
Dyalog for Microsoft Windows
Installation and Configuration Guide

Dyalog version 20.0

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2025 by Dyalog Limited
All rights reserved.

Dyalog for Microsoft Windows Installation and Configuration Guide

Dyalog version: 20.0
Document Revision: 2025-10-30 main:e0843eae32

Unless stated otherwise, all examples in this document assume that ⎕IO ⎕ML ← 1

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle®, MySQL, and Java™ are registered trademarks of Oracle and/or its affiliates.
JavaScript™ is a trademark of Oracle Corporation.
Unicode is a registered trademarks of Unicode, Inc. in the U.S. and other countries.
UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively
through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark of Microsoft Corporation in the U.S. and other
countries.
macOS® and OS X® (operating system software) are registered trademarks of Apple Inc.
in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Except where otherwise noted, this content is licensed under a Creative Commons
Attribution 4.0 International licence.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

2025-10-30 (main:e0843eae32) Page 4

Contents

1 Installation and Configuration ... 12

1.1 Documentation ... 12

1.2 Files and Directories ... 12

1.3 File Extensions .. 15

1.4 APL Fonts .. 16

1.5 Interoperability and Compatibility .. 17

1.6 The APL Command Line .. 21

1.7 APL Exit Codes .. 23

1.8 Dyalog Serial Number ... 24

1.9 Configuration Parameters ... 26

1.9.1 Introduction .. 26

1.9.2 AddClassHeaders .. 27

1.9.3 APLAN_FOR_EDITOR .. 27

1.9.4 APLAN_FOR_OUTPUT ... 28

1.9.5 AplCoreName ... 28

1.9.6 aplk ... 29

1.9.7 aplkeys .. 29

1.9.8 aplnid .. 29

1.9.9 aplt ... 30

1.9.10 apltrans ... 30

1.9.11 APL_CODE_E_MAGNITUDE .. 30

1.9.12 APL_COMPLEX_AS_V12 .. 31

1.9.13 APL_FCREATE_PROPS_C ... 31

1.9.14 APL_FCREATE_PROPS_J .. 31

1.9.15 APL_FAST_FCHK .. 32

1.9.16 APL_MAX_THREADS ... 32

1.9.17 APL_TextInAplCore ... 32

1.9.18 AutoDPI .. 32

1.9.19 AutoComplete .. 33

1.9.19.1 CancelKey1 ... 33

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 5

1.9.19.2 CancelKey2 ... 33

1.9.19.3 Cols .. 33

1.9.19.4 CommonKey1 .. 33

1.9.19.5 CompleteKey1 .. 33

1.9.19.6 CompleteKey2 .. 33

1.9.19.7 Enabled .. 34

1.9.19.8 History ... 34

1.9.19.9 HistorySize ... 34

1.9.19.10 PrefixSize .. 34

1.9.19.11 Rows .. 34

1.9.19.12 ShowFiles ... 34

1.9.20 AutoFormat .. 35

1.9.21 AutoIndent ... 35

1.9.22 auto_pw ... 35

1.9.23 CFEXT .. 35

1.9.24 ClassicMode .. 36

1.9.25 ClassicModeSavePosition ... 36

1.9.26 CMD_PREFIX and CMD_POSTFIX .. 36

1.9.27 ConfigFile .. 37

1.9.28 confirm_abort .. 37

1.9.29 confirm_close ... 37

1.9.30 confirm_fix ... 37

1.9.31 confirm_session_delete ... 37

1.9.32 default_div .. 37

1.9.33 default_io ... 38

1.9.34 default_ml .. 38

1.9.35 default_pp .. 38

1.9.36 default_pw ... 38

1.9.37 default_rtl ... 38

1.9.38 default_wx .. 38

1.9.39 DMXOUTPUTONERROR .. 39

1.9.40 DockableEditWindows .. 39

1.9.41 DoubleClickEdit .. 39

1.9.42 dyalog ... 39

1.9.43 DyalogEmailAddress ... 39

1.9.44 DyalogHelpDir ... 39

1.9.45 DyalogInstallDir .. 40

1.9.46 DyalogLink .. 40

1.9.47 DyalogStartup ... 40

1.9.48 DyalogStartupSE ... 40

1.9.49 DyalogStartup_X ... 41

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 6

1.9.50 DyalogWebSite ... 42

1.9.51 DYALOG_DISCARD_FN_SOURCE ... 42

1.9.52 DYALOG_EVENTLOGGINGLEVEL ... 42

1.9.53 DYALOG_EVENTLOGNAME ... 42

1.9.54 DYALOG_GUTTER_ENABLE ... 42

1.9.55 Dyalog_LineEditor_Mode ... 43

1.9.56 Dyalog_NETCore ... 43

1.9.57 DYALOG_NOPOPUPS .. 43

1.9.58 DYALOG_PIXEL_TYPE .. 43

1.9.59 DYALOG_SERIAL .. 43

1.9.60 EditorState .. 44

1.9.61 Edit_Cols ... 44

1.9.62 Edit_First_X ... 44

1.9.63 Edit_First_Y ... 44

1.9.64 Edit_Offset_X .. 44

1.9.65 Edit_Offset_Y .. 44

1.9.66 Edit_Rows ... 45

1.9.67 ENABLE_CEF ... 45

1.9.68 ErrorOnExternalException .. 45

1.9.69 ExternalHelpURL ... 45

1.9.70 File_Stack_Size ... 45

1.9.71 greet_bitmap .. 46

1.9.72 history_size ... 46

1.9.73 inifile ... 46

1.9.74 InitFullScriptNormal ... 47

1.9.75 InitFullScriptSusp .. 47

1.9.76 InitialKeyboardLayout ... 48

1.9.77 InitialKeyboardLayoutInUse .. 48

1.9.78 InitialKeyboardLayoutShowAll .. 48

1.9.79 input_size ... 48

1.9.80 KeyboardInputDelay ... 49

1.9.81 Load .. 49

1.9.82 localdyalogdir ... 50

1.9.83 log_file .. 50

1.9.84 log_file_inuse ... 51

1.9.85 log_size ... 51

1.9.86 LX .. 51

1.9.87 mapchars .. 51

1.9.88 MaxAplCores .. 52

1.9.89 maxws ... 53

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 7

1.9.90 OverstrikesPopup ... 53

1.9.91 PassExceptionsToOpSys .. 53

1.9.92 pfkey_size ... 54

1.9.93 ProgramFolder .. 54

1.9.94 PropertyExposeRoot ... 54

1.9.95 PropertyExposeSE ... 54

1.9.96 qcmd_timeout .. 54

1.9.97 ResolveOverstrikes ... 55

1.9.98 RIDE_Init ... 55

1.9.99 RIDE_Spawned ... 57

1.9.100 RunAsService .. 57

1.9.101 SaveContinueOnExit ... 57

1.9.102 SaveLogOnExit .. 57

1.9.103 SaveSessionOnExit .. 57

1.9.104 Serial ... 57

1.9.105 SessionOnTop ... 57

1.9.106 session_file ... 58

1.9.107 ShowStatusOnError .. 58

1.9.108 SingleTrace .. 58

1.9.109 SkipLines ... 58

1.9.110 SM_Cols .. 58

1.9.111 SM_Rows .. 59

1.9.112 StatusOnEdit ... 59

1.9.113 TabStops ... 59

1.9.114 ToolBarsOnEdit ... 59

1.9.115 TraceStopMonitor ... 59

1.9.116 Trace_First_X .. 59

1.9.117 Trace_First_Y .. 60

1.9.118 Trace_level_warn .. 60

1.9.119 Trace_Offset_X ... 60

1.9.120 Trace_Offset_Y .. 60

1.9.121 Trace_On_Error .. 60

1.9.122 UCMDCacheFile .. 61

1.9.123 UnicodeToClipboard ... 61

1.9.124 URLHighlight ... 61

1.9.125 UseExternalHelpURL ... 62

1.9.126 UserConfigFile .. 62

1.9.127 UseXCV ... 62

1.9.128 ValueTips .. 63

1.9.128.1 ValueTips/ColourScheme ... 63

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 8

1.9.128.2 ValueTips/Delay ... 63

1.9.128.3 ValueTips/Enabled ... 63

1.9.129 WantsSpecialKeys ... 64

1.9.130 WrapSearch .. 64

1.9.131 WrapSearchMsgBox .. 64

1.9.132 WSEXT .. 64

1.9.133 WSPATH .. 65

1.9.134 XPLookAndFeel ... 65

1.9.135 yy_window ... 65

1.10 Registry SubFolders ... 68

1.11 Configuration Files .. 70

1.12 Window Captions .. 75

1.13 Workspace Management .. 76

1.14 Interface with Windows .. 78

1.15 Auxiliary Processors .. 78

1.16 Access Control for External Variables ... 80

1.17 Shell Scripts ... 81

1.18 Creating Executables ... 84

1.19 Run-Time Applications and Components .. 89

1.20 Run-Time Applications Additional Considerations .. 95

1.21 COM Objects and the Dyalog APL DLL .. 98

1.22 APL Application as a Service ... 101

1.23 APLService Logging Events .. 106

2 Configuring the IDE .. 113

2.1 Configuration Dialog ... 113

2.1.1 General Tab ... 113

2.1.2 Unicode Input Tab .. 114

2.1.3 Input Tab (Classic Edition) ... 117

2.1.4 Output Tab (Classic Edition) .. 118

2.1.5 Keyboard Shortcuts Tab .. 119

2.1.6 Workspace Tab ... 120

2.1.7 Help/DMX Tab .. 121

2.1.8 Windows Tab .. 122

2.1.9 Session Tab ... 124

2.1.10 Trace/Edit Tab ... 126

2.1.11 Auto Complete Tab ... 130

2.1.12 SALT Tab .. 132

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 9

2.1.13 User Commands Tab ... 133

2.1.14 Object Syntax Tab ... 134

2.1.15 Saved ResponsesTab ... 135

2.2 Colour Selection Dialog ... 137

2.3 Print Configuration Dialog ... 139

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 10

2025-10-30 (main:e0843eae32) Page 11

1 Installation and Configuration

1.1 Documentation

The documentation set for Dyalog is installed in the help sub-directory of the main
Dyalog installation directory.

The latter is given by the expression:

Example

1.2 Files and Directories

Unicode and Classic Editions

Dyalog is available in two separate editions:

The Unicode edition is Dyalog’s strategic edition; it is the edition that is generally
available, and the only one available to new users. It is compatible with many

⎕←2 ⎕NQ'.' 'GetEnvironment' 'DYALOG'
C:\Program Files\Dyalog\Dyalog APL-64 15.0 Unicode

dyalog←2⎕NQ'.' 'GetEnvironment' 'DYALOG'
⎕CMD 'dir "',dyalog,'/help"'

Volume in drive C is OS
Volume Serial Number is 3013-866E

Directory of C:\Program Files\Dyalog\Dyalog APL-64 15.0 Unicode\help

18/01/2016 11:53 <DIR> .
18/01/2016 11:53 <DIR> ..
11/01/2016 17:20 182,965 APL Workspace Transfer Guide.pdf
11/01/2016 17:20 467,005 Application Tuning Guide.pdf
11/01/2016 17:20 587,605 Code Libraries Reference Guide.pdf
11/01/2016 17:20 249,461 Compiler User Guide.pdf
11/01/2016 17:20 451,949 Conga User Guide.pdf
...

•

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 12

third-party applications and tools, is capable of handling data from third-party
tools and websites, and can be used with source code management systems
(such as Git) to store APL code.
The Classic edition is only available for existing customers who have been using
Dyalog for a long time and for whom moving to the Unicode edition would
involve considerable effort.

32-Bit and 64-Bit Widths

Two separate widths of Dyalog for Microsoft Windows are available. The 32-bit width
will run on both 32-bit and 64-bit operating systems; the 64-bit width will only run on a
64-bit operating system.

Files

The names of the files that are included in a Dyalog installation can vary slightly
between the different editions and widths.

For information about licences, see https://www.dyalog.com/prices-and-licences.htm
or contact sales@dyalog.com.

Distributable Development Components

This section lists the files that are included with Dyalog for Microsoft Windows that can
be distributed as part of end-user applications, under the terms and conditions of your
Dyalog Run-Time Licence or Royalty Licence.

The following files have names that are consistent between editions; differences in
names for the different widths are indicated by <width>, which can be either 32 or 64):

dyascript.exe
dyalogrt.exe
dyalog<width>.dll
dyares200_<width>.dll
dyalogprovider.dll (.NET Framework Interface)
dyalognet.dll (.NET Framework Interface)
conga36ssl<width>.dll (Conga and Ride)
conga36_<width>.dll (Conga and Ride)
exestub.dll
dllstub.dll
sqapl.ini
sqapl.err

•

•
•
•
•
•
•
•
•
•
•
•
•

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 13

https://www.dyalog.com/prices-and-licences.htm

aplunicd.ini
sharpplot.dll
sharpplot.xml

The following files relate to the .NET Interface, and are only available in Unicode
editions:

Dyalog.Net.Bridge.Host.Windows.dll
Dyalog.Net.Bridge.dll
Dyalog.Net.Bridge.deps.json
Dyalog.Net.Bridge.runtimeconfig.json

The following files have names that change between editions and widths:

64-bit Unicode:
dyalog200_64rt_unicode.dll
bridge200-64_unicode.dll
dyalogc64_unicode.exe
cwdya64u64w.dll

32-bit Unicode:
dyalog200rt_unicode.dll
bridge200_unicode.dll
dyalogc_unicode.exe
cwdya64u32w.dll

64-bit Classic:
dyalog200_64rt.dll
bridge200-64.dll
dyalogc64.exe
cwdya64c64w.dll

32-bit Classic:
dyalog200rt.dll
bridge200.dll
dyalogc.exe
cwdya64c32w.dll

Non-Distributable Development Components

The following files are included with Dyalog for Microsoft Windows. These files must
not be distibuted without an appropriate licence:

dyalog.exe
dyalog200_<width>.dll or dyalog200_<width>_unicode.dll

•
•
•

•
•
•
•

•
◦
◦
◦
◦

•
◦
◦
◦
◦

•
◦
◦
◦
◦

•
◦
◦
◦
◦

•
•

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 14

File Extension Conventions

The following file extension conventions have been adopted for the various files
distributed with, and used by, Dyalog.

Extension Description

.dws Dyalog workspace

.dse Dyalog Session

.dcf Dyalog component file

.DXV Dyalog external variable

.din Dyalog input table

.dot Dyalog output table

.dft Dyalog format file

.DXF Dyalog transfer file

.dlf Dyalog Session log file

.dyalog Dyalog SALT file

.dyapp Dyalog SALT application file

Some of these extensions (notably .dcf, .dlf, .dot, and .DXF) are not unique to

Dyalog, and conflict with the same extensions used by other software

applications. Although all the above file extensions are associated with Dyalog

during its installation, these associations could subsequently be changed by the

installation of other software or by a Microsoft Windows System restore.

1.3 File Associations

During installation, setup.exe associates a number of file extensions with Dyalog
applications.

Information

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 15

Workspace files with extension .dws and files with extension .dyapp, which are used to
bootstrap SALT-based applications, are associated with dyalog.exe.

The following file types are associated with the Dyalog APL Editor dyaedit.exe. They
are used by various source code management tools, including Link and SALT and 3rd
party tools like Acre Desktop.

.aplf Functions

.aplo Operators

.apln Namespaces

.aplc Classes

.apli Interfaces

.dyalog Generic

Additionally, Link uses .apla files to store serialised arrays. These are likely to become
associated with dyaedit.exe in a future release.

1.4 APL Fonts

Unicode Edition

The default font for the Unicode Edition is APL385 Unicode1 which is a TrueType font
and is installed as part of Dyalog APL. APL385 Unicode is the font used to print APL
characters in this manual. In principle, you may use any other Unicode font that
includes the APL symbols.

Classic Edition

In the Classic Edition, there are two types of APL font provided; bitmap (screen) and
TrueType. There are also two different layouts, which are referred to as Std and Alt.

The bitmap fonts are designed for the screen alone and are named Dyalog Std and
Dyalog Alt. The TrueType fonts have a traditional 2741-style italic appearance and are
named Dyalog Std TT and Dyalog Alt TT1.

The Std layout, which was the standard layout for Versions of Dyalog APL up to Version
10.1 contains the APL underscored alphabet Ⓐ-Ⓩ. The underscored alphabet is a

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 16

https://docs.dyalog.com/latest/SALT%20User%20Guide.pdf#page=12
https://dyalog.github.io/link/3.0/
https://docs.dyalog.com/latest/SALT%20User%20Guide.pdf
https://github.com/the-carlisle-group/Acre-Desktop/wiki

deprecated feature and is only supported in this Version of Dyalog APL for backwards
compatibility.

The Alt layout, which replaced the Std layout as the standard layout for Version 12.0
Classic Edition onwards, does not have the underscored alphabet, but contains
additional National Language characters in their place. Note that the extra National
Language symbols share the same ⎕AV positions with the underscored alphabet. If, for
example, you switch from the Std font layout to the alternative one, you will see the
symbol Á (A-acute) instead of the symbol Ⓐ (A-underscore).

You may use either a bitmap font or a TrueType font in your APL session (see User
Interface: Session Toolbars for details). You MUST use a TrueType font for printing APL
functions.

1.5 Interoperability

Introduction

Workspaces and component files are stored on disk in a binary format (illegible to text
editors). This format differs between machine architectures and among versions of
Dyalog. For example, a file component written by a PC may well have an internal format
that is different from one written by a UNIX machine. Similarly, a workspace saved from
Dyalog Version 20.0 will differ internally from one saved by a previous version of Dyalog
APL.

It is convenient for versions of Dyalog APL running on different platforms to be able to
interoperate by sharing workspaces and component files. From Version 11.0,
component files and workspaces can generally be shared between Dyalog interpreters
running on different platforms. However, this is not always possible and the following
sections describe limitations in interoperability:

Code and ⎕ORs

Code that is saved in workspaces, or embedded within ⎕ORs stored in component files,
can only be read by the Dyalog version which saved them and later versions of the
interpreter. In the case of workspaces, a load (or copy) into an older version would fail
with the message:

this WS requires a later version of the interpreter.

1 The Dyalog Std TT, Dyalog Alt TT, and APL385 Unicode fonts are the copyright of Adrian
Smith.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 17

Every time a ⎕OR object is read by a version later than that which created it, time may
be spent in converting the internal representation into the latest form. Dyalog
recommends that ⎕ORs should not be used as a mechanism for sharing code or objects
between different versions of APL.

"Ordinary" Arrays

With the exception of the Unicode restrictions described in the following paragraphs,
Dyalog APL provides interoperability for arrays that only contain (nested) character and
numeric data. Such arrays can be stored in component files - or transmitted using
TCPSocket objects and Conga connections, and shared between all versions and across
all platforms.

Full cross-platform interoperability of component files is only available for large-span
component files.

Null Items (⎕NULL) and Compressed Components

⎕NULLs and components from compressed component files that were created in
Version 18.0 and later can be brought into Versions 16.0, 17.0 and 17.1 provided that
the interpreters have been patched to revision 38151 or higher. Attempts to bring
⎕NULL or compressed component into earlier versions of Dyalog APL or lower revisions
of the aforementioned versions will fail with:

Object Representations (⎕OR)

An attempt to ⎕FREAD a component containing a ⎕OR that was created by a later version
of Dyalog APL will generate DOMAIN ERROR: Array is from a later version of
APL. This also applies to APL objects passed via Conga or TCPSockets, or objects that
have been serialised using 220⌶.

32 vs. 64-bit Component Files

It is no longer possible to create or write to small-span (32-bit) files; however it is still
currently possible to read from small span files. Setting the second item of the right
argument of ⎕FCREATE to anything other than 64 will generate a DOMAIN ERROR.

Note that small-span (32-bit-addressing) component files cannot contain Unicode data.
Unicode editions of Dyalog APL can only write character data which would be readable
by a Classic edition (consisting of elements of ⎕AV).

DOMAIN ERROR: Array is from a later version of APL.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 18

External Variables

External variables are subject to the same restrictions as small-span component files
regarding Unicode data. External variables are unlikely to be developed further; Dyalog
recommends that applications which use them should switch to using mapped files or
traditional component files. Please contact Dyalog if you need further advice on this
topic.

32 vs. 64-bit Interpreters

There is complete interoperability between 32- and 64-bit interpreters, except that 32-
bit interpreters are unable to work with arrays or workspaces greater than 2GB in size.

Note however that under Windows a 32-bit version of Dyalog APL may only access 32-
bit DLLs, and a 64-bit version of Dyalog APL may only access 64-bit DLLs. This is a
Windows restriction.

Unicode vs. Classic Editions

Two editions are available on some platforms. Unicode editions work with the entire
Unicode character set. Classic editions (which are only available to commercial and
enterprise users for legacy applications) are limited to the 256 characters defined in the
atomic vector, ⎕AV.

Component files have a Unicode property. When this is enabled, all characters will be
written as Unicode data to the file. The Unicode property is always off for small-span
(32-bit addressing) files, as these cannot contain Unicode data. For large-span (64-bit
addressing) component files, the Unicode property is set on by Unicode Editions and off
by Classic Editions, by default. The Unicode property can subsequently be toggled on
and off using ⎕FPROPS.

