
Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2024 by Dyalog Limited

All rights reserved.

Version: 19.0

Revision: 4036 dated 20240625

Please note that unless otherwise stated, all the examples in this document assume that ⎕IO is 1, and ⎕ML is 1.

No part of this publication may be reproduced in any form by any means without the prior written
permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents hereof and
specifically disclaims any implied warranties of merchantability or fitness for any particular
purpose. Dyalog Limited reserves the right to revise this publication without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

UNIX is a registered trademark of The Open Group.

Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

macOS®, Mac OS® and OS X® (operating system software) are trademarks of Apple Inc.,
registered in the U.S. and other countries.

Array Editor is copyright of davidliebtag.com.

All other trademarks and copyrights are acknowledged.





Contents

Introduction 1
Installation 2

Installing under AIX 3
Installing on an RPM-based Linux Distribution 3
Installing on a DEB-based Linux Distribution 4
Installing in a non-default location 5
Deinstalling Dyalog APL 5
Upgrading APL 6

Dyalog Serial Number 7
Configuring a Console/terminal Window to support Dyalog APL for UNIX 8
Dyalog APL, RDP and VNC 9
Using PuTTY under Windows 10
Configuration Parameters 11

Configuration Files 11
Environment Variables 14

Configuring the Editor 22
Miscellaneous 24

Running from scripts 24
The file command and magic 25

magic and AIX 25
Example: 25
Example, using the older default magic file: 26
Example, with more recent magic file: 26
⎕SE, User Commands and SALT 28

The Directory ~/.dyalog 29
⎕NA under UNIX 30

Session logfile 33
Status window output 33
BuildID 34

Index 35





1

Introduction
This manual is designed to assist users of Dyalog APL on platforms other than
Microsoft Windows. For further information, see the Dyalog UNIX and Linux forum.

The Dyalog for UNIX UI Guide and the Dyalog for Raspberry Pi User Guide are also
non-Windows specific. Users should also review the Dyalog Version 19.0 Release
Notes and the file dyalog_readme.htm. All of these files and the other Dyalog-
supplied documentation can be found in the directory $DYALOG/help, and are
available online at https://docs.dyalog.com/19.0. https://help.dyalog.com/19.0
contains an online help system for the Dyalog APL documentation. These websites
are updated from time to time, and have the latest revisions of the documentation.

Version 19.0 supports RIDE, the Dyalog Remote IDE, versions 3 or 4. RIDE 3 is
available for Windows and macOS (it is the default interface on macOS), and
RIDE D4 is available on Windows, Linux, macOS and Raspberry Pi; over time
Dyalog intends to make RIDE the default interface under windows managers on all
platforms. For more information about RIDE, see the RIDE User Guide for more
information.

Throughout the document the directory in which Dyalog APL has been installed is
referred to as $DYALOG; this is because it is the name of an environment variable,
whose value can most easily found by running the following expression in Dyalog:

+2 ⎕nq '.' 'GetEnvironment' 'DYALOG'

Two versions of the interpreter are shipped with each Dyalog APL release: the
development version and the server version.

The server version has the same functionality as the development version, other than
that any attempt to read from the session, or use ⎕SM or use ⎕ARBIN will result in an
EOF INTERRUPT. It is mainly intended for using Dyalog APL as a server process,
where all I/O is processed using TCPSockets, or possibly via an auxiliary processor
written by the user. Dyalog recommends using Conga in preference to native
TCPSockets.

There are different licences associated with the development and server versions,
which affects how each might be distributed. For more information, please contact
sales@dyalog.com.

All examples are written assuming that the Korn shell is being used.

https://forums.dyalog.com/viewforum.php?f=20
https://docs.dyalog.com/16.0
https://help.dyalog.com/16.0


2 Installation and Configuration Guide

Installation
This manual covers the installation of the non-GUI version of Dyalog APL on AIX,
and on Linux distributions which use either .rpm or .deb files for installing software.
If you are using a Linux distribution which uses some other method, or you wish to
have a non-default installation, then there are some suggestions about how such an
installation might be completed.

Dyalog APL version 19.0 is supplied in either 32 or 64 bit versions, and in either
Classic or Unicode editions. The installation procedure for Dyalog APL is the same
in each case. Note that the 64-bit versions of Dyalog APL will only run on a 64-bit
operating systems; the 32-bit versions of Dyalog APL will run on both 32 and 64 bit
operating systems.

It is assumed that in all cases the installation image has been downloaded into /tmp
on the local machine.

The default installation subdirectory will be formed as:

/opt/mdyalog/19.0/<APLWidth>/<APLEdition>

or, in the case of AIX:

/opt/mdyalog/19.0/<APLWidth>/<APLEdition>/<platform>

So for example, Dyalog APL Version 19.0 32 bit Unicode for POWER6 hardware on
AIX will by default be installed into

/opt/mdyalog/19.0/32/unicode/p6

whereas on a Linux distribution the equivalent version would be installed in

/opt/mdyalog/19.0/32/Unicode

This naming convention began with Version 12.0, and is planned to continue into the
future. This ensures that all versions and releases of Dyalog APL can be installed in
parallel.

As part of installing Dyalog on Linux (including Pi) the script /usr/bin/dyalog is
created; this is a copy of the $DYALOG/mapl script and can be used to start Dyalog
APL. Note that this script will start the most recently installed version of Dyalog
APL. This script is used in the target of the Dyalog APL icon on Linux desktops. If
preferable, Dyalog can be started by calling the script mapl in the appropriate Dyalog
installation directory.



3

When supplying updates or fixes, Dyalog issues a full installation image; this means
that any file under the installation subdirectory may be overwritten. It is therefore
strongly recommended that users do not alter issued files, as those changes could be
lost if an update is installed.

Dyalog APL version 19.0 for Linux is supplied as a zip file which contains both a
.deb- and a .rpm-based installation image.

Installing under AIX
For each version of Dyalog APL on AIX three separate hardware-specific builds are
created for each of the four combinations of 32 or 64 bit versions, Classic or Unicode
editions. For version 19.0 specific builds for p5, p6 and p7 are created.

$ su -
# cd /opt
# cpio -icdvum </tmp/dyalog-20090901-64-unicode-p6.cpi
# /opt/mdyalog/19.0/64/unicode/p6/make_scripts
# exit

Dyalog APL is now installed. To run as any user, type

$ /opt/mdyalog/19.0/64/unicode/p6/mapl

Notes:

l Version 19.0 is compiled on AIX6.1.

