
Dyalog Programming
Reference Guide

Dyalog version 20.0

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2025 by Dyalog Limited
All rights reserved.

Dyalog Programming Reference Guide

Dyalog version: 20.0
Document Revision: 2025-10-30 main:e0843eae32

Unless stated otherwise, all examples in this document assume that ⎕IO ⎕ML ← 1

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle®, MySQL, and Java™ are registered trademarks of Oracle and/or its affiliates.
JavaScript™ is a trademark of Oracle Corporation.
Unicode is a registered trademarks of Unicode, Inc. in the U.S. and other countries.
UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively
through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark of Microsoft Corporation in the U.S. and other
countries.
macOS® and OS X® (operating system software) are registered trademarks of Apple Inc.
in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Except where otherwise noted, this content is licensed under a Creative Commons
Attribution 4.0 International licence.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

2025-10-30 (main:e0843eae32) Page 4

Contents

1 Introduction ... 14

1.1 Programmers Guide Introduction ... 14

1.1.1 Workspaces .. 14

1.1.2 Legal Names ... 15

1.1.3 Arrays .. 16

1.1.3.1 Introduction ... 16

1.1.3.2 Numbers .. 17

1.1.3.3 Characters .. 18

1.1.3.4 Enclosed Elements ... 19

1.1.3.5 Specification of Variables ... 19

1.1.3.6 Vector Notation ... 19

1.1.3.7 Array Notation ... 21

1.1.3.8 Structuring of Arrays .. 30

1.1.3.9 Display of Arrays .. 33

1.1.3.10 Prototypes and Fill Items ... 40

1.1.3.11 Cells and Subarrays .. 42

1.1.4 Expressions ... 44

1.1.5 Functions .. 45

1.1.6 Operators .. 47

1.1.7 Binding Strength ... 49

1.1.8 Function Trains ... 50

1.1.9 Search Functions and Hash Tables .. 55

1.1.10 Idiom Recognition ... 57

1.1.10.1 Introduction ... 57

1.1.10.2 Idiom List ... 57

1.1.11 Parallel Execution ... 65

1.1.12 Complex Numbers .. 65

1.1.13 128 Bit Decimal Floating-Point Support ... 68

1.1.14 Namespaces ... 73

1.1.14.1 Overview .. 73

1.1.14.2 Namespace Syntax ... 75

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 5

1.1.14.3 Namespace Reference Evaluation ... 77

1.1.14.4 Namespaces and Localisation .. 77

1.1.14.5 Namespace References .. 80

1.1.14.6 Unnamed Namespaces .. 82

1.1.14.7 Arrays of Namespace References .. 84

1.1.14.8 Distributed Assignment ... 86

1.1.14.9 Distributed Functions .. 88

1.1.14.10 Namespaces and Operators ... 90

1.1.14.11 Serialising Namespaces ... 91

1.1.15 External Variables ... 94

1.1.16 Component Files ... 95

1.1.17 Auxiliary Processors .. 95

2 Deprecated Functionality ... 96

3 Defined Functions & Operators ... 99

3.1 Traditional Functions and Operators ... 99

3.1.1 Introduction .. 99

3.1.2 Model Syntax .. 99

3.1.3 Statements ... 101

3.1.4 Global & Local Names ... 101

3.1.5 Locals Lines ... 104

3.1.6 Namelists .. 105

3.1.7 Locked Functions & Operators ... 106

3.1.8 Function Declaration Statements ... 106

3.1.8.1 Introduction ... 106

3.1.8.2 Access Statement ... 107

3.1.8.3 Attribute Statement ... 108

3.1.8.4 Implements Statement .. 108

3.1.8.5 Signature Statement .. 109

3.1.9 Control Structures .. 111

3.1.9.1 Introduction ... 111

3.1.9.2 If Statement ... 113

3.1.9.3 While Statement .. 115

3.1.9.4 Repeat Statement .. 116

3.1.9.5 For Statement .. 116

3.1.9.6 Select Statement .. 119

3.1.9.7 With Statement ... 120

3.1.9.8 Hold Statement .. 121

3.1.9.9 Trap Statement .. 124

3.1.9.10 GoTo Statement ... 127

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 6

3.1.9.11 Return Statement .. 127

3.1.9.12 Leave Statement :Leave ... 128

3.1.9.13 Continue Statement ... 128

3.1.9.14 Section Statement ... 128

3.1.9.15 Disposable Statement .. 128

3.1.10 APL Line Editor .. 131

3.2 Dfns and Dops ... 139

3.2.1 Introduction .. 139

3.2.2 MultiLine Dfns .. 140

3.2.3 Default Left Argument .. 141

3.2.4 Guards .. 142

3.2.5 Shy Result ... 143

3.2.6 Lexical Name Scope .. 143

3.2.7 Error Guards ... 144

3.2.8 Dops .. 146

3.2.9 Recursion .. 147

3.2.10 Tail Calls .. 152

3.2.11 Restrictions ... 153

4 Object Oriented Programming ... 155

4.1 Introducing Classes ... 155

4.1.1 Introducing Classes ... 155

4.1.2 Defining Classes .. 156

4.1.3 Editing Classes .. 156

4.1.4 Inheritance ... 157

4.1.5 Instances ... 159

4.2 Constructors ... 160

4.2.1 Introduction .. 160

4.2.2 Constructor Overloading .. 161

4.2.3 Niladic (Default) Constructors .. 163

4.2.4 Empty Arrays of Instances: Why ? .. 164

4.2.5 Empty Arrays of Instances: How? ... 165

4.2.6 Base Constructors ... 168

4.2.7 Niladic Example .. 169

4.2.8 Monadic Example ... 170

4.2.9 Destructors ... 172

4.3 Class Members .. 176

4.3.1 Introduction .. 176

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 7

4.3.2 Fields .. 176

4.3.2.1 Introduction ... 176

4.3.2.2 Public Fields ... 177

4.3.2.3 Initialising Fields .. 178

4.3.2.4 Private Fields .. 178

4.3.2.5 Shared Fields .. 179

4.3.2.6 Trigger Fields .. 180

4.3.3 Methods ... 182

4.3.3.1 Methods .. 182

4.3.3.2 Shared Methods .. 183

4.3.3.3 Instance Methods .. 183

4.3.3.4 Superseding Base Class Methods .. 184

4.3.4 Properties ... 186

4.3.4.1 Properties .. 186

4.3.4.2 Simple Instance Properties .. 187

4.3.4.3 Simple Shared Properties .. 189

4.3.4.4 Numbered Properties .. 190

4.3.4.4.1 Introduction ... 190

4.3.4.4.2 Example .. 191

4.3.4.5 The Default Property ... 193

4.3.4.6 ComponentFile Class ... 194

4.3.4.7 Keyed Properties .. 196

4.3.4.7.1 Introduction ... 196

4.3.4.7.2 Example 1 ... 196

4.3.4.7.3 Example 2 ... 199

4.4 Interfaces .. 202

4.4.1 Introduction .. 202

4.4.2 Example .. 202

4.5 Including Namespaces in Classes .. 204

4.5.1 Introduction .. 204

4.5.2 Example .. 205

4.6 Nested Classes .. 208

4.6.1 Nested Classes .. 208

4.6.2 GolfService Example ... 208

4.7 Namespace Scripts .. 211

4.7.1 Namespace Scripts ... 211

4.7.2 DiaryStuff Example ... 215

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 8

4.8 Including Script Files ... 217

4.9 Class Declaration Statements ... 217

4.9.1 Introduction .. 217

4.9.2 Interface Statement .. 217

4.9.3 Namespace Statement ... 218

4.9.4 Class Statement .. 218

4.9.5 Using Statement ... 219

4.9.6 Attribute Statement .. 220

4.9.7 Access Statement ... 221

4.9.8 Implements Statement ... 223

4.10 Field Statement ... 224

4.11 Property Section ... 225

4.11.1 Property Statement .. 225

4.11.2 PropertyArguments Class ... 227

4.11.3 PropertyGet Function Syntax .. 227

4.11.4 PropertySet Function Syntax .. 229

4.11.5 PropertyShape Function Syntax .. 230

5 Threads and Triggers .. 231

5.1 Threads ... 231

5.1.1 Language Elements. .. 231

5.1.2 Thread Switching .. 232

5.1.3 Name Scope .. 233

5.1.4 Stack Considerations .. 233

5.1.5 Globals and the Order of Execution ... 234

5.1.6 Threads & Niladic Functions ... 236

5.1.7 Threads & External Functions ... 237

5.1.8 Synchronising Threads .. 238

5.1.9 Semaphore Example ... 239

5.1.10 Latch Example ... 240

5.1.11 Debugging .. 241

5.2 Triggers ... 244

5.2.1 Introduction .. 244

5.2.2 Example .. 245

5.2.3 Global Triggers .. 247

5.2.4 Trigger Fields (in Classes) .. 249

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 9

6 APL Files ... 251

6.1 Native Files .. 251

6.2 Component Files ... 257

6.2.1 Introduction .. 257

6.2.2 Component Files ... 257

6.2.3 Programming Techniques ... 266

6.2.4 File Design .. 269

6.2.5 Internal Structure ... 270

6.2.6 The Effect of Buffering .. 273

6.2.7 Integrity and Security ... 273

7 Error Trapping .. 276

7.1 Standard Error Action ... 276

7.2 Error Trapping ... 277

7.3 Error Trapping Examples ... 281

7.4 Signalling Events ... 288

7.5 Handling Unexpected Errors ... 290

8 Error Messages .. 292

8.1 Error Messages ... 292

8.1.1 Introduction .. 292

8.1.2 APL Error Messages Table ... 293

8.1.3 Operating System Error Messages Table .. 298

8.1.4 Windows Operating System Error Messages Table .. 301

8.1.5 APL Error Messages .. 301

8.1.6 APL Error Messages (A-Z) ... 302

8.1.6.1 bad ws .. 302

8.1.6.2 cannot create name ... 302

8.1.6.3 clear ws .. 302

8.1.6.4 copy incomplete .. 302

8.1.6.5 DEADLOCK ... 302

8.1.6.6 defn error ... 303

8.1.6.7 DOMAIN ERROR ... 303

8.1.6.8 EOF INTERRUPT ... 304

8.1.6.9 EXCEPTION ... 304

8.1.6.10 FIELD CONTENTS RANK ERROR .. 304

8.1.6.11 FIELD CONTENTS TOO MANY COLUMNS ... 304

8.1.6.12 FIELD POSITION ERROR .. 305

8.1.6.13 FIELD CONTENTS TYPE MISMATCH .. 305

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 10

8.1.6.14 FIELD TYPE BEHAVIOUR UNRECOGNISED .. 305

8.1.6.15 FIELD ATTRIBUTES RANK ERROR .. 305

8.1.6.16 FIELD ATTRIBUTES LENGTH ERROR .. 305

8.1.6.17 FULL SCREEN ERROR .. 305

8.1.6.18 KEY CODE UNRECOGNISED .. 305

8.1.6.19 KEY CODE RANK ERROR ... 305

8.1.6.20 KEY CODE TYPE ERROR .. 306

8.1.6.21 FORMAT FILE ACCESS ERROR ... 306

8.1.6.22 FORMAT FILE ERROR .. 306

8.1.6.23 FILE ACCESS ERROR .. 306

8.1.6.24 FILE ACCESS ERROR CONVERTING ... 307

8.1.6.25 FILE COMPONENT DAMAGED .. 307

8.1.6.26 FILE DAMAGED .. 307

8.1.6.27 FILE FULL .. 307

8.1.6.28 FILE INDEX ERROR .. 307

8.1.6.29 FILE NAME ERROR .. 308

8.1.6.30 FILE NAME QUOTA USED UP .. 308

8.1.6.31 FILE SYSTEM ERROR ... 308

8.1.6.32 FILE SYSTEM NO SPACE .. 309

8.1.6.33 FILE SYSTEM NOT AVAILABLE ... 309

8.1.6.34 FILE SYSTEM TIES USED UP .. 309

8.1.6.35 FILE TIE ERROR ... 309

8.1.6.36 FILE TIED .. 310

8.1.6.37 FILE TIED REMOTELY .. 310

8.1.6.38 FILE TIE QUOTA USED UP ... 310

8.1.6.39 FORMAT ERROR ... 311

8.1.6.40 HOLD ERROR .. 311

8.1.6.41 incorrect command ... 311

8.1.6.42 INDEX ERROR ... 312

8.1.6.43 INTERNAL ERROR ... 312

8.1.6.44 INTERRUPT ... 312

8.1.6.45 is name .. 313

8.1.6.46 LENGTH ERROR .. 313

8.1.6.47 LIMIT ERROR .. 313

8.1.6.48 NONCE ERROR ... 314

8.1.6.49 NO PIPES .. 314

8.1.6.50 name is not a ws .. 315

8.1.6.51 Name already exists ... 315

8.1.6.52 Namespace does not exist ... 315

8.1.6.53 not copied name .. 315

8.1.6.54 not found name ... 315

8.1.6.55 not saved this ws is name .. 316

8.1.6.56 PROCESSOR TABLE FULL ... 316

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 11

8.1.6.57 RANK ERROR .. 317

8.1.6.58 RESIZE .. 317

8.1.6.59 name saved date time ... 317

8.1.6.60 SYNTAX ERROR ... 318

8.1.6.61 sys error number ... 318

8.1.6.62 TIMEOUT .. 319

8.1.6.63 TRANSLATION ERROR ... 319

8.1.6.64 TRAP ERROR ... 319

8.1.6.65 too many names .. 319

8.1.6.66 VALUE ERROR ... 320

8.1.6.67 warning duplicate label ... 320

8.1.6.68 warning duplicate name .. 320

8.1.6.69 warning pendent operation ... 320

8.1.6.70 warning label name present .. 321

8.1.6.71 warning unmatched brackets .. 321

8.1.6.72 warning unmatched parentheses .. 322

8.1.6.73 was name ... 322

8.1.6.74 WS FULL ... 322

8.1.6.75 ws not found .. 323

8.1.6.76 ws too large ... 323

8.1.7 Operating System Error Messages .. 324

8.1.8 Operating System Error Messages (A-Z) ... 324

8.1.8.1 FILE ERROR 1 Not owner .. 324

8.1.8.2 FILE ERROR 2 No such file .. 324

8.1.8.3 FILE ERROR 5 I O error ... 324

8.1.8.4 FILE ERROR 6 No such device ... 324

8.1.8.5 FILE ERROR 13 Permission denied ... 324

8.1.8.6 FILE ERROR 20 Not a directory ... 324

8.1.8.7 FILE ERROR 21 Is a directory .. 325

8.1.8.8 FILE ERROR 23 File table overflow ... 325

8.1.8.9 FILE ERROR 24 Too many open .. 325

8.1.8.10 FILE ERROR 26 Text file busy .. 325

8.1.8.11 FILE ERROR 27 File too large .. 325

8.1.8.12 FILE ERROR 28 No space left .. 325

8.1.8.13 FILE ERROR 30 Read only file ... 325

8.1.9 System Errors .. 326

9 APLMon ... 333

9.1 Introduction .. 333

9.2 Using APLMON .. 333

9.3 APLMON output .. 334

9.4 Special syntax .. 338

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 12

9.5 Notes ... 340

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 13

1 Introduction

1.1 Programmers Guide Introduction

1.1.1 Workspaces

APL expressions are evaluated within a workspace. The workspace may contain objects,
namely classes, namespaces, operators, functions and variables defined by the user.
APL expressions may include references to primitive operators, functions and variables
provided by APL. These objects do not reside in the workspace, but space is required
for the actual process of evaluation to accommodate temporary data. During
execution, APL records the state of execution through the STATE INDICATOR which is
dynamically maintained until the process is complete. Space is also required to identify
objects in the workspace in the SYMBOL TABLE. Maintenance of the symbol table is
entirely dynamic. It grows and contracts according to the current workspace contents.

Workspaces may be explicitly saved with an identifying name. The workspace may
subsequently be loaded, or objects may be selectively copied from a saved workspace
into the current workspace.

Workspaces are stored in files whose names must conform to operating system
conventions. When a workspace name is specified without a file suffix, these are added
or implied. For further information, see Installation/Configuration: Wsext.

If the name of the file in which the workspace is saved contains spaces, the ws
argument for the system functions)SAVE,)COPY,)PCOPY,)LOAD,)XLOAD and)DROP
should be surrounded by two double-quote (") characters. To include a " character in
the file name, you must specify two adjoining double-quotes (that is, """"). Note
however that Windows does not allow double-quotes in file names, so this effectively
applies only to non-Windows systems.

Examples

The above statement fails because the presence of the space in the file name requires
that it be surrounded by "s.

)SAVE Pete's work
unacceptable char

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 14

1.1.2 Legal Names

APL objects may be given names. A name may be any sequence of characters, starting
with a non-numeric character, selected from the following:

ABCDEFGHIJKLMNOPQRSTUVWXYZ_

abcdefghijklmnopqrstuvwxyz

ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝß

àáâãäåæçèéêëìíîïðñòóôõöøùúûüþ

0123456789

∆⍙

ⒶⒷⒸⒹⒺⒻⒼⒽⒾⒿⓀⓁⓂⓃⓄⓅⓆⓇⓈⓉⓊⓋⓌⓍⓎⓏ

Note that using a standard Unicode font (rather than APL385 Unicode used in the table
above), the last row above would appear as the circled alphabet, Ⓐ to Ⓩ.

Examples

Legal Illegal

THIS∆IS∆A∆NAME BAD NAME

X1233 3+21

SALES S!H|PRICE

pjb_1 1_pjb

)SAVE "Pete's work"
Pete's work.dws saved Sun Jan 17 16:23:17 2016

)COPY "Pete's work" A B C
.\Pete's work.dws saved Sun Jan 17 16:23:17 2016

)DROP "Pete's work"
Sun Jan 17 16:24:16 2016

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 15

1.1.3 Arrays

Arrays

A Dyalog APL data structure is called an array. An array is a rectangular arrangement of
items, each of which may be a single number, a single character, a namespace
reference (ref), another array, or the ⎕OR of an object. An array which is part of another
array is also known as a subarray.

An array has two properties; structure and data type. Structure is identified by rank,
shape, and depth.

Rank

An array may have 0 or more axes or dimensions. The number of axes of an array is
known as its rank. Dyalog APL supports arrays with a maximum of 15 axes.

An array with 0 axes (rank 0) is called a scalar.
An array with 1 axis (rank 1) is called a vector.
An array with 2 axes (rank 2) is called a matrix.
An array with more than 2 axes is called a multi-dimensional array.

Shape

Each axis of an array may contain zero or more items. The number of items along each
axis of an array is called its shape. The shape of an array is itself a vector. Its first item is
the length of the first axis, its second item the length of the second axis, and so on. An
array, whose length along one or more axes is zero, is called an empty array.

Depth

An array whose items are all simple scalars (that is, single numbers, characters or refs)
is called a simple array. If one or more items of an array is not a simple scalar (that is, is
another array, or a ⎕OR), the array is called a nested array. A nested array may contain
items which are themselves nested arrays. The degree of nesting of an array is called its
depth. A simple scalar has a depth of 0. A simple vector, matrix, or multi-dimensional

•
•
•
•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 16

array has depth 1. An array whose items are all depth 1 subarrays has depth 2; one
whose items are all depth 2 subarrays has depth 3, and so forth.

Type

An array, whose elements are all numeric, is called a numeric array; its TYPE is numeric.
A character array is one in which all items are characters. An array whose items contain
both numeric and character elements is of MIXED type.

Numbers

Dyalog APL supports both real numbers and complex numbers.

Real Numbers

Numbers are entered or displayed using conventional decimal notation (for example,
299792.458) or using a scaled form for example, 2.999792458E5).

On entry, a decimal point is optional if there is no fractional part. On output, a number
with no fractional part (an integer) is displayed without a decimal point.

The scaled form consists of:

an integer or decimal number called the mantissa,
the letter E or e,
an integer called the scale, or exponent.

The scale specifies the power of 10 by which the mantissa is to be multiplied.

Example

Negative numbers are preceded by the high minus (¯) symbol, not to be confused with
the minus (-) function. In scaled form, both the mantissa and the scale may be
negative.

1.
2.
3.

12 23.24 23.0 2.145E2
12 23.24 23 214.5

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 17

Example

Complex Numbers

Complex numbers use the J notation introduced in IBM APL2 and are written as aJb or
ajb (without spaces) where the real and imaginary parts a and b are written as
described above. The capital J is always used to display a value.

Examples

Zilde

The empty vector (⍳0) may be represented by the numeric constant ⍬ called ZILDE.

Characters

Characters are entered within a pair of APL quotes. The surrounding APL quotes are not
displayed on output. The APL quote character itself must be entered as a pair of APL
quotes.

Examples

¯22 2.145E¯2 ¯10.25
¯22 0.02145 ¯10.25

2+¯1*.5
2J1

.3j.5
0.3J0.5

1.2E5J¯4E¯4
120000J¯0.0004

'DYALOG APL'
DYALOG APL

'I DON''T KNOW'
I DON'T KNOW

'*'
*

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 18

Enclosed Elements

An array may be enclosed to form a scalar element through any of the following means:

by the enclose function (⊂)
by inclusion in vector notation
as the result of certain functions when applied to arrays

Examples

Specification of Variables

A variable is a named array. An undefined name or an existing variable may be assigned
an array by specification with the left arrow (←).

Examples

Vector Notation

Vector notation complements Section 1.1.3.7 with a clean syntax for vectors.

•
•
•

(⊂1 2 3),⊂'ABC'
1 2 3 ABC

(1 2 3) 'ABC'
1 2 3 ABC

⍳2 3
1 1 1 2 1 3
2 1 2 2 2 3

A←'CHIPS WITH EVERYTHING'
A

CHIPS WITH EVERYTHING

X Y←'ONE' 'TWO'
X

ONE
Y

TWO

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 19

A series of two or more adjacent expressions results in a vector whose elements are
the enclosed arrays resulting from each expression. This is known as vector (or strand)
notation. Each expression in the series may consist of one of the following:

a single numeric value
the empty numeric vector symbol ⍬
zero or more characters, within a pair of quotes
array notation
the name of a variable or system variable
a special namespace or dfn name like ##, ⍵, and so on
the evaluated input symbol ⎕
the character input symbol ⍞
the name of a niladic, defined function or system function yielding a result
any other APL expression which yields a result, within parentheses

Examples

Numbers and characters may be mixed:

Blanks, quotes or parentheses must separate adjacent items in vector notation.
Redundant blanks and parentheses are permitted. In this manual, the symbol pair '←→'
indicates the phrase 'is equivalent to'.

Vector notation may be used to define an item in vector notation:

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

⍴A←2 4 10
3

⍴TEXT←'ONE' 'TWO'
2

⍴X←'THE ANSWER IS ' 10
2

X[1]
THE ANSWER IS

X[2] + 32
42

1 2 ←→ (1)(2) ←→ 1 (2) ←→ (1) 2
2'X'3 ←→ 2 'X' 3 ←→ (2) ('X') (3)
1 (2+2) ←→ (1) ((2+2)) ←→ ((1)) (2+2)

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 20

Expressions within parentheses are evaluated to produce an item in the vector:

The following identity holds:

Array Notation

Array notation extends Section 1.1.3.6 to define arrays of higher rank, and namespaces,
and lets these definitions span multiple lines:

Parentheses embrace vector definitions and namespace name-value pairs
Square brackets embrace higher-rank arrays
Diamonds and linebreaks separate array elements and name-value pairs

Examples

Some examples of different kinds of arrays defined with array notation.

⍴X ← 1 (2 3 4) ('THIS' 'AND' 'THAT')
3

X[2]
2 3 4

X[3]
THIS AND THAT

Y ← (2+2) 'IS' 4
Y

4 IS 4

A B C ←→ (⊂A), (⊂B), ⊂C

•
•
•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 21

Nested Vector

Matrix

Short items are padded. (See Dyalog APL Language: Mix for details.)

⍴z← (0 6 1 8 ⋄ 2*0 2 0 2 1 ⍝ four-element vector over two lines
2 7 1 8 2 8 ⋄ 3 1 4 1 5)

4
z

┌───────┬─────────┬───────────┬─────────┐
│0 6 1 8│1 4 1 4 2│2 7 1 8 2 8│3 1 4 1 5│
└───────┴─────────┴───────────┴─────────┘

('Three'
'Blind'
'Mice')

┌─────┬─────┬────┐
│Three│Blind│Mice│
└─────┴─────┴────┘

(,⊂'Three') ≡ ('Three' ⋄) ⍝ single-element vector
1

⍴m←[0 6 1 8 ⋄ 1 4 1 4
2 7 1 8 ⋄ 3 1 4 2]

4 4
m

0 6 1 8
1 4 1 4
2 7 1 8
3 1 4 2

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 22

Column Matrix

⍴mice←['Three'
'Blind'
'Mice']

3 5
mice,'|'

Three|
Blind|
Mice |

⍴RC←[0 'OK'
1 'WS FULL'
2 'SYNTAX ERROR'
3 'INDEX ERROR'
4 'RANK ERROR']

5 2
⍴expenses←0⌿[⍝ typed template matrix
'Glasgow' 125.84
]

0 2

[1 ⋄ 2 ⋄ 3]
1
2
3

⍴¨cm3←[('Three' ⋄)
('Blind' ⋄)
('Mice' ⋄)]

5
5
4

cm3
┌─────┐
│Three│
├─────┤
│Blind│
├─────┤
│Mice │
└─────┘

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 23

Rank-3 Array

Namespaces

Array notation allows you to write a namespace literal as zero or more name-value
pairs, spanned by parentheses.

⍴block←[
[3 1 4 ⋄ 1 5]
[2 7 0 ⋄ 2]

]
2 2 3

block
3 1 4
1 5 0

2 7 0
2 0 0

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 24

Scoping In Namespace Literals

Array and namespace literals can include value expressions.

Any expressions are evaluated in the scope around the namespace.

() ⍝ empty namespace
#.[Namespace]

()() ⍝ vector of empty namespaces
#.[Namespace] #.[Namespace]

(() ⋄ ()) ⍝ vector of empty namespaces
#.[Namespace] #.[Namespace]

n←(x:'hello')
n.x

hello

m←(x:['hello'
'world'])

⍴≢m.x ⍝ matrix
2

(y:(x:'hello')) ⍝ nested namespaces
#.[Namespace]

(
FirstName:'Wolfgang'
LastName:'Mozart'
Age:35

)
#.[Namespace]

LUE←(answer:7×6) ⍝ Life, the Universe, and Everything

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 25

Specification

The new syntactic forms were previously errors in every mainstream APL
implementation and therefore introduce no backward incompatibilities.

In the following:

A name-value pair is an APL name followed by a colon and a value expression.
A separator is a diamond or line break, and separated means separated by them.
An empty value expression or name-value pair is two separators with nothing
but white space between them.

Namespace

A namespace is defined by a parenthesised, separated list of zero or more name-value
pairs.

Empty name-value pairs define no namespace members.

Vector

A vector is defined by a parenthesised, separated list of two or more value expressions.

long←'bobby'
short←'jack'
ns←(short:'jill' ⋄ inner:short∘.=short←3↑long)
ns.inner

1 0 1
0 1 0
1 0 1

short ⍝ altered by inner assignment
bob

ns.short ⍝ unaffected by inner assignment
jill

(y:(x:'hello')).y ⍝ inner namespace's parent is NOT outer
namespace
#.[Namespace]

•
•
•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 26

Empty value expressions define no vector elements.

At least one value expression must be non-empty.

Matrices And Higher-rank Arrays

An array of rank 2 or higher is defined by a bracketed, separated list of two or more
value expressions, which constitute the major cells of the array.

Short elements are padded to fill, and scalars are treated as length-1 vectors.

At least one value expression must be non-empty.

Separators in a list of value expressions or name-value pairs make an enclosing

parenthesis or bracket broken.

Separators encapsulated in a dfn or further contained in array notation do not

break a parenthesis or bracket. For example, in

the diamond is part of the dfn and does not break the surrounding parenthesis.

Unsupported

The following are not supported by array notation:

scripted and external objects
non-array namespace members
reference loops
class instances

Information

({1=⍵:'y' ⋄ 'n'}?2)

•
•
•
•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 27

internal representations returned by ⎕OR

While one can include the last three items when writing in array notation, they cannot
be displayed in the notation.

Formal Syntax

The array notation can be described in this form, where expression is any traditional
APL expression:

•

value ::= expression | list | block | space
list ::= '(' ((value sep)+ value? | (sep value)+ sep?) ')'
block ::= '[' ((value sep)+ value? | (sep value)+ sep?) ']'
space ::= '(' sep? (name ':' value (sep name ':' value)*)? sep? ')'
sep ::= [⋄#x000A#x000D#x0085]+

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 28

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 29

Structuring of Arrays

Primitive functions that restructure arrays:

symbol monadic dyadic

⍴ Dyalog APL Language: Reshape

, Dyalog APL Language: Ravel Dyalog APL Language: Catenate
Laminate

⍪ Dyalog APL Language: Table Dyalog APL Language: Catenate First

⌽⍟
Dyalog APL Language:
Reverse Dyalog APL Language: Rotate

⍉ Dyalog APL Language: Transpose

↑ Dyalog APL Language: Mix Dyalog APL Language: Take

↓ Dyalog APL Language: Split Dyalog APL Language: Drop

∊ Dyalog APL Language: Enlist

⊂
Dyalog APL Language:
Enclose

Dyalog APL Language: Partitioned
Enclose

⊆ Dyalog APL Language: Nest Dyalog APL Language: Partition

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 30

Examples

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 31

⊢m←2 2⍴1 2 3 4 ⍝ reshape
1 2
3 4

2 2 4⍴'ABCDEFGHIJKLMNOP'
ABCD
EFGH

IJKL
MNOP

,m ⍝ ravel
1 2 3 4

1 2 3,4 ⍝ catenate
1 2 3 4

1⌽1 2 3 4 ⍝ rotate
2 3 4 1

⌽m ⍝ reverse
2 1
4 3

⊖m ⍝ reverse first
3 4
1 2

⍉m ⍝ transpose
1 3
2 4

↑(1 2 3)(4) ⍝ mix
1 2 3
4 0 0

↓2 4⍴'COWSHENS' ⍝ split
┌────┬────┐
│COWS│HENS│
└────┴────┘

[1 2 3 ⋄ (4 5) 6 (7 8 9)]
┌───┬─┬─────┐
│1 │2│3 │
├───┼─┼─────┤
│4 5│6│7 8 9│
└───┴─┴─────┘

∊[1 2 3 ⋄ (4 5) 6 (7 8 9)] ⍝ enlist
1 2 3 4 5 6 7 8 9

≢⎕←⊂1 2 3 4 ⍝ enclose
┌───────┐
│1 2 3 4│
└───────┘

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 32

Display of Arrays

Simple scalars and vectors are displayed in a single line beginning at the left margin. A
number is separated from the next adjacent element by a single space.

Print Precision

The Dyalog APL Language: Pp system variable determines the number of significant
digits to be printed. The fractional part of the number is rounded in the last digit if it
cannot be represented within the print precision. Leading zeros, and trailing zeros after
a decimal point, are omitted, as are decimal points for integers.

If a number cannot be fully represented in ⎕PP significant digits, or if the number
requires more than five leading zeros after the decimal point, it is represented in scaled
form. The mantissa displays up to ⎕PP significant digits, omitting trailing zeros.

1
2 0 1 3 0 2 0 1⊂'abcdefg' ⍝ partitioned enclose

┌┬──┬─┬┬┬──┬┬──┬┐
││ab│c│││de││fg││
└┴──┴─┴┴┴──┴┴──┴┘

1 1 2 2 2⊆1 2 3 4 5 ⍝ partition
┌───┬─────┐
│1 2│3 4 5│
└───┴─────┘

3
3

⍳4
1 2 3 4

0.1 1.0 1.12
0.1 1 1.12

'A' 2 'B' 'C'
A 2 BC

÷3 2 6
0.3333333333 0.5 0.1666666667

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 33

Simple Matrices

Simple matrices are displayed in rectangular form, with one line for each matrix row.

All elements in a column are displayed in the same format, but the format and width
for the column is determined independently of other columns.

A column is treated as numeric if it contains any numeric elements. Numeric columns
are right-justified; others are left-justified. Numeric columns are separated from their
neighbours by a single column of blanks.

A numeric column aligns any decimal points or E characters (for scaled formats), adding
trailing zeros to the mantissae if necessary. Integers are right-adjusted one place to the
left of any decimal points.

⎕PP←3

123 1234 12345 0.12345 0.00012345 0.00000012345
123 1.23E3 1.23E4 0.123 0.000123 1.23E¯7

2 4⍴'HANDFIST'
HAND
FIST

1 2 3 ∘.× 6 2 5
6 2 5

12 4 10
18 6 15

2 3⍴2 4 6.1 8 10.24 12
2 4 6.1
8 10.24 12

2 4⍴4 'A' 'B' 5 ¯0.000000003 'C' 'D' 123.56
4E0 AB 5

¯3E¯9 CD 123.56

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 34

Non-simple Arrays

In the display of non-simple arrays, each element is displayed within a rectangle such
that the rows and columns of the array are aligned. Simple items within the array are
displayed as above. For non-simple items, this rule is applied recursively, with one
space added on each side of the enclosed element for each level of nesting.

Multi-dimensional Arrays

Multi-dimensional arrays are displayed in rectangular planes. Planes are separated by
one blank line, and hyper-planes of higher dimensions are separated by increasing
numbers of blank lines. In all other respects, multi-dimensional arrays are displayed in
the same manner as matrices.

⍳3
1 2 3

⊂⍳3
1 2 3

⊂⊂⍳3
1 2 3

('ONE' 1) ('TWO' 2) ('THREE' 3) ('FOUR' 4)
ONE 1 TWO 2 THREE 3 FOUR 4

['ONE' 1 'TWO' 2 ⋄ 'THREE' 3 'FOUR' 4]
ONE 1 TWO 2
THREE 3 FOUR 4

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 35

The power of this form of display is made apparent when formatting informal reports.

Array Notation

Arrays (including namespaces) can be displayed in the session using Section 1.1.3.7.
This mode is enabled using the]APLAN.Output user command. For example:

2 3 4⍴⍳24
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

3 1 1 3⍴'THEREDFOX'
THE

RED

FOX

AREAS←'West' 'Central' 'East'
PRODUCTS←'Biscuits' 'Cakes' 'Buns' 'Rolls'

SALES←[
50 5.25 75

250 20.15 900
500 80.98 650

1000 90.03 1200
]

' ' PRODUCTS ⍪., AREAS SALES
West Central East

Biscuits 50 5.25 75
Cakes 250 20.15 900
Buns 500 80.98 650
Rolls 1000 90.03 1200

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 36

In the User Interface it can also be toggled on and off using the

icon on the Session toolbar.

To enable the display of output using array notation when starting a Dyalog session, set
the Installation/Configuration: Aplan For Output configuration parameter to 1.

Print Width

If the display of an array is wider than the print width, as defined by the Dyalog APL
Language: Pw system variable, it will be folded at or before ⎕PW and the folded portions
indented six spaces. The display of a simple numeric or mixed array may be folded at a
width less than ⎕PW so that individual numbers are not split across a page boundary.

SALES
50 5.25 75

250 20.15 900
500 80.98 650

1000 90.03 1200
]APLAN.Output ON

'Was OFF'
SALES

[
50 5.25 75

250 20.15 900
500 80.98 650

1000 90.03 1200
]

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 37

The]Disp User Command

The user command]Disp illustrates the specified array, with borders indicating sub-
array shape and type. For example:

This is similar to displaying array with]Boxing on -style=mid (see The]Boxing User
Command below).

An explanation of the symbols that appear in the borders can be seen by running]Disp
-??

⎕PW←40

?3 20⍴100
54 22 5 68 68 94 39 52 84 4 6 53 68
85 53 10 66 42 71 92 77 27 5 74 33 64
66 8 64 89 28 44 77 48 24 28 36 17 49

1 39 7 42 69 49 94
76 100 37 25 99 73 76
90 91 7 91 51 52 32

]Disp 'ABC' [1 2 3 4 ⋄]
┌→──┬───────┐
│ABC│1 2 3 4↓
└──→┴~─────→┘

]Disp (' ',PRODUCTS),AREAS⍪SALES ⍝ see above
┌→───────┬────┬───────┬────┐
↓ │West│Central│East│
├────────┼───→┼──────→┼───→┤
│Biscuits│ 50 │ 5.25 │ 75 │
├───────→┼~───┼~──────┼~───┤
│ Cakes │250 │ 20.15 │900 │
├───────→┼~───┼~──────┼~───┤
│ Buns │500 │ 80.98 │650 │
├───────→┼~───┼~──────┼~───┤
│ Rolls │1000│ 90.03 │1200│
└───────→┴~───┴~──────┴~───┘

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 38

The]Display User Command

The user command]Display illustrates the specified array, with borders indicating
array and sub-array shape and type. For example:

This is similar to displaying array with]Boxing on -style=max (see The]Boxing User
Command below).

An explanation of the symbols that appear in the borders can be seen by running
]Display -??

The]Boxing User Command

The user command]Boxing changes how nested arrays are displayed in the Session.
The following examples show different settings.

]Display 'ABC' [1 2 3 4 ⋄]
┌→────────────────┐
│ ┌→──┐ ┌→──────┐ │
│ │ABC│ ↓1 2 3 4│ │
│ └───┘ └~──────┘ │
└∊────────────────┘

]Display (' ',PRODUCTS),AREAS⍪SALES ⍝ see above
┌→───────────────────────────────────┐
↓ ┌→───┐ ┌→──────┐ ┌→───┐ │
│ │West│ │Central│ │East│ │
│ - └────┘ └───────┘ └────┘ │
│ ┌→───────┐ │
│ │Biscuits│ 50 5.25 75 │
│ └────────┘ │
│ ┌→────┐ │
│ │Cakes│ 250 20.15 900 │
│ └─────┘ │
│ ┌→───┐ │
│ │Buns│ 500 80.98 650 │
│ └────┘ │
│ ┌→────┐ │
│ │Rolls│ 1000 90.03 1200 │
│ └─────┘ │
└∊───────────────────────────────────┘

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 39

Information about all the options and explanation of the symbols that appear in the
borders can be seen by running]Display -??

Prototypes and Fill Items

Every array has an associated prototype which is derived from the array's first item.

]Boxing on -style=min
Was OFF -style=min

'ABC' [1 2 3 4 ⋄]
┌───┬───────┐
│ABC│1 2 3 4│
└───┴───────┘

]Boxing on -style=mid
Was ON -style=min

'ABC' [1 2 3 4 ⋄]
┌→──┬───────┐
│ABC│1 2 3 4↓
└──→┴~─────→┘

]Boxing on -style=max
┌→────────────────┐
│Was ON -style=mid│
└─────────────────┘

'ABC' [1 2 3 4 ⋄]
┌→────────────────┐
│ ┌→──┐ ┌→──────┐ │
│ │ABC│ ↓1 2 3 4│ │
│ └───┘ └~──────┘ │
└∊────────────────┘

]Boxing on -style=min
Was ON -style=max

]Boxing off
Was ON

'ABC' [1 2 3 4 ⋄]
ABC 1 2 3 4

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 40

If the first item is a number, the prototype is 0. Otherwise, if the first item is a
character, the prototype is ' '(space). Otherwise, if the first item is a (ref to) an
instance of a Class, the prototype is a ref to that Class.

Otherwise (in the nested case, when the first item is other than a simple scalar), the
prototype is defined recursively as the prototype of each of the array's first item.

Examples

Array Prototype

1 2 3.4 0

2 3 5⍴'hello' ' '

99 'b' 66 0

(1 2)(3 4 5) 0 0

((1 2)3)(4 5 6) (0 0)0

'hello' 'world' ' '

⎕NEW MyClass MyClass

(88(⎕NEW MyClass)'X')7 0 MyClass ' '

Fill Items

Fill items for an overtake operation, are derived from the argument's prototype. For
each 0 or ' ' in the prototype, there is a corresponding 0 or ' ' in the fill item and for
each class reference in the prototype, there is a ref to a (newly constructed and
distinct) instance of that class that is initialised by the niladic (default) constructor for
that class, if defined.

Examples

4↑1 2
1 2 0 0

4↑'ab'
ab

4↑(1 2)(3 4 5)
1 2 3 4 5 0 0 0 0

2↑⎕NEW MyClass
#.[Instance of MyClass] #.[Instance of MyClass]

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 41

In the last example, two distinct instances are constructed (the first by ⎕NEW and the
second by the overtake).

Fill items are used in a number of operations including:

First (⊃ or ↑) of an empty array
Fill-elements for overtake
For use with the Each operator on an empty array

Cells and Sub-arrays

Certain functions and operators operate on particular cells or sub-arrays of an array,
which are identified and described as follows.

K-Cells

A rank-k cell or k-cell of an array are terms used to describe a sub-array on the last k
axes of the array. Negative k is interpreted as r+k where r is the rank of the array, and
is used to describe a sub-array on the leading |k axes of an array.

If X is a 3-dimensional array of shape 2 3 4, the 1-cells are its 6 rows each of 4 elements;
and its 2-cells are its 2 matrices each of shape 3 4. Its 3-cells is the array in its entirety.
Its 0-cells are its individual elements.

Major Cells

The major cells of an array X is a term used to describe the sub-arrays on the leading
dimension of the array X with shape 1↓⍴X. Using the k-cell terminology, the major cells
are its ¯1-cells.

The major cells of a vector are its elements (0-cells). The major cells of a matrix are its
rows (1-cells), and the major cells of a 3-dimensional array are its matrices along the
first dimension (2-cells).

Examples

In the following, the major cells of A are 1979, 1990, 1997, 2007, and 2010; those of B
are 'Thatcher', 'Major', 'Blair', 'Brown', and 'Cameron'; and those of C are the
four 2-by-3 matrices.

•
•
•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 42

Using the k-cell terminology, if r is the rank of the array, its major cells are its r-1-cells.

Note that if the right operand k of the Rank Operator ⍤ is negative, it is interpreted as
0⌈r+k. Therefore the value ¯1 selects the major cells of the array.

A
1979 1990 1997 2007 2010

B
Thatcher
Major
Blair
Brown
Cameron

⍴B
5 8

⎕←C←4 2 3⍴⍳24
0 1 2
3 4 5

6 7 8
9 10 11

12 13 14
15 16 17

18 19 20
21 22 23

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 43

1.1.4 Expressions

An expression is a sequence of one or more syntactic tokens which may be symbols or
constants or names representing arrays (variables) or functions. An expression which
produces an array is called an ARRAY EXPRESSION. An expression which produces a
function is called a FUNCTION EXPRESSION. Some expressions do not produce a result.

An expression may be enclosed within parentheses.

Evaluation of an expression proceeds from right to left, unless modified by
parentheses. If an entire expression results in an array that is not assigned to a name,
then that array value is displayed. (Some system functions and defined functions return
an array result only if the result is assigned to a name or if the result is the argument of
a function or operator.)

Examples

Either blanks or parentheses are required to separate constants, the names of
variables, and the names of defined functions which are adjacent. Excessive blanks or
sets of parentheses are redundant, but permitted. If F is a function, then:

Blanks or parentheses are not needed to separate primitive functions from names or
constants, but they are permitted:

Blanks or parentheses are not needed to separate operators from primitive functions,
names or constants. They are permitted with the single exception that a dyadic
operator must have its right argument available when encountered. The following
syntactical forms are accepted:

The use of parentheses in the following examples is not accepted:

X←2×3-1

2×3-1
4

(2×3)-1
5

F 2←→ F(2) ←→ (F)2 ←→ (F) (2) ←→ F (2) ←→ F ((2))

-2 ←→ (-)(2) ←→ (-) 2

(+.×) ←→ (+).× ←→ +.(×)

+(.)× or (+.)×

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 44

1.1.5 Functions

A function is an operation which is performed on zero, one or two array arguments and
may produce an array result. Three forms are permitted:

NILADIC defined for no arguments
MONADIC defined for a right but not a left argument
DYADIC defined for a left and a right argument

The number of arguments is referred to as its VALENCE.

The name of a non-niladic function is AMBIVALENT; that is, it potentially represents
both a monadic and a dyadic function, though it might not be defined for both. The
usage in an expression is determined by syntactical context. If the usage is not defined
an error results.

Functions have long SCOPE on the right; that is, the right argument of the function is
the result of the entire expression to its right which must be an array. A dyadic function
has short scope on the left; that is, the left argument of the function is the array
immediately to its left. Left scope may be extended by enclosing an expression in
parentheses whence the result must be an array.

For some functions, the explicit result is suppressed if it would otherwise be displayed
on completion of evaluation of the expression. This applies on assignment to a variable
name. It applies for certain system functions, and may also apply for defined functions.

Examples

•
•
•

10×5-2×4
¯30

2×4
8

5-8
¯3

10×¯3
¯30

(10×5)-2×4
42

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 45

Defined Functions

Functions may be defined with the system function ⎕FX, or with the function editor. A
function consists of a HEADER which identifies the syntax of the function, and a BODY
in which one or more APL statements are specified.

The header syntax identifies the function name, its (optional) result and its (optional)
arguments. If a function is ambivalent, it is defined with two arguments but with the
left argument within braces ({}). If an ambivalent function is called monadically, the
left argument has no value inside the function. If the explicit result is to be suppressed
for display purposes, the result is shown within braces. A function need not produce an
explicit result. Refer to Chapter 2 for further details.

Example

Functions may also be created by using assignment (←).

Function Assignment & Display

The result of a function-expression may be given a name. This is known as FUNCTION
ASSIGNMENT (see also Section 3.2.1). If the result of a function-expression is not given
a name, its value is displayed. This is termed FUNCTION DISPLAY.

Examples

∇ R←{A} FOO B
[1] R←⊃'MONADIC' 'DYADIC'[⎕IO+0≠⎕NC'A']
[2] ∇

FOO 1
MONADIC

'X' FOO 'Y'
DYADIC

PLUS←+
PLUS

+
SUM←+/
SUM

+/

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 46

Function expressions may include defined functions and operators. These are displayed
as a ∇ followed by their name.

Example

1.1.6 Operators

An operator is an operation on one or two operands which produces a function called a
DERIVED FUNCTION. An operand may be a function or an array. Operators are not
ambivalent. They require either one or two operands as applicable to the particular
operator. However, the derived function may be ambivalent. The derived function need
not return a result. Operators have higher precedence than functions. Operators have
long scope on the left. That is, the left operand is the longest function or array
expression on its left. The left operand may be terminated by:

the end of the expression
a function with a function to its left
a function with an array to its left
an array with a function to its left
an array or function to the right of a monadic operator.
A dyadic operator has short scope on the right. That is, the right operand of an
operator is the single function or array on its right. Right scope may be extended
by enclosing an expression in parentheses.

Examples

∇ R←MEAN X ⍝ Arithmetic mean
[1] R←(+/X)÷⍴X

∇

MEAN
∇MEAN

AVERAGE←MEAN
AVERAGE

∇MEAN
AVG←MEAN∘,
AVG

∇MEAN ∘,

1.
2.
3.
4.
5.
6.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 47

Defined Operators

Operators may be defined with the system function ⎕FX, or with the function editor. A
defined operator consists of a HEADER which identifies the syntax of the operator, and
a BODY in which one or more APL statements are specified.

A defined operator may have one or two operands; and its derived function may have
one or two arguments, and may or may not produce a result. The header syntax
defines the operator name, its operand(s), the argument(s) to its derived function, and
the result (if any) of its derived function. The names of the operator and its operand(s)
are separated from the name(s) of the argument(s) to its derived function by
parentheses.

Example

The above example shows a dyadic operator called AND with two operands (F and G).
The operator produces a derived function which takes two arguments (A and B), and
produces a result (R).

⍴¨X←'WILLIAM' 'MARY' 'BELLE'
7 4 5

⍴∘⍴¨X
1 1 1

(⍴∘⍴)¨X
1 1 1

⎕∘←∘⎕VR¨'PLUS' 'MINUS'
∇ R←A PLUS B

[1] R←A+B
∇
∇ R←A MINUS B

[1] R←A-B
∇

PLUS/1 2 3 4
10

∇ R←A(F AND G)B
[1] R←(A F B)(A G B)

∇

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 48

Operands passed to an operator may be either functions or arrays.

1.1.7 Binding Strength

For two entities X and Y that are adjacent in an expression (that is, X Y), the binding
strength between them and the result of the bind is shown in this table:

Y

A F H MOP DOP DOT IDX

X

A 6 A 3 AF 3 AF 4 F 7 REF 4 A

F 2 A 1 F 4 F 4 F 4 F

H 1 F 4 F 4 F 4 H

AF 2 A 1 F

MOP 4 ERR

DOP 5 MOP 5 MOP 5 MOP

JOT 5 MOP 5 MOP 5 MOP 4 F

DOT 6 ERR 5 MOP 5 MOP 6 ERR

REF 7 A 7 F 7 H 7 MOP 7 DOP

IDX 3 ERR 3 ERR 3 ERR

where

A: Array1 , for example, 0 1 2 'hello' ⍺ ⍵
F: Function1 {primitive | defined | derived | system}, for example, + - +.× myfn
⎕CR {⍺ ⍵}

H: Hybrid1 function/operator, that is, / ⌿ \ ⍀

12 +AND÷ 4
16 3

12 (3 AND 5) 4
12 3 4 12 5 4

12 (× AND 5) 4
48 12 5 4

•
•

•

1 Indicates a "first-class" entity, which can be parenthesised or named.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 49

AF: Bound left argument, for example, 2+
MOP: Monadic operator1, for example, ¨ ⍨ &
DOP: Dyadic operator, for example, ⍣ ⍠ ⍤ ⌸
JOT: Jot, that is, compose/null operand ∘
DOT: Dot, that is, reference/product .
IDX: square-bracketed expression, for example, [⍺+⍳⍵]
ERR: Error

In this table:

the higher the number, the stronger the binding
an empty field indicates no binding for this combination; an error.

For example, in the expression a b.c[d], where a, b, c and d are arrays, the binding
proceeds:

1.1.8 Function Trains

Introduction

A Train is a derived function constructed from a sequence of 2 or 3 functions, or from
an array followed by two functions, which bind together to form a function.

Note that the right-most item of a function train (which is by definition a function)
must be isolated from anything to its right, otherwise it will be bound to that rather
than to the items to its left. This is done using parentheses.

For example, the following expression comprises a function train -,÷ that is separated
from its argument 2 by parentheses:

•
•
•
•
•
•
•

•
•

a b . c [d]
6 7 6 4 ⍝ binding strengths between entities

→ a (b.) c [d]
0 7 4

→ a (b.c) [d]
6 4

→ (a(b.c))[d]

(-,÷) 2
¯2 0.5

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 50

and means:

Calculate the reciprocal of 2
Calculate the negation of 2
Catenate these 2 results together

Whereas, without the parentheses to identify the function train, the expression means
(as it did before):

Calculate the reciprocal of 2
Ravel the result of step 1
Negate the result of step 2

Forks and Atops

The following trains are currently supported where f, g and h are functions and A is an
array:

The 3-item trains (f g h) and (A g h) are termed forks while the 2-item train (g h)
is termed an atop. To distinguish the two styles of fork, we can use the terms fgh-fork
or Agh-fork.