When a Unicode edition writes to a component file that cannot contain Unicode data,
character data is mapped using ⎕AVU; it can therefore be read without problems by
Classic editions.

A TRANSLATION ERROR will occur if a Unicode edition writes to a non-Unicode
component file (that is either a 32-bit file, or a 64-bit file when the Unicode property is
currently off) if the data being written contains characters that are not in ⎕AVU.

Likewise, a Classic edition will issue a TRANSLATION ERROR if it attempts to read a
component containing Unicode data that is not in ⎕AVU from a component file.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 19

A TRANSLATION ERROR will also be issued when a Classic edition attempts to)LOAD or
)COPY a workspace containing Unicode data that cannot be mapped to ⎕AV using the
⎕AVU in the recipient workspace.

TCPSocket objects have an APL property that corresponds to the Unicode property of a
file, if this is set to Classic (the default) the data in the socket will be restricted to ⎕AV,
if Unicode it will contain Unicode character data. As a result, TRANSLATION ERRORs can
occur on transmission or reception in the same way as when updating or reading a file
component.

Some APL glyphs are only available in the Unicode edition, and need to be replaced
with Unicode hex values in the Classic edition. These are:

Glyph Classic replacement Description

⊆ ⎕U2286 nest/partition function

⍸ ⎕U2378 where/interval index function

⍤ ⎕U2364 atop/rank operator

⍠ ⎕U2360 variant operator

⌸ ⎕U2338 key operator

⌺ ⎕U233A stencil operator

⍥ ⎕U2365 over operator

⍛ ⎕U235B behind operator

In both Unicode and Classic editions, the variant operator can also be represented by
⎕OPT.

Very large array components

An attempt to read a component greater than 2GB in 32-bit interpreters will result in a
WS FULL.

TCPSockets and Conga

TCPSockets and Conga can be used to communicate between differing versions of
Dyalog APL and are subject to similar limitations to those described above for
component files.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 20

Auxiliary Processors

A Dyalog APL process is restricted to starting an AP of exactly the same architecture
from the same operating system. In other words, the AP must share the same word-
width and byte-ordering as its interpreter process.

Session Files

Session (.dse) files can only be used on the platform on which they were created and
saved. Under Microsoft Windows, Session files may only be used by the architecture
(32-bit-or 64-bit) of the Version of Dyalog that saved them.

1.6 The APL Command Line

The command line for Dyalog APL is described below; the command line for non-
Windows versions of Dyalog APL is very similar and is also documented in Dyalog for
UNIX UI Guide: Starting APL.

Usually the command line is specified in the Target: field of the APL shortcut. The full
pathname to the Dyalog executable is usually surrounded by double quotes as it
contains spaces.

Command Line

dyalog [options] [debug] [ws] [param] [param] [param]...

where:

[dyalog]

Is the location of the Dyalog executable. Usually this is the full pathname, surrounded
by double quotes.

[options]

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 21

-x

Disables the execution of the ⎕LX expression and the derived expression
when code is loaded from a source code file or directory. This applies
only at start-up and does not apply to workspaces or source files that
are loaded subsequently. See Dyalog APL Language: Lx and Load

-a Start in USER mode.

-b Suppress the banner in the Session..

-s Disable the Session. This option is ignored in Windows versions.

+s Force the display of the Session when it would otherwise not be shown.

-q Don't quit APL on error (used when piping input into APL).

+q
Quit APL on error. In earlier versions of Dyalog, quitting on error saved a
workspace with the reserved name CONTINUE; this behaviour can be
re-enabled using 2704⌶. See Dyalog APL Language: Continue Autosave .

-c Signifies a command-line comment. All characters to the right are
ignored.

-cef -
cef_all

Instructs Dyalog to ignore the parameter that immediately follows or all
the parameters that follow. These options are intended to isolate
parameters intended for the built-in Chromium Embedded Framework
(CEF). See Object Reference: Htmlrenderer .

[debug]

-Dc Check workspace integrity after every callback function.

-Dw Check workspace integrity on return to session input.

-
DW

Check workspace integrity after every line of APL (application will run
slowly as a result)

-DK Log session keystrokes in (binary) file ./apllog .

[ws]

The name of a Dyalog APL workspace to be loaded. Unless specified, on Windows the
file extension .DWS is assumed.

[param]

A parameter name followed by an equals sign (=) and a value. The parameter name
may be one of the standard APL parameters (see Section 1.9.1) or a name and value of
your own choosing (see Object Reference: Getenvironment) . If the parameter is in a

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 22

registry sub-folder (see Section 1.10), its name must be preceded by the name of the
sub-folder, followed by a backslash (\) or underscore (_).

Instead of a loading a workspace specified by the ws option, APL can be

instructed to load a program from a script file. For further information, see

Section 1.9.81.

Examples

Start APL using the configuration file myconfig.dcfg:

Load the workspace myapp, setting MaxWS parameter:

Load the workspace myapp, set an application specific parameter, but do not execute
the latent expression:

Run the function defined in myfn.aplf:

Start APL and output "Hello World":

1.7 APL Exit Codes

When APL or a bound .EXE terminates, it returns an exit code to the calling
environment. If APL is started from a desktop icon, the return code is ignored.
However, if APL is started from a script (UNIX) or a command processor, the exit code is
available and may be used to determine whether or not to continue with other
processing tasks. The return codes are:

Note

"c:\program files\…\dyalog.exe" ConfigFile="myconfig.dcfg"

"c:\program files\…\dyalog.exe" myapp maxws=2G

"c:\program files\…\dyalog.exe" -x myapp myparam=8080

"c:\program files\…\dyalog.exe" load=myfn.aplf

"c:\program files\…\dyalog.exe" lx="⎕←'Hello World'"

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 23

0 Successful ⎕OFF ,)OFF ,)CONTINUE , graphical exit from GUI

1
APL failed to start. This will occur if there was a failure to read a translate file,
there is insufficient memory, or a critical parameter is incorrectly specified or
missing.

2 APL was terminated by SIGHUP or SIGTERM (UNIX) or in response to a QUIT
WINDOWS request. APL has done a clean exit.

3 APL issued a syserror.

4 Runtime violation. This occurs if a runtime application attempts to read input
from the Session. Only a development version has a Session.

5 APL was unable to load the Conga libraries (14.1.25383 onwards). In 16.0 the
Ride libraries have been included in the Conga libraries.

6 RIDE_INIT or one of its components was ill-defined, or APL was unable to use
the port, and/or unable to resolve the hostname (14.1.25383 onwards)

7 Reserved

8 Windows rejected APL's request to create a session window (in earlier
versions this generated a syserror 126)

9 Dyalog has encountered a Microsoft Windows-related error when starting
and is unable to continue. For example it cannot register clipboard formats.

10 CEF sub-process crash - something has gone unexpectedly wrong with either
the HTMLRenderer or CEF sub-processes and cannot continue

11 Cannot create c-stack (macOS only)

Notes

Under UNIX exit codes greater than 127 indicates (127+signal number) of the
untrapped signal which caused the process to terminate.

APL applications can generate a custom return code by specifying an integer value to
the right of ⎕OFF. Dyalog recommends using values greater than 12 for this purpose.

1.8 Dyalog Serial Number

If you have registered your copy of Dyalog or have a commercial licence then you will
have been sent a Dyalog serial number; this serial number is individual to you and
corresponds to the type of licence that you are entitled to use.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 24

The serial number should be entered during the installation process (if you already
have a version of Dyalog installed then the installer should pre-populate this field with
your serial number). This is recommended because if you enter it as part of the
installation process then all users will automatically detect the same serial number.

If the serial number is not entered during the installation process, then it can be set by
running ⎕SE.Dyalog.Serial from within a Dyalog session. However, each individual
user of that installation will have to perform this task.

To set your Dyalog serial number from within a Session:

where serialnumber is your Dyalog serial number. This updates the registry string
value DYALOG_SERIAL in HKEY_CURRENT_USER\Software\Dyalog\Dyalog
<version>2 . To complete the process you must exit and restart the Session.

When you start a Session, your serial number is displayed in the banner . To see your
serial number at any time, enter:

or

Using or entering a serial number other than the one issued to you is not

permitted. Transferring the serial number to anyone else is not permitted.For the

full licence terms and conditions, see: Terms and Conditions

⎕SE.Dyalog.Serial serialnumber

+2⎕NQ'.' 'GetEnvironment' 'DYALOG_SERIAL'

⎕SE.Dyalog.Serial ''

Note

2 This string can also be set using regedit but Dyalog Ltd does not recommend this
approach.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 25

https://www.dyalog.com/uploads/documents/Terms_and_Conditions.pdf

1.9 Configuration Parameters

1.9.1 Configuration Parameters

Introduction

Dyalog APL is customised using a set of configuration parameters. These may be
defined in a number of ways, which take precedence as follows:

Command-line settings
Application configuration file settings
Environment variable settings
User configuration file settings
Settings in the registry section defined by the IniFile parameter (Windows only)
Built-in defaults

This scheme provides a great deal of flexibility, and a system whereby you can override
one setting with another. For example, you can define your normal workspace size
(maxws) in the Registry, but override it with a new value specified on the APL
command line. The way this is done is described in the following section.

Furthermore, you are not limited to the set of parameters employed by APL itself as
you may add parameters of your own choosing.

Although for clarity parameter names are given here in mixed case, they are case-
independent under Windows. Under UNIX and Linux, if Dyalog parameters are
specified as environment variables they must be named entirely in upper-case.

Note that the value of a parameter obtained by the GetEnvironment method (see
Object Reference: Getenvironment) uses exactly the same set of rules.

The following section details those parameters that are implemented by Registry
Values in the top-level folder identified by IniFile. Values that are implemented in sub-
folders are mainly internal and are not described in detail here. However, any Value
that is maintained via a configuration dialog box will be named and described in the
documentation for that dialog box in The APL Environment.

Specifying Size-related Parameters

Several of the configuration parameters define sizes.

•
•
•
•
•
•

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 26

The value of the parameter must consist of an integer value, optionally followed
immediately by a single character which denotes the units to be used. If the value
contains no character the units are assumed to be KiB.

Valid values for units are:

K(KiB), M(MiB), G(GiB), T(TiB), P(PiB) and E(EiB).

Specifying an invalid value will prevent Dyalog APL from starting.

Changing parameter values in the Registry

You can change parameters in the Registry in one of two ways:

Using the Configuration dialog box that is obtained by selecting Configure from
the Options menu on the Dyalog APL/W session. See Section 2.1.1 for details.
By directly editing the Windows Registry using REGEDIT.EXE or REGEDIT32.EXE.
This is necessary for parameters that are not editable via the Configuration
dialog box.

1.9.2 AddClassHeaders

This parameter specifies what the Tracer displays when tracing the execution of a
function in a script. If set to 1, the Tracer displays just the first line of the script and the
function in question. If set to 0, the entire script is shown in the Tracer window.

See also Section 2.1.10

1.9.3 APLAN_FOR_EDITOR

This parameter specifies whether (1) or not (0, the default) new Edit windows
containing arrays should open using Programming: Array Notation when possible.

The setting can be toggled with the]APLAN.Editor user command.

In Ride and the Microsoft Windows IDE, once an Edit window is open, its mode can be
toggled by clicking the

•

•

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 27

icon in the Editor's toolbar.

See also APLAN_FOR_OUTPUT.

1.9.4 APLAN_FOR_OUTPUT

This parameter specifies whether (1) or not (0, the default) to use Programming: Array
Notation for session output when possible.

The setting can be toggled with the]APLAN.Output user command

In the Microsoft Windows IDE, the setting can also be toggled by clicking the

icon in the session toolbar.

See also APLAN_FOR_EDITOR.

1.9.5 AplCoreName

This parameter specifies the directory and name of the file in which aplcore should be
saved. The optional wild-card character (*) is replaced by a number when the file is
written. If there is more than one * in AplCoreName, the string is used as is; no
substitution is made. For more details, including how to prevent aplcore files from
being generated, see Section 1.9.88.

Note that APL terminates with an exit code of 3 when an aplcore file is generated.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 28

See also Dyalog APL Language: Aplcore Parameters.

1.9.6 APLK

Classic Edition only.

This parameter specifies the name of your Input Translate Table, which defines your
keyboard layout. The keyboard combo in the Configure dialog box displays all the files
with the .DIN extension in the directory specified by the APLKEYS parameter. You may
choose any one of the supplied tables, and you may add your own to the directory.
Note that the FILE.DIN table is intended for input from file , and should not normally be
chosen as a keyboard table.

See also Section 2.1.3.

1.9.7 APLKeys

Classic Edition only.

This parameter specifies a search path for the Input Translate Table and is useful for
configuring a run-time application. The directory paths are specified using Operating
System specific conventions and separated by ";" (Windows) or ":" (UNIX). Its default
value is the aplkeys sub-directory of the directory in which Dyalog APL/W is installed
(defined by Dyalog).

See also Section 2.1.3.

1.9.8 aplnid

Under Windows, this parameter specifies the user number that is used by the
component file system to control file sharing and security. If you wish to share
component files and/or external variables in a network it is essential that each user has
a unique aplnid parameter. It may be any integer in the range 0 to 65535. Note that an
aplnid value of 0 causes the user to bypass APL's access control matrix mechanism.

Under UNIX, the user number is obtained from the Operating System (UID) and aplnid
is not used. If the user is "root", APL's access control mechanism is ignored.

When a user creates a component file, his user number is recorded in the file to identify
him as its owner.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 29

1.9.9 APLT

This parameter specifies the name of the Output Translate Table. On Windows the
default is WIN.DOT and there is rarely a need to alter it.

See also Section 2.1.4.

1.9.10 APLTrans

This parameter specifies a search path for the Output Translate Table and is useful for
configuring a run-time application. The directory paths are specified using Operating
System specific conventions and separated by ";" (Windows) or ":" (UNIX). Its default
value is the sub-directory apltrans in the directory in which Dyalog APL/W is installed.

See also Section 2.1.4.

1.9.11 APL_CODE_E_MAGNITUDE

The introduction of decimal floating point numbers lead to the maximum allowable
print precision being increased from 17 to 34, which resulted in a change in the way
numbers in the range (10*17) to (10*34) in function bodies are descanned3 . For
example, the number one sextillion (1021) in a function is descanned by Version 12.1 as
1E21 and by Version 13.0 as 1000000000000000000000.

Whilst this change has no other deleterious effect, it means that code that contains
such numbers is harder to read, and the result of ⎕CR (and other character
representations) of the same function may have changed between Version 12.1 and
later versions of Dyalog causing undesired affects in code management systems.

The APL_CODE_E_MAGNITUDE parameter allows the user to choose between the
behaviour seen in Version 12.1 and earlier and in more recent behaviour. It also allows
the user to specify the size of numbers above which those numbers are display in
exponential format.

If the APL_CODE_E_MAGNITUDE parameter is undefined or set to 0 (the default),
numbers are descanned and displayed as normal.

If APL_CODE_E_MAGNITUDE has the value -1, numbers greater than or equal to 1017

will be displayed using exponential format, as in Version 12.1.

3 Descanning refers to the internal process used to convert the internal representation of
APL code into a character array. For numbers in function statements, this process uses the
maximum value of Print Precision.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 30

If APL_CODE_E_MAGNITUDE has a value between 2 and 34, numbers greater than or
equal to 10value will be displayed using exponential format.

The effect of setting this parameter to any other value is undefined.

1.9.12 APL_COMPLEX_AS_V12

Support for Complex Numbers means that some functions produce different results
from older Versions of Dyalog APL. If APL_COMPLEX_AS_V12 is set to 1 the behaviour
of code developed using Version 12.1 or earlier will be unchanged; in particular:

Power (*) and logarithm (⍟) do not produce Complex Numbers as results from
non-complex arguments.
⎕VFI will not honour "J" or "j" as part of a number.
¯4○Y will be evaluated as (¯1+Y*2)*0.5 , which is positive for negative real
arguments.

If APL_COMPLEX_AS_V12 is set to any other value or is not set at all then code
developed using version 12.1 or earlier may now generate Complex Numbers.

In addition, if APL_COMPLEX_AS_V12 is set to 1, objects containing complex numbers
cannot be transferred to or from component files, TCP/IP (CONGA), or auxiliary
processors and may not be used as an argument to Serialise/Deserialise Array (220⌶).
Instead, a DOMAIN ERROR will be issued.

Note that this feature is provided to simplify the transition of older code to currently
supported Versions of Dyalog APL. It does not prevent the generation and use of
Complex Numbers using newer features (such as explicitly specifying a Complex
Number literal), and the intention is that it will be removed in a future release of
Dyalog APL.

1.9.13 APL_FCREATE_PROPS_C

This parameter specifies the default checksum level for newly-created component files.
If unspecified, the default checksum level is 1.

1.9.14 APL_FCREATE_PROPS_J

This parameter specifies the default journaling level for newly-created component files.
If unspecified, the default journaling level is 1.

•

•
•

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 31

1.9.15 APL_FAST_FCHK

This parameter specifies whether Dyalog APL should optimise ⎕FCHK by allowing it to
reliably determine whether a component file had been properly untied and therefore
does not need to be checked (this is overridable using the ⎕FCHK option force).

Optimising ⎕FCHK in this way has a performance impact on ⎕FUNTIE and it is
recommended this optimisation is switched off if your application frequently ties and
unties files.

Note: this only affects component files with journaling enabled.

The values of the parameter are:

0 Do not optimise ⎕FCHK (optimise ⎕FUNTIE instead)

1 Optimise ⎕FCHK

The default value of the parameter is 0 on all platforms. On Windows, setting the value
1 has no effect.

1.9.16 APL_MAX_THREADS

Specifies the maximum number of system threads that are to be used for parallel
execution. The default is 1 and the maximum value is 64.

1.9.17 APL_TextInAplCore

This Boolean parameter specifies whether or not certain information is written to an
aplcore file when a Programming: System Errors occurs. The default is 1.

1.9.18 AutoDPI

This parameter determines whether or not the Dyalog program registers the
application as DPI-Aware when it initialises. If 1, (the default), Dyalog performs the
auto-scaling; if 0, scaling is the responsibility of the programmer or operating system.
See also Section 2.1.1.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 32

1.9.19 AutoComplete

AutoComplete/CancelKey1

Specifies the first of two possible keys that may be used to cancel (hide) the Auto
Cancel suggestion box.

See also Section 2.1.11.

AutoComplete/CancelKey2

Specifies the second of two possible keys that may be used to cancel (hide) the Auto
Cancel suggestion box.

See also Section 2.1.11.

AutoComplete/Cols

This parameter specifies the maximum number of columns (width) in the Auto
Complete pop-up suggestions box.

See also Section 2.1.11.

AutoComplete/CommonKey1

Specifies the key that will auto-complete the common prefix. This is defined to be the
longest string of leading characters in the currently selected name that is shared by at
least one other name in the Auto Complete suggestion box.

See also Section 2.1.11.

AutoComplete/CompleteKey1

Specifies the first of two possible keys that may be used to select the current option
from the Auto Complete suggestion box.

See also Section 2.1.11.

AutoComplete/CompleteKey2

Specifies the second of two possible keys that may be used to select the current option
from the Auto Complete suggestion box.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 33

See also Section 2.1.11.

AutoComplete/Enabled

This parameter specifies whether or not Auto Completion is enabled

See also Section 2.1.11.

AutoComplete/History

Specifies whether or not Auto Complete maintains a list of previous Auto Completions.

See also Section 2.1.11.

AutoComplete/HistorySize

Specifies the number of previous Auto Completions that are maintained when History
is 1. See Section 1.9.19.8.

See also Section 2.1.11.

AutoComplete/PrefixSize

This parameter specifies the threshold (number of characters) before Auto
Completeion displays suggestions.

See also Section 2.1.11.

AutoComplete/Rows

This parameter specifies the maximum number of rows (height) in the Auto Complete
pop-up suggestions box.

See also Section 2.1.11.

AutoComplete/ShowFiles

Specifies whether or not Auto Completion suggests directory and file names for
)LOAD,)COPY and)DROP system commands.

See also Section 2.1.11.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 34

1.9.20 AutoFormat

This parameter specifies whether or not you want automatic formatting of Control
Structures in functions. The default value is 1 which means that formatting is done
automatically for you when a function is opened for editing or converted to text by ⎕CR,
⎕NR and ⎕VR. Automatic formatting first discards all leading spaces in the function body.
It then prefixes all lines with a single space except those beginning with a label or a
comment symbol (this has the effect of making labels and comments stand out). The
third step is to indent Control Structures. The size of the indent depends upon the
TabStops parameter. To turn off automatic formatting, set AutoFormat to 0.

See also Section 2.1.10.

1.9.21 AutoIndent

This parameter specifies whether or not you want semi-automatic indenting during
editing. The default value is 1. This means that when you enter a new line in a function,
it is automatically indented by the same amount as the previous line. This option
simplifies the entry of indented Control Structures.

See also Section 2.1.10.

1.9.22 Auto_PW

This parameter specifies whether or not the value of ⎕PW is derived automatically from
the current width of the Session Window. If Auto_PW is 1, the value of ⎕PW changes
whenever the Session Window is resized and reflects the number of characters that can
be displayed on a single line. If Auto_PW is 0 (the default under Windows) ⎕PW is
independent of the Session Window size.

See also Section 2.1.9.

1.9.23 CFEXT

This parameter specifies component file filename extensions.

