
Compiler
User Guide

Dyalog version 20.0

The tool of thought for software solutions

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2025 by Dyalog Limited
All rights reserved.

Compiler User Guide

Dyalog version 20.0
Document Revision: 20250703_200

Unless stated otherwise, all examples in this document assume that ⎕IO ⎕ML ← 1

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle® , MySQL, and Java™ are registered trademarks of Oracle and/or its affiliates.
JavaScript™ is a trademark of Oracle Corporation.
Unicode is a registered trademarks of Unicode, Inc. in the United States and other
countries.
UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively
through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark of Microsoft Corporation in the U.S. and other
countries.
macOS® and OS X® (operating system software) are registered trademarks of Apple
Inc. in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Contents

1 About This Document 1
1.1 Audience 1
1.2 Conventions 1

2 Introduction 3
2.1 Optimisations 3

2.1.1 Constant Folding 4
2.1.2 Eliminating Local Names 4
2.1.3 Flexible Idiom Recognition 4

2.2 Changes to Behaviour of Functions when Compiled 5
2.2.1 Thread Switching 5
2.2.2 Error Trapping 5
2.2.3 Visible Names 5

2.3 Upgrading from Previous Versions of Dyalog 5
3 Basic Usage 6
4 Compiling With Global Names 7
5 Compiling Operators 9
6 Restrictions 11

6.1 Summary 13
7 Language Reference 14

7.1 Control Automatic Compilation (X = 0) 14
7.2 Query Compilation State (X = 1) 15
7.3 Compile (X = 2) 15
7.4 Discard Compiled Form (X = 3) 15
7.5 Show Bytecode (X = 4) 16
7.6 Compile with Callbacks (X is a Namespace) 16

Index 18

Compiler User Guide

revision 20250703_200 i

1 About This Document

This document is intended as an introduction to the compiler that was introduced to
improve the performance of defined functions and operators.

1.1 Audience
It is assumed that the reader has a reasonable understanding of Dyalog.

For information on the resources available to help develop your Dyalog knowledge,
see https://www.dyalog.com/introduction.htm.

1.2 Conventions
Unless explicitly stated otherwise, all examples in Dyalog documentation assume that
⎕IO and ⎕ML are both 1.

Various icons are used in this document to emphasise specific material.

General note icons, and the type of material that they are used to emphasise, include:

Hints, tips, best practice and recommendations from Dyalog Ltd.

Material of particular significance or relevance.

Legacy information pertaining to behaviour in earlier releases of Dyalog or to
functionality that still exists but has been superseded and is no longer
recommended.

Warnings about actions that can impact the behaviour of Dyalog or have
unforeseen consequences.

revision 20250703_200 1

Compiler User Guide

https://www.dyalog.com/introduction.htm

A full list of the platforms on which Dyalog version 20.0 is supported is available at
https://www.dyalog.com/dyalog/current-platforms.htm. Although the Dyalog
programming language is identical on all platforms, differences do exist in the way
some functionality is implemented and in the tools and interfaces that are available.
Differences in behaviour between operating systems are identified with the following
icons (representing macOS, Linux, Microsoft Windows and UNIX respectively):

revision 20250703_200 2

Compiler User Guide

https://www.dyalog.com/dyalog/current-platforms.htm

2 Introduction

When the APL interpreter executes a user-defined function, it spends most of its time
performing two separate actions:

l Parsing the APL syntax ("interpreter overhead")
l Executing individual primitive functions

The compiler is designed to reduce the time spent on the first of these two actions,
the interpreter overhead, by converting the APL source code into a bytecode form
that is more efficient to execute.

The biggest performance gains are achieved when the compiler is used on functions
that are applied to simple scalars or small array arguments. If the arguments are large
arrays, then the interpreter spends most of its time executing the primitive functions;
this means that the benefit of reducing the interpreter overhead is less significant.

Dyalog Ltd is continually researching performance improvement mechanisms;
advances in other areas mean that the compiler is unlikely to be developed
further as efforts are now being directed elsewhere.

