
User Commands
User Guide

User Commands version 2.5

The tool of thought for software solutions

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2021 by Dyalog Limited
All rights reserved.

User Commands User Guide

User Commands version 2.5
Document Revision: 20220124_250

Unless stated otherwise, all examples in this document assume that ⎕IO ⎕ML ← 1

No part of this publication may be reproduced in any form by any means without the prior
written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Array Editor is copyright of davidliebtag.com
Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle®, Javascript™ and Java™ are registered trademarks of Oracle and/or its affiliates.
UNIX® is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark of Microsoft Corporation in the United States and
other countries.
macOS® and OS X® (operating system software) are trademarks of Apple Inc., registered
in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Contents

1 About This Document 1
1.1 Audience 1
1.2 Conventions 1

2 Introduction 3
2.1 Cache File 3

2.1.1 Defining the UCMDCACHEFILE Environment Variable 4
3 Using User Commands 6

3.1 Installation 6
3.2 Directory Structure 6
3.3 Implementation 6

3.3.1 Customising the Implementation 7
3.4 File Format 8
3.5 Groups 8
3.6 Syntax in Dyalog Sessions 9
3.7 Running User Commands 10

3.7.1 Arguments 10
3.7.2 Modifiers and Modifier Values 10
3.7.3 Errors when Running a User Command 11

4 Creating User Commands 12
4.1 Basic Definition 12
4.2 The List Function 13

4.2.1 Name 14
4.2.2 Group 14
4.2.3 Parse 14

4.3 The Run Function 15
4.3.1 Defining Multiple Levels of Help 15

4.4 The Help Function 17
4.5 Modifiers 18

4.5.1 Default Modifier Values 19
4.6 Arguments 20

4.6.1 Default Argument Values 21
4.6.2 Arguments Including Space Characters 21
4.6.3 Minimum Number of Arguments 21
4.6.4 Maximum Number of Arguments 22
4.6.5 Long Arguments 22
4.6.6 Summary of Argument Specification in the Parser 22

4.7 Saving Custom User Commands 23

User Commands User Guide

revision 20220124_250 i

4.8 Detecting New Custom User Commands 23
A SAMPLES Group 25

A.1]UCMDHelp 25
A.2]UCMDNoParsing 25
A.3]UCMDParsing 26

B Example User Commands 27
B.1 Example: Basic User Command Definition 27
B.2 Example: Cross-Operating System Definition 28
B.3 Example: Optional Arguments 31
B.4 Example: The Parse Variable 34
B.5 Example: Debugging a User Command 36

Index 40

User Commands User Guide

revision 20220124_250 ii

1 About This Document

This document introduces user commands and describes how to create/implement new
user commands.

1.1 Audience
It is assumed that the reader has a reasonable understanding of Dyalog.

For information on the resources available to help develop your Dyalog knowledge, see
https://www.dyalog.com/introduction.htm.

1.2 Conventions
Unless explicitly stated otherwise, all examples in Dyalog documentation assume that
⎕IO and ⎕ML are both 1.

Various icons are used in this document to emphasise specific material.

General note icons, and the type of material that they are used to emphasise, include:

Hints, tips, best practice and recommendations from Dyalog Ltd.

Information note highlighting material of particular significance or relevance.

Legacy information pertaining to behaviour in earlier releases of Dyalog or to
functionality that still exists but has been superseded and is no longer
recommended.

Warnings about actions that can impact the behaviour of Dyalog or have
unforeseen consequences.

revision 20220124_250 1

User Commands User Guide

https://www.dyalog.com/introduction.htm

Although the Dyalog programming language is identical on all platforms, differences do
exist in the way some functionality is implemented and in the tools and interfaces that
are available. A full list of the platforms on which Dyalog version 18.2 is supported is
available at https://www.dyalog.com/dyalog/current-platforms.htm. Within this
document, differences in behaviour between operating systems are identified with the
following icons (representing macOS, Linux, UNIX and Microsoft Windows respectively):

revision 20220124_250 2

User Commands User Guide

https://www.dyalog.com/dyalog/current-platforms.htm

2 Introduction

User commands are tools that are available at any time, in any workspace, as extensions
to the Dyalog development environment. The text-based implementation of user
commands allows development tools to be easily shared between users, and the ability
to create custom user commands in addition to the predefined user commands that are
supplied with Dyalog means that it is simple to write utility tools for your environment
that can be easily issued to an entire development team.

User commands are entered in an APL Session by starting an input line with a]
character, for example:
]ToHex 250+⍳5
 FB FC FD FE FF

2.1 Cache File
The first time that you start a Dyalog Session after installing Dyalog, a cache file is
created comprising the name of each of the user commands and the file in which it is
defined. This can take a few seconds. If any of the files that contain user commands are
altered or a new file containing user commands is created, then the cache file is rebuilt:

 l the next time a Dyalog Session is started.
 l when the]UReset user command is run (forces an in-Session recache).
 l if a user attempts to run (or get help about) a user command that is not in the

cache.

The cache file is also rebuilt if a user command is called after updating the cmddir global
parameter (using the]Settings user command – for more information enter
]Settings cmddir -? in a Session).

The default name for the cache file uses the following syntax: UserCommand
<UcmdMajor><UcmdMinor>.<DyalogMajor><DyalogMinor><U|C><bits>.cache. For
example, the cache file for the user command framework v2.5, which accompanies
Dyalog v18.2, on a 64-bit Unicode system, would be UserCommand25.182U64.cache.

revision 20220124_250 3

User Commands User Guide

By default, the cache file is located in Documents\Dyalog APL <version> Files\

By default, the cache file is located in $HOME/.dyalog/

By default, the cache file is located in Users/<name>/.dyalog/

The name and location of the cache file can be changed from its default by setting the
UCMDCACHEFILE environment variable.

2.1.1 Defining the UCMDCACHEFILE Environment Variable

The name and location of the cache file can be changed from its default by setting the
UCMDCACHEFILE environment variable.

Defining an environment variable is operating system-specific.

To define the UCMDCACHEFILE environment variable on Microsoft Windows
(permanent method)

 1. Open the Control Panel and click on the System icon.
The System window is displayed.

 2. In the Control Panel Home pane, click Advanced system settings.
The System Properties window is displayed.

 3. Navigate to the Advanced tab of the System Properties window.
 4. Click Environment Variables....

The Environment Variables dialog box is displayed.
 5. In the User variables for <user> pane, click New....

The New User Variable dialog box is displayed.
 6. In the Variable name field, enter UCMDCACHEFILE.
 7. In the Variable value field, enter <full path>\<cache file name> of the user

commands cache file.
 8. Click OK to create the new environment variable and exit the New User Variable

dialog box.
 9. Click OK to exit the Environment Variables dialog box.

 10. Click OK to exit the System Properties window.
 11. Close the System window.

revision 20220124_250 4

User Commands User Guide

To define the UCMDCACHEFILE environment variable on Microsoft Windows
(temporary method – for session duration only)

 1. Open the cmd.exe application.
 2. At the command prompt, enter:

dyalog.exe UCMDCACHEFILE=[UCMDCACHEFILE]

where [UCMDCACHEFILE] is the new <full path>\<cache file name> of the user
commands cache file.

