The tool of thought for software solutions
[I I |

APL as a Shared
Library

Version 20.0

Dyalog Limited

Minchens Court, Minchens Lane
Bramley, Hampshire
RG26 5BH
United Kingdom

tel: +44 1256 830030
fax: +44 1256 830031
email: support@dyalog.com
https://www.dyalog.com

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2025

' r TR
: ~
s b

'

N

mailto:support@dyalog.com

APL as a Shared Library

Dyalog is a trademark of Dyalog Limited
Copyright © 1982 — 2025 by Dyalog Limited.
All rights reserved.

Version 20.0
Revision: 20250703_200

Dyalog Limited makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied
warranties of merchantability or fitness for any particular purpose. Dyalog Limited reserves the right to revise this publication

without notification.

Raspberry Pi is a trademark of the Raspberry Pi Foundation.

Oracle® , MySQL, and Java™ are registered trademarks of Oracle and/or its affiliates. JavaScript ™ is a trademark of Oracle
Corporation.

Unicode is a registered trademarks of Unicode, Inc. in the United States and other countries.

UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Windows® is a registered trademark of Microsoft Corporation in the U.S. and other countries.

macOS® and OS X® (operating system software) are registered trademarks of Apple Inc. in the U.S. and other countries

All other trademarks and copyrights are acknowledged.

APL as a Shared Library

1 ABOUT THIS DO CUMENT citiit ittt et et e e e ie e e eaaas 4
00t Y YU o [=T o o ST 4

2 INTRODUCTION Lottt ettt et e e et e e e e e e e e e aaaees 5
3 IN ST ALLATION ettt et e ettt e e 6
3.1 e = To [T] (=L PP P PP PP PPPPPPPPPPPPPPPIRE 6

3.2 Fa1 =111 To] o SO 6

4 ARCHITECTURE «ititttt ittt e e e e e e e aaes 7
N 1 V=N =TT V- | oY SRR 7
411 The INTEIPreter ..ccccii ittt ettt ettt ettt seeees 7

4.1.1.1 MUIthreading ..cuoevveeviienieeiiesieesiee e 8

A 1 (1T Yo U ol OO PP PP 8

5 IMPLEMENTATION ottt et e e e e et e e 9
5.1 Parameter and RESUIL IMACIOS........eeiiierieeiiieniee ettt 9
5.1.1 SCAlar PArameEtersS..cccuiicuieeiieeiieeeiieesieesieesreesreesreesreesreesbeesbeesseesas 9

5.1.2 (Rank 1) Numeric Array Parameters......ccccccocvueeeeciieeeecieeeeeiiee e, 10

5.1.3 (Rank 1) Character Array Parameters........cccccceeeeecvieeeeiieeeseiieeeseveenn, 10

5.1.4 "Z" FOrmMat Data..c.ccccccuiiieee e ettt e e tnrae e e e e 10

5.1.5 RESUIES oot ettt e e 11

5.1.6 "Input and Output Parameters”ccoceevieeniiienieeniee e 11

5.10.7 "SEIUCTUIES" ettt sttt st e st 11

5.1.8 MUltiple "reSUILS"oviieeee e e 12

5.2 [0 9] oTTo [0 [T T=q0 AN od I 6 Yo [T URU 12

5.3 The BUild SYSTEM cccueiiie ettt e e et e e eaae e e snree s 12

B SAM P LES e 14
6.1 INSTAllAtION oo e 14

6.2 BUIAING weeeeieeii e st 14
6.2.1 Building on Microsoft WindoWs..........cccccviiiiiiiieeeciiee e, 14

6.2.1.1 Building with Visual Studio..........ccecceeriiiniiiniiiiniiciieeeiees 14

6.2.1.2 Building with make using CygwWin..........cceceerueeniieenieenineenns 14

6.2.2 Building on Linux and macOS........ccceoueeriiirieeniee e 14

Lo T 0 1= o107 1 V-SSR 15

6.4 Sample: HEIOWOTIdceeeeieeeee e 15

6.5 SAMPIEI SIBN et et aree s 15

6.6 SAMPIEI QA .eeieiiiiieiiiieee st st sbeesree e 15

6.7 SAMPIE: CAllAPL ...ttt ettt e e et r e e e e e e e abrareaaaaeean 16

APPENDIX A PARAMETER AND RESULT MACROS ...t 17

APL as a Shared Library

1 About This Document

This document describes the API that can be used to call APL code in a shared library
(that is, .dll, .so and .dylib files). It describes the SDK to create such a shared library
and includes samples of how to call it.

