. This is possible because XRange and YRange define not just
the scale along each axis, but also the position of the origin of the co-ordinate system
in the parent window.

Interface Guide

2025-10-30 (main:e0843eae32) Page 45

1.12 High DPI Support

Modern high resolution screens present some practical challenges to a Graphical User
Interface that was designed when lower-resolution screens were the norm. When you
increase resolution you inherently decrease the size of each pixel (assuming same
display size). By decreasing the size of each pixel the content shown on the display
appears smaller. When display Dots-Per-Inch (DPI) gets sufficiently dense this shrinking
effect can make content hard to see and user interface components such as menus and
buttons, difficult to click/tap.

Also, people have different preferences and Windows enables the user to change the
DPI setting.

To address this issue, the Desktop Window Manager, which is enabled in Windows
Vista and above, automatically scales up windows and their content to match the
current DPI setting.

The problem with this approach is that, because the scaling is implemented by bitmap
stretching, application user-interfaces windows tend to look fuzzy and/or distorted.

DPI-Awareness

To prevent the DWM from stretching its user-interface, a Windows application can
declare itself to be DPI-Aware. If so, the application is expected to handle DPI issues

Interface Guide

2025-10-30 (main:e0843eae32) Page 46

itself. Whether it does so by scaling GUI components according to the DPI in use, or
not, is up to the application itself. If an application chooses to register itself as DPI-
aware, but fails to scale its GUI components on a high DPI device, they will simply
appear physically smaller on the screen.

An application can declare itself as being DPI-Aware by making a system call or by
making a declaration in the optional XML manifest file that may be associated with its
.exe.

Dyalog APL will register itself as being DPI-Aware on startup if the value of the
AUTODPI parameter is 1. This is the default, so in a standard developer installation,
Dyalog APL itself and all Dyalog applications driven by the development and run-time
versions of Dyalog are by default registered as DPI-Aware, so DPI scaling by the DWM is
disabled.

This can be changed by setting the AUTODPI parameter to 0 (or by removing it) or
using a declaration in a manifest file. See Enabling DWM Stretching.

Coord Property

Dyalog APL includes a mechanism to automatically scale a pixel coordinate user-
interface according to the DPI setting. This works by introducing two new coordinate
types named ScaledPixel and RealPixel and by changing the way that the existing Pixel
coordinate type is interpreted.

ScaledPixel means that the number of pixels specified will be automatically scaled by
Dyalog APL according to the user's chosen display scaling factor. ScaledPixel also means
that Dyalog will automatically de-scale coordinate values reported by ⎕WG and
coordinate values in event messages.

RealPixel means that Dyalog APL will precisely honour the number of pixels you specify
and will apply no scaling. GUI windows and components will simply appear physically
smaller on higher DPI devices.

The Dyalog Session uses Coord 'ScaledPixel' and all the GUI components of the
Session are therefore DPI-scaled by Dyalog itself.

Pixel Coordinates and DYALOG_PIXEL_TYPE

Dyalog Versions prior to Version 14.1 did not support ScaledPixel and RealPixel options;
just Pixel. Rather than force users to change all pixel coordinate types in legacy
applications, Dyalog provides a parameter named DYALOG_PIXEL_TYPE whose value is

Interface Guide

2025-10-30 (main:e0843eae32) Page 47

either ScaledPixel or RealPixel. If the value of the Coord property is 'Pixel' this is
interpreted as meaning whichever value is specified by DYALOG_PIXEL_TYPE.

If the DYALOG_PIXEL_TYPE parameter is not specified (the default), it defaults to
RealPixel. So by default, Coord 'Pixel', will be treated as RealPixel and your Dyalog
APL GUI application will simply appear physically smaller on higher DPI devices.

DYALOG_PIXEL_TYPE may be set to ScaledPixel by ticking the check-box on the General
Tab of the Configuration Dialog box labelled Enable DPI Scaling of GUI application.

If this check-box is cleared the DYALOG_PIXEL_TYPE parameter will be removed from
the current user's registry.

Using ScaledPixel coordinates, if you specify an Edit object to be 80 units wide and 20
units high, and the user's scaling factor is 150%, Dyalog will automatically draw it 120
pixels wide and 30 pixels high. You won't have to change any of your code that handles
the Edit, it will just appear larger on the screen than if it hadn't been scaled. Similarly, if
you use the ScaledPixel coordinate type for the Font object, the font used to draw text
in the object will automatically be scaled for you.

Font Object

The Font object has a Coord property which may be set to 'Pixel', 'ScaledPixel' or
'RealPixel' when the object is created, but may not subsequently be changed. Note
that the Font object does not support other Coord values. 'Pixel' is treated as
'ScaledPixel' or 'RealPixel' as discussed above.

If you are using 'ScaledPixel', this means that your fonts will also be scaled up
automatically, as well as the sizes of the controls in which they are used.

Set Dyalog Pixel Type (2035⌶)

This function provides the means to set the meaning of Coord 'Pixel'
programmatically and dynamically. This function affects the way that Pixel coordinates
are subsequently treated. For further information, see Dyalog APL Language: Set
Dyalog Pixel Type.

Enabling DWM Scaling

The DPI-Aware scaling features provided by Dyalog APL are designed to allow you to
deploy GUI applications that look attractive in most situations, whatever the screen
resolution and scaling factor is in use.

Interface Guide

2025-10-30 (main:e0843eae32) Page 48

However, if you wish to ignore these facilities and fall back on Windows DWM scaling,
you may do so as follows.

If you wish to enable DWM scaling in your application, you can either remove or set to
zero the AUTODPI parameter. For example, the command line to start a run-time
application might be:

This will prevent Dyalog from registering your application as DPI-Aware in start-up.

Another way to enable DWM scaling is to use a manifest file. Note that if you disable
DWM scaling for the development version of Dyalog APL, the appearance of the
Session window may be imperfect.

Using a Manifest

A Windows application can declare itself to be DPI-aware or not using a declaration in
the optional XML manifest file associated with its .exe. If you want your Dyalog
APL application to be automatically scaled by the DWM, you may use a manifest file to
override the call that Dyalog itself makes to register itself as being DPI-Aware.

This is done by setting the XML entity dpiAware to the value false as illustrated by the
skeleton manifest file listed below.

If dpiAware appears in the manifest file, its value take precedence over the value of the
AUTODPI parameter, whether it is specified implicitly by omission (it defaults to 1) or is
specified in the registry or on the command line.

Naming a Manifest File

The name of the manifest file is the full name of the application file followed by an
optional resource id (if omitted, the default is 1) and the extension .manifest. If your

dyalogrt.exe myruntime.dws AUTODPI=0

<assembly xmlns="urn:schemas-microsoft-com:asm.v1"
manifestVersion="1.0" xmlns:asmv3="urn:schemas-microsoft-com:asm.v3" >
<asmv3:application>

<asmv3:windowsSettings xmlns="http://schemas.microsoft.com/SMI/2005/
WindowsSettings">

<dpiAware>false</dpiAware>
</asmv3:windowsSettings>

</asmv3:application>
</assembly>

Interface Guide

2025-10-30 (main:e0843eae32) Page 49

application runs courtesy of the dyalogrt.exe or dyalogrt.dll, the name of the manifest
file should be one of:

If you have exported your application as an executable called example.exe or as a dll
called example.dll, it should be one of:

1.13 Colour

Colours are specified using the FCol (foreground colour) and BCol (background colour)
properties. Graphical objects have an additional FillCol (fill colour) property.

A single colour may be specified in one of two ways, either as a negative integer that
refers to one of a set of standard Windows colours, or as a 3-element numeric vector.
The latter specifies a colour directly in terms of its red, green and blue intensities which
are measured on the scale of 0 (none) to 255 (full intensity). Standard Windows colours
are:

Colour Element Colour Element

0 Default ¯11 Active Border

¯1 Scroll Bars ¯12 Inactive Border

¯2 Desktop ¯13 Application Workspace

¯3 Active Title Bar ¯14 Highlight

¯4 Inactive Title Bar ¯15 Highlighted Text

¯5 Menu Bar ¯16 Button Face

¯6 Window Background ¯17 Button Shadow

¯7 Window Frame ¯18 Disabled Text

¯8 Menu Text ¯19 Button Text

¯9 Window Text ¯20 Inactive Title Bar Text

¯10 Active Title Bar Text ¯21 Button Highlight

 dyalogrt.exe.<resource ID>.manifest
 dyalogrt.dll.<resource ID>.manifest

 example.exe.<resource ID>.manifest
 example.dll.<resource ID>.manifest

Interface Guide

2025-10-30 (main:e0843eae32) Page 50

A colour specification of 0 (which is the default) selects the appropriate background or
foreground colour defined by your current colour scheme for the object in question.
For example, if you select yellow as your MS-Windows Menu Bar colour, you will get a
yellow background in Menu and MenuItem objects as the default if BCol is not
specified.

To select a colour explicitly, you specify its RGB components as a 3-element vector. For
example:

(255 0 0) = red (0 255 0) = green

(255 255 0) = yellow (192 192 192) = grey

(0 0 0) = black (255 255 255) = white

A colour specification of ⍬ (zilde) selects a transparent colour.

1.14 Fonts

In keeping with the manner in which fonts are managed by Microsoft Windows and
other GUI environments, Dyalog APL treats fonts as objects which you create (load)
using ⎕WC and erase (unload) using ⎕EX or localisation.

A Font object is created and assigned a name using ⎕WC. This name is then referenced
by other objects via their FontObj properties. For example to use an Arial bold italic
font of height 32 pixels in two Labels:

If a font is referenced by more than one Form, you should create the Font as a top-level
object, as in the above example. However, if the font is referenced by a single Form,
you may make the Font object a child of that Form. The font will then automatically be
unloaded when you erase the Form with which it is associated.

Compatibility Note:

In the first release of Dyalog APL/W (Version 6.2), fonts were referenced directly by the
FontObj property. The above example would have been achieved by:

'A32' ⎕WC 'Font' 'ARIAL' 32 0 1 0 700

'F.L1' ⎕WC 'Label' 'Hello' (20 10) ('FontObj' 'A32')
'F.L2' ⎕WC 'Label' 'World' (20 10) ('FontObj' 'A32')

Interface Guide

2025-10-30 (main:e0843eae32) Page 51

Although this original mechanism continues to be supported, it is recommended that
you use the method based on Font objects which supersedes it.

1.15 Drag and Drop

Dyalog APL/W provides built-in support for drag/drop operations through the Dragable
property. This applies to all objects for which drag/drop is appropriate.

The default value of Dragable is 0 which means that the object cannot be drag/
dropped. To enable drag/drop, you can set it to 1 or 2. A value of 1 means that the user
drags a box that represents the bounding rectangle of the object. In general, a value of
2 means that the user drags the outline of the object itself, whether or not it is
rectangular. However, there are two exceptions. For a Text object, ('Dragable' 2)
means that the user drags the text itself. For an Image object that contains an Icon,
('Dragable' 2) means that the user drags the icon itself, and not just its outline.

If Dragable is 1 or 2, the user may drag/drop the object using the mouse.

When the user drops an object, the default processing for the event is:

If the object is dropped over its parent, it is moved to the new location.
If the object is dropped over an object other than its parent, the dragged object
remains where it is.

If you enable the DragDrop event (11) on all eligible objects, you can control what
happens explicitly. If an object is dropped onto a new parent, you can move it by first
deleting it and then recreating it. Note that you must give it a new name to reflect its
new parentage. Note too that the DragDrop event reports co-ordinates relative to the
object being dropped on, so it is easy to rebuild the object in the correct position and
with the correct size.

An alternative to using the built-in drag/drop operation is to do it yourself with the
Locator object. This is no less efficient and has the advantage that you can choose
which mouse button you use. It can also be used to move a group of objects. However,
the Locator only supports a rectangular or elliptical outline.

'F.L1' ⎕WC 'Label' 'Hello' (10 10)
('FontObj' 'ARIAL' 32 0 1 0 700)

'F.L2' ⎕WC 'Label' 'World' (20 10)
('FontObj' 'ARIAL' 32 0 1 0 700)

1.
2.

Interface Guide

2025-10-30 (main:e0843eae32) Page 52

1.16 Debugging

Four features are built into the system to assist in developing and debugging GUI
applications.

Firstly, if you execute ⎕WC and/or ⎕WS statements from the Session or by tracing a
function, they have an immediate effect on the screen. Thus you can see immediately
the visual result of an expression, and go back and edit it if it isn't quite what you want.

Secondly, if you use ⎕WC with an existing name, the original object is destroyed and
then re-created. This allows you to repeatedly edit and execute a single statement until
it gives the effect you desire.

Thirdly, if you TRACE a ⎕DQ statement, any callback functions that are invoked will be
traced as they occur. This is invaluable in debugging. However, callbacks invoked by
certain "raw" events, for example MouseMove, can be awkward to trace as the act of
moving the mouse pointer to the Trace window interferes with the operation in the
object concerned.

Finally, ⎕NQ can be used to artificially generate events and sequences of events in a
controlled manner. This can be useful for developing repeatable test data for your
application.

1.17 Creating Objects using NEW

With the introduction of Classes in Version 11.0, you may manipulate Dyalog GUI
objects as Instances of built-in (GUI) Classes. This approach supplements (but does not
replace) the use of ⎕WC, ⎕WS and so forth.

To create a GUI object using ⎕NEW, the Class is given as the GUI Object name and the
Constructor Argument as a vector of (Property Name / Property Value) pairs. For
example, to create a Form:

Notice however that only perfectly formed name/value pairs are accepted. The highly
flexible syntax for specifying Properties by position and omitting levels of enclosure,
that is supported by ⎕WC and ⎕WS, is not provided with ⎕NEW.

Naturally, you may reference and assign Properties in the same way as for objects
created using ⎕WC:

F1←⎕NEW 'Form' (⊂'Caption' 'Hello World')

Interface Guide

2025-10-30 (main:e0843eae32) Page 53

Callbacks to regular defined functions in the Root or in another space, work in the
same way too. If function FOO merely displays its argument:

Note that the first item in the event message is a ref to the Instance of the Form.

To create a control such as a Button, it is only necessary to run ⎕NEW inside a ref to the
appropriate parent object. For example:

As illustrated in this example, it is not necessary to assign the resulting Button Instance
to a name inside the Form (F1 in this case). However, it is a good idea to do so that refs
to Instances of controls are expunged when the parent object is expunged. In the
example above, expunging F1 will not remove the Form from the screen because B1
still exists as a ref to the Button. So, the following is safer:

Or perhaps better still,

Note that as ⎕NEW provides no facility to name a GUI object, the Event property should
use the onEvent syntax so that a callback function (or the result of ⎕DQ) receives a ref to
the object. Otherwise, without the onEvent syntax, the first element of the argument to
a callback function will contain a character vector such as '[Form].[Button]' which
merely describes the type of the object but does not identify the object itself.

F1.Size
50 50

F1.Size←20 30

∇ FOO M
[1] ⎕←M

∇

F1.onMouseUp←'#.FOO'
#.[Form] MouseUp 78.57142639 44.62540...

B1←F1.⎕NEW 'Button' (('Caption' '&OK')('Size' (10 10)))

F1.B1←F1.⎕NEW'Button'(('Caption' '&OK')('Size' (10 10)))

F1.(B1←⎕NEW 'Button'(('Caption' '&OK')('Size' (10 10))))

cap←'Caption' 'Push Me'
ev← 'Event' ('onSelect' 'foo')
F.(B←⎕NEW'Button'#.(pos cap ev))

Interface Guide

2025-10-30 (main:e0843eae32) Page 54

1.18 Native Look and Feel

Native Look and Feel is a Dyalog option that affects the appearance of the controls
provided by the Dyalog GUI Interface and those used by the Dyalog Session. It is
implemented by the XPLookAndFeel parameter.

Most of the Dyalog controls (with the notable exception of the Dyalog Grid) are
standard Windows user-interface components provided by the Windows Common
Controls library comctl32.dll. Successive versions of Windows have introduced new
versions of the Windows Common Control Library which typically provide additional
features as well as certain differences in appearance. However, each version of
Windows continues to support older versions of the Common Control Library as well as
the latest one. The decision as to which is loaded is made at run-time.

A second factor that affects the appearance of user-interface controls is the application
of Visual Styles1 and Themes. These features enable users to tailor the UI to
accommodate their individual needs and preferences. From Windows 8 onwards, the
default appearance of certain Common Controls is overridden by the Visual Styles in
use. However, this applies only if Native Look and Feel is enabled.

If Native Look and Feel is enabled, Windows loads the latest version of comctl32.dll
(and potentially other Windows dlls) that is appropriate for the version of Windows in
use. If Native Look and Feel is disabled, an earlier version may be loaded. The specific
version that is loaded is not determined by Dyalog, but by Windows.

The Dyalog for Microsoft Windows Object Reference Guide identifies which features
require Native Look and Feel to be enabled. It documents the typical appearance of
controls with Native Look and Feel disabled but does not specify how the appearance
of controls is affected by enabling Native Look and Feel, which is in any case affected
by the Visual Styles selected by the user.

The following pictures illustrate the appearance of a simple Button created with and
without Native Look and Feel under Windows 10.

1 See msdn.microsoft.com for details.

Interface Guide

2025-10-30 (main:e0843eae32) Page 55

The next shows the appearance of ToolButttons with Style Buttons under Windows 10
with Native Look and Feel disabled. The appearance is the same in earlier versions of
Windows.

When Native Look and Feel is enabled, the buttons become transparent and Windows
applies the Visual Styles associated with the current theme. This in turn implies that
with Native Look and Feel enabled the Styles Button and FlatButton have the same
appearance.

Interface Guide

2025-10-30 (main:e0843eae32) Page 56

1.19 Gestures

Introduction

Gestures are user interactions that are most commonly generated by touching and
moving fingers on the screen, although other means (for example, touch pad, stylus)
can be used to perform the same operations.

The following Gestures are supported by Dyalog APL:

Gesture Description

Pan The user touches one or two fingers on the screen and drags or
swipes them.

Zoom The user touches two fingers on the screen and moves them towards
each other (zoom out) or away from each other (zoom in).

Rotate The user touches two fingers on the screen and then twists them as
if turning a knob.

Tap The user taps (touches briefly) one or two fingers on the screen.

Press and
Tap

The user presses one finger on the screen, then taps the screen with
a second finger, while the first finger remains in contact with the
screen.

Gesture Events

Gestures generate GUI events, which are summarised in the table below.

Apart from GestureTwoFingerTap, which generates a single event, Gestures generate a
series of events of the same type. The first of these is flagged as a starting event. Then
there are a series of one or more continuation events, followed finally by one that is
flagged as the final event in the series. Each series consists of events of the same type
and no other type of event will be reported between the start and end of that series.

Interface Guide

2025-10-30 (main:e0843eae32) Page 57

Event Description

Object Reference: Gesturepan One or more of these events are generated by
a Pan Gesture.

Object Reference: Gesturerotate One or more of these events are generated by
a Rotate Gesture.

Object Reference: Gesturezoom One or more of these events are generated by
a Zoom Gesture.

Object Reference:
Gesturepressandtap

This event is generated by a Press and Tap
Gesture.

Object Reference:
Gesturetwofingertap

This event is generated by a Tap Gesture using
two fingers.

Handling Gestures

Gestures do not in themselves do anything by default, but if left unhandled, may
generate other events which do do something by default. For example, an unhandled
Pan Gesture on a scrollbar will, by default, cause it to scroll.

An application can choose to handle Gesture events in a specifically application-
dependent manner or choose to ignore them, relying on objects to respond to mouse
or scroll events (which are generated by unhandled Gesture events) as appropriate.

In Dyalog APL, a Gesture event is handled by attaching a callback function which
responds to the event in some way. The result of the callback function is important. The
value 0 tells the Operating System that the application has handled (consumed) the
event and instructs Windows NOT to take any further action. The value 1 means that
the application has not taken action and instructs Windows to do whatever it would
normally do in response to the Gesture; for example, to treat it as a mouse or scroll
operation.

If you attach a callback to the GesturePan event which responds by, for example,
moving the object, the callback should return 0. See also: Section 1.7.

Inertia

When a Pan gesture is made, the operating system may generate additional GesturePan
events depending upon the speed with which the Gesture has been made. For
example, if the user makes a short but rapid swiping motion with a finger, inertia
generates GesturePan events over a greater distance than the finger was actually in

Interface Guide

2025-10-30 (main:e0843eae32) Page 58

contact with the screen. Information as to whether or not the event was generated by
inertia is provided in the event message.

Interface Guide

2025-10-30 (main:e0843eae32) Page 59

2 GUI Tutorial

2.1 Introduction

This tutorial illustrates how to go about developing a GUI application in Dyalog APL/W.
It is necessarily an elementary example, but illustrates what is involved. The example is
a simple Temperature Converter. It lets you enter a temperature value in either
Fahrenheit or Centigrade and have it converted to the other scale.

2.2 Some Concepts

Objects

Objects are GUI components such as Forms, Buttons and Scrollbars. You create objects
using the system function ⎕WC. Its left argument is a name for the object; its right
argument specifies the object type and various properties. Objects are created in a
hierarchy.

Properties

Properties specify the appearance and behaviour of an object. For example, the
Caption property specifies the text that appears on a Button or the title that appears in
the title bar on a Form. When you create an object with ⎕WC, its right argument
specifies its properties. You can also set properties using ⎕WS. This lets you dynamically
alter the appearance and behaviour of an object as required.

Events

Events are things that happen in objects as a result (usually) of some action by the user.
For example, when the user clicks a MenuItem, it generates a Select event. Similarly,
when the user focuses on an object, it generates a GotFocus event.

Callback Functions

Callback Functions are APL functions that you can associate with a particular event in a
particular object. Interaction with the user is controlled by the system function ⎕DQ.

Interface Guide

2025-10-30 (main:e0843eae32) Page 60

This function performs all of the routine tasks involved in driving the GUI interface.
However, its main role is to invoke your callback functions for you as and when events
occur.

That's enough theory for now ... let's see how it all works in practice.

2.3 Creating a Form

The first task is to create a Form which is to act as the main window for our application.
We will call the Form 'TEMP' and give it a title (Caption) of "Temperature Converter".

We will position the Form 68% down and 50% along the screen. This will avoid it
interfering with the APL Session Window, and make development easier.

The Form will have a height equal to 30% of the height of the screen, and a width of
40% of the screen width.

2.4 Adding a Fahrenheit Label

We are going to need two edit fields to input and display temperatures and two labels
to identify them.

Let's create the "Fahrenheit" label first. It doesn't really matter what we call it because
we won't need to refer to it later. Nevertheless, it has to have a name. Let's call it LF.

TITLE←'Temperature Converter'
'TEMP' ⎕WC 'Form' TITLE (68 50)(30 40)

Interface Guide

2025-10-30 (main:e0843eae32) Page 61

We will place it at (10,10) but we don't need to specify its Size; ⎕WC will make it just big
enough to fit its Caption.

2.5 Adding a Fahrenheit Edit Field

Now let's add the edit field for Fahrenheit. We will call it F and place it alongside the
label, but 40% along. Initially the field will be empty. We will make it 20% wide but let
its height default. ⎕WC will make it just big enough to fit the current font height. As the
field is to handle numbers, we will set its FieldType to 'Numeric'.

'TEMP.LF' ⎕WC'Label' 'Fahrenheit'(10 10)

'TEMP.F' ⎕WC 'Edit' '' (10 40)(⍬ 20)('FieldType' 'Numeric')

Interface Guide

2025-10-30 (main:e0843eae32) Page 62

2.6 Adding a Centigrade Label & Edit Field

Now we need to add a corresponding Centigrade label and edit field. We'll call these
objects LC and C respectively, and place them 40% down the Form.

2.7 Adding Calculate Buttons

Our Temperature Converter must work both ways; from Fahrenheit to Centigrade and
vice versa. There are a number of different ways of making this happen.

A simple approach is to have two buttons for the user to press; one for Fahrenheit to
Centigrade, and one for Centigrade to Fahrenheit. We will call the first one F2C and
place it alongside the Fahrenheit edit field. The caption on this button will be 'F->C'.
When the user presses the button, we want our application to calculate the centigrade
temperature. For this we need a callback function. Let's call it f2c. Notice how you
associate a callback function with a particular event. In this case, the Select event. This
event is generated by a Button when it is pressed.

(The statement below is broken into two only so as to fit on the page)

'TEMP.LC' ⎕WC'Label' 'Centigrade' (40 10)
'TEMP.C' ⎕WC 'Edit' '' (40 40)(⍬ 20)('FieldType' 'Numeric')

FB←'Button' 'F->C' (10 70)('Event' 'Select' 'f2c')
'TEMP.F2C'⎕WC FB

Interface Guide

2025-10-30 (main:e0843eae32) Page 63

Notice that it is not necessary to specify the Size of the button; the default size fits the
Caption nicely. Now let's add the Centigrade to Fahrenheit button. This will be called
C2F and have an associated callback function c2f. We could have chosen to have a
single callback function associated with both buttons, which would save a few lines of
code. Having separate functions is perhaps clearer.

Again, the statement is split into two only to make it fit onto the page.

FC←'Button' 'C->F' (40 70)('Event' 'Select' 'c2f')
'TEMP.C2F'⎕WC FC

Interface Guide

2025-10-30 (main:e0843eae32) Page 64

2.8 Closing the Application Window

Then we need something to allow our user to terminate our application. He will expect
the application to terminate when he closes the window. We will implement this by
having a callback function called QUIT which will simply call ⎕OFF, that is:

We can associate this with the Close event on the Form TEMP. This event will be
generated when the user closes the window from its System Menu

Although here we have used assignment to set the Event property, we could just as
easily have defined it when we created the Form by adding ('Event' 'Close'
'QUIT') to the right argument of ⎕WC.

2.9 Adding a Quit Button

Finally, we will add a "Quit" button, attaching the same QUIT function as a callback, but
this time to the Select event which occurs when the user presses it.

Instead of having a default sized button, we will make it nice and big, and position it
centrally.

To make the statement fit on the page, it is split into three. The Posn and Size
properties are explicitly named for clarity.

∇ QUIT
[1] ⎕OFF

∇

TEMP.onClose←'QUIT'

QB←'Button' '&Quit' ('Posn' 70 30)
QB,←('Size' ⍬ 40)('Event' 'Select' 'QUIT')
'TEMP.Q' ⎕WC QB

Interface Guide

2025-10-30 (main:e0843eae32) Page 65

Notice how the ampersand (&) in the Caption is used to specify the mnemonic (short-
cut) key. This can be used to press the button instead of clicking the mouse.

2.10 The Calculation Functions

So far we have built the user-interface, and we have written one callback function QUIT
to terminate the application. We now need to write the two functions f2c and c2f
which will actually perform the conversions. First let's tackle f2c.

A callback such as this one performs just one simple action. This does not depend upon
the type of event that called it (there is only one), so the function has no need of
arguments. Neither does it need to do anything fancy, such as preventing the event
from proceeding. It need not therefore return a result. The header line, which includes
the local variables we will need, is then...

The first thing the function must do is to obtain the contents of the Fahrenheit edit
field which is called TEMP.F. As we have defined the FieldType as 'Numeric', this is
easily done by querying its Value property...

Next, we need to calculate Centigrade from Fahrenheit...

[0] f2c;F;C

[1] F ← TEMP.F.Value

[2] C ← (F-32) × 5÷9

Interface Guide

2025-10-30 (main:e0843eae32) Page 66

... and finally, display the value in the Centigrade edit field. As we have also defined this
as a numeric field, we can just set its Value property using assignment.

So our completed f2c callback function is...

which can be simplified to:

The Centigrade to Fahrenheit callback function c2f looks very similar:

2.11 Testing the Application

Before we test our application, it would be a good idea to)SAVE the workspace. If you
remember, the QUIT callback calls ⎕OFF, so if we don't want to lose our work...

Note that the GUI objects we have created are all saved with the workspace. You don't
have to re-build them every time you)LOAD it again.

If this was a Run-Time application, we would have to use ⎕DQ to run it. However, as it is
not, we can just go ahead and use it from the Session. Click on the Fahrenheit edit field
and enter a number (say 212). Now click on the "F->C" button. The Temperature
Converter window should look like the picture below.

[3] TEMP.C.Value←C

∇ f2c;F;C
[1] F ← TEMP.F.Value
[2] C ← (F-32) × 5÷9
[3] TEMP.C.Value←C

∇

∇ f2c
[1] TEMP.C.Value←(TEMP.F.Value-32)×5÷9

∇

∇ c2F
[1] TEMP.F.Value←32+TEMP.C.Value×9÷5

∇

)SAVE TEMP
TEMP saved ...

Interface Guide

2025-10-30 (main:e0843eae32) Page 67

If you have mis-typed any of the functions in this example, you may get an error. If this
happens, don't worry; simply correct the error as you would with any other APL
application, and type →⎕LC.

If you got a VALUE ERROR error, you have probably mis-spelt the name of the callback
function. If so, you can fix it using ⎕WS to reset the appropriate Event property.

Don't click the "Quit" button or close the window (yet). If you do so your APL session
will terminate.

If you want to follow what is happening you can use the Tracer. This requires a
statement to trace, so we will use ⎕DQ just as you would in a real application. To do this,
type ⎕DQ '.' in the Session window, then, instead of pressing Enter (to execute it),
press Ctrl+Enter (to Trace it). Having done this, enter your data into one of the edit
fields and click the "F->C" or "C->F" buttons as before. When you do so, your callback
function will pop-up in a Trace Window. Step it through (if in doubt, see the section on
the Tracer) and watch how it works. When the callback has finished, its Trace window
disappears. Don't forget, you are running a ⎕DQ. To terminate it, press Ctrl+Break or
select Interrupt from the Action menu.

2.12 Making the Enter Key Work

Ok, so the basic application works. Let's look at what we can do to improve it.

The first thing we can do is to let the user press the Enter key to make the system re-
calculate, rather than having to click on a button. There are a number of alternatives,
but we will do it using the Default property of Buttons.

Interface Guide

2025-10-30 (main:e0843eae32) Page 68

In any Form, you can allocate a single Button to be the Default Button. In simple terms,
pressing Enter anywhere in the Form has the same effect as clicking the Default Button.
Let's do this for the "F->C" Button :

Now type a number into the Fahrenheit field and then press the Enter key. As you will
see, this fires the Default Button labelled "F->C". The only problem with this is that the
user cannot run the calculation the other way round using the Enter key. We need
some mechanism to switch which Button is the Default one depending upon which
field the user typed in.

This is easily achieved by making use of the GotFocus event. This is generated when the
user puts the cursor into the edit field prior to typing. So all we need do is attach a
callback to set the Default Button whenever a GotFocus event occurs in either edit
field. We could use two separate callbacks or we could make use of the fact that you
can make APL supply data of your choice to a callback when it is fired. This is supplied
as its left argument.

The first of the next two statements attaches the callback function 'SET_DEF' to the
GotFocus event in the Fahrenheit edit field. It also specifies that when APL runs the
callback, it should supply the character vector 'TEMP.F2C' to SET_DEF as its left
argument. 'TEMP.F2C' is of course the name of the Button which we want to make the
Default one. The second statement is identical, except that it instructs APL to supply
the name of the Centigrade to Fahrenheit Button 'TEMP.C2F'

Where the callback 'SET_DEF' is defined as...

Now let's test the application again. Try typing numbers in both fields and pressing
enter each time.

2.13 Introducing a ScrollBar

Another way to improve the application would be to allow the user to input using a
slider or scrollbar. Let's create one called 'TEMP.S' ...

TEMP.F2C.Default←1

TEMP.F.onGotFocus ← 'SET_DEF' 'TEMP.F2C'
TEMP.C.onGotFocus ← 'SET_DEF' 'TEMP.C2F'

∇ BTN SET_DEF MSG
[1] BTN ⎕WS'Default' 1

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 69

The range of a scrollbar goes from 1 to the value of the Range property. Setting Range
to 101 will give us a range of 1-101. You will see in a moment why we need to do this.
The Scroll event will be generated whenever the user moves the scrollbar. We have
associated it with the callback function 'C2F' which we will define as follows:

The Event message MSG contains information about the Scroll event. Its 4th element
contains the requested thumb position. As we want to go from 0 at the top, to 100 at
the bottom, we need to subtract this value from 101. This is done in line 2 of the
function. C2F[3] calculates the corresponding Fahrenheit value.

Try moving the scrollbar and see what happens...

SCR←'Scroll' ('Range' 101)('Event' 'Scroll' 'C2F')
'TEMP.S' ⎕WC SCR

∇ C2F MSG
[1] ⍝ Callback for Centigrade input via scrollbar
[2] TEMP.C.Value←101-4⊃MSG
[3] TEMP.F.Value←32+TEMP.C.Value÷5÷9

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 70

2.14 Adding a Menu

It would also be helpful if you could use the scrollbar to calculate in the reverse
direction, from Fahrenheit to Centigrade. Let's add this facility, and give you the ability
to choose to which scale the scrollbar applies through a menu.

To create a menu structure in a bar along the top of a Form (as opposed to a floating or
pop-up menu) we first need to create a MenuBar object. This type of object has very
few properties, and we need only specify its name, 'TEMP.MB'.

Notice that, at this stage, there is no change in the appearance of the Form.

Then we can add a menu with the Caption 'Scale'. The name of the menu is
'TEMP.MB.M'. Adding the first menu causes the MenuBar to become visible.

'TEMP.MB' ⎕WC 'MenuBar'

'TEMP.MB.M' ⎕WC 'Menu' '&Scale'

Interface Guide

2025-10-30 (main:e0843eae32) Page 71

Note that the ampersand (&) allows the user to select the menu quickly by pressing
"Alt+S".

Now we can add the two options to the menu. Note that the MenuBar and Menu
objects do not represent final choices, they merely specify a path to a choice which is
represented by the MenuItem object. When either of these is chosen, we want to
execute a callback function that will make the necessary changes to the scrollbar. The
statements to create each of these MenuItems are broken into 3 only to fit them onto
the page.

First we create the Centigrade MenuItem...

Setting the Checked property to 1 will cause a tick mark to appear against this option,
indicating that it is the current one in force.

Then the Fahrenheit MenuItem...

Notice that as the default value of Checked is 0, we didn't really have to set it explicitly
for Fahrenheit. Nevertheless, it will do no harm to do so, and improves clarity.

C←'MenuItem' '&Centigrade'
C,←('Checked' 1)('Event' 'Select' 'SET_C')
'TEMP.MB.M.C' ⎕WC C

F←'MenuItem' '&Fahrenheit'
F,←('Checked' 0)('Event' 'Select' 'SET_F')
'TEMP.MB.M.F' ⎕WC F

Interface Guide

2025-10-30 (main:e0843eae32) Page 72

The SET_C callback function is defined as follows:

Line [2] simply sets the Range property of the scrollbar to be 101, and line [3] makes
C2F the callback function when the scrollbar is moved. Lines [4] and [5] ensure that the
tick mark is set on the chosen option.

The SET_F function is very similar...

and of course we need F2C to make the scrollbar work in Fahrenheit.

2.15 Running from Desktop

Now that we have a final working application, it would be nice to add it as a shortcut,
so that the user can run it from the Start Menu or from the Desktop, like any other
application.

First we need to define ⎕LX so that the application starts automatically.

or, to avoid so many confusing quotes...

∇ SET_C
[1] ⍝ Sets the scrollbar to work in Centigrade
[2] TEMP.S.Range←101
[3] TEMP.S.onScroll←'C2F'
[4] TEMP.MB.M.C.Checked←1
[5] TEMP.MB.M.F.Checked←0

∇

∇ SET_F
[1] ⍝ Sets the scrollbar to work in Fahrenheit
[2] TEMP.S.Range←213
[3] TEMP.S.onScroll←'F2C'
[4] TEMP.MB.M.F.Checked ← 1
[5] TEMP.MB.M.C.Checked ← 0

∇

∇ F2C Msg;C;F
[1] ⍝ Callback for Fahrenheit input via scrollbar
[2] TEMP.F.Value←213-4⊃Msg
[3] TEMP.C.Value←(TEMP.F.Value-32)×5÷9

∇

⎕LX ← '⎕DQ''.'''

Interface Guide

2025-10-30 (main:e0843eae32) Page 73

Next, it would be a good idea to clear the edit fields and ensure that the scrollbar is in
its default position:

Then we must)SAVE the workspace in a suitable directory to which we have write-
access ...

... and exit APL

The next step is to add the application to the Desktop. This is done in the normal way,
that is:

Right-click on the Desktop and choose "New" followed by "Shortcut".

Browse to the Dyalog program and add the name of the workspace to the command
line.

⎕LX ← ⍞
⎕DQ '.'

'TEMP.F' ⎕WS 'Text' ''
'TEMP.C' ⎕WS 'Text' ''
'TEMP.S' ⎕WS 'Thumb' 1

)SAVE c:\MyWS\TEMP
c:\MyWS\TEMP.dws saved Wed Jun 1 14:53:48 2016

)OFF

Interface Guide

2025-10-30 (main:e0843eae32) Page 74

Select "Next" and give the application a name, then select "Finish".

Interface Guide

2025-10-30 (main:e0843eae32) Page 75

The resulting icon is shown below. Note that although by default you will get a standard
Dyalog APL icon, you could of course select another one from elsewhere on your
system.

Clicking on this icon will start your application. Notice that the APL Session Window will
NOT appear at any stage unless there is an error in your code. All the user will see is
your "Temperature Converter" dialog box.

2.16 Using NEW instead of WC

From Version 11 onwards, it is possible to use ⎕NEW to create Instances of the built-in
GUI Classes. The following function illustrates this approach using the Temperature
Converter example described previously.

Interface Guide

2025-10-30 (main:e0843eae32) Page 76

∇ TempConv;TITLE;TEMP
[1] TITLE←'Temperature Converter'
[2] TEMP←⎕NEW'Form'(('Caption'TITLE)('Posn'(10 10))

('Size'(30 40)))
[3]
[4] TEMP.(MB←⎕NEW⊂'MenuBar')
[5] TEMP.MB.(M←⎕NEW'Menu'(,⊂'Caption' '&Scale'))
[6] TEMP.MB.M.(C←⎕NEW'MenuItem'

(('Caption' '&Centigrade')('Checked' 1)))
[7] TEMP.MB.M.(F←⎕NEW'MenuItem'

(,⊂('Caption' '&Fahrenheit')))
[8]
[9] TEMP.(LF←⎕NEW'Label'(('Caption' 'Fahrenheit')

('Posn'(10 10))))
[10] TEMP.(F←⎕NEW'Edit'(('Posn'(10 40))('Size'(⍬ 20))

('FieldType' 'Numeric')))
[11]
[12] TEMP.(LC←⎕NEW'Label'(('Caption' 'Centigrade')

('Posn'(40 10))))
[13] TEMP.(C←⎕NEW'Edit'(('Posn'(40 40))('Size'(⍬ 20))

('FieldType' 'Numeric')))
[14]
[15] TEMP.(F2C←⎕NEW'Button'(('Caption' 'F->C')

('Posn'(10 70))('Default' 1)))
[16] TEMP.(C2F←⎕NEW'Button'(('Caption' 'C->F')

('Posn'(40 70))))
[17] TEMP.(Q←⎕NEW'Button'(('Caption' '&Quit')

('Posn'(70 30))('Size'(⍬ 40))
('Cancel' 1)))

[18]
[19] TEMP.(S←⎕NEW'Scroll'(⊂('Range' 101)))
[20]
[21] TEMP.MB.M.C.onSelect←'SET_C'
[22] TEMP.MB.M.F.onSelect←'SET_F'
[23] TEMP.F2C.onSelect←'f2c'
[24] TEMP.F.onGotFocus←'SET_DEF'
[25] TEMP.C2F.onSelect←'c2f'
[26] TEMP.C.onGotFocus←'SET_DEF'
[27] TEMP.onClose←'QUIT'
[28] TEMP.Q.onSelect←'QUIT'
[29] TEMP.S.onScroll←'c2f_scroll'
[30]
[31] ⎕DQ'TEMP'

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 77

For brevity, only a couple of the callback functions are shown here.

2.17 Temperature Converter Class

You may create user-defined Classes based upon Dyalog GUI objects as illustrated by
the Temperature Converter Class which is listed overleaf.