2.1 Optimisations
In addition to reducing interpreter overhead, the compiler can also perform certain
optimisations on the APL code. These include:

l constant folding (see Section 2.1.1)
l eliminating local names (see Section 2.1.2)
l flexible idiom recognition (see Section 2.1.3)

revision 20250703_200 3

Compiler User Guide

2.1.1 Constant Folding

When a primitive function is applied to constant arguments, the compiler attempts to
evaluate the entire expression at compile time, thereby saving time when the
function is executed. For example:

encode←{(⎕A,⎕D)⍳⍵} ⍝ ⎕A,⎕D is evaluated at compile time

However, the compiler cannot always successfully evaluate every expression. For
example, the compiler cannot evaluate primitive functions that depend on system
variables:

numbers←{⍳7} ⍝ compiler cannot evaluate ⍳7 as it does not
⍝ know what value ⎕IO will have

Constants will only be retained if they are reasonably small. The limit is
typically around 1,000 items for a simple array.

2.1.2 Eliminating Local Names

Every assignment to a local name incurs a measurable overhead, especially within a
dfn. The compiler discards all local names as part of its normal operation, so this
overhead is eliminated in compiled code.

2.1.3 Flexible Idiom Recognition

The Dyalog interpreter recognises idioms as specific sequences of characters, for
example, 0=⍴⍴x. The compiler recognises the same idioms but in a more flexible way,
enabling it to cope with syntactic variations. This means that expressions can be
identified as idioms (and processed as such) even if:

l parts of the expression are named (as long as there are no other uses of the
same name), for example, s←⍴x ⋄ 0=⍴s

l redundant parentheses are added, for example, 0=(⍴⍴x)
l the arguments to commutative functions are swapped, for example, (⍴⍴x)=0

In these situations, the compiler's optimisations transform the expression into one
that matches an idiom. For example, (≢⍬)=⍴⍴x is recognised as being the same as
the idiom 0=⍴⍴x because the expression ≢⍬ is evaluated to 0 at compile time.

revision 20250703_200 4

Compiler User Guide

2.2 Changes to Behaviour of Functions when
Compiled

The same run-time engine is used by both compiled functions and interpreted
functions when executing primitive functions. However, a small number of
behavioural changes occur when functions are compiled.

2.2.1 Thread Switching

Thread switching will not occur between lines of code after a function has been
compiled. However, it can still occur at the start of the function before the first line is
executed.

2.2.2 Error Trapping

Compiled functions cannot be suspended. Errors occurring within compiled functions
are signalled back to the calling environment (in the same way as if ⎕SIGNAL had
been used inside the function).

Similarly, when an error in a compiled function is handled by an Execute trap, the APL
expression specified in the trap will be executed in the calling environment and will
not be able to see any of the compiled function's local names.

2.2.3 Visible Names

When a user-defined operator is compiled, its local names are eliminated. As a result,
the names are no longer visible to any sub-functions that it calls

2.3 Upgrading from Previous Versions of Dyalog
The format of the bytecode used for compiled functions in Dyalog version 15.0
onwards is not compatible with the bytecode used for compiled functions in previous
versions of Dyalog. When loading a workspace containing compiled functions that
was saved by a previous version of Dyalog, all bytecode for compiled functions will be
discarded and you must use 400⌶ to recompile them (see Chapter 7).

revision 20250703_200 5

Compiler User Guide

3 Basic Usage

Theoretically (see Chapter 6), every defined function in a workspace can have a
compiled bytecode form. This bytecode is saved and loaded as part of the workspace,
and will be copied along with the function on ⎕CY or)COPY or the ⎕OR of a compiled
function.

To query whether a function foo has been successfully compiled, enter:

1(400⌶)'foo'

This returns a Boolean value of 1 if the compilation has been performed.

To compile a function foo, enter:

2(400⌶)'foo'

This returns a matrix of diagnostic information. If the matrix has zero rows then the
function was compiled successfully. Otherwise, each row of the matrix describes a
problem that prevented the compiler from compiling the function.

When a function is executed, Dyalog automatically executes any compiled code for
the function. If none is available, then the function is executed using the traditional
APL parser.