1.1 Audience

It is assumed that the reader has a working knowledge of Dyalog (for information on
the resources available to help develop your Dyalog knowledge, see
https://www.dyalog.com/getting-started.htm) as well as knowledge of the C
programming language. Awareness of Dyalog's "Direct Workspace Access" SDK is also
beneficial.

https://www.dyalog.com/getting-started.htm

APL as a Shared Library

2 Introduction

On the Microsoft Windows operating system, it is possible for third-party code and
applications to call APL code in shared libraries using the COM and .NET interfaces.
However, these mechanisms are proprietary to Windows and are not available on all
the operating systems supported by Dyalog. In addition, these interfaces impose
restrictions and data formats that might not be optimal for use with APL code and
the APL interpreter.

The SDK described in this document is implemented end-to-end with code and
libraries (owned and implemented by Dyalog Ltd) that are efficient and portable
across operating systems. They are also extensible, both by Dyalog Ltd and by end
users.

The SDK comprises a number of C header files and libraries that can be used to
produce a self-contained native shared library; this can then be called by any
language or program that can access native shared libraries.

The SDK requires the author of the library to write some simple C source code to
provide a strongly typed exportable interface to APL functions in a workspace or
script.

[]
| Information

On Microsoft Windows, shared libraries typically have a .dll extension.
On Linux and UNIX, shared libraries typically have a .so extension.

On macOSs, shared libraries typically have a .dylib extension.

Although this SDK is intended to produce a shared library containing APL code (as
described in this document), it is also possible to produce a static library or a
self-contained application containing APL code.

APL as a Shared Library

3 Installation

3.1 Pre-requisites

To build and execute the samples, the host computer must have an installed C
development environment.

On Microsoft Windows, Visual Studio 2015 or later is required to build and execute
the sample VS solutions.

On Linux and macOS§, the default C development and make tools should be sufficient
to build and execute the samples.

3.2 Installation

The required native library files dwa_static and libdyalog are installed in
[DYALOG]/dwa/lib as part of the standard installation of Dyalog.

The build process and necessary modifications to the build files for targeting specific
platforms and versions of Dyalog are described in Chapter 6.

APL as a Shared Library

4 Architecture

4.1 The Binary

4.1.1

The SDK can be used to produce a library (shared or static) that contains both APL
code and the Dyalog interpreter required to run the APL code.

The APL code, some interface C code and the Dyalog interpreter (as a static library)
are all combined into a single, shared, binary.

On Microsoft Windows, the APL code is embedded in the binary as a Windows
resource. On Linux and macOS, the APL code is embedded as static data.

The Interpreter

By default, the SDK refers to the absolute file paths of the native libraries libdyalog and
dwa_static in a standard Dyalog installation. These files are in [DYALOG]/dwa/lib.
Section 6.2 describes how to alter the SDK to use a non-standard location.

For each shared library, the first time the call apl function is called an embedded
Dyalog interpreter is started and any APL code in the shared library is loaded into that
interpreter. The interpreter instance persists for as long as the shared library is
loaded into the host process. This makes it possible to persist data between calls in
the APL workspace. By default, the interpreter is started as a runtime, meaning that a
development environment is never presented. The interpreter is started with default
values of MAXWS and other configuration parameters.

