
.NET Core
Interface Guide

Dyalog version 18.2

The tool of thought for software solutions

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2021 by Dyalog Limited
All rights reserved.

.NET Core Interface Guide

Dyalog version 18.2
Document Revision: 20220124_182

Unless stated otherwise, all examples in this document assume that ⎕IO ⎕ML ← 1

No part of this publication may be reproduced in any form by any means without the prior
written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Array Editor is copyright of davidliebtag.com
Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle®, Javascript™ and Java™ are registered trademarks of Oracle and/or its affiliates.
UNIX® is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark of Microsoft Corporation in the United States and
other countries.
macOS® and OS X® (operating system software) are trademarks of Apple Inc., registered
in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Contents

1 About This Document 1
1.1 Audience 1
1.2 Conventions 1

2 Installation 3
2.1 Pre-requisites 3

2.1.1 Installing .NET Core 3
2.2 Files Installed with Dyalog 4
2.3 Enabling the .NET Core Interface 4
2.4 Verifying the Installation 5

3 .NET Classes 6
3.1 Locating .NET Classes and Assemblies 6
3.2 Using .NET Classes 8

3.2.1 Constructors and Overloading 9
3.2.2 Resolving References to .NET Objects 9
3.2.3 Displaying a .NET Object 10

3.2.3.1 Value Tips for External Functions 11
3.2.4 Disposing of .NET Objects 12

3.3 Advanced Techniques 12
3.3.1 Shared Members 12
3.3.2 APL Language Extensions for .NET Projects 13
3.3.3 Exceptions 14
3.3.4 Specifying Overloads 14

3.3.4.1 Overloaded Constructors 15
3.4 Example Usage 16

3.4.1 Directory and File Manipulation 16
3.4.2 Sending an Email 17
3.4.3 Web Scraping 18

3.5 Enumerations 20
3.6 Handling Pointers with Dyalog.ByRef 21
3.7 DECF Conversion 23

Index 24

.NET Core Interface Guide

revision 20220124_182 i

1 About This Document

This document describes the Dyalog interface to Microsoft .NET Core, the cross-platform
(Windows, Linux and macOS) successor to Microsoft's .NET Framework. It does not
attempt to explain the features of .NET Core, except in terms of their APL interfaces. For
information concerning .NET Core, see Microsoft's documentation, articles and helpfiles
(available from https://docs.microsoft.com/en-us/dotnet/).

Microsoft does not support .NET on AIX.

1.1 Audience
It is assumed that the reader has a working knowledge of Dyalog, familiarity with the
.NET Core and/or .NET Framework and a basic understanding of OO methodologies.

For information on the resources available to help develop your Dyalog knowledge, see
https://www.dyalog.com/introduction.htm.

1.2 Conventions
Unless explicitly stated otherwise, all examples in Dyalog documentation assume that
⎕IO and ⎕ML are both 1.

Various icons are used in this document to emphasise specific material.

General note icons, and the type of material that they are used to emphasise, include:

Hints, tips, best practice and recommendations from Dyalog Ltd.

Information note highlighting material of particular significance or relevance.

revision 20220124_182 1

.NET Core Interface Guide

https://docs.microsoft.com/en-us/dotnet/
https://www.dyalog.com/introduction.htm

Legacy information pertaining to behaviour in earlier releases of Dyalog or to
functionality that still exists but has been superseded and is no longer
recommended.

Warnings about actions that can impact the behaviour of Dyalog or have
unforeseen consequences.

Although the Dyalog programming language is identical on all platforms, differences do
exist in the way some functionality is implemented and in the tools and interfaces that
are available. A full list of the platforms on which Dyalog version 18.2 is supported is
available at https://www.dyalog.com/dyalog/current-platforms.htm. Within this
document, differences in behaviour between operating systems are identified with the
following icons (representing macOS, Linux, UNIX and Microsoft Windows respectively):

revision 20220124_182 2

.NET Core Interface Guide

https://www.dyalog.com/dyalog/current-platforms.htm

2 Installation

The Dyalog .NET Core interface is still in the process of being developed. Currently it
enables you to:

 l create and use objects that are instances of .NET classes

Dyalog Ltd intends to enhance this interface to include additional functionality.

2.1 Pre-requisites
Microsoft does not support .NET Core on AIX or on the Raspberry Pi models Zero,
1 or 2. See Microsoft's .NET Core webpages (https://dotnet.microsoft.com/) for
information on whether the version of Linux/Microsoft Windows that you are
running supports .NET Core.

The Dyalog version 18.2 .NET Core interface requires Microsoft .NET Core version 3.1 – it
does not work with other versions of .NET Core. For information on installing .NET Core,
see Section 2.1.1.

Once Microsoft .NET Core has been successfully installed, no further installation is
required to use the Dyalog .NET Core interface.

The .NET Core interface only works with the Unicode edition of Dyalog; Classic
edition is not supported.

2.1.1 Installing .NET Core

Microsoft .NET Core can be downloaded from https://dotnet.microsoft.com/download
(select the Build Apps option – Download .NET Core SDK and install it to the default
location).