To base a Class on a Dyalog GUI object, you specify the name of the object as its Base
Class. For example, the Temperature Converter is based upon a Form:

Being based upon a top-level GUI object, the Temperature Converter may be used as
follows:

∇ f2c
[1] TEMP.C.Value←(TEMP.F.Value-32)×5÷9

∇

∇ c2f_scroll MSG
[1] ⍝ Callback for Centigrade input via scrollbar
[2] TEMP.C.Value←101-4⊃MSG
[3] c2f

∇

:Class Temp: 'Form'

T1←⎕NEW Temp(⊂'Posn'(68 50))

Interface Guide

2025-10-30 (main:e0843eae32) Page 78

Temperature Converter Example

Interface Guide

2025-10-30 (main:e0843eae32) Page 79

:Class Temp: 'Form'
∇ Make pv;TITLE

:Access Public
TITLE←'Temperature Converter'
:Implements Constructor :Base (⊂'Caption' TITLE),pv,

⊂('Size' (30 40))
MB←⎕NEW⊂'MenuBar'
MB.(M←⎕NEW'Menu'(,⊂'Caption' '&Scale'))
MB.M.(C←⎕NEW'MenuItem'(('Caption' '&Centigrade')

('Checked' 1)))
MB.M.(F←⎕NEW'MenuItem'(,⊂('Caption' '&Fahrenheit')))
LF←⎕NEW'Label'(('Caption' 'Fahrenheit')

('Posn'(10 10)))
F←⎕NEW'Edit'(('Posn'(10 40))('Size'(⍬ 20))

('FieldType' 'Numeric'))
LC←⎕NEW'Label'(('Caption' 'Centigrade')

('Posn'(40 10)))
C←⎕NEW'Edit'(('Posn'(40 40))('Size'(⍬ 20))

('FieldType' 'Numeric'))
F2C←⎕NEW'Button'(('Caption' 'F->C')('Posn'(10 70))

('Default' 1))
C2F←⎕NEW'Button'(('Caption' 'C->F')('Posn'(40 70)))
Q←⎕NEW'Button'(('Caption' '&Quit')('Posn'(70 30))

('Size'(⍬ 40))('Cancel' 1))
S←⎕NEW'Scroll'(⊂('Range' 101))
MB.M.C.onSelect←'SET_C'
MB.M.F.onSelect←'SET_F'
F2C.onSelect←'f2c'
F.onGotFocus←'SET_DEF'
C2F.onSelect←'c2f'
C.onGotFocus←'SET_DEF'
onClose←'QUIT'
Q.onSelect←'QUIT'
S.onScroll←'c2f_scroll'

∇

∇ f2c
C.Value←(F.Value-32)×5÷9

∇
∇ c2f

F.Value←32+C.Value×9÷5
∇
∇ c2f_scroll MSG

⍝ Callback for Centigrade input via scrollbar

Interface Guide

2025-10-30 (main:e0843eae32) Page 80

Notice that the :Implements Constructor statement of its Constructor Make:

passes on the application-specific property list (pv) given as its argument, but (in this
case) specifies Caption and Size as well. The order in which the properties are specified
in the :Base call ensures that the former will act as a default (and be overridden by an
application-specific Caption requested in pv), whereas the specified Size of(30 40) will
override whatever value of Size is requested by the host application in pv.

Other Instances can co-exist with the first:

C.Value←101-4⊃MSG
c2f

∇

∇ f2c_scroll Msg
⍝ Callback for Fahrenheit input via scrollbar
F.Value←213-4⊃Msg
f2c

∇

∇ Quit
Close

∇
∇ SET_DEF MSG

(⊃MSG).Default←1
∇
∇ SET_C

⍝ Sets the scrollbar to work in Centigrade
S.Range←101
S.onScroll←'c2f_scroll'
MB.M.C.Checked←1
MB.M.F.Checked←0

∇
∇ SET_F

⍝ Sets the scrollbar to work in Fahrenheit
S.Range←213
S.onScroll←'f2c_scroll'
MB.M.F.Checked←1
MB.M.C.Checked←0

∇
:EndClass ⍝ Temp

:Implements Constructor :Base (⊂'Caption' TITLE),pv,
⊂('Size' (30 40))

Interface Guide

2025-10-30 (main:e0843eae32) Page 81

2.18 Dual Class Example

The Dual Class example is based upon the example used to illustrate how you may build
an ActiveX Control in Dyalog APL (see Section 11.3), but re-engineered as an internal
Dyalog APL Class. The full listing of the Dual Class script is provided overleaf.

This version of Dual is based upon a SubForm:

The Dual Control requires a GUI parent but several Instances can co-exist, quite
independently, in the same parent.

For example, function RUN creates a Form and 3 Instances of Dual; one to convert
Centigrade to Fahrenheit, one to convert Fahrenheit to Centigrade, and the third to
convert centimetres to inches.

T2←⎕NEW Temp(('Caption' 'My Application')
('Posn'(10 10))

:Class Dual: 'SubForm'

Interface Guide

2025-10-30 (main:e0843eae32) Page 82

∇ RUN;F;D1PROPS;D2PROPS;D3PROPS
[1]
[2] F←⎕NEW'Form'(('Caption' 'Dual Instances')

('Coord' 'Pixel')('Size'(320 320)))
[3]
[4] D1PROPS←('Caption1' 'Centigrade')

('Caption2' 'Fahrenheit')
[5] D1PROPS,←('Intercept' 32)('Gradient'(9÷5))

('Value1' 0)('Range'(0 100))
[6] F.D1←F.⎕NEW Dual(('Coord' 'Pixel')('Posn'(10 10))

('Size'(100 300)),D1PROPS)
[7]
[8] D2PROPS←('Caption1' 'Fahrenheit')

('Caption2' 'Centigrade')
[9] D2PROPS,←('Intercept'(-32×5÷9))('Gradient'(5÷9))

('Value1' 0)('Range'(0 212))
[10] F.D2←F.⎕NEW Dual(('Coord' 'Pixel')('Posn'(110 10))

('Size'(100 300)),D2PROPS)
[11]
[12] D3PROPS←('Caption1' 'Centimetres')

('Caption2' 'Inches')
[13] D3PROPS,←('Intercept' 0)('Gradient'(÷2.54))

('Value1' 0)('Range'(0 100))
[14] F.D3←F.⎕NEW Dual(('Coord' 'Pixel')('Posn'(210 10))

('Size'(100 300)),D3PROPS)
[15]
[16] ⎕DQ'F'

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 83

Dual's Constructor Make first splits its constructor arguments into those that apply to
the Dual Class itself, and those that apply to the SubForm. Its :Implements
Constructor statement then passes these on to the Base Constructor, together with
an appropriate setting for EdgeStyle.

Dual Class Example

:Implements Constructor :Base BaseArgs,
⊂'EdgeStyle' 'Dialog'

:Class Dual: 'SubForm'
:Include GUITools
:Field Private _Caption1←''
:Field Private _Caption2←''
:Field Private _Value1←0
:Field Private _Value2←0
:Field Private _Range←0
:Field Private _Intercept←0
:Field Private _Gradient←1
:Field Private _Height←40

Interface Guide

2025-10-30 (main:e0843eae32) Page 84

∇ Create args;H;W;POS;SH;CH;Y1;Y2;BaseArgs;MyArgs;
Defaults

:Access Public
MyArgs BaseArgs←SplitNV args
:Implements Constructor :Base BaseArgs,

⊂'EdgeStyle' 'Dialog'
ExecNV_ MyArgs ⍝ Set Flds named _PropertyName

MyArgs
Coord←'Pixel'
H W←Size
POS←2↑⌊0.5×0⌈(H-_Height)
CH←⊃GetTextSize'W'
'Slider'⎕WC'TrackBar'POS('Size'_Height W)
Slider.(Limits AutoConf)←_Range 0
Slider.(TickSpacing TickAlign)←10 'Top'
Slider.onThumbDrag←'ChangeValue'
Slider.onScroll←'ChangeValue'
Y1←POS[1]-CH+1
Y2←POS[1]+_Height+1
'Caption1_'⎕WC'Text'_Caption1(Y1,0)('AutoConf' 0)
'Caption2_'⎕WC'Text'_Caption2(Y2,0)('AutoConf' 0)
'Value1_'⎕WC'Text'(⍕_Value1)(Y1,W)('HAlign' 2)

('AutoConf' 0)
CalcValue2
'Value2_'⎕WC'Text'(⍕_Value2)(Y2,W)('HAlign' 2)

('AutoConf' 0)
onConfigure←'Configure'

∇

:Property Caption1, Caption2
:Access Public

∇ R←Get arg
R←(arg.Name,'_')⎕WG'Text'

∇
∇ Set arg

(arg.Name,'_')⎕WS'Text'arg.NewValue
∇

:EndProperty

:Property Value1
:Access Public

∇ R←Get
R←_Value1

Interface Guide

2025-10-30 (main:e0843eae32) Page 85

The utilities contained in in the GUITools Namespace are as follows:

∇
∇ Set arg

⎕NQ'Slider' 'Scroll' 0 arg.NewValue
∇

:EndProperty

:Property Intercept, Gradient, Range, Height, Value2
:Access Public

∇ R←Get arg
R←⍎'_',arg.Name

∇
:EndProperty

∇ CalcValue2
_Value2←_Intercept+_Gradient×_Value1

∇

∇ ChangeValue MSG
⍝ Callback for ThumbDrag and Scroll
_Value1←⊃¯1↑MSG
CalcValue2
Value1_.Text←⍕_Value1
Value2_.Text←⍕_Value2

∇

∇ Configure MSG;H;W;POS;CH;Y1;Y2
2 ⎕NQ MSG
H W←Size
POS←2↑⌊0.5×(H-_Height)
CH←⊃GetTextSize'W'
Slider.(Posn Size)←POS(_Height W)
Y1←POS[1]-CH+1
Y2←POS[1]+_Height+1
Caption1_.Points←1 2⍴Y1,0
Caption2_.Points←1 2⍴Y2,0
Value1_.Points←1 2⍴Y1,W
Value1_.Points←1 2⍴Y2,W

∇

:EndClass ⍝ Dual

Interface Guide

2025-10-30 (main:e0843eae32) Page 86

∇ r←SplitNV args;m
[1] ⍝ Parse Name,Value Pairs
[2] ⍝ Return pairs for this class in 1st element,

others in 2nd element
[3] m←(⎕NC⊃¨args)∊2.2 2.3 ⍝ Fields/Properties

in derived class
[4] r←(m/args)((~m)/args)

∇
∇ExecNV_∇

∇ r←ExecNV_ args;n;v
[1] ⍝ Set Properties using Name,Value Pairs
[2] n v←↓⍉↑args
[3] n←'_',¨n
[4] ⍎(⍕,n,⊂'n'),'←v,0'

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 87

3 Graphics

3.1 Introduction

Graphical output is performed using the following objects:

Graphical Output

Object Reference: Circle draws circles, arcs and pie charts

Object Reference: Ellipse draws ellipses

Object Reference: Marker draws a series of polymarkers

Object Reference: Poly draws lines

Object Reference: Rect draws rectangles

Object Reference: Image displays or prints Bitmaps, Icons and Metafiles

Object Reference: Text displays or prints graphical text

These graphical objects can be drawn in (that is, be the children of) a wide range of
other objects including a Form, Static, Printer and Bitmap.

Additional graphical resources are provided by the following objects. These are unusual
in that they are not visible except when referenced as the property of another object:

Resource

Object Reference: Font loads a font

Object Reference: Bitmap defines a bitmap

Object Reference: Icon defines an icon

Object Reference: Metafile loads a Windows Metafile

Graphical objects are created, like any other object, using ⎕WC and have properties that
can be changed using ⎕WS and queried using ⎕WG. Graphical objects also generate
certain events.

Interface Guide

2025-10-30 (main:e0843eae32) Page 88

3.2 Drawing Lines

To draw a line you use the Poly object. The following example draws a line in a Form
from the point (y=10, x=5) to the point (y=90, x=60) :

In the previous example, the points are specified as a 2-element nested vector
containing y-coordinates and x-coordinates respectively. You can also use a 2-column
matrix. For example:

Notice that because the second example replaced the object F.Line, the original line
drawn in the first example has been erased.

In common with the position and size of other GUI objects, y-coordinates precede x-
coordinates. Graphical software typically uses (x,y) rather than (y,x) but the latter is
consistent with the order in which coordinates are specified and reported for all other
objects and events. The Dyalog APL GUI support allows you to freely mix graphical

'F' ⎕WC 'Form' 'Drawing Lines' ('Size' 25 50)
'F.Line' ⎕WC 'Poly' ((10 90)(5 60))

'F.Line'⎕WC'Poly'(4 2⍴90 5 5 50 90 95 90 5)

Interface Guide

2025-10-30 (main:e0843eae32) Page 89

objects with other GUI components (for example, you can use the graphical Text object
in place of a Label) and this (y,x) consistency serves to avoid confusion.

When a graphical object in a screen object is erased its parent is restored to the
appearance that it had before that graphical object was created. Thus:

first draws a line and then removes it. The following expression clears all graphical
objects (and any other non-graphical ones too) from a parent object 'F':

Similarly, objects automatically disappear when a function in which they are localised
exits.

Erasing graphical objects that have been drawn on a Printer has no effect. Once drawn
they cannot be undrawn.

3.3 Drawing in a Bitmap

A bitmap is an invisible resource (in effect, an area of memory) that is only displayed on
the screen when it is referenced by another object. Any of the seven graphical objects
(Circle, Ellipse, Image, Marker, Poly, Text and Rect) can be drawn in a bitmap
(represented by a Bitmap object), using exactly the same ⎕WC syntax as if you were
drawing in a Form, Static or Printer. However, drawing in a Bitmap is, like drawing on a
Printer, an operation that cannot be "undone".

This facility allows you to construct a picture using lines, circles, text etc. and then later
display it or save it as a bitmap.

3.4 Multiple Graphical Items

All graphical output objects (Circle, Ellipse, Image, Marker, Poly, Text and Rect) permit
nested arguments so that you can draw several items with a single object. This feature
has several advantages. Firstly, it allows you to treat related graphical items as a single
object with a single name. This reduces the potential number of objects in existence
and reduces the number of program statements needed to draw them. For example,
sets of tick marks or grid lines do not have to be drawn separately, but can be
represented by one object. Furthermore, because a set of lines can be embodied in a
single object, you can erase them, replace them or drag/drop them as a unit. A further

'F.Line' ⎕WC 'Poly' (2 2⍴10 5 50 10)
⎕EX 'F.Line'

⎕EX ⎕WN'F'

Interface Guide

2025-10-30 (main:e0843eae32) Page 90

consideration is performance. A set of graphical items represented by a single object
will normally be drawn faster than if each item was represented by separate objects.

For example, the following statements draw two separate rectangles; a red one at
(y=10, x=20) and a blue one at (y=50, x=60). Both rectangles are size (30,30).

The next statement achieves the same result, but uses only one object:

The rectangles drawn by both these sets of statements are shown below.

The capability to specify more than one graphical item as a single object is particularly
useful with the Text object as it allows you to display or print several text items (at
different positions and in different colours if you wish) in a single statement. For
example, the following expressions display a set of "labels" in a Form 'F1':

RED BLUE ← (255 0 0)(0 0 255)

'F.R1' ⎕WC 'Rect' (10 20)(30 30) ('FCol' RED)
'F.R2' ⎕WC 'Rect' (50 60)(30 30) ('FCol' BLUE)

'F.R' ⎕WC 'Rect' ((10 50)(20 60)) (30 30)
('FCol' RED BLUE)

LAB←'Name' 'Age' 'Address'
POS←3 2⍴10 10 10 60 30 10
'F1.LABS' ⎕WC 'Text' LAB POS

Interface Guide

2025-10-30 (main:e0843eae32) Page 91

3.5 Unnamed Graphical Objects

When using the seven graphical output objects, you can optionally omit the final part
of the name. For example, the following expression is valid:

When you create a named object, all of the properties pertaining to that object are
stored internally in your workspace. A polyline consisting of a large number of points
thus takes up a significant amount of memory. However, this is necessary because the
APL interpreter needs the information in order to redraw the object when another
window is placed over it and then moved away again (exposure) or when the user
resizes the Form in which it is displayed.

When you create an unnamed graphical object, the object is drawn, but its properties
are not remembered internally, thus conserving workspace. This has two
consequences. Firstly, you cannot subsequently modify or query the object's
properties; you must name an object if you are ever going to refer to it again. Secondly,
the object cannot automatically be redrawn (by APL) when it is exposed or resized.
Instead, you must control this yourself using the Expose event.

Unnamed graphical objects are useful in the following circumstances:

For output to a Printer.
When you are very short of workspace.
When you are sure that the window you are drawing in will not need to be
redrawn, for example, when you are working "full-screen".
For drawing in a Bitmap or a Metafile.
For creating bitmaps in an ImageList

'F.' ⎕WC 'Poly' (2 2⍴10 5 50 10)

•
•
•

•
•

Interface Guide

2025-10-30 (main:e0843eae32) Page 92

3.6 Bitmaps and Icons

Bitmaps and icons are implemented as separate objects that you can create and
destroy. Once you have created such an object you can reference it as many times as
you wish. For example, you can use the same bitmap in several Buttons or associate the
same icon with several Forms.

The Bitmap and Icon objects can be created in one of two ways. They are either loaded
from an existing file or they are defined from APL arrays.

The files concerned must be in the appropriate Windows format for the object (.BMP
or .ICO files) which can be edited by a standard Windows utility such as Paintbrush. The
following example creates a Bitmap object from the CARS.BMP bitmap file which is
supplied in the WS sub-directory:

Then you can use the Bitmap to fill the background of a Form by:

The "1" in the expression specifies that the Bitmap is to be used to "tile" the
background of the Form. The result is shown in the illustration below. You can also
position the Bitmap in the top-left (0) or centre (3) of the Form, or even have the
Bitmap scaled automatically (2) to fit exactly in the Form. These settings are useful for
displaying pictures. You can explore these facilities using the BMVIEW function in the
UTIL workspace.

Instead of creating Bitmap and Icon objects from file, you can define them using APL
arrays. These arrays specify the individual pixels that make up the picture or shape of
the object in question.

ROOT←2 ⎕NQ'.' 'GetEnvironment' 'dyalog'
'CARS' ⎕WC 'Bitmap' (ROOT,'\WS\CARS')

'F1' ⎕WC 'Form' ('Picture' CARS 1)('Size' 25 50)

Interface Guide

2025-10-30 (main:e0843eae32) Page 93

There are two ways to define a Bitmap object from APL arrays. The first method, which
is limited to colour palettes of 16 or 256 colours is to supply two arrays; one containing
the colour indices for every pixel in the bitmap, and one containing the colour map. The
colour map specifies the colours (in terms of their red, green and blue components)
corresponding to the indices in the first array. For example, the following expressions
create a 32 x 32 Bitmap from the arrays PIX and CM:

The reason that this method is restricted to 256 colours is that the CMap array
containing the colour map is, of necessity, the same size as the colour palette. Even for
a relatively modest 16-bit colour palette, the size of the array would be 65536 x 3.

The second method, which applies to all sizes of colour palette, is to use a single array
that represents each pixel by a number that is an encoding of the red, green and blue
components. The formula used to calculate each pixel value is:

where RED, GREEN and BLUE are integers in the range 0-255.

Thus the example above can be achieved using a single array CBITS as follows:

While it is possible to define bitmaps by creating appropriate APL arrays, it is likely that
you will load them from file. For example:

3.7 Metafiles

A Windows metafile is a mechanism for representing a picture as a collection of
graphics commands. Once a metafile has been created, the picture that it represents
can be drawn repeatedly from it. Metafiles are device-independent, so the picture can
be reproduced on different devices. Unlike bitmaps, metafiles can be scaled accurately
and are therefore particularly useful for passing graphical information between

⍴PIX ⍝ colour index (in CM) of each pixel
32 32

⍴CM ⍝ 16-row matrix of RGB values
16 3

'BM' ⎕WC 'Bitmap' ('Bits' PIX)('CMap' CM)

256⊥RED GREEN BLUE

CBITS←(256⊥⍉CMAP)[⎕IO+PIX]
'BM' ⎕WC 'Bitmap' ('CBits' CBITS)

'BM' ⎕WC 'Bitmap' (ROOT,'\WS\CARS')
PIX CM ← 'BM' ⎕WG 'Bits' 'CMap'

Interface Guide

2025-10-30 (main:e0843eae32) Page 94

different applications. Note that some other applications only support placeable
metafiles. See RealSize property for details.

Creating a Metafile Object

In Dyalog APL, a Windows metafile is represented by the Metafile object. This is
created in much the same way as a Bitmap object. That is, you can either make a
Metafile object from an existing .WMF file, or you can create an empty one and then
draw onto it using Poly, Text and other graphical objects. For example, to create a
Metafile object called Ducky from the AN00015_.wmf metafile that comes with a certain
version of Microsoft Office, you can execute the following:

If instead you wanted to create a metafile drawing from scratch, you could do so as
follows. Notice that there is no need to assign names to the graphical objects drawn
onto the Metafile.

Drawing a Metafile Object

A Metafile object is drawn by specifying either the object itself or its name as the
Picture property of another object. This causes the Metafile to be drawn in that object
and scaled to fit exactly within its boundaries.

The following statement creates a Form containing the Metafile object Ducky.

Dir←'C:\Program Files\Microsoft Office\root\CLIPART\PUB60COR\'
'Ducky'⎕WC'Metafile'(Dir,'AN00015_.wmf')

'METADUCK' ⎕WC 'Metafile' ''
'METADUCK.' ⎕WC 'Poly' DUCK
'fnt'⎕WC'Font' 'Arial' 72
'METADUCK.'⎕WC'Text' 'Quack'(45 60)('FontObj' 'fnt')

'F1'⎕WC'Form' ('Size' 50 30) ('Picture' Ducky)

Interface Guide

2025-10-30 (main:e0843eae32) Page 95

The next statement replaces the Picture with the Metafile object METADUCK.

3.8 Picture Buttons

Picture buttons in toolbars are most conveniently represented by ToolButtons in
ToolControls (see Chapter 4). Pictures on stand-alone buttons or buttons used in the
(superseded) ToolBar object, may be created using Bitmap, Icon and Metafile objects
and there are two different methods provided. The first (and the simplest) is to use the
Picture property which applies to all 3 types of image,(Bitmap, Icon or Metafile). The
second method is to use the BtnPix property. This requires rather more effort, and only

F1.Picture←METADUCK

Interface Guide

2025-10-30 (main:e0843eae32) Page 96

draws Bitmaps, and not Icons or Metafiles. However, the BtnPix property gives you
total control over the appearance of a Button which the Picture property does not.

Using the Picture Property

The Picture property overlays a Bitmap, Icon or Metafile on top of a standard
pushbutton. The following example uses an icon which is included with Dyalog APL.

Notice that (by definition) an icon is 32 x 32 pixels in size. To allow space for the button
borders you have to make the Button at least 40 x 40 pixels. The "3" means put the
'spider' in the centre of the button.

When you press a Button which has its Picture property set like this, APL automatically
shifts the overlaid image down and to the right by 1 pixel. This complements the
change in appearance of the button borders and achieves a "pressed-in" look. When
you release the button, APL shifts the image back again.

The Picture property therefore provides a very simple mechanism for implementing a
"tool-button", especially if you already have a bitmap or icon file that you want to use.

However, the Picture property has certain limitations. Firstly, you cannot alter the
"pressed-in" look of the Button which is determined automatically for you. You might
want the Button to change colour when you press it, and you cannot achieve this with

∇ PictureProperty;dyalog
[1] dyalog←2 ⎕NQ'.' 'GetEnvironment' 'dyalog'
[2] 'spider'⎕WC'Icon'(dyalog,'\ws\arachnid.ico')
[3] 'F'⎕WC'Form' 'Using the Picture Property'('Coord' 'Pixel')
[4] 'F.B'⎕WC'Button'('Size' 40 40)
[5] F.B.Picture←spider 3

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 97

the Picture property. Secondly, the appearance of the Button is unchanged when you
make it inactive (by setting its Active property to 0).

Note that if you use the Picture property on Radio or Check buttons, the buttons
assume pushbutton appearance although their radio/check behaviour is unaffected.

Using the BtnPix Property

You can obtain complete control over the appearance of a Button by using the BtnPix
property; however this entails more work on your part.

BtnPix allows you to associate three bitmaps with a Button, that is:

one for when the Button is in its normal state
one for when it is pressed/selected
one for when it is inactive

For example, if you have created three Bitmap objects called UP, DOWN and DEAD, you
define the Button as follows:

APL subsequently displays one of the three Bitmap objects according to the state of the
Button; that is, UP for its normal state (State 0), DOWN for its pressed/selected state
(State 1) or DEAD when it is inactive (Active 0).

The BtnPix property requires that you use Bitmap objects; it doesn't work for Icons.
This is because icons are normally at least partly transparent. However, it is very easy
to convert an icon file to a Bitmap object. First you create an Icon object from the icon
(.ICO) file. Next you read the icon's pattern definition (Bits property) and colour map
(CMap property) into the workspace. Then finally, you create a Bitmap from these two
arrays.

The following example illustrates how you can make a Button from icons supplied with
Windows.

Load an icon:

Read its CBits:

•
•
•

'F.B' ⎕WC 'Button' ('BtnPix' UP DOWN DEAD)

'T1'⎕WC'Icon'('Shell32.dll' ¯13)

CBits ← T1.CBits

Interface Guide

2025-10-30 (main:e0843eae32) Page 98

Now define a Bitmap from this variable, (replacing the T1 object):

Now make a second Bitmap:

Now define the Button. Notice that the third (inactive) bitmap is optional.

The pictures below show the button in its normal and pressed states.

3.9 Using Icons

You have seen how icons can be displayed using the Picture property. Other uses of
icons are described below.

Firstly, you can associate an icon with a Form or so that the icon is displayed (by
Windows) when the Form is minimised. This is done using the IconObj property. For
example, the following expressions would associate the UK Flag icon distributed with
Visual Basic with the Form 'F1'. This icon would then be displayed when 'F1' is
minimised.

'T1' ⎕WC 'Bitmap' ('CBits' CBits)

'T2'⎕WC'Icon'('Shell32.dll' ¯14)
'T2'⎕WC'Bitmap'('CBits'T2.CBits)

'F.B' ⎕WC 'Button' ('BtnPix' 'T1' 'T2')

'star'⎕WC'Icon'('Shell32.dll' ¯43)
'F1' ⎕WC 'Form' ('IconObj' star)

Interface Guide

2025-10-30 (main:e0843eae32) Page 99

The IconObj property also applies to the Root object '.'. This defines the icon to be
displayed for your application as a whole when the user toggles between applications
using Alt+Tab. It is used in conjunction with the Caption property which determines the
description of your application that is shown alongside the icon. For example:

An icon can be displayed using the Image object. This object is used to position one or
more Icon objects (or Bitmap objects) in a Form or Static. It can also be used to draw an
icon on a Printer. If you make the Image dragable, you will be able to drag/drop the
icon. The following example displays a dragable Icon at (10,10) in a Form. It also
associates the callback function 'Drop' with the DragDrop event so that this function is
called when the user drag/drops the icon.

Notice that setting Dragable to 2 specifies that an object is fully displayed while it is
being dragged. Setting Dragable to 1 causes only the bounding rectangle around the
object to be dragged.

'MYIcon' ⎕WC 'Icon' ...
'.' ⎕WS ('IconObj' MYIcon) ('Caption' 'My System')

'F1' ⎕WC 'Form' ('Event' 'DragDrop' 'Drop')
'star'⎕WC'Icon'('Shell32.dll' ¯43)
'F1.I' ⎕WC 'Image' (10 10) ('Picture' star)
F1.I.Dragable←2

Interface Guide

2025-10-30 (main:e0843eae32) Page 100

4 Composite Controls

4.1 The ToolControl and ToolButton Objects

The ToolControl object is normally used in conjunction with ToolButtons, although it
may also act as a parent for other objects, including a MenuBar.

A ToolButton may display a Caption and an Image, although both are optional. Images
for individual ToolButtons are not defined one-by-one, but instead are defined by an
ImageList which contains a set of bitmaps or icons.

The ImageListObj property of the ToolControl specifies the name of one or more
ImageList objects to be used. The ImageIndex properties of each of the ToolButtons
specifies which of the images in each ImageList object apply to which of the
ToolButtons.

Standard Bitmap Resources

Typically, you will want your ToolControls to provide standard Windows buttons and the
easiest way to achieve this is to utilise the standard Windows bitmaps that are
contained in COMCTL32.DLL. There are three main sets of bitmaps, each of which is
provided in two sizes, small (16x16) and large (24 x 24).

Resource number 120 (IDB_STD_SMALL_COLOR) and 121 (IDB_STD_LARGE_COLOR)
contain the following set of assorted bitmap images.

Resource number 124 (IDB_VIEW_SMALL_COLOR) and 125 (IDB_VIEW_LARGE_COLOR)
contain a set of bitmaps relating to different views of information. These are used, for
example in the Windows Explorer tool bar

Resource number 130 (IDB_HIST_SMALL_COLOR) and 131 (IDB_HIST_LARGE_COLOR)
contain another useful set of bitmaps

Interface Guide

2025-10-30 (main:e0843eae32) Page 101

COMCTL32.DLL also contains individual bitmaps in resources 132-134.

Dyalog Bitmap Resources

Another three sets of useful bitmaps are to be found in the DyaRes DLL file. These
bitmaps are used in the Dyalog APL/W Session tool buttons. Note that if you include
these bitmaps in a run-time application, you will have to ship DyaRes DLL with it.

The normal set of bitmaps associated with the Session buttons may be created using
the statement:

The bitmaps used when the buttons are highlighted may be created using the
statement.

The bitmaps used when the buttons are inactive may be created using the statement

Note that in the Dyalog Session, if Native Look and Feel is enabled, these bitmaps are
overridden by a single set of images designed to operate with the user's chosen theme
and Visual Styles. For further information, see Section 1.18.

Creating ImageLists for ToolButtons

You may use up to three ImageList objects to represent ToolButton images. These will
be used to specify the pictures of the ToolButton objects in their normal, highlighted
(sometimes termed hot) and inactive states respectively.

The set of images in each ImageList is then defined by creating unnamed Bitmap or
Icon objects as children.

When creating an ImageList, it is a good idea to set its MapCols property to 1. This
means that standard button colours used in the bitmaps will automatically be adjusted
to take the user's colour preferences into account.

'bm'⎕WC'Bitmap' ('dyares180_64.dll' 'tb_normal')

'bm'⎕WC'Bitmap' ('dyares180_64.dll' 'tb_hot')

'bm'⎕WC'Bitmap' ('dyares180_64.dll' 'tb_inactive')

Interface Guide

2025-10-30 (main:e0843eae32) Page 102

When you create each ToolButton you specify its ImageIndex property, selecting up to
three pictures (normal, highlighted and inactive) to be displayed on the button.

If you specify only a single ImageList, the picture on the ToolButton will be the same in
all three cases. However, the appearance of the buttons themselves change when the
button is highlighted or pressed, and in many situations this may be sufficient
behaviour.

The following example illustrates how a simple ToolControl can be constructed using
standard Windows bitmaps. Notice that the Masked property of the ImageList is set to
0; this is necessary if the ImageList is to contain bitmaps, as opposed to icons. Secondly,
because the bitmaps are in this case size 16 x 16, it is unnecessary to specify the Size
property of the ImageList which is, by default, also 16 x 16.

The Style Property

The overall appearance of the ToolButton objects displayed by the ToolControl is
defined by the Style property of the ToolControl itself, rather than by properties of
individual ToolButtons.

Note that the Style property may only be set when the ToolControl is created using ⎕WC
and may not subsequently be changed using ⎕WS.

Style may be 'FlatButtons', 'Buttons', 'List' or 'FlatList'. The default Style is
of a ToolControl is 'FlatButtons', as is the first example above. The following
examples illustrate the other three styles:

'F'⎕WC'Form' 'ToolControl'('Size' 10 40)
'F.TB'⎕WC'ToolControl'
'F.TB.IL'⎕WC'ImageList'('Masked' 0) ('MapCols' 1)
'F.TB.IL.'⎕WC'Bitmap'('ComCtl32' 120)⍝ STD_SMALL
'F.TB'⎕WS'ImageListObj' 'F.TB.IL'
'F.TB.B1'⎕WC'ToolButton' 'New'('ImageIndex' 7)
'F.TB.B2'⎕WC'ToolButton' 'Open'('ImageIndex' 8)
'F.TB.B3'⎕WC'ToolButton' 'Save'('ImageIndex' 9)

Interface Guide

2025-10-30 (main:e0843eae32) Page 103

The Divider Property

You will notice that, in the above examples, there is a thin groove drawn above the
ToolControl. The presence or absence of this groove is controlled by the Divider
property whose default is 1. The following picture illustrates the effect of setting
Divider to 0.

The MultiLine Property

The MultiLine property specifies whether or not ToolButtons (and other child controls)
are arranged in several rows (or columns) when there are more than would otherwise
fit.

If MultiLine is 0 (the default), the ToolControl object clips its children and the user must
resize the Form to bring more objects into view.

Interface Guide

2025-10-30 (main:e0843eae32) Page 104

Note that you may change MultiLine dynamically, using ⎕WS.

If we set MultiLine to 1, the ToolButtons are instead displayed in several rows:

The Transparent Property

The Transparent property (default 0) specifies whether or not the ToolControl is
transparent. Note that Transparent must be set when the object is created using ⎕WC
and may not subsequently be changed using ⎕WS.

'F'⎕WC'Form' 'ToolControl: MultiLine 0'
'F.TB'⎕WC'ToolControl'('Style' 'List')

'F.TB.IL'⎕WC'ImageList'('Masked' 0)('Size' 24 24)
'F.TB.IL.'⎕WC'Bitmap'('ComCtl32' 121)⍝ STD_LARGE
'F.TB'⎕WS'ImageListObj' 'F.TB.IL'

'F.TB.B1'⎕WC'ToolButton' 'Cut'('ImageIndex' 1)
'F.TB.B2'⎕WC'ToolButton' 'Copy'('ImageIndex' 2)
'F.TB.B3'⎕WC'ToolButton' 'Paste'('ImageIndex' 3)
'F.TB.B4'⎕WC'ToolButton' 'Undo'('ImageIndex' 4)
'F.TB.B5'⎕WC'ToolButton' 'Redo'('ImageIndex' 5)
'F.TB.B6'⎕WC'ToolButton' 'Delete'('ImageIndex' 6)

Interface Guide

2025-10-30 (main:e0843eae32) Page 105

If a ToolControl is created with Transparent set to 1, the visual effect is as if the
ToolButtons (and other controls) were drawn directly on the parent Form as shown
below.

Radio buttons, Check buttons and Separators

The Style property of a ToolButton may be 'Push', 'Check', 'Radio', 'Separator' or
'DropDown'.

Push buttons (the default) are used to generate actions and pop in and out when
clicked.

Radio and Check buttons are used to select options and have two states, normal (out)
and selected (in). Their State property is 0 when the button is in its normal (unselected
state) or 1 when it is selected.

A group of adjacent ToolButtons with Style 'Radio' defines a set in which only one of
the ToolButtons may be selected at any one time. The act of selecting one will
automatically deselect any other. Note that a group of Radio buttons must be
separated from Check buttons or other groups of Radio buttons by ToolButtons of
another Style.

'F'⎕WC'Form' 'ToolControl: Transparent 1)'
ROOT←'C:\Program Files\Dyalog\Dyalog APL 13.1 Unicode\'
'F.BM'⎕WC'Bitmap'(ROOT,'\WS\BUBBLES')
'F'⎕WS'Picture' 'F.BM' 1

'F.TB'⎕WC'ToolControl'('Style' 'Buttons')('Transparent'1)
'F.TB.IL'⎕WC'ImageList'('Masked' 0)('Size' 24 24)
'F.TB.IL.'⎕WC'Bitmap'('ComCtl32' 121)⍝ STD_LARGE
'F.TB'⎕WS'ImageListObj' 'F.TB.IL'

'F.TB.B1'⎕WC'ToolButton' 'New'('ImageIndex' 7)
'F.TB.B2'⎕WC'ToolButton' 'Open'('ImageIndex' 8)
'F.TB.B3'⎕WC'ToolButton' 'Save'('ImageIndex' 9)

Interface Guide

2025-10-30 (main:e0843eae32) Page 106

Separator buttons are a special case as they have no Caption or picture, but appear as a
thin vertical grooves that are used only to separate groups of buttons.

The following example illustrates how two groups of radio buttons are established by
inserting a ToolButton with Style 'Separator' between them. This ToolControl could
be used to control the appearance of a ListView object. The first group is used to select
the view (Large Icon, Small Icon, List or Report), and the second is used to sort the
items by Name, Size or Date. In the picture, the user has selected Small Icon View and
Sort by Date.

Notice that the appearance of the Separator ToolButton is less obvious when the
ToolControl Style is Buttons or List, but the radio grouping effect is the same:

'F'⎕WC'Form' 'ToolControl: Radio Buttons'
'F.TB'⎕WC'ToolControl'

'F.TB.IL'⎕WC'ImageList'('Masked' 0)
'F.TB.IL.'⎕WC'Bitmap'('ComCtl32' 124)⍝ VIEW_SMALL
'F.TB'⎕WS'ImageListObj' 'F.TB.IL'

'F.TB.B1'⎕WC'ToolButton' 'Large'('ImageIndex' 1)('Style' 'Radio')
'F.TB.B2'⎕WC'ToolButton' 'Small'('ImageIndex' 2)('Style' 'Radio')
'F.TB.B3'⎕WC'ToolButton' 'List'('ImageIndex' 3)('Style' 'Radio')
'F.TB.B4'⎕WC'ToolButton' 'Details'('ImageIndex' 4)('Style' 'Radio')

'F.TB.S1'⎕WC'ToolButton'('Style' 'Separator')

'F.TB.B5'⎕WC'ToolButton' 'Name'('ImageIndex' 5)('Style' 'Radio')
'F.TB.B6'⎕WC'ToolButton' 'Size'('ImageIndex' 6)('Style' 'Radio')
'F.TB.B7'⎕WC'ToolButton' 'Date'('ImageIndex' 7)('Style' 'Radio')

Interface Guide

2025-10-30 (main:e0843eae32) Page 107

Drop-Down buttons

It is possible to define ToolButtons that display a drop-down menu from which the user
may choose an option. This is done by creating a ToolButton with Style 'DropDown'.

A ToolButton with Style 'DropDown' has an associated popup Menu object which is
named by its Popup property. There are two cases to consider.

If the ShowDropDown property of the parent ToolControl is 0, clicking the ToolButton
causes the popup menu to appear. In this case, the ToolButton itself does not itself
generate a Select event; you must rely on the user selecting a MenuItem to specify a
particular action.

If the ShowDropDown property of the parent ToolControl is 1, clicking the dropdown
button causes the popup menu to appear; clicking the ToolButton itself generates a
Select event, but does not display the popup menu.

'F'⎕WC'Form' 'ToolControl: Dropdown Buttons'
'F.TB'⎕WC'ToolControl'('ShowDropDown' 1)

:With 'F.FMENU'⎕WC'Menu' ⍝ Popup File menu
'NEW'⎕WC'MenuItem' '&New'
'OPEN'⎕WC'MenuItem' '&Open'
'CLOSE'⎕WC'MenuItem' '&Close'

:EndWith

:With 'F.EMENU'⎕WC'Menu' ⍝ Popup Edit menu
'CUT'⎕WC'MenuItem' 'Cu&t'
'COPY'⎕WC'MenuItem' '&Copy'
'PASTE'⎕WC'MenuItem' '&Paste'

:EndWith

'F.TB.B1'⎕WC'ToolButton' 'File'('Style' 'DropDown')('Popup' 'F.FMENU')
'F.TB.B2'⎕WC'ToolButton' 'Edit'('Style' 'DropDown')('Popup' 'F.EMENU')

Interface Guide

2025-10-30 (main:e0843eae32) Page 108

A MenuBar as the child of a ToolControl

As a special case, the ToolControl may contain a MenuBar as its only child. In this case,
Dyalog APL/W causes the menu items to be drawn as buttons, even under Windows 95.

Although nothing is done to prevent it, the use of other objects in a ToolControl
containing a MenuBar, is not supported.

Providing User Customisation

It is common to allow the user to switch the appearance of a ToolControl dynamically.
This may be done using a pop-up menu. In addition to providing a choice of styles, the
user may switch the text captions on and off.

The ShowCaptions property specifies whether or not the captions of ToolButton objects
are drawn. Its default value is 1 (draw captions).

