
Application
Tuning Guide

Dyalog version 18.2

The tool of thought for software solutions

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2021 by Dyalog Limited
All rights reserved.

Application Tuning Guide

Dyalog version 18.2
Document Revision: 20220124_182

Unless stated otherwise, all examples in this document assume that ⎕IO ⎕ML ← 1

No part of this publication may be reproduced in any form by any means without the prior
written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Array Editor is copyright of davidliebtag.com
Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle®, Javascript™ and Java™ are registered trademarks of Oracle and/or its affiliates.
UNIX® is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark of Microsoft Corporation in the United States and
other countries.
macOS® and OS X® (operating system software) are trademarks of Apple Inc., registered
in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Contents

1 About This Document 1
1.1 Audience 1
1.2 Conventions 1

2 Introduction 3
3 Data Collection 4

3.1 Before Initiating the Collection of Data 4
3.2 Initiating the Collection of Data 4
3.3 Collecting Data 5
3.4 Stopping the Collection of Data 6
3.5 Timer Overhead 6

4 Data Reporting 7
4.1 Textual Reports 8
4.2 Graphical Reports 9

5 Data Storage 11
5.1 XML Format 11

5.1.1 Example XML Files 12
5.2 CSV Format 13

5.2.1 Example CSV Files 15
5.3 Text Format 16

5.3.1 Example Text Files 16
A Syntax of the]Profile User Command 18

A.1 Report Types 18
A.2 Modifiers 19
A.3 Examples 23

B The Dashboard 26
B.1 Panels 26
B.2 Display Options 28
B.3 Navigating the Functions/Lines 29

B.3.1 Breadcrumb Trail 29
B.3.2 Right-click Menu 29

B.4 Menu Bar 30
B.4.1 File Menu 30
B.4.2 Windows Menu 30
B.4.3 Help Menu 31

B.5 Single Function Mode 32

Application Tuning Guide

revision 20220124_182 i

1 About This Document

This document describes the way in which the ⎕PROFILE system function and the
associated]PROFILE user command can be used to obtain a performance profile of an
application. It describes both the graphical and textual output that can be obtained
following data collection and shows how this data can be analysed and potential
inefficiencies identified.

1.1 Audience
It is assumed that the reader has a reasonable understanding of Dyalog.

For information on the resources available to help develop your Dyalog knowledge, see
https://www.dyalog.com/introduction.htm.

1.2 Conventions
Unless explicitly stated otherwise, all examples in Dyalog documentation assume that
⎕IO and ⎕ML are both 1.

Various icons are used in this document to emphasise specific material.

General note icons, and the type of material that they are used to emphasise, include:

Hints, tips, best practice and recommendations from Dyalog Ltd.

Information note highlighting material of particular significance or relevance.

Legacy information pertaining to behaviour in earlier releases of Dyalog or to
functionality that still exists but has been superseded and is no longer
recommended.

Warnings about actions that can impact the behaviour of Dyalog or have
unforeseen consequences.

revision 20220124_182 1

Application Tuning Guide

https://www.dyalog.com/introduction.htm

Although the Dyalog programming language is identical on all platforms, differences do
exist in the way some functionality is implemented and in the tools and interfaces that
are available. A full list of the platforms on which Dyalog version 18.2 is supported is
available at https://www.dyalog.com/dyalog/current-platforms.htm. Within this
document, differences in behaviour between operating systems are identified with the
following icons (representing macOS, Linux, UNIX and Microsoft Windows respectively):

revision 20220124_182 2

Application Tuning Guide

https://www.dyalog.com/dyalog/current-platforms.htm

2 Introduction

Application design includes assumptions about usage patterns and data volumes. Over
time, these can evolve to the detriment of the application's performance. The most
effective way to counter drops in performance caused by changes external to the
application is to identify the hot spots (places in the application where a high proportion
of CPU or Elapsed Time is consumed); these hot spots can then be tuned to improve the
application's performance.

The ⎕PROFILE system function and the]Profile user command facilitate the hot spot
identification process; the ⎕PROFILE system function gathers statistics from an
application and the]Profile user command summarises, filters and reports on this
data, simplifying the process of drilling down on the (frequently large amounts of) data
returned by ⎕PROFILE.

The ⎕MONITOR system function, which was in use prior to the introduction of the
⎕PROFILE system function, has been deprecated and Dyalog Ltd recommends
rewriting tools to use the ⎕PROFILE system function instead; ⎕PROFILE provides
high precision timing, calling tree analysis, and superior dfn and recursive code
handling.

For more information on the ⎕PROFILE system function, see the Dyalog APL Language
Reference Guide. For more information on the]Profile user command, see
Appendix A.

revision 20220124_182 3

Application Tuning Guide

3 Data Collection

The ⎕PROFILE system function can collect very large quantities of data. This
means that, to profile a large application or to save a dataset as an XML file, the
workspace size might need to be increased significantly.

Usage data is collected for all APL functions that are executed when the ⎕PROFILE
system function is in an active state.

For complete documentation of the ⎕PROFILE system function, see the Dyalog APL
Language Reference Guide.

3.1 Before Initiating the Collection of Data
To improve the accuracy of the data and minimise the impact of timer overhead (see
Section 3.5):

 l Switch off as much hardware as possible, including peripherals and network
connections.

 l Switch off as many other tasks and processes as possible, including anti-virus
software, firewalls, internet services and background tasks.

 l Raise the priority on the Dyalog APL task to higher than normal.
On Microsoft Windows, avoid giving it the highest priority.

