
Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2020 by Dyalog Limited

All rights reserved.

Version: 18.0

Revision: 3990 dated 20240212

Please note that unless otherwise stated, all the examples in this document assume that ⎕IO is 1, and ⎕ML is 1.

No part of this publication may be reproduced in any form by any means without the prior written
permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents hereof and
specifically disclaims any implied warranties of merchantability or fitness for any particular purpose.
Dyalog Limited reserves the right to revise this publication without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The Open Group.

Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

macOS®, Mac OS® and OS X® (operating system software) are trademarks of Apple Inc.,
registered in the U.S. and other countries.

Array Editor is copyright of davidliebtag.com.

All other trademarks and copyrights are acknowledged.

Contents

Chapter 1: Installation and Configuration 1
Documentation 1
Files and Directories 2
APL Fonts 9
Interoperability 10
The APL Command Line 13
APL Exit Codes 16
Dyalog Serial Number 17
Configuration Parameters 18

AddClassHeaders 19
APL_CODE_E_MAGNITUDE 20
APL_COMPLEX_AS_V12 21
APL_FCREATE_PROPS_C 21
APL_FCREATE_PROPS_J 21
APL_FAST_FCHK 22
APL_MAX_THREADS 22
APL_TextInAplCore 22
AplCoreName 22
APLK 23
APLKeys 23
aplnid 23
APLT 23
APLTrans 24
Auto_PW 24
AutoDPI 24
AutoComplete/CancelKey1 24
AutoComplete/CancelKey2 24
AutoComplete/Cols 25
AutoComplete/CommonKey1 25
AutoComplete/CompleteKey1 25
AutoComplete/CompleteKey2 25
AutoComplete/Enabled 25
AutoComplete/History 25
AutoComplete/HistorySize 26
AutoComplete/PrefixSize 26
AutoComplete/Rows 26
AutoComplete/ShowFiles 26
AutoFormat 26
AutoIndent 27
CFEXT 27

iv

ClassicMode 27
ClassicModeSavePosition 28
CMD_PREFIX and CMD_POSTFIX 28
ConfigFile 28
Confirm_Abort 28
Confirm_Close 28
Confirm_Fix 29
Confirm_Session_Delete 29
Default_DIV 29
Default_IO 29
Default_ML 29
Default_PP 29
Default_PW 30
Default_RTL 30
Default_WX 30
DMXOutputOnError 30
DockableEditWindows 30
DoubleClickEdit 31
Dyalog 31
DyalogEmailAddress 31
DYALOG_EVENTLOGGINGLEVEL 31
DYALOG_EVENTLOGNAME 31
DyalogHelpDir 31
DyalogInstallDir 32
Dyalog_LineEditor_Mode 32
Dyalog_NETCore 32
DYALOG_NOPOPUPS 32
Dyalog_Pixel_Type 32
DYALOG_SERIAL 33
DyalogStartup 33
DyalogStartupSE 33
DyalogWebSite 33
Edit_Cols 34
Edit_First_X 34
Edit_First_Y 34
Edit_Offset_X 34
Edit_Offset_Y 34
Edit_Rows 34
ErrorOnExternalException 35
EditorState 35
ENABLE_CEF 35
ExternalHelpURL 35
File_Stack_Size 35
Greet_Bitmap 36
History_Size 36
IniFile 36
InitFullScriptNormal 37
InitFullScriptSusp 37

v

InitialKeyboardLayout 38
InitialKeyboardLayoutInUse 38
InitialKeyboardLayoutShowAll 38
Input_Size 38
KeyboardInputDelay 38
lines_on_functions 39
Load 39
localdyalogdir 39
Log_File 40
Log_File_InUse 40
Log_Size 40
LX 40
mapchars 41
MaxAplCores 41
MaxWS 42
OverstrikesPopup 42
PassExceptionsToOpSys 42
PFKey_Size 43
ProgramFolder 43
PropertyExposeRoot 43
PropertyExposeSE 43
qcmd_timeout 43
ResolveOverstrikes 44
RIDE_Init 44
RIDE_Spawned 45
RunAsService 45
SaveContinueOnExit 45
SaveLogOnExit 45
SaveSessionOnExit 46
Serial 46
Session_File 46
SessionOnTop 46
ShowStatusOnError 46
SingleTrace 46
SkipLines 47
StatusOnEdit 47
SM_Cols 47
SM_Rows 47
TabStops 47
ToolBarsOnEdit 47
Trace_First_X 48
Trace_First_Y 48
Trace_Level_Warn 48
Trace_Offset_X 48
Trace_Offset_Y 48
Trace_On_Error 49
TraceStopMonitor 49
UnicodeToClipboard 49

vi

URLHighlight 50
UseExternalHelpURL 50
UserConfigFile 50
ValueTips/ColourScheme 50
ValueTips/Delay 51
ValueTips/Enabled 51
WantsSpecialKeys 51
WrapSearch 51
WrapSearchMsgBox 51
WSEXT 52
WSPath 52
XPLookAndFeel 53
yy_window 53

Registry Sub-Folders 56
Configuration Files 58
Window Captions 62
Workspace Management 64
Interface with Windows 65
Auxiliary Processors 65
Access Control for External Variables 67
Creating Executables and COM Servers 68
Run-Time Applications and Components 73
Run-Time Applications Additonal Considerations 78
COM Objects and the Dyalog APL DLL 81
APL Application as a Service 84

Introduction 84
Installing and Uninstalling a Dyalog Service 84
The Application Workspace 85

APLService Logging Events 89

Chapter 2: Configuring the IDE 95
The Configuration Dialog Box 95

General Tab 95
Unicode Input Tab (Unicode Edition Only) 97
Input Tab (Classic Edition Only) 99
Output Tab (Classic Edition Only) 100
Keyboard Shortcuts Tab 101
Workspace Tab 102
Help/DMX Tab 103
Windows Tab 104
Session Tab 106
Trace/Edit Tab 108
Auto Complete Tab 112
SALT Tab 114
User Commands Tab 116
Object Syntax Tab 117
Saved ResponsesTab 118

vii

Colour Selection Dialog 120
Print Configuration Dialog Box 123

Index 131

1

Chapter 1:

Installation and Configuration

Documentation
The documentation set for Dyalog is installed in the help sub-directory of the
main Dyalog installation directory.

The latter is given by the expression:

⎕←2 ⎕NQ'.' 'GetEnvironment' 'DYALOG'
C:\Program Files\Dyalog\Dyalog APL-64 15.0 Unicode

Example:
dyalog←2⎕nq'.' 'GetEnvironment' 'DYALOG'
⎕cmd 'dir "',dyalog,'/help"'

Volume in drive C is OS
Volume Serial Number is 3013-866E

Directory of C:\Program Files\Dyalog\Dyalog APL-64 15.0
Unicode\help

18/01/2016 11:53 <DIR> .
18/01/2016 11:53 <DIR> ..
11/01/2016 17:20 182,965 APL Workspace Transfer
Guide.pdf
11/01/2016 17:20 467,005 Application Tuning Guide.pdf
11/01/2016 17:20 587,605 Code Libraries Reference
Guide.pdf
11/01/2016 17:20 249,461 Compiler User Guide.pdf
11/01/2016 17:20 451,949 Conga User Guide.pdf
...

2 Installation and Configuration Guide

Files and Directories
Unicode and Classic Editions
Dyalog APL continues to be available in two separate editions; Unicode and
Classic.

l The Unicode edition is intended for users who need to develop Unicode
applications now, and are prepared to make the necessary (usually small)
changes to existing applications in order to support new Unicode character
types.

l The Classic edition is intended for customers who want to take advantage
of other product enhancements, but do not wish to use Unicode at this time.

The two different editions are maintained from the same source code, and every
effort will be made to ensure that they are identical except for the handling of
character arrays, and the transfer of data into and out of the workspace.

32-Bit and 64-Bit Versions
Two separate versions of Dyalog for Microsoft Windows are available. The 32-bit
version will run on both 32-bit and 64-bit Operating Systems; the 64-bit version
will only run on a 64-bit Operating System.

Files
The following tables show files that are included in the different versions and
editions under Microsoft Windows. These are referred to in the remainder of this
document and in other documents by the name shown in the first column of the
tables.

With the exception of the following all these files may be distributed as part of
end-user applications, under the terms and conditions of a Dyalog APL Run-Time
Agreement. Please contact Dyalog or your distributor, or see the Dyalog web page
for more information.

Non-Distributable Development Components
l Development EXE
l Development DLL
l Array Editor

Chapter 1: Installation and Configuration 3

Name File

32-bit Unicode Dyalog APL 18.0Unicode\

Development EXE dyalog.exe

Development DLL dyalog180_32_unicode.dll

Array Editor dlaedit32.dll

Run-Time EXE dyalogrt.exe

Run-Time DLL dyalog180rt_unicode.dll

Bridge DLL bridge180_unicode.dll

Dyalog DLL dyalog32.dll

DyaRes DLL dyares180_32.dll

DyalogProvider DLL dyalogprovider.dll

DyalogNet DLL dyalognet.dll

APLScript Compiler dyalogc_unicode.exe

For Conga and RIDE conga33ssl32.dll

For Conga and RIDE conga33_32.dll

exestub.dll

dllstub.dll

SQAPL INI sqapl.ini

SQAPL ERR sqapl.err

SQAPL DLL cwdya63u32w.dll

APLUNICD INI aplunicd.ini

sharpplot.dll

sharpplot.xml

4 Installation and Configuration Guide

Name File

32-bit Classic Dyalog APL 18.0 Classic\

Development EXE dyalog.exe

Development DLL dyalog180_32.dll

Array Editor dlaedit32.dll

Run-Time EXE dyalogrt.exe

Run-Time DLL dyalog180rt.dll

Bridge DLL bridge180.dll

Dyalog DLL dyalog32.dll

DyaRes DLL dyares180_32.dll

DyalogProvider DLL dyalogprovider.dll

DyalogNet DLL dyalognet.dll

APLScript Compiler dyalogc.exe

For Conga and RIDE conga33ssl32.dll

For Conga and RIDE conga33_32.dll

exestub.dll

dllstub.dll

SQAPL INI sqapl.ini

SQAPL ERR sqapl.err

SQAPL DLL cwdya63c32w.dll

APLUNICD INI aplunicd.ini

sharpplot.dll

sharpplot.xml

Chapter 1: Installation and Configuration 5

Name File

64-bit Unicode Dyalog APL-64 18.0 Unicode\

Development EXE dyalog.exe

Development DLL dyalog180_64_unicode.dll

Array Editor dlaedit64.dll

Run-Time EXE dyalogrt.exe

Run-Time DLL dyalog180_64rt_unicode.dll

Bridge DLL bridge180-64_unicode.dll

Dyalog DLL dyalog64.dll

DyaRes DLL dyares180_64.dll

DyalogProvider DLL dyalogprovider.dll

DyalogNet DLL dyalognet.dll

APLScript Compiler dyalogc64_unicode.exe

For Conga and RIDE conga33ssl64.dll

For Conga and RIDE conga33_64.dll

exestub.dll

dllstub.dll

SQAPL INI sqapl.ini

SQAPL ERR sqapl.err

SQAPL DLL cwdya63u64w.dll

APLUNICD INI aplunicd.ini

sharpplot.dll

sharpplot.xml

6 Installation and Configuration Guide

Name File

64-bit Classic Dyalog APL-64 18.0 Classic\

Development EXE dyalog.exe

Development DLL dyalog180_64.dll

Array Editor dlaedit64.dll

Run-Time EXE dyalogrt.exe

Run-Time DLL dyalog180_64rt.dll

Bridge DLL bridge180-64.dll

Dyalog DLL dyalog64.dll

DyaRes DLL dyares180_64.dll

DyalogProvider DLL dyalogprovider.dll

DyalogNet DLL dyalognet.dll

APLScript Compiler dyalogc64.exe

For Conga and RIDE conga33ssl64.dll

For Conga and RIDE conga33_64.dll

exestub.dll

dllstub.dll

SQAPL INI sqapl.ini

SQAPL ERR sqapl.err

SQAPL DLL cwdya63c64w.dll

APLUNICD INI aplunicd.ini

sharpplot.dll

sharpplot.xml

Chapter 1: Installation and Configuration 7

File Naming Conventions
The following file naming conventions have been adopted for the various files
distributed with and used by Dyalog APL.

Extension Description

.dws Dyalog APL Workspace

.dse Dyalog APL Session

.dcf Dyalog APL Component File

.DXV Dyalog APL External Variable

.din Dyalog APL Input Table

.dot Dyalog APL Output Table

.dft Dyalog APL Format File

.DXF Dyalog APL Transfer File

.dlf Dyalog APL Session Log File

.dyalog Dyalog APL SALT file

.dyapp Dyalog APL SALT application file

Note that some of these extensions, notably .dcf, .dlf, .dot and .DXF, are not
unique to Dyalog and conflict with the same extensions used by other software
applications. Although all the above file extensions are associated with Dyalog
during its installation, these associations may subsequently be changed by the
installation of other software or by a Windows System restore.

8 Installation and Configuration Guide

File Associations
During installation, setup.exe associates a number of file extensions with
Dyalog applications.

Workspace files with extension .dws and files with extension .dyapp, which are
used to bootstrap SALT-based applications1, are associated with dyalog.exe.

The following file types are associated with the Dyalog APL Editor
dyaedit.exe. They are used by various source code management tools,
including Link2 and SALT3 and 3rd party tools like Acre Desktop4.

.aplf Functions

.aplo Operators

.apln Namespaces

.aplc Classes

.apli Interfaces

.dyalog Generic

Additionally, Link uses .apla files to store serialised arrays. These are likely to
become associated with dyaedit.exe in a future release.

1http://docs.dyalog.com/latest/SALT User Guide.pdf#page=12
2https://github.com/Dyalog/link/blob/master/help/Link.md
3http://docs.dyalog.com/latest/SALT User Guide.pdf
4https://github.com/the-carlisle-group/Acre-Desktop/wiki

Chapter 1: Installation and Configuration 9

APL Fonts
Unicode Edition
The default font for the Unicode Edition is APL385 Unicode1 which is a TrueType
font and is installed as part of Dyalog APL. APL385 Unicode is the font used to
print APL characters in this manual. In principle, you may use any other Unicode
font that includes the APL symbols.

Classic Edition
In the Classic Edition, there are two types of APL font provided; bitmap (screen)
and TrueType. There are also two different layouts, which are referred to as Std and
Alt.

The bitmap fonts are designed for the screen alone and are named Dyalog Std and
Dyalog Alt. The TrueType fonts have a traditional 2741-style italic appearance and
are named Dyalog Std TT and Dyalog Alt TT1.

The Std layout, which was the standard layout for Versions of Dyalog APL up to
Version 10.1 contains the APL underscored alphabet Ⓐ-Ⓩ. The underscored
alphabet is a deprecated feature and is only supported in this Version of Dyalog
APL for backwards compatibility.

The Alt layout, which replaced the Std layout as the standard layout for Version
12.0 Classic Edition onwards, does not have the underscored alphabet, but contains
additional National Language characters in their place. Note that the extra
National Language symbols share the same ⎕AV positions with the underscored
alphabet. If, for example, you switch from the Std font layout to the alternative
one, you will see the symbol Á (A-acute) instead of the symbol Ⓐ (A-underscore).

You may use either a bitmap font or a TrueType font in your APL session (see UI
Guide: Session Operations for details). You MUST use a TrueType font for
printing APL functions.

1The Dyalog Std TT, Dyalog Alt TT, and APL385 Unicode fonts are the copyright
of Adrian Smith.

10 Installation and Configuration Guide

Interoperability
Introduction
Workspaces and component files are stored on disk in a binary format (illegible to
text editors). This format differs between machine architectures and among versions
of Dyalog. For example, a file component written by a PC may well have an
internal format that is different from one written by a UNIX machine. Similarly, a
workspace saved from Dyalog Version 18.0 will differ internally from one saved
by a previous version of Dyalog APL.

It is convenient for versions of Dyalog APL running on different platforms to be
able to interoperate by sharing workspaces and component files. From Version
11.0, component files and workspaces can generally be shared between Dyalog
interpreters running on different platforms. However, this is not always possible
and the following sections describe limitations in interoperability:

Code and ⎕ORs
Code that is saved in workspaces, or embedded within ⎕ORs stored in component
files, can only be read by the Dyalog version which saved them and later versions
of the interpreter. In the case of workspaces, a load (or copy) into an older version
would fail with the message:

this WS requires a later version of the interpreter.

Every time a ⎕OR object is read by a version later than that which created it, time
may be spent in converting the internal representation into the latest form. Dyalog
recommends that ⎕ORs should not be used as a mechanism for sharing code or
objects between different versions of APL.