.NET Core should be installed according to Microsoft's instructions. Note that Microsoft
only supply .debs/.rpms files for some releases of some Linux distributions; on others,
such as Raspbian Buster, .NET Core needs to be installed manually.

revision 20220124_182 3

.NET Core Interface Guide

https://dotnet.microsoft.com/
https://dotnet.microsoft.com/download

If you decide not to install .NET Core in the default location, then you need to set the
DOTNET_ROOT environment variable. See Microsoft's .NET Core documentation
(https://docs.microsoft.com/en-gb/dotnet/) for instructions on how to do this. Note that
this should not be set in Dyalog's configuration files; it is a Microsoft variable, not a
Dyalog-specific one.

2.2 Files Installed with Dyalog
The components used to support the .NET Core interface are summarised below.
Different versions of each component are supplied according to the target platform.

 l Dyalog.Net.Bridge.dll – the interface library through which all calls between
Dyalog and .NET Core are processed.

 l Dyalog.Net.Bridge.Host.DLL – auxiliary file
 l nethost.dll – auxiliary file
 l Dyalog.Net.Bridge.deps.json – auxiliary file
 l Dyalog.Net.Bridge.runtimeconfig.json – auxiliary file

2.3 Enabling the .NET Core Interface
The .NET Core interface is enabled when the DYALOG_NETCORE configuration parameter
is set to 1; this is the default setting on Linux (including the Raspberry Pi) and macOS. On
Microsoft Windows the default setting is 0 for backwards compatibility (a setting of 0
enables the .NET Framework interface).

The .NET Framework and .NET Core cannot be enabled simultaneously.

For information on how to set configuration parameters, see the appropriate Dyalog for
<operatingsystem> Installation and Configuration Guide. To check the value of DYALOG_
NETCORE, enter the following when in a Session:
+2⎕NQ'.' 'GetEnvironment' 'DYALOG_NETCORE'

revision 20220124_182 4

.NET Core Interface Guide

https://docs.microsoft.com/en-gb/dotnet/

2.4 Verifying the Installation
If the interpreter cannot locate the .NET code, then an error message is generated when
attempting the following:

 ⎕USING←'System'
 DateTime.Now
 VALUE ERROR: Undefined name: DateTime
 DateTime.Now

In this situation, ensure that the .NET Core has been installed according to Microsoft's
.NET Core documentation (https://docs.microsoft.com/en-gb/dotnet/) and the .NET Core
interface has been enabled by setting DOTNET_ROOT (see Section 2.3).

EXAMPLE

This example shows the steps taken on a Linux/Pi system to downloaded the runtime to
/tmp/dotnet-runtime-3.1.3-linux-arm.tar.gz – following these instructions it should not
be necessary to define DOTNET_ROOT.
sudo mkdir -p /usr/share/dotnet
 cd /usr/share/dotnet
 sudo tar -zxvf /tmp/ dotnet-runtime-3.1.3-linux-arm.tar.gz
 sudo ln -s /usr/share/dotnet/dotnet /usr/bin/dotnet

This is only an example of code that worked on a specific configuration in our
tests; the latest instructions in Microsoft's .NET Core documentation should
always be followed.

revision 20220124_182 5

.NET Core Interface Guide

https://docs.microsoft.com/en-gb/dotnet/

3 .NET Classes

.NET Core conforms to Microsoft's Common Type System. This comprises a set of data
types, permitted values and permitted operations that define the rules by which
different languages can interact with one another – all co-operating languages that use
these types can have their operations and values checked (by the Common Language
Runtime) at runtime. .NET Core also provides its own built-in class library that provides
all the primitive data types, together with higher-level classes that perform useful
operations.

.NET classes are implemented as part of the Common Type System. Types include
interfaces, value types and classes. .NET Core provides built-in primitive types as well as
higher-level types that are useful in building applications. A class is a subset of Type
(distinct from interfaces and value types) that encapsulates a particular set of methods,
events and properties. The word object is usually used to refer to an instance of a class.
An object is typically created by calling the system function ⎕NEW with the class as the
first element of the argument. An assembly is a file that contains all of the code and
metadata for one or more classes. Assemblies can be dynamic (created in memory as
needed) or static (files on disk). In this document, "assembly" refers to a file (usually with
a .dll extension) on disk. Classes support inheritance, in that every class (but one) is
based on a Base Class.

Through the use of instances of .NET classes, Dyalog gains access to a huge amount of
component technology that is provided by .NET Core; the benefits of this approach
include enhanced reliability, software management, code reusage and reduced
maintenance.

3.1 Locating .NET Classes and Assemblies
.NET assemblies and the classes they contain are generally self-contained independent
entities (although they can be based upon classes in other assemblies). This means that a
class can be installed by copying the assembly file onto hard disk and uninstalled by
erasing the file.

revision 20220124_182 6

.NET Core Interface Guide

Microsoft supplies a tool for browsing .NET class libraries called ILDASM.EXE – this
can be found in the .NET SDK and is distributed with Visual Studio.