Installing on an RPM-based Linux
Distribution
$ unzip linux_64_15.0.26964_unicode.zip
$ sudo rpm --install linux_64_15.0.26964_unicode.x86_64.rpm

Dyalog APL is now installed. To run as any user, type

$ dyalog

or

$ /opt/mdyalog/15.0/64/unicode/mapl



4 Installation and Configuration Guide

Notes:
l It may be necessary to use the --force flag or equivalent if an earlier version of
Dyalog APL is to be installed on the same server as a later version. This is
safe since the versions have no files in common.

l It has been noticed that in some circumstances the 32-bit installs fail on 64-bit
operating systems due to a missing ncurses package. However, it appears that
that package is indeed installed. What is required however is the 32-bit
version: once installed, Dyalog APL will then install.

Installing on a DEB-based Linux
Distribution
$ unzip linux_64_15.0.26964_unicode.zip
$ sudo dpkg --install linux_64_15.0.26964_unicode.x86_64.deb

Dyalog APL is now installed. To run as any user, type

$ dyalog

or

$ /opt/mdyalog/15.0/64/unicode/mapl

Notes:
l It may be necessary to use the --force flag or equivalent if an earlier version of
Dyalog APL is to be installed on the same server as a later version. This is
safe since the versions have no files in common.

l If dpkg generates dependency errors, run apt-get install -f (as root)
l It has been noticed that in some circumstances the 32-bit installs fail on 64-bit
operating systems due to a missing ncurses package. However, it appears that
that package is indeed installed. What is required however is the 32-bit
version: once installed, Dyalog APL will then install.



5

Installing in a non-default location
It is possible to install Dyalog APL for UNIX in non-default locations, without the
need for root privileges.

For all UNIXes,

cd <directory under which I wish to install Dyalog APL>

For AIX:

cpio -icvdum <installation_image.cpi

For .deb based Linux distributions:

/usr/bin/dpkg --extract installation_image.deb .

For .rpm based Linux distributions

rpm2cpio installation_image.rpm | cpio -icdvum

For all UNIXes:

find opt/mdyalog -name make_scripts -exec {} \;

This last step generates the mapl script; should you chose to move the installation
directory, it will be necessary to re-run the make_scripts script so that the
environment variable $DYALOG is set correctly.

Deinstalling Dyalog APL
In the following examples, it is assumed that only Dyalog APL 14.0 64-bit Unicode
is installed on the server; the commands to delete directories will need to be more
specific if multiple versions of Dyalog APL are installed.

Should it be necessary to deinstall Dyalog APL, then the process is:

Deinstalling under AIX
$ su -
# cd /opt
# rm -rf mdyalog/14.0

Deinstalling on an RPM-based Linux Distribution
$ su -
# rpm -e dyalog.32.classic-14.0-20090901
# cd /opt
# rm -rf mdyalog/14.0
# exit



6 Installation and Configuration Guide

Deinstalling on a DEB-based Linux Distribution
$ sudo su -
# apt-get purge dyalog-unicode-140
# cd /opt
# rm -rf mdyalog/14.0
# exit

Upgrading APL
Applying a later release of the same version
In general Dyalog will issue a new installation image if a problem is discovered
which requires a new version of the interpreter. Dyalog recommends that the entire
installation image is installed over the existing installation, but that is not essential.
Particularly in a live environment it may be preferable to install only a revised
interpreter. This can be done by extracting the individual files from the installation
image, and copying them into the correct place in the installation directory tree. To
apply a fix image, run the appropriate installation command with the -force option if
appropriate. Be aware: the process of installing a later installation image over an
already installed version of Dyalog APL WILL result in all files being overwritten. If
you have changed any, it will be necessary to take copies of them, and then to
reapply local alterations to the new files. Please contact support@dyalog.com for
further advice.

For rpm-based installation, run

$ sudo --Uvh <new installation image>

For deb-based installation, run

$ sudo dpkg -i <new installation image>

See https://packages.dyalog.com/ for details of updating on the Pi.

Upgrading from an earlier version
Newer versions of Dyalog APL will be placed in new subdirectories, rather than in
the same location as the currently installed versions. This means that both old and
new versions can be run in parallel, but extra disk space in /opt will be required to
cater for the multiple releases. Note however that once a workspace has been saved in
a later version of Dyalog APL, it is most likely that it will not be possible to )LOAD
or )COPY the workspace by an earlier version. Once happy with the new version,
then de-install the earlier version.



7

Dyalog Serial Number
If you have registered your copy of Dyalog or have a commercial licence then you
will have been sent a Dyalog serial number; this serial number is individual to you
and corresponds to the type of licence that you are entitled to use.

Dyalog Ltd recommends setting the serial number either by editing a file containing
the serial number directly or by running a function in a Dyalog Session to update the
file containing the serial number. The next time Dyalog is started after setting the
serial number, the DYALOG_SERIAL environment variable is set to the contents of
this file. However, if the DYALOG_SERIAL environment variable already exists
and has a non-empty value, then its value is not updated.

In a multi-user environment it might be desirable to set the DYALOG_SERIAL
environment variable in a system configuration file so that the serial number is held
in a single location.

To set your Dyalog serial number by editing the serial number file directly, edit the
$HOME/.dyalog/serial1 text file so that it contains just the string
serialnumber, where serialnumber is your Dyalog serial number.

To set your Dyalog serial number from within a Session:

⎕SE.Dyalog.Serial serialnumber

where serialnumber is your Dyalog serial number. This updates the value stored
in the serial number file $HOME/.dyalog/serial. To complete the process you
must exit and restart the Session.

When you start a Session, your serial number is displayed in the banner . To see your
serial number at any time, enter:

+2⎕NQ'.' 'GetEnvironment' 'DYALOG_SERIAL'

or

⎕SE.Dyalog.Serial ''

NOTE:

Using or entering a serial number other than the one issued to you is not permitted.
Transferring the serial number to anyone else is not permitted.
For the full licence terms and conditions, see:
https://www.dyalog.com/uploads/documents/Terms_and_Conditions.pdf

1$HOME/.dyalog/serial is the default location for your serial number file but you can set the
DYALOG_SERIALFILE environment variable to point to any other valid location.



8 Installation and Configuration Guide

Configuring a Console/terminal Window to
support Dyalog APL for UNIX

In order to support Dyalog APL for UNIX in a console/terminal window under a
Linux window manager, it is necessary to install and configure the Dyalog APL
keyboard support. Additionally it is possible to install the APL385 Unicode font, to
be used instead of the built in fonts which include APL characters.

Keyboard support
Dyalog submitted APL Language keyboard support to Xorg at the end of 2011; most
Linux distributions released after mid-2012 have the Dyalog APL keyboard support
included with the distribution. Such distributions include openSUSE 12.2, Ubuntu
12.10 and Fedora 17.

Support for the Key character was submitted to Xorg in mid-2014; if your
distribution does not support this character, contact Dyalog support for assistance.