'F'⎕WC'Form' 'ToolControl with MenuBar'
'F.TB'⎕WC'ToolControl'

:With 'F.TB.MB'⎕WC'MenuBar'
:With 'File'⎕WC'Menu' 'File'

'New'⎕WC'MenuItem' 'New'
'Open'⎕WC'MenuItem' 'Open'
'Close'⎕WC'MenuItem' 'Close'

:EndWith

:With 'Edit'⎕WC'Menu' 'Edit'
'Cut'⎕WC'MenuItem' 'Cut'
'Copy'⎕WC'MenuItem' 'Copy'
'Paste'⎕WC'MenuItem' 'Paste'

:EndWith

:EndWith

Interface Guide

2025-10-30 (main:e0843eae32) Page 109

ToolButtons drawn without captions occupy much less space and ShowCaptions
provides a quick way to turn captions on/off for user customisation.

The following functions illustrate how this was achieved.

∇ Example
[1] 'F'⎕WC'Form' 'ToolControl: User Options'
[2] 'F.TB'⎕WC'ToolControl'
[3] 'F.TB'⎕WS'Event' 'MouseDown' 'TC_POPUP'
[4]
[5] 'F.TB.IL'⎕WC'ImageList'('Masked' 0)('Size' 24 24)
[6] 'F.TB.IL.'⎕WC'Bitmap'('ComCtl32' 121)⍝ STD_LARGE
[7] 'F.TB'⎕WS'ImageListObj' 'F.TB.IL'
[8]
[9] 'F.TB.B1'⎕WC'ToolButton' 'Cut'('ImageIndex' 1)
[10] 'F.TB.B2'⎕WC'ToolButton' 'Copy'('ImageIndex' 2)
[11] 'F.TB.B3'⎕WC'ToolButton' 'Paste'('ImageIndex' 3)
[12] 'F.TB.B4'⎕WC'ToolButton' 'Undo'('ImageIndex' 4)
[13] 'F.TB.B5'⎕WC'ToolButton' 'Redo'('ImageIndex' 5)
[14] 'F.TB.B6'⎕WC'ToolButton' 'Delete'('ImageIndex' 6)

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 110

∇ TC_POPUP MSG;popup;TC;STYLE;SHOW;MULTI;OPTION
[1] ⍝ Popup menu on ToolControl
[2] :If (2≠5⊃MSG) ⍝ Right mouse button ?
[3] :Return
[4] :EndIf
[5]
[6] TC←'#.',⊃MSG
[7] STYLE SHOW MULTI←TC ⎕WG'Style' 'ShowCaptions'

'MultiLine'
[8]
[9] :With 'popup'⎕WC'Menu'
[10] 'FlatButtons'⎕WC'MenuItem' '&Flat Buttons'

('Style' 'Radio')
[11] 'Buttons'⎕WC'MenuItem' '&Buttons'

('Style' 'Radio')
[12] 'List'⎕WC'MenuItem' '&List'('Style' 'Radio')
[13] 'FlatList'⎕WC'MenuItem' 'Fla&t List'

('Style' 'Radio')
[14] STYLE ⎕WS'Checked' 1
[15] 'sep'⎕WC'Separator'
[16] 'ShowCaptions'⎕WC'MenuItem' '&Show Text'

('Checked'SHOW)
[17] 'MultiLine'⎕WC'MenuItem' '&MultiLine'

('Checked'MULTI)
[18]
[19] ('MenuItem'⎕WN'')⎕WS¨⊂'Event' 'Select' 1
[20]
[21] :If 0=⍴MSG←⎕DQ''
[22] :Return
[23] :EndIf
[24]
[25] :Select OPTION←⊃MSG
[26] :CaseList 'FlatButtons' 'Buttons' 'List'

'FlatList'
[27] TC ⎕WS'Style'OPTION
[28] :Else
[29] TC ⎕WS OPTION(~TC ⎕WG OPTION)
[30] :EndSelect
[31]
[32] :EndWith

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 111

4.2 The CoolBar and CoolBand Objects

A CoolBar contains one or more bands (CoolBands). Each band can have any
combination of a gripper bar, a bitmap, a text label, and a single child object.

Using the gripper bars, the user may drag bands from one row to another, resize bands
in the same row, and maximise or minimise bands in a row. The CoolBar therefore gives
the user a degree of control over the layout of the controls that it contains.

A CoolBand may not contain more than one child object, but that child object may
itself be a container such as a ToolControl or a SubForm.

The following example illustrates a CoolBar containing two CoolBands, each of which
itself contains a ToolControl.

'F'⎕WC'Form' 'CoolBar Object with ToolControls'
'F.IL'⎕WC'ImageList'('Masked' 0)('MapCols' 1)
'F.IL.'⎕WC'Bitmap'('ComCtl32' 120)⍝ STD_SMALL

'F.CB'⎕WC'CoolBar'

:With 'F.CB.C1'⎕WC'CoolBand'
'TB'⎕WC'ToolControl'('ImageListObj' '#.F.IL')
'TB.B1'⎕WC'ToolButton' 'New'('ImageIndex' 7)
'TB.B2'⎕WC'ToolButton' 'Open'('ImageIndex' 8)
'TB.B3'⎕WC'ToolButton' 'Save'('ImageIndex' 9)

:EndWith

:With 'F.CB.C2'⎕WC'CoolBand'
'TB'⎕WC'ToolControl'('ImageListObj' '#.F.IL')
'TB.B1'⎕WC'ToolButton' 'Cut'('ImageIndex' 1)
'TB.B2'⎕WC'ToolButton' 'Copy'('ImageIndex' 2)
'TB.B3'⎕WC'ToolButton' 'Paste'('ImageIndex' 3)
'TB.B4'⎕WC'ToolButton' 'Undo'('ImageIndex' 4)
'TB.B5'⎕WC'ToolButton' 'Redo'('ImageIndex' 5)

:EndWith

Interface Guide

2025-10-30 (main:e0843eae32) Page 112

The user may move band 2 into row 1 by dragging the gripper bar:

CoolBar: FixedOrder Property

FixedOrder is a property of the CoolBar and specifies whether or not the CoolBar
displays CoolBands in the same order. If FixedOrder is 1, the user may move bands
which have gripper bars to different rows, but the band order is static. The default is 0.

CoolBand: GripperMode Property

GripperMode is a property of a CoolBand and specifies whether or not the CoolBand
has a gripper bar which is used to reposition and resize the CoolBand within its parent
CoolBar. GripperMode is a character vector with the value 'Always' (the default),
'Never' or 'Auto'. If GripperMode is 'Always', the CoolBand displays a gripper bar
even if it is the only CoolBand in the CoolBar. If GripperMode is 'Never', the CoolBand
does not have a gripper bar and may not be directly repositioned or resized by the user.
If GripperMode is 'Auto', the CoolBand displays a gripper bar only if there are other
CoolBands in the same CoolBar.

Interface Guide

2025-10-30 (main:e0843eae32) Page 113

The next picture shows the second CoolBand maximised.

CoolBar: DblClickToggle Property

If it has a gripper bar, the user may maximise one of the bands in a row, causing the
other bands to be minimised. The action required to do this is defined by the
DblClickToggle property which is a property of the CoolBar.

If DblClickToggle is 0 (the default), the user must single-click the gripper bar. If
DblClickToggle is 1, the user must double-click the gripper bar. These actions toggle a
child CoolBand between its maximised and minimised state. The following picture
shows the first CoolBand maximised.

CoolBar: VariableHeight/BandBorders Properties

These two properties affect the appearance of the CoolBar.

The VariableHeight property specifies whether or not the CoolBar displays bands in
different rows at the minimum required height (the default), or all the same height.

Interface Guide

2025-10-30 (main:e0843eae32) Page 114

The BandBorders property specifies whether or not narrow lines are drawn to separate
adjacent bands. The default is 0 (no lines).

The following example uses simple controls (as opposed to container controls) as
children of the CoolBands and illustrate the effect of these properties on the
appearance of the CoolBar.

If the CoolBands are arranged in the same row, the height of the row expands to
accommodate the largest one as shown below.

'F'⎕WC'Form' 'CoolBar Object with simple controls'
'F.CB'⎕WC'CoolBar'

:With F.CB.C1'⎕WC'CoolBand'
 'E1'⎕WC'Edit' 'Edit1'
:EndWith

:With 'F.CB.C2'⎕WC'CoolBand'
 'C1'⎕WC'Combo'('One' 'Two' 'Three')('SelItems' 0 1 0)
:EndWith

:With 'F.CB.C3'⎕WC'CoolBand'
 'E2'⎕WC'Edit'(3 5⍴'Edit2')('Style' 'Multi')
:EndWith

Interface Guide

2025-10-30 (main:e0843eae32) Page 115

The picture below illustrates the effect of setting VariableHeight to 0.

The picture below shows the effect on appearance of setting BandBorders to 1.

Interface Guide

2025-10-30 (main:e0843eae32) Page 116

CoolBand: ChildEdge Property

ChildEdge is a property of a CoolBand and specifies whether or not the CoolBand leaves
space above and below the object that it contains.

If the ChildEdge property of each CoolBand had been set to 1 in the above example,
then the result would show wider borders between each band.

CoolBand: Caption and ImageIndex Properties

The Caption and ImageIndex properties of a CoolBand are used to display an optional
text string and picture in the CoolBand.

The picture is defined by an image in an ImageList object whose name is referenced by
the ImageListObj property of the parent CoolBar. The following example illustrates how
this is done.

Interface Guide

2025-10-30 (main:e0843eae32) Page 117

Note that the Caption and image are displayed when the CoolBand is minimised as
shown below:

'F'⎕WC'Form' 'CoolBand Caption and ImageIndex'
'F.IL'⎕WC'ImageList'('Masked' 0)('MapCols' 1)
'F.IL.'⎕WC'Bitmap'('ComCtl32' 120)⍝ STD_SMALL

'F.CB'⎕WC'CoolBar'('ImageListObj' 'F.CB.IL')
'F.CB.IL'⎕WC'ImageList'('Masked' 1)('MapCols' 1)
'F.CB.IL.'⎕WC'Icon'('' 'aplicon')
'F.CB.IL.'⎕WC'Icon'('' 'editicon')

:With 'F.CB.C1'⎕WC'CoolBand' 'File'('ImageIndex' 1)
'TB'⎕WC'ToolControl'('ImageListObj' '#.F.IL')('Divider' 0)
'TB.B1'⎕WC'ToolButton' 'New'('ImageIndex' 7)
'TB.B2'⎕WC'ToolButton' 'Open'('ImageIndex' 8)
'TB.B3'⎕WC'ToolButton' 'Save'('ImageIndex' 9)

:EndWith

:With 'F.CB.C2'⎕WC'CoolBand' 'Edit'('ImageIndex' 2)
'TB'⎕WC'ToolControl'('ImageListObj' '#.F.IL')('Divider' 0)
'TB.B1'⎕WC'ToolButton' 'Cut'('ImageIndex' 1)
'TB.B2'⎕WC'ToolButton' 'Copy'('ImageIndex' 2)
'TB.B3'⎕WC'ToolButton' 'Paste'('ImageIndex' 3)
'TB.B4'⎕WC'ToolButton' 'Undo'('ImageIndex' 4)
'TB.B5'⎕WC'ToolButton' 'Redo'('ImageIndex' 5)

:EndWith

Interface Guide

2025-10-30 (main:e0843eae32) Page 118

CoolBand: Size, Posn, NewLine, Index Properties

The Size property of a CoolBand is partially read-only and may only be used to specify
its width; because the height of a CoolBand is determined by its contents. Furthermore,
the Size property may only be specified when the CoolBand is created using ⎕WC.

The position of a Cool Band within a CoolBar is determined by its Index and NewLine
properties, and by the position and size of preceding CoolBand objects in the same
CoolBar. The Posn property is read-only.

The Index property specifies the position of a CoolBand within its parent CoolBar,
relative to other CoolBands and is ⎕IO dependent. Initially, the value of Index is
determined by the order in which the CoolBands are created. You may re-order the
CoolBands within a CoolBar by changing its Index property with ⎕WS.

The NewLine property specifies whether or not the CoolBand occupies the same row as
an existing CoolBand, or is displayed on a new line within its CoolBar parent.

The value of NewLine in the first CoolBand in a CoolBar is always ⎕IO, even if you
specify it to be 0. You may move a CoolBand to the previous or next row by changing its
NewLine property (using ⎕WS) from 1 to 0, or from 0 to 1 respectively.

If you wish to remember the user's chosen layout when your application terminates,
you must store the values of Index, Size and NewLine for each of the CoolBands. When
your application is next started, you must re-create the CoolBands with the same
values of these properties.

CoolBands with SubForms

The CoolBand object itself may contain only a single child object. However, if that child
is a SubForm containing other objects, the CoolBand can appear to manage a group of
objects. A similar effect can be obtained using a ToolBar or ToolControl.

The following example illustrates this technique. Note that the SubForms are disguised
by setting their EdgeStyle and BCol properties. In addition, their AutoConf properties
are set to 0 to prevent resizing of the child controls when the CoolBands are resized.

Interface Guide

2025-10-30 (main:e0843eae32) Page 119

4.3 The TabControl and TabButton Objects

The TabControl object provides access to the standard Windows NT tab control.

The standard tab control is analogous to a set of dividers in a notebook and allows you
to define a set of pages that occupy the same area of a window or dialog box. Each
page consists of a set of information or a group of controls that the application displays
when the user selects the corresponding tab.

A special type of tab control displays tabs that look like buttons. For example, the
Windows 98 taskbar is such a tab control.

To implement a multiple page tabbed dialog, illustrated below, you should create a
Form, then a TabControl with Style 'Tabs' (which is the default) as a child of the Form.

'F'⎕WC'Form' 'CoolBar with SubForms'('Size' 25 50)
'F'⎕WS'Coord' 'Pixel'

'F.CB'⎕WC'CoolBar'

:With 'F.CB.C1'⎕WC'CoolBand'
'S'⎕WC'SubForm'('Size' 30 ⍬)('EdgeStyle' 'Default')

('BCol' ¯16)('AutoConf' 0)
'S.E1'⎕WC'Edit' 'Edit 1'(2 2)(⍬ 60)
'S.C1'⎕WC'Combo'('One' 'Two')''(2 70)(⍬ 60)

:EndWith

:With 'F.CB.C2'⎕WC'CoolBand'
'S'⎕WC'SubForm'('Size' 30 ⍬)('EdgeStyle' 'Default')

('BCol' ¯16)('AutoConf' 0)
'S.E1'⎕WC'Edit' 'Edit 2'(2 2)(⍬ 60)
'S.C1'⎕WC'Combo'('One' 'Two')''(2 70)(⍬ 60)

:EndWith

Interface Guide

2025-10-30 (main:e0843eae32) Page 120

Individual tabs or buttons are represented by TabButton objects which should be
created as children of the TabControl object. Optional captions and pictures are
specified by the Caption and ImageIndex properties of the individual TabButton objects
themselves.

Note that the icons used in these examples are provided in the ws sub-directory.

Next, create one or more pairs of TabButton and SubForm objects as children of the
TabControl. You associate each SubForm with a particular tab by setting its TabObj
property to the name of the associated TabButton object. Making the SubForms
children of the TabControl ensures that, by default, they will automatically be resized
correctly. (You may alternatively create your SubForms as children of the main Form
and establish appropriate resize behaviour using their Attach property.)

'F'⎕WC'Form' 'TabControl: Default'('Size' 25 50)
'F.TC'⎕WC'TabControl'

icodir←(2 ⎕NQ'.' 'GetEnvironment' 'Dyalog'),'\ws\'

'F.TC.IL'⎕WC'ImageList'
'F.TC.IL.'⎕WC'Icon'(icodir,'aplicon.ico')
'F.TC.IL.'⎕WC'Icon'(icodir,'funicon.ico')
'F.TC.IL.'⎕WC'Icon'(icodir,'editicon.ico')
'F.TC'⎕WS'ImageListObj' 'F.TC.IL'

'F.TC.T1'⎕WC'TabButton' 'One'('ImageIndex' 1)
'F.TC.T2'⎕WC'TabButton' 'Two'('ImageIndex' 2)
'F.TC.T3'⎕WC'TabButton' 'Three'('ImageIndex' 3)
'F.TC.S1'⎕WC'SubForm'('TabObj' 'F.TC.T1')
'F.TC.S2'⎕WC'SubForm'('TabObj' 'F.TC.T2')
'F.TC.S3'⎕WC'SubForm'('TabObj' 'F.TC.T3')

Interface Guide

2025-10-30 (main:e0843eae32) Page 121

Style, FlatSeparators and HotTrack Properties

The Style property determines the overall appearance of the tabs or buttons in a
TabControl and may be 'Tabs' (the default), 'Buttons' or 'FlatButtons'.

A TabControl object with Style 'Buttons' or 'FlatButtons' may be used in a similar
way (that is, to display a set of alternative pages), although buttons in this type of
TabControl are more normally used to execute commands. For this reason, these styles
of TabControl are borderless.

If Style is 'FlatButtons', the FlatSeparators property specifies whether or not
separators are drawn between the buttons. The following example illustrates the effect
of setting FlatSeparators to 1.

Interface Guide

2025-10-30 (main:e0843eae32) Page 122

The HotTrack property specifies whether or not the tabs or buttons in a TabControl
object (which are represented by TabButton objects), are automatically highlighted by
the mouse pointer.

The Align Property

The Align property specifies along which of the 4 edges of the TabControl the tabs or
buttons are arranged. Align also controls the relative positioning of the picture and
Caption within each TabButton. Align may be Top (the default), Bottom, Left or Right.

If Align is 'Top' or 'Bottom', the tabs or buttons are arranged along the top or bottom
edge of the TabControl and the picture is drawn to the left of the Caption.

'F'⎕WC'Form' 'TabControl: Align Bottom'('Size' 25 50)
'F.TC'⎕WC'TabControl'('Align' 'Bottom')

'F.TC.IL'⎕WC'ImageList'
'F.TC.IL.'⎕WC'Icon'(icodir,'aplicon.ico')
'F.TC.IL.'⎕WC'Icon'(icodir,'funicon.ico')
'F.TC.IL.'⎕WC'Icon'(icodir,'editicon.ico')

'F.TC'⎕WS'ImageListObj' 'F.TC.IL'

'F.TC.T1'⎕WC'TabButton' 'One'('ImageIndex' 1)
'F.TC.T2'⎕WC'TabButton' 'Two'('ImageIndex' 2)
'F.TC.T3'⎕WC'TabButton' 'Three'('ImageIndex' 3)

'F.S1'⎕WC'SubForm'('TabObj' 'F.TC.T1')
'F.S2'⎕WC'SubForm'('TabObj' 'F.TC.T2')
'F.S3'⎕WC'SubForm'('TabObj' 'F.TC.T3')

Interface Guide

2025-10-30 (main:e0843eae32) Page 123

If Align is 'Left' or 'Right', the tabs or buttons are arranged top-to-bottom along the
left or right edge of the TabControl as shown below.

The MultiLine Property

The MultiLine property of a TabControl determines whether or not your tabs or buttons
will be arranged in multiple flights or multiple rows/columns.

The default value of MultiLine is 0, in which case, if you have more tabs or buttons than
will fit in the space provided, the TabControl displays an UpDown control to permit the
user to scroll them.

Interface Guide

2025-10-30 (main:e0843eae32) Page 124

If MultiLine is set to 1, the tabs are displayed in multiple flights.

If the TabControl has Style 'Buttons' and MultiLine is set to 1, the buttons are
displayed in multiple rows.

Interface Guide

2025-10-30 (main:e0843eae32) Page 125

The ScrollOpposite Property

The ScrollOpposite property specifies that unneeded tabs scroll to the opposite side of
a TabControl, when a tab is selected. This only applies when MultiLine is 1.

The following example illustrates a TabControl with ScrollOpposite set to 1, after the
user has clicked Third Tab. Notice that, in this example, the SubForms have been
created as children of the TabControl. This is necessary to ensure that they are
managed correctly in this case.

If MultiLine is 1, the way that multiple flights of tabs or rows/columns of buttons are
displayed is further defined by the Justify property which may be 'Right' (the default)
or 'None'.

'F'⎕WC'Form' 'TabControl: ScrollOpposite'
'F.TC'⎕WC'TabControl' ('ScrollOpposite' 1)('MultiLine' 1)

'F.TC.IL'⎕WC'ImageList'
'F.TC.IL.'⎕WC'Icon'(icodir,'aplicon.ico')
'F.TC.IL.'⎕WC'Icon'(icodir,'funicon.ico')
'F.TC.IL.'⎕WC'Icon'(icodir,'editicon.ico')

'F.TC'⎕WS'ImageListObj' 'F.TC.IL'

'F.TC.T1'⎕WC'TabButton' 'First Tab'('ImageIndex' 1)
'F.TC.T2'⎕WC'TabButton' 'Second Tab'('ImageIndex' 2)
'F.TC.T3'⎕WC'TabButton' 'Third Tab'('ImageIndex' 3)
'F.TC.T4'⎕WC'TabButton' 'Fourth Tab'('ImageIndex' 1)

Interface Guide

2025-10-30 (main:e0843eae32) Page 126

The Justify Property

If Justify is 'Right' (which is the default), the TabControl increases the width of each
tab, if necessary, so that each row of tabs fills the entire width of the tab control.
Otherwise, if Justify is empty or 'None', the rows are ragged as shown below.

The next picture illustrates the effect of Justify 'None' on a TabControl with Style
'Buttons'.

'F'⎕WC'Form' 'TabControl: MultiLine Tabs, Justify None'
'F.TC'⎕WC'TabControl'('MultiLine' 1)('Justify ' 'None')
'F.TC.IL'⎕WC'ImageList'
'F.TC.IL.'⎕WC'Icon'(icodir,'aplicon.ico')
'F.TC.IL.'⎕WC'Icon'(icodir,'funicon.ico')
'F.TC.IL.'⎕WC'Icon'(icodir,'editicon.ico')
'F.TC'⎕WS'ImageListObj' 'F.TC.IL'
'F.TC.T1'⎕WC'TabButton' 'First Tab'('ImageIndex' 1)
'F.TC.T2'⎕WC'TabButton' 'Second Tab'('ImageIndex' 2)
'F.TC.T3'⎕WC'TabButton' 'Third Tab'('ImageIndex' 3)
'F.TC.T4'⎕WC'TabButton' 'Fourth Tab'('ImageIndex' 1)

Interface Guide

2025-10-30 (main:e0843eae32) Page 127

The TabSize and TabJustify Properties

By default, the size of the tabs may vary from one row to another. Fixed size tabs may
be obtained by setting the TabSize property.

If fixed size tabs are in effect, the positions at which the picture and Caption are drawn
within each TabButton is controlled by the TabJustify property which may be
'Centre'(the default), 'Edge', or 'IconEdge'.

If TabJustify is set to 'Edge' then the picture and text on the TabButton are justified
along the side defined by the Align property (default 'Top').

etc.

'F'⎕WC'Form' 'TabControl: TabJustify Centre'
'F.TC'⎕WC'TabControl'('Style' 'Buttons')('TabSize'⍬ 30)

'F.TC.IL'⎕WC'ImageList'
'F.TC.IL.'⎕WC'Icon'(icodir,'aplicon.ico')
'F.TC.IL.'⎕WC'Icon'(icodir,'funicon.ico')
'F.TC.IL.'⎕WC'Icon'(icodir,'editicon.ico')
'F.TC'⎕WS'ImageListObj' 'F.TC.IL'

'F.TC.T1'⎕WC'TabButton' 'One'('ImageIndex' 1)
'F.TC.T2'⎕WC'TabButton' 'Two'('ImageIndex' 2)
'F.TC.T3'⎕WC'TabButton' 'Three'('ImageIndex' 3)

'F'⎕WC'Form' 'TabControl: TabJustify Edge'('Size' 10 40)
'F.TC'⎕WC'TabControl'('Style' 'Buttons')

('TabJustify' 'Edge')('TabSize'⍬ 30)

Interface Guide

2025-10-30 (main:e0843eae32) Page 128

If, instead, the TabJustify property is set to 'IconEdge' then the text is centred and
only the icons are justified.

The TabFocus Property

The TabFocus property specifies the focus behaviour for the TabControl object.

TabFocus is a character vector that may be 'Normal' (the default), 'Never' or
'ButtonDown'.

If TabFocus is 'Normal', the tabs or buttons in a TabControl do not immediately receive
the input focus when clicked, but only when clicked a second time. This means that,
normally, when the user circulates through the tabs, the input focus will be given to the
appropriate control in the associated SubForm. However, if the user clicks twice in
succession on the same tab or button, the TabControl itself will receive the input focus.

If TabFocus is 'ButtonDown', the tabs or buttons in a TabControl receive the input focus
when clicked.

If TabFocus is 'Never', the tabs or buttons in a TabControl never receive the input
focus. This allows the user to circulate through a set of tabbed SubForms without ever
losing the input focus to the TabControl itself.

4.4 The StatusBar Object

Like the Toolbar, the StatusBar object is also a container that manages its children.
However, the StatusBar may contain only one type of object, namely StatusFields. By
default, the StatusBar is a flat grey object, positioned along the bottom edge of a Form,
upon which the StatusFields are drawn as sunken rectangles. StatusFields display
textual information and are typically used for help messages and for monitoring the
status of an application. They can also be used to automatically report the status of the
Caps Lock, Num Lock, Scroll Lock, and Insert keys

The following example illustrates a default StatusBar containing three StatusFields.
Notice how the StatusFields are positioned automatically.

Interface Guide

2025-10-30 (main:e0843eae32) Page 129

A Default StatusBar

The following example illustrates a scrolling StatusBar. The fourth StatusField extends
beyond the right edge of the StatusBar and, because HScroll is ¯2, a mini scrollbar
appears.

'TEST'⎕WC'Form' 'Simple StatusBar'
'TEST' ⎕WS'BCol' (255 255 255)
'TEST.SB'⎕WC'StatusBar'
'TEST.SB.S1'⎕WC'StatusField' 'Field1:' 'text1'
'TEST.SB.S2'⎕WC'StatusField' 'Field2:' 'text2'
'TEST.SB.S3'⎕WC'StatusField' 'Field3:' 'text3'

'TEST'⎕WC'Form' 'Scrolling StatusBar'
('BCol' (255 255 255))

'TEST.SB'⎕WC'StatusBar'('HScroll' ¯2)

'TEST.SB.S1'⎕WC'StatusField' 'Field1:' 'text1'
'TEST.SB.S2'⎕WC'StatusField' 'Field2:' 'text2'
'TEST.SB.S3'⎕WC'StatusField' 'Field3:' 'text3'
'TEST.SB.S4'⎕WC'StatusField' 'Field4:' 'text4'

Interface Guide

2025-10-30 (main:e0843eae32) Page 130

A Scrolling StatusBar

As an alternative to single-row scrolling StatusBar, you can have a multi-line one.
Indeed, this is the default if you omit to specify HScroll. However, you do have to
explicitly set the height of the StatusBar to accommodate the second row.

A Multi-line StatusBar

'TEST'⎕WC'Form' 'Multi Line StatusBar'
('BCol' (255 255 255))

'TEST.SB.S1'⎕WC'StatusField' 'Field1:' 'text1'
'TEST.SB.S2'⎕WC'StatusField' 'Field2:' 'text2'
'TEST.SB.S3'⎕WC'StatusField' 'Field3:' 'text3'
'TEST.SB.S4'⎕WC'StatusField' 'Field4:' 'text4'

Interface Guide

2025-10-30 (main:e0843eae32) Page 131

Using StatusFields

There are basically three ways of using StatusFields. Firstly, you can display information
in them directly from your program by setting their Caption and/or Text properties. For
example, if you are executing a lengthy calculation, you may wish to display the word
"Calculating ..." as the Caption of a StatusField and, as the calculations proceed, display
(say) "Phase 1" followed in due course by "Phase 2", and so forth. You can also use
StatusFields to display application messages, including warning and error messages,
where the use of a MsgBox is inappropriate.

The second major use of a StatusField is to display hints which you do by setting the
HintObj property of an object to the name of the StatusField. Used in this way, a
StatusField automatically displays context sensitive help when the user places the
mouse pointer over an object. This topic is described in Chapter 5.The third use of a
Status Field is to monitor the status of the keyboard. This is achieved by setting its Style
property to one of the following keywords:

Keyword Meaning

CapsLock Monitors state of Caps Lock key

ScrollLock Monitors state of Scroll Lock key

NumLock Monitors state of Num Lock key

KeyMode Monitors the keyboard mode (APL/ASCII) (Classic Edition only)

InsRep Monitors the state of the Insert/Replace toggle key

The following example illustrates different uses of the StatusField object. The first
StatusField F.SB.S1 is used for context-sensitive help by making it the HintObj for the
Form F. The second StatusField F.SB.S2 is simply used to display application status; in
this case "Ready ...". The third and fourth StatusField objects monitor the status of the
Insert and Caps Lock keys respectively. Note that whilst the Caps Lock, Num Lock and
Scroll Lock keys have a recognised state, the Insert key does not. Initially, APL sets the
key to "Ins" and then toggles to and from "Rep" whenever the key is pressed. To
discover which mode the keyboard is in, you should use ⎕WG to read the value of the
Text property of the StatusField.

Interface Guide

2025-10-30 (main:e0843eae32) Page 132

'F'⎕WC'Form' 'Using StatusFields'('Coord' 'Pixel')

'F.SB'⎕WC'StatusBar'

'F.SB.S1'⎕WC'StatusField'('Size'⍬ 150)
'F'⎕WS'HintObj' 'F.SB.S1'

'F.SB.S2'⎕WC'StatusField' 'Ready ...'
'F.SB.S3'⎕WC'StatusField'('Style' 'InsRep')('Size'⍬ 50)
'F.SB.S4'⎕WC'StatusField'('Style' 'CapsLock')('Size'⍬ 50)

'F.L'⎕WC'List'WINES(0 0)(F.Size×0.8 1)('Hint' 'Choose a Wine')

Interface Guide

2025-10-30 (main:e0843eae32) Page 133

5 Hints and Tips

5.1 Using Hints

All of the GUI objects supported by Dyalog APL that have a visible presence on the
screen have a Hint property and a HintObj property. Quite simply, when the user moves
the mouse pointer over the object the contents of its Hint property are displayed in the
object referenced by its HintObj property. When the user moves the mouse pointer
away from the object, its Hint disappears. If an object has a Hint, but its HintObj
property is empty, the system uses the HintObj defined for its parent, or for its parent's
parent, and so forth up the tree. If there is no HintObj defined, the Hint is simply not
displayed. This mechanism has two useful attributes:

it allows you to easily define a single region for help messages for all of the
controls in a Form, but still provides the flexibility for using different message
locations for different controls if appropriate.
to enable or disable the display of hints all you typically have to do is to set or
clear the HintObj property on the parent Form

The object named by HintObj may be any object with either a Caption property or a
Text property. Thus you can use the Caption on a Label, Form, or Button or the text in
an Edit object. If you use a StatusField object which has both Caption and Text
properties, the Text property is employed. If you set HintObj to the name of an object
which possesses neither of these properties, the hints will simply not be displayed. The
following example illustrates the use of a StatusField for displaying hints.

Example: Using a StatusField for Hints

This example illustrates the use of a StatusField object to display hints. .

1.

2.

Interface Guide

2025-10-30 (main:e0843eae32) Page 134

Using a StatusBar to display Hints

Example: Using an Edit Object for Hints

You can display a much larger amount of information using a multi-line Edit object as
shown in this example.

'Test'⎕WC 'Form' 'Using Hints'('HintObj' 'Test.SB.H')

'Test.MB' ⎕WC 'MenuBar'
'Test.MB.F' ⎕WC 'Menu' '&File'
HINT ← 'Creates a new empty document'
'Test.MB.F.New' ⎕WC 'MenuItem' '&New' ('Hint' HINT)

'Test.SB' ⎕WC 'StatusBar'
'Test.SB.H' ⎕WC 'StatusField' ('Size' ⍬ 98)

'Test'⎕WC 'Form' 'Using Hints' ('HintObj' 'Test.ED')
'Test.MB' ⎕WC 'MenuBar'
'Test.MB.F' ⎕WC 'Menu' '&File'
HINT ← 100⍴'Creates a new empty document '
'Test.MB.F.New' ⎕WC 'MenuItem' '&New' ('Hint' HINT)

'Test.ED' ⎕WC 'Edit' ('Style' 'Multi')

Interface Guide

2025-10-30 (main:e0843eae32) Page 135

Displaying Hints in an Edit object

5.2 Using Tips

Tips work in a very similar way to Hints. Most of the GUI objects that have a visible
presence on the screen have a Tip property and a TipObj property. Exceptions are
Menus, MenuItems and other pop-up objects. The TipObj property contains the name
of a TipField object. This is a special kind of pop-up object whose sole purpose is to
display tips. When the user moves the mouse pointer over the object the
corresponding TipField appears displaying the object's Tip. When the mouse pointer
moves away from the object, the TipField disappears. If an object has a Tip, but its
TipObj property is empty, the system uses the TipObj defined for its parent, or for its
parent's parent, and so forth up the tree. If there is no TipObj defined, the Tip is simply
not displayed. Normally, you need only define one TipField for your application, but if
you want to use different colours or fonts for individual tips, you may define as many
different TipFields as you require. Again, it is very simple to turn tips on and off.

Example

This example shows how easy it is to associate a tip with an object, in this case a
Button.

'Test'⎕WC 'Form' 'Using Tips'('TipObj' 'Test.Tip')
'Test.Tip' ⎕WC 'TipField'
'Test.B' ⎕WC 'Button' '&Ok' ('Tip' 'Press Me')

Interface Guide

2025-10-30 (main:e0843eae32) Page 136

Using Tips

5.3 Hints and Tips Combined

There is no reason why you cannot provide Hints and Tips. The next example shows
how an object, in this case a Combo, can have both defined.

Example

'Test'⎕WC 'Form' 'Using Hints and Tips'

'Test.SB' ⎕WC 'StatusBar'
'Test.SB.H' ⎕WC 'StatusField' ('Size' ⍬ 98)
'Test' ⎕WS 'HintObj' 'Test.SB.H'

'Test.Tip' ⎕WC 'TipField'
'Test' ⎕WS 'TipObj' 'Test.Tip'

'Test.C' ⎕WC 'Combo' WINES
'Test.C' ⎕WS 'Hint' 'Select your wine from this

 list'
'Test.C' ⎕WS 'Tip' 'Wine Cellar'

Interface Guide

2025-10-30 (main:e0843eae32) Page 137

Hints and Tips Combined

Interface Guide

2025-10-30 (main:e0843eae32) Page 138

6 Grid Object

6.1 Using the Grid Object

The Grid object allows you to display information in a series of rows and columns and
lets the user input and change the data. The Grid has four main components; a matrix
of cells that represents the data, a set of row titles, a set of column titles, and a pair of
scroll bars. The following picture illustrates these components. The scroll bars scroll the
data cells and either the row or column titles. The row titles remain fixed in place when
the data cells scroll horizontally and the column titles stay fixed when the data is
scrolled vertically.

Interface Guide

2025-10-30 (main:e0843eae32) Page 139

6.2 Defining Overall Appearance

By default, the Grid inherits its font from the parent Form, or ultimately, from the Root
object. This defaults to your Windows System font.

You can change the font for the Grid as a whole using its FontObj property. This font
will be used for the row titles, column titles and for the data. You can separately define
the font for the data using the CellFonts property. Thus, for example, if you wanted to
use Helvetica 12 for the titles and Arial 10 for the data, you could do so as follows:

The FCol and BCol properties specify the foreground and background colours for the
text in the data cells. The default colour scheme is black on white. FCol and BCol may
define single colours which refer to all the cells, or a set of colours to be applied to
different cells

The colour of the gridlines is specified by GridFCol. To draw a Grid with no gridlines, set
GridFCol to the same colour as is defined by BCol.

If the Grid is larger than the space occupied by the data cells, GridBCol specifies the
colour used to fill the area between the end of the last column of data and the right
edge of the Grid, and between the bottom row of data and the bottom edge of the
Grid.

The ClipCells property determines whether or not the Grid displays partial cells. The
default is 1. If you set ClipCells to 0, the Grid displays only complete cells and
automatically fills the space between the last visible cell and the edge of the Grid with
the GridBCol colour.

The following example shows a default Grid (ClipCells is 1) in which the third column of
data is in fact incomplete (clipped), although this is by no means apparent to the user.

'Test.G' ⎕WS 'FontObj' 'Helvetica' 12

'Test.CF' ⎕WC 'Font' 'Arial' 10
'Test.G' ⎕WS 'CellFonts' 'Test.CF'

Interface Guide

2025-10-30 (main:e0843eae32) Page 140

This second picture shows the effect on the Grid of setting ClipCells to 0 which prevents
such potential confusion.

6.3 Row and Column Titles

Row and column titles are defined by the RowTitles and ColTitles properties, each of
which is a vector of character arrays. An element of RowTitles and ColTitles may be a
character vector specifying a 1-row title, or a matrix or vector of vectors which specify
multi-row titles.

The height of the area used to display column titles is specified by the TitleHeight
property. The width of the area used to display row titles is defined by the TitleWidth
property. The alignment of text within the title cells is defined by RowTitleAlign and
ColTitleAlign and the colour of the text is specified by RowTitleFCol and ColTitleFCol.

Multi-level titles are also possible and are defined by the RowTitleDepth and
ColTitleDepth properties. An example of what can be achieved is shown below.

Interface Guide

2025-10-30 (main:e0843eae32) Page 141

∇ HierarchicalTitles;Q1;Q2;Q3;Q4;TITLES;CDEPTH
[1] 'F'⎕WC'Form' ''('Size' 313 362)('Coord' 'Pixel')
[2] F.Caption←'Hierarchical Titles'
[3] 'F.G'⎕WC'Grid'(?12 6⍴100)(0 0)F.Size
[4] F.G.(TitleWidth TitleHeight CellWidths)←120 60 40
[5] Q1←'Q1' 'Jan' 'Feb' 'Mar'
[6] Q2←'Q2' 'Apr' 'May' 'Jun'
[7] Q3←'Q3' 'Jul' 'Aug' 'Sep'
[8] Q4←'Q4' 'Oct' 'Nov' 'Dec'
[9] TITLES←(⊂'2013'),Q1,Q2,Q3,Q4
[10] CDEPTH←0,16⍴1 2 2 2
[11] F.G.(RowTitles RowTitleDepth)←TITLES CDEPTH
[12] F.G.RowTitleAlign←'Centre'
[13] TITLES←'Wine' 'Red' 'White'
[14] TITLES,←'Champagne' 'Red' 'White' 'Rose'
[15] TITLES,←⊂↑'Beer' ' and' 'Cider'
[16] CDEPTH←0 1 1 0 1 1 1 0
[17] F.G.(ColTitles ColTitleDepth)←TITLES CDEPTH

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 142

6.4 Displaying and Editing Values in Grid Cells

The Grid can display the value in a cell directly (as illustrated by Section 6.1) or
indirectly via an associated object. You do not (as you might first expect) define input
and validation characteristics for the cells directly, instead you do so indirectly through
associated objects. Objects are associated with Grid cells by the Input property. If a cell
has an associated object, its value is displayed and edited using that object. Several
types of object may be associated with Grid cells, including Edit, Label, Button (Push,
Radio and Check), and Combo objects. You can use a single associated object for the
entire Grid, or you can associate different objects with individual cells.

Edit and Label objects impose formatting on the cells with which they are associated
according to the values of their FieldType and Decimal properties (for numbers, dates
and time) and their Justify property (for text). In addition, Label objects protect cells
(because a Label has no input mechanism), while Edit objects impose input validation.
If you use an Edit object with a FieldType of Numeric, the user may only enter numbers
into the corresponding cells of the Grid. For both Edit and Label objects, the FieldType
and Decimals properties of the object are used to format the data displayed in the
corresponding cells of the Grid. For example, if the FieldType property of the associated
object is Date, the numeric elements in Values will be displayed as dates.

Numeric cells may also be formatted using the FormatString property which applies
⎕FMT format specifications to the data. The AlignChar property permits formatted data
to be aligned in a column. For example, you can specify that numbers in a column are
aligned on their decimal points.

Combo objects can be used to allow the user to select a cell value from a set of
alternatives. Radio and Check Buttons may be used to display and edit Boolean values.