To tailor the properties of the APL interpreter, call the 1oad apl function before
calling the call apl function:

extern int load apl(unsigned int flags, int argc, wchar t
**argv) ;

The first argument to the load_apl function can be one of the following:
® 0 (zero)—on Microsoft Windows, any untrapped errors in the APL code will
cause the Dyalog Development Environment to be displayed. On
Linux/macOS, the interpreter will suspend until the RIDE is attached.
o ENGINE_F_RUNTIME — the interpreter behaves like a runtime system and will
never display a development environment.

The argv argument to the 1oad apl function is an array of pointers to options (for
example, "MAXWS=512Mb" or "-Dcw"). These parameters should be passed as wide
character strings.

The argc argument to the 1oad apl function specifies how many entries there are
inthe argv array. The load _apl function starts the APL interpreter with the
specified configuration.

APL as a Shared Library

If the appropriate settings are provided and the appropriate shared library files are
installed with the shared library, then the Dyalog Development Environment (on
Microsoft Windows) or the RIDE can be used to debug the APL code in the shared
library.

4.1.1.1 Multithreading

Multiple threads can call APL code concurrently. This is achieved by mapping threads
in the host application to multiple APL threads within the interpreter. If only a single
thread is used to call APL code then it will run on APL thread one. APL thread zero is
not used to run any APL code. For an example of multiple threads calling APL, see
Section 6.6.

4.2 The Source

Each entry point in a shared library that will call APL code needs to be exported from
the library. This is achieved by writing a C function that is declared as being callable
from outside the library. (Note that in the SDK header files, this platform-specific
mechanism is largely abstracted out). Each such function will typically contain a line
of code for each of its parameters and for its result. This line tells the underlying
library how to marshal the data from the native code to/from APL arrays.

For example, to call the APL function i nAPL with a scalar integer argument:

extern int call apl(const wchar t *name,APL PARAM *first,...);
EXPORT int LIBCALL inAPL(int month)

{
APL INT32 PARAM (Month,month) ;
return call apl(L"inAPL", &Month, PARAM END) ;

}

In this example, the APL._INT32 PARAM statement (which is a macro from one of
the SDK include files) declares that the month parameter to the function is to be
passed as an INT32 (int32_t) scalar to the APL code. The parameter is passed in a
structure defined as a local variable called Month.

The call apl function calls the APL function 1nAPL, passing the value of month
(contained within the Month structure) as inAPL's argument. The call apl
function takes a variable number of parameters; the special macro PARAM END
marks the end of the parameter list.

The result of the call apl function is an error code:

e Areturn of O (zero) indicates that the call to the APL function (1nAPL in this
example) completed successfully.

e A non-zero return indicates that an error occurred during the invocation of
the APL function (including marshalling the parameters, executing the APL
code and marshalling the result):

o Positive error codes have the same numeric value and meaning as
APL error codes.
o Negative error codes are reserved.

Parameters are passed in the right argument of the APL function (it is not possible to
pass parameters in the left argument of an APL function).

In this example the APL function does not return a result. However, the return of
call apl canstill indicate an error.

5

APL as a Shared Library

Implementation

5.1 Parameter and Result Macros

511

The SDK supports the following C data types:

signed integers: 8, 16 and 32-bit

floating point numbers: 32 and 64-bit
unsigned characters: 8, 16 and 32-bit
characters: char and wchar_t

arrays of each of the above

Null terminated arrays of the above characters

arrays of the above characters containing JSON text

These types can be the input to, output of, or the result of an APL function.

C arrays will always be passed to the APL function as vectors.

Each of these parameters can be declared using a predefined macro. The names of
these macros include the type that they are marshalling (see call_apl.h in any of the
samples described in Chapter 6 and Appendix A for the full list):

* INT8 * marshals int8 t

* INT16_ * marshals intl6 t

* INT32_ * marshals int32 t

* FLOAT * marshals float

* DOUBLE_* marshals double

* CHAR_* marshals char (as character(s))

* CHARS8_* marshals uint8 t (as character(s))

* CHAR16_ * marshalsuint16_t (as character(s))
* CHAR32_ * marshals uint32_ t (as character(s))

* WCHAR_ * marshals wchar t (as character(s))

These macros define local variables that encapsulate the value to be passed and
other information that is necessary for the API to convert the data to an APL array. If
it is not possible to marshal the specified value, then the call apl function returns
a non-zero error code.