CFEXT is a string that specifies a colon-separated list of one or more extensions,
including any period (".") which separates the extension from its basename.

If undefined, CFEXT defaults to .dcf: on Windows and macOS, and .dcf:.DCF: on all
other platforms.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 35

In the Windows case, this means that 'myfile'⎕FTIE 0 will search first for a file
named myfile.dcf , and then for a file named myfile (with no extension). As file
names are not case-sensitive under Windows, this will find myfile.DCF or MyFile.Dcf
and so forth. If none are found with this extension, it will load myfile , MyFile , MYFILE
etc.

In the second (non-Windows) case note that 'myfile'⎕FTIE 0 will search first for a file
named myfile , then myfile.dcf , then myfile.DCF .

1.9.24 ClassicMode

This parameter specifies whether or not the Session operates in Dyalog Classic mode .
The default is 0. If this parameter is set to 1, the Editor and Tracer behave in a manner
that is consistent with earlier versions of Dyalog APL.

Note that in this mode, a maximum of 50 Trace windows may be displayed.

See also Section 2.1.10.

1.9.25 ClassicModeSavePosition

This parameter specifies whether or not the current size and location of the first of the
editor and tracer windows are remembered for next time. This applies only if
ClassicMode is 1. See Section 1.9.24.

The size and location of the windows are saved in the registry in the subfolder
WindowRects/EditWindow and TraceWindow.

See also Section 2.1.10.

1.9.26 CMD_PREFIX and CMD_POSTFIX

These parameters defines strings within which operating system commands specified
as the arguments to ⎕CMD and ⎕SH , and)CMD and)SH , are wrapped. Its purpose is to
run the command arguments under a non-standard command shell. This applies to
Windows only.

See Dyalog APL Language: Cmd for implementation details.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 36

1.9.27 ConfigFile

This parameter specifies the name of the Application Configuration file. See Section
1.11.

1.9.28 Confirm_Abort

This parameter specifies whether or not you will be prompted for confirmation when
you attempt to abort an edit session after making changes to the object being edited.
Its value is either 1 (confirmation is required) or 0. The default is 0.

See also Section 2.1.10.

1.9.29 Confirm_Close

This parameter specifies whether or not you will be prompted for confirmation when
you close an edit window after making changes to the object being edited. Its value is
either 1 (confirmation is required) or 0. The default is 0.

See also Section 2.1.10.

1.9.30 Confirm_Fix

This parameter specifies whether or not you will be prompted for confirmation when
you attempt to fix an object in the workspace after making changes in the editor. Its
value is either 1 (confirmation is required) or 0. The default is 0.

See also Section 2.1.10.

1.9.31 Confirm_Session_Delete

This parameter specifies whether or not you will be prompted for confirmation when
you attempt to delete lines from the Session Log. Its value is either 1 (confirmation is
required) or 0. The default is 1.

See also Section 2.1.9.

1.9.32 Default_DIV

This parameter specifies the value of ⎕DIV in a clear workspace. Its default value is 0.

See also Section 2.1.9.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 37

1.9.33 Default_IO

This parameter specifies the value of ⎕IO in a clear workspace. Its default value is 1.

See also Section 2.1.9.

1.9.34 Default_ML

This parameter specifies the value of ⎕ML in a clear workspace. Its default value is 1.

See also Section 2.1.9.

1.9.35 Default_PP

This parameter specifies the value of ⎕PP in a clear workspace. Its default value is 10.

See also Section 2.1.9.

1.9.36 Default_PW

This parameter specifies the value of ⎕PW in a clear workspace. Note that ⎕PW is a
property of the Session and the value of Default_PW is overridden when a Session file
is loaded.

1.9.37 Default_RTL

This parameter specifies the value of ⎕RTL in a clear workspace. Its default value is 0.

See also Section 2.1.9.

1.9.38 Default_WX

This parameter specifies the value of ⎕WX in a clear workspace. This in turn determines
whether or not the names of properties, methods and events of GUI objects are
exposed. If set (⎕WX is 1), you may query/set properties and invoke methods directly as
if they were variables and functions respectively. As a consequence, these names may
not be used for global variables in GUI objects.

See also Section 2.1.14 and Section 2.1.9.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 38

1.9.39 DMXOutputOnError

This parameter specifies in which windows DMX error messages are displayed. It is an
integer whose value is the sum of the specified windows where 1 = Status Window and
2 = Session Window.

See also Section 2.1.7.

1.9.40 DockableEditWindows

This parameter specifies whether or not individual edit windows can be undocked from
(and docked back into) the (MDI) Editor window. Its default value is 0. This applies only
if ClassicMode is 1. See Section 1.9.24.

See also Section 2.1.10.

1.9.41 DoubleClickEdit

This parameter specifies whether or not double-clicking over a name invokes the editor.
Its default is 1. If DoubleClickEdit is set to 0, double-clicking selects a word and triple-
clicking selects the entire line.

See also Section 2.1.10.

1.9.42 Dyalog

This parameter specifies the name of the directory in which Dyalog APL is installed. If
undefined, the name of the directory from which the Dyalog APL program was loaded
is assumed.

1.9.43 DyalogEmailAddress

This parameter specifies the contact email address for Dyalog Limited.

1.9.44 DyalogHelpDir

This parameter specifies identifies the location of the HTML-based help that is used for
a request for help (from the Help menu or pressing F1) from the Session. It may be:

The full pathname of the directory that contains the Dyalog APL help file
(dyalog.chm). This is the default.

•

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 39

The index page of the on-line HTML-based help located on help.dyalog.com for
example, https://help.dyalog.com/18.0.

1.9.45 DyalogInstallDir

This parameter specifies the full pathname of the directory in which Dyalog APL is
installed.

1.9.46 DyalogLink

This parameter specifies the name of the directory containing the code for Link. The
default is [DYALOG]/StartupSession/Link.

Note that Link is required for Session initialisation.

For further information, see https://dyalog.github.io/link/4.0/Usage/Installation.

1.9.47 DyalogStartup

This parameter specifies the name of a file that contains APL code to be run each time
Dyalog starts. If this is undefined, the default file is named SessionStartup with the
file extension .aplf, .apln or .aplc, in the Dyalog directory.

See also User Interface: Session Initialisation.

1.9.48 DyalogStartupSE

This parameter specifies one or more Session initialisation directories that contain APL
code to be installed in ⎕SE. If this parameter is not specified, the default is a directory
named StartupSession located in three standard locations.

Under Windows these might be:

C:\Program Files\Dyalog\Dyalog APL-64 19.0 Unicode

C:\Users\Pete\Documents\Dyalog APL Files

C:\Users\Pete\Documents\Dyalog APL-64 19.0 Unicode Files

The version-specific name is :

•

1.

2.

3.

Dyalog APL{bit} {version} {edition}

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 40

https://dyalog.github.io/link/4.0/Usage/Installation

where:

{bit} is "-64" if 64-bit version, otherwise nothing
{version} is the main and secondary version numbers of dyalog.exe separated by
".".
{edition} is "Unicode" for the Unicode Edition, otherwise nothing

The parameter is a string containing the list of directory names separated by ";" on
Windows, ":" elsewhere.

If DyalogStartupSE begins with the specified separator, the default list is extended
rather than replaced.

Note that the effective sequence of directories specified by this parameter is converted
to a vector of character vectors and stored in ⎕SE.Dyalog.StartupSession.AllPaths.

If unset or extended (that is, starts with a : separator):

the effective StartupSession directory in [DYALOG] is available as
⎕SE.Dyalog.StartupSession.Dyalog.
the StartupSession directory in the version-agnostic directory is available as
⎕SE.Dyalog.StartupSession.VerAgno.
the StartupSession directory in the version-specific directory is available as
⎕SE.Dyalog.StartupSession.VerSpec.

See also User Interface: Session Initialisation.

1.9.49 DyalogStartup_X

During Session initialisation, code is loaded from the directories specified by the
DyalogStartupSE parameter into a corresponding namespace tree in the Session
namespace ⎕SE. Optionally, the code is then executed.

If DyalogStartup_X is 0 (the default if not defined), the Run function (if it exists) in each
top-level namespace loaded during Session start-up is executed. The namespaces are
processed in alphabetical order.

If DyalogStartup_X is 1, the Run function is not executed.

Other values are reserved for future extension.

See also: Section 1.9.48.

•
•

•

•

•

•

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 41

1.9.50 DyalogWebSite

This parameter specifies the URL for the Dyalog web site.

1.9.51 DYALOG_DISCARD_FN_SOURCE

This Boolean parameter specifies whether (1) or not (0) source code is discarded from
the workspace when an object is fixed. The default value is 0 which means that source
code is retained in the workspace and will subsequently be presented for editing as it
had been saved previously.

For further information, see Dyalog APL Language: Discard Source Information and
Earlier Release Notes: Source As Typed.

1.9.52 DYALOG_EVENTLOGGINGLEVEL

This parameter applies under Windows only, and specifies whether a log entry is
written to the Windows Event Log or not when Dyalog APL would pop up a message
box due to an unexpected termination of Dyalog APL. See Programming: Handling
Unexpected Errors for more information.

1.9.53 DYALOG_EVENTLOGNAME

This parameter applies under Windows only, and is either the name of the event log to
which an event message will be written, or the source of the event message
(depending on the registry entries which may or may not have been defined) when
Dyalog APL would pop up a message box due to an unexpected termination of Dyalog
APL.See Programming: Handling Unexpected Errors for more information.

1.9.54 DYALOG_GUTTER_ENABLE

This Boolean parameter specifies whether (1) or not (0) a Gutter is displayed in the left-
most column of the Session window. This gutter is used to display:

A small red circle. This indicator is used on every line that is modified in the
session, including old ones (for example, if you move up the session and modify
them, without pressing <ER>) . The indicators show which session lines will be
re-executed when you subsequently press <ER>.
A left bracket [to identify groups of default output. Note that other forms of
output are not identified in this way.

•

•

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 42

The default value is 0 for the TTY interface, and 1 otherwise.

1.9.55 Dyalog_LineEditor_Mode

This Boolean parameter specifies whether or not multi-line input is enabled in the
Session.

See also Section 2.1.9 and User Interface: Multiline Session Input.

1.9.56 Dyalog_NETCore

This Boolean parameter specifies whether the .NET interface is enabled. On Windows
the default is 0 which disables the .NET interface in favour of the .NET Framework
interface. If it is set to 1, Dyalog uses .NET instead of the .NET Framework.

On other platforms which support .NET, the default is 1.

1.9.57 DYALOG_NOPOPUPS

This parameter specifies whether a MsgBox will appear (0, the default) or will not (1)
when Dyalog APL terminates unexpectedly. This applies to APL on Windows only. See
Programming: Handling Unexpected Errors for more information.

1.9.58 Dyalog_Pixel_Type

When the Coord property is set to 'Pixel' , this parameter specifies how it is
interpreted. If the value of Dyalog_Pixel_Type is RealPixel or if Dyalog_Pixel_Type is
undefined, the object behaves as if Coord was 'RealPixel' . If the value of
Dyalog_Pixel_Type is ScaledPixel, the object behaves as if Coord were 'ScaledPixel'.
See Object Reference: Coord.

See also Section 2.1.1.

1.9.59 DYALOG_SERIAL

This parameter contains your Dyalog serial number. This must be set to the serial
number issued to you. If not set, then the software is unregistered.

For the full licence terms and conditions, see https://www.dyalog.com/uploads/
documents/Terms_and_Conditions.pdf.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 43

https://www.dyalog.com/uploads/documents/Terms_and_Conditions.pdf
https://www.dyalog.com/uploads/documents/Terms_and_Conditions.pdf

1.9.60 EditorState

This is an internal parameter that remembers the state of the last edit window (normal
or maximised). This is used to create the next edit window in the appropriate state.

1.9.61 Edit_Cols

This parameter specifies the initial width of an edit window in character units.

See also Section 2.1.8.

1.9.62 Edit_First_X

This parameters specify the initial x-position on the screen of the first edit window in
character units. Subsequent edit windows will be staggered. This parameter only apply
if ClassicMode is 1.

See also Section 2.1.8.

1.9.63 Edit_First_Y

This parameters specify the initial y-position on the screen of the first edit window in
character units. Subsequent edit windows will be staggered. This parameter only apply
if ClassicMode is 1.

See also Section 2.1.8.

1.9.64 Edit_Offset_X

This parameter specify the number of characters by which an edit window is staggered
horizontally from the previous one.

See also Section 2.1.8.

1.9.65 Edit_Offset_Y

This parameter specify the number of characters by which an edit window is staggered
vertically from the previous one.

See also Section 2.1.8.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 44

1.9.66 Edit_Rows

This parameter specifies the initial height of an edit window in character units.

See also Section 2.1.8.

1.9.67 Enable_CEF

This parameter is a Boolean value with a default value of 1. If set to 0, it disables the
Chromium Embedded Framework (CEF). and an attempt to create an Object Reference:
Htmlrenderer object will fail with an error message.

Note

Currently the value of the Enable_CEF parameter defined in the Windows Registry or in
a Configuration file is ignored. Only the value set in the command line or as an
environment variable is honoured. If not defined in this way, the default value is used.

1.9.68 ErrorOnExternalException

This parameter specifies the behaviour when a System Exception occurs in an external
DLL. If this parameter is set to 1, and an exception occurs in a call on an external DLL.
APL generates an EXTERNAL DLL EXCEPTION error (91), instead of terminating with a
System Error. This error may be trapped.

1.9.69 ExternalHelpURL

If UseExternalHelpURL is 1, Dyalog attempts to use the Microsoft Document Explorer
and online help, for example from Visual Studio (if installed), to display help for
external objects, such as .Net Types. This parameter specifies the URL to be used. In
most cases the default setting will be sufficient. On some configurations it may be
necessary to change this. See Section 1.9.125.

See also Section 2.1.7.

1.9.70 File_Stack_Size

This parameter specifies the number of the most recently used workspaces displayed in
the Session File menu. See Section 2.1.1.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 45

https://en.wikipedia.org/wiki/Chromium_Embedded_Framework

1.9.71 Greet_Bitmap

This parameter specifies the filename of a bitmap to be displayed during initialisation
of the Dyalog APL application. It is used typically to display a product logo from a
runtime application. The bitmap will remain until either an error occurs, or it is
removed using the Object Reference: Greetbitmap method of the Root object.

1.9.72 History_Size

This parameter specifies the size of the buffer used to store previously entered (input)
lines in the Session. See Section 1.9.1 for further details about defining a valid value for
this parameter. The maximum value is 2Gb.

See also Section 2.1.9.

1.9.73 IniFile

This parameter specifies the name of the Windows Registry folder that contains the
configuration parameters described in this section. For example,

The default values for IniFile, for the 64-bit and 32-bit versions respectively, are:

Unicode Edition

Classic Edition

See also Section 2.1.1.

Greet_Bitmap=c:\myapp\logo.bmp

INIFILE=Software\Dyalog\mysettings

Software\Dyalog\Dyalog APL/W-64 20.0 Unicode
Software\Dyalog\Dyalog APL/W 20.0 Unicode

Software\Dyalog\Dyalog APL/W-64 20.0
Software\Dyalog\Dyalog APL/W 20.0

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 46

1.9.74 InitFullScriptNormal

When using the Editor to edit a script such as a Class or Namespace you can specify
whether, when you Fix the script and Exit the Editor, just the functions in the script are
re-fixed, or whether the whole script is re-executed, thereby re-initialising any Fields or
variables defined within.

These two actions always appear in the Editor File menu, but you can specify which is
associated with the (Esc) key by selecting the appropriate option in the drop-downs
labelled:

Exit and save changes (EP) in a suspended class or namespace should fix:
If not suspended fix:

In both cases, you may select either Only Functions or Everything.

The label for the corresponding items on the Editor File menu (see Editor (The File
Menu, editing a script)) will change according to which behaviour applies. Note that if
you specify a keystroke for in the Keyboard Shortcuts tab, this will be associated with
the unselected action.

See also Section 2.1.10.

1.9.75 InitFullScriptSusp

When using the Editor to edit a script such as a Class or Namespace you can specify
whether, when you Fix the script and Exit the Editor, just the functions in the script are
re-fixed, or whether the whole script is re-executed, thereby re-initialising any Fields or
variables defined within.

These two actions always appear in the Editor File menu, but you can specify which is
associated with the (Esc) key by selecting the appropriate option in the drop-downs
labelled:

Exit and save changes (EP) in a suspended class or namespace should fix:
If not suspended fix:

In both cases, you may select either Only Functions or Everything.

The label for the corresponding items on the Editor File menu (see Editor (The File
Menu, editing a script)) will change according to which behaviour applies. Note that if
you specify a keystroke for in the Keyboard Shortcuts tab, this will be associated with
the unselected action.

•
•

•
•

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 47

See also Section 2.1.10.

1.9.76 InitialKeyboardLayout

Unicode Edition only.

This parameter specifies the name of the keyboard to be selected on startup. When
you start an APL session, this layout will automatically be selected as the current
keyboard layout if the value of InitialKeyboardLayoutInUse is 1.

See also Section 2.1.2.

1.9.77 InitialKeyboardLayoutInUse

Unicode Edition only.

This Boolean parameter specifies whether or not the keyboard specified by
InitialKeyboardLayout is selected as the current keyboard layout when you start an APL
session.

See also Section 2.1.2.

1.9.78 InitialKeyboardLayoutShowAll

Unicode Edition only.

This Boolean parameter specifies whether or not all installed keyboards are listed in the
choice of keyboards in the Configuration dialog box (Unicode Input tab).

See also Section 2.1.2.

1.9.79 Input_Size

This parameter specifies the size of the buffer used to store marked lines (lines awaiting
execution) in the Session. See Section 1.9.1 for further details about defining a valid
value for this parameter.

See also Section 2.1.9.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 48

1.9.80 KeyboardInputDelay

This parameter specifies the delay (in milliseconds) before the system reacts to a user
keystroke by:

updating the name of the Current Object in the Session statusbar. See User
Interface: Session Manager.
offering a list of names for auto-completion. See Section 2.1.11

1.9.81 Load

This parameter is a character string that specifies the name of a workspace, or a
directory or text file containing APL source code, to be loaded when Dyalog starts.

If Load specifies a text file, 2 ⎕FIX is used to import the file contents and associate that
file with each of the objects that have been fixed in the workspace.

If Load specifies a directory, Link is used to associate the directory with the active
workspace and to import the code. For more information about Link, see https://
dyalog.github.io/link.

The Load parameter will normally be specified on the command line or in a
Configuration file.

Having loaded the workspace, or fixed the code from the named file or directory,
Dyalog executes the expression specified by the LX parameter if it is set. See Section
1.9.86.

If LX is not set, Dyalog checks whether or not the -x command line option was
specified. If so, no further action is taken. See Section 1.6.

Otherwise, Dyalog executes an expression which is derived as follows.

If the value of Load is a directory, Dyalog will execute the expression:

where <Load> is the value of the Load parameter.

If the value of Load is the name of a file, Dyalog determines whether or not the file is a
workspace by its internal signature.

If the file is a workspace the expression to be executed is specified by its ⎕LX. See
Dyalog APL Language: Lx.

•

•

Run ,⊂<Load>

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 49

https://dyalog.github.io/link
https://dyalog.github.io/link

Otherwise, if the file extension is .aplf .aplc or .apln the expression is shown in the
table below, where filename is the file name specified by the Load parameter without
its extension.

File Extension Type Expression

.aplf Function source code filename 0⍴⊂''

.aplc Class source code filename.Run 0⍴⊂''

.apln Namespace source code filename.Run 0⍴⊂''

Notes

The Load parameter overrides a workspace name specified as the last item on
the command line.
The argument 0⍴⊂'' may change in a future version of Dyalog.
Nothing is executed when code is loaded from source files that define operators
(.aplo) or Interfaces (.apli).

1.9.82 localdyalogdir

This parameter specifies the name of the directory in which Dyalog APL/W is installed
on the client, in a client/server installation

1.9.83 Log_File

This parameter specifies the pathname to the Session log file; it can be absolute or
relative to the working directory.

The Session log file is not interchangeable between different versions/editions/widths
of Dyalog – this means that opening a new instance of Dyalog will overwrite any
contents of the Session log file populated by an already‑running instance. However, if
the LOG_FILE parameter contains a '*' (for example, JD.*.dlf) then at start-up Dyalog
will attempt to open, and then lock, a file where the '*' has been replaced with an
increasing integer value (starting with 000, so JD.000.dlf, JD.001.dlf etc). If said file
cannot be opened and locked, the value will be incremented. The process will fail, and
no log will be used if the extension number would exceed 999.

The default is Users\<username>\Documents\Dyalog APL-<bits>
<DyalogMajor>.<DyalogMinor> <Unicode|Classic> Files\default_*.dlf, for

•

•
•

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 50

example, Users\Bob\Documents\Dyalog APL-64 19.0 Unicode
Files\default_*.dlf

Note that the LogFile property of ⎕SE reports the name of the log file that is being
used.

See also Section 2.1.9.

1.9.84 Log_File_InUse

This Boolean parameter specifies whether or not the Session log is saved. The default is
1 meaning that the Session log is saved in a Session log file and loaded the next time a
Session is started. If set to 0, the Session log is not saved

See also Section 2.1.9.

1.9.85 Log_Size

This parameter specifies the size of the Session log buffer. See Section 1.9.1 for further
details about defining a valid value for this parameter. The maximum value is 2Gb.