Associated Edit, Label and Combo objects may be external to the Grid (for example, you
can have the user type values into a companion edit field) or they may be internal.
Internal objects (which are implemented as children of the Grid) float from cell to cell
and allow the data to be changed in-situ. Button, Spinner and TrackBar objects may
only be internal.

Using a Floating Edit Field

If the Edit object specified by Input is owned by (that is, is a child of) the Grid itself, the
Edit object floats from cell to cell as the user moves around the Grid. For example, if
the user clicks on the cell addressed by row 4, column 3, the Edit object is automatically
moved to that location and the data in that cell is copied into it ready for editing. When
the user moves the focus away from this cell, the data in the Edit object is copied back

Interface Guide

2025-10-30 (main:e0843eae32) Page 143

into it (and into the corresponding element of the Values property) before the Edit
object is moved away to the new cell location. This mechanism provides in-situ editing.
Continuing the example illustrated by Section 6.1, in-situ editing could be achieved as
follows:

In-situ editing provides two input modes; Scroll and InCell. In Scroll mode the cursor
keys move from one cell to another. In InCell mode, the cursor keys move the cursor a
character at a time within the cell; to switch to a new cell, the user must press the Tab
key or use the mouse. The InputMode property allows you to control the input mode
directly or to allow the user to switch from one to another. In the latter case, the user
does so by pressing a key defined by the InputModeKey property or by double-clicking
the left mouse button.

Using a Fixed Edit Field

A different style of editing may be provided by specifying the name of an external Edit
object that you have created. This can be any Edit object you wish to use; it need not
even be owned by the same Form as the Grid. In this case, the Edit object remains
stationary (wherever you have positioned it), but as the user moves the focus from cell
to cell, the cell contents are copied into it and made available for editing. The current
cell is identified by a thick border. When the user shifts the focus, the data is copied out
from the Edit object into the corresponding cell before data in the newly selected one
is copied in. Continuing the example illustrated in Section 6.1, external editing could be
achieved as follows:

Using Label Objects

If Input specifies a Label object, it too may either be a child of the Grid or an external
Label. A Label is useful to format cell data (through its FieldType property) and to
protect cells from being changed

If the Label is a child of the Grid, it floats from cell to cell in the same way as a floating
Edit object. However, unlike the situation with other objects, the row and column titles
are not indented to help identify the current cell. If the Label is borderless (which is the
default) and has the same font and colour characteristics of the cells themselves, the
user will receive no visual feedback when a corresponding cell is addressed, even
though the current cell (reflected by the CurCell property) does in fact change.

'Test.G.ED' ⎕WC 'Edit' ('FieldType' 'Numeric')
'Test.G' ⎕WS 'Input' 'Test.G.ED'

'Test.ED' ⎕WC 'Edit' ('FieldType' 'Numeric')
'Test.G' ⎕WS 'Input' 'Test.ED'

Interface Guide

2025-10-30 (main:e0843eae32) Page 144

Therefore, if you want to protect the data by using a Label and you want the user to be
able to identify the current cell, you should give the Label a border, a special colour
scheme or a special font.

Using Combo Objects

A Combo object is used to present a list of choices for a cell. Although you may use an
external Combo, internal Combos are more suitable for most applications. If different
cells have different sets of choices, you can create several Combo objects, each with its
own set of Items and associate different cells with different Combos through the
CellTypes property. Alternatively, you can use a single Combo and change Items
dynamically from a callback on the CellMove event. In all cases, the value in the cell
corresponds to the Text property of the Combo.

If you use a floating Combo, the appearance of the non-current cells depends upon the
value of the ShowInput property. If ShowInput is 0 (the default), the non-current cells
are drawn in the standard way as if there were no associated input object. If ShowInput
is 1, the non-current cells are given the appearance of a Combo, although the system
does not actually use Combos to do so. Furthermore, there is a subtle difference in
behaviour. If ShowInput is 0, the user must click twice to change a value; once to
position the Combo on the new cell and again to drop its list box. If ShowInput is 1, the
user may drop the list box with a single click on the cell.

Note that ShowInput may be a scalar that applies to the whole Grid, or a vector whose
elements applies to different cells through the CellType property.

The following Grid uses two internal Combo objects for the Job Title and Region
columns, but with ShowInput set to 0. Only the current cell has Combo appearance.

Interface Guide

2025-10-30 (main:e0843eae32) Page 145

The same Grid with ShowInput set to 1 is illustrated below. In this case, all of the cells
associated with Combo objects have Combo appearance.

∇ Employees;Surname;JobTitle;Region;Salary;DATA;Jobs;Regions
[1] 'F'⎕WC'Form' ''('Size' 126 401)('Coord' 'Pixel')
[2] F.Caption←'Employee DataBase'
[3] Surname←'Brown' 'Jones' 'Green' 'Black' 'White'
[4] JobTitle←'Manager' 'Project Leader' 'Consultant'
[5] JobTitle,←'Programmer' 'Assistant'
[6] Region←'South' 'South' 'South' 'East' 'Central'
[7] Salary←64000 43250 45000 30000 4000
[8] DATA←↑[0.5]Surname JobTitle Region Salary
[9] 'F.G'⎕WC'Grid'DATA(0 0)F.Size
[10] Jobs←JobTitle
[11] Regions←'North' 'South' 'East' 'West' 'Central'
[12] 'F.G.JobTitle'⎕WC'Combo'Jobs
[13] 'F.G.Region'⎕WC'Combo'Regions
[14] 'F.G.Salary'⎕WC'Label'('FieldType' 'Currency')
[15] F.G.Input←'' 'F.G.JobTitle' 'F.G.Regions' 'F.G.Salary'
[16] F.G.CellTypes←(⍴F.G.Values)⍴1 2 3 4
[17] F.G.TitleWidth←0
[18] F.G.ColTitles←'Surname' 'Job Title' 'Region' 'Salary'

∇

F.G.ShowInput
0

F.G.ShowInput←1

Interface Guide

2025-10-30 (main:e0843eae32) Page 146

Using Radio and Check Button Objects

Radio and Check Buttons behave in a similar way to Combo objects except that they
may only be used internally. The value in the cell associated with the Button must be 0
or 1 and corresponds to the Button's State property. The value is toggled by clicking the
Button.

If ShowInput is 0, the user must click twice to change a value; once to position the
(floating) Button on the cell, and a second time to toggle its state. If ShowInput is 1, the
user may change cell values directly with a single click. Note that this may be
undesirable in certain applications because the user cannot click on a cell without
changing its value.

By default, the value of the EdgeStyle property for a Radio or Check Button which is
created as the child of a Grid is 'None', so you must set EdgeStyle explicitly to
'Plinth' if a 3-dimensional appearance is required.

You can refine the appearance of the Radio or Check Button using its Align property.
This may be set to 'Left', 'Right' or 'Centre' (and 'Center'). The latter causes the
symbol part of the Button (the circle or checkbox) to be centred within the
corresponding Grid cell(s) but should only be used if the Caption property is empty.

The following illustrates different values for the Align property using Check Buttons.

Interface Guide

2025-10-30 (main:e0843eae32) Page 147

6.5 Specifying Individual Cell Attributes

The FCol, BCol, CellFonts and Input properties can be used to specify attributes of
individual cells. One possible design would be for these properties to be matrices like
the Values property, each of whose elements corresponded to a cell in the Grid.
However, although conceptually simple, this design was considered to be wasteful in
terms of workspace, especially as it is unlikely that every cell will require a totally
individual set of attributes. Instead, FCol, BCol, CellFonts and Input either specify a
single attribute to be applied to all cells, or they specify a vector of attributes which are
indexed through the CellTypes property. This design is slightly more complex to use, but
minimises the workspace needed to represent cell information.

∇ AlignedCheckBoxes;CStyle
[1] 'F'⎕WC'Form' 'Aligned Check Boxes in a Grid'
[2] 'F.G'⎕WC'Grid'(¯1+?10 3⍴2)(0 0)(100 100)('ShowInput' 1)
[3] CStyle←('Style' 'Check')('EdgeStyle' 'Plinth')
[4] 'F.G.C1'⎕WC'Button' 'Left',CStyle,('Align' 'Left')
[5] 'F.G.C2'⎕WC'Button' '',CStyle,('Align' 'Centre')
[6] 'F.G.C3'⎕WC'Button' 'Right',CStyle,('Align' 'Right')
[7]
[8] 'F.G'⎕WS'Input'('F.G.C1' 'F.G.C2' 'F.G.C3')
[9] 'F.G'⎕WS'CellTypes'(10 3⍴1 2 3)

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 148

CellTypes is an integer matrix of the same size as Values. Each number in CellTypes
defines the type of the corresponding cell, where type means a particular set of cell
attributes defined by the BCol, FCol, CellFonts and Input properties.

If an element of CellTypes is 0 or 1, the corresponding cell is displayed using the normal
value of each of the FCol, BCol, CellFonts and Input properties. The normal value is
either the value defined by its first element or, if the property has not been specified,
its default value.

If an element of CellTypes is greater than 1, the corresponding element of each of the
FCol, BCol, CellFonts and Input properties is used. However, if a particular property
applies to all cells, you need only specify one value; there is no need to repeat it. This
mechanism is perhaps best explained by using examples.

Example 1

Suppose that you want to use a Grid to display a numeric matrix DATA and you want to
show elements whose value exceeds 150 with a grey background. Effectively, there are
2 different types of cell; normal white ones and dark grey ones. This can be achieved as
follows:

DATA←?12 3⍴300
'F'⎕WC'Form' 'Example 1'
'F.G'⎕WC'Grid'DATA(0 0)F.Size
'F.G'⎕WS'CellTypes'(1+DATA>150)
'F.G'⎕WS'BCol'(192 192 192)(128 128 128)

Interface Guide

2025-10-30 (main:e0843eae32) Page 149

CellTypes[] is either 1 or 2, according to whether the value in the corresponding cell
is 150 or less. So the cells whose value is 150 or less use BCol[1] which is 255 255 255
(white) whereas those cells whose value is >150 use BCol[2] which is 192 192 192
(grey).

Example 2

Continuing on from the first example, suppose that in addition, you want to show
values that exceed 200 with a white background, but using a bold font. Now you have 3
types of cell; white background with normal font, grey background with normal font,
and white background with bold font. This can be done as follows:

CT←(DATA>200)+1+DATA>100
'F.G'⎕WS'CellTypes'CT
COL←(255 255 255)(192 192 192)(255 255 255)
'F.G'⎕WS'BCol'COL
'Normal'⎕WC'Font' 'Arial' 16
'Bold'⎕WC'Font' 'Arial' 16('Weight' 1000)
'F.G'⎕WS'CellFonts' 'Normal' 'Normal' 'Bold'

Interface Guide

2025-10-30 (main:e0843eae32) Page 150

In this example, there are three different sets of attributes, selected according to where
the value in CellTypes[] is 1, 2 or 3.

Normal font + white background (255 255 255)
Normal font + grey background (192 192 192)
Bold font + white background (255 255 255)

The value in CellTypes is given by the expression (DATA>200)+1+DATA>100, so cells
whose value is:

less than 100 use CellFonts[1] and BCol[1]
between 100 and 200 use CellFonts[2] and BCol[2]
between 100 and 200 use CellFonts[3] and BCol[3]

Example 3

This is a more complex example that introduces different uses of the Input property to
handle numeric and date cells. Suppose that you wish to display the names, date of
birth, and salaries of some people. The user may edit the salary and date of birth, but
not the name. Salaries in excess of $19,999 are to be shown in bold

This means that we need 4 types of cell; the "names" cells, the "date of birth" cells, the
cells containing salaries below $20,000 and those cells containing $20,000 or more. The
Input property must specify 3 different objects; a Label for the protected "names" cells,

1.
2.
3.

•
•
•

Interface Guide

2025-10-30 (main:e0843eae32) Page 151

an Edit object for the "date" cells, and a different Edit object for the salaries. The
CellFonts property must specify the two different fonts required; normal and bold.

6.6 Drawing Graphics on a Grid

You may draw graphics on a Grid by creating graphical objects (Circle, Ellipse, Image,
Marker, Poly, Rect and text) as children of the Grid.

'F'⎕WC'Form' 'Example 3'
'F.G'⎕WC'Grid'('Posn' 0 0)F.Size
'F.G'⎕WS'Values'(↑[0.5]NAMES BIRTHDATES SALARIES)

CT←1,2,[1.5]3+SALARIES>19999
'F.G'⎕WS'CellTypes'CT

'F.G.Name'⎕WC'Label'('FontObj' 'Normal')
'F.G.Date'⎕WC'Edit'('FieldType' 'Date')
'F.G.Sal'⎕WC'Edit'('FieldType' 'Currency')
INPUTS←'F.G.Name' 'F.G.Date',2⍴⊂'F.G.Sal'
'F.G'⎕WS'Input'INPUTS

'Normal'⎕WC'Font' 'Arial' 16
'Bold'⎕WC'Font' 'Arial' 16('Weight' 1000)
FONTS←(3⍴⊂'Normal'),⊂'Bold'
'F.G'⎕WS'CellFonts'FONTS

Interface Guide

2025-10-30 (main:e0843eae32) Page 152

For the Grid (but only for the Grid) the Coord property may be set to 'Cell' as an
alternative to 'Prop', 'Pixel' or 'User'. This allows you to easily position graphical
objects relative to individual cells or ranges of cells. The origin of the Grid (0,0) is
deemed to be the top left corner of the data (that is, the area inside the row and
column titles). In Cell co-ordinates, the value (1,1) is therefore the bottom right corner
of the first cell. Regardless of the coordinate system, graphical objects scroll with the
data.

The following example illustrates how to draw a box around the cells in rows 2 to 4 and
columns 3 to 6.

The OnTop property of the graphical object controls how it is drawn relative to the grid
lines and cell text. For graphical objects created as a child of a Grid, OnTop may be 0, 1
or 2.

0 Graphical object is drawn behind grid lines and cell text

1 Graphical object is drawn on top of grid lines but behind cell text

2 Graphical object is drawn on top of grid lines and cell text

The following example shows the effect of the OnTop property on how an Image is
drawn on a Grid.

'F'⎕WC'Form' 'Graphics on a Grid'('Coord' 'Pixel')
'F.G'⎕WC'Grid'(?10 10⍴100)(0 0)F.Size('CellWidths' 40)
'F.G.L'⎕WC'Rect'(1 2)(3 4)('LWidth' 4)('Coord' 'Cell')

Interface Guide

2025-10-30 (main:e0843eae32) Page 153

'F'⎕WC'Form' 'Graphics on a Grid'('Coord' 'Pixel')
'F.G'⎕WC'Grid'(?10 10⍴100)(0 0)F.Size('CellWidths' 40)
DyalogDir←2 ⎕NQ'.' 'GetEnvironment' 'Dyalog'
'F.M'⎕WC'Metafile'(DyalogDir,'\WS\DOLLAR')
'F.G.I'⎕WC'Image'(0 0)('Size' 10 10)('Coord' 'Cell')

'F.G.I'⎕WS('Picture' 'F.M')('OnTop' 0)

F.G.I.OnTop←1

F.G.I.OnTop←2

Interface Guide

2025-10-30 (main:e0843eae32) Page 154

6.7 Controlling User Input

The Grid object is designed to allow you to implement simple applications with very
little programming effort. You merely present the data to be edited by setting the
Values property and then get it back again once the user has signalled completion. The
validation imposed by the associated Edit object(s) will prevent the user from entering
invalid data and your program can leave the user interaction to be managed entirely by
APL. However, for more sophisticated applications, the Grid triggers events which allow
your program to respond dynamically to user actions.

Moving from Cell to Cell

When the user moves from one cell to another, the Grid generates a CellMove event.
This reports the co-ordinates (row and column) of the newly selected cell. The
CellMove event serves two purposes. Firstly, it allows you to take some special action
when the user selects a particular cell. For example, you could display a Combo or List
object to let the user choose a new value from a pre-defined set, then copy the
selected value into the cell. Secondly, the CellMove event provides the means for you
to position the user in a particular cell under program control, using ⎕NQ.

Changing Standard Validation Behaviour

Input validation is provided by the Edit object associated with a cell. By default, the
built-in validation will prevent the user from leaving the cell should the data in that cell
be invalid. For example, if the FieldType is 'Date' and the user enters 29th February

Interface Guide

2025-10-30 (main:e0843eae32) Page 155

and a non-leap year, APL will beep and not allow the user to leave the cell until a valid
date has been entered If you wish instead to take some other action, for example
display a message box, you should use the CellError event. This event is generated
immediately the user attempts to move to another cell when the data in the current
cell is invalid. The event is also generated if the user selects a MenuItem, presses a
Button or otherwise changes the focus away from the current cell.

The CellError event reports the row and column number of the current cell, the
(invalid) text string in that cell, the name of the object to which the user has transferred
attention or the co-ordinates of the new cell selected. The default action of the event is
to beep, so to disable the beep your callback function should return a 0. If you wish to
allow the user to move to a different cell, you must do so explicitly by generating a
CellMove event using ⎕NQ or by returning a CellMove event as the result of the
callback.

Reacting to Changes

If enabled, the Grid object generates a CellChange event whenever the user alters data
in a cell and then attempts to move to another cell or otherwise shifts the focus away
from the current cell. This allows you to perform additional validation or to trigger
calculations when the user changes a value. The CellChange event reports the co-
ordinates of the current cell and the new value, together with information about the
newly selected cell or the external object to which the focus has changed.

The default action of the CellChange event is to replace the current value of the cell
with the new one. If you wish to prevent this happening, your callback function must
return a 0. If in addition you wish the focus to remain on the current cell, you must do
this explicitly by using the CellMove event to reposition the current cell back to the one
the user has attempted to leave.

Restoring User Changes

The Grid object supports an Undo method which causes the last change made by the
user to be reversed. This method can only be invoked under program control using ⎕NQ
and cannot be directly generated by the user. If you want to provide an undo facility, it
is recommended that you attach a suitable callback function to a MenuItem or a
Button. To perform an undo operation, the callback function should then generate an
Undo event for the Grid object.

Interface Guide

2025-10-30 (main:e0843eae32) Page 156

Updating Cell Data

You can change the entire contents of the Grid by resetting its Values property with
⎕WS. However, this will causes the entire Grid to be redrawn and is not to be
recommended if you only want to change one cell or just a few cells.

You can change the value in a particular cell by using ⎕NQ to send a CellChange event to
the Grid. For example, if you want to alter the value in row 2 column 3 of the Grid
object called Test.G to 42, you simply execute the following statement :

To update an entire row or column of data you can use the RowChange and ColChange
events. For example, to change all 12 columns of row 500 to the 12-element vector
TOTAL, you could execute :

Deleting Rows and Columns

You can delete a row or column by using ⎕NQ to send a DelRow or DelCol message to
the Grid object. For example, the following statement deletes the 123rd row from the
Grid object Test.G. Note that if you have specified it, the corresponding element of
RowTitles is removed too.

Inserting Rows and Columns

You can insert or add a row or column using the AddRow or AddCol method. You must
specify the following information.

row or column number

title (optional)

height or width (optional)

undo flag (optional)

resize flag (optional)

title colour (optional)

gridline type (optional)

⎕NQ 'Test.G' 'CellChange' 2 3 42

⎕NQ 'Test.G' 'RowChange' 500 TOTAL

⎕NQ 'Test.G' 'DelRow' 123

Interface Guide

2025-10-30 (main:e0843eae32) Page 157

The event message must specify the number of the row or column you wish to insert.
This is index-origin dependent and indicates the number that the row or column will
have after it has been inserted. For example, if ⎕IO is 1 and you wish to insert a row
between the 10th and 11th rows, you specify the number of the row to be inserted as
11. If you wish to insert a new column before the first one, you specify a column
number of 1. To append a row or column to the end of the Grid, you should specify 1 +
the current number of rows or columns.

If you have specified RowTitles or ColTitles, the message may include a title for the new
row or column and this will be inserted in RowTitles or ColTitles as appropriate. If you
fail to supply a new title, an empty vector will be inserted in RowTitles or ColTitles for
you. If you are using default row and column headers and you have not specified
RowTitles or ColTitles, any title you supply will be ignored. In this case the rows and
columns will be re-labelled automatically.

If you have set CellHeights or CellWidths to a vector, the AddRow or AddCol event
message may include the height or width of the new row or column being inserted. If
you fail to supply one or you specify a value of ¯1 the default value will apply. Note that
setting the height or width to 0 is allowed and will cause the new row or column to be
invisible. If CellHeights or CellWidths has not been specified or is a scalar, the new row
or column will be given the same height or width as the others and any value that you
specify is ignored.

The undo flag indicates whether or not the insertion will be added to the undo stack
and may therefore be subsequently undone. Its default value is 1.

If the data in the Grid is entirely numeric, the new row or column will be filled with
zeros. If not, it will be filled with empty character vectors. If you want to set the row or
column data explicitly, you should invoke the ChangeRow or ChangeCol immediately
after the AddRow or AddCol event. The ChangeRow and ChangeCol event require just
the row or column number followed by the new data.

The following example adds a new row entitled "Chateau Latour" to a Grid object called
Test.G. The first statement adds a new row between rows 122 and 123 (it becomes
row 123) of the Grid. It will be of default height (or the same as all the other rows) and
the change may not be undone (the undo flag is 0). The second statement sets the data
in the new row to the values defined by the vector LATOUR_SALES.

⎕NQ 'Test.G' 'AddRow' 123 'Chateau Latour' ¯1 0
⎕NQ 'Test.G' 'ChangeRow' 123 LATOUR_SALES

Interface Guide

2025-10-30 (main:e0843eae32) Page 158

6.8 TreeView Feature

Introduction

The Grid can display a TreeView like interface in the row titles and automatically shows
and hides row of data as the user expands and contracts nodes of the tree.

RowTreeDepth property

The tree structure is specified by the RowTreeDepth property. This is either a scalar 0 or
an integer vector of the same length as the number of rows in the grid. RowTreeDepth
is similar to the Depth property of the TreeView object.

Each element of RowTreeDepth specifies the depth of the corresponding row of the
Grid. A value of 0 indicates that the row is a top-level row. A value of 1 indicates that
the corresponding row is a child of the most recent row whose RowTreeDepth is 0; a
value of 2 indicates that the corresponding row is a child of the most recent row whose
RowTreeDepth is 1, and so forth.

The picture below illustrates the initial appearance of a Grid with TreeView behaviour.
Notice that at first only the top-level rows are displayed.

The tree structure is defined on TreeGrid[26]. In this example, the Grid has top-level
rows (RowTreeDepth of 0) that contain annual totals. The second-tier rows
(RowTreeDepth of 1), contain quarterly totals, while the third-tier rows (RowTreeDepth
of 2) contain monthly figures.

Interface Guide

2025-10-30 (main:e0843eae32) Page 159

When the user clicks on one of the nodes indicated by a "+" symbol, the Grid
automatically expands to display the rows at the next level below that node. At the
same time, an Expanding event is generated. In the next picture, the user has clicked
on the 2001 node and, below that, the Q3 node.

∇ TreeGrid;SIZE;YR;YRS;DATA;MDATA;QDATA;YDATA;IX
[1] SIZE←126 381
[2] 'F'⎕WC'Form' 'Grid: TreeView Feature'

('Coord' 'Pixel')
[3] F.Size←SIZE
[4] 'F.MB'⎕WC'MenuBar'
[5] 'F.MB.View'⎕WC'Menu' 'View'
[6] 'F.MB.View.Expand1'⎕WC'MenuItem' 'Expand Years'
[7] 'F.MB.View.Expand1'⎕WS'Event' 'Select'

'⍎F.G.RowSetVisibleDepth 1'
[8] 'F.MB.View.Expand2'⎕WC'MenuItem' 'Expand All'
[9] 'F.MB.View.Expand2'⎕WS'Event' 'Select'

'⍎F.G.RowSetVisibleDepth 2'
[10] 'F.MB.View.Collapse'⎕WC'MenuItem' 'Collapse All'
[11] 'F.MB.View.Collapse'⎕WS'Event' 'Select'

'⍎F.G.RowSetVisibleDepth 0'
[12] 'F.G'⎕WC'Grid'('Posn' 0 0)SIZE
[13] F.G.(TitleWidth CellWidths←80 60)
[14] YR←'Q1' 'Jan' 'Feb' 'Mar' 'Q2' 'Apr' 'May' 'Jun'
[15] YR,←'Q3' 'Jul' 'Aug' 'Sep' 'Q4' 'Oct' 'Nov' 'Dec'
[16] YRS←'2000' '2001' '2002' '2003' '2004'
[17] F.G.RowTitles←⊃,/(⊂¨YRS),¨⊂YR
[18] MDATA←12 5⍴5/100+⍳12
[19] YDATA←+⌿MDATA
[20] QDATA←(3+/[1]MDATA)[1 4 7 10;]
[21] MDATA←((⍴YR)⍴0 1 1 1)⍀MDATA
[22] MDATA[1 5 9 13;]←QDATA
[23] YDATA←YDATA,[1]MDATA
[24] DATA←⊃,[1]/1 1.1 1.2 1.3 1.4×⊂YDATA
[25] F.G.Values←DATA
[26] F.G.RowTreeDepth←(⍴F.G.RowTitles)⍴0,(⍴YR)⍴1 2 2 2

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 160

RowSetVisibleDepth Method

The Grid provides a RowSetVisibleDepth method that provides tier-level control over
which rows are displayed.

The value of its argument is an integer that specifies the depth of rows to be displayed.
The Grid displays all rows whose RowTreeDepth values are less than or equal to this
value. In the example, this method is called by items on the View menu.

The next picture shows how the Grid is displayed after choosing Expand Years from the
View menu. Notice that, as specified by TreeGrid[6] this menu item simply executes
the RowSetVisibleDepth method with an argument of 1.

Interface Guide

2025-10-30 (main:e0843eae32) Page 161

Similarly, the Expand All item executes RowSetVisibleDepth 2, as specified by
TreeGrid[7] and this causes the Grid to display all rows up to and including
RowTreeDepth of 2 as shown below.

Interface Guide

2025-10-30 (main:e0843eae32) Page 162

Note that the Collapse All item executes RowSetVisibleDepth 0, which causes only the
top-level rows to be displayed.

You may open specific nodes by invoking the Expanding event as a method.

Fine control over the appearance of the tree is provided through the RowTreeImages
and RowTreeStyle properties. See Object Reference for further details.

6.9 Grid Comments

Introduction

Grid comments are implemented in a manner that is consistent with the way
comments are handled in Microsoft Excel.

Interface Guide

2025-10-30 (main:e0843eae32) Page 163

If a comment is associated with a cell, a small red triangle is displayed in its top right
corner. When the user rests the mouse pointer over a commented cell, the comment is
displayed as a pop-up with an arrow pointing back to the cell to which it refers. The
comment disappears when the mouse pointer is moved away. This is referred to as tip
behaviour.

It is also possible to display and hide comments under program control. A comment
window displayed under program control does not (normally) disappear automatically
when the user moves the mouse, but instead must be hidden explicitly. It is therefore
possible to have several comments visible.

Implementation

Because comments are typically sparse, this facility is implemented by a small set of
methods rather than as a property, and comments are stored internally in data
structures that minimise storage space. The following methods and events are
provided.

Event/Method Number Description

AddComment 220 Associates a comment with a cell

DelComment 221 Deletes the comment associated with a particular cell

GetComment 222 Retrieves the comment associated with a given cell

ShowComment 223 Displays a comment either as a pop-up or on-top
window

HideComment 224 Hides a comment

ClickComment 225 Reported when user clicks the mouse on a comment
window

A comment is described by its text content and the size of the window in which it
appears. The text may optionally be Rich Text (RTF) such as that produced by the value
of the RTFText property of a RichEdit object. The size of the window is specified in
pixels.

AddComment Method

This method is used to add a new comment. For example, the following statement
associates a comment with the cell at row 2, column 1; the text of the comment is
"Hello", and the size of the comment window is 50 pixels (high) by 60 pixels (wide).

Interface Guide

2025-10-30 (main:e0843eae32) Page 164

The height and width of the comment window, specified by the last 2 elements of the
right argument to ⎕NQ are both optional. If the cell already has an associated comment,
the new comment replaces it.

Note that just before the comment is displayed, the Grid generates a ShowComment
event which gives you the opportunity to (temporarily) change the text and/or window
size of a comment dynamically.

DelComment Method

This method is used to delete a comment. For example, the following expression
removes the comment associated with the cell at row 2, column 1.

If the row and column number are omitted, all comments are deleted.

GetComment Method

This method is used to retrieve the comment associated with a cell. For example, the
following expression retrieves the comment associated with the cell at row 3, column
1.

If there is no comment associated with the specified cell, the result is a scalar 1.

ShowComment Event/Method

If enabled, a Grid will generate a ShowComment event when the user rests the mouse
pointer over a commented cell. You may use this event to modify the appearance of
the comment dynamically.

You may display the comment associated with a particular cell under program control
by generating a ShowComment event using ⎕NQ. By default, a comment displayed
under program control does not exhibit tip behaviour but remains visible until it is
explicitly removed using the HideComment method.

Note that a comment will only be displayed if the specified cell is marked as a
commented cell.

2 ⎕NQ'F.G' 'AddComment' 2 1 'Hello' 50 60

2 ⎕NQ'F.G' 'DelComment' 2 1

⎕←2 ⎕NQ 'F.G' 'GetComment' 3 1
1 3 Hello 175 100

Interface Guide

2025-10-30 (main:e0843eae32) Page 165

HideComment Event/Method

If enabled, a HideComment event is generated just before a comment window is
hidden as a result of the user moving the mouse-pointer away from a commented cell.

Invoked as a method, HideComment is used to hide a comment that has previously
been displayed by ShowComment. For example, the following expression hides the
comment associated with the cell at row 2, column 1.

ClickComment Event

If enabled, a ClickComment event is generated when the user clicks the mouse in a
comment widow. The event message reports the co-ordinates of the cell. The result of
a callback function (if any) is ignored.

2 ⎕NQ'F.G' 'HideComment' 2 1

Interface Guide

2025-10-30 (main:e0843eae32) Page 166

7 MDI

7.1 Introduction

The multiple-document interface (MDI) is a document-oriented interface that is
commonly used by word-processors, spreadsheets and other applications that deal
with documents. An MDI application allows the user to display multiple documents at
the same time, with each document displayed in its own window. Document windows
are implemented as child forms that are contained within a parent form. When a child
form is minimised, its icon appears on the parent form instead of on the desktop. An
example MDI application is illustrated below.

Child forms displayed within an MDIClient

In general, the parent form in an MDI application may also contain tool bars and status
bars and potentially other objects. This means that not all of the internal area of the
parent form is available. To allow for this and to distinguish MDI behaviour from that of
simple child forms, Dyalog APL/W uses an MDIClient object.

Interface Guide

2025-10-30 (main:e0843eae32) Page 167

The MDIClient object is a container object that effectively specifies the client area
within the parent Form in which the SubForms are displayed. The MDIClient object also
imposes special MDI behaviour which is quite different from that where a SubForm is
simply the child of another Form.

By default, the MDIClient occupies the entire client area within its parent Form. This is
the area within the Form that is not occupied by ToolBars and StatusBars. In most
applications it is therefore not necessary to specify its Posn and Size properties,
although you may do so if you want to reserve additional space in the parent Form for
other objects.

To Create an MDI Application

Create a Form (this will be the parent form for the application).
Add MenuBar, ToolBar and StatusBar objects as appropriate as children of the
parent Form.
Create an MDIClient object as a child of the parent Form.
Create the application's SubForms as children of the MDIClient, not as children
of the parent Form.

7.2 MDI Behaviour

All child forms are displayed within the MDIClient. Forms may be moved and
resized but they are restricted to the MDIClient and will be clipped if they extend
beyond it.
When a child form is minimised, its icon appears on the MDIClient rather than
on the desktop.
When a SubForm is maximised, its Caption is combined with the Caption of the
parent Form, that is, the parent of the MDIClient object and is displayed in the
parent Form's title bar. In addition, the SubForm's system menu and restore
button are displayed in the parent Form's MenuBar.
You cannot hide a SubForm. Setting its Visible property to 0 has no effect.
A SubForm does not display its MenuBar. Instead, it is displayed in place of the
parent Form's MenuBar when the SubForm has the focus.

1.
2.

3.
4.

•

•

•

•
•

Interface Guide

2025-10-30 (main:e0843eae32) Page 168

The effect of maximising a SubForm

Interface Guide

2025-10-30 (main:e0843eae32) Page 169

7.3 Menus in MDI Applications

A feature of MDI behaviour is that SubForms do not display menu bars. However, if you
create a MenuBar object for a SubForm, that object will be displayed as the menu bar
of the parent Form whenever the SubForm has the focus. If there are no SubForms or if
the SubForm with the focus does not own a MenuBar, the MenuBar of the parent Form
is displayed. This mechanism provides one way of achieving the desired effect, namely
that the menu bar displayed is appropriate for the type of document represented by
the SubForm that has the focus. However, if you have a large number of SubForms of
the same type (that is, which share the same menu bar) you must defined identical
MenuBar objects for all of them.

An alternative approach is to define separate MenuBar objects as children of the
parent Form, only one of which is visible. Then you simply attach a callback function to
the GotFocus event for each SubForm that makes the appropriate MenuBar visible. This
approach means that you need only define MenuBar objects for each different type of
SubForm, rather than for every one.

It is possible to mix these techniques, so that the MenuBar displayed is either the result
of your callback function making it visible, or because a SubForm has its own MenuBar
object defined and received the focus.

Note that when the user maximises a SubForm, its system menu button and restore
button are displayed in the parent Form's menu bar. It is therefore essential that you
ensure that your application provides such a menu bar at all times. Otherwise, when
your user maximises a SubForm there is no way to reverse it.

7.4 Defining a Window Menu

Most MDI applications incorporate a Window menu. This is a special menu that
displays the captions of all open SubForms as shown below. The caption of the
SubForm which currently has the focus is checked and the user can switch focus to
another SubForm by selecting it from the Window menu.

Interface Guide

2025-10-30 (main:e0843eae32) Page 170

The Window menu

The task of updating the Window menu with the names of the SubForms is performed
for you by Dyalog APL/W. You nominate the menu to be used for this purpose by
setting the MDIMenu property of the appropriate MenuBar object. For example, if your
MenuBar is called F1.MB and the menu you want to use as the Window menu is called
F1.MB.WM, you would type the following:

Notice that the name you specify is just the name of the menu itself, not its full
pathname. If you have several MenuBars in your application, you must specify the
MDIMenu property separately for each one.

7.5 Arranging Child Forms and Icons

Another common feature of MDI applications is that the user can ask for the SubForms
to be displayed in a particular way, or that any SubForm icons are arranged in an
orderly fashion. This is implemented in Dyalog APL/W by your application invoking an

'F1.MB' ⎕WS 'MDIMenu' 'WM'

Interface Guide

2025-10-30 (main:e0843eae32) Page 171

method using ⎕NQ. The MDIClient recognises three different methods, namely
MDICascade (110), MDITile (111) and MDIArrange (112).

The MDICascade method causes the child forms to be arranged in an overlapping
manner. The MDITile method causes them to be tiled, either horizontally or vertically.
Finally, the MDIArrange method arranges any child form icons in an orderly fashion.
The most convenient way to provide these actions is to attach a Callback function to
appropriate MenuItems. The callback function is called with different left arguments
according to the MenuItem selected. The following code snippet illustrates this
technique.

The following lines define callbacks for each of the MenuItem objects in the Menu
F1.MB.WM. Each one uses the callback function MDI_ARRANGE, but with a left argument
corresponding to the message that must be sent to the MDIClient to cause the desired
action. For example, clicking the MenuItem named F1.MB.WM.Vert runs MDI_ARRANGE
with a left argument of (111 1)

The MDI_ARRANGE function uses its left argument to construct a message for the
MDIClient object, in this case F1.MDI, and returns it as a result. This causes the desired
action.

An alternative approach which does not require a callback function is to use ⎕NQ

'F1.MB.WM.CASCADE' ⎕WS 'Event' 30 'MDI_ARRANGE' 110
'F1.MB.WM.HORZ' ⎕WS 'Event' 30 'MDI_ARRANGE' (111 0)
'F1.MB.WM.VERT' ⎕WS 'Event' 30 'MDI_ARRANGE' (111 1)
'F1.MB.WM.ARRANGE' ⎕WS 'Event' 30 'MDI_ARRANGE' 112

∇ MSG←M MDI_ARRANGE MSG
[1] MSG←(⊂'F1.MDI'),M

∇

'F1.MB.WM.CASCADE' ⎕WS 'Event' 30 '⍎⎕NQ ''F1.MDI 110'''
'F1.MB.WM.HORZ' ⎕WS 'Event' 30 '⍎⎕NQ ''F1.MDI 111 0'''
'F1.MB.WM.VERT' ⎕WS 'Event' 30 '⍎⎕NQ ''F1.MDI 111 1'''
'F1.MB.WM.ARRANGE' ⎕WS 'Event' 30 '⍎⎕NQ ''F1.MDI 112'''

Interface Guide

2025-10-30 (main:e0843eae32) Page 172

8 Docking

8.1 Introduction

Dyalog APL supports dockable Forms, SubForms, CoolBands and ToolControls.

If an object is dockable, the user may drag it to a different position within the same
container, drag it out of its current container and drop it onto a different container, or
drop it onto the desktop as a free-floating window. An undocked object can
subsequently be redocked in its original container or in another.

For example, a SubForm can be dragged from one Form and docked into another. Or a
CoolBand can be dragged out of its CoolBar and turned into a top-level Form on the
desktop.

With the exception of ToolControls, when a dockable object is docked or undocked, the
full Name and Type of the object change according to the following table.

Parent Object

Dockable Object Form
F1

SubForm
F1.S1

CoolBar
F1.CB1

Root
(.)

Form
F2

SubForm
F1.F2

SubForm
F1.S1.F2

CoolForm
F1.CB1.F2

Form
F2

Form
F1.F2

SubForm
F1.F2

SubForm
F1.S1.F2

CoolForm
F1.CB1.F2

Form
F1.F2

SubForm
F2.S2

SubForm
F1.F2

SubForm
F1.S1.F2

CoolForm
F1.CB1.F2

Form
S2

CoolForm
F2.CB2.C2

SubForm
F1.C2

SubForm
F1.S1.C2

CoolForm
F1.CB1.C2

Form
C2

For example, a top-level Form F2 when docked in another top-level Form F1, becomes
a SubForm named F2.F1.

Similarly, a CoolBand named F2.CB2.C2 when dragged from its CoolBar F2.CB2 and
dropped over the desktop, becomes a top-level Form named C2.

Interface Guide

2025-10-30 (main:e0843eae32) Page 173

Notice how the node name of the object remains the same, but its full pathname
changes as it is moved from one parent object to another.

When an object changes Type in this way, the values of all its properties for its original
Type are remembered, and these are automatically restored when the object reverts
back to its original Type. Since an object can change Type between Form, SubForm, and
CoolBand, it follows that there are effectively 3 different sets of properties associated
with the object. However, only one set of properties (the set associated with the
object's current Type) is visible and accessible (to the programmer) at any one time.

8.2 Docking Events

An object (the client) may be docked in another object (the host) if the Dockable
property of the client is set to 'Always' and the name of the client is included in the
host object's DockChildren property. This property defines the list of names that the
host will accept. Docking a Form or re-docking an already docked object behave in
essentially the same way.

DockStart Event

The user picks up a client object by depressing the left mouse button over its title bar
or client area and dragging. As soon as the mouse is moved, the object generates a
DockStart event At this stage, the entire operation may be cancelled by a callback
function on DockStart that returns 0.

Once a docking operation has begun, the outline of the object is displayed as a
rectangle that moves with the mouse.

DockMove Event

When the client object is dragged over a suitable host object (one that will accept it as
a child), the host object generates a series of DockMove events. Each DockMove event
reports the edge along which the client object will be docked, namely Top, Bottom,
Left, Right or None, and a corresponding rectangle

When the mouse pointer approaches an edge of the host, the rectangle changes to
describe a docking zone indicating where the object will be docked in the host.

A callback function on DockMove that returns 0 will prevent the outline rectangle
changing to indicating a docking zone and will prevent the client from being docked.

Interface Guide

2025-10-30 (main:e0843eae32) Page 174

A callback function on DockMove can also return a result that modifies the position and
size of the rectangle that is actually displayed for the user. This in turn will affect the
zone occupied by the client when it becomes docked. For example, you can use this to
control its size.