A subset of the provided macros is described in the following sub-sections.

Scalar Parameters

9

5.1.2

5.13

514

APL as a Shared Library

APL INT32 PARAM (name, V)

(also APL INT8 PARAM, APL INT16 PARAM, APL DOUBLE PARAM, and so
on)

This macro defines a local variable called name which will marshal the value v (which
isan int32 t)to the APL function.

APL_CHAR8 PARAM (name, V)
(also APL _CHAR16_ PARAM, APL CHAR32 PARAM, and so on)

This macro defines a local variable called name which will marshal the value v (which
is an 8 bit unsigned char) to the APL function.

APL WCHAR PARAM (name, V)

This macro defines a local variable called name which will marshal the value v (which
isawhar t)tothe APL function.

(Rank 1) Numeric Array Parameters
APL INT32 ARRAY PARAM (name,v,l)
(also APL, INT8 ARRAY PARAM,APL INT16 ARRAY PARAM, and so on)

This macro defines a local variable called name which will marshal the array v (which
isan int32 t *, of length 1) to the APL function. The APL function will receive a
vector of length 1).

(Rank 1) Character Array Parameters
APL WCHAR ARRAY PARAM (name,v, 1, f)

This macro defines a local variable called name which will marshal the array v (which
isawchar t *)tothe APL function.

The argument f specifies additional information about the array v:

e If £ includes the flag AP_NULLTERM, then v is null terminated, otherwise the
length is provided by the parameter 1.

o If £ includes AP_JSON, then s is JSON text, in which case the API will
deserialize the JSON (using JJ SON) before passing the array to the APL

function:
APL WCHAR ARRAY PARAM(var,paraml,AP NULLTERM|AP JSON);

The above macro passes paraml, (a null terminated JSON string) as a
deserialised object (or array) to the APL function.

"Z" Format Data
APL_ZFORMAT PARAM (name, V)

This macro defines a local variable called name which will marshal the binary data v
(which of type unsigned char*)to the interpreter. The format of the data is the
"Z" format of APL arrays as used by [INA and TCPIP socket support. See the relevant

10

5.15

5.1.6

5.1.7

APL as a Shared Library

documentation for more details of this format. Note that the length of the data is
encoded within it so there is no length parameter to this macro.

Results

APL_INT32 ARRAY RESULT (name,v, 1, f) (and others)

This macro defines a local variable called name which will marshal the (vector)
RESULT of the APL functionto an array of int32 t *.

The argument £ specifies additional information about how the array is allocated:

e If fincludes AP_SIZED then v is a pre-allocated array, the size of which is
specified by 1.

e If fincludes AP ALLOC then the APl will allocate space for the array before
returning. It is the caller's responsibility to call dwa free () on thearray in
v when the data is no longer required.

There are RESULT versions of most of the macros previously described.

"Input and Output Parameters"

Sometimes it is convenient to use a single parameter as both INPUT to a function and
as a placeholder for an additional "result" from a function. The * INOUT macros
provide this functionality. There are * INOUT versions of the macros for all of the
data types.

EXPORT void getsign object (wchar t *json,size t len)

{
APL WCHAR ARRAY INOUT (JSON, json, len,AP NULLTERM|AP JSON|AP SIZED);

CHECK _ERR(call apl (L"GetSignObject", &JSON, PARAM END)) ;
}

Here, the macro APL WCHAR ARRAY TINOUT is used to pass an AP NULLTERM
JSON string to the interpreter (the array will be deserialised before being passed to
GetSignObject). The same macro specifies that the result of the function will be
returned as an AP NULLTERM JSON string. The use of the AP STZED macro will
cause the function to fail if the RESULT array is larger than the specified size.