To define the UCMDCACHEFILE environment variable on Linux and macOS (permanent
method)

 1. Open the $HOME/.dyalog/dyalog.config file in your preferred text editor.
 2. Add the following:

export UCMDCACHEFILE=[UCMDCACHEFILE]

where [UCMDCACHEFILE] is the new <full path>/<cache file name> of the user
commands cache file.

To define the UCMDCACHEFILE environment variable on Linux (temporary method –
for session duration only)

 1. Open a shell.
 2. At the command prompt, enter:

UCMDCACHEFILE=[UCMDCACHEFILE] dyalog

where [UCMDCACHEFILE] is the new <full path>/<cache file name> of the user
commands cache file.

revision 20220124_250 5

User Commands User Guide

3 Using User Commands

This chapter introduces some of the concepts that underpin user commands in Dyalog.

3.1 Installation
A set of predefined user commands is installed automatically with Dyalog.

Updates to the set of predefined user commands can be downloaded from
https://www.dyalog.com/tools/user-commands.htm.

3.2 Directory Structure
The [DYALOG]\SALT\spice directory contains the predefined user commands that are
installed with Dyalog.

The spice directory can only be moved to a different location by moving its parent SALT
directory and setting the SALT environment variable accordingly. For information on
moving the SALT directory and setting the environment variable, see the SALT User
Guide.

Although the spice directory can be moved, it must always remain directly
beneath the SALT directory and must not be renamed.

3.3 Implementation
When an input line in a Session starts with a] character, Dyalog looks for the function
⎕SE.UCMD:

 l if this function exists, then it is called with the rest of the input line as the right
argument and a reference to calling space as the left argument.

 l if this function does not exist, then user commands are disabled.

revision 20220124_250 6

User Commands User Guide

https://www.dyalog.com/tools/user-commands.htm

This implementation means that application code can invoke user commands by calling
⎕SE.UCMD directly.

Dyalog Ltd reserves the right to change the implementation of the user command
framework.

EXAMPLE

The following command is entered while in a namespace:
]<ucmd> <-myModifier>=<value>

Dyalog's interpreter preserves this exactly and makes the following call:
⎕THIS ⎕SE.UCMD '<ucmd> <-myModifier>=<value>'

⎕SE.UCMD converts this into a call to the user command framework; the functions
defined for <ucmd> are actioned with the <-myModifier> modifier applied with a value
of <value> and the result is displayed in the Session.

EXAMPLE

The result of <ucmd> is assigned to a variable called <variable>:
]<variable>←<ucmd> <–myModifier>=<value>

Dyalog's interpreter preserves this exactly and makes the following call:
⎕THIS ⎕SE.UCMD '<variable>←<ucmd> <–myModifier>=<value>'

⎕SE.UCMD converts this into a call to the user command framework; the functions
defined for <ucmd> are actioned with the <-myModifier> modifier applied with a value
of <value> and the result is assigned to <variable>.

If <variable> was not included then the result of <ucmd> would be discarded and not
shown in the Session, although any non-result output generated would be displayed.

3.3.1 Customising the Implementation

Although it is possible to implement a custom user command system by redefining
⎕SE.UCMD, Dyalog Ltd does not recommend this approach – adhering to the user
command framework supplied with Dyalog promotes a single, consistent, format that
enables all custom user commands to be shared between Dyalog Sessions.

revision 20220124_250 7

User Commands User Guide

3.4 File Format
Each user command comprises a script containing a single namespace object (for more
information on scripted files, including declaration statements and permitted constructs,
see the Dyalog Programming Reference Guide) and must be stored as files with the
 .dyalog extension.

If an extension is not specified when using the]Snap or]Save user commands to
save a script file, then .dyalog is automatically appended.

By default, double-clicking on a .dyalog file opens that file using the standalone
editor.

Files with the .dyalog extension are Unicode text files. This means that they can store any
text that uses Unicode characters. This format includes most of the world's languages
and the Dyalog character set, and is supported by many software applications. By using
text files as a storage mechanism, user commands and other tools written using Dyalog
can be combined with industry-standard tools for source code management.

3.5 Groups
User commands with common features can be grouped together under a single name.
These groups have no effect on the functionality of the individual user commands but
enable related user commands to be gathered together for ease of reference and provide
a means of sorting and classifying user commands that can be very useful as the number
of user commands increases.

User command names must be unique within a group but do not have to be unique
across all groups. This means that groups allow a systematic naming convention for user
commands that perform similar functions on different types of APL object, for example,
the predefined user command]FILE.Compare compares two files,]ARRAY.Compare
compares two arrays and]FN.Compare compares two functions.

Although a user command can have the same name as its group (or another
group), Dyalog Ltd does not recommend this as it can introduce ambiguity to a
user reading the code.

When running (or asking for help on) a user command, the group name can be prefixed
to the user command name, separated by a . character; this group name prefix is
mandatory if the user command name is not unique across all groups.

revision 20220124_250 8

User Commands User Guide

Every user command must be in a group, and every group must comprise at least one
user command.

3.6 Syntax in Dyalog Sessions
User commands are entered in a Dyalog Session with a preceding right bracket. The basic
syntax is as follows:

 l to run a user command:]<ucmd>...
 l to display general help information:]
 l to list all user commands in their groups (without descriptions):]-?
 l to list all user commands in their groups (with descriptions):]-??
 l to list all the available commands in a specific group:]<groupname> -?
 l to display information for a specific user command:]<ucmd> -?
 l to list all the available user commands defined in .dyalog files in a specific

directory:
]<full path to directory>/<directory name> -?

 l to list all user commands or groups that match pattern X*YZ*(* is a wildcard):
]X*YZ* -?

 l to assign the result of a user command to a variable:]<var>←<ucmd>...
 l to discard the result of a user command:]←<ucmd>...

Multiple levels of help can be defined for each user command; the information that is
returned is dependent on the level of help requested. The level is defined to be 1 less
than the number of ? characters entered after the - character. For example:

 l level 0:]<ucmd> -? or]Help]<ucmd>
 l level 1:]<ucmd> -?? or]Help]<ucmd> -page=2
 l level 2:]<ucmd> -??? or]Help]<ucmd> -page=3

The number of levels of help available depends on a user command's definition (for
information on defining multiple levels of help in custom user commands, see
Section 4.3.1).

The names of user commands and groups are not case-sensitive although their
arguments, modifiers and modifier values might be. The convention used in this
document is that group names are shown in UPPERCASE and user command
names are shown in Upper CamelCase.

revision 20220124_250 9

User Commands User Guide

3.7 Running User Commands
User commands are run with the following syntax:
]<ucmd> <-modifiers/arguments>

For information on the precise syntax for each user command, the arguments that can be
supplied to it and the modifiers that it can take, enter]<ucmd> -? or]Help
]<ucmd> in a Dyalog Session.

When running a user command, the name of that command must be entered in full.

Dyalog's auto-complete functionality means that any user commands that match
the entered text are presented as selectable options, making it easy to correctly
specify the requisite user command. (Auto-completion is not available in the TTY
version of Dyalog.)

The names of user commands are not case-sensitive although their arguments,
modifiers and modifier values might be.

3.7.1 Arguments

Some user commands can accept (or require) one or more arguments. To see a list of the
possible arguments for a user command, enter]<ucmd> -? or]Help]<ucmd> in a
Dyalog Session.