Details of how to configure the keyboard under KDE4 appear below; keyboard
support for other window managers (such as Gnome and Unity) is in a state of flux.
The latest information about the process of installing and configuring Dyalog APL
keyboard support for such environments can be found at:

https://www.dyalog.com/forum/viewtopic.php?f=20&t=210

or by contacting Dyalog support. The same resources can be used to obtain
information and guidance on installing keyboard support for earlier Linux
distributions.

Configuring the APL keyboard under KDE4
(These instructions were drawn up using openSUSE 12.2; other KDE4 environments
may vary slightly)

l Select Configure Desktop
l Select Input Devices
l Select Keyboard
l Select Layouts
l Select the "Configure layouts" tickbox
l Select Add
l In the Add Layout dialog box, select the Layout "APL Keyboard Symbols",
and then the "dyalog" option

l Close the Add Layout dialog box
l The list of layouts should now include APL Keyboard Symbols, with one of
the dyalog variants.



9

l Click on "Main shortcuts" in the "Shortcuts for Switching Layout" group;
where possible, Dyalog recommends selecting "Any Win key (while pressed)"
so that either Windows key causes APL characters to be generated.

APL font support
APL characters are available under Linux window managers. However some of the
characters may appear inelegant; most noticeable are very small "⋄" and overly large
"⌶". To resolve this, it is possible to use the Freemono fonts (these are installed by
default on some distributions (such as openSUSE)), or to download and install the
APL385 Unicode font. This font is freely downloadable from:

https://www.dyalog.com/apl-font-keyboard.htm

Details of how to install the font will appear in the documentation for your window
manager.

Dyalog APL, RDP and VNC
Due to the different ways that Microsoft Windows and Linux/UNIX handle
keyboards, it is not possible to use RDP or VNC or X-Windows from a Windows
client to control a Dyalog APL session running under a UNIX window manager. In
particular, all of the X-Window clients that Dyalog is aware of do not fully support
xkb key mappings.

It is possible to use VNC from a Linux client to connect to a remote Linux desktop
and control an APL session running there; the keyboard support will however need to
be added to the local machine.



10 Installation and Configuration Guide

Using PuTTY under Windows
Dyalog APL for UNIX comes with support for the PuTTY terminal emulator. PuTTY
is freely downloadable, supports ssh and telnet protocols, and supports Unicode
keystrokes and fonts. To be able to generate and see APL characters it is also
necessary to install the Dyalog UnicodeIME and the APL385 Unicode font.

Downloading and installing the Dyalog UnicodeIME
The UnicodeIME can be freely downloaded from https://www.dyalog.com/apl-font-
keyboard.htm. It is also included with all Unicode Windows versions of Dyalog from
13.0 onwards. There are two versions of the UnicodeIME; one for 32 bit Windows,
and one for 64 bit; please ensure that the correct version is downloaded.

Details of how to install the UnicodeIME are on the download webpage.

Downloading and installing the APL385 font
The APL385 can be freely downloaded from https://www.dyalog.com/apl-font-
keyboard.htm. Details of how to install the font appear on the download webpage.

Downloading and Installing PuTTY
PuTTY is available from https://www.chiark.greenend.org.uk/~sgtatham/putty. Full
details of how to download and install PuTTY, along with the licence terms and
conditions are available from the above URL.

Configuring PuTTY to support Dyalog APL for UNIX
Firstly ensure that you are able to login to the UNIX server which has Dyalog
APL installed on it. If you are using an AIX server, it is recommended that in the
Keyboard category you set the backspace key to Control-H.

For APL support the follow settings are required:

Window/Appearance Font settings/Font: set to APL385 Unicode

Window/Translation/Character set translation on received data: set Received data
assumed to be in which character set to UTF-8

You should ensure that Terminal/Keyboard/The Backspace key is set appropriately
for the remote operating system. AIX defaults to Ctrl-h whereas most other operating
systems default to Ctrl-?

Having set these values, it is recommended that you save the settings; if you will
need to connect to multiple servers, it is recommended that you save the above
settings as the default options (Highlight the "Default Settings" in Saved Sessions and
click on Save).



11

Configuration Parameters
Dyalog can be customised using configuration parameters. These can be set in
various ways; if a configuration parameter is set in multiple places the following
descending order of precedence applies:

1. command line settings
2. application configuration file settings
3. environment variable settings
4. user configuration file settings
5. built-in defaults

This provides a great deal of flexibility, enabling a user to override one setting with
another. For example, a "usual" workspace size (MAXWS) can be defined in the user
configuration file, but be temporarily superseded by entering a different value when
starting a Dyalog Session from the command line.

For more information on configuration files, see Configuration Files on page 11. For
more information on environment variables, see Environment Variables on page 14.

Configuration Files
A configuration file is a text file containing configuration parameters and values. It
can cascade, that is, it can extend (inherit) configuration values from other
configuration files, and supplement and/or override them. Configuration files use
JSON5 (a superset of standard JSON) syntax and are portable across all systems
supported by Dyalog.

The key benefits of defining configuration parameters using configuration files
include:

l Configuration files are text-based. They are, therefore, easily managed along
with the source code for an application, using industry standard tools for
source code management and continuous integration.

l Application configuration files can be placed in application folders and define
the configuration settings for a specific application.

l User configuration files provide settings that are the same for all applications.
Typically, these files are used to configure the development environment.

l Interpreter configuration can be performed in the same way across all
supported platforms.

l Dyalog can be launched from a text file that defines a function, namespace or
class. If a configuration file exists with the same name as this file (but with a
.dcfg extension), then Dyalog will detect this on launching and use the
configuration parameter settings it defines.

l Configuration files are easy to read, and can be written directly or by using
⎕JSON (which supports JSON5).



12 Installation and Configuration Guide

l Both application and user configuration files can cascade, overriding settings
defined in a more generic configuration file; this simplifies the configuration
of components which share some configuration.

Dyalog Ltd recommends that configuration files are used for all run-time
applications, and that the use of environment variables for this purpose is eliminated.

There are two different types of configuration file:

l A user configuration file – this defines configuration values for the current
(possibly only) user of the system. The first time a new version of Dyalog is
launched it creates and initialises a user configuration file called
$HOME/.dyalog/dyalog.<version-specific>.dcfg, where the version-specific
information comprises the version number, edition and width. For example, a
64-bit Unicode edition of Dyalog version 18.0 will be identified as 180U64.
The name of this file should not be changed.

l An application configuration file – this contains configuration values
associated with a specific application. This is created by the user and should
be saved at the same level as the application. It can either be given the same
name as the workspace/script that is loaded when the application starts (but
with the extension .dcfg) or the name should be stored in the CONFIGFILE
parameter.

An additional configuration file called $HOME/.dyalog/dyalog.dcfg is also created
the first time any version of Dyalog is run. This can be edited to include
configuration parameter values that should always be applied irrespective of Dyalog
version so that they do not have to be redefined in multiple version-specific user
configuration files.