DockRequest Event

When the user releases the mouse pointer, the client object generates a DockRequest
event. A callback function on DockRequest may return 0 to abort the operation, or may
modify the requested docking zone in the host. In the case of a ToolControl, the
callback is used to action the docking operation.

DockAccept Event

In response to a successful DockRequest event, the host object generates a DockAccept
event. A callback on DockAccept may also be used to abort the operation or to modify
the docking zone. The DockAccept event reports the new name for the client object
which it will assume as a child of the host.

Furthermore, if the DockAccept callback actions the event before completing, the
docking operation will take place immediately, rather than being deferred until the
callback has completed. This allows you to set properties on the newly docked object.

DockEnd Event

Finally, the docked client object (whose name has now changed) will generate a
DockEnd event. This is reported for information only and a DockEnd callback function
cannot cancel or modify the docking operation. The DockEnd event may however be
used to set properties for the newly docked client.

If the user releases the mouse elsewhere than over an accepting host object, the
DockEnd event is reported by the client object itself. If appropriate, this will be
followed by a Configure event and the client will simply move to a new location
without changing its docking status.

DockCancel Event

If at any stage the user presses the Esc key, the operation is aborted and the client
object generates a DockCancel event.

Interface Guide

2025-10-30 (main:e0843eae32) Page 175

8.3 Docking a Form inside another

The following example illustrates the effect of docking one Form in another.

Notice that a dockable Form is indistinguishable in appearance between any other top-
level Form except that it has additional items in its pop-up context (right mouse button)
menu as shown.

'Host' ⎕WC 'Form' 'Host'
Host.DockChildren←'Client'

'Client' ⎕WC 'Form' 'Client'
Client.Dockable←'Always'

Interface Guide

2025-10-30 (main:e0843eae32) Page 176

The following picture shows the effect of dragging the Client Form to the top edge of
the Host, just before the mouse button is released.

The next picture shows the result after docking. The Client Form has become a
SubForm (white is the default background colour for a SubForm) called Host.Client.

The third picture illustrates the effect of docking the Client on the left-hand edge.

Interface Guide

2025-10-30 (main:e0843eae32) Page 177

The following picture shows the Client Form docked as a SubForm along the right
edge of the Host Form.

It is also possible to dock a Form into an already docked Form.

'Client2' ⎕WC 'Form' 'Second Client'
Client2.Dockable←'Always'

Interface Guide

2025-10-30 (main:e0843eae32) Page 178

which we can make dockable in both the Host Form and the Host.Client SubForm:

The next picture shows Client2 about to be docked in the Client SubForm:

And finally, after it has been docked.

Host.DockChildren Host.Client.DockChildren←⊂'Client2'

Interface Guide

2025-10-30 (main:e0843eae32) Page 179

8.4 Docking a Form into a CoolBar

The following example illustrates the effect of docking a Form into a CoolBar.

Interface Guide

2025-10-30 (main:e0843eae32) Page 180

∇ FormToCoolBand
[1] 'il'⎕WC'ImageList'('Masked' 0)('MapCols' 1)
[2] 'il.'⎕WC'Bitmap'('ComCtl32' 120)⍝ STD_SMALL
[3]
[4] 'host'⎕WC'Form' 'Host'
[5] host.Coord←'Pixel'
[6] host.Size←140 375
[7] 'host.cb'⎕WC'CoolBar'
[8] host.cb.DockChildren←'file' 'edit'
[9]
[10] :With 'host.cb.file'⎕WC'CoolBand'
[11] Caption←'File'
[12] Dockable←'Always'
[13] 'tb'⎕WC'ToolControl'('ImageListObj' '#.il')
[14] 'tb.b1'⎕WC'ToolButton' 'New'('ImageIndex' 7)
[15] 'tb.b2'⎕WC'ToolButton' 'Open'('ImageIndex' 8)
[16] 'tb.b3'⎕WC'ToolButton' 'Save'('ImageIndex' 9)
[17] :EndWith
[18]
[19] :With 'edit'⎕WC'Form' 'Edit' ('Coord' 'Pixel')
[20] Size←100 200
[21] Dockable←'Always'
[22] Coord←'Pixel'
[23] 'tb'⎕WC'ToolControl'('ImageListObj' '#.il')
[24] 'tb.b1'⎕WC'ToolButton' 'Cut'('ImageIndex' 1)
[25] 'tb.b2'⎕WC'ToolButton' 'Copy'('ImageIndex' 2)
[26] 'tb.b3'⎕WC'ToolButton' 'Paste'('ImageIndex' 3)
[27] 'tb.b4'⎕WC'ToolButton' 'Undo'('ImageIndex' 4)
[28] 'tb.b5'⎕WC'ToolButton' 'Redo'('ImageIndex' 5)
[29] :EndWith

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 181

The following picture shows the effect of dragging the client Form to the CoolBar in the
host, just before the mouse button is released.

The next picture shows the result after docking. The client Form has become a
CoolBand called host.cb.edit.

8.5 Undocking a SubForm or a CoolBand

When a SubForm or a CoolBand is undocked, it becomes a Form.

Interface Guide

2025-10-30 (main:e0843eae32) Page 182

The object may either become a Form that is a child of Root, or a Form that remains
the child of the Form from where it was undocked. Such an object will always appear
on top of its parent, even when undocked.

This behaviour is controlled by the UndocksToRoot Property.

Note that a Form or a CoolBand object may be undocked if its Dockable property is set
to 'Always'; the DockChildren property does not apply to the Root object.

The Root object does not provide DockMove events, but the docked object will
generate a DockRequest event when the user releases the mouse button over the
desktop. This may be used to disable or modify the operation.

8.6 Docking and Undocking a ToolControl

Docking and undocking a ToolControl is handled rather differently from docking and
undocking a Form or CoolBand.

When you undock a ToolControl from a Form or SubForm, it cannot remain a
ToolControl object, because a ToolControl cannot be a child of Root. Furthermore, its
Type cannot simply change to Form because a Form cannot be a parent of a
ToolButton. In fact, a ToolButton may only be the child of a ToolControl.

Therefore, when a dockable ToolControl is undocked, no action is taken; you have to
perform the various operations yourself.

Typically, you would create a new Form to contain the ToolControl and only the
ToolControl), and then delete the original.

The new Form should be dockable in the original parent (of the ToolControl), but a
callback should intercept this operation and re-instate the ToolControl as a direct child
of the host.

Effectively, when you undock a ToolControl, you need to insert a new (floating) Form
between the Host Form and the ToolControl. Then when you re-dock it, you need to
remove the (floating) Form from the hierarchy.

The following example illustrates the procedure.

The following function creates a Form containing a dockable ToolControl. The
ToolControl can be undocked, becoming a floating toolbar, and then docked back into
the original Form.

Interface Guide

2025-10-30 (main:e0843eae32) Page 183

The picture below shows the initial appearance of the Host Form and its ToolControl.

Because the ToolControl is dockable, the user may pick it up and drag it out of its
parent Form as shown below.

When the user drops the ToolControl outside the Host Form, it (the ToolControl)
generates a DockRequest event which is attached to the UNDOCK callback function. This
function, creates a new Form called Floater, makes a copy of the ToolControl as a child

∇ DockableToolControl
[1] 'IL'⎕WC'ImageList'('Masked' 0)
[2] 'IL.'⎕WC'Bitmap'('ComCtl32' 120)⍝ STD_SMALL
[3] :With 'Host'⎕WC'Form' 'Host'
[4] Coord←'Pixel'
[5] Size←50 300
[6] DockChildren←'Floater'
[7] onDockAccept←'#.DOCK'
[8] onDockMove←'#.DOCKMOVE'
[9] :With 'TC'⎕WC'ToolControl'
[10] Dockable←'Always'
[11] onDockRequest←'#.UNDOCK'
[12] ImageListObj←'#.IL'
[13] 'B1'⎕WC'ToolButton' 'New'('ImageIndex' 7)
[14] 'B2'⎕WC'ToolButton' 'Open'('ImageIndex' 8)
[15] 'B3'⎕WC'ToolButton' 'Save'('ImageIndex' 9)
[16] :EndWith
[17] :EndWith

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 184

of Floater, and then expunges the original ToolControl from the Host Form. The
function, and the results of the operation, are shown below. The following points
should be noted.

The UNDOCK callback returns 0 to prevent APL from taking any further action (the
default action after a successful DockRequest is to generate a DockAccept event,
which in this case is undesirable).
The Floater Form is created as a child of the Host Form so that it always floats
above it in the window stacking order.
The Floater Form is made dockable so that it can be re-docked back into Host.
The (new) ToolControl is made non-dockable, so that the user cannot drag it out
of Floater.

The user may dock the ToolControl back into Host by dragging the Floater Form into
it.

•

•

•
•

∇ R←UNDOCK MSG
[1] R←0
[2] :With 'Host.Floater'⎕WC'Form'
[3] Caption←'Floating ToolControl'
[4] Dockable←'Always'
[5] Coord←'Pixel'
[6] 'TC'⎕WC⊃MSG
[7] TC.Dockable←'Never'
[8] Size←TC.Size
[9] Posn←#.Host.Posn+2↑7⊃MSG
[10] :EndWith
[11] ⎕EX'#.Host.TC'

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 185

The DOCKMOVE callback function, shown below, prevents the ToolControl (represented
by its parent Floater) from being docked anywhere except along the top edge.

The picture below illustrates the moment just before the user releases the mouse
button to dock Floater back into Host.

At this point, the Host Form generates a DockAccept event and the callback function
DOCK is invoked. This function recreates the ToolControl as a child of Host (making it
dockable once more), and then expunges the Floater Form.

Once again, the result of the callback function is 0 to tell APL that you have dealt with
the situation and it is to take no further action.

∇ R←DOCKMOVE MSG
[1] ⍝ Only allow docking along Top edge
[2] R←MSG[4]∊'Top' 'None'

∇

∇ R←DOCK MSG
[1] R←0
[2] :With ⊃MSG
[3] 'TC'⎕WC ⎕OR(3⊃MSG).TC
[4] TC.Dockable←'Always'
[5] :EndWith
[6] ⎕EX'#.Host.Floater'

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 186

9 OLE Client

9.1 Introduction

OLE Automation is an inter-process communication mechanism created by Microsoft,
based on a subset of Component Object Model (COM).

See (for example) https://en.wikipedia.org/wiki/OLE_Automation.

OLE Automation allows you to drive one application from another and to mix code
written in different programming languages. In practical terms, this means that you
may write a subroutine to perform calculations in (say) C++ and use the subroutine
directly in Visual Basic 4 or Excel. Equally, you could write the code in Visual Basic and
call it from C++. Dyalog APL/W is a fully subscribed member of this code-sharing club.

OLE Automation is, however, much more than just a mechanism to facilitate cross-
application macros because it deals not just with subroutine calls but with objects. An
object is a combination of code and data that can be treated as a unit. Without getting
too deeply into the terminology, an object defines a class; when you work with an
object you create one or more instances of that class.

There are two types of OLE object involved; OLE servers and ActiveX controls. There are
two types of OLE server; in-process and out-of-process. In-process OLE servers and
ActiveX controls are implemented as dynamic link libraries that are loaded into a host-
process at run-time. Out-of-process OLE Servers are implemented as separate
processes which may even run on a separate computer in a network.

Dyalog can act as a host for OLE servers and ActiveX controls, and you may also create
OLE servers and ActiveX controls in Dyalog that can be hosted by other applications,
including Microsoft Office programs.

Architectural Issues

32-bit and 64-bit dynamic link libraries are compatible only with programs compiled for
the same architecture, but a 64-bit process cannot load a 32-bit DLL and a 32-bit
process cannot load a 64-bit DLL.

Interface Guide

2025-10-30 (main:e0843eae32) Page 187

https://en.wikipedia.org/wiki/OLE_Automation

This means that the 64-bit Dyalog interpreter can only access a 64-bit in-process OLE
servers and ActiveX Controls and the 32-bit Dyalog interpreter can only access 32-bit
in-process COM servers and ActiveX controls.

Similarly, an in-process OLE server (dll) or ActiveXControl (ocx) saved by the 64-bit
Dyalog interpreter cannot be used by a 32-bit application, and one saved by the 32-bit
Dyalog interpreter cannot be used by a 64-bit application. If you try to do so, the
application will generate an error. For example, if you were try to load the cfiles.dll or
loan.dll saved as an in-process OLE server by the 64-bit Dyalog interpreter into a 32-bit
version of Microsoft Excel, it would fail; as would a 32-bit Dyalog dll in a 64-bit version
of Excel.

This restriction does not apply to out-of-process OLE servers, which are implemented
as separate processes.

Hosting OLE Servers and ActiveX Controls

This chapter describes how Dyalog APL can drive other applications using OLE
Automation. In these circumstances, Dyalog APL is acting as an OLE client. The
following chapters describe how you can build OLE servers and ActiveX controls in
Dyalog.

An ActiveX control can be instantiated as a GUI object within a Dyalog APL Form,
whereas an OLE Server either has no GUI component, or is a separate object.
Otherwise, the two are very similar.

You can obtain lists of the OLE Servers and ActiveX Controls installed on your computer
from the OLEServers and OLEControls properties of the system object '.'. These lists
are obtained from your Windows Registry and therefore contain only those OLE objects
that are correctly installed. Each OLE Server and OLE Control is identified by its name
and class identifier. Either may be used to access it.

The list of COM servers reported by the OLEServers and OLEControls properties of Root
return only those COM objects that can be accessed from that version of the Dyalog
interpreter.

9.2 Using an OLE Server

You can access an OLE Automation Server (also known as COM Server) using the
OLEClient object. When you create an OLEClient, you specify the name of the Server as
the ClassName property for the object.

Interface Guide

2025-10-30 (main:e0843eae32) Page 188

For example:

or, using ⎕WC

The effect of both statements is to create an object EX, which is connected to an
instance of the of the Excel.Application Class, an OLE Server. The OLE Server instance
may be in-process or out-of-process. If it is in-process, the code and data associated
with the instance are loaded into the same address space as the Dyalog APL process. In
the latter case, the instance represents a separate Windows process on your computer
or, on an entirely different computer in the network.

When APL connects to an out-of-process OLE Server in this way, you can specify
whether you wish to connect to an existing (running) instance of the Server, or start a
new copy of the Server. This is done using the InstanceMode property.

9.3 Loading an ActiveX Control

An ActiveX or OLE Control is in fact a type of Dynamic Link Library (DLL) which must be
loaded before it can be used. This is done by creating an OCXClass object using ⎕WC or
⎕NEW.

For example, if you have an OLE Control named "Microsoft Office Chart 9.0 ", you can
load it with the following statements (which are split here only to prevent text wrap)

or, using ⎕WC

The right argument is a character string containing the name or class identifier of the
ActiveX Control. The left argument is an arbitrary name of your own choosing by which
you will subsequently refer to the Control class.

Using an OLE Control

Having created an OCXClass object, you may use an OLE Control by creating an instance
of it from its class. The instance must be created as the child of a Form. For example:

EX←⎕NEW 'OLEClient' (⊂'ClassName' 'Excel.Application')

'EX'⎕WC'OLEClient' 'Excel.Application'

NAME←' Microsoft Office Chart 9.0 '
MOC←⎕NEW 'OCXClass' (⊂'ClassName' NAME)

'MOC' ⎕WC 'OCXClass' NAME

Interface Guide

2025-10-30 (main:e0843eae32) Page 189

Although you can obtain general information about an OLE Control from both the class
(represented by the OCXClass object) and any instance, you may only query and
manipulate a control through an instance.

9.4 Type Information

In general, it is a requirement that all COM objects provide Type Information. This is
commonly provided in a type library file (extension .TLB) or is included in the
object's .EXE or .DLL file. Type Information includes the names of the methods, events
and properties exported by the object, together with descriptions of the arguments to
each method and descriptions of the data types of each property. Type Information is
necessary for the COM object to be properly recognised by object browsers and by
application development systems.

When you load a COM object, APL by default reads all of the Type Information
associated with the top-level object into the workspace. In addition, it reads the Type
Information for all other objects in the same object hierarchy, and the Type Information
for any other COM objects that are used or referenced by it. This Type Information is
retained in the workspace when you)SAVE it. When you reattach an OLEClient or
OCXClass to the same object, there is no need for the Type Information to be re-read.

Dyalog APL uses the Type Information to expose the names, data types and arguments
of all the methods, events and properties provided by the object, and those of all the
other sub-objects in the object hierarchy.

Dyalog APL also uses the Type Information to validate the arguments you supply to
methods (both the number and the data types) and the values you assign to properties.
For example, if a method is defined to take an argument VT_I4, Dyalog APL will issue a
DOMAIN ERROR if you invoke the method with a character argument. Internally, Dyalog
APL also uses the Type Information to convert between APL arrays and OLE data types.

The operation to read the Type Information may take several seconds, possibly
minutes, and the Type information may occupy a considerable amount of workspace.
Nevertheless, the availability of the Type information in the active workspace greatly
assists development and optimises run-time performance.

'F' ⎕WC 'Form'
'F.MM' ⎕WC 'MOC' ⍝ Instance of MOC

Interface Guide

2025-10-30 (main:e0843eae32) Page 190

Late Binding

In some circumstances it may be desirable to avoid the process of reading the Type
information in its entirety (known as early binding), and instead use a different
approach whereby Type information is obtained only when it is needed, that is, when a
particular property, method or event is referenced. This is called late binding and is
specified by setting the LateBind property of the OLEClient object to 1 when you create
it. When this scheme is used, APL only reads the Type information for properties and
methods that are actually used, although the benefit of having all the Type information
held in the workspace is lost.

Missing Type Information

Not all COM objects provide Type information, or do so in non-standard ways.

In these cases, if LateBind is set to 0, APL will fail to obtain any Type information, the
OLEClient object will be created without it and its associated namespace will be empty.
If LateBind is set to 1, the alternative mechanism using late binding will probably not
work either.

There are however other ways in which the methods, properties and events provided
by the COM object may be accessed from APL.

The first approach is to provide APL with the equivalent information using the
SetPropertyInfo and SetMethodInfo methods of the OLEClient object. Corresponding
mechanisms are provided for defining Events.

The last resort is to rely on a secondary form of late binding2 in which APL requires only
that the COM object confirms the existence of a given name as one that it exports, and
then accesses it using a general mechanism. For further information, see Section 9.8.

Identifying Properties, Methods and Events

You can obtain the names of all the properties, methods, and events exposed by a COM
object by executing the system function ⎕NL, with the appropriate argument, inside the
namespace that is associated with an instance of the object. Note that the result of ⎕NL
is a vector of character vectors. If Type Information is unobtainable, the list of items
reported by ⎕NL will be empty. See the section entitled OLE Objects without Type
Information later in this Chapter.

2 Prior to Version 14.0, this was the only form of late binding provided by Dyalog APL.

Interface Guide

2025-10-30 (main:e0843eae32) Page 191

For example

Pre-Version 11 Behaviour

In previous versions of Dyalog APL, you could obtain this information from the PropList,
MethodList and EventList properties of the object. Note that these 3 properties are
internally generated by Dyalog APL and are not exported by the object itself. You could
also obtain this information by executing the system commands)PROPS,)METHODS and
)EVENTS inside the namespace that is associated with an instance of the object.

For backwards compatibility, these capabilities are retained when ⎕WX is 0 or 1.

DB←⎕NEW'OLEClient' (⊂'ClassName' 'DAO.DBEngine.120')
DB.⎕NL ¯2 ⍝ Properties

AutoBrowse ChildList ClassID ClassName Data
DefaultPassword DefaultType DefaultUser
Errors Event EventList Handle HelpFile
IniPath InstanceMode KeepOnClose LastError
Locale LoginTimeout MethodList PropList
Properties QueueEvents SystemDB Type
TypeList Version Workspaces

DB.⎕NL ¯3 ⍝ Methods
BeginTrans CommitTrans CompactDatabase

CreateDatabase CreateWorkspace ISAMStats Idle
OpenConnection OpenDatabase RegisterDatabase
RepairDatabase Rollback SetOption

Interface Guide

2025-10-30 (main:e0843eae32) Page 192

For example

Using an ActiveX Control

Using the Property Sheet

The simplest way to obtain further information about an OLE property, method or
event is to display its Property Sheet.

To do this, change space to the namespace that represents the object, type the name
(or place the cursor over the name) of the property, method or event in question, press
the right mouse button and select Properties from the context menu.

⎕WX←1
'DB'⎕WC'OLEClient' 'DAO.DBEngine.120'
)CS DB

#.[OLEClient]

)METHODS
BeginTrans CommitTrans CompactDatabase
CreateDatabase CreateWorkspace ISAMStats Idle
OpenConnection OpenDatabase RegisterDatabase
RepairDatabase Rollback SetOption

)PROPS
AutoBrowse ChildList ClassID ClassName
Data DefaultPassword DefaultType DefaultUser
Errors Event EventList Handle HelpFile
IniPath InstanceMode KeepOnClose LastError
Locale LoginTimeout MethodList PropList
Properties QueueEvents SystemDB Type
TypeList Version Workspaces

NAME←'Microsoft Office Chart 11.0'
'MOC'⎕WC'OCXClass'NAME
'F' ⎕WC'Form'
'F.MOC' ⎕WC 'MOC' ⍝ Instance of MOC
)CS F.MOC

#.F.MOC
)PROPS

AllowFiltering AllowGrouping AllowLayoutEvents
AllowPointRenderEvents AllowPropertyToolbox AllowRenderEvents
AllowScreenTipEvents AllowUISelection Attach AutoConf
Border Bottom BuildNumber CanUndo ChartLayout ...

Interface Guide

2025-10-30 (main:e0843eae32) Page 193

The information displayed for the OpenDatabase method that is provided by the
DAO.DBEngine OLE object is shown below.

Using the Workspace Explorer

You can also obtain information using the Workspace Explorer.

If you have created an instance of an object, you can navigate to it using the Explorer
and then browse its Events, Methods and Properties. The picture below illustrates the
effect of browsing the object DB that is connected to DAO.DBEngine.120.

Interface Guide

2025-10-30 (main:e0843eae32) Page 194

To obtain detailed information about a specific property, event, or method, just open
the appropriate folder and select the name you want. The details will be displayed in
the list view pane.

The same information can be obtained by browsing the Loaded Libraries folder. This
folder will be displayed if the View/Type Libraries menu item is checked and the
appropriate library has been loaded. The library will be loaded if you have ever created
an instance of the object in this workspace. Alternatively, you may navigate to the
information using the Registered Library folder.

Interface Guide

2025-10-30 (main:e0843eae32) Page 195

GetPropertyInfo Method

You can also obtain information about the properties exposed by a COM object, using
the GetPropertyInfo method. Note that this is a Dyalog APL method, added to the
object, and not a native method provided by the object itself.

For example, the DAO.DBEngine OLE object exposes a property called Version. You can
discover the meaning of the Version property as follows:

Or, using ⎕NQ

This tells you that the property value is a character string (VT_BSTR) that contains the
version number of the database engine.

GetPropertyInfo 'Version'
VT_BSTR

+2 ⎕NQ '' 'GetPropertyInfo' 'Version'
VT_BSTR

Version
3.51

Interface Guide

2025-10-30 (main:e0843eae32) Page 196

GetMethodInfo Method

You can also obtain information about the methods exposed by an OLE object, using
the GetMethodInfo method. Note that this is a Dyalog APL method, added to the
object, and not a native method provided by the object itself.

For example, the DAO.DBEngine OLE object exposes a method called OpenDatabase.
You can obtain information about the OpenDatabase method as follows:

This tells you that the method opens a specified database and that the result is of type
Database. Furthermore, the function takes up to four arguments, the first of which
(called Name) is a character string (VT_BSTR). The remaining 3 arguments (called
Exclusive, ReadOnly and Connect) are optional (their names are surrounded by [])
and of type VT_VARIANT.

GetEventInfo Method

Let's use the Windows Media Player as an example. First we must load the Control by
creating an OCXClass object using ⎕NEW.

Next we can find out what events it supports using ⎕NL ¯8.

Then, we can obtain information about a particular event (or events) by invoking a
GetEventInfo method. Note that in the case of the Windows Media Control it is
necessary to query the instance of the control (f.wmp) as opposed to the instance of

↑GetMethodInfo 'OpenDatabase'
Database

Name VT_BSTR
[Options] VT_VARIANT
[ReadOnly] VT_VARIANT
[Connect] VT_VARIANT

wmp←⎕NEW'OCXClass'(⊂'ClassName' 'Windows Media Player')
'f'⎕WC'Form'
'f.wmp'⎕WC'wmp'

wmp.⎕NL ¯8
Buffering Click DblClick Disconnect DisplayModeChange

DVDNotify EndOfStream Error KeyDown KeyPress
KeyUp MarkerHit MouseDown MouseMove MouseUp New
Stream OpenStateChange PlayStateChange PositionCh
ange ReadyStateChange ScriptCommand Warning

Interface Guide

2025-10-30 (main:e0843eae32) Page 197

the OCXClass (wmp). For example, you can ask it about its MouseDown event. The result
is a vector, each element of which is a 2-element vector of character vectors.

The first element contains a description of the event and the data type of its result (few
events generate results, so this is usually VT_VOID), that is:

Subsequent elements describe the name and data type of each of the parameters to
the event. These are the items that will appear as the third and subsequent elements
of the event message that is passed as the right argument to a callback function or
returned as the result of ⎕DQ. In this case:

This information tells us that the first parameter Button is a 2-byte integer value which
(presumably) is the number of the mouse button that the user has pressed. The second
parameter Shift is also a 2-byte integer and (presumably) reports the keyboard shift
state. The third and fourth parameters X and Y are of data type VT_COORD.

Obtaining On-line Help

You can display the help topic associated with a property, method, or event by selecting
Help from its context menu or using the help button in its property sheet.

Note that the name of the object's help file is provided by its HelpFile property.

For example, in the case of the DAO.DBEngine OLE object:

For Office 2000 applications, you will need to install the MSDN to obtain the
appropriate help files.

⍴INFO←⊂f.wmp.GetEventInfo'MouseDown'
5

⊃INFO
Sent when a mouse button is pressed VT_VOID

↑1↓INFO
Button VT_I2
ShiftState VT_I2
x VT_COORD
y VT_COORD

⎕WG'HelpFile'

C:\PROGRA~1\COMMON~1\MICROS~1\OFFICE12\dao360.chm

Interface Guide

2025-10-30 (main:e0843eae32) Page 198

9.5 Methods

When you create an instance of a COM object, the methods and the properties are
directly accessible from the corresponding namespace.

Calling Methods

You invoke a method in an OLE object as if it were an APL function in your workspace.

If a method takes no parameters, you must invoke it as if it were niladic.

If a method takes parameters, you must call it as if it were monadic. Each element of its
argument corresponds to each of the method's parameters.

If a method takes a parameter declared as a string (VT_BSTR) you must call it with an
enclosed character vector.

Note: In previous versions of Dyalog APL, a character vector was automatically
enclosed if required. For backwards compatibility you may select old or new behaviour
using ⎕WX. If ⎕WX is 3 (the default) you must enclose a single string argument. IF ⎕WX is 0
or 1, you may supply a simple character vector.

For example, the OpenDatabase method in the DAO.DBEngine OLE server may be
called with a single parameter that specifies the name of the database to be opened.
You may call it from APL with either of the following two expressions:

Arrays and Pointers

Many parameters to OLE methods are specified by pointers. If, for example, the
parameter type is VT_BSTR, it means that the calling routine must supply a pointer to
(that is, the address of) a character string.

Similarly, if the parameter type is defined to be VT_VARIANT, it means that the
parameter is the address of an arbitrary array (the VT_VARIANT data type actually
maps nicely onto a Dyalog APL nested array).

The rule is that if a pointer is required, APL will provide it automatically; you do not
have to do so. Instead, all you do is supply the value.

OpenDatabase 'c:\example.mdb' ⍝only if ⎕WX is 0 or 1
OpenDatabase ⊂'c:\example.mdb'⍝any value of ⎕WX

Interface Guide

2025-10-30 (main:e0843eae32) Page 199

Optional Parameters

Methods are often defined to have optional parameters. For example the parameters
defined for the OpenDatabase method provided by the DAO.DBEngine OLE object are:

To call the corresponding APL function, you may supply a nested array that contains
1,2, 3or 4 elements corresponding to these parameters.

The parameters to some methods are all optional. This means that the method may be
called with or without any parameters. As APL does not support this type of syntax, the
special value ⍬ (zilde) is used to mean "0 parameters".

For example, the parameters for the Idle method provided by DAO.DBEngine are
defined to be:

This means that the method takes either no arguments or one argument. To call it with
no argument, you must use ⍬ (zilde), for example:

Note that you cannot therefore call a function in an APL server with a single argument
that is an empty numeric vector.

Output Parameters

You may encounter parameters whose data type is defined explicitly as a pointer to
something else, for example VT_PTR to VT_UI4 specifies a pointer to an unsigned 4-
byte integer.

In these cases, it usually means that the calling routine is expected to pass an address
into which the OLE method will place a value.

When you invoke the method you must use data of the type pointed to.

The result of the method is then a vector containing the result defined for the method,
followed by the (new) values of the output parameters. This is similar to the
mechanism used by ⎕NA.

Name VT_BSTR
[Exclusive] VT_VARIANT
[ReadOnly] VT_VARIANT
[Connect] VT_VARIANT

[Action] VT_VARIANT

Idle ⍬

Interface Guide

2025-10-30 (main:e0843eae32) Page 200

Named Parameters

Visual Basic syntax allows you to specify parameters by position or by name; rather like
⎕WC and ⎕WS. For example the parameters defined for the OpenDatabase method
provided by the DAO.DBEngine OLE object are:

You could call this method from Visual Basic using the syntax:

You may do the same thing from Dyalog APL, using ⎕WS syntax. For example, the
equivalent call from APL would be:

Note that you may only use named parameters if they are supported by the method.
Many methods do not allow them.

Methods that return Objects

Object hierarchies in OLE are not static, but are created dynamically by calling methods
that return objects as their result.

If the data type of the result of a method is a pre-defined object type, or VT_DISPATCH
or VT_COCLASS, or VT_PTR to VT_DISPATCH or VT_PTR to VT_COCLASS, the result
returned to APL is a namespace. If the result is assigned to a name, the value
associated with that name becomes a namespace reference. For example,
GetMethodInfo tells us that the syntax for the OpenDatabase method provided by the
OLE object DAO.DBEngine is as follows:

Name VT_BSTR
[Exclusive] VT_VARIANT
[ReadOnly] VT_VARIANT
[Connect] VT_VARIANT

Set Db = OpenDatabase(Name:="c:\example.mdb",_
ReadOnly:=True)

OpenDatabase('Name' 'c:\example.mdb')('ReadOnly' 1)

↑ DB.GetMethodInfo 'OpenDatabase'
Opens a specified database VT_DISPATCH
Name VT_BSTR
[Exclusive] VT_VARIANT
[ReadOnly] VT_VARIANT
[Connect] VT_VARIANT

Interface Guide

2025-10-30 (main:e0843eae32) Page 201

The data-type of the result is VT_DISPATCH, so it returns an object; indeed the help for
the method tells us that it returns a Database object. The function could be called from
APL as follows:

Alternatively, you may simply use the result as an argument to a defined function or as
the argument to ⎕CS or :With, thereby switching into the namespace returned by the
method. For example:

Notice that in both these cases, the namespace associated with the result of the
OpenDatabase method is unnamed. Assigning the result of OpenDatabase to DB does
not set the namespace name to DB, it merely assigns a namespace reference to DB.

To preserve compatibility with previous versions of Dyalog APL that did not support
namespace references, a method that returns an object may be called with the name
of the (new) namespace as its left argument. Note that OLE methods do not
themselves accept left arguments, so this extension does not conflict with OLE
conventions.

This expression creates a new namespace called DB associated with a new object in the
OLE Server. Note that if you invoke the OpenDataBase method in this way, its result is a
number that represents the Dispatch Interface of the new object. This is done to
preserve compatibility with previous versions of Dyalog APL.

9.6 Properties

By default, Properties exposed by a COM object behave in the same way as Properties
exposed by Dyalog APL Classes.

To query the value of a property, you simply reference it. To set the value of the
property, you assign a new value to it. If the Property is an Indexed Property, you may
use indexing to set or retrieve the value of a particular element.

Note that in previous versions of Dyalog APL, indexed Properties of COM objects were
exposed as Methods and for backwards compatibility this behaviour may be retained
by setting ⎕WX to 0 or 1 (the default value is 3). See Language Reference.

DB←OpenDatabase ⊂'example.mdb'

:With OpenDatabase ⊂'example.mdb'

:EndWith

'DB' OpenDatabase ⊂'example.mdb'

Interface Guide

2025-10-30 (main:e0843eae32) Page 202

If the old (pre-Version 11.0) behaviour is selected., indexed properties are exposed as
methods and you treat the property as if it were an APL function. To obtain the value of
the property, you must call it monadically, specifying the required index (or other
information) as the argument. To set the value of the property, you must call it
dyadically, specifying the required index (or other information) as the right argument
and the new value as the left argument.

The data type of the variable is reported by the GetPropertyInfo method. Conversion
between APL data types and OLE data types is performed automatically.

If you attempt to set the value of a property to an something with an inappropriate
data type, APL will generate a DOMAIN ERROR.

If you set the value to something of the correct data type, APL will pass it through the
OLE interface. However, the OLE object may itself reject the new value. In this case, APL
will also generate a DOMAIN ERROR. However, the OLE error information may be
obtained from the LastError property of the object or Root. The error is also displayed
in the Status Window.

Note that if ⎕WX is 0 or 1,)PROPS and PropList report the names of all of the properties
of an object, regardless of whether the property is implemented as a variable or as a
function. You can tell whether or not the property takes an argument (and therefore
behaves as a function) from its property sheet, using GetPropertyInfo, or from the
documentation for the object in question.

Properties as Objects

Dyalog APL permits an object hierarchy to be represented by a namespace hierarchy. In
other words, the relationship between one object and another is a parent-child
relationship whereby one object owns and contains another.

Visual Basic has no such mechanism and the relationship between objects has to be
specified in another way. This is commonly done using properties. For example, an
object view of a bicycle could be a hierarchy consisting of a bicycle object that contains
a Frame object, a FrontWheel object and a RearWheel object. In Visual Basic, you could
represent this hierarchy as a Bicycle object having Frame, FrontWheel and RearWheel
properties which are (in effect) pointers to the sub-objects. The properties are
effectively used to tie the objects together.

An extension of this idea is the Visual Basic Collection object. This is a special type of
object, that is somewhat similar to an array. It is used where one object may contain
several objects of the same type. For example, a Wheel object could contain a Spokes

Interface Guide

2025-10-30 (main:e0843eae32) Page 203

collection object which itself contains a number of individual Spoke objects. Collection
objects are usually implemented as properties.

When you reference the value of an object property, you will get a namespace.

Using the bicycle analogy, you could recreate the object hierarchy in the APL workspace
as follows:

The result would be three namespaces, one named BIKE, and two unnamed
namespaces referenced by FRONT and REAR. Each contains the specific properties,
methods and events exposed by the three corresponding objects.

Note however, that in this example BIKE, FRONT and REAR are all top-level namespaces;
a proper parent/child representation can be achieved by making FRONT and REAR child
namespaces of BIKE, for example:

or

This example illustrates that when you work with an OLE object, you have a choice
whether to represent an object hierarchy as a namespace tree or just as a collection of
otherwise unrelated namespaces.

9.7 Events

Events generated by OLE objects are provided via an event sink which is simply an
interface that defines a collection of events that may be generated by the object.
Objects may support more than one event sink and may or may not define them in a
type library.

By default, events generated by COM objects are processed like all other events in
Dyalog APL.

'BIKE' ⎕WC'OLEClient' 'EG.Bicycle'
FRONT ← BIKE.FrontWheel
REAR ← BIKE.RearWheel

BIKE.FRONT ← BIKE.FrontWheel
BIKE.REAR ← BIKE.RearWheel

:With BIKE
FRONT ← FrontWheel
REAR ← RearWheel

:EndWith

Interface Guide

2025-10-30 (main:e0843eae32) Page 204

This means that if you attach a callback function to an event in an instance of an
OCXClass object, the events are queued up when they are received and then processed
one-by-one, by ⎕DQ, from the internal queue. This is the mechanism used to process all
events in Dyalog APL and it has many advantages:

Events are handled in an orderly manner
An event cannot interrupt a callback that is processing a previous event
Incoming events are held up so that you can trace a callback function

The disadvantage of this approach is that, for internal reasons, your APL callback
function is unable to return a result to the ActiveX control, or to modify any of the
arguments supplied by the event. This is a severe problem if the COM object relies on
callbacks to control certain aspects of its functionality.

The QueueEvents property allows you to change the normal behaviour so that it is
possible for a callback function to return a result to a COM object.

If QueueEvents is 1, which is the default, the result (if any) of your callback function is
not passed back to the COM object but is discarded. Thus you cannot, for example,
inhibit or modify the default processing of the event by the COM object.

If instead you set QueueEvents to 0, the callback function attached to the event is
executed immediately, even if there are other APL events before it in the internal event
queue. The result of your callback function is then passed back to the COM object
which may use it to inhibit or modify its normal event processing.

See QueueEvents for further details.

9.8 Using OLE Objects without Type Information

Even if an OLE Object fails to provide Type Information, either using early or late
binding, you will still be able to access its methods and properties using a secondary
form of late binding or SetMethodInfo and SetPropertyInfo as follows.

Secondary Late Binding3

If you refer to a name inside the OLEClient namespace that would otherwise generate a
VALUE ERROR, and there is no Type information available for that name, APL asks the
COM object if it has a member (method or property) of that name.

The mechanism permits APL to determine only that the member is exported; it says
nothing about its type (method or property) nor its syntax. If the response from the

•
•
•

Interface Guide

2025-10-30 (main:e0843eae32) Page 205

COM object is positive, APL therefore makes the most general assumption possible,
namely:

That the member is a method
That it may take up to 16 optional arguments
That each argument is input/output (that is, specified via a pointer)
That the method returns a result.

This means that if you know, from its documentation or another source, that a COM
object provides a certain Method or Property, you may therefore access that member
by simply calling a function of that name in the OLEClient namespace. Note that any
parameters you pass will be returned in the result, because APL assumes that all
parameters are input/output. Furthermore, APL will be unable to check the validity of
the parameters you specify because it does not know what data types are expected.

SetMethodInfo and SetPropertyInfo

The SetMethodInfo and SetPropertyInfo methods provide a mechanism for you to
precisely specify the missing Type Information for the methods and properties that you
wish to use. See Object Reference for further details.

Note that whether you use late binding or SetMethodInfo/SetPropertyInfo, any sub-
object namespaces that you create by invoking the methods and properties in the top-
level object, will also have no visible methods and properties. Therefore, if the Type
Information is missing, Late Binding or SetMethodInfo and SetPropertyInfo must be
used to access all the methods and properties that you wish to use, wherever they
occur in the object hierarchy.

Events

When type library information is available, Dyalog APL automatically connects the
appropriate event sinks and establishes the EventList property for the object when it is
created. However, if the COM object does not declare its event sinks in a type library, or
if the LateBind property were set to 1, it is necessary to connect to them manually. To
support these cases, the following methods are used. These apply to top-level COM
objects and to the namespaces associated with any other COM objects exposed by
them.

•
•
•
•

3 Prior to Version 14.0, this was the only form of late binding provided by Dyalog APL.

Interface Guide

2025-10-30 (main:e0843eae32) Page 206

Method Description

OLEListEventSinks

Returns the names of any event sinks currently attached
to an object. An event sink is a set of events grouped (for
convenience) by a COM object.

OLEAddEventSink

Attaches the namespace associated with an object to a
specific event sink that it supports. If successful, new
event names will appear in the EventList property of the
namespace. This is the only way to access events from an
event sink that is not described in the object's Type
Information.

OLEDeleteEventSink

Removes the events associated with a particular event
sink from the EventList property of the namespace
associated with an object.

9.9 Collections

A collection is a special type of object that represents a set of other objects. Collections
are typically implemented as properties. For example, the Excel Sheet object has a
property named Sheets whose value is a collection object that represents a set of
worksheets. Collections typically have a property called Count, which tells you how
many objects there are, and a Default Property named Item that provides access to
each member of the set. Item typically accepts a number or a name as an index and
returns a reference to an object.