Although classes are arranged physically into assemblies, they are also arranged logically
into namespaces. These are not related to Dyalog's namespaces and, to avoid confusion,
are referred to in this document as .NET namespaces.

A single .NET namespace can map onto a single assembly. For example, the .NET
namespace System.IO is contained in an assembly named System.IO.FileSystem.dll.
However, a .NET namespace can be implemented by more than one assembly, removing
the one-to-one-mapping between .NET namespaces and assemblies. For example, the
main top-level .NET namespace, System, spans a number of different assembly files.

Within a single .NET namespace there can be numerous classes, each with its own unique
name. The full name of a class is the name of the class prefixed by the name of the .NET
namespace and a dot (the namespace name can also be delimited by dots). For example,
the full name of the DateTime class in the .NET namespace System is System.DateTime.
Any number of different versions of an assembly can be installed on a single computer,
and there can be multiple .NET namespaces with the same name, implemented in
different sets of assembly files.

To use a .NET class, it is necessary to tell the system to load the assembly in which it is
defined. In many languages (including C#) this is done by supplying the names of the
assemblies. To avoid having to refer to full class names, the C# and Visual Basic languages
allow the .NET namespace prefix to be elided. In this case, the programmer must declare
a list of .NET namespaces with Using (C#) and Imports (Visual Basic) declaration
statements. This list is then used to resolve unqualified class names referred to in the
code. In either language, when the compiler encounters the unqualified name of a class,
it searches the specified .NET namespaces for that class. In Dyalog, this mechanism is
implemented by the ⎕USING system variable. ⎕USING performs the same two tasks that
Using/Imports declarations and compiler directives provide in C# and Visual Basic;
that is, to give a list of .NET namespaces to be searched for unqualified class names and
to specify the assemblies that are to be loaded.

⎕USING is a vector of character vectors, each element of which contains 1 or 2
comma-delimited strings. The first string specifies the name of a .NET namespace; the
second specifies the assembly, which Dyalog assumes is located in the standard .NET
Core directory that was specified when .NET Core was installed (for example, C:/Program
Files/dotnet/shared/Microsoft.NETCore.App/3.1.2/).

It is convenient to treat .NET namespaces and assemblies in pairs. For example, the
System.IO namespace is located within the System.IO.FileSystem assembly.

revision 20220124_182 7

.NET Core Interface Guide

⎕USING has namespace scope, that is, each Dyalog namespace, class or instance has its
own value of ⎕USING that is initially inherited from its parent space but can be
separately modified. ⎕USING can also be localised in a function header so that different
functions can declare different search paths for .NET namespaces/assemblies.

If ⎕USING is empty (⎕USING←0⍴⊂''), then Dyalog does not search for .NET classes to
resolve names that would otherwise give a VALUE ERROR.

Assigning a simple character vector to ⎕USING is equivalent to setting it to the enclose of
that vector. The statement (⎕USING←'') does not empty ⎕USING, but rather sets it to a
single empty element, which gives access to the System.Runtime and
System.Private.CoreLib.assemblies files without a namespace prefix.

3.2 Using .NET Classes
To create a Dyalog object as an instance of a .NET class, the ⎕NEW system function is
used. The ⎕NEW system function is monadic. It takes a 1 or 2-element argument, the first
element of which is a class.

If the argument is a scalar or a 1-element vector, an instance of the class is created using
the constructor overload that takes no argument.

If the argument is a 2-element vector, an instance of the class is created using the
constructor overload (see Section 3.2.1) whose argument matches the disclosed second
element.

EXAMPLE

Creating an instance of the DateTime class requires an argument with two elements:
(the class and the constructor argument; in this example the constructor argument is a 3-
element vector representing the date). Many classes provide a default constructor that
takes no arguments. From Dyalog , the default constructor is called by calling ⎕NEW with
only a reference to the class in the argument.

To create a DateTime object whose value is 30 April 2008:
 ⎕USING←'System'
 mydt←⎕NEW DateTime (2008 4 30)

Alternatively, to use fully-qualified class names, one of the elements of ⎕USING must be
an empty vector:
 ⎕USING←,⊂''
 mydt←⎕NEW System.DateTime (2008 4 30)

revision 20220124_182 8

.NET Core Interface Guide

In both cases, the result of ⎕NEW is an reference to the newly created instance:
 ⎕NC ⊂'mydt'
 9.2

When a reference to a .NET object is formatted, APL calls its ToString method to
obtain a useful description or identification of the object (this topic is discussed in more
detail in Section 3.2.3):
 mydt
 30/04/2008 00:00:00

3.2.1 Constructors and Overloading

Each .NET class has one or more constructor methods. These are called to initialise an
instance of the class. Typically, a class will support several constructor methods, each
with a different set of parameters. For example, System.DateTime supports a
constructor that takes three Int32 parameters (year, month, day), another that takes
six Int32 parameters (year, month, day, hour, minute, second), and various other
constructors. These different constructor methods are not distinguished by having
different names but by the different sets of parameters that they accept.