Trains as Functions

A train is syntactically equivalent to a function and so, in common with any other
function, may be:

named using assignment
applied to or between arguments
consumed by operators as an operand
and so forth.

In particular, trains may be applied to a single array (monadic use) or between 2 arrays
(dyadic use), providing six new constructs.

1.
2.
3.

1.
2.
3.

-,÷ 2
¯0.5

f g h
A g h

g h

•
•
•
•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 51

Identifying a Train

For a sequence to be interpreted as a train it must be separated from the argument to
which it is applied. This can be done using parentheses or by naming the derived
function.

Example - fork: negation of catenated with reciprocal

Example - named fork

Whereas, without these means to identify the sequence as a train, the expression:

means the negation of the ravel of the reciprocal of 5.

Idiom Recognition

Function trains lend themselves to idiom recognition, a technique used to optimise the
performance of certain expressions.

Example

An expression to find the first position in a random integer vector X of a number
greater than 999000 is:

⍺(f g h)⍵ ←→ (⍺ f ⍵) g (⍺ h ⍵) ⍝ dyadic (fgh) fork
⍺(A g h)⍵ ←→ A g (⍺ h ⍵) ⍝ dyadic (Agh) fork
⍺(g h)⍵ ←→ g (⍺ h ⍵) ⍝ dyadic atop

(f g h)⍵ ←→ (f ⍵) g (h ⍵) ⍝ monadic (fgh) fork
(A g h)⍵ ←→ A g (h ⍵) ⍝ monadic (Agh) fork
(g h)⍵ ←→ g (h ⍵) ⍝ monadic atop

(-,÷)5
¯5 0.2

negrec←-,÷
negrec 5

¯5 0.2

-,÷ 5
¯0.2

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 52

A function train is not only more concise, it is faster too.

Trains of Trains

As a train resolves to a function, a sequences of more than 3 functions represents a
train of trains. Function sequences longer than 3 are bound in threes, starting from the
right:

This means that, in the absence of parentheses, a sequence of an odd number of
functions resolves to a 3-train (fork) and an even-numbered sequence resolves to a 2-
train (atop):

Examples

X←?1e6⍴1e6
(X≥999000)⍳1

1704

X (⍳∘1 ≥) 999000
1704

... fu fv fw fx fy fz → ... fu (fv fw (fx fy fz))

e f g h i j k → e f(g h(i j k)) ⍝ fork(fork(fork))
f g h i j k → f(g h(i j k)) ⍝ atop(fork(fork))

6(+,-,×,÷)2 ⍝ fork:(6+2),((6-2),((6×2),(6÷2)))
8 4 12 3

6(⌽+,-,×,÷)2 ⍝ atop: ⌽ (6+2), ...
3 12 4 8

]boxing on
Was OFF

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 53

Binding Strengths

The binding strength between the items of a train is less than that of operand-operator
binding. In other words, operators bind first with their function (or array) operands to
form derived functions, which may then participate as items in a train.

+,-,×,÷ ⍝ boxed display of fork
┌─┬─┬─────────────┐
│+│,│┌─┬─┬───────┐│
│ │ ││-│,│┌─┬─┬─┐││
│ │ ││ │ ││×│,│÷│││
│ │ ││ │ │└─┴─┴─┘││
│ │ │└─┴─┴───────┘│
└─┴─┴─────────────┘

⌽+,-,×,÷ ⍝ boxed display of atop
┌─┬───────────────────┐
│⌽│┌─┬─┬─────────────┐│
│ ││+│,│┌─┬─┬───────┐││
│ ││ │ ││-│,│┌─┬─┬─┐│││
│ ││ │ ││ │ ││×│,│÷││││
│ ││ │ ││ │ │└─┴─┴─┘│││
│ ││ │ │└─┴─┴───────┘││
│ │└─┴─┴─────────────┘│
└─┴───────────────────┘

]boxing -trains=tree
Was -trains=box

+,-,×,÷ ⍝ boxed (tree) display of fork
┌─┼───┐
+ , ┌─┼───┐

- , ┌─┼─┐
× , ÷

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 54

Example

This means that any of the four hybrid tokens / ⌿ \ ⍀ will not be interpreted as a
function if there's a function to its left in the train. In order to fix one of these tokens as
a replicate or expand function, it must be isolated from the function to its left:

1.1.9 Search Functions and Hash Tables

Primitive dyadic search functions, such as ⍳ (index of) and ∊ (membership) have a
principal argument in which items of the other subject argument are located.

In the case of ⍳, the principal argument is the one on the left and in the case of ∊, it is
the one on the right. The following table shows the principal (P) and subject (s)
arguments for each of the functions.

+⌿ ÷ ≢ ⍝ fork for mean value
┌─────┬─┬─┐
│┌─┬─┐│÷│≢│
││+│⌿││ │ │
│└─┴─┘│ │ │
└─────┴─┴─┘

⌊/,⌈/ ⍝ fork for min_max
┌─────┬─┬─────┐
│┌─┬─┐│,│┌─┬─┐│
││⌊│/││ ││⌈│/││
│└─┴─┘│ │└─┴─┘│
└─────┴─┴─────┘

(⍳/⍳)3 ⍝ → ⍳/ atop ⍳3 → RANK ERROR
RANK ERROR

(⍳{⍺/⍵}⍳)3 ⍝ → (⍳3){⍺/⍵}(⍳3) → (⍳3)/(⍳3)
1 2 2 3 3 3

(⍳(/∘⊢)⍳)3 ⍝ → (⍳3)/⊢(⍳3)
1 2 2 3 3 3

(2/⍳)3 ⍝ Agh-fork is OK
1 1 2 2 3 3

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 55

P ⍳ s Index of

s ∊ P Membership

s ∩ P Intersection

P ∪ s Union

s ~ P Without

P {(↓⍺)⍳↓⍵} s Matrix Iota (idiom)

P∘⍋ and P∘⍒ Grade

The Dyalog APL implementation of these functions already uses a technique known as
hashing to improve performance over a simple linear search. (Note that ⍷ (find) does
not employ the same hashing technique, and is excluded from this discussion.)

Building a hash table for the principal argument takes a significant time but is rewarded
by a considerably quicker search for each item in the subject. Unfortunately, the hash
table is discarded each time the function completes and must be reconstructed for a
subsequent call (even if its principal argument is identical to that in the previous one).

For optimal performance of repeated search operations, the hash table may be
retained between calls, by binding the function with its principal argument using the
primitive ∘ (compose) operator. The retained hash table is then used directly whenever
this monadic derived function is applied to a subject argument.

Notice that retaining the hash table pays off only on a second or subsequent
application of the derived function. This usually occurs in one of two ways: either the
derived function is named for later (and repeated) use, as in the first example below or
it is applied repeatedly as the operand of a primitive or defined operator, as in the
second example.

Example: naming a derived function.

words←'red' 'ylo' 'grn' 'brn' 'blu' 'pnk' 'blk'

find←words∘⍳ ⍝ monadic find function
find'blk' 'blu' 'grn' 'ylo' ⍝

7 5 3 2
find'grn' 'brn' 'ylo' 'red' ⍝ fast find

3 4 2 1

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 56

Example: repeated application by (¨) each operator.

1.1.10 Idiom Recognition

Idiom Recognition

Idioms are commonly used expressions that are recognised and evaluated internally,
providing a significant performance improvement.

For example, the idiom BV/⍳⍴A (where BV is a Boolean vector and A is an array) would
(in earlier Versions of Dyalog APL) have been evaluated in 3 steps as follows:

Evaluate ⍴A and store result in temporary variable temp1 (temp1 is just an
arbitrary name for the purposes of this explanation)
Evaluate ⍳temp1 and store result in temporary variable temp2.
Evaluate BV/temp2
Discard temporary variables

In the current Version of Dyalog APL, the expression is recognised in its entirety and
processed in a single step as if it were a single primitive function. In this case, the
resultant improvement in performance is between 2 and 4.5.

Idiom recognition is precise; an expression that is almost identical but not exactly
identical to an expression given in the Section 1.1.10.2 table will not be recognised.

For example, ⎕AV⍳ will be recognised as an idiom, but (⎕AV)⍳ will not. Similarly, (,)/
would not be recognized as the Join idiom.

Idiom List

In the following table, arguments to the idiom have types and ranks as follows:

∊∘⎕A¨'This' 'And' 'That'
1 0 0 0 1 0 0 1 0 0 0

1.

2.
3.
4.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 57

Type Description Rank Description

C Character S Scalar or 1-item vector

B Boolean V Vector

N Numeric M Matrix

P Nested A Array of any rank

X any type

For example: NV: numeric vector, CM: character matrix, PV: nested vector.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 58

Idiom Description

⍴⍴XA The rank of XA as a 1-element vector

≢⍴XA The rank of XA as a scalar

BV/⍳NS The subset of NS corresponding to the 1s in BV

BV/⍳⍴XV The positions in XV corresponding to the 1s in BV

NA⊃¨⊂XV
The subset of XV in the index positions defined by NA
(equivalent to XV[NA])

XA1{}XA2 XA1 and XA2 are ignored (no result produced)

XA1{⍺}XA2 XA1 (XA2 is ignored)

XA1{⍵}XA2 XA2 (XA1 is ignored)

XA1{⍺ ⍵}XA2 XA1 and XA2 as a two item vector (XA1 XA2)

{0}XA 0 irrespective of XA

{0}¨XA 0 corresponding to each item of XA

,/PV
The enclose of the items of PV (which must be of depth 2)
catenated along their last axes

⍪/PV
The enclose of the items of PV (which must be of depth 2)
catenated along their first axes

⊃⌽XA The item in the top right of XA (⎕ML<2)

↑⌽XA The item in the top right of XA (⎕ML≥2)

⊃⌽,XA The item in the bottom right of XA (⎕ML<2)

↑⌽,A The item in the bottom right of XA (⎕ML≥2)

0=⍴XV 1 if XV has a shape of zero, 0 otherwise

0=⍴⍴XA 1 if XA has a rank of zero (scalar), 0 otherwise

0=≡XA 1 if XA has a depth of zero (simple scalar), 0 otherwise

XM1{(↓⍺)⍳↓⍵}

XM2

A simple vector comprising as many items as there are rows in
XM2 , where each item is the number of the first row in XM1
that matches each row in XM2 . See note below.

↓⍉↑PV

A nested vector comprising vectors that each correspond to a
position in the original vectors of PV – the first vector contains
the first item from each vector in PV , padded to be the same
length as the largest vector, and so on (⎕ML<2)

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 59

Idiom Description

↓⍉⊃PV

A nested vector comprising vectors that each correspond to a
position in the original vectors of PV – the first vector contains
the first item from each vector in PV , padded to be the same
length as the largest vector, and so on (⎕ML≥2)

^\' '=CA
A Boolean mask indicating the leading blank spaces in each
row of CA

+/^\' '=CA The number of leading blank spaces in each row of CA

+/^\BA The number of leading 1s in each row of BA

{(∨\' '≠⍵)/⍵}

CV
CV without any leading blank spaces

{(+/^\'

'=⍵)↓⍵}CV
CV without any leading blank spaces

~∘' '¨↓CA

A nested vector comprising simple character vectors
constructed from the rows of CA (which must be of depth 1)
with all blank spaces removed

{(+/∨\'

'≠⌽⍵)↑¨↓⍵}CA

A nested vector comprising simple character vectors
constructed from the rows of CA (which must be of depth 1)
with trailing blank spaces removed

⊃∘⍴¨XA The length of the first axis of each item in XA (⎕ML<2)

↑∘⍴¨XA The length of the first axis of each item in XA (⎕ML≥2)

XA1,←XA2 XA1 redefined to be XA1 with XA2 catenated along its last axis

XA1⍪←XA2 XA1 redefined to be XA1 with XA2 catenated along its first axis

{(⊂⍋⍵)⌷⍵}XA XA sorted into ascending order

{(⊂⍒⍵)⌷⍵}XA XA sorted into descending order

{⍵[⍋⍵]}XV XV sorted into ascending order

{⍵[⍒⍵]}XV XV sorted into descending order

{⍵[⍋⍵;]}XM XM with the rows sorted into ascending

{⍵[⍒⍵;]}XM XM with the rows sorted into descending order

1=≡XA 1 if XA has a depth of 1 (simple array), 0 otherwise

1=≡,XA
1 if XA has a depth of 0 or 1 (simple scalar, vector, etc.), 0
otherwise

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 60

Idiom Description

0∊⍴XA 1 if XA is empty, 0 otherwise

~0∊⍴XA 1 if XA is not empty, 0 otherwise

⊣⌿XA The first sub-array along the first axis of XA

⊣/XA The first sub-array along the last axis of XA

⊢⌿XA The last sub-array along the first axis of XA

⊢/XA The last sub-array along the last axis of XA

*○NA Euler's idiom (accurate when NA is a multiple of 0J0.5)

0=⊃⍴XA 1 if XA has an empty first dimension, 0 otherwise (⎕ML<2)

0≠⊃⍴XA
1 if XA does not have an empty first dimension, 0 otherwise (
⎕ML<2)

⎕AV⍳CA
Classic version only: The character numbers (atomic vector
index) corresponding to the characters in CA

⌊0.5+NA Round to nearest integer

XA↓⍨←NS

This idiom applies only when NS is negative, when it removes
the last -NS items from XA along its leading axis. See note
below.

{(⊂⍋⍵)⌷⍵}

{(⊂⍒⍵)⌷⍵}
These idioms provide the fastest way to sort arrays of any rank

Notes

/⍳ and /⍳⍴, as well as providing an execution time advantage, reduce intermediate
workspace usage and, consequently, the incidence of memory compactions and the
likelihood of a WS FULL.

NA⊃¨⊂XV is implemented as XV[NA], which is significantly faster. The two are equivalent
but the former now has no performance penalty.

,/ is special-cased only for vectors of vectors or scalars. Otherwise, the expression is
evaluated as a series of concatenations. Recognition of this idiom turns join from an n-
squared algorithm into a linear one. In other words, the improvement factor is
proportional to the size of the argument vector.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 61

⊃⌽ and ⊃⌽, now take constant time. Without idiom recognition, the time taken depends
linearly on the number of items in the argument.

0=≡ takes a small constant time. Without idiom recognition, the time taken would
depend on the size and depth of the argument, which in the case of a deeply nested
array could be significant.

↓⍉↑ is special-cased only for a vector of nested vectors, each of whose items is of the
same length.

{(↓⍺)⍳↓⍵} can accommodate much larger matrices than its constituent primitives. It is
particularly effective when bound with a left argument using the compose operator:

In this case, the internal hash table for mat is retained so that it does not need to be
generated each time the monadic derived function find is applied to a matrix
argument.

{(∨\' '≠⍵)/⍵} and {(+/^\' '=⍵)↓⍵} are two codings of the same idiom. Both use
the same C code for evaluation.

~∘' '¨↓ typically takes a character matrix argument and returns a vector of character
vectors from which all blanks have been removed. An example might be the character
matrix of names returned by the system function ⎕NL. In general, this idiom
accommodates character arrays of any rank.

{(+/∨\' '≠⌽⍵)↑¨↓⍵} typically takes a character matrix argument and returns a vector
of character vectors. Any embedded blanks in each row are preserved but trailing
blanks are removed. In general, this idiom accommodates character arrays of any rank.

⊃∘⍴¨A (⎕ML<2) and ↑∘⍴¨A (⎕ML>2) avoid having to create an intermediate nested array
of shape vectors.

For an array of vectors, this idiom quickly returns a simple array of the length of each
vector.

For an array of matrices, it returns a simple array of the number of rows in each matrix.

find←mat∘{(↓⍺)⍳↓⍵} ⍝ find rows in mat table

⊃∘⍴¨ 'Hi' 'Pete' ⍝ Vector Lengths
2 4

⊃∘⍴¨⎕CR¨↓⎕NL 3 ⍝ Lines in functions
5 21...

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 62

A,←A and A⍪←A optimise the catenation of an array to another array along the last and
first dimension respectively.

Among other examples, this idiom optimises repeated catenation of a scalar or vector
to an existing vector.

Note that the idiom is not applied if the value of vector V is shared with another symbol
in the workspace, as illustrated in the following examples:

Example 1: the idiom is used to perform the catenation to V1.

Example 2: the idiom is not used to perform the catenation to V1, because its value is at
that point shared with V2.

Example 3: the idiom is not used to perform the catenation to V in Join[1] because its
value is, at that point, shared with the array used to call the function.

⊢⌿XA, ⊢/XA, ⊣⌿XA, and ⊣/XA return the first/last rank (0⌈¯1+⍴⍴A) sub-array along the
first/last axis of XA. For example, if V is a vector, then:

⊣/V First item of vector

⊢/V Last item of vector

Similarly, if M is a matrix, then:

props,←⊂ 'Posn' 0 0
props,←⊂'Size' 50 50
vector,←2+4

V1←⍳10
V1,←11

V1←⍳10
V2←V1
V1,←11

∇ V←V Join A
[1] V,←A

∇
(⍳10) Join 11

1 2 3 4 5 6 7 8 9 10 11

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 63

⊣⌿M First row of matrix

⊣/M First column of matrix

⊢⌿M Last row of matrix

⊢/M Last column of matrix

The idiom generalises uniformly to higher-rank arrays.

Euler's idiom *○NA produces accurate results for right argument values that are a
multiple of 0J0.5. This is so that Euler's famous identity 0=1+*○0J1 holds, despite pi
being represented as a floating point number.

For clarification; XA↓⍨←NS. If NS is ¯3 then the idiom removes the last -¯3 (that is, 3)
items.

The idiom XM1{(↓⍺)⍳↓⍵}XM2 is still recognised, but since Version 14.0 is no faster than
XM1⍳XM2.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 64

1.1.11 Parallel Execution

If your computer has more than one CPU or is a multi-core processor, then the scalar
dyadic functions ÷, ≥, =, ≤, ⍟, |, !, ○, ∨ and ∧ will, when applied to arrays with a
sufficiently large number of elements, execute in parallel in separate system threads.

For example, if you have a computer with 4 cores (either real or virtual) and execute an
expression such as (A÷B) where A and/or B contain more than 32,768 elements, then
Dyalog will start 4 separate threads, each performing the division on ¼ of the elements
of the array(s) and simultaneously creating the corresponding ¼ of the result array. The
threads are only started once, and are reused for subsequent multi-threaded
operations.

The maximum number of threads to use can be controlled using 1111⌶, and the parallel
execution threshold is changed using 1112⌶. These "tuning" I-beams should be
considered experimental, and may be changed or replaced in a future release. (See
Dyalog APL Language: Number Of Threads and Dyalog APL Language: Parallel
Execution Threshold).

Note that these scalar dyadic functions are not multi-threaded when applied to arrays
of Boolean or integer values, they are also not multi-threaded for +, - or × when
applied to arrays of 64 bits floating (type 645). Tests show that the overhead of
preparing such arrays for multi-threaded operations outweigh the performance
benefits.

1.1.12 Complex Numbers

A complex number is a number consisting of a real and an imaginary part which is
usually written in the form a+ bi, where a and b are real numbers, and i is the standard
imaginary unit with the property i2= −1.

Dyalog APL adopts the J notation introduced in IBM APL2 to represent the value of a
complex number which is written as aJb or ajb (without spaces). The former
representation (with a capital J) is always used to display a value.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 65

Notation

Arithmetic

The arithmetic primitive functions handle complex numbers in the appropriate way.

The absolute value, or magnitude of a complex number is naturally obtained using the
Magnitude function

Monadic + of a complex number (a+bi) returns its conjugate (a-bi) ...

... which when multiplied by the complex number itself, produces the square of its
magnitude.

Furthermore, adding a complex number and its conjugate produces a real number:

2+¯1*.5
2J1

.3j.5
0.3J0.5

1.2E5J¯4E¯4
120000J¯0.0004

2j3+.3j.5 ⍝ (a+bi)+(c+di) = (a+c)+(b+d)i
2.3J3.5

2j3-.3j5 ⍝ (a+bi)-(c+di) = (a-c)+(b-d)i
1.7J¯2

2j3×.3j.5 ⍝ (a+bi)(c+di)= ac+bci+adi+bdi²
⍝ = (ac-bd)+(bc+ad)i

¯0.9J1.9

|3j4
5

+3j4
3J¯4

3j4×3j¯4
25

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 66

The famous Euler's Identityeiπ+1=0 may be expressed as follows:

Circular functions

The basic set of circular functions X○Y cater for complex values in Y, while the following
extended functions provide specific features for complex arguments. Note that a and b
are the real and imaginary parts of Y respectively and θ is the phase of Y..

(-X) ○ Y X X ○ Y

-8○Y 8 (-1+Y*2)*0.5

Y 9 a

+Y 10 |Y

Y×0J1 11 b

*Y×0J1 12 θ

Note that 9○Y and 11○Y return the real and imaginary parts of Y respectively:

Comparison

In comparing two complex numbers X and Y, X=Y is 1 if the magnitude of X-Y does not
exceed ⎕CT times the larger of the magnitudes of X and Y; geometrically, X=Y if the
number smaller in magnitude lies on or within a circle centred on the one with larger
magnitude, having radius ⎕CT times the larger magnitude.

3j4+3j¯4
6

1+*○0j1 ⍝ Euler Identity
0

9 11○3.5J¯1.2
3.5 ¯1.2

9 11∘.○3.5J¯1.2 2J3 3J4
3.5 2 3

¯1.2 3 4

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 67

As with real values, complex values sufficiently close to Boolean or integral values are
accepted by functions which require Boolean or integral values. For example:

Note that Dyalog APL always stores complex numbers as a pair of 64-bit binary floating-
point numbers, regardless of the setting of ⎕FR. Comparisons between complex
numbers and decimal floating-point numbers will require conversion of the decimal
number to binary to allow the comparison. When ⎕FR=1287, comparisons are always
subject to ⎕DCT, not ⎕CT - regardless of the data type used to represent a number.

This only really comes into play when determining whether the imaginary part of a
complex number is so small that it can be considered to be on the real line. However,
Dyalog recommends that you do not mix the use of complex and decimal numbers in
the same component of an application.

1.1.13 128 Bit Decimal Floating-Point Support

Introduction

The original IEE-754 64-bit binary floating point (FP) data type (also known as type
number 645), that is used internally by Dyalog APL to represent floating-point values,

2j1e¯14 ⍴ 12
12 12

0 ⍱ 1j1e¯15
0

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 68

does not have sufficient precision for certain financial computations – typically
involving large currency amounts. The binary representation also causes errors to
accumulate even when all values involved in a calculation are "exact" (rounded)
decimal numbers, since many decimal numbers cannot be accurately represented
regardless of the precision used to hold them. To reduce this problem, Dyalog APL
includes support for the 128-bit decimal data type described by IEEE-754-2008 as an
alternative representation for floating-point values.

System Variable: Floating-point Representation

Computations using 128-bit decimal numbers require twice as much space for storage,
and run more than an order of magnitude more slowly on platforms which do not
provide hardware support for the type. At this time, hardware support is only available
from IBM (POWER 6 chips onwards, and recent System z mainframes). Even with
hardware support, a slowdown of a factor of 4 can be expected. For this reason, Dyalog
allows users to decide whether they need the higher-precision decimal representation,
or prefer to stay with the faster and smaller binary representation.

The system variable ⎕FR (for Floating-point Representation) can be set to the value 645
(the installed default) to indicate 64-bit binary FP, or 1287 for 128-bit decimal FP. The
default value of ⎕FR is configurable.

Simply put, the value of ⎕FR decides the type of the result of any floating-point
calculation that APL performs. In other words, when entered into the session:

⎕FR has workspace scope, and may be localised. If so, like most other system variables,
it inherits its initial value from the global environment.

However: Although ⎕FR can vary, the system is not designed to allow "seamless"
modification during the running of an application and the dynamic alteration of ⎕FR is
not recommended. Strange effects may occur. For example, the type of a constant
contained in a line of code (in a function or class), will depend on the value of ⎕FR
when the function is fixed. Similarly, a constant typed into a line in the Session is
evaluated using the value of ⎕FR that pertained before the line is executed. Thus, it
would be possible for the first line of code above to return 0, if it is in the body of a
function. If the function was edited and while suspended and execution is resumed, the
result would become 1. Also note:

⎕FR = ⎕DR 1.234 ⍝ Type of a floating-point constant
⎕FR = ⎕DR 3÷4 ⍝ Type of any floating-point result

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 69

The decimal number has 17 more 3s. Using the tolerance which applies to binary floats
(type 645), the numbers are equal. However, the "reverse" experiment yields 0, as
tolerance is much narrower in the 128-bit universe:

Since ⎕FR can vary, it will be possible for a single workspace to contain floating-point
values of both types (existing variables are not converted when ⎕FR is changed). For
example, an array that has just been brought into the workspace from external storage
may have a different type from ⎕FR in the current namespace. Conversion (if necessary)
will only take place when a new floating-point array is generated as the result of "a
calculation". The result of a computation returning a floating-point result will not
depend on the type of the arrays involved in the expression: ⎕FR at the time when a
computation is performed decides the result type, alone.

Structural functions generally do NOT change the type, for example:

128-bit decimal numbers not only have greater precision (roughly 34 decimal digits);
they also have significantly larger range- from ¯1E6145 to 1E6145. Loss of precision is
accepted on conversion from 645 to 1287, but the magnitude of a number may make
the conversion impossible, in which case a DOMAIN ERROR is issued:

⎕FR←1287
x←1÷3

⎕FR←645
x=1÷3

1

⎕FR←645
x←1÷3

⎕FR←1287
x=1÷3

0

⎕FR←1287
x←1.1 2.2 3.3

⎕FR←645
⎕DR x

1287
⎕DR 2↑x

1287

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 70

WARNING: The use of COMPLEX numbers when ⎕FR is 1287 is not recommended,
because:

any 128-bit decimal array into which a complex number is inserted or appended
will be forced in its entirety into complex representation, potentially losing
precision
all comparisons are done using ⎕DCT when ⎕FR is 1287, and this is equivalent to
0 for complex numbers.

Conversion between Decimal and Binary

Conversion of data from Binary to Decimal is logically equivalent to formatting, and the
reverse conversion is equivalent to evaluating input. These operations are performed
according to the same rules that are used when formatting (and evaluating) numbers
with ⎕PP set to 17 (guaranteeing that the decimal value can be converted back to the
same binary bit pattern). Because the precision of decimal floating-point numbers is
much higher, there will always be a large number of potential decimal values which
map to the same binary number: As with formatting, the rule is that the SHORTEST
decimal number which maps to a particular binary value will be used as its decimal
representation.

Data in component files will be stored without conversion, and only converted when a
computation happens. It should be stored in decimal form if it will repeatedly be used
by application code in which ⎕FR has the value 1287. Even in applications which use
decimal floating point everywhere, reading old component files containing arrays of
type 645, or receiving data via ⎕NA, the .NET interface or other external sources, will
allow binary floating-point values to enter the system and require conversion.

Decimal Comparison Tolerance

When ⎕FR has the value 1287, the system variable ⎕DCT will be used to specify
comparison tolerance. The default value of ⎕DCT is 1E¯28, and the maximum value is
2.3283064365386962890625E¯10 (the value is chosen to avoid fuzzy comparison of 32-
bit integers).

⎕FR←1287
x←1E1000

⎕FR←645
x+0

DOMAIN ERROR

•

•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 71

Name Association and Floating-point Values

⎕NA supports the data type "D" to represent the Densely Packed Decimal (DPD) form of
128-bit decimal numbers, as specified by the IEEE-754 2008 standard. Dyalog has
decided to use DPD, which is the format used by IBM for hardware support, on ALL
platforms, although "Binary Integer Decimal" (BID) is the format that Intel libraries use
to implement software libraries to do decimal arithmetic. Experiments have shown that
the performance of 128-bit DPD and BID libraries are very similar on Intel platforms. In
order to avoid the added complication of having two internal representations, Dyalog
has elected to go with the hardware format, which is expected to be adopted by future
hardware implementations.

The support libraries for writing APs and DLLs include new functions to extract the
contents of a value of type D as a string or double-precision binary "float" – and
convert data to D format.

Decimal Floats and Microsoft.NET

The Microsoft.NET framework contains a type named System.Decimal, which
implements decimal floating-point numbers. However, it uses a different internal
format from that defined by IEEE-754 2008.

Dyalog APL includes a Microsoft.NET class (called Dyalog.Dec128), which will perform
arithmetic on data represented using the "Binary Integer Decimal" format. All
computations performed by the Dyalog.Dec128 class will produce exactly the same
results as if the computation was performed in APL. A "DCT" property allows setting the
comparison tolerance to be used in comparisons, Ceiling/Floor, etc.).

The Dyalog class is modelled closely after the existing System.Decimal type, providing
the same methods (Add, Ceiling, Compare, CompareTo, Divide, Equals, Finalize, Floor,
FromOACurrency, GetBits, GetHashCode, GetType, GetTypeCode, MemberwiseClone,
Multiply, Negate, Parse, Remainder, Round, Subtract, To*, Truncate, TryParse) and
operators (Addition, Decrement, Division, Equality, Explicit, GreaterThan,
GreaterThanOrEqual, Implicit, Increment, Inequality, LessThan, LessThanOrEqual,
Modulus, Multiply, Subtraction, UnaryNegation, UnaryPlus).

The "bridge" between Dyalog and .NET is able to cast floating-point numbers to or from
System.Double, System.Decimal and Dyalog.Dec128 (and perform all other reasonable
casts to integer types etc.). Casting a Dyalog.Dec128 to or from strings will perform a
"lossless" conversion.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 72

Incoming .NET data types VT_DECIMAL (96-bit integer) and VT_CY (currency value
represented by a 64-bit two's complement integer, scaled by 10,000) are converted to
126-bit decimal numbers (DECFs). This conversion is performed independently of the
value of ⎕FR.

If you want to perform arithmetic on values imported in this way, then you should set
⎕FR to 1287, at least for the duration of the calculations.

Note that the .NET interface converts System.Decimal to DECFs but does not convert
System.Int64 to DECFs.

1.1.14 Namespaces

Namespaces

Namespace is a (class 9) object in Dyalog APL. Namespaces are analogous to nested
workspaces.

They provide the same sort of facility for workspaces as directories do for filesystems.
The analogy, based on DOS, might prove helpful:

'Flat' APL Workspace Workspace with Namespaces
.OLD-------------------. .NEW-------------------.
		FOO MAT VEC						
DISPLAY		.Util----------.						
			DISPLAY					
FOO MAT VEC			...					
		'--------------'						
WsDoc_Init		.WsDoc-------------.						
WsDoc_Xref			Init .prt-..fmt--.					
WsDoc_Tree				Init		line		
WsDoc_prt_init			Tree					
WsDoc_current_page			Xref	page				
...			'----''-----'					
		'------------------'						
'----------------------' '----------------------'

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 73

Operation Windows Namespace

Create mkdir)NS or ⎕NS

Change cd)CS or ⎕CS

Relative name dir1\dir\file NS1.NS2.OBJ

Absolute name \file\file #.NS.OBJ

Name separator \ .

Top (root) object \ #

Parent object .. ##

Namespaces bring a number of major benefits

They provide lexical (as opposed to dynamic) local names. This means that a defined
function can use local variables and functions which persist when it exits and which are
available next time it is called.

Just as with the provision of directories in a filing system, namespaces allow us to
organise the workspace in a tidy fashion. This helps to promote an object oriented
programming style.

APL's traditional name-clash problem is ameliorated in several ways

Workspaces can be arranged so that there are many fewer names at each
namespace level. This means that when copying objects from saved workspaces
there is a much reduced chance of a clash with existing names.
Utility functions in a saved workspace may be coded as a single namespace and
therefore on being copied into the active workspace consume only a single
name. This avoids the complexity and expense of a solution which is sometimes
used in 'flat' workspaces, where such utilities dynamically fix local functions on
each call.
In flat APL, workspace administration functions such as WSDOC must share names
with their subject namespace. This leads to techniques for trying to avoid name
clashes such as using obscure name prefixes like ⍙⍙L1 This problem is now
virtually eliminated because such a utility can operate exclusively in its own
namespace.

•

•

•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 74

The programming of GUI objects is considerably simplified.

An object's callback functions may be localised in the namespace of the object
itself.
Static variables used by callback functions to maintain information between calls
may be localised within the object.

This means that the object need use only a single name in its namespace.

Namespaces

Names within namespaces may be referenced explicitly or implicitly. An explicit
reference requires that you identify the object by its full or relative pathname using a
'.' syntax; for example:

sets the variable NUMB in namespace X to 88.

calls dyadic function FOO in namespace UTIL with left and right arguments of 88 and 99
respectively. The interpreter can distinguish between this use of '.' and its use as the
inner product operator, because the leftmost name: UTIL is a (class 9) namespace,
rather than a (class 3) function.

The general namespace reference syntax is:

Where SPACE is an expression which resolves to a namespace reference, and EXPR is
any APL expression to be resolved in the resulting namespace.

There are two special space names:

is the top level or 'Root' namespace.

is the parent or space containing the current namespace.

⎕SE is a system namespace which is preserved across workspace load and clear.

•

•

X.NUMB ← 88

88 UTIL.FOO 99

SPACE . SPACE . (...) EXPR

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 75

Examples

You may also reference a function or operator in a namespace implicitly using the
mechanism provided by ⎕EXPORT (See Dyalog APL Language: Export) and ⎕PATH. If you
reference a name that is undefined in the current space, the system searches for it in
the list of exported names defined for the namespaces specified by ⎕PATH. See Dyalog
APL Language: Path for further details.

Notice that the expression to the right of a dot may be arbitrarily complex and will be
executed within the namespace or ref to the left of the dot.

Summary

Apart from its use as a decimal separator (3.14), '.' is interpreted by looking at the
type or class of the expression to its left:

WSDOC.PAGE.NO +← 1 ⍝ Increment WSDOC page count

#.⎕NL 2 ⍝ Variables in root space

UTIL.⎕FX 'Z←DUP A' 'Z←A A' ⍝ Fix remote function

##.⎕ED'FOO' ⍝ Edit function in parent space

⎕SE.RECORD ← PERS.RECORD ⍝ Copy from PERS to ⎕SE

UTIL.(⎕EX ⎕NL 2) ⍝ Expunge variables in UTIL

(⊃⎕SE #).(⍎⊃↓⎕NL 9).(⎕NL 2) ⍝ Vars in first ⎕SE
⍝ namespace.

UTIL.⍎STRING ⍝ Execute STRING in UTIL space

X.(C←A×B)
X.C

10 12 14
16 18 20

NS1.C
10 12 14
16 18 20

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 76

Template Interpretation Example

∘. Outer product 2 3 ∘.× 4 5

function. Inner product 2 3 +.× 4 5

ref. Namespace reference 2 3 x.foo 4 5

array. Reference array expansion (x y).⎕NC⊂'foo'

Namespace Reference Evaluation

When the interpreter encounters a namespace reference, it:

Switches to the namespace.
Evaluates the name.
Switches back to the original namespace.

If for example, in the following, the current namespace is #.W, the interpreter evaluates
the line:

in the following way:

Evaluate array MAT in current namespace W to produce argument for function.
Switch to namespace X.Y within W.
Evaluate function DUP in namespace W.X.Y with argument.
Switch back to namespace W.
Assign variable A in namespace W.

Namespaces and Localisation

The rules for name resolution have been generalised for namespaces.

In flat APL, the interpreter searches the state indicator to resolve names referenced by
a defined function or operator. If the name does not appear in the state indicator, then
the workspace-global name is assumed.

With namespaces, a defined function or operator is evaluated in its 'home' namespace.
When a name is referenced, the interpreter searches only those lines of the state
indicator which belong to the home namespace. If the name does not appear in any of
these lines, the home namespace-global value is assumed.

1.
2.
3.

A ← X.Y.DUP MAT

1.
2.
3.
4.
5.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 77

For example, if #.FN1 calls XX.FN2 calls #.FN3 calls XX.FN4, then:

FN1:

is evaluated in #
can see its own dynamic local names
can see global names in #

FN2:

is evaluated in XX
can see its own dynamic local names
can see global names in XX

FN3:

is evaluated in #
can see its own dynamic local names
can see dynamic local names in FN1
can see global names in #

FN4:

is evaluated in XX
can see its own dynamic local names
can see dynamic local names in FN2
can see global names in XX

The following picture illustrates how APL looks down the stack to find names:

•

◦
◦
◦

•

◦
◦
◦

•

◦
◦
◦
◦

•

◦
◦
◦
◦

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 78

The above diagram represents the SI stack, growing upwards from two namespaces X
and Y, which each have three global names a, b and c.

Function f in X localises names a and b.

Function f references names a, b and c.

The interpreter looks down the stack and finds local names a and b in f's header
and c in namespace X.

Function f calls function g in namespace Y.

Function g in Y localises names a and c.

Function g references names a, b and c.

 │ │ │
 │ a+b+c │ │ [8] h references a, b and c
 │ │ │ │ │ │
 │ ∇h;a │ │ │ │ [7] h localises a
 │ │ │ │ │
 │ │ │ │ │ [6] g calls X.h
 │ │ │ │ │
 │ │ │ │ a+b+c │ [5] g references a, b and c
 │ │ │ │ │ │ │ │
 │ │ │ │ ∇g;a;│ c │ [4] g localises a and c
 │ │ │ │ │ │
 │ │ │ │ │ │ [3] f calls Y.g
 ↑ │ │ │ │ │ │
 s │ a+b+c │ │ │ [2] f references a, b and c
 t │ │ │ │ │ │ │
 a │ ∇f;a;b │ │ │ │ [1] f localises a and b
 c │ │ │ │ │
 k │ a b c │ a b c │ [0] global names a, b and c
 └X──────────┴Y──────────┘ in namspaces X and Y

1.

2.

∇ f;a;b
[1] a+b+c
[2] Y.g

3.

4.

5.

∇ g;a;c
[1] a+b+c
[2] X.h

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 79

The interpreter looks down the stack and finds local names a and c in g's header
and b in namespaces Y.

Function g calls function h in namespace X.

Function h in X localises name a.
Function h references names a, b and c.

The interpreter looks down the stack and finds local name a in h's header; b in
f's header; and c in namespace X.

Namespace References

A namespace reference, or ref for short, is a unique data type that is distinct from and
in addition to number and character.

Any expression may result in a ref, but the simplest one is the namespace itself:

You may assign a ref; for example:

In this case, the display of X informs you that X refers to the named namespace #.NS1.

You may also supply a ref as an argument to a defined function or a dfn:

6.

7.
8.

∇ h;a
[1] a+b+c

)NS NS1 ⍝ Make a namespace called NS1
NS1.A←1 ⍝ and populate it with variables A
NS1.B←2 3⍴⍳6 ⍝ and B

NS1 ⍝ expression results in a ref
#.NS1

X←NS1
X

#.NS1

∇ FOO ARG
[1] ARG

∇

FOO NS1
#.NS1

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 80

The name class of a ref is 9.

You may use a ref to a namespace anywhere that you would use the namespace itself.
For example:

Notice that refs are references to namespaces, so that if you make a copy, it is the
reference that is copied, not the namespace itself. This is sometimes referred to as a
shallow as opposed to a deep copy. It means that if you change a ref, you actually
change the namespace that it refers to.

Similarly, a ref passed to a defined function is call-by-reference, so that modifications to
the content or properties of the argument namespace using the passed reference
persist after the function exits. For example:

Notice that the expression to the right of a dot may be arbitrarily complex and will be
executed within the namespace or ref to the left of the dot.

⎕NC 'X'
9

X.A
1

X.B
1 2 3
4 5 6

X.A+←1
X.A

2
NS1.A

2

∇ FOO nsref
[1] nsref.B+←nsref.A

∇

FOO NS1
NS1.B

3 4 5
6 7 8

FOO X
NS1.B

5 6 7
8 9 10

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 81

Unnamed Namespaces

The monadic form of ⎕NS makes a new (and unique) unnamed namespace and returns
a ref to it.

One use of unnamed namespaces is to represent hierarchical data structures; for
example, a simple employee database:

The first record is represented by JOHN which is a ref to an unnamed namespace:

Data variables for the second record, PAUL, can be established using strand, or vector,
assignment:

The function SHOW can be used to display the data in each record (the function is split
into 2 lines only to fit on the printed page). Notice that its argument is a ref.

X.(C←A×B)
X.C

10 12 14
16 18 20

NS1.C
10 12 14
16 18 20

JOHN←⎕NS ''
JOHN

#.[Namespace]

JOHN.FirstName←'John'
JOHN.FirstName

John

JOHN.LastName←'Smith'
JOHN.Age←50

PAUL←⎕NS ''
PAUL.(FirstName LastName Age←'Paul' 'Brown' 44)

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 82

An alternative version of the function illustrates the use of the :With :EndWith control
structure to execute an expression, or block of expressions, within a namespace:

In this case, as only a single expression is involved, it can be expressed more simply
using parentheses.

Dfns also accept refs as arguments:

∇ R←SHOW PERSON
[1] R←PERSON.FirstName,' ',PERSON.LastName
[2] R, ←' is ',⍕PERSON.Age

∇

SHOW JOHN
John Smith is 50

SHOW PAUL
Paul Brown is 44

∇ R←SHOW1 PERSON
[1] :With PERSON
[2] R←FirstName,' ',LastName,' is ',(⍕Age)
[3] :EndWith

∇

SHOW1 JOHN
John Smith is 50

∇ R←SHOW2 PERSON
[1] R←PERSON.(FirstName,' ',LastName,' is ',(⍕Age))

∇
SHOW2 PAUL

Paul Brown is 44

SHOW3←{
⍵.(FirstName,' ',LastName,' is ',⍕Age)

}

SHOW3 JOHN
John Smith is 50

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 83

Arrays of Namespace References

You can construct arrays of refs using strand notation, array notation, catenate (,),
reshape (⍴) and other structural primitives, as well as certain system functions.

Like any other array, an array of refs has name class 2:

Expressions such as indexing and pick return refs that may in turn be used as follows:

The each (¨) operator may be used to apply a function to an array of refs:

An array of namespace references (refs) to the left of a '.' is expanded according to the
following rule, where x and y are refs, and exp is an arbitrary expression:

If exp evaluates to a function, the items of its argument array(s) are distributed to each
referenced function. In the dyadic case, there is a 3-way distribution among: left
argument, referenced functions and right argument.

Monadic function f:

Dyadic function g:

An array of refs to the left of an assignment arrow is expanded thus:

EMP←JOHN PAUL
⍴EMP

2
EMP

#.[Namespace] #.[Namespace]

⎕NC 'EMP'
2

EMP[1].FirstName
John

(2⊃EMP).Age
44

SHOW¨EMP
John Smith is 50 Paul Brown is 44

(x y).exp → (x.exp)(y.exp)

(x y).f d e → (x.f d)(y.f e)

a b (x y).g d e → (a x.g d)(b y.g e)

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 84

Note that the array of refs can be of any rank. In the limiting case of a simple scalar
array, the array construct: refs.exp is identical to the scalar construct: ref.exp.

Note that the expression to the right of the '.' pervades a nested array of refs to its left:

Note also that with successive expansions (u v).(x y z). ..., the final number of
"leaf" terms is the product of the number of refs at each level.

(x y).a←c d → (x.a←c)(y.a←d)

((u v)(x y)).exp → ((u.exp)(v.exp))((x.exp)(y.exp))

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 85

Examples

Distributed Assignment

Assignment pervades nested strands of names to the left of the arrow. The
conformability rules are the same as for scalar (pervasive) dyadic primitive functions
such as '+'. The mechanism can be viewed as a way of naming the parts of a structure.

(JOHN PAUL)←()()
JOHN.Children←()()
⍴JOHN.Children

2
JOHN.Children[1].FirstName←'Andy'
JOHN.Children[1].Age←23

JOHN.Children[2].FirstName←'Katherine'
JOHN.Children[2].Age←19

PAUL.Children←()()
PAUL.Children[1].(FirstName Age←'Tom' 25)
PAUL.Children[2].(FirstName Age←'Jamie' 22)

EMP←JOHN PAUL
⍴EMP

2
(⊃EMP).Children.(FirstName Age)

Andy 23 Katherine 19

]display (2⊃EMP).Children.(FirstName Age)
┌→────────────────────────────┐
│ ┌→─────────┐ ┌→───────────┐ │
│ │ ┌→──┐ │ │ ┌→────┐ │ │
│ │ │Tom│ 25 │ │ │Jamie│ 22 │ │
│ │ └───┘ │ │ └─────┘ │ │
│ └∊─────────┘ └∊───────────┘ │
└∊────────────────────────────┘

EMP.Children ⍝ Is an array of refs
#.[Namespace] #.[Namespace] #.[Namespace] ...

EMP.Children.(FirstName Age)
Andy 23 Katherine 19 Tom 25 Jamie 22

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 86

Examples

EMP.(FirstName Age)
JOHN 43 PAUL 44

EMP.(FirstName Age)←('Jonathan' 21)('Pauline' 22)

EMP.(FirstName Age)
Johnathan 21 Pauline 22

⍝ Distributed assignment is pervasive
JOHN.Children.(FirstName Age)

Andy 23 Katherine 19

JOHN.Children.(FirstName Age)←('Andrew' 21)('Kate' 9)

JOHN.Children.(FirstName Age)
Andrew 21 Kate 9

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 87

More Examples

Distributed Functions

Namespace ref array expansion syntax applies to functions too.

((a b)(c d))←(1 2)(3 4) ⍝ a←1 ⋄ b←2 ⋄ c←3 ⋄ d←4

((⎕IO ⎕ML)vec)←0 ⎕AV ⍝ ⎕IO←0 ⋄ ⎕ML←0 ⋄ vec←⎕AV

(i (j k))+←1 2 ⍝ i+←1 ⋄ j+←2 ⋄ k+←2

⍝ Naming of parts:

((first last) sex (street city state))←n⊃pvec

⍝ Distributed assignment in :For loop:

:For (i j)(k l) :In array

⍝ Ref array expansion:

(x y).(first last)←('John' 'Doe')('Joe' 'Blow')
(f1 f2).(b1 b2).Caption←⊂'OK' 'Cancel'

⍝ Structure rearrangement:
rotate1←{ ⍝ Simple binary tree rotation.

(a b c)d e←⍵
a b(c d e)

}
rotate3←{ ⍝ Compound binary tree rotation.

(a b(c d e))f g←⍵
(a b c)d(e f g)

}

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 88

JOHN.PLOT←{↑⍵⍴¨'⎕'}
JOHN.PLOT ⍳10

⎕
⎕⎕
⎕⎕⎕
⎕⎕⎕⎕
⎕⎕⎕⎕⎕
⎕⎕⎕⎕⎕⎕
⎕⎕⎕⎕⎕⎕⎕
⎕⎕⎕⎕⎕⎕⎕⎕
⎕⎕⎕⎕⎕⎕⎕⎕⎕
⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕

PAUL.PLOT←{(⍵,¨1)⍴¨'⎕'}
PAUL.PLOT ⍳10

⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕

⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕

⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕ ⎕ ⎕ ⎕ ⎕

⎕ ⎕ ⎕ ⎕
⎕ ⎕ ⎕

⎕ ⎕
⎕

EMP.PLOT⊂⍳10 ⍝ (temporary vector of functions)
⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕⎕⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕⎕⎕⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕⎕⎕⎕⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕⎕⎕⎕⎕⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕⎕⎕⎕⎕⎕⎕ ⎕ ⎕ ⎕
⎕⎕⎕⎕⎕⎕⎕⎕⎕ ⎕ ⎕
⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ ⎕

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 89

Namespaces and Operators

A function passed as operand to a primitive or defined operator, carries its namespace
context with it. This means that if subsequently, the function operand is applied to an
argument, it executes in its home namespace, irrespective of the namespace from
which the operator was invoked or defined.

(x y).⎕NL 2 3 ⍝ x:vars, y:fns
varx funy

(x y).⎕NL⊂2 3 ⍝ x&y: vars&fns
funx funy
varx vary

(x y).(⎕NL¨)⊂2 3 ⍝ x&y: separate vars&fns
varx funx vary funy

'v'(x y).⎕NL 2 3 ⍝ x:v-vars, y:v-fns
varx

'vf'(x y).⎕NL 2 3 ⍝ x:v-vars, y:f-fns
varx funy

⍝ x:v-vars&fns,
'vf'(x y).⎕NL⊂2 3 ⍝ y:f-vars&fns

varx funy

x.⎕NL 2 3 ⍝ depth 0 ref
funx
varx

(x y).⎕NL⊂2 3 ⍝ depth 1 refs
funx funy
varx vary

((u v)(x y)).⎕NL⊂⊂2 3 ⍝ depth 2 refs
funu funv funx funy
varu varv varx vary

(1 2)3 4(w(x y)z).+1 2(3 4) ⍝ arg distribution.
2 3 5 5 7 8

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 90

Examples

Serialising Namespaces

The Serialisation of an array is its conversion from its internal representation, which
may contain pointers to other structures in the workspace, into a self-contained series
of bytes. This allows the array to be written to a file, transmitted over a socket or used
in a variety of other ways. The de-serialisation of an array is the conversion back to an
internal format whose content and structure is identical to the original array.

If an array contains a reference to a namespace or object that is within the same array,
it can be serialised and de-serialised normally.

If an array contains a reference to a namespace or object that is not internal to the
array itself, this presents a problem, which is resolved as follows:

If the reference is a direct reference to Root (#) or to ⎕SE, it is serialised as a
reference to that symbol, but the contents of # or ⎕SE are not included. When
the array is de-serialised, this results in a reference to the Root (#) or ⎕SE in the
current workspace. The newly reconstituted array is not strictly identical to the
original because the contents of # or ⎕SE may be different.

VAR←99 ⍝ #.VAR

)NS X
#.X

X.VAR←77 ⍝ X.VAR
X.⎕FX'Z←FN R' 'Z←R,VAR'

)NS Y
#.Y

Y.VAR←88 ⍝ Y.VAR
Y.⎕FX'Z←(F OP)R' 'Z←F R'

X.FN¨⍳3
1 77 2 77 3 77

X.FN 'VAR:'
VAR: 77

X.FN Y.OP 'VAR:'
VAR: 77

⍎ Y.OP'VAR'
99

1.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 91

If the reference is to an arbitrary external namespace or object, a copy of that
object is included but its path is discarded. When the array is de-serialised, the
copy is reconstituted as a sibling (that is, as a child of the same parent as the de-
serialised array). In this case the contents of the external namespace or object
are preserved, but not its path. The newly reconstituted array is not strictly
identical to the original because the path to the external reference has changed.
If however, the external namespace or object itself contains an external
reference, the operation fails with DOMAIN ERROR.

The following example uses 220⌶ but applies equally to an array serialised by, for
example ⎕FAPPEND.

Examples

2.

3.