Prior to Dyalog version 18.0, configuration parameters could be specified as
environment variables and set in the $HOME/.dyalog/dyalog.config script. This is no
longer referenced, and any settings that should be retained must be re-entered in the
appropriate $HOME/.dyalog/dyalog.<version-specific>.dcfg configuration file.

Configuration File Structure
Configuration files define configuration parameters using JSON5. A JSON object
contains data in the form of key/value pairs and other JSON objects. The keys are
strings and the values are the JSON types. A key and its value are seperated by a
colon (:) character. Entries (key/value pairs) are separated by comma (,) characters.

The top-level object defines an optional key called Extend and an optional object
called Settings:



13

l Extend is a string value containing the name of a configuration file to
import. The extended (imported) file can extend another configuration file.
Configuration values from the imported file(s) can be overridden by redefining
them. The file name is implicitly relative to the name of the file that imports it
(any file name extension must be explicitly specified).

l Settings is an object containing the names of configuration parameters and
their values. The values can be a string, a number or an array of strings.

The names and values correspond to configuration parameters, and names are not
case sensitive. Any named values can be defined; an APL application could query the
values using +2⎕NQ'.' 'GetEnvironment' <name> or using the ]Config
user command.

If the same name is defined multiple times within a configuration file then the first
definition will be used and a warning will be generated.

Arrays
An array can be used to define file paths, for example, WSPATH: ["/dir1",
"/dir2"]. The only parameters which can be defined as arrays areWSPATH,
WSEXT and CFEXT.

References to other Configuration Parameters
Configuration parameters that are string values can include references to other
configuration parameters (irrespective of where they are defined) using square
bracket delimiters. For example, MySetting: "[DYALOG]/MyFile" will
replace [DYALOG] with the value of the DYALOG configuration parameter.

If the referenced configuration parameter is not defined then no substitution will take
place; the reference, including the square bracket delimiters, will remain in place.

To include literal square brackets in a string, prefix them with a \ character.

Nested Structures
Configuration files support nested parameter structures by defining an object that
corresponds to the structure. For example:

Captions: {
Session: "My Dyalog Session"
Status: "My Status window"

}

+2 ⎕NQ '.' 'GetEnvironment' 'Captions\Session'
My Dyalog Session



14 Installation and Configuration Guide

Example Configuration File Content
{

Extend: "my_default_configuration.dcfg",
Settings: {
// maximum workspace
MAXWS: "2GB",
WSPATH: ["/dir1", "/dir2", ""],
UserOption: 123,
ROOTDIR: "/my/root/directory",
// references to other configuration parameters
FNAME: "[rootdir]/filename",
}

}

Environment Variables
Environment variables are used to configure various aspects of Dyalog APL. The
complete list appears in the Dyalog for Microsoft Windows Installation and
Configuration Guide: Configuration Parameters; this section discusses those
variables which are of particular importance to the Non-GUI versions of Dyalog
APL, and lists those that have meaning to the UNIX versions. Additionally there
some non-GUI-specific variables which are described below and some which either
do not apply, or may not work as the user might at first expect.

Under UNIX, all environment variables should appear in UPPER CASE. For
example, to set the default value of ⎕ml to 3, then

$ export DEFAULT_ML=3

If a configuration parameter described in the Dyalog for Microsoft Windows
Installation and Configuration Guide has a backslash "\" in its name (strictly
speaking, appears in a subkey of the Dyalog key in the Windows Registry), this
should be replaced with an underscore in the equivalent environment variable. This
applies for example to SALT\CommandFolder.

Many of these environment variables are set in the mapl script; their values are either
appropriate for the installation location of Dyalog APL, or are set to define
reasonable default values.



15

The environment variables are broken down into several tables:

l Table E1: The most commonly defined and used for non-GUI versions of
Dyalog APL under UNIX. Most of these variables are essential for a usable
APL session

l Table E2: Variables used to control default values in the workspace
l Table E3: Variables used to configure the Session
l Table E4: Miscellaneous Variables used by non-GUI Dyalog APL
l Table E5: Editor-related environment variables
l Table E6: Tracer-related environment variables
l Table E7: RIDE-related environment variables
l Table E8: SALT and User Command-related environment variables

Table E1: Commonly used Variables
Variable Notes

TERM
APLK
APLK0
APLT
APLTn

Define the input and output translate tables
used by Dyalog APL. The values of APLK0
and APLTn override the values of APLK
and APLT if set, and they in turn override
the value of (Unicode) default, or (Classic)
TERM if set.

APLK is for input translation, APLT for
output translation.

These are used in conjunction with ..

APLKEYS
APLTTRANS

Define the search path for the input and
output translate tables respectively. If unset,
the interpreter will default to $DYALOG; if
$DYALOG too is not set, will default to
/usr/dyalog.

APLNID

This variable is ignored by the UNIX
versions of Dyalog APL: ⎕ai and ⎕an pick
up their values from the user's uid and
/etc/passwd.



16 Installation and Configuration Guide

Variable Notes

APLSTATUSFD

If set, this defines the stream number on
which all messages for the Status Window
appear. It is then possible to redirect this
output when APL is started.

If unset, the output will appear in the same
terminal window as the APL session,
although it is not part of the session; such
output can be removed by hitting SR (Screen
Redraw - often defined to be Ctrl-L).

DYALOG_NETCORE
This parameter is a Boolean value with a
default value of 1. If set to 0, it disables the
.NET interface.

DYALOG_SERIAL

This parameter contains your Dyalog serial
number. This must be set to the serial
number issued to you. If not set, then the
software is unregistered. For the full licence
terms and conditions, see
https://www.dyalog.com/uploads/documents/
Terms_and_Conditions.pdf.

DYALOG_SERIALFILE
This parameter specifies the full path to the
text file containing your Dyalog serial
number.

ENABLE_CEF

This parameter is a Boolean value with a
default value of 1. If set to 0, it disables the
Chromium Embedded Framework (CEF)1.
and at attempt to create an HTMLRenderer
object will fail with an error meessage. See
Note (below).

ERRORONEXTERNALEXCEP
TION

By default, any error when calling ⎕NA will
result in APL terminating; if
ERRORONEXTERNALEXCEPTION is set to
1, then APL will instead generate an event
91: EXTERNAL DLL EXCEPTION. Be
aware however that the workspace may
become corrupted. This is best used when
developing ⎕NA code rather than in
production.

1https://en.wikipedia.org/wiki/Chromium_Embedded_Framework

https://www.dyalog.com/uploads/documents/Terms_and_Conditions.pdf
https://www.dyalog.com/uploads/documents/Terms_and_Conditions.pdf


17

Variable Notes

LIBPATH

A suitable entry for the Conga libraries
needs to be added to the LIBPATH variable
if Conga is to be used. For more information
see the Conga Guide.