This concept, which is known as overloading, may seem somewhat alien to the APL
programmer, who will be accustomed to defining functions that accept an arbitrary
array. However, type checking, which is fundamental to .NET Core, requires that a
method is called with the correct number of parameters, and that each parameter is of a
predefined type. Overloading solves this issue.

When creating an instance of a class in C#, the new operator is used. At compile time,
this is mapped to the appropriate constructor overload by matching the user-supplied
parameters to the various forms of the constructor. A similar mechanism is implemented
in Dyalog by the ⎕NEW system function.

3.2.2 Resolving References to .NET Objects

When Dyalog executes an expression such as
 mydt←⎕NEW DateTime (2008 4 30)

the following logic is used to resolve the reference to DateTime correctly.

The first time that Dyalog encounters a reference to a non-existent name (that is, a name
that would otherwise generate a VALUE ERROR), it searches the .NET
namespaces/assemblies specified by ⎕USING for a .NET class of that name. If found, the
name (in this case, System.DateTime) is recorded in the APL symbol table with a

revision 20220124_182 9

.NET Core Interface Guide

name class of 9.6 and is associated with the corresponding .NET Type. If not found, then
VALUE ERROR is reported as usual. This search ONLY takes place if ⎕USING has been
assigned a non-empty value.

Subsequent references to that symbol (in this case DateTime) are resolved directly and
do not involve any assembly searching.

If ⎕NEW is called with only a class as argument, then Dyalog attempts to call the overload
of its constructor that is defined to take no arguments. If no such overload exists, then
the call fails with a LENGTH ERROR.

If ⎕NEW is called with a class as argument and a second element, then Dyalog calls the
version of the constructor whose parameters match the second element supplied to
⎕NEW. If no such overload exists, then the call will fail with either a LENGTH ERROR or a
DOMAIN ERROR.

3.2.3 Displaying a .NET Object

When you display a reference to a .NET object, APL calls the object's ToString method
and displays the result. All objects provide a ToString method because all objects
ultimately inherit from the .NET class System.Object, which provides a default
implementation. Many .NET classes provide their own ToString that overrides the one
inherited from System.Object and returns a useful representation of the object in
question. ToString usually supports a range of calling parameters, but APL always calls
the version of ToString that is defined to take no calling parameters. The monadic
format function (⍕) and monadic ⎕FMT have been extended to provide the same result
and provide a shorthand method to call ToString. The default ToString supplied by
System.Object returns the name of the object's Type. For a particular object in the
namespace, this can be changed using the system function ⎕DF.

EXAMPLE
 ⎕USING←'System'
 z←⎕NEW DateTime ⎕TS
 z.(⎕DF(⍕DayOfWeek),,'G< 99:99>'⎕FMT 100⊥Hour Minute)
 z
 Saturday 09:17

The type of an object can be obtained using the GetType method, which is supported
by all .NET objects:
 z.GetType
 System.DateTime

revision 20220124_182 10

.NET Core Interface Guide

3.2.3.1 Value Tips for External Functions

Value Tips can be used to view the syntax of external functions. If you hover over the
name of an external function, the Value Tip displays its Function Signature.

For example, Figure 3-1 shows the mouse hovered over the external function
dt.AddMonths, which reveals that it requires a single integer as its argument.

Figure 3-1: Function signature – single integer argument

If an external function provides more than one signature, then they are all shown in the
Value Tip (see Figure 3-2; the function ToString has four different overloads.

Figure 3-2: Function signature – multiple arguments

revision 20220124_182 11

.NET Core Interface Guide

3.2.4 Disposing of .NET Objects

.NET objects are managed by the .NET Common Language Runtime (CLR). The
CLR allocates memory for an object when it is created, and deallocates this memory
when it is no longer required.

When the (last) reference from Dyalog to a .NET object is expunged by ⎕EX or by
localisation, the system marks the object as unused, leaving it to the CLR to deallocate
the memory that it had previously allocated to it (when appropriate – even though
Dyalog has dereferenced the APL name, the object could potentially still be referenced
by another .NET class).

Deallocated memory might not be reused immediately and might never be reused,
depending on the algorithms used by the CLR garbage disposal.

Furthermore, a .NET object can allocate unmanaged resources (such as window handles)
which are not automatically released by the CLR.

To allow the programmer to control the freeing of resources associated with .NET objects
in a standard way, many objects implement the IDisposable interface which provides
a Dispose() method. The C# language provides a using control structure that
automates the freeing of resources. Crucially, it does so irespective of how the flow of
execution exits the control structure, even as a result of error handling. This obviates the
need for the programmer to call Dispose() explicitly wherever it may be required.

This programming convenience is provide in Dyalog by the
 :Disposable ... :EndDisposable control structure. For more information on this
control structure, see the Dyalog Programming Reference Guide.

3.3 Advanced Techniques

3.3.1 Shared Members

Certain .NET classes provide methods, fields and properties that can be called directly
without the need to create an instance of the class first. These members are known as
shared, because they have the same definition for the class and for any instance of the
class.