In summary:

⎕FX'r←foo y' ... ⍝ define foo

foo 99 ⍝ execute the uncompiled code

2(400⌶)'foo' ⍝ compile it

foo 99 ⍝ execute the compiled code

For full details on the syntax of 400⌶, see Chapter 7.

revision 20250703_200 6

Compiler User Guide

4 Compiling With Global Names

When compiling a defined function or operator, the compiler needs to know the
nameclass of every name that is used. It is useful to distinguish between local names
(those that are defined in the function or operator being compiled) and non-local or
global names (everything else).

foo←{
n←⍵×2 ⍝ define local name n
bar n ⍝ use global name bar and local name n

}

If this fuction is compiled with 2(400⌶) 'foo', the compiler will determine the
nameclass of global names by looking at the names that are currently defined in the
workspace:

l If bar is undefined, then the compiler will not compile foo.
l If bar is defined, then the compiler will use its nameclass to determine

whether it is an array, function or operator, and parse the body of foo
accordingly.

In the latter case, the nameclass of bar is recorded in the compiled form of foo as a
checked assumption; when foo is executed, if bar no longer exists or has a different
nameclass, an error will be reported.

In more complex applications there could be a requirement to restrict the set of
global functions and variables that compiled code can refer to, or it might be known
in advance exactly which global variables and functions will exist when the application
is run. In these situations, the application can be compiled with N(400⌶), where N is
a namespace containing callback functions that the compiler can use to determine the
nameclass of any global names it encounters.

revision 20250703_200 7

Compiler User Guide

For example, to mimic the behaviour of 2(400⌶), the following callback functions
can be defined in # (the root namespace):

quadNC←⎕NC ⋄ quadAT←⎕AT ⍝ define callback fns in #
#(400⌶)'foo' ⍝ pass in # as the namespace

More complicated definitions of the callback functions grant finer control over exactly
which global names a compiled function is allowed to refer to (see Chapter 7).

revision 20250703_200 8

Compiler User Guide

5 Compiling Operators

When compiling a defined function or operator, the compiler needs to know the
nameclass of every name that is used. This presents a problem for defined operators,
because the nameclass of the operands is not known:

op←{
⍺⍺ / ⍵ ⍝ ⍺⍺ could be an array or a function

}

When an operator is compiled using 2(400⌶)Y (see Section 7.3), the compiler
assumes that the operands are functions. If the compiled operator is subsequently
called with an array operand, then the compiled version is not used and the
interpreter uses the parser instead.

To work around this, the compiler can be run in a mode where it will attempt to
compile a defined operator the first time it is applied to some arguments; at this point
the compiler can see exactly what the operands are. If the compilation is successful,
then the compiler will record the nameclass of the operands along with the compiled
bytecode. When the operator is applied again, the compiled bytecode will only be
executed if the operands still have the same nameclass as they did the first time the
operator was applied (if the nameclass of an operand has changed, then the compiled
bytecode will not be used and the operator will be interpreted).

revision 20250703_200 9

Compiler User Guide

Continuing the example:

400⌶2 ⍝ enable auto compilation of operators

+op 1 2 3 4 ⍝ op is compiled assuming fn operand
10

400⌶0 ⍝ disable auto compilation
×op 1 2 3 4 ⍝ execute compiled bytecode again

24

1 2 3 4 op 1 2 3 4 ⍝ operand is array; revert to
interpreter
1 2 2 3 3 3 4 4 4 4

revision 20250703_200 10

Compiler User Guide

6 Restrictions

There are several restrictions when using the compiler, some of which will be
removed in later versions.

RESTRICTION 1
A function that uses semi-global names cannot be compiled.

To compile a function, the compiler needs to be able to determine the nameclass of
every name used in that function so that it knows whether it refers to an array, a
function or an operator.

For local names, the compiler can identify the nameclass because it can see the
definition of the name:

sum←{
f←+ ⍝ compiler sees this definition...
f/⍵ ⍝ ... so knows that f is a function here

}

For global names, callbacks from 400⌶ enable the compiler to identify the nameclass
(see Section 7.6).

However, for semi-global names (that is, names that are local to the function that
calls the function to be compiled) the compiler cannot determine the nameclass:

∇ r←sum y ⍝ if f is defined in sum's caller, then...
r←f/y ⍝ ...this could be +/y, or 2/y, etc.

∇

revision 20250703_200 11

Compiler User Guide

RESTRICTION 2
A function that calls system functions which refer to values by name or create new
named values cannot be compiled.