Data collected by the ⎕PROFILE system function is cumulative whenever the ⎕PROFILE
system function is in an active state (but does not persist between Sessions); to discard
any previously-collected data, enter ⎕PROFILE 'clear'.

3.2 Initiating the Collection of Data
Data collection is initiated by entering:
 ⎕PROFILE 'start'

revision 20220124_182 4

Application Tuning Guide

This puts ⎕PROFILE into an active state.

⎕PROFILE supports profiling using either CPU or elapsed time. CPU time is usually of
more interest in profiling application performance and, by default, ⎕PROFILE will
register CPU usage data using the best available counter.

3.3 Collecting Data
Whether data is being collected or not can be verified by entering:
 ⎕PROFILE 'state'

This returns a 4 element vector, in which:
 l [1] is a character vector indicating the state of ⎕PROFILE.

Can be either active or inactive (must be active for data collection).
 l [2] is a character vector indicating the timer being used.

Can be CPU, elapsed, coverage or none.
 l [3] is the call time bias in milliseconds, that is the amount of time that is

consumed when the system takes a time measurement.
 l [4] is the timer granularity in milliseconds, that is, the resolution of the timer

being used. On most platforms this will be zero, indicating that the granularity is
smaller than the cost and cannot be estimated.

During data collection, the following data is recorded for each function and for each
individual line in a function:

 l Calls – the number of times the function or line was executed.
 l Exclusive Time – milliseconds spent executing the function or line, excluding time

spent in functions that were called by the function or line.
 l Inclusive Time – milliseconds spent executing the function or line, including time

spent in functions that were called by the function or line.

The times collected by the ⎕PROFILE system function include the time spent calling the
timer function. This means that lines that are called a large number of times can appear
to consume more resource than they actually do. For more accurate profiling
measurements, adjustments should be made for the timer call time bias. To do this, the
application should be run for a sufficiently long period to collect enough data to
overcome the timer granularity – a reasonable rule of thumb is to make sure the
application runs for at least 4000×4⊃⎕PROFILE 'state' milliseconds.

The profiling data that is collected is stored outside the workspace and does not impact
workspace availability.

revision 20220124_182 5

Application Tuning Guide

⎕PROFILE can collect data for functions that are dynamically paged in and out of the
workspace.

Results can be confusing if several different functions with the same name are
used at different times during execution – these are treated as the same function
by ⎕PROFILE.

3.4 Stopping the Collection of Data
Data collection is stopped by entering:
 ⎕PROFILE 'stop'

This puts ⎕PROFILE into an inactive state.

3.5 Timer Overhead
As with all system timers, a cost is associated with the collection of timing data using the
⎕PROFILE system function. In optimised applications the overhead can be significant;
although it is unlikely to impact the identification of hot spots, it can distort results.

By default, reports produced with the]Profile user command automatically adjust for
timer bias, using the recorded bias – this can be disabled for a report by including the
-bias=0 modifier and modifier value.

The cost of querying a timer can vary significantly with system load, and repeatable
timings are only possible if there is very little activity on the system; the variability is due
to the timer calling the operating system kernel, which is servicing all processes on the
machine. Dyalog Ltd. recommends increasing the priority of the application being
profiled as this can reduce the variability (but will not eliminate it completely).

The timer cost and granularity are estimated the first time that ⎕PROFILE is run in an
APL session. A new calibration can be requested by calling ⎕PROFILE 'calibrate'.

revision 20220124_182 6

Application Tuning Guide

4 Data Reporting

Once data has been collected, summarised data for each function and line within that
function can be retrieved using ⎕PROFILE 'data'. Alternatively, data can be broken
down by calling trees so that it is summarised separately for every different path that led
to the function being executed – this is done using ⎕PROFILE 'tree'. In both these
cases, a very large quantity of data can be returned.

The]Profile user command is a reporting tool that acts on the profiling data collected
by the ⎕PROFILE system function, applying filters and limiting the output to a specified
subset of the total collected. This results in a reduced data quantity that is tailored to
display only what is required. For details of the syntax of the]Profile user command,
see Appendix A.

The examples in this document assume that data has been collected as follows:
)LOAD sharpplot
 C:\...\ ws\sharpplot.dws saved Mon May 8 09:57:02 2017

 ⎕PROFILE 'start'

 #.Samples.Sample 'Sample.svg'
 mySharpPlot Sample.svg

 ⎕PROFILE 'stop'

revision 20220124_182 7

Application Tuning Guide

4.1 Textual Reports
After collecting the data, the consumption by function can be found using:
]Profile summary -expr="#.Samples.Sample 'Sample.svg'"
-first=10
 Total time: 58.2 msec

 Element msec % Calls
 #.Samples.Sample 58.2 100.0 1
 #.SharpPlot.DrawLineGraph 25.6 44.0 1
 #.SharpPlot.Plot 18.4 31.6 1
 #.SharpPlot.DrawBarChart 7.7 13.3 1
 #.SharpPlot.CH∆PLOT 3.2 5.4 1
 #.SharpPlot.DrawPieChart 2.2 3.8 1
 #.SharpPlot.CH∆PIE 1.9 3.3 1
 #.SharpPlot.ConstructorDefault 1.3 2.2 1
 #.SharpPlot.SharpPlot 1.3 2.2 1
 #.psb.Constructor 1.2 2.1 12