See also Section 2.1.9.

1.9.86 LX

This parameter specifies an expression to be executed after Dyalog has started and
loaded a workspace or a text file containing APL source code. Also see Section 1.9.81.
This expression is run only on Dyalog start-up and overrides the workspace latent
expression ⎕LX.

The LX parameter applies only to the development version of Dyalog and is ignored in
run-time applications.

The LX parameter is ignored when a workspace is loaded other than at start-up of the
Dyalog program.

The LX parameter applies only to the Unicode edition of Dyalog and is ignored in Classic
edition.

1.9.87 mapchars

Classic Edition only.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 51

In previous versions of Dyalog APL, certain pairs of characters in ⎕AV were mapped to a
single font glyph through the output translate table. For example, the ASCII pipe ¦ and
the APL style | were both mapped to the APL style | . From Version 7.0 onwards, it has
been a requirement that the mapping between ⎕AV and the font is strictly one-to-one
(this is a consequence of the new native file system). Originally, the mapping of the
ASCII pipe and the APL style, the APL and ASCII quotes, and the ASCII ^ and the APL ^
were hard-coded. The mapping is defined by the mapchars parameter.

mapchars is a string containing pairs of hexadecimal values which refer to 0-origin
indices in ⎕AV . The first character in each pair is mapped to the second on output. The
default value of mapchars is DB0DEBA7EEC00BE0 which defines the following mappings.

From To

Hex Decimal Symbol Hex Decimal Symbol

DB 219 ‘ 0D 13 '

EB 235 ^ A7 167 ^

EE 238 ⌷ C0 192 |

0B 11 . E0 224 .

To clear all mappings, set MAPCHARS=0000 .

1.9.88 MaxAplCores

This parameter is used in conjunction with the AplCoreName parameter to control the
maximum number ofaplcore files that are saved. It applies when the string specified by
AplCoreName ends with an asterisk (). If so, when saving an aplcore* file, Dyalog
performs the following steps:

Identifies the highest number ending of those files that match the directory/
name pattern specified by AplCoreName . If none, assume 0.
Increments that number, then saves the aplcore in a new file ending with the
new number.
If necessary, deletes lower-numbered files to retain only the maximum number
of files specified by MaxAplCores .

See also: Section 1.9.5.

See also Dyalog APL Language: Aplcore Parameters.

1.

2.

3.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 52

1.9.89 MaxWS

This parameter determines your workspace size and is the amount of memory
allocated to the workspace at APL start-up. See Section 1.9.1 for further details about
defining a valid value for this parameter.

The default value is 256M (256MiB), with the exception of the Raspberry Pi where the
default is 64M. Values less than 4M are ignored, and the maximum value is 15E.

For example, to get a 4GiB workspace, set:

Dyalog APL places no implicit restriction on workspace size, and the virtual memory
capability of the underlying operating system allows you to access more memory than
you have physically installed. However if you use a workspace that greatly exceeds your
physical memory you will encounter excessive paging and your APL programs will run
slowly. You may also cause the system to crash.

Note that the memory used for the workspace must be contiguous .

32-bit versions of Dyalog APL are typically limited to between 1.3GiB to 1.9GiB under
Windows, and 1.9GiB under UNIX. These are operating system limitations imposed on
32-bit processes rather than ones imposed by Dyalog APL, and are affected by the
number and size of DLLs/shared libraries that are loaded into the process space.

64-bit versions of Dyalog APL have no such limitations; Dyalog has used workspaces of
96GiB on various platforms.

See also Section 2.1.6.

1.9.90 OverstrikesPopup

Unicode Edition only.

This is a Boolean parameter that specifies whether or not the Overstrikes popup is
enabled.

1.9.91 PassExceptionsToOpSys

This is a Boolean parameter that specifies the default state of the Pass Exception check
box in the System Error dialog box.See Programming: Handling Unexpected Errors for
more information.

MAXWS=4G

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 53

1.9.92 PFKey_Size

This parameter specifies the size of the buffer that is used to store programmable
function key definitions. See Dyalog APL Language: Pfkey.

For further details about defining a valid value for this parameter, see Section 1.9.1.

See also Section 2.1.9.

1.9.93 ProgramFolder

This parameter specifies the name of the folder in which the Dyalog APL program icons
are installed.

1.9.94 PropertyExposeRoot

Each workspace contains a flag that specifies whether or not the names of Properties,
Methods and Events of the Root object are exposed. If set, you may query/set the
Properties of Root and invoke the Root Methods directly as if they were variables and
functions respectively. As a consequence, these names may not be used for global
variables in your workspace. This parameter determines the default value of the flag in
a CLEAR WS.

See also Section 2.1.14.

1.9.95 PropertyExposeSE

Each workspace contains a flag that specifies whether or the names of Properties,
Methods and Events of the Session object are exposed. If set, you may query/set the
Properties of ⎕SE and invoke ⎕SE Methods directly as if they were variables and
functions respectively. As a consequence, these names may not be used for global
variables in the ⎕SE namespace. This parameter determines the default value of the
flag in a CLEAR WS.

See also Section 2.1.14.

1.9.96 qcmd_timeout

This parameter specifies the length of time in milliseconds that APL will wait for the
execution of a Windows command to start. Its default value is 5000 milliseconds.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 54

1.9.97 ResolveOverstrikes

Unicode Edition only.

Specifies whether or not the user may enter an APL composite symbol using
overstrikes.

1.9.98 RIDE_Init

This parameter determines how the interpreter should behave with respect to the Ride
protocol. Setting this configuration parameter on the machine that hosts the
interpreter enables the interpreter-Ride connection.

RIDE_Init can only be used to specify a limited number of Ride configuration options;
the rest must be specified in a Ride ini file. Full details describing how to configure Ride,
including using certificates to authenticate connections can be found in the Ride User
Guide.

The format of the value is:

setting is the action the interpreter should take. Valid values, which are case-
insensitive, are as follows:

serve – listen for incoming connections
http - listen for an incoming request for Zero Footprint Ride
connect – connect to the specified Ride and end the session if this fails
poll – try to connect to the specified Ride at regular intervals and reconnect if
the connection is lost
config - specifies the name of the Ride ini file to be used

For serve and http,

is a list of IPv4 or IPv6 addresses and/or DNS names of interfaces in the machine where
the APL process is running, and specifies the interfaces through which incoming
requests to connect are accepted. If
is empty, incoming requests are accepted only from the machine itself (the interpreter
will listen on the loopback addresses only). If
is set to “*” then the interpreter will listen for requests through all the available
interfaces in the local machine.

<setting> : <address> : <port>

•
•
•
•

•

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 55

https://dyalog.github.io/ride
https://dyalog.github.io/ride

If setting is serve or http then address is a list of IPv4 or IPv6 addresses and/or DNS
names of interfaces in the machine where the APL process is running, and specifies the
interfaces through which incoming requests to connect are accepted. If address is
empty, incoming requests are accepted only from the machine itself (the interpreter
will listen on the loopback addresses only). If address is set to “*” then the interpreter
will listen for requests through all the available interfaces in the local machine.

If setting is connect or poll then address is an IP address or DNS name of an interface
in a remote machine to which the interpreter should attempt to connect. Valid address
values are:

a resolvable name
an IPv4 or IPv6 address
empty – the local machine only

(valid only when setting is serve or http) the interpreter listens on
all local network interfaces

port is the TCP port to listen on

Settings specified by the RIDE_Init configuration parameter take precedence over the
same setting specified in the Ride ini file. Note that the RIDE_Init configuration
parameter can specify both config and one of serve, http, connect or poll. For example,

This is most useful when multiple interpreters need to be run, each with its own Ride
connection as each must have a separate port number.

Note that the RIDE_Init configuration parameter is set automatically when launching a
new Dyalog Session from Ride.

Examples

To allow an incoming connection through any interface in the machine running the
interpreter:

To allow incoming Zero Footprint Ride connection through just one interface of the
machine running the interpreter:

To attempt to connect to Ride running on my colleague's machine:

•
•
•
• ◦ ▪

RIDE_INIT=serve:*:4502,config=/home/andys/.dyalog/secureride.ini

RIDE_INIT=serve:*:4052

RIDE_INIT=http:192.168.0.10:8080

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 56

1.9.99 Ride_Spawned

If non-zero, this parameter disables ⎕SR and)SH which instead generate DOMAIN
ERROR. This parameter is used to prevent certain user-interfaces from being executed
from a Ride session which does not support them, and which would otherwise cause
the Ride session to become unresponsive. See Ride User Guide.

1.9.100 RunAsService

When RunAsService is set to 1 or 2 (the default is 0) Dyalog APL will not prompt for
confirmation when the user logs off, and the interpreter will continue to run across the
logoff /logon process. The value 2 reduces the resources used by a Dyalog service by
disabling the graphical user-interface features. In this mode, ⎕WC object will fail with a
LIMIT ERROR unles the object is Timer, which is the only one that remains enabled.

1.9.101 SaveContinueOnExit

Specifies whether or not your current workspace is saved as CONTINUE.DWS before APL
terminates.

1.9.102 SaveLogOnExit

Specifies whether or not your Session log is saved before APL terminates.

1.9.103 SaveSessionOnExit

Specifies whether or not your current Session is saved in your Session file before APL
terminates.

1.9.104 Serial

Legacy: Specifies your Dyalog APL/W Serial Number. SeeSection 1.9.59 which
supercedes it..

1.9.105 SessionOnTop

Specifies whether or not the Session may appear on top of Edit and Trace Windows in
Classic Dyalog mode. This applies only if ClassicMode is 1. See Section 1.9.24.

RIDE_INIT=connect:pete.dyalog.com:4052

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 57

https://dyalog.github.io/ride

See also Section 2.1.10.

1.9.106 Session_File

This parameter specifies the name of the file from which the APL session (⎕SE) is to be
loaded when APL starts. If not specified, a .dse extension is assumed. This session file
contains the ⎕SE object that was last saved in it. This object defines the appearance
and behaviour of the Session menu bar, tool bar(s) and status bar, together with any
functions and variables stored in the ⎕SE namespace.

See also Section 2.1.9.

1.9.107 ShowStatusOnError

Specifies whether or not the Status window is automatically displayed (if required)
when APL attempts to write output to it.

1.9.108 SingleTrace

Specifies whether there is a single Trace window, or one Trace window per function.
This applies only if ClassicMode is 1. See Section 1.9.24.

See also Section 2.1.10.

1.9.109 SkipLines

This parameter causes the Tracer to automatically skip lines that contain no executable
statement, with the exception of the first line in the function, and in the case of a
traditional function (not a dfn), the last line if it is a comment. SkipLines is an integer
made up of the sum of the following values:

1 Skip blank lines. See also Skip blank lines when tracing .

2 Skip comment lines. See also Skip comment lines when tracing .

4 Skip locals lines. See also Skip locals lines when tracing .

1.9.110 SM_Cols

This parameter specifies the width in characters of the window used to display ⎕SM
when it is used stand-alone . It is not used if the window is specified using the SM
object.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 58

1.9.111 SM_Rows

This parameter specifies the height in characters of the window used to display ⎕SM
when it is used stand-alone . It is not used if the window is specified using the SM
object.

1.9.112 StatusOnEdit

Specifies whether or not a status bar is displayed at the bottom of an Edit window.

See also Section 2.1.10.

1.9.113 TabStops

This parameter specifies the number of spaces inserted by pressing the Tab key in the
editor. Its default value is 4.

See also Section 2.1.10

1.9.114 ToolBarsOnEdit

Specifies whether or not tool bars are displayed along the top of individual Edit
windows.

See also Section 2.1.10.

1.9.115 TraceStopMonitor

This parameter specifies which of the ⎕TRACE (1), ⎕STOP (2) and ⎕MONITOR (4) columns
are displayed in Trace and Edit windows. Its value is the sum of the corresponding
values.

1.9.116 Trace_First_X

This parameters specifies the initial horizontal position on the screen of the first trace
window in character units. Subsequent trace windows will be staggered. This applies
only if ClassicMode is 1.

See also Section 2.1.8.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 59

1.9.117 Trace_First_Y

This parameters specifies the initial vertical position on the screen of the first trace
window in character units. Subsequent trace windows will be staggered. This applies
only if ClassicMode is 1.

See also Section 2.1.8.

1.9.118 Trace_Level_Warn

This parameter specifies the maximum number of Trace windows that will be displayed
when an error occurs and Trace_on_error is set to 1. If there are a large number of
functions in the state indicator, the display of their Trace windows may take several
seconds. This parameter allows you to restrict the potential delay to a reasonable value
and its default is 16. If the number of Trace windows would exceed this number, the
system instead displays a warning message box. This parameter is ignored if you invoke
the Tracer explicitly. This parameter applies only if ClassicMode is 1 and SingleTrace is
0.

See also Section 2.1.10.

1.9.119 Trace_Offset_X

This parameter specifies the number of characters by which a trace window is
staggered horizontally from the previous one. This applies only if ClassicMode is 1 and
SingleTrace is 0.

See also Section 2.1.8.

1.9.120 Trace_Offset_Y

This parameter specifies the number of characters by which a trace window is
staggered vertically from the previous one. This applies only if ClassicMode is 1 and
SingleTrace is 0.

See also Section 2.1.8.

1.9.121 Trace_On_Error

This parameter is either 0 (the default) or 1. If set to 1, Trace_On_Error specifies that
the Tracer is automatically deployed when execution of a defined function halts with an

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 60

error. A stack of Trace windows is immediately displayed, with the top Trace window
receiving the input focus.

See also Section 2.1.10.

1.9.122 UCMDCacheFile

This parameter specifies the name of the User Command cache file.

The default value is:

For example, UserCommand25.182U64.cache

1.9.123 UnicodeToClipboard

Classic Edition only.

This parameter specifies whether or not text that is transferred to and from the
Windows clipboard is treated as Unicode text. If UnicodeToClipboard is 0 (the default),
the symbols in ⎕AV are mapped to ASCII text (0-255). In particular, the APL symbols are
mapped to ASCII symbols according to their positions in the Dyalog APL font. If
UnicodeToClipboard is 1, the symbols in ⎕AV are mapped to Unicode text and the APL
symbols are mapped to their genuine Unicode equivalent values.

See also Section 2.1.10

1.9.124 URLHighlight

Specifies whether or not URLs and links are highlighted in Session and Edit windows. Its
value is either 1 (highlight) or 0. The default is 0.

If this option is selected, valid URLs are identified when the cursor is in the Session or in
an Edit or Trace window. When the mouse pointer is over a URL, the URL is
underscored and the appropriate items in the Session Popup menu are activated. These
allow you to open the link or copy it to the clipboard.

You may also open a URL using Ctrl+Click (Left Mouse button).

UserCommand{UcmdMajor}{UcmdMinor}.{DyalogMajor}{DyalogMinor}{U|C}
{bits}.cache

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 61

Currently a URL string is defined to be a string starting with any of the following strings:

http://
https://
www.
mailto:

See also Section 2.1.1.

1.9.125 UseExternalHelpURL

This parameter specifies whether or not Dyalog attempts to use the Microsoft
Document Explorer and online help to display help for external objects, such as .Net
Types. See Section 1.9.69.

See also Section 2.1.7.

1.9.126 UserConfigFile

This parameter specifies the name of the User Configuration file. See Section 1.11.

1.9.127 UseXCV

This Boolean parameter specifies how the commonly used keystrokes for copy (ctrl+c),
cut Ctrl+x) and paste (ctrl+v) are processed.

0 = process normally (via the appropriate .DIN file)1 = pass untranslated to the host
application

The UseXCV parameter is defined for the IME in the Registry section
HKEY_CURRENT_USER\Software\Dyalog\UnicodeIME\

When UseXCV is 1, the keystrokes Ctrl+X, Ctrl+C and Ctrl+V are passed untranslated to
dyalog.exe which treats them as CT, CP and PT respectively. This is likely to be true for
other host applications using the Dyalog keyboard.

The standard Dyalog keyboard (.din) files map Shift+Del to CT, Ctrl+Ins to CP, and
Shift+Ins to PT. These will therefore work independently of the UseXCV* option.

The standard Dyalog keyboard (.din) files map BOTH Ctrl+X and Ctrl+Shift+Xto ⊃ So if
UseXCV* is set to 1, you must use Ctrl+Shift+X to obtain ⊃. Likewise for C and V.

•
•
•
•

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 62

1.9.128 ValueTips

ValueTips/ColourScheme

This parameter specifies the colour scheme used to display a Value Tip when the user
hovers the mouse over a name.

See also Section 2.1.1.

ValueTips/Delay

This parameter specifies the delay before a Value Tip is displayed when the user hovers
the mouse over a name.

See also Section 2.1.1.

ValueTips/Enabled

This parameter specifies whether or not Value Tips are enabled. When enabled, Dyalog
displays the value of a variable or the code for a function when the user hovers the
mouse over its name.

See also Section 2.1.1.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 63

1.9.129 WantsSpecialKeys

Unicode Edition only.

This parameter specifies a list of applications (for example, putty.exe) that use the
command strings in the Input Translate Tables.

1.9.130 WrapSearch

This parameter specifies whether or not Search/Replace in the Editor stops at the
bottom or top of the text (depending upon the direction of the search), or continues
the search from the start or end as appropriate.

See also: Section 2.1.10.

1.9.131 WrapSearchMsgBox

Specifies whether or not a message box is displayed to inform the user when the
search wraps.

See also Section 2.1.10.

1.9.132 WSEXT

This parameter specifies workspace filename extensions. It complements the WSPATH
parameter in that together they determine the file search order to satisfy)LOAD or
)COPY; it also specifies the filename extension to add on)SAVE or)CONTINUE if none is
explicitly provided.

WSEXT is a string that specifies a colon-separated list of one or more extensions,
including any period (".") which separates the extension from its basename.

If undefined, WSEXT defaults to .dws: on Windows and macOS, and :.dws:.DWS on all
other platforms.

In the Windows case, this means that)LOAD myws will search first for a file named
myws.dws , and then for a file named myws (with no extension). As file names are not
case-sensitive under Windows, this will find myws.DWS or MyWs.Dws and so forth. If
none are found with this extension, it will load myws , MyWs , MYWS etc.

In the second (non-Windows) case note that)LOAD myws will search first for a file
named myws , then myws.dws , then myws.DWS.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 64

When)SAVE and ⎕SAVE is used without specifying a file extension, the first extension
defined by WSEXT is applied to complete the file name. The default is therefore .dws in
all cases.

1.9.133 WSPath

This parameter defines the workspace path. This is a list of directories that are
searched in the order specified when you)LOAD or)COPY a workspace and when you
start an Auxiliary Processor without explicitly specifying a path in the name. The
directory paths are specified using Operating System specific conventions and
separated by ";" (Windows) or ":" (UNIX).

Note that to load workspaces from the current directory, "." must be included in the list
defined by WSPath..

The following Windows example causes)COPY ,)LOAD and)LIB to look first in the
current directory, then in D:\MYWS .

See also Section 2.1.6.

1.9.134 XPLookAndFeel

This Boolean parameter specifies whether or not Native Look and Feel is used. This
affects the appearance of user-interface controls such as Buttons. The default is 1.

1.9.135 yy_window

This parameter defines how Dyalog APL is to interpret a 2-digit year number. If
yy_window is not set (the default) then under Windows, Version 13.2 onwards will
adhere to the rules specified in the Windows Region and Language 2-digit year settings.

Dyalog allows a choice of input date formats for ⎕SM and GUI edit fields. If you have
chosen a 2-digit year format such as MM/DD/YY, then an input of 02/01/00 will by
default be interpreted as 1stFebruary 1900 - not 1stFebruary 2000.

If your application uses a 4-digit year format such as YYYY-MM-DD, the problem will not
arise.

You can use the yy_window parameter to cause your application to interpret 2-digit
dates in as required without changing any APL code.

WSPath=.;D:\MYWS

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 65

Sliding versus Fixed Window

Two schemes are in common use within the industry: Sliding or Fixed date windows.

Use a Fixed window if there is a specific year , for example 1970, before which, dates
are meaningless to your application. Note that with a fixed window, this date (say 1970)
will still be the limit if your application is running in a hundred years' time.

Use a Sliding window if there is a time period , for example 30 years, before which
dates are considered too old for your application. With a sliding window, you will
always be able to enter dates up to (say) 30 years old, but after a while, specific years in
the past (for example 1970) will become inaccessible.

Setting a Fixed Window

To make a fixed window, set parameter yy_window to the 4-DIGIT year which is the
earliest acceptable date. For example:

YY_WINDOW=1970

This will cause the interpreter to convert any 2-digit input date into a year in the range
1970, 1971 ... 2069

Setting a Sliding Window

To make a sliding window, set parameter yy_window to the 1- or 2-DIGIT year which
determines the oldest acceptable date. This will typically be negative.

YY_WINDOW=-30

Conversion of dates now depends on the current year:

If the current year is 1999, the earliest accepted date is 1999-30 = 1969.

This will cause the interpreter to convert any 2-digit input date into a year in the range
1969, 1970 ... 2068.

However if your application is still running in the year 2010, the earliest accepted date
then will be 2010-30 = 1980. So in the year 2010, a 2-digit year will be interpreted in
the range 1980, 1981 ... 2079.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 66

Advanced Settings

You can further restrict date windows by setting an upper as well as lower year limit.