For example, if a workbook contains two worksheets named "P&L" and "2002 Sales"
respectively, they might be accessed as follows:

Note that in old versions of Dyalog APL (pre-Version 11.0) the Item property was
exposed as a method. This old behaviour may be select by setting ⎕WX to 0 or 1 when
you create the object. In which case:

S1←Sheets.Item[1]
S1.Name

P&L
S2←Sheets.Item ['2002 Sales']
S2.Index

2

Interface Guide

2025-10-30 (main:e0843eae32) Page 207

Note that some collections work in origin 0 and some in origin 1; there is no way to tell
which applies except from the documentation. Furthermore, collections are used for all
sorts of purposes, and may not necessarily permit the instantiation of more than one
member of the set at the same time. Collections are not the same as arrays.

As mentioned above, the Item property is typically the Default Property (see Language
reference) of a Collection, so indexing may be applied directly to the Collection object.

The :For - :EndFor control structure provides a convenient way to enumerate
through the members of a collection without using the Item property. For example, the
following code snippet accumulates the values in an Excel worksheet collection.

9.10 Null Values

COM methods and properties frequently return null values for which there is no direct
equivalent in the APL language. Instead, the system constant ⎕NULL is used to represent
a null value.

The following spreadsheet contains a number of empty cells.

S1←Sheets.Item 1
S1.Name

P&L
S2←Sheets.Item '2002 Sales'
S2.Index

2

Sheets[1 2].Name
P&L 2002 Sales

DATA←0⍴⊂0 0⍴0
:For S :In Sheets ⍝ Enumerate SHEETS collection

DATA,←⊂S.UsedRange.Value2
:EndFor

Interface Guide

2025-10-30 (main:e0843eae32) Page 208

Using the Excel.Application COM object, the contents of the spreadsheet can be
obtained as follows:

To determine which of the cells are filled, you can compare the array with ⎕NULL.

'EX'⎕WC'OLEClient' 'Excel.Application'
WB←EX.Workbooks.Open 'simple.xls'

WB.Sheets[1].UsedRange.Value2
[Null] [Null] [Null] [Null] [Null]
[Null] Year [Null] [Null] [Null]
[Null] 1999 2000 2001 2002
[Null] [Null] [Null] [Null] [Null]
Sales 100 76 120 150
[Null] [Null] [Null] [Null] [Null]
Costs 80 60 100 110
[Null] [Null] [Null] [Null] [Null]
Margin 20 16 20 40

Interface Guide

2025-10-30 (main:e0843eae32) Page 209

⎕NULL should also set the values of COM properties to null.

9.11 Additional Interfaces

Most COM objects and their sub-objects provide information about their methods and
properties through the IDispatch interface which is the normal interface used for OLE
Automation. When you create an instance of an OLEClient object or an OCXClass
object, Dyalog APL uses this interface to gain the information it requires.

If an object does not provide an IDispatch interface, or if an object provides additional
functionality through other interfaces, it is possible to access the object's functionality
using the OLEQueryInterface method.

In addition, if an object exposes sub-objects using an interface other than IDispatch,
you may access these sub-objects using the OLEQueryInterface method..

See OLEQueryInterface for further details.

9.12 Writing Classes based on OLEClient

You may define APL Classes (See Language Reference) based upon the OLEClient object.
For example:

⎕NULL≢¨WB.Sheets[1].UsedRange.Value2
0 0 0 0 0
0 1 0 0 0
0 1 1 1 1
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
1 1 1 1 1

:Class Excel: 'OLEClient'
∇ ctor wkbk

:Access Public
:Implements Constructor :Base ,⊂('ClassName' 'Excel.Application')
Workbooks.Open ⊂wkbk

∇
:EndClass ⍝ Excel

Interface Guide

2025-10-30 (main:e0843eae32) Page 210

XL←⎕NEW Excel 'f:\help11.0\days.xls'
XL.Workbooks[1].Sheets[1].UsedRange.Value2

From To Days Hours
38790 38791 0 3.25
38792 38792 [Null] 2.25
38793 38793 [Null] 2.5
38799 38799 [Null] 5
38800 38800 [Null] 3

[Null] [Null] [Null] 16

Interface Guide

2025-10-30 (main:e0843eae32) Page 211

10 OLE Server

10.1 Introduction

This chapter describes how you can write an OLE Automation Server in Dyalog APL.

OLE objects are represented in Dyalog APL by namespaces. There is a direct
correspondence between the object model and Dyalog APL namespace technology, a
correspondence that is thoroughly exploited in the implementation of OLE Automation.

An OLE object is simply a collection of methods (code that performs tasks) and
properties (data that affects behaviour). An object corresponds directly to a Dyalog APL
namespace which contains functions that do things and variables that affect things.
Furthermore, OLE objects are hierarchical in nature; objects may contain sub-objects
just as namespaces may contain sub-namespaces. To complete the picture, an OLE
Server is an application that provides (exposes) one or more OLE objects. Thus an OLE
Server corresponds directly to a workspace that contains one or more namespaces.

However, when you access an OLE object, you do so by creating an instance of its class
and you may work with several instances at the same time. Furthermore, several
applications may access the same OLE object at the same time, each with its own set of
instances. Each instance inherits its methods (functions) and the initial values of its
properties from the class. However, different property values will soon be established
in different instances so they must be maintained separately.

Dyalog APL/W includes the capability for a namespace to spawn instances of itself.
Initially, a new instance is simply a pointer to the original namespace (not a copy), but
as soon as anything in it is changed, the new value is recorded separately. Thus instance
namespaces will typically share functions but maintain separate sets of data.

Out-of-Process and In-Process OLE Servers

Dyalog APL allows you to create both out-of-process OLE Servers and in-process OLE
Servers. An out-of-process OLE Server runs as a completely separate Windows program
that communicates with one or more client programs. An in-process OLE Server is
implemented as a Dynamic Link Library (DLL) that is loaded into the client process and
becomes part of its address space.

Interface Guide

2025-10-30 (main:e0843eae32) Page 212

Writing an APL OLE Server

The following steps are required to create an OLE Automation Server in Dyalog APL/W:

On Windows 7 or later, you must start Dyalog APL with Administrator
privileges (right-click the desktop icon and choose Run as administrator). This
is necessary to register an OLE server.

Create a workspace containing an OLEServer namespace. This namespace
represents an OLE Object and may contain as many functions and variables as
you want to provide the functionality you require. It may also contain other
OLEServer namespaces to represent sub-objects in an object hierarchy.

For each of the functions and variables that you wish to expose as methods and
properties of your object, you must declare the data types of their parameters
and results. You can do this manually, using the COM Properties tab of the
Object Properties dialog box, or by invoking the SetFnInfo and SetVarInfo
methods. Note that non-exported functions and variables, sub-namespaces and
defined operators may be used internally, but are not available directly to an OLE
Automation client. It is also possible to generate events from an OLEServer. The
mechanism is the same as for an ActiveXControl and is described in the next
chapter.
Select Export from the Session File menu and choose in-process or out-of-
process COM Server as you prefer.

Deploying an APL OLE Server

An in-process Dyalog COM Server uses the dynamic-link library version of the Dyalog
interpreter which must be present in the same directory as your .dll, so you must copy
the appropriate version there. You may use either the Development DLL or the Run-
Time DLL. If you choose to use the Development DLL, you will also need to copy the
DyaRes DLL which it uses.

An out-of-process Dyalog COM Server consists of your workspace and the associated
type library (.tlb) file which is created when you export it. The workspace requires the
 Development EXE or the Run-Time EXE, which must be in the same directory as your
workspace and type library file.

Rules for Exported Functions

There are certain fundamental differences between OLE syntax and APL syntax.

1.

2.

3.

4.

Interface Guide

2025-10-30 (main:e0843eae32) Page 213

For example, OLE methods may take any number of arguments whereas APL is confined
to two; a left and a right.

Secondly, some of the arguments or even all of the arguments to an OLE method may
be optional. You cannot however call a monadic APL function with no arguments; in
APL there is a clear distinction between niladic functions and functions that take an
argument.

Furthermore, the number and type of the arguments for each OLE method must be
registered in advance so that OLE knows how to call it.

These factors mean that certain rules must be adopted so that APL can register your
APL functions as OLE methods.

Exported APL functions must be niladic or monadic defined functions; dyadic
functions, dfns, derived functions and operators are not allowed. However,
ambivalent functions may be called (monadically) by OLE.
Character arrays whose rank is greater than 1 are passed as 1-byte integer
arrays. This means that 1-byte integer matrices and higher-rank arrays will
always be converted to character arrays.
An exported APL function may not be called with an empty numeric vector
(zilde) as its single argument. Zilde is used by an APL client to call a non-niladic
OLE method with no arguments.
If an exported APL function is called with more than one parameter, its
argument will be a nested vector. If it is called with a single parameter that is a
character vector or an array whose rank is greater than 1, the argument supplied
to the APL function will be a simple array. Effectively, a 1-element nested array
received from an OLE Client is disclosed.

The main advantage of an in-process OLE Server is that communication between the
client application and the OLE Server is fast. Communication between clients and out-
of-process OLE Servers has to go through a separate OLE layer in Windows that incurs a
certain overhead. Another advantage is that in-process OLE Servers are simpler to
administer and simpler to install.

The main disadvantages of in-process OLE Servers is that there can only be one client
per server and they do not support DCOM directly.

ClassID, TypeLibID and other properties

Windows COM objects are identified using a system of Globally Unique Identifiers
(GUIDs). When you create an OLEServer object using ⎕WC, APL creates a number of
GUIDs and allocates them to the OLE Server. One of these is a Class Identifier (often

1.

2.

3.

4.

Interface Guide

2025-10-30 (main:e0843eae32) Page 214

abbreviated to CLSID) that will uniquely identify your OLE object. This is stored in the
ClassID property of the OLEServer. Another GUID identifies the Dispatch interface of
the object but is not available via a property.

An out-of-process COM server requires a separate Type Library file. This is a binary file
that describes the methods (functions) and properties (variables) exposed by the
OLEServer namespace(s) in the workspace. The Type Library is identified by a GUID and
by its file name. The file name (which is constructed from the workspace name with
a .TLB extension) is stored in the TypeLibFile property of the OLEServer namespace. The
GUID is generated when it is first needed and is stored in the TypeLibFileID property of
the OLEServer namespace. Note that if the workspace contains several OLEServer
objects, their TypeLibFile and TypelLibID properties all have the same values.

10.2 In-process OLE Servers

Exporting

When you use File/Export to create an in-process OLE Server, the following steps are
performed.

APL first saves your workspace to a temporary file. Then it creates a temporary Type
Library File that describes each of the OLEServer objects in the workspace. Next, it
creates a Dynamic Link Library (DLL) file (whose name defaults to the name of your
workspace but with a .DLL extension) by merging the workspace saved in the
temporary file with the file dllstub.dll. Finally, it registers your OLE Server by updating
the Windows Registry. Your OLE Server DLL is self-contained and is independent of your
workspace. The temporary files are then deleted.

Execution

In-process OLEServers are hosted (executed) by the Dyalog APL DLL. If you export your
OLE Server with Runtime application checked, it will be bound with the run-time
version, If this checkbox is cleared, your OLE Server will be bound by the development
version.

If an in-process OLE Server, that is bound with the run-time Dyalog APL DLL generates
an untrapped error, an OLE Automation error will be reported.

If an in-process OLE Server, that is bound with the development Dyalog APL DLL
generates an untrapped error, the APL Session will appear and you can use it to debug
the problem and continue. Note that at this point, the development DLL will load your
Session file so that all of your session tools are available during debugging. If your

Interface Guide

2025-10-30 (main:e0843eae32) Page 215

Session file runs any initialisation code that references external files, remember that
this code will be executed in the current working directory of the host process.

For further details, see Dyalog for Microsoft Windows Installation and Configuration
Guide.

Registering and Unregistering In-Process OLE Servers

During development, an in-process OLE Server is automatically registered when you
create it using File/Export.

The Windows utility regsvr32.exe should be used to register an in-process OLE Server
independently, or to install a runtime in-process OLE Server on a target computer. For
example:

regsvr32 should also be used (with the /u flag) to unregister an in-process OLE Server.
For example:

Note that in both cases, regsvr32 actually starts the OLE Server. This in turn loads the
appropriate Dyalog APL DLL. If you are using the development DLL, note that if your
session start-up code fails for any reason, the regsvr32 process will hang and have to be
terminated using the Task Manager.

10.3 Out-of-process OLE Servers

Exporting

When you use File/Export to create an out-of-process OLE Server, the following steps
are performed.

APL first creates a single Type Library File that describes all the OLEServer objects in the
workspace. It then registers your OLE Server by updating the Windows Registry with,
among other things, the names and ClassIDs of your workspace and Type Library file.

Note that the type information is taken from your active workspace and not the saved
workspace. It is up to you to ensure that your saved workspace (which will actually be
used when the OLE Server is invoked) is kept in step.

C:\WINDOWS\System32>regsvr32 c:\MyWS\mysvr.dll

C:\WINDOWS\System32>regsvr32 /u c:\MyWS\mysvr.dll

Interface Guide

2025-10-30 (main:e0843eae32) Page 216

For example, if you were subsequently to remove the OLEServer objects from your
workspace and re-save it, or save a completely different workspace with the same
pathname, your OLE Server would fail to start because the Type Library and Registry
and no longer synchronised with your workspace.

Execution

An out-of-process OLE Server is implemented by a separate Dyalog APL process
(DYALOG.EXE or DYALOGRT.EXE) that loads your workspace when it starts.

If an out-of-process OLE Server, that is bound with the run-time Dyalog APL program,
generates an untrapped error, an OLE Automation error will be reported.

If an out-of-process OLE Server, that is bound with the development Dyalog APL
program, generates an untrapped error, the APL Session will appear, and you can use it
to debug the problem and continue. In previous versions of Dyalog APL, the visibility of
the APL Session for debugging was controlled by the ShowSession property. Setting
ShowSession to 1 will cause the Session to be displayed immediately, when the OLE
Server is started. However, setting ShowSession to 0 will not prevent the Session from
appearing if an untrapped APL error occurs.

Registering and Unregistering

During development, an out-of-process OLE Server is automatically registered when
you create it using File/Export.

An out-of-process OLEServer may also be registered by calling its OLERegister method.
This performs the same tasks as File/Export, but without any user-interaction.
OLERegister is the recommended way to install an out-of-process OLEServer on a target
computer as a run-time application.

An out-of-process OLEServer may be unregistered by calling its OLEUnRegister method.

Registry Entries

This section describes the entries that are written into the Windows Registry when APL
registers an out-of-process OLEServer.

All registry entries are written as sub-keys of the primary key
HKEY_LOCAL_MACHINE\SOFTWARE\Classes of which HKEY_CLASSES_ROOT is an alias.

Interface Guide

2025-10-30 (main:e0843eae32) Page 217

Four separate entries are created, although only the first of these applies to top-level
OLEServers.

A sub-key named dyalog.xxxx where xxxx is the name of the OLEServer. This has
a sub-key named CLSID whose Default value is a GUID corresponding to the
ClassID property of the OLEServer.
A sub-key named CLSID\xxxx where xxxx is the GUID corresponding to the value
of the ClassID property of the OLEServer. The Default value of this sub-key is the
name of the OLEServer, and the sub-key itself contains sub-keys, namely
DyalogDispInterface, DyalogEventInterface, InProcHandler32, LocalServer32,
ProgID, TypeLib, and VersionIndependentProgID.

DyalogDispInterface and DyalogEventInterface have their Default values
set to the GUID for the Interface entry (see Paragraph 4). This GUID is
generated internally by the registration of the Type Library.
InProcHandler32 has the Default value "OLE32.DLL".
LocalServer32 has its Default value set to the command line that is
required to start the OLEServer. This is the full path-name of the
appropriate DYALOG.EXE or DYALOGRT.EXE followed by the full path-
name of the corresponding workspace plus any options that were
specified in the Create bound file dialog box.
ProgID has its Default value set to "dyalog.xxxx" where "xxxx" is the name
of the OLEServer.
TypeLib has its Default value set to the GUID corresponding to the
TypeLibID property of the OLEServer.
VersionIndependentProgID has its Default value set to "dyalog.xxxx"
where "xxxx" is the name of the OLEServer (same as ProgID).
Note that for a sub-object (an OLEServer that is a child of another
OLEServer) only the InProcHandler32 key is required, although the other
entries are created and are in fact redundant.

A sub-key named TypeLib\xxxx where xxxx is the GUID corresponding to the
value of the TypeLib property of the OLEServer. This contains a sub-key named
1.0 (which refers to its version number). The Default value of 1.0 is "Type Library
for xxxx" where "xxxx" is the name of the OLEServer. 1.0 contains three further
sub-keys named 0, FLAGS and HELPDIR.

0 (this identifies the language id; 0 refers to all languages) contains a sub-
key named win32 whose Default value is the full path-name of the Type
Library file associated with the OLE object; i.e. the value of the TypeLibFile
property of the OLEServer.
FLAGS has a Default value of "0".
HELPDIR has its Default value set to the full path-name of the directory in
which the corresponding workspace is saved.

1.

2.

1.

2.
3.

4.

5.

6.

7.

3.

1.

2.
3.

Interface Guide

2025-10-30 (main:e0843eae32) Page 218

Sub-keys named Interface\xxxx where xxxx is the GUID referenced by the value
of DyalogDispInterface and DyalogEventInterface described in paragraph 2. The
Default values of these sub-keys is "xxxxdisp" where "xxxx" is the name of the
OLEServer. You may identify the correct Interface sub-key by searching the
registry for this string. It has three sub-keys named ProxyStubClsid,
ProxyStubClsid32, and TypeLib.

ProxyStubClsid has a Default value of a GUID that references an interface
of type PSDispatch.
ProxyStubClsid32 (same as ProxyStubClsid).
TypeLib has two values. Its Default value is the GUID identified by the
TypeLib property of the OLEServer object, or, for a child OLEServer, the
TypeLib property if its parent OLEServer. Its Version value is "1.0".

10.4 The LOAN Workspace

LOAN.DWS contains a single namespace called Loan which is used to calculate monthly
repayments on a loan. As supplied, LOAN is a pure APL workspace. You will have to turn
it into an OLE Server, and declare a method and a property, before you can use it.

The Loan namespace contains a single function CalcPayments and a variable
PeriodType.

The CalcPayments function takes a 5-element numeric vector as an argument whose
elements specify:

loan amount
maximum number of periods for repayment
minimum number of periods for repayment
maximum annual interest rate
minimum annual interest rate

CalcPayments also uses the "global" variable PeriodType which specifies whether the
periods (above) are years or months. This is done solely to illustrate how another
application can manipulate an APL object via its variables (properties) as well as by
calling its functions (methods).

CalcPayments returns a matrix. The first row contains the period numbers (from min
to max). The first column contains the interest rates (from min to max in steps of
0.5%). Other elements contain the monthly repayments for the corresponding number
of periods and interest rates.

4.

1.

2.
3.

1.
2.
3.
4.
5.

Interface Guide

2025-10-30 (main:e0843eae32) Page 219

Using CalcPayments

The following session transcript illustrates how the CalcPayments function is used.

)LOAD LOAN
C:\...\samples\ole\loan.dws saved ...

)OBS
Loan

)CS Loan
#.Loan

)FNS
CalcPayments

)VARS
PeriodType

CalcPayments 10000 5 3 6 3
0 3 4 5
3 290.8120963 221.3432699 179.6869066
3.5 293.0207973 223.5600105 181.9174497
4 295.2398501 225.7905464 184.1652206
4.5 297.4692448 228.0348608 186.4301924
5 299.708971 230.2929357 188.7123364
5.5 301.959018 232.5647523 191.0116217
6 304.2193745 234.8502905 193.3280153

Interface Guide

2025-10-30 (main:e0843eae32) Page 220

The CalcPayments Function

Registering Loan as an OLE Server

To use this example, you must first

Convert the Loan namespace into an OLEServer object.
Declare the COM properties for CalcPayments and PeriodType.
Create an in-process or out-of-process server and register the Loan object on
your system.

Please perform the following steps:

On Windows 7 or later, you must start Dyalog APL with Administrator privileges
(right-click the desktop icon and choose Run as administrator). This is necessary to
register an OLE server.

∇ PAYMENTS←CalcPayments X;LoanAmt;LenMax;LenMin;IntrMax;
IntrMin;PERIODS;INTEREST;NI;NM;PER;INT

[1] ⍝ Calculates loan repayments
[2] ⍝ Argument X specifies:
[3] ⍝ LoanAmt Loan amount
[4] ⍝ LenMax Maximum loan period
[5] ⍝ LenMin Minimum loan period
[6] ⍝ IntrMax Maximum interest rate
[7] ⍝ IntrMin Minimum interest rate
[8] ⍝ Also uses the following global variable (for illustration)
[9] ⍝ PeriodType Type of period;1 = years, 2 = months
[10]
[11] LoanAmt LenMax LenMin IntrMax IntrMin←X
[12]
[13] PER←PERIODS←¯1+LenMin+⍳1+LenMax-LenMin
[14] PERIODS←PERIODS×12 1[PeriodType]
[15] INT←INTEREST←0.5×¯1+(2×IntrMin)+⍳1+2×IntrMax-IntrMin
[16] INTEREST←INTEREST÷100×12 1[PeriodType]
[17]
[18] NI←⍴INTEREST
[19] NM←⍴PERIODS
[20]
[21] PAYMENTS←(LoanAmt)×((NI,NM)⍴NM/INTEREST)÷1-1÷(1+INTEREST)∘.*PERIO
DS
[22] PAYMENTS←PER,[1]PAYMENTS
[23] PAYMENTS←(0,INT),PAYMENTS

∇

1.
2.
3.

Interface Guide

2025-10-30 (main:e0843eae32) Page 221

)LOAD the loan workspace from the samples\ole sub-directory

Execute the following statement to make Loan an OLEServer object:

Next, change space into the Loan namespace and use ⎕NL to display the names of the
two objects therein:

Right-click over the name CalcPayments and select Properties from the pop-up menu.
This brings up the Properties dialog box for Loan.CalcPayments. Click on the COM
Properties tab, check the Exported box and then fill in the names and data types of its
parameters as illustrated below.

)LOAD samples\ole\loan
samples\ole\loan saved ...

)OBS
Loan

Loan.⎕WC 'OLEServer'

)CS Loan
#.Loan

⎕NL 2 3
CalcPayments
PeriodType

Interface Guide

2025-10-30 (main:e0843eae32) Page 222

The picture above shows the COM properties that are required to export function
CalcPayments as a method. The function is declared to require 5 parameters of type
VT_I4 (integers) and return a result of type VT_ARRAY of VT_R8 (an array of floating-
point numbers).

The names you choose for the parameters will be visible in an object browser and
certain other programming environments.

Do the same for the PeriodType variable so that it is exported as a property.

Interface Guide

2025-10-30 (main:e0843eae32) Page 223

The picture above shows the COM properties to export variable PeriodType as a
property. The property is declared to be of type VT_I4 (integer).

Rename and save the workspace to avoid overwriting the original:

Finally, to create your OLE Server, choose Export from the Session File menu and
complete the Create bound file dialog box as shown below. In this case, the OLE Server
is created as an in-process server, bound to the development version of the Dyalog APL
DLL (because the Runtime application checkbox is cleared)

)WSID c:\MyWS\myloan
was C:\Program Files\Dyalog\Dyalog APL-64 15.0
Unicode\Samples\ole\loan.dws

)SAVE
c:\MyWS\myloan.dws saved...

Interface Guide

2025-10-30 (main:e0843eae32) Page 224

Interface Guide

2025-10-30 (main:e0843eae32) Page 225

Using Loan from Excel

Start Excel and load the spreadsheet Loan.xlsm from the Dyalog APL sub-directory
samples\ole.

The Payments button fires a simple macro that uses the APL dyalog.Loan object to
perform repayment calculations. To run the example enter data into the cells as shown
below, then click Payments. When you do so, Excel runs the Calc macro and this causes
OLE to initialise the dyalog.Loan OLE Server

The Calc macro actually calculates the repayments matrix by calling the CalcPayments
method in the dyalog.Loan object; that is, it runs the CalcPayments function in the
Loan namespace.

Interface Guide

2025-10-30 (main:e0843eae32) Page 226

Interface Guide

2025-10-30 (main:e0843eae32) Page 227

How it Works

The statement:

declares a (local) variable called APLLoan to be of type Object

The next statement:

creates an instance of dyalog.Loan associated with this variable.

Effectively, when the macro is run, Excel asks OLE to provide the external object called
dyalog.Loan.

If you exported Loan as an out-of-process OLE Server, OLE starts the appropriate
version (development or run-time) of Dyalog APL with your workspace MYLOAN. If you
exported Loan as an in-process OLE Server, OLE loads MYLOAN.DLL into your Visual
Basic application which in turn loads the appropriate Dyalog APL DLL. In either case, an
instance of the Loan namespace is connected to the Excel macro as an Object.

The next statement to notice is:

Sub Calc()
Dim APLLoan As Object
Dim Payments As Variant
Set APLLoan = CreateObject("dyalog.Loan")
LoanAmt = Cells(1, 3).Value
LenMax = Cells(2, 3).Value
LenMin = Cells(3, 3).Value
IntrMax = Cells(4, 3).Value
IntrMin = Cells(5, 3).Value
APLLoan.PeriodType = 1
Payments = APLLoan.CalcPayments(LoanAmt, LenMax,

LenMin, IntrMax, IntrMin)
For r = 0 To UBound(Payments, 1)

For c = 0 To UBound(Payments, 2)
Cells(r + 1, c + 5).Value = Payments(r, c)

Next c
Next r

End Sub

Dim APLLoan As Object

Set APLLoan = CreateObject("dyalog.Loan")

APLLoan.PeriodType = 1

Interface Guide

2025-10-30 (main:e0843eae32) Page 228

In Excel terms, this statement sets the PeriodType property of the APLLoan object to
the value 1. What actually happens, is that the APL variable PeriodType in the
corresponding running instance of the Loan namespace is set to 1.

Finally, the following statement:

calls the APL function CalcPayments and receives the result.

In Excel terms, this statement invokes the CalcPayments method of the APLLoan
object. In practice, it calls the CalcPayments APL function with the specified argument
and puts the result in the local variable Payments. Note that the conversion between
the result of the function (a Dyalog APL floating-point matrix) and the corresponding
Excel data type is performed automatically for you.

Notice that the APLLoan variable is local to the Calc macro. This means that the
dyalog.Loan object is loaded every time that Calc is run and is unloaded when it
terminates.

Using Loan from Dyalog APL

It is of course possible to use Dyalog APL as both an OLE Automation client and an OLE
Automation Server.

To use the dyalog.Loan object, start Dyalog APL and then enter the following
expressions in the Session window.

Payments = APLLoan.CalcPayments(LoanAmt, LenMax, LenMin,
IntrMax, IntrMin)

Interface Guide

2025-10-30 (main:e0843eae32) Page 229

The statement:

causes APL to ask OLE to provide the external object called dyalog.Loan. This name will
have been recorded in the registry by Dyalog APL when you saved the MYLOAN
workspace.

If you exported Loan as an out-of-process OLE Server, OLE starts a second Dyalog APL
process (development or run-time) with your workspace MYLOAN. There are now two
separate copies of Dyalog APL running; one is the client, the other the server.

If you exported Loan as an in-process OLE Server, OLE loads MYLOAN.DLL into the
Dyalog APL program which in turn loads the appropriate Dyalog APL DLL. These DLLs
are both are loaded into the same address space as the original APL process. In effect,
you have two copies of APL (and two workspaces) running as a single program.

'LN'⎕WC'OLEClient' 'dyalog.Loan'
)OBS

LN
)CS LN

#.LN
)METHODS

CalcPayments
)PROPS

AutoBrowse ChildList ClassID ClassName Data Event
EventList Handle HelpFile
InstanceMode KeepOnClose LastError LateBind Locale
MethodList PeriodType PropList
QueueEvents Type TypeList

CalcPayments 10000 5 3 6 3
0 3 4 5
3 290.8120963 221.3432699 179.6869066
3.5 293.0207973 223.5600105 181.9174497
4 295.2398501 225.7905464 184.1652206
4.5 297.4692448 228.0348608 186.4301924
5 299.708971 230.2929357 188.7123364
5.5 301.959018 232.5647523 191.0116217
6 304.2193745 234.8502905 193.3280153

'LN'⎕WC'OLEClient' 'dyalog.Loan'

Interface Guide

2025-10-30 (main:e0843eae32) Page 230

Note that in both cases, the mapping between the corresponding functions and
variables is direct. Effectively, the client namespace LN is an instance of the server
namespace Loan.

10.5 Implementing an Object Hierarchy

Despite the close correspondence between the object model and Dyalog APL
namespace technology, there is one significant difference. OLE does not support object
hierarchies in the sense that one object contains or owns another.

Instead you must implement object hierarchies using properties that refer to other
objects and/or methods that return objects as results.

It is not possible to pass Dyalog APL namespace hierarchies through OLE because OLE
does not support them. If you want to write an OLE Automation Server in APL that
implements an object hierarchy, you must follow the OLE conventions for doing so.

You can pass an instance of a Dyalog APL OLEServer namespace to an OLE client as a
⎕OR, which can be the result of a function or the value of a variable. In order to be
recognised as an OLE object, the namespace must be of type OLEServer.

In fact, when you export a workspace containing one or more OLEServer objects, any
child OLEServer objects that they contain are registered too.

The CFILES Workspace (samples\ole\cfiles.dws) illustrates the use of an object
hierarchy.

10.6 The cfiles Workspace

cfiles.dws contains a single OLEServer namespace called CFiles which implements a
basic object-oriented interface to Dyalog APL component files.

This example allows an OLE Client, such as Excel, to read and write APL component
files. It is deliberately over-simplified but illustrates how an object hierarchy may be
implemented.

The workspace contains the function Make which converts the namespaces CFiles and
CFiles.File into OLEServers and defines the COM properties for their methods. All
you then have to do is to export it as a COM Server.

Interface Guide

2025-10-30 (main:e0843eae32) Page 231

The CFiles OLEServer namespace contains functions GetFile and OpenFile and a
sub-namespace called File which is also an OLEServer. This namespace contains
functions FREAD, FREPLACE, FAPPEND and FSIZE.

The |GetFile function just returns the full pathname of the supplied
samples\ole\test.dcf component file which may be used to test the OLEServer. The
other functions are described in detail later in this section.

To use this Server, an OLE Client requests an instance of the dyalog.CFiles object.

To open a component file, an OLE Client calls OpenFile with the name of the file as its
argument. This function opens the file and returns, not a file tie number as you might
expect, but an instance of the File namespace which is associated with the file. As far
as the client is concerned, this is a subsidiary OLE object of type dyalog.File.

To perform file operations, the client invokes the FREAD, FREPLACE, FAPPEND and FSIZE
methods (functions) of the File object.

A more sophisticated example might expose each component as a subsidiary object
too.

Registering CFiles as an OLE Server

In order to explore the use of an APL OLE Server using the cfiles workspace as an
example, you must register the CFiles object on your system.

On Windows 7 or later, you must start Dyalog APL with Administrator privileges
(right-click the desktop icon and choose Run as administrator). This is necessary to
register an OLE server.

)LOAD the cfiles workspace from the samples\ole sub-directory

)LOAD cfiles
C:\Program Files (x86)\Dyalog\Dyalog APL 15.0 Unicode\...

To implement this workspace as an OLEServer, run "Make"
Then click File/Export from the Session menu

Make ⍝ Converts CFiles and CFiles namespaces
⍝ to OLEServers
⍝ and exports their functions as methods
⍝ then renames this ws

You are running as administrator ...

Interface Guide

2025-10-30 (main:e0843eae32) Page 232

You should now save your workspace in a personal directory to which you have write
access. This will allow you to export CFiles as either an in-process or out-of-process OLE
Server.

Then select Export from the Session File menu and create either an in-process or out-
of-process OLE Server.

Make
Making OLEServers ...
... Done
Workspace is now mycfiles with empty ⎕LX

)OBS
CFiles

CFiles.Type
OLEServer

)WSID c:\MyWS\mycfiles.dws
was mycfiles.dws

)SAVE
c:\MyWS\mycfiles.dws saved Wed Jun 1 13:53:56 2016

Interface Guide

2025-10-30 (main:e0843eae32) Page 233

Interface Guide

2025-10-30 (main:e0843eae32) Page 234

The GetFile Function

∇ r←GetFile
[1] r←2 ⎕NQ'.' 'GetEnvironment' 'DYALOG'
[2] r,←'\samples\ole\test.dcf'

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 235

GetFile simply returns the full pathname of the test.dcf component file.

The OpenFile Function

OpenFile takes the name of an existing component file and opens it exclusively using
⎕FTIE.

∇ FILE←OpenFile NAME;F;TIE
[1] ⍝ Makes a new File object
[2] TIE←1+⌈/0,⎕FNUMS
[3] NAME ⎕FSTIE TIE
[4] File.TieNumber←TIE
[5] File.Name←NAME
[6] FILE←⎕OR'File'

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 236

It returns an instance of the File namespace that is associated with the file through
the variable TieNumber. This is global to the File namespace.

OpenFile[4]sets the variable TieNumber in the File namespace to the tie number of
the requested file.

OpenFile[5]sets the variable Name in the File namespace to the name of the
requested file. This is not actually used.

OpenFile[6]creates an instance of the File namespace using ⎕OR and returns it as the
result.

Note that there is a separate instance of File for every file opened by every OLE Client
that is connected. Each knows its own TieNumber and Name.

The COM Properties dialog box for OpenFile is shown below. The function is declared
to take a single parameter called FileName whose data type is VT_BSTR (a string). The
result of the function is of data type VT_DISPATCH. This data type is used to represent
an object.

Interface Guide

2025-10-30 (main:e0843eae32) Page 237

The FSIZE Function

FSIZE returns the result of ⎕FSIZE for the file associated with the current instance of
the File namespace.

The COM Properties dialog box for FSIZE is shown below. The function is declared to
take no parameters. The result of the function is of data type VT_VARIANT. This data
type is used to represent an arbitrary APL array.

∇ R←FSIZE
[1] R←⎕FSIZE TieNumber

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 238

The FREAD Function

FREAD returns the value in the specified component read from the file associated with
the current instance of the File namespace.

The COM Properties dialog box for FREAD is shown below. The function is declared to
take a single parameter called Component whose data type is VT_I4 (an integer). The
result of the function is of data type VT_VARIANT. This data type is used to represent an
arbitrary APL array.

∇ R←FREAD N
[1] R←⎕FREAD TieNumber,N

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 239

The FAPPEND Function

FAPPEND appends a component onto of the file associated with the current instance of
the File namespace.

The COM Properties dialog box for FAPPEND is shown below. The function is declared to
take a single parameter called Data whose data type is VT_VARIANT. This data type is
used to represent an arbitrary APL array. The result of the function is of data type VT_I4
(an integer).

∇ R←FAPPEND DATA
[1] R←DATA ⎕FAPPEND TieNumber

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 240

The FREPLACE Function

FREPLACE replaces the specified component of the file associated with the current
instance of the File namespace.

The COM Properties dialog box for FREPLACE is shown below. The function is declared
to take two parameters. The first is called Component and is of data type VT_I4
(integer). The second parameter is called Data and is of data type VT_VARIANT. This

∇ FREPLACE ID;I;DATA
[1] I DATA←ID
[2] DATA ⎕FREPLACE TieNumber,I

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 241

data type is used to represent an arbitrary APL array. The result of the function is of
data type VT_VOID, which means that the function does not return a result.

Using CFiles from Excel

Start Excel and load the spreadsheet cfiles.xlsm from the Dyalog APL sub-directory
samples\ole.

Please note that to simplify the Excel code, only components containing matrices (such
as those contained in samples\ole\test.dcf) are handled. Components containing
scalars, vectors, higher-rank arrays and complex nested arrays are not supported.

Interface Guide

2025-10-30 (main:e0843eae32) Page 242

Depending upon your configuration settings, it is likely that the macros in cfiles.xlsm
are disabled when the spreadsheet is loaded, as shown above. If so, click the Options
button and enable them. The security warning is then removed as shown below.

The next step is to enter the name of your component file. A sample file named
test.dcf is provided in the samples\ole sub-directory. To get the pathname of this
sample file, click Get File Name. The result is shown below:

Interface Guide

2025-10-30 (main:e0843eae32) Page 243

The next step is to open the file by clicking the Open button. This runs the FOpen
procedure. Note that if this step is critical; otherwise any attempt to read or write to
the file will fail. When the file is opened, the size of the file is displayed as shown
below.

Finally, to read a component, enter the component number, move the input focus to a
different cell, and then and click Read. This runs the FRead procedure.

Interface Guide

2025-10-30 (main:e0843eae32) Page 244

To replace a component, first enter the component number. Then type some data
elsewhere on the spreadsheet and select it. Now click Replace. This runs the FReplace
procedure.

To append a component, enter some data elsewhere on the spreadsheet and select it.
Now click Append. This runs the FAppend procedure.

The FOpen Procedure

In the declaration section, the first statement declares a global variable CF to be of data
type Object. This variable will be connected to the dyalog.CFiles OLE Server object. The
second statement declares a global variable File to be of data type Object. This variable
will be connected to the dyalog.File OLE Server object. The third statement declares a
global variable Data to be of data type Variant. This is equivalent to a nested array. This
variable will be used for the component data.

Public CF As Object
Public File As Object

Dim Data As Variant

Sub FOpen()
Set CF = CreateObject("dyalog.cfiles")
f = Cells(1, 2).Value
Set File = CF.OpenFile(f)
Call FSize

End Sub

Interface Guide

2025-10-30 (main:e0843eae32) Page 245

The statement:

causes OLE to start Dyalog APL and obtain an instance of the dyalog.CFiles OLE Server
object which is then associated with the variable CF. Because this variable is global, the
OLE Server remains in memory and available for use.

The statement

gets the name of the file to be opened and puts it into the (local) variable f.

Finally, the statement:

calls the OpenFile function and stores the result (which is an object) in the global
variable File.

The FRead Procedure

The statement:

gets the number of the component to be read and stores it in the (local) variable c.

The statement:

calls the FREAD function in the instance of the File namespace that is connected to the
(global) Excel variable File. The result is stored in the variable Data.

Set CF = CreateObject("dyalog.cfiles")

f = Cells(1, 2).Value

Set File = CF.OpenFile(f)

Sub FRead()
c = Cells(4, 2).Value
Data = File.FREAD(c)
For r = 0 To UBound(Data, 1)

For c = 0 To UBound(Data, 2)
Cells(r + 6, c + 2).Value = Data(r, c)

Next c
Next r

End Sub

c = Cells(4, 2).Value

Data = File.FREAD(c)

Interface Guide

2025-10-30 (main:e0843eae32) Page 246

The remaining statements copy the data from Data into the spreadsheet.

The FReplace Procedure

The statement:

gets the number of the component to be replaced and stores it in the (local) variable c.

The statement:

gets the contents of the selected range of cells and stores it in the variable Data. This
will be a 2-dimensional matrix.

The statement:

calls the FREPLACE function in the instance of the File namespace that is connected to
the (global) Excel variable File.

The FAppend Procedure

The statement:

Sub FReplace()
c = Cells(4, 2).Value
Data = Selection.Value
Call File.FReplace(c, Data)
Call Fsize()

End Sub

c = Cells(4, 2).Value

Data = Selection.Value

Call File.FReplace(c, Data)

Sub FAppend()
Dim Rslt As Variant
Data = Selection.Value
Rslt = File.FAppend(Data)
Call Fsize()

End Sub

Data = Selection.Value

Interface Guide

2025-10-30 (main:e0843eae32) Page 247

gets the contents of the selected range of cells and stores it in the variable Data. This
will be a 2-dimensional matrix.

The statement:

calls the FAPPEND function in the instance of the File namespace that is connected to
the (global) Excel variable File. The result of this function is ignored.

10.7 Configuring an out-of-process OLEServer for DCOM

Introduction

When you register an out-of-process OLEServer using File/Export or OLERegister, Dyalog
APL automatically updates the Windows registry so that your OLEServer is immediately
accessible to an OLE client application running on the same computer.

If you wish to make the same object accessible to client applications running on
different computers (using distributed COM, or DCOM) you have to install additional
registry entries on the server and on each of the clients.

Once you have established these registries entries, you should be able to access the
OLEServer from Windows 95 or NT client computers in exactly the same way as if it
were local; the client applications need not know where the server is located. In most
cases, these additional registry entries are sufficient. However, the NT and DCOM
security considerations may require the use of dcomcnfg.exe (a Microsoft utility) to set
additional values. For example, if you get E_ACCESSDENIED errors when connecting
from the client you may need to run dcomcnfg.exe on the server computer to assign
the appropriate launch and access permissions for the OLEServer object.