"Ordinary" Arrays
With the exception of the Unicode restrictions described in the following
paragraphs, Dyalog APL provides interoperability for arrays that only contain
(nested) character and numeric data. Such arrays can be stored in component files -
or transmitted using TCPSocket objects and Conga connections, and shared
between all versions and across all platforms.

Full cross-platform interoperability of component files is only available for large-
span component files.

Chapter 1: Installation and Configuration 11

Null Items (⎕NULL) and Compressed Components
⎕NULLs and components from compressed component files that were created in
Version 18.0 and later can be brought into Versions 16.0, 17.0 and 17.1 provided
that the interpreters have been patched to revision 38151 or higher. Attempts to
bring ⎕NULL or compressed component into earlier versions of Dyalog APL or
lower revisions of the aforementioned versions will fail with:

DOMAIN ERROR: Array is from a later version of APL.

Object Representations (⎕OR)
An attempt to ⎕FREAD a component containing a ⎕OR that was created by a later
version of Dyalog APL will generate DOMAIN ERROR: Array is from a
later version of APL. This also applies to APL objects passed via Conga or
TCPSockets, or objects that have been serialised using 220⌶.

32 vs. 64-bit Component Files
It is no longer possible to create or write to small-span (32-bit) files; however it is
still currently possible to read from small span files. Setting the second item of the
right argument of ⎕FCREATE to anything other than 64 will generate a
DOMAIN ERROR.

Note that small-span (32-bit-addressing) component files cannot contain Unicode
data. Unicode editions of Dyalog APL can only write character data which would
be readable by a Classic edition (consisting of elements of ⎕AV).

External Variables
External variables are subject to the same restrictions as small-span component files
regarding Unicode data. External variables are unlikely to be developed further;
Dyalog recommends that applications which use them should switch to using
mapped files or traditional component files. Please contact Dyalog if you need
further advice on this topic.

32 vs. 64-bit Interpreters
There is complete interoperability between 32- and 64-bit interpreters, except that
32-bit interpreters are unable to work with arrays or workspaces greater than 2GB
in size.

Note however that under Windows a 32-bit version of Dyalog APL may only
access 32-bit DLLs, and a 64-bit version of Dyalog APL may only access 64-bit
DLLs. This is a Windows restriction.

12 Installation and Configuration Guide

Unicode vs. Classic Editions
Two editions are available on some platforms. Unicode editions work with the
entire Unicode character set. Classic editions (which are only available to
commercial and enterprise users for legacy applications) are limited to the 256
characters defined in the atomic vector, ⎕AV.

Component files have a Unicode property. When this is enabled, all characters will
be written as Unicode data to the file. The Unicode property is always off for
small-span (32-bit addressing) files, as these cannot contain Unicode data. For
large-span (64-bit addressing) component files, the Unicode property is set on by
Unicode Editions and off by Classic Editions, by default. The Unicode property
can subsequently be toggled on and off using ⎕FPROPS.

When a Unicode edition writes to a component file that cannot contain Unicode
data, character data is mapped using ⎕AVU; it can therefore be read without
problems by Classic editions.

A TRANSLATION ERROR will occur if a Unicode edition writes to a non-
Unicode component file (that is either a 32-bit file, or a 64-bit file when the
Unicode property is currently off) if the data being written contains characters that
are not in ⎕AVU.

Likewise, a Classic edition will issue a TRANSLATION ERROR if it attempts to
read a component containing Unicode data that is not in ⎕AVU from a component
file.

A TRANSLATION ERROR will also be issued when a Classic edition attempts to
)LOAD or)COPY a workspace containing Unicode data that cannot be mapped to
⎕AV using the ⎕AVU in the recipient workspace.

TCPSocket objects have an APL property that corresponds to the Unicode
property of a file, if this is set to Classic (the default) the data in the socket will
be restricted to ⎕AV, if Unicode it will contain Unicode character data. As a result,
TRANSLATION ERRORs can occur on transmission or reception in the same way
as when updating or reading a file component.

The symbols ⊆, ⍸, ⍤, ⍠, ⌸, ⌺ and ⍥ used for the Nest (Interval Index) and Where
(Partition) functions, the Rank, Variant, Key, Stencil and Over operators
respectively are available only in the Unicode edition. In the Classic edition, these
symbols are replaced by ⎕U2286, ⎕U2378, ⎕U2364, ⎕U2360, ⎕U2338, ⎕U233a
and ⎕U2365 respectively. In both Unicode and Classic editions Variant may be
represented by ⎕OPT.

Very large array components
An attempt to read a component greater than 2GB in 32-bit interpreters will result
in a WS FULL.

Chapter 1: Installation and Configuration 13

TCPSockets and Conga
TCPSockets and Conga can be used to communicate between differing versions of
Dyalog APL and are subject to similar limitations to those described above for
component files.

Auxiliary Processors
A Dyalog APL process is restricted to starting an AP of exactly the same
architecture from the same operating system. In other words, the AP must share the
same word-width and byte-ordering as its interpreter process.

Session Files
Session (.dse) files can only be used on the platform on which they were created
and saved. Under Microsoft Windows, Session files may only be used by the
architecture (32-bit-or 64-bit) of the Version of Dyalog that saved them.

The APL Command Line
The command line for Dyalog APL is described below; the command line for non-
Windows versions of Dyalog APL is very similar and is also documented in
Dyalog for UNIX UI Guide: Starting APL.

Usually the command line is specified in the Target: field of the APL shortcut. The
full pathname to the Dyalog executable is usually surrounded by double quotes as
it contains spaces.

Command Line
dyalog [options] [debug] [ws] [param] [param] [param]...

where:

[dyalog]

Is the location of the Dyalog executable. Usually this is the full
pathname, surrounded by double quotes.

14 Installation and Configuration Guide

[options]

-x No ⎕LX execution on workspace loads.
-a Start in USER mode.
-b Suppress the banner in the Session..
-s Disable the Session. This option is ignored in Windows

versions.
+s Force the display of the Session when it would

otherwise not be shown.
-q Don't quit APL on error (used when piping input into

APL).
+q Quit APL on error. In earlier versions of Dyalog,

quitting on error saved a workspace with the reserved
name CONTINUE; this behaviour can be re-enabled
using 2704⌶. See Language Reference Guide: Contine
Autosave.

-c Signifies a command-line comment. All characters to
the right are ignored.

-cef
-cef_all

Instructs Dyalog to ignore the parameter that
immediately follows or all the parameters that follow.
These options are intended to isolate parameters
intended for the built-in Chromium Embedded
Framework (CEF). See Object Reference Guide:
HTMLRenderer Object.

[debug]

-Dc Check workspace integrity after every callback function.
-Dw Check workspace integrity on return to session input.

-DW Check workspace integrity after every line of APL
(application will run slowly as a result)

-DK Log session keystrokes in (binary) file ./apllog.

[ws]

The name of a Dyalog APL workspace to be loaded. Unless
specified, on Windows the file extension .DWS is assumed.

Chapter 1: Installation and Configuration 15

[param]

A parameter name followed by an equals sign (=) and a value.
The parameter name may be one of the standard APL parameters
(see Configuration Parameters on page 18) or a name and value
of your own choosing (see Object Reference Guide:
GetEnvironment Method). If the parameter is in a registry sub-
folder (see Registry Sub-Folders on page 56), its name must be
preceded by the name of the sub-folder, followed by a backslash
(\) or underscore (_).

Note that instead of a loading a workspace specified by the ws option, APL can be
instructed to load a program from a script file. For further information, see Load on
page 39.

Examples:

Start APL using the configuration file myconfig.dcfg:

"c:\program files\…\dyalog.exe" ConfigFile="myconfig.dcfg"

Load the workspace myapp, setting MaxWS parameter:

"c:\program files\…\dyalog.exe" myapp maxws=2G

Load the workspace myapp, set an application specific parameter, but do not
execute the latent expression:

"c:\program files\…\dyalog.exe" -x myapp myparam=8080

Run the function defined in myfn.aplf:

"c:\program files\…\dyalog.exe" load=myfn.aplf

Start APL and output "Hello World":

"c:\program files\…\dyalog.exe" lx="⎕←'Hello World'"

16 Installation and Configuration Guide

APL Exit Codes
When APL or a bound .EXE terminates, it returns an exit code to the calling
environment. If APL is started from a desktop icon, the return code is ignored.
However, if APL is started from a script (UNIX) or a command processor, the exit
code is available and may be used to determine whether or not to continue with
other processing tasks. The return codes are:

0 Successful ⎕OFF,)OFF,)CONTINUE, graphical exit from GUI

1
APL failed to start. This will occur if there was a failure to read a
translate file, there is insufficient memory, or a critical parameter is
incorrectly specified or missing.

2 APL was terminated by SIGHUP or SIGTERM (UNIX) or in response
to a QUIT WINDOWS request. APL has done a clean exit.

3 APL issued a syserror.

4 Runtime violation. This occurs if a runtime application attempts to
read input from the Session. Only a development version has a Session.

5 APL was unable to load the Conga libraries (14.1.25383 onwards). In
16.0 the RIDE libraries have been included in the Conga libraries.

6
RIDE_INIT or one of its components was ill-defined, or APL was
unable to use the port, and/or unable to resolve the hostname
(14.1.25383 onwards)

7 Reserved

8 Windows rejected APL's request to create a session window (in earlier
versions this generated a syserror 126)

9
Dyalog has encountered a Microsoft Windows-related error when
starting and is unable to continue. For example it cannot register
clipboard formats.

10 CEF sub-process crash - something has gone unexpectedly wrong with
either the HTMLRenderer or CEF sub-processes and cannot continue

11 Cannot create c-stack (macOS only)

Notes:

Under UNIX exit codes greater than 127 indicates (127+signal number) of the
untrapped signal which caused the process to terminate.

APL applications can generate a custom return code by specifying an integer value
to the right of ⎕OFF. Dyalog recommends using values greater than 12 for this
purpose.

Chapter 1: Installation and Configuration 17

Dyalog Serial Number
If you have registered your copy of Dyalog or have a commercial licence then you
will have been sent a Dyalog serial number; this serial number is individual to you
and corresponds to the type of licence that you are entitled to use.

The serial number should be entered during the installation process (if you already
have a version of Dyalog installed then the installer should pre-populate this field
with your serial number). This is recommended because if you enter it as part of the
installation process then all users will automatically detect the same serial number.

If the serial number is not entered during the installation process, then it can be set
by running ⎕SE.Dyalog.Serial from within a Dyalog session. However, each
individual user of that installation will have to perform this task.

To set your Dyalog serial number from within a Session:

⎕SE.Dyalog.Serial serialnumber

where serialnumber is your Dyalog serial number. This updates the registry
string value DYALOG_SERIAL in HKEY_CURRENT_
USER\Software\Dyalog\Dyalog <version>1. To complete the process
you must exit and restart the Session.

When you start a Session, your serial number is displayed in the banner . To see
your serial number at any time, enter:

+2⎕NQ'.' 'GetEnvironment' 'DYALOG_SERIAL'

or

⎕SE.Dyalog.Serial ''

NOTE:

Using or entering a serial number other than the one issued to you is not permitted.
Transferring the serial number to anyone else is not permitted.
For the full licence terms and conditions, see:
https://www.dyalog.com/uploads/documents/terms_and_conditions.pdf

1This string can also be set using regedit but Dyalog Ltd does not recommend this approach.

18 Installation and Configuration Guide

Configuration Parameters
Introduction
Dyalog APL is customised using a set of configuration parameters. These may be
defined in a number of ways, which take precedence as follows:

l Command-line settings
l Application configuration file settings
l Environment variable settings
l User configuration file settings
l Settings in the registry section defined by the IniFile parameter (Windows
only)

l Built-in defaults

This scheme provides a great deal of flexibility, and a system whereby you can
override one setting with another. For example, you can define your normal
workspace size (maxws) in the Registry, but override it with a new value specified
on the APL command line. The way this is done is described in the following
section.

Furthermore, you are not limited to the set of parameters employed by APL itself as
you may add parameters of your own choosing.

Although for clarity parameter names are given here in mixed case, they are case-
independent under Windows. Under UNIX and Linux, if Dyalog parameters are
specified as environment variables they must be named entirely in upper-case.

Note that the value of a parameter obtained by the GetEnvironment method (see
Object Reference Guide: GetEnvironment Method) uses exactly the same set of
rules.

The following section details those parameters that are implemented by Registry
Values in the top-level folder identified by IniFile. Values that are implemented in
sub-folders are mainly internal and are not described in detail here. However, any
Value that is maintained via a configuration dialog box will be named and
described in the documentation for that dialog box in The APL Environment.

Chapter 1: Installation and Configuration 19

Specifying Size-related Parameters
Several of the configuration parameters define sizes.

The value of the parameter must consist of an integer value, optionally followed
immediately by a single character which denotes the units to be used. If the value
contains no character the units are assumed to be KiB.

Valid values for units are:

K(KiB), M(MiB), G(GiB), T(TiB), P(PiB) and E(EiB).

Specifying an invalid value will prevent Dyalog APL from starting.

Changing parameter values in the Registry
You can change parameters in the Registry in one of two ways:

l Using the Configuration dialog box that is obtained by selecting Configure
from the Options menu on the Dyalog APL/W session.

l By directly editing the Windows Registry using REGEDIT.EXE or
REGEDIT32.EXE. This is necessary for parameters that are not editable via
the Configuration dialog box.

AddClassHeaders
This parameter specifies what the Tracer displays when tracing the execution of a
function in a script. If set to 1, the Tracer displays just the first line of the script
and the function in question. If set to 0, the entire script is shown in the Tracer
window.

See also Limit tracer display to current function in script on page 110

20 Installation and Configuration Guide

APL_CODE_E_MAGNITUDE
The introduction of decimal floating point numbers lead to the maximum
allowable print precision being increased from 17 to 34, which resulted in a
change in the way numbers in the range (10*17) to (10*34) in function
bodies are descanned1. For example, the number one sextillion (1021) in a function
is descanned by Version 12.1 as 1E21 and by Version 13.0 as
1000000000000000000000.

Whilst this change has no other deleterious effect, it means that code that contains
such numbers is harder to read, and the result of ⎕CR (and other character
representations) of the same function may have changed between Version 12.1 and
later versions of Dyalog causing undesired affects in code management systems.

The APL_CODE_E_MAGNITUDE parameter allows the user to choose between
the behaviour seen in Version 12.1 and earlier and in more recent behaviour. It also
allows the user to specify the size of numbers above which those numbers are
display in exponential format.

If the APL_CODE_E_MAGNITUDE parameter is undefined or set to 0 (the
default), numbers are descanned and displayed as normal.

If APL_CODE_E_MAGNITUDE has the value -1, numbers greater than or equal
to 1017 will be displayed using exponential format, as in Version 12.1.

If APL_CODE_E_MAGNITUDE has a value between 2 and 34, numbers greater
than or equal to 10value will be displayed using exponential format.

The effect of setting this parameter to any other value is undefined.

1Descanning refers to the internal process used to convert the internal representation of APL code
into a character array. For numbers in function statements, this process uses the maximum value of
Print Precision.

Chapter 1: Installation and Configuration 21

APL_COMPLEX_AS_V12
Support for Complex Numbers means that some functions produce different results
from older Versions of Dyalog APL. If APL_COMPLEX_AS_V12 is set to 1 the
behaviour of code developed using Version 12.1 or earlier will be unchanged; in
particular:

l Power (*) and logarithm (⍟) do not produce Complex Numbers as results
from non-complex arguments.

l ⎕VFI will not honour "J" or "j" as part of a number.
l ¯4○Y will be evaluated as (¯1+Y*2)*0.5 , which is positive for
negative real arguments.

If APL_COMPLEX_AS_V12 is set to any other value or is not set at all then
code developed using version 12.1 or earlier may now generate Complex Numbers.

In addition, if APL_COMPLEX_AS_V12 is set to 1, objects containing complex
numbers cannot be transferred to or from component files, TCP/IP (CONGA), or
auxiliary processors and may not be used as an argument to Serialise/Deserialise
Array (220⌶). Instead, a DOMAIN ERROR will be issued.

Note that this feature is provided to simplify the transition of older code to
currently supported Versions of Dyalog APL. It does not prevent the generation
and use of Complex Numbers using newer features (such as explicitly specifying a
Complex Number literal), and the intention is that it will be removed in a future
release of Dyalog APL.

APL_FCREATE_PROPS_C
This parameter specifies the default checksum level for newly-created component
files. If unspecified, the default checksum level is 1.

APL_FCREATE_PROPS_J
This parameter specifies the default journaling level for newly-created component
files. If unspecified, the default journaling level is 1.

22 Installation and Configuration Guide

APL_FAST_FCHK
This parameter specifies whether Dyalog APL should optimise ⎕FCHK by
allowing it to reliably determine whether a component file had been properly
untied and therefore does not need to be checked (this is overridable using the
⎕FCHK option force).