Compiled functions can use local names but, as part of the compilation process, the
compiler discards these names, so they do not appear in the compiled bytecode. For
this reason, system functions that refer to values by name, or create new named
values, are prohibited:

foo←{
a←⍺+⍵ ⍝ local name 'a' is discarded by compiler
r←⎕NL 2 ⍝ ⎕NL is prohibited as it needs to see 'a'
'a'⎕NS'' ⍝ ⎕NS is prohibited as it redefines 'a'

}

RESTRICTION 3
A function that uses the dot syntax for namespace references cannot be compiled.

The compiler cannot currently determine the nameclass of a name when the dot
syntax is used to refer to names inside arbitrary namespaces:

sum←{
⍺.f / ⍵ ⍝ ⍺.f could be an array or a function

}

prod←{
#.util.prod ⍵ ⍝ nameclass of util and prod unknown

}

RESTRICTION 4
A function that includes certain control structures cannot be compiled.

The following control structures prevent a function from being compiled:
l :Trap

l :Hold

l :With

l :Disposable

revision 20250703_200 12

Compiler User Guide

RESTRICTION 5
A function cannot be compiled if it includes certain language features.

The following language features prevent a function from being compiled:
l dfn error guards
l localised ⎕TRAP
l function trains

RESTRICTION 6
A function that includes the Execute function (⍎) cannot be compiled.

The compiler prohibits the use of Execute (⍎) because it could have arbitrary side
effects unknown to the compiler.

6.1 Summary
A function cannot be compiled if it:

l uses semi-global names
l uses the dot syntax between user-defined names
l calls a system function that refers to values by name or creates new named

values
l includes the Execute function (⍎)
l includes the control structures Trap, :Hold, :With or :Disposable
l includes dfn error guards or localises ⎕TRAP
l includes function trains

revision 20250703_200 13

Compiler User Guide

7 Language Reference

The compiler is controlled with 400⌶. The syntax for this I-beam is:

R←{X}(400⌶)Y

In this syntax, Xmust be one of the following:

l 0 – Set automatic compilation options (default)
l 1 – Determine whether the function/operator Y has been successfully compiled
l 2 – Compile the function/operator Y
l 3 – Uncompile the function/operator Y
l 4 – Show bytecode for the compiled function/operator Y
l A namespace – Compile the function/operator Y using callbacks to provide

information about global names

The nature of Y and R depend on the value of X.

7.1 Control Automatic Compilation (X = 0)
R←0(400⌶)Y ⍝ control automatic compilation of fns

When X is 0, Ymust be one of the following values:

l 0 – Disable automatic compilation (initial setting)
l 1 – Compile functions when they are fixed (with ⎕FX or from the function

editor)
l 2 – Compile operators the first time they are executed
l 3 – Compile functions when they are fixed (with ⎕FX or from the function

editor) and compile operators the first time they are executed

The result R is the previous value of Y.

revision 20250703_200 14

Compiler User Guide

The automatic compilation setting is maintained within the workspace, and is saved
and loaded with the workspace.

7.2 Query Compilation State (X = 1)
R←1(400⌶)Y ⍝ query compilation of function/operator Y

Ymust be a character vector, matrix or vector of vectors specifying the name of a
function or operator or a list of such names.

The result R is a Boolean scalar or vector, with a value of 1 if the function/operator
has been successfully compiled and a value of 0 if it has not.

7.3 Compile (X = 2)
R←2(400⌶)Y ⍝ compile function/operator(s) Y

Ymust be a character vector, matrix or vector of vectors specifying the name of a
function or operator or a list of such names that should be compiled.

The result R is a matrix of diagnostic information or, if Y was either a matrix or a
vector of vectors, a vector of such matrices. Each row of the matrix describes a
problem that caused the compilation to fail, with four columns corresponding to:

l the APL error number
l the line number in the function/operator
l the column number (currently always 0)
l the error message

If the matrix has zero rows then the compilation was successful.

If this mechanism is used to compile operators, then the compiled bytecode will
assume that the operator's operands are functions rather than arrays. At run time,
the operands will be checked – if they are functions then the compiled bytecode will
be used, otherwise the operator will be interpreted.