The methods Now and IsLeapYear exported by System.DateTime fall into this
category.

revision 20220124_182 12

.NET Core Interface Guide

EXAMPLE

 ⎕USING←,⊂'System'

 DateTime.Now
 18/03/2020 11:14:05

 DateTime.IsLeapYear 2000
 1

3.3.2 APL Language Extensions for .NET Projects

The .NET Framework provides a set of standard operators (methods) that are supported
by certain classes. These operators include methods to compare two .NET objects and
methods to add and subtract objects. In the case of the DateTime class, there are
operators to compare two DateTime objects. For example:
 DT1←⎕NEW DateTime (2008 4 30)
 DT2←⎕NEW DateTime (2008 1 1)

 ⍝ Is DT1 equal to DT2 ?
 DateTime.op_Equality DT1 DT2
 0

The op_Addition and op_Subtraction operators add and subtract TimeSpan
objects to DateTime objects. For example:
 DT3←DateTime.Now
 DT3
 18/03/2020 11:15:10

 TS←⎕NEW TimeSpan (1 1 1)
 TS
 01:01:01

The corresponding APL primitive functions have been extended to accept .NET objects as
arguments and call these standard .NET methods internally. The methods and the
corresponding APL primitives are shown in Table 3-1.

Calculations and comparisons performed by .NET methods are performed
independently from the values of APL system variables (such as ⎕FR and ⎕CT).

.NET Method APL Primitive Function

op_Equality = and ≡

Table 3-1: .NET methods and their APL primitive function equivalents

revision 20220124_182 13

.NET Core Interface Guide

.NET Method APL Primitive Function

op_Inequality ≠ and ≢

Table 3-1: .NET methods and their APL primitive function equivalents
(continued)

3.3.3 Exceptions

When a .NET object generates an error, it does so by throwing an exception. An exception
is a .NET class whose ultimate base class is System.Exception.

The system constant ⎕EXCEPTION returns a reference to the most recently generated
exception object.

For example, if you attempt to create an instance of a DateTime object with a year that
is outside its range, the constructor throws an exception. This causes APL to report a
(trappable) EXCEPTION error (error number 90) and access to the exception object is
provided by ⎕EXCEPTION.

 ⎕USING←'System'
 DT←⎕NEW DateTime (100000 0 0)
 EXCEPTION: Year, Month, and Day parameters describe an un-
representable DateTime.
 DT←⎕NEW DateTime (100000 0 0)
 ^
 ⎕EN
 90
 ⎕EXCEPTION.Message
 Year, Month, and Day parameters describe an un-representable
DateTime.

 ⎕EXCEPTION.Source
 System.Private.CoreLib

 ⎕EXCEPTION.StackTrace
 at System.DateTime.DateToTicks(Int32 year, Int32 month, Int32 day)
 at System.DateTime..ctor(Int32 year, Int32 month, Int32 day)

3.3.4 Specifying Overloads

If a .NET function is overloaded in terms of the types of arguments that it accepts, then
Dyalog chooses which overload to call depending on the data types of the arguments
passed to it. For example, if a .NET function foo() is declared to take a single argument

revision 20220124_182 14

.NET Core Interface Guide

either of type int or of type double, Dyalog would call the first version if you called it
with an integer value and the second version if you called it with a non-integer value.

Occasionally it might be desirable to override this mechanism and explicitly specify which
overload to use. This can be done by calling the function and specifying the Variant
operator ⍠ with the OverloadTypes option. This takes an array of references to .NET
types, of the same length as the number of parameters to the function.

EXAMPLE

To force APL to call the double version of function foo() irrespective of the type of the
argument val, enter:
 (foo ⍠('OverloadTypes'Double))val

or (more simply):
 (foo ⍠Double)val

where Double is a reference to the .NET type System.Double.

 ⎕USING←'System'
 Double
 (System.Double)

Taking this a stage further, suppose that foo() is defined with 5 overloads as follows:
foo()
foo(int i)
foo(double d)
foo(double d, int i)
foo(double[] d)

The following statements will call the niladic, double, (double, int) and double[]
overloads respectively:
(foo ⍠ (⊂⍬)) ⍬ ⍝ niladic
 (foo ⍠ Double) 1 ⍝ double
 (foo ⍠(⊂Double Int32))1 1 ⍝ double,int
 (foo ⍠(Type.GetType ⊂'System.Double[]'))⊂1 1 ⍝ double[]

3.3.4.1 Overloaded Constructors

If a class provides constructor overloads, then a similar mechanism is used to specify
which of the constructors is to be used when an instance of the class is created using
⎕NEW.

revision 20220124_182 15

.NET Core Interface Guide

For example, if MyClass is a .NET class with an overloaded constructor, and one of its
constructors is defined to take two parameters; a double and an int, then the
following statement would create an instance of the class by calling that specific
constructor overload:
 (⎕NEW ⍠ (⊂Double Int32)) MyClass (1 1)

3.4 Example Usage

3.4.1 Directory and File Manipulation

The .NET Namespace System.IO (in the System.IO.FileSystem assembly)
provides some useful facilities for manipulating files. For example, you can create a
DirectoryInfo object associated with a particular directory on your computer, call
its GetFiles method to obtain a list of files, and then get their Name and
CreationTime properties:
 ⎕USING←,⊂'System.IO, System.IO.FileSystem'
 dir←'C:\Program Files\Dyalog\Dyalog APL-64 18.2 Unicode'
 d←⎕NEW DirectoryInfo (⊂dir)

where d is an instance of the Directory class, corresponding to the directory
[DYALOG].