"Structures"

The macros STRUCT PARAM, STRUCT INOUT and STRUCT RESULT can be used
to create a nested array argument to an APL function. These macros combine
multiple APL._ PARAM structures into a single array.

For example:

typedef struct
{
int a;
char *c8;
wchar_t *wc;
}test str;

void test struct(size t len)

{

test str str;

1

APL as a Shared Library 12

str.a=99;
str.c8="hello";
str.wc=L"world";

// extract str.a into A

APL_INT32 INOUT (A,str.a);

// extract str.c8 into C8
APLicHAR87ARRAY71NOUT(C8,Str.CB,len,APisIZED\APiNULLTERM);
// extract str.wc in WC
APL_WCHAR_ARRAY INOUT (WC,str.wc,len,AP SIZED|AP NULLTERM) ;

// label as a separate parameter
char label[256]; strcpy(label,"John");
APL_CHAR8 ARRAY INOUT (Label,label,256,AP SIZED|AP NULLTERM) ;

// combine a,c8 and wc into a nested array
APL_STRUCT INOUT (Str, &A, &C8, &WC, PARAM END) ;

// nested gets a 2 element vector
CHECK _ERR (call apl (L"nested", &Label, &Str, PARAM END)) ;
}

The APL function nested will receive the following (shown with JBox on) as its
argument:

john
99| hello|world

5.1.8 Multiple "results"

If the argument list to call apl includes multiple RESULT or OUT arguments, then
the result of the APL function is distributed between these arguments (similar to
stranded assignment). Other parameters are ignored for this purpose. If there is a
length mismatch, then call apl returns 5 (the APL value for LENGTH ERROR).
Individual elements of the accumulated result are checked for type consistency.

5.2 Embedding APL Code

APL code can be embedded in the library as either APL script or as a workspace. The
script/workspace file is specified in the .rc file as an RCDATA resource called either
BOUND_RES_SCRIPT (for a script file) or BOUND_RES_DWS (for a workspace file).

BOUND RES SCRIPT RCDATA "sign.dyalog"
or
BOUND RES DWS RCDATA "sign.dws"

On Microsoft Windows, the .rc file is compiled using the Microsoft Resource
Compiler. On Linux/macOS, a bash script is used to generate static data from the .rc
file.

5.3 The Build System

The SDK is provided with a number of samples built with gmake and makefiles. These
makefiles work on all operating systems. On Microsoft Windows there are also some
Visual Studio 2015 solutions that can be modified to build your own libraries.

APL as a Shared Library

The default makefile (simply called makefile) can be used to build an APL/SO project
from a single call file. As makefile is the default filename used by make, it is possible
to build the APL/SO called sign with:

make THING=sign

This processes sign.c, sign.dyalog and sign.rc to produce sign.dll/sign.so/sign.dylib
(on Microsoft Windows/Linux/macQS respectively).

If you have written callkTHING>.c or call<THING>cpp, then

make -f makefile.callapl THING=sign

can be used to make callsign (callsign.exe on Microsoft Windows).

13

APL as a Shared Library 14

6 Samples

Dyalog provides several samples that use this technology. Each of these samples
comprises source code, a Visual Studio 2015 solution file (for use on Microsoft
Windows only) and a makefile (for use on other platforms, or on Windows with
Cygwin installed). The samples each build two components; a shared library with
embedded APL code, and an executable program that calls the shared library.

6.1 Installation

The source files for these samples — except for the interpreter native library files
found in [DYALOG]/dwa/lib in a standard Dyalog installation — can be downloaded
from https://github.com/dyalog/Nativelib and are provided under the MIT license.
Use of the native library files is subject to the Dyalog license agreement.

6.2 Building

The default build process relies on the interpreter library files dwa_static and libdyalog
being in the default location [DYALOG]/dwa/lib and could fail otherwise.

6.2.1 Building on Microsoft Windows

6.2.1.1 Building with Visual Studio

Open the chosen solution in VS 2015 and select Build > Rebuild Solution from the
menu. The binaries for the solution are built in the typical Visual Studio output
directories.