In this expression the -expr modifier allows the specification of an APL statement to
run, and is equivalent to executing:
 ⎕PROFILE 'clear'
 ⎕PROFILE 'start'
 #.Samples.Sample 'Sample.svg'
 ⎕PROFILE 'stop'

The inclusion of -first=10 limits the output to the top 10 functions in terms of CPU
consumption. To see the top 5 lines of code instead:
]Profile summary -lines -first=5
 Total time: 58.2 msec

 Element msec % Calls
 #.Samples.Sample[33] 25.9 44.5 1
 #.Samples.Sample[42] 25.6 44.0 1
 #.SharpPlot.DrawLineGraph[43] 25.6 43.9 1
 #.SharpPlot.Plot[174] 17.7 30.5 1
 #.Samples.Sample[60] 2.2 3.8 1

revision 20220124_182 8

Application Tuning Guide

Finally, the call analysis report for the Constructor function can be displayed:
]Profile calls -fn=#.psb.Constructor -first=5
 Total time: 58.2 msec; Selected time: 1248.0 msec

 Element msec % Calls
 #.SharpPlot.CH∆PLOT 0.4 0.8 3
 #.SharpPlot.SharpPlot 0.3 0.6 4
 #.SharpPlot.CH∆BAR 0.2 0.3 2
 #.SharpPlot.CH∆AXES 0.1 0.2 1
 #.SharpPlot.CH∆XTIC 0.1 0.2 1

4.2 Graphical Reports
The Dashboard detailed in this section is only available on the Microsoft Windows
operating system. For information on using the Dashboard, see Appendix B.

A graphical version of the textual reports can be viewed using the Dashboard. This
provides an overview of the resource consumption of an application that can be drilled
down into in pursuit of tuning opportunities.

To open the Dashboard on the dataset, call the]Profile user command without
specifying any report type, that is:
]Profile

The Dashboard will open and display an overview of the data currently stored by
⎕PROFILE (⎕PROFILE must be stopped/inactive), as shown in Figure 4-1.

If the dataset is very large then it can take a few seconds to open the Dashboard.

revision 20220124_182 9

Application Tuning Guide

Figure 4-1: Dashboard showing default configuration

To open the Dashboard on a dataset that is not currently stored by ⎕PROFILE, the
modifiers -expr and/or -infile can be included:

 l -expr runs the specified expression and then opens the Dashboard on the
resultant dataset, for example,]Profile -expr="#.Samples.Sample
'Sample.svg'". Doing this destroys any existing ⎕PROFILE data and replaces it
with data for the specified expression.

 l -infile opens the Dashboard on the dataset contained in the specified .xml file ,
for example,]Profile –infile=c:\temp\one.xml. Doing this does not
destroy any existing ⎕PROFILE data.

revision 20220124_182 10

Application Tuning Guide

5 Data Storage

The]Profile user command can direct output to a file instead of displaying it in the
Session. To do this, the -outfile modifier must be included; its modifier value must be
the name of file in which to write the report data. By default, data is stored in an XML
format, but this can be changed with the -format modifier:

 l To save data in XML format, include -format=xml in the call to the]Profile
user command (see Section 5.1). This is the default, so does not have to be
explicitly stated.

 l To save data in CSV format, include -format=csv in the call to the]Profile
user command (see Section 5.2).

 l To save data in text format, include -format=txt in the call to the]Profile
user command (see Section 5.3).

5.1 XML Format
Using the XML format generates very large files, but the content can be processed using
⎕SM or many external tools (for more information on ⎕SM, see the Dyalog APL Language
Reference Guide). However, tree reports in XML format can be used as input to the
]Profile user command (using the -infile modifier) and are the only way to store a
complete data set that can be reused for reporting at a later time. For example, entering
the following command:
]Profile tree -outfile=c:\temp\one.xml

saves the tree report in a file called one.xml in the c:\temp directory. This file can be
opened later (in the same or a different Session) by entering:
]Profile summary -infile=c:\temp\one.xml

In addition, as user commands can be executed under program control, an application
can record its own usage data. For example:
 ⎕SE.UCMD 'profile tree -outfile=c:\temp\one.xml'

revision 20220124_182 11

Application Tuning Guide

The XML format produced by the]Profile user command comprises an outer
<ProfileData> element; this contains a <ProfileSettings> element followed by a
number of <ProfileEntry> elements, one for each row of output data.

The <ProfileSettings> element contains the version number of the]Profile user
command that produced the file, the report title, information about timer cost and other
information, including the total registered time for the report.

Each <ProfileEntry> element contains an element for each output column,
depending on the command and switches, selected from the set listed in Table 5-1.

Element Description

Depth Tree depth

Element Function name

Line Line number – empty for a function summary entry

Calls Number of times the function or line was called

IncusiveTime
ExclusiveTime

Time consumed inclusive/exclusive of time consumed in any
sub-functions called (in ms)

AvgTime Average time per call (in ms)

Table 5-1: Elements that can be contained within the ProfileEntry element

5.1.1 Example XML Files

This section contains a few examples of output files created using -format=xml (all files
are encoded as UTF-8).