7.4 Discard Compiled Form (X = 3)
R←3(400⌶)Y ⍝ uncompile function/operator(s) Y

If Y is empty, then discard any compiled bytecode for all functions and operators in
the workspace.

revision 20250703_200 15

Compiler User Guide

If Y is a character vector, matrix or vector of vectors specifying the name of a function
or operator or a list of such names, then discard any compiled bytecode for them.

R is always 0.

7.5 Show Bytecode (X = 4)
R←4(400⌶)Y ⍝ show bytecode for function/operator(s) Y

Ymust be a character vector, matrix or vector of vectors specifying the name of a
function or operator or a list of such names.

The result R is a multi-line string (that is, a character vector with embedded newlines)
or, if Y was either a matrix or a vector of vectors, a vector of such strings. Each string
is a human-readable representation of the bytecode of a compiled function or
operator.

This functionality is provided for information and diagnostic purposes only. The
human-readable form of the bytecode is subject to change at any time.

7.6 Compile with Callbacks (X is a Namespace)
R←N(400⌶)Y ⍝ compile function/operator(s) Y

Ymust be a character vector, matrix or vector of vectors specifying the name of a
function or operator or a list of such names. The specified functions or operators are
compiled in the same way as when X = 2 (see Section 7.4) except that the compiler
uses the namespace N to obtain information about global names.

The namespace N can contain any or all of following callback functions:
l N.quadNC – analogous to the system function ⎕NC. When applied monadically

to an enclosed character vector it returns the detailed nameclass of that name.
For example, given the name of a global dfn it returns the value 3.2.

l N.quadAT – analogous to the system function ⎕AT. When applied monadically
to an enclosed character vector it returns a 1 by 4 matrix whose first item is a
vector of 3 integers describing (respectively) the result, function valence and
operator valence of the name.

l N.getValue – used to obtain the name of a global constant. When applied
monadically to a character vector that is a global constant it returns the
enclose of the constant value, otherwise it returns ⍬.

revision 20250703_200 16

Compiler User Guide

Each of these callback functions returns information about names that should be
guaranteed to exist when the compiled functions are executed. The compiler assumes
that the information returned by the callbacks is correct, and generates bytecode
accordingly. In the case of quadNC and quadAT, if the information returned by the
callbacks turns out not to be correct when the compiled function is executed, then a
runtime error is generated.

The result R is a matrix of diagnostic information or, if Y was either a matrix or a
vector of vectors, a vector of such matrices. Each row of the matrix describes a
problem that caused the compilation to fail, with four columns corresponding to:

l the APL error number
l the line number in the function/operator
l the column number (currently always 0)
l the error message

If the matrix has zero rows then the compilation was successful.

revision 20250703_200 17

Compiler User Guide

Index

#

400 I-beam 14
Automatic compilation 14
Compile 15
Compile with callbacks 16
Discard compiled form 15
Query compilation state 15
Show bytecode 16
Syntax 14
X=0 14
X=1 15
X=2 15
X=3 15
X=4 16
X=namespace 16

C

Compiling operators 9
Compiling with global names 7

O

Optimisations 3
Constant folding 4
Eliminating local names 4
Flexible idiom recognition 4

R

Restrictions 11
Control structures 12
Execute function 13
Language features 13

Names in system functions 12
Namespace references 12
Semi-global names 11
Summary 13

revision 20250703_200 18

Compiler User Guide

	1 About This Document
	1.1 Audience
	1.2 Conventions

	2 Introduction
	2.1 Optimisations
	2.1.1 Constant Folding
	2.1.2 Eliminating Local Names
	2.1.3 Flexible Idiom Recognition

	2.2 Changes to Behaviour of Functions when Compiled
	2.2.1 Thread Switching
	2.2.2 Error Trapping
	2.2.3 Visible Names

	2.3 Upgrading from Previous Versions of Dyalog

	3 Basic Usage
	4 Compiling With Global Names
	5 Compiling Operators
	6 Restrictions
	6.1 Summary

	7 Language Reference
	7.1 Control Automatic Compilation (X = 0)
	7.2 Query Compilation State (X = 1)
	7.3 Compile (X = 2)
	7.4 Discard Compiled Form (X = 3)
	7.5 Show Bytecode (X = 4)
	7.6 Compile with Callbacks (X is a Namespace)

	Index