Optimising ⎕FCHK in this way has a performance impact on ⎕FUNTIE and it is
recommended this optimisation is switched off if your application frequently ties
and unties files.

Note: this only affects component files with journaling enabled.

The values of the parameter are:

0 Do not optimise ⎕FCHK (optimise ⎕FUNTIE instead)

1 Optimise ⎕FCHK

The default value of the parameter is 0 on all platforms. On Windows, setting the
value 1 has no effect.

APL_MAX_THREADS
Specifies the maximum number of system threads that are to be used for parallel
execution. The default is 1 and the maximum value is 64.

APL_TextInAplCore
This Boolean parameter specifies whether or not certain information is written to
an aplcore file when a system error occurs. The default is 1.

AplCoreName
This parameter specifies the directory and name of the file in whichaplcore should
be saved. The optional wild-card character (*) is replaced by a number when the
file is written. If there is more than one "*" in AplCoreName, the string is used as
is; no substitution is made. For more details, including how to prevent aplcore files
from being generated, see MaxAplCores on page 41

Note that APL terminates with an exit code of 3 when an aplcore file is generated.

Chapter 1: Installation and Configuration 23

APLK
This parameter specifies the name of your Input Translate Table, which defines
your keyboard layout. The keyboard combo in the Configure dialog box displays
all the files with the .DIN extension in the directory specified by the APLKEYS
parameter. You may choose any one of the supplied tables, and you may add your
own to the directory. Note that the FILE.DIN table is intended for input from file ,
and should not normally be chosen as a keyboard table.

See also Input table file on page 99.

APLKeys
This parameter specifies a search path for the Input Translate Table and is useful for
configuring a run-time application. The directory paths are specified using
Operating System specific conventions and separated by ";" (Windows) or ":"
(UNIX). Its default value is the aplkeys sub-directory of the directory in which
Dyalog APL/W is installed (defined by Dyalog).

See also Input table search path on page 99.

aplnid
Under Windows, this parameter specifies the user number that is used by the
component file system to control file sharing and security. If you wish to share
component files and/or external variables in a network it is essential that each user
has a unique aplnid parameter. It may be any integer in the range 0 to 65535. Note
that an aplnid value of 0 causes the user to bypass APL's access control matrix
mechanism.

Under UNIX, the user number is obtained from the Operating System (UID) and
aplnid is not used. If the user is "root", APL's access control mechanism is ignored.

When a user creates a component file, his user number is recorded in the file to
identify him as its owner.

APLT
This parameter specifies the name of the Output Translate Table. On Windows the
default is WIN.DOT and there is rarely a need to alter it.

See also Output table file on page 100.

24 Installation and Configuration Guide

APLTrans
This parameter specifies a search path for the Output Translate Table and is useful
for configuring a run-time application. The directory paths are specified using
Operating System specific conventions and separated by ";" (Windows) or ":"
(UNIX). Its default value is the sub-directory apltrans in the directory in which
Dyalog APL/W is installed.

See also Output table search path on page 100.

Auto_PW
This parameter specifies whether or not the value of ⎕PW is derived automatically
from the current width of the Session Window. If Auto_PW is 1, the value of ⎕PW
changes whenever the Session Window is resized and reflects the number of
characters that can be displayed on a single line. If Auto_PW is 0 (the default
under Windows) ⎕PW is independent of the Session Window size.

See also Auto PW on page 107.

AutoDPI
This parameter determines whether or not the Dyalog program registers the
application as DPI-Aware when it initialises. If 1, (the default), Dyalog performs
the auto-scaling; if 0, scaling is the responsibility of the programmer or operating
system. See also Enable DPI Scaling of the interpreter and development
environment on page 96.

AutoComplete/CancelKey1
Specifies the first of two possible keys that may be used to cancel (hide) the Auto
Cancel suggestion box.

See also Cancel Key on page 113.

AutoComplete/CancelKey2
Specifies the second of two possible keys that may be used to cancel (hide) the
Auto Cancel suggestion box.

See also Cancel Key on page 113.

Chapter 1: Installation and Configuration 25

AutoComplete/Cols
This parameter specifies the maximum number of columns (width) in the Auto
Complete pop-up suggestions box.

See also Show up to on page 113.

AutoComplete/CommonKey1
Specifies the key that will auto-complete the common prefix. This is defined to be
the longest string of leading characters in the currently selected name that is shared
by at least one other name in the Auto Complete suggestion box.

See also Common Key on page 113.

AutoComplete/CompleteKey1
Specifies the first of two possible keys that may be used to select the current
option from the Auto Complete suggestion box.

See also OK Key on page 113.

AutoComplete/CompleteKey2
Specifies the second of two possible keys that may be used to select the current
option from the Auto Complete suggestion box.

See also OK Key on page 113.

AutoComplete/Enabled
This parameter specifies whether or not Auto Completion is enabled

See also Use Auto Complete on page 112.

AutoComplete/History
Specifies whether or not Auto Complete maintains a list of previous Auto
Completions.

See also Keep History on page 113.

26 Installation and Configuration Guide

AutoComplete/HistorySize
Specifies the number of previous Auto Completions that are maintained when
History is 1. See AutoComplete/History on page 25.

See also History Length on page 113.

AutoComplete/PrefixSize
This parameter specifies the threshold (number of characters) before Auto
Completeion displays suggestions.

See also Make suggestions after on page 112.

AutoComplete/Rows
This parameter specifies the maximum number of rows (height) in the Auto
Complete pop-up suggestions box.

See also Suggest up to on page 113.

AutoComplete/ShowFiles
Specifies whether or not Auto Completion suggests directory and file names for
)LOAD,)COPY and)DROP system commands.

See also Include filenames on page 113.

AutoFormat
This parameter specifies whether or not you want automatic formatting of Control
Structures in functions. The default value is 1 which means that formatting is done
automatically for you when a function is opened for editing or converted to text by
⎕CR, ⎕NR and ⎕VR. Automatic formatting first discards all leading spaces in the
function body. It then prefixes all lines with a single space except those beginning
with a label or a comment symbol (this has the effect of making labels and
comments stand out). The third step is to indent Control Structures. The size of the
indent depends upon the TabStops parameter. To turn off automatic formatting, set
AutoFormat to 0.

See also Autoformat functions on page 110.

Chapter 1: Installation and Configuration 27

AutoIndent
This parameter specifies whether or not you want semi-automatic indenting during
editing. The default value is 1. This means that when you enter a new line in a
function, it is automatically indented by the same amount as the previous line. This
option simplifies the entry of indented Control Structures.

See also Autoindent on page 110.

CFEXT
This parameter specifies component file filename extensions.

CFEXT is a string that specifies a colon-separated list of one or more extensions,
including any period (".") which separates the extension from its basename.

If undefined, CFEXT defaults to .dcf: on Windows and OS X, and
.dcf:.DCF: on all other platforms.

In the Windows case, this means that 'myfile'⎕FTIE 0 will search first for a
file named myfile.dcf , and then for a file named myfile (with no extension).
As file names are not case-sensitive under Windows, this will find myfile.DCF
or MyFile.Dcf and so forth. If none are found with this extension, it will load
myfile , MyFile , MYFILE etc.

In the second (non-Windows) case note that 'myfile'⎕FTIE 0 will search first
for a file named myfile , then myfile.dcf , then myfile.DCF .

ClassicMode
This parameter specifies whether or not the Session operates in Dyalog Classic
mode . The default is 0. If this parameter is set to 1, the Editor and Tracer behave
in a manner that is consistent with earlier versions of Dyalog APL.

Note that in this mode, a maximum of 50 Trace windows may be displayed.

See also Classic Dyalog mode on page 108.

28 Installation and Configuration Guide

ClassicModeSavePosition
This parameter specifies whether or not the current size and location of the first of
the editor and tracer windows are remembered for next time. This applies only if
ClassicMode is 1. See ClassicMode on page 27.

The size and location of the windows are saved in the registry in the subfolder
WindowRects/EditWindow and TraceWindow.

See also Remember previous window position on page 109.

CMD_PREFIX and CMD_POSTFIX
These parameters defines strings within which operating system commands
specified as the arguments to ⎕CMD and ⎕SH , and)CMD and)SH , are
wrapped. Its purpose is to run the command arguments under a non-standard
command shell. This applies to Windows only.

See Language Reference Guide: Windows Command for implementation details.

ConfigFile
This parameter specifies the name of the Application Configuration file. See
Configuration Files on page 58.

Confirm_Abort
This parameter specifies whether or not you will be prompted for confirmation
when you attempt to abort an edit session after making changes to the object being
edited. Its value is either 1 (confirmation is required) or 0. The default is 0.

See also Confirm edit window close on Abort on page 110.

Confirm_Close
This parameter specifies whether or not you will be prompted for confirmation
when you close an edit window after making changes to the object being edited.
Its value is either 1 (confirmation is required) or 0. The default is 0.

See also Confirm edit window close on Close on page 109.

Chapter 1: Installation and Configuration 29

Confirm_Fix
This parameter specifies whether or not you will be prompted for confirmation
when you attempt to fix an object in the workspace after making changes in the
editor. Its value is either 1 (confirmation is required) or 0. The default is 0.

See also Confirm edit window close on Edit (and Fix) on page 110.

Confirm_Session_Delete
This parameter specifies whether or not you will be prompted for confirmation
when you attempt to delete lines from the Session Log. Its value is either 1
(confirmation is required) or 0. The default is 1.

See also Confirm on Deletion from Session log on page 107.

Default_DIV
This parameter specifies the value of ⎕DIV in a clear workspace. Its default value
is 0.

See also DIV on page 107.

Default_IO
This parameter specifies the value of ⎕IO in a clear workspace. Its default value is
1.

See also IO on page 106.

Default_ML
This parameter specifies the value of ⎕ML in a clear workspace. Its default value is
1.

See also ML on page 106.

Default_PP
This parameter specifies the value of ⎕PP in a clear workspace. Its default value is
10.

See also PP on page 106.

30 Installation and Configuration Guide

Default_PW
This parameter specifies the value of ⎕PW in a clear workspace. Note that ⎕PW is
a property of the Session and the value of Default_PW is overridden when a
Session file is loaded.

Default_RTL
This parameter specifies the value of ⎕RTL in a clear workspace. Its default value
is 0.

See also RTL on page 107.

Default_WX
This parameter specifies the value of ⎕WX in a clear workspace. This in turn
determines whether or not the names of properties, methods and events of GUI
objects are exposed. If set (⎕WX is 1), you may query/set properties and invoke
methods directly as if they were variables and functions respectively. As a
consequence, these names may not be used for global variables in GUI objects.

See also Expose properties of GUI Namespaces on page 117 and WX on page
107.

DMXOutputOnError
This parameter specifies in which windows DMX error messages are displayed. It is
an integer whose value is the sum of the specified windows where 1 = Status
Window and 2 = Session Window.

See also DMX messages should go to on page 103.

DockableEditWindows
This parameter specifies whether or not individual edit windows can be undocked
from (and docked back into) the (MDI) Editor window. Its default value is 0. This
applies only if ClassicMode is 1. See ClassicMode on page 27.

See also Allow floating edit windows on page 109.

Chapter 1: Installation and Configuration 31

DoubleClickEdit
This parameter specifies whether or not double-clicking over a name invokes the
editor. Its default is 1. If DoubleClickEdit is set to 0, double-clicking selects a
word and triple-clicking selects the entire line.

See also Double-click to Edit on page 110.

Dyalog
This parameter specifies the name of the directory in which Dyalog APL is
installed. If undefined, the name of the directory from which the Dyalog APL
program was loaded is assumed.

DyalogEmailAddress
This parameter specifies the contact email address for Dyalog Limited.

DYALOG_EVENTLOGGINGLEVEL
This parameter applies under Windows only, and specifies whether a log entry is
written to the Windows Event Log or not when Dyalog APL would pop up a
message box due to an unexpected termination of Dyalog APL. See Programming
Reference Guide: Handling Unexpected Errors for more information.

DYALOG_EVENTLOGNAME
This parameter applies under Windows only, and is either the name of the event
log to which an event message will be written, or the source of the event message
(depending on the registry entries which may or may not have been defined) when
Dyalog APL would pop up a message box due to an unexpected termination of
Dyalog APL.See Programming Reference Guide: Handling Unexpected Errors for
more information.

DyalogHelpDir
This parameter specifies the full pathname of the directory that contains the Dyalog
APL help file (dyalog.chm).

32 Installation and Configuration Guide

DyalogInstallDir
This parameter specifies the full pathname of the directory in which Dyalog APL is
installed.

Dyalog_LineEditor_Mode
This Boolean parameter specifies whether or not multi-line input is enabled in the
Session.

See also Extended Multiline Input (experimental) on page 107.

Dyalog_NETCore
This Boolean parameter specifies whether the .NET Core interface is enabled. On
Windows the default is 0 which disables the .NET Core interface in favour of the
.NET Framework interface. If it is set to 1, Dyalog uses .NET Core instead of the
.NET Framework.

On other platforms which support the .NET Core, the default is 1.

DYALOG_NOPOPUPS
This parameter specifies whether a MsgBox will appear (0, the default) or will not
(1) when Dyalog APL terminates unexpectedly. This applies to APL on Windows
only. See Programming Reference Guide: Handling Unexpected Errors for more
information.

Dyalog_Pixel_Type
When the Coord property is set to 'Pixel' , this parameter specifies how it is
interpreted. If the value of Dyalog_Pixel_Type is RealPixel or if Dyalog_Pixel_
Type is undefined, the object behaves as if Coord was 'RealPixel' . If the
value of Dyalog_Pixel_Type is ScaledPixel, the object behaves as if Coord were
'ScaledPixel'. See Object Reference Guide: Coord Property.

See also Enable DPI scaling of GUI application on page 96.

Chapter 1: Installation and Configuration 33

DYALOG_SERIAL
This parameter contains your Dyalog serial number. This must be set to the serial
number issued to you. If not set, then the software is unregistered.

For the full licence terms and conditions, see
https://www.dyalog.com/uploads/documents/terms_and_conditions.pdf.

DyalogStartup
This parameter specifies the name of a file that contains APL code to be run each
time Dyalog starts. If this is undefined, the default file is named
startup.dyalog in the Dyalog directory.

DyalogStartupSE
This parameter specifies one or more Session initialisation directories that contain
APL code to be installed in ⎕SE. If this parameter is not specified, the default is a
directory named StartupSession located in three standard locations.

Under Windows these might be:

1. C:\Program Files\Dyalog\Dyalog APL-64 18.0 Unicode
2. C:\Users\Pete\Documents\Dyalog APL Files
3. C:\Users\Pete\Documents\Dyalog APL-64 18.0 Unicode

Files

The version-specific name is :

Dyalog APL{bit} {version} {edition}

where:

l {bit} is "-64" if 64-bit version, otherwise nothing
l {version} is the main and secondary version numbers of dyalog.exe
separated by ".".

l {edition} is "Unicode" for the Unicode Edition, otherwise nothing

DyalogWebSite
This parameter specifies the URL for the Dyalog web site.

34 Installation and Configuration Guide

Edit_Cols
This parameter specifies the initial width of an edit window in character units.

See also Width on page 105.

Edit_First_X
This parameters specify the initial x-position on the screen of the first edit window
in character units. Subsequent edit windows will be staggered. This parameter only
apply if ClassicMode is 1.

See also X Pos on page 105.

Edit_First_Y
This parameters specify the initial y-position on the screen of the first edit window
in character units. Subsequent edit windows will be staggered. This parameter only
apply if ClassicMode is 1.

See also Y Pos on page 105.

Edit_Offset_X
This parameter specify the number of characters by which an edit window is
staggered horizontally from the previous one.

See also X Offset on page 105.

Edit_Offset_Y
This parameter specify the number of characters by which an edit window is
staggered vertically from the previous one.

See also Y Offset on page 105.

Edit_Rows
This parameter specifies the initial height of an edit window in character units.

See also Height on page 105.

Chapter 1: Installation and Configuration 35

ErrorOnExternalException
This parameter specifies the behaviour when a System Exception occurs in an
external DLL. If this parameter is set to 1, and an exception occurs in a call on an
external DLL. APL generates an EXTERNAL DLL EXCEPTION error (91), instead
of terminating with a System Error. This error may be trapped.

EditorState
This is an internal parameter that remembers the state of the last edit window
(normal or maximised). This is used to create the next edit window in the
appropriate state.

ENABLE_CEF
This parameter is a Boolean value with a default value of 1. If set to 0, it disables
the Chromium Embedded Framework (CEF)1. and an attempt to create an
HTMLRenderer object will fail with an error message.