]Profile tree -outfile=tree.xml
 Data written to: tree.xml

Content of the tree.xml file:
<?xml version="1.0"?>
 <ProfileData>
 <ProfileSettings>
 <Version>1.37</Version>
 <Title>2017/05/08 11:22:19</Title>
 <TimerBias>0.00007458669726290168</TimerBias>
 <Command>tree</Command>
 <TotalTime>173.41</TotalTime>
 <SelectedTime>173.41</SelectedTime>
 </ProfileSettings>

revision 20220124_182 12

Application Tuning Guide

 <ProfileEntry>
 <Depth>0</Depth>
 <Element>#.Samples.Sample</Element>
 <Line>¯1</Line>
 <Calls>1</Calls>
 <ExclusiveTime>19.362</ExclusiveTime>
 <InclusiveTime>61.828</InclusiveTime>
 </ProfileEntry>
 ...
 ...many more occurrences of <ProfileEntry>...
 ...
</ProfileData>

]Profile summary -outfile=summary.xml
 Data written to: summary.xml

Content of the summary.xml file:
<?xml version="1.0"?>
 <ProfileData>
 <ProfileSettings>
 <Version>1.37</Version>
 <Title>2017/05/08 11:31:00</Title>
 <TimerBias>0.00007458669726290168</TimerBias>
 <Command>summary</Command>
 <TotalTime>58.2</TotalTime>
 <SelectedTime>58.2</SelectedTime>
 </ProfileSettings>
 <ProfileEntry>
 <Element>#.Samples.Sample</Element>
 <Line/>
 <InclusiveTime>58.2</InclusiveTime>
 <PctOfTot>100</PctOfTot>
 <Calls>1</Calls>
 </ProfileEntry>
 ...
 ...many more occurrences of <ProfileEntry>...
 ...
 </ProfileData>

5.2 CSV Format
Files saved in CSV format can be used by ⎕CSV and many external tools (for more
information on ⎕CSV, see the Dyalog APL Language Reference Guide). For example:
]Profile data -outfile=c:\temp\data.csv -format=csv
-separators='.,'

revision 20220124_182 13

Application Tuning Guide

creates a CSV file using a period as the decimal separator and a comma as the field
separator. This file can be viewed either by opening it in a text editor or in a spreadsheet
(as shown in Figure 5-1 and Figure 5-2 respectively).

Figure 5-1: Viewing the saved data CSV file as a text file

Figure 5-2: Viewing the saved data CSV file as a Microsoft Excel spreadsheet

Figure 5-2 shows the data.csv file opened in Microsoft Excel; to do this, enter the
following in a Session:
 'XL' ⎕WC 'OLEClient' 'Excel.Application'
 XL.Visible←1
 XL.Workbooks.Open⊂'c:\temp\data.csv'

revision 20220124_182 14

Application Tuning Guide

5.2.1 Example CSV Files

This section contains a few examples of output files created using -format=csv (all files
are encoded as UTF-8). The first row of each file contains column names, selected from
the same list as the element names that can appear in XML files (see Table 5-1).

]Profile tree -outfile=data1.csv -format=csv
 Data written to: data1.csv

Content of the data1.csv file:
"Depth","Element","Line","Calls","ExclusiveTime","InclusiveTime"
 0,"#.Samples.Sample",¯1,1,19.362,61.828
 1,"#.Samples.Sample",1,1,0.002,0.002
 1,"#.Samples.Sample",2,1,0,0
 1,"#.Samples.Sample",3,1,0,0
 1,"#.Samples.Sample",4,1,0,0
 1,"#.Samples.Sample",5,1,0.005,0.005
 1,"#.Samples.Sample",6,1,0,0
 1,"#.Samples.Sample",7,1,0.874,2.388
 2,"#.SharpPlot.ConstructorDefault",¯1,1,0.007,1.513
 3,"#.SharpPlot.ConstructorDefault",1,1,0,0
 3,"#.SharpPlot.ConstructorDefault",2,1,0.001,0.001
 3,"#.SharpPlot.ConstructorDefault",3,1,0.004,1.51
 4,"#.SharpPlot.SharpPlot",¯1,1,0.219,1.506
 ...etc...

]Profile data -outfile=data2.csv -format=csv
-separators=",;"
 Data written to: data2.csv

Content of the data2.csv file:
"Element";"Line";"Calls";"ExclusiveTime";"InclusiveTime"
 "#.psb.DrawWedge";;2;0,011;0,021
 "#.psb.DrawWedge";1;2;0,001;0,001
 "#.psb.DrawWedge";2;2;0,001;0,001
 "#.psb.DrawWedge";3;2;0,001;0,001
 "#.psb.DrawWedge";4;2;0,001;0,001
 "#.psb.DrawWedge";5;2;0,001;0,001
 "#.psb.DrawWedge";6;2;0,001;0,001
 "#.psb.DrawWedge";7;2;0,001;0,001
 "#.psb.DrawWedge";8;2;0,001;0,001
 "#.psb.DrawWedge";9;2;0,001;0,001
 ...etc...

]Profile summary -first=5 -outfile=data3.csv -format=csv
 Data written to: data3.csv

revision 20220124_182 15

Application Tuning Guide

Content of the data3.csv file:
"Element","Line","Time","PctOfTot","Calls"
 "#.Samples.Sample",,58.2,100,1
 "#.SharpPlot.DrawLineGraph",,25.626,44.03092784,1
 "#.SharpPlot.Plot",,18.373,31.56872852,1
 "#.SharpPlot.DrawBarChart",,7.726,13.27491409,1
 "#.SharpPlot.CH∆PLOT",,3.153,5.417525773,1

5.3 Text Format
If the text format is used, the output is written to the file as it would have been displayed
in the Session. The content of such plain text files can then be further processed using
external text processing tools, or manipulated using APL (after using ⎕NGET to import it –
for more information on ⎕NGET, see the Dyalog APL Language Reference Guide).