[DYALOG] refers to the directory in which Dyalog is installed; this example
assumes [DYALOG] to be C:\Program Files\Dyalog\Dyalog APL-64 18.2 Unicode.

The GetFiles method returns a list of files (more precisely, FileInfo objects) that
represent each of the files in the directory. Its optional argument specifies a filter. For
example:
 d.GetFiles ⊂'*.exe'
 C:\Program Files\Dyalog\Dyalog APL-64 18.0 Unicode\dyaedit.exe
C:\Program Files\Dyalog\Dyalog APL-64 18.0 Unicode\dyalog.exe
C:\Program Files\Dyalog\Dyalog APL-64 18.0 Unicode\dyalogc64_
unicode.exe C:\Program Files\Dyalog\Dyalog APL-64 18.0
Unicode\dyalogrt.exe

The Name property returns the name of the file associated with the File object:
 (d.GetFiles ⊂'*.exe').Name
 dyaedit.exe dyalog.exe dyalogc64_unicode.exe dyalogrt.exe

revision 20220124_182 16

.NET Core Interface Guide

and the CreationTime property returns its creation time, which is a DateTime
object:
 (d.GetFiles ⊂'*.exe').CreationTime
 05/03/2020 10:23:40 05/03/2020 10:23:28 14/11/2019 ...

Calling the GetFiles overload that does not take any arguments (from Dyalog by
supplying an argument of ⍬) returns a complete list of files:
 files←d.GetFiles ⍬
 files
 C:\Program Files\Dyalog\Dyalog APL-64 18.0 Unicode\aplunicd.ini...

Taking advantage of namespace reference array expansion, an
expression to display file names and their creation times is:

 files,[1.5]files.CreationTime
 C:\...\...Unicode\aplunicd.ini 14/11/2019 20:38:40
 C:\...\...Unicode\bridge180-64_unicode.dll 05/03/2020 10:18:32
 ...

3.4.2 Sending an Email

The .NET namespace System.Web.Mail provides objects for handing email. You can
create a new email message as an instance of the MailMessage class, set its various
properties and then send it using the SmtpMail class.

EXAMPLE

This example will only work if your computer is configured to allow you to send email in
this way and assumes that some additional files have been installed from
https://www.nuget.org/packages/MailKit/.

revision 20220124_182 17

.NET Core Interface Guide

https://www.nuget.org/packages/MailKit/

∇ recip Send(subject msg);⎕USING;from;mail;to;builder;client
 ⎕USING←'' ',MimeKit.dll' ',MailKit.dll'
',BouncyCastle.Crypto.dll'
 from←⎕NEW MimeKit.MailboxAddress('john daintree (demo)'
'johnd@dyalog.com')
 to←⎕NEW MimeKit.MailboxAddress(''recip)
 mail←⎕NEW MimeKit.MimeMessage
 builder←⎕NEW MimeKit.BodyBuilder
 builder.TextBody←msg
 mail.Body←builder.ToMessageBody
 mail.Subject←subject
 mail.From.Add from
 mail.To.Add to
 client←⎕NEW MailKit.Net.Smtp.SmtpClient
 client.Connect'mail.dyalog.com' 587 0 ⎕NULL
 client.Send mail ⎕NULL ⎕NULL
 ∇

This could then be called as follows:
'prime.minister@gov.uk' Send ('subject' ('line1' 'line2'))

3.4.3 Web Scraping

.NET Core provides a range of classes for accessing the internet from a program. This
section works through an example that shows how to read the contents of a web page. It
is complicated, but realistic (for example, it includes code to cater for a firewall/proxy
connection to the internet). It is only 9 lines of APL code, but each line requires careful
explanation.

Start by defining ⎕USING so that it specifies all of the necessary .NET namespaces and
assemblies:
 ⎕USING←,⊂'System,System.dll'
 ⎕USING,←⊂'System.Net, System.Net.Requests'
 ⎕USING,←⊂'System.IO'

The WebRequest class in the System.Net .NET namespace implements .NET Core's
request/response model for accessing data from the internet. For this example, a
WebRequest object needs to be associated with the URI http://www.dyalog.com
(WebRequest is an example of a static class – its methods can be used without creating
instances of it):
 wrq←WebRequest.Create ⊂'http://www.dyalog.com'

revision 20220124_182 18

.NET Core Interface Guide

Potentially confusingly, if the URI specifies a protocol of "http://" or "https://", an object
of type HttpWebRequest is returned rather than a simple WebRequest. The effect
of this is that, at this stage, wrq is an HttpWebRequest object.
 wrq
 System.Net.HttpWebRequest