ExternalHelpURL
If UseExternalHelpURL is 1, Dyalog attempts to use the Microsoft Document
Explorer and online help, for example from Visual Studio (if installed), to display
help for external objects, such as .Net Types. This parameter specifies the URL to
be used. In most cases the default setting will be sufficient. On some configurations
it may be necessary to change this. See UseExternalHelpURL on page 50.

See also URL on page 103.

File_Stack_Size
This parameter specifies the number of the most recently used workspaces
displayed in the Session File menu. See Recently used file list size on page 96.

1https://en.wikipedia.org/wiki/Chromium_Embedded_Framework

https://en.wikipedia.org/wiki/Chromium_Embedded_Framework

36 Installation and Configuration Guide

Greet_Bitmap
This parameter specifies the filename of a bitmap to be displayed during
initialisation of the Dyalog APL application. It is used typically to display a
product logo from a runtime application. The bitmap will remain until either an
error occurs, or it is removed using the GreetBitmap method of the Root object.

Greet_Bitmap=c:\myapp\logo.bmp

History_Size
This parameter specifies the size of the buffer used to store previously entered
(input) lines in the Session. See Specifying Size-related Parameters on page 19 for
further details about defining a valid value for this parameter. The maximum value
is 2Gb.

See also History size on page 107.

IniFile
This parameter specifies the name of the Windows Registry folder that contains the
configuration parameters described in this section. For example,

INIFILE=Software\Dyalog\mysettings

The default values for IniFile, for the 64-bit and 32-bit versions respectively, are:

Unicode Edition:
Software\Dyalog\Dyalog APL/W-64 Unicode 18.0
Software\Dyalog\Dyalog APL/W Unicode 18.0

Classic Edition:
Software\Dyalog\Dyalog APL/W-64 18.0
Software\Dyalog\Dyalog APL/W 18.0

See also Configuration saved in on page 96.

Chapter 1: Installation and Configuration 37

InitFullScriptNormal
When using the Editor to edit a script such as a Class or Namespace you can
specify whether, when you Fix the script and Exit the Editor, just the functions in
the script are re-fixed, or whether the whole script is re-executed, thereby re-
initialising any Fields or variables defined within.

These two actions always appear in the Editor File menu, but you can specify
which is associated with the <EP> (Esc) key by selecting the appropriate option in
the drop-downs labelled:

l Exit and save changes (EP) in a suspended class or namespace should fix:
l If not suspended fix:

In both cases, you may select either Only Functions or Everything.

The label for the corresponding items on the Editor File menu (see UI Guide:
Editor (The File Menu, editing a script)) will change according to which behaviour
applies. Note that if you specify a keystroke for <S1> in the Keyboard Shortcuts
tab, this will be associated with the unselected action.

See also If not ... on page 111.

InitFullScriptSusp
When using the Editor to edit a script such as a Class or Namespace you can
specify whether, when you Fix the script and Exit the Editor, just the functions in
the script are re-fixed, or whether the whole script is re-executed, thereby re-
initialising any Fields or variables defined within.

These two actions always appear in the Editor File menu, but you can specify
which is associated with the <EP> (Esc) key by selecting the appropriate option in
the drop-downs labelled:

l Exit and save changes (EP) in a suspended class or namespace should fix:
l If not suspended fix:

In both cases, you may select either Only Functions or Everything.

The label for the corresponding items on the Editor File menu (see UI Guide:
Editor (The File Menu, editing a script)) will change according to which behaviour
applies. Note that if you specify a keystroke for <S1> in the Keyboard Shortcuts
tab, this will be associated with the unselected action.

See also Exit and fix ... on page 111.

38 Installation and Configuration Guide

InitialKeyboardLayout
This parameter specifies the name of the keyboard to be selected on startup. When
you start an APL session, this layout will automatically be selected as the current
keyboard layout if the value of InitialKeyboardLayoutInUse is 1.

See also Keyboard on page 97.

InitialKeyboardLayoutInUse
This Boolean parameter specifies whether or not the keyboard specified by
InitialKeyboardLayout is selected as the current keyboard layout when you start
an APL session.

See also Activate selected keyboard on page 97.

InitialKeyboardLayoutShowAll
This Boolean parameter specifies whether or not all installed keyboards are listed
in the choice of keyboards in the Configuration dialog box (Unicode Input tab).

See also Show keyboards for all Languages on page 97.

Input_Size
This parameter specifies the size of the buffer used to store marked lines (lines
awaiting execution) in the Session. See Specifying Size-related Parameters on page
19 for further details about defining a valid value for this parameter.

See also Input buffer size on page 107.

KeyboardInputDelay
This parameter specifies the delay (in milliseconds) before the system reacts to a
user keystroke by:

l updating the name of the Current Object in the Session statusbar. See UI
Guide: The Current Object.

l offering a list of names for auto-completion. See Auto Complete Tab on
page 112

Chapter 1: Installation and Configuration 39

lines_on_functions
This parameter specifies whether or not line numbers are displayed in edit and trace
windows. It is either 0 (the default) or 1.

Note that this parameter determines your overall preference for line numbering, and
this setting persists between APL sessions. You can however still toggle line
numbering on and off dynamically as required by clicking Line Numbers in the
Options menu on the Session Window. These temporary settings are not saved
between APL sessions

Load
This parameter is a character string that specifies the name of a workspace, or a text
file containing APL source code, to be loaded when Dyalog starts. It will normally
be specified on the command line or in a Configuration file.

Dyalog determines whether or not the file is a workspace by its internal signature.
If it is a workspace, the expression specified by its Latent Expression ⎕LX will be
executed by default. This expression may be overridden by the LX parameter.

Otherwise, if the file extension is .aplf .aplc or .apln Dyalog will attempt to
fix the contents of the file as APL source code. If successful, it will by default run
the expression shown in the table below, where filename is the file name
specified by the Load parameter without its extension. This expression may be
overridden by the LX parameter.

File Extension Type Expression

.aplf Function source code filename 0⍴⊂''

.aplc Class source code filename.Run 0⍴⊂''

.apln Namespace source code filename.Run 0⍴⊂''

Notes:

l The Load parameter overrides a workspace name specified as the last item
on the command line.

l The option to load APL source code from a text file applies only to the
Unicode version and is not supported by the Classic version.

localdyalogdir
This parameter specifies the name of the directory in which Dyalog APL/W is
installed on the client, in a client/server installation

40 Installation and Configuration Guide

Log_File
This parameter specifies the pathname to the Session log file; it can be absolute or
relative to the working directory.

See also Use log file on page 107.

Log_File_InUse
This parameter specifies whether or not the Session log is saved in a session log
file.

See also Use log file on page 107.

Log_Size
This parameter specifies the size of the Session log buffer. See Specifying Size-
related Parameters on page 19 for further details about defining a valid value for
this parameter. The maximum value is 2Gb.

See also Session log size on page 107.

LX
This parameter specifies an expression to be executed after Dyalog has started and
loaded a workspace or a text file containing APL source code. Also see Load on
page 39. This expression is run only on Dyalog start-up and overrides the
workspace latent expression ⎕LX.

The LX parameter applies only to the development version of Dyalog and is
ignored in run-time applications.

The LX parameter is ignored when a workspace is loaded other than at start-up of
the Dyalog program.

Chapter 1: Installation and Configuration 41

mapchars
In previous versions of Dyalog APL, certain pairs of characters in ⎕AV were
mapped to a single font glyph through the output translate table. For example, the
ASCII pipe ¦ and the APL style | were both mapped to the APL style | . From
Version 7.0 onwards, it has been a requirement that the mapping between ⎕AV
and the font is strictly one-to-one (this is a consequence of the new native file
system). Originally, the mapping of the ASCII pipe and the APL style, the APL
and ASCII quotes, and the ASCII ^ and the APL ^ were hard-coded. The mapping
is defined by the mapchars parameter.

mapchars is a string containing pairs of hexadecimal values which refer to 0-origin
indices in ⎕AV . The first character in each pair is mapped to the second on
output. The default value of mapchars is DB0DEBA7EEC00BE0 which defines the
following mappings.

From To

Hex Decimal Symbol Hex Decimal Symbol

DB 219 ‘ 0D 13 '

EB 235 ^ A7 167 ^

EE 238 ⌷ C0 192 |

0B 11 . E0 224 .

To clear all mappings, set MAPCHARS=0000 .

MaxAplCores
This parameter is used in conjunction with the AplCoreName parameter to control
the maximum number ofaplcore files that are saved. It applies when the string
specified by AplCoreName ends with an asterisk (*). If so, when saving an
aplcore file, Dyalog performs the following steps:

1. Identifies the highest number ending of those files that match the
directory/name pattern specified by AplCoreName . If none, assume 0.

2. Increments that number, then saves the aplcore in a new file ending with
the new number.

3. If necessary, deletes lower-numbered files to retain only the maximum
number of files specified by MaxAplCores .

See also: AplCoreName on page 22.

42 Installation and Configuration Guide

MaxWS
This parameter determines your workspace size and is the amount of memory
allocated to the workspace at APL start-up. See Specifying Size-related Parameters
on page 19 for further details about defining a valid value for this parameter.

The default value is 256M (256MiB), with the exception of the Raspberry Pi where
the default is 64M. Values less than 4M are ignored, and the maximum value is
15E.

For example, to get a 4GiB workspace, set:

MAXWS=4G

Dyalog APL places no implicit restriction on workspace size, and the virtual
memory capability of the underlying operating system allows you to access more
memory than you have physically installed. However if you use a workspace that
greatly exceeds your physical memory you will encounter excessive paging and
your APL programs will run slowly. You may also cause the system to crash.

Note that the memory used for the workspace must be contiguous .

32-bit versions of Dyalog APL are typically limited to between 1.3GiB to 1.9GiB
under Windows, and 1.9GiB under UNIX. These are operating system limitations
imposed on 32-bit processes rather than ones imposed by Dyalog APL, and are
affected by the number and size of DLLs/shared libraries that are loaded into the
process space.

64-bit versions of Dyalog APL have no such limitations; Dyalog has used
workspaces of 96GiB on various platforms.

See also Maximum workspace size on page 102.

OverstrikesPopup
This is a Boolean parameter that specifies whether or not the Overstrikes popup is
enabled.

PassExceptionsToOpSys
This is a Boolean parameter that specifies the default state of the Pass Exception
check box in the System Error dialog box.See Programming Reference Guide:
Handling Unexpected Errors for more information.

Chapter 1: Installation and Configuration 43

PFKey_Size
This parameter specifies the size of the buffer that is used to store programmable
function key definitions. See Language Reference Guide: Program Function Key.

For further details about defining a valid value for this parameter, see Specifying
Size-related Parameters on page 19.

See also PFKey buffer size on page 107.

ProgramFolder
This parameter specifies the name of the folder in which the Dyalog APL program
icons are installed.

PropertyExposeRoot
Each workspace contains a flag that specifies whether or not the names of
Properties, Methods and Events of the Root object are exposed. If set, you may
query/set the Properties of Root and invoke the Root Methods directly as if they
were variables and functions respectively. As a consequence, these names may not
be used for global variables in your workspace. This parameter determines the
default value of the flag in a CLEAR WS.

See also Expose properties of Root on page 117.

PropertyExposeSE
Each workspace contains a flag that specifies whether or the names of Properties,
Methods and Events of the Session object are exposed. If set, you may query/set
the Properties of ⎕SE and invoke ⎕SE Methods directly as if they were variables
and functions respectively. As a consequence, these names may not be used for
global variables in the ⎕SE namespace. This parameter determines the default
value of the flag in a CLEAR WS.

See also Expose properties of Session Namespace on page 117.

qcmd_timeout
This parameter specifies the length of time in milliseconds that APL will wait for
the execution of a Windows command to start. Its default value is 5000
milliseconds.

44 Installation and Configuration Guide

ResolveOverstrikes
Specifies whether or not the user may enter an APL composite symbol using
overstrikes.

RIDE_Init
This parameter determines how the interpreter should behave with respect to the
RIDE protocol. Setting this configuration parameter on the machine that hosts the
interpreter enables the interpreter-RIDE connection.

RIDE_Init can only be used to specify a limited number of RIDE configuration
options; the rest must be specified in a RIDE ini file. Full details describing how to
configure RIDE, including using certificates to authenticate connections can be
found in the RIDE User Guide.

The format of the value is:

<setting> : <address> : <port>

setting is the action the interpreter should take. Valid values, which are case-
insensitive, are as follows:

l serve – listen for incoming connections
l http - listen for an incoming request for Zero Footprint RIDE
l connect – connect to the specified RIDE and end the session if this fails
l poll – try to connect to the specified RIDE at regular intervals and
reconnect if the connection is lost

l config - specifies the name of the RIDE ini file to be used

If setting is serve or http then address specifies the address of an interface in
the machine running the interpreter. If setting is connect or poll then address
specifies the address of a machine running the RIDE. Valid address values are:

l a resolvable name
l an IPv4 or IPv6 address
l empty – the local machine only
l * - (valid only when setting is serve or http) the interpreter listens on all
local network interfaces

port is the TCP port to listen on

Settings specified by the RIDE_Init configuration parameter take precedence over
the same setting specified in the RIDE ini file. Note that the RIDE_Init
configuration parameter can specify both config and one of serve, http, connect or
poll. For example

RIDE_INIT=serve:*:4502,config=/home/andys/.dyalog/secureride.ini

Chapter 1: Installation and Configuration 45

This is most useful when multiple interpreters need to be run, each with its own
RIDE connection as each must have a separate port number.

Note that the RIDE_Init configuration parameter is set automatically when
launching a new Dyalog Session from the RIDE.

Examples

To allow an incoming connection through any interface in the machine running
the interpreter:

RIDE_INIT=serve:*:4052

To allow incoming Zero Footprint RIDE connection through just one interface of
the machine running the interpreter:

RIDE_INIT=http:192.168.0.10:8080

To attempt to connect to RIDE running on my colleague's machine:

RIDE_INIT=connect:pete.dyalog.com:4052

RIDE_Spawned
If non-zero, this parameter disables ⎕SR and)SH which instead generate
DOMAIN ERROR. This parameter is used to prevent certain user-interfaces from
being executed from a RIDE session which does not support them, and which
would otherwise cause the RIDE session to become unresponsive. See RIDE
Reference Guide.

RunAsService
When RunAsService is set to 1 or 2 (the default is 0) Dyalog APL will not prompt
for confirmation when the user logs off, and the interpreter will continue to run
across the logoff /logon process. The value 2 reduces the resources used by a
Dyalog service by disabling the graphical user-interface features. In this mode,
⎕WC object will fail with a LIMIT ERROR unles the object is Timer, which is
the only one that remains enabled.

SaveContinueOnExit
Specifies whether or not your current workspace is saved as CONTINUE.DWS
before APL terminates.

SaveLogOnExit
Specifies whether or not your Session log is saved before APL terminates.

46 Installation and Configuration Guide

SaveSessionOnExit
Specifies whether or not your current Session is saved in your Session file before
APL terminates.

Serial
Legacy: Specifies your Dyalog APL/W Serial Number. SeeDYALOG_SERIAL on
page 33 which supercedes it..

Session_File
This parameter specifies the name of the file from which the APL session (⎕SE) is
to be loaded when APL starts. If not specified, a .dse extension is assumed. This
session file contains the ⎕SE object that was last saved in it. This object defines
the appearance and behaviour of the Session menu bar, tool bar(s) and status bar,
together with any functions and variables stored in the ⎕SE namespace.

See also Session file on page 107.

SessionOnTop
Specifies whether or not the Session may appear on top of Edit and Trace
Windows in Classic Dyalog mode. This applies only if ClassicMode is 1. See
ClassicMode on page 27.

See also Allow session above edit windows on page 108.

ShowStatusOnError
Specifies whether or not the Status window is automatically displayed (if required)
when APL attempts to write output to it.

SingleTrace
Specifies whether there is a single Trace window, or one Trace window per
function. This applies only if ClassicMode is 1. See ClassicMode on page 27.

See also Single trace window on page 108.

Chapter 1: Installation and Configuration 47

SkipLines
This parameter causes the Tracer to automatically skip lines that contain no
executable statement, with the exception of the first line in the function, and in the
case of a traditional function (not a dfn), the last line if it is a comment. SkipLines
is an integer made up of the sum of the following values:

1 Skip blank lines. See also Skip blank lines when tracing on page 110.

2 Skip comment lines. See also Skip comment lines when tracing on page
110.

4 Skip locals lines. See also Skip locals lines when tracing on page 110.

StatusOnEdit
Specifies whether or not a status bar is displayed at the bottom of an Edit window.

See also Show status bars on page 109.

SM_Cols
This parameter specifies the width in characters of the window used to display
⎕SM when it is used stand-alone . It is not used if the window is specified using
the SM object.