For example, the behaviour of the user command]CD depends on the argument
supplied when calling it. If it is run with no argument, then it returns the current working
directory – this is equivalent to entering cd on the command line of a Microsoft Windows
operating system or pwd in UNIX. However, if a single argument specifying the full path
to a directory is supplied, then the user command changes the current working directory
to be the one specified by the argument.

3.7.2 Modifiers and Modifier Values

The default behaviour of a user command can be altered through the application of
modifiers (instructions that the command should change its default behaviour).

Modifiers must be prefixed with the – character and are separated from any associated
modifier values with the = character, for example, -version=3 or -format=APL. A
modifier that does not accept a modifier value but can only be present or absent is
sometimes referred to as a flag or a switch, for example, -protect.

revision 20220124_250 10

User Commands User Guide

When running a user command with a specified modifier, the name of the modifier does
not always need to be entered in full as long as enough of the modifier's name is entered
for it to be interpreted unambiguously. For example, if a user command has a modifier
called -version and does not have any other modifiers starting with the letter v then
the function can be successfully called with modifiers -version, -vers, -v, and so on.

Multiple modifiers can be included in a user command call – in this situation they must
be separated by a space character. The order in which they are specified is irrelevant.

3.7.3 Errors when Running a User Command

The]UDebug user command facilitates the debugging of user commands – switching this
on (]UDebug on) enables suspension inside a user command's execution.

If an error is generated when running a user command, then ⎕DMX is cloned to
⎕SE.SALTUtils.dmx; this means that information pertaining to the error is retained
even after the user command framework clears ⎕DMX.

EXAMPLE

This example shows that information pertaining to the length error is not available from
⎕DMX but can be retrieved from ⎕SE.SALTUtils.dmx:

]Disp 1 2+3 4 5
 * Command Execution Failed: LENGTH ERROR

 ⎕DMX

 ⎕SE.SALTUtils.dmx
 EM LENGTH ERROR
 Message Mismatched left and right argument shapes

revision 20220124_250 11

User Commands User Guide

4 Creating User Commands

When an instruction is called repeatedly it can improve efficiency to have that instruction
in a script file. The user command framework provides a very efficient mechanism for
doing this, allowing a user to create and update instructions without the necessity of
maintaining a workspace. Unlike a workspace, user commands do not need to be loaded
into each Session. In addition, their text-based implementation makes them easy to store
in a repository and share between users.

This chapter describes the syntax, rules and conventions governing the creation of
custom user commands.

4.1 Basic Definition
A new user command can be defined in several ways, for example:

 l in a text file (for example, using Microsoft Notepad) and then saved as a .dyalog
file

 l in a Dyalog Session and saved as a .dyalog file using the]Save user command.
 l in a Dyalog Session using the]UNew user command – for more information enter

]UNew -? in a Session.

Once in the appropriate directory (see Section 4.7), the new user command can be run
from the Dyalog Session.

revision 20220124_250 12

User Commands User Guide

The script for Dyalog's predefined user commands can be a useful starting point
when creating a new user command. The location of an existing user command's
script can be found in the following ways:

 l]UVersion <ucmd> returns the script location for the specified user
command

 l]ULoad <ucmd> loads the script for the specified user command into the
active workspace and returns the script location.

 l]<ucmd> -? returns the script location for the specified user command if
]UDebug is on.

User commands are defined by three specific APL functions (along with any additional
functions needed for the particular purpose of the user command). The three functions
must be called:

 l List – for information on the List function, see Section 4.2.
 l Run – for information on the Run function, see Section 4.3.
 l Help – for information on the Help function, see Section 4.4.

These functions are wrapped together in a namespace (the order in which the functions
are specified within the namespace is not important). A single namespace can host
multiple user commands, but must only have one instance of each of the three functions
irrespective of how many user commands it contains. (Although a class can be used
instead of a namespace, a namespace is the recommended approach.)

See Appendix A for some sample user commands that demonstrate the use of
multiple levels of help and parsing user command lines. See Appendix B for some
examples of user commands wrapped in a namespace – these show how the
List, Help and Run functions are defined.

4.2 The List Function
The List function informs the user command framework about the command being
defined, enabling it to display a summary of the command when requested to list all
available commands (] -?), optionally with descriptions (] -??) .

The List function is niladic and returns one namespace for each user command defined
within it. Each namespace contains four variables:

 l Desc – a summary of the user command's functionality
 l Name – the name of the user command (see Section 4.2.1)
 l Group – the name of the group to which the command belongs (see Section 4.2.2)
 l Parse – parsing information for the framework (see Section 4.2.3)

revision 20220124_250 13

User Commands User Guide

4.2.1 Name

User commands must have unique names within a group (names can be replicated across
different groups if required). They must be valid APL identifier names (for more
information on legal names, see the Dyalog Programming Reference Guide).

Modifiers must have unique names within the user command but do not have to be
unique within the superset of user commands. Modifier names are case-sensitive; Dyalog
recommends using lowercase characters only.

The names of user commands and modifiers cannot contain space characters.

When naming a modifier, avoid the names arguments, delim, propagate, swd and
switch as these names are used by the parser.

4.2.2 Group

Every user command must be a member of a group (but can only be a member of one
group). In addition:

 l the user commands for a single group do not all need to be defined within a single
namespace/.dyalog file

 l a single namespace/.dyalog file can include user commands for several different
groups

 l user command names must be unique within a group but do not have to be
unique across all groups (however, custom user commands should not be given
the same name as any of the predefined user commands within the SALT group).

Although it is possible to add a custom user command to one of the predefined
user command groups, Dyalog Ltd recommends that this is avoided as there could
be unforeseen consequences (especially with the LINK, SALT and UCMD groups).

4.2.3 Parse

If the Parse variable for a user command is empty, then the Run function's second
argument will comprise everything following the command name. By setting the Parse
variable to non-empty values, the user command framework is able to handle arguments
and modifiers. For more information on modifiers and modifier values, see Section 4.5.
For more information on arguments, see Section 4.6.

The following general rules apply when processing a call to a user command:
 l user commands take 0 or more arguments and 0 or more modifiers
 l individual arguments and modifiers are separated by space characters

revision 20220124_250 14

User Commands User Guide

 l arguments and modifiers can be specified in any order
 l arguments can be optional or mandatory
 l modifiers are identified by a preceding - character
 l modifier values are identified by a preceding = character
 l modifier names are case-sensitive
 l individual arguments and modifier values can be delimited by single or double

quotes to allow leading/trailing/internal space characters or to allow arguments
that have a leading - character.

The user command framework verifies that these rules have been adhered to before
creating a new namespace. It then populates this namespace with a variable called
Arguments (containing all the arguments) and a variable for each of the modifiers with
names matching those of the modifiers. Other manipulation tools are also added to the
namespace, for example, the Switch function – see Section 4.5.1. This namespace is
passed to the Run function (see Section 4.3) as its second argument.

If the Parse variable defined in a user command's List function is empty, then the user
command will accept anything; the entire character vector is the argument.

If the Parse variable defined in a user command's List function is not empty, then it
must describe the number of arguments and the modifiers used. The number of
arguments is a simple number and the list of modifiers must include, for each modifier,
its name, whether it accepts a value and, optionally, any restrictions for that value.