5.3.1 Example Text Files
]Profile summary
 Total time: 58.2 msec

 Element msec % Calls
 #.Samples.Sample 58.2 100.0 1
 #.SharpPlot.DrawLineGraph 25.6 44.0 1
 #.SharpPlot.Plot 18.4 31.6 1
 #.SharpPlot.DrawBarChart 7.7 13.3 1
 #.SharpPlot.CH∆PLOT 3.2 5.4 1
 #.SharpPlot.DrawPieChart 2.2 3.8 1
 #.SharpPlot.CH∆PIE 1.9 3.3 1
 #.SharpPlot.ConstructorDefault 1.3 2.2 1
 #.SharpPlot.SharpPlot 1.3 2.2 1
 #.psb.Constructor 1.2 2.1 12
 #.psb.psb 1.2 2.1 12
 #.SharpPlot.CH∆BAR 1.0 1.8 1
 #.SharpPlot.DrawNote 1.0 1.6 1
 #.SharpPlot.CH∆XLAB 0.9 1.6 1
 #.SharpPlot.RunElements 0.9 1.6 2
 #.SharpPlot.CH∆NOTE 0.9 1.6 1
 #.psb.MeasureEach 0.9 1.5 8
 #.SharpPlot.CH∆METRIC 0.9 1.5 7
 #.Common.ListAdd 0.8 1.4 152
 #.SharpPlot.CH∆HEAD 0.8 1.3 2

]Profile summary -outfile=data.txt -format=txt
 Data written to: data.txt

revision 20220124_182 16

Application Tuning Guide

Figure 5-3: Viewing the saved data txt file as a text file

revision 20220124_182 17

Application Tuning Guide

A Syntax of the]Profile User
Command

The]Profile user command is always followed by a report type; modifiers can be
included to customise the output.

Syntax:]Profile [reporttype][-avg][-code][-lines]|[-outfile{=name}]
[-format{=xml|csv|txt}][-cumpct][-exclusive][-first{=n}|-pct{=n}]
[-fn{=name}][-infile{=name}][-separators{="decimalsep phrasesep"}]
[-bias{=t}][-decimal{=n}][-expr{=expression}][-title{=name}]

A.1 Report Types
The six possible report types are detailed in Table A-1. If no report type is specified then a
default report type is assumed; this is dashboard on the Microsoft Windows operating
system and summary on the AIX, Linux and Mac OS operating systems.

Report Type Description

calls

Shows how the consumption of a named function (the -fn modifier is
required) is broken down by calling function.
The summary and calls report types are the most frequently used
reporting tools.

dashboard

The Dashboard is only available on the Microsoft Windows
operating system.

Opens the Dashboard, a graphical overview of the profiling data
collected by the ⎕PROFILE system function. For more information on
the Dashboard, see Appendix B.
This is the default report type on the Microsoft Windows operating
system.

Table A-1: Report types that can be generated using the]Profile user command

revision 20220124_182 18

Application Tuning Guide

Report Type Description

data
Writes the raw data produced by ⎕PROFILE 'data' to a file for use
with tools other than]Profile, for example, Microsoft Excel.

state Displays the current profiling state of ⎕PROFILE (see Section 3.3).

summary

Reports the number of calls, total consumption and consumption as a
percentage of overall consumption.
The summary and calls report types are the most frequently used
reporting tools.
This is the default report type on the AIX, Linux and macOS operating
systems.

tree

Writes the raw data produced by ⎕PROFILE 'tree' to a file for later
use. Intended as a tool for storing data using the -outfile=<name>
modifier, for subsequent reporting using the -infile=<name>
modifier.

Table A-1: Report types that can be generated using the]Profile user command
(continued)

A.2 Modifiers
The report types can be qualified using modifiers. These can, for example, filter the data
that is displayed, add optional output columns, read input from a previously saved file or
store the results of a command in a file.

Each of the report types can have different combinations of modifiers applied. The
state report type does not take any modifiers; the valid modifiers for each of the other
report types are shown in Table A-2.

Modifier
Report Types

 calls dashboard data summary tree

-avg y y y

-bias y y y y y

-code y y

Table A-2: Report types and the modifiers that can be applied to them

revision 20220124_182 19

Application Tuning Guide

Modifier
Report Types

 calls dashboard data summary tree

-cumpct y y y

-decimal y y y y

-exclusive y y y

-expr y y y y y

-first y y y

-fn y y y y

-format y y y y

-infile y y y y y

-lines y y y y

-outfile y y y y

-pct y y y

-separators y* y* y* y*

-title** y** y** y** y** y**

Table A-2: Report types and the modifiers that can be applied to them
(continued)

* can only be used when –format=csv is included
** only relevant when –format=xml or –format=txt

Table A-3, Table A-4 and Table A-5 describe these modifiers.

Modifier Description

-avg
Includes the average CPU consumption (in ms) per execution of each
function call (or line if the -lines modifier is specified).

Table A-3: Modifiers for data selection

revision 20220124_182 20

Application Tuning Guide

Modifier Description

-code
Includes the source code for the line being executed (including the
-code modifier forces the -lines modifier).
Cannot be used with the -outfile modifier.

-cumpct

Displays the cumulative percentage of overall CPU consumption that
each function call (or line if the -lines modifier is specified) and
each function call above it was responsible for.
This is usually only useful if the -exclusive modifier is also set.