'A' ⎕NS ''
'B' ⎕NS ''
'C' ⎕NS ''
A.b←B
B.c←C
s←1 (220⌶)A

)ERASE A B C
)OBS

New←0(220⌶)s
New

#.A
New.b

#.B
New.b.c

#.C

)CLEAR
clear ws

'A' ⎕NS ''
'B' ⎕NS ''
'X'⎕NS ''
'X.C'⎕NS ''
A.b←B
B.c←X.C
s←1(220⌶)A

DOMAIN ERROR: Namespace is not self contained
s←1(220⌶)A

∧

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 92

Note that a successful 0(220⌶) does not mean that a 1(220⌶) on the result will
succeed. If the original reference was to, say, the MenuBar of ⎕SE you cannot
reconstitute that in #.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 93

1.1.15 External Variables

An external variable is a variable whose contents (value) reside not in the workspace,
but in a file. An external variable is associated with a file by the system function ⎕XT. If
at the time of association the file exists, the external variable assumes its value from
the contents of the file. If the file does not exist, the external variable is defined but a
VALUE ERROR occurs if it is referenced before assignment. Assignment of an array to the
external variable or to an indexed element of the external variable has the effect of
updating the file. The value of the external variable or the value of indexed elements of
the external variable is made available in the workspace when the external variable
occurs in an expression. No special restrictions are placed on the usage of external
variables.

Normally, the files associated with external variables remain permanent in that they
survive the APL session or the erasing of the external variable from the workspace.
External variables may be accessed concurrently by several users, or by different nodes
on a network, provided that the appropriate file access controls are established. Multi-
user access to an external variable may be controlled with the system function ⎕FHOLD
between co-operating tasks.

Refer to the sections describing the system functions ⎕XT and ⎕FHOLD in Chapter 6 for
further details.

Examples

'ARRAY' ⎕XT 'V'

V←⍳10
V[2] + 5

7

⎕EX'V'

'ARRAY' ⎕XT 'F'
F

1 2 3 4 5 6 7 8 9 10

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 94

Support for external variables has been deprecated, and is scheduled for removal

in a future release. For information on how to identify calls to external variables

in your existing codebase, see the Release Notes.

1.1.16 Component Files

A component file is a data file maintained by Dyalog APL. It contains a series of APL
arrays known as components which are accessed by reference to their relative
positions or component number within the file. A set of system functions is provided
to perform a range of file operations. (See Dyalog APL Language: System Functions By
Category.) These provide facilities to create or delete files, and to read and write
components. Facilities are also provided for multi-user access including the capability
to determine who may do what, and file locking for concurrent updates. (See the
Dyalog Programming Reference Guide).

1.1.17 Auxiliary Processors

Auxiliary Processors (APs) are non-APL programs which provide Dyalog APL users with
additional facilities. They run as separate tasks, and communicate with the Dyalog APL
interpreter through pipes (UNIX) or via an area of memory (Windows). Typically, APs
are used where speed of execution is critical, such as in screen management software,
or for utility libraries. Auxiliary Processors may be written in any compiled language,
although 'C' is preferred and is directly supported.

When an Auxiliary Processor is invoked from Dyalog APL, one or more external
functions are fixed in the active workspace. Each external function behaves as if it was a
locked defined function, but is in effect an entry point into the Auxiliary Processor. An
external function occupies only a negligible amount of workspace.

Although Auxiliary Processors are still supported, Dyalog recommends that DLLs/shared
libraries, called via the ⎕NA interface should be used on all platforms in future, and that
existing APs are converted to DLLs/shared libraries.

Information

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 95

2 Deprecated Functionality

Over time, certain functionality (such as language elements, development environment
features, or supplied samples or tools) can become obsolete or cease to be useful.
There are many reasons why this might happen. For example:

A superior alternative has been introduced.
For example, ⎕UCS has superseded ⎕TC (which generates only the newline,
backspace, and linefeed characters).
The feature was originally implemented as an I-beam but has since been
superseded by a formal addition to Dyalog APL.
For example, ⎕JSON replaced 7159⌶.
The feature is associated with hardware or technology that is itself becoming
obsolete.
For example, 32-bit processes and address spaces limited to 4GB in size.

In these circumstances, the feature is classified as deprecated. This means that it is
unlikely to be developed or extended further, and its use in new development work is
discouraged. Some deprecated features remain for backwards compatibility reasons,
but some are later removed in a pre-announced Dyalog version.

2.1 Deprecated Functionality Scheduled for Removal

If removing a deprecated feature is considered to be sufficiently significant, Dyalog Ltd
will enable the ability to identify where this feature exists in a given codebase.

Deprecated functionality can be identified either when it is encountered in code that is
called or by scanning a directory for deprecated file types.

2.1.1 Identifying Deprecated Functionality in Called Code

Dyalog can be configured to log use of a deprecated feature when it is encountered.
Logging must be configured and enabled/disabled in each APL process – information
about logging is not retained.

•

•

•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 96

To enable logging of deprecated features:

Specify the name of the file into which the JSON5 log messages will be written
(using Dyalog APL Language: Log File For Deprecations with a right argument of
0). By default, the file is created in the current working directory; if you do not
have write permission for the current working directory, you will also need to
include a path. If a filename is not set, then all logging information will be
silently discarded.
Specify which deprecated features should be logged (using Dyalog APL
Language: Log Use Of Deprecated Features with a right argument of the names
identifying the deprecated features of interest). If no names are specified then
all logging will be disabled.

The names are release-dependent; for a list of valid names see the v20.0 Release
Notes: Deprecated Functionality.

In addition, there are two reserved names than can be used:

All – enables logging for all valid names
None – disable all logging

Each time 13⌶ is called, the new list of features replaces the existing list.

Example

After logging has been enabled, every subsequent use of the specified deprecated
features is logged. Each line in the log file contains a complete JSON5 object, which
includes a description of the deprecated feature and the SI Stack at the point it was
called. The log file can be examined using any text editor or from within a Dyalog
Session. For example:

If an error occurs when writing to the log file, further logging is suspended. The log file
status can be queried at any time by calling 109⌶ with a right argument of 1; the result
is a numeric status code (0 indicates no error) and a character vector describing the
error that was encountered (empty if no error). For example:

1.

2.

•
•

⍝ Specify the name of the log file
'C:\Users\fiona\deprecated_log.txt'(109⌶)0

⍝ Select the features to log
13⌶ 'J0C0' 'S32'

log_entries←(⎕JSON⍠('Dialect' 'JSON5')('Compact' 0))⍣2¨⊃⎕NGET 'C:
\Users\fiona\deprecated_log.txt' 1

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 97

or:

2.1.2 Identifying Files Pertaining to Deprecated Functionality

A directory can be scanned for deprecated functionality using Dyalog APL Language:
Scan For Deprecated Files with a right argument of the directory to be scanned. If the
left argument is set to 1, sub-directories will also be scanned. The names of any files
that pertain to deprecated functionality are returned, with labels specifying the reason
for identification.

The labels are release-dependent; for a list of valid labels see the v20.0 Release Notes:
Deprecated Functionality.

Example

(109⌶)1
┌─┬┐
│0││
└─┴┘

(109⌶)1
┌─┬──┐
│3│The system cannot find the path specified.│
└─┴──┘

1(3535⌶)'.'
./J0C0.dcf J0C0
./ws2000.dws OLDWS
./subdir/S32J0C0.dcf J0C0 S32

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 98

3 Defined Functions & Operators

3.1 Traditional Functions and Operators

3.1.1 Traditional Functions and Operators

Traditional Functions and Operators are the original user-defined functions and
operators that are part of the APL standard. They are referred to herein as Traditional
or TradFns to distinguish them from Dfns and Dops which are unique to Dyalog.

TradFns may be defined and edited using the Dyalog Editor or may be instantiated from
an array containing source code using the system function ⎕FX. The converse system
functions ⎕CR, ⎕VR, ⎕NR return the original source code.

A defined function or operators is composed of lines. The first line (line 0) is called the
header. Remaining lines are APL statements, called the body.

The header consists of the following parts:

its model syntactical form,
an optional list of local names, each preceded by a semi-colon (;) character,
an optional comment, preceded by the symbol ⍝.

Only the model is required. If local names and comments are included, they must
appear in the prescribed order.

3.1.2 Model Syntax

The model for the defined operation identifies the name of the operation, its valence,
and whether or not an explicit result may be returned. Valence is the number of explicit
arguments or operands, either 0, 1 or 2; whence the operation is termed NILADIC,
MONADIC or DYADIC respectively. Only a defined function may be niladic. There is no
relationship between the valence of a defined operator, and the valence of the derived
function which it produces. Defined functions and derived functions produced by
defined operators may be ambivalent, that is, may be executed monadically with one
argument, or dyadically with two. An ambivalent operation is identified in its model by
enclosing the left argument in braces.

1.
2.
3.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 99

The value of a result-returning function or derived function may be suppressed in
execution if not explicitly used or assigned by enclosing the result in its model within
braces. Such a suppressed result is termed SHY.

The tables below show all possible models for defined functions and operators
respectively.

Defined Functions

Result Niladic Monadic Dyadic Ambivalent

None f f Y X f Y {X} f Y

Explicit R←f R←f Y R←X f Y R←{X} f Y

Suppressed {R}←f {R}←f Y {R}←X f Y {R}←{X} f Y

Note: the right argument Y and/or the result R may be represented by a single name, or
as a blank-delimited list of names surrounded by parentheses. For further details, see
Section 3.1.6.

Derived Functions produced by Monadic Operator

Result Monadic Dyadic Ambivalent

None (A op)Y X(A op)Y {X}(A op)Y

Explicit R←(A op)Y R←X(A op)Y R←{X}(A op)Y

Suppressed {R}←(A op)Y {R}←X(A op)Y {R}←{X}(A op)Y

Derived Functions produced by Dyadic Operator

Result Monadic Dyadic Ambivalent

None (A op B)Y X(A op B)Y {X}(A op B)Y

Explicit R←(A op B)Y R←X(A op B)Y R←{X}(A op B)Y

Suppressed {R}←(A op B)Y {R}←X(A op B)Y {R}←{X}(A op B)Y

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 100

3.1.3 Statements

A statement is a line of characters understood by APL. It may be composed of:

a LABEL (which must be followed by a colon :), or a CONTROL STATEMENT
(which is preceded by a colon), or both,
an EXPRESSION (see Section 1.1.4),
a SEPARATOR (consisting of the diamond character ⋄ which must separate
adjacent expressions),
a COMMENT (which must start with the character ⍝).

Each of the four parts is optional, but if present they must occur in the given order
except that successive expressions must be separated by ⋄. Any characters occurring to
the right of the first comment symbol (⍝) that is not within quotes is a comment.

Comments are not executed by APL. Expressions in a line separated by ⋄ are taken in
left-to-right order as they occur in the line. For output display purposes, each separated
expression is treated as a separate statement.

Examples

3.1.4 Global & Local Names

The following names, if present, are local to the defined operation:

the result,
the argument(s) and operand(s),
additional names in the header line following the model, each name preceded
by a semi-colon character,

1.

2.
3.

4.

5×10
50

MULT: 5×10
50

MULT: 5×10 ⋄ 2×4
50
8

MULT: 5×10 ⋄ 2×4 ⍝ MULTIPLICATION
50
8

1.
2.
3.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 101

labels,
the argument list of the system function ⎕SHADOW when executed,
a name assigned within a dfn.

All names in a defined operation must be valid APL names. The same name may be
repeated in the header line, including the operation name (whence the name is
localised). Normally, the operation name is not a local name.

The same name may not be given to both arguments or operands of a dyadic
operation. The name of a label may be the same as a name in the header line. More
than one label may have the same name. When the operation is executed, local names
in the header line after the model are initially undefined; labels are assigned the values
of line numbers on which they occur, taken in order from the last line to the first; the
result (if any) is initially undefined.

In the case of a defined function, the left argument (if any) takes the value of the array
to the left of the function when called; and the right argument (if any) takes the value
of the array to the right of the function when called. In the case of a defined operator,
the left operand takes the value of the function or array to the left of the operator
when called; and the right operand (if any) takes the value of the function or array to
the right of the operator when called.

During execution, a local name temporarily excludes from use an object of the same
name with an active definition. This is known as LOCALISATION or SHADOWING. A
value or meaning given to a local name will persist only for the duration of execution of
the defined operation (including any time whilst the operation is halted). A name which
is not local to the operation is said to be GLOBAL. A global name could itself be local to
a pendent operation. A global name can be made local to a defined operation during
execution by use of the system function ⎕SHADOW. An object is said to be VISIBLE if
there is a definition associated with its name in the active environment.

4.
5.
6.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 102

Examples

Any statement line in the body of a defined operation may begin with a LABEL. A label
is followed by a colon (:). A label is a constant whose value is the number of the line in
the operation defined by system function ⎕FX or on closing definition mode.

The value of a label is available on entering an operation when executed, and it may be
used but not altered in any expression.

A←1

∇ F
[1] A←10
[2] ∇

F ⍝ <A> NOT LOCALISED IN <F>, GLOBAL VALUE REPLACED
A

10
A←1
)ERASE F

∇ F;A
[1] A←10
[2] ∇

F ⍝ <A> LOCALISED IN <F>, GLOBAL VALUE RETAINED
A

1

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 103

Example

3.1.5 Locals Lines

Locals Lines are lines in a defined function or operator that serve only to define local
names.

A Locals Line may appear anywhere between line [0] and the first executable statement
in the function or operator. Locals lines may be interspersed with blank lines and
comments. A Locals Line is identified by starting with a semicolon, prefixed optionally
by whitespace. It may contain a comment at the end.

A Locals Line must be of the form ;name;name;name where name is any valid APL name
or localisable system variable. The names are localised on entry to the function exactly
as if they were specified as locals on line [0].

Example

The function foo shown above localises names a, b, c and d (the indentation on line
[1] in this example is entirely optional)

⎕VR'PLUS'
∇ R←{A} PLUS B

[1] →DYADIC ⍴⍨2=⎕NC'A' ⋄ R←B ⋄ →END
[2] DYADIC: R←A+B
[3] END:

∇

1 ⎕STOP'PLUS'

2 PLUS 2

PLUS[1]
DYADIC

2

END
3

∇ r←foo y;a;b ⍝ some locals
;c;d ⍝ some more locals

(a b c d)←y
r←a+b-c×d

∇

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 104

Syntactical errors on Locals Lines are detected when the user attempts to fix the
function using the Editor or ⎕FX and will causes the operation to fail.

3.1.6 Namelists

The right argument and the result of a function may be specified in the function header
by a single name or by a Namelist. In this context, a Namelist is a blank-delimited list of
names surrounded by a single set of parentheses.

Names specified in a Namelist are automatically local to the function; there is no need
to localise them explicitly using semi-colons.

If the right argument of a function is declared as a Namelist, the function will only
accept a right argument that is a vector whose length is the same as the number of
names in the Namelist. Calling the function with any other argument will result in a
LENGTH ERROR in the calling statement. Otherwise, the elements of the argument are
assigned to the names in the Namelist in the specified order.

Example

Note that if you specify a single name in the Namelist, the function may be called only
with a 1-element vector right argument. If the result of a function is declared as a
Namelist, the values of the names will automatically be stranded together in the
specified order and returned as the result of the function when the function
terminates.

∇ IDN←Date2IDN(Year Month Day)
[1] 'Year is ',⍕Year
[2] 'Month is ',⍕Month
[3] 'Day is ',⍕Day
[4] ...

∇

Date2IDN 2004 4 30
Year is 2004
Month is 4
Day is 30

Date2IDN 2004 4
LENGTH ERROR

Date2IDN 2004 4
^

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 105

Example

3.1.7 Locked Functions & Operators

A defined operation may be locked by the system function ⎕LOCK.

Once locked, and operation may not be displayed or edited and the system functions
⎕CR, ⎕NR and ⎕VR return empty results.

Stop, trace and monitor settings are cancelled when an operation is locked.

A locked operation may not be suspended, nor may a locked operation remain pendent
when execution is suspended. Instead, the state indicator is cut back to the point
where the locked operation was invoked.

3.1.8 Function Declaration Statements

Function Declaration Statements

Function Declaration statements are used to identify the characteristics of a function in
some way.

The following declarative statements are provided.

Section 3.1.8.2

Section 3.1.8.3

:Implements

:Signature

With one exception, these statements are not executable statements and may
theoretically appear anywhere in the body of the function. However, it is
recommended that you place them at the beginning before any executable statements.
The exception is:

∇ (Year Month Day)←Birthday age
[1] Year←1949+age
[2] Month←4
[3] Day←30

∇
Birthday 50

1999 4 30

•

•

•

•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 106

In addition to being declarative (declaring the function to be a Constructor) this
statement also executes the Constructor in the Base Class whether or not it
includes :Base expr. Its position in the code is therefore significant.

Access Statement :Access

The :Access statement is used to specify characteristics for functions that represent
Methods in classes (see Section 4.3.3.1). It is also applicable to Classes and Properties.

Element Description

Private|

Public

Specifies whether or not the method is accessible from outside
the Class or an Instance of the Class. The default is Private .

Instance|

Shared

Specifies whether the method runs in the Class or Instance. The
default is Instance .

WebMethod
Specifies that the method is exported as a web method. This
applies only to a Class that implements a Web Service.

Overridable

Applies only to an Instance Method and specifies that the
Method may be overridden by a Method in a higher Class. See
below.

Override

Applies only to an Instance Method and specifies that the
Method overrides the corresponding Overridable Method
defined in the Base Class. See below

Overridable/Override

Normally, a Method defined in a higher Class replaces a Method of the same name that
is defined in its Base Class, but only for calls made from above or within the higher
Class itself (or an Instance of the higher Class). The base method remains available in
the Base Class and is invoked by a reference to it from within the Base Class.

However, a Method declared as being Overridable is replaced in-situ (that is, within
its own Class) by a Method of the same name in a higher Class if that Method is itself
declared with the Override keyword. For further information, see Section 4.3.3.4.

:Implements Constructor <[:Base expr]>

:Access <Private|Public><Instance|Shared>
:Access <WebMethod>

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 107

WebMethod

Note that :Access WebMethod is equivalent to:

Attribute Statement :Attribute

The :Attribute statement is used to attach .NET Attributes to a Method (or Class).

Attributes are descriptive tags that provide additional information about programming
elements. Attributes are not used by Dyalog APL but other applications can refer to the
extra information in attributes to determine how these items can be used. Attributes
are saved with the metadata of Dyalog APL .NET assemblies.

Element Description

Name The name of a .NET attribute

ConstructorArgs Optional arguments for the Attribute constructor

Examples

Implements Statement :Implements

The :Implements statement identifies the function to be one of the following types.

:Access Public
:Attribute System.Web.Services.WebMethodAttribute

:Attribute <Name> [ConstructorArgs]

:Attribute ObsoleteAttribute
:Attribute ObsoleteAttribute 'Don''t use' 1

:Implements Constructor <[:Base expr]>
:Implements Destructor
:Implements Method <InterfaceName.MethodName>
:Implements Trigger <name1><,name2,name3,...>
:Implements Trigger *

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 108

Element Description

Constructor Specifies that the function is a Class Constructor .

:Base expr
Specifies that the Base Constructor be called with the result of the
expression expr as its argument.

Destructor Specifies that the function is a Class Destructor .

Method
Specifies that the function implements the Method MethodName
whose syntax is specified by Interface InterfaceName .

Trigger

Identifies the function as a Trigger Function which is activated by
changes to variable name1, name2, and so forth. Trigger *
specifies a Global Trigger that is activated by the assignment of
any global variable in the same namespace.

Signature Statement :Signature

This statement identifies the name and signature by which a function is exported as a
method to be called from outside Dyalog APL. Several :Signature statements may be
specified to allow the method to be called with different arguments and/or to specify a
different result type.

Element Description

rslttype Specifies the data type for the result of the method

name Specifies the name of the exported method.

argntype Specifies the data type of the nth parameter

argnname Specifies the name of the nth parameter

Argument and result data types are identified by the names of .NET Types which are
defined in the .NET Assemblies specified by ⎕USING or by a :USING statement.

Examples

In the following examples, it is assumed that the .NET Search Path (defined by :Using
or ⎕USING includes 'System'.

:Signature <rslttype←><name><arg1type arg1name>,...

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 109

The following statement specifies that the function is exported as a method named
Format which takes a single parameter of type System.Object named Array. The data
type of the result of the method is an array (vector) of type System.String.

The next statement specifies that the function is exported as a method named
Catenate whose result is of type System.Object and which takes 3 parameters. The
first parameter is of type System.Double and is named Dimension. The second is of
type System.Object and is named Arg1. The third is of type System.Object and is
named Arg2.

The next statement specifies that the function is exported as a method named
IndexGen whose result is an array of type System.Int32 and which takes 2
parameters. The first parameter is of type System.Int32 and is named N. The second is
of type System.Int32 and is named Origin.

The next block of statements specifies that the function is exported as a method
named Mix. The method has 4 different signatures; that is, it may be called with 4
different parameter/result combinations.

:Signature String[]←Format Object Array

:Signature Object←Catenate Double Dimension,...
...Object Arg1, Object Arg2

:Signature Int32[]←IndexGen Int32 N, Int32 Origin

:Signature Int32[,]←Mix Double Dimension, ...
...Int32[] Vec1, Int32[] Vec2

:Signature Int32[,]←Mix Double Dimension,...
... Int32[] Vec1, Int32[] Vec2, Int32 Vec3

:Signature Double[,]←Mix Double Dimension, ...
... Double[] Vec1, Double[] Vec2

:Signature Double[,]←Mix Double Dimension, ...
... Double[] Vec1, Double[] Vec2, Double[] Vec3

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 110

3.1.9 Control Structures

Introduction

Control Structures are blocks of code in which the execution of APL statements follows
certain rules and conditions. Control structures are implemented using a set of control
words that all start with the colon symbol (:). Control Words are case-insensitive.

There are a number of different types of control structures defined by the control
words, :If, :While, :Repeat, :For (with the supplementary control words :In and
:InEach), :Select, :With, :Trap, :Hold and :Disposable. Each one of these control
words may occur only at the beginning of an APL statement and indicates the start of a
particular type of control structure.

Within a control structure, certain other control words are used as qualifiers. These are
:Else, :ElseIf, :AndIf, :OrIf, :Until, :Case and :CaseList.

A third set of control words is used to identify the end of a particular control structure.
These are
:EndIf, :EndWhile, :EndRepeat, :EndFor, :EndSelect, :EndWith, :EndTrap, :EndHold
and :EndDisposable. Although formally distinct, these control words may all be
abbreviated to :End.

Finally, the :GoTo, :Return, :Leave and :Continue control words may be used to
conditionally alter the flow of execution within a control structure.

Control words, including qualifiers such as :Else and :ElseIf, may occur only at the
beginning of a line or expression in a diamond-separated statement. The only
exceptions are :In and :InEach which must appear on the same line within a :For
expression.

Key to Notation

The following notation is used to describe Control Structures within this section:

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 111

aexp an expression returning an array,

bexp an expression returning a single Boolean value (0 or 1),

var loop variable used by :For control structure,

code 0 or more lines of APL code, including other (nested) control structures,

andor

either one or more :AndIf statements, or one or more :OrIf statements.
For further details, see below.

Notes

Code preceding :OrIf and :AndIf

Code that precedes a :OrIf control statement, e.g. code placed between a :If
statement and a subsequent :OrIf, will be executed only if the outer condition is false.
If instead the outer condition is true, there is no need to execute the :OrIfstatement ,
so it and any preceding lines of code are skipped.

Code that precedes a :AndIf control statement, e.g. code placed between a :If
statement and a subsequent :AndIf, will only be executed if the outer condition is
true. If instead the outer condition is false, there is no need to execute the :AndIf
statement , so it and any preceding lines of code are skipped.

The above behaviour may be examined using the Tracer.

|
.-----------------------.
| |
|<--------------. |<--------------.
| | | |
code | code |
| | | |
| | | |
:AndIf bexp-----' :OrIf bexp------'
| |
|<----------------------'
|

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 112

A potential use for code before a :OrIf or :AndIf is to prepare for the conditional test.
This preparatory work will only be done if required. For example:

With the exception of a diamondised statement, a control statement that should

not be followed by an expression will generate an error if an expression is

supplied.

A line in a function consisting of a control statement followed by a ⋄ and

subsequent expression(s) is not currently disallowed but may exhibit unexpected

behaviour. In particular, the line will not honour ⎕STOP and will not be metered

by ⎕MONITOR . This syntax is not recommended.

If Statement :If bexp

The simplest :If control structure is a single condition of the form:

If the test condition (in this case AGE<21) is true, the statements between the :If and
the :EndIf will be executed. If the condition is false, none of these statements will be
run and execution resumes after the :EndIf. Note that the test condition to the right
of :If must return a single element Boolean value 1 (true) or 0 (false).

:If control structures may be considerably more complex. For example, the following
code will execute the statements on lines [2-3] if AGE<21 is 1 (true), or alternatively,
the statement on line [6] if AGE<21 is 0 (false).

:If x ⍝ if x is false, skip everything up to the :EndIf
y←..⍝ set up stuff for the condition on the next line
:AndIf y

do stuff
:EndIf

Warning

[1] :If AGE<21
[2] expr 1
[3] expr 2
[5] :EndIf

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 113

Instead of a single condition, it is possible to have multiple conditions using the
:ElseIf control word. For example:

Notice that APL executes the expression(s) associated with the first condition that is
true or those following the :Else if none of the conditions are true.

The :AndIf and :OrIf control words may be used to define a block of conditions and
so refine the logic still further. You may qualify an :If or an :ElseIf with one or more
:AndIf statements or with one or more :OrIf statements. You may not however mix
:AndIf and :OrIf in the same conditional block. For example:

Please note that in a :If control structure, the conditions associated with each of the
condition blocks are executed in order until an entire condition block evaluates to true.
At that point, the APL statements following this condition block are executed. None of
the conditions associated with any other condition block are executed. Furthermore, if
an :AndIf condition yields 0 (false), it means that the entire block must evaluate to

[1] :If AGE<21
[2] expr 1
[3] expr 2
[5] :Else
[6] expr 3
[7] :EndIf

[1] :If WINEAGE<5
[2] 'Too young to drink'
[5] :ElseIf WINEAGE<10
[6] 'Just Right'
[7] :ElseIf WINEAGE<15
[8] 'A bit past its prime'
[9] :Else
[10] 'Definitely over the hill'
[11] :EndIf

[1] :If WINE.NAME≡'Chateau Lafitte'
[2] :AndIf WINE.YEAR∊1962 1967 1970
[3] 'The greatest?'
[4] :ElseIf WINE.NAME≡'Chateau Latour'
[5] :Orif WINE.NAME≡'Chateau Margaux'
[6] :Orif WINE.PRICE>100
[7] 'Almost as good'
[8] :Else

[9] 'Everyday stuff'
[10] :EndIf

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 114

false so the system moves immediately on to the next block without executing the
other conditions following the failing :AndIf. Likewise, if an :OrIf condition yields 1
(true), the entire block is at that point deemed to yield true and none of the following
:OrIf conditions in the same block are executed.

While Statement :While bexp

The simplest :While loop is :

Unless expr1 or expr2 alter the value of I, the above code will execute lines [3-4] 100
times. This loop has a single condition; the value of I. The purpose of the :EndWhile
statement is solely to mark the end of the iteration. It acts the same as if it were a
branch statement, branching back to the :While line.

An alternative way to terminate a :While structure is to use a :Until statement. This
allows you to add a second condition. The following example reads a native file
sequentially as 80-byte records until it finds one starting with the string 'Widget' or
reaches the end of the file.

Instead of single conditions, the tests at the beginning and end of the loop may be
defined by more complex ones using :AndIf and :OrIf. For example:

In this example, there are complex conditions at both the start and the end of the
iteration. Each time around the loop, the system tests that both i and j are less than

[1] I←0
[2] :While I<100
[3] expr1
[4] expr2
[5] I←I+1
[6] :EndWhile

[1] I←0
[2] :While I<⎕NSIZE ¯1
[3] REC←⎕NREAD ¯1 82 80
[4] I←I+⍴REC
[5] :Until 'Widget'≡6⍴REC

[1] :While 100>i
[2] :AndIf 100>j
[3] i j←foo i j
[4] :Until 100<i+j
[5] :OrIf i<0
[6] :OrIf j<0

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 115

or equal to 100. If either test fails, the iteration stops. Then, after i and j have been
recalculated by foo, the iteration stops if i+j is equal to or greater than 100, or if either
i or j is negative.

Repeat Statement :Repeat

The simplest type of :Repeat loop is as follows. This example executes lines [3-5] 100
times. Notice that as there is no conditional test at the beginning of a :Repeat
structure, its code statements are executed at least once.

You can have multiple conditional tests at the end of the loop by adding :AndIf or
:OrIf expressions. The following example will read data from a native file as 80-
character records until it reaches one beginning with the text string 'Widget' or
reaches the end of the file.

A :Repeat structure may be terminated by an :EndRepeat (or :End) statement in place
of a conditional expression. If so, your code must explicitly jump out of the loop using
a :Leave statement or by branching. For example:

For Statement :For var :In[Each] aexp

[1] I←0
[2] :Repeat
[3] expr1
[4] expr2
[5] I←I+1
[6] :Until I=100

[1] :Repeat
[2] REC←⎕NREAD ¯1 82 80
[3] :Until 'Widget'≡6⍴REC
[4] :OrIf 0=⍴REC

[1] :Repeat
[2] REC←⎕NREAD ¯1 82 80
[3] :If 0=⍴REC
[4] :OrIf 'Widget'≡6⍴REC
[5] :Leave
[6] :EndIf
[7] :EndRepeat

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 116

Single Control Variable

The :For loop is used to execute a block of code for a series of values of a particular
control variable. For example, the following would execute lines [2-3] successively for
values of I from 3 to 5 inclusive:

The way a :For loop operates is as follows. On encountering the :For, the expression
to the right of :In is evaluated and the result stored. This is the control array. The
control variable, named to the right of the :For, is then assigned the first value in the
control array, and the code between :For and :EndFor is executed. On encountering
the :EndFor, the control variable is assigned the next value of the control array and
execution of the code is performed again, starting at the first line after the :For. This
process is repeated for each value in the control array.

Note that if the control array is empty, the code in the :For structure is not executed.
Note too that the control array may be any rank and shape, but that its elements are
assigned to the control variable in ravel order.

The control array may contain any type of data. For example, the following code resizes
(and compacts) all your component files

You may also nest :For loops. For example, the following expression finds the
timestamp of the most recently updated component in all your component files.

[1] :For I :In 3 4 5
[2] expr1 I
[3] expr2 I
[4] :EndFor

[1] :For FILE :In (↓⎕FLIB '')~¨' '
[2] FILE ⎕FTIE 1
[3] ⎕FRESIZE 1
[4] ⎕FUNTIE 1
[5] :EndFor

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 117

Multiple Control Variables

The :For control structure can also take multiple variables. This has the effect of doing
a strand assignment each time around the loop.

For example :For a b c :in (1 2 3)(4 5 6), sets a b c←1 2 3, first time around
the loop and a b c←4 5 6, the second time.

Another example is :For i j :In ⍳⍴Matrix, which sets i and j to each row and
column index of Matrix.

:InEach Control Word

In a :For control structure, the keyword :InEach is an alternative to :In.

For a single control variable, the effect of the keywords is identical but for multiple
control variables the values vector is inverted.

The distinction is best illustrated by the following equivalent examples:

In each case, the output from the loop is:

[1] TS←0
[2] :For FILE :In (↓⎕FLIB '')~¨' '
[3] FILE ⎕FTIE 1
[4] START END←2⍴⎕FSIZE 1
[5] :For COMP :In (START-1)↓⍳END-1
[6] TS⌈←¯1↑⎕FREAD FILE COMP
[7] :EndFor
[8] ⎕FUNTIE 1
[9] :EndFor

:For var ... :InEach value ...

:For a b c :In (1 2 3)(3 4 5)(5 6 7)(7 8 9)
⎕←a b c

:EndFor

:For a b c :InEach (1 3 5 7)(2 4 6 8)(3 5 7 9)
⎕←a b c

:EndFor

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 118

Notice that in the second case, the number of items in the values vector is the same as
the number of control variables. A more typical example might be.

Here, each time around the loop, control variable a is set to the next item of avec, b to
the next item of bvec and c to the next item of cvec.

Select Statement :Select aexp

A :Select structure is used to execute alternative blocks of code depending upon the
value of an array. For example, the following displays 'I is 1' if the variable I has the
value 1, 'I is 2' if it is 2, or 'I is neither 1 nor 2' if it has some other value.

In this case, the system compares the value of the array expression to the right of the
:Select statement with each of the expressions to the right of the :Case statements
and executes the block of code following the one that matches. If none match, it
executes the code following the :Else (which is optional). Note that comparisons are
performed using the ≡ primitive function, so the arrays must match exactly. Note also
that not all of the :Case expressions are necessarily evaluated because the process
stops as soon as a matching expression is found.

Instead of a :Case statement, you may also use a :CaseList statement. If so, the
enclose of the array expression to the right of :Select is tested for membership of the
array expression to the right of the :CaseList using the ∊ primitive function.

1 2 3
3 4 5
5 6 7
7 8 9

:For a b c :InEach avec bvec cvec
...

:EndFor

[1] :Select I
[2] :Case 1
[3] 'I is 1'
[4] :Case 2
[5] 'I is 2'
[6] :Else
[7] 'I is neither 1 nor 2'
[8] :EndSelect

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 119

Note also that any code placed between the :Select and the first :Case or :CaseList
statements are unreachable; future versions of Dyalog APL may generate an error when
attempting to fix functions which include such code.

Example

With Statement :With obj

:With is a control structure that may be used to simplify a series of references to an
object or namespace. :With changes into the specified namespace for the duration of
the control structure, and is terminated by :End[With]. obj is either the name of or a
reference to a namespace. For example, you could update several properties of a Grid
object F.G as follows:

:With is analogous to ⎕CS in the following senses:

The namespace argument to :With is interpreted relative to the current space.
With the exception of those with name class 9, local names in the containing
defined function continue to be visible in the new space.
Global references from within the :With control structure are to names in the
new space.
Exiting the defined function from within a :With control structure causes the
space to revert to the one from which the function was called.

[1] :Select ?6 6
[2] :Case 6 6
[3] 'Box Cars'
[4] :Case 1 1
[5] 'Snake Eyes'
[6] :CaseList 2⍴¨⍳6
[7] 'Pair'
[8] :CaseList (⍳6),¨⌽⍳6
[9] 'Seven'
[10] :Else
[11] 'Unlucky'
[12] :EndSelect

:With F.G
Values←4 3⍴0
RowTitles←'North' 'South' 'East' 'West'
ColTitles←'Cakes' 'Buns' 'Biscuits'

:EndWith

•
•

•

•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 120

On leaving the :With control structure, execution reverts to the original namespace.
Notice however that the interpreter does not detect branches (→) out of the control
structure. :With control structures can be nested in the normal fashion:

Hold Statement :Hold tkns

Whenever more than one thread tries to access the same piece of data or shared
resource at the same time, you need some type of synchronisation to control access to
that data. This is provided by :Hold.

:Hold provides a mechanism to control thread entry into a critical section of code.
tkns must be a simple character vector or scalar, or a vector of character vectors. tkns
represents a set of "tokens", all of which must be acquired before the thread can
continue into the control structure. :Hold is analogous to the component file system
⎕FHOLD which is used to synchronise access between processes. See also Earlier
Release Notes: Fhold.

Within the whole active workspace, a token with a particular value may be held only
once. If the hold succeeds, the current thread acquires the tokens and execution
continues with the first phrase in the control structure. On exit from the structure, the
tokens are released for use by other threads. If the hold fails, because one or more of
the tokens is already in use:

If there is no :Else clause in the control structure, execution of the thread is
blocked until the requested tokens become available.
Otherwise, acquisition of the tokens is abandoned and execution resumed
immediately at the first phrase in the :Else clause.

tkns can be either a single token:

[1] :With 'x' ⍝ Change to #.x
[2] :With 'y' ⍝ Change to #.x.y
[3] :With ⎕SE ⍝ Change to ⎕SE
[4] ... ⍝ ... in ⎕SE
[5] :EndWith ⍝ Back to #.x.y
[6] :EndWith ⍝ Back to #.x
[7] :EndWith ⍝ Back to #

1.

2.

'a'
'Red'
'#.Util'
''
'Program Files'

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 121

… or a number of tokens:

Pre-processing removes trailing blanks from each token before comparison, so that, for
example, the following two statements are equivalent:

Unlike ⎕FHOLD, a thread does not release all existing tokens before attempting to
acquire new ones. This enables the nesting of holds, which can be useful when multiple
threads are concurrently updating parts of a complex data structure.

In the following example, a thread updates a critical structure in a child namespace,
and then updates a structure in its parent space. The holds will allow all "sibling"
namespaces to update concurrently, but will constrain updates to the parent structure
to be executed one at a time.

However, with the nesting of holds comes the possibility of a "deadlock". For example,
consider the two threads:

Thread 1 Thread 2

'red' 'green' 'blue'
'doe' 'a' 'deer'
,¨'abc'
↓⎕NL 9

:Hold 'Red' 'Green'
:Hold ↓2 5⍴'Red Green'

:Hold ⎕CS'' ⍝ Hold child space
... ⍝ Update child space
:Hold ##.⎕CS'' ⍝ Hold parent space

... ⍝ Update Parent space
:EndHold
...

:EndHold

:Hold 'red'
 ...
 :Hold 'green'
 ...
 :EndHold
 :EndHold

:Hold 'green'
 ...
 :Hold 'red'
 ...
 :EndHold
 :EndHold

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 122

In this case if both threads succeed in acquiring their first hold, they will both block
waiting for the other to release its token.

If this deadlock situation is detected acquisition of the tokens is abandoned. Then:

If there is an :Else clause in the control structure, execution jumps to the :Else
clause.
Otherwise, APL issues an error (1008) DEADLOCK.

You can avoid deadlock by ensuring that threads always attempt to acquire tokens in
the same chronological order, and that threads never attempt to acquire tokens that
they already own.

Note that token acquisition for any particular :Hold is atomic, that is, either all of the
tokens or none of them are acquired. The following example cannot deadlock:

Thread 1 Thread 2

Examples

:Hold could be used for example, during the update of a complex data structure that
might take several lines of code. In this case, an appropriate value for the token would
be the name of the data structure variable itself, although this is just a programming
convention: the interpreter does not associate the token value with the data variable.

The next example guarantees exclusive use of the current namespace:

1.

2.

:Hold 'red'
 ...
 :Hold 'green'
 ...
 :EndHold
 :EndHold

:Hold 'green' 'red'
 ...
 :EndHold

:Hold'Struct'
... ⍝ Update Struct
Struct ← ...

:EndHold

:Hold ⎕CS'' ⍝ Hold current space
...

:EndHold

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 123

The following example shows code that holds two positions in a vector while the
contents are exchanged.

Between obtaining the next available file tie number and using it:

The above hold is not necessary if the code is combined into a single line:

or,

Note that :Hold, like its component file system counterpart ⎕FHOLD, is a device to
enable co-operating threads to synchronise their operation.

:Hold does not prevent threads from updating the same data structures concurrently,
it prevents threads only from :Holding the same tokens.

High-Priority Callbacks

:Hold with a non-zero number of tokens is not permitted in a high-priority callback and
an attempt to use it will cause the error:

See Interfaces: High Priority Callbacks.

Trap Statement :Trap ecode

:Hold ⍕¨to fm
:If >/vec[fm to]

vec[fm to]←vec[to fm]
:End

:End

:Hold '⎕FNUMS'
tie←1+⌈/0,⎕FNUMS
fname ⎕FSTIE tie

:End

fname ⎕FSTIE tie←1+⌈/0,⎕FNUMS

tie←fname ⎕FSTIE 0

DOMAIN ERROR: Cannot :Hold within high priority callback

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 124

:Trap is an error trapping mechanism that can be used in conjunction with, or as an
alternative to, the ⎕TRAP system variable. It is equivalent to APL2's ⎕EA, except that the
code to be executed is not restricted to a single expression and is not contained within
quotes (and so is slightly more efficient).

ecode is an integer scalar or vector containing the list of event codes which are to be
handled during execution of the segment of code between the :Trap and :End[Trap]
statements. Note that event codes 0 and 1000 are wild cards that means any event
code in a given range. See Section 8.1.2.

Operation

The segment of code immediately following the :Trap keyword is executed. On
completion of this segment, if no error occurs, control passes to the code following
:End[Trap].

If an error occurs which is not specified by ecode, it is processed by outer :Traps,
⎕TRAPs, or by the default system processing in the normal fashion.

If an error occurs, whose event code matches ecode:

If the error occurred within a sub-function, the system cuts the state indicator
back to the function containing the :Trap keyword. In this respect, :Trap
behaves like ⎕TRAP with a 'C' qualifier.
If the :Trap segment contains a :Case[List] ecode statement whose ecode
matches the event code of the error that has occurred, execution continues from
the statement following that :Case[List] ecode.
Otherwise, if the :Trap segment contains a :Else statement, execution
continues from the first statement following the :Else statement.
Otherwise, execution continues from the first statement following the
:End[Trap] and no error processing occurs.

Note that the error trapping is in effect only during execution of the initial code
segment. When a trapped error occurs, further error trapping is immediately disabled
(or surrendered to outer level :Traps or ⎕TRAPs). In particular, the error trap is no
longer in effect during processing of :Case[List]'s argument or in the code following
the :Case[List] or :Else statement. This avoids the situation sometimes
encountered with ⎕TRAP where an infinite "trap loop" occurs.

Note that the statement :Trap ⍬ results in no errors being trapped.

•

•

•

•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 125

Examples

Note that :Traps can be nested:

∇ lx
[1] :Trap 1000 ⍝ Cutback and exit on interrupt
[2] Main ...
[3] :EndTrap

∇

∇ ftie←Fcreate file ⍝ Create null component file
[1] :Trap 22 ⍝ Trap FILE NAME ERROR
[2] ftie←file ⎕FCREATE 0 ⍝ Try to create file.
[3] :Else
[4] ftie←file ⎕FTIE 0 ⍝ Tie the file.
[5] file ⎕FERASE ftie ⍝ Drop the file.
[6] file ⎕FCREATE ftie ⍝ Create new file.
[7] :EndTrap

∇

∇ lx ⍝ Distinguish various cases
[1] :Trap 0 1000
[2] Main ...
[3] :Case 1002
[4] 'Interrupted ...'
[5] :CaseList 1 10 72 76
[6] 'Not enough resources'
[7] :CaseList 17+⍳20
[8] 'File System Problem'
[9] :Else
[10] 'Unexpected Error'
[11] :EndTrap

∇

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 126

GoTo Statement :GoTo aexp

A :GoTo statement is a direct alternative to → (branch) and causes execution to jump to
the line specified by the first element of aexp.

The following are equivalent. See Dyalog APL Language: Branch for further details.

Return Statement :Return

A :Return statement causes a function to terminate and has exactly the same effect as
→0.

The :Return control word takes no argument.

A :Return statement may occur anywhere in a function or operator.

∇ ntie←Ntie file ⍝ Tie native file
[1] :Trap 22 ⍝ Trap FILE NAME ERROR
[2] ntie←file ⎕NTIE 0 ⍝ Try to tie file
[3] :Else
[4] :Trap 22 ⍝ Trap FILE NAME ERROR
[5] ntie←(file,'.txt')⎕NTIE 0 ⍝ Try with .txt extn
[6] :Else
[7] ntie←file ⎕NCREATE 0 ⍝ Create null file.
[8] :EndTrap
[9] :EndTrap

∇

→Exit
:GoTo Exit

→(N<I←I+1)/End
:GoTo (N<I←I+1)/End

→1+⎕LC
:GoTo 1+⎕LC

→10
:GoTo 10

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 127

Leave Statement :Leave

A :Leave statement is used to explicitly terminate the execution of a block of
statements within a :For, :Repeat or :While control structure.

The :Leave control word takes no argument.

Continue Statement :Continue

A :Continue statement starts the next iteration of the immediately surrounding
:For, :Repeat or :While control loop.

When executed within a :For loop, the effect is to start the body of the loop with the
next value of the iteration variable.

When executed within a :Repeat or :While loop, if there is a trailing test that test is
executed and, if the result is true, the loop is terminated. Otherwise the leading test is
executed in the normal fashion.

Section Statement :Section

Functions and scripted objects (classes, namespaces etc.) can be subdivided into
Sections with :Section and :EndSection statements. Both statements may be
followed by an optional and arbitrary name or description. The purpose is to split the
function up into sections that you can open and close in the Editor, thereby aiding
readability and code management. Sections have no effect on the execution of the
code, but must follow the nesting rules of other control structures.

Disposable Statement :Disposable

The Dyalog interface to .NET involves the creation and removal of .NET objects. Many
such objects are managed in that the .NET Common Language RunTime (CLR)
automatically releases the memory allocated to the object when that object is no
longer used. However, it is not possible to predict when the CLR garbage collection will
occur. Furthermore, the garbage collector has no knowledge of unmanaged resources
such as window handles, or open files and streams.

Typically, .NET classes implement a special interface called IDisposable which provides a
standard way for applications to release memory and other resources when an instance
is removed. Furthermore, the C# language has the using keyword, which "Provides a
convenient syntax that ensures the correct use of IDisposable objects."

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 128

The :Disposable array statement in Dyalog APL provides a similar facility to C#'s
using. array may be a scalar or vector of namespace references.

When the block is exited, any .NET objects in array that implement IDisposable will
have IDisposable.Dispose called on them.

Note that exit includes normal exit as the code drops through :EndDisposable, or if an
error occurs and is trapped, or if branch (→) is used to exit the block, or anything else.

See also: .Disposing of .NET Objects.

Example (Normal Exit)

In the above example, when the :EndDisposable statement is reached, the system
disposes of the Font object f (and all the resources associated with it) by calling
(IDisposable)f.Dispose(). A subsequent reference to f would generate VALUE
ERROR.

Example (Normal Exit)

In the above example, Dispose() is called on each of the Font objects in fonts during
the processing of :EndDisposable.

:Disposable f←⎕NEW Font
.
.
:EndDisposable

:Disposable fonts←⎕NEW ¨Font Font
.
.
:EndDisposable

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 129

Example (Branch Exit)

In this example, Dispose() is called on the Font objects in fonts during the processing
of the branch statement →0.

Example (TrapExit)

Here, the objects are disposed of when the DOMAIN ERROR generated by the expression
÷0 causes the stack to be cut back to the :Else clause. At this point (just before the
execution of the :Else clause) the name class of fonts becomes 0.

:Disposable fonts←⎕NEW ¨Font Font
.
→0
.
:EndDisposable

:trap 0

:Disposable fonts←⎕NEW ¨Font Font
.
÷0
.
:EndDisposable

:else

⎕←'failed'

:endif

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 130

3.1.10 APL Line Editor

The APL Line Editor described herein is included for completeness and for adherence to
the ISO APL standard. Dyalog recommends the use of the more powerful Editor and
Tracer in preference to the APL Line Editor. Full details of these facilities can be found in
the UI Guides for your version of Dyalog APL, as well as in the descriptions of ⎕ED and
)ED which appear in the Dyalog APL Language Reference Guide.

Using the APL Line Editor, functions and operators are defined by entering Definition
Mode. This mode is opened and closed by the Del symbol, ∇. Within this mode, all
evaluation of input is deferred. The standard APL line editor (described below) is used
to create and edit operations within definition mode.

Operations may also be defined using the system function ⎕FX (implicit in a ⎕ED fix)
which acts upon the canonical (character), vector, nested or object representation form
of an operation. (See Dyalog APL Language: Fx for details.)

Functions may also be created dynamically or by function assignment.

The line editor recognises three forms for the opening request.

Creating Defined Operation

The opening ∇ symbol is followed by the header line of a defined operation. Redundant
blanks in the request are permitted except within names. If acceptable, the editor
prompts for the first statement of the operation body with the line-number 1 enclosed
in brackets. On successful completion of editing, the defined operation becomes the
active definition in the workspace.

Example

The given operation name must not have an active referent in the workspace,
otherwise the system reports defn error and the system editor is not invoked:

∇R←FOO
[1] R←10
[2] ∇

FOO
10

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 131

The header line of the operation must be syntactically correct, otherwise the system
reports defn error and the system editor is not invoked:

Listing Defined Operation

The ∇ symbol followed by the name of a defined operation and then by a closing ∇,
causes the display of the named operation. Omitting the function name causes the
suspended operation (that is, the one at the top of the state indicator) to be displayed
and opened for editing.

Example

Editing Active Defined Operation

Definition mode is entered by typing ∇ followed optionally by a name and editing
directive.

The ∇ symbol on its own causes the suspended operation (that is, the one at the top of
the state indicator) to be displayed. The editor then prompts for a statement or editing
directive with a line-number one greater than the highest line-number in the function.

)VARS
SALES X Y

∇R←SALES Y
defn error

∇R←A B C D:G
defn error

∇FOO∇
∇ R←FOO

[1] R←10
∇

)SI
#.FOO[1] *

∇
∇ R←FOO

[1] R←10
[2]

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 132

If the state indicator is empty, the system reports defn error and definition mode is
not entered.

The ∇ symbol followed by the name of an active defined operation causes the display of
the named operation. The editor then prompts for input as described above. If the
name given is not the name of an active referent in the workspace, the opening
request is taken to be the creation of a new operation as described in paragraph 1. If
the name refers to a pendent operation, the editor issues the message warning
pendent operation prior to displaying the operation. If the name refers to a locked
operation, the system reports defn error and definition mode is not entered.

The ∇ symbol followed by the name of an active defined operation and an editing
directive causes the operation to be opened for editing and the editing directive
actioned. If the editing directive is invalid, it is ignored by the editor which then
prompts with a line-number one greater than the highest line-number in the
operation. If the name refers to a pendent operation, the editor issues the message
warning pendent operation prior to actioning the editing directive. If the name
refers to a locked operation, the system reports defn error and definition mode is not
entered.

On successful completion of editing, the defined operation becomes the active
definition in the workspace which may replace an existing version of the function.
Monitors, and stop and trace vectors are removed.

Example

Editing Directives

Editing directives, summarised in Figure 2(iv) are permitted as the first non-blank
characters either after the operation name on opening definition mode for an active
defined function, or after a line-number prompt.

∇FOO[2]
[2] R←R*2
[3] ∇

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 133

Syntax Description

∇ Closes definition mode

[⎕] Displays the entire operation

[⎕n] Displays the operation starting at line n

[n⎕] Displays only line n

[∆n] Deletes line n

[n∆m] Deletes m lines starting at line n

[n] Prompts for input at line n

[n]s Replaces or inserts a statement at line n

[n⎕m]
Edits line n placing the cursor at character position m where an Edit
Control Symbol performs a specific action.

Line Numbers

Line numbers are associated with lines in the operation. Initially, numbers are assigned
as consecutive integers, beginning with [0] for the header line. The number associated
with an operation line remains the same for the duration of the definition mode unless
altered by editing directives. Additional lines may be inserted by decimal numbering.
Up to three places of decimal are permitted. On closing definition mode, operation
lines are re-numbered as consecutive integers.