To change which directory the SDK looks in for dwa_static and libdyalog, select Project
> Properties from the menu and in the Linker > General properties edit the Additional
Library Directories to point to the desired location.

6.2.1.2 Building with make using Cygwin

Ensure makefile includes makefile.win.<bits> where <bits> is either 32 or 64, then
follow the instructions for building on Linux and macOS.

6.2.2 Building on Linux and macOS

1. Edit line 2 in makefile to target a specific platform.

include makefile.<platform>.<bits>

where <platform>isone of aix, linux, mac, pi or win and
<bits>is 64 (or 32 on Windows or AlX).

https://github.com/dyalog/NativeLib
https://github.com/Dyalog/NativeLib/blob/master/LICENSE
https://www.dyalog.com/prices-and-licences.htm

APL as a Shared Library 15

2. Modify the string assigned to DWA LIBDIR in the specified
included makefile so that the Dyalog version number matches your
installed Dyalog version. For example:

DWA LIBDIR="/opt/mdyalog/19.0/64/unicode/dwa/l
ip"

For use with Dyalog version 19.0 64-bit Unicode edition.

3. Modify line 3 to choose between debug and optimised builds.
MK _OPT:=$(if $ (MK OPT),$ (MK OPT),dbg)

MK _OPT:=$(if $ (MK _OPT),$ (MK _OPT),opt)
4, Build the sample:

> cd ~/Nativelib/<chosen sample>
> make

The make process builds the binaries in a subdirectory of <chosen sample>/obj.

To change which directory the SDK looks in for dwa_static and libdyalog, replace the
path in makefile.<platform>.<bits> on the line beginning with DWA LIBDIR:=.

6.3 Debugging

On all operating systems, C binaries can be debugged with the standard tools.

On Microsoft Windows, the APL code can be debugged by selecting the Show Session
menu item from the Dyalog item in the system tray.

On Linux/macOS, the APL code can be debugged using the RIDE as long as
RIDE_SERVE has been set appropriately. See the RIDE User Guide for more
information.

6.4 Sample: HelloWorld

The HelloWorld sample calls into APL to display a simple "hello" message.

6.5 Sample: Sign

The Sign sample calls into APL using various different argument types to return the
astrological star sign for a specific date.

6.6 Sample: Qa

The Qa sample uses and tests most (but not all) of the SDK and is provided for
information only. It is used internally at Dyalog Ltd for QA purposes. Some elements
of it might prove useful/interesting, for example, the Qa samples shows that the APL
code can be called concurrently from multiple threads in the host application.

APL as a Shared Library 16

6.7 Sample: CallAPL
See The JSSON_APL Shared Object document.

APL as a Shared Library

Appendix A Parameter and Result
Macros

In the following definitions:

name: The name of the local structure containing the value

first: The first parameter of a var arg list in a nested definition

v The value to be passed

1: The length of an array (if required)

f: AP_* flags one or more of:
AP_END // used in PARAM END to indicate the end of a parameter list
AP_OUT // a parameter which will contain a value after the call to call_apl
AP 1IN // a parameter which will contain a value before the call to call apl

AP_NULLTERM // a null terminated character buffer

AP JSON // a JSON encoded character buffer
AP SIZED // the array size will be specified in 1
AP ALLOC // the array will be allocated by call apl (use dwa free() to deallocate)

Many of these macros are based on other macro definitions so it is possible to extend this list with new
definitions:

APL_STRUCT_PARAM (name, first,...) // an IN nested array / structure
APL_STRUCT RESULT (name, first,...) // a RESULT nested array / structure
APL_STRUCT_ INOUT (name, first,...) // an IN and OUT nested array / structure

APL DOUBLE_PARAM (name, V) // an 8 byte double IN parameter
APL DOUBLE RESULT (name) // an 8 byte double RESULT

APL_INT8 PARAM(name,v) // a 1 byte SIGNED integer scalar for input
APL_INT8 INOUT (name,v) // a 1 byte SIGNED integer scalar for input and output
APL_INT8 RESULT (name) // a 1 byte SIGNED integer scalar for output