YY_WINDOW=1970,1999

This causes 2-digit years to be converted only into the range 1970, 1971 ... 1999. Any 2-
digit year (for example, 54) not convertible to a year in this range will cause a DOMAIN
ERROR .

The sliding window equivalent is:

YY_WINDOW=-10,10

This would establish a valid date window, ten years either side of the current year. For
example, if the current year is 1998, the valid range would be (1998-10) – (1998+10), in
other words: 1988, 1989, → 2008.

One way of looking at the yy_window variable is that it specifies a 2-element vector. If
you supply only the first element, the second one defaults to the first element + 99.

Note that the system uses only the number of digits in the year specification to
determine whether it refers to a fixed (4-digits) or sliding (1-, or 2-digits) window. In
fact you can have a fixed lower limit and a sliding upper limit, or vice versa.

YY_WINDOW=1990,10

Allows dates as early as 1990, but not more than 10 years hence.

YY_WINDOW=0,1999

Allows dates from the current year to the end of the century.

If the second date is before, or more than 99 years after the first date, then any date
conversion will result in a DOMAIN ERROR . This might be useful in an application where
the end-user has control over the input date format and you want to disallow any 2-
digit date input.

YY_WINDOW=1,0

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 67

1.10 Registry Sub-Folders

A large amount of configuration information is maintained in the Windows Registry in
sub-folders of the main folder identified by inifile.

Many of these values are dynamic, for example the position of the various Session
windows, is maintained in a Registry sub-folder so that their appearance is maintained
from one invocation of APL to the next. These types of Registry values are considered
to be internal and are therefore not described herein.

However, any Registry Value that is maintained via a configuration dialog box will be
named and described in the documentation for that dialog box in Chapter 2.

AutoComplete

This contains registry entries that describe your personal AutoComplete options. See
Section 2.1.11

Captions

This contains registry entries to customise the Captions used in the various windows of
the Dyalog APL IDE. See Section 1.12.

Colours

This contains entries that describe the colour schemes you have and your personal
preferences. See Section 2.2.

Editor

This contains certain entries for the Editor.

Event Viewer

This contains entries that describe your settings for the Event Viewer. See UI Guide:

The Event Viewer.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 68

Explorer

This contains entries that describe your settings for the User Interface: Workspace
Explorer.

files

This contains the size of your recently used file list (see Section 2.1.1) and the list of
your most recently loaded workspaces.

KeyboardShortcuts/keys

This contains the definitions of your Keyboard Shortcuts (Unicode Edition only). See
Section 2.1.5.

KeyboardShortcuts/chars

This contains the Registry Keyboard mappings between keystrokes and APL characters
(Unicode Edition only). See User Interface: Apl Keyboards.

LanguageBar

This contains the definitions of the symbols, tips, and help for the symbols in the
LanguageBar.

Printing

This contains the entries for your Printer Setup options. See Section 2.3.

SALT

This contains entries for SALT. See Section 2.1.12.

Search

This contains dynamic entries for the Find Objects Tool. See UI Guide:

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 69

Find Objects Tool.

Threads

This contains entries to remember your preferences for Threads. See UI Guide:

The Threads Menu.

UnicodeIME

This contains entries for the Dyalog Unicode IME.

ValueTips

This contains entries for your Value Tips preferences. See UI Guide:

Value Tips.

WindowRects

This contains entries to maintain the position of various Session tool windows so that
they remain consistent between successive invocations of APL.

1.11 Configuration Files

Introduction

A configuration file is an optional text file containing configuration parameters and
their values. It may cascade, that is, it can extend (inherit) configuration values from
other configuration files, and supplement and/or override them.

Configuration files use JSON5 (a superset of standard JSON) syntax, as described below.
These files are portable across all systems supported by Dyalog.

Although it is possible to include user credentials such as login details or passwords in
configuration files, Dyalog very strongly recommends against doing this even if the
credentials are encrypted as this should be considered to be a very significant security
risk.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 70

Names of configuration parameters defined in Configuration files may be specified in
any combination of alphabetic case.

Dyalog processes up to two kinds of configuration file (each of which may cascade):

An application configuration file which contains configuration values associated
with a specific application
A user configuration file which defines configuration values for the current, and
possibly only, user of the system.

Application Configuration File

When Dyalog starts, it derives the name of the application configuration file as follows:

The name in the configuration parameter ConfigFile if it is set, otherwise
The name of the workspace or script loaded at start-up using the Load
parameter, with the extension replaced by .dcfg, if that file exists, otherwise
Nothing.

User Configuration File

The name of the user configuration file is specified by the UserConfigFile parameter.
Under Windows, this parameter is not set by default but may be defined by the user.

Precedence

Configuration files supplement existing methods of defining parameters. The following
precedence table shows the order of precedence when a setting is defined in multiple
places:

Command-line settings override
Application configuration file settings, which override
Environment variable settings, which override
User configuration file settings, which override
Settings in the registry (Windows only), which override
Built-in defaults

Configuration Files and The Configuration Dialog

The Configuration Dialog reflects the values of parameters stored in the Windows
Registry and ignores overriding values defined on the command-line, in configuration
files or in environment variables. If the user changes parameters using the

1.

2.

•
•

•

•
•
•
•
•
•

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 71

Configuration Dialog, the new values are recorded in the Registry, but remain
overridden by those that take precedence.

Configuration File Structure

Configuration files define configuration parameters using JSON5. A JSON object
contains data in the form of key/value pairs and other JSON objects. The keys are
strings and the values are the JSON types. Keys and values are separated by colon. Each
entry (key/value pair) is separated by comma.

The top-level object defines an optional key named Extend and an optional object
named Settings.

Extend is a string value containing the name of a configuration file to import. The
extended (imported) file may in turn extend another configuration file. Configuration
values from the imported file(s) may be overridden by redefining them. The file name is
implicitly relative to the name of the file which imports it. Any file name extension
must be explicitly specified.

Settings is an object containing the names of configuration parameters and their
values. The values may be:

A string
A number
An array of strings

The names and values correspond to configuration parameters, but names are not case
sensitive. Any named values may be defined; an APL application may query the values
using +2⎕NQ'.' 'GetEnvironment' name, or using the]config user command. Note
that GetEnvironment returns the value in use as defined by the precedence rules (see
Precedence above).

Example

•
•
•

+2 ⎕NQ '.' 'GetEnvironment' ('MaxWS' 'Captions\Session')
┌────┬───────────────────────┐
│256M│My Dyalog V18.0 Session│
└────┴───────────────────────┘

]config MaxWS Captions\Session
┌────────────────┬───────────────────────┐
│MaxWS │256M │
├────────────────┼───────────────────────┤
│Captions\Session│My Dyalog V18.0 Session│
└────────────────┴───────────────────────┘

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 72

A warning will be given if names are redefined in the same configuration file; the
second and subsequent definitions will be discarded.

File Names

Pathnames specified in configuration files should be specified using portable forward
slashes "/" rather than back-slashes "\" as the latter are used as escape characters by
JSON.

WSPATH: ["c:/Dyalog18.0"] or WSPATH: ["c:\\Dyalog18.0"] specifies the file c:
\Dyalog18.0.

whereas,

WSPATH: ["c:\Dyalog18.0"] means c:Dyalog18.0.

Example

Arrays

An array may be used to define file paths etc. For example,

The only parameters which may be defined as arrays are WSPATH, WSEXT and CFEXT.

{
Extend: "my_default_configuration.dcfg",

Settings: {
// maximum workspace
MAXWS: "2GB",
WSPATH: ["/dir1", "/dir2", ""],
UserOption: 123,
ROOTDIR: "/my/root/directory",
// references to other configuration parameters
FNAME: "[rootdir]/filename",

}
}

WSPATH: ["/dir1", "/dir2"]

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 73

References to other Configuration Parameters

Configuration parameters which are string values may include references to other
configuration parameters (regardless of where they are defined) using square bracket
delimiters. For example:

will replace [DYALOG] with the value of the DYALOG configuration value.

If the string inside the [] delimiters is ".", the "." is replaced is replaced with the path
of the directory containing the configuration file itself. Therefore,

will set the parameter FILENAME to a value which is a reference to a file called x.txt in
the same directory as the configuration file defining it.

Note that:

If the referenced configuration parameter is not defined then no substitution will
take place; the reference, including square bracket delimiters, will remain in
place.
To include square brackets in a string, prefix the '[' with a '\' character.

Nested Structures

Some parameters are stored in sub-folders in the Windows Registry. Currently, all such
parameters used by Dyalog APL itself relate to the Windows IDE, but you can create
your own application-specific structures..

The Configuration file supports this structure by defining an object that corresponds to
a Registry sub-folder. For example:

MySetting: "[DYALOG]/MyFile"

FILENAME: "[.]/x.txt"

•

•

Captions: {
Session: "My Dyalog Session",
Status: "My Status window",

}

+2 ⎕NQ '.' 'GetEnvironment' 'Captions\Session'
My Dyalog Session

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 74

1.12 Window Captions

The captions of the various windows that comprise the Dyalog Integrated Development
Environment (IDE) are user-configurable and defined by entries in the Windows registry
in the Captions subkey of the main Dyalog key.

Note that this only applies when the windows are floating (un-docked). When a
window is docked Dyalog displays a fixed non-configurable caption.

Note also that the Captions subkey is not created by the interpreter; the user must
create the subkey and the values.

Each entry is a string value whose name identifies the window as follows:

Window
Name Description

Session The main Dyalog APL session window

Editor The Editor window

SysTray The hint on Dyalog icons in the System Tray

MessageBox
The notification Message Box that is displayed in various
circumstances; for example, when an object cannot be fixed by
the Editor

Explorer The Workspace Explorer tool

Rebuild
Errors

The dialog box that is displayed if one or more objects cannot be
re-instantiated when a workspace is loaded

Status The Status window

Event Viewer The Event Viewer

FindReplace The Find/Replace dialog box

ExitDialog The Exit dialog box that is displayed when the user closes the
Session window

WSSearch The Find Objects tool

Syserror The Syserror Message Box

Each string value should contain a mixture of your own text and keywords which are
enclosed in braces, for example, {TITLE}. Keywords act like variables and are replaced at
display time by corresponding values as described in the table below.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 75

Keyword Value

{TITLE} The window name shown in the first column of the previous table

{WSID} Workspace ID (⎕WSID)

{NSID} Current Namespace

{SNSID} Current Namespace (short version)

{PRODUCT} The name of the Dyalog product, for example, "Dyalog APL/W - 64"

{VER_A} The main version number, for example, "14"

{VER_B} The secondary version number, for example, "0"

{VER_C} The tertiary version number (currently the internal revision number)

{PID} The process ID

{CHARS} "Classic" or "Unicode"

{BITS} "32" or "64"

{XLOC} The namespace currently being explored (Explorer only)

For example, if the Registry contains .\Captions\Session whose value is:

then the caption displayed in a new Dyalog APL Session window might be:

1.13 Workspace Management

Workspace Size and Compaction

The maximum amount of memory allocated to a Dyalog APL workspace is defined by
the maxws parameter (on non-Windows platforms this is defined by the environment
variable MAXWS).

Upon)LOAD and)CLEAR, APL allocates an amount of memory corresponding to the size
of the workspace being loaded (which is zero for a clear ws) plus the workspace delta.

The workspace delta is 1/16th of maxws, except if there is less than 1/16th of maxws in
use, delta is 1/64th of maxws. This may also be expressed as follows:

My APL ({WSID}) Version {VER_A}.{VER_B}[{VER_C}] - {PID}

My APL (CLEAR WS) Version 14.0[20105] - 4616

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 76

where maxws is the value of the maxws parameter and ws is the currently allocated
amount of workspace. If maxws is 16384KB, the workspace delta is either 256KB or
1024 KB, and when you start with a clear ws the workspace occupies 256KB.

When you erase objects or release symbols, areas of memory become free. APL
manages these free areas, and tries to reuse them for new objects. If an operation
requires a contiguous amount of workspace larger than any of the available free areas,
APL reorganises the workspace and amalgamates all the free areas into one contiguous
block as follows:

Any un-referenced memory is discarded. This process, known as garbage
collection, is required because whole cycles of refs can become un-referenced.
Numeric arrays are demoted to their tightest form. For example, a simple
numeric array that happens to contain only values 0 or 1, is demoted or
squeezed to have a ⎕DR type of 11 (Boolean).
All remaining used memory blocks are copied to the low-address end of the
workspace, leaving a single free block at the high-address end. This process is
known as compaction.
In addition to any extra memory required to satisfy the original request, an
additional amount of memory, equal to the workspace delta, is allocated. This
will always cause the process size to increase (up to the maxws limit) but means
that an application will typically achieve its working process size with at most
4+15 memory reorganisations.
However, if after compaction, the amount of used workspace is less than 1/16 of
the Maximum workspace size (maxws), the amount reserved for working
memory is reduced to 1/64th maxws. This means that workspaces that are
operating within 1/16th of maxws will be more frugal with memory

Note that if you try to create an object which is larger than free space, APL reports WS
FULL.

The following system function and commands force a workspace reorganisation as
described above:

However, in contrast to the above, any spare workspace above the workspace delta is
returned to the Operating System. On a Windows system, you can see the process size
changing by using Task Manager.

The system function ⎕WA may therefore be used judiciously (workspace reorganisation
takes time) to reduce the process size after a particularly memory-hungry operation.

delta←maxws{⌈⍺÷⊃(⍵>⍺÷16)⌽64 16}ws

1.

2.

3.

4.

5.

⎕WA,)RESET,)SAVE,)LOAD,)CLEAR

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 77

Note that in Dyalog APL, the SYMBOL TABLE is entirely dynamic and grows and shrinks
in size automatically. There is no SYMBOL TABLE FULL condition.

Additional functions for managing the memory used by the workspace are described in
Dyalog APL Language: Memory Manager Statistics and Dyalog APL Language: Specify
Workspace Available.

1.14 Interface with Windows

Windows Command Processor commands may be executed directly from APL using the
system command)CMD or the system function ⎕CMD. This system function is also used
to start other Windows programs. For further details, see the appropriate sections in
Language Reference.

1.15 Auxiliary Processors

Introduction

Auxiliary Processors (APs) are non-APL programs which provide Dyalog APL users with
additional facilities. They run under the control of Dyalog APL.

Typically, APs are used where speed of execution is critical, for utility libraries, or as
interfaces to other products. APs may be written in any compiled language, although C
is preferred and is directly supported.

Dyalog would recommend that rather than creating APs, customers should now create
DLLs (Dynamic Shared Libraries)/shared libraries. If very high performance is required,
customers should consider DWA (Direct Workspace Access); contact
support@dyalog.com for more information about DWA, including pre-requisite training
courses.

Starting an AP

An Auxiliary Processor is invoked using the dyadic form of ⎕CMD. The left argument to
⎕CMD is the name of the program to be executed; the value of the WSPATH parameter is
used to find the named file. In Dyalog APL/W, the right argument to ⎕CMD is ignored.

On locating the specified program, Dyalog APL starts the AP and initialises a memory
segment for communication between the workspace and the AP. This communication

'xutils' ⎕CMD ''

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 78

segment allows data to be passed from the workspace to the other process, and for
results to be passed back. The AP then sends APL some information about its external
functions (names, code numbers and calling syntax), which APL enters in the symbol
table. APL then continues processing while the AP waits for instructions.

Using the AP

Once established, an AP is used by making a reference to one of its external functions.
An external function behaves as if it was a locked defined function, but it is in effect an
entry point to the AP. When an external function is referenced, APL transmits a code
number to the AP, followed by any arguments. The AP then takes over and performs
the desired processing before posting the result back.

Terminating the AP

An AP is terminated when all the last of its external functions is expunged from the
active workspace. This could occur with the use of)CLEAR,)LOAD,)ERASE,
⎕EX,)OFF,)CONTINUE or ⎕OFF.

Example

Start an Auxiliary Processor called EXAMPLE. This fixes two external functions called
DATE_TO_IDN and IDN_TO_DATE which deal with the conversion of International Day
Numbers to Julian Dates.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 79

1.16 Access Control for External Variables

External variables may be EXCLUSIVE or SHARED. An exclusive variable can only be
accessed by the owner of the file. If you are on a Local Area Network (LAN) a shared
external variable may be accessed (concurrently) by other users. The exclusive or
shared status of an external variable is set by the XVAR function in the UTIL workspace.

Access to an external variable is faster if it has exclusive status than if it is shared. This
is because if several users are accessing the file data must always be read and written
directly to disk. If it has exclusive status, the system uses buffering and avoids disk
accesses where possible.

.------------------------.
APL PROCESS
)CLEAR
clear ws
'EXAMPLE' ⎕CMD ''
)FNS
DATE_TO_IDN IDN_TO_DATE
IDN_TO_DATE 19407
wait ...
18 Feb 53
)CLEAR
clear ws
.------------------------.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 80

Support for external variables has been deprecated, and is scheduled for removal

in a future release. For information on how to identify calls to external variables

in your existing codebase, see the Release Notes.

1.17 Shell Scripts

Shell scripts are typically executed from a terminal (or shell).

A script is executed by typing its name. User input is entered from the same terminal or
shell and output is displayed on the terminal or shell.

UNIX

On UNIX (and related) systems a Dyalog APL shell script is a text file with the following
as the first line:

The script file must be executable. There are three execute bits relating to the user, the
group and everyone else.

Windows

On Windows systems a Dyalog APL shell script is a text file with a .apls file extension.
An initial line beginning with #! is only required to include configuration parameters
(see below), but if included it must include a file name even though that will be
ignored. For portability it is recommended that you include the #! line.

Note

Shell scripts are Unicode only and are not supported by the Classic Edition.

Any content that follows the #! line (if present) is used as input into a Dyalog session
(as if the Extended Multiline Input feature has been enabled).

Information

#!/usr/local/bin/dyalogscript

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 81

Input and Output

⎕ and ⍞ input are taken from characters typed by the user into the terminal or shell
(Standard input or stdin for short). Anything assigned to ⎕ and ⍞ will be displayed in the
terminal window using streams Standard output (stdout) and Standard error (stderr)
respectively. Note that default output, that is, output to the session without
assignment to ⎕ or ⍞ is NOT displayed. Redirections of stdin, stdout, and stderr are
supported.

Examples

The following then are all valid APL shell scripts:

Errors

Untrapped errors in a script will cause the termination of the process, further lines in
the script will NOT be processed.

However, the multiline input mechanism allows for :Trap statements, so the following
will run to completion:

#!/usr/local/bin/dyalogscript
'this text will not be seen'
⎕←2+2

#!/usr/local/bin/dyalogscript
∇r←l plus r
r←l+r
∇
⎕←2 plus 2

#!/usr/local/bin/dyalogscript
plus←{
⍺+⍵
}
⎕←2 plus 2

#!/usr/local/bin/dyalogscript
⎕←'this will be seen'
⎕←÷0
⎕←'this will NOT be seen'

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 82

Configuration Parameters

Configuration parameters may be specified in a Configuration file located in the same
directory as the script, or may be specified on the first line of the script. The name of
the configuration file is derived from the name of the script file by replacing its file
extension (if any) by the extension .dcfg. Configuration parameters specified in the
Windows Registry or by environment variables are not honoured in Dyalog Shell
Scripts.

Example (first line of script)

Example (configuration file)

Note that the interpreter reads both of these locations, the command line in the script
file overrides any setting in the .dcfg file.

Debugging

It is not currently possible to use Ride to debug APL shell scripts. However there is an I-
beam function, which can be used to provide some simple debugging/diagnostic
information.

#!/usr/local/bin/dyalogscript
⎕←'this will be seen'
:Trap 0

⎕←÷0
:EndTrap
⎕←'this will ALSO be seen'

#!/usr/local/bin/dyalogscript MAXWS=3GB
⎕←⎕WA
⎕←2 ⎕NQ '#' 'GetEnvironment' ('MAXWS' 'WSPATH')

{ settings: {
/* Maximum workspace size */
MAXWS: "256M",
/* wspath */
WSPATH: ["c:/tmp","f:/devt/tmp"]

}}

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 83

1.18 Creating Executables and COM Servers

Dyalog APL provides the facility to package an APL workspace as a Windows executable
(EXE), an OLE Server (in-process or out-of-process), an ActiveX Control or a .NET
Assembly. This may be done by selecting Export … from the File menu of the APL
Session window which brings up the Create bound file dialog box as illustrated later in
this section.

The Create bound file dialog box offers selective options according to the type of file
you are making. The system detects which of these types is most appropriate from the
objects in your workspace. For example, if your workspace contains an ActiveXControl
namespace, it will automatically select the ActiveX Control option.

If you are creating an executable (EXE) the system provides the following options:

You may bind your EXE as a Dyalog APL run-time application, or as a Dyalog APL
developer application. The second option will allow you to debug the application
should it encounter an APL error.
You may bind your EXE as a console-mode application. A console application
does not have a graphical user interface, but runs as a background task using
files or TCP/IP to perform input and output.
You may specify whether or not your .EXE will honour Native Look and Feel.

You can package the workspace as a stand-alone executable or as a .EXE file that must
be accompanied by the Dyalog APL Dynamic Link Library (dyalog150.dll or
dyalog150rt.dll), in which case the DLL should be installed in the same directory (as
the EXE) or in the Windows System directory.