MAXWS

Defines the size of the workspace that will
be presented to the user when Dyalog APL is
started. A simple integer value will be
treated as being in KB. K, M and G can be
appended to the value to indicate KiB, MiB
and GiB (binary) respectively. If unset, the
default value is 256M.

WSPATH

Defines the search path for both workspaces
and Auxiliary processors.

If unset, there is no default value.
Workspaces and APs that are not on the
WSPATH can be accessed using absolute or
relative pathnames.

Note

Currently the value of the Enable_CEF parameter defined in the Windows Registry
or in a Configuration file is ignored. Only the value set in the command line or as an
environment variable is honoured. If not defined in this way, the default value is
used.



18 Installation and Configuration Guide

Under macOS and Linux, if the configuration parameter ENABLE_CEF is 1,
Auxiliary Processors cannot be used (they hang on error). The default value is 1
unless you are not running under a desktop (for example, you are running Dyalog in a
PuTTY session when the default is 0).

Table E2: Default workspace values
Variable Notes

DEFAULT_DIV Default value for ⎕div in a clear workspace.

DEFAULT_IO Default value for ⎕io in a clear workspace.

DEFAULT_ML Default value for ⎕ml in a clear workspace.

DEFAULT_PP Default value for ⎕pp in a clear workspace.

AUTO_PW
DEFAULT_PW

⎕pw is set by the interpreter when it starts, or when the
session window is resized. Under UNIX if the terminal
window is resized, the session will be resized when the
interpreter next checks for input.

DEFAULT_RTL Default value for ⎕rtl in a clear workspace.

DEFAULT_WX

Default value for ⎕wx in a clear workspace.

Note that although the UNIX versions of Dyalog APL do
not have GUI objects, ⎕se is present, and the value of
⎕wx will affect the programmer's ability to run
expressions such as ⎕se.PropList.

For numeric values, the interpreter takes the value of the environment variable, and
prepends a "0" to that string. It then parses the string, accepting characters until the
first non-digit character is reached.

This string, now of digits only, is converted into an integer. If the resulting value is
valid, then that is the value that will be used in the workspace. If the resulting value
is invalid, then the default value will be used instead.



19

Table E3: Variables used to configure the Session.
Variable Notes

DYALOGLINK Specifies the directory for Link

DYALOGSTARTUPSE
Specifies one or more Session initialisation
directories that contain APL code to be installed in
⎕SE

DYALOGSTART_X Specifies whether the Run function is executed
during Session startup

DYALOG_GUTTER_
ENABLE Enable or disable Session Gutter

HISTORY_SIZE The size of the prior line buffer

INPUT_SIZE The size of the buffer used to store lines marked for
execution

LOG_FILE
LOG_FILE_INUSE
LOG_SIZE

These three variables determine the name of the
session log file (default ~/.dyalog/session_log_
<DyalogMajor><DyalogMinor><U|C><bits>_*.dlf,
for example, ~/.dyalog/session_log_190U64_*.dlf),
whether a log file is created or not, and the size of
the log file in KB. Be aware: the session log file is
not interchangeable between the different editions
and widths of APL; in a mixed environment it is
strongly recommended to use a different log file for
each version.

PFKEY_SIZE
The size of the buffer used to hold ⎕pfkey
definitions: if this is too small, an attempt to add a
new definition will result in a LIMIT ERROR.

SESSION_FILE
Defines the location of your session file; session file
support was added in Dyalog 13.1. The default value
is $DYALOG/default.dse

To set values, use K to indicate KB. Note that the buffers will contain other
information, so the buffer size will not be exact. Note also that multibyte Unicode
characters will take up more space than single byte characters, and that 32 and 64 bit
versions of Dyalog APL can require different amounts of space for holding the same
information.

Example:

$ HISTORY_SIZE=4K my_apl_startup_script



20 Installation and Configuration Guide

Table E4: Miscellaneous Variables used by non-GUI Dyalog APL
Variable Notes

APL_
TEXTINAPLCORE

If set with the value 1 the "Interesting Information"
section is included in an aplcore file. Otherwise this
section is omitted. By default the interpreter has this set
to 0; it is the default APL script which sets it to 1.

AUTOFORMAT
TABSTOPS

If AUTOFORMAT is 1, then control structures will be
shown with indents, set at TABSTOPS spaces; the
changes are reflected in the editor window when the RD
(ReDraw) command key is hit.

AUTOINDENT If AUTOINDENT is set to 1, then if a line is added it is
indented the same as the previous line.

AUTO_PW

Introduced in 13.0. With AUTO_PW=0, ⎕pw remains
fixed at the size of the terminal window when APL was
started. When set to 1, or unset, ⎕pw alters each time the
terminal window is resized.

DYALOG

This variable is defined in the supplied mapl startup
script, and is used to form the default values for
APLKEYS, APLTRANS, WSPATH etc.

If it is necessary to identify the location of the Dyalog
executable, then a more reliable method is to determine
the full path name from the appropriate file in the
/proc/<process_id_of_APL_session>/ subdirectory or
from the output of ps.

These are the remaining variables listed in the Dyalog for Microsoft Windows
Installation and Configuration Guide which are effective in the non-GUI UNIX
versions of Dyalog APL

Table E5: Editor-related environment variables
Variable Notes

EDITOR_
COLUMNS_*

See Configuring the Editor on page 22. Can be one of
EDITOR_COLUMNS_CHARACTER_ARRAY
EDITOR_COLUMNS_CLASS
EDITOR_COLUMNS_FUNCTION
EDITOR_COLUMNS_NAMESPACE
EDITOR_COLUMNS_NUMERIC_ARRAY

DYALOG_
DISCARD_FN_
SOURCE

Specifies whether source code is retained in the
workspace



21

Table E6:Tracer-related environment variables
Variable Notes

TRACE_ON_
ERROR

With this is set to 1 (the default) the tracer is opened if an
untrapped error occurs.

Table E7:RIDE-related environment variables
Variable Notes

RIDE_INIT Enables and configures RIDE; see the RIDE User Guide
for more information.

Table E8: SALT and user commands related environment variables
Variable Notes

SESSION_FILE Specifies the location of the file containing ⎕SE. The
default value is $DYALOG/default.dse

UCMDCACHEFILE

Specifies the location of the user command cache file.
Defaults to "UserCommand{UcmdMajor}
{UcmdMinor}.{DyalogMajor}{DyalogMinor}
{U|C}{bits}.cache", for example,
UserCommand25.182U64.cache in the dyalog
directory.

Further information about SALT and user commands appear in the User Commands
User Guide and the SALT User Guide.