SM_Rows
This parameter specifies the height in characters of the window used to display
⎕SM when it is used stand-alone . It is not used if the window is specified using
the SM object.

TabStops
This parameter specifies the number of spaces inserted by pressing the Tab key in
the editor. Its default value is 4.

See also Tab stops every on page 111

ToolBarsOnEdit
Specifies whether or not tool bars are displayed along the top of individual Edit
windows.

See also Show tool bars on page 109.

48 Installation and Configuration Guide

Trace_First_X
This parameters specifies the initial horizontal position on the screen of the first
trace window in character units. Subsequent trace windows will be staggered. This
applies only if ClassicMode is 1.

See also Y Pos on page 105.

Trace_First_Y
This parameters specifies the initial vertical position on the screen of the first trace
window in character units. Subsequent trace windows will be staggered. This
applies only if ClassicMode is 1.

See also Y Pos on page 105.

Trace_Level_Warn
This parameter specifies the maximum number of Trace windows that will be
displayed when an error occurs and Trace_on_error is set to 1. If there are a large
number of functions in the state indicator, the display of their Trace windows may
take several seconds. This parameter allows you to restrict the potential delay to a
reasonable value and its default is 16. If the number of Trace windows would
exceed this number, the system instead displays a warning message box. This
parameter is ignored if you invoke the Tracer explicitly. This parameter applies
only if ClassicMode is 1 and SingleTrace is 0.

See also Warn if trace stack bigger than on page 109.

Trace_Offset_X
This parameter specifies the number of characters by which a trace window is
staggered horizontally from the previous one. This applies only if ClassicMode is
1 and SingleTrace is 0.

See also X Offset on page 105.

Trace_Offset_Y
This parameter specifies the number of characters by which a trace window is
staggered vertically from the previous one. This applies only if ClassicMode is 1
and SingleTrace is 0.

See also Y Offset on page 105.

Chapter 1: Installation and Configuration 49

Trace_On_Error
This parameter is either 0 (the default) or 1. If set to 1, Trace_On_Error specifies
that the Tracer is automatically deployed when execution of a defined function
halts with an error. A stack of Trace windows is immediately displayed, with the
top Trace window receiving the input focus.

See also Show trace stack on error on page 109.

TraceStopMonitor
This parameter specifies which of the ⎕TRACE (1), ⎕STOP (2) and ⎕MONITOR
(4) columns are displayed in Trace and Edit windows. Its value is the sum of the
corresponding values.

UnicodeToClipboard
This parameter specifies whether or not text that is transferred to and from the
Windows clipboard is treated as Unicode text. If UnicodeToClipboard is 0 (the
default), the symbols in ⎕AV are mapped to ASCII text (0-255). In particular, the
APL symbols are mapped to ASCII symbols according to their positions in the
Dyalog APL font. If UnicodeToClipboard is 1, the symbols in ⎕AV are mapped to
Unicode text and the APL symbols are mapped to their genuine Unicode
equivalent values.

See also Paste text as Unicode(Classic Edition only) on page 110

50 Installation and Configuration Guide

URLHighlight
Specifies whether or not URLs and links are highlighted in Session and Edit
windows. Its value is either 1 (highlight) or 0. The default is 0.

If this option is selected, valid URLs are identified when the cursor is in the
Session or in an Edit or Trace window. When the mouse pointer is over a URL, the
URL is underscored and the appropriate items in the Session Popup menu are
activated. These allow you to open the link or copy it to the clipboard.

You may also open a URL using Ctrl+Click (Left Mouse button).

Currently a URL string is defined to be a string starting with any of the following
strings:

l http://
l https://
l www.
l mailto:

See also Underline URLs and links on page 96.

UseExternalHelpURL
This parameter specifies whether or not Dyalog attempts to use the Microsoft
Document Explorer and online help to display help for external objects, such as
.Net Types. See ExternalHelpURL on page 35.

See also Use Microsoft's documentation centre for non-Dyalog topics on page 103.

UserConfigFile
This parameter specifies the name of the User Configuration file. See Configuration
Files on page 58.

ValueTips/ColourScheme
This parameter specifies the colour scheme used to display a Value Tip when the
user hovers the mouse over a name.

See also Colour Scheme on page 96.

Chapter 1: Installation and Configuration 51

ValueTips/Delay
This parameter specifies the delay before a Value Tip is displayed when the user
hovers the mouse over a name.

See also Display Value Tips after on page 96.

ValueTips/Enabled
This parameter specifies whether or not Value Tips are enabled. When enabled,
Dyalog displays the value of a variable or the code for a function when the user
hovers the mouse over its name.

See also Display Value Tips on page 96.

WantsSpecialKeys
This parameter specifies a list of applications (e.g. putty.exe) that use the command
strings in the Input Translate Tables.

WrapSearch
This parameter specifies whether or not Search/Replace in the Editor stops at the
bottom or top of the text (depending upon the direction of the search), or continues
the search from the start or end as appropriate.

See also: Allow search to wrap on page 109.

WrapSearchMsgBox
Specifies whether or not a message box is displayed to inform the user when the
search wraps.

See also Show message box if text wraps on page 109.

52 Installation and Configuration Guide

WSEXT
This parameter specifies workspace filename extensions. It complements the
WSPATH parameter in that together they determine the file search order to satisfy
)LOAD or)COPY; it also specifies the filename extension to add on)SAVE or
)CONTINUE if none is explicitly provided.

WSEXT is a string that specifies a colon-separated list of one or more extensions,
including any period (".") which separates the extension from its basename.

If undefined, WSEXT defaults to .dws: on Windows and OS X, and
:.dws:.DWS on all other platforms.

In the Windows case, this means that)LOAD myws will search first for a file
named myws.dws , and then for a file named myws (with no extension). As file
names are not case-sensitive under Windows, this will find myws.DWS or
MyWs.Dws and so forth. If none are found with this extension, it will load myws ,
MyWs , MYWS etc.

In the second (non-Windows) case note that)LOAD myws will search first for a
file named myws , then myws.dws , then myws.DWS.

When)SAVE and ⎕SAVE is used without specifying a file extension, the first
extension defined by WSEXT is applied to complete the file name. The default is
therefore .dws in all cases.

WSPath
This parameter defines the workspace path. This is a list of directories that are
searched in the order specified when you)LOAD or)COPY a workspace and when
you start an Auxiliary Processor without explicitly specifying a path in the name.
The directory paths are specified using Operating System specific conventions and
separated by ";" (Windows) or ":" (UNIX).

Note that to load workspaces from the current directory, "." must be included in the
list defined by WSPath..

The following Windows example causes)COPY ,)LOAD and)LIB to look first
in the current directory, then in D:\MYWS .

WSPath=.;D:\MYWS

See also Workspace search path on page 102.

Chapter 1: Installation and Configuration 53

XPLookAndFeel
This Boolean parameter specifies whether or not Native Look and Feel is used.
This affects the appearance of user-interface controls such as Buttons. The default is
1.

See also Enable Native Look and Feel on page 96.

yy_window
This parameter defines how Dyalog APL is to interpret a 2-digit year number. If
yy_window is not set (the default) then under Windows, Version 13.2 onwards
will adhere to the rules specified in the Windows Region and Language 2-digit
year settings.

Dyalog allows a choice of input date formats for ⎕SM and GUI edit fields. If you
have chosen a 2-digit year format such as MM/DD/YY, then an input of 02/01/00
will by default be interpreted as 1stFebruary 1900 - not 1stFebruary 2000.

If your application uses a 4-digit year format such as YYYY-MM-DD, the problem
will not arise.

You can use the yy_window parameter to cause your application to interpret 2-
digit dates in as required without changing any APL code.

Sliding versus Fixed Window
Two schemes are in common use within the industry: Sliding or Fixed date
windows.

Use a Fixed window if there is a specific year , for example 1970, before which,
dates are meaningless to your application. Note that with a fixed window, this date
(say 1970) will still be the limit if your application is running in a hundred years'
time.

Use a Sliding window if there is a time period , for example 30 years, before which
dates are considered too old for your application. With a sliding window, you will
always be able to enter dates up to (say) 30 years old, but after a while, specific
years in the past (for example 1970) will become inaccessible.

Setting a Fixed Window
To make a fixed window, set parameter yy_window to the 4-DIGIT year which is
the earliest acceptable date. For example:

YY_WINDOW=1970

54 Installation and Configuration Guide

This will cause the interpreter to convert any 2-digit input date into a year in the
range 1970, 1971 ... 2069

Setting a Sliding Window
To make a sliding window, set parameter yy_window to the 1- or 2-DIGIT year
which determines the oldest acceptable date. This will typically be negative.

YY_WINDOW=-30

Conversion of dates now depends on the current year:

If the current year is 1999, the earliest accepted date is 1999-30 = 1969.

This will cause the interpreter to convert any 2-digit input date into a year in the
range 1969, 1970 ... 2068.

However if your application is still running in the year 2010, the earliest accepted
date then will be 2010-30 = 1980. So in the year 2010, a 2-digit year will be
interpreted in the range 1980, 1981 ... 2079.

Chapter 1: Installation and Configuration 55

Advanced Settings
You can further restrict date windows by setting an upper as well as lower year
limit.

YY_WINDOW=1970,1999

This causes 2-digit years to be converted only into the range 1970, 1971 ... 1999.
Any 2-digit year (for example, 54) not convertible to a year in this range will cause
a DOMAIN ERROR .

The sliding window equivalent is:

YY_WINDOW=-10,10

This would establish a valid date window, ten years either side of the current year.
For example, if the current year is 1998, the valid range would be (1998-10) –
(1998+10), in other words: 1988, 1989, → 2008.

One way of looking at the yy_window variable is that it specifies a 2-element
vector. If you supply only the first element, the second one defaults to the first
element + 99.

Note that the system uses only the number of digits in the year specification to
determine whether it refers to a fixed (4-digits) or sliding (1-, or 2-digits) window.
In fact you can have a fixed lower limit and a sliding upper limit, or vice versa.

YY_WINDOW=1990,10

Allows dates as early as 1990, but not more than 10 years hence.

YY_WINDOW=0,1999

Allows dates from the current year to the end of the century.

If the second date is before, or more than 99 years after the first date, then any date
conversion will result in a DOMAIN ERROR . This might be useful in an
application where the end-user has control over the input date format and you want
to disallow any 2-digit date input.

YY_WINDOW=1,0

56 Installation and Configuration Guide

Registry Sub-Folders
A large amount of configuration information is maintained in the Windows
Registry in sub-folders of the main folder identified by inifile.

Many of these values are dynamic, for example the position of the various Session
windows, is maintained in a Registry sub-folder so that their appearance is
maintained from one invocation of APL to the next. These types of Registry values
are considered to be internal and are therefore not described herein.

However, any Registry Value that is maintained via a configuration dialog box
will be named and described in the documentation for that dialog box in Chapter
2.

AutoComplete
This contains registry entries that describe your personal AutoComplete options.
See " Auto Complete Tab" on page 1.

Captions
This contains registry entries to customise the Captions used in the various
windows of the Dyalog APL IDE. See Window Captions on page 62.

Colours
This contains entries that describe the colour schemes you have and your personal
preferences. See Colour Selection Dialog on page 120.

Editor
This contains certain entries for the Editor.

Event Viewer
This contains entries that describe your settings for the Event Viewer. See UI
Guide: The Event Viewer.

Explorer
This contains entries that describe your settings for the Workspace Explorer. See UI
Guide: The Workspace Explorer Tool.

files
This contains the size of your recently used file list (see " General Tab" on page 1)
and the list of your most recently loaded workspaces.

Chapter 1: Installation and Configuration 57

KeyboardShortcuts/keys
This contains the definitions of your Keyboard Shortcuts (Unicode Edition only).
See "Keyboard Shortcuts Tab" on page 1.

KeyboardShortcuts/chars
This contains the Registry Keyboard mappings between keystrokes and
APL characters (Unicode Edition only). See UI Guide: Registry Keyboard.

LanguageBar
This contains the definitions of the symbols, tips, and help for the symbols in the
LanguageBar.

Printing
This contains the entries for your Printer Setup options. See Print Configuration
Dialog Box on page 123.

SALT
This contains entries for SALT. See "SALT" on page 1.

Search
This contains dynamic entries for the Find Objects Tool. See UI Guide: Find
Objects Tool.

Threads
This contains entries to remember your preferences for Threads. See UI Guide: The
Threads Menu.

UnicodeIME
This contains entries for the Dyalog Unicode IME.

ValueTips
This contains entries for your Value Tips preferences. See UI Guide: Value Tips.

WindowRects
This contains entries to maintain the position of various Session tool windows so
that they remain consistent between successive invocations of APL.

58 Installation and Configuration Guide

Array Editor
The Array Editor stores its settings in the following registry sub-folder:

HKEY_CURRENT_USER\Software\DavidLiebtag.com\Array Editor\1.1\
Options

Configuration Files
Introduction
A configuration file is an optional text file containing configuration parameters
and their values. It may cascade, i.e. it can extend (inherit) configuration values
from other configuration files, and supplement and/or override them.

Configuration files use JSON5 (a superset of standard JSON) syntax, as described
below. These files are portable across all systems supported by Dyalog.

Names of configuration parameters defined in Configuration files may be
specified in any combination of alphabetic case.

Dyalog processes up to two kinds of configuration file (each of which may
cascade):

1. An application configuration file which contains configuration values
associated with a specific application

2. A user configuration file which defines configuration values for the current,
and possibly only, user of the system.

Application Configuration File
When Dyalog starts, it derives the name of the application configuration file as
follows:

l The name in the configuration parameter ConfigFile if it is set, otherwise
l The name of the workspace or script loaded at start-up using the Load
parameter, with the extension replaced by .dcfg, if that file exists,
otherwise

l Nothing.

User Configuration File
The name of the user configuration file is specified by the UserConfigFile
parameter. Under Windows, this parameter is not set by default but may be defined
by the user.

Chapter 1: Installation and Configuration 59

Precedence
Configuration files supplement existing methods of defining parameters. The
following precedence table shows the order of precedence when a setting is
defined in multiple places:

l Command-line settings override
l Application configuration file settings, which override
l Environment variable settings, which override
l User configuration file settings, which override
l Settings in the registry (Windows only), which override
l Built-in defaults

Configuration Files and The Configuration Dialog
The Configuration Dialog reflects the values of parameters stored in the Windows
Registry and ignores overriding values defined on the command-line, in
configuration files or in environment variables. If the user changes parameters using
the Configuration Dialog, the new values are recorded in the Registry, but remain
overridden by those that take precedence.

Configuration File Structure
Configuration files define configuration parameters using JSON5. A JSON object
contains data in the form of key/value pairs and other JSON objects. The keys are
strings and the values are the JSON types. Keys and values are separated by colon.
Each entry (key/value pair) is separated by comma.

The top-level object defines an optional key named Extend and an optional object
named Settings.

Extend is a string value containing the name of a configuration file to import. The
extended (imported) file may in turn extend another configuration file.
Configuration values from the imported file(s) may be overridden by redefining
them. The file name is implicitly relative to the name of the file which imports it.
Any file name extension must be explicitly specified.

Settings is an object containing the names of configuration parameters and their
values. The values may be:

l A string
l A number
l An array of strings

60 Installation and Configuration Guide

The names and values correspond to configuration parameters, but names are not
case sensitive. Any named values may be defined; an APL application may query
the values using +2⎕NQ'.' 'GetEnvironment' name, or using the
]config user command. Note that GetEnvironment returns the value in use
as defined by the precedence rules (see Precedence above).

Example
+2 ⎕NQ '.' 'GetEnvironment' ('MaxWS' 'Captions\Session')

┌────┬───────────────────────┐
│256M│My Dyalog V18.0 Session│
└────┴───────────────────────┘

]config MaxWS Captions\Session
┌────────────────┬───────────────────────┐
│MaxWS │256M │
├────────────────┼───────────────────────┤
│Captions\Session│My Dyalog V18.0 Session│
└────────────────┴───────────────────────┘

A warning will be given if names are redefined in the same configuration file; the
second and subsequent definitions will be discarded.

File Names
Pathnames specified in configuration files should be specified using portable
forward slashes "/" rather than back-slashes "\" as the latter are used as escape
characters by JSON.

WSPATH: ["c:/Dyalog18.0"] or WSPATH: ["c:\\Dyalog18.0"]
specifies the file c:\Dyalog18.0.

whereas,

WSPATH: ["c:\Dyalog18.0"] means c:Dyalog18.0.

Example
{
Extend: "my_default_configuration.dcfg",

Settings: {
// maximum workspace
MAXWS: "2GB",
WSPATH: ["/dir1", "/dir2", ""],
UserOption: 123,
ROOTDIR: "/my/root/directory",
// references to other configuration parameters
FNAME: "[rootdir]/filename",

}
}

Chapter 1: Installation and Configuration 61

Arrays
An array may be used to define file paths etc. For example,

WSPATH: ["/dir1", "/dir2"]

The only parameters which may be defined as arrays are WSPATH,WSEXT and
CFEXT.