APL_INT16 PARAM(name,v) // a 2 byte SIGNED integer scalar for input
APL_INT16 INOUT (name,v) // a 2 byte SIGNED integer scalar for input and output
APL_INT16 RESULT (name) // a 2 byte SIGNED integer scalar for output

APL_INT32 PARAM(name,v) // a 4 byte SIGNED integer scalar for input
APL_INT32 INOUT (name,v) // a 4 byte SIGNED integer scalar for input and output
APL_INT32 RESULT (name) // a 4 byte SIGNED integer scalar for output

APL CHAR PARAM (name, V) // a 1 byte (default) character for input

APL_CHAR_INOUT (name,v) // a 1 byte (default) character for input and output

APL CHAR RESULT (name) // a 1 byte (default) character for output

APL CHAR16 PARAM (name,v) // a 2 byte (unsigned) character for input

APL CHAR16_ INOUT (name, V) // a 2 byte (unsigned) character for input and output
APL CHAR16 RESULT (name) // a 2 byte (unsigned) character for input
APL_WCHAR PARAM (name,v) // a unicode character (width determined by 0S) for input
APL_WCHAR RESULT (name) // a unicode character (width determined by 0S) for output

APL INT8 ARRAY PARAM (name,v,1l) // a 1 byte SIGNED integer ARRAY for input
APL_INT8 ARRAY INOUT (name,v,1,f) // a 1 byte SIGNED integer ARRAY for input and output
APL_ INT8 ARRAY RESULT (name,v,1,f) // a 1 byte SIGNED integer ARRAY for output

APL INT16 ARRAY PARAM(name,v,1l) // a 2 byte SIGNED integer ARRAY for input

APL INT16 ARRAY INOUT (name,v,1,f) // a 2 byte SIGNED integer ARRAY for input and output
APL INT16 ARRAY RESULT (name,v,1,f) // a 2 byte SIGNED integer ARRAY for output

APL_ INT32 ARRAY PARAM(name,v,1l) // a 4 byte SIGNED integer ARRAY for input

APL INT32 ARRAY INOUT (name,v,1,f) // a 4 byte SIGNED integer ARRAY for input and output
APL INT32 ARRAY RESULT (name,v,1,f) // a 4 byte SIGNED integer ARRAY for output

APL INT64 ARRAY INOUT (name,v,1,f) // a 8 byte SIGNED integer ARRAY for input and output

17

:)V/\ LO C APL as a Shared Library

APL_INT64_ARRAY RESULT (name,v,1,f) // a 8 byte SIGNED integer ARRAY for output

APL_DOUBLE_ARRAY_PARAM (name,v,1l) // an 8 byte double ARRAY for input
APL_DOUBLE_ARRAY_ INOUT (name,v,1,f) // an 8 byte double ARRAY for input and output
APL_DOUBLE_ARRAY RESULT (name,v,1,f) // an 8 byte double ARRAY for output

APL CHAR ARRAY PARAM (name,v,l,f) // a 1 byte (default) character ARRAY for input
APL_CHAR_ARRAY_ INOUT (name,v,1,f) // a 1 byte (default) character ARRAY for input and
output

APL CHAR ARRAY RESULT (name,v,1,f) // a 1 byte (default) character ARRAY for output
APL_CHAR16 ARRAY PARAM (name,v,1,f)

APL_CHAR16 ARRAY RESULT (name,v,l, f)

APL_CHAR16 ARRAY INOUT (name,v,l,f)

APL_CHAR32 ARRAY PARAM (name,v,1,f)

APL_CHAR32 ARRAY RESULT (name,v,1,f)

APL_CHAR32 ARRAY INOUT (name,v,l,f)

APL_WCHAR ARRAY PARAM (name,v, 1, f)

APL_WCHAR_ARRAY RESULT (name,v, 1, f)

APL_WCHAR_ARRAY INOUT (name,v,l,f)

18