22 Installation and Configuration Guide

Configuring the Editor
The editor in non-GUI versions of Dyalog APL can be considered to have 5 separate
functional columns.  Below is the contents of the editor window, which shows the
namespace ns, which has two traditional-style functions and one dfn.  The statement
5 ⎕STOP 'ns.fn1' has been run too:

[0]         :Namespace ns
[1]  [0]   ├    ∇ r←fn1 a
[2]  [1]   ├      :If a=1
[3]  [2]   │          r←1
[4]  [3]   │      :Else
[5]  [4]   ├          :If today≡'Friday'
[6]  [5]  ○│              r←2
[7]  [6]   ├          :EndIf
[8]  [7]   ├      :EndIf
[9]  [8]   ├    ∇
[10]
[11] [0]        dfn←{⍺+⍵}
[12]
[13] [0]   ├    ∇ r←a fn2 w
[14] [1]   │      r←a+w
[15] [2]   ├    ∇
[16]        :EndNamespace

This is formed of 5 separate columns:

┌────┬───┬───┬──┬────────────────────────────┐
│C1  │C2 │C3 │C4│C5                          │
├────┼───┼───┼──┼────────────────────────────┤
│[0] │   │   │  │:Namespace ns               │
│[1] │[0]│   │├ │    ∇ r←fn1 a               │
│[2] │[1]│   │├ │      :If a=1               │
│[3] │[2]│   ││ │          r←1               │
│[4] │[3]│   ││ │      :Else                 │
│[5] │[4]│   │├ │          :If today≡'Friday'│
│[6] │[5]│  ○││ │              r←2           │
│[7] │[6]│   │├ │          :EndIf            │
│[8] │[7]│   │├ │      :EndIf                │
│[9] │[8]│   │├ │    ∇                       │
│[10]│   │   │  │                            │
│[11]│[0]│   │  │    dfn←{⍺+⍵}               │
│[12]│   │   │  │                            │
│[13]│[0]│   │├ │    ∇ r←a fn2 w             │
│[14]│[1]│   ││ │      r←a+w                 │
│[15]│[2]│   │├ │    ∇                       │
│[16]│   │   │  │:EndNamespace               │
└────┴───┴───┴──┴────────────────────────────┘



23

Functional
Column

Value
(see
below)

Purpose

C1 4 Line numbers for entire object

C2 64 Line numbers for functions etc. within scripted
namespaces

C3 2 Trace/Stop points

C4 8 Control Structure Outlining

C5 16 Text (or content)This value is ignored; this column is
always present

It is possible to control at startup time which of these columns are visible. By default,
for all types of object, only the text column is visible; this can be overridden on a
per-object basis by setting one or more of the EDITOR_COLUMNS_ variables listed
in Table E5. The value of these variables is the sum of the values for each of the
columns which are desired.

Examples:

EDITOR_COLUMNS_NAMESPACE=94 shows all columns (the first example in
this section)

Various values for EDITOR_COLUMNS_FUNCTION

Value Editor window appearance

0
fn1 a
:If a=1

b←2
:EndIf

22

[0]   fn1 a
[1]   :If a=1
[2] ○     b←2
[3]   :EndIf

26
fn1 a

 ├ :If a=1
○│     b←2
 ├ :EndIf

40
[0]    fn1 a
[1]  ├ :If a=1
[2] ○│     b←2
[3]  ├ :EndIf



24 Installation and Configuration Guide

Miscellaneous

Running from scripts
Dyalog APL can be run with input being directed from a script file, and output being
redirected as well.

The script file needs to be built in such a way that it contains valid input according to
the input translate table that is defined in the APLK variable.

The classic edition of Dyalog APL expects that the input script by default uses Ctrl-O
and Ctrl-N to swap between APL and ASCII characters, and Ctrl-H is used to create
overstrikes. Be aware that when editing such an input file, cut and paste of ^H, ^N or
^O may well result in the two character sequences being copied, rather than the
single character Ctrl-H, Ctrl-N and Ctrl-O.

The Unicode edition by default expects that the input file has Unicode characters in
it; a Unicode-aware editor is therefore required. Note however that applications such
as Notepad will add BOMs (Byte Order Markers) to the Unicode text; these must be
removed as the Dyalog APL input translate table does not have BOMs defined in it.

The example below shows the same set of APL expressions as they would appear in
a script file for classic and Unicode editions: it is rather easier to read the Unicode
edition's input !

Classic example:

^O(2^NLnqK.K K^OGetBuildID^NK^O),
(^NK.KLwgK^OAPLVersion^NK^O)
^Ovar^N[1+1 J^HC^O Check input from file: Classic
)si
^N"si
^Nloff

Unicode example:

(+2⎕nq'.'  'GetBuildID'),('.'⎕wg'APLVersion')
var←1÷1 ⍝ Check input from file: Unicode
)si
)si
⎕off



25

The file command and magic
All Dyalog APL binary files have a unique magic number: the first byte is always
0xAA (decimal 170), and the second identifies the type of Dyalog file. Additional
bytes may in some cases be used to further identify the type, version and state of the
file. UNIX systems include the file command which use the information in the
magic file to describe the contents of files.

magic and AIX
AIX still uses a very early version of magic, so it is not possible to give as much
information about Dyalog APL files as on Linux.

Dyalog provides a file, magic, which is located in the top level installation directory
of Dyalog APL. To use this file to extend the capabilities of the file command
either run

file -m /opt/mdyalog/19.0/32/classic/p5/magic *

or catenate the contents of /opt/mdyalog/19.0/32/classic/p5/magic onto /etc/magic,
and then run

file *

Example:
$ file -m /opt/mdyalog/19.0/32/classic/p6/magic *
1_apl_j1: Dyalog APL component file 64-bit level 1 journaled
non-checksummed
1_apl_j2: Dyalog APL component file 64-bit level 2 journaled
checksummed
1_apl_qfile: Dyalog APL component file 64-bit non-journaled non-
checksummed
1_big1: Dyalog APL component file 64-bit level 2 journaled
checksummed
1_big2: Dyalog APL component file 64-bit level 1 journaled
checksummed
apl64u: Dyalog APL workspace type 12 subtype 4 64-bit unicode
big-endian
aplout: Dyalog APL workspace type 12 subtype 0 32-bit classic
little-endian
aplcore: Dyalog APL workspace type 12 subtype 4 32-bit classic
little-endian
colours: Dyalog APL workspace type 12 subtype 4 32-bit classic
little-endian
core: data or International Language text
signals: Dyalog APL workspace type 12 subtype 4 32-bit classic
little-endian
utf8: Dyalog APL workspace type 12 subtype 4 32-bit unicode
little-endian



26 Installation and Configuration Guide

magic and Linux
Most Linux distributions include details about Dyalog-related files in their magic
files; Dyalog has submitted two versions of the magic file for inclusion in
distributions. To check whether your Linux distribution has the more recent version,
create a journaled component file and then run the file command against that
component file. The two examples below show the output with the earlier and later
versions of magic in use.