4.3 The Run Function
The Run function executes the code for the command. It is always called monadically
with a two-element vector argument; the user command's name and the supplied
arguments/modifiers. As a single namespace can host multiple user commands, the Run
function uses the command name to determine the appropriate actions to perform.

4.3.1 Defining Multiple Levels of Help
See Appendix A for some sample user commands that demonstrate the use of
multiple levels of help.

The specific defined help information that is presented to a user when requesting help in
a Dyalog Session is dependent on the level of help requested. This level is defined to be 1
less than the number of ? characters entered after the - character; for example,
]<ucmd> -?? returns the information defined for level 1 of the <ucmd> user command.

revision 20220124_250 15

User Commands User Guide

As with the predefined user commands, increasingly detailed levels of information can be
provided for custom user commands. If multiple levels of help are defined, then Dyalog
Ltd recommends including information to that effect in each level, for example, the
information that is displayed in response to a]<ucmd> -?? request should state that
more detailed information is available if]<ucmd> -??? is entered.

Any valid Dyalog algorithmic syntax can be used in the Help function to define different
levels of help, for example, control structures or branching. Optionally, the different
levels of help can be cumulative so that, for example,]<ucmd> -??? returns the help
information for levels 0 and 1 as well as the help for level 2.

The following code fragment is an example showing how separate (non-cumulative)
levels of help can be defined within the Help function:
∇ r←level Help Cmd
 :Select level
 :Case 0
 r←⊂'This is basic help.'
 :Case 1
 r←⊂'This is level 1 help.'
 :Case 2
 r←⊂'This is level 2 help.'
 :Else
 r←⊂'This is level 3 help.'
 :EndSelect
∇

In this case:
 l]<ucmd> -? gives This is basic help.
 l]<ucmd> -?? gives This is level 1 help.
 l]<ucmd> -??? gives This is level 2 help.
 l]<ucmd> -???? gives This is level 3 help.
 l]<ucmd> -????? gives This is level 3 help.

The :Else control structure in the code fragment ensures that requests for higher
levels of help than are defined return the highest-defined level rather than
generating an error message.

revision 20220124_250 16

User Commands User Guide

The following code fragment is an example showing how cumulative levels of help can be
defined within the Help function:
∇ r←level Help Cmd
 r←⊂'This is basic help.'
 r,←⊂'This is level 1 help.'
 r,←⊂'This is level 2 help.'
 r,←⊂'This is level 3 help.'
 r←((1+level)⌊≢r)↑r
 ∇

In these cases:
 l]<ucmd> -? gives

This is basic help.

 l]<ucmd> -?? gives
This is basic help.
This is level 1 help.

 l]<ucmd> -??? gives
This is basic help.
This is level 1 help.
This is level 2 help.

 l]<ucmd> -???? gives
This is basic help.
This is level 1 help.
This is level 2 help.
This is level 3 help.

 l]<ucmd> -????? gives
This is basic help.
This is level 1 help.
This is level 2 help.
This is level 3 help.

Entering]Help]<ucmd> in a Dyalog Session always presents the user with the
same level of help as]<ucmd> -? even if there are multiple levels of help
defined.

4.4 The Help Function
The Help function reports detailed information on the user command when this is
requested (by entering]<ucmd> -? or]Help]<ucmd> in a Dyalog Session). It is called
dyadically; the left argument is the level and the right argument is the name of the user
command.

revision 20220124_250 17

User Commands User Guide

As a single namespace can host multiple user commands, the Help function uses the
command name to determine the appropriate information to return.

When a user requests help for a particular user command, the Help function returns a
specific set of information by default:
]<GROUPNAME>.<commandname>

<specific defined help information>

If]UDebug is on, then the Help function returns an enhanced set of information by
default:

]<GROUPNAME>.<commandname>

Source: <location of the user command's script file>
Version: <version number of the user command>
Syntax: <number of arguments> only if arguments can be specified
Accepts modifiers <list of all modifiers> only if modifiers can be specified
 <modifier restrictions> only if modifiers exist that have restrictions

<specific defined help information>

4.5 Modifiers
Modifiers enable a user command to apply filters and rules so that an entirely new
(similar) user command does not need to be written. The user command framework
allows you to define the modifiers that your user command will accept. The rules when
defining each modifier in the Parse variable are:

 l If a modifier accepts characters in a set, then the Parse variable includes the
modifier and possible values with the ∊ character as a separator. For example:
-<modifier name>∊<set of characters>

so -XYZ∊abc012 means that the modifier -XYZ can accept any number and
combination of characters in the set abc012, such as ab2a0b.

 l If a modifier accepts specific character vectors, then the Parse variable includes
the modifier and possible values with the = character as a separator and the
character vectors separated by space characters. For example:
-<modifier name>=<charvec1> <charvec2> <charvec3>

so -XYZ=abc 012 means that the modifier -XYZ can accept either abc or 012 as
a modifier value.

revision 20220124_250 18

User Commands User Guide

 l If a modifier accepts any character vector, then the Parse variable includes the
modifier and a = character with nothing after it. For example:
-<modifier name>=

so -XYZ= means that the modifier -XYZ can accept any value.

For each of these three rules, enclosing the separator character within square brackets
means that specification of modifier values is optional. For example,-XYZ[=] means that
the modifier -XYZ can be specified without a value but will accept any value.

4.5.1 Default Modifier Values

A modifier always has an internal value. This is one of the following:
 l 0 if the modifier is not included when running the user command
 l 1 if the modifier is included when running the user command but no modifier

value is included
 l a character vector matching the specified modifier value

A modifier can be configured to default to a specific value in one of three ways; these
approaches are shown in this section with the modifier –X defaulting to a modifier value
of 123 (a three-element character vector).

Approach 1: Assign a default value to the modifier using the ":" character as the
separator:

List[i].Parse←'-X:123'

With this approach, the default value is reported only if the modifier is not used; a value
of 1 is reported if the modifier is used but no value is specified.

Approach 2: Test whether the modifier value is 0 and, if it is, then set it to the required
default value.

For example:

:if X≡0 ⋄ X←'123' ⋄ :endif

Approach 3: Define the default value using the dyadic form of the Switch function
(automatically defined in the namespace that is passed to the Run function (see
Section 4.3) as its second argument).

revision 20220124_250 19

User Commands User Guide

Given the name of a modifier as a right argument:
 l monadic Switch returns:

 o 0 if an invalid modifier name is specified
 o 0 if the modifier is not specified and no default value has been set for that

modifier
 o 1 if the modifier is specified without a modifier value
 o a character vector matching the specified modifier value
 o a character vector matching the default modifier value if a modifier is not

specified but a default value has been set for that modifier
 l dyadic Switch returns:

 o the value of the left argument (default value) if an invalid modifier value is
specified

 o the value of the left argument (default value) if a modifier is not specified
and no default value has been set for that modifier

 o the specified modifier value if defined – however, if the value of the default
is numeric then it assumes that the specified modifier value should also be
numeric and transforms it into a number. This means that, if the modifier
and modifier value –X=123 is entered, the expression 99 Args.Switch
'X' will return (,123) not '123'; the Switch function always returns a
vector, making it very easy to differentiate between 0 (the modifier is not
included when running the user command) and ,0 (a modifier value of 0
was specified when running the user command).