-exclusive
Displays the CPU consumption of each function call (or line if the -
lines modifier is specified) excluding consumption due to called
functions.

-first=n

After sorting into descending order of CPU consumption, displays
only the first n function calls (or lines if the -lines modifier is
specified).
This is usually only useful if the -exclusive modifier is also set.
Cannot be used with the -pct modifier.

-fn=name

Mandatory for a calls report type, when it specifies the function
that the calls analysis report is for. Optional for other report types,
when output is filtered to only include data for the specified function
and other functions that it calls.

-lines
Displays a breakdown of consumption by individual line rather than a
total for each function (the default).
Assumed when the -code modifier is specified.

-pct=n

After sorting into descending order of CPU consumption, displays
only those function calls (or lines if the -lines modifier is specified)
for which the cumulative percentage of overall CPU consumption is
less than or equal to n.
This is usually only useful if the -exclusive modifier is also set.
Cannot be used with the -first modifier.

Table A-3: Modifiers for data selection (continued)

revision 20220124_182 21

Application Tuning Guide

Modifier Description

-format=n

Selects the file format to use when saving a file using the
-outfile modifier. Possible values are:

 l xml – writes data to an XML file
 l csv – writes data to a CSV file
 l txt – writes data to a text file (and retains the display

format)
The default is xml.

-infile=n
Opens the Dashboard on the dataset contained in the specified
 .xml file.
Doing this does not destroy any existing ⎕PROFILE data.

-separators=nn
For use with -format=csv.
Specifies the decimal and comma separators to use.
The default is .,

-title=n

For use with -format=xml or -format=txt.
Specifies the string that is used as a title caption in the
Dashboard and XML reports. Especially useful when running the
same expression multiple times as different captions can
differentiate between different sets of results.
If the -title modifier is not specified, then the caption
defaults to the string specified by the -expr modifier. If neither
the -title nor the -expr modifiers are specified, then the
caption defaults to]profile Dashboard: <date> <time>

-outfile=n
Redirects the output from the Session to the specified full path
and filename (the full path must already exist).
Cannot be used with the -code modifier.

Table A-4: Modifiers for redirecting output to a file rather than display it on the screen

revision 20220124_182 22

Application Tuning Guide

Modifier Description

-bias=t

Overrides the function call overhead estimated by ⎕PROFILE during
the current session (or read from an infile), and uses t instead.
Use -bias=0 to ignore bias, or a fixed value if you want to make
sure that you use the same bias for data collected at different times.
Depending on environment, t is likely to be in the range 0.00001-
0.001 (in ms).

-decimal=n
Specifies the number of decimal places to display for non-integer
numbers.
The default is 1.

-expr=n
Executes the expression specified as the modifier value and replaces
any existing ⎕PROFILE data with that for the specified expression.

Table A-5: Other modifiers

A.3 Examples
The examples in this section are intended to show at least one use of every modifier.

)LOAD sharpplot
 C:\...\ ws\sharpplot.dws saved Mon May 8 09:57:02 2017

 ⎕PROFILE 'start'

 #.Samples.Sample 'Sample.svg'
 mySharpPlot Sample.svg

 ⎕PROFILE 'stop'

To see which 5 functions consumed the most CPU time:
]Profile summary -expr="#.Samples.Sample 'Sample.svg'"
-first=5
 Total time: 56.1 msec

 Element msec % Calls
 #.Samples.Sample 56.1 100.0 1
 #.SharpPlot.DrawLineGraph 24.9 44.4 1
 #.SharpPlot.Plot 18.0 32.1 1
 #.SharpPlot.DrawBarChart 7.8 14.0 1
 #.SharpPlot.CH∆PLOT 3.2 5.6 1

revision 20220124_182 23

Application Tuning Guide

Show the five biggest CPU consumers, excluding CPU time spent in sub-functions. Display
decimal numbers to 3 decimal places, include a cumulative percentage and only include
functions up to 65% of the cumulative CPU:
]Profile summary -exclusive -decimal=3 -cumpct -pct=65
 Total time: 58.2 msec

 Element msec % Calls %(cum)
 #.Samples.Sample 19.351 33.249 1 33.249
 #.SharpPlot.Plot 14.719 25.290 1 58.540

To see the average CPU consumption per call without adjusting for timer bias:
]Profile summary -exclusive -decimal=3 -avg -bias=0 -first=3
 Total time: 61.8 msec

 Element msec % Calls Avg
 #.Samples.Sample 19.362 31.316 1 19.362
 #.SharpPlot.Plot 14.733 23.829 1 14.733
 #.SharpPlot.DrawLineGraph 7.254 11.733 1 7.254

The second set of numbers are higher than the first – the total time is 3.6 ms higher
when the timer bias adjustment is not made and the function with the highest
consumption, #.Samples.Sample, is reported as having consumed 0.011 ms more. The
raw data recorded for a function can be displayed (without bias adjustment) by the data
report type; in this case the function with the highest consumption is the one of interest:
]Profile data –fn=#.Samples.Sample
 Total time: 389.7 msec; Selected time: 104475.0 msec

 Element Calls msec(exc) msec(inc)
 #.Samples.Sample 1 23.0 104.5
 #.Samples.Sample[1] 1 0.0 0.0
 #.Samples.Sample[2] 1 0.0 0.0
 #.Samples.Sample[3] 1 0.0 0.0
 #.Samples.Sample[4] 1 0.0 0.0
 #.Samples.Sample[5] 1 0.0 0.0
 #.Samples.Sample[6] 1 0.0 0.0
 #.Samples.Sample[7] 1 1.4 2.3
 #.Samples.Sample[8] 1 0.0 0.0
 ...etc...