The additional registry entries are described below. You may add these to the registry
directly (using regedit.exe) or by running the functions provided in the DCOMREG.DWS
workspace.

DCOM Registry Entries for the Server

On the computer upon which you want the OLEServer to be run, you must add the
following registry entries.

A key under HKEY_CLASSES_ROOT\AppID whose name corresponds to the CLSID
of your OLEServer object as reported by the value of its ClassID property. The

Rslt = File.FAppend(Data)

1.

Interface Guide

2025-10-30 (main:e0843eae32) Page 248

(Default) value of this key should be the name of the server object. In addition,
you must define a RunAs entry which specifies the manner in which a client
application runs your server. The simplest choice is Interactive User which
specifies that the client application is treated like a normal user.

For example, if you had saved an OLEServer namespace called Loan (c.f.
samples\loan.dws), whose ClassID property had the value
{B80E9D40-2090-11D1-8F93-0020AFABD95D} the entries would be:

An AppID entry to the HKEY_CLASSES_ROOT****CLSID key. (Note that this key
will itself have been created by Dyalog APL/W when you saved the workspace)
Once again, CLSID refers to the value of your OLEServer's ClassID property. The
value of the AppID entry is the (same) CLSID. Using the same example as above,
the entry would be:

DCOM Registry Entries for the Client

On each of the computers from which you wish to call the OLEServer object as a client,
you must add the following entries.

Two keys under HKEY_CLASSES_ROOT that identify the object (locally) and
associate it with your OLEServer Note that the local name of the object is
arbitrary and may be different on each client.

CLSID is again the CLSID of the OLEServer object (this must be the same as that
of the server machine). dyalog.ServerName can be replaced with whatever
name you want clients to use to refer to this object.

Under HKEY_CLASSES_ROOT\AppID, a key whose name corresponds to the CLSID
of your server object. The (Default) value of this key should be the name of the
OLE server object (its name on the server computer). In addition, the key should
contain a RemoteServerName entry whose value is the name of the server
computer. For example:

HKEY_CLASSES_ROOT\AppID\{B80E9D40-2090-11D1-8F93-0020AFABD95D}
(Default)=dyalog.Loan
RunAs=Interactive User

2.

HKEY_CLASSES_ROOT\{B80E9D40-2090-11D1-8F93-0020AFABD95D}
AppID={B80E9D40-2090-11D1-8F93-0020AFABD95D}

1.

HKEY_CLASSES_ROOT\dyalog.ServerName</p>
HKEY_CLASSES_ROOT\dyalog.ServerName\CLSID

2.

Interface Guide

2025-10-30 (main:e0843eae32) Page 249

DCOMREG Workspace

The workspace DCOMREG.DWS contains a single namespace called reg that contains
three functions to help register an out-of-process OLE Server for DCOM.

RegDCOMServer

This function should be run on the server computer and is called as follows:

Where ServerName is a character string containing the (full) name of the OLEServer
(e.g. dyalog.Loan) and CLSID is a character string containing the CLSID of the server
(the value of it ClassID property). For example:

RegDCOMClient

This function should be run on each of the client computers and is called as follows:

Where machine is a character vector specifying the name of the (NT) server computer,
ServerName is a character vector containing the (full) name of the OLEServer (e.g.
dyalog.Loan) and CLSID is a character string containing the CLSID of the server (the
value of it ClassID property). For example:

HKEY_CLASSES_ROOT\AppID\{B80E9D40-2090-11D1-8F93-0020AFABD95D}
(Default)=dyalog.Loan
RemoteServerName=ntsvr

RegDCOMServer ServerName CLSID

)LOAD LOAN
.\LOAN saved ...

)COPY DCOMREG
DCOMREG saved ...

CLSID ←('Loan' ⎕WG 'ClassID')
reg.RegDCOMServer 'dyalog.Loan' CLSID

machine RegDCOMClient ServerName CLSID

CLSID←'{B80E9D40-2090-11D1-8F93-0020AFABD95D}'
'NTSVR' reg.RegDCOMClient 'dyalog.Loan' CLSID

Interface Guide

2025-10-30 (main:e0843eae32) Page 250

Config

This niladic function simply invokes the dcomcnfg.exe utility using ⎕CMD.

10.8 Calling an OLE Function Asynchronously

Introduction

Functions exported by an OLEServer are executed (by the underlying OLE technology)
in a synchronous manner. This means that the OLE client must wait for the function to
complete before it can continue processing.

In certain cases the client may not be interested in a result from a function and it may
be desirable for client not to have to wait. For example, if a function updates files or
performs a printing task, it would be nice for the client application to continue while
the server performs this task in background, or indeed (using DCOM) on another
computer.

For an out-of-process OLE Server, this can be achieved by having the function that is
called directly by the client post an event (using ⎕NQ) onto the event queue and then
return. When the function terminates, APL will take the next event from the queue and
take the appropriate action. If the event has an associated callback function, APL will
invoke it. Note that this happens immediately after the original function has terminated
and a result (if any) has been returned to the client. This means that the APL OLEServer
continues processing at the same time as the client application.

Note however that while the OLEServer is processing, further OLE requests will be
queued. For example, if the client were to call the same function again immediately,
the function would not be invoked until the original processing has finished and the
client would therefore wait (note that OLE itself will actually time-out after a certain
period). Nevertheless, this technique is an effective way to offload batch processing
tasks to a second (background) APL process or to one running on a different computer.

The OLEASYNC Workspace

The OLEASYNC workspace illustrates this technique. It contains a single namespace
called Async which exports 2 functions (methods), PRINT and ASYNC and two variables
(properties) ERRCODE and COPIES.

The first function, PRINT, prints a specified number of test pages in the background.
PRINT does not actually do any printing. All it does is to associate a second function

Interface Guide

2025-10-30 (main:e0843eae32) Page 251

PRINT_CB as a callback on a user-defined event 3001 (the choice of 3001 is purely
arbitrary). It then posts an event 3001 onto the queue and returns 0 as its result.

The function also illustrates the use of :Trap. Should either of the statements on lines
[3] and [4] fail, the function terminates cleanly and returns ⎕DM instead.

The actual printing is performed by PRINT_CB after PRINT has returned to the client
and while the client itself continues processing. It too uses :Trap to terminate cleanly
should an error occur.

Note that the client can (later) query ERRCODE to find out whether or not the operation
succeeded. Indeed, referencing ERRCODE will synchronise the client and server because
the server will have to wait until PRINT_CB completes before it can service the request
for the value of ERRCODE.

The ASYNC function illustrates a slightly different approach and may be used to execute
any expression asynchronously. It simply associates its argument (a character vector) as
an expression to be executed when (user-defined) event 3001 occurs. It then posts this
event onto the queue as before.

∇ R←PRINT N
[1] ⍝ Prints N test pages "in background"
[2] :Trap 0
[3] '.'⎕WS'Event' 3001 'PRINT_CB'N
[4] ⎕NQ'.' 3001
[5] (R ERRCODE)←0
[6] :Else
[7] (R ERRCODE)←⎕DM ⎕EN
[8] :EndTrap

∇

∇ N PRINT_CB MSG;PR;I;M
[1] ⍝ Callback function : prints N test pages
[2] :Trap 0
[3] 'PR'⎕WC'Printer'
[4] :For I :In ⍳N
[5] 'PR.'⎕WC'Text'(20 60⍴'Testing')(0 0)
[6] 1 ⎕NQ'PR' 'NewPage'
[7] :EndFor
[8] ERRCODE←0
[9] :Else
[10] ERRCODE←⎕EN
[11] :EndTrap

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 252

The callback function DO is invoked (later) when the event 3001 is processed from the
event queue. This happens immediately after the function ASYNC has returned its result
to the client workspace. DO simply executes its left argument, which is the string that
was supplied as the right argument to ASYNC.

You may wonder why it is necessary to use a callback function as opposed to an
execute expression. In particular, why not have ASYNC[3] as follows?

The reason is that whilst a callback will execute in the instance of the OLEServer
namespace connected to this client (which is what we want), an execute expression will
be executed in the master OLEServer namespace itself.

The namespace contains a fourth function called LPR which is designed to be called via
ASYNC using an expression such as ASYNC 'LPR'.

∇ R←ASYNC CMD
[1] ⍝ Executes expression CMD "asynchronously"
[2] :Trap 0
[3] '#.Async'⎕WS'Event' 3001 'DO'CMD
[4] ⎕NQ'#.Async' 3001
[5] (R ERRCODE)←0
[6] :Else
[7] (R ERRCODE)←⎕DM ⎕EN
[8] :EndTrap

∇

∇ CMD DO MSG
[1] :Trap 0
[2] ⍎CMD
[3] ERRCODE←0
[4] :Else
[5] ERRCODE←⎕EN
[6] :EndTrap

∇

[3] '#.Async'⎕WS'Event' 3001 '⍎CMD'

Interface Guide

2025-10-30 (main:e0843eae32) Page 253

Note that the number of copies to be printed is defined by the (global) variable COPIES
whose default value is 1. This is done only to illustrate that LPR called via DO runs in the
correct instance of the OLEServer (using your value of COPIES) as opposed to in the
master OLEServer namespace itself.

Testing dyalog.Async

Load OLEASYNC and then register dyalog.Async as an OLE object by doing the
following:

Rename the workspace to avoid overwriting the original and)SAVE it.

Finally, register the OLE Server using File/Export. Note that dyalog.Async will only work
as an out-of-process OLE Server.

Now clear the workspace and test dyalog.Async using Dyalog APL as an OLE client
application. You could also try calling it from Excel. Note that the results from the
functions PRINT and ASYNC are returned immediately.

∇ LPR;PR;I
[1] :Trap 0
[2] 'PR'⎕WC'Printer'
[3] :For I :In ⍳COPIES
[4] 'PR.'⎕WC'Text'(20 60⍴'Testing')(0 0)
[5] 1 ⎕NQ'PR' 'NewPage'
[6] :EndFor
[7] ERRCODE←0
[8] :Else
[9] ERRCODE←⎕EN
[10] :EndTrap

∇

Async.⎕WC 'OLEServer'
'Async'⎕WS'ExportedFns' ('PRINT' 'ASYNC')
'Async'⎕WS'ExportedVars' ('ERRCODE' 'COPIES')

)WSID c:\MyWS\MYASYNC
was C:\Program Files\Dyalog\Dyalog APL-64 15.0 Unicode\Samples\ole\oleas
ync.dws

)SAVE
c:\MyWS\MYASYNC.dws saved Wed Jun 1 14:11:01 2016

Interface Guide

2025-10-30 (main:e0843eae32) Page 254

)CLEAR
clear ws

'TEST' ⎕WC 'OLEClient' 'dyalog.Async'

TEST.PRINT 3
0

TEST.ERRCODE
0

TEST.COPIES←2
TEST.COPIES

2
TEST.ASYNC 'LPR'

0
TEST.ASYNC 99 ⍝ Wrong !

0
TEST.ERRCODE

11

Interface Guide

2025-10-30 (main:e0843eae32) Page 255

11 ActiveX Control

11.1 Introduction

An ActiveX Control is basically a user-defined control that may be included in GUI
applications and Web Browsers.

This chapter describes how you write ActiveX Controls in Dyalog APL/W.

A Dyalog APL ActiveX Control can be used by any other application that supports
ActiveX. Such applications include Microsoft Visual Basic, Microsoft Excel, Microsoft
Internet Explorer, Netscape Navigator with the NCompass ScriptActive Plug-In and of
course Dyalog APL itself.

This chapter also includes a tutorial which teaches you how to:

Create an ActiveX control in Dyalog APL
Define and Export Properties, Methods and Events
Include your ActiveX control in a Visual basic application
Run your ActiveX control from a Web Browser.

The examples described in this Chapter were developed and tested using the 32-bit
version of Dyalog APL 15.0 Unicode and Microsoft Visual Studio Community 2015. Note
that the Visual Studio IDE does not support 64-bit ActiveX controls, so you cannot run
the tutorial using the 64-bit version of Dyalog.

11.2 Overview

What is an ActiveX Control ?

An ActiveX Control is a dynamic link library that represents a particular type of COM
object. When an ActiveX Control is loaded by a host application, it runs in-process, that
is, it is part of the host application's address space. Furthermore, an ActiveX Control
typically has a window associated with it, which normally appears on the screen and
has a user interface.

An ActiveX Control is usually stored in file with the extension .OCX. The functionality
provided by the control can be supplied entirely by functions in that file alone, or can

•
•
•
•

Interface Guide

2025-10-30 (main:e0843eae32) Page 256

be provided by other dynamic link libraries that it loads and calls, that is, an ActiveX
Control can be stand-alone or can rely on one or more other dynamic link libraries.

What is a Dyalog APL ActiveX Control ?

An ActiveX Control written using Dyalog APL is also a file with a .OCX extension. The file
combines a small dynamic link library stub and a workspace. The functionality of the
control is provided by the functions and variables in the workspace combined with the
dynamic link library version of Dyalog APL.

Note that an ActiveX Control written in Dyalog APL is a GUI object that has a visible
appearance and a user interface.

To write an ActiveX Control in Dyalog APL, you use ⎕WC to create an ActiveXControl
object, as a child of a Form. An ActiveXControl is a container object, akin to a Group or
a SubForm, that may contain a whole range of other controls such as Edit, Combo,
Button and Grid objects. You may populate your ActiveXControl with other objects at
this stage and save them in the workspace. However, you may prefer to create these
sub-objects when an instance of the ActiveXControl is created. This happens when your
control is loaded by a host application.

All the functions and variables that represent methods and properties through which
the ActiveXControl object exports its functionality, reside within the ActiveXControl
namespace.

You may turn a workspace containing one or more ActiveXControl objects into an
installable OCX file by selecting the Export menu item from the Session File menu.

Note that a single OCX file can therefore contain a number of ActiveX Controls.

When a Dyalog APL ActiveX Control is loaded by a host application, functions in the
stub load the appropriate Dyalog APL dynamic link library (DyalogDLL for short) into the
host application. Note that the Dyalog dll must either be on the system PATH or be in
the same directory as the OCX file.

The Dyalog dll copies the appropriate parts of the workspace from the .OCX. If the
same host application starts a second (different) ActiveX Control written in Dyalog APL,
the appropriate parts of the second workspace are merged with the first. For further
details, see the section entitled Workspace Management.

Interface Guide

2025-10-30 (main:e0843eae32) Page 257

The Dyalog APL DLL

ActiveXControls are hosted (executed) by the Dyalog APL DLL. For further details, see
Installation/Configuration: Com Objects And The Dyalog Dll.

Instance Creation

When a host application creates an instance of an ActiveXControl object, the new
instance generates a Create event. It is recommended that you make any GUI objects
that you need within the ActiveXControl at this stage, rather than making them in
advance and saving them in the workspace.

The reason for this is that until an instance of an ActiveXControl is created, its Size and
ambient properties are not known. Ambient properties include the font (which may
affect the size and position of the internal controls) and background and foreground
colours. These are specified by the host application and should normally be honoured
by the ActiveXControl. Although when you are developing an ActiveXControl it will have
a specific size, the size of an instance of the object cannot be predicted in advance
because it is determined by the host application. This alone is sufficient reason to delay
the creation of sub-objects inside the ActiveXControl until the Create event occurs.

In addition to the Create event, ActiveXControl objects support a PreCreate event. This
event is always generated before a Create event and signals the creation of a newly
cloned namespace. However, it is reported before the host application has assigned it a
window. You may therefore not use the PreCreate event to create sub-objects, but you
may use it for other initialisation tasks if applicable. Many host applications distinguish
between design mode, when the user may just place controls in a GUI framework, and
run mode when the controls become fully active. Some applications, such as Microsoft
Access, do not require the control to appear fully in design mode, but instead represent
the control by a simple rectangle or bitmap. In these cases, the ActiveXControl will
generate a PreCreate event in design mode and not generate a Create event until run-
time. Others, like Visual Basic, require that the control appears in design mode as it
would appear in the final application. In these cases, the Create event follows
immediately after PreCreate.

Properties, Methods and Events

Typically, an ActiveX Control provides Properties, Methods and Events that allow the
control to be configured and controlled by a host application.

The information about the properties, methods and events exported by an ActiveX
Control is normally stored in its .OCX file. The information includes the name of each

Interface Guide

2025-10-30 (main:e0843eae32) Page 258

property and its data type, and the name and data type of each method and each of its
arguments. The information for an event is similar to that for a method. In addition to
these obligatory items, it is possible to include help strings and help ids which provide
on-line documentation for the host application programmer

Dyalog APL provides facilities for you to specify all this information in one of two ways;
using dialog boxes or by calling methods.

Firstly, the Properties dialog box for an ActiveXControl object includes three additional
tabs named COM Properties, COM Functions and COM Events. These dialog boxes allow
you to export variables as properties, to export functions as either properties or
methods, and to export events. In addition, the individual Properties dialog boxes for
all the functions and variables in an ActiveXControl namespace have an additional COM
Properties tab which performs the same function. Examples of these dialog boxes are
provided in the tutorial section of this chapter.

Secondly, the ActiveXControl object provides three (internal) methods that allow you to
specify this information by executing APL statements. These methods are named
SetVarInfo, SetFnInfo and SetEventInfo and examples of their use is given in the
tutorial.

Generating Events

Events that are generated by Dyalog APL GUI objects inside an ActiveXControl are
purely internal events and are not detectable by a host application. However, an
ActiveXControl object may generate an arbitrary event for a host application using ⎕NQ
with a left argument of 4.

An external event must have a name (numbers are not allowed) and may include one
or more parameters that supply additional information. The name of the event and the
name and data types of each of its parameters must be defined in advance using the
COM Events tab of the Properties dialog box of the ActiveXControl object, or by calling
its SetEventInfo method.

For example, the Dual control described in the tutorial has an event called
ChangeValue1. This event supplies a parameter named Value1 that has a data type of
VT_PTR to VT_I4 (pointer to an integer). The Dual control generates the event for the
host application by executing the statement:

where Value1 is the new value of its internal Slider control.

4 ⎕NQ '' 'ChangeValue1' Value1

Interface Guide

2025-10-30 (main:e0843eae32) Page 259

A host application may choose to ignore an event generated by an ActiveXControl, or it
may attach a callback function that performs some action in response to the event. A
callback function in the host application receives the parameters supplied by the event
as parameters to the function. If the host application is Dyalog APL itself, the callback
function receives the parameters as part of the event message.

A host application callback function may not return a result. However, it may modify
any of the parameters that were supplied as part of the event message if those
parameters are defined as pointers (VT_PTR to xxx).

The result of 4 ⎕NQ is therefore a vector whose elements correspond to the pointer
parameters in the order they were specified. The result does not contain elements for
parameters that were not exported as pointers and may therefore be empty. In the
above example, the result of 4 ⎕NQ is a 1-element vector containing the, possibly
modified, value of Value1.

11.3 The Dual Control Tutorial

The ActiveX control we will use in this example is deliberately an extremely simple one;
so that the intricacies of the control itself do not get in the way of the principles
involved. In practice, there are actually very few restrictions concerning the complexity
of the ActiveX control, and it is perfectly possible to package complete multiple-
window Dyalog APL applications in this way.

Your ActiveX control will be called a Dyalog Dual Control and is based on the Dyalog
APL TrackBar object.

The Dual control allows the user to enter a number using a slider, whilst displaying its
value in two different units. For example, you could use it to enter a temperature value
which is displayed in both Centigrade and Fahrenheit units. Equally, the same control
could be used to enter a measurement of length which is concurrently displayed in
centimetres and inches.

Interface Guide

2025-10-30 (main:e0843eae32) Page 260

Methods

None (the Dual control provides no methods.)

Properties

The Dual control provides the following properties:

Property Description

Caption1 A text string that describes the primary units. This is displayed in the
top left corner of the object.

Caption2 A text string that describes the secondary or derived units. This is
displayed in the bottom left corner of the object.

Value1 The current value of the control measured in primary units

Value2 The current value of the control measured in secondary units.

Intercept Used to derive Value2 from Value1

Gradient Used to derive Value2 from Value1

Min The minimum value of Value1

Max The maximum value of Value1

Value2 is derived from Value 1 using the expression:

Value2←Intercept+Gradient×Value1

Interface Guide

2025-10-30 (main:e0843eae32) Page 261

Events

Your Dual control will generate a ChangeValue1 event whenever the user alters Value1
using the slider.

The event message will contain a single parameter (the new value) which may be
modified by the host application.

In other words, every time the value in the control changes, the host application may
detect this as an event and has the opportunity to override the user.

Your Dual control will also generate a ChangeValue2 event whenever the derived value
in the control (Value2) changes. This event is reported for information only.

Introducing the Dual Control

To save time, the basic APL code for the Dual control has already been written. Two
workspaces are provided in the samples\activex subdirectory named dualbase.dws
and dualfns.dws. You will use these workspaces to build the ActiveX control yourself.

Preparing a Working Directory

To run this tutorial you will need to save files to a directory on your computer to which
you have write access. This example uses a directory named c:\MyWS.

The directory is required to store the workspace and ActiveXControl, Dual.ocx as you
develop them.

A Dyalog ActiveXControl uses the dynamic-link library version of the Dyalog interpreter
which must be present in the same directory as the .ocx file, so you must copy the
appropriate version here before you can start the tutorial. You may use either the
Development DLL or the Run-Time DLL. If you choose to use the Development DLL, you
will also need to copy the DyaRes DLL which it uses.

For the names of these files corresponding to the version of Dyalog that you are using,
see Installation/Configuration: Files And Directories.

Interface Guide

2025-10-30 (main:e0843eae32) Page 262

Under Windows 7 and later, you have to have administrator privileges to register

a COM component. Therefore, you must run Dyalog as administrator. If you fail to

do this, the registration process will fail. If so, you can continue the process where

you left off by closing Dyalog, restarting as administrator, and reloading the

workspace.

Getting Started

Load the samples\activex\dualbase.dws workspace:

Run the function TEST and observe how the 2 Dual controls behave.

View the function TEST and observe how 2 separate instances of the Dual
namespace F.D1 and F.D2 have been created using ⎕OR and ⎕NS.

Using the Dyalog APL Workspace Explorer, open up the various namespaces. See
how F.D1 and F.D2 are clones of Dual.

Open the function Dual.Create and see how the individual components of the
control are defined.

Close the Form F.

Changing Dual into an ActiveX Control

Change the name of the workspace to Dual in a directory to which you have write-
access:

Make a new namespace called F

Start Dyalog as Administrator

•

)LOAD dualbase
C:\Program Files (x86)\Dyalog\Dyalog APL 15.0 Unicode\...

•

•

•

•

•

)WSID c:\MyWS\Dual

)NS F

Interface Guide

2025-10-30 (main:e0843eae32) Page 263

Using the Workspace Explorer, move the Dual namespace into F, so that Dual is a child
namespace of F.

Now edit the function F.Dual.Create and make the following changes:

Remove all references to the local variable POSITION. This change is required because
an ActiveX control has no say in its position within its parent. (Hint: use the Search/
Replace dialog to remove all occurrences of POSITION+)

Remove the right argument, SIZE and change Create[1] from:

to

This change allows the control to fit itself within the space allocated by the host
application.

Change Create[4] from:

to

The original code was designed to pick up the character height from the parent Form.
The ActiveXControl object does this automatically via its own GetTextSize method.

After making these changes, the Create function should be as follows:

H W←SIZE

H W←Size

CH←⊃##.GetTextSize 'W'

CH←⊃GetTextSize 'W'

Interface Guide

2025-10-30 (main:e0843eae32) Page 264

Open the function F.Dual.Build. This function turns the Dual's parent namespace into
a Form (an ActiveXControl requires a parent Form) and turns Dual itself into an
ActiveXControl. It then attaches functions Create and Configure as callbacks on the
Create and Configure events of the ActiveXControl object itself.

Run function F.Dual.Build. You should see a Form containing a single instance of the
Dual control. Please resist any temptation to play with it at this stage; we want it to be
in its default state for when we save it.

Type the following expression; note that the ClassID, which uniquely identifies your
control (and so will not be the same as that shown below), is allocated when you create
the ActiveXControl object.

∇ Create;H;W;POS;SH;CH;Y1;Y2
[1] H W←Size
[2] SH←40 ⍝ Default TrackBar height
[3] POS←2↑⌊0.5×0⌈(H-SH)
[4] CH←⊃GetTextSize'W'
[5] 'Slider'⎕WC'TrackBar'(POS)('Size'SH W)
[6] Slider.(Limits AutoConf)←(Min,Max)0
[7] Slider.(TickSpacing TickAlign)←10 'Top'
[8] Slider.onThumbDrag←'ChangeValue'
[9] Slider.onScroll←'ChangeValue'
[10] Y1←POS[1]-CH+1
[11] Y2←POS[1]+SH+1
[12] 'Cap1'⎕WC'Text'Caption1(Y1,0)('AutoConf' 0)
[13] 'Cap2'⎕WC'Text'Caption2(Y2,0)('AutoConf' 0)
[14] 'V1'⎕WC'Text'(⍕Value1)(Y1,W)

('HAlign' 2)('AutoConf' 0)
[15] CalcValue2
[16] 'V2'⎕WC'Text'(⍕Value2)(Y2,W)

('HAlign' 2)('AutoConf' 0)
∇

∇ Build
[1] ##.⎕WC'Form'('Coord' 'Pixel')('KeepOnClose' 1)
[2] ⎕WC'ActiveXControl'('Size' 80 200)

('KeepOnClose' 1)
[3] ⎕WS'Event' 'Create' 'Create'
[4] ⎕WS'Event' 'Configure' 'Configure'
[5] ⎕NQ'' 'Create'

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 265

Save the workspace (c:\MyWS\Dual.dws).

From the Session File menu, select Export, choose where you want to save your OCX,
and then click Save. It is a good idea to clear the Runtime application checkbox so that
you can debug the control if anything goes wrong.

F.Dual.ClassID
{002F9614-50F7-4F3B-BB0B-FA3316964E78}

Interface Guide

2025-10-30 (main:e0843eae32) Page 266

Testing the Dual Control

This section describes how you can test and exercise the Dual control using any
appropriate version of Microsoft Visual Studio, such as Microsoft Visual Studio
Community 2015, and language (e.g. Visual Basic) of your choice. This tool is
henceforth referred to herein as VB.

Start VB and create a new Windows Forms Application Project.
Click the right mouse button in the General section of the Toolbox window and
select Choose Items ... from the pop-up menu. In the Choose Toolbox Items
dialog box, click the COM Components tab.
Locate the control named Dyalog Dual Control, enable its check box and click
OK. This adds a tool for the Dual control to the VB Toolbox.
Click on the new tool and drag it onto your Form. An instance of the Dual control
will appear.
Repeat this step to position a second instance of the Dual control on your VB
Form.
Click the Start Debugging button.
Exercise the two Dual controls.
Click the Stop Debugging button.
Click on one of the Dual controls and scroll through its Property list. Notice that
all the properties listed are standard VB ones; there are no properties (or indeed
methods and events) exported. We will learn how to do this next.

Close but do not save the project.

•
•

•

•

•

•
•
•
•

Interface Guide

2025-10-30 (main:e0843eae32) Page 267

Defining and Exporting Properties

Back in the Dyalog Session, change space into the F.Dual namespace.

The properties we wish to export are:

Caption1 Description of the primary set of units

Caption2 Description of the secondary set of units

Value1 The primary value in the control

Min Minimum for Value1

Max Maximum for Value1

Intercept Used to derive the secondary value (Value2)

Gradient Used to derive the secondary value (Value2)

Although we could export all these properties as variables, it is generally more useful to
employ Get and Put functions. The reason for this is that there is no mechanism to
detect when the host application changes a property/variable; nor is there any
mechanism to prevent it assigning an inappropriate value. The Get and Put functions
you need are listed below. To save you time, you can copy them in from the workspace
samples\activex\dualfns.dws.

)CS F.Dual

Interface Guide

2025-10-30 (main:e0843eae32) Page 268

The Get functions need no explanation; they simply return the value of the
corresponding variable. The Set functions assign a new value to the corresponding
variable and update the control accordingly. SetValue1 does this by enqueuing a Scroll
event to the Slider, which in turn invokes the ChangeValue callback.

Display the Object Properties dialog box for the function GetCaption1. (Hint: use the
Workspace Explorer).

)COPY dualfns
C:\Program Files (x86)\Dyalog\Dyalog APL 15.0 Unicode\...

∇ R←GetCaption1
[1] R←Caption1

∇ SetCaption1 C
[1] Cap1.Text←Caption1←C

∇ R←GetCaption2
[1] R←Caption2

∇ SetCaption2 C
[1] Cap2.Text←Caption2←C

∇ R←GetIntercept
[1] R←Intercept

∇ SetIntercept I
[1] Intercept←I
[2] CalcValue2
[3] V2.Text←⍕Value2

∇ R←GetGradient
[1] R←Gradient

∇ SetGradient G
[1] Gradient←G
[2] CalcValue2
[3] V2.Text←⍕Value2

∇ R←GetValue1
[1] R←Value1

∇ SetValue1 V
[1] 1 ⎕NQ'' 'ChangeValue'V

Interface Guide

2025-10-30 (main:e0843eae32) Page 269

Select the COM Properties tab. As you have not yet defined any OLE attributes, the
default display is as follows:

Check the Exported option button.

Change the data type for the Result to VT_BSTR (a text string).

Check the Prop Get radio button to indicate that this is a Property Get function and
enter the name of the property (Caption1) to which it applies.

Note that it is not necessary for the property name referenced by the Get and Put
functions to correspond to a variable name, although in this case it does.

The final COM Properties dialog box for GetCaption1 should appear as follows. Click OK
to save your changes.

Interface Guide

2025-10-30 (main:e0843eae32) Page 270

Now do the same for the SetCaption1 function. This function takes an argument which
it expects to be a character vector. It must therefore be defined as having a single
parameter of data type VT_BSTR; the parameter name is unimportant. However, you
must ensure that the Optional button is unchecked.

In APL terms, the function does not return a result. However, in OLE terms the result is
defined to be of type VT_VOID. Alternatively, you may just leave this field empty.

The OLE properties for SetCaption1 should appear as follows:

Interface Guide

2025-10-30 (main:e0843eae32) Page 271

An alternative way to define the syntax for exported functions is to use the COM
Functions tab in the Properties dialog box for the ActiveXControl object itself. (Hint:
using the Workspace Explorer, open F so that its contents, Dual, are displayed in the
right-hand list, select Dual, then click Props).

The COM Functions tab should appear as follows:

Interface Guide

2025-10-30 (main:e0843eae32) Page 272

The right-hand Combo box allows you to view and edit their syntax for the exported
functions you have already defined. The left-hand Combo box displays the list of other
non-exported functions that are defined in the ActiveXControl.

Select GetCaption2 from the left-hand Combo box, and then click Add. The dialog box
will change to display the default syntax for GetCaption2. Alter the Result data type to
VT_BSTR, select Prop Get, and enter the name of the property, Caption2, so that the
dialog box appears as follows:

Interface Guide

2025-10-30 (main:e0843eae32) Page 273

The third way to define the syntax for exported functions is to use the SetFnInfo
method of the ActiveXControl object. This allows you to export functions using APL
code, which in some circumstances may be more convenient than filling in dialog
boxes.

The SetFnInfo method requires the name of the function, its syntax, a help id, a code
which specifies its type (0 = method, 2 = property get, 4 = property put) and, if
appropriate, the name of the property to which it applies, that is

The function syntax is a nested array whose first element defines the function's result
and whose subsequent elements define each of its parameters. Each syntax specifier is
a single character string that defines a data type, or a pair of character strings. If so, the

SetFnInfo fn syntax helpid type property

Interface Guide

2025-10-30 (main:e0843eae32) Page 274

first string for the result defines a help string, and the first string for each parameter
defines its name.

The following table describes the information we must specify for each of the functions
to be exported:

Exported Functions

Function Result
Parameter

Get/Put Property
Name Type

GetCaption1 VT_BSTR Get(2) Caption1

GetCaption2 VT_BSTR Get(2) Caption2

GetGradient VT_R8 Get(2) Gradient

GetIntercept VT_R8 Get(2) Intercept

GetValue1 VT_I4 Get(2) Value1

SetCaption1 VT_VOID Caption1 VT_BSTR Put(4) Caption1

SetCaption2 VT_VOID Caption2 VT_BSTR Put(4) Caption2

SetGradient VT_VOID Gradient VT_R8 Put(4) Gradient

SetIntercept VT_VOID Intercept VT_R8 Put(4) Intercept

SetValue1 VT_VOID Value1 VT_I4 Put(4) Value1

From this table we can easily construct the corresponding SetFnInfo statements. For
example, the statement for GetCaption1 is:

Note that ¯1 in the 3rd element of the right argument specifies that there is no help id.

Open the function F.Dual.EXPORT; this contains statements to export all the Get and
Put functions we need.

Run the function and save the workspace.

SetFnInfo 'GetCaption1' 'VT_BSTR' ¯1 2 'Caption1'

)CS
#

F.Dual.EXPORT
)SAVE

c:\MyWS\Dual.dws saved Mon Aug 1 14:52:14 2016

Interface Guide

2025-10-30 (main:e0843eae32) Page 275

Then, re-export the workspace, updating your .ocx file with all the new information.

Setting Properties from VB

Start VB and create a new Windows Forms Application Project.

If the Dyalog Dual Control is not already in the Toolbox, click the right mouse button in
the General section of the Toolbox window and select Choose Items ... from the pop-up
menu. In the Choose Toolbox Items dialog box, click the COM Components tab.

Locate the control named Dyalog DUAL Control, enable its checkbox and click OK. This
adds a tool for the Dual control to the VB Toolbox.

Click on the Dyalog Dual tool and drag it onto your Form. An instance of the Dual
control will appear.

In the Properties dialog box, change the default Dual1 properties to the following:

Caption1 Centimetres

Caption2 Inches

Gradient 0.3937

Intercept 0

Interface Guide

2025-10-30 (main:e0843eae32) Page 276

Double-click the left mouse button over your Form (Form1). This will bring up the code
editor dialog box. Edit the Form1_Load() subroutine, entering the program statements
shown below. This code will be run when VB starts your application and loads the Form
Form1. It illustrates how you can change the properties of your Dyalog APL ActiveX
control dynamically.

Now test your application by clicking Start Debugging. When you have finished, click
Stop Debugging.

Close but do not save the project. This is necessary to allow you to rebuild the Dual
ActiveX control which is (currently) loaded in your VB application. Otherwise, Dyalog
will be unable to overwrite the .ocx file.

Defining and Exporting Events

Back in Dyalog, using the Workspace Explorer, open the callback function
F.Dual.ChangeValue and alter ChangeValue[2] from:

to

Then close the function. Previously, the ChangeValue function simply accepted the new
value (of the TrackBar thumb) that it received as the last element of the event message.
Now it generates an external ChangeValue1 event for the host application using 4 ⎕NQ.
The host may in turn modify the new value which is returned as the result of the
expression. Thus, not only can Dyalog APL generate events which are detectable by the
host application, it can also accept modifications.

Again using the Workspace Explorer, open the Properties dialog box for the Dual object
itself and select the COM Events tab.

Enter the name of the event ChangeValue1 into the edit box labelled Name.

Value1←⊃¯1↑MSG

Value1←⊃4 ⎕NQ '' 'ChangeValue1' (⊃¯1↑MSG)

Interface Guide

2025-10-30 (main:e0843eae32) Page 277

Click Add

Click the right mouse button over the Result row and select Insert

In the column labelled Param Name enter Value1, then change the Type to VT_I4 and
the Modifier to VT_PTR. This defines a parameter named Value1 that supplies a
pointer to an integer. The fact that it is a pointer means that the (integer) parameter
may be modified by the host application.

The final appearance of this dialog box should be as follows:

Click OK, change back to the root space, and save the workspace.

)CS #
)SAVE

Interface Guide

2025-10-30 (main:e0843eae32) Page 278

Select File/Export and rebuild your .ocx file.

Using Events from VB

Back in VB, create a new Windows Application Project.

Check that the Dyalog DUAL Control tool is available in the ToolBox.

If not:

click the right mouse button in the General section of the Toolbox window and
select Choose Items ... from the pop-up menu. In the Choose Toolbox Items
dialog box, click the COM Components tab.
locate the control named Dyalog DUAL Control, set its checkbox on and click OK.
This adds a tool for the Dual control to the VB Toolbox.

Click on the Dyalog DUAL Control tool and drag it onto your Form. An instance of the
Dual control will appear.

Select the label tool and add a label object (Label1) to the Form. Select its Font
property and change it to 14-point bold.

•

•

Interface Guide

2025-10-30 (main:e0843eae32) Page 279

View the code window and choose the object AxDual1 and its only event
ChangeValue1. Enter a line of code to set the Caption property of the Label object
Label1 to the String equivalent of the event parameter Value1.

Enter the following code, and then close the code window, that is

Start the application using Start Debugging. Exercise the Dual control and observe that
VB updates the Label1 control in response to the ChangeValue1 events. When you have
finished, select Stop Debugging.

Label1.Text = Str(e.Value1)

Interface Guide

2025-10-30 (main:e0843eae32) Page 280

In the code window, add the following line of code to the AxDual1_ChangeValue
subroutine:

Start the application using Start Debugging. Exercise the Dual control and observe that
now the slider moves in increments of 2. When you have finished, select Stop
Debugging

e.Value1=2 * (e.Value1\2)

Interface Guide

2025-10-30 (main:e0843eae32) Page 281

Interface Guide

2025-10-30 (main:e0843eae32) Page 282

12 DDE

12.1 Introduction to DDE

Dynamic Data Exchange (DDE) is a protocol supported by Microsoft Windows that
enables two applications to communicate with one another and to exchange data.

DDE has largely been superseded by COM, but continues to be supported by Dyalog
APL for backwards compatibility. For new applications, use COM.

Two applications exchange information by having a conversation. In any conversation,
there is a client, which is the application that initiates the conversation, and a server;
the application that is responding to the client. An application may partake in several
conversations at the same time, and may play the server role in some and the client
role in others. Indeed, it is perfectly reasonable for two applications to have two
conversations in which each acts as the server in one and the client in another.

Most conversations are effectively one-way in that data flows from the server to the
client. However, conversations are potentially bi-directional and it is possible for the
client to send data to the server. This is often described as poking data.

To initiate a DDE conversation, the client application must specify the name of the
server and the subject of the conversation, called the topic. The combination of
application and topic uniquely identifies the conversation. In most applications that
support DDE, the topic is the "document name". For example, Microsoft Excel
recognises the name of a spreadsheet file (.XLS or .XLC) as a topic.

During a conversation, the client and server exchange information concerning one or
more items. An item identifies a particular piece of data. For example, Microsoft Excel
recognises cell references (such as R1C1) as data items in a conversation. Throughout a
conversation, the client may specify how it wishes to be updated when the data in the
server changes.

There are three alternatives. Firstly, the client can explicitly request the value of an
item as and when it needs it. This is described as a cold link. Alternatively, a client may
ask the server to supply it with the value of a particular item whenever its value
changes. This is called a hot link. Finally, it may ask the server to notify it whenever the
value of an item changes, to which the client may respond by asking for the new value
or not. This is termed a warm link.

Interface Guide

2025-10-30 (main:e0843eae32) Page 283

In addition to providing a means for exchanging data, DDE provides a mechanism for
one application to instruct another application to execute a command. This is
implemented by sending a DDE_EXECUTE message. It is important to understand that
the effect of the command is local to the application in which it is executed, and that
the recipient of the message does not return a result to the originating application. It
does not work like the APL execute function.

12.2 Shared Variable Principles

Shared Variables are part of the APL standard, although strictly speaking as an optional
facility. They provide a comprehensive mechanism for communicating between two
APL workspaces, or between APL and a co-operating non-APL application. Despite
some conflicts between Shared Variable concepts and DDE, this standard APL
mechanism has overriding advantages as the basis for a DDE interface. The main
benefit is that Shared Variables provide a general basis for developing communications
using a variety of protocols, of which DDE is but a single example. Dyalog APL
communications are not therefore designed for and limited to DDE, but can be
extended to other protocols which are appropriate in different environments.

Most mainframe APL users will already be familiar with Shared Variables and will need
no introduction to their concepts. New APL users, or those whose experience has been
only of PC-based interpreters, may find the following introduction helpful.