4.6 Arguments
Unlike modifiers, arguments do not have names. However, as arguments must be
specified in a particular order and each have a specific purpose, they should be given an
appropriate name in the Help function to make their purpose clear.

The number of arguments that a user command can take is specified in the Parse
variable (see Section 4.2.3 – this explains the rules for determining the value to specify
there).

revision 20220124_250 20

User Commands User Guide

4.6.1 Default Argument Values

A default value can be defined for an argument – this value is automatically used if the
argument is not specified when running the user command. Default values are defined
within the Run function.

EXAMPLE

To set a default value of 'defaultfor4th' for the 4th argument:
args←a.Arguments,(⍴a.Arguments)↓0 0 0 'defaultfor4th'

where a is the second argument supplied to the Run function, that is the
arguments/modifiers supplied to the user command (see Section 4.3). In this example,
the first three arguments have their default values set to 0 if they are optional
arguments; if they are mandatory then any value specified here is ignored.

4.6.2 Arguments Including Space Characters

Arguments that contain space characters must be delimited with ' or " characters. For
example, if the user command]NewID must have 2 arguments supplied, full name and
address, then Parse should be set to '2' and the user command is run as follows:
]NewID 'Morten Kromberg' 'Dyalog Ltd'

If the user command]NewID accepts 3 arguments, firstname, surname and address,
then Parse should be set to '3' and the user command is run as follows:
]NewID Morten Kromberg 'Dyalog Ltd'

4.6.3 Minimum Number of Arguments

If a user command must have a minimum number of arguments, then Parse can be
coded to that effect by assigning it a range of numbers of arguments, that is:
Parse←'<min number of args>-<max number of args>'

A minimum number of arguments cannot be specified without also specifying a
maximum number of arguments. However, if there is no maximum number of arguments
then an arbitrary high number can be used. For example, if at least three arguments
must be supplied when calling a user command but there is no limit to the number of
arguments that the user command can process, then Parse could be assigned as
Parse←'3-9999'.

revision 20220124_250 21

User Commands User Guide

4.6.4 Maximum Number of Arguments

If a user command can only process a limited number of arguments, then Parse can be
coded to that effect by appending S to the maximum number of arguments. For
example, if the user command can accept 0, 1 or 2 arguments but no more, then Parse
should be set to '2S'.

4.6.5 Long Arguments

The last argument can be defined to comprise anything that remains after removing the
other arguments. Parse can be coded to that effect by appending L to the maximum
number of arguments – any additional arguments after the maximum number is reached
are merged into the last argument. For example, if the user command can accept 1
argument consisting of everything that is included when running the command, then
Parse should be set to '1L'.

The long argument L can be appended to the maximum number of arguments S (see
Section 4.6.4) to specify that any additional arguments after the maximum number has
been supplied should be merged into the last one supplied. For example, if '3SL' is
specified, then 0, 1, 2 or 3 arguments can be supplied when calling the user command
but any more than this will be merged with the third argument. This means that:
]cmd a1 a2 a3 a4 a5 a6

runs the user command cmd with three arguments: a1, a2 and 'a3 a4 a5 a6'.

4.6.6 Summary of Argument Specification in the Parser

Parse←'n' where n can be:
 l n1 : exactly n1 arguments must be supplied
 l n2-n3 : a minimum of n2 arguments and a maximum of n3 arguments can be

supplied
 l n4S : a maximum of n4 arguments can be supplied (equivalent to 0-n4)
 l n5L : n5 arguments must be supplied; if more than this are supplied then the first

n5-1 arguments are taken and the rest are merged together into the final n5
argument

 l n6-n7L : a minimum of n6 arguments and a maximum of n7 arguments can be
supplied; if more than this are supplied then the first n7-1 arguments are taken
and the rest are merged together into the final n7 argument

 l n8SL : a maximum of n8 arguments can be supplied; if more than this are supplied
then the first n8-1 arguments are taken and the rest are merged together into the
final n8 argument (equivalent to 0-n8L)

revision 20220124_250 22

User Commands User Guide

 l n9-n10L : a minimum of n9 arguments and a maximum of n10 arguments can be
supplied; if more than this are supplied then the first n10-1 arguments are taken
and the rest are merged together into the final n10 argument (equivalent to 0-
n10L)

4.7 Saving Custom User Commands
Custom user commands must be saved in a .dyalog file (if a custom user command has
been created in a namespace in a Dyalog Session, then it can be saved as a .dyalog file
using the]Save user command).

The predefined user commands are located in the [DYALOG]\SALT\spice directory.
Dyalog Ltd recommends that you save custom user commands in a different directory
that is not located beneath the SALT directory; this is because there might be
permissions issues with accessing custom commands beneath this directory and there is
always the possibility that Dyalog Ltd might issue a user command with the same
filename as your custom user command at a future date.

The custom user command directory must be added to the user command search path to
enable the user commands within it to be detected. To do this, use the]Settings user
command to set the cmddir global parameter to the full path and name of the directory
(for more information enter]Settings -? in a Session). The new directory is added to
the start of the list of directories, making it the first one searched.

When adding a new directory to the list of directories searched by the user
command framework, you must precede its path with a , character.

If the cmddir global parameter includes multiple directories, then the user
command framework searches the directories in the order listed (starting from the
left) and retrieves the first user command it finds with the specified name. To see
the list of directories (and the order in which they are searched), enter
]Settings cmddir.

If the]UNew user command is used to create and save a new user command, then its
location is automatically added to the list of directories searched.

4.8 Detecting New Custom User Commands
If the newcmd global parameter is set to auto and a user command is entered in a Dyalog
Session that the user command framework does not recognise, then the user command
directory(s) is scanned to locate new user commands that have been manually added.

revision 20220124_250 23

User Commands User Guide

However, if the newcmd global parameter is set to manual or a change is made to the
Help function or List function of an existing user command, then the user command
]UReset must be run to force a complete reload of all user commands.

In addition, new user commands that are placed in the MyUCMDs directory are
automatically active without needing to specify]Settings cmddir -permanent.

On the Linux operating system, the MyUCMDs directory is located directly under
the $HOME directory.

On the macOS operating system, the MyUCMDs directory is located directly under
the $HOME directory.

On the Microsoft Windows operating system, the MyUCMDs directory is located
directly under the %USERPROFILE%\Documents directory.

revision 20220124_250 24

User Commands User Guide

A SAMPLES Group

The SAMPLES group contains user commands that demonstrate the use of multiple levels
of help and parsing user command lines.

The user commands in this group are not like those in other groups; they do not provide
any useful functionality but their code can be examined to assist with understanding
when creating custom user commands. This can be achieved by opening them in any text
editor, for example, Microsoft Notepad.

This group is only available if]Settings cmddir ,[SALT]/study is issued.

A.1]UCMDHelp
An example of a custom user command that defines multiple levels of help information in
the Help function, selectable by the number of question marks supplied by the user, for
example,]<ucmd> -???.