Various Dyalog-supplied files are required (such as the runtime DLL for creating a
bound runtime executable); all such files are assumed to reside in the Dyalog directory,
as specified by default in the registry. The location of this directory is most easily
reported by calling

The creation of both in-process and out-of-process COM servers produces a .TLB (Type
Library) file. This file is created in the same directory as the workspace - so write access
must be allowed to this directory. In the case of an in-process server, the content of this
file is then embedded into the DLL, and the file is deleted. For an out-of-process server
the file persists and may be needed at runtime. This requirement means that even if
you do not)SAVE the workspace, you should set the workspace name so that)SAVE
would work - that is the directory where the workspace would be saved has write
access.

•

•

•

+2⎕NQ '.' 'GetEnvironment' 'Dyalog'

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 84

In addition, a temporary copy of your workspace is created, the location of which is
determined by the Windows function GetTempPath().

All registration information is written to HKEY_LOCAL_MACHINE in the registry which
will require enhanced permissions (aka "run as administrator") for the Dyalog
interpreter. Later versions of the interpreter may provide an option to write to
HKEY_CURRENT_USER.

The Create bound file dialog box contains the following fields. These will only be
present if applicable to the type of bound file you are making.

Item Description

File name
Allows you to choose the name for your bound file. The name
defaults to the name of your workspace with the appropriate
extension.

Save as type Allows you to choose the type of file you wish to create

Runtime
application

If this is checked, your application file will be bound with the
Run-Time DLL. If not, it will be bound with the Development
DLL. The latter should normally only be used to permit
debugging.

Console
application

Check this box if you want your executable to run as a console
application. This is appropriate only if the application has no
graphical user interface.

Enable Native
Look and Feel

If checked, Native Look and Feel will be enabled for your bound
file; otherwise it will be disabled.

Icon file
Allows you to associate an icon with your executable. Type in
the pathname, or use the Browse button to navigate to an icon
file.

Command line

For an out-of-process COM Server, this allows you to specify the
command line for the process. For a bound executable, this
allows you to specify command-line parameters for the
corresponding Dyalog APL DLL.

The following example illustrates how you can package the supplied workspace
calc.dws as an executable. Before making the executable, it is essential to set up the
latent expression to run the program using ⎕LX as shown. Notice that in this case it is
not necessary to execute ⎕OFF; the calc.exe program will terminate normally when
the user closes the calculator window and the system returns to Session input.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 85

In this example, the supplied workspace calc.dws is first saved to a directory to which
the user has write access and, just to make certain, the Dyalog program is run as
Administrator.

Then, when you select Export… from the File menu, the following dialog box is
displayed.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 86

The Save as Type option has been set to Standalone Executable (includes interpreter
exe) which means that a single .exe will be created containing the Dyalog APL
executable and the CALC workspace.

The Runtime application checkbox is checked, indicating that calc.exe is to
incorporate the runtime version of Dyalog APL.

As this is a GUI application, the Console application checkbox is left unset.

Note that if you enter the name of a file containing an icon (use the Browse button to
browse for it) that icon will be bound with your executable and be used instead of the
standard Dyalog APL icon.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 87

The Command Line box allows you to enter parameters and values that are to be
passed to your executable when it is invoked.

Version Information

You may embed version information into your .exe by clicking the Version button and
then completing the Version Information dialog box that is illustrated below.

On clicking Save, the following message box is displayed to confirm success.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 88

1.19 Run-Time Applications and Components

Using Dyalog APL you may create different types of run-time applications and
components. Note that the distribution of run-time applications and components
requires a Dyalog APL Run-Time Agreement. Please contact Dyalog or your distributor,
or see the Dyalog web page for more information.

For a list of the distributable components and their corresponding file names, for the
different versions of Dyalog, see Section 1.2. These components are referred to in
hereafter by the name shown in the first column of the table. It is essential that you
distribute the components that are appropriate for the Edition you are using.

The various types of run-time applications and components are as follows:

Workspace or source code run-time
Stand-alone run-time
Bound run-time
Out-of-Process COM Server
In-Process COM Server
ActiveX Control
Microsoft .NET Assembly

All but the first of these are made using the Export dialog box accessed from the File/
Export menu item of the Session window.

Configuration Parameters

Configuration parameters for these run-time applications, both for the Dyalog engine
and for your own application settings, may be specified in a number of ways. See
Section 1.9.1.

Nevertheless, it is strongly recommended that you use Configuration files. In this
section we will discuss only Application Configuration files, although User Configuration
files may be used as well.

Workspace or source code based run-time

A workspace or source code based run-time application consists of the Dyalog APL Run-
Time Program (Run-Time EXE), a separate workspace or text file containing APL source

1.
2.
3.
4.
5.
6.
7.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 89

code, and an optional configuration file. To distribute your application, you need to
supply and install:

your workspace or source code
the Run-Time EXE
a configuration file (optional)
whatever additional files that may be required by your application
a command-line to start the application

The command-line for your application invokes the Run-Time EXE and directly or
indirectly specifies the name of the workspace or source code file and the optional
configuration file. You will need to associate your own icon with your application during
its installation.

The name of the workspace or source code file may be specified by the Load parameter
on the command line. If the application uses a workspace, the name of the workspace
may instead be supplied as the last item on the command-line.

The name of the configuration file may be specified on the application command-line,
using the ConfigFile parameter. Alternatively, the name of the configuration file is
derived from the name of the workspace or source code file.

The action to start the application when a workspace or source code file is loaded is
specified by the LX parameter or, for a workspace, by its latent expression (⎕LX).

In the command-line examples that follow, the name of the Run-Time EXE has been
shortened to dyalogrt.exe for brevity.

Using a workspace

The application starts by running ⎕LX in myapp.dws. If a configuration file named
myapp.dcfg in the same directory, it is loaded and applied.

Using a source code file

The application loads the file named myfn.aplf which contains the source code for a
function, and executes the expression (myfn 0⍴⊂'') (see Section 1.9.81). If a
configuration file named myfn.dcfg in the same directory, it is loaded and applied.

1.
2.
3.
4.
5.

dyalogrt.exe myapp.dws

dyalogrt.exe Load=myfn.aplf

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 90

If your application uses any component of the Microsoft .NET Framework, you must
distribute the Bridge DLL and DyalogNet DLLs. These DLLs must be placed in the same
directory as your EXE.

Stand-alone and Bound run-times

A stand-alone run-time is a single .EXE that contains a workspace and a copy of the
Run-Time version of the Dyalog APL interpreter. It is the simplest type of run-time to
install because it has the fewest number of dependencies.

A bound run-time is a workspace packaged as a .EXE that relies upon and requires the
separate installation of the Run-Time DLL. Compared with the stand-alone executable
option, bound run-times may save disk space and memory if your customer installs and
runs several different Dyalog applications.

Both these run-times are created using the File/Export menu item on the Session
window.

To distribute your application, you need to supply and install:

your stand-alone or bound .EXE
the Run-Time DLL (bound .EXE only)
a configuration file (optional)
whatever additional files that may be required by your application
a command-line to start the application

When you build your .EXE using the Export dialog, you may specify the name(s) of the
configuration file(s) using the ConfigFile and/or UserConfigFile parameters in the field
labelled Command Line.

An alternative is to specify these parameters in the command-line that you use to run
your .EXE (note that this is not the same as the Command Line in the Export dialog
box). If so, the Dyalog parameter(s) must be preceded by the -apl option.

If your application uses any component of the Microsoft .NET Framework, you must
distribute the Bridge DLL and DyalogNet DLLs. These DLLs must be placed in the same
directory as your EXE.

1.
2.
3.
4.
5.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 91

Out-of-process COM Server

To make an out-of-process COM Server, you must:

establish one or more OLEServer namespaces in your workspace, populated with
functions and variables that you wish to export as methods, properties and
events.
use the File/Export … menu item on the Session window to register the COM
Server on your computer so that it is ready for use.

The command-line for your COM Server must be specified in the field labelled
Command Line in the Export dialog box. The field is initialised to invoke the Run-Time
EXE with the name of your workspace in the same fashion as the workspace-based run-
time discussed above. This command-line is recorded in the Windows Registry to be
invoked when a client application requests it.

You may change the contents of the Command Line field to use a configuration file, in
the same way as for a workspace-based runtime. The following example uses the Loan
COM Server. See Interfaces: The Loan Workspace.

Example

The command-line above will, on invocation, cause Dyalog to load the myloan.dws
workspace together with the configuration file myloan.dcfg if it exists in that directory.

To distribute an out-of-process COM Server, you need to supply and install the
following files:

your workspace
the associated Type Library (.tlb) file (created by File/Export)
the Run-Time EXE
a configuration file (optional)
whatever additional files that may be required by your application

To install an out-of-process COM Server you must set up the appropriate Windows
registry entries. See Interface Guide for details.

1.

2.

dyalog.exe C:\Dyalog18.0\myloan.dws

1.
2.
3.
4.
5.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 92

In-process COM Server

To make an in-process COM Server, you must:

establish one or more OLEServer namespaces in your workspace, populated with
functions and variables that you wish to export as methods, properties and
events.
use the File/Export … menu item on the Session window to create an in-process
COM Server (DLL) which contains your workspace bound to the Run-Time DLL.
This operation also registers the COM Server on your computer so that it is ready
for use.

As there is no command-line available, to specify a configuration file for an in-process
COM server, it is necessary to define the ConfigFile parameter and/or the
UserConfigFile parameter as an environment variable or in the registry.

To distribute your component, you need to supply and install

Your COM Server file (DLL)
the Run-Time DLL
a configuration file (optional) and the means to define ConfigFile and/or
UserConfigFile
whatever additional files that may be required by your COM Server.

Note that you must register your COM Server on the target computer using the
regsvr32.exe utility.

ActiveX Control

To make an ActiveX Control, you must:

establish an ActiveXControl namespace in your workspace, populated with
functions and variables that you wish to export as methods, properties and
events.
use the File/Export … menu item on the Session window to create an ActiveX
Control file (OCX) which contains your workspace bound to the Run-Time DLL.
This operation also registers the ActiveX Control on your computer so that it is
ready for use.

As there is no command-line available, to specify a configuration file for an in-process
COM server, it is necessary to define the ConfigFile parameter and/or the
UserConfigFile parameter as an environment variable or in the registry.

1.

2.

1.
2.
3.

4.

1.

2.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 93

To distribute your component, you need to supply and install

Your ActiveX Control file (OCX)
the Run-Time DLL
a configuration file (optional) and the means to define ConfigFile and/or
UserConfigFile
whatever additional files that may be required by your ActiveX Control.

Note that you must register your ActiveX Control on the target computer using the
regsvr32.exe utility.

Microsoft .NET Assembly

A Microsoft .NET Assembly contains one or more .NET Classes. To make a
Microsoft .NET Assembly, you must:

establish one or more NetType namespaces in your workspace, populated with
functions and variables that you wish to export as methods, properties and
events.
use the File/Export … menu item on the Session window to create a
Microsoft .NET Assembly (DLL) which contains your workspace bound to
the Run-Time DLL.

If the option selected in the Isolation Mode field of the Export dialog is either:

Each assembly has its own workspace, or
Each assembly attempts to use local bridge and interpreter libraries

you may enter configuration parameters or specify a Configuration file for your Dyalog
assembly in the field labelled Command Line.

For the other isolation modes, this is not appropriate because only the command line
from the first assembly loaded into the interpreter could be honoured, and the order in
which assemblies are loaded is unpredictable. However, configuration files may be
specified using the ConfigFile parameter and/or the UserConfigFile parameter
specified as an environment variable or in the registry.

For more information, see .NET Framework Interface: Isolation Mode.

To distribute your .NET Classes, you need to supply and install

your Assembly file (DLL)
the Run-Time DLL

1.
2.
3.

4.

1.

2.

•
•

1.
2.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 94

the Bridge DLL
the DyalogNet DLL
a configuration file (optional) and, depending upon the isolation mode, the
means to define ConfigFile and/or UserConfigFile
whatever additional files that may be required by your .NET Assembly.

All the DLLs and subsidiary files must be installed in the same directory as the .NET
Assembly.

1.20 Run-Time Applications Additional Considerations

Accessing your Application using Ride

If you wish to access your run-time application remotely using Ride, you must put a
copy of the appropriate Conga DLLs (see Section 1.2) in the same directory as your .EXE
or workspace.

Additional Files for SQAPL

If your application uses the SQAPL/EL ODBC interface, you must distribute and install
four additional components.

SQAPL INI
SQAPL ERR
SQAPL DLL
APLUNICD INI

For the names of the files corresponding to these components, see Section 1.2.

The SQAPL DLL must be installed in the user's Windows directory or be on the user's
path.

Miscellaneous Other Files

DyaRes DLL

If your run-time application uses any of the bitmaps or other GUI resources that are
built into the Dyalog Session, you must include the DyaRes DLL with your application.

3.
4.
5.

6.

•
•
•
•

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 95

AUXILIARY PROCESSORS

If you use any of the Auxiliary Processors (APs) included in the sub-directory xutils,
you must include these with your application. Note that, like workspaces, Dyalog APL
searches for APs using the WSPATH parameter. If your application uses APs, you must
ensure that you specify WSPATH or that the default WSPATH is adequate for your
application..

DYALOG32 and/or DYALOG64

This DLL is used by some of the functions provided in the QUADNA.DWS workspace. If you
include any of these in your application this DLL must be installed in the user's
Windows directory or be on the user's path.

Universal C Runtime DLLs

Under Windows, many of the Dyalog APL run-time components (.EXE and .DLL) are
linked dynamically with the Microsoft Universal C Runtime library (the UCRT) which is
supplied and installed as part of the normal Dyalog development installation.

At execution time it is important that the Dyalog runtime components bind with a
version of the UCRT that is compatible with (that is, the same as or newer than) the
one with which they were built.

Windows 10

If the end-user of the Dyalog application is known to be running Windows 10, the
Dyalog application will pick up the system-wide UCRT which is part of Windows 10.
There is therefore no need to include the UCRT with a Dyalog run-time application.

Other Versions of Windows

The UCRT is not supplied with versions of Windows prior to Windows 10. On these
platforms, it is therefore necessary to install the UCRT as part of the installation of the
Dyalog run-time application. There are two ways to achieve this which are referred to
herein as the VCRedist installation and App-local installation. Dyalog recommends the
former.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 96

VCRedist Installation (Recommended)

The VCRedist package, which includes the UCRT, is supplied with the Dyalog
development package.

Simply copy the vc_redistx86.exe (32-bit version) or vc_redistx64.exe (64-bit
version) program from the Dyalog development package into your own installation
package and execute it as part of the installation of your Dyalog run-time application.
This installs the UCRT into a shared Windows location; in effect the UCRT becomes part
of the Windows system. The installation therefore requires Administrator privileges.

App-local Installation

An alternative is to install the UCRT components into the same directory as your Dyalog
run-time application. There are two ways to obtain these files.

Either

Install the Dyalog development package (ideally onto a separate system just for this
purpose) without administrator rights. This will perform an App-local installation of
Dyalog itself. Then copy the UCRT files into your installation package. These files are:

those beginning with api-ms*
ucrtbase.dll

vcruntime140.dll

Or

Download and install the Windows 10 SDK from: https://developer.microsoft.com/en-
us/windows/downloads/windows-10-sdk, and follow the instructions in the link below.
https://blogs.msdn.microsoft.com/vcblog/2015/03/03/introducing-the-universal-crt

Finally, modify your installer to add these files to the same folder as your Dyalog run-
time application.

•
•
•

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 97

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://blogs.msdn.microsoft.com/vcblog/2015/03/03/introducing-the-universal-crt

1.21 COM Objects and the Dyalog APL DLL

Introduction

Each different implementation of Dyalog contains two versions of the Dyalog APL
Dynamic Link Library, a development version (Development DLL) and a run-time version
(Run-Time DLL). For further details, see Section 1.2.

In the remainder of this section, the term Dyalog APL DLL is used to refer to any one of
these DLLs. The term COM object is used to refer to a Dyalog APL in-process OLE Server
(OLEServer object) or a Dyalog APL ActiveX Control (ActiveXControl object).

The Dyalog APL DLL is used to host COM objects and .NET objects written in Dyalog
APL. Although this section describes how it operates with COM objects, much of this
also applies when it hosts .NET objects. Further information is provided in the .NET
Interface Guide.

Classes, Instances and Namespace Cloning

A COM object, whether written in Dyalog APL or not, represents a class. When a host
application loads a COM object, it actually creates an instance of that class.

When a host application creates an instance of a Dyalog APL COM object, the
corresponding OLEServer or ActiveXControl namespace is cloned. If the host creates a
second instance, the original namespace is cloned a second time.

Cloned OLEServer and ActiveXControl namespaces are created in almost exactly the
same way as those that you can make yourself using ⎕OR and ⎕WC except that they do
not have separate names. In fact, each clone believes itself to be the one and only
original OLEServer or ActiveXControl namespace, with the same name, and is
completely unaware of the existence of other clones.

Notice that cloning does not initially replicate all the objects within the OLEServer or
ActiveXControl namespace. Instead, the objects inside the cloned namespaces are
actually represented by pointers to the original objects in the original namespace. Only
when an object is changed does any information get replicated. Typically, the only
objects likely to differ from one instance to another are variables, so only one copy of
the functions will exist in the workspace. This design enables many instances of a
Dyalog APL COM object to exist without overloading the workspace.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 98

Workspace Management

By default, the Dyalog APL DLL does not use a fixed maximum workspace size, but
automatically increases the size of its active workspace as required. If you write a run-
away COM object, or if there is insufficient computer memory available to load a new
control, it is left to the host application or to Windows itself to deal with the situation.

Nevertheless, it is possible to specify a value for maxws for the application in which the
Dyalog APL DLL is embedded. This is achieved by defining a Registry key named:

or on 64-bit Windows:

where <appname> is the name of the application, containing a String Value named
maxws set to the desired size. If you were running an APL in-process server from
Microsoft Excel, the application name would be excel.exe.

When an application loads its first Dyalog APL COM object, it starts the Dyalog APL DLL
which initialises a CLEAR WS. It then copies the namespace tree for the appropriate
OLEServer or ActiveXControl object into its active workspace.

This namespace tree comprises the OLEServer or ActiveXControl namespace itself,
together with all its parent namespaces with the exception of the root workspace itself.
Note that for an ActiveXControl, there is at least one parent namespace that represents
a Form.

For example, if an ActiveXControl namespace is called #.F.Dual, the Dyalog APL DLL
will copy the contents of #.F into its active workspace when the first instance of the
control is loaded by the host application.

If the same host application creates a second instance of the same OLEServer or
ActiveXControl, the original namespace is cloned as described above and there is no
further impact on the workspace

If the same host application creates an instance of a different Dyalog APL COM object,
the namespace tree for this second object is copied from its DLL or OCX file into the
active workspace. For example, if the second control was named X.Y.MyControl, the
entire namespace X would be copied.

HKLM\Software\Dyalog\Embedded\<appname>

HKLM\Software\Wow6432Node\Dyalog\Embedded\<appname>

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 99

This design raises a number of points:

Unless you are in total control of the user environment, you should design a
Dyalog APL COM object so that it can operate in the same workspace as another
Dyalog APL COM object supplied by another author. You cannot make any
assumptions about file ties or other resources that are properties of the
workspace itself.
If you write an ActiveXControl whose ultimate parent namespace is called F, a
host application could not use your control at the same time as another
ActiveXControl (perhaps supplied by a different author) whose ultimate parent
namespace is also called F.
Dyalog APL COM objects must not rely on variables or utility functions that were
present in the root workspace when they were saved. These functions and
variables will not be there when the object is run by the Dyalog APL DLL.
A Dyalog APL COM object may create and subsequently use functions and
variables in the root workspace, but if two different COM objects were to adopt
the same policy, there is a danger that they would interfere with one another.
The same is true for ⎕SE.

Multiple COM Objects in a Single Workspace

If your workspace contains several OLEServer or ActiveXControl objects which have the
same ultimate parent namespace, the Dyalog APL DLL will copy them all into the active
workspace at the time when the first one is instanced. If the host application requests a
second COM object that is already in the workspace, the namespace tree is not copied
again.

If the workspace contains several OLEServer or ActiveXControl objects which have
different ultimate parents, their namespace trees will be copied in separately.

Parameters

With the exception of maxws (see above) the Dyalog APL DLL does not read
parameters from the registry, command-line or environment variables. This means that
all such parameters will have their default values.

1.

2.

3.

4.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 100

1.22 APL Application as a Service

Introduction

Dyalog APL provides a mechanism for users to register and manage an application
workspace as a Windows service. The application workspace must implement an
interface to handle messages from the Windows Service Control Manager (SCM) in
addition to the code required to drive the application.

Windows Services run as background tasks controlled by the SCM. When the computer
is started, Windows Services are run before a user logs on to the system and do not
normally interact with the desktop. A Dyalog service is run under the auspices of Local
System.

Installing and Uninstalling a Dyalog Service

To install a Dyalog service it is necessary to run dyalog.exe from the command line
with administrator privileges, specifying the application workspace and the following
parameters, where service_name is a name of your choice.

APL_ServiceInstall=service_name

The command must specify the full pathname to dyalog.exe and to the application
workspace. A slightly modified version of this command line will be stored by the SCM
and re-executed whenever the service is started.