The HttpRequest class has a GetResponse method that returns a response from an
internet resource. Although it is not yet HTML, the result is an object of type
System.Net.HttpWebResponse:
 wr←wrq.GetResponse
 wr
 System.Net.HttpWebResponse

The HttpWebResponse class has a GetResponseStream method whose result is of
type System.Net.ConnectStream. This object, whose base class is
System.IO.Stream, provides methods to read and write data both synchronously
and asynchronously from a data source, which in this case is physically connected to a
TCP/IP socket:
 str←wr.GetResponseStream
 str
 System.Net.Http.HttpConnection+ChunkedEncodingReadStream

However, the Stream class is designed for byte input and output; what is needed in this
example is a class that reads characters in a byte stream using a particular encoding. This
is a job for the System.IO.StreamReader class. Given a Stream object, create a
new instance of a StreamReader by passing it the Stream as a parameter:
 rdr←⎕NEW StreamReader str
 rdr
 System.IO.StreamReader

Finally, use the ReadToEnd method of the StreamReader to get the contents of the
page:
 s←rdr.ReadToEnd
 ⍴s
 20295

Note that to avoid running out of connections, it is necessary to close the stream:
 str.Close

revision 20220124_182 19

.NET Core Interface Guide

3.5 Enumerations
An enumeration is a set of named constants that can apply to a particular operation. For
example, when opening a file you typically want to specify whether the file is to be
opened for reading, for writing or for both. A method that opens a file will take a
parameter that specifies this. If this is implemented using an enumerated constant, then
the parameter can be one of a specific set of (typically) integer values, for example, 1 =
read, 2 = write, 3 = read and write. However, to avoid using meaningless numbers in
code, it is conventional to use names to represent particular values. These are known as
enumerated constants or, more simply, as enums.

In .NET Core, enums are implemented as classes that inherit from the System.Enum
base class. The class as a whole represents a set of enumerated constants; each of the
constants is represented by a static field within the class.

Typically, an enumerated constant would be used as a parameter to a method or to
specify the value of a property. For example, the DayOfWeek property of the
DateTime object returns a value of Type System.DayOfWeek (it is incidental that
both the Type and property are called DayOfWeek):
 ⎕USING←'' 'System'
 cal←⎕NEW DateTime(1981 09 23)
 cal.DayOfWeek
 Wednesday
 cal.DayOfWeek.GetType
 System.DayOfWeek
 System.DayOfWeek.⎕NL ¯2
 Friday Monday Saturday Sunday Thursday Tuesday Wednesday

The function System.Convert.ToBase64String has some constructor overloads
that take an argument of Type System.Base64FormattingOptions, which is an
enum:
 System.Convert.ToBase64String
 System.String ToBase64String(Byte[])
 ...
 System.Base64FormattingOptions.⎕NL ¯2
 InsertLineBreaks None

revision 20220124_182 20

.NET Core Interface Guide

Hence:
 (⎕UCS 13)∊ System.Convert.ToBase64String(⍳100)
System.Base64FormattingOptions.InsertLineBreaks
 1
 (⎕UCS 13)∊ System.Convert.ToBase64String(⍳100)
System.Base64FormattingOptions.None
 0

An enum has a value that can be used in place of the enum itself when such usage is
unambiguous. For example, the
System.Base64FormattingOptions.InsertLineBreaks enum has an
underlying value of 1:

 Convert.ToInt32 Base64FormattingOptions.InsertLineBreaks
 1

This means that the scalar value 1 can be used as the second parameter to
ToBase64String:
 (⎕UCS 13)∊ System.Convert.ToBase64String(⍳100) 1
 1

However, this practice is not recommended. Not only does it make the code less clear,
but also if a value for a property or a parameter to a method can be one of several
different enum types, APL cannot tell which is expected and the call will fail.

3.6 Handling Pointers with Dyalog.ByRef
Certain .NET methods take parameters that are pointers, for example, the DivRem
method that is provided by the System.Math class. This method performs an integer
division, returning the quotient as its result, and the remainder in an address specified as
a pointer by the calling program.

APL does not have a mechanism for dealing with pointers, so Dyalog provides a .NET class
for this purpose. This is the Dyalog.ByRef class, which is a provided in
Dyalog.Net.Core.Bridge.dll (which is automatically loaded by Dyalog).

To gain access to the Dyalog .NET namespace, it must be specified by ⎕USING. The
assembly (DLL) from which it is obtained (the Dyalog.Net.Bridge.dll file) does not need to
be specified as it is automatically loaded when Dyalog starts:
 ⎕USING←'System.IO,System.IO.FileSystem' 'Dyalog'

revision 20220124_182 21

.NET Core Interface Guide

The Dyalog.ByRef class represents a pointer to an object of type System.Object.
It has a number of constructors, some of which are used internally by Dyalog. Only two of
these are of particular interest – the one that takes no parameters, and the one that
takes a single parameter of type System.Object. The former is used to create an
empty pointer; the latter to create a pointer to an object or some data.