To open the code for this user command in the Editor:
]ULoad UCMDHelp
 Namespace #.HelpExample now contains source for]SAMPLES.UCMDHelp
from <full path>\SALT\study\aSampleHelp.dyalog

)ED HelpExample

A.2]UCMDNoParsing
An example of a custom user command that does not use parsing; the argument is the
entire character vector after the command name.

revision 20220124_250 25

User Commands User Guide

To open the code for this user command in the Editor:
]ULoad UCMDNoParsing
 Namespace #.anyname now contains source for]SAMPLES.UCMDNoParsing
from <full path>\SALT\study\aSample.dyalog

)ED anyname

A.3]UCMDParsing
An example of a custom user command that uses parsing; the character vector after the
command name is parsed and turned into a namespace containing the arguments
(tokenised) and each of the identified modifiers.

To open the code for this user command in the Editor:
]ULoad UCMDParsing
 Namespace #.anyname now contains source for]SAMPLES.UCMDParsing
from <full path>\SALT\study\aSample.dyalog

)ED anyname

revision 20220124_250 26

User Commands User Guide

B Example User Commands

This appendix includes examples illustrating the construction of user commands.

The examples in this appendix have been created to illustrate different aspects of
user commands. This means that they do not necessarily follow an efficient
workflow process or best coding practice.

B.1 Example: Basic User Command Definition
This example illustrates the definition of a basic user command.

A new user command called Time is required to display the local time. The necessary
functions are defined in a namespace called timefns:
:Namespace timefns

 ⎕ML ⎕IO←1 ⍝ set to avoid inheriting external values

 ∇ r←List
 r←⎕NS¨1⍴⊂'' ⍝ r is a vector of length 1 with the
 ⍝ item set to be a ref to a namespace
 r.(Group Parse Name)←⊂'TimeGrp' '' 'Time'
 r[1].Desc←'Time example Script'
 ∇

 ∇ r←Run(Cmd Args)
 r←1↓,'⊂:⊃,ZI2'⎕FMT ⎕TS[4 5 6] ⍝ show time
 ∇

 ∇ r←Help Cmd
 r←']Time (no arguments)'
 ∇

:EndNamespace

revision 20220124_250 27

User Commands User Guide

In this example:
 l The List function sets the four variables Desc, Name, Group and Parse to

'Time example Script', 'Time', 'TimeGrp' and '' respectively.
 l The Run function only needs to call ⎕TS so the command name and any supplied

arguments are ignored. This function also formats the time into a user-friendly
format.

 l The Help function identifies that there is only one user command in the
namespace (there is only one user command name, Time, defined) and returns
the appropriate information for that user command.

Running this user command in a Dyalog Session returns three numbers; these three
numbers are the current time, indicating the hour (according to the 24 hour clock), the
number of minutes past the hour and the number of seconds elapsed respectively.

]Time -?
──
]TIMEGRP.Time

]Time (no arguments)

(the same result is returned if]Time -?? or]Help]Time is entered)

]Time
13:05:09

(indicating that the current system time is 13:05 and 9 seconds)

B.2 Example: Cross-Operating System Definition
This example illustrates the inclusion of two different user commands within a single
namespace, different techniques for achieving the same result depending on the
operating system being used and using breakout without user commands.

Although the current system time returned by the Time user command (see Section B.1)
is useful, it might be more relevant to have a choice of displaying local time or UTC
(Co-ordinated Universal Time). To do this, a new user command called UTC is required.
As this is closely related to the Time user command, it should be created in the same
namespace; this involves adding a new function called Zulu and modifying the Run,
List and Help functions.

revision 20220124_250 28

User Commands User Guide

To illustrate the ability of a user command to obtain information through a
breakout call to .NET, this example also includes options in the Run function that
are dependent on the operating system that the Dyalog Session is being run on
(.NET is only valid when running on the Microsoft Windows operating system).
These options ensure that the same user command is cross-system compatible for
Microsoft Windows and UNIX.

:Namespace timefns

 ⎕ML ⎕IO←1 ⍝ set to avoid inheriting external values
 ∇ r←List
 r←⎕NS¨2⍴⊂'' ⍝ r is a vector of length 2 with the
 ⍝ items set to be refs to namespaces
 r.(Group Parse)←⊂'TimeGrp' ''
 r.Name←'Time' 'UTC'
 r.Desc←'Show local time' 'Show UTC time'
 ∇

 ∇ r←Run(Cmd Args);dt
 :If 'Windows' ≡ 7↑⊃'.'⎕WG 'APLVERSION' ⍝ If Windows
 ⎕USING←'System'
 dt←DateTime.Now
 :If 'UTC'≡Cmd
 dt←Zulu dt
 :EndIf
 r←(r⍳' ')↓r←⍕dt
 :Else ⍝ If not Windows
 dt←('UTC'≡Cmd)/'TZ=UTC' ⍝ set timezone
 r←⊃⎕SH dt,' date +"%H:%M:%S"' ⍝ and get the time

 :EndIf
 ∇

 ∇ r←Help Cmd;which
 which←'Time' 'UTC'⍳⊂Cmd
 r←which⊃']Time (no arguments)' ']UTC (no arguments)'
 ∇

 ∇ r←Zulu date
 ⍝ Use .NET to retrieve UTC info
 r←TimeZone.CurrentTimeZone.ToUniversalTime date
 ∇

:EndNamespace

revision 20220124_250 29

User Commands User Guide

In this example:
 l The List function is amended to allow for two function definitions in the four

variable definitions:
 o Desc is set to to 'Show local time' 'Show UTC time' (two values,

therefore the first applies to the first user command and the second applies
to the second user command)

 o Name is set to 'Time' 'UTC' (two values, therefore the first applies to the
first user command and the second applies to the second user command)

 o Group is set to ⊂TimeGrp (only one value so applied to both user
commands)

 o Parse is set to '' (only one value so applied to both user commands)
 l The Run function is amended to use the Cmd argument to determine which user

command is being run (any further supplied arguments are still ignored). The
operating system on which the Dyalog Session is being run is then identified; this
determines whether to use the current system time or the APL system function
⎕TS. For example, if the UTC user command is being run on a Microsoft Windows
operating system, then the Run function calls the Zulu function. The Run function
also formats the resulting time into a more user-friendly format irrespective of the
operating system and user command.

 l The Help function is amended to enable it to identify that there are two user
commands in the namespace (there are two user command names, Time and
UTC, defined) and return the appropriate information according to which name is
specified.

 l The Zulu function is added to retrieve the UTC time through a .NET call – this
function is only called if the Run function identifies that the Dyalog Session is
running on a Microsoft Windows operating system and the]UTC user command is
specified.

After changing the code but before running these user commands, the]UReset
user command should be run to force a cache file update (otherwise the code
changes will not be detected).

The Time and UTC user commands can now be run from a Dyalog Session:
]TimeGrp -?

 TIMEGRP:
 Time Show local time in a city
 UTC Show UTC time

]Time -?
──
]TIMEGRP.Time

]Time (no arguments)

revision 20220124_250 30

User Commands User Guide

(the same result is returned if]Time -?? or]Help]Time is entered)

]Time
 13:17:34

(indicating that the current system time is 13:17 and 34 seconds)

]UTC -?
 ──
]TIMEGRP.UTC

]UTC (no arguments)

(the same result is returned if]UTC -?? or]Help]UTC is entered)

]UTC
 12:18:15

(indicating that the co-ordinated universal time is 12:18 and 15 seconds)

B.3 Example: Optional Arguments
This example illustrates the creation of a user command with an optional argument.