Dyalog installs the service with a Startup Type of Automatic. This means that it will be
started automatically whenever the computer is restarted. However, it is necessary to
start it manually (using the SCM) the first time after it is installed.

The same command must be used to uninstall the service, but with:

APL_ServiceUninstall=service_name

The following table summarises the parameters that can be specified by the user. Other
parameters will appear on the command line in the SCM, but should not be specified
by the user.

•

•

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 101

Parameter Description

APL_ServiceInstall
Causes Dyalog to register the named service, using the
current command line, but with APL_ServiceRun
replacing APL_ServiceInstall in the SCM.

APL_ServiceUninstall Causes Dyalog to uninstall the named service.

The Application Workspace

The application workspace must be designed to handle and respond (in a timely
manner) to notification messages from the SCM as well as to provide the application
logic. SCM notifications include instructions to start, stop, pause and resume.

SCM notification messages generate a ServiceNotification event on the Root object. To
handle these messages, it is necessary to attach a callback function to this event, and to
invoke the Wait method or ⎕DQ'.' to process them. This must be executed in thread 0.

If the application is designed to be driven from events such as Timer or TCPSocket or
user-defined events, it too may be implemented via callbacks in thread 0 under the
control of the same Wait method or ⎕DQ'.'. If the application uses Conga it is
recommended that it runs in a separate thread.

The workspace ws\aplservice.dws is included in the APL release. Its start-up function
is as follows:

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 102

Handling ServiceNotification Events

To give the workspace (which may be busy) time to respond to SCM notifications,
Dyalog responds immediately to confirm that the service has entered the appropriate
pending state. For example, if the notification is SERVICE_CONTROL_STOP, Dyalog
informs the SCM that the service state is SERVICE_STOP_PENDING. It is then up to the
callback function to confirm that the state has reached SERVICE_STOPPED.

The following sample function is provided in aplservice.dws.

⎕LX←'Start'

∇ Start;ServiceState;ServiceControl
[1] :If 'W'≠3⊃#.⎕WG'APLVersion'
[2] ⎕←'This workspace only works using Dyalog APL for
 Windows version 14.0 or later'
[3] :Return
[4] :EndIf
[5] :If 0∊⍴2 ⎕NQ'.' 'GetEnvironment' 'RunAsService'
[6] Describe
[7] :Return
[8] :EndIf
[9] ⍝ Define SCM constants
[10] HashDefine
[11] ⍝ Set up callback to handle SCM notifications
[12] '.'⎕WS'Event' 'ServiceNotification' 'ServiceHandler'
[13] ⍝ Global variable defines current state of the service
[14] ServiceState←SERVICE_RUNNING
[15] ⍝ Global variable defines last SCM notification to the

service
[16] ServiceControl←0
[17] ⍝ Application code runs in a separate thread
[18] Main&0
[19] ⎕DQ'.'
[20] ⎕OFF

∇

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 103

ServiceHandler Callback Function

The Application Code

The following function illustrates how the application code for the service might be
structured. It is merely an illustration, but however it is done, it is important that the

∇ r←ServiceHandler(obj event action state);sink
[1] ⍝ Callback to handle notifications from the SCM
[2]
[3] ⍝ Note that the interpreter has already responded
[4] ⍝ automatically to the SCM with the corresponding
[5] ⍝ "_PENDING" message prior to this callback being reached
[6]
[7] ⍝ This callback uses the SetServiceState Method to confirm
[8] ⍝ to the SCM that the requested state has been reached
[9]
[10] r←0 ⍝ so returns a 0 result (the event has been handled,
[11] ⍝ no further action required)
[12]
[13] ⍝ It stores the desired state in global ServiceState to
[14] ⍝ notify the application code which must take appropriate
[15] ⍝ action. In particular, it must respond to a "STOP or
[16] ⍝ "SHUTDOWN" by terminating the APL session
[17]
[18] :Select ServiceControl←action
[19] :CaseList SERVICE_CONTROL_STOP SERVICE_CONTROL_SHUTDOWN
[20] ServiceState←SERVICE_STOPPED
[21] state[4 5 6 7]←0
[22]
[23] :Case SERVICE_CONTROL_PAUSE
[24] ServiceState←SERVICE_PAUSED
[25]
[26] :Case SERVICE_CONTROL_CONTINUE
[27] ServiceState←SERVICE_RUNNING
[28] :Else
[29] :If state[2]=SERVICE_START_PENDING
[30] ServiceState←SERVICE_RUNNING
[31] :EndIf
[32] :EndSelect
[33] state[2]←ServiceState
[34] sink←2 ⎕NQ'.' 'SetServiceState'state

∇

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 104

code handles the instructions to pause, continue and stop in an appropriate manner. In
this example, the function Main creates a log file and writes to it when the state of the
service changes.

Debugging Dyalog Services

Services are run in the background under the auspices of Local System, and not
associated with an interactive user. Neither the APL Session nor any GUI components
that it creates will be visible on the desktop. This prevents the normal editing and
debugging tools from being available.

However, the Dyalog APL Remote Integrated Development environment (Ride) may be
connected to any APL session, including one running as a Windows Service, and

∇ Main arg;nid;log;LogFile
[1] ⎕NUNTIE ⎕NNUMS
[2] log←{((⍕⎕TS),' ',⍵,⎕UCS 13 10)⎕NAPPEND ⍺}
[3] LogFile←'c:\ProgramData\TEMP\APLServiceLog.txt'
[4] :Trap 22
[5] nid←LogFile ⎕NCREATE 0
[6] :Else
[7] :Trap 22
[8] nid←LogFile ⎕NTIE 0
[9] 0 ⎕NRESIZE nid
[10] :Else
[11] ⎕←'Unable to tie or create logfile'
[12] :EndTrap
[13] :EndTrap
[14] nid log'Starting'
[15] :While ServiceState≠SERVICE_STOPPED
[16] :If ServiceControl≠0 ⋄

nid log'ServiceControl=',⍕ServiceControl ⋄ :EndIf
[17] :If ServiceState=SERVICE_RUNNING
[18] nid log'Running'
[19] :ElseIf ServiceState=SERVICE_PAUSED
[20] ⍝ Pause application
[21] :EndIf
[22] ServiceControl←0 ⍝ Reset (we only want to log changes)
[23] ⎕DL 10 ⍝ Just to prevent busy loop
[24] :EndWhile
[25] ⎕NUNTIE nid
[26] ⎕OFF 0

∇

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 105

provide a debugging environment. For more information, see the Ride User Guide.
Note however that the Conga DLLs/shared libraries must be available - usually they
should reside in the same directory as the interpreter. In previous versions of Dyalog
separate Ride DLLs/shared libraries were supplied; these have been subsumed into the
Conga libraries in 16.0.

Event Logging

When a service is installed or removed, Dyalog APL records events in the Dyalog APL
section of the Applications and Services Logs which can be viewed using the Windows
system Event Viewer.

1.23 APLService Logging Events

The aplservice workspace contains the class SysLog which can be used to log events
to the Windows Event Log. These events can be accessed programmatically or viewed
using the Windows Event Viewer found in the Windows Administrative Tools.

Windows Event Log Concepts

Every message logged in the Windows Event Log has a named source. Frequently this
source will be the name of the application which generates the message. Windows has
multiple event log files. By default, messages will be logged in the Application log file
found in the Windows Logs section of the Windows Event Viewer. Alternatively, you can
create a custom log located in the Applications and Services Logs section in the
Windows Event Viewer as shown by the "mylog" entry in the screenshot below.
Multiple applications can use the same source and multiple sources can write to the
same log file, but a given source may only write to a single log file.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 106

https://dyalog.github.io/ride

Using SysLog in Your Application

Before deploying your Dyalog APL application as a service, you should:

Consider what events or messages the application should log and their severity
level. SysLog allows you to specify severity levels of Error, Warning, and
Informational.
Create the log source and optionally its custom log using
SysLog.CreateEventSource. This must be done when running Dyalog as an
administrator and prior to running your Dyalog service. Once the event source is
created, it is not necessary to run your application as an administrator in order
to write to the Windows Event Log.
Within your application, you have two options for writing to the Windows Event
Log:You may use the SysLog.WriteLog method. SysLog.WriteLog will verify
that the log source exists and then write your message. This has the advantage
of being standalone and can be called whenever you desireYou may create an
instance of the SysLog class and use the Write method. This has the advantage
of not incurring the overhead of verifying the existence of the log source each
time a log message is written

1.

2.

3.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 107

You may use the SysLog.WriteLog method. SysLog.WriteLog will verify that
the log source exists and then write your message. This has the advantage of
being standalone and can be called whenever you desire
You may create an instance of the SysLog class and use the Write method. This
has the advantage of not incurring the overhead of verifying the existence of the
log source each time a log message is written

SysLog Usage

SysLog implements an interface to a subset of the functionality of Microsoft's
System.Diagnostics.EventLog class. Some of SysLog's methods, namely
CreateEventSource, DeleteEventSource and DeleteLog, require you to run Dyalog
as an administrator to be fully functional.

All of the methods in SysLog with the exception of Write are shared methods meaning
you do not have to create an instance of SysLog in order to execute them.

SysLog.CreateEventSource sourcename {logname}

Purpose

Creates a new Windows Event Log source and optionally specifies or creates a
Windows Event Log for the source.

Argument Description

sourcename character vector source name that does not already exist

{logname}

optional character vector log name with which to associate the
source name. If not supplied, the source will be associated with the
Windows Logs/Application log. If there is no log named logname , it
will be created.

{level} SysLog.WriteLog sourcename message

Purpose

Writes a message to the Windows Event Log associated with sourcename, optionally
specifying a severity level.

4.

5.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 108

Argument Description

sourcename character vector source name of an existing source

message character vector message to write to the log

{level}

optional
singleton
indicating the
severity level
of the
message;
defaults to
informational
if level is not
specified: 1 ,
'E' or 'e'
may be used
for error
messages 2 ,
'W' or 'w'
may be used
for warning
messages 3 ,
'I' or 'i'
may be used
for
informational
messages

1 ,
'E'

or
'e'

may be
used for
error
messages

2 ,
'W'

or
'w'

may be
used for
warning
messages

3 ,
'I'

or
'i'

may be used
for
informational
messages

1 , 'E' or
'e'

may be used for error messages

2 , 'W' or
'w'

may be used for warning messages

3 , 'I' or
'i'

may be used for informational messages

{level} instance.Write message

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 109

Purpose

Writes a message to the Windows Event Log associated with source name specified for
the SysLog instance, optionally specifying a severity level.

Argument Description

sourcename character vector source name of an existing source

message character vector message to write to the log

{level}

optional
singleton
indicating the
severity level
of the
message;
defaults to
informational
if level is not
specified: 1 ,
'E' or 'e'
may be used
for error
messages 2 ,
'W' or 'w'
may be used
for warning
messages 3 ,
'I' or 'i'
may be used
for
informational
messages

1 ,
'E'

or
'e'

may be
used for
error
messages

2 ,
'W'

or
'w'

may be
used for
warning
messages

3 ,
'I'

or
'i'

may be used
for
informational
messages

1 , 'E' or
'e'

may be used for error messages

2 , 'W' or
'w'

may be used for warning messages

3 , 'I' or
'i'

may be used for informational messages

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 110

Example

Boolean←SysLog.LogExists logname

Purpose

Returns 1 if a Windows Event Log named logname exists, 0 otherwise.

Argument Description

logname character vector Windows Event Log log name

Boolean←SysLog.EventSourceExists sourcename

Purpose

Returns 1 if a Windows Event Log source named sourcename exists, 0 otherwise.

Argument Description

sourcename character vector Windows Event Log source name

logname←LogNameFromSourceName sourcename

Purpose

Returns the Windows Event Log log name associated with the source named
sourcename.

Argument Description

sourcename character vector Windows Event Log source name

logname character vector Windows Event Log log name

DeleteEventSource sourcename

logger←⎕NEW SysLog 'mysource'
1 logger.Write 'The sky is falling!'

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 111

Purpose

Deletes the Windows Event Log source named sourcename.

Argument Description

sourcename character vector Windows Event Log source name

DeleteLog logname

Purpose

Deletes the Windows Event Log log named logname.

Argument Description

logname character vector Windows Event Log log name

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 112

2 Configuring the IDE

2.1 Configuration Dialog

2.1.1 General Tab

Table: Configuration dialog: General

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 113

Label Parameter Description

Recently used file list size File_Stack_Size
Specifies the number of the
most recently used workspaces
displayed in the File menu.

Underline URLs and links URLHighlight
Specifies whether or not URLs
and links are highlighted in
Session and Edit windows.

Display Value Tips Enabled Specifies whether or not Value
Tips are enabled.

Display Value Tips after Delay Specifies the delay before APL
displays a Value Tip.

Colour Scheme ColourScheme Specifies the colour scheme
used to display Value Tips.

Enable DPI Scaling of the
interpreter and
development environment

AutoDPI Enables or disables DPI scaling
for the APL Session

Enable DPI scaling of GUI
application Dyalog_Pixel_Type

Determines whether Coord
'Pixel' is treated as
ScaledPixel or RealPixel.

Configuration saved in IniFile Specifies the full pathname of
the registry folder used by APL

2.1.2 Unicode Input Tab (Unicode Edition Only)

Unicode Edition can optionally select your APL keyboard each time you start APL. To
choose this option, select one of your installed APL keyboards, enable the Activate
selected keyboard checkbox, then click OK

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 114

Table: Configuration dialog: Unicode Input

Label Parameter Description

Activate
selected
keyboard

InitialKeyboardLayoutInUse
If checked, the specified APL
keyboard is activated on start-
up.

Show keyboards
for all
Languages

InitialKeyboardLayoutShowAll

If checked, all installed
keyboards are displayed.
Otherwise, only Dyalog
keyboards are shown

Keyboard InitialKeyboardLayout the APL keyboard to be
selected.

Configure
Layout Displays thefollowng dialog box.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 115

Input Method Editor Properties

Table: Dyalog Input Method Editor Properties

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 116

Label Parameter Description

Use Ctrl-X,C,V for
clipboard UseXCV

specifies whether or not the commonly
used keystrokes for copy, cut and paste
are recognised as such.

Enable Backtick
Keyboard
introducer

Enable Overstrikes ResolveOverstrikes 1 = enable overstrikes. 0 = disable
overstrikes

Overstrikes do not
require the OS
introducer key

1 = IME identifies overstrike operation
automatically 0 = IME requires the key
(default Ctrl+Bksp) to signal an
overstrike operation

Use Overstrike
popup OverstrikesPopup 1 = enable the overstrike popup. 0 =

disable the overstrike popup

2.1.3 Input Tab (Classic Edition Only)

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 117

Table: Configuration dialog: Keyboard

Label Parameter Description

Input table search
path APLKeys A list of directories to be searched for the

specified input table

Input table file APLK The name of the input table file (.DIN)

2.1.4 Output Tab (Classic Edition Only)

Table: Configuration dialog: Output

Label Parameter Description

Output table
search path APLTrans A list of directories to be searched for the

specified output table

Output table file APLT The name of the output table file (.DOT)

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 118

2.1.5 Keyboard Shortcuts Tab

To alter the keystroke associated with a particular action, simply select the action
required and press the keystroke. For example, to change the keystroke associated with
the action (undo all changes) from (None) to Ctrl+Shift+u, simply select the
corresponding row in the list and press Ctrl+Shift+u. If Confirm before Overwrite is
checked, you will be prompted to confirm or cancel before each and every change is
written back to the registry.

Note that clicking on the column headings will sort on that column; shift and mouse
click will sort in reverse order.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 119

2.1.6 Workspace Tab

Table: Configuration dialog: Workspace

Label Parameter Description

Workspace
search path WSPath

A list of directories to be searched for the
specified workspace when the user executes
)LOAD .

Maximum
workspace size MaxWS The maximum size of the workspace.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 120

2.1.7 Help/DMX Tab

Table: Configuration dialog: Help/DMX

Label Parameter Description

DMX messages should
go to DMXOutputOnError

If checked, these boxes cause APL
to display ⎕DMX messages in the
corresponding window(s).

Use Microsoft's
documentation centre
for non-Dyalog topics

UseExternalHelpURL

If this option is checked, APL will
look for help for external objects at
Microsoft's documentation center,
which is identified by the specified
URL.

URL ExternalHelpURL The URL for the documentation
centre.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 121

2.1.8 Windows Tab

Table: Configuration dialog: Windows (Edit Windows)

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 122

Label Parameter Description

Width Edit_Cols The maximum number of rows displayed in a new edit
window.

Height Edit_Rows The maximum number of columns displayed in a new
edit window.

X Pos Edit_First_X The initial horizontal position in characters of the first
edit window.

Y Pos Edit_First_Y The initial vertical position in characters of the first edit
window.

X
Offset Edit_Offset_X

The initial horizontal position in characters of the second
and subsequent edit windows relative to the previous
one.

Y
Offset Edit_Offset_Y

The initial vertical position in characters of the second
and subsequent edit windows relative to the previous
one.

Table: Configuration dialog: Windows (Trace Windows)

Label Parameter Description

X Pos Trace_First_X The initial horizontal position in characters of the first
trace window.

Y Pos Trace_First_Y The initial vertical position in characters of the first trace
window.

X
Offset Trace_Offset_X

The initial horizontal position in characters of the
second and subsequent trace windows relative to the
previous one.

Y
Offset Trace_Offset_Y

The initial vertical position in characters of the second
and subsequent trace windows relative to the previous
one.

Table: Configuration dialog: Windows (QuadSM Window)

Label Parameter Description

Width SM_Cols The width of the ⎕SM and prefect windows.

Height SM_Rows The height of the ⎕SM and prefect windows.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 123

2.1.9 Session Tab

Table: Configuration dialog: Session

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 124

Label Parameter Description

⎕IO Default_IO The default value of ⎕IO in a clear
ws .

⎕ML Default_ML The default value of ⎕ML in a clear
ws

⎕PP Default_PP The default value of ⎕PP in a clear
ws .

⎕RTL Default_RTL The default value of ⎕RTL in a clear
ws .

⎕DIV Default_DIV The default value of ⎕DIV in a clear
ws .

⎕WX Default_WX The default value of ⎕WX in a clear
ws .

Auto PW Auto_PW
If checked, the value of ⎕PW is
dynamic and depends on the width
of the Session Window.

Input buffer size Input_Size
The size of the buffer used to store
marked lines (lines awaiting
execution) in the Session.

History size History_Size
The size of the buffer used to store
previously entered (input) lines in
the Session

PFKey buffer
size PFKey_Size The size of the buffer used to store

PFKey definitions (⎕PFKEY)

Confirm on
Deletion from
Session log

Confirm_Session_Delete

Specifies whether or not you are
prompted to confirm the deletion of
a line from the Session (and Session
log).

Session log size Log_Size The size of the Session log buffer.

Session file Session_File
The name of the Session file in
which the definition of your session (
⎕SE) is stored.

Use log file Log_File_InUse Specifies whether or not the Session
log is saved in a session log file

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 125

Label Parameter Description

Use log file Log_File The full pathname of the Session log
file

Multiline Input Dyalog_LineEditor_Mode Specifies whether or not multi-line
input is enabled in the Session.

Note: The value of size-related values defined in the above table is specified as an
integer value followed by one of K, M, G, T, P or E. The default, where no character is
included, is K (Kilobytes).

2.1.10 Trace/Edit Tab

Table: Configuration dialog: Trace/Edit

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 126

Label Parameter Description

Classic Dyalog
mode ClassicMode Selects pre-Version 9 behaviour for

Edit and Trace windows.

Allow session
above edit
windows

SessionOnTop
Specifies whether or not the Session
may appear on top of Edit and Trace
Windows

Single trace
window SingleTrace Specifies whether or not there is a

single Trace window

Remember
previous
window
position

ClassicModeSavePosition

Specifies whether or not the current
size and location of the first of the
editor and tracer windows are
remembered in the registry for next
time.

Allow floating
edit windows DockableEditWindows

Allows individual Edit windows to be
undocked from (and re-docked in)
the main Edit window

Show status
bars StatusOnEdit

Specifies whether or not status bars
are displayed along the bottom of
individual Edit windows

Show tool bars ToolBarsOnEdit
Specifies whether or not tool bars
are displayed along the top of
individual Edit windows

Show trace
stack on error Trace_On_Error

Specifies whether or not the Tracer
is automatically invoked when an
error or stop occurs in a defined
function

Allow search to
wrap WrapSearch

Specifies whether or not Search/
Replace in the Editor stops at the top
or bottom of the text, or continues
from the start or end as appropriate.

Show message
box if text
wraps

 WrapSearchMsgBox
Specifies whether or not a message
box is displayed to inform the user
when the search wraps.

Warn if trace
stack bigger
than

Trace_Level_Warn Specifies the maximum stack size for
automatic deployment of the Tracer.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 127

Label Parameter Description

Confirm edit
window close
on Close

Confirm_Close

Specifies whether or not a
confirmation dialog is displayed if
the user alters the contents of an
edit window, then closes it without
saving

Confirm edit
window close
on Edit (and Fix)

Confirm_Fix

Specifies whether or not a
confirmation dialog is displayed if
the user alters the contents of an
edit window, then saves it using Fix
or Exit

Confirm edit
window close
on Abort

Confirm_Abort

Specifies whether or not a
confirmation dialog is displayed if
the user alters the contents of an
edit window, then aborts using

Autoformat
functions AutoFormat

Selects automatic indentation for
Control Structures when function is
opened for editing

Autoindent AutoIndent Selects semi-automatic indentation
for Control Structures while editing

Double-click to
Edit DoubleClickEdit

Specifies whether or not double-
clicking over a name invokes the
editor

Skip blank lines
when tracing SkipLines If enabled, this causes the Tracer to

automatically skip blank lines.