The editor always prompts with a line number. The response may be a statement line
or an editing directive. A statement line replaces the existing line (if there is one) or
becomes an additional line in the operation:

Position

The editing directive [n], where n is a line number, causes the editor to prompt for
input at that line number. A statement or another editing directive may be entered. If
a statement is entered, the next line number to be prompted is the previous number
incremented by a unit of the display form of the last decimal digit. Trailing zeros are
not displayed in the fractional part of a line number:

∇R←A PLUS B
[1] R←A+B
[2]

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 134

The editing directive [n]s, where n is a line number and s is a statement, causes the
statement to replace the current contents of line n, or to insert line n if there is none:

Delete

The editing directive [∆n], where n is a line number, causes the statement line to be
deleted. The form [n∆m], where n is a line number and m is a positive integer, causes m
consecutive statement lines starting from line number n to be deleted.

Edit

The editing directive [n⎕m], where n is a line number and m is an integer number,
causes line number n to be displayed and the cursor placed beneath the m character on
a new line for editing. The response is taken to be edit control symbols selected from:

/ to delete the character immediately above the symbol.

1
to
9

to insert from 1 to 9 spaces immediately prior to the character above the
digit.

A
to
Z

to insert multiples of 5 spaces immediately prior to the character above the
letter, where A = 5, B = 10, C = 15 and so forth.

,

to insert the text after the comma, including explicitly entered trailing
spaces, prior to the character above the comma, and then re-display the line
for further editing with the text inserted and any preceding deletions or
space insertions also effected.

.

to insert the text after the comma, including explicitly entered trailing
spaces, prior to the character above the comma, and then complete the edit
of the line with the text inserted and any preceding deletions or space
insertions also effected.

[2] [0.8]
[0.8] ⍝ MONADIC OR DYADIC +
[0.9] ⍝ A ←→ OPTIONAL ARGUMENT
[1]

[1] [0] R←{A} PLUS B
[1]

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 135

Invalid edit symbols are ignored. If there are no valid edit symbols entered, or if there
are only deletion or space insertion symbols, the statement line is re-displayed with
characters deleted and spaces inserted as specified. The cursor is placed at the first
inserted space position or at the end of the line if none. Characters may be added to
the line which is then interpreted as seen.

The line number may be edited.

Examples

The form [n⎕0] causes the line number n to be displayed and the cursor to be
positioned at the end of the displayed line, omitting the edit phase.

Display

The editing directive [⎕] causes the entire operation to be displayed. The form [⎕n]
causes all lines from line number n to be displayed. The form [n⎕] causes only line
number n to be displayed:

[1] [1⎕7]
[1] R←A+B

,→(0=⎕NC'A')⍴1←⎕LC ⋄
[1] →(0=⎕NC'A')⍴1←⎕LC ⋄ R←A+B

.⋄→END
[2] R←B
[3] END:
[4]

[4] [0⎕]
[0] R←{A} PLUS B
[0]
[0] [⎕]
[0] R←{A} PLUS B
[0.1] ⍝ MONADIC OR DYADIC +
[1] →(0=⎕NC'A')⍴1+⎕LC ⋄ R←A+B ⋄→END
[2] R←B
[3] 'END:
[4]

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 136

Close Definition Mode

The editing directive ∇ causes definition mode to be closed. The new definition of the
operation becomes the active version in the workspace. If the name in the operation
header (which may or may not be the name used to enter definition mode) refers to a
pendent operation, the editor issues the message warning pendent operation before
exiting. The new definition becomes the active version, but the original one will
continue to be referenced until the operation completes or is cleared from the state
indicator.

If the name in the operation header is the name of a visible variable or label, the editor
reports defn error and remains in definition mode. It is then necessary to edit the
header line or quit.

If the header line is changed such that it is syntactically incorrect, the system reports
defn error, and re-displays the line leaving the cursor beyond the end of the text on
the line. Backspace/linefeed editing may be used to alter or cancel the change:

Local names may be repeated. However, the line editor reports warning messages as
follows:

If a name is repeated in the header line, the system reports "warning duplicate
name" immediately.
If a label has the same name as a name in the header line, the system reports
"warning label name present in line 0" on closing definition mode.

If a label has the same name as another label, the system reports "warning
duplicate label" on closing definition mode.

If a name is repeated in the header line, the system reports "warning duplicate
name" immediately.

If a label has the same name as a name in the header line, the system reports
"warning label name present in line 0" on closing definition mode.
If a label has the same name as another label, the system reports "warning
duplicate label" on closing definition mode.

[3] [0⎕] - display line 0
[0] R←{A} PLUS B
[0] R←{A} PLUS B:G;H - put syntax error in line 0
defn error
[0] R←{A} PLUS B:G;H - line redisplayed

;G;H - backspace/linefeed editing
[1]

1.

2.

3.

4.

5.

6.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 137

Improper syntax in expressions within statement lines of the function is not detected
by the system editor with the following exceptions:

If the number of opening parentheses in each entire expression does not equal
the number of closing parentheses, the system reports "warning unmatched
parentheses", but accepts the line.
If the number of opening brackets in each entire expression does not equal the
number of closing brackets, the system reports "warning unmatched brackets",
but accepts the line.

These errors are not detected if they occur in a comment or within quotes. Other
syntactical errors in statement lines will remain undetected until the operation is
executed.

Example

Note that there is an imbalance in the number of quotes. This will result in a SYNTAX
ERROR when this operation is executed.

Quit Definition Mode

The user may quit definition mode by typing the INTERRUPT character. The active
version of the operation (if any) remains unchanged.

•

•

[4] R←(A[;1)=2)⌿⍎EXP,'×2
warning unmatched parentheses
warning unmatched brackets
[5]

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 138

3.2 Dfns and Dops

3.2.1 Dfns & Dops

A dfn (dop)2 is an alternative function definition style suitable for defining small to
medium sized functions. It bridges the gap between operator expressions: rank←⍴∘⍴
and full "header style" definitions such as:

In its simplest form, a dfn is an APL expression enclosed in curly braces {}, possibly
including the special characters ⍺ and ⍵ to represent the left and right arguments of the
function respectively. For example:

dfns can be named in the normal fashion:

dfns can be defined and used in any context where an APL function may be found, in
particular:

In immediate execution mode as in the examples above.
Within a defined function or operator.
As the operand of an operator such as each (¨).
Within another dfn.
The last point means that it is easy to define nested local functions.

∇ rslt←larg func rarg;local...

{(+/⍵)÷⍴⍵} 1 2 3 4 ⍝ Arithmetic Mean (Average)
2.5

3 {⍵*÷⍺} 64 ⍝ ⍺th root
4

mean←{(+/⍵)÷⍴⍵}
mean¨(2 3)(4 5)

2.5 4.5

•
•
•
•
•

2 The terms dfn and dop refer to a special type of function (or operator) unique to Dyalog.
They were originally named dynamic functions and dynamic operators, later abbreviated to
Dfns and Dops or D-Fns and D-Ops, but all these terms have been dropped in favour of the
current ones.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 139

3.2.2 Multi-Line Dfns

The single expression which provides the result of the dfn may be preceded by any
number of assignment statements. Each such statement introduces a name which is
local to the function.

For example in the following, the expressions sum← and num← create local definitions
sum and num.

An assignment to ⍵ is not allowed and will result in an error. For assignment to ⍺, see
Section 3.2.3.

Note that dfns may be commented in the usual way using ⍝.

When the interpreter encounters a local definition, a new local name is created. The
name is shadowed dynamically exactly as if the assignment had been preceded by:
⎕SHADOW name ⋄.

It is important to note the distinction between the two types of statement above.
There can be many assignment statements, each introducing a new local definition, but
only a single expression where the result is not assigned. As soon as the interpreter
encounters such an expression, it is evaluated and the result returned immediately as
the result of the function.

For example, in the following,

... as soon as the interpreter encounters the expression sum,num, the function
terminates with the two item result (sum,num) and the following line is not evaluated.

To display arrays to the session from within a dfn, you can use the explicit display forms
⎕← or ⍞← as in:

mean←{ ⍝ Arithmetic mean
sum←+/⍵ ⍝ Sum of items
num←⍴⍵ ⍝ Number of items
sum÷num ⍝ Mean

}

mean←{ ⍝ Arithmetic mean
sum←+/⍵ ⍝ Sum of items
num←⍴⍵ ⍝ Number of items
sum,num ⍝ Attempt to show sum,num (wrong)!
sum÷num ⍝ ... and return result.

}

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 140

Note that local definitions can be used to specify local nested dfns:

3.2.3 Default Left Argument

The special syntax: ⍺←expr is used to give a default value to the left argument if a dfn is
called monadically. For example:

The expression to the right of ⍺← is evaluated only if its dfn is called with no left
argument.

Note that the syntax must be exactly ⍺←, that is, it cannot contain parentheses, and so
on.

⍺← must be the first tokens at the beginning of an expression.

Ambivalence

The assignment ⍺←⊢ allows an ambivalent function to call an ambivalent sub-function.
For example in:

mean←{ ⍝ Arithmetic mean
sum←+/⍵ ⍝ Sum of items
num←⍴⍵ ⍝ Number of items
⎕←sum,num ⍝ show sum,num.
sum÷num ⍝ ... and return result.

}

rms←{ ⍝ Root Mean Square
root←{⍵*0.5} ⍝ ∇ Square root
mean←{(+/⍵)÷⍴⍵} ⍝ ∇ Mean
square←{⍵×⍵} ⍝ ∇ Square
root mean square ⍵

}

root←{ ⍝ ⍺th root
⍺←2 ⍝ default to sqrt
⍵*÷⍺

}

foo←{
⍺←⊢
⍺ goo ⍵

}

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 141

If foo is given a left argument, this is passed to goo. Otherwise, ⍺ is assigned ⊢ and the
last line is ⊢ goo ⍵, which is a monadic call on goo followed by the ⊢ (Right) of the
result of goo, which is the same value.

The assignment ⍺←⍣0 allows an ambivalent operator to skip the application of an
operand to a missing argument. For example in:

If the function derived from over is given a left argument, this argument is
preprocessed by the left operand ⍺⍺ and the result is passed to the right operand ⍵⍵.
Otherwise, ⍺ is assigned ⍣0 and the last line is (⍺⍺⍣0)⍵⍵(⍺⍺ ⍵), which is a monadic call
on ⍵⍵ followed by not applying ⍺⍺ to the result of ⍵⍵, returning it unmodified.

The assignment ⍺←⍵ allows a function to act as if the commute operator (⍨) was applied
to it twice:

If sort is given a left argument, the right argument is sorted according to the left
argument. Otherwise, ⍺ is assigned ⍵ and the last line is ⍵[⍋⍵], which has the right
argument sorted according to itself. This is, therefore, equivalent to sort←{⍵[⍋⍺]}⍨⍨ or
sort←{⍺[⍋⍵]}⍨.

3.2.4 Guards

A Guard is a Boolean-single valued expression followed on the right by a ':'. For
example:

The guard is followed by a single APL expression: the result of the function.

A dfn may contain any number of guarded expressions each on a separate line (or
collected on the same line separated by diamonds). Guards are evaluated in turn until

over←{
⍺←⍣0
(⍺⍺ ⍺)⍵⍵(⍺⍺ ⍵)

}

sort←{
⍺←⍵
⍵[⍋⍺]

}

0≡≡⍵: ⍝ Right arg simple scalar
⍺<0: ⍝ Left arg negative

⍵≥0: ⍵*0.5 ⍝ Square root if non-negative.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 142

one of them yields a 1. The corresponding expression to the right of the guard is then
evaluated as the result of the function.

If an expression occurs without a guard, it is evaluated immediately as the default
result of the function. For example:

Local definitions and guards can be interleaved in any order.

Note again that any code following the first unguarded expression (which terminates
the function) could never be executed and would therefore be redundant.

See also Section 3.2.7.

3.2.5 Shy Result

Dfns are usually 'pure' functions that take arguments and return explicit results.
Occasionally, however, the main purpose of the function might be a side-effect such as
the display of information in the session, or the updating of a file, and the value of a
result, a secondary consideration. In such circumstances, you might want to make the
result 'shy', so that it is discarded unless the calling context requires it. This can be
achieved by assigning a dummy variable after a (true) guard:

3.2.6 Lexical Name Scope

When an inner (nested) dfn refers to a name, the interpreter searches for it by looking
outwards through enclosing dfns, rather than searching back along the state indicator.
This regime, which is more appropriate for nested functions, is said to employ lexical
scope instead of APL's usual dynamic scope. This distinction becomes apparent only if
a call is made to a function defined at an outer level. For the more usual inward calls,
the two systems are indistinguishable.

sign←{
⍵>0: '+ve' ⍝ Positive
⍵=0: 'zero' ⍝ zero

'-ve' ⍝ Negative (Default)
}

log←{ ⍝ Append ⍵ to file ⍺.
tie←⍺ ⎕FSTIE 0 ⍝ tie number for file,
cno←⍵ ⎕FAPPEND tie ⍝ new component number,
tie←⎕FUNTIE tie ⍝ untie file,
1:rslt←cno ⍝ comp number, shy result.

}

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 143

For example, in the following function, variable type is defined both within which itself
and within the inner function fn1. When fn1 calls outward to fn2 and fn2 refers to
type, it finds the outer one (with value 'lexical') rather than the one defined in fn1:

3.2.7 Error-Guards

An error-guard is (an expression that evaluates to) a vector of error numbers (see
Section 8.1.2), followed by the digraph: ::, followed by an expression, the body of the
guard, to be evaluated as the result of the function. For example:

In common with :Trap and ⎕TRAP, error numbers 0 and 1000 are catch-alls for
synchronous errors and interrupts respectively.

When an error is generated, the system searches dynamically through the calling
functions for an error-guard that matches the error. If one is found, the execution
environment is unwound to its state immediately prior to the error-guard's execution
and the body of the error-guard is evaluated as the result of the function. This means
that, during evaluation of the body, the guard is no longer in effect and so the danger
of a hang caused by an infinite "trap loop", is avoided.

Notice that you can provide "cascading" error trapping in the following way:

which←{

type←'lexical'

fn1←{
type←'dynamic'
fn2 ⍵

}

fn2←{
type ⍵

}

fn1 ⍵
}

which'scope'
lexical scope

11 5 :: ⍵×0 ⍝ Trap DOMAIN and LENGTH errors.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 144

In this case, if expr generates an error, its immediately preceding: 0:: catches it and
evaluates try_1st leaving the remaining error-guard in scope. If try_1st fails, the
environment is unwound once again and try_2nd is evaluated, this time with no error-
guards in scope.

See also Section 3.2.4.

Examples

Open returns a handle for a component file. If the exclusive tie fails, it attempts a share-
tie and if this fails, it creates a new file. Finally, if all else fails, a handle of 0 is returned.

An error in div causes it to be called recursively with improved arguments.

Notice that some arguments may cause div to recur twice:

The final example shows the unwinding of the local environment before the error-
guard's body is evaluated. Local name trap is set to describe the domain of its
following error-guard. When an error occurs, the environment is unwound to expose
trap's statically correct value.

0::try_2nd
0::try_1st
expr

open←{ ⍝ Handle for component file ⍵.
0::0 ⍝ Fails:: return 0 handle.
22::⍵ ⎕FCREATE 0 ⍝ FILE NAME:: create new one.
24 25::⍵ ⎕FSTIE 0 ⍝ FILE TIED:: try share tie.

⍵ ⎕FTIE 0 ⍝ Attempt to open file.
}

div←{ ⍝ Tolerant division:: ⍺÷0 → ⍺.
⍺←1 ⍝ default numerator.
5::↑∇/↓↑⍺ ⍵ ⍝ LENGTH:: stretch to fit.
11::⍺ ∇ ⍵+⍵=0 ⍝ DOMAIN:: increase divisor.
⍺÷⍵ ⍝ attempt division.

}

6 4 2 div 3 2
→ 6 4 2 div 3 2 0
→ 6 4 2 div 3 2 1
→ 2 2 2

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 145

Note

Following the setting of an error-guard, subsequent function calls will disable tail call
optimisation:

One way to maintain the tail call optimisation in the presence of an error-guard is to
isolate it within an inner function:

3.2.8 Dops

The operator equivalent of a dfn is distinguished by the presence of either of the
compound symbols ⍺⍺ or ⍵⍵ anywhere in its definition.

add←{
trap←'domain' ⋄ 11::trap
trap←'length' ⋄ 5::trap
⍺+⍵

}

2 add 3 ⍝ Addition succeeds
5

2 add 'three' ⍝ DOMAIN ERROR generated.
domain

2 3 add 4 5 6 ⍝ LENGTH ERROR generated.
length

{
22::'Oops!' ⍝ this error-guard means that ...
tie←⍵ ⎕FTIE 0
subfn tie ⍝ ... tail call not optimised

}

{
tie←{

22::0 ⍝ error-guard local to inner fn
⍵ ⎕FTIE 0

}⍵
tie=0:'Oops!'
subfn tie ⍝ ... so this is a tail call

}

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 146

The syntax of a dop is:

monadic – ⍺ (⍺⍺ op) ⍵
dyadic – ⍺ (⍺⍺ op ⍵⍵) ⍵

where ⍺⍺ and ⍵⍵ are the left and right operands (functions or arrays) respectively, and ⍺
and ⍵ are the arguments of the derived function.

Example

The following monadic each operator applies its function operand only to unique
elements of its argument. It then distributes the result to match the original argument.
This can deliver a performance improvement over the primitive each (¨) operator if the
operand function is costly and the argument contains a significant number of duplicate
elements. Note however, that if the operand function causes side effects, the operation
of dop and primitive versions will be different.

The dyadic else operator applies its left (else right) operand to its right argument
depending on its left argument.

3.2.9 Recursion

A recursive dfn can refer to itself using its name explicitly, but because we allow
unnamed functions, we also need a special symbol for implicit self-reference: '∇'. For
example:

•
•

each←{ ⍝ Fast each:
shp←⍴⍵ ⍝ Shape and ...
vec←,⍵ ⍝ ... ravel of arg.
nub←∪vec ⍝ Vector of unique elements.
res←⍺⍺¨nub ⍝ Result for unique elts.
idx←nub⍳vec ⍝ Indices of arg in nub ...
shp⍴idx⊃¨⊂res ⍝ ... distribute result.

}

else←{
⍺: ⍺⍺ ⍵ ⍝ True: apply Left operand

⍵⍵ ⍵ ⍝ Else, .. Right ..
}
0 1 ⌈else⌊¨ 2.5 ⍝ Try both false and true.

2 3

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 147

Implicit self-reference using '∇' has the further advantage that it incurs less
interpretative overhead and is therefore quicker. Tail calls using '∇' are particularly
efficient.

Recursive dops refer to their derived functions, that is the operator bound with its
operand(s) using ∇ or the operator itself using the compound symbol: ∇∇. The first form
of self reference is by far the more frequently used.

Example

The following example shows a rather contrived use of the second form of (operator)
self reference. The exp operator composes its function operand with itself on each
recursive call. This gives the effect of an exponential application of the original operand
function:

Example

fact←{ ⍝ Factorial ⍵.
⍵≤1: 1 ⍝ Small ⍵, finished,
⍵×∇ ⍵-1 ⍝ Otherwise recur.

}

pow←{ ⍝ Function power.
⍺=0:⍵ ⍝ Apply function operand ⍺ times.
(⍺-1)∇ ⍺⍺ ⍵ ⍝ ⍺⍺ ⍺⍺ ⍺⍺ ... ⍵

}

exp←{ ⍝ Exponential fn application.
⍺=0:⍺⍺ ⍵ ⍝ Apply operand 2*⍺ times.
(⍺-1)⍺⍺∘⍺⍺ ∇∇ ⍵ ⍝ (⍺⍺∘⍺⍺)∘(...) ... ⍵

}
succ←{1+⍵} ⍝ Successor (increment).
10 succ exp 0

1024

∇pow←{ ⍝ Function power.
[1] ⍺=0:⍵ ⍝ Apply function operand ⍺ times.
[2] (⍺-1)∇ ⍺⍺ ⍵ ⍝ ⍺⍺ ⍺⍺ ⍺⍺ ... ⍵
[3] }

∇
4 ⍟ pow 5000

¯0.2720968003

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 148

Example: Pythagorean triples

The following sequence shows an example of combining dfns and dops in an attempt to
find Pythagorean triples: (3 4 5)(5 12 13) ...

So far, so good, but we have some duplicates: (6 8) is just double (3 4).

sqrt←{⍵*0.5} ⍝ Square root.

sqrt 9 16 25
3 4 5

hyp←{sqrt+/⊃⍵*2} ⍝ Hypoteneuse of triangle.

hyp(3 4)(4 5)(5 12)
5 6.403124237 13

intg←{⍵=⌊⍵} ⍝ Whole number?

intg 2.5 3 4.5
0 1 0

pyth←{intg hyp ⍵} ⍝ Pythagorean pair?

pyth(3 4)(4 9)(5 12)
1 0 1

pairs←{,⍳⍵ ⍵} ⍝ Pairs of numbers 1..⍵.

pairs 3
1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3

filter←{(⍺⍺ ⍵)/⍵} ⍝ Op: ⍵ filtered by ⍺⍺.

pyth filter pairs 12 ⍝ Pythagorean pairs 1..12
3 4 4 3 5 12 6 8 8 6 9 12 12 5 12 9

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 149

We can use an operator to combine the tests:

Better, but we still have some duplicates: (3 4) (4 3)

And finally, as promised, triples:

A Larger Example

Function tokens uses nested local dfns to split an APL expression into its constituent
tokens. Note that all calls on the inner functions: lex, acc, and the unnamed dfn in
each token case, are tail calls. In fact, the only stack calls are those on function: all,
and the unnamed function: {⍵∨¯1⌽⍵}, within the "Char literal" case.

rpm←{ ⍝ Relatively prime?
⍵=0:⍺=1 ⍝ C.f. Euclid's gcd.
⍵ ∇ ⍵|⍺

}/¨ ⍝ Note the /¨

rpm(2 4)(3 4)(6 8)(16 27)
0 1 0 1

rpm filter pyth filter pairs 20
3 4 4 3 5 12 8 15 12 5 15 8

and←{ ⍝ Lazy parallel 'And'.
mask←⍺⍺ ⍵ ⍝ Left predicate selects...
mask\⍵⍵ mask/⍵ ⍝ args for right predicate.

}

pyth and rpm filter pairs 20
3 4 4 3 5 12 8 15 12 5 15 8

less←{</⊃⍵}
less(3 4)(4 3)

1 0

less and pyth and rpm filter pairs 40
3 4 5 12 7 24 8 15 9 40 12 35 20 21

{⍵,hyp ⍵}¨less and pyth and rpm filter pairs 35
3 4 5 5 12 13 7 24 25 8 15 17 12 35 37 20 21 29

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 150

tokens←{ ⍝ Lex of APL src line.
alph←⎕A,⎕Á,'_∆⍙',26↑17↓⎕AV ⍝ Alphabet for names.
all←{+/^\⍺∊⍵} ⍝ No. of leading ⍺∊⍵.
acc←{(⍺,↑/⍵)lex⊃↓/⍵} ⍝ Accumulate tokens.
lex←{

0=⍴⍵:⍺ ⋄ hd←↑⍵ ⍝ Next char else done.

hd=' ':⍺{ ⍝ White Space.
size←⍵ all' '
⍺ acc size ⍵

}⍵

hd∊alph:⍺{ ⍝ Name
size←⍵ all alph,⎕D
⍺ acc size ⍵

}⍵

hd∊'⎕:':⍺{ ⍝ System Name/Keyword
size←⍵ all hd,alph
⍺ acc size ⍵

}⍵

hd='''':⍺{ ⍝ Char literal
size←+/^\{⍵∨¯1⌽⍵}≠\hd=⍵
⍺ acc size ⍵

}⍵

hd∊⎕D,'¯':⍺{ ⍝ Numeric literal
size←⍵ all ⎕D,'.¯E'
⍺ acc size ⍵

}⍵

hd='⍝':⍺ acc(⍴⍵)⍵ ⍝ Comment
⍺ acc 1 ⍵ ⍝ Single char token.

}
(0⍴⊂'')lex,⍵

}
display tokens'xtok←size↑srce ⍝ Next token'

.→---.
| .→---. .→. .→---. .→. .→---. .→-. .→-----------. |
| |xtok| |←| |size| |↑| |srce| | | |⍝ Next token| |
| '----' '-' '----' '-' '----' '--' '------------' |
'∊---'

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 151

3.2.10 Tail Calls

A novel feature of the implementation of dfns is the way in which tail calls are
optimised.

When a dfn calls a sub-function, the result of the call may or may not be modified by
the calling function before being returned. A call where the result is passed back
immediately without modification is termed a tail call.

For example in the following, the first call on function fact is a tail call because the
result of fact is the result of the whole expression, whereas the second call isn't
because the result is subsequently multiplied by ⍵.

Tail calls occur frequently in dfns, and the interpreter optimises them by re-using the
current stack frame instead of creating a new one. This gives a significant saving in both
time and workspace usage. It is easy to check whether a call is a tail call by tracing it. An
embedded call will pop up a new trace window for the called function, whereas a tail
call will re-use the current one.

Using tail calls can improve code performance considerably, although at first the
technique might appear obscure. A simple way to think of a tail call is as a branch with
arguments. The tail call, in effect, branches to the first line of the function after
installing new values for ⍵ and ⍺.

Iterative algorithms can almost always be coded using tail calls.

In general, when coding a loop, we use the following steps; possibly in a different order
depending on whether we want to test at the "top" or the "bottom" of the loop.

Initialise loop control variable(s). ⍝ init
Test loop control variable. ⍝ test
Process body of loop. ⍝ proc
Modify loop control variable for next iteration. ⍝ mod
Branch to step 2. ⍝ jump

For example, in classical APL you might find the following:

(⍺×⍵)fact ⍵-1 ⍝ Tail call on fact.
⍵×fact ⍵-1 ⍝ Embedded call on fact.

1.
2.
3.
4.
5.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 152

Control structures help us to package these steps:

Using tail calls:

3.2.11 Restrictions

Dfns need not return a result. However even a non-result-returning expression
will terminate the function, so you can't, for example, call a non-result-returning
function from the middle of a dfn.
You can trace a dfn only if it is defined on more than one line. Otherwise it is
executed atomically in the same way as an execute (⍎) expression. This
deliberate restriction is intended to avoid the confusion caused by tracing a line
and seeing nothing change on the screen.
dfns do not currently support ⎕CS which, if used, generates a NONCE ERROR.
⎕SHADOW ignores dfns when looking down the stack for a traditional function
(tradfn) in which to make a new local name.
dfns do not support control structures or branch.
dfns do not support modified assignment such as X plus←10 where X is an array
and plus is a function. In this example, both X and plus would be assigned the
value 10.
⎕MONITOR does not apply to dfns and dops.

Supplied Workspaces

You can find many samples of dfns and dops in utility workspace dfns.dws in the ws
sub-directory.

∇ value←limit loop value ⍝ init
[1] top:→(⎕CT>value-limit)/0 ⍝ test
[2] value←Next value ⍝ proc, mod
[3] →top ⍝ jump

∇

∇ value←limit loop value ⍝ init
[1] :While ⎕CT<value-limit ⍝ test
[2] value←Next value ⍝ proc, mod
[3] :EndWhile ⍝ jump

∇

loop←{⍝ init
⎕CT>⍺-⍵:⍵ ⍝ test
⍺ ∇ Next ⍵ ⍝ proc, mod, jump

}

•

•

•
•

•
•

•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 153

Additional examples are in workspaces: min.dws, max.dws, tube.dws and eval.dws.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 154

4 Object Oriented Programming

4.1 Introducing Classes

4.1.1 Introducing Classes

A Class is a blueprint from which one or more Instances of the Class can be created
(instances are sometimes also referred to as Objects).

A Class may optionally derive from another Class, which is referred to as its Base Class.

A Class may contain Methods, Properties and Fields (commonly referred to together as
Members) which are defined within the body of the class script or are inherited from
other Classes. This version of Dyalog APL does not support Events although it is
intended that these will be supported in a future release. However, Classes that are
derived from .NET types may generate events using 4 ⎕NQ.

A Class that is defined to derive from another Class automatically acquires the set of
Properties, Methods and Fields that are defined by its Base Class. This mechanism is
described as inheritance.

A Class may extend the functionality of its Base Class by adding new Properties,
Methods and Fields or by substituting those in the Base Class by providing new versions
with the same names as those in the Base Class.

Members may be defined to be Private or Public. A Public member may be used or
accessed from outside the Class or an Instance of the Class. A Private member is
internal to the Class and (in general) may not be referenced from outside.

Although Classes are generally used as blueprints for the creation of instances, a class
can have Shared members which can be used without first creating an instance.

Class Names

Class names must adhere to the general rules for naming APL objects, and in addition
should not conflict with the name of a .NET Type that is defined in any of the .NET
Namespaces on the search path specified by ⎕USING.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 155

4.1.2 Defining Classes

A Class is defined by a script that may be entered and changed using the editor. A class
script may also be constructed from a vector of character vectors, and fixed using ⎕FIX.

A class script begins with a Section 4.9.4 and ends with a :EndClass statement.

For example, using the editor:

[an edit window opens containing the following skeleton Class script ...]

[the user edits and fixes the Class script]

4.1.3 Editing Classes

Between the :Class and :EndClass statements, you may insert any number of
function bodies, Property definitions, and other elements. When you fix the Class Script
from the editor, these items will be fixed inside the Class namespace.

Note that the contents of the Class Script defines the Class in its entirety. You may not
add or alter functions by editing them independently and you may not add variables by
assignment or remove objects with ⎕EX.

When you re-fix a Class Script using the Editor or with ⎕FIX, the original Class is
discarded and the new definition, as specified by the Script, replaces the old one in its
entirety.

)CLEAR
clear ws

)ED ○Animal

:Class Animal
:EndClass

)CLASSES
Animal

⎕NC⊂'Animal'
9.4

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 156

Note

Associated with a Class (or an instance of a class) there is a completely separate
namespace which surrounds the class and can contain functions, variables and so forth
that are created by actions external to the class.

For example, if X is not a public member of the class MyClass, then the following
expression will insert a variable X into the namespace which surrounds the class:

The namespace is analogous to the namespace associated with a GUI object and will be
re-initialised (emptied) whenever the Class is re-fixed. Objects in this parallel
namespace are not visible from inside the Class or an Instance of the Class.

For further information, see Section 4.7.1.

4.1.4 Inheritance

If you want a Class to derive from another Class, you simply add the name of that Class
to the :Class statement using colon+space as a separator.

The following example specifies that CLASS2 derives from CLASS1.

Note that CLASS1 is referred to as the Base Class of CLASS2.

If a Class has a Base Class, it automatically acquires all of the Public Properties,
Methods and Fields defined for its Base Class unless it replaces them with its own
members of the same name. This principle of inheritance applies throughout the Class
hierarchy. Note that Private members are not subject to inheritance.

MyClass.X←99

:Class CLASS2: CLASS1
:EndClass

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 157

When a class is fixed, it keeps a reference (a pointer) to its base class. If the global

name of the base class is expunged, the derived class will still have the base class

reference, and the base class will therefore be kept alive in the workspace. The

derived class will be fully functional, but attempts to edit it will fail when it

attempts to locate the base class as the new definition is fixed.

At this point, if a new class with the original base class name is created, the derived
class has no way of detecting this, and it will continue to use the old and invisible
version of the base class. Only when the derived class is re-fixed, will the new base
class be detected.

If you edit, re-fix or copy an existing base class, APL will take care to patch up the
references, but if the base class is expunged first and recreated later, APL is unable to
detect the substitution. You can recover from this situation by editing or re-fixing the
derived class(es) after the base class has been substituted.

Copying Classes

See Dyalog APL Language: Copy and Dyalog APL Language: Copy.

Classes that derive from .NET Types

You may define a Class that derives from any of the .NET Types by specifying the name
of the .NET Type and including a :USING statement that provides a path to the .NET
Assembly in which the .NET Type is located.

Example

Warning

:Class APLGreg: GregorianCalendar
:Using System.Globalization
...
:EndClass

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 158

Classes that derive from the Dyalog GUI

You may define a Class that derives from any of the Dyalog APL GUI objects by
specifying the name of the Dyalog APL GUI Class in quotes.

For example, to define a Class named Duck that derives from a Poly object, the Class
specification would be:

The Base Constructor for such a Class is the ⎕WC system function.

4.1.5 Instances

A Class is generally used as a blueprint or model from which one or more Instances of
the Class are constructed. Note however that a class can have Shared members which
can be used directly without first creating an instance.

You create an instance of a Class using the ⎕NEW system function which is monadic.

The 1-or 2-item argument to ⎕NEW contains a reference to the Class and, optionally,
arguments for its Constructor function.

When ⎕NEW executes, it creates a regular APL namespace to contain the Instance, and
within that it creates an Instance space, which is populated with any Instance Fields
defined by the class (with default values if specified), and pointers to the Instance
Method and Property definitions specified by the Class.

If a monadic Constructor is defined, it is called with the arguments specified in the
second item of the argument to ⎕NEW. If ⎕NEW was called without Constructor
arguments, and the class has a niladic Constructor, this is called instead.

The Constructor function is typically used to initialise the instance and may establish
variables in the instance namespace.

The result of ⎕NEW is a reference to the instance namespace. Instances of Classes
exhibit the same set of Properties, Methods and Fields that are defined for the Class.

:Class Duck:'Poly'
:EndClass

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 159

4.2 Constructors

4.2.1 Constructors

A Constructor is a special function defined in the Class script that is to be run when an
Instance of the Class is created by ⎕NEW. Typically, the job of a Constructor is to initialise
the new Instance in some way.

A Constructor is identified by a :Implements Constructor statement. This statement
may appear anywhere in the body of the function after the function header. The
significance of this is discussed below.

Note that it is also essential to define the Constructor to be Public, with a :Access
Public statement, because like all Class members, Constructors default to being
Private. Private Constructors currently have no use or purpose, but it is intended that
they will be supported in a future release of Dyalog APL.

A Constructor function may be niladic or monadic and must not return a result.

A Class may specify any number of different Constructors of which one (and only one)
may be niladic. This is also referred to as the default Constructor.

There may be any number of monadic Constructors, but each must have a differently
defined argument list which specifies the number of items expected in the Constructor
argument. See Section 4.2.2 for details.

The only way a Constructor function should be invoked is by ⎕NEW. See Section 4.2.6 for
further details. If you attempt to call a Constructor function from outside its Class, it
will cause a SYNTAX ERROR. A Constructor function should not call another Constructor
function within the same Class, although it will not generate an error. This would cause
the Base Constructor to be called twice, with unpredictable consequences.

When ⎕NEW is executed with a 2-item argument, the appropriate monadic Constructor
is called with the second item of the ⎕NEW argument.

The niladic (default) Constructor is called when ⎕NEW is executed with a 1-item
argument, a Class reference alone, or whenever APL needs to create a Section 1.1.3.10
for the Class.

Note that ⎕NEW first creates a new instance of the specified Class, and then executes
the Constructor inside the instance.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 160

Example

The DomesticParrot Class defines a Constructor function egg that initialises the
Instance by storing its name (supplied as the 2nd item of the argument to ⎕NEW) in a
Public Field called Name.

4.2.2 Constructor Overloading

NameList header syntax is used to define different versions of a Constructor each with
a different number of parameters, referred to as its signature. See Section 3.1.6 for
details. The illustrates this principle.

In deciding which Constructor to call, APL matches the shape of the Constructor
argument with the signature of each of the Constructors that are defined. If a
constructor with the same number of arguments exists (remembering that 0 arguments
will match a niladic Constructor), it is called. If there is no exact match, and there is a
Constructor with a general signature (an un-parenthesised right argument), it is called.
If no suitable constructor is found, a LENGTH ERROR is reported.

There may be one and only one constructor with a particular signature.

The only way a Constructor function should be invoked is by ⎕NEW. See Section 4.2.6 for
further details. If you attempt to call a Constructor function from outside its Class, it
will cause a SYNTAX ERROR. A Constructor function should not call another Constructor
function within the same Class, although it will not generate an error. This would cause
the Base Constructor to be called twice, with unpredictable consequences.

In the example Class, the following Constructors are defined:

:Class DomesticParrot: Parrot
:Field Public Name

∇ egg name
:Implements Constructor
:Access Public
Name←name

∇
...

:EndClass ⍝ DomesticParrot

pol←⎕NEW DomesticParrot 'Polly'
pol.Name

Polly

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 161

Constructor Implied argument

Make1 1-item vector

Make2 2-item vector

Make3 3-item vector

Make0 No argument

MakeAny Any array accepted

In the following examples, the Make function (see for details) displays:

Creating a new Instance of Clover with a 1-element vector as the Constructor
argument, causes the system to choose the Make1 Constructor. Note that, although the
argument to Make1 is a 1-element vector, this is disclosed as the list of arguments is
unpacked into the (single) variable arg1.

Creating a new Instance of Clover with a 2- or 3-element vector as the Constructor
argument causes the system to choose Make2, or Make3 respectively.

Creating an Instance with any other Constructor argument causes the system to choose
MakeAny.

Note that a scalar argument will call MakeAny and not Make1.

<shape of argument> <name of Constructor called><argument>
(see function make)

(⎕NEW Clover(,1)).Con
Make1 1

(⎕NEW Clover(1 2)).Con
2 Make2 1 2

(⎕NEW Clover(1 2 3)).Con
3 Make3 1 2 3

(⎕NEW Clover(⍳10)).Con
10 MakeAny 1 2 3 4 5 6 7 8 9 10

(⎕NEW Clover(2 2⍴⍳4)).Con
2 2 MakeAny 1 2

3 4

(⎕NEW Clover 1).Con
MakeAny 1

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 162

and finally, creating an Instance without a Constructor argument causes the system to
choose Make0.

4.2.3 Niladic (Default) Constructors

A Class may define a niladic Constructor and/or one or more Monadic Constructors.
The niladic Constructor acts as the default Constructor that is used when ⎕NEW is
invoked without arguments and when APL needs a Section 1.1.3.10.

The niladic Constructor (in this example, the function default) is invoked when ⎕NEW is
called without Constructor arguments. In this case, the Instance created is no different
to one created by the monadic Constructor egg, except that the value of the Species
Field is set to 'Default Bird'.

The niladic Constructor is also used when APL needs to make a Section 1.1.3.10 of the
Class. For example, in the expression (3↑Birdy), APL has to create two Section 1.1.3.10

(⎕NEW Clover).Con
Make0 0

:Class Bird
:Field Public Species

∇ egg spec
:Access Public Instance
:Implements Constructor
Species←spec

∇
∇ default

:Access Public Instance
:Implements Constructor
Species←'Default Bird'

∇
∇ R←Speak

:Access Public
R←'Tweet, tweet!'

∇

:EndClass ⍝ Bird

Birdy←⎕NEW Bird
Birdy.Species

Default Bird

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 163

of Birdy (one for each of the elements required to pad the array to length 3) and will in
fact call the niladic Constructor twice.

In the following statement:

The 10↑ (temporarily) creates a 10-element array comprising the single entity Birdy
padded with 9 fill-elements of Class Bird. To obtain the 9 fill-elements, APL calls the
niladic Constructor 9 times, one for each separate prototypical Instance that it is
required to make.

4.2.4 Empty Arrays of Instances: Why?

In APL it is natural to use arrays of Instances. For example, consider the following
example.

We might create an array of Instances of the Cheese Class as follows:

TweetyPie←3⊃10↑Birdy

TweetyPie.Species
Default Bird

:Class Cheese
:Field Public Name←''
:Field Public Strength←⍬
∇ make2(name strength)

:Access Public
:Implements Constructor
Name Strength←name strength

∇
∇ make1 name

:Access Public
:Implements Constructor
Name Strength←name 1

∇
∇ make_excuse

:Access Public
:Implements Constructor
⎕←'The cat ate the last one!'

∇
:EndClass

cdata←('Camembert' 5)('Caephilly' 2) 'Mild Cheddar'
cheeses←{⎕NEW Cheese ⍵}¨cdata

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 164

Suppose we want a range of medium-strength cheese for our cheese board.

But look what happens when we try to select really strong cheese:

Note that this message is not the result of the expression, but was explicitly displayed
by the make_excuse function. The clue to this behaviour is the shape of board; it is
empty!

When a reference is made to an empty array of Instances (strictly speaking, a reference
that requires a prototype), APL creates a new Instance by calling the niladic (default)
Constructor, uses the new Instance to satisfy the reference, and then discards it. Hence,
in this example, the reference:

caused APL to run the niladic Constructor make_excuse, which displayed:

Notice that the behaviour of empty arrays of Instances is modelled VERY closely after
the behaviour of empty arrays in general. In particular, the Class designer is given the
task of deciding what the types of the members of the prototype are.

The full explanation is given in the Section 4.2.5.

4.2.5 Empty Arrays of Instances: How?

To cater for the need to handle empty arrays of Instances as easily as non-empty arrays,
a reference to an empty array of Class Instances is handled in a special way.

board←(cheeses.Strength<3)/cheeses
board.Name

Caephilly Mild Cheddar

board←(cheeses.Strength>5)/cheeses
board.Name

The cat ate the last one!

⍴board
0

board.Name

The cat ate the last one!

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 165

Whenever a reference or an assignment is made to the content of an empty array of
Instances, the following steps are performed:

APL creates a new Instance of the same Class of which the empty Instance
belongs
the default (niladic) Constructor is run in the new Instance
the appropriate value is obtained or assigned:- if it is a reference is to a Field, the
value of the Field is obtained
if it is a reference is to a Property, the PropertyGet function is run
if it is a reference is to a Method, the method is executed

if it is an assignment, the assignment is performed or the PropertySet function is
run

if it is a reference, the result of step 3 is used to generate an empty result array
with a suitable prototype by the application of the function {0⍴⊂⍵} to it

the Class Destructor (if any) is run in the new Instance
the New Instance is deleted

Example

First, we can create an empty array of Instances of Bird using 0⍴.

1.

2.
3.

4.
5.

6.

7.

8.
9.

:Class Bird
:Field Public Species

∇ egg spec
:Access Public Instance
:Implements Constructor
⎕DF Species←spec

∇
∇ default

:Access Public Instance
:Implements Constructor
⎕DF Species←'Default Bird'
#.DISPLAY Species

∇
∇ R←Speak

:Access Public
#.DISPLAY R←'Tweet, Tweet, Tweet'

∇

:EndClass ⍝ Bird

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 166

A reference to Empty.Species causes APL to create a new Instance and invoke the
niladic Constructor default. This function sets Species to 'Default Bird'and calls
#.DISPLAY which displays output to the Session.

APL then retrieves the value of Species ('Default Bird'), applies the function
{0⍴⊂⍵} to it and returns this as the result of the expression.

A reference to Empty.Speak causes APL to create a new Instance and invoke the niladic
Constructor default. This function sets Species to 'Default Bird'and calls
#.DISPLAY which displays output to the Session.

APL then invokes function Speak which displays 'Tweet, Tweet, Tweet' and returns
this as the result of the function.

APL then applies the function {0⍴⊂⍵} to it and returns this as the result of the
expression.

Empty←0⍴⎕NEW Bird 'Robin'

DISPLAY Empty.Species
.→-----------.
|Default Bird|
'------------'

.⊖---------------.
| .→-----------. |
| | | |
| '------------' |
'∊---------------'

DISPLAY Empty.Speak
.→-----------.
|Default Bird|
'------------'

.→------------------.
|Tweet, Tweet, Tweet|
'-------------------'

.⊖----------------------.
| .→------------------. |
| | | |
| '-------------------' |
'∊----------------------'

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 167

4.2.6 Base Constructors

Constructors in a Class hierarchy are not inherited in the same way as other members.
However, there is a mechanism for all the Classes in the Class inheritance tree to
participate in the initialisation of an Instance.

Every Constructor function contains a :Implements Constructor statement which
may appear anywhere in the function body. The statement may optionally be followed
by the :Base control word and an arbitrary expression.

The statement:

calls a monadic Constructor in the Base Class. The choice of Constructor depends upon
the rank and shape of the result of expr (see Section 4.2.2 for details).

Whereas, the statement:

or

calls the niladic Constructor in the Base Class.

Note that during the instantiation of an Instance, these calls potentially take place in
every Class in the Class hierarchy.

If, anywhere down the hierarchy, there is a monadic call and there is no matching
monadic Constructor, the operation fails with a LENGTH ERROR.

If there is a niladic call on a Class that defines no Constructors, the niladic call is simply
repeated in the next Class along the hierarchy.

However, if a Class defines a monadic Constructor and no niladic Constructor it implies
that that Class cannot be instantiated without Constructor arguments. Therefore, if
there is a call to a niladic Constructor in such a Class, the operation fails with a LENGTH
ERROR. Note that it is therefore impossible for APL to instantiate a Section 1.1.3.10 or
process a reference to an Section 4.2.5 for such a Class or any Class that is based upon
it.

A Constructor function may not call another Constructor function and a constructor
function may not be called directly from outside the Class or Instance. The only way a

:Implements Constructor :Base expr

:Implements Constructor

:Implements Constructor :Base

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 168

Constructor function may be invoked is by ⎕NEW. The fundamental reason for these
restrictions is that there must be one and only one call on the Base Constructor when a
new Instance is instantiated. If Constructor functions were allowed to call one another,
there would be several calls on the Base Constructor. Similarly, if a Constructor could be
called directly it would potentially duplicate the Base Constructor call.

4.2.7 Niladic Example

In the following example, DomesticParrot is derived from Parrot which is derived
from Bird. They all share the Field Desc (inherited from Bird). Each of the 3 Classes
has its own niladic Constructor called egg0.

:Class Bird
:Field Public Desc
∇ egg0

:Access Public
:Implements Constructor
Desc←'Bird'

∇
:EndClass ⍝ Bird

:Class Parrot: Bird
∇ egg0

:Access Public
:Implements Constructor
Desc,←'→Parrot'

∇
:EndClass ⍝ Parrot

:Class DomesticParrot: Parrot
∇ egg0

:Access Public
:Implements Constructor
Desc,←'→DomesticParrot'

∇
:EndClass ⍝ DomesticParrot

(⎕NEW DomesticParrot).Desc
Bird→Parrot→DomesticParrot

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 169

Explanation

⎕NEW creates the new instance and runs the niladic Constructor DomesticParrot.egg0.
As soon as the line:

is encountered, ⎕NEW calls the niladic constructor in the Base Class Parrot.egg0

Parrot.egg0 starts to execute and as soon as the line:

is encountered, ⎕NEW calls the niladic constructor in the Base Class Bird.egg0.

When the line:

is encountered, ⎕NEW cannot call the niladic constructor in the Base Class (there is
none) so the chain of Constructors ends. Then, as the state indicator unwinds ...

Bird.egg0 executes Desc←'Bird''

Parrot.egg0 executes Desc,←'→Parrot''

DomesticParrot.egg0 execute Desc,←'→DomesticParrot''

4.2.8 Monadic Example

In the following example, DomesticParrot is derived from Parrot which is derived
from Bird. They all share the Field Species (inherited from Bird) but only a
DomesticParrot has a Field Name. Each of the 3 Classes has its own Constructor called
egg.

:Implements Constructor

:Implements Constructor

:Implements Constructor

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 170

Explanation

⎕NEW creates the new instance and runs the Constructor DomesticParrot.egg. The egg
header splits the argument into two items name and species. As soon as the line:

is encountered, ⎕NEW calls the Base Class constructor Parrot.egg, passing it the result
of the expression to the right, which in this case is simply the value in species.

:Class Bird
:Field Public Species
∇ egg spec

:Access Public Instance
:Implements Constructor
Species←spec

∇
...

:EndClass ⍝ Bird

:Class Parrot: Bird
∇ egg species

:Access Public Instance
:Implements Constructor :Base 'Parrot: ',species

∇
...

:EndClass ⍝ Parrot

:Class DomesticParrot: Parrot
:Field Public Name
∇ egg(name species)

:Access Public Instance
:Implements Constructor :Base species
⎕DF Name←name

∇
...

:EndClass ⍝ DomesticParrot

pol←⎕NEW DomesticParrot('Polly' 'Scarlet Macaw')
pol.Name

Polly
pol.Species

Parrot: Scarlet Macaw

:Implements Constructor :Base species

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 171

Parrot.egg starts to execute and as soon as the line:

is encountered, ⎕NEW calls its Base Class constructor Bird.egg, passing it the result of
the expression to the right, which in this case is the character vector 'Parrot: '
catenated with the value in species.

Bird.egg assigns its argument to the Public Field Species.

At this point, the state indicator would be:

Bird.egg then returns to Parrot.egg which returns to DomesticParrot.egg.

Finally, DomesticParrot.egg[3] is executed, which establishes Field Name and the
Display Format (⎕DF) for the instance.

4.2.9 Destructors

A Destructor is a function that is called just before an Instance of a Class ceases to exist
and is typically used to close files or release external resources associated with an
Instance.

An Instance of a Class is destroyed when:

The Instance is expunged using ⎕EX or)ERASE.
A function, in which the Instance is localised, exits.

But be aware that a destructor will also be called if:

The Instance is re-assigned (see below)
The result of ⎕NEW is not assigned (the instance gets created then immediately
destroyed).

:Implements Constructor :Base 'Parrot: ',species

)SI
[#.[Instance of DomesticParrot]] #.Bird.egg[3]*
[constructor]
:base
[#.[Instance of DomesticParrot]] #.Parrot.egg[2]
[constructor]
:base
[#.[Instance of DomesticParrot]] #.DomesticParrot.egg[2]
[constructor]

•
•

•
•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 172

APL creates (and then destroys) a new Instance as a result of a reference to a
member of an Section 4.2.5. The destructor is called after APL has obtained the
appropriate value from the instance and no longer needs it.
The constructor function fails. Note that the Instance is actually created before
the constructor is run (inside it), and if the constructor fails, the fledgling
Instance is discarded. Note too that this means a destructor may need to deal
with a partially constructed instance, so the code may need to check that
resources were actually acquired, before releasing them.
On the execution of)CLEAR,)LOAD, ⎕LOAD,)OFF or ⎕OFF.

A destructor may be executed on any thread.

Note that an Instance of a Class only disappears when the last reference to it
disappears. For example, the sequence:

will not cause the Instance of MyClass to disappear because it is still referenced by I2.

A Destructor is identified by the statement :Implements Destructor which must
appear immediately after the function header in the Class script.

Note that reassignment to pol causes the Instance referenced by pol to be destroyed
and the Destructor invoked:

•

•

•

Warning

I1←⎕NEW MyClass
I2←I1
)ERASE I1

:Class Parrot
...
∇ kill

:Implements Destructor
'This Parrot is dead'

∇
...

:EndClass ⍝ Parrot

pol←⎕NEW Parrot 'Scarlet Macaw'
)ERASE pol

This Parrot is dead

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 173

If a Class inherits from another Class, the Destructor in its Base Class is automatically
called after the Destructor in the Class itself.