Although the Time and UTC user commands return the local time and UTC respectively
(see Section B.2), they only work for the location in which the system is located. To return
the time in different locations, new functions could be defined for each location and the
Run, List and Help functions modified accordingly. Alternatively, the Run function can
be modified to use the location as an argument to compute the time (this does not take
account of daylight saving time). Using this second approach the timefns.dyalog file can
be modified as follows (example assumes the Microsoft Windows operating system only):
:Namespace timefns

 ⎕ML ⎕IO←1 ⍝ set to avoid inheriting external values

 ∇ r←List
 r←⎕NS¨2⍴⊂'' ⍝ r is a vector of length 2 with the
 ⍝ items set to be refs to namespaces
 r.(Group Parse)←⊂'TimeGrp' ''
 r.Name←'Time' 'UTC'
 r.Desc←'Show local time in a city' 'Show UTC time'
 ∇

 ∇ r←Run(Cmd Args);dt;offset;cities;diff;city;lcity;ix

revision 20220124_250 31

User Commands User Guide

 ⎕USING←'System'
 dt←DateTime.Now
 :Select Cmd
 :Case 'UTC'
 dt←Zulu dt
 :Case 'Time'
 :If 0≠⍴city←Args~' '
 offset←CityTimeOffset city
 'Unknown city'⎕SIGNAL 11⍴⍨⍬≡offset
 diff←⎕NEW TimeSpan(3↑offset)
 dt←(Zulu dt)+diff
 :EndIf
 :EndSelect
 r←(r⍳' ')↓r←⍕dt
 ∇

 ∇ r←Help Cmd;which
 which←'Time' 'UTC'⍳⊂Cmd
 r←which⊃']Time [city]' ']UTC (no arguments)'
 ∇

 ∇ r←Zulu date
 ⍝ Use .NET to retrieve UTC info
 r←TimeZone.CurrentTimeZone.ToUniversalTime date
 ∇

 ∇ r←CityTimeOffset city;lcity;cities;ix;offsets
 cities←'l.a.' 'montreal' 'copenhagen' 'sydney'
 offsets←¯8 ¯5 1 10
 r←⍬ ⍝ Assume no match
 lcity←(819⌶)city ⍝ Name to lowercase
 ix←cities⍳⊂lcity ⍝ Find city in cities
 :If ix≤⍴cities ⍝ If present,
 r←ix⌷offsets ⍝ return the offset
 :EndIf ⍝ [else return ⍬]
 ∇

:EndNamespace

In this example:
 l The List function has one small amendment to the description of the Desc

variable for the first user command.
 l The Run function still uses the Cmd argument to determine which user command

is being run; different actions are taken according to which is specified. If the Cmd
argument is UTC then the function proceeds as before. However, if the Cmd
argument is Time then the function now takes the second argument into account

revision 20220124_250 32

User Commands User Guide

and passes it to the CityTimeOffset function (the Args~' ' expression
removes any extraneous spaces in the name of the city, so that a user can enter
(for example) 'l.a.' or 'l. a.' and get a valid result) If the CityTimeOffset
function returns an offset value then the Run function uses this to calculate the
time in the specified city, otherwise it generates an "Unknown city" error
message.

 l The Help function has one small amendment to state that an optional argument
specifying the location can be included when running the Time user command.

 l The Zulu function remains unchanged.
 l The CityTimeOffset function is added to determine whether the second

argument matches the name of one of the cities that have had time offsets
defined and return the appropriate offset if a match is found. The name of the city
entered when running the user command is made case insensitive by converting
them to lower case with the (819⌶) expression.

After changing the code but before running these user commands, the]UReset
user command should be run to force a cache file update (otherwise the code
changes will not be detected).

The Time and UTC user commands can now be run from a Dyalog Session:
]Time -?

──
]TIMEGRP.Time

]Time [city]

(the same result is returned if]Time -?? or]Help]Time is entered)

]Time
 13:17:34

(indicating that the current system time is 13:17 and 34 seconds)

]Time l.a.
 04:17:51

(indicating that the current time in Los Angeles, ignoring daylight saving time, is 04:17
and 51 seconds)

]Time l.x.
 * Command Execution Failed: Unknown city

(an invalid city was specified)

revision 20220124_250 33

User Commands User Guide

]UTC -?
 ──
]TIMEGRP.UTC

]UTC (no arguments)

(the same result is returned if]UTC -?? or]Help]UTC is entered)

]UTC
 06:08:30

(indicating that the local co-ordinated universal time is 6:08 and 30 seconds)

]TimeGrp -?

 TIMEGRP:
 Time Show local time in a city
 UTC Show UTC time

B.4 Example: The Parse Variable
This example illustrates use of the Parse variable; by setting this to non-empty values,
the user command framework is able to handle arguments and modifiers.

For more information on the Parse variable, see Section 4.2.3. For more
information on modifiers and modifier values, see Section 4.5. For more
information on arguments, see Section 4.6.

A new user command called Number is required to display either the age of the specified
person or to convert a decimal number into its Hexadecimal equivalent. The necessary
functions are defined in a namespace called number:
:Namespace number

 ⎕ML ⎕IO←1 ⍝ set to avoid inheriting external values

 ∇ r←List
 r←⎕NS¨1⍴⊂''
 r.(Group Parse Name Desc)←⊂'AgeHex' '' 'Number' 'Gives age
or Hexadecimal format'
 ∇

revision 20220124_250 34

User Commands User Guide

 ∇ r←Run(Cmd Args);N;H;alph;Name;Names
 r←⍬
 Names←Args.Arguments
 :For Name :In Names
 :Select Name
 :Case 'Fiona'
 r,←40
 :Case 'Andy'
 r,←51
 :Else
 :If ∧/Name∊⎕D ⍝ If all digits...
 N←⌈16⍟(⍎Name)
 H←(N⍴16)⊤(⍎Name)
 alph←'0123456789ABCDEF'
 r,←⊂alph[⎕IO+H]
 :Else
 r,←⊂'Unrecognised Name'
 :EndIf
 :EndSelect
 :EndFor
 ∇

 ∇ r←Help Cmd
 r←'Enter either a person''s name to return their age or a
number to return the Hexadecimal equivalent'
 ∇

:EndNamespace

In this example, the Parse variable is empty – this means that the Run function takes
everything following the command name as a simple character vector. However, if a valid
name is entered with the expectation of having that person's age returned, then an error
message is generated:
]Number Fiona
* Command Execution Failed: SYNTAX ERROR

The same error message is generated if a decimal number is entered with the
expectation of its Hexadecimal equivalent being returned:
]Number 42
* Command Execution Failed: SYNTAX ERROR

This error arises because the user command is expecting a namespace as its input and
instead it is receiving a simple character vector.

revision 20220124_250 35

User Commands User Guide

These errors arise because the Args parameter in the Run function is a simple character
vector rather than a namespace; this is due to the empty Parse variable. Populating the
Parse variable means that the Args parameter becomes a namespace.

For this example, the only changes that will be made to the user command's code
are to its Parse variable definition.

To enable the user command to perform the necessary namespace conversion, the
Parse variable is changed from '' to '2S' – this means that the user command can
accept 0, 1 or 2 arguments but no more (for more information on this, see Section 4.6.4).