Skip comment
lines when
tracing

 SkipLines If enabled, this causes the Tracer to
automatically skip comment lines.

Skip locals lines
when tracing SkipLines If enabled, this causes the Tracer to

automatically skip locals lines.

Limit tracer
display to
current function
in script

AddClassHeaders

When Tracing the execution of a
function in a script, the Tracer
displays either just the first line of
the script and the function in
question (option enabled), or the
entire script (option disabled).

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 128

Label Parameter Description

Paste text as
Unicode (Classic
Edition only)

 UnicodeToClipboard

Specifies whether or not text
transferred to and from the
Windows clipboard is to be treated
as Unicode

Tab stops every TabStops The number of spaces inserted by
pressing Tab in an edit window

Exit and fix ... InitFullScriptSusp See Fixing Scripts below

If not ... InitFullScriptNormal See Fixing Scripts below

Fixing Scripts

When using the Editor to edit a script such as a Class or Namespace you can specify
whether, when you Fix the script and Exit the Editor, just the functions in the script are
re-fixed, or whether the whole script is re-executed, thereby re-initialising any Fields or
variables defined within.

These two actions always appear in the Editor File menu, but you can specify which is
associated with the (Esc) key by selecting the appropriate option in the drop-downs
labelled:

Exit and save changes (EP) in a suspended class or namespace should fix:
If not suspended fix:

In both cases, you may select either Only Functions or Everything.

The label for the corresponding items on the Editor File menu (see Editor (The File
Menu, editing a script)) will change according to which behaviour applies. Note that if
you specify a keystroke for in the Keyboard Shortcuts tab, this will be associated with
the unselected action.

•
•

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 129

2.1.11 Auto Complete Tab

Note: To enter values in the OK Key and Cancel Keyfields, click on the field with the
mouse and then press the desired keystroke.

Table: Configuration dialog: Auto Complete

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 130

Label Parameter Description

Use Auto
Complete Enabled Specifies whether or not Auto

Completion is enabled.

Make
suggestions
after

PrefixSize
Specifies the number of characters you
must enter before Auto Completion
begins to make suggestions

Delay
completion
for

KeyboardInputDelay
Specifies the delay in milliseconds before
Auto Completion begins to make
suggestions

Suggest up to Rows
Specifies the maximum number of rows
(height) in the AutoComplete pop-up
suggestions box.

Show up to Cols
Specifies the maximum number of
columns (width) in the AutoComplete
pop-up suggestion box

Keep History History
Specifies whether or not AutoComplete
maintains a list of previous
AutoCompletions.

History
Length HistorySize Specifies the number of previous

AutoCompletions that are maintained

Include
filenames ShowFiles

Specifies whether or not AutoCompletion
suggests directory and file names for
)LOAD ,)COPY and)DROP system
commands.

OK Key CompleteKey1
CompleteKey2

Specifies two possible keys that may be
used to select the current option from
the Auto Complete suggestion box.

Cancel Key CancelKey1
CancelKey2

Specifies two possible keys that may be
used to cancel (hide) the Auto Complete
suggestion box.

Common Key CommonKey1 Specifies the key that will auto-complete
the common prefix .

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 131

2.1.12 SALT Tab

SALT is the Simple APL Library Toolkit, a simple source code management system for
Classes and script-based Namespaces. SPICE uses SALT to manage development tools
which "plug in" to the Dyalog session

Table: Configuration dialog: SALT

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 132

Label Parameter Description

Enable Salt AddSALT Specifies whether or not SALT is enabled

Compare
command
line:

CompareCMD
The command line for a 3 rd party file comparison
tool to be used to compare two versions of a file.
See note.

Editor
command
line:

Editor Name of the program to be used to edit script files
(default "Notepad").

Source
folders: SourceFolder

Sets the SALT working directory; a list of folders to
be searched for source code. Include "." on a
separate line to include source files from the
current working directory

2.1.13 User Commands Tab

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 133

This page is used to specify and organise a list of folders that contain User-Command
files. When you issue a User Command, these folders will be searched for the source of
the command in the order in which they appear in this list.

Table: Configuration dialog: User Commands

Label Parameter Description

Source
Folders SALT\CommandFolder

Use this field to add folders to the list of
folders that will be searched for User
Commands.

2.1.14 Object Syntax Tab

The Object Syntax tab of the Configuration dialog is used to set your default
preferences for Object Syntax. Use Options/Object Syntax to change the settings for the
current workspace.

Table: Configuration dialog: Object Syntax

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 134

Label Parameter Description

Expose properties
of GUI Namespaces Default_WX Specifies the value of ⎕WX in a clear

workspace.

Expose properties
of Root PropertyExposeRoot

Specifies whether or not the names
of properties, methods and events of
the Root object are exposed.

Expose properties
of Session
Namespace

PropertyExposeSE
Specifies whether or not the names
of properties, methods and events of
the Session object are exposed.

2.1.15 Saved ResponsesTab

The Saved Responses tab of the Configuration dialog is used to remove preferences
that the user has previously established.

In the example illustrated above, the user has at some point chosen to save a text file
with a .h extension as text in the workspace and, by checking the option Save this
response for all files with a ".h" extension, saved this as a preference for all such text

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 135

files. Similarly, the user has checked the option Do not show this message again when
responding to the warning dialog Saving as text will

If the user wishes to reverse these decisions, even temporarily, it is necessary to select
the corresponding option /preference name(s) and click Delete. The names are
intended to be self-explanatory and are not listed here.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 136

2.2 Colour Selection Dialog

The Colour Selection dialog box allows you to select colours for:

Syntax colouring in the Session window
Variables
Edit and Trace windows
Status window

To choose for which of which of these items you want to define colours by selecting the
appropriate tab.

The colour selection dialog box is selected by the [ChooseColor] system action which
by default is attached to the Options/Colours menu item on the Session menubar and
to the Colours menu item in the Session pop-up menu.

Syntax Colouring

Syntax colouring allows you to visually identify various components in the function edit
and session windows by assigning different colours to them, such as:

Global references (functions and variables)
Local references (functions and variables)
Primitive functions
System functions

•
•
•
•

•
•
•
•

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 137

Localised System Variables
Comments
Character constants
Numeric constants
Labels
Control Structures
Unmatched parentheses, quotes, and braces

Colour Schemes

You may define a number of different syntax colouring schemes which are suitable for
different purposes and a selection of schemes is provided. Choose the scheme you
wish to use from the Combo box provided. If you change a colour allocation, you may
overwrite an existing Colour Scheme or define a new one by clicking Save As and then
entering the name of the Scheme. You may delete a Colour Scheme using the Delete
button.

HotKeys

You may associate a different hot key with any or all of your colour schemes.When you
depress a hot key over a function in an Edit window, the function is displayed using the
scheme associated with the hot key. Releasing the hot key causes it to be displayed in
the normal scheme. This feature is intended to allow you to quickly check for certain
syntax elements. For example, you may define a special scheme that only highlights
global names and associate a hot key with it. Pressing the hot key will temporarily
highlight the globals for you.

Changing Colours

To allocate a colour to a syntax element, you must first select the syntax element. You
may select a syntax element from the Combo box provided, or by clicking on an
example in the sample function provided. Having selected a syntax element, choose a
colour using the Foreground or Background selectors as appropriate.

Table: Colour Selection

•
•
•
•
•
•
•

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 138

Label Description

Schemes Choose the scheme you want to edit using this dropdown box.

HotKey
To associate a hot key with the currently selected colour scheme,
click here, and then make the desired keystroke. To disassociate a
hot key, use .

Save As Click to overwrite the current colour scheme or save as a new one.

Delete Click to delete the currently selected colour scheme.

Foreground Choose the foreground colour from the colour picker

Italic Enable/disable italic foreground

Bold Enable/disable bold foreground

Single
Background

Allows you to choose whether to impose a single background
colour, or to allow the use of different background colours for
different syntax elements.

Function
Editor

Check this box if you want to enable syntax colouring in Edit
windows.

Function
Tracer

Check this box if you want to enable syntax colouring in Trace
windows.

Session Input

Check this box if you want to enable syntax colouring in the
Session window. Note that the colour scheme used for the Session
may differ from the colour scheme selected for Edit windows and
is specified by the Session Colour Scheme box on the Session/Trace
tab.

Only current
input line

This option only applies if Session syntax colouring is enabled.
Check this box if you want syntax colouring to apply only to the
current input line. Clear this box, if you want to apply syntax
colouring to all the input lines in the current Session window. Note
that syntax colouring of input lines is not remembered in the
Session log, so input lines from previous sessions do not have
syntax colouring.

2.3 Print Configuration Dialog Box

The Print Configuration dialog box is displayed by the system operation [PrintSetup]
that is associated with the File/Print Setup menu item. It is also available from Edit
windows and from the Workspace Explorer and Find Objects tools.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 139

There are four separate tabs namely Setup, Margins, Header/Footer and Printer.

Note that the printing parameters are stored in the Registry in the Printing sub-folder

Setup Tab

Table: Print Configuration dialog: Setup

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 140

Label Parameter Description

Color scheme InColour

Check this box if you want to print functions
with syntax colouring. Note that that printing
in colour is slower than printing without
colour.

Color scheme SchemeName Select the colour scheme to be used for
printing.

This text WrapWithText
Check this option button if you wish to prefix
wrapped lines (lines that exceed the width of
the paper) with a particular text string

This text WrapLeadText Specifies the text for prefixing wrapped lines

This many
spaces WrapWithSpaces Check this option button if you wish to prefix

wrapped lines with spaces.

This many
spaces WrapLeadSpaces Specifies the number of spaces to be inserted

at the beginning of wrapped lines.

Line numbers
on functions LineNumsFns Check this box if you want line numbers to be

printed in defined functions.

Line numbers
on variables LineNumsVars

Check this box if you want line numbers to be
printed in variables. If you choose this option,
line numbering starts at ⎕IO .

Font Font Click to select the font to be used for printing.
Note that only fixed-pitch fonts are supported.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 141

Margins Tab

Table: Print Configuration dialog: Margins

Label Parameter Description

Use margins UseMargins Check this box if you want margins to apply

Left margin MarginLeft Specifies the width of the left margin

Right margin MarginRight Specifies the width of the right margin

Top margin MarginTop Specifies the height of the top margin

Bottom margin MarginBottom Specifies the height of the bottom margin

Inches MarginInch Specifies that the margin units are inches

Centimetres MarginCM Specifies that the margin units are centimetres

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 142

Header/Footer Tab

Table: Print Configuration dialog: Header/Footer

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 143

Label Parameter Description

Header DoHeader Specifies whether or not a header is printed at the
top of each page

Header HeaderText The header text

Footer DoFooter Specifies whether or not a footer is printed at the
bottom of each page

Footer FooterText The footer text

Prefix
functions
with

DoSepFn Specifies whether or not text is printed before each
defined function

Prefix
functions
with

SepFnText
The text to be printed before each defined
function. This can include its name, timestamp and
author

Prefix
variables
with

DoSepVar Specifies whether or not text is printed before each
variable.

Prefix
variables
with

SepVarText The text to be printed before each variable. This
can include its name.

Prefix other
objects with DoSepOther

Specifies whether or not text is printed before
other objects. These include locked functions,
external functions, ⎕NA functions, derived functions
and namespaces.

Prefix other
objects with SepOtherText The text to be printed before other objects. This

can include its name.

The specification for headers and footers may include a mixture of your own text, and
keywords which are enclosed in braces, for example, {objname}. Keywords act like
variables and are replaced at print time by corresponding values.

Any of the following fields may be included in headers, footers and separators.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 144

{WSName} {WS} Workspace name

{NSName} {NS} Namespace name

{ObjName} {OB} Object name

{Author} {AU} Author

{FixDate} {FD} Date function was last fixed

{FixTime} {FT} Time function was fixed

{PrintDate} {PD} Today's date

{PrintTime} {PT} Current time

{CurrentPage} {CP} Current page number

{TotalPages} {TP} Total number of pages

{RightJustify} {RJ} Right-justifies subsequent text/fields

{HorizontalLine} {HL} Inserts a horizontal line

{CarriageReturn} {CR} Inserts a new-line

For example, the specification:

Workspace: {wsname} {objname} {rj} Printed {PrintTime} {PrintDate}

would cause the following header, footer or separator to be printed at the appropriate
position in each page of output:

Workspace: U:\WS\WDESIGN WIZ_change_toolbar Printed 14:40:11 02 March 1998

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 145

Printer Tab

Table: Print Configuration dialog: Print

Label Parameter Description

Name PrinterField The name of the printer to be used for printing from
Dyalog.

Properties Click this to set Printer options.

Where Reports the printer device

Print

Allows you to choose between printing all of the current
object or just the selection. Note that this option is
present only when the dialog box is displayed in
response to selecting Print.

Windows Installation and Configuration Guide

2025-10-30 (main:e0843eae32) Page 146

	Dyalog for Microsoft Windows
	Installation and Configuration Guide
	Contents

	Installation and Configuration
	Documentation
	Files and Directories
	Unicode and Classic Editions
	32-Bit and 64-Bit Widths
	Files
	Distributable Development Components
	Non-Distributable Development Components

	File Extension Conventions

	File Associations
	APL Fonts
	Unicode Edition
	Classic Edition

	Interoperability
	Introduction
	Code and ⎕ORs
	"Ordinary" Arrays
	Null Items (⎕NULL) and Compressed Components
	Object Representations (⎕OR)
	32 vs. 64-bit Component Files
	External Variables
	32 vs. 64-bit Interpreters
	Unicode vs. Classic Editions
	Very large array components
	TCPSockets and Conga
	Auxiliary Processors
	Session Files

	The APL Command Line
	Command Line

	APL Exit Codes
	Notes

	Dyalog Serial Number
	Configuration Parameters
	Configuration Parameters
	Introduction
	Specifying Size-related Parameters
	Changing parameter values in the Registry

	AddClassHeaders
	APLAN_FOR_EDITOR
	APLAN_FOR_OUTPUT
	AplCoreName
	APLK
	APLKeys
	aplnid
	APLT
	APLTrans
	APL_CODE_E_MAGNITUDE
	APL_COMPLEX_AS_V12
	APL_FCREATE_PROPS_C
	APL_FCREATE_PROPS_J
	APL_FAST_FCHK
	APL_MAX_THREADS
	APL_TextInAplCore
	AutoDPI
	AutoComplete
	AutoComplete/CancelKey1
	AutoComplete/CancelKey2
	AutoComplete/Cols
	AutoComplete/CommonKey1
	AutoComplete/CompleteKey1
	AutoComplete/CompleteKey2
	AutoComplete/Enabled
	AutoComplete/History
	AutoComplete/HistorySize
	AutoComplete/PrefixSize
	AutoComplete/Rows
	AutoComplete/ShowFiles

	AutoFormat
	AutoIndent
	Auto_PW
	CFEXT
	ClassicMode
	ClassicModeSavePosition
	CMD_PREFIX and CMD_POSTFIX
	ConfigFile
	Confirm_Abort
	Confirm_Close
	Confirm_Fix
	Confirm_Session_Delete
	Default_DIV
	Default_IO
	Default_ML
	Default_PP
	Default_PW
	Default_RTL
	Default_WX
	DMXOutputOnError
	DockableEditWindows
	DoubleClickEdit
	Dyalog
	DyalogEmailAddress
	DyalogHelpDir
	DyalogInstallDir
	DyalogLink
	DyalogStartup
	DyalogStartupSE
	DyalogStartup_X
	DyalogWebSite
	DYALOG_DISCARD_FN_SOURCE
	DYALOG_EVENTLOGGINGLEVEL
	DYALOG_EVENTLOGNAME
	DYALOG_GUTTER_ENABLE
	Dyalog_LineEditor_Mode
	Dyalog_NETCore
	DYALOG_NOPOPUPS
	Dyalog_Pixel_Type
	DYALOG_SERIAL
	EditorState
	Edit_Cols
	Edit_First_X
	Edit_First_Y
	Edit_Offset_X
	Edit_Offset_Y
	Edit_Rows
	Enable_CEF
	Note

	ErrorOnExternalException
	ExternalHelpURL
	File_Stack_Size
	Greet_Bitmap
	History_Size
	IniFile
	Unicode Edition
	Classic Edition

	InitFullScriptNormal
	InitFullScriptSusp
	InitialKeyboardLayout
	InitialKeyboardLayoutInUse
	InitialKeyboardLayoutShowAll
	Input_Size
	KeyboardInputDelay
	Load
	Notes

	localdyalogdir
	Log_File
	Log_File_InUse
	Log_Size
	LX
	mapchars
	MaxAplCores
	MaxWS
	OverstrikesPopup
	PassExceptionsToOpSys
	PFKey_Size
	ProgramFolder
	PropertyExposeRoot
	PropertyExposeSE
	qcmd_timeout
	ResolveOverstrikes
	RIDE_Init
	Ride_Spawned
	RunAsService
	SaveContinueOnExit
	SaveLogOnExit
	SaveSessionOnExit
	Serial
	SessionOnTop
	Session_File
	ShowStatusOnError
	SingleTrace
	SkipLines
	SM_Cols
	SM_Rows
	StatusOnEdit
	TabStops
	ToolBarsOnEdit
	TraceStopMonitor
	Trace_First_X
	Trace_First_Y
	Trace_Level_Warn
	Trace_Offset_X
	Trace_Offset_Y
	Trace_On_Error
	UCMDCacheFile
	UnicodeToClipboard
	URLHighlight
	UseExternalHelpURL
	UserConfigFile
	UseXCV
	ValueTips
	ValueTips/ColourScheme
	ValueTips/Delay
	ValueTips/Enabled

	WantsSpecialKeys
	WrapSearch
	WrapSearchMsgBox
	WSEXT
	WSPath
	XPLookAndFeel
	yy_window
	Sliding versus Fixed Window
	Setting a Fixed Window
	Setting a Sliding Window
	Advanced Settings

	Registry Sub-Folders
	AutoComplete
	Captions
	Colours
	Editor
	Event Viewer
	Explorer
	files
	KeyboardShortcuts/keys
	KeyboardShortcuts/chars
	LanguageBar
	Printing
	SALT
	Search
	Threads
	UnicodeIME
	ValueTips
	WindowRects

	Configuration Files
	Introduction
	Application Configuration File
	User Configuration File
	Precedence
	Configuration Files and The Configuration Dialog
	Configuration File Structure
	File Names
	Arrays
	References to other Configuration Parameters
	Nested Structures

	Window Captions
	Workspace Management
	Workspace Size and Compaction

	Interface with Windows
	Auxiliary Processors
	Introduction
	Starting an AP
	Using the AP
	Terminating the AP

	Access Control for External Variables
	Shell Scripts
	UNIX
	Windows
	Note
	Input and Output
	Errors
	Configuration Parameters
	Example (first line of script)
	Example (configuration file)
	Debugging

	Creating Executables and COM Servers
	Version Information

	Run-Time Applications and Components
	Configuration Parameters
	Workspace or source code based run-time
	Using a workspace
	Using a source code file
	Stand-alone and Bound run-times
	Out-of-process COM Server
	In-process COM Server
	ActiveX Control
	Microsoft .NET Assembly

	Run-Time Applications Additional Considerations
	Accessing your Application using Ride
	Additional Files for SQAPL
	Miscellaneous Other Files
	DyaRes DLL
	AUXILIARY PROCESSORS
	DYALOG32 and/or DYALOG64

	Universal C Runtime DLLs
	Windows 10
	Other Versions of Windows
	VCRedist Installation (Recommended)
	App-local Installation

	Either
	Or

	COM Objects and the Dyalog APL DLL
	Introduction
	Classes, Instances and Namespace Cloning
	Workspace Management
	Multiple COM Objects in a Single Workspace
	Parameters

	APL Application as a Service
	Introduction
	Installing and Uninstalling a Dyalog Service
	The Application Workspace
	Handling ServiceNotification Events
	ServiceHandler Callback Function
	The Application Code
	Debugging Dyalog Services
	Event Logging

	APLService Logging Events
	Windows Event Log Concepts
	Using SysLog in Your Application
	SysLog Usage
	Purpose
	Purpose
	Purpose
	Purpose
	Purpose
	Purpose
	Purpose
	Purpose

	Configuring the IDE
	Configuration Dialog
	General Tab
	Unicode Input Tab (Unicode Edition Only)
	Input Method Editor Properties

	Input Tab (Classic Edition Only)
	Output Tab (Classic Edition Only)
	Keyboard Shortcuts Tab
	Workspace Tab
	Help/DMX Tab
	Windows Tab
	Session Tab
	Trace/Edit Tab
	Fixing Scripts

	Auto Complete Tab
	SALT Tab
	User Commands Tab
	Object Syntax Tab
	Saved ResponsesTab

	Colour Selection Dialog
	Syntax Colouring
	Colour Schemes
	HotKeys
	Changing Colours

	Print Configuration Dialog Box
	Setup Tab
	Margins Tab
	Header/Footer Tab
	Printer Tab