Introduction

It is easiest to consider Shared Variables between two APL workspaces. A Shared
Variable is simply a variable that is common to and visible in two workspaces. Once a
variable is shared, its value is the same in both workspaces. Communication is achieved
by one workspace assigning a new value to the variable and then the other workspace
referencing it. Although there is no explicit send or receive, it is perhaps easier to think
of things in this way. When you assign a value to a shared variable, you are in effect
transmitting it to your partner. When you reference a shared variable, you are in fact
receiving it from your partner.

This discussion of shared variables will refer to the terms set and use. The term set
means to assign a (new) value to a variable, that is, its name appears to the left of an
assignment arrow. The term use means to refer to the value of a variable, that is, its
name appears to the right of an assignment arrow.

Interface Guide

2025-10-30 (main:e0843eae32) Page 284

Sharing a Variable

Variables are shared using the system function ⎕SVO. This is a dyadic function whose
right argument specifies the name (or a matrix of names) of the variable, and whose
left argument identifies the partner with whom the variable is to be shared. In
mainframe APL, you identify the partner by its processor id. For example, the following
statement means that you offer to share the variable X with processor 123.

A single ⎕SVO by one workspace is not however sufficient to make a connection. It is
necessary that both partners make an offer to share the variable. Thus if you are
process 345, your partner must complete the coupling by making an equivalent shared
variable offer. For example:

The coupling process is symmetrical and there is no specific order in which offers must
be made. However, there is a concept known as the degree of coupling which is
returned as the result of ⎕SVO. The degree of coupling is simply a count of the number
of processes which currently have the variable "on offer". When the first process offers
to share the variable, its ⎕SVO will return 1. When the second follows suit, its ⎕SVO
returns 2. The first process can tell when coupling is complete by calling ⎕SVO
monadically at a later point, as illustrated below.

Process 345 Process 123

123 ⎕SVO 'X'

1

345 ⎕SVO 'X'

2

⎕SVO 'X'

2

In this example, both partners specified exactly whom they wished to share with. These
are termed specific offers. It is also possible to make a general offer, which means that
you offer to share a particular variable with anyone. Coupling can be established by any
other processor that offers to share the same variable with you, but notice that the
other processor must make a specific offer to couple with your general one. The rule is
in fact, that sharing may be established by matching a specific offer with another

123 ⎕SVO 'X'

345 ⎕SVO 'X'

Interface Guide

2025-10-30 (main:e0843eae32) Page 285

specific offer, or by matching a specific offer with a general offer. Two general offers
cannot establish a connection.

The State Vector

One of the interesting things about Shared Variables, is that both APL workspaces are
equal partners. Either of them is allowed to change the value of a shared variable, thus
communication is two way. In any communication of this sort, it is essential to have a
mechanism to keep things in step. If not, it is possible for one partner to miss
something or to receive the same message twice. In some applications this doesn't
matter. For example, if one APL workspace is simply monitoring the current value of a
particular currency, it does not matter that a second workspace doesn't see all of the
fluctuations as they occur. It is important only that the latest value can be referenced
when it is needed. Contrast this with a trading application in which the trading
workspace registers each transaction with a second workspace which monitors and
stores the transactions on a database. Clearly in this case it is essential that each and
every transaction is properly communicated and recorded.

Synchronisation is provided by two system functions, ⎕SVS and ⎕SVC. ⎕SVS reports the
current value of a shared variable's State Vector. This provides information concerning
the state of the variable from each partner's point of view. The second function, ⎕SVC,
allows you and your partner to specify interlocking that enforces the level of
synchronisation required by your application.

Each shared variable has a state vector which indicates which partner has set a value of
which the other is still ignorant, and which partner is aware of the current value. The
current state of a shared variable is reported by the monadic system function ⎕SVS. Its
argument is the name of the shared variable. Its result is a 4-element Boolean vector
which specifies the current state vector, that is:

The state vector will have one of the following values:

0 0 0 0 The variable is not shared

0 0 1 1 Both partners know the current value

1 0 1 0 You have set the value, but your partner has yet to use it.

0 1 0 1 Your partner has set the variable but you have not yet used it.

It may not be immediately apparent as to how the information provided by ⎕SVS can be
used. The answer, as we will see later, is that communications generates events. That is

state ← ⎕SVS name

Interface Guide

2025-10-30 (main:e0843eae32) Page 286

to say, when your partner sets a shared variable to a new value or references a value
that you have set, an event is generated telling you that something has happened. ⎕SVS
is then used to determine what has happened (set or use) and, if you have several
variables shared, which one of the variables has in some way changed state. A shared
variable state change is thus the trigger that forces some kind of action out of the other
process.

Access Control

⎕SVS is not sufficient on its own to synchronise data transfer. For example, what if the
two partners both set the shared variable to a different value at exactly the same point
in time ? This is the role of ⎕SVC which actually assures data integrity (if required) by
imposing access controls. Its purpose is to synchronise the order in which two
applications set and use the value of a shared variable.

In simple terms, ⎕SVC allows an application to inhibit its partner from setting a new
value before it has read the current one, and/or to inhibit its partner from using a
variable again before it has been reset.

⎕SVC is a dyadic system function. Its right argument specifies the name of the shared
variable; its left argument the access control vector, that is,

The access control vector is a 4-element Boolean vector whose elements specify access
control as follows:

[1] 1 means that you cannot set the variable until your partner has used it.

[2] 1 means that your partner cannot set the variable until you have used it.

[3] 1 means that you cannot use the variable until your partner has set it.

[4] 1 means that your partner cannot use the variable until you have set it.

In principle, each of the two partners maintains its own copy of the access control
vector using ⎕SVC. Control is actually imposed by the effective access control vector
which is the result of "ORing" the two individual ones. From your own point of view,
the effective access control vector is:

Whenever either of the partners attempts an operation (set or use) on a shared
variable, the system consults its effective access control vector. If the vector indicates

access ⎕SVC name

(your ⎕SVC) ∨ (your partner's ⎕SVC)[3 4 1 2]

Interface Guide

2025-10-30 (main:e0843eae32) Page 287

that the operation is currently permitted, it goes ahead. If however the vector indicates
that the operation is currently inhibited, the operation is delayed until the situation
changes.

For example, suppose that the effective access control vector is (1 0 0 1). This prevents
either partner from setting the shared variable twice in a row, without an intervening
use by the other. The purpose of this is to prevent loss of data. Suppose now that one
workspace assigns the value 10 to the shared variable (which is called DATA), that is:

Then, before the partner has referenced the new value it attempts to execute the
statement:

APL will not execute the statement. Instead it will wait (indefinitely if required) until the
partner has received the first value (10). Only then will the second assignment be
executed and processing continued. Effectively one workspace stops and waits for the
other to catch up.

Similarly, suppose that the effective access control vector is (0 0 1 1). This means that
neither partner can use the variable twice in succession without an intervening set by
the other. This type of control is appropriate where each set corresponds to an
individual transaction, and you want to prevent transactions from inadvertently being
duplicated.

Suppose now that one workspace references the shared variable (which is called DATA),
that is:

Then, soon after, it executes the statement again, but without an intervening set by its
partner, that is:

This time, the reference to DATA is inhibited, and the workspace waits (indefinitely if
necessary) until the partner has assigned a new value. Only then will the second
reference be executed and processing continued. Again, one workspace stops and waits
for the other.

The purpose of ⎕SVC is to synchronise data transfer. It is particularly useful where
timing considerations would otherwise cause data loss. However, an incorrect
application which makes inappropriate use of ⎕SVC may hang.

DATA ← 10

DATA ← 20

TRANSACTION ← DATA

TRANSACTION ← DATA

Interface Guide

2025-10-30 (main:e0843eae32) Page 288

A second type of problem can occur during the development of an application that
uses shared variables. If the program is interrupted by an error, an attempt to display
the value of a shared variable counts as a "use" and, if inhibited, will hang. In
applications that use interlocking, it is recommended that a shared variable is explicitly
"used" by making an assignment to a temporary variable which can then be referenced
freely.

This is the theory; we will now see how DDE, by its very nature, imposes certain
limitations in practice.

12.3 APL and DDE in Practice

The interface between Dyalog APL/W and DDE is provided by Shared Variables which
are implemented as closely as possible in accordance with the APL Standard. There are
however some conflicts between Shared Variables and the way in which DDE works.
These impose certain restrictions.

The APL Shared Variable concept is based upon the peer-to-peer communications
model where each partner has equal rights and equal control. DDE however is based
upon the client-server model whereby data (normally) flows from server to the client at
the client's request. This in turn has two major implications. Firstly, a client must
initiate a DDE conversation. A server may only respond to a request from a client for a
connection; it may not itself start a conversation. Secondly a server cannot specify to
which client it wishes to communicate. In terms of the APL standard, this means that if
a shared variable is to act as a server it must be made the subject of a general offer. A
shared variable that is to act as a client must be the subject of a specific offer
Furthermore, as in any DDE conversation there must be one server and one client, it
means that two APL workspaces can share variables only if one makes a general offer
and one makes a specific offer.

An APL application registers itself as a potential server, or initiates a DDE conversation
as a client, by making a Shared Variable offer using ⎕SVO. The offer is either a general
offer, which corresponds to a DDE server, or a specific offer which is a client.

Note that, as mentioned in the introduction, DDE does not preclude two-way data
transfer, despite its insistence on a client-server relationship. Thus the establishment of
a shared variable as a server or as a client does not force the data transfer to be one-
way. The choice of whether APL is to act as a server or as client may in practice be
determined by convenience.

Interface Guide

2025-10-30 (main:e0843eae32) Page 289

APL as the Client

To initiate a DDE conversation with a server, you use ⎕SVO as follows:

where:

appln is the name of the server application.

topic is the server topic (usually the name of a document).

var is the name of the APL variable.

item
is the name of the item with which the variable is to be associated
(shared).

For example, the following statement would associate the variable SALES with the
block of cells R1C1 to R10C10 in an Excel spreadsheet called "Budget".

Note that the result of ⎕SVO is the degree of coupling. This has the value 2 if the
connection is complete (the server has responded) and 1 if it has not. In practice it is a
little more complicated than this, because the result actually depends upon the type of
DDE link that has been established.

In principle, the type of link is determined by the client. However, because the server
may refuse to accept a particular type of link, it can actually be a result of negotiation
between the two applications.

When the shared variable is offered as a client, APL always requests a warm link from
the server. If the server refuses a warm link, APL instead requests the current value of
the data item (a cold link), and, if the server responds, APL stores the value in the
variable. In either case, the degree of coupling is set to 2 if the connection was
successful.

Executing Commands in the Server

As mentioned in the Introduction, it is possible for a client to instruct a server to
execute a command by sending it a DDE_EXECUTE message. This is intended to allow
the client to condition the environment in which the server is operating and not (as one
might first expect) to execute a command which directly returns a result. In fact the

'DDE:appln|topic' ⎕SVO 'var item'

'DDE:EXCEL|BUDGET' ⎕SVO 'SALES R1C1:R10C10'
2

Interface Guide

2025-10-30 (main:e0843eae32) Page 290

only response from a server to a DDE_EXECUTE message is a positive or negative
acknowledgement, the meaning of which is application dependent.

You can establish a shared variable as a channel for sending DDE_EXECUTE messages by
assigning it a surrogate name of '⍎', the APL execute symbol. After sharing, you send
commands to the server as DDE_EXECUTE messages by assigning them, as character
vectors, to the shared variable. Following each such assignment, the value of the
shared variable is reset to 1 if the server responded with a positive acknowledgement,
or 0 if it responded with a negative acknowledgement. This should be interpreted with
reference to the server application documentation. Note that most applications require
that commands are surrounded by square brackets but several commands may be sent
at a time. The following examples use Microsoft Excel Version 2.0 as the server :

Establish a link to Excel's SYSTEM topic

Instruct EXCEL to open a spreadsheet file

Instruct EXCEL to select a range of cells

Carry out two commands in one call

APL as the Server

A DDE conversation is initiated by a client, and not by a server. If you wish to act as a
server, it is therefore necessary to register this fact with the APL interpreter so that it

'DDE:EXCEL|SYSTEM' ⎕SVO 'X ⍎'
2

X←'[OPEN(c:\mydir\mysheet.xls)]'
X

1

X←'[SELECT("R1C1:R5C10")]'
X

1

CMD1←'[OPEN(c:\mydir\mysheet.xls)]'
CMD2←'[SELECT("R1C1:R5C10")]'
X←CMD1,CMD2
X

1

Interface Guide

2025-10-30 (main:e0843eae32) Page 291

will subsequently respond to a client on your behalf. This is done by making a general
offer using ⎕SVO as follows:

where:

var is the name of the APL variable.

item
is the name of the item with which the variable is to be associated
(shared).

Notice that in this case, the left argument to ⎕SVO specifies only the protocol, 'DDE'.
APL automatically defines the application name and topic to be 'DYALOG' and ⎕WSID
respectively. The DDE item is specified in the right argument as either the name of the
variable, or, optionally, as its external name or surrogate.

To allow another application to act as a client, you must have previously published the
name(s) of the items which are supported. For example, if your APL application
provides SALES information, the following statement could be used to establish it as a
server for this item:

In the case of a single general offer, the result of ⎕SVO will always be 1. When
subsequently a client application attempts to initiate a conversation with a server with
the application name 'DYALOG' and topic ⎕WSID, the APL interpreter will respond and
complete the connection.

At this point, if and when the client has requested a hot or warm link to the item SALES,
the degree of coupling (which is reported by using ⎕SVO monadically) becomes 2, that
is:

12.4 State and Access Control

Earlier, we have seen how shared variable state and access controls are used to ensure
effective communication between two APL tasks. How do these concepts apply in the
DDE environment when APL is using shared variables to communicate via DDE with
both other APL workspaces, and with non-APL applications?

'DDE:' ⎕SVO 'var item'

'DDE:' ⎕SVO 'X1 SALES'
1

⎕SVO 'X1'
2

Interface Guide

2025-10-30 (main:e0843eae32) Page 292

The initial state of a shared variable on the completion of sharing depends upon
whether your variable is a server or a client. If it is a server, the initial state vector is (1
0 1 0) which means that you have set (and know) the value, but your partner has yet to
use it. If the variable is acting as a client, the initial state vector is (0 1 0 1). This implies
that your partner has set the value but you have yet to use it.

As your partner can be a non-APL application which does not share the concepts of set
and use, it is necessary to define a rule or set of rules from which APL can reasonably
infer such actions.

During a DDE conversation, the physical transfer of data from one application to
another is achieved using DDE DATA messages. When a DATA message is sent, the
receiving task normally returns an ACK (acknowledgement) message. APL uses the
DATA and ACK messages to control Shared Variable access.

When an assignment is made to a shared variable, APL sends a DATA message to the
second process. When it receives back an ACK message, APL infers that this means that
the partner has used the variable. When APL receives a DATA message from the other
process it infers that the partner has set the variable. However, it only responds with an
ACK message when the new value of the variable is referenced by the workspace.

Let's see what this means if two APL workspaces are involved.

Interface Guide

2025-10-30 (main:e0843eae32) Page 293

Server Workspace Client Workspace

Make general offer

 X←42

 'DDE:' ⎕SVO 'X'

1

 ⎕SVS 'X'

0 0 0 0 ⍝ No partner

 ⎕SVC 'X'

0 0 0 0 ⍝ No access ctl

Make specific offer

'DDE:DYALOG|SERVER'⎕SVO'X'

<--- initiate ---

ack --->

<--- please advise on change

ack --->

2 ⍝ Offer accepted

 ⎕SVS 'X' ⎕SVS 'X'

1 0 1 0⍝ I know, not he 0 1 0 1⍝ He knows, I don't

Client requests data

 Y ← X

<--- req ---

--- data (42) --->

<--- ack ---

 ⎕SVS 'X' ⎕SVS 'X'

0 0 1 1⍝ We both know 0 0 1 1⍝ We both know

Server changes data

Interface Guide

2025-10-30 (main:e0843eae32) Page 294

 X ← 20

--- data has changed -->

<--- ack ---

 ⎕SVS 'X' ⎕SVS 'X'

1 0 1 0 ⍝ I know, not he 0 1 0 1 ⍝ He knows, I don't

Client requests data

 Y ← X

<--- req ---

--- data (20) --->

<--- ack ---

 ⎕SVS 'X' ⎕SVS 'X'

0 0 1 1 ⍝ We both know 0 0 1 1 ⍝ We both know

As you can see, this has the desired effect, namely that an APL workspace sets the
value of a shared variable by assignment to it and uses it by reference to it. The
mechanism of using the DATA and ACK messages to imply set and use also works with
non-APL applications which do not (in general) support these concepts.

Access control between two APL workspaces is imposed by each workspace acting
independently. Whenever either workspace changes its ⎕SVC, the information is
transmitted to the other. Thus both workspaces maintain their own copy of the
effective access control vector upon which to base decisions.

Interface Guide

2025-10-30 (main:e0843eae32) Page 295

Server Workspace Client Workspace

No access control No access control

 ⎕SVC 'X' ⎕SVC 'X'

0 0 0 0 ⍝ No access ctl 0 0 0 0 ⍝ No access ctl

Client makes multiple requests for data

 Y←X

 Y←X

Server can set several times

 X←30

 X←40

Set access control

 1 0 0 1 ⎕SVC 'X'

--- change in ⎕SVC -->

 ⎕SVC 'X' ⎕SVC 'X'

Client requests data

 Y ← X

<--- req ---

(hangs waiting for data)

Server changes data

 X ← 30

--- data (30) --->

<--- ack ---

 Y ⍝ data received

30

1 0 0 1 ⍝ I cannot set
 until he has used; he
cannot
 use until I have set

0 1 1 0 ⍝ He cannot set
 until I have used.
 I cannot use until he
has set

Interface Guide

2025-10-30 (main:e0843eae32) Page 296

Server changes data

 X ← 40

--- data has changed --->

<--- ack ---

Server tries to change data again

 X ← 50

--- data has changed --->

(assignment hangs waiting for ack)

 Y ← X ⍝ use data

<--- req ---

--- data (40) --->

<--- ack ---

 X ⍝ assignment done Y ⍝ data received

50 40

Where the second process is a non-APL application, the effective access control vector
is maintained only by the APL task and access control can only be imposed by APL. At
first sight, it may seem impossible for APL to affect another application in this way, and
indeed there are severe limitations in what APL can achieve. Nevertheless, effective
access control is possible in the case when it is desirable to inhibit the partner from
setting the value twice without an intervening use by the APL task.

This is simply achieved by withholding the ACK message. Thus if APL receives a DATA
message from its partner at a time when a set by the partner is inhibited, APL registers
the new value but withholds the acknowledgement. Only when the inhibitor is
removed will APL respond with an ACK. (Users with DDESPY will observe that this is
actually implemented by APL re-transmitting the DATA message to itself when the
inhibitor is removed).

Assuming that the second application waits for the acknowledgement before
proceeding, this will cause the desired synchronisation. Naturally, this cannot be
entirely guaranteed because APL has no direct control over a non-APL program. Indeed,
when an application transmits a DATA message, it can include a flag to indicate that an
acknowledgement is neither expected nor required. In these circumstances, APL is
powerless to impose any access control.

Interface Guide

2025-10-30 (main:e0843eae32) Page 297

Note that APL does not (and cannot) have any control over successive internal
references to the data by a non-APL application.

The rule for establishing your partner's initial ⎕SVC is as follows:

If the DDE link is a warm link, your partner's ⎕SVC is initially (0 0 0 0).
If the DDE link is instead a hot link, your partner's ⎕SVC is initially (1 0 0 1).

This works in practice as follows:

Server = APL, Client = APL

You made a general offer which has been accepted by another APL workspace. For
example:

Two APL tasks always use a warm DDE link. Therefore, initially, both ⎕SVCs are (0 0 0 0).
Control is (optionally) imposed by both partners subsequently setting ⎕SVC.

Server = APL, Client = another application

You made a general offer which has been accepted by another application. For
example:

The client application establishes the strength of the link (warm or hot). If it is a warm
link, the initial value of the client's ⎕SVC is (0 0 0 0) and, as the client has no means to
change it itself, control may only be imposed by the server APL task. If the client
establishes a hot link, its initial ⎕SVC is (1 0 0 1). As it has no means to change it, and as
the APL server task cannot (by definition) change it, the client's ⎕SVC retains this setting
for the duration of the conversation. (1 0 0 1) means that both partners are inhibited
from setting the value of the shared variable twice in a row without an intervening use
(or set) by the other. Given that the other application has requested a hot link (give me
the value every time it changes) it is reasonable to assume that the application does
not want to miss any values and will happily accept new data every time it is changed.

Server = another application, Client = APL

You made a specific offer to another application. For example:

•
•

'DDE:' ⎕SVO 'DATA'

'DDE:' ⎕SVO 'DATA'

'DDE:EXCEL|SHEET1' ⎕SVO 'DATA R1C1:R3C4'

Interface Guide

2025-10-30 (main:e0843eae32) Page 298

In this case, APL as the client will request a warm DDE link. If the server fails to agree to
this request, APL will ask for the current data value and, whether or not the server
responds, will not establish a permanent link. Thus the only possibility for a permanent
connection is a warm link. This in turn means that the server's ⎕SVC will be (0 0 0 0).
Furthermore, as the server has no means to change it, it's ⎕SVC will remain (0 0 0 0) for
the duration of the conversation. Control is therefore imposed solely by APL.

Terminating a Conversation

A DDE conversation is terminated by "un-sharing" the variable. This can be done
explicitly using ⎕EX or ⎕SVR. It is also done automatically when you exit a function in
which a shared variable is localised.

12.5 Example: Communication Between APLs

The following instructions will allow you to explore how the DDE interface can be used
to communicate between two Dyalog APL/W workspaces.

Start two separate APL sessions and arrange their windows one above the other so that
they do not overlap.

Select the top window and type:

The result of ⎕SVO is 1, indicating that no client has yet joined in the conversation.

Select the lower window and type:

The result of ⎕SVO is 2 indicating that the connection with the SERVER workspace has
been successfully made. Now type B. It will have the same value as A in the upper
window.

Select the top window (SERVER) again and type:

)WSID SERVER
A←?5 5⍴100 ⋄ A
'DDE:' ⎕SVO 'A EXTNAME'

1

)WSID CLIENT
'DDE:DYALOG|SERVER' ⎕SVO 'B EXTNAME'
B

Interface Guide

2025-10-30 (main:e0843eae32) Page 299

Note that the result of ⎕SVS indicates that the SERVER has set A, but the CLIENT has not
yet referenced the value.

Select the lower window (CLIENT) and type:

Note how, after referencing the shared variable, its state has changed.

Still in the CLIENT workspace, write the following function called FOO:

Then, to attach FOO as a callback and to "wait"...

Now switch to the upper window (SERVER) and type:

Type this expression repeatedly, or experiment with others. Note how changing A
generates a DDE event (event number 50) on the system object '.' in CLIENT, which in
turn fires the callback.

To interrupt ⎕DQ in the CLIENT, type Ctrl+Break or select "Interrupt" from the Action
menu in the Session Window.

A←⌹A
⎕SVS 'A'

1 0 1 0

⎕SVS 'B'
0 1 0 1

B
...

⎕SVS 'B'
0 0 1 1

∇ FOO
[1] ⍝ This function gets called on event 50 (DDE)
[2] →(0 0 1 1≡⎕SVS'B')/0 ⍝ Exit if no change
[3] B

∇

'.' ⎕WS 'Event' 50 'FOO'
⎕DQ '.'

A←⌹A

Interface Guide

2025-10-30 (main:e0843eae32) Page 300

12.6 Example: Excel as the Server

The following instructions will allow you to explore the DDE interface with another
application (in this case Microsoft Excel) acting as the server.

Start Excel and enter some data into (say) the cells R1C1 to R4C3 of the spreadsheet
"SHEET1". The data can be character strings and/or numbers. Note that if the
spreadsheet is NOT called "SHEET1", the function RUN below should be changed
accordingly.

Start Dyalog APL/W (clear ws).

Size your windows so that both the Excel window and the APL Session window can be
viewed comfortably at the same time.

Type the following statement in the APL Session :

The result should be 2. If not, please check that you have typed the expression
correctly, and that the name of the topic (SHEET1) corresponds to the spreadsheet
name displayed by Excel.

Note that the character between "EXCEL" and "SHEET1" may be the ASCII pipe symbol
or the APL stile. Also note that in some countries, you use Lnn instead of Rnn to refer to
rows in Excel. You may therefore need to use the following expression instead:

Remaining in the APL Session, type X. It is a matrix containing as many cells as you have
requested in the ⎕SVO statement. If you entered any character strings, X will be nested.

Switch to your Excel window and change the data in one or more of the cells.

Switch back to the APL Session and look at X again. It will contain the new data.

Look at the state of the shared variable X using ⎕SVS. It indicates that both partners are
aware of the current value of X.

'DDE:EXCEL|SHEET1' ⎕SVO 'X R1C1:R4C3'
2

'DDE:EXCEL|SHEET1' ⎕SVO 'X L1C1:L4C3'
2

⎕SVS 'X'
0 0 1 1

Interface Guide

2025-10-30 (main:e0843eae32) Page 301

Now switch to Excel and change the data again. Repeat step 8. Note the result indicates
that Excel has changed X, but you have not yet referenced it.

Type the expressions :

Now switch to Excel and change the data again. Note that the ⎕DQ terminates and
returns a result.

Switch back to APL and create the following function :

Then type :

Now switch back to Excel and change the data. Note that every time you change a cell,
the DDE event fires your callback function FOO. In fact the function is fired twice
because it itself alters the STATE of X by referencing it. This causes a second DDE event.

Switch back to APL, and type Ctrl+Break or select "Interrupt" from the Action menu to
interrupt ⎕DQ.

12.7 Example: Excel as the Client

The following instructions will allow you to explore the DDE interface with APL acting as
the server to another application; in this case Microsoft Excel.

Start APL (clear ws) and type the expressions :

⎕SVS 'X'
0 1 0 1

'.' ⎕WS 'EVENT' 50 1
⎕DQ'.'

. 50

∇ FOO MSG
[1] 'MSG IS ' MSG
[2] 'X IS' X

∇

'.' ⎕WS 'EVENT' 50 'FOO'
⎕DQ'.'

)WSID MYWS
X←12
'DDE:' ⎕SVO 'X SALES'

Interface Guide

2025-10-30 (main:e0843eae32) Page 302

The workspace MUST have a name as this is broadcast as the DDE topic. Note that it is
currently essential that X contains a value before you make the offer. The result of ⎕SVO
is 1, indicating that no client has yet joined in the conversation.

Start Excel (empty spreadsheet).

Size your windows so that both the Excel window and the APL Session window can be
viewed comfortably at the same time. Do NOT iconify either one.

Select the Excel window and type the following formula into the first cell :

the value of X (12) will now appear in the cell.

Switch to the APL Session and type :

Notice that now that Excel has made the connection, the degree of coupling is 2.

Now type :

You will immediately see the new value appear in your spreadsheet.

Create the following function in your workspace :

Then type the expressions :

The link between Excel and APL is a warm link (the type of link is determined by the
client, so other applications may behave differently). This means that APL will send the
new value of X (SALES) to Excel every time it changes. If you have DDESPY.EXE, you can
verify what is happening.

=dyalog|myws!sales

⎕SVO'X'
2

X←34

∇ FOO MSG
[1] MSG
[2] X←⎕AI[2]

∇

'.' ⎕WS 'EVENT' 50 'FOO'

⎕DQ '.'

Interface Guide

2025-10-30 (main:e0843eae32) Page 303

To interrupt ⎕DQ, type Ctrl+Break or select "Interrupt" from the Action menu in the
Session Window.

12.8 Example: APL as Compute Server for Excel

The following instructions illustrate how APL can act as a "compute server" for
Microsoft Excel, using two shared variables. One variable is used to read the data from
Excel; the other is used to pass back the result.

Start Excel and enter some NUMBERS into the cells R1C1 to R3C3 of the spreadsheet
"SHEET1".

Start Dyalog APL/W and size your windows so that both the Excel window and the APL
Session window can be viewed comfortably at the same time.

)LOAD the EXCEL workspace. This contains the following functions :

∇ RUN;Z;⎕WSID
[1] Z←'DDE:EXCEL|SHEET1'⎕SVO 'DATA R1C1:R3C3'
[2] →(2=Z)/L1
[3] 'No Excel out there ?' ⋄ →0
[4] L1:
[5] CALC
[6] ⎕WSID←'EXCEL'
[7] Z←'DDE:'⎕SVO 'RESULT ANSWER'
[8] 'Now type "=dyalog|excel!answer" into'
[9] 'cell A4 in your spreadsheet'
[10] L2:⎕DL 1
[11] →(2≠⎕SVO 'RESULT')/L2 ⍝Wait for Excel to connect
[12] 'Connected ...'
[13] '.'⎕WS 'EVENT' 50 'CALLB'
[14] ⎕DQ '.'

∇

Interface Guide

2025-10-30 (main:e0843eae32) Page 304

Type the following statement in the APL Session :

Now type "=dyalog|excel!answer" into cell A4 in your spreadsheet

Follow the above instructions to establish a link from APL to cell A4 in your Excel
spreadsheet. The result of the computation will be displayed.

Try changing some of the numbers in the spreadsheet and watch as APL re-calculates
the sum.

Try entering a character string in cell A1. Note that APL sends back a character string
containing DOMAIN ERROR.

Use Ctrl+Break or select "Interrupt" from the Action menu in the Session window to
stop ⎕DQ.

12.9 Restrictions and Limitations

Although shared variables have been implemented as closely to the APL standard as is
possible, certain restrictions are imposed by the nature of DDE itself.

The server cannot make an offer to a specific client. Instead, it must broadcast a
"general" offer, which could be accepted by any client. Indeed neither the client nor the
server can specifically identify the other task.

∇ CALLB MSG
[1] ⍝ Callback to recalculate when Excel changes DATA
[2] →(0 0 1 1≡⎕SVS 'DATA')/0
[3] CALC

∇

∇ CALC;⎕TRAP
[1] ⎕TRAP←0 'C' '→ERR'
[2] RESULT←+/,DATA
[3] →0
[4] ERR:RESULT←⊂⎕EM ⎕EN

∇

RUN

Interface Guide

2025-10-30 (main:e0843eae32) Page 305

Dyalog supports Excel "Fast Table Format" for communications with Microsoft Excel
(and with any other application that supports this format). This imposes the following
restrictions :

The maximum number of numbers that you can send to Excel is 8191. Any
attempt to send more will result in a LENGTH ERROR. This is because APL
currently tries to send all the data in a single block. Larger amounts of data can
be received from Excel, because Excel will send several blocks if required. The
restriction may be lifted in due course.
The maximum length of a character vector (which represents a string within a
cell) is 255.

A client APL program can only use indexed assignment to change the value of a shared
variable if it already knows the up-to-date value of the variable, that is, if its ⎕SVS is 0 0
1 1 or 1 0 1 0. An attempt to use indexed assignment on a variable whose ⎕SVS is 0 1 0
1 will cause a NONCE error.

Consider Excel as a server and APL as client with several warm links to an Excel
spreadsheet. For example:

If R1C1 is changed in Excel, APL expects to be told only of that change. Instead, Excel
tells APL that ALL the linked cells have changed.

If APL pokes a value back to R1C1, Excel again tells APL that ALL the linked cells have
changed.

You must take care to avoid this problem when dealing with DDE between Excel and
APL.

•

•

'DDE:EXCEL|SHEET1' ⎕SVO 'X R1C1'
'DDE:EXCEL|SHEET1' ⎕SVO 'Y R2C2'
'DDE:EXCEL|SHEET1' ⎕SVO 'Z R3C3'

Interface Guide

2025-10-30 (main:e0843eae32) Page 306

	Dyalog for Microsoft Windows
	Interfaces Guide
	Contents

	Introduction
	Overview
	Concepts
	Objects
	Properties
	Events
	Methods
	Objects
	Implementation Overview

	Creating Objects
	Naming Objects
	Specifying Properties
	Saving Objects
	The Object Hierarchy

	Properties
	Setting Properties with Assignment
	Retrieving property values by reference
	Setting Properties with ⎕WC
	Changing Property Values with ⎕WS
	The Event Property

	User Interaction & Events
	Giving Control to the User
	The Event Queue
	Assignment and reference to the Event Property
	Callback Functions
	Modifying or Inhibiting the Default Processing
	Generating Events using ⎕NQ

	Methods
	Calling Methods
	Invoking Methods with ⎕NQ
	Events as Methods

	High-Priority Callback Functions
	Thread-Switching and :Hold

	GUI Objects as Namespaces
	Attaching GUI Objects to Namespaces
	Namespace References and GUI Objects

	Modal Dialog Boxes
	The MsgBox and FileBox Objects

	Multi-Threading with Objects
	The Co-ordinate System
	High DPI Support
	DPI-Awareness
	Coord Property
	Pixel Coordinates and DYALOG_PIXEL_TYPE
	Font Object
	Set Dyalog Pixel Type (2035⌶)
	Enabling DWM Scaling
	Using a Manifest

	Naming a Manifest File

	Colour
	Fonts
	Drag and Drop
	Debugging
	Creating Objects using NEW
	Native Look and Feel
	Gestures
	Introduction
	Gesture Events
	Handling Gestures
	Inertia

	GUI Tutorial
	Introduction
	Some Concepts
	Objects
	Properties
	Events
	Callback Functions

	Creating a Form
	Adding a Fahrenheit Label
	Adding a Fahrenheit Edit Field
	Adding a Centigrade Label & Edit Field
	Adding Calculate Buttons
	Closing the Application Window
	Adding a Quit Button
	The Calculation Functions
	Testing the Application
	Making the Enter Key Work
	Introducing a ScrollBar
	Adding a Menu
	Running from Desktop
	Using NEW instead of WC
	Temperature Converter Class
	Temperature Converter Example

	Dual Class Example
	Dual Class Example

	Graphics
	Introduction
	Drawing Lines
	Drawing in a Bitmap
	Multiple Graphical Items
	Unnamed Graphical Objects
	Bitmaps and Icons
	Metafiles
	Creating a Metafile Object
	Drawing a Metafile Object

	Picture Buttons
	Using the Picture Property
	Using the BtnPix Property

	Using Icons

	Composite Controls
	The ToolControl and ToolButton Objects
	Standard Bitmap Resources
	Dyalog Bitmap Resources
	Creating ImageLists for ToolButtons
	The Style Property
	The Divider Property
	The MultiLine Property
	The Transparent Property
	Radio buttons, Check buttons and Separators
	Drop-Down buttons
	A MenuBar as the child of a ToolControl
	Providing User Customisation

	The CoolBar and CoolBand Objects
	CoolBar: FixedOrder Property
	CoolBand: GripperMode Property
	CoolBar: DblClickToggle Property
	CoolBar: VariableHeight/BandBorders Properties
	CoolBand: ChildEdge Property
	CoolBand: Caption and ImageIndex Properties
	CoolBand: Size, Posn, NewLine, Index Properties
	CoolBands with SubForms

	The TabControl and TabButton Objects
	Style, FlatSeparators and HotTrack Properties
	The Align Property
	The MultiLine Property
	The ScrollOpposite Property
	The Justify Property
	The TabSize and TabJustify Properties
	The TabFocus Property

	The StatusBar Object
	Using StatusFields

	Hints and Tips
	Using Hints
	Example: Using a StatusField for Hints
	Example: Using an Edit Object for Hints

	Using Tips
	Hints and Tips Combined

	Grid Object
	Using the Grid Object
	Defining Overall Appearance
	Row and Column Titles
	Displaying and Editing Values in Grid Cells
	Using a Floating Edit Field
	Using a Fixed Edit Field
	Using Label Objects
	Using Combo Objects
	Using Radio and Check Button Objects

	Specifying Individual Cell Attributes
	Example 1
	Example 2
	Example 3

	Drawing Graphics on a Grid
	Controlling User Input
	Moving from Cell to Cell
	Changing Standard Validation Behaviour
	Reacting to Changes
	Restoring User Changes
	Updating Cell Data
	Deleting Rows and Columns
	Inserting Rows and Columns

	TreeView Feature
	Introduction
	RowTreeDepth property
	RowSetVisibleDepth Method

	Grid Comments
	Introduction
	Implementation
	AddComment Method
	DelComment Method
	GetComment Method
	ShowComment Event/Method
	HideComment Event/Method
	ClickComment Event

	MDI
	Introduction
	To Create an MDI Application

	MDI Behaviour
	Menus in MDI Applications
	Defining a Window Menu
	Arranging Child Forms and Icons

	Docking
	Introduction
	Docking Events
	DockStart Event
	DockMove Event
	DockRequest Event
	DockAccept Event
	DockEnd Event
	DockCancel Event

	Docking a Form inside another
	Docking a Form into a CoolBar
	Undocking a SubForm or a CoolBand
	Docking and Undocking a ToolControl

	OLE Client
	Introduction
	Architectural Issues
	Hosting OLE Servers and ActiveX Controls

	Using an OLE Server
	Loading an ActiveX Control
	Using an OLE Control

	Type Information
	Late Binding
	Missing Type Information
	Identifying Properties, Methods and Events
	Pre-Version 11 Behaviour
	Using an ActiveX Control
	Using the Property Sheet
	Using the Workspace Explorer
	GetPropertyInfo Method
	GetMethodInfo Method
	GetEventInfo Method
	Obtaining On-line Help

	Methods
	Calling Methods
	Arrays and Pointers
	Optional Parameters
	Output Parameters
	Named Parameters
	Methods that return Objects

	Properties
	Properties as Objects

	Events
	Using OLE Objects without Type Information
	Secondary Late Binding3
	SetMethodInfo and SetPropertyInfo
	Events

	Collections
	Null Values
	Additional Interfaces
	Writing Classes based on OLEClient

	OLE Server
	Introduction
	Out-of-Process and In-Process OLE Servers
	Writing an APL OLE Server
	Deploying an APL OLE Server
	Rules for Exported Functions
	ClassID, TypeLibID and other properties

	In-process OLE Servers
	Exporting
	Execution
	Registering and Unregistering In-Process OLE Servers

	Out-of-process OLE Servers
	Exporting
	Execution
	Registering and Unregistering
	Registry Entries

	The LOAN Workspace
	Using CalcPayments
	The CalcPayments Function
	Registering Loan as an OLE Server
	Using Loan from Excel
	How it Works
	Using Loan from Dyalog APL

	Implementing an Object Hierarchy
	The cfiles Workspace
	Registering CFiles as an OLE Server
	The GetFile Function
	The OpenFile Function
	The FSIZE Function
	The FREAD Function
	The FAPPEND Function
	The FREPLACE Function
	Using CFiles from Excel
	The FOpen Procedure
	The FRead Procedure
	The FReplace Procedure
	The FAppend Procedure

	Configuring an out-of-process OLEServer for DCOM
	Introduction
	DCOM Registry Entries for the Server
	DCOM Registry Entries for the Client
	DCOMREG Workspace
	RegDCOMServer
	RegDCOMClient
	Config

	Calling an OLE Function Asynchronously
	Introduction
	The OLEASYNC Workspace
	Testing dyalog.Async

	ActiveX Control
	Introduction
	Overview
	What is an ActiveX Control ?
	What is a Dyalog APL ActiveX Control ?
	The Dyalog APL DLL
	Instance Creation
	Properties, Methods and Events
	Generating Events

	The Dual Control Tutorial
	Methods
	Properties
	Events
	Introducing the Dual Control
	Preparing a Working Directory
	Getting Started
	Changing Dual into an ActiveX Control
	Testing the Dual Control
	Defining and Exporting Properties
	Setting Properties from VB
	Defining and Exporting Events
	Using Events from VB

	DDE
	Introduction to DDE
	Shared Variable Principles
	Introduction
	Sharing a Variable
	The State Vector
	Access Control

	APL and DDE in Practice
	APL as the Client
	Executing Commands in the Server
	Establish a link to Excel's SYSTEM topic
	Instruct EXCEL to open a spreadsheet file
	Instruct EXCEL to select a range of cells
	Carry out two commands in one call
	APL as the Server

	State and Access Control
	Server = APL, Client = APL
	Server = APL, Client = another application
	Server = another application, Client = APL
	Terminating a Conversation

	Example: Communication Between APLs
	Example: Excel as the Server
	Example: Excel as the Client
	Example: APL as Compute Server for Excel
	Restrictions and Limitations