revision 20220124_182 24

Application Tuning Guide

For a summary or calls report, the -code modifier can be used to include source code in
a report:
]Profile summary -code -lines -first=5
 Total time: 56.1 msec

 Element msec % Calls Code
 #.Samples.Sample[33] 25.5 45.4 1
sp.DrawBarChart⊂data1
 #.Samples.Sample[42] 24.9 44.4 1
sp.DrawLineGraph⊂data2
 #.SharpPlot.DrawLineGraph[43] 24.9 44.3 1 Plot yValues
xValues'linegraph'
 #.SharpPlot.Plot[174] 17.3 30.9 1 cv←CH∆PLOT
DATA VAL ptype iLine iMarker(bFramed∨bCropped)
 #.Samples.Sample[7] 2.0 3.5 1 sp←⎕NEW
Causeway.SharpPlot

The -outfile modifier allows output to be directed to a file instead of displaying it in
the Session. By default, the format of the data in the file is XML, but this can be changed
to CSV or text with the -format modifier. For example:
]Profile data -outfile=c:\temp\data.csv -format=csv
-separators='.,'

creates a CSV file using a period as the decimal separator and a comma as the field
separator. For more information on the -outfile modifier, see Chapter 5.

If output is directed to an XML or text file, then the -title modifier can be used to
specify a title that will be displayed when viewing that file in the Dashboard:
]Profile tree -expr="queens 8" -title="queens eight"
-outfile="c:\temp\q8profile.xml"

If the -title modifier is omitted then the specified expression is used as the title.

The -infile modifier loads a previously-saved dataset for analysis – specifying this does
not destroy any existing ⎕PROFILE data:
]Profile -infile="c:\temp\test.xml"

This only applies when the dataset being loaded was a tree report saved in XML format
(see Section 5.1).

revision 20220124_182 25

Application Tuning Guide

B The Dashboard

The Dashboard is only available on the Microsoft Windows operating system.

To open the Dashboard on a dataset, call the]Profile user command without
specifying any report type, that is:
]Profile

The Dashboard will open and display an overview of the data currently stored by
⎕PROFILE (⎕PROFILE must be stopped/inactive).

B.1 Panels
The main body of the Dashboard is divided into four panels by moveable splitters, as
shown in Figure B-1.

revision 20220124_182 26

Application Tuning Guide

Figure B-1: Dashboard with moveable splitters in their default positions

The panels shown in Figure B-1 are:
 l panel 1 – Functions panel

Consumption broken down by function. Displayed as a pie chart by default, but
can be displayed as a table using the drop-down selector in the top right corner.

 l panel 2 – Lines panel
Consumption broken down by line. Displayed as a table with lines presented in
order of decreasing CPU percentage consumed, but can be displayed as a pie chart
using the drop-down selector in the top right corner.

 l panel 3 – Line details panel
Only populated when a line is clicked in panel 2; displays the code of the function
in which the selected line appears.

 l panel 4 – Function details panel
Only populated when a function is clicked in panel 1; displays the code of the
selected function.

In Figure B-1, the Function details panel was populated by clicking on the pie segment for
#.SharpPlot.Plot in the Functions panel and the Line Details panel was populated by
clicking on the row for #.SharpPlot.Plot[174] in the table in the Lines panel.

revision 20220124_182 27

Application Tuning Guide

B.2 Display Options
The information presented in the four panels can be configured using the options
described in this section.

Immediately above the Lines panel are two drop-down lists:
 l Pcts of – how the percentages listed in tables and as labels on pie charts are

computed:
 o Total: The given percentage is the percentage of overall consumption. This

is the default.
 o Selection: The given percentage is the percentage of consumption of the

function currently being displayed.
 l Showing – whether tables report time consumed inclusive or exclusive of time

consumed in any sub-functions called (pie charts always report exclusive time):
 o Exclusive: Show the consumption of each line or function excluding time

consumed in any sub-functions called. This is the default.
 o Inclusive: Show the consumption of each line or function including time

consumed in any sub-functions called.

Changing the selections in these drop-down lists changes the display in the Functions
panel and Lines panel.

The Functions panel and Lines panel each have a drop-down list in the top-right corner:
 l Table – if selected, functions/lines are displayed in tabular form. Left-clicking a

row in a table displays information related to that row's function/line in the
Function details/Line details panel. This is the default for the Lines panel.

 l Pie – if selected, functions/lines are displayed in a pie chart with segment sizes
related to CPU percentage consumed. Left-clicking a segment in a pie chart
displays information related to that segment's function/line in the Function
details/Line details panel. This is the default for the Functions panel.

The Function details panel and Line details panel each have two check boxes in the top-
right corner:

 l Blanks/comments – if selected, the details presented will include lines that are
blank or only comprise a comment. The default is for these to be omitted.

 l Lines not called – if selected, any lines that were not called at all when running the
function will be included. The default is for these to be omitted.

revision 20220124_182 28

Application Tuning Guide

B.3 Navigating the Functions/Lines
A left-click in a pie segment (or on its label) or table row displays the source code for the
selected function/line in the quadrant below. A double-click drills down on the relevant
function/line (if possible) and updates all quadrants accordingly. Drilling down always
allows indirect calls.