So, if we have a Class structure: DomesticParrot => Parrot => Bird containing the
following Destructors:

Destroying an Instance of DomesticParrot will run the Destructors in DomesticParrot,
Parrot and Bird and in that order.

pol←⎕NEW Parrot 'Scarlet Macaw'
pol←⎕NEW Parrot 'Scarlet Macaw'

This Parrot is dead

:Class DomesticParrot: Parrot
...
∇ kill

:Implements Destructor
'This ',(⍕⎕THIS),' is dead'

∇
...

:EndClass ⍝ DomesticParrot

:Class Parrot: Bird
...
∇ kill

:Implements Destructor
'This Parrot is dead'

∇
...

:EndClass ⍝ Parrot

:Class Bird
...
∇ kill

:Implements Destructor
'This Bird is dead'

∇
...

:EndClass ⍝ Bird

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 174

pol←⎕NEW DomesticParrot

)CLEAR
This Polly is dead
This Parrot is dead
This Bird is dead
clear ws

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 175

4.3 Class Members

4.3.1 Class Members

A Class may contain Methods, Fields and Properties (commonly referred to together as
Members) which are defined within the body of the Class script or are inherited from
other Classes.

Methods are regular APL defined functions, but with some special characteristics that
control how they are called and where they are executed. Dfns may not be used as
Methods.

Fields are just like APL variables. To get the Field value, you reference its name; to set
the Field value, you assign to its name, and the Field value is stored in the Field.
However, Fields differ from variables in that they possess characteristics that control
their accessibility.

Properties are similar to APL variables. To get the Property value, you reference its
name; to set the Property value, you assign to its name. However, Property values are
actually accessed via PropertyGet and PropertySet functions that may perform all sorts
of operations. In particular, the value of a Property is not stored in the Property and
may be entirely dynamic.

All three types of member may be declared as Public or Private and as Instance or
Shared.

Public members are visible from outside the Class and Instances of the Class, whereas
Private members are only accessible from within.

Instance Members are unique to every Instance of the Class, whereas Shared Members
are common to all Instances and Shared Members may be referenced directly on the
Class itself.

4.3.2 Fields

Fields

A Field behaves just like an APL variable.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 176

To get the value of a Field, you reference its name; to set the value of a Field, you
assign to its name. Conceptually, the Field value is stored in the Field. However, Fields
differ from variables in that they possess characteristics that control their accessibility.

A Field may be declared anywhere in a Class script by a :Field statement. This
specifies:

the name of the Field
whether the Field is Public or Private
whether the Field is Instance or Shared
whether or not the Field is ReadOnly
the .NET type for the Field when the Class is exported as a .NET Assembly.
optionally, an initial value for the Field.

Note that Section 5.2.1 may be associated with Fields. See Section 5.2.4 for details.

Public Fields

A Public Field may be accessed from outside an Instance or a Class. Note that the
default is Private.

Class DomesticParrot has a Name Field which is defined to be Public and Instance (by
default).

The Name field is initialised by the Class constructor.

The Name field may also be modified directly:

•
•
•
•
•
•

:Class DomesticParrot: Parrot
:Field Public Name

∇ egg nm
:Access Public
:Implements Constructor
Name←nm

∇
...

:EndClass ⍝ DomesticParrot

pet←⎕NEW DomesticParrot'Polly'
pet.Name

Polly

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 177

Initialising Fields

A Field may be assigned an initial value. This can be specified by an arbitrary expression
that is executed when the Class is fixed by the Editor or by ⎕FIX.

Field Talks will be initialised to 1 in every instance of the Class.

Note that if a Field is ReadOnly, this is the only way that it may be assigned a value.

See also: Section 4.3.2.5

Private Fields

A Private Field may only be referenced by code running inside the Class or an Instance
of the Class. Furthermore, Private Fields are not inherited.

The Section 4.3.4.6 has a Private Instance Field named tie that is used to store the file
tie number in each Instance of the Class.

pet.Name←⌽pet.Name
pet.Name

ylloP

:Class DomesticParrot: Parrot
:Field Public Name

:Field Public Talks←1

∇ egg nm
:Access Public
:Implements Constructor
Name←nm

∇
...

:EndClass ⍝ DomesticParrot

pet←⎕NEW DomesticParrot 'Dicky'

pet.Talks
1

pet.Name
Dicky

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 178

As the field is declared to be Private, it is not accessible from outside an Instance of the
Class, but is only visible to code running inside.

Shared Fields

If a Field is declared to be Shared, it has the same value for every Instance of the Class.
Moreover, the Field may be accessed from the Class itself; an Instance is not required.

The following example establishes a Shared Field called Months that contains
abbreviated month names which are appropriate for the user's current International
settings. It also shows that an arbitrarily complex statement may be used to initialise a
Field.

A Shared Field is not only accessible from an instance...

:Class ComponentFile
:Field Private Instance tie

∇ Open filename
:Implements Constructor
:Access Public Instance
:Trap 0

tie←filename ⎕FTIE 0
:Else

tie←filename ⎕FCREATE 0
:EndTrap
⎕DF filename,'(Component File)'

∇

F1←⎕NEW ComponentFile 'test1'
F1.tie

VALUE ERROR
F1.tie

^

:Class Example
:Using System.Globalization
:Field Public Shared ReadOnly Months←12↑(⎕NEW DateTimeFormatInfo).Ab

breviatedMonthNames
:EndClass ⍝ Example

EG←⎕NEW Example
EG.Months

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 179

... but also, directly from the Class itself.

Notice that in this case it is necessary to insert a :Using statement (or the equivalent
assignment to ⎕USING) in order to specify the .NET search path for the
DateTimeFormatInfo type. Without this, the Class would fail to fix.

You can see how the assignment works by executing the same statements in the
Session:

Trigger Fields

A field may act as a Trigger so that a function may be invoked whenever the value of
the Field is changed.

As an example, it is often useful for the Display Form of an Instance to reflect the value
of a certain Field. Naturally, when the Field changes, it is desirable to change the
Display Form. This can be achieved by making the Field a Trigger as illustrated by the
following example.

Notice that the Trigger function is invoked both by assignments made within the Class
(as in the assignment in ctor) and those made from outside the Instance.

Example.Months
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

⎕USING←'System.Globalization'
12↑(⎕NEW DateTimeFormatInfo).AbbreviatedMonthNames

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 180

:Class MyClass
:Field Public Name
:Field Public Country←'England'
∇ ctor nm

:Access Public
:Implements Constructor
Name←nm

∇
∇ format

:Implements Trigger Name,Country
⎕DF'My name is ',Name,' and I live in ',Country

∇
:EndClass ⍝ MyClass

me←⎕NEW MyClass 'Pete'
me

My name is Pete and I live in England

me.Country←'Greece'
me

My name is Pete and I live in Greece

me.Name←'Kostas'
me

My name is Kostas and I live in Greece

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 181

4.3.3 Methods

Methods

Methods are implemented as regular defined functions, but with some special
attributes that control how they are called and where they are executed.

A Method is defined by a contiguous block of statements in a Class Script. A Method
begins with a line that contains a ∇, followed by a valid APL defined function header.
The method definition is terminated by a closing ∇.

The behaviour of a Method is defined by an :Access control statement.

Public or Private

Methods may be defined to be Private (the default) or Public.

A Private method may only be invoked by another function that is running inside the
Class namespace or inside an Instance namespace. The name of a Private method is
not visible from outside the Class or an Instance of the Class.

A Public method may be called from outside the Class or an Instance of the Class.

Instance or Shared

Methods may be defined to be Instance (the default) or Shared.

An Instance method runs in the Instance namespace and may only be called via the
instance itself. An Instance method has direct access to Fields and Properties, both
Private and Public, in the Instance in which it runs.

A Shared method runs in the Class namespace and may be called via an Instance or via
the Class. However, a Shared method that is called via an Instance does not have direct
access to the Fields and Properties of that Instance.

Shared methods are typically used to manipulate Shared Properties and Fields or to
provide general services for all Instances that are not Instance specific.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 182

Overridable Methods

Instance Methods may be declared with :Access Overridable.

A Method declared as being Overridable is replaced in situ (that is, within its own Class)
by a Method of the same name that is defined in a higher Class which itself is declared
with the Override keyword. See Section 4.3.3.4.

Shared Methods

A Shared method runs in the Class namespace and may be called via an Instance or via
the Class. However, a Shared method that is called via an Instance does not have direct
access to the Fields and Properties of that Instance.

Class Parrot has a Speak method that does not require any information about the
current Instance, so may be declared as Shared.

Note that Parrot.Speak may be executed directly from the Class and does not in fact
require an Instance.

Instance Methods

An Instance method runs in the Instance namespace and may only be called via the
instance itself. An Instance method has direct access to Fields and Properties, both
Private and Public, in the Instance in which it runs.

:Class Parrot:Bird

∇ R←Speak times
:Access Public Shared
R←⍕times⍴⊂'Squark!'

∇

:EndClass ⍝ Parrot

wild←⎕NEW Parrot
wild.Speak 2

Squark! Squark!

Parrot.Speak 3
Squark! Squark! Squark!

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 183

Class DomesticParrot has a Speak method defined to be Public and Instance. Where
Speak refers to Name, it obtains the value of Name in the current Instance.

Note too that DomesticParrot.Speak supersedes the inherited Parrot.Speak.

Superseding Base Class Methods

Normally, a Method defined in a higher Class supersedes the Method of the same
name that is defined in its Base Class, but only for calls made from above or within the
higher Class itself (or an Instance of the higher Class). The base method remains
available in the Base Class and is invoked by a reference to it from within the Base
Class. This behaviour can be altered using the Overridable and Override key words in
the :Access statement but only applies to Instance Methods.

:Class DomesticParrot: Parrot
:Field Public Name

∇ egg nm
:Access Public
:Implements Constructor
Name←nm

∇

∇ R←Speak times
:Access Public Instance
R←⊂Name,', ',Name
R←↑R,times⍴⊂' Who''s a pretty boy, then!'

∇

:EndClass ⍝ DomesticParrot

pet←⎕NEW DomesticParrot'Polly'
pet.Speak 3

Polly, Polly
Who's a pretty boy, then!

 Who's a pretty boy, then!
Who's a pretty boy, then!

 bil←⎕NEW DomesticParrot'Billy'
 bil.Speak 1
Billy, Billy
 Who's a pretty boy, then!

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 184

If a Public Instance method in a Class is marked as Overridable, this allows a Class which
derives from the Class with the Overridable method to supersede the Base Class
method in the Base Class, by providing a method which is marked Override. The typical
use of this is to replace code in the Base Class which handles an event, with a method
provided by the derived Class.

For example, the base class might have a method which is called if any error occurs in
the base class:

In your derived class, you might supersede this by a more sophisticated error handler,
which logs the error to a file:

If the derived class had a function which was not marked Override, then function in the
derived class which called ErrorHandler would call the function as defined in the
derived class, but if a function in the base class called ErrorHandler, it would still see
the base class version of this function. With Override specified, the new function
supersedes the function as seen by code in the base class. Note that different derived
classes can specify different Overrides.

In C#, Java and some other compiled languages, the term Virtual is used in place of
Overridable, which is the term used by Visual Basic and Dyalog APL.

∇ ErrorHandler
[1] :Access Public Overridable
[2] ⎕←↑⎕DM

∇

∇ ErrorHandler;TN
[1] :Access Public Override
[2] ⎕←↑⎕DM
[3] TN←'ErrorLog'⎕FSTIE 0
[4] ⎕DM ⎕FAPPEND TN
[5] ⎕FUNTIE TN

∇

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 185

4.3.4 Properties

Properties

A Property behaves in a very similar way to an ordinary APL variable. To obtain the
value of a Property, you simply reference its name. To change the value of a Property,
you assign a new value to the name.

However, under the covers, a Property is accessed via a PropertyGet function and its
value is changed via a PropertySet function. Furthermore, Properties may be defined to
allow partial (indexed) retrieval and assignment to occur.

There are three types of Property, namely Simple, Numbered and Keyed.

A Simple Property is one whose value is accessed (by APL) in its entirety and re-
assigned (by APL) in its entirety.
A Numbered Property behaves like an array (conceptually a vector) which is only
ever partially accessed and set (one element at a time) via indices. The
Numbered Property is designed to allow APL to perform selections and
structural operations on the Property.
A Keyed Property is similar to a Numbered Property except that its elements are
accessed via arbitrary keys instead of indices.

The following cases illustrate the difference between Simple and Numbered Properties.

If Instance MyInst has a Simple Property Sprop and a Numbered Property Nprop, the
expressions

both cause APL to call the PropertyGet function to retrieve the entire value of Sprop.
The second statement subsequently uses indexing to extract just the second element of
the value.

Whereas, the expression:

causes APL to call the PropertyGet function with an additional argument which
specifies that only the second element of the Property is required. Moreover, the
expression:

•

•

•

X←MyInst.SProp
X←MyInst.SProp[2]

X←MyInst.NProp[2]

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 186

causes APL to call the PropertyGet function successively, for every element of the
Property.

A Property is defined by a :Property ... :EndProperty section in a Class Script.

Within the body of a Property Section there may be:

one or more :Access statements which must appear first in the body of the
Property.
a single PropertyGet function.
a single PropertySet function
a single PropertyShape function

Simple Instance Properties

A Simple Instance Property is one whose value is accessed (by APL) in its entirety and
re-assigned (by APL) in its entirety. The following examples are taken from the .

The Simple Property Count returns the number of components on a file.

Because there is no set function defined, the Property is read-only and attempting to
change it causes SYNTAX ERROR.

X←MyInst.NProp

•

•
•
•

:Property Count
:Access Public Instance

∇ r←get
r←¯1+2⊃⎕FSIZE tie

∇
:EndProperty ⍝ Count

F1←⎕NEW ComponentFile 'test1'
F1.Append'Hello World'

1
F1.Count

1
F1.Append 42

2
F1.Count

2

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 187

The Access Property has both get and set functions which are used, in this simple
example, to get and set the component file access matrix.

Note that the set function must be monadic. Its argument, supplied by APL, will be an
Instance of PropertyArguments. This is an internal Class whose NewValue field
contains the value that was assigned to the Property.

Note too that the set function does not have to accept the new value that has been
assigned. The function may validate the value reject or accept it (as in this example), or
perform whatever processing is appropriate.

F1.Count←99
SYNTAX ERROR

F1.Count←99
^

:Property Access
:Access Public Instance

∇ r←get
r←⎕FRDAC tie

∇
∇ set am;mat;OK

mat←am.NewValue
:Trap 0

OK←(2=⍴⍴mat)^(3=2⊃⍴mat)^^/,mat=⌊mat
:Else

OK←0
:EndTrap
'bad arg'⎕SIGNAL(~OK)/11
mat ⎕FSTAC tie

∇
:EndProperty ⍝ Access

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 188

Simple Shared Properties

The specifies a Simple Shared Property named Files which returns the names of all
the Component Files in the current directory.

The previous examples have illustrated the use of Instance Properties. It is also possible
to define Shared properties.

A Shared property may be used to handle information that is relevant to the Class as a
whole, and which is not specific to any a particular Instance.

Note that ⎕FLIB (invoked by the Files get function) does not report the names of tied
files.

F1←⎕NEW ComponentFile 'test1'
⍴F1.Access

0 3
F1.Access←3 3⍴28 2105 16385 0 2073 16385 31 ¯1 0

F1.Access
28 2105 16385
0 2073 16385

31 ¯1 0

F1.Access←'junk'
bad arg

F1.Access←'junk'
^

F1.Access←1 2⍴10
bad arg

F1.Access←1 2⍴10
^

:Property Files
:Access Public Shared

∇ r←get
r←⎕FLIB''

∇
:EndProperty

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 189

Note that a Shared Property may be accessed from the Class itself. It is not necessary to
create an Instance first.

Numbered Properties

Numbered Properties

A Numbered Property behaves like an array (conceptually a vector) which is only ever
partially accessed and set (one element at a time) via indices.

To implement a Numbered Property, you must specify a PropertyShape function and
either or both a PropertyGet and PropertySet function.

When an expression references or makes an assignment to a Numbered Property, APL
first calls its PropertyShape function which returns the dimensions of the Property.
Note that the shape of the result of this function determines the rank of the Property.

If the expression uses indexing, APL checks that the index or indices are within the
bounds of these dimensions, and then calls the PropertyGet or PropertySet function. If
the expression specifies a single index, APL calls the PropertyGet or PropertySet
function once. If the expression specifies multiple indices, APL calls the function
successively.

If the expression references or assigns the entire Property (without indexing) APL
generates a set of indices for every element of the Property and calls the PropertyGet
or PropertySet function successively for every element in the Property.

Note that APL generates a RANK ERROR if an index contains the wrong number of
elements or an INDEX ERROR if an index is out of bounds.

When APL calls a monadic PropertyGet or PropertySet function, it supplies an
argument of type PropertyArguments.

F1←⎕NEW ComponentFile 'test1'
⎕EX'F1'
F2←⎕NEW ComponentFile 'test2'
F2.Files ⍝ NB ⎕FLIB does not report tied files

test1
⎕EX'F2'

ComponentFile.Files
test1
test2

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 190

Example

The specifies a Numbered Property named Component which represents the contents
of a specified component on the file.

Referencing a Numbered Property in its entirety causes APL to call the get function
successively for every element.

:Property Numbered Component
:Access Public Instance

∇ r←shape
r←¯1+2⊃⎕FSIZE tie

∇
∇ r←get arg

r←⎕FREAD tie arg.Indexers
∇
∇ set arg

arg.NewValue ⎕FREPLACE tie,arg.Indexers
∇

:EndProperty

F1←⎕NEW ComponentFile 'test1'

F1.Append¨(⍳5)×⊂⍳4
1 2 3 4 5

F1.Count
5

F1.Component[4]
4 8 12 16

4⊃F1.Component
4 8 12 16

(⊂4 3)⌷F1.Component
4 8 12 16 3 6 9 12

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 191

Attempting to access a Numbered Property with inappropriate indices generates an
error:

F1.Component
1 2 3 4 2 4 6 8 3 6 9 12 4 8 12 16 5 10 15 20

((⊂4 3)⌷F1.Component)←'Hello' 'World'

F1.Component[3]
World

F1.Component[6]
INDEX ERROR

F1.Component[6]
^
F1.Component[1;2]

RANK ERROR
F1.Component[1;2]

^

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 192

The Default Property

A single Numbered Property may be identified as the Default Property for the Class. If a
Class has a Default Property, indexing with the ⌷ primitive function and [...] indexing
may be applied to the Property directly via a reference to the Class or Instance.

The Numbered Property example of the can be extended by adding the control word
Default to the :Property statement for the Component Property.

Indexing may now be applied directly to the Instance F1. In essence, F1[n] is simply
shorthand for F1.Component[n] and n⌷F1 is shorthand for n⌷F1.Component

Note however that this feature applies only to indexing.

:Property Numbered Default Component
:Access Public Instance

∇ r←shape
r←¯1+2⊃⎕FSIZE tie

∇
∇ r←get arg

r←⎕FREAD tie arg.Indexers
∇
∇ set arg

arg.NewValue ⎕FREPLACE tie,arg.Indexers
∇

:EndProperty

F1←⎕NEW ComponentFile 'test1'
F1.Append¨(⍳5)×⊂⍳4

1 2 3 4 5
F1.Count

5

F1[4]
4 8 12 16

(⊂4 3)⌷F1
4 8 12 16 3 6 9 12

((⊂4 3)⌷F1)←'Hello' 'World'
F1[3]

World

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 193

ComponentFile Class

4⊃F1
DOMAIN ERROR

4⊃F1
^

:Class ComponentFile
:Field Private Instance tie

∇ Open filename
:Implements Constructor
:Access Public Instance
:Trap 0

tie←filename ⎕FTIE 0
:Else

tie←filename ⎕FCREATE 0
:EndTrap
⎕DF filename,'(Component File)'

∇

∇ Close
:Access Public Instance
⎕FUNTIE tie

∇

∇ r←Append data
:Access Public Instance
r←data ⎕FAPPEND tie

∇

∇ Replace(comp data)
:Access Public Instance
data ⎕FREPLACE tie,comp

∇

:Property Count
:Access Public Instance

∇ r←get
r←¯1+2⊃⎕FSIZE tie

∇
:EndProperty ⍝ Count

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 194

:Property Access
:Access Public Instance

∇ r←get arg
r←⎕FRDAC tie

∇
∇ set am;mat;OK

mat←am.NewValue
:Trap 0

OK←(2=⍴⍴mat)^(3=2⊃⍴mat)^^/,mat=⌊mat
:Else

OK←0
:EndTrap
'bad arg'⎕SIGNAL(~OK)/11
mat ⎕FSTAC tie

∇
:EndProperty ⍝ Access

:Property Files
:Access Public Shared

∇ r←get
r←⎕FLIB''

∇
:EndProperty

:Property Numbered Default Component
:Access Public Instance

∇ r←shape args
r←¯1+2⊃⎕FSIZE tie

∇
∇ r←get arg

r←⊂⎕FREAD tie,arg.Indexers
∇
∇ set arg

(⊃arg.NewValue)⎕FREPLACE tie,arg.Indexers
∇

:EndProperty

∇ Delete file;tie
:Access Public Shared
tie←file ⎕FTIE 0
file ⎕FERASE tie

∇
:EndClass ⍝ Class ComponentFile

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 195

Keyed Properties

Keyed Properties

A Keyed Property is similar to a Numbered Property except that it may only be
accessed by indexing (so-called square-bracket indexing) and indices are not restricted
to integers but may be arbitrary arrays.

To implement a Keyed Property, only a get and/or a set function are required. APL
does not attempt to validate or resolve the specified indices in any way, so does not
require the presence of a shape function for the Property.

However, APL does check that the rank and lengths of the indices correspond to the
rank and lengths of the array to the right of the assignment (for an indexed assignment)
and the array returned by the get function (for an indexed reference). If the rank or
shape of these arrays fails to conform to the rank or shape of the indices, APL will issue
a RANK ERROR or LENGTH ERROR.

Note too that indices may be elided. If KProp is a Keyed Property of Instance I1, the
following expressions are all valid.

When APL calls a monadic get or a set function, it supplies an argument of type
PropertyArguments, which identifies which dimensions and indices were specified. See
Section 4.11.2.

Keyed Properties Example 1

The Sparse2 Class illustrates the implementation and use of a Keyed Property.

Sparse2 represents a 2-dimensional sparse array each of whose dimensions are
indexed by arbitrary character keys. The sparse array is implemented as a Keyed
Property named Values. The following expressions show how it might be used.

I1.KProp
I1.KProp[]←10
I1.KProp[;]←10
I1.KProp['One' 'Two';]←10
I1.KProp[;'One' 'Two']←10

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 196

SA1←⎕NEW Sparse2
SA1.Values[⊂'Widgets';⊂'Jan']←100
SA1.Values[⊂'Widgets';⊂'Jan']

100
SA1.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']←10×2 3⍴⍳6
SA1.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']

10 20 30
40 50 60

SA1.Values[⊂'Widgets';'Jan' 'Oct']
10 30

SA1.Values['Grommets' 'Widgets';⊂'Oct']
60
30

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 197

Sparse2 Class Example

:Class Sparse2 ⍝ 2D Sparse Array
:Field Private keys
:Field Private values
∇ make

:Access Public
:Implements Constructor
keys←0⍴⊂'' ''
values←⍬

∇
:Property Keyed Values
:Access Public Instance

∇ v←get arg;k
k←arg.Indexers
⎕SIGNAL(2≠⍴k)/4
k←fixkeys k
v←(values,0)[keys⍳k]

∇
∇ set arg;new;k;v;n

v←arg.NewValue
k←arg.Indexers
⎕SIGNAL(2≠⍴k)/4
k←fixkeys k
v←(⍴k)(⍴⍣(⊃1=⍴,v))v
⎕SIGNAL((⍴k)≠⍴v)/5
k v←,¨k v
:If ∨/new←~k∊keys

values,←new/v
keys,←new/k
k v/⍨←⊂~new

:EndIf
:If 0<⍴k

values[keys⍳k]←v
:EndIf

∇
:EndProperty

∇ k←fixkeys k
k←(2≠≡¨k){,(⊂⍣⍺)⍵}¨k
k←⊃(∘.{⊃,/⊂¨⍺ ⍵})/k

∇
:EndClass ⍝ 2D Sparse Array

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 198

Internally, Sparse2 maintains a list of keys and a list of values which are initialised to
empty arrays by its constructor.

When an indexed assignment is made, the set function receives a list of keys (indices)
in arg.Indexer and values in arg.NewValue. The function updates the values of
existing keys, and adds new keys and their values to the internal lists.

When an indexed reference is made, the get function receives a list of keys (indices) in
arg.Indexer. The function uses these keys to retrieve the corresponding values,
inserting 0s for non-existent keys.

Note that in the expression:

the structure of arg.Indexer is:

Example 2

A second example of a Keyed Property is provided by the KeyedFile Class which is
based upon the used previously.

SA1.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']

.→---.
| .→---------------------. .→------------------. |
	.→------. .→-------.		.→--. .→--. .→--.											
		Widgets		Grommets				Jan		Mar		Oct		
	'-------' '--------'		'---' '---' '---'											
'∊---------------------' '∊------------------'														
'∊---'

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 199

:Class KeyedFile: ComponentFile
:Field Public Keys
⎕ML←0

∇ Open filename
:Implements Constructor :Base filename
:Access Public Instance
:If Count>0

Keys←{⊃⍵⊃⎕BASE.Component}¨⍳Count
:Else

Keys←0⍴⊂''
:EndIf

∇

:Property Keyed Component
:Access Public Instance

∇ r←get arg;keys;sink
keys←⊃arg.Indexers
⎕SIGNAL(~^/keys∊Keys)/3
r←{2⊃⍵⊃⎕BASE.Component}¨Keys⍳keys

∇
∇ set arg;new;keys;vals

vals←arg.NewValue
keys←⊃arg.Indexers
⎕SIGNAL((⍴,keys)≠⍴,vals)/5
:If ∨/new←~keys∊Keys

sink←Append¨↓⍉↑(⊂new)/¨keys vals
Keys,←new/keys
keys vals/⍨←⊂~new

:EndIf
:If 0<⍴,keys

Replace¨↓⍉↑(Keys⍳keys)(↓⍉↑keys vals)
:EndIf

∇
:EndProperty

:EndClass ⍝ Class KeyedFile

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 200

K1←⎕NEW KeyedFile 'ktest'
K1.Count

0
K1.Component[⊂'Pete']←42
K1.Count

1
K1.Component['John' 'Geoff']←(⍳10)(3 4⍴⍳12)
K1.Count

3
K1.Component['Geoff' 'Pete']

1 2 3 4 42
5 6 7 8
9 10 11 12

K1.Component['Pete' 'Morten']←(3 4⍴'∘')(⍳⍳3)
K1.Count

4
K1.Component['Morten' 'Pete' 'John']

1 1 1 1 1 2 1 1 3 ∘∘∘∘ 1 2 3 4 5 6 7 8 9 10
1 2 1 1 2 2 1 2 3 ∘∘∘∘

∘∘∘∘

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 201

4.4 Interfaces

4.4.1 Interfaces

An Interface is defined by a Script that contains skeleton declarations of Properties
and/or Methods. These members are only place-holders; they have no specific
implementation; this is provided by each of the Classes that support the Interface.

An Interface contains a collection of methods and properties that together represents a
protocol that an application must follow in order to manipulate a Class in a particular
way.

An example might be an Interface called Icompare that provides a single method
(Compare) which compares two Instances of a Class, returning a value to indicate which
of the two is greater than the other. A Class that implements Icompare must provide an
appropriate Compare method, but every Class will have its own individual version of
Compare. An application can then be written that sorts Instances of any Class that
supports the ICompare Interface.

An Interface is implemented by a Class if it includes the name of the Interface in
its :Class statement, and defines a corresponding set of the Methods and Properties
that are declared in the Interface.

To implement a Method, a function defined in the Class must include a :Implements
Method statement that maps it to the corresponding Method defined in the Interface:

Furthermore, the syntax of the function (whether it be result returning, monadic or
niladic) must exactly match that of the method described in the Interface. The function
name, however, need not be the same as that described in the Interface.

Similarly, to implement a Property the type (Simple, Numbered or Keyed) and syntax
(defined by the presence or absence of a PropertyGet and PropertySet functions) must
exactly match that of the property described in the Interface. The Property name,
however, need not be the same as that described in the Interface.

4.4.2 Penguin Class Example

The Penguin Class example illustrates the use of Interfaces to implement multiple
inheritance.

:Implements Method <InterfaceName.MethodName>

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 202

In this case, the Penguin Class derives from Animal but additionally supports the
BirdBehaviour and FishBehaviour Interfaces, thereby inheriting members from both.

Pingo←⎕NEW Penguin
⎕CLASS Pingo

#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

(FishBehaviour ⎕CLASS Pingo).Swim
I can dive and swim like a fish

(BirdBehaviour ⎕CLASS Pingo).Fly
Although I am a bird, I cannot fly

(BirdBehaviour ⎕CLASS Pingo).Lay
I lay one egg every year

(BirdBehaviour ⎕CLASS Pingo).Sing
Croak, Croak!

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 203

4.5 Including Namespaces in Classes

4.5.1 Including Namespaces in Classes

A Class may import methods from one or more plain Namespaces. This allows several
Classes to share a common set of methods, and provides a degree of multiple
inheritance.

To import methods from a Namespace NS, the Class Script must include a statement:

When the Class is fixed by the editor or by ⎕FIX, all the defined functions and operators
in Namespace NS are included as methods in the Class. The functions and operators
which are brought in as methods from the namespace NS are treated exactly as if the
source of each function/operator had been included in the class script at the point of
the :Include statement. For example, if a function contains :Signature or :Access
statements, these will be taken into account. Note that such declarations have no effect
on a function/operator which is in an ordinary namespace.

Dfns and dops in NS are also included in the Class but as Private members, because dfns
and dops may not contain :Signature or :Access statements. Variables and Sub-
namespaces in NS are not included.

Note that objects imported in this way are not actually copied, so there is no penalty
incurred in using this feature. Additions, deletions and changes to the functions in NS
are immediately reflected in the Class.

If there is a member in the Class with the same name as a function in NS, the Class
member takes precedence and supersedes the function in NS.

Conversely, functions in NS will supersede members of the same name that are
inherited from the Base Class, so the precedence is:

Class supersedes

Included Namespace, supersedes

Base Class

Any number of Namespaces may be included in a Class and the :Include statements
may occur anywhere in the Class script. However, for the sake of readability, it is

:Include NS

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 204

recommended that you have :Include statements at the top, given that any
definitions in the script will supersede included functions and operators.

For information on copying classes that reference namespaces in this way, see Dyalog
APL Language: Copy.

4.5.2 Example

In this example, Class Penguin inherits from Animal and includes functions from the
plain Namespaces BirdStuff and FishStuff.

Namespace BirdStuff contains 2 functions, both declared as Public methods.

Namespace FishStuff contains a single function, also declared as a Public method.

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff

:EndClass ⍝ Penguin

:Namespace BirdStuff
∇ R←Fly

:Access Public Instance
R←'Fly, Fly ...'

∇
∇ R←Lay

:Access Public Instance
R←'Lay, Lay ...'

∇
:EndNamespace ⍝ BirdStuff

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 205

This is getting silly - we all know that Penguin's can't fly. This problem is simply resolved
by overriding the BirdStuff.Fly method with Penguin.Fly. We can hide
BirdStuff.Fly with a Private method in Penguin that does nothing. For example:

or we can supersede it with a different Public method, as follows:

:Namespace FishStuff
∇ R←Swim

:Access Public Instance
R←'Swim, Swim ...'

∇
:EndNamespace ⍝ FishStuff

Pingo←⎕NEW Penguin
Pingo.Swim

Swim, Swim ...
Pingo.Lay

Lay, Lay ...
Pingo.Fly

Fly, Fly ...

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff
∇ Fly ⍝ Override BirdStuff.Fly
∇

:EndClass ⍝ Penguin

Pingo←⎕NEW Penguin
Pingo.Fly

VALUE ERROR
Pingo.Fly

^

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff
∇ R←Fly ⍝ Override BirdStuff.Fly

:Access Public Instance
R←'Sadly, I cannot fly'

∇
:EndClass ⍝ Penguin

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 206

Pingo←⎕NEW Penguin
Pingo.Fly

Sadly, I cannot fly

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 207

4.6 Nested Classes

4.6.1 Nested Classes

It is possible to define Classes within Classes (Nested Classes).

A Nested Class may be either Private or Public. This is specified by a :Access
Statement, which must precede the definition of any Class contents. The default is
Private.

A Public Nested Class is visible from outside its containing Class and may be used
directly in its own right, whereas a Private Nested Class is not and may only be used
by code inside the containing Class.

However, methods in the containing Class may return instances of Private Nested
Classes and in that way expose them to the calling environment.

4.6.2 GolfService Example

The GolfService Example Class illustrates the use of nested classes. GolfService was
originally developed as a Web Service for Dyalog.NET and is one of the samples
distributed in samples\asp.net\webservices. This version has been reconstructed as a
stand-alone APL Class.

GolfService contains the following nested classes, all of which are Private.

A Class that represents a Golf Course, having Fields Code and Name .

A Class that represents a tee-time or match, having Fields Time and Players .
Up to 4 players may play together in a match.

A Class that represents a reservation for a particular tee-time at a particular golf
course. This has Fields OK , Course , TeeTime and Message . The value of
TeeTime is an Instance of a Slot Class.

A Class that represents a day's starting-sheet at a particular golf course. It has
Fields OK , Course , Date , Slots , Message . Slots is an array of Instances of
Slot Class.

The GolfService constructor takes the name of a file in which all the data is stored. This
file is initialised by method InitFile if it doesn't already exist.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 208

The method returns an array of Instances of the internal (nested) Class . Notice how
the display form of each Instance is established by the constructor, to obtain the output
display shown below.

All of the dates and times employ instances of the .NET type System.DateTime, and the
following statements just set up some temporary variables for convenience later.

The method takes between 4 and 7 parameters viz.

the code for the golf course at which the reservation is required
the date and time of the reservation
a flag to indicate whether or not the nearest available time will do

a list of up to 4 players who wish to book that time.

the code for the golf course at which the reservation is required

the date and time of the reservation
a flag to indicate whether or not the nearest available time will do
a list of up to 4 players who wish to book that time.

The result is an Instance of the internal Class . Once again, ⎕DF is used to make the
default display of these Instances meaningful. In this case, the reservation is successful.

Bob, Arnie and Jack also ask to play at 7:00 but are given the 7:10 tee-time instead (4-
player restriction).

G←⎕NEW GolfService 'F:\HELP11.0\GOLFDATA'
G

#.[Instance of GolfService]

G.GetCourses
St Andrews(1) Hindhead(2) Basingstoke(3)

⎕←Tomorrow←(⎕NEW DateTime(3↑⎕TS)).AddDays 1
31/03/2006 00:00:00

⎕←TomorrowAt7←Tomorrow.AddHours 7
31/03/2006 07:00:00

•
•
•

•

•

•
•
•

G.MakeBooking 2 TomorrowAt7 1 'Pete' 'Tiger'
Hindhead(2) 31/03/2006 07:00:00 Pete Tiger OK

G.MakeBooking 2 TomorrowAt7 1 'Bob' 'Arnie' 'Jack'
Hindhead(2) 31/03/2006 07:10:00 Bob Arnie Jack OK

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 209

However, Pete and Tiger are joined at 7:00 by Dave and Al.

Up to now, all bookings have been made with the tee-time flexibility flag set to 1.
Inflexible Jim is only interested in playing at 7:00...

... so his reservation fails (4-player restriction).

Finally the method is used to obtain an Instance of the internal Class for the given
course and day.

G.MakeBooking 2 TomorrowAt7 1 'Dave' 'Al'
Hindhead(2) 31/03/2006 07:00:00 Pete Tiger Dave Al OK

G.MakeBooking 2 TomorrowAt7 0 'Jim'
Hindhead(2) 31/03/2006 07:00:00 Not available

G.GetStartingSheet 2 Tomorrow
Hindhead(2) 31/03/2006 00:00:00
31/03/2006 07:00:00 Pete Tiger Dave Al
31/03/2006 07:10:00 Bob Arnie Jack
31/03/2006 07:20:00
....

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 210

4.7 Namespace Scripts

4.7.1 Namespace Scripts

A Namespace Script is a script that begins with a :Namespace statement and ends with
a :EndNamespace statement. When a Namespace Script is fixed, it establishes an entire
namespace that may contain other namespaces, functions, variables and classes.

The names of Classes defined within a Namespace Script which are parents, children,
or siblings are visible both to one another and to code and expressions defined in the
same script, regardless of the namespace hierarchy within it. Names of Classes which
are nieces or nephews and their descendants are however not visible.

For example:

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 211

Note that the names of Classes b1 (a.b.b1) and b2 (a.b.b2) are not visible from their
"uncle" a1 (a.a1).

:Namespace a

d←⎕NEW a1
e←⎕NEW bb2

:Class a1
∇ r←foo

:Access Shared Public
r←⎕NEW¨b1 b2

∇
:EndClass ⍝ a1

∇ r←goo
r←a1.foo

∇

∇ r←foo
r←⎕NEW¨b1 b2

∇

:Namespace b
:Class b1
:EndClass ⍝ b1
:Class b2

:Class bb2
:EndClass ⍝ bb2

:EndClass ⍝ b2
:EndNamespace ⍝ b

:EndNamespace ⍝ a

a.d
#.a.[a1]

a.e
#.a.[bb2]

a.foo
#.a.[b1] #.a.[b2]

a.goo
VALUE ERROR
foo[2] r←⎕NEW¨b1 b2

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 212

Notice that Classes in a Namespace Script are fixed before other objects (hence the
assignments to d and e are evaluated after Classes a1 and bb2 are fixed), although the
order in which Classes themselves are defined is still important if they reference one
another during initialisation.

A practical example using :Namespace is given in the Section 4.7.2.

Changing Scripted Objects Dynamically

The source of a scripted object can only be altered using the Editor, or by refixing it in
its entirety using ⎕FIX. Dynamic changes to variables, fields and properties, and calling
⎕FX to generate functions do not alter the source of a scripted object.

Furthermore, if you introduce new objects of any type (functions, variables, or classes)
into a namespace or a class defined by a script by any means other than editing the
script, then these objects will be lost the next time the script is edited and fixed.

If you fix a function using ⎕FX with the same name as a function defined in the script,
this new version will supercede the version defined from the script, although the
version in the script will remain unchanged.

If you edit the function (as opposed to editing the script) the Editor will show the new
version of the function.

If however you edit the script, the Editor will display the original version of the function
embedded in the script.

If you were to edit both the script and the function, the Editor would show the two
different versions of the function as illustrated in the example that follows.

When you fix the script, the version of the function in the script will replace the one
created using ⎕FX.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 213

Example

Note that the Editor displays the description Unscripted Function in the status bar of
the window showing the new version of foo.

Similarly, if you were to Trace the execution of ns.foo, the Tracer would display the
current (⎕FX'ed) version of foo, with the same description in its status bar.

:Namespace ns
∇ foo

1
∇

:EndNamespace

ns.foo
1

ns.⎕FX 'foo' '2'
ns.foo

2
)ED ns.foo ns

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 214

4.7.2 Namespace Script Example

The DiaryStuff example illustrates the manner in which classes may be defined and
used in a Namespace script.

DiaryStuff defines two Classes named Diary and DiaryEntry.

Diary contains a (private) Field named entries, which is simply a vector of instances
of DiaryEntry. These are 2-element vectors containing a .NET DateTime object and a
description.

The entries Field is initialised to an empty vector of DiaryEntry instances which
causes the invocation of the default constructor DiaryEntry.Make0 when Diary is
fixed. See Section 4.2.4 for further explanation.

The entries Field is referenced through the Entry Property, which is defined as the
Section 4.3.4.5. This allows individual entries to be referenced and changed using
indexing on a Diary Instance.

Note that DiaryEntry is defined in the script first (before Diary) because it is
referenced by the initialisation of the Diaries.entries Field

Create a new instance of Diary.

Add a new entry "meeting with John at 09:00 on April 30th"

Add another diary entry "Dentist at 10:00 on April 30th".

One of the benefits of the Namespace Script is that Classes defined within it (which are
typically related) may be used independently, so we can create a stand-alone instance
of DiaryEntry; "Doctor at 11:00"...

... and then use it to replace the second Diary entry with indexing:

D←⎕NEW DiaryStuff.Diary

D.Add(2006 4 30 9 0)'Meeting with John'
30/04/2006 09:00:00 Meeting with John

D.Add(2006 4 30 10 0)'Dentist'
30/04/2006 10:00:00 Dentist

Doc←⎕NEW DiaryStuff.DiaryEntry((2006 4 30 11 0)'Doctor')
Doc

30/04/2006 11:00:00 Doctor

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 215

and just to confirm it is there...

What am I doing on the 30th?

Remove the 11:00 appointment...

and the complete Diary is...

D[2]←Doc

D[2]
30/04/2006 11:00:00 Doctor

D.DoingOn 2006 4 30
30/04/2006 09:00:00 Meeting with John ...
... 30/04/2006 11:00:00 Doctor

D.Remove 2006 4 30 11 0
1

⌷D
30/04/2006 09:00:00 Meeting with John

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 216

4.8 Including Script Files in Scripts

A Class or Namespace script in the workspace or in a script file may specify that other
script files are to be loaded prior to the fixing of the script itself. To do so, it must begin
with one or more :Require statements, with the following syntax:

If no path is specified, the path is taken to be relative to the current script file or, if in a
workspace script, the current working directory. Note that a leading './' or '.\' in
path is not allowed, to avoid any potential confusion with "current directory".

:Require is a directive to the Editor (more specifically, to the internal mechanism that
fixes a script as an object in the workspace) and can appear in any script containing APL
code, but must precede all code in the script. :Require is thus not valid within a
function, class, namespace or any other definition.

The prefix file:// allows for the possibility of a future extension of https:// and
ftp://.

In version 20.0 ⍝!:require is a synonym for :Require. This allows the user to create
scripts which can be used in multiple versions of Dyalog; in 14.1 and earlier SALT parses
⍝!:require statements and loads the appropriate files, in 20.0 it is the interpreter
loads the file named in ⍝!:require statements. Dyalog intends to remove support for
the ⍝!:require statement from the interpreter in a future version. Note that unlike
:Require, ⍝!:require can appear within code.

4.9 Class Declaration Statements

4.9.1 Class Declaration Statements

This section summarises the various declaration statements that may be included in a
Class or Namespace Script. For information on other declaration statements, as they
apply to functions and methods, see Section 3.1.8.1.

4.9.2 :Interface Statement

:Require file://[path]/file

:Interface <interface name>
...
:EndInterface

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 217

An Interface is defined by a Script containing skeleton declarations of Properties and/or
Methods. The script must begin with a :Interface Statement and end with a
:EndInterface Statement.

An Interface may not contain Fields.

Properties and Methods defined in an Interface, and the Class functions that
implement the Interface, may not contain :Access Statements.

4.9.3 :Namespace Statement

A Namespace Script may be used to define an entire namespace containing other
namespaces, functions, variables and Classes.

A Namespace script must begin with a :Namespace statement and end with a
:EndNamespace statement.

Sub-namespaces, which may be nested, are defined by pairs of :Namespace and
:EndNamespace statements within the Namespace script.

Classes are defined by pairs of :Class and :EndClass statements within the
Namespace script, and these too may be nested.

The names of Classes defined within a Namespace Script are visible both to one
another and to code and expressions defined in the same script, regardless of the
namespace hierarchy within it.

A Namespace script is therefore particularly useful to group together Classes that refer
to one another where the use of nested classes is inappropriate.

4.9.4 :Class Statement

:Class <class name><:base class name> <,interface name...>

A class script begins with a :Class statement and ends with a :EndClass statement.
The elements that comprise the :Class statement are as follows:

:Namespace <namespace name>
...
:EndNamespace

:Include <namespace>
...
:EndClass

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 218

Element Description

class name
Optionally, specifies the name of the Class, which must conform
to the rules governing APL names.

base class

name

Optionally specifies the name of a Class from which this Class is
derived and whose members this Class inherits.

interface

name
The names of one or more Interfaces which this Class supports.

A Class may import methods defined in separate plain Namespaces with one or more
:Include statements. For further details, see Section 4.5.1.

Examples

The following statements define a Class named Penguin that derives from (is based
upon) a Class named Animal and which supports two Interfaces named BirdBehaviour
and FishBehaviour.

The following statements define a Class named Penguin that derives from (is based
upon) a Class named Animal and includes methods defined in two separate
Namespaces named BirdStuff and FishStuff.

4.9.5 :Using Statement

This statement specifies a .NET namespace that is to be searched to resolve unqualified
names of .NET types referenced by expressions in the Class.

:Class Penguin: Animal,BirdBehaviour,FishBehaviour
...
:EndClass

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff
...
:EndClass

:Using <NameSpace[,Assembly]>

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 219

Element Description

NameSpace Specifies a .NET namespace.

Assembly

Specifies the Assembly in which NameSpace is located. If the
Assembly is located in the Microsoft.NET installation directory, you
need only specify its name. If not, you must specify a full or relative
pathname.

If the Microsoft .NET Framework is installed, the System namespace inmscorlib.dll is
automatically loaded when Dyalog APL starts. To access this namespace, it is not
necessary to specify the name of the Assembly.

When the class is fixed, ⎕USING is inherited from the surrounding space. Each :Using
statement appends an element to ⎕USING, with the exception of :Using with no
argument:

If you omit <Namespace>, this is equivalent to clearing ⎕USING, which means that
no .NET namespaces will be searched (unless you follow this statement with additional
:Using statements, each of which will append to ⎕USING).

To set ⎕USING, to a single empty character vector, which only allows references to fully
qualified names of classes in mscorlib.dll, you must write:

:Using , (note the presence of the comma)

or

:Using ,mscorlib.dll

that is, specify an empty namespace name followed by no assembly, or followed by the
default assembly, which is always loaded.

4.9.6 :Attribute Statement

The :Attribute statement is used to attach .NET Attributes to a Class or a Method.

Attributes are descriptive tags that provide additional information about programming
elements. Attributes are not used by Dyalog APL but other applications can refer to the
extra information in attributes to determine how these items can be used. Attributes
are saved with the metadata of Dyalog APL .NET assemblies.

:Attribute <Name> [ConstructorArgs]

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 220

Element Description

Name The name of a .NET attribute

ConstructorArgs Optional arguments for the Attribute constructor

Example

The following Class has SerializableAttribute and CLSCompliantAttribute
attributes attached to the Class as a whole, and ObsoleteAttribute attributes
attached to Methods foo and goo within it.

When this Class is exported as a .NET Class, the attributes are saved in its metadata. For
example, Visual Studio will warn developers if they make use of a member which has
the ObsoleteAttribute.

4.9.7 :Access Statement

The :Access statement is used to specify characteristics for Classes, Properties and
Methods.

:Class c1
:using System

:attribute SerializableAttribute
:attribute CLSCompliantAttribute 1

∇ foo(p1 p2)
:Access public instance
:Signature foo Object,Object
:Attribute ObsoleteAttribute

∇

∇ goo(p1 p2)
:Access public instance
:Signature foo Object,Object
:Attribute ObsoleteAttribute 'Don''t use this' 1

∇

:EndClass ⍝ c1

:Access <Private|Public><Instance|Shared><Overridable>
<Override>

:Access <WebMethod>

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 221

Element Description

Private|

Public

Specifies whether or not the (nested) Class, Property or Method
is accessible from outside the Class or an Instance of the Class.
The default is Private .

Instance|

Shared

For a Field, specifies if there is a separate value of the Field in
each Instance of the Class, or if there is only a single value that is
shared between all Instances. For a Property or Method, specifies
whether the code associated with the Property or Method runs
in the Class or Instance.

WebMethod

Applies only to a Method and specifies that the method is
exported as a web method. This applies only to a Class that
implements a Web Service.

Overridable

Applies only to an Instance Method and specifies that the
Method may be overridden by a Method in a higher Class. See
below.

Override

Applies only to an Instance Method and specifies that the
Method overrides the corresponding Overridable Method
defined in the Base Class. See below.

Overridable/Override

Normally, a Method defined in a higher Class replaces a Method of the same name that
is defined in its Base Class, but only for calls made from above or within the higher
Class itself (or an Instance of the higher Class). The base method remains available in
the Base Class and is invoked by a reference to it from within the Base Class.

However, a Method declared as being Overridable is replaced in situ (that is, within its
own Class) by a Method of the same name in a higher Class if that Method is itself
declared with the Override keyword. For further information, see Section 4.3.3.4.

Nested Classes

The :Access statement is also used to control the visibility of one Class that is defined
within another (a nested Class). A Nested Class may be either Private or Public. Note
that the :Access Statement must precede the definition of any Class contents.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 222

A Public Nested Class is visible from outside its containing Class and may be used
directly in its own right, whereas a Private Nested Class is not and may only be used
by code inside the containing Class.

However, methods in the containing Class may return instances of Private Nested
Classes and in that way expose them to the calling environment.

WebMethod

Note that :Access WebMethod is equivalent to:

4.9.8 :Implements Statement

The :Implements statement identifies the function to be one of the following types.

Element Description

Constructor Specifies that the function is a Class Constructor .

:Base expr
Specifies that the Base Constructor be called with the result of the
expression expr as its argument.

Destructor Specifies that the function is a Class Destructor .

Method
Specifies that the function implements the Method MethodName
whose syntax is specified by Interface InterfaceName .

Trigger

Identifies the function as a Trigger Function which is activated by
changes to variable name1, name2, and so forth. Trigger *
specifies a Global Trigger that is activated by the assignment of
any global variable in the same namespace.

:Access Public
:Attribute System.Web.Services.WebMethodAttribute

:Implements Constructor <[:Base expr]>
:Implements Destructor
:Implements Method <InterfaceName.MethodName>
:Implements Trigger <name1><,name2,name3,...>
:Implements Trigger *

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 223

4.10 :Field Statement

A :Field statement is a single statement whose elements are as follows:

Element Description

Private|

Public

Specifies whether or not the Field is accessible from outside the
Class or an Instance of the Class. The default is Private .

Instance|

Shared

Specifies if there is a separate value of the Field in each Instance
of the Class, or if there is only a single value that is shared
between all Instances.

ReadOnly
If specified, this keyword prevents the value in the Field from
being changed after initialisation.

Type
If specified, this identifies a .Net type for the Field. This type
applies only when the Class is exported as a .NET Assembly.

FieldName Specifies the name of the Field (mandatory).

← expr Specifies an initial value for the Field.

Examples

The following statement defines a Field called Name. It is (by default), an Instance Field
so every Instance of the Class has a separate value. It is a Public Field and so may be
accessed (set or retrieved) from outside an Instance.

The following statement defines a Field called Months.