Example, using the older default magic
file:
$ file *
1_apl_j1: data
1_apl_j2: data
1_apl_qfile: data
1_big1: data
1_big2: data
apl64u: \012- Dyalog APL\012- workspace\012- version 12\012- .4
aplout: \012- Dyalog APL\012- workspace\012- version 12\012- .0
aplcore: \012- Dyalog APL\012- workspace\012- version 12\012- .4
colours: \012- Dyalog APL\012- workspace\012- version 12\012- .4
core: ELF 32-bit LSB core file Intel 80386, version 1 (SYSV),
SVR4-style
signals: \012- Dyalog APL\012- workspace\012- version 12\012- .4
utf8: \012- Dyalog APL\012- workspace\012- version 12\012- .4

Example, with more recent magic file:
$ file *
1_apl_j1: Dyalog APL component file 64-bit level 1 journaled
non-checksummed
1_apl_j2: Dyalog APL component file 64-bit level 2 journaled
checksummed
1_apl_qfile: Dyalog APL component file 64-bit non-journaled non-
checksummed
1_big1: Dyalog APL component file 64-bit level 2 journaled
checksummed
1_big2: Dyalog APL component file 64-bit level 1 journaled
checksummed
apl64u: Dyalog APL workspace type 12 subtype 4 64-bit unicode
big-endian
aplout: Dyalog APL workspace type 12 subtype 0 32-bit classic
little-endian
aplcore: Dyalog APL workspace type 12 subtype 4 32-bit classic
little-endian
colours: Dyalog APL workspace type 12 subtype 4 32-bit classic
little-endian
core: ELF 32-bit LSB core file Intel 80386, version 1 (SYSV),
SVR4-style, from '/opt/mdyalog/14.0/32/classic/dyalog'



27

signals: Dyalog APL workspace type 12 subtype 4 32-bit classic
little-endian
utf8: Dyalog APL workspace type 12 subtype 4 32-bit unicode
little-endian

The most recent version of the magic file can be found in the top level of the
installation directory; see the man page for the file command for details of how to
update the system magic file, or use the syntax described in the /etc/magic and AIX
section above to override the default magic file with the one supplied in the
installation directory.



28 Installation and Configuration Guide

⎕SE, User Commands and SALT
Summary
Support for user commands is included in non-Windows versions of Dyalog APL.
Many of the user commands which were originally written for running under
Microsoft Windows will run under the various flavours of UNIX.

Under UNIX there is no autocompletion of user command names.

The SALT code resides in ⎕SE, which is saved in a session file. The location of the
session file is controlled by the environment variable SESSION_FILE; by default this
file is $DYALOG/default.dse. Setting SESSION_FILE=/dev/null results in an empty
⎕SE and SALT being disabled.

See the User Commands User Guide and the SALT User Guide for more
information.

Caching User Command information
When a Dyalog APL session is started, SALT is loaded, and checks the details of all
of the files which contain user commands with a previously cached version of this
information. If Dyalog APL has never been run before, or the cache file does not
exist, SALT rebuilds the cache file. This can take a few seconds, especially on the
Raspberry Pi.

By default the cache file is called $HOME/.dyalog/UserCommand20.cache.

This can be overridden by specifying the environment variable UCMDCACHEFILE.

It is expected that the structure of files in ~/.dyalog will change in future versions of
Dyalog APL.

Assigning Contents of Session Log
It is possible to assign the contents of the Session Log to a variable:

z←'⎕se'⎕wg'Log'



29

The Directory ~/.dyalog
In Version 19.0 Dyalog APL by default creates a directory to hold various
configuration and log files; in previous versions these files were located in differing
directories. The contents of this directory are expected to be extended in future
versions of Dyalog APL, and allow for multiple versions and editions of Dyalog APL
to be run concurrently.

On Linux (including Raspberry Pi), macOS and AIX this directory is called .dyalog
and is located in the user's home directory.

The default Dyalog startup script checks for the existence of the directory, and if it
does not exist, creates it.

This directory now contains:

l the user configuration files dyalog.dcfg and dyalog.<version-specific>.dcfg,
where the version-specific information comprises the version number, edition
and width. For example, a 64-bit Unicode edition of Dyalog version 18.0 will
be identified as 180U64. The names/locations of these files should not be
changed.

l the session log, which by default is called default.dlf
l the user command cache file, which by default is called
UserCommand20.cache

l the file containing the SALT settings which is called SALT.settings

Note that many of the default names and locations can be altered. Remember that
earlier versions of Dyalog will generate/use copies of these files in other locations:
you may need to move or delete earlier versions of these files, or change the default
values of their names and/or locations in earlier versions of Dyalog APL.



30 Installation and Configuration Guide

⎕NA under UNIX
Introduction
⎕NA is fully supported under UNIX; the Conga communications package for example
is a shared library on all platforms.

⎕NA supports user-written shared libraries and also system-supplied shared libraries.
Dyalog APL under UNIX is supplied with a shared library, dyalog32.so or
dyalog64.so which contains the same functions as the DLLs which are described in
the ⎕NA documentation in the Dyalog Language Reference Guide. Additionally, the
function getlasterror is included; this returns the error code at the point when
the called function failed (which may be different from its value at the point where a
previous error occurred).

It is necessary to specify the complete name of the file containing the shared library,
no extension is added by Dyalog APL.

When developing code using ⎕NA it may be useful to set the environment variable
ERRORONEXTERNALEXCEPTION= 1. When this is set, Dyalog APL will
generate an event 91, EXTERNAL DLL EXCEPTION rather than a syserror should a
call on a functions defined by ⎕NA be ill-specified. It should be noted however that
the workspace may become corrupt, so it is not recommended to run in production
with this variable set.

System Shared Libraries
On AIX many system library functions appear in libc.a.

When calling system shared libraries under AIX, you must refer to them as:

64-bit: libc.a(shr_64.o)

32-bit: libc.a(shr.o)

It is not always possible to access all library functions - on AIX for example it is not
possible to access memcpy() or strncpy(). it is for this reason that dyalog*.so includes
MEMCPY and STRNCPY.

On Linux, it is a little more difficult to location the libc.so file; the function libc in
the supplied workspace quadna (which contains two namespaces, Windows and
NonWindows)can be used to locate this file.

Definitions

In the remainder of this section references are made to the APL variables
sharedlib and dyalib; the definitions for both vary between AIX and Linux,
and between 32 and 64 bit interpreters.

Under AIX, sharedlib is defined as:



31

sharedlib←'libc.a(shr_64.o)' ⍝ 64 bit
sharedlib←'libc.a(shr.o)' ⍝ 32 bit

Under Linux, it is necessary to identify the shared library:

)copy quadna NonWindows.libc
sharedlib←libc ⍬

For all UNIX platforms, the dyalog shared library is identified as

dyalib←'dyalog64.so' ⍝ 64 bit
dyalib←'dyalog32.so' ⍝ 32 bit

Example 1

getpid() is common to all UNIX platforms; it returns an int which is the process ID of
the current process. It is defined to be

pid_t getpid(void)

where pid_t is a 4-byte integer.