B.3.1 Breadcrumb Trail

Immediately above the panelled body of the Dashboard (see Section B.1) is a breadcrumb
trail describing the function currently displayed in the panels. At the end of this
breadcrumb trail is a label that reports the percentage of the overall consumption that
this function accounts for. Figure B-2 shows an example breadcrumb trail.

Figure B-2: Example breadcrumb trail in the Dashboard

Each breadcrumb in the trail has one of the following symbol/highlighting colour
combinations:

 l A right arrow (→) and blue highlighting indicate a direct call to a function without
intermediate functions.

 l A star (*) and green highlighting indicate a call sequence in which other functions
could have been called.

 l An upwards arrow (↑) and pink highlighting indicate a "show calls" step has been
made, that is, consumption is displayed according to the functions/lines that have
called the relevant function/line (see Section B.3.2).

Clicking a function in the breadcrumb trail displays that function in the panels.

B.3.2 Right-click Menu

A right-click in a pie segment (or on its label) or table row displays a pop-up menu with
the following options, each of which impacts one or more panels of the display:

 l Drill Down – Drills down one level on the relevant function/line (equivalent to
double-clicking on the relevant segment/label/row). This option is only included in
the pop-up menu when it is possible to drill down.

 l Make Root – Only displays consumption that originates in the relevant
function/line.

 l Show Calls – Breaks down consumption according to the functions/lines that have
called the relevant function/line (higher levels of filtering are retained).

 l Reset – Returns to the starting position.

revision 20220124_182 29

Application Tuning Guide

 l Up 1 Level – Drills up one level (equivalent to clicking on the penultimate
breadcrumb in the breadcrumb trail). This option is only included in the pop-up
menu when it is possible to drill up.

B.4 Menu Bar
This section details the options available under each of the menu items in the menu bar.

B.4.1 File Menu

The options available under the File menu are detailed in Table B-1.

Item Description

Open
Opens an explorer window from which an XML file can be selected and
analysed.
Equivalent to starting the Dashboard with the -infile modifier set.

Save
Saves the current dataset.
Equivalent to calling the]Profile user command with the -outfile
modifier set.

Reset
Returns the Dashboard to its the initial state, displaying the initial top-level
function in four panels (as shown in Figure 4-1).

Exit Terminates the Dashboard and returns to the Dyalog Session.

Table B-1: File menu options

For panel number references, see Section B.1.

B.4.2 Windows Menu

The options available under the Windows menu are detailed in Table B-2.

Item Description

Reset
Positions the vertical and horizontal splitters in their default position, as
seen when first opening the Dashboard, and display the first function in
the breadcrumb trail.

Table B-2: Windows menu options

revision 20220124_182 30

Application Tuning Guide

Item Description

Functions

Moves the vertical splitter to the right hand edge of the Dashboard,
displaying only the functions panels (panels 1 and 4).
This can also be achieved by double-clicking at the top of the Functions
panel (panel 1).

Function
Details

Moves the vertical splitter to the right-hand edge of the Dashboard and
the horizontal splitter to the top of the Dashboard, displaying only the
Function details panel (panel 4).
This can also be achieved by double-clicking at the top of the Function
details panel (panel 4).

Lines

Moves the vertical splitter to the left-hand edge of the Dashboard,
displaying only the lines panels (panels 2 and 3).
This can also be achieved by double-clicking at the top of the Lines panel
(panel 2).

Line Details

Moves the vertical splitter to the left-hand edge of the Dashboard and
the horizontal splitter to the top of the Dashboard, displaying only the
Line details panel (panel 3).
This can also be achieved by double-clicking at the top of the Line details
panel (panel 3).

Table B-2: Windows menu options (continued)

For panel number references, see Section B.1.

B.4.3 Help Menu

The options available under the Help menu are detailed in Table B-3.

Item Description

About
Displays the version number of the]PROFILE user command and the
corresponding user command framework.

Table B-3: Help menu options

revision 20220124_182 31

Application Tuning Guide

B.5 Single Function Mode
If the data set only pertains to a single function, then the dashboard displays two panels
rather than four (as shown in Figure B-3). In this situation, the panel on the left displays
the detailed view of the function body (equivalent to panel 3 or 4 in Figure B-1); the
panel on the right displays the Lines panel (equivalent to panel 2 in Figure B-1).

EXAMPLE

)LOAD dfns
]Profile -expr="⍴queens 8"

Figure B-3: Dashboard in single function mode

revision 20220124_182 32

Application Tuning Guide

	1 About This Document
	1.1 Audience
	1.2 Conventions

	2 Introduction
	3 Data Collection
	3.1 Before Initiating the Collection of Data
	3.2 Initiating the Collection of Data
	3.3 Collecting Data
	3.4 Stopping the Collection of Data
	3.5 Timer Overhead

	4 Data Reporting
	4.1 Textual Reports
	4.2 Graphical Reports

	5 Data Storage
	5.1 XML Format
	5.1.1 Example XML Files

	5.2 CSV Format
	5.2.1 Example CSV Files

	5.3 Text Format
	5.3.1 Example Text Files

	A Syntax of the]Profile User Command
	A.1 Report Types
	A.2 Modifiers
	A.3 Examples

	B The Dashboard
	B.1 Panels
	B.2 Display Options
	B.3 Navigating the Functions/Lines
	B.3.1 Breadcrumb Trail
	B.3.2 Right-click Menu

	B.4 Menu Bar
	B.4.1 File Menu
	B.4.2 Windows Menu
	B.4.3 Help Menu

	B.5 Single Function Mode