Months is a Shared Field so there is just a single value that is the same for every
Instance of the Class. It is (by default), a Private Field and may only be referenced by
code running in an Instance or in the Class itself. Furthermore, it is ReadOnly and may
not be altered after initialisation. Its initial value is calculated by an expression that
obtains the short month names that are appropriate for the current locale using
the .NET Type DateTimeFormatInfo.

:Field <Private|Public> <Instance|Shared> <ReadOnly>...
... FieldName <← expr>

:Field Public Name

:Field Shared ReadOnly Months←12↑(⎕NEW
DateTimeFormatInfo.AbbreviatedMonthNames

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 224

Notes

Note that Fields are initialised when a Class script is fixed by the editor or by ⎕FIX. If
the evaluation of expr causes an error (for example, a VALUE ERROR), an appropriate
message will be displayed in the Status Window and ⎕FIX will fail with a DOMAIN
ERROR. Note that a ReadOnly Field may only be assigned a value by its :Field
statement.

In the second example above, the expression will only succeed if ⎕USING is set to the
appropriate path, in this case System.Globalization.

You may not define a Field with the name of one of the permissible keywords (such as
public). In such cases the Class will not fix and an error message will be displayed in
the Status Window. For example:

4.11 Property Section

4.11.1 :Property Section

A Property is defined by a :Property ... :EndProperty section in a Class Script. The
syntax of the :Property Statement, and its optional :Access statement is as follows:

error AC0541: a field must have a name " :Field Public public"

:Property <Simple|Numbered|Keyed> <Default> Name<,Name>...
:Access <Private|Public><Instance|Shared>
...
:EndProperty

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 225

Element Description

Name

Specifies the name of the Property by which it is accessed.
Additional Properties, sharing the same PropertyGet and/or
PropertySet functions, and the same access behaviour may be
specified by a comma-separated list of names.

Simple|

Numbered|

Keyed

Specifies the type of Property (see below). The default is Simple .

Default

Specifies that this Property acts as the default property for the
Class when indexing is applied directly to an Instance of the
Class.

Private|

Public

Specifies whether or not the Property is accessible from outside
the Class or an Instance of the Class. The default is Private .

Instance|

Shared

Specifies if there is a separate value of the Property in each
Instance of the Class, or if there is only a single value that is
shared between all Instances.

A Section 4.3.4.2 is one whose value is accessed (by APL) in its entirety and re-assigned
(by APL) in its entirety.

A Section 4.3.4.4.1 behaves like an array (conceptually a vector) which is only ever
partially accessed and set (one element at a time) via indices.

A Section 4.3.4.7.1 is similar to a Numbered Property except that its elements are
accessed via arbitrary keys instead of indices.

Numbered and Keyed Properties are designed to allow APL to perform selections and
structural operations on the Property.

Within the body of a Property Section there may be:

one or more :Access statements
a single Section 4.11.3 function.
a single Section 4.11.4 function
a single Section 4.11.5 function

The three functions are identified by case-independent names Get, Set and Shape.

•
•
•
•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 226

Errors

When a Class is fixed by the Editor or by ⎕FIX, APL checks the validity of each Property
section and the syntax of Section 4.11.3, Section 4.11.4 and Section 4.11.5 functions
within them.

You may not specify a name which is the same as one of the keywords.
There must be at least a Section 4.11.3, or a Section 4.11.4 or a Section 4.11.5
function defined.
You may only define a Section 4.11.5 function if the Property is Numbered.

If anything is wrong, the Class is not fixed and an error message is displayed in the
Status Window. For example:

4.11.2 PropertyArguments Class

Where appropriate, APL supplies the PropertyGet and PropertySet functions with an
argument that is an instance of the internal class PropertyArguments.

PropertyArguments has just 3 read-only Fields which are as follows:

Name
The name of the property. This is useful when one function
is handling several properties.

NewValue

Array containing the new value for the Property or for
selected element(s) of the property as specified by
Indexers .

IndexersSpecified
A Boolean vector that identifies which dimensions of the
Property are to be referenced or assigned.

Indexers
A vector that identifies the elements of the Property that
are to be referenced or assigned.

4.11.3 PropertyGet Function R←Get {ipa}

The name of the PropertyGet function must be Get, but is case-independent. For
example, get, Get, gEt and GET are all valid names for the PropertyGet function.

•
•

•

error AC0545: invalid or empty property declaration
error AC0595: this property type should not implement a "shape" function

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 227

The PropertyGet function must be result returning. For a Simple Property, it may be
monadic or niladic. For a Numbered or Keyed Property it must be monadic.

The result R may be any array. However, for a Keyed Property, R must conform to the
rank and shape specified by ipa.Indexers or be scalar.

If monadic, ipa is an instance of the internal class Section 4.11.2.

In all cases, ipa.Name contains the name of the Property being referenced and
NewValue is undefined (VALUE ERROR).

If the Property is Simple, ipa.Indexers is undefined (VALUE ERROR).

If the Property is Numbered, ipa.Indexers is an integer vector of the same length as
the rank of the property (as implied by the result of the Shape function) that identifies
a single element of the Property whose value is to be obtained. In this case, R must be
scalar.

If the Property is Keyed, ipa.IndexersSpecified is a Boolean vector with the same
length as the rank of the property (as implied by the result of the Shape function). A
value of 1 means that an indexing array for the corresponding dimension of the
Property was specified, while a value of 0 means that the corresponding dimension was
elided. ipa.Indexers is a vector of the same length containing the arrays that were
specified within the square brackets in the reference expression. Specifically,
ipa.Indexers will contain one fewer elements than, the number of semi-colon (;)
separators. If any index was elided, the corresponding element of ipa.Indexers is
⎕NULL.

It is not possible to predict the number of times that a PropertyGet, PropertySet

or PropertyShape function will be called by a particular APL expression, as this

depends upon how that expression is implemented internally. You should

therefore not rely on the number of times that a Get, Set or Shape function is

called, and none should have any side effects on any other APL object

Note

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 228

4.11.4 PropertySet Function Set ipa

The name of the PropertySet function must be Set, but is case-independent. For
example, set, Set, sEt and SET are all valid names for the PropertySet function.

The PropertySet function must be monadic and may not return a result.

ipa is an instance of the internal class Section 4.11.2.

In all cases, ipa.Name contains the name of the Property being referenced and
NewValue contains the new value(s) for the element(s) of the Property being assigned.

If the Property is Simple, ipa.Indexers is undefined (VALUE ERROR).

If the Property is Numbered, ipa.Indexers is an integer vector of the same length as
the rank of the property (as implied by the result of the Shape function) that identifies
a single element of the Property whose value is to be set.

If the Property is Keyed, ipa.IndexersSpecified is a Boolean vector with the same
length as the rank of the property (as implied by the result of the Shape function). A
value of 1 means that an indexing array for the corresponding dimension of the
Property was specified, while a value of 0 means that the corresponding dimension was
elided.ipa.Indexers is a vector containing the arrays that were specified within the
square brackets in the assignment expression. Specifically, ipa.Indexers will contain
one fewer elements than, the number of semi-colon (;) separators. If any index was
elided, the corresponding element of ipa.Indexers is ⎕NULL. However, if the Keyed
Property is being assigned in its entirety, without square-bracket indexing,
ipa.Indexers is undefined (VALUE ERROR).

It is not possible to predict the number of times that a PropertyGet, PropertySet

or PropertyShape function will be called by a particular APL expression, as this

depends upon how that expression is implemented internally. You should

therefore not rely on the number of times that a Get, Set or Shape function is

called, and none should have any side effects on any other APL object

Note

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 229

4.11.5 PropertyShape Function R←Shape {ipa}

The name of the PropertyShape function must be Shape, but is case-independent. For
example, shape, Shape, sHape and SHAPE are all valid names for the PropertyShape
function.

A PropertyShape function is only called if the Property is a Numbered Property.

The PropertyShape function must be niladic or monadic and must return a result.

If monadic, ipa is an instance of the internal class Section 4.11.2. ipa.Name contains
the name of the Property being referenced and NewValue and Indexers are undefined
(VALUE ERROR).

The result R must be an integer vector or scalar that specifies the rank of the Property.
Each element of R specifies the length of the corresponding dimension of the Property.
Otherwise, the reference or assignment to the Property will fail with DOMAIN ERROR.

Note that the result R is used by APL to check that the number of indices corresponds
to the rank of the Property and that the indices are within the bounds of its
dimensions. If not, the reference or assignment to the Property will fail with RANK
ERROR or LENGTH ERROR.

It is not possible to predict the number of times that a PropertyGet, PropertySet

or PropertyShape function will be called by a particular APL expression, as this

depends upon how that expression is implemented internally. You should

therefore not rely on the number of times that a Get, Set or Shape function is

called, and none should have any side effects on any other APL object

Note

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 230

5 Threads and Triggers

5.1 Threads

5.1.1 Multi-Threading Language Elements

The following language elements are provided to support threads.

Primitive operator, spawn: &.
System functions: ⎕TID, ⎕TCNUMS, ⎕TNUMS, ⎕TKILL, ⎕TSYNC.
An extension to the GUI Event syntax to allow asynchronous callbacks.
A control structure: :Hold.
System commands:)HOLDS,)TID.
Extended)SI and)SINL display.

Running Callback Functions as Threads

A callback function is associated with a particular event via the Event property of the
object concerned. A callback function is executed by ⎕DQ when the event occurs, or by
⎕NQ.

If you append the character & to the name of the callback function in the Event
specification, the callback function will be executed asynchronously as a thread when
the event occurs. If not, it is executed synchronously as before.

For example, the event specification:

tells ⎕DQ to execute the callback function DoIt asynchronously as a thread when a
Select event occurs on the object.

•
•
•
•
•
•

⎕WS'Event' 'Select' 'DoIt&'

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 231

5.1.2 Thread Switching

Programming with threads requires care!

The interpreter may switch between running threads at the following points:

Between any two lines of a defined function or operator.
On entry to a dfn or dop.
While waiting for a ⎕DL to complete.
While awaiting input from:

⎕DQ

⎕SR

⎕ED

The session prompt or ⎕: or ⍞.
While awaiting the completion of an external operation:

A call on an external (AP) function.
A call on a ⎕NA (DLL) function.
A call on an OLE function.
A call on a .NET function.

At any of these points, the interpreter might execute code in other threads. If such
threads change the global environment; for example by changing the value of, or
expunging a name; then the changes will appear to have happened while the thread in
question passes through the switch point. It is the task of the application programmer
to organise and contain such behaviour.

You can prevent threads from interacting in critical sections of code by using the :Hold
control structure.

High Priority Callback Functions

Note that the interpreter cannot perform thread-switching during the execution of a
high-priority callback. This is a callback function that is invoked by a high-priority event
which demands that the interpreter must return a result to Windows before it may
process any other event. Such high-priority events include Configure, ExitWindows,
DateTimeChange, DockStart, DockCancel, DropDown. It is therefore not permitted to
use a :Hold control structure in a high-priority callback function.

Warning

•
•
•
•

◦
◦
◦

•
•

◦
◦
◦
◦

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 232

5.1.3 Name Scope

APL's name scope rules apply whether a function call is synchronous or asynchronous.
For example when a defined function is called, names in the calling environment are
visible, unless explicitly shadowed in the function header.

Just as with a synchronous call, a function called asynchronously has its own local
environment, but can communicate with its parent and "sibling" functions via local
names in the parent.

This point is important. It means that siblings can run in parallel without danger of local
name clashes. For example, a GUI application can accommodate multiple concurrent
instances of its callback functions.

However, with an asynchronous call, as the calling function continues to execute, both
child and parent functions may modify values in the calling environment. Both
functions see such changes immediately they occur.

If a parent function terminates while any of its children are still running, those children
will no longer have access to its local names, and references to such names will either
generate VALUE ERROR or be replaced by values from the environment that called the
parent function. If a child function references variables defined by its parent or relies in
any other way on its parent's environment (such as a local value of ⎕IO), the parent
function should therefore execute a ⎕TSYNC in order to wait for its children to complete
before itself exiting.

If, on the other hand, after launching an asynchronous child, the parent function calls a
new function (either synchronously or asynchronously); names in the new function are
beyond the purview of the original child. In other words, a function can only ever see
its calling stack decrease in size – never increase. This is in order that the parent may
call new defined functions without affecting the environment of its asynchronous
children.

5.1.4 Stack Considerations

When you start a thread, it begins with the SI stack of the calling function and sees all
of the local variables defined in all the functions down the stack. However, unless the
calling function specifically waits for the new thread to terminate (see Dyalog APL
Language: Tsync), the calling functions will (bit by bit, in their turn) continue to
execute. The new thread's view of its calling environment may then change. Consider
the following example:

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 233

Suppose that you had the following functions: RUN[3] calls INIT which in turn calls
GETDATA but as 3 separate threads with 3 different arguments:

When each GETDATA thread starts, it immediately sees (via ⎕SI) that it was called by
INIT which was in turn called by RUN, and it sees local variables A, B, C and D. However,
once INIT[4] has been executed, INIT terminates, and execution of the root thread
continues by calling CALC. From then on, each GETDATA thread no longer sees INIT (it
thinks that it was called directly from RUN) nor can it see the local variables C and D that
INIT had defined. However, it does continue to see the locals A and B defined by RUN,
until RUN itself terminates.

Note that if CALC were also to define locals A and B, the GETDATA threads would still see
the values defined by RUN and not those defined by CALC. However, if CALC were to
modify A and B (as globals) without localising them, the GETDATA threads would see the
modified values of these variables, whatever they happened to be at the time.

5.1.5 Globals and the Order of Execution

It is important to recognise that any reference or assignment to a global or semi-global
object (including GUI objects) is inherently dangerous (that is, a source of
programming error) if more than one thread is running. Worse still, programming
errors of this sort may not become apparent during testing because they are
dependent upon random timing differences. Consider the following example:

∇ RUN;A;B
[1] A←1
[2] B←'Hello World'
[3] INIT
[4] CALC
[5] REPORT

∇

∇ INIT;C;D
[1] C←D←0
[2] GETDATA&'Sales'
[3] GETDATA&'Costs'
[4] GETDATA&'Expenses'

∇

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 234

In this example, it is formally impossible to predict in which order APL will execute
statements in BUG, FOO or GOO from BUG[2] onwards. For example, the actual sequence
of execution may be:

or

This is because APL may switch from one thread to another between any two lines in a
defined function. In practice, because APL gives each thread a significant time-slice, it is
likely to execute many lines, maybe even hundreds of lines, in one thread before
switching to another. However, you must not rely on this; thread-switching may occur
at any time between lines in a defined function.

Secondly, consider the possibility that APL switches from the FOO thread to the GOO
thread after FOO[1]. If this happens, the value of SEMI_GLOBAL passed to
DO_SOMETHING will be 1 and not 0. Here is another source of error.

In this case, there are two ways to resolve the problem. To ensure that the value of
SEMI_GLOBAL remains the same from FOO[1] to FOO[2], you can use diamonds instead
of separate statements. For example:

∇ BUG;SEMI_GLOBAL
[1] SEMI_GLOBAL←0
[2] FOO& 1
[3] GOO& 1

∇

∇ FOO
[1] :If SEMI_GLOBAL=0
[2] DO_SOMETHING SEMI_GLOBAL
[3] :Else
[4] DO_SOMETHING_ELSE SEMI_GLOBAL
[5] :EndIf

∇

∇ GOO
[1] SEMI_GLOBAL←1

∇

BUG[1] → BUG[2] → FOO[1] → FOO[2] →
DO_SOMETHING[1]

BUG[1] → BUG[2] → BUG[3] → GOO[1] →
FOO[1] → FOO[2] → FOO[3] →
FOO[4] → DO_SOMETHING_ELSE[1]

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 235

Even better, although less efficient, you can use :Hold to synchronise access to the
variable. For example:

Now, although you still cannot be sure which of FOO and GOO will run first, you can be
sure that SEMI_GLOBAL will not change (because GOO cuts in) within FOO.

Note that the string used as the argument to :Hold is completely arbitrary, so long as
threads competing for the same resource use the same string.

These types of problems are inherent in all multithreading programming

languages, and not just with Dyalog APL. If you want to take advantage of the

additional power provided by multithreading, it is advisable to think carefully

about the potential interaction between different threads.

5.1.6 Threads & Niladic Functions

In common with other operators, the spawn operator & may accept monadic or dyadic
functions as operands, but not niladic functions. This means that, using spawn, you
cannot start a thread that consists only of a niladic function

:If SEMI_GLOBAL=0 ⋄ DO_SOMETHING SEMI_GLOBAL

∇ FOO
[1] :Hold 'SEMI_GLOBAL'
[2] :If SEMI_GLOBAL=0
[3] DO_SOMETHING SEMI_GLOBAL
[4] :Else
[5] DO_SOMETHING_ELSE SEMI_GLOBAL
[6] :EndIf
[7] :EndHold

∇

∇ GOO
[1] :Hold 'SEMI_GLOBAL'
[2] SEMI_GLOBAL←1
[3] :EndHold

∇

Warning

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 236

If you wish to invoke a niladic function asynchronously, you have the following choices:

Turn your niladic function into a monadic function by giving it a dummy
argument which it ignores.
Call your niladic function with a dfn to which you give an argument that is
implicitly ignored. For example, if the function NIL is niladic, you can call it
asynchronously using the expression: {NIL}& 0

Call your function via a dummy monadic function, for example

Use execute, for example

Note that niladic functions can be invoked asynchronously as callback functions. For
example, the statement:

will execute correctly as a thread, even though NIL is niladic. This is because callback
functions are invoked directly by ⎕DQ rather than as an operand to the spawn operator.

5.1.7 Threads & External Functions

External functions in dynamic link libraries (DLLs) defined using the ⎕NA interface may
be run in separate C threads. Such threads:

take advantage of multiple processors if the operating system permits.
allow APL to continue processing in parallel during the execution of a ⎕NA
function.

When you define an external function using ⎕NA, you may specify that the function be
run in a separate C thread by appending an ampersand (&) to the function name, for
example:

•

•

•

∇ NIL_M DUMMY
[1] NIL

∇
NIL_M& ''

•

⍎& 'NIL'

⎕WS'Event' 'Select' 'NIL&'

•
•

'beep'⎕NA'user32|MessageBeep& i'
⍝ MessageBeep will run in a separate C thread

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 237

When APL first comes to execute a multi-threaded ⎕NA function, it starts a new C-
thread, executes the function within it, and waits for the result. Other APL threads may
then run in parallel.

Note that when the ⎕NA call finishes and returns its result, its new C-thread is retained
to be re-used by any subsequent multithreaded ⎕NA calls made within the same APL
thread. Thus any APL thread that makes any multi-threaded ⎕NA calls maintains a
separate C-thread for their execution. This C-thread is discarded when its APL thread
finishes.

Note that there is no point in specifying a ⎕NA call to be multi-threaded, unless you
wish to execute other APL threads at the same time.

In addition, if your ⎕NA call needs to access an APL GUI object (strictly, a window or
other handle) it should normally run within the same C-thread as APL itself, and not in
a separate C-thread. This is because Windows associates objects with the C-thread that
created them. Although you can use a multi-threaded ⎕NA call to access (say) a Dyalog
APL Form via its window handle, the effects may be different than if the ⎕NA call was
not multi-threaded. In general, ⎕NA calls that access APL (GUI) objects should not be
multi-threaded.

If you wish to run the same ⎕NA call in separate APL threads at the same time, you must
ensure that the DLL is thread-safe. Functions in DLLs which are not thread-safe, must
be prevented from running concurrently by using the :Hold control structure. Note
that all the standard Windows API DLLs are thread safe.

Notice that you may define two separate functions (with different names), one single-
threaded and one multi-threaded, associated with the same function in the DLL. This
allows you to call it in either way.

5.1.8 Synchronising Threads

Threads may be synchronised using tokens and a token pool.

An application can synchronise its threads by having one thread add tokens into the
pool whilst other threads wait for tokens to become available and retrieve them from
the pool.

Tokens possess two separate attributes, a type and a value.

The type of a token is a positive or negative numeric scalar. The value of a token is any
arbitrary array that you might wish to associate with it.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 238

The token pool may contain up to 2*31 tokens; they do not have to be unique neither
in terms of their types nor of their values.

The following system functions are used to manage the token pool:

⎕TALLOC Allocates ranges of tokens.

⎕TPUT Puts tokens into the pool.

⎕TGET If necessary waits for, and then retrieves some tokens from the pool.

⎕TPOOL Reports the types of tokens in the pool

⎕TREQ Reports the token requests from specific threads

A simple example of a thread synchronisation requirement occurs when you want one
thread to reach a certain point in processing before a second thread can continue.
Perhaps the first thread performs a calculation, and the second thread must wait until
the result is available before it can be used.

This can be achieved by having the first thread put a specific type of token into the pool
using ⎕TPUT. The second thread waits (if necessary) for the new value to be available by
calling ⎕TGET with the same token type.

Notice that when ⎕TGET returns, the specified tokens are removed from the pool.
However, negative token types will satisfy an infinite number of requests for their
positive equivalents.

The system is designed to cater for more complex forms of synchronisation. For
example, a semaphore to control a number of resources can be implemented by
keeping that number of tokens in the pool. Each thread will take a token while
processing, and return it to the pool when it has finished.

A second complex example is that of a latch which holds back a number of threads until
the coast is clear. At a signal from another thread, the latch is opened so that all of the
threads are released. The latch may (or may not) then be closed again to hold up
subsequently arriving threads. A practical example of a latch is a ferry terminal.

5.1.9 Semaphore Example

A semaphore to control a number of resources can be implemented by keeping that
number of tokens in the pool. Each thread will take a token while processing, and
return it to the pool when it has finished.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 239

For example, if we want to restrict the number of threads that can have sockets open at
any one time.

5.1.10 Latch Example

A latch holds back a number of threads until the coast is clear. At a signal from another
thread, the latch is opened so that all of the threads are released. The latch may (or
may not) then be closed again to hold up subsequently arriving threads.

A visual example of a latch might be a ferry terminal, where cars accumulate in the
queue until the ferry arrives. The barrier is then opened and all (up to a maximum
number) of the cars are allowed through it and on to the ferry. When the last car is
through, the barrier is re-closed.

Note that it is easy to modify this example to provide a maximum number of ferry
places per trip by inserting max_places↑ between ⎕TPUT and its argument. If fewer cars

sock←99 ⍝ socket-token
any +ive number will do).

⎕TPUT 5/sock ⍝ add 5 socket-tokens to pool.

∇ sock_open ...
[1] :If sock=⎕TGET sock ⍝ grab a socket token
[.] ... ⍝ do stuff.
[.] ⎕TPUT sock ⍝ release socket token
[.] :Else
[.] error'sockets off' ⍝ sockets switched off by

retract (see below).
[.] :EndIf

∇

0 ⎕TPUT ⎕TREQ ⎕TNUMS ⍝ retract socket "service"
with 0 value.

tkt←6 ⍝ 6-token: ferry ticket.

∇ car ...
[1] ⎕TGET tkt ⍝ await ferry.
[2] ...

∇ ferry ...
[1] arrives in port
[2] ⎕TPUT(↑,/⎕TREQ ⎕TNUMS)∩tkt ⍝ ferry tickets for all.
[3] ...

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 240

than the ferry capacity are waiting, the ↑ will fill with trailing 0s. This will not cause
problems because zero tokens are ignored.

Let us replace the car ferry with a new road bridge. Once the bridge is ready for traffic,
the barrier could be opened permanently by putting a negative ticket in the pool.

Cars could choose to take the last ferry if there are places:

The above :Select works because by default, ⎕TPUT -tkt puts a value of -tkt into the
token.

5.1.11 Debugging Threads

If a thread sustains an untrapped error, its execution is suspended in the normal way. If
the Pause on Error option is set, all other threads are paused. If Pause on Error option is
not set, other threads will continue running and it is possible for another thread to
encounter an error and suspend (see the Dyalog for Microsoft Windows Installation
and Configuration Guide).

Using the facilities provided by the Tracer and the Threads Tool (see the Dyalog for
Microsoft Windows UI Guide) it is possible to interrupt (suspend) and restart individual
threads, and to pause and resume individual threads, so any thread may be in one of
three states - running, suspended or paused.

The Tracer and the Session may be connected with any suspended thread and you can
switch the attention of the Session and the Tracer between suspended threads using
)TID or by clicking on the appropriate tab in the Tracer. At this point, you may:

Examine and modify local variables for the currently suspended thread.
Trace and edit functions in the current thread.
Cut back the stack in the currently suspended thread.
Restart execution.
Start new threads

The error message from a thread other than the base is prefixed with its thread
number:

⎕TPUT -tkt ⍝ open ferry barrier permanently.

∇ car ...
[1] :Select ⎕TGET tkt
[2] :Case tkt ⋄ take the last ferry.
[3] :Case -tkt ⋄ ferry full: take the new bridge.
[4] :End

•
•
•
•
•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 241

State indicator displays:)SI and)SINL have been extended to show threads' tree-like
calling structure.

Here, Main has called Sub, which has spawned threads 4 and 5 with functions: Div and
Calc. Function Div, after spawning DivSub in each of threads 6 and 7, have been
suspended at line [2].

Removing stack frames using Quit from the Tracer or → from the session affects only the
current thread. When the final stack frame in a thread (other than the base thread) is
removed, the thread is expunged.

)RESET removes all but the base thread.

Note the distinction between a suspended thread and a paused thread.

A suspended thread is stopped at the beginning of a line in a defined function or
operator. It may be connected to the Session so that expressions executed in the
Session do so in the context of that thread. It may be restarted by executing →line
(typically, →⎕LC).

A paused thread is an inactive thread that is currently being ignored by the thread
scheduler. A paused thread may be paused within a call to ⎕DQ, a call on an external
function, at the beginning of a line, or indeed at any of the thread-switching points
described earlier in this chapter.

A paused thread may be resumed only by the action of a menu item or button. A
paused thread resumes only in the sense that it ceases to be ignored by the thread

260:DOMAIN ERROR
Div[2] rslt←num÷div

^

)SI
· #.Calc[1]
&5
· · #.DivSub[1]
· &7
· · #.DivSub[1]
· &6
· #.Div[2]*
&4
#.Sub[3]
#.Main[4]

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 242

scheduler and will therefore be switched back to at some point in the future. It does
not actually continue executing until the switch occurs.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 243

5.2 Triggers

5.2.1 Triggers

Triggers provide the ability to have a function called automatically whenever a variable
or a Field is assigned. Triggers are actioned by all forms of assignment (←), but only by
assignment.

Triggers are designed to allow a class to perform some action when a field is modified –
without having to turn the field into a property and use the property setter function to
achieve this. Avoiding the use of a property allows the full use of the APL language to
manipulate data in a field, without having to copy field data in and out of the class
through get and set functions.

Triggers can also be applied to variables outside a class, and there will be situations
where this is very useful. However, dynamically attaching and detaching a trigger from
a variable is a little tricky at present.

The function that is called when a variable or Field changes is referred to as the Trigger
Function. The name of a variable or Field which has an associated Trigger Function is
termed a Trigger.

A function is declared as a Trigger function by including the statement:

where Name1, Name2 etc. are the Triggers.

When a Trigger function is invoked, it is passed an Instance of the internal Class
TriggerArguments. This Class has 3 Fields:

Member Description

Name
Name of the Trigger whose change in value has caused the Trigger
Function to be invoked.

NewValue The newly assigned value of the Trigger

OldValue
The previous value of the Trigger. If the Trigger was not previously
defined, a reference to this Field causes a VALUE ERROR .

A Trigger Function is called as soon as possible after the value of a Trigger was assigned;
typically by the end of the currently executing line of APL code. The precise timing is

:Implements Trigger Name1,Name2,Name3, ...

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 244

not guaranteed and may not be consistent because internal workspace management
operations can occur at any time.

If the value of a Trigger is changed more than once by a line of code, the Trigger
Function will be called at least once, but the number of times is not guaranteed.

A Trigger Function is not called when the Trigger is expunged.

Expunging a Trigger disconnects the name from the Trigger Function and the Trigger
Function will not be invoked when the Trigger is reassigned. The connection may be re-
established by re-fixing the Trigger Function.

A Trigger may have only a single Trigger Function. If the Trigger is named in more than
one Trigger Function, the Trigger Function that was last fixed will apply.

In general, it is inadvisable for a Trigger function to modify its own Trigger, as this will
potentially cause the Trigger to be invoked repeatedly and forever.

To associate a Trigger function with a local name, it is necessary to dynamically fix the
Trigger function in the function in which the Trigger is localised; for example:

5.2.2 Trigger Example

The following function displays information when the value of variables A or B changes.

∇ TRIG arg
[1] :Implements Trigger A
[2] ...

∇ TEST;A
[1] ⎕FX ⎕OR'TRIG'
[2] A←10

∇ TRIG arg
[1] :Implements Trigger A,B
[2] arg.Name'is now 'arg.NewValue
[3] :Trap 6 ⍝ VALUE ERROR
[4] arg.Name'was 'arg.OldValue
[5] :Else
[6] arg.Name' was [undefined]'
[7] :EndTrap

∇

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 245

Note that on the very first assignment to A, when the variable was previously
undefined, arg.OldValue is a VALUE ERROR.

Note that Trigger functions are actioned only by assignment, so changing A to a Form
using ⎕WC does not invoke TRIG.

However, the connection (between A and TRIG) remains and the Trigger Function will
be invoked if and when the Trigger is re-assigned.

A←10
A is now 10
A was [undefined]

A+←10
A is now 20
A was 10

A←'Hello World'
A is now Hello World
A was 20

A[1]←⊂2 3⍴⍳6
A is now 1 2 3 ello World

4 5 6
A was Hello World

B←⌽¨A
B is now 3 2 1 ello World

6 5 4
B was [undefined]

A←⎕NEW MyClass
A is now #.[Instance of MyClass]
A was 1 2 3 ello World

4 5 6

'F'⎕WC'Form'
A←F

A is now #.F
A was #.[Instance of MyClass]

'A'⎕WC'FORM' ⍝ Note that Trigger Function is not invoked

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 246

See Section 5.2.4 for information on how a Field (in a Class) may be used as a Trigger.

5.2.3 Global Triggers

A global Trigger is a function that triggers on any assignment to a global variable in the
same namespace. Global Triggers may be disabled and re-enabled using 2007⌶. See
Dyalog APL Language: Disable Global Triggers.

This is implemented by the function declaration statement:

The argument to the trigger function is an instance of the internal class
TriggerArguments which contains the following members:

Member Description

Name The name of the global variable that is about to be changed.

Indexers

If the assignment is some form of indexed assignment, Indexers is an
array with the same shape as the sub-array that was assigned and
contains the ravel-order, ⎕IO -sensitive, indices of the changed
elements. Otherwise, Indexers is undefined.

Example

A←99
A is now 99
A was #.A

:Implements Trigger *

∇ foo args
[1] :Implements Trigger *
[2] args.Name'has changed'
[3] :If 2=args.⎕NC'Indexers'
[4] '⍴Indexers'(⍴args.Indexers)
[5] 'Indexers'(,args.Indexers)
[6] :EndIf

∇

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 247

like other Triggers, only the most recently fixed global trigger function will apply
and be called on assignment to a global variable.
global triggers do not apply to local names nor to semi-globals (names which
are localised further up the stack).
an assignment to a global variable will fire both its specific trigger (if defined)
and the global trigger. However, the order of execution is undefined.
do not use an argument name for your trigger function that may conflict with a
global variable name in the namespace.

Further Example

A potential use for a global trigger is to detect the unintended creation of global
variables due to localisation omissions. Note however that the timing of the activation
of the Trigger is unpredictable. In this example, the trigger for the assignment to b
activates after function hoo has exited. When Threads are involved, timing becomes
even less predictable.

vec←⍳5
vec has changed

a b←10 'Pete'
a has changed
b has changed

vec[2 4]←99
vec has changed
⍴Indexers 2
Indexers 2 4

array←2 3 4⍴⍳12
array has changed

(2 1 3↑array)←42
array has changed
⍴Indexers 2 1 3
Indexers 1 2 3 13 14 15

Note

•

•

•

•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 248

5.2.4 Trigger Fields

A field may act as a Section 5.2.1 so that a function may be invoked whenever the value
of the Field is changed.

As an example, it is often useful for the Display Form of an Instance to reflect the value
of a certain Field. Naturally, when the Field changes, it is desirable to change the
Display Form. This can be achieved by making the Field a Trigger as illustrated by the
following example.

Notice that the Trigger function is invoked both by assignments made within the Class
(as in the assignment in ctor) and those made from outside the Instance.

∇ CatchGlobals arg
[1] ⍝ Displays a warning when a global is assigned
[2] :Implements Trigger *
[3] '*** assignment to global variable: ',

arg.Name,' from ',1↓⎕SI
∇
∇ foo

[1] goo
∇
∇ goo

[1] hoo
∇
∇ hoo

[1] a←10
[2] b←a

∇
foo

*** assignment to global variable: a from hoo goo foo
*** assignment to global variable: b from goo foo

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 249

:Class MyClass
:Field Public Name
:Field Public Country←'England'
∇ ctor nm

:Access Public
:Implements Constructor
Name←nm

∇
∇ format

:Implements Trigger Name,Country
⎕DF'My name is ',Name,' and I live in ',Country

∇
:EndClass ⍝ MyClass

me←⎕NEW MyClass 'Pete'
me

My name is Pete and I live in England

me.Country←'Greece'
me

My name is Pete and I live in Greece

me.Name←'Kostas'
me

My name is Kostas and I live in Greece

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 250

6 APL Files

6.1 Native Files

Introduction

Dyalog includes a wide selection of functions that allow reading/writing to files
containing text or binary data, as well as the manipulation of the host filesystem, for
example, deleting files or creating directories.

The characteristics of host filesystems vary across different platforms and even across
devices on the same platform. Different host operating systems provide access to their
filesystems in largely incompatible ways. Nevertheless, the native file functions within
Dyalog work in broadly the same way across all platforms, which makes it relatively
straightforward to create applications which are portable across all Dyalog
environments.

Text Files

Characters within a text file may be encoded in one of a number of different ways, and
different host environments tend to have different preferences. Although UTF-8 is
increasingly becoming the de facto encoding standard, other encoding formats exist
(particularly in legacy environments) and there are still multiple conventions for
representing line endings.

Dyalog includes two powerful functions – Dyalog APL Language: Nget and Dyalog APL
Language: Nput – which read and write text files to or from character arrays in the
workspace. The encoding and line-ending types can be explicitly specified but by
default ⎕NGET will try to deduce the encoding automatically and ⎕NPUT will use defaults
appropriate for the host environment.

The search and replace functions Dyalog APL Language: S and Dyalog APL Language: R
can also be used to read and write text files, filtering and modifying the content as they
do so.

The simplest text files contain just plain text – variable length lines of text with no
formatting such as italics etc. However, formatting or data encoding can be included
within a text file using formats such markup (e.g. HTML and XML), character separated

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 251

values (CSV) or JavaScript Object Notation (JSON). Dyalog includes the functions Dyalog
APL Language: Xml, Dyalog APL Language: Csv and Dyalog APL Language: Json to
decode or encode such file content.

Binary Data Files

Binary data files contain data in application-specific format, and are rarely read or
written by anything other than the application which creates them and understands
their format. Dyalog provides a number of functions which allow a Dyalog application
to manage its own binary data files or binary data files from any source, by allowing
them to be read or written as sequences of bytes or words. Regions of binary files can
also be locked to coordinate shared access to the files.

Files are tied (opened) using Dyalog APL Language: Ntie or created using Dyalog APL
Language: Ncreate. Both of these functions return a numeric tie number by which the
file is subsequently identified when read (Dyalog APL Language: Nread), written
(Dyalog APL Language: Nappend, Dyalog APL Language: Nreplace), renamed (Dyalog
APL Language: Nrename) locked or unlocked (Dyalog APL Language: Nlock) or (re)sized
(Dyalog APL Language: Nsize, Dyalog APL Language: Nresize). When a file tie is no
longer needed it can be untied (closed) using Dyalog APL Language: Nuntie or closed
and the file deleted using Dyalog APL Language: Nerase. Dyalog APL Language: Nnums
and Dyalog APL Language: Nnames report the numbers and names respectively of all
currently tied files.

Filesystem Manipulation

In addition to reading and writing files, an application may typically want to manipulate
the filesystem in various ways. A diverse set of functions exist to do this: Dyalog APL
Language: Mkdir creates directories, Dyalog APL Language: Ndelete deletes files and/
or directories and their contents, Dyalog APL Language: Nmove and Dyalog APL
Language: Ncopy move and copy files and/or directories and their contents. Dyalog
APL Language: Ninfo queries and sets properties such as size or modification date on
files and directories, and can also query the contents of directories. Dyalog APL
Language: Nexists will report whether or not a name exists within the file system.

Additionally, 739⌶ can be used to obtain the name of the directory used by the host
filesystem for temporary files (generally emptied at startup).

Progress Callbacks

The native file functions ⎕NCOPY, ⎕NMOVE, and ⎕NINFO support the ProgressCallback
variant option to enable progress callbacks.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 252

Overview

If this option is enabled, the system function invokes an APL callback function at several
stages as a file operation proceeds, meaning that the results of the system function can
be accessed as they become available rather than waiting for them to all be available. A
system object is used to communicate between the system function and the callback.

Each file operation has four distinct stages:

The start of the operation. The callback is invoked before any directories are
scanned or files are processed. This gives the application the opportunity to set
parameters that control the frequency of callbacks during the operation itself.
The optional scan phase during which the system function enumerates the files
that will be involved in the copy or move operation. The file count obtained is
used to set the Limit field. The application may use this subsequently to
indicate the degree of progress.
The main processing of the files.
The end of the operation.

The callback function is invoked once at the start of the operation, during the (optional)
scan and processing stages, and finally once at the end of the operation. During the
scan and processing stages, the Skip and Delay options provide alternative ways to
control the frequency with which the function is invoked.

If both options are 0, the callback will be invoked after every file is processed. However,
if there are a large number of small files involved, and you simply want to update a
progress bar, this may prove to be unnecessarily frequent, and will increase the total
time required to complete the operation.

If you want to update a progress bar regularly (for example every second), the Delay
option (1000 = 1 second) is the better choice. In other circumstances, you might choose
to use Skip.

If you use both options, the callback will be invoked when both apply, so if you set Skip
to 10 and Delay to 5000, the callback will be invoked after at least 10 files have been
processed and at least 5 seconds have elapsed since the previous invocation of the
callback.

The value of the ProgressCallback variant option may be:

1.

2.

3.
4.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 253

fn The name of the callback function.

fn data
The name of the callback function, and an array or namespace which is
to be passed to the callback in its left argument.

The right argument given to the callback function is a 3-element vector:

[1] Function Character vector which identifies the function that caused the
callback to be executed.

[2] Event Character vector describing the event that lead to the callback
being executed. See below.

[3] Info Reference to a namespace containing information about the
event. See below.

Event

Event is a character vector which indicates the stage of the copy or move operation.

'Start'

Reported by the first invocation of the callback which occurs before
any files are scanned or processed. This may be used to set the
parameters that control the operation. See Options .

'Scan'
Indicates that the system function is in the initial phase of scanning
the files in order to calculate Limit. See ScanFirst .

'Progress'
Indicates that the system function is at the main stage of the
operation and is processing the files.

'Done' Indicates that all files have been processed.

Note that there will always be at least 2 invocations of the callback, to indicate the start
and end of the operation.

Info

Info is a reference to a namespace that contains information about the event. This
namespace persists for the duration of the execution of the system function and
contains the following fields:

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 254

Progress

A number between 0 and Limit. When the event code is 'Start',
Progress is 0. Every time a file or directory is processed, Progress is
increased by 1. Finally when the event code is 'Done', Progress will
be equal to Limit.

Limit

The maximum value of Progress. This value might change during the
file operation if it does not do a full discovery first (the ScanFirst
option is 0), or if the file structure changes between the scan and the
file operation.

Last

A vector of file names which have been processed since the last
invocation of the callback function. The user can specify the maximum
length of this vector by setting the LastFileCount option. The names
in this list are the source names rather than the destination names.
The Last vector is always empty when the event is 'Start' and it is
cleared when going from the 'Scan' phase to the 'Progress' phase,
to avoid any confusion.

Data

A field that is reserved for the user to store data which persists
between invocations of the callback. It could for example be used to
keep a sequence number, to count the number of times the callback
had been run.

Options
This is a namespace which contains the information that controls the
future execution of the callback and it is described below.

Options

This Namespace contains options that control future invocations of the callback. The
options persist between these invocations, so there is no need to set them again unless
they should be changed. The fields and their default values are:

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 255

Field Default Description

ScanFirst 1

Specifies if the file operation should do a "scan pass"
before processing the files. This stage just enumerates
the files to determine how many there are. This will
ensure Limit has a realistic value when the actual
processing of the files happens. The ScanFirst field is
only inspected right after the first invocation of the
callback function, with the event code 'Start'.

Delay 0

Specifies the number of milliseconds to wait until the
callback will be called again. If all file operations finish
before this time, the callback function is called anyway,
with the event code 'Done'. If a slow file operation is
happening (such as copying a big file), the actual delay
before the callback is invoked might be longer than the
value of Delay.

Skip 0

Specifies a number of files to skip between invocations
of the callback function. If you are only interested in
getting a callback for each tenth file, you should set
this option to 9, for example.

LastFileCount 1

An integer, specifying the maximum number of the
latest filenames to be stored in the Last field. The
default is to only store the last file processed, but if
Delay or Skip are non-zero, multiple files could have
been processed between calls to the callback function.
A value of 5 for example, will make sure that the five
last files processed before calling the callback, will
have their names in the Last field. The Last field
might have fewer elements than LastFileCount, if the
number of files processed since the last call is less than
LastFileCount. The value ¯1 indicates that the Last
field should contain all the last files since the last call
(no limit).

The result of the callback function is a Boolean scalar indicating whether the system
function should continue or stop:

1: Execution should continue.

0: Execution should stop. In this case, an INTERRUPT (event 1003) is signalled.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 256

6.2 Component Files

6.2.1 Introduction

Most languages store programs and data separately. APL is unusual in that it allows you
to store programs and data together in a workspace.

This can be inefficient if your dataset gets very large; when your workspace is loaded,
you are loading ALL of your data, whether you need it or not.

It also makes it difficult for other users to access your data, particularly if you want
them to be able to update it.

In these circumstances, you must extract your data from your workspace, and write it
to a file on disk, thus separating your data from your program. There are many different
kinds of file format. This section is concerned with the APL Component File system
which preserves the idea that your data consists of APL objects; hence you can only
access this type of file from within APL

The Component File system has a set of system functions through which you access the
file. Although this means that you have to learn a whole new set of functions in order
to use files, you will find that they provide you with a very powerful mechanism to
control access to your data.

6.2.2 Component Files

Overview

A component file is a data file maintained by Dyalog APL. It contains a series of APL
arrays known as components which are accessed by reference to their relative position
or component number within the file. Component files are just like other data files and
there are no special restrictions imposed on names or sizes.

A set of system functions is supplied to perform a range of file operations. These
provide facilities to create or delete files, and to read and write components. Facilities
are also provided for multi-user access, including the capability to determine who may
do what, and file locking for concurrent updates.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 257

Tying and Untying Files

To access an existing component file it must be tied, that is, opened for use. The tie
may be exclusive (single-user access) or shared (multi-user access). A file is untied, that
is, closed, using ⎕FUNTIE or on terminating Dyalog APL. File ties survive)LOAD, ⎕LOAD
and)CLEAR operations.

Tie Numbers

A file is tied by associating a file name with a tie number. Tie numbers are integers in
the range 1 - 2147483647 and, you can supply one explicitly, or have the interpreter
allocate the next available one by specifying 0. The system functions which tie files
return the tie number as a "shy" result.

Creating and Removing Files

A component file is created using ⎕FCREATE which automatically ties the file for
exclusive use. A newly created file is empty, that is, contains 0 components. A file is
removed with ⎕FERASE, although it must be exclusively tied to do so.

Adding and Removing Components

Components are added to a file using ⎕FAPPEND and removed using ⎕FDROP.
Component numbers are allocated consecutively starting at 1. Thus a new component
added by ⎕FAPPEND is given a component number which is one greater than that of the
last component in the file. Components may be removed from the beginning or end of
the file, but not from the middle. Component numbers are therefore contiguous.

Reading and Writing Components

Components are read using ⎕FREAD and overwritten using ⎕FREPLACE. There are no
restrictions on the size or type of array which may replace an existing component.
Components are accessed by component number.

Component Information

In addition to the data held in a component, the user ID that wrote it and the time at
which it was written is also recorded.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 258

Multi-User Access

⎕FSTIE ties a file for shared (that is, multi-user) access. This kind of access would be
appropriate for a multi-user UNIX system, a network of single user PCs, or multiple APL
tasks under Microsoft Windows.

⎕FHOLD provides the means for the user to temporarily prevent other co-operating
users from accessing one or more files. This is necessary to allow a single logical update
involving more than one component, and perhaps more than one file, to be completed
without interference from another user. ⎕FHOLD is applicable to External Variables as
well as Component Files

File Access Control

There are two levels of file access control. As a regular file, the operating system read/
write controls for owner and other users apply. In addition, Dyalog manages its own
access controls using the access matrix. This is an integer matrix with 3 columns and
any number of rows. Column 1 contains user numbers, column 2 an encoding of
permitted file operations, and column 3 passnumbers. Each row specifies which file
operations may be performed by which user(s) with which passnumber. A value of 0 in
column 1 specifies all users. A value of ¯1 in column 2 specifies all file operations. A
value of 0 in column 3 specifies no passnumber. If any row of the access matrix contains
(0 ¯1 0) it specifies that all users may perform all file operations with no passnumber.

User Number

Under Windows, this is a number which is defined by the aplnid parameter. If you
intend to use Dyalog's access matrix to control file access in a multi-user environment,
it is desirable to allocate to each user, a distinct user number. However, if you intend to
rely on underlying operating system controls, allocating a user number of 0 (the default
installation value) to everyone is more appropriate. Under non-Windows platforms the
User Number is set to be the effective user-id of the APL process and cannot be altered.
In both cases, a user number of 0 causes APL to circumvent the access matrix
mechanism described below.

Permission Code

This is an integer representation of a Boolean mask. Each bit in the mask indicates
whether or not a particular file operation is permitted as follows:

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 259

For example, if bits 1, 4 and 6 are set and all other relevant bits are zero only ⎕FREAD,
⎕FAPPEND and ⎕FDROP are permitted. A convenient way to set up the mask is to sum the
access codes associated with each operation.

For example, the value 41 (1+8+32) authorises ⎕FREAD, ⎕FAPPEND and ⎕FDROP. A value
of ¯1 (all bits set) permits all operations. Thus by subtracting the access codes of
operations to be forbidden, it is possible to permit all but certain types of access. For
example, a value of ¯133 (¯1- 4+128) permits all operations except ⎕FERASE and
⎕FRENAME. Note that the value of unused bits is ignored. Any non-zero permission code
allows ⎕FSTIE and ⎕FSIZE. ⎕FCREATE, ⎕FUNTIE, ⎕FLIB, ⎕FNAMES and ⎕FNUMS are not
subject to access control. Passnumbers may also be used to establish different levels of
access for the same user.

When the user attempts to tie a file using ⎕FTIE or ⎕FSTIE a row of the access matrix is
selected to control this and subsequent operations.

If the user is the owner, and the owner's user ID does not appear in the access matrix,
the value (⎕AI[1] ¯1 0) is conceptually appended to the access matrix. This ensures
that the owner has full access rights unless they are explicitly restricted.

The chosen row is the first row in which the value in column 1 of the access matrix
matches the user ID and the value in column 3 matches the supplied passnumber
which is taken to be zero if omitted.

┌──┬──┬──┬──┬──┬──┬─┬─┬─┬─┬─┬─┬─┬─┬─┐ Bit No.
│15│14│13│12│11│10│9│8│7│6│5│4│3│2│1│
└──┴──┴──┴──┴──┴──┴─┴─┴─┴─┴─┴─┴─┴─┴─┘ File Access
 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Operation Code
 │ │ │ │ │ │ │ │ │ │ │ │ │
 │ │ │ │ │ │ │ │ │ │ │ │ └── ⎕FREAD 1
 │ │ │ │ │ │ │ │ │ │ │ └──── ⎕FTIE 2
 │ │ │ │ │ │ │ │ │ │ └────── ⎕FERASE 4
 │ │ │ │ │ │ │ │ │ └──────── ⎕FAPPEND 8
 │ │ │ │ │ │ │ │ └────────── ⎕FREPLACE 16
 │ │ │ │ │ │ │ └──────────── ⎕FDROP 32
 │ │ │ │ │ │ │
 │ │ │ │ │ │ └──────────────── ⎕FRENAME 128
 │ │ │ │ │ │
 │ │ │ │ │ └──────────────────── ⎕FRDCI 512
 │ │ │ │ └─────────────────────── ⎕FRESIZE 1024
 │ │ │ └────────────────────────── ⎕FHOLD 2048
 │ │ └───────────────────────────── ⎕FRDAC 4096
 │ └──────────────────────────────── ⎕FSTAC 8192
 └─────────────────────────────────── ⎕FHIST 16384

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 260

If there is no match of user ID and passnumber in the access matrix (including implicitly
added rows) then no access is granted and the tie fails with a FILE ACCESS ERROR.

Once the applicable row of the access matrix is selected, it is used to verify all
subsequent file operations. The passnumber used to tie the file MUST be used for
every subsequent operation. Secondly, the appropriate bit in the permission code
corresponding to the file operation in question must be set. If either of these
conditions is broken, the operation will fail with FILE ACCESS ERROR.

If the access matrix is changed while a user has the file tied, the change takes
immediate effect. When the user next attempts to access the file, the applicable row in
the access matrix will be reselected subject to the supplied passnumber being the
same as that used to tie the file. If access with that password is rescinded the operation
will fail with FILE ACCESS ERROR.

When a file is created using ⎕FCREATE, the access matrix is empty. At this stage, the
owner has full access with passnumber 0, but no access with a non-zero passnumber.
Other users have no access permissions. Thus only the owner may initialise the access
matrix.

User 0

If a user has an aplnid of 0, the access matrix and supplied passnumbers are ignored.
This user is granted full and unrestricted access rights to all component files, subject
only to underlying operating system restrictions.

General File Operations

⎕FLIB gives a list of component files in a given directory. ⎕FNAMES and ⎕FNUMS give a list
of the names and tie numbers of tied files. These general operations which apply to
more than one file are not subject to access controls.