For example, to create an empty pointer:
 ptr1←⎕NEW ByRef

or, to create pointers to specific values:
 ptr2←⎕NEW ByRef 0
 ptr3←⎕NEW ByRef (⊂⍳10)
 ptr4←⎕NEW ByRef (⎕NEW DateTime (2000 4 30))

As a single parameter is required, it must be enclosed if it is an array with several
elements. Alternatively, the parameter can be a .NET object.

The ByRef class has a single property called Value:
 ptr2.Value
 0

 ptr3.Value
 1 2 3 4 5 6 7 8 9 10

 ptr4.Value
 30/04/2000 00:00:00

If the Value property is referenced without first setting it, a VALUE ERROR is returned:
 ptr1.Value
 VALUE ERROR
 ptr1.Value
 ^

Returning to the example, the DivRem method takes 3 parameters:
 1. the numerator
 2. the denominator
 3. a pointer to an address into which the method will write the remainder after

performing the division

 remptr←⎕NEW ByRef
 remptr.Value
 VALUE ERROR
 remptr.Value
 ^

revision 20220124_182 22

.NET Core Interface Guide

 Math.DivRem 311 99 remptr
 3
 remptr.Value
 14

Sometimes a .NET method can take a parameter that is an array and the method expects
to fill in the array with appropriate values. In APL there is no syntax to allow a parameter
to a function to be modified in this way. However, the Dyalog.ByRef class can be
used to call this method. For example, the System.IO.FileStream class contains a
Read method that populates its first argument with the bytes in the file:
 ⎕USING←'System.IO' 'Dyalog' 'System'
 fs←⎕NEW FileStream ('c:\tmp\jd.txt' FileMode.Open)
 fs.Length
 25

 fs.Read(arg←⎕NEW ByRef,⊂⊂25⍴0)0 25
 25

 arg.Value
 104 101 108 108 111 32 102 114 111 109 32 106 111 104 110 32 100
97 105 110 116 114 101 101 10

3.7 DECF Conversion
Incoming .NET data types System.Decimal (96-bit integer) and System.Int64 (64-
bit integer) are converted to 126-bit decimal numbers (DECFs). This conversion is
performed independently of the value of ⎕FR.

To perform arithmetic on values imported in this way, set ⎕FR to 1287, at least for the
duration of the calculations.

revision 20220124_182 23

.NET Core Interface Guide

Index

.
.NET classes 6

Using 8
.NET namespaces 7

A
Adding .NET objects 13
APL language extensions

for .NET objects 13

B
Base class 6, 20
ByRef class 21

C
Class methods 12
Common Language Runtime 6
Common operators 13
Common Type System 6
Comparing .NET objects 13
Constructor methods 9
Constructors 9

D
DECF 23
Directory class 16
DivRem method 21
Dyalog namespace 21
Dyalog.Net.Bridge.dll 4
Dyalog.Net.Bridge.Host.DLL 4

E
Enumerations 20
Exception class 14
Exceptions 14

F
File class 16
FileStream class 23
floating-point representation 23

G
GetType method 10

H
HttpWebRequest class 19
HttpWebResponse class 19

M
MailMessage class 17
Manipulating files 16
Math class 21

N
Namespace reference array
expansion 17

nethost.dll 4
New system function 9

O
Overloading 9
Overloads 15
OverloadTypes variant option 15

P
Pointers 21
Pre-requisites 3

S
Sending an email 17
SmtpMail class 17
Stream class 19
StreamReader class 19
Subtracting .NET objects 13

T
ToString method 9-10

U
URI class 18

revision 20220124_182 24

.NET Core Interface Guide

V
Variant operator 15
Variant option

OverloadTypes 15

W
Web scraping 18

revision 20220124_182 25

.NET Core Interface Guide

	1 About This Document
	1.1 Audience
	1.2 Conventions

	2 Installation
	2.1 Pre-requisites
	2.1.1 Installing .NET Core

	2.2 Files Installed with Dyalog
	2.3 Enabling the .NET Core Interface
	2.4 Verifying the Installation

	3 .NET Classes
	3.1 Locating .NET Classes and Assemblies
	3.2 Using .NET Classes
	3.2.1 Constructors and Overloading
	3.2.2 Resolving References to .NET Objects
	3.2.3 Displaying a .NET Object
	3.2.3.1 Value Tips for External Functions

	3.2.4 Disposing of .NET Objects

	3.3 Advanced Techniques
	3.3.1 Shared Members
	3.3.2 APL Language Extensions for .NET Projects
	3.3.3 Exceptions
	3.3.4 Specifying Overloads
	3.3.4.1 Overloaded Constructors

	3.4 Example Usage
	3.4.1 Directory and File Manipulation
	3.4.2 Sending an Email
	3.4.3 Web Scraping

	3.5 Enumerations
	3.6 Handling Pointers with Dyalog.ByRef
	3.7 DECF Conversion

	Index