References to other Configuration Parameters
Configuration parameters which are string values may include references to other
configuration parameters (regardless of where they are defined) using square
bracket delimiters. For example:

MySetting: "[DYALOG]/MyFile"

will replace [DYALOG] with the value of the DYALOG configuration value.

Note that:

l If the referenced configuration parameter is not defined then no substitution
will take place; the reference, including square bracket delimiters, will
remain in place.

l To include square brackets in a string, prefix the '[' with a '\' character.

Nested Structures
Some parameters are stored in sub-folders in the Windows Registry. Currently, all
such parameters used by Dyalog APL itself relate to the Windows IDE, but you
can create your own application-specific structures..

The Configuration file supports this structure by defining an object that
corresponds to a Registry sub-folder. For example:

Captions: {
Session: "My Dyalog Session",
Status: "My Status window",

}

+2 ⎕NQ '.' 'GetEnvironment' 'Captions\Session'
My Dyalog Session

62 Installation and Configuration Guide

Window Captions
The captions of the various windows that comprise the Dyalog Integrated
Development Environment (IDE) are user-configurable and defined by entries in
the Windows registry in the Captions subkey of the main Dyalog key.

Note that this only applies when the windows are floating (un-docked). When a
window is docked Dyalog displays a fixed non-configurable caption.

Note also that the Captions subkey is not created by the interpreter; the user must
create the subkey and the values.

Each entry is a string value whose name identifies the window as follows:

Window Name Description

Session The main Dyalog APL session window

Editor The Editor window

SysTray The hint on Dyalog icons in the System Tray

MessageBox
The notification Message Box that is displayed in various
circumstances; for example, when an object cannot be fixed
by the Editor

Explorer The Workspace Explorer tool

Rebuild Errors The dialog box that is displayed if one or more objects
cannot be re-instantiated when a workspace is loaded

Status The Status window

Event Viewer The Event Viewer

FindReplace The Find/Replace dialog box

ExitDialog The Exit dialog box that is displayed when the user closes
the Session window

WSSearch The Find Objects tool

Syserror The Syserror Message Box

Each string value should contain a mixture of your own text and keywords which
are enclosed in braces, e.g. {TITLE}. Keywords act like variables and are replaced
at display time by corresponding values as described in the table below.

Chapter 1: Installation and Configuration 63

Keyword Value

{TITLE} The window name shown in the first column of the previous
table

{WSID} Workspace ID (⎕WSID)

{NSID} Current Namespace

{SNSID} Current Namespace (short version)

{PRODUCT} The name of the Dyalog product, e.g. "Dyalog APL/W - 64"

{VER_A} The main version number, e.g. "14"

{VER_B} The secondary version number, e.g. "0"

{VER_C} The tertiary version number (currently the internal revision
number)

{PID} The process ID

{CHARS} "Classic" or "Unicode"

{BITS} "32" or "64"

{XLOC} The namespace currently being explored (Explorer only)

For example, if the Registry contains .\Captions\Session whose value is:

My APL ({WSID}) Version {VER_A}.{VER_B}[{VER_C}] - {PID}

then the caption displayed in a new Dyalog APL Session window might be:

My APL (CLEAR WS) Version 14.0[20105] - 4616

64 Installation and Configuration Guide

Workspace Management
Workspace Size and Compaction
The maximum amount of memory allocated to a Dyalog APL workspace is defined
by the maxws parameter (on non-Windows platforms this is defined by the
environment variable MAXWS).

Upon)LOAD and)CLEAR, APL allocates an amount of memory corresponding to
the size of the workspace being loaded (which is zero for a clear ws) plus the
workspace delta.

The workspace delta is 1/16th of maxws, except if there is less than 1/16th of
maxws in use, delta is 1/64th of maxws. This may also be expressed as follows:

delta←maxws{⌈⍺÷⊃(⍵>⍺÷16)⌽64 16}ws

where maxws is the value of the maxws parameter and ws is the currently
allocated amount of workspace. If maxws is 16384KB, the workspace delta is
either 256KB or 1024 KB, and when you start with a clear ws the workspace
occupies 256KB.

When you erase objects or release symbols, areas of memory become free. APL
manages these free areas, and tries to reuse them for new objects. If an operation
requires a contiguous amount of workspace larger than any of the available free
areas, APL reorganises the workspace and amalgamates all the free areas into one
contiguous block as follows:

1. Any un-referenced memory is discarded. This process, known as garbage
collection, is required because whole cycles of refs can become un-
referenced.

2. Numeric arrays are demoted to their tightest form. For example, a simple
numeric array that happens to contain only values 0 or 1, is demoted or
squeezed to have a ⎕DR type of 11 (Boolean).

3. All remaining used memory blocks are copied to the low-address end of the
workspace, leaving a single free block at the high-address end. This process
is known as compaction.

4. In addition to any extra memory required to satisfy the original request, an
additional amount of memory, equal to the workspace delta, is allocated.
This will always cause the process size to increase (up to the maxws limit)
but means that an application will typically achieve its working process size
with at most 4+15 memory reorganisations.

5. However, if after compaction, the amount of used workspace is less than
1/16 of the Maximum workspace size (maxws), the amount reserved for
working memory is reduced to 1/64th maxws. This means that workspaces
that are operating within 1/16th of maxws will be more frugal with memory

Chapter 1: Installation and Configuration 65

Note that if you try to create an object which is larger than free space, APL reports
WS FULL.

The following system function and commands force a workspace reorganisation as
described above:

⎕WA,)RESET,)SAVE,)LOAD,)CLEAR

However, in contrast to the above, any spare workspace above the workspace delta
is returned to the Operating System. On a Windows system, you can see the
process size changing by using Task Manager.

The system function ⎕WA may therefore be used judiciously (workspace
reorganisation takes time) to reduce the process size after a particularly memory-
hungry operation.

Note that in Dyalog APL, the SYMBOL TABLE is entirely dynamic and grows
and shrinks in size automatically. There is no SYMBOL TABLE FULL condition.

Additional functions for managing the memory used by the workspace are
described in Language Reference Guide: Memory Management Statistics and
Language Reference Guide: Specify Workspace Available .

Interface with Windows
Windows Command Processor commands may be executed directly from APL
using the system command)CMD or the system function ⎕CMD. This system
function is also used to start other Windows programs. For further details, see the
appropriate sections in Language Reference.

Auxiliary Processors
Introduction
Auxiliary Processors (APs) are non-APL programs which provide Dyalog APL
users with additional facilities. They run under the control of Dyalog APL.

Typically, APs are used where speed of execution is critical, for utility libraries, or
as interfaces to other products. APs may be written in any compiled language,
although C is preferred and is directly supported.

Dyalog would recommend that rather than creating APs, customers should now
create DLLs (Dynamic Shared Libraries)/shared libraries. If very high performance
is required, customers should consider DWA (Direct Workspace Access); contact
support@dyalog.com for more information about DWA, including pre-requisite
training courses.

66 Installation and Configuration Guide

Starting an AP
An Auxiliary Processor is invoked using the dyadic form of ⎕CMD. The left
argument to ⎕CMD is the name of the program to be executed; the value of the
WSPATH parameter is used to find the named file. In Dyalog APL/W, the right
argument to ⎕CMD is ignored.

'xutils' ⎕CMD ''

On locating the specified program, Dyalog APL starts the AP and initialises a
memory segment for communication between the workspace and the AP. This
communication segment allows data to be passed from the workspace to the other
process, and for results to be passed back. The AP then sends APL some
information about its external functions (names, code numbers and calling syntax),
which APL enters in the symbol table. APL then continues processing while the
AP waits for instructions.

Using the AP
Once established, an AP is used by making a reference to one of its external
functions. An external function behaves as if it was a locked defined function, but
it is in effect an entry point to the AP. When an external function is referenced,
APL transmits a code number to the AP, followed by any arguments. The AP then
takes over and performs the desired processing before posting the result back.

Terminating the AP
An AP is terminated when all the last of its external functions is expunged from
the active workspace. This could occur with the use of)CLEAR,)LOAD,)ERASE,
⎕EX,)OFF,)CONTINUE or ⎕OFF.

Chapter 1: Installation and Configuration 67

Example:

Start an Auxiliary Processor called EXAMPLE. This fixes two external functions
called DATE_TO_IDN and IDN_TO_DATE which deal with the conversion of
International Day Numbers to Julian Dates.

.------------------------.
APL PROCESS
)CLEAR
clear ws
'EXAMPLE' ⎕CMD ''
)FNS
DATE_TO_IDN IDN_TO_DATE
IDN_TO_DATE 19407
wait ...
18 Feb 53
)CLEAR
clear ws
.------------------------.

Access Control for External Variables
External variables may be EXCLUSIVE or SHARED. An exclusive variable can
only be accessed by the owner of the file. If you are on a Local Area Network
(LAN) a shared external variable may be accessed (concurrently) by other users.
The exclusive or shared status of an external variable is set by the XVAR function
in the UTIL workspace.

Access to an external variable is faster if it has exclusive status than if it is shared.
This is because if several users are accessing the file data must always be read and
written directly to disk. If it has exclusive status, the system uses buffering and
avoids disk accesses where possible.

68 Installation and Configuration Guide

Creating Executables and COM Servers
Dyalog APL provides the facility to package an APL workspace as a Windows
executable (EXE), an OLE Server (in-process or out-of-process), an ActiveX
Control or a .NET Assembly. This may be done by selecting Export … from the
File menu of the APL Session window which brings up the Create bound file
dialog box as illustrated later in this section.

The Create bound file dialog box offers selective options according to the type of
file you are making. The system detects which of these types is most appropriate
from the objects in your workspace. For example, if your workspace contains an
ActiveXControl namespace, it will automatically select the ActiveX Control
option.

If you are creating an executable (EXE) the system provides the following options:

l You may bind your EXE as a Dyalog APL run-time application, or as a
Dyalog APL developer application. The second option will allow you to
debug the application should it encounter an APL error.

l You may bind your EXE as a console-mode application. A console
application does not have a graphical user interface, but runs as a
background task using files or TCP/IP to perform input and output.

l You may specify whether or not your .EXE will honour Native Look and
Feel.

You can package the workspace as a stand-alone executable or as a .EXE file that
must be accompanied by the Dyalog APL Dynamic Link Library
(dyalog150.dll or dyalog150rt.dll), in which case the DLL should be
installed in the same directory (as the EXE) or in the Windows System directory.

Various Dyalog-supplied files are required (such as the runtime DLL for creating a
bound runtime executable); all such files are assumed to reside in the Dyalog
directory, as specified by default in the registry. The location of this directory is
most easily reported by calling

+2⎕nq '.' 'GetEnvironment' 'Dyalog'

The creation of both in-process and out-of-process COM servers produces a .TLB
(Type Library) file. This file is created in the same directory as the workspace - so
write access must be allowed to this directory. In the case of an in-process server,
the content of this file is then embedded into the DLL, and the file is deleted. For
an out-of-process server the file persists and may be needed at runtime. This
requirement means that even if you do not)Save the workspace, you should set
the workspace name so that)SAVE would work - that is the directory where the
workspace would be saved has write access.

Chapter 1: Installation and Configuration 69

In addition, a temporary copy of your workspace is created, the location of which
is determined by the Windows function GetTempPath().

All registration information is written to HKEY_LOCAL_MACHINE in the
registry which will require enhanced permissions (aka "run as administrator") for
the Dyalog interpreter. Later versions of the interpreter may provide an option to
write to HKEY_CURRENT_USER.

The Create bound file dialog box contains the following fields. These will only be
present if applicable to the type of bound file you are making.

Item Description

File name
Allows you to choose the name for your bound file. The name
defaults to the name of your workspace with the appropriate
extension.

Save as
type Allows you to choose the type of file you wish to create

Runtime
application

If this is checked, your application file will be bound with the
Run-Time DLL. If not, it will be bound with the Development
DLL. The latter should normally only be used to permit
debugging.

Console
application

Check this box if you want your executable to run as a console
application. This is appropriate only if the application has no
graphical user interface.

Enable
Native
Look and
Feel

If checked, Native Look and Feel will be enabled for your bound
file; otherwise it will be disabled.

Icon file
Allows you to associate an icon with your executable. Type in
the pathname, or use the Browse button to navigate to an icon
file.

Command
line

For an out-of-process COM Server, this allows you to specify the
command line for the process. For a bound executable, this
allows you to specify command-line parameters for the
corresponding Dyalog APL DLL.

The following example illustrates how you can package the supplied workspace
calc.dws as an executable. Before making the executable, it is essential to set up
the latent expression to run the program using ⎕LX as shown. Notice that in this
case it is not necessary to execute ⎕OFF; the calc.exe program will terminate
normally when the user closes the calculator window and the system returns to
Session input.

70 Installation and Configuration Guide

In this example, the supplied workspace calc.dws is first saved to a directory to
which the user has write access and, just to make certain, the Dyalog program is
run as Administrator.

Then, when you select Export… from the File menu, the following dialog box is
displayed.

Chapter 1: Installation and Configuration 71

The Save as Type option has been set to Standalone Executable (includes
interpreter exe) which means that a single .exe will be created containing the
Dyalog APL executable and the CALC workspace.

The Runtime application checkbox is checked, indicating that calc.exe is to
incorporate the runtime version of Dyalog APL.

As this is a GUI application, the Console application checkbox is left unset.

Note that if you enter the name of a file containing an icon (use the Browse button
to browse for it) that icon will be bound with your executable and be used instead
of the standard Dyalog APL icon.

The Command Line box allows you to enter parameters and values that are to be
passed to your executable when it is invoked.

72 Installation and Configuration Guide

Version Information
You may embed version information into your .exe by clicking the Version button
and then completing the Version Information dialog box that is illustrated below.

On clicking Save, the following message box is displayed to confirm success.

Chapter 1: Installation and Configuration 73

Run-Time Applications and Components
Using Dyalog APL you may create different types of run-time applications and
components. Note that the distribution of run-time applications and components
requires a Dyalog APL Run-Time Agreement. Please contact Dyalog or your
distributor, or see the Dyalog web page for more information.

For a list of the distributable components and their corresponding file names, for
the different versions of Dyalog, see Files on page 2. These components are
referred to in hereafter by the name shown in the first column of the table. It is
essential that you distribute the components that are appropriate for the Edition
you are using.

The various types of run-time applications and components are as follows:

1. Workspace or source code run-time
2. Stand-alone run-time
3. Bound run-time
4. Out-of-Process COM Server
5. In-Process COM Server
6. ActiveX Control
7. Microsoft .NET Assembly

All but the first of these are made using the Export dialog box accessed from the
File/Export menu item of the Session window.

Configuration Parameters
Configuration parameters for these run-time applications, both for the Dyalog
engine and for your own application settings, may be specified in a number of
ways. See Configuration Parameters on page 18.

Nevertheless, it is strongly recommended that you use Configuration files. In this
section we will discuss only Application Configuration files, although User
Configuration files may be used as well.

Workspace or source code based run-time
A workspace or source code based run-time application consists of the Dyalog
APL Run-Time Program (Run-Time EXE), a separate workspace or text file
containing APL source code, and an optional configuration file. To distribute your
application, you need to supply and install:

1. your workspace or source code
2. the Run-Time EXE
3. a configuration file (optional)

74 Installation and Configuration Guide

4. whatever additional files that may be required by your application
5. a command-line to start the application

The command-line for your application invokes the Run-Time EXE and directly or
indirectly specifies the name of the workspace or source code file and the optional
configuration file. You will need to associate your own icon with your application
during its installation.

The name of the workspace or source code file may be specified by the Load
parameter on the command line. If the application uses a workspace, the name of
the workspace may instead be supplied as the last item on the command-line.

The name of the configuration file may be specified on the application command-
line, using the ConfigFile parameter. Alternatively, the name of the configuration
file is derived from the name of the workspace or source code file.

The action to start the application when a workspace or source code file is loaded
is specified by the LX parameter or, for a workspace, by its latent expression
(⎕LX).

In the command-line examples that follow, the name of the Run-Time EXE has
been shortened to dyalogrt.exe for brevity.

Using a workspace
dyalogrt.exe myapp.dws

The application starts by running ⎕LX in myapp.dws. If a configuration file
named myapp.dcfg in the same directory, it is loaded and applied.

Using a source code file
dyalogrt.exe Load=myfn.aplf

The application loads the file named myfn.aplf which contains the source code
for a function, and executes the expression (myfn 0⍴⊂'') (see Load on page
39). If a configuration file named myfn.dcfg in the same directory, it is loaded
and applied.