Component File System Functions

See Language Reference for full details of the syntax of these system functions.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 261

General

⎕FAVAIL Report file system availability

File Operations

⎕FCREATE Create a file

⎕FTIE Tie an existing file (exclusive)

⎕FSTIE Tie an existing file (shared)

⎕FUNTIE Untie file(s)

⎕FCOPY Copy a file

⎕FERASE Erase a file

⎕FRENAME Rename a file

File information

⎕FHIST Report file events

⎕FNUMS Report tie numbers of tied files

⎕FNAMES Report names of tied files

⎕FLIB Report names of component files

⎕FPROPS Report file properties

⎕FSIZE Report size of file

Writing to the file

⎕FAPPEND Append a component to the file

⎕FREPLACE Replace an existing component

Reading from a file

⎕FREAD Read one or more components

⎕FRDCI Read component information

Manipulating a file

⎕FDROP Drop a block of components

⎕FRESIZE Change file size (forces a compaction)

⎕FCHK Check and repair a file

Access manipulation

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 262

⎕FSTAC Set file access matrix

⎕FRDAC Read file access matrix

Control multi-user access

⎕FHOLD Hold file(s) - see later section for details

Using the Component File System

Let us suppose that you have written an APL system that builds a personnel database,
containing the name, age and place of birth of each employee. Let us assume that you
have created a variable DATA, which is a nested vector with each element containing a
person's name, age and place of birth:

Then the following APL expressions can be used to access the database:

Example 1

Show record 2

Example 2

How many people in the database?

DISPLAY 2↑DATA
.→---.
| .→----------------------. .→-------------------------. |
	.→-------. .→----.		.→------. .→--------.									
		Jonathan	42	Wales				Pauline	21	Isleworth		
	'--------' '-----'		'-------' '---------'									
'∊----------------------' '∊-------------------------'												
'∊---'

DISPLAY 2⊃DATA
.→-------------------------.
| .→------. .→--------. |
| |Pauline| 21 |Isleworth| |
| '-------' '---------' |
'∊-------------------------'

⍴DATA
123

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 263

Example 3

Update Pauline's age

Example 4

Add a new record to the database

Now let's build a component file to hold our personnel database.

Create a new file, giving the file name, and the number you wish to use to identify it
(the file tie number):

If the file already exists, or you have already used this tie number, then APL will
respond with the appropriate error message.

Now write the data to the file. We could write a function that loops to do this, but it is
neater to take advantage of the fact that our data is a nested vector, and use each (¨).

Now we'll try our previous examples using this file.

Example 1

Show record 2

Example 2

How many people in our database?

(2 2⊃DATA)←16

DATA ,← ⊂'Maurice' 18 'London'

'COMPFILE' ⎕FCREATE 1

DATA ⎕FAPPEND¨ 1

DISPLAY ⎕FREAD 1 2
.→-------------------------.
| .→------. .→--------. |
| |Pauline| 21 |Isleworth| |
| '-------' '---------' |
'∊-------------------------'

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 264

The fourth element of ⎕FSIZE indicates the file size limit. Dyalog APL does not impose a
file size limit, although your operating system may do so, but the concept is retained in
order to make this version of Component Files compatible with others.

Example 3

Update Pauline's age

Example 4

Add a new record

Example 5

Rename our file

Example 6

Tie an existing file; give file name and have the interpreter allocate the next available
tie number.

Example 7

Give everyone access to the PERSONNEL file

⎕FSIZE 1 ⍝ First component, next
1 125 10324 4294967295 ⍝ component, file size,

⍝ maximum file size

¯1+2⊃⎕FSIZE 1 ⍝ Number of data items

REC ← ⎕FREAD 1 2 ⍝ Read second component
REC[2] ← 18 ⍝ Change age
REC ⎕FREPLACE 1 2 ⍝ And replace component

('Janet' 25 'Basingstoke') ⎕FAPPEND 1

'PERSONNEL' ⎕FRENAME 1

'SALARIES' ⎕FTIE 0
2

(1 3⍴0 ¯1 0)⎕FSTAC 1

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 265

Example 8

Set different permissions on SALARIES.

Example 9

Report on file names and associated numbers

Example 10

Untie all files

6.2.3 Programming Techniques

Controlling Multi-User Access

Obviously, Dyalog APL contains mechanisms that prevent data getting mixed up if two
users update a file at the same time. However, it is the programmer's responsibility to
control the logic of multi-user updates.

For example, suppose two people are updating our database at the same time. The first
checks to see if there is an entry for 'Geoff', sees that there isn't so adds a new
record. Meanwhile, the second user is checking for the same thing, and so also adds a
record for 'Geoff'. Each user would be running code similar to that shown below:

AM ← 1 3⍴1 ¯1 0 ⍝ Owner ID 1 has full access
AM⍪← 102 1 0 ⍝ User ID 102 has READ only
AM⍪← 210 2073 0 ⍝ User ID 210 has

⍝ READ+APPEND+REPLACE+HOLD

AM ⎕FSTAC 2 ⍝ Store access matrix

⎕FNAMES,⎕FNUMS
PERSONNEL 1
SALARIES 2

⎕FUNTIE ⎕FNUMS

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 266

The system function ⎕FHOLD provides the means for the user to temporarily prevent
other co-operating users from accessing one or more files. This is necessary to allow a
single logical update, perhaps involving more than one record or more than one file, to
be completed without interference from another user.

The code above is replaced by that below:

Successive ⎕FHOLDs on a file executed by different users are queued by Dyalog APL;
once the first ⎕FHOLD is released, the next on the queue holds the file. ⎕FHOLDs are
released by return to immediate execution, by ⎕FHOLD ⍬, or by erasing the external
variable.

It is easy to misunderstand the effect of ⎕FHOLD. It is NOT a file locking mechanism that
prevents other users from accessing the file. It only works if the tasks that wish to
access the file co-operate by queuing for access by issuing ⎕FHOLDs. It would be very
inefficient to issue a ⎕FHOLD on a file then allow the user to interactively edit the data
with the hold in operation. What happens if he goes to lunch? Any other user who
wants to access the file and cooperates by issuing a ⎕FHOLD would have to wait in the
queue for 3 hours until the first user returns, finishes his update and his ⎕FHOLD is
released. It is usually more efficient (as well as more friendly) to issue ⎕FHOLDs around a
small piece of critical code.

Suppose we had a control file associated with our personnel data base. This control file
could be an external variable, or a component file. In both cases, the concept is the

∇ UPDATE;DATA;NAMES
[1] ⍝ Using the component file
[2] 'PERSONNEL' ⎕FSTIE 1
[3] NAMES←⊃∘⎕FREAD ¨ 1,¨⍳¯1+2⊃⎕FSIZE 1
[4] →END×⍳(⊂'Geoff')∊NAMES
[5] ('Geoff' 41 'Hounslow')⎕FAPPEND 1
[6] END:⎕FUNTIE 1

∇

∇ UPDATE;DATA;NAMES
[1] ⍝ Using the component file
[2] 'PERSONNEL' ⎕FSTIE 1
[3] ⎕FHOLD 1
[4] NAMES←⊃∘⎕FREAD ¨ 1,¨⍳¯1+2⊃⎕FSIZE 1
[5] →END×⍳(⊂'Geoff')∊NAMES
[6] ('Geoff' 41 'Hounslow')⎕FAPPEND 1
[7] END:⎕FUNTIE 1 ⋄ ⎕FHOLD ⍳0

∇

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 267

same; only the commands needed to access the file are different. In this example, we
will use a component file:

Now we'll allow our man that likes long lunch breaks to edit the file, but will control the
hold in a more efficient way:

Component 1 of our CONTROL file acts as a control vector. Its length is set equal to the
number of components in the PERSONNEL file, and an element is set to 1 if a user
wishes to access the corresponding data component. Only the control file is ever

'CONTROL'⎕FCREATE 1 ⍝ Create control file
(1 3⍴0 ¯1 0) ⎕FSTAC 1 ⍝ Allow everyone access
⍬ ⎕FAPPEND 1 ⍝ Set component 1 to empty
⎕FUNTIE 1 ⍝ And untie it

∇ EDIT;CMP;CV
[1] ⍝ Share-tie the control file
[2] 'CONTROL' ⎕FSTIE 1
[3] ⍝ Share-tie the data file
[4] 'PERSONNEL' ⎕FSTIE 2
[5] ⍝ Find out which component the user wants to edit
[6] ASK:CMP←ASK∆WHICH∆RECORD
[7] ⍝ Hold the control file
[8] ⎕FHOLD 1
[9] ⍝ Read the control vector
[10] CV←⎕FREAD 1 1
[11] ⍝ Make control vector as big as the data file
[12] CV←(¯1+2⊃⎕FSIZE 2)↑CV
[13] ⍝ Look at flag for this component
[14] →(FREE,INUSE)[1+CMP⊃CV]
[15] ⍝ In use - tell user and release hold
[16] INUSE:'Record in use' ⋄ ⎕FHOLD ⍬ ⋄ →ASK
[17] ⍝ Ok to use - flag in-use and release hold
[18] FREE:CV[CMP]←1 ⋄ CV ⎕FREPLACE 1 1⋄ ⎕FHOLD ⍬
[19] ⍝ Let user edit the record
[20] EDIT∆RECORD RECORD
[21] ⍝ When he's finished, clear the control vector
[22] ⎕FHOLD 1
[23] CV←⎕FREAD 1 1 ⋄CV[CMP]←0 ⋄ CV ⎕FREPLACE 1 1
[26] ⎕FHOLD ⍬
[27] ⍝ And repeat
[28] →ASK

∇

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 268

subject to a ⎕FHOLD, and then only for a split-second, with no user inter-action being
performed whilst the hold is active.

When the first user runs the function, the relevant entry in the control vector will be
set to 1. If a second user accesses the database at the same time, he will have to wait
briefly whilst the control vector is updated. If he wants the same component as the first
user, he will be told that it is in use, and will be given the opportunity to edit something
else.

This simple mechanism allows us to lock the components of our file, rather the than
entire file. You can set up more informative control vectors than the one above; for
example, you could easily put the user name into the control vector and this would
enable you to tell the next user who is editing the component he is interested in.

6.2.4 File Design

Our personnel database could be termed a record oriented system. All the information
relating to one person is easily obtained, and information relating to a new person is
easily added, but if we wish to find the oldest person, we have to read ALL the records
in the file.

It is sometimes more useful to have separate components, perhaps stored on separate
files, that hold indexes of the data fields that you may wish to search on. For example,
suppose we know that we always want to access our personnel database by name.
Then it would make sense to hold an index component of names:

Then if we want to find Pauline's data record:

There are many different ways to structure data files; you must design a structure that
is the most efficient for your application.

⍝ Extract name field from each data record
'PERSONNEL' ⎕FSTIE 1
NAMES←⊃∘⎕FREAD¨1,¨⍳¯1+2⊃⎕FSIZE 2

⍝ Create index file, and append NAMES
'INDEX' ⎕FCREATE 2
NAMES ⎕FAPPEND 2

NAMES←⎕FREAD 2,1 ⍝ Read index of names
CMP←NAMES⍳⊂'Pauline' ⍝ Search for Pauline
DATA←⎕FREAD 1,CMP ⍝ Read relevant record

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 269

6.2.5 Internal Structure

If you are going to make a lot of use of APL files in your systems, it is useful for you to
have a rough idea of how Dyalog APL organises and manages the disk area used by
such files.

The internal structure of external variables and component files is the same, and the
examples given below apply to both.

Consider a component file with 3 components:

Dyalog APL will write these components onto contiguous areas of disk:

Replace the second component with something the same size:

This will fit into the area currently used by component 2.

If your system uses fixed length records, then the size of your components never
change, and the internal structure of the file remains static.

However, suppose we start replacing larger data objects:

This will not fit into the area currently assigned to component 1, so it is appended to
the end of the file. Dyalog APL maintains internal tables which contain the location of
each component; hence, even though the components may not be physically stored in
order, they can always be accessed in order.

'TEMP' ⎕FCREATE 1
'One' 'Two' 'Three' ⎕FAPPEND¨1

.-. .-. .-.
|1| |2| |3|
.-----.-----.-------.
| One | Two | Three |
--------------------.

'Six' ⎕FREPLACE 1 2

.-. .-. .-.
|1| |2| |3|
.-----.-----.-------.
| One | Six | Three |
--------------------.

'Bigger One' ⎕FREPLACE 1 1

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 270

The area that was occupied by component 1 now becomes free.

Now we'll replace component 3 with something bigger:

Component 3 is appended to the end of the file, and the area that was used before
becomes free:

Dyalog APL keeps tables of the size and location of the free areas, as well as the actual
location of your data. Now we'll replace component 2 with something bigger:

Free areas are used whenever possible, and contiguous holes are amalgamated.

You can see that if you are continually updating your file with larger data objects, then
the file structure can become fragmented. At any one time, the disk area occupied by
your file will be greater than the area necessary to hold your data. However, free areas
are constantly being reused, so that the amount of unused space in the file will seldom
exceed 30%.

Whenever you issue a monadic ⎕FRESIZE command on a component file, Dyalog APL
COMPACTS the file; that is, it restructures it by reordering the components and by
amalgamating the free areas at the end of the file. It then truncates the file and
releases the disk space back to the operating system (note that some versions of UNIX

.-. .-. .-.
|2| |3| |1|

.-----.-----.-------.------------.
|⎕⎕⎕⎕⎕| Six | Three | Bigger One |
---------------------------------.

'BigThree' ⎕FREPLACE 1 3

.-. .-. .-.
|2| |1| |3|

.-----.------------------.------------.----------.
|⎕⎕⎕⎕⎕| Six |⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕| Bigger One | BigThree |
---.

'BigTwo' ⎕FREPLACE 1 2

.-. .-. .-.
|2| |1| |3|

.-----------.------------.------------.----------.
|⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕|BigTwo|⎕⎕⎕⎕⎕| Bigger One | BigThree |
---.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 271

do not allow the space to be released). For a large file with many components, this
process may take a significant time.

Error Conditions

A FILE SYSTEM NOT AVAILABLE (Error code 28) error will be generated if the operating
system returns an unexpected error when attempting to get a lock on a component file.
In Windows environments this may indicate that opportunistic locks (aka oplocks) are in
use; they should be disabled if Dyalog components files are being used.

A FILE SYSTEM TIES USED UP (Error code 30) error will be generated when an
attempt is made to open more component files than is possible.

A FILE TIED error is reported if you attempt to tie a file which another user has
exclusively tied.

Limitations

File Tie Quota

The File Tie Quota is the maximum number of files that a user may tie concurrently.
Dyalog APL itself allows a maximum of 1024 under UNIX and 512 under Windows,
although in either case your installation may impose a lower limit. When an attempt is
made to exceed this limit, the report FILE TIE QUOTA (Error code 31) is given. This
error will also be generated if an attempt is made to exceed the maximum number of
open files that is imposed by the operating system.

File Name Quota

Dyalog APL records the names of each user's tied files in a buffer of 40960 bytes. When
this buffer is full, the report FILE NAME QUOTA USED UP (Error code 32) will be given.
This is only likely to occur if long pathnames are used to identify files.

FILE SYSTEM NOT AVAILABLE

FILE SYSTEM TIES USED UP

FILE TIED

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 272

6.2.6 The Effect of Buffering

Disk drives are fairly slow devices, so most operating systems take advantage of a
facility called buffering. This is shown in simple terms below:

When you issue a write to a disk area, the data is not necessarily sent straight to the
disk. Sometimes it is written to an internal buffer (or cache), which is usually held in
(fast) main memory. When the buffer is full, the contents are passed to the disk. This
means that at any one time, you could have data in the buffer, as well as on the disk. If
your machine goes down whilst in this state, you could have a partially updated file on
the disk. In these circumstances, the operating system generally recovers your file
automatically.

If this facility is exploited, it offers very fast file updating. For systems that are I/O
bound, this is a very important consideration. However, the disadvantage is that whilst
it may appear that a write operation has completed successfully, part of the data may
still be residing in the buffer, waiting to be flushed out to the disk. It is usually possible
to force the buffer to empty; see your operating system manuals for details (UNIX
automatically invokes the sync() command every few seconds to flush its internal
buffers).

Dyalog APL exploits this facility, employing buffers internal to APL as well as making use
of the system buffers. Of course, these techniques cannot be used when the file is
shared with other users; obviously, the updates must be written immediately to the
disk. However, if the file is exclusively tied, then several layers of buffers are employed
to ensure that file access is as fast as possible.

You can ensure that the contents of all internal buffers are flushed to disk by issuing
⎕FUNTIE ⍬ at any time.

6.2.7 Integrity and Security

The structure of component files, the asynchronous nature of the buffering performed
by APL, by the Operating System, and by the external device sub-system, introduces the
potential danger that a component file might become damaged. To prevent this
happening, the component file system includes optional journaling and check-sum

.------------------.
| Operating System | .--------. .---------.
| instruction to |-->| BUFFER |--->| File on |
| write large data | ---------. | disk |
| object to a file | ----------.
-------------------.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 273

features. These are optional because the additional security these features provide
comes at the cost of reduced performance. You can choose the level of security that is
appropriate for your application.

When journaling is enabled (see ⎕FPROPS), files are updated using a journal which
effectively prevents system or network failures from causing file damage.

Additional security is provided by the check sum facility which enables component files
to be repaired using the system function ⎕FCHK. See File Check and Repair.

Level 1 journaling protects a component file from damage caused by an abnormal
termination of the APL process. This could occur if the process is deliberately or
accidentally terminated by the user or by the Operating System, or by an error in
Dyalog APL.

Level 2 journaling provides protection not just against the possibility that the APL
process terminates abnormally, but that the Operating System itself fails. However, a
damaged component file must be explicitly repaired using the system function ⎕FCHK
which will repair any damaged components by rolling them back to their previous
states.

Level 3 provides the same level of protection as Level 2, but following the abnormal
termination of either APL or the Operating System, the rollback of an incomplete
update will be automatic and no explicit repair will be needed.

Higher levels of Journaling inevitably reduce the performance of component file
updates.

For further information, see ⎕FPROPS and ⎕FCHK.

Operating System Commands

APL files are treated as normal data files by the operating system, and may be
manipulated by any of the standard operating system commands.

Do not use operating system commands to copy, erase or move component files that
are tied and in use by an APL session.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 274

Component files that have both journalling and checksum properties set to 0

have been deprecated; from Dyalog v21.0, component files with this combination

of properties will be read-only. Dyalog Ltd recommends using ⎕FPROPS to

convert any such files to have different properties. For information on how to

identify component files that have both journalling and checksum properties set

to 0 in your existing codebase, see the Release Notes.

Information

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 275

7 Error Trapping

7.1 Standard Error Action

The standard system action in the event of an error or interrupt whilst executing an
expression is to suspend execution and display an error report. If necessary, the state
indicator is cut back to a statement such that there is no halted locked function visible
in the state indicator.

The error report consists of up to three lines

The error message, preceded by the symbol ⍎ if the error occurred while
evaluating the Execute function.
The statement in which the error occurred (or expression being evaluated by the
Execute function), preceded by the name of the function and line number where
execution is suspended unless the state indicator has been cut back to
immediate execution mode. If the state indicator has been cut back because of a
locked function in execution, the displayed statement is that from which the
locked function was invoked.
The symbol ^ under the last referenced symbol or name when the error
occurred. All code to the right of the ^ symbol in the expression will have been
evaluated.

Examples

1.

2.

3.

X PLUS U
VALUE ERROR

X PLUS U
^

FOO
INDEX ERROR
FOO[2] X←X+A[I]

^
CALC

⍎DOMAIN ERROR
CALC[5] ÷0

^

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 276

7.2 Error Trapping Concepts

The purpose of this section is to show some of the ways in which the ideas of error
trapping can be used to great effect to change the flow of control in a system.

First, we must have an idea of what is meant by error trapping. We are all used to
entering some duff APL code, and seeing a (sometimes) rather obscure, esoteric error
message echoed back:

This message is ideal for the APL programmer, but not so for the end user. We need a
way to bypass the default action of APL, so that we can take an action of our own,
thereby offering the end user a more meaningful message.

Every error message reported by Dyalog APL has a corresponding error number (for a
list of error codes and message, see ⎕TRAP, Language Reference). Many of these error
numbers plus messages are common across all versions of APL. We can see that the
code for DOMAIN ERROR is 11, whilst LENGTH ERROR has code 5.

Dyalog APL provides two distinct but related mechanisms for the trapping and control
of errors. The first is based on the control structure :Trap ... :EndTrap, and the
second, on the system variable ⎕TRAP. The control structure is easier to administer and
so is recommended for normal use, while the system variable provides slightly finer
control and may be necessary for specialist applications.

Last Error number and Diagnostic Message

Dyalog APL keeps a note of the last error that occurred, and provides this information
through system functions: ⎕EN, ⎕EM and ⎕DM.

Error Number for last occurring error:

10÷0
DOMAIN ERROR

10÷0
^

10÷0
DOMAIN ERROR

10÷0
^

⎕EN
11

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 277

Error Message associated with code 11:

⎕DM (Diagnostic Message) is a 3 element nested vector containing error message,
expression and caret:

Use function DISPLAY to show structure:

Mix (↑) of this vector produces a matrix that displays the same as the error message
produced by APL:

Error Trapping Control Structure

You can embed a number of lines of code in a :Trap control structure within a defined
function.

Now, whenever any error occurs in one of the enclosed lines, or in a function called
from one of the lines, processing stops immediately and control is transferred to the
line following the :EndTrap. The 0 argument to :Trap, in this case represents any error.
To trap only specific errors, you could use a vector of error numbers:

⎕EM 11
DOMAIN ERROR

⎕DM
DOMAIN ERROR 10÷0 ^

DISPLAY ⎕DM
┌→─────────────────────────────────────┐
│ ┌→───────────┐ ┌→─────────┐ ┌→─────┐ │
│ │DOMAIN ERROR│ │ 10÷0│ │ ∧│ │
│ └────────────┘ └──────────┘ └──────┘ │
└∊─────────────────────────────────────┘

↑⎕DM
DOMAIN ERROR

10÷0
^

[1] ...
[2] :Trap 0
[3] ...
[4] ...
[5] :EndTrap
[6] ...

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 278

Notice that in this case, no extra lines are executed after an error. Control is passed to
line [6] either when an error has occurred, or if all the lines have been executed
without error. If you want to execute some code only after an error, you could re-code
the example like this:

Now, if an error occurs in lines [3-4], (or in a function called from those lines), control
will be passed immediately to the line following the :Else statement. On the other
hand, if all the lines between :Trap and :Else complete successfully, control will pass
out of the control structure to (in this case) line [9].

The final refinement is that specific error cases can be accommodated using
:Case[List] constructs in the same manner as the :Select control structure.

Note that :Trap can be used in conjunction with ⎕SIGNAL described below.

Traps can be nested. In the following example, code in the inner trap structure
attempts to tie a component file, and if unsuccessful, tries to create one. In either case,
the tie number is then passed to function ProcessFile. If an error other than 22 (FILE
NAME ERROR) occurs in the inner trap structure, or an error occurs in function
ProcessFile (or any of its called function), control passes to line immediately to line
[9].

[2] :Trap 11 2 3

[1] ...
[2] :Trap 0
[3] ...
[4] ...
[5] :Else
[6] ...
[7] ...
[8] :EndTrap
[9] ...

[1] :Trap 17+⍳21 ⍝ Component file errors.
[2] tie←name ⎕FTIE 0 ⍝ Try to tie file
[3] 'OK'
[4] :Case 22
[5] 'Can''t find ',name
[6] :CaseList 25+⍳13
[7] 'Resource Problem'
[8] :Else
[9] 'Unexpected Problem'
[10] :EndTrap

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 279

Trap System Variable: ⎕TRAP

The second way of trapping errors is to use the system variable: ⎕TRAP.

⎕TRAP, can be assigned a nested vector of trap specifications. Each trap specification is
itself a nested vector, of length 3, with each element defined as:

list of error
numbers The error numbers we are interested in.

action code Either 'E' (Execute) or 'C' (Cut Back). There are others, but
they are seldom used.

action to be
taken

APL expression, usually a branch statement or a call to an APL
function.

So a single trap specification may be set up as:

and a multiple trap specification as:

The action code E tells APL that you want your action to be taken in the function in
which the error occurred, whereas the code C indicates that you want your action to be
taken in the function where the ⎕TRAP was localised. If necessary, APL must first travel
back up the state indicator (cut-back) until it reaches that function.

[1] :Trap 0
[2] :Trap 22
[3] tie←name ⎕FTIE 0
[4] :Else
[5] tie←name ⎕FCREATE 0
[6] :EndTrap
[7] ProcessFile tie
[8] :Else
[9] 'Unexpected Error'
[10] :EndTrap

⎕TRAP←5 'E' 'ACTION1'

⎕TRAP←(5 'E' 'ACTION1')((1 2 3) 'C' 'ACTION2')

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 280

7.3 Example Traps

Dividing by Zero

Let's try setting a ⎕TRAP on DOMAIN ERROR:

When we enter:

APL executes the expression, and notes that it causes an error number 11. Before
issuing the standard error, it scans its ⎕TRAP table, to see if you were interested enough
in that error to set a trap; you were, so APL executes the action specified by you:

Let's reset our ⎕TRAP:

and write a defined function to take the place of the primitive function ÷:

Then run it:

Let's edit our function, and include a localised ⎕TRAP:

MSG←'''Please give a non-zero right arg'''
⎕TRAP←11 'E' MSG

10÷0

10÷0
Please give non-zero right arg

⎕TRAP←0⍴⎕TRAP ⍝ No traps now set

∇ R←A DIV B
[1] R←A÷B
[2] ∇

10 DIV 0
DOMAIN ERROR

DIV[1] R←A÷B
^

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 281

Running the function with good and bad arguments has the desired effect:

⎕TRAP is a variable like any other, and since it is localised in DIV, it is only effective in
DIV and any other functions that may be called by DIV. So

still gives an error, since there is no trap set in the global environment.

Other Errors

What happens to our function if we run it with other duff arguments:

Here is an error that we have taken no account of.

Change DIV to take this new error into account:

∇ R←A DIV B;⎕TRAP
[1] ⍝ Set the trap
[2] ⎕TRAP←11 'E' '→ERR1'
[3] ⍝ Do the work; if it results in error 11,
[4] ⍝ execute the trap
[5] R←A÷B
[6] ⍝ All OK if we got to here, so exit
[7] →0
[8] ⍝ Will get here only if error 11 occurred
[9] ERR1:'Please give a non-zero right arg'

∇

10 DIV 2
5

10 DIV 0
Please give a non-zero right arg

10÷0
DOMAIN ERROR

10÷0
^

1 2 3 DIV 4 5
LENGTH ERROR
DIV [4] R←A÷B

^

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 282

But here's yet another problem that we didn't think of:

Global Traps

Often when we are writing a system, we can't think of everything that may go wrong
ahead of time; so we need a way of catching "everything else that I may not have
thought of". The error number used for "everything else" is zero:

Set a global trap:

And run the function:

In this case, when APL executed line 4 of our function DIV, it encountered an error
number 4 (RANK ERROR). It searched the local trap table, found nothing relating to error

∇ R←A DIV B;⎕TRAP
[1] ⍝ Set the trap
[2] ⎕TRAP←(11 'E' '→ERR1')(5 'E' '→ERR2')
[3] ⍝ Do the work; if it results in error 11,
[4] ⍝ execute the trap
[5] R←A ÷ B
[6] ⍝ All OK if we got to here, so exit
[7] →0
[8] ⍝ Will get here only if error 11 occurred
[9] ERR1:'Please give a non-zero right arg'⋄→0
[10] ⍝ Will get here only if error 5 occurred
[11] ERR2:'Arguments must be same length'

∇

)RESET

1 2 3 DIV 4 5
Arguments must be the same length

(2 3⍴⍳6) DIV (2 3 4⍴⍳24)
RANK ERROR
DIV [4] R←A÷B

^

)RESET

⎕TRAP ← 0 'E' ' ''Invalid arguments'' '

(2 3⍴⍳6) DIV (2 3 4⍴⍳24)
Invalid arguments

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 283

4, so searched further up the stack to see if the error was mentioned anywhere else. It
found an entry with an associated Execute code, so executed the appropriate action AT
THE POINT THAT THE ERROR OCCURRED. Let's see what's in the stack:

So although our action has been taken, execution has stopped where it normally would
after a RANK ERROR.

Dangers

We must be careful when we set global traps; let's call the non-existent function BUG
whenever we get an unexpected error:

Nothing happens, since APL traps a RANK ERROR on line 4 of DIV, so executes the trap
statement, which causes a VALUE ERROR, which activates the trap action, which causes
a VALUE ERROR, which etc. etc. If we had also chosen to trap on 1000 (ALL
INTERRUPTS), then we'd be in trouble!

Let's define a function BUG:

Now, whenever we run our system and an unexpected error occurs, our BUG function
will be called.

)SI
DIV[4]*

↑⎕DM
RANK ERROR
DIV[4] R←A÷B

^

)RESET
⎕TRAP ← 0 'E' 'BUG'
(2 3⍴⍳6) DIV (2 3 4⍴⍳24)

∇ BUG
[1] ⍝ Called whenever there is an unexpected error
[2] '*** UNEXPECTED ERROR OCCURRED IN: ',⊃1↓⎕SI
[3] '*** PLEASE CALL YOUR SYSTEM ADMINISTRATOR'
[4] '*** WORKSPACE SAVED AS BUG.',⊃1↓⎕SI
[5] ⍝ Tidy up ... reset ⎕LX, untie files ... etc
[6] ⎕SAVE 'BUG.',⊃1↓⎕SI
[7] '*** LOGGING YOU OFF THE SYSTEM'
[8] ⎕OFF

∇

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 284

The system administrator can then load BUG.DIV, look at the SI stack, discover the
problem, and fix it.

Looking out for Specific Problems

In many cases, you can of course achieve the same effect of a trap by using APL code to
detect the problem before it happens. Consider the function TIE∆FILE, which checks
to see if a file already exists before it tries to access it:

This function executes the same code whether the file name is right or wrong, and it
could take a while to get all the file names in your directory. It would be neater, and
more efficient to take action ONLY when the file name is wrong:

10 DIV 0
Please give non-zero right arg

(2 3⍴⍳6) DIV (2 3 4⍴⍳12)

*** UNEXPECTED ERROR OCCURRED IN: DIV
*** PLEASE CALL YOUR SYSTEM ADMINISTRATOR'

 *** WORKSPACE SAVED AS BUG.DIV
 *** LOGGING YOU OFF THE SYSTEM'

∇ R←TIE∆FILE FILE;FILES
[1] ⍝ Tie file FILE with next available tie number
[2] ⍝
[3] ⍝ All files in my directory
[4] FILES←⎕FLIB 'mydir'
[5] ⍝ Remove trailing blanks
[6] FILES←dbr¨↓FILES
[7] ⍝ Required file in list?
[8] →ERR×⍳~(⊂FILE)∊FILES
[9] ⍝ Tie file with next number
[10] FILE ⎕FTIE R←1+⌈/0,⎕FNUMS
[11] ⍝ ... and exit
[12] →0
[13] ⍝ Error message
[14] ERR:R←'File does not exist'

∇

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 285

Cut-Back versus Execute

Let us consider the effect of using Cut-Back instead of Execute. Consider the system
illustrated below, in which the function REPORT gives the user the option of 4 reports to
be generated:

∇ R←TIE∆FILE FILE;⎕TRAP
[1] ⍝ Tie file FILE with next available tie number
[2] ⍝
[3] ⍝ Set trap
[4] ⎕TRAP←22 'E' '→ERR'
[5] ⍝ Tie file with next number
[6] FILE ⎕FTIE R←1+⌈/0,⎕FNUMS
[7] ⍝ ... and exit if OK
[8] →0
[9] ⍝ Error message
[10] ERR:R←'File does not exist'

REPORT
|

.-------------------------.
| | | |

REP1 REP2 REP3 REP4
|

.----.----.
| | |

... DIV ...

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 286

Suppose the user chooses REP3, and an unexpected error occurs in DIV. The good news
is that the System Administrator gets a snapshot copy of the workspace that he can
play about with:

The bad news is, our user is locked out of the whole system, even though it may only
be REP3 that has a problem. We can get around this by making use of the CUT-BACK
action code.

∇ REPORT;OPTIONS;OPTION;⎕TRAP
[1] ⍝ Driver functions for report sub-system. If an
[2] ⍝ unexpected error occurs, take action in the
[3] ⍝ function where the error occurred
[4] ⍝
[5] ⍝ Set global trap
[6] ⎕TRAP←0 'E' 'BUG'
[7] ⍝ Available options
[8] OPTIONS←'REP1' 'REP2' 'REP3' 'REP4'
[9] ⍝ Ask user to choose
[10] LOOP:→END×⍳0=⍴OPTION←MENU OPTIONS
[11] ⍝ Execute relevant function
[12] ⍎OPTION
[13] ⍝ Repeat until EXIT
[14] →LOOP
[15] ⍝ Now end
[16] END:

)LOAD BUG.DIV ⍝ Load workspace
saved

)SI ⍝ Where did error occur?
DIV[4]*
REP3[6]
⍎
REPORT[7]

↑⎕DM ⍝ What happened?
RANK ERROR
DIV[4] R←A÷B

^
∇ ⍝ Edit function on top of stack

[0]R←A DIV B
.........

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 287

Suppose the user runs this version of REPORT and chooses REP3. When the unexpected
error occurs in DIV, APL will check its trap specifications, and see that the relevant trap
was set in REPORT with a cut-back code. APL therefore cuts back the stack to the
function in which the trap was localised, THEN takes the specified action. Looking at
the SI stack above, we can see that APL must jump out of DIV, then REP3, then ⍎, to
return to line 7 of REPORT; THEN it takes the specified action.

7.4 Signalling Events

It would be useful to be able to employ the idea of cutting back the stack and taking an
alternative route through the code, when a condition other than an APL error occurs.
To achieve this, we must be able to trap on errors other than APL errors, and we must
be able to define these errors to APL. We do the former by using error codes in the
range 500 to 999, and the latter by using ⎕SIGNAL.

Consider our system; ideally, when an unexpected error occurs, we want to save a
snapshot copy of our workspace (execute BUG in place), then immediately jump back to

∇ REPORT;OPTIONS;OPTION;⎕TRAP
[1] ⍝ Driver functions for report sub-system. If an
[2] ⍝ unexpected error occurs, cut the stack back
[3] ⍝ to this function, then take action
[4] ⍝
[5] ⍝ Set global trap
[6] ⎕TRAP←0 'C' '→ERR'
[7] ⍝ Available options
[8] OPTIONS←'REP1' 'REP2' 'REP3' 'REP4'
[9] ⍝ Ask user to choose

[10] LOOP:→END×⍳0=⍴OPTION←MENU OPTIONS
[11] ⍝ Execute relevant function
[12] ⍎OPTION
[13] ⍝ Repeat until EXIT
[14] →LOOP
[15] ⍝ Tell user ...
[16] ERR:MESSAGE'Unexpected error in',OPTION
[17] ⍝ ... what's happening
[18] MESSAGE'Removing from list'
[19] ⍝ Remove option from list
[20] OPTIONS←OPTIONS~⊂OPTION
[21] ⍝ And repeat
[22] →LOOP
[23] ⍝ End
[24] END:

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 288

REPORT and reduce our options. We can achieve this by changing our functions a little,
and using ⎕SIGNAL:

Now when the unexpected error occurs, the first trap specification catches it, and the
BUG function is executed in place. Instead of logging the user off as before, an error
500 is signalled to APL. APL checks its trap specifications, sees that 500 has been set in
REPORT as a cut-back, so cuts back to REPORT before branching to ERR.

∇ REPORT;OPTIONS;OPTION;⎕TRAP
[1] ⍝ Driver functions for report sub-system. If an
[2] ⍝ unexpected error occurs, make a snapshot copy
[3] ⍝ of the workspace, then cutback the stack to
[4] ⍝ this function, reduce the option list & resume
[5] ⍝ Set global trap
[6] ⎕TRAP←(500 'C' '→ERR')(0 'E' 'BUG')
[7] ⍝ Available options
[8] OPTIONS←'REP1' 'REP2' 'REP3' 'REP4'
[9] ⍝ Ask user to choose

[10] LOOP:→END×⍳0=⍴OPTION←MENU OPTIONS
[11] ⍝ Execute relevant function
[12] ⍎OPTION
[13] ⍝ Repeat until EXIT
[14] →LOOP
[15] ⍝ Tell user ...
[16] ERR:MESSAGE'Unexpected error in',OPTION
[17] ⍝ ... what's happening
[18] MESSAGE'Removing from list'
[19] ⍝ Remove option from list
[20] OPTIONS←OPTIONS~⊂OPTION
[21] ⍝ And repeat
[22] →LOOP
[23] ⍝ End
[24] END:

∇ BUG
[1] ⍝ Called whenever there is an unexpected error
[2] '*** UNEXPECTED ERROR OCCURRED IN: ',⊃1↓⎕SI
[3] '*** PLEASE CALL YOUR SYSTEM ADMINISTRATOR'
[4] '*** WORKSPACE SAVED AS BUG.',⊃1↓⎕SI
[5] ⍝ Tidy up ... reset ⎕LX, untie files ... etc
[6] ⎕SAVE 'BUG.',⊃1↓⎕SI
[7] '*** RETURNING TO DRIVER FOR RESELECTION'
[8] ⎕SIGNAL 500

∇

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 289

Flow Control

Error handling, which employs a combination of all the system functions and variables
described, allows us to dynamically alter the flow of control through our system, as well
as allow us to handle errors gracefully. It is a very powerful facility, which is simple to
use, but is often neglected.

7.5 Handling Unexpected Application Errors in Windows

When running an APL application, it is possible that an unexpected error will occur.

It is advisable to set a trap at the top level of the application which traps all possible
errors; in this way the programmer can cater for any errors that are not already
explicitly trapped by, for example, writing information to a file, or saving the
workspace. On UNIX in particular it may also be useful to call ⎕OFF with a positive
integer to the right of the ⎕OFF - this is used as the exit code to APL.

It is also possible to generate an error which it is not possible to trap in APL code;
examples include attempting to access the session in a runtime APL, or generating an
error which causes APL to crash (for example, by the incorrect use of a shared library
function).

By default in such cases, APL will pop up a message box, and cannot continue until the
user selects the OK button.

It is possible to override this behaviour by setting the configuration parameter
DYALOG_NOPOPUPS to 1. This will cause system popups to be suppressed; it does not
suppress application popups generated by APL code.

With DYALOG_NOPOPUPS=1 APL will terminate silently, except that an aplcore file will be
generated. The location of the aplcore file can be controlled by the configuration
parameter APLCoreName. It may be more useful to ask the operating system to handle
the unexpected termination of the APL process, for example, by bringing up a
debugger, or Dr Watson. This can be achieved by setting the configuration parameter
PassExceptionsToOpSys to 1. In most cases it is useful to set DYALOG_NOPOPUPS=1 too.

It is also possible to log such events to the Windows Event Log. Setting the
configuration parameter DYALOG_EVENTLOGGINGLEVEL to a value greater than 0 will
cause this to happen. If the configuration parameter DYALOG_EVENTLOGNAME is not set,
then an event log called Dyalog will be created which can be viewed from the Windows
Event Viewer. The first time that such an event occurs the following entries will be
added to the Windows registry:

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 290

The key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\Dyalog
APL with values

Value Name Value

Sources Dyalog APL

MaxSize 150000000

The key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\Dyalog
APL\Dyalog APL with values

Value Name Value

EventMessageFile DYALOG\dyalog.exe

CategoryMessageFile DYALOG\dyalog.exe

Category Count 5

TypesSupported 7

where DYALOG is the directory where Dyalog APL is installed.

If DYALOG_EVENTLOGNAME is set, it should contain the name of the log to which events
will be logged. For example

DYALOG_EVENTLOGNAME="MyApp Event Log"

When set, no registry entries are added by Dyalog, but if the above registry entries
have been manually created, the events will be logged to an event log which has the
name "MyApp Event Log". If the registry entries described above have not been
created, the events will instead be logged into the Application Log, and the Event
Viewer will display text similar to the following when events are viewed:

The description for Event ID (1) in Source (MyApp Event Log) cannot be found. The
local computer may not have the necessary registry information or message DLL files to
display messages from a remote computer. You may be able to use the /AUXSOURCE=
flag to retrieve this description; see Help and Support for details. The following
information is part of the event: Syserror: 995 code: 2 Aplcore "aplcore1" has been
created.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 291

8 Error Messages

8.1 Error Messages

8.1.1 Introduction

The error messages reported by APL are described in this section. Standard APL
messages that provide information or report error conditions are summarised in
Section 8.1.2 and described later in alphabetical order.

APL also reports messages originating from the Operating System (WINDOWS or UNIX)
which are summarised in Section 8.1.3 and Section 8.1.4. Only those Operating System
error messages that might occur through normal usage of APL operations are described
here. Other messages could occur as a direct or indirect consequence of using the
Operating System interface functions ⎕CMD and ⎕SH or system commands)CMD and)SH,
or when a non-standard device is specified for the system functions ⎕ARBIN or
⎕ARBOUT. Refer to the WINDOWS or UNIX reference manual for further information
about these messages.

Most errors may be trapped using the system variable ⎕TRAP, thereby retaining control
and inhibiting the standard system action and error report. The table, Dyalog APL
Language: Trap identifies the error code for trappable errors. The error code is also
identified in the heading block for each error message when applicable.

See Dyalog Programming Reference Guide for a full description of the Error Handling
facilities in Dyalog APL.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 292

8.1.2 APL Errors

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 293

Table 8-1: APL Error Messages

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 294

Error Code Report

bad ws

cannot create name

clear ws

copy incomplete

defn error

incorrect command

insufficient resources

is name

Name already exists

name is not a ws

name saved date/time

Namespace does not exist

not copied name

not found name

not saved this ws is name

sys error number

too many names

warning duplicate label

warning duplicate name

warning label name present in line 0

warning pendent operation

warning unmatched brackets

warning unmatched parentheses

was name

ws not found

ws too large

1 WS FULL

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 295

Error Code Report

2 SYNTAX ERROR

3 INDEX ERROR

4 RANK ERROR

5 LENGTH ERROR

6 VALUE ERROR

7 FORMAT ERROR

10 LIMIT ERROR

11 DOMAIN ERROR

12 HOLD ERROR

16 NONCE ERROR

18 FILE TIE ERROR

19 FILE ACCESS ERROR

20 FILE INDEX ERROR

21 FILE FULL

22 FILE NAME ERROR

23 FILE DAMAGED

24 FILE TIED

25 FILE TIED REMOTELY

26 FILE SYSTEM ERROR

28 FILE SYSTEM NOT AVAILABLE

30 FILE SYSTEM TIES USED UP

31 FILE TIE QUOTA USED UP

32 FILE NAME QUOTA USED UP

34 FILE SYSTEM NO SPACE

35 FILE ACCESS ERROR - CONVERTING FILE

38 FILE COMPONENT DAMAGED

52 FIELD CONTENTS RANK ERROR

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 296

Error Code Report

53 FIELD CONTENTS TOO MANY COLUMNS

54 FIELD POSITION ERROR

55 FIELD SIZE ERROR

56 FIELD CONTENTS/TYPE MISMATCH

57 FIELD TYPE/BEHAVIOUR UNRECOGNISED

58 FIELD ATTRIBUTES RANK ERROR

59 FIELD ATTRIBUTES LENGTH ERROR

60 FULL-SCREEN ERROR

61 KEY CODE UNRECOGNISED

62 KEY CODE RANK ERROR

63 KEY CODE TYPE ERROR

70 FORMAT FILE ACCESS ERROR

71 FORMAT FILE ERROR

72 NO PIPES

76 PROCESSOR TABLE FULL

84 TRAP ERROR

90 EXCEPTION

92 TRANSLATION ERROR

99 INTERNAL ERROR

1003 INTERRUPT

1005 EOF INTERRUPT

1006 TIMEOUT

1007 RESIZE

1008 DEADLOCK

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 297

8.1.3 Operating System Error Messages

The table below refers to UNIX Operating Systems under which the error code reported
by Dyalog APL is (100 + the UNIX file error number). The text for the error message,
which is obtained by calling perror(), will vary from one type of system to another.

See also Section 8.1.4 for the equivalent error messages under Windows.

Typical Operating System Error Messages

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 298

Error Code Report

101 FILE ERROR 1 Not owner

102 FILE ERROR 2 No such file or directory

103 FILE ERROR 3 No such process

104 FILE ERROR 4 Interrupted system call

105 FILE ERROR 5 I/O error

106 FILE ERROR 6 No such device or address

107 FILE ERROR 7 Arg list too long

108 FILE ERROR 8 Exec format error

109 FILE ERROR 9 Bad file number

110 FILE ERROR 10 No children

111 FILE ERROR 11 No more processes

112 FILE ERROR 12 Not enough code

113 FILE ERROR 13 Permission denied

114 FILE ERROR 14 Bad address

115 FILE ERROR 15 Block device required

116 FILE ERROR 16 Mount device busy

117 FILE ERROR 17 File exists

118 FILE ERROR 18 Cross-device link

119 FILE ERROR 19 No such device

120 FILE ERROR 20 Not a directory

121 FILE ERROR 21 Is a directory

122 FILE ERROR 22 Invalid argument

123 FILE ERROR 23 File table overflow

124 FILE ERROR 24 Too many open files

125 FILE ERROR 25 Not a typewriter

126 FILE ERROR 26 Text file busy

127 FILE ERROR 27 File too large

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 299

Error Code Report

128 FILE ERROR 28 No space left on device

129 FILE ERROR 29 Illegal seek

130 FILE ERROR 30 Read-only file system

131 FILE ERROR 31 Too many links

132 FILE ERROR 32 Broken pipe

133 FILE ERROR 33 Math argument

134 FILE ERROR 34 Result too large

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 300

8.1.4 Windows Operating System Error Messages
Table 8-2: Windows Operating System Messages

Error Code Report

101 FILE ERROR 1 No such file or directory

102 FILE ERROR 2 No such file or directory

103 FILE ERROR 3 Exec format error

105 FILE ERROR 5 Not enough memory

106 FILE ERROR 6 Permission denied

107 FILE ERROR 7 Argument list too big

108 FILE ERROR 8 Exec format error

109 FILE ERROR 9 Bad file number

111 FILE ERROR 11 Too many open files

112 FILE ERROR 12 Not enough memory

113 FILE ERROR 13 Permission denied

114 FILE ERROR 14 Result too large

115 FILE ERROR 15 Resource deadlock would occur

117 FILE ERROR 17 File exists

118 FILE ERROR 18 Cross-device link

122 FILE ERROR 22 Invalid argument

123 FILE ERROR 23 File table overflow

124 FILE ERROR 24 Too many open files

133 FILE ERROR 33 Argument too large

134 FILE ERROR 34 Result too large

145 FILE ERROR 45 Resource deadlock would occur

8.1.5 APL Error Messages

There follows an alphabetical list of error messages reported from within Dyalog APL.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 301

8.1.6 APL Error Messages (A-Z)

bad ws

This report is given when an attempt is made to)COPY or)PCOPY from a file that is not
a valid workspace file. Invalid files include workspaces that were created by a version of
Dyalog APL later than the version currently being used.

cannot create name

This report is given when an attempt is made to)SAVE a workspace with a name that is
either the name of an existing, non-workspace file, or the name of a workspace that
the user does not have permission to overwrite or create.

clear ws

This message is displayed when the system command)CLEAR is issued.

Example

copy incomplete

This report is given when an attempted)COPY or)PCOPY fails to complete. Reasons
include:

Failure to identify the incoming file as a workspace.
Not enough active workspace to accommodate the copy.

DEADLOCK 1008

If two threads succeed in acquiring a hold of two different tokens, and then each asks
to hold the other token, they will both stop and wait for the other to release its token.
The interpreter detects such cases and issues an error (1008) DEADLOCK.

)CLEAR
clear ws

•
•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 302

defn error

This report is given when either:

The system editor is invoked in order to edit a function that does not exist, or
the named function is pendent or locked, or the given name is an object other
than a function.
The system editor is invoked to define a new function whose name is already
active.
The header line of a function is replaced or edited in definition mode with a line
whose syntax is incompatible with that of a header line. The original header line
is re-displayed by the system editor with the cursor placed at the end of the line.
Back-spacing to the beginning of the line followed by line-feed restores the
original header line.

Examples

DOMAIN ERROR 11

This report is given when either:

An argument of a function is not of the correct type or its numeric value is
outside the range of permitted values or its character value does not constitute
valid name(s) in the context.
An array operand of an operator is not an array, or it is not of the correct type, or
its numeric value is outside the range of permitted values. A function operand of
an operator is not one of a prescribed set of functions.
A value assigned to a system variable is not of the correct type, or its numeric
value is outside the range of permitted values

•

•

•

X←1
∇X

defn error

∇FOO[0⎕]
[0] R←FOO
[0] R←FOO:X
defn error
[0] R←FOO:X

⎕LOCK'FOO'
∇FOO[⎕]

defn error

•

•

•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 303

The result produced by a function includes numeric elements which cannot be
fully represented.

Examples

EOF INTERRUPT 1005

This report is given on encountering the end-of-file when reading input from a file. This
condition could occur when an input to APL is from a file.

EXCEPTION 90

This report is given when a Microsoft .NET object throws an exception. For details see
Dyalog APL Language: Exception.

FIELD CONTENTS RANK ERROR 52

This report is given if a field content of rank greater than 2 is assigned to ⎕SM.

FIELD CONTENTS TOO MANY COLUMNS 53

This report is given if the content of a numeric or date field assigned to ⎕SM has more
than one column.

•

1÷0
DOMAIN ERROR

1÷0
^

(×∘'CAT')2 4 6
DOMAIN ERROR

(×∘'CAT')2 4 6
^

⎕IO←5
DOMAIN ERROR

⎕IO←5
^

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 304

FIELD POSITION ERROR 54

This report is given if the location of the field assigned to ⎕SM is outside the screen.

FIELD CONTENTS TYPE MISMATCH 56

This report is given if the field contents assigned to ⎕SM does not conform with the
given field type, for example, character content with numeric type.

FIELD TYPE BEHAVIOUR UNRECOGNISED 57

This report is given if the field type or behaviour code assigned to ⎕SM is invalid.

FIELD ATTRIBUTES RANK ERROR 58

This report is given if the current video attribute assigned to ⎕SM is non-scalar but its
rank does not match that of the field contents.

FIELD ATTRIBUTES LENGTH ERROR 59

This report is given if the current video attribute assigned to ⎕SM is non-scalar but its
dimensions do not match those of the field contents.

FULL SCREEN ERROR 60

This report is given if the required full screen capabilities are not available to ⎕SM. This
report is only generated in UNIX environments.

KEY CODE UNRECOGNISED 61

This report is given if a key code supplied to ⎕SR or ⎕PFKEY is not recognised as a valid
code. It will also be generated if you attempt to generate a KeyPress event with an
invalid Input Code.

KEY CODE RANK ERROR 62

This report is given if a key code supplied to ⎕SR or ⎕PFKEY is not a scalar or a vector.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 305

KEY CODE TYPE ERROR 63

This report is given if a key code supplied to ⎕SR or ⎕PFKEY is numeric or nested; that is,
is not a valid key code.

FORMAT FILE ACCESS ERROR 70

This report is given if the date format file to be used by ⎕SM does not exist or cannot be
accessed.

FORMAT FILE ERROR 71

This report is given if the date format file to be used by ⎕SM is ill-formed.