]Number 42
2A

]Number 42 42
2A 2A

]Number 42 42 42
* Command Execution Failed: too many arguments

]Number 42 Fiona
2A 40

Changing the Parse variable again, this time from '2S' to '2L', means that 2
arguments must be supplied; if more than this are supplied then the first argument is
taken as specified and the rest are merged together to become the second argument (for
more information on this, see Section 4.6.5).

]Number 42
 * Command Execution Failed: too few arguments

]Number 42 42
 2A 2A

]Number 42 42 42
 2A Unrecognised Name

]Number 42 Fiona
 2A 40

B.5 Example: Debugging a User Command
This example illustrates using the]UDebug user command to debug a namespace
containing a user command group definition.

revision 20220124_250 36

User Commands User Guide

Three keyboard shortcuts for command codes are referred to in this example – <TC>
(Trace), <ED> (Edit) and <EP> (Escape). The usual key combinations for these are
operating-system-dependent.

Relevant key combinations on the Microsoft Windows operating system:
 l <TC> is usually Ctrl + Enter
 l <ED> is usually Shift + Enter
 l <EP> is usually Escape

Relevant key combinations on the UNIX operating system:
 l <TC> is usually APLKey +Shift + Enter
 l <ED> is usually APLKey + Enter
 l <EP> is usually Escape

Relevant key combinations on the macOS operating system:
 l <TC> is usually Ctrl + Enter
 l <ED> is usually Shift + Enter
 l <EP> is usually Escape

A user command can be debugged by tracing through ⎕SE.UCMD (see Section 3.3).
However, a more convenient method is to instruct the framework to suspend on the first
line of the Run or Help function – tracing/debugging can then proceed from there. To do
this, debugging mode must be switched on:
]UDebug on
 Was OFF

If an error is encountered in debugging mode, execution of the user command is
suspended rather than returning to the calling function.

When debugging is enabled, specifying a space followed by the – character at the end of
the command opens the Trace window with the code suspended on Run[1]. For
example, using the number namespace defined in Section B.4 to hold the AgeHex group
of user commands:
]Number 42 Andy
 2A 51

]Number 42 Andy –
 Run[1]

To progress through the Run function, enter the Trace command (<TC>).

You can now trace and debug the code in the namespace.

revision 20220124_250 37

User Commands User Guide

The Trace window shows that, in the number namespace, the Parse variable is set to
2S. This means that the Args variable is a namespace. The namespace contains a
number of variables, one of which is Arguments:
]Disp Args
 ⎕SE.[Namespace]

 Args.⎕NL 2
 Arguments
 SwD
 _1
 _2

]Disp Args.Arguments
 ┌→─┬────┐
 │42│Andy│
 └─→┴───→┘

This shows that the Arguments variable is a vector comprising two character vectors.

Enter the Edit command (<ED>) to open the namespace definition in the Edit window
and change the Parse variable from '2S' to '2L'. Save the changes and repeatedly
enter the Escape command (<EP>) until you are no longer tracing through code. Then
enter:
]Number 42 Andy 8 9 10 –

With the Run function suspended, enter:
]Disp Args.Arguments
 ┌→─┬───────────┐
 │42│Andy 8 9 10│
 └─→┴──────────→┘

This shows that the Arguments variable is still a vector comprising two character
vectors. However, the second of the two character vectors now includes everything after
the first argument in the call to the user command.

revision 20220124_250 38

User Commands User Guide

Press the <ED> key combination to open the namespace definition in the Edit window
and change the Parse variable from '2L' to '2S -true'. The '-true' means that
the parser now accepts a modifier called -true that does not accept a modifier value
but can only be present or absent (see Section 3.7.2). Save the changes and repeatedly
hit <EP> until you are no longer tracing through code. Then enter:
]Number 42 Andy –
 Args.⎕NL 2
 Arguments
 SwD
 _1
 _2
 true

This shows an additional variable, true, created with the same name as the modifier
that was included in the Parse variable. However, when calling the]Number user
command, this on/off modifier was not specified. Therefore:
 Args.true
0

To see the effect of calling the]Number user command with this modifier specified:
)reset
]Number 42 Andy -true –
 Args.true
1

Debugging mode is switched off using:
]UDebug off
 Was ON

revision 20220124_250 39

User Commands User Guide

Index

A
Arguments 10, 20

Default values 21
Including space characters 21
Long 22
Maximum number of 22
Minimum number of 21
Specification in the parser 22

B
Basic Definition 12

C
Cache file 3
Creating custom user commands 12

Argument definition 20
Basic Definition 12
Detecting new user commands 23
Help function 17
List function 13
Modifier definition

Default values 19
Run function 15
Saving custom user commands 23

D
Detecting new user commands 23
Directory structure 6

E
Environment Variables

UCMDCACHEFILE 4

F
File format 8
Flags See Modifiers

G
Groups 8

H
Help function 17

Defining multiple levels of help 15

I
Implementation 6
Installation 6

L
List function 13

Group variable 14
Name variable 14
Parse variable 14

M
Modifiers 18

Default values 19
Syntax 10

P
Parse variable 14

R
Run function 15
Running user commands 10

revision 20220124_250 40

User Commands User Guide

S
Saving custom user commands 23
Switch function 19
Switches See Modifiers
Syntax 9

U
UCMDCACHEFILE Environment
Variable 4

User command groups (predefined)
SAMPLES 25

User commands (predefined)
]UCMDHelp 25
]UCMDNoParsing 25
]UCMDParsing 26

revision 20220124_250 41

User Commands User Guide

	1 About This Document
	1.1 Audience
	1.2 Conventions

	2 Introduction
	2.1 Cache File
	2.1.1 Defining the UCMDCACHEFILE Environment Variable

	3 Using User Commands
	3.1 Installation
	3.2 Directory Structure
	3.3 Implementation
	3.3.1 Customising the Implementation

	3.4 File Format
	3.5 Groups
	3.6 Syntax in Dyalog Sessions
	3.7 Running User Commands
	3.7.1 Arguments
	3.7.2 Modifiers and Modifier Values
	3.7.3 Errors when Running a User Command

	4 Creating User Commands
	4.1 Basic Definition
	4.2 The List Function
	4.2.1 Name
	4.2.2 Group
	4.2.3 Parse

	4.3 The Run Function
	4.3.1 Defining Multiple Levels of Help

	4.4 The Help Function
	4.5 Modifiers
	4.5.1 Default Modifier Values

	4.6 Arguments
	4.6.1 Default Argument Values
	4.6.2 Arguments Including Space Characters
	4.6.3 Minimum Number of Arguments
	4.6.4 Maximum Number of Arguments
	4.6.5 Long Arguments
	4.6.6 Summary of Argument Specification in the Parser

	4.7 Saving Custom User Commands
	4.8 Detecting New Custom User Commands

	A SAMPLES Group
	A.1]UCMDHelp
	A.2]UCMDNoParsing
	A.3]UCMDParsing

	B Example User Commands
	B.1 Example: Basic User Command Definition
	B.2 Example: Cross-Operating System Definition
	B.3 Example: Optional Arguments
	B.4 Example: The Parse Variable
	B.5 Example: Debugging a User Command

	Index