If your application uses any component of the Microsoft .NET Framework, you
must distribute the Bridge DLL and DyalogNet DLLs. These DLLs must be placed
in the same directory as your EXE.

Stand-alone and Bound run-times
A stand-alone run-time is a single .EXE that contains a workspace and a copy of
the Run-Time version of the Dyalog APL interpreter. It is the simplest type of run-
time to install because it has the fewest number of dependencies.

Chapter 1: Installation and Configuration 75

A bound run-time is a workspace packaged as a .EXE that relies upon and requires
the separate installation of the Run-Time DLL. Compared with the stand-alone
executable option, bound run-times may save disk space and memory if your
customer installs and runs several different Dyalog applications.

Both these run-times are created using the File/Export menu item on the Session
window.

To distribute your application, you need to supply and install:

1. your stand-alone or bound .EXE
2. the Run-Time DLL (bound .EXE only)
3. a configuration file (optional)
4. whatever additional files that may be required by your application
5. a command-line to start the application

When you build your .EXE using the Export dialog, you may specify the name(s)
of the configuration file(s) using the ConfigFile and/or UserConfigFile parameters
in the field labelled Command Line.

An alternative is to specify these parameters in the command-line that you use to
run your .EXE (note that this is not the same as the Command Line in the Export
dialog box). If so, the Dyalog parameter(s) must be preceded by the -apl option.

If your application uses any component of the Microsoft .NET Framework, you
must distribute the Bridge DLL and DyalogNet DLLs. These DLLs must be placed
in the same directory as your EXE.

Out-of-process COM Server
To make an out-of-process COM Server, you must:

1. establish one or more OLEServer namespaces in your workspace, populated
with functions and variables that you wish to export as methods, properties
and events.

2. use the File/Export … menu item on the Session window to register the
COM Server on your computer so that it is ready for use.

The command-line for your COM Server must be specified in the field labelled
Command Line in the Export dialog box. The field is initialised to invoke the
Run-Time EXE with the name of your workspace in the same fashion as the
workspace-based run-time discussed above. This command-line is recorded in the
Windows Registry to be invoked when a client application requests it.

You may change the contents of the Command Line field to use a configuration
file, in the same way as for a workspace-based runtime. The following example
uses the Loan COM Server. See Interface Guide: The LOAN Workspace.

76 Installation and Configuration Guide

Example:
dyalog.exe C:\Dyalog18.0\myloan.dws

The command-line above will, on invocation, cause Dyalog to load the
myloan.dws workspace together with the configuration file myloan.dcfg if it
exists in that directory.

To distribute an out-of-process COM Server, you need to supply and install the
following files:

1. your workspace
2. the associated Type Library (.tlb) file (created by File/Export)
3. the Run-Time EXE
4. a configuration file (optional)
5. whatever additional files that may be required by your application

To install an out-of-process COM Server you must set up the appropriate Windows
registry entries. See Interface Guide for details.

In-process COM Server
To make an in-process COM Server, you must:

1. establish one or more OLEServer namespaces in your workspace, populated
with functions and variables that you wish to export as methods, properties
and events.

2. use the File/Export … menu item on the Session window to create an in-
process COM Server (DLL) which contains your workspace bound to the
Run-Time DLL. This operation also registers the COM Server on your
computer so that it is ready for use.

As there is no command-line available, to specify a configuration file for an in-
process COM server, it is necessary to define the ConfigFile parameter and/or the
UserConfigFile parameter as an environment variable or in the registry.

To distribute your component, you need to supply and install

1. Your COM Server file (DLL)
2. the Run-Time DLL
3. a configuration file (optional) and the means to define ConfigFile and/or

UserConfigFile
4. whatever additional files that may be required by your COM Server.

Note that you must register your COM Server on the target computer using the
regsvr32.exe utility.

Chapter 1: Installation and Configuration 77

ActiveX Control
To make an ActiveX Control, you must:

1. establish an ActiveXControl namespace in your workspace, populated with
functions and variables that you wish to export as methods, properties and
events.

2. use the File/Export … menu item on the Session window to create an
ActiveX Control file (OCX) which contains your workspace bound to the
Run-Time DLL. This operation also registers the ActiveX Control on your
computer so that it is ready for use.

As there is no command-line available, to specify a configuration file for an in-
process COM server, it is necessary to define the ConfigFile parameter and/or the
UserConfigFile parameter as an environment variable or in the registry.

To distribute your component, you need to supply and install

1. Your ActiveX Control file (OCX)
2. the Run-Time DLL
3. a configuration file (optional) and the means to define ConfigFile and/or

UserConfigFile
4. whatever additional files that may be required by your ActiveX Control.

Note that you must register your ActiveX Control on the target computer using the
regsvr32.exe utility.

Microsoft .NET Assembly
A Microsoft .NET Assembly contains one or more .NET Classes. To make a
Microsoft .NET Assembly, you must:

1. establish one or more NetType namespaces in your workspace, populated
with functions and variables that you wish to export as methods, properties
and events.

2. use the File/Export … menu item on the Session window to create a
Microsoft .NET Assembly (DLL) which contains your workspace bound to
the Run-Time DLL.

78 Installation and Configuration Guide

If the option selected in the Isolation Mode field of the Export dialog is either:

l Each assembly has its own workspace, or
l Each assembly attempts to use local bridge and interpreter libraries

you may enter configuration parameters or specify a Configuration file for your
Dyalog assembly in the field labelled Command Line.

For the other isolation modes, this is not appropriate because only the command
line from the first assembly loaded into the interpreter could be honoured, and the
order in which assemblies are loaded is unpredictable. However, configuration files
may be specified using the ConfigFile parameter and/or the UserConfigFile
parameter specified as an environment variable or in the registry.

To distribute your .NET Classes, you need to supply and install

1. your Assembly file (DLL)
2. the Run-Time DLL
3. the Bridge DLL
4. the DyalogNet DLL
5. a configuration file (optional) and, depending upon the isolation mode, the

means to define ConfigFile and/or UserConfigFile
6. whatever additional files that may be required by your .NET Assembly.

All the DLLs and subsidiary files must be installed in the same directory as the
.NET Assembly.

Run-Time Applications Additonal
Considerations

Accessing your Application using RIDE
If you wish to access your run-time application remotely using the RIDE, you must
put a copy of the appropriate Conga DLLs (see Files on page 2) in the same
directory as your .EXE or workspace. This is different from previous versions of
Dyalog which had separate RIDE DLLs.

Additional Files for Syncfusion
Under a licensing agreement with Syncfusion, Dyalog includes the Syncfusion
library of WPF controls. These may be used by Dyalog APL users to develop
applications, and may be distributed with Dyalog APL run-time applications.

The Syncfusion libraries comprise a set of .NET assemblies which are supplied in
the Syncfusion/4.5 sub-directory of the main Dyalog APL installation directory (for
example: c:\Program Files\Dyalog\Dyalog APL-64 14.0 Unicode\Syncfusion\4.5.

Chapter 1: Installation and Configuration 79

If you use any of the Syncfusion controls in your runtime application, you must
include the Syncfusion library.

Additional Files for SQAPL
If your application uses the SQAPL/EL ODBC interface, you must distribute and
install four additional components.

l SQAPL INI
l SQAPL ERR
l SQAPL DLL
l APLUNICD INI

For the names of the files corresponding to these components, see Files on page 2.

The SQAPL DLL must be installed in the user's Windows directory or be on the
user's path.

Miscellaneous Other Files
DyaRes DLL

If your run-time application uses any of the bitmaps or other GUI resources that are
built into the Dyalog Session, you must include the DyaRes DLL with your
application.

AUXILIARY PROCESSORS

If you use any of the Auxiliary Processors (APs) included in the sub-directory
xutils, you must include these with your application. Note that, like
workspaces, Dyalog APL searches for APs using the WSPATH parameter. If your
application uses APs, you must ensure that you specify WSPATH or that the
default WSPATH is adequate for your application..

DYALOG32 and/or DYALOG64

This DLL is used by some of the functions provided in the QUADNA.DWS
workspace. If you include any of these in your application this DLL must be
installed in the user's Windows directory or be on the user's path.

Universal C Runtime DLLs
Under Windows, many of the Dyalog APL run-time components (.EXE and .DLL)
are linked dynamically with the Microsoft Universal C Runtime library (the
UCRT) which is supplied and installed as part of the normal Dyalog development
installation.

80 Installation and Configuration Guide

At execution time it is important that the Dyalog runtime components bind with a
version of the UCRT that is compatible with (i.e. the same as or newer than) the
one with which they were built.

Windows 10
If the end-user of the Dyalog application is known to be running Windows 10, the
Dyalog application will pick up the system-wide UCRT which is part of Windows
10. There is therefore no need to include the UCRT with a Dyalog run-time
application.

Other Versions of Windows
The UCRT is not supplied with versions of Windows prior to Windows 10. On
these platforms, it is therefore necessary to install the UCRT as part of the
installation of the Dyalog run-time application. There are two ways to achieve this
which are referred to herein as the VCRedist installation and App-local
installation. Dyalog recommends the former.

VCRedist Installation (Recommended)

The VCRedist package, which includes the UCRT, is supplied with the Dyalog
development package.

Simply copy the vc_redistx86.exe (32-bit version) or vc_redistx64.exe
(64-bit version) program from the Dyalog development package into your own
installation package and execute it as part of the installation of your Dyalog run-
time application. This installs the UCRT into a shared Windows location; in effect
the UCRT becomes part of the Windows system. The installation therefore requires
Administrator privileges.

Chapter 1: Installation and Configuration 81

App-local Installation

An alternative is to install the UCRT components into the same directory as your
Dyalog run-time application. There are two ways to obtain these files.

Either:

Install the Dyalog development package (ideally onto a separate
system just for this purpose) without administrator rights. This will
perform an App-local installation of Dyalog itself. Then copy the
UCRT files into your installation package. These files are:

l those beginning with api-ms*
l ucrtbase.dll
l vcruntime140.dll

Or:

Download and install the Windows 10 SDK from:
https://developer.microsoft.com/en-us/windows/downloads/windows-
10-sdk, and follow the instructions in the link
below.
https://blogs.msdn.microsoft.com/vcblog/2015/03/03/introducing-
the-universal-crt

Finally, modify your installer to add these files to the same folder as your Dyalog
run-time application.

COM Objects and the Dyalog APL DLL
Introduction
Each different implementation of Dyalog contains two versions of the Dyalog APL
Dynamic Link Library, a development version (Development DLL) and a run-time
version (Run-Time DLL). For further details, see Files on page 2.

In the remainder of this section, the term Dyalog APL DLL is used to refer to any
one of these DLLs. The term COM object is used to refer to a Dyalog APL in-
process OLE Server (OLEServer object) or a Dyalog APL ActiveX Control
(ActiveXControl object).

The Dyalog APL DLL is used to host COM objects and .NET objects written in
Dyalog APL. Although this section describes how it operates with COM objects,
much of this also applies when it hosts .NET objects. Further information is
provided in the .NET Interface Guide.

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://blogs.msdn.microsoft.com/vcblog/2015/03/03/introducing-the-universal-crt
https://blogs.msdn.microsoft.com/vcblog/2015/03/03/introducing-the-universal-crt

82 Installation and Configuration Guide

Classes, Instances and Namespace Cloning
A COM object, whether written in Dyalog APL or not, represents a class. When a
host application loads a COM object, it actually creates an instance of that class.

When a host application creates an instance of a Dyalog APL COM object, the
corresponding OLEServer or ActiveXControl namespace is cloned. If the host
creates a second instance, the original namespace is cloned a second time.

Cloned OLEServer and ActiveXControl namespaces are created in almost exactly
the same way as those that you can make yourself using ⎕OR and ⎕WC except that
they do not have separate names. In fact, each clone believes itself to be the one
and only original OLEServer or ActiveXControl namespace, with the same name,
and is completely unaware of the existence of other clones.

Notice that cloning does not initially replicate all the objects within the
OLEServer or ActiveXControl namespace. Instead, the objects inside the cloned
namespaces are actually represented by pointers to the original objects in the
original namespace. Only when an object is changed does any information get
replicated. Typically, the only objects likely to differ from one instance to another
are variables, so only one copy of the functions will exist in the workspace. This
design enables many instances of a Dyalog APL COM object to exist without
overloading the workspace.

Workspace Management
By default, the Dyalog APL DLL does not use a fixed maximum workspace size,
but automatically increases the size of its active workspace as required. If you write
a run-away COM object, or if there is insufficient computer memory available to
load a new control, it is left to the host application or to Windows itself to deal
with the situation.

Nevertheless, it is possible to specify a value for maxws for the application in
which the Dyalog APL DLL is embedded. This is achieved by defining a Registry
key named:

HKLM\Software\Dyalog\Embedded\<appname>

or on 64-bit Windows:

HKLM\Software\Wow6432Node\Dyalog\Embedded\<appname>

where <appname> is the name of the application, containing a String Value
named maxws set to the desired size. If you were running an APL in-process server
from Microsoft Excel, the application name would be excel.exe.

When an application loads its first Dyalog APL COM object, it starts the Dyalog
APL DLL which initialises a CLEAR WS. It then copies the namespace tree for the
appropriate OLEServer or ActiveXControl object into its active workspace.

Chapter 1: Installation and Configuration 83

This namespace tree comprises the OLEServer or ActiveXControl namespace itself,
together with all its parent namespaces with the exception of the root workspace
itself. Note that for an ActiveXControl, there is at least one parent namespace that
represents a Form.

For example, if an ActiveXControl namespace is called #.F.Dual, the Dyalog
APL DLL will copy the contents of #.F into its active workspace when the first
instance of the control is loaded by the host application.

If the same host application creates a second instance of the same OLEServer or
ActiveXControl, the original namespace is cloned as described above and there is
no further impact on the workspace

If the same host application creates an instance of a different Dyalog APL COM
object, the namespace tree for this second object is copied from its DLL or OCX
file into the active workspace. For example, if the second control was named
X.Y.MyControl, the entire namespace X would be copied.

This design raises a number of points:

1. Unless you are in total control of the user environment, you should design a
Dyalog APL COM object so that it can operate in the same workspace as
another Dyalog APL COM object supplied by another author. You cannot
make any assumptions about file ties or other resources that are properties of
the workspace itself.

2. If you write an ActiveXControl whose ultimate parent namespace is called
F, a host application could not use your control at the same time as another
ActiveXControl (perhaps supplied by a different author) whose ultimate
parent namespace is also called F.

3. Dyalog APL COM objects must not rely on variables or utility functions
that were present in the root workspace when they were saved. These
functions and variables will not be there when the object is run by the
Dyalog APL DLL.

4. A Dyalog APL COM object may create and subsequently use functions and
variables in the root workspace, but if two different COM objects were to
adopt the same policy, there is a danger that they would interfere with one
another. The same is true for ⎕SE.

Multiple COM Objects in a Single Workspace
If your workspace contains several OLEServer or ActiveXControl objects which
have the same ultimate parent namespace, the Dyalog APL DLL will copy them all
into the active workspace at the time when the first one is instanced. If the host
application requests a second COM object that is already in the workspace, the
namespace tree is not copied again.

If the workspace contains several OLEServer or ActiveXControl objects which
have different ultimate parents, their namespace trees will be copied in separately.

84 Installation and Configuration Guide

Parameters
With the exception of maxws (see above) the Dyalog APL DLL does not read
parameters from the registry, command-line or environment variables. This means
that all such parameters will have their default values.

APL Application as a Service

Introduction
Dyalog APL provides a mechanism for users to register and manage an application
workspace as a Windows service. The application workspace must implement an
interface to handle messages from the Windows Service Control Manager (SCM) in
addition to the code required to drive the application.

Windows Services run as background tasks controlled by the SCM. When the
computer is started, Windows Services are run before a user logs on to the system
and do not normally interact with the desktop. A Dyalog service is run under the
auspices of Local System.

Installing and Uninstalling a Dyalog
Service
To install a Dyalog service it is necessary to run dyalog.exe from the command
line with administrator privileges, specifying the application workspace and the
following parameters, where service_name is a name of your choice.

l APL_ServiceInstall=service_name

The command must specify the full pathname to dyalog.exe and to the
application workspace. A slightly modified version of this command line will be
stored by the SCM and re-executed whenever the service is started.

Dyalog installs the service with a Startup Type of Automatic. This means that it
will be started automatically whenever the computer is restarted. However, it is
necessary to start it manually (using the SCM) the first time after it is installed.

The same command must be used to uninstall the service, but with:

l APL_ServiceUninstall=service_name

The following table summarises the parameters that can be specified by the user.
Other parameters will appear on the command line in the SCM, but should not be
specified by the user.