FILE ACCESS ERROR 19

This report is given when the user attempts to execute a file system function for which
the user is not authorised, or has supplied the wrong passnumber. It also occurs if the
file specified as the argument to ⎕FERASE or ⎕FRENAME is not exclusively tied.

Examples

'SALES' ⎕FSTIE 1

⎕FRDAC 1
0 4121 0
0 4137 99

X ⎕FREPLACE 1
FILE ACCESS ERROR

X ⎕FREPLACE 1
^

'SALES' ⎕FERASE 1
FILE ACCESS ERROR

'SALES' ⎕FERASE 1
^

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 306

FILE ACCESS ERROR CONVERTING

When a new version of Dyalog APL is used, it may be that improvements to the
component file system demand that the internal structure of component files must
alter. This alteration is performed by the interpreter on the first occasion that the file is
accessed. If the operating system file permissions deny the ability to perform such a
restructure, this report is given.

FILE COMPONENT DAMAGED 38

This report is given if an attempt is made to access a component that is not a valid APL
object. This will rarely occur, but may happen as a result of a previous computer
system failure. Components files may be checked using ⎕FCHK. See Dyalog APL
Language: Fchk.

FILE DAMAGED 23

This report is given if a component file becomes damaged. This rarely occurs but may
result from a computer system failure. Components files may be checked using ⎕FCHK.
See Dyalog APL Language: Fchk.

FILE FULL 21

This report is given if the file operation would cause the file to exceed its file size limit
or would cause the component number to exceed the maximum permitted which is
just below 2*32.

FILE INDEX ERROR 20

This report is given when an attempt is made to reference a non-existent component.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 307

Example

FILE NAME ERROR 22

This report is given if:

the user attempts to ⎕FCREATE using the name of an existing file.
the user attempts to ⎕FTIE or ⎕FSTIE a non-existent file, or a file that is not a
component file.
the user attempts to ⎕FERASE a component file or ⎕NERASE a native file with a
name other than the EXACT name that was used when the file was tied.

FILE NAME QUOTA USED UP 32

This report is given when the user attempts to execute a file system command that
would result in the User's File Name Quota (see Dyalog Programming Reference Guide:
Component Files) being exceeded.

This can occur with ⎕FCREATE, ⎕FTIE, ⎕FSTIE or ⎕FRENAME .

FILE SYSTEM ERROR 26

This report is given if an input/output (I/O) error occurs when reading from or writing
to the host file system. Contact your System Administrator.

If this occurs when the file is being written it may become damaged; it is therefore
advisable to check the integrity of the file using ⎕FCHK once the source of the I/O errors
has been corrected. See Dyalog APL Language: Fchk.

⎕FSIZE 1
1 21 16578 4294967295

⎕FREAD 1 34
FILE INDEX ERROR

⎕FREAD 1 34
^
⎕FDROP 1 50

FILE INDEX ERROR
⎕FDROP 1 50
^

•
•

•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 308

FILE SYSTEM NO SPACE 34

This report is given if the user attempts a file operation that cannot be completed
because there is insufficient disk space.

FILE SYSTEM NOT AVAILABLE 28

This error is generated if the operation system generates an unexpected error when
attempting to get a lock on a component file. See Dyalog Programming Reference
Guide: Component Files for details.

This error has been seen in Windows environments which have opportunistic locks (aka
oplocks) enabled, either on the server that is running Dyalog APL, or on a server which
has access to the same shared drives, or the disk array which contains the shared
drives. In this scenario this error is not seen consistently, but rather is interspersed with
other file-related errors. Oplocks should be disabled in environments where shared
component files are used.

This error has also been seen when attempting to use component files on NFS mounted
filesystems when the NFS lock daemon is not working properly: in this state component
file operations may just hang (but can be interrupted) rather than this error being
generated.

FILE SYSTEM TIES USED UP 30

This error is generated when the maximum number of file ties for this APL instance has
been reached. See Dyalog Programming Reference Guide: Component Files for details.

FILE TIE ERROR 18

This report is given when the argument to a file system function contains a file tie
number used as if it were tied when it is not or as if it were available when it is already
tied. It also occurs if the argument to ⎕FHOLD contains the names of non-existent
external variables. It does not indicate that there is a problem with the underlying
operating system's locking mechanism.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 309

Examples

FILE TIED 24

This report is given if the user attempts to tie a file that is exclusively tied by another
task, or attempts to exclusively tie a file that is already share-tied by another task.

FILE TIED REMOTELY 25

This report is given if the user attempts to tie a file that is exclusively tied by another
task, or attempts to exclusively tie a file that is already share-tied by another task; and
that task is running on other than the user's processor.

FILE TIE QUOTA USED UP 31

This error is generated if an attempt is made to ⎕FTIE, ⎕FSTIE or ⎕FCREATE a file when
the user already has the maximum number of files tied. (See Dyalog Programming
Reference Guide:Component Files)

⎕FNAMES,⎕FNUMS
SALES 1
COSTS 2
PROFIT 3

X ⎕FAPPEND 4
FILE TIE ERROR

X ⎕FAPPEND 4
^
'NEWSALES' ⎕FCREATE 2

FILE TIE ERROR
'NEWSALES' ⎕FCREATE 2
^

'EXTVFILE' ⎕XT'BIGMAT'
⎕FHOLD 'BIGMAT'

FILE TIE ERROR
⎕FHOLD 'BIGMAT'
^
⎕FHOLD⊂'BIGMAT'

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 310

FORMAT ERROR 7

This report is given when the format specification in the left argument of system
function ⎕FMT is ill-formed.

Example

(The correct specification should be 'A1,X1,I5' .)

HOLD ERROR 12

This report is given when an attempt is made to save a workspace using the system
function ⎕SAVE if any external arrays or component files are currently held (as a result
of a prior use of the system function ⎕FHOLD).

Example

incorrect command

This report is given when an unrecognised system command is entered.

Example

'A1,1X,I5'⎕FMT CODE NUMBER
FORMAT ERROR

'A1,1X,I5'⎕FMT CODE NUMBER
^

∇HOLD∆SAVE
[1] ⎕FHOLD 1
[2] ⎕SAVE 'TEST'

∇

'FILE' ⎕FSTIE 1

HOLD∆SAVE
HOLD ERROR
HOLD∆SAVE[2] ⎕SAVE'TEST'

^

)CLERA
incorrect command

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 311

INDEX ERROR 3

This report is given when either:

The value of an index, whilst being within comparison tolerance of an integer, is
outside the range of values defined by the index vector along an axis of the array
being indexed. The permitted range is dependent on the value of ⎕IO.
The value specified for an axis, whilst being within comparison tolerance of an
integer for a derived function requiring an integer axis value or a non-integer for
a derived function requiring a non-integer, is outside the range of values
compatible with the rank(s) of the array argument(s) of the derived function.
Axis is dependent on the value of ⎕IO.

Examples

INTERNAL ERROR 99

INTERNAL ERROR indicates that the system has reached an unexpected state from
which Dyalog APL has recovered.

Should you encounter an INTERNAL ERROR, Dyalog strongly recommends that you save
your work(space), and asks that you report the issue to Dyalog.

INTERRUPT 1003

This report is given when execution is suspended by entering a hard interrupt. A hard
interrupt causes execution to suspend as soon as possible without leaving the
environment in a damaged state.

•

•

A
1 2 3
4 5 6

A[1;4]
INDEX ERROR

A[1;4]
^

↑ [2]'ABC' 'DEF'
INDEX ERROR

↑ [2]'ABC' 'DEF'
^

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 312

Example

(Hard interrupt)

is name

This report is given in response to the system command)WSID when used without a
parameter. name is the name of the active workspace including directory references
given when loaded or named. If the workspace has not been named, the system
reports is CLEAR WS.

Example

LENGTH ERROR 5

This report is given when the shape of the arguments of a function do not conform, but
the ranks do conform.

Example

LIMIT ERROR 10

This report is given when a system limit is exceeded. System limits are installation
dependent.

1 1 2 ⍉(2 100⍴⍳200)∘.|?1000⍴200

INTERRUPT
1 1 2 ⍉(2 100⍴⍳200)∘.|?1000⍴200

^

)WSID
is WS/UTILITY

2 3+4 5 6
LENGTH ERROR

2 3+4 5 6
^

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 313

Example

NONCE ERROR 16

This report is given when a system function or piece of syntax is not currently
implemented but is reserved for future use.

NO PIPES 72

This message applies to the UNIX environment ONLY.

This message is given when the limit on the number of pipes communicating between
tasks is exceeded. An installation-set quota is assigned for each task. An associated task
may require more than one pipe. The message occurs on attempting to exceed the
account's quota when either:

An APL session is started
A non-APL task is started by the system function ⎕SH
An external variable is used.

It is necessary to release pipes by terminating sufficient tasks before proceeding with
the required activity. In practice, the error is most likely to occur when using the system
function ⎕SH.

Examples

(16⍴1)⍴1
LIMIT ERROR

(16⍴1)⍴1
^

•
•
•

'via' ⎕SH 'via'
NO PIPES

'via' ⎕SH 'via'
^

'EXT/ARRAY' ⎕XT 'EXVAR'
NO PIPES

'EXT/ARRAY' ⎕XT 'EXVAR'
^

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 314

name is not a ws

This report is given when the name specified as the parameter of the system
commands)LOAD,)COPY or)PCOPY is a reference to an existing file or directory that is
not identified as a workspace.

This will also occur if an attempt is made to)LOAD a workspace that was)SAVE’d using
a later version of Dyalog APL.

Example

Name already exists

This report is given when an)NS command is issued with a name which is already in
use for a workspace object other than a namespace.

Namespace does not exist

This report is given when a)CS command is issued with a name which is not the name
of a global namespace.

not copied name

This report is given for each object named or implied in the parameter list of the
system command)PCOPY which was not copied because of an existing global referent
to that name in the active workspace.

Example

not found name

This report is given when either:

An object named in the parameter list of the system command)ERASE is not
erased because it was not found or it is not eligible to be erased.

)LOAD EXT\ARRAY
EXT\ARRAY is not a ws

)PCOPY WS/UTILITY A FOO Z
WS/UTILITY saved Mon Nov 1 13:11:19 1993
not copied Z

•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 315

An object named in the parameter list (or implied list) of names to be copied
from a saved workspace for the system commands)COPY or)PCOPY is not
copied because it was not found in the saved workspace.

Examples

not saved this ws is name

This report is given in the following situations:

When the system command)SAVE is used without a name, and the workspace is
not named. In this case the system reports not saved this ws is CLEAR WS.
When the system command)SAVE is used with a name, and that name is not
the current name of the workspace, but is the name of an existing file.

In neither case is the workspace renamed.

Examples

PROCESSOR TABLE FULL 76

This report can only occur in a UNIX environment.

This report is given when the limit on the number of processes (tasks) that the
computer system can support would be exceeded. The limit is installation dependent.
The report is given when an attempt is made to initiate a further process, occurring
when an APL session is started.

•

)ERASE ⎕IO
not found ⎕IO

)COPY WS/UTILITY UND
WS/UTILITY saved Mon Nov 1 13:11:19 1993
not found UND

•

•

)CLEAR
)SAVE

not saved this ws is CLEAR WS

)WSID JOHND
)SAVE
)WSID ANDYS
)SAVE JOHND

not saved this ws is ANDYS

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 316

It is necessary to wait until active processes are completed before the required task
may proceed. If the condition should occur frequently, the solution is to increase the
limit on the number of processes for the computer system.

Example

RANK ERROR 4

This report is given when the rank of an argument or operand does not conform to the
requirements of the function or operator, or the ranks of the arguments of a function
do not conform.

Example

RESIZE 1007

This report is given when the user resizes the ⎕SM window. It is only applicable to
Dyalog APL/X and Dyalog APL/W.

name saved date time

This report is given when a workspace is saved, loaded or copied.

date/time is the date and time at which the workspace was most recently saved.

Examples

'prefect' ⎕SH 'prefect'
PROCESSOR TABLE FULL

'prefect' ⎕SH 'prefect'
^

2 3 + 2 2⍴10 11 12 13
RANK ERROR

2 3 + 2 2⍴10 11 12 13
^

)LOAD WS/UTILITY
WS/UTILITY saved Fri Sep 11 10:34:35 1998

)COPY SPACES GEOFF JOHND VINCE
./SPACES saved Wed Sep 30 16:12:56 1998

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 317

SYNTAX ERROR 2

This report is given when a line of characters does not constitute a meaningful
statement. This condition occurs when either:

An illegal symbol is found in an expression.
Brackets, parentheses or quotes in an expression are not matched.
Parentheses in an expression are not matched.
Quotes in an expression are not matched.
A value is assigned to a function, label, constant or system constant.
A strictly dyadic function (or derived function) is used monadically.
A monadic function (or derived function) is used dyadically.
A monadic or dyadic function (or derived function) is used without any
arguments.
The operand of an operator is not an array when an array is required.
The operand of an operator is not a function (or derived function) when a
function is required.
The operand of an operator is a function (or derived function) with incorrect
valency.
A dyadic operator is used with only a single operand.
An operator is used without any operands.

Examples

sys error number

This report is given when an internal error occurs in Dyalog APL.

•
•
•
•
•
•
•
•

•
•

•

•
•

A>10)/A
SYNTAX ERROR

A>10)/A
^

⊤2 4 8
SYNTAX ERROR

⊤2 4 8
^

A.+1 2 3
SYNTAX ERROR

A.+1 2 3
^

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 318

Under UNIX it may be necessary to enter a hard interrupt to obtain the UNIX command
prompt, or even to kill your processes from another screen. Under WINDOWS it may
be necessary to reboot your PC.

If this error occurs, please submit a fault report to your Dyalog APL distributor.

TIMEOUT 1006

This report is given when the time limit specified by the system variable ⎕RTL is
exceeded while awaiting input through character input (⍞) or ⎕SR.

It is also reported by ⎕FHOLD if it times out.

It is usual for this error to be trapped.

Example

TRANSLATION ERROR 92

This report is given when the system cannot convert a character from Unicode to an
Atomic Vector index or vice versa. Conversion is controlled by the value of ⎕AVU. Note
that this error can occur when you reference a variable whose value has been obtained
by reading data from a TCPSocket or by calling an external function. This is because in
these cases the conversion to/from ⎕AV is deferred until the value is used.

TRAP ERROR 84

This report is given when a workspace full condition occurs whilst searching for a
definition set for the system variable ⎕TRAP after a trappable error has occurred. It does
not occur when an expression in a ⎕TRAP definition is being executed.

too many names

This report is given by the function editor when the number of distinct names (other
than distinguished names beginning with the symbol ⎕) referenced in a defined
function exceeds the system limit of 4096.

⎕RTL←5 ⋄ ⍞←'RESPOND WITHIN 5 SECONDS: ' ⋄ R←⍞
RESPOND WITHIN 5 SECONDS:
TIMEOUT

⎕RTL←5 ⋄ ⍞←'RESPOND WITHIN 5 SECONDS: ' ⋄ R←⍞
^

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 319

VALUE ERROR 6

This report is given when either:

There is no active definition for a name encountered in an expression.
A function does not return a result in a context where a result is required.

Examples

warning duplicate label

This warning message is reported on closing definition mode when one or more labels
are duplicated in the body of the defined function. This does not prevent the definition
of the function in the active workspace. The value of a duplicated label is the lowest of
the line-numbers in which the labels occur.

warning duplicate name

This warning message is reported on closing definition mode when one or more names
are duplicated in the header line of the function. This may be perfectly valid.
Definition of the function in the active workspace is not prevented. The order in which
values are associated with names in the header line is described in "Defined Functions
& Operators".

warning pendent operation

This report is given on opening and closing definition mode when attempting to edit a
pendant function or operator.

•
•

X
VALUE ERROR

X
^

∇ HELLO
[1] 'HI THERE'
[2] ∇

2+HELLO
HI THERE
VALUE ERROR

2+HELLO
^

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 320

Example

warning label name present

This warning message is reported on closing definition mode when one or more label
names also occur in the header line of the function. This does not prevent definition of
the function in the active workspace. The order in which values are associated with
names is described in "Defined Functions & Operators".

warning unmatched brackets

This report is given after adding or editing a function line in definition mode when it is
found that there is not an opening bracket to match a closing bracket, or vice versa, in
an expression. This is a warning message only. The function line will be accepted even
though syntactically incorrect.

Example

[0] ∇FOO
[1] GOO
[2] ∇

[0] ∇GOO
[1] ∘
[2] ∇

FOO
SYNTAX ERROR
GOO[1] ∘

^

∇FOO
warning pendent operation
[0] ∇FOO
[1] GOO
[2] ∇
warning pendent operation

[3] A[;B[;2]←0
warning unmatched brackets
[4]

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 321

warning unmatched parentheses

This report is given after adding or editing a function line in definition mode when it is
found that there is not an opening parenthesis to match a closing parenthesis, or vice
versa, in an expression. This is a warning message only. The function line will be
accepted even though syntactically incorrect.

Example

was name

This report is given when the system command)WSID is used with a parameter
specifying the name of a workspace. The message identifies the former name of the
workspace. If the workspace was not named, the given report is was CLEAR WS.

Example

WS FULL 1

This report is given when there is insufficient workspace in which to perform an
operation. Workspace available is identified by the system constant ⎕WA.

The maximum workspace size allowed is defined by the environment variable
MAXWS. See maxws parameter for details.

Example

[4] X←(E>2)^E<10)⌿A
warning unmatched parentheses
[5]

)WSID TEMP
was UTILITY

⎕WA⍴1.2
WS FULL

⎕WA⍴1.2
^

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 322

ws not found

This report is given when a workspace named by the system commands)LOAD,)COPY
or)PCOPY does not exist as a file, or when the user does not have read access
authorisation for the file.

Examples

ws too large

This report is given when:

the user attempts to)LOAD a workspace that needs a greater work area than the
maximum that the user is currently permitted.
the user attempts to)COPY or)PCOPY from a workspace that would require a
greater work area than the user is currently permitted if the workspace were to
be loaded.

The maximum work area permitted is set using the environment variable MAXWS.

)LOAD NOWS
ws not found

)COPY NOWS A FOO X
ws not found

•

•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 323

8.1.7 Operating System Error Messages

There follows a numerically sorted list of error messages emanating from a typical
operating system and reported through Dyalog APL.

8.1.8 Operating System Error Messages (A-Z)

FILE ERROR 1 Not owner 101

This report is given when an attempt is made to modify a file in a way which is
forbidden except to the owner or super-user, or in some instances only to a super-user.

FILE ERROR 2 No such file

This report is given when a file (which should exist) does not exist, or when a directory
in a path name does not exist.

FILE ERROR 5 I O error 105

This report is given when a physical I/O error occurred whilst reading from or writing to
a device, indicating a hardware fault on the device being accessed.

FILE ERROR 6 No such device

This report is given when a device does not exist or the device is addressed beyond its
limits. Examples are a tape which has not been mounted or a tape which is being
accessed beyond the end of the tape.

FILE ERROR 13 Permission denied 113

This report is given when an attempt is made to access a file in a way forbidden to the
account.

FILE ERROR 20 Not a directory 120

This report is given when the request assumes that a directory name is required but
the name specifies a file or is not a legal name.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 324

FILE ERROR 21 Is a directory 121

This report is given when an attempt is made to write into a directory.

FILE ERROR 23 File table overflow 123

This report is given when the system limit on the number of open files is full and a
request is made to open another file. It is necessary to wait until the number of open
files is reduced. If this error occurs frequently, the system limit should be increased.

FILE ERROR 24 Too many open

This report is given when the task limit on the number of open files is exceeded. It may
occur when an APL session is started or when a shell command is issued to start an
external process through the system command ⎕SH. It is necessary to reduce the
number of open files. It may be necessary to increase the limit on the number of open
files to overcome the problem.

FILE ERROR 26 Text file busy 126

This report is given when an attempt is made to write a file which is a load module
currently in use. This situation could occur on assigning a value to an external variable
whose associated external file name conflicts with an existing load module's name.

FILE ERROR 27 File too large 127

This report is given when a write to a file would cause the system limit on file size to be
exceeded.

FILE ERROR 28 No space left

This report is given when a write to a file would exceed the capacity of the device
containing the file.

FILE ERROR 30 Read only file

This report is given when an attempt is made to write to a device which can only be
read from. This would occur with a write-protected tape.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 325

8.1.9 System Errors

Introduction

Dyalog APL will generate a system error and (normally) terminate in one of two
circumstances:

As a result of the failure of a workspace integrity check
As a result of a System Exception

On Windows, if the DYALOG_NOPOPUPS parameter is 0 (the default), it will display the
System Error dialog box (see System Error Dialog Box). This is suppressed if
DYALOG_NOPOPUPS is 1.

aplcore file

When a system error occurs, APL normally saves an aplcore file which may be sent to
Dyalog for diagnosis. The name and location of the aplcore file may be specified by the
Installation/Configuration: Configuration Parameters parameter. If this parameter is
not specified, the aplcore file is named aplcore and is saved in the current working
directory.

Normally a new aplcore will replace a file of the same name. However, if Installation/
Configuration: Configuration Parameters contains an asterisk (*), the system will create
a new file, replacing the asterisk with a number incremented from the largest
numbered file present.

The number of aplcore files retained by the system is specified by the Installation/
Configuration: Configuration Parameters parameter. If Installation/Configuration:
Configuration Parameters is 0, the system will not save an aplcore. However, under
Windows, if DYALOG_NOPOPUPS is 0, and the user checks the Create an aplcore file
checkbox when the System Error dialog box is displayed, an aplcore will be saved
regardless of the value of Installation/Configuration: Configuration Parameters. See
System Error Dialog Box.

Be aware that if your application contains any secure data, this data may be present in
an aplcore file, and it may be appropriate to set both Installation/Configuration:
Configuration Parameters and DYALOG_NOPOPUPS to 0 to prevent such data being
saved on disk.

•
•

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 326

Information that may prove useful in debugging the problem, including (where
possible) the SI stack at the point where the aplcore was generated, is by default
written to the end of aplcore files; the section begins with the string

'=================== Interesting Information'

Under UNIX, this interesting information section can be extracted from the aplcore as
follows:

sed -n '/======== Interesting Information/,$p' aplcore

To prevent this information from being written to the aplcore file, the Installation/
Configuration: Apl Textinaplcore parameter should be set to 0.

Workspace Integrity

When you)SAVE your workspace, Dyalog APL first performs a workspace integrity
check. If it detects any discrepancy or violation in the internal structure of your
workspace, APL does not overwrite your existing workspace on disk. Instead, it displays
the System Error dialog box and saves the workspace, together with diagnostic
information, in an aplcore file before terminating.

A System Error code is displayed in the dialog box and should be reported to Dyalog for
diagnosis. This information also appears in the Interesting Information section of the
aplcore file.

Note that the internal error that caused the discrepancy could have occurred at any
time prior to the execution of)SAVE and it may not be possible for Dyalog to identify
the cause from this aplcore file.

If APL is started in debug mode with the -Dc, -Dw or -DW flags, the Workspace Integrity
check is performed more frequently, and it is more likely that the resulting aplcore file
will contain information that will allow the problem to be identified and corrected. It is
also possible to enable or alter the debugging level from within APL using the SetDFlags
method; Dyalog support will direct the use of this feature when necessary.

System Exceptions

Non-specific System Errors are the result of Operating System exceptions that can occur
due to a fault in Dyalog APL itself, an error in a Windows or other DLL, or even as a
result of a hardware fault. The following system exceptions are separately identified.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 327

Code Description Suggested Action

900 A Paging Fault has occurred
As the most likely cause is a temporary
network fault, recommended course of
action is to restart your program.

990 &
991

An exception has occurred in
the Development or Run-
Time DLL.

995 An exception has occurred in
a DLL function called via ⎕NA

Carefully check your ⎕NA statement and
the arguments that you have passed to
the DLL function

996
An exception has occurred in
a DLL function called via a
threaded ⎕NA call

As above

997
An exception has occurred
while processing an incoming
OLE call

999
An exception has been
caused by Dyalog APL or by
the Operating System

Recovering Data from aplcore files

Objects may often (but not always) be recovered from aplcore using)COPY or ⎕CY. Note
that if the aplcore contains a workspace with more than one instance of the same
name on the stack, ⎕CY copies the most local object whereas)COPY copies the global
one.

Be aware that in many cases an attempt to)COPY from or)LOAD an aplcore is likely to
result in a further syserror; this may result in the original aplcore being overwritten,
thus losing the contents of that file. It is therefore worth while taking a copy of the
aplcore before attempting to)COPY from it. Attempting to copy specific items is more
likely to be successful than copying the entire workspace from the aplcore.

Note that in previous versions under Windows because (by default) the aplcore file has
no extension, it was necessary to explicitly add a dot, or APL would attempt to find the
non-existent file aplcore.dws. This is no longer true in version 14.1 onwards.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 328

Reporting Errors to Dyalog

If APL crashes and saves an aplcore file, please email the following information to
support@dyalog.com:

a brief description of the circumstances surrounding the error
details of your version of Dyalog APL: the full version number, whether it is
Unicode or Classic Edition, and the BuildID. This information appears in the
Help->About box; the Copy button copies this information into the clipboard,
from where it can be pasted into an email etc.
a compressed form of the aplcore file itself

If the problem is reproducible, that is, can be easily repeated, please also send the
appropriate description, workspace, and other files required to do so.

System Error Dialog Box

The System Error Dialog illustrated below was produced by deliberately inducing a
system exception in the DLL function memcpy(). The functions used were:

Note: Under a 32-bit interpreter the ⎕NA call should refer to dyalog32.

1.
2.

3.

∇ foo
[1] goo

∇
∇ goo

[1] hoo
∇
∇ hoo

[1] crash
∇

∇ crash
[1] ⎕NA'dyalog64|MEMCPY u u u'
[2] MEMCPY 255 255 255

∇

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 329

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 330

Options

Item Description

Create a process
dump file Dumps a complete core image, see below.

Create
Trappable Error

If you check this box (only enabled on System Error codes 995
and 996), APL will not terminate but will instead generate an
error 91 (EXTERNAL DLL EXCEPTION) when you press Dismiss .

Create an
aplcore file If this box is checked, an aplcore file will be created.

Pass exception
on to operating
system

If this box is checked, the exception will be passed on to your
current debugging tool (for example, Visual Studio). See
PassExceptionsToOpSys .

Copy to
clipboard

Copies the contents of the APL stack trace window to the
Clipboard.

Create a process dump file

Under Windows the Create a process dump file option creates a user-mode process
dump file , also known as a minidump file, called dyalog.dmp in the current directory.
This file allows post-mortem debugging of a crash in the interpreter or a loaded DLL. It
contains much more debug information than a normal aplcore (and is much larger than
an aplcore) and can be sent to Dyalog Limited (zip it first please). Alternatively the file
can be loaded into Visual Studio .NET to do your own debugging.

Debugging your own DLLs

If you are using Visual Studio, the following procedure should be used to debug your
own DLLs when an appropriate Dyalog APL System Error occurs.

Ensure that the Pass Exception box is checked, then click on Dismiss to close the System
Error dialog box.

The system exception dialog box appears. Click on Debug to start the process in the
Visual Studio debugger.

After debugging, the System Exception dialog box appears again. Click on Don't send to
terminate Windows' exception handling.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 331

ErrorOnExternalException Parameter

This parameter allows you to prevent APL from taking the actions described above
when an exception caused by an external DLL occurs. The following example illustrates
what happens when the functions above are run, but with the Installation/
Configuration: Configuration Parameters parameter set to 1.

Note: Dyalog recommends that enabling Installation/Configuration: Configuration
Parameters should only be done while developing or debugging an application;
ignoring such errors may result in corruption in the workspace which could result to
unexpected errors later in the application.

What should I do if Dyalog hangs?

If Dyalog for Windows hangs, you should generate a process dump file and send it to
Dyalog Support, along with your Build ID.

To do this:

Start Task Manager (as a user who has administrative privileges)
Go to the Processes tab
Right click on the dyalog.exe process and choose Create Dump File. Windows
will create a process dump file in C:\Users\<your name
here>\AppData\Local\Temp\dyalog.DMP

Compress this file and send it to Dyalog. If it is less than 10 Mb in size, send it to
Dyalog Support as an email attachment. If it is more than 10 Mb, upload it via
the MyDyalog/My Account page or contact Dyalog support to request an
account on our FTP server.

⎕←2 ⎕NQ'.' 'GetEnvironment' 'ErrorOnExternalException'
1

foo
EXTERNAL DLL EXCEPTION
crash[2] MEMCPY 255 255 255

^
⎕EN

91
)SI

crash[2]*
hoo[1]
goo[1]
foo[1]

1.
2.
3.

4.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 332

9 APLMon

9.1 Introduction

APLMON is a built-in Dyalog feature that, when enabled, monitors the execution of APL
primitives and functions and writes the results to a CSV file. When not enabled (the
default), it has no impact on execution.

When running an APL application with APLMON enabled, Dyalog logs the use of every
primitive operation; how many times it was called, how much time was spent running it
and details about the arguments it was processing. This makes it possible to identify
the primitive operations on which the application spends the most time. Dyalog Ltd can
use this data to help determine which optimisations to prioritise and where to
concentrate performance work. For additional information on this topic, please contact
support@dyalog.com.

APLMON does not return any application-side information. APL programmers should
use ⎕PROFILE or the cmpx function from the dfns workspace to determine which parts
of the application can be optimized programmatically. However, APLMON can be useful
for APL programmers who want to verify that their application uses primitives as
expected or that it does not perform unnecessary computations such as disclosing
simple scalars.

9.2 Using APLMON

APLMON is enabled and disabled using the APLMON method of Root. It takes a single
argument, the name of the file to which the results are to be written. If the file name is
empty, APLMON is disabled.

Accumulated data is only actually written to the file when the method is called or when
Dyalog terminates. The name of the file to which the results are written is returned as a
shy result. This mechanism allows you to log application results in separate files.

Example

Run APLMON and output the data to myapplication.csv:

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 333

The empty result indicates that APLMON was disabled prior to this call.

Example

Output the data and disable APLMON:

The file name in the result indicates that data has been output to that file and APLMON
has been disabled.

9.2.1 Time measurement

The overhead of using APLMON reduces the overall speed of execution significantly.
However, this does not affect the relative accuracy of the measurements.

For optimal accuracy, time measurement should be done with as few other processes
running as possible, and in a process that has a higher priority than others.

To change process priority on Microsoft Windows: Start Dyalog, then launch the Task
Manager. In the Processes tab, right-click on Dyalog and select Go to details from the
pop-up menu that appears. Right-click on dyalog.exe in the Details tab; move the
cursor to Set priority in the pop-up menu that appears, then select Above normal from
the additional pop-up menu. A higher priority is not needed (everything else is Normal
by default) and if set higher, the Dyalog process could cause the operating system to
hang and make user control difficult.

9.3 APLMON output

The output file is a CSV matrix with values separated by commas. Fields can be empty.
The file may be read by ⎕CSV and applications such as Microsoft Excel.

The eleven columns of the APLMON output file are :

a←2 ⎕NQ'.' 'APLMON' 'C:\aplmon\myapplication.csv'
a

⍴a
0

+2 ⎕NQ '.' 'APLMON' ''
C:\aplmon\myapplication.csv

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 334

token Name of the primitive's token (symbol, if you prefer)

lfn Name of the left operand's token, if the primitive was an operator

rfn Name of the right operand's token, if the primitive was an operator

ltype Data type of the left argument of the function

rtype Data type of the right argument of the function

lrank Rank of the left argument of the function. Arrays of rank greater or
equal to 3 will be logged as « 3+ »

rrank Rank of the right argument of the function. Arrays of rank greater or
equal to 3 will be logged as « 3+ »

lbound
Range of the left argument sizes. A range is made of two numbers
separated by a « < » sign. The real size is between these two numbers.
So arguments with similar sizes are grouped together.

rbound
Range of the right argument sizes. A range is made of two numbers
separated by a « < » sign. The real size is between these two numbers.
So arguments with similar sizes are grouped together.

hitcount Number of times the primitive was called

time Time spent by the primitive (in seconds)

These fields are empty if not applicable (which will appear in the CSV file as two
consecutive commas).

Example

In the following example, APLMON is used to analyse the execution of the expression
10 foo 20 30. Note that expressions executed in the Session when APLMON is
enabled also contribute to the analysis.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 335

∇foo∇
∇ r←a foo b

[1] r←(a+b)(a-b)(a×b)(a÷b)
∇
⊢2 ⎕NQ '.' 'APLMON' 'c:\dyalog17.0\aplmon'

10 foo 20 30
30 40 ¯10 ¯20 200 300 0.5 0.3333333333

⊢ 2 ⎕NQ '.' 'APLMON' ''
rslt←⎕CSV 'c:\dyalog17.0\aplmon'
⍴rslt

15 11

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 336

APLMON measures time only for the atomic calls (that is, not complex expressions or
user-defined functions). Primitives that evaluate APL expressions (such as ⍎, ⎕FIX and
⎕NEW) are not included. For example :

rslt
token lfn rfn ltype rtype lrank rrank lboun

d rbound hitcount time
plus int8 int8 0 1

1<1 2<4 1 0.000001
minus int8 int8 0 1

1<1 2<4 1 0.000001
times int8 int8 0 1

1<1 2<4 1 0.000002
divide int8 int8 0 1

1<1 2<4 1 0.000003
left arrow nested

1 2<4 1 0.000001
right tack wchar8

1 0<0 1 0.000000
stranding int16 float64 1 1

2<4 2<4 1 0.000001
stranding int8 nested 1 1

2<4 2<4 2 0.000001
stranding wchar8 wchar8 1 1

5<9 0<0 1 0.000001
name

lookup
10 0.000002

tradfn
init

1 0.000002
aplmon measurement

time
0.000013
aplmon unmeasured

time
19.772147
aplmon

total
19.772174

foo←{1+⍵} ⋄ foo¨(N⍴1)

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 337

The each will not appear in the log, but only the primitives called by foo, meaning that
+ will appear as being called N times

The / will not be measured, but +.× will appeared as called (N-1) times.

This ensures that time measurements do not overlap, and can therefore be compared.

However, some non-atomic expressions are logged, and the non-primitive parts are
logged as non primitive.

9.4 Special syntax

APL has some special syntax that is treated in a special way by APLMON.

For example, cases of Simple Indexing (where the indexer is a set of semicolon-
separated simple arrays) are reported as follows.

The token is simple indexing, there are no lfn or rfn, the left argument is the indexed
array, and the right argument is as representative of the indices as possible. Dyalog has
chosen to make it appear as an array, the rank of which is the number of specified
subscripts, and the shape of which is the number of items in these subscripts.

APL
expression token lfn rfn ltype rtype lrank rrank lbound rbound

'abcd'[3

3⍴3]

simple

indexing
unicode8 int8 1 1 2<4 5<9

(2 2⍴4)

[1;]

simple

indexing
int8 int8 2 1 2<4 1<1

Reach and Choose Indexing (where the indexer is a nested array)

The token is reach indexing, the left argument is the indexed array, and the right
argument is the indexer array.

Axis specification

The token is axis, lfn is the function whose axis is specified, rfn is non-primitive, as it
is the axis specification constant.

+.×/(N⍴1

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 338

Assignment

The token is left arrow and it is considered as a monadic function.

Modified Assignment

The token is left arrow, lfn is the modifier function, rfn is empty, larg is the modified
value and rarg the modifier value.

Indexed Assignment

The token is indexed assignment, lfn and rfn are empty, larg is the indexed array, rarg
is the new value.

Modified Indexed Assignment

The token is indexed assignment, lfn is the modifier function, rfn is empty, larg is the
indexed array, rarg is the new value.

Selective Assignment

The token is selective assignment,lfn and rfn are empty,larg is the indexed array,
rarg is the new value.

Modified Selective Assignment

The token is selective assignment, lfn is the modifier function, rfn is empty, larg is
the indexed array, rarg is the new value.

Stranding

The token is stranding, larg and rarg are the arrays being stranded together.

Name Lookup

The token is name lookup. This represents time spent in the parser looking up names in
namespaces.

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 339

Defined Function Initialisation

The token is tradfn init. This represents time spent on entry to a traditional defined
function.

Selective Assignment Pre-scan

The token is selassi pre-scan. This represents extra time spent in the parser to
analyse the syntax of a selective assignment expression.

Control Structures

The token is control structures. This represents time spent processing control
structures in a traditional defined function.

Namespace dot syntax

The token is nsref, lfn and rfn are right and left operands respectively, larg and rarg
are as expected.

For example, in the expression: ⎕SE.⎕EX 'var'

token is nsref, lfn is ⎕EX, rfn is non-primitive, larg is empty, rarg is the character
vector.

9.5 Notes

Indexing

Simple indexing is the case when the indexer is a list of semicolon-separated simple
arrays, as opposed to choose and reach indexing, where indexer is a nested array:

Simple Indexing Example

Choose Indexing Example

A[;;2;(2 3⍴1)]

A[(2 1)(2 2)]

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 340

Reach Indexing Example

For choose and reach indexing, the indexer will be represented by itself, in the monitor
log, because it is a true array. A simple indexer, though, is not a true array but a
collection of arrays, so it is treated specially : it is represented in the monitor log by a
character array, the rank of which is the number of subscript, and the shape of which is
the number of items in each subscript.

Indexer Examples

[2 3⍴1] will be represented as a rank-1 character array of shape 6

[1;4 5;7 8 9] will be represented as a rank-3 character array of shape 1 2 3

[;] will be represented as a rank-0 character array

[;5;0 2⍴1] will be represented as a rank-2 character array of shape 1 0

They cannot be misinterpreted because character arrays are illegal as an indexer.

In the monitor, for indexing, A[I], the left argument will be A and the right argument
will be the representation of I as described above.

For indexed assignment, A[I]←B, the right argument will be B, and the left argument
will be the representation of I as described above.

Operators

In an expression in which an operator takes primitive operands, APLMON will report
the time for the operator itself. If one of the operands is non-primitive, APLMON will
report the time used by the operands.

A[⊂((2 1) 1 5)]

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 341

Examples

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 342

∇ APLMON expr
[1] 2 ⎕NQ'.' 'APLMON' 'c:\dyalog17.0\aplmon'
[2] ⍎expr
[3] ⎕CSV 2 ⎕NQ'.' 'APLMON' ''

∇

APLMON '+/1 2 3'
6
token lfn rfn ltype rtype lrank rrank lboun

d rbound hitcount time
slash plus int8

1 2<4 1 0.000003
stranding wchar8 wchar8 1 1

5<9 0<0 1 0.000001
name

lookup
1 0.000001

aplmon measurement
time
0.000005
aplmon unmeasured

time
0.003220
aplmon

total
0.003229

APLMON '{⍺+⍵}/1 2 3'
6
token lfn rfn ltype rtype lrank rrank

lbound rbound hitcount time
plus int8 int8 0 0

1<1 1<1 2 0.000001
stranding wchar8 wchar8 1 1

5<9 0<0 1 0.000001
name

lookup
1 0.000001

aplmon measurement
time
0.000007
aplmon unmeasured

time
0.003490
aplmon

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 343

total
0.003500

APLMON '+.×/1 2 3'
6
token lfn rfn ltype rtype lrank rrank lbo

und rbound hitcount time
dot plus times int8 int8 0 0

1<1 1<1 1 0.000007
dot plus times int8 int32 0 0

1<1 1<1 1 0.000001
stranding wchar8 wchar8 1 1

5<9 0<0 1 0.000001
name

lookup
1 0.000001

aplmon measurement
time

0.000005
aplmon unmeasured

time
0.003058

aplmon
total

0.003073

Programming Reference Guide

2025-10-30 (main:e0843eae32) Page 344

	Dyalog Programming
	Reference Guide
	Contents

	Introduction
	Programmers Guide Introduction
	Workspaces
	Legal Names
	Arrays
	Arrays
	Rank
	Shape
	Depth
	Type

	Numbers
	Real Numbers
	Complex Numbers
	Zilde

	Characters
	Enclosed Elements
	Specification of Variables
	Vector Notation
	Array Notation
	Examples
	Namespaces
	Scoping In Namespace Literals
	Specification
	Namespace
	Vector
	Matrices And Higher-rank Arrays
	Unsupported
	Formal Syntax

	Structuring of Arrays
	Display of Arrays
	Print Precision
	Simple Matrices
	Non-simple Arrays
	Multi-dimensional Arrays
	Array Notation
	Print Width
	The]Disp User Command
	The]Display User Command
	The]Boxing User Command

	Prototypes and Fill Items
	Fill Items

	Cells and Sub-arrays
	K-Cells
	Major Cells

	Expressions
	Functions
	Defined Functions
	Function Assignment & Display

	Operators
	Defined Operators

	Binding Strength
	Function Trains
	Introduction
	Forks and Atops
	Trains as Functions
	Identifying a Train
	Example - fork: negation of catenated with reciprocal
	Example - named fork
	Idiom Recognition
	Trains of Trains
	Binding Strengths

	Search Functions and Hash Tables
	Example: naming a derived function.
	Example: repeated application by (¨) each operator.

	Idiom Recognition
	Idiom Recognition
	Idiom List
	Notes

	Parallel Execution
	Complex Numbers
	Notation
	Arithmetic
	Circular functions
	Comparison

	128 Bit Decimal Floating-Point Support
	Introduction
	System Variable: Floating-point Representation
	Conversion between Decimal and Binary
	Decimal Comparison Tolerance
	Name Association and Floating-point Values
	Decimal Floats and Microsoft.NET

	Namespaces
	Namespaces
	Namespaces bring a number of major benefits
	APL's traditional name-clash problem is ameliorated in several ways
	The programming of GUI objects is considerably simplified.

	Namespaces
	Summary

	Namespace Reference Evaluation
	Namespaces and Localisation
	Namespace References
	Unnamed Namespaces
	Arrays of Namespace References
	Distributed Assignment
	More Examples

	Distributed Functions
	Namespaces and Operators
	Serialising Namespaces

	External Variables
	Component Files
	Auxiliary Processors

	Deprecated Functionality
	Deprecated Functionality Scheduled for Removal
	Identifying Deprecated Functionality in Called Code
	Identifying Files Pertaining to Deprecated Functionality

	Defined Functions & Operators
	Traditional Functions and Operators
	Traditional Functions and Operators
	Model Syntax
	Defined Functions
	Derived Functions produced by Monadic Operator
	Derived Functions produced by Dyadic Operator

	Statements
	Global & Local Names
	Locals Lines
	Namelists
	Locked Functions & Operators
	Function Declaration Statements
	Function Declaration Statements
	Access Statement
	Overridable/Override
	WebMethod

	Attribute Statement
	Implements Statement
	Signature Statement

	Control Structures
	Introduction
	Key to Notation
	Notes
	Code preceding :OrIf and :AndIf

	If Statement
	While Statement
	Repeat Statement
	For Statement
	Single Control Variable
	Multiple Control Variables
	:InEach Control Word

	Select Statement
	With Statement
	Hold Statement
	High-Priority Callbacks

	Trap Statement
	Operation

	GoTo Statement
	Return Statement
	Leave Statement
	Continue Statement
	Section Statement
	Disposable Statement
	Example (Normal Exit)
	Example (Normal Exit)
	Example (Branch Exit)
	Example (TrapExit)

	APL Line Editor
	Creating Defined Operation
	Listing Defined Operation
	Editing Active Defined Operation
	Editing Directives
	Line Numbers
	Position
	Delete
	Edit
	Display
	Close Definition Mode
	Quit Definition Mode

	Dfns and Dops
	Dfns & Dops
	Multi-Line Dfns
	Default Left Argument
	Guards
	Shy Result
	Lexical Name Scope
	Error-Guards
	Note

	Dops
	Recursion
	Example: Pythagorean triples
	A Larger Example

	Tail Calls
	Restrictions
	Supplied Workspaces

	Object Oriented Programming
	Introducing Classes
	Introducing Classes
	Class Names

	Defining Classes
	Editing Classes
	Note

	Inheritance
	Copying Classes
	Classes that derive from .NET Types
	Classes that derive from the Dyalog GUI

	Instances

	Constructors
	Constructors
	Constructor Overloading
	Niladic (Default) Constructors
	Empty Arrays of Instances: Why?
	Empty Arrays of Instances: How?
	Base Constructors
	Niladic Example
	Explanation

	Monadic Example
	Explanation

	Destructors

	Class Members
	Class Members
	Fields
	Fields
	Public Fields
	Initialising Fields
	Private Fields
	Shared Fields
	Trigger Fields

	Methods
	Methods
	Public or Private
	Instance or Shared
	Overridable Methods

	Shared Methods
	Instance Methods
	Superseding Base Class Methods

	Properties
	Properties
	Simple Instance Properties
	Simple Shared Properties
	Numbered Properties
	Numbered Properties
	Example

	The Default Property
	ComponentFile Class
	Keyed Properties
	Keyed Properties
	Keyed Properties Example 1
	Sparse2 Class Example

	Example 2

	Interfaces
	Interfaces
	Penguin Class Example

	Including Namespaces in Classes
	Including Namespaces in Classes
	Example

	Nested Classes
	Nested Classes
	GolfService Example

	Namespace Scripts
	Namespace Scripts
	Changing Scripted Objects Dynamically

	Namespace Script Example

	Including Script Files in Scripts
	Class Declaration Statements
	Class Declaration Statements
	:Interface Statement
	:Namespace Statement
	:Class Statement
	:Using Statement
	:Attribute Statement
	:Access Statement
	Overridable/Override
	Nested Classes
	WebMethod

	:Implements Statement

	:Field Statement
	Notes

	Property Section
	:Property Section
	Errors

	PropertyArguments Class
	PropertyGet Function
	PropertySet Function
	PropertyShape Function

	Threads and Triggers
	Threads
	Multi-Threading Language Elements
	Running Callback Functions as Threads

	Thread Switching
	High Priority Callback Functions

	Name Scope
	Stack Considerations
	Globals and the Order of Execution
	Threads & Niladic Functions
	Threads & External Functions
	Synchronising Threads
	Semaphore Example
	Latch Example
	Debugging Threads

	Triggers
	Triggers
	Trigger Example
	Global Triggers
	Further Example

	Trigger Fields

	APL Files
	Native Files
	Introduction
	Text Files
	Binary Data Files
	Filesystem Manipulation
	Progress Callbacks
	Overview
	Event
	Info
	Options

	Component Files
	Introduction
	Component Files
	Overview
	Tying and Untying Files
	Tie Numbers
	Creating and Removing Files
	Adding and Removing Components
	Reading and Writing Components
	Component Information
	Multi-User Access
	File Access Control
	User Number

	Permission Code
	User 0
	General File Operations
	Component File System Functions
	Using the Component File System

	Programming Techniques
	Controlling Multi-User Access

	File Design
	Internal Structure
	Error Conditions
	Limitations
	File Tie Quota
	File Name Quota

	The Effect of Buffering
	Integrity and Security
	Operating System Commands

	Error Trapping
	Standard Error Action
	Error Trapping Concepts
	Last Error number and Diagnostic Message
	Error Trapping Control Structure
	Trap System Variable: ⎕TRAP

	Example Traps
	Dividing by Zero
	Other Errors
	Global Traps
	Dangers
	Looking out for Specific Problems
	Cut-Back versus Execute

	Signalling Events
	Flow Control

	Handling Unexpected Application Errors in Windows

	Error Messages
	Error Messages
	Introduction
	APL Errors
	Operating System Error Messages
	Windows Operating System Error Messages
	APL Error Messages
	APL Error Messages (A-Z)
	bad ws
	cannot create name
	clear ws
	copy incomplete
	DEADLOCK
	defn error
	DOMAIN ERROR
	EOF INTERRUPT
	EXCEPTION
	FIELD CONTENTS RANK ERROR
	FIELD CONTENTS TOO MANY COLUMNS
	FIELD POSITION ERROR
	FIELD CONTENTS TYPE MISMATCH
	FIELD TYPE BEHAVIOUR UNRECOGNISED
	FIELD ATTRIBUTES RANK ERROR
	FIELD ATTRIBUTES LENGTH ERROR
	FULL SCREEN ERROR
	KEY CODE UNRECOGNISED
	KEY CODE RANK ERROR
	KEY CODE TYPE ERROR
	FORMAT FILE ACCESS ERROR
	FORMAT FILE ERROR
	FILE ACCESS ERROR
	FILE ACCESS ERROR CONVERTING
	FILE COMPONENT DAMAGED
	FILE DAMAGED
	FILE FULL
	FILE INDEX ERROR
	FILE NAME ERROR
	FILE NAME QUOTA USED UP
	FILE SYSTEM ERROR
	FILE SYSTEM NO SPACE
	FILE SYSTEM NOT AVAILABLE
	FILE SYSTEM TIES USED UP
	FILE TIE ERROR
	FILE TIED
	FILE TIED REMOTELY
	FILE TIE QUOTA USED UP
	FORMAT ERROR
	HOLD ERROR
	incorrect command
	INDEX ERROR
	INTERNAL ERROR
	INTERRUPT
	is name
	LENGTH ERROR
	LIMIT ERROR
	NONCE ERROR
	NO PIPES
	name is not a ws
	Name already exists
	Namespace does not exist
	not copied name
	not found name
	not saved this ws is name
	PROCESSOR TABLE FULL
	RANK ERROR
	RESIZE
	name saved date time
	SYNTAX ERROR
	sys error number
	TIMEOUT
	TRANSLATION ERROR
	TRAP ERROR
	too many names
	VALUE ERROR
	warning duplicate label
	warning duplicate name
	warning pendent operation
	warning label name present
	warning unmatched brackets
	warning unmatched parentheses
	was name
	WS FULL
	ws not found
	ws too large

	Operating System Error Messages
	Operating System Error Messages (A-Z)
	FILE ERROR 1 Not owner
	FILE ERROR 2 No such file
	FILE ERROR 5 I O error
	FILE ERROR 6 No such device
	FILE ERROR 13 Permission denied
	FILE ERROR 20 Not a directory
	FILE ERROR 21 Is a directory
	FILE ERROR 23 File table overflow
	FILE ERROR 24 Too many open
	FILE ERROR 26 Text file busy
	FILE ERROR 27 File too large
	FILE ERROR 28 No space left
	FILE ERROR 30 Read only file

	System Errors
	Introduction
	aplcore file
	Workspace Integrity
	System Exceptions
	Recovering Data from aplcore files
	Reporting Errors to Dyalog
	System Error Dialog Box
	Options
	Create a process dump file
	Debugging your own DLLs
	ErrorOnExternalException Parameter
	What should I do if Dyalog hangs?

	APLMon
	Introduction
	Using APLMON
	Time measurement

	APLMON output
	Special syntax
	Reach and Choose Indexing (where the indexer is a nested array)
	Axis specification
	Assignment
	Modified Assignment
	Indexed Assignment
	Modified Indexed Assignment
	Selective Assignment
	Modified Selective Assignment
	Stranding
	Name Lookup
	Defined Function Initialisation
	Selective Assignment Pre-scan
	Control Structures
	Namespace dot syntax

	Notes
	Indexing
	Simple Indexing Example
	Choose Indexing Example
	Reach Indexing Example
	Indexer Examples

	Operators