The APL code to instantiate this function is

⎕na 'I4 ',sharedlib,'|getpid'

Example 2

This is a slightly more complex example, which uses the STRNCPY function in the
Dyalog-supplied shared library to retrieve the value of a variable which is referenced
by a pointer, returned from the system library function:

getenv()returns a pointer to the value of the environment variable which is the
argument of the function. It is defined to be

char *getenv(const char *name)

∇r←GetEnv envvar;getenv;P;get
r←''
⎕NA'P ',sharedlib,'|getenv <0T1[]'
'get'⎕NA dyalib,'|STRNCPY >0U1[] P U4'
P←getenv⊂'UTF-8'⎕UCS ⎕UCS envvar
→0⍴⍨P=0
r←'UTF-8'⎕ucs get 4096 P 4096

∇

GetEnv'MAXWS'
4G



32 Installation and Configuration Guide

Note: the call to STRNCPY has been defined to return a vector of integers so that the
result can be passed directly to ⎕UCS.

geterrno
The dyalog shared libary under UNIX includes the function geterrno. This returns
the current value of errno; be aware that it may not have the same value as at the
point when the error was raised. To use this function:

⎕na 'I ',dyalib,'|geterrno'
geterrno

5

Shared libraries and APL threads
Any shared library function must mask out all signals for new threads which it
creates. Failure to do so will result in a catastrophic failure of APL's signal handling.



33

Session logfile
By default the session logfile is called default.dlf. By default this file is created as
~/.dyalog/default.dlf on Linux, AIX and macOS, and in ~/.config/dyalog/default.dlf
on the Pi. This can be overridden by setting the environment variable LOGFILE.

Status window output
By default under UNIX what would appear in the status window in the GUI versions
appears in the same terminal window as the APL session, but the text is not part of
the session. If such text appears, the APL session can be redrawn using the SR
command, thus removing the status window text.

It is possible to redirect the status window output; to do so select an unused stream
number as the stream have the status window output appear on, and then redirect that
stream. Note that it will be necessary to associate a valid output translate table
(usually apltrans/file) with that stream.

Example:

$ export APLSTATUSFD=9
$ export APLT9=file
$ mapl 9>/dev/null

More useful may be to redirect the status window output into a file, and in another
terminal window run tail -f on that file.



34 Installation and Configuration Guide

BuildID
Each interpreter has its own unique BuildID. This is a 32-bit checksum of the
program file which is the Dyalog APL interpreter. This checksum allows Dyalog Ltd.
support staff to uniquely identify the interpreter and from that determine the version,
edition, platform etc. of the interpreter.

For that reason, Dyalog Ltd. support staff ask that whenever an issue is raised with
them that the BuildID is included in all communications.

The BuildID is included in binary form in any aplcore that is generated; if a core file
is created, then is it possible to identify the BuildID using the following command:

$ strings -a -n 14 core | grep "BuildID="

Additionally, the BuildID is included in the "Interesting Information" section of
aplcore files provided that the environment variable APL_TEXTINAPLCORE is set
to 1.

The BuildID can be identified both from within the interpreter (using the GetBuildID
method), and also from the BuildID executable which is supplied with the product on
UNIX.

Both of these methods can be used for any file; they are useful and very fast ways of
keeping track of workspaces versions etc. although md5sum and others may be more
appropriate.

Examples:

At the command line:

$ cd /opt/mdyalog/12.1/32/classic/p6
$ ./BuildID dyalog
70a3446e
$ ./BuildID magic
0a744663

In APL:

+2 ⎕nq '.' 'GetbuildID'
70a3446e

magicfile←'/opt/mdyalog/12.1/32/classic/p6/magic'
+2 ⎕nq '.' 'GetBuildID' magicfile

0a744663
)sh

$ echo $PPID
$ kill -11 $PPID
/opt/mdyalog/12.1/32/classic/p6/mapl[58]: 274434
Segmentation fault(coredump)
$ strings -a -n14 core | grep BuildID=
BuildID=70a3446e



35

Index

~

~/.dyalog 29

A

APL385 Unicode Font
downloading 10
installing 10

B

BuildID in saved files 34

C

Configuration files 11
Configuration parameters 11
Configuring the editor 22

D

Deinstalling
AIX 5
Linux/DEB 6
Linux/RPM 5
UNIX 5

E

Environment variables 14
AP search path 17
buffers and logifiles 19
commonly used 15
conga path 17
default workspace values 18
DYALOG_NETCORE 16
DYALOG_SERIAL 16

DYALOG_SERIALFILE 16
editor related 20-21
ENABLE_CEF 16
handle quadNA exception 16
I/O related 15
serial number 16
status window 16
tracer related 21
workspace search path 17
workspace size 17

ERRORONEXTERNALEXCEPTION 16

I

Installation
AIX 3
Linux/DEB 4
Linux/RPM 3
non-default location 5
UNIX 2

L

Linux
APL font support 8-9
APL Keyboard

KDE4 8
APL Keyboard support

Unity 8
Linux console 8
Linux terminal window 8

M

Magic numbers
AIX 25
file command 25
UNIX 25

Magic numbers; Linux 26
MAXWS 17

P

PuTTY 10
configuring PuTTY 10
downloading and installing PuTTY 10



36 Installation and Configuration Guide

Q

quadNA UNIX 30

R

RDP 9
Running from scripts 24

S

SALT UNIX 28
serial number 7
Session log

UNIX 33
Status window output

UNIX 33

U

UnicodeIME
downloading 10
installing 10

Upgrading
from earlier release 6

Upgrading APL 6
later version of same release 6

User Commands UNIX 28

V

VNC 9

W

WSPATH 17


	Introduction
	Installation
	Installing under AIX
	Installing on an RPM-based Linux Distribution
	Installing on a DEB-based Linux Distribution
	Installing in a non-default location
	Deinstalling Dyalog APL
	Upgrading APL

	Dyalog Serial Number
	Configuring a Console/terminal Window to support Dyalog APL for UNIX
	Dyalog APL, RDP and VNC
	Using PuTTY under Windows
	Configuration Parameters
	Configuration Files
	Environment Variables

	Configuring the Editor
	Miscellaneous
	Running from scripts

	The file command and magic
	magic and AIX
	Example:
	Example, using the older default magic file:
	Example, with more recent magic file:
	⎕SE, User Commands and SALT

	The Directory ~/.dyalog
	⎕NA under UNIX

	Session logfile
	Status window output
	BuildID
	Index