Chapter 1: Installation and Configuration 85

Parameter Description

APL_ServiceInstall

Causes Dyalog to register the named service, using
the current command line, but with APL_
ServiceRun replacing APL_ServiceInstall in the
SCM.

APL_ServiceUninstall Causes Dyalog to uninstall the named service.

The Application Workspace
The application workspace must be designed to handle and respond (in a timely
manner) to notification messages from the SCM as well as to provide the
application logic. SCM notifications include instructions to start, stop, pause and
resume.

SCM notification messages generate a ServiceNotification event on the Root
object. To handle these messages, it is necessary to attach a callback function to
this event, and to invoke the Wait method or ⎕DQ'.' to process them. This must
be executed in thread 0.

If the application is designed to be driven from events such as Timer or TCPSocket
or user-defined events, it too may be implemented via callbacks in thread 0 under
the control of the same Wait method or ⎕DQ'.'. If the application uses Conga it
is recommended that it runs in a separate thread.

The workspace ws\aplservice.dws is included in the APL release. Its start-up
function is as follows:

86 Installation and Configuration Guide

⎕lX←'Start'

∇ Start;ServiceState;ServiceControl
[1] :If 'W'≠3⊃#.⎕WG'APLVersion'
[2] ⎕←'This workspace only works using Dyalog APL for

Windows version 14.0 or later'
[3] :Return
[4] :EndIf
[5] :If 0∊⍴2 ⎕NQ'.' 'GetEnvironment' 'RunAsService'
[6] Describe
[7] :Return
[8] :EndIf
[9] ⍝ Define SCM constants
[10] HashDefine
[11] ⍝ Set up callback to handle SCM notifications
[12] '.'⎕WS'Event' 'ServiceNotification' 'ServiceHandler'
[13] ⍝ Global variable defines current state of the service
[14] ServiceState←SERVICE_RUNNING
[15] ⍝ Global variable defines last SCM notification to the

service
[16] ServiceControl←0
[17] ⍝ Application code runs in a separate thread
[18] Main&0
[19] ⎕DQ'.'
[20] ⎕OFF

∇

Handling ServiceNotification Events
To give the workspace (which may be busy) time to respond to SCM notifications,
Dyalog responds immediately to confirm that the service has entered the
appropriate pending state. For example, if the notification is SERVICE_
CONTROL_STOP, Dyalog informs the SCM that the service state is SERVICE_
STOP_PENDING. It is then up to the callback function to confirm that the state
has reached SERVICE_STOPPED.

The following sample function is provided in aplservice.dws.

Chapter 1: Installation and Configuration 87

ServiceHandler Callback Function
∇ r←ServiceHandler(obj event action state);sink

[1] ⍝ Callback to handle notifications from the SCM
[2]
[3] ⍝ Note that the interpreter has already responded
[4] ⍝ automatically to the SCM with the corresponding
[5] ⍝ "_PENDING" message prior to this callback being reached
[6]
[7] ⍝ This callback uses the SetServiceState Method to confirm
[8] ⍝ to the SCM that the requested state has been reached
[9]
[10] r←0 ⍝ so returns a 0 result (the event has been handled,
[11] ⍝ no further action required)
[12]
[13] ⍝ It stores the desired state in global ServiceState to
[14] ⍝ notify the application code which must take appropriate
[15] ⍝ action. In particular, it must respond to a "STOP or
[16] ⍝ "SHUTDOWN" by terminating the APL session
[17]
[18] :Select ServiceControl←action
[19] :CaseList SERVICE_CONTROL_STOP SERVICE_CONTROL_SHUTDOWN
[20] ServiceState←SERVICE_STOPPED
[21] state[4 5 6 7]←0
[22]
[23] :Case SERVICE_CONTROL_PAUSE
[24] ServiceState←SERVICE_PAUSED
[25]
[26] :Case SERVICE_CONTROL_CONTINUE
[27] ServiceState←SERVICE_RUNNING
[28] :Else
[29] :If state[2]=SERVICE_START_PENDING
[30] ServiceState←SERVICE_RUNNING
[31] :EndIf
[32] :EndSelect
[33] state[2]←ServiceState
[34] sink←2 ⎕NQ'.' 'SetServiceState'state

∇

The Application Code

The following function illustrates how the application code for the service might
be structured. It is merely an illustration, but however it is done, it is important that
the code handles the instructions to pause, continue and stop in an appropriate
manner. In this example, the function Main creates a log file and writes to it when
the state of the service changes.

88 Installation and Configuration Guide

∇ Main arg;nid;log;LogFile
[1] ⎕NUNTIE ⎕NNUMS
[2] log←{((⍕⎕TS),' ',⍵,⎕UCS 13 10)⎕NAPPEND ⍺}
[3] LogFile←'c:\ProgramData\TEMP\APLServiceLog.txt'
[4] :Trap 22
[5] nid←LogFile ⎕NCREATE 0
[6] :Else
[7] :Trap 22
[8] nid←LogFile ⎕NTIE 0
[9] 0 ⎕NRESIZE nid
[10] :Else
[11] ⎕←'Unable to tie or create logfile'
[12] :EndTrap
[13] :EndTrap
[14] nid log'Starting'
[15] :While ServiceState≠SERVICE_STOPPED
[16] :If ServiceControl≠0 ⋄

nid log'ServiceControl=',⍕ServiceControl ⋄ :EndIf
[17] :If ServiceState=SERVICE_RUNNING
[18] nid log'Running'
[19] :ElseIf ServiceState=SERVICE_PAUSED
[20] ⍝ Pause application
[21] :EndIf
[22] ServiceControl←0 ⍝ Reset (we only want to log changes)
[23] ⎕DL 10 ⍝ Just to prevent busy loop
[24] :EndWhile
[25] ⎕NUNTIE nid
[26] ⎕OFF 0

∇

Debugging Dyalog Services
Services are run in the background under the auspices of Local System, and not
associated with an interactive user. Neither the APL Session nor any GUI
components that it creates will be visible on the desktop. This prevents the normal
editing and debugging tools from being available.

However, the Dyalog APL Remote Integrated Development environment (RIDE)
may be connected to any APL session, including one running as a Windows
Service, and provide a debugging environment. For more information, see the RIDE
User Guide. Note however that the Conga DLLs/shared libraries must be available
- usually they should reside in the same directory as the interpreter. In previous
versions of Dyalog separate RIDE DLLs/shared libraries were supplied; these have
been subsumed into the Conga libraries in 16.0.

Event Logging
When a service is installed or removed, Dyalog APL records events in the Dyalog
APL section of the Applications and Services Logs which can be viewed using the
Windows system Event Viewer.

Chapter 1: Installation and Configuration 89

APLService Logging Events
The aplservice workspace contains the class SysLog which can be used to
log events to the Windows Event Log. These events can be accessed
programmatically or viewed using the Windows Event Viewer found in the
Windows Administrative Tools.

Windows Event Log Concepts
Every message logged in the Windows Event Log has a named source. Frequently
this source will be the name of the application which generates the message.
Windows has multiple event log files. By default, messages will be logged in the
Application log file found in the Windows Logs section of the Windows Event
Viewer. Alternatively, you can create a custom log located in the Applications and
Services Logs section in the Windows Event Viewer as shown by the "mylog"
entry in the screenshot below. Multiple applications can use the same source and
multiple sources can write to the same log file, but a given source may only write
to a single log file.

90 Installation and Configuration Guide

Using SysLog in Your Application
Before deploying your Dyalog APL application as a service, you should:

1. Consider what events or messages the application should log and their
severity level. SysLog allows you to specify severity levels of Error,
Warning, and Informational.

2. Create the log source and optionally its custom log using
SysLog.CreateEventSource. This must be done when running
Dyalog as an administrator and prior to running your Dyalog service. Once
the event source is created, it is not necessary to run your application as an
administrator in order to write to the Windows Event Log.

3. Within your application, you have two options for writing to the Windows
Event Log:
a. You may use the SysLog.WriteLog method. SysLog.WriteLog

will verify that the log source exists and then write your message. This
has the advantage of being standalone and can be called whenever you
desire

b. You may create an instance of the SysLog class and use the Write
method. This has the advantage of not incurring the overhead of
verifying the existence of the log source each time a log message is
written

SysLog Usage
SysLog implements an interface to a subset of the functionality of Microsoft's
System.Diagnostics.EventLog class. Some of SysLog's methods, namely
CreateEventSource, DeleteEventSource and DeleteLog, require you
to run Dyalog as an administrator to be fully functional.

All of the methods in SysLog with the exception of Write are shared methods
meaning you do not have to create an instance of SysLog in order to execute
them.

Chapter 1: Installation and Configuration 91

SysLog.CreateEventSource sourcename {logname}

Purpose:

Creates a new Windows Event Log source and optionally specifies or creates a
Windows Event Log for the source.

Argument Description

sourcename character vector source name that does not already exist

{logname}

optional character vector log name with which to associate
the source name. If not supplied, the source will be associated
with the Windows Logs/Application log. If there is no log
named logname, it will be created.

{level} SysLog.WriteLog sourcename message

Purpose:

Writes a message to the Windows Event Log associated with sourcename,
optionally specifying a severity level.

Argument Description

sourcename character vector source name of an existing source

message character vector message to write to the log

{level}

optional singleton indicating the severity level of the
message; defaults to informational if level is not specified:

1,'E' or 'e' may be used for error messages
2,'W' or 'w' may be used for warning messages
3,'I' or 'i' may be used for informational messages

92 Installation and Configuration Guide

{level} instance.Write message

Purpose:

Writes a message to the Windows Event Log associated with source name
specified for the SysLog instance, optionally specifying a severity level.

Argument Description

sourcename character vector source name of an existing source

message character vector message to write to the log

{level}

optional singleton indicating the severity level of the
message; defaults to informational if level is not specified:

1,'E' or 'e' may be used for error messages
2,'W' or 'w' may be used for warning messages
3,'I' or 'i' may be used for informational messages

Example:

logger←⎕NEW SysLog 'mysource'
1 logger.Write 'The sky is falling!'

Boolean←SysLog.LogExists logname

Purpose:

Returns 1 if a Windows Event Log named logname exists, 0 otherwise.

Argument Description

logname character vector Windows Event Log log name

Boolean←SysLog.EventSourceExists sourcename

Purpose:

Returns 1 if a Windows Event Log source named sourcename exists, 0
otherwise.

Argument Description

sourcename character vector Windows Event Log source name

Chapter 1: Installation and Configuration 93

logname←LogNameFromSourceName sourcename

Purpose:

Returns the Windows Event Log log name associated with the source named
sourcename.

Argument Description

sourcename character vector Windows Event Log source name

logname character vector Windows Event Log log name

DeleteEventSource sourcename

Purpose:

Deletes the Windows Event Log source named sourcename.

Argument Description

sourcename character vector Windows Event Log source name

DeleteLog logname

Purpose:

Deletes the Windows Event Log log named logname.

Argument Description

logname character vector Windows Event Log log name

94 Installation and Configuration Guide

Chapter 2: Configuring the IDE 95

Chapter 2:

Configuring the IDE

The Configuration Dialog Box

General Tab

96 Installation and Configuration Guide

Table 1: Configuration dialog: General
Label Parameter Description

Recently used
file list size

File_Stack_Size (page
35)

Specifies the number of the most
recently used workspaces
displayed in the File menu.

Underline
URLs and links URLHighlight (page 50)

Specifies whether or not URLs
and links are highlighted in
Session and Edit windows.

Display Value
Tips

ValueTips/Enabled (page
51)

Specifies whether or not Value
Tips are enabled.

Display Value
Tips after

ValueTips/Delay (page
51)

Specifies the delay before APL
displays a Value Tip.

Colour Scheme ValueTips/ColourScheme
(page 50)

Specifies the colour scheme used
to display Value Tips.

Enable Native
Look and Feel

XPLookAndFeel (page
53)

Specifies whether or not Native
Look and Feel is enabled. This
changes the appearance of user-
interface controls such as
Buttons in both the Session and
the Dyalog GUI.

Enable DPI
Scaling of the
interpreter and
development
environment

AutoDPI (page 24) Enables or disables DPI scaling
for the APL Session

Enable DPI
scaling of GUI
application

Dyalog_Pixel_Type
(page 32)

Determines whether Coord
'Pixel' is treated as
ScaledPixel or RealPixel.

Configuration
saved in IniFile (page 36) Specifies the full pathname of

the registry folder used by APL

Chapter 2: Configuring the IDE 97

Unicode Input Tab (Unicode Edition Only)
Unicode Edition can optionally select your APL keyboard each time you start
APL. To choose this option, select one of your installed APL keyboards, enable the
Activate selected keyboard checkbox, then click OK

Table 2: Configuration dialog: Unicode Input
Label Parameter Description

Activate
selected
keyboard

InitialKeyboardLayoutInUse
(page 38)

If checked, the specified
APL keyboard is activated
on start-up.

Show
keyboards for
all Languages

InitialKeyboardLayoutShowAll
(page 38)

If checked, all installed
keyboards are displayed.
Otherwise, only Dyalog
keyboards are shown

Keyboard InitialKeyboardLayout (page
38)

the APL keyboard to be
selected.

Configure
Layout

Displays thefollowng
dialog box.

98 Installation and Configuration Guide

Input Method Editor Properties

Table 3: Dyalog APL Input Method Editor Properties
Label Description

Use Ctrl-X,C,V
for clipboard

specifies whether or not the commonly used keystrokes for
copy, cut and paste are recognised as such.

Enable
Backtick
Keyboard
introducer

Enable
Overstrikes

1 = enable overstrikes.
0 = disable overstrikes

Overstrikes do
not require the
OS introducer
key

1 = IME identifies overstrike operation automatically
0 = IME requires the <OS> key (default Ctrl+Bksp) to
signal an overstrike operation

Use Overstrike
popup

1 = enable the overstrike popup.
0 = disable the overstrike popup

Chapter 2: Configuring the IDE 99

Input Tab (Classic Edition Only)

Table 4: Configuration dialog: Keyboard
Label Parameter Description

Input table
search path APLKeys (page 23)

A list of directories to be
searched for the specified input
table

Input table file APLK (page 23) The name of the input table file
(.DIN)

100 Installation and Configuration Guide

Output Tab (Classic Edition Only)

Table 5: Configuration dialog: Output
Label Parameter Description

Output table
search path APLTrans (page 24)

A list of directories to be
searched for the specified output
table

Output table
file APLT (page 23) The name of the output table file

(.DOT)

Chapter 2: Configuring the IDE 101

Keyboard Shortcuts Tab

To alter the keystroke associated with a particular action, simply select the action
required and press the keystroke. For example, to change the keystroke associated
with the action <UA> (undo all changes) from (None) to Ctrl+Shift+u, simply
select the corresponding row in the list and press Ctrl+Shift+u. If Confirm before
Overwrite is checked, you will be prompted to confirm or cancel before each and
every change is written back to the registry.

Note that clicking on the column headings will sort on that column; shift and
mouse click will sort in reverse order.

102 Installation and Configuration Guide

Workspace Tab

Table 6: Configuration dialog: Workspace
Label Parameter Description

Workspace
search path WSPath (page 52)

A list of directories to be
searched for the specified
workspace when the user
executes)LOAD.

Maximum
workspace size MaxWS (page 42) The maximum size of the

workspace.

Chapter 2: Configuring the IDE 103

Help/DMX Tab

Table 7: Configuration dialog: Help/DMX
Label Parameter Description

DMX messages
should go to

DMXOutputOnError
(page 30)

If checked, these boxes cause
APL to display ⎕DMX messages
in the corresponding window(s).

Use Microsoft's
documentation
centre for non-
Dyalog topics

UseExternalHelpURL
(page 50)

If this option is checked, APL
will look for help for external
objects at Microsoft's
documentation center, which is
identified by the specified URL.

URL ExternalHelpURL (page
35)

The URL for the documentation
centre.

104 Installation and Configuration Guide

Windows Tab

Chapter 2: Configuring the IDE 105

Table 8: Configuration dialog: Windows (Edit Windows)
Label Parameter Description

Width Edit_Cols (page 34) The maximum number of rows
displayed in a new edit window.

Height Edit_Rows (page 34)
The maximum number of
columns displayed in a new edit
window.

X Pos Edit_First_X (page 34)
The initial horizontal position in
characters of the first edit
window.

Y Pos Edit_First_Y (page 34)
The initial vertical position in
characters of the first edit
window.

X Offset Edit_Offset_X (page 34)

The initial horizontal position in
characters of the second and
subsequent edit windows relative
to the previous one.

Y Offset Edit_Offset_Y (page 34)

The initial vertical position in
characters of the second and
subsequent edit windows relative
to the previous one.

Table 9: Configuration dialog: Windows (Trace Windows)
Label Parameter Description

X Pos Trace_First_X (page 48)
The initial horizontal position in
characters of the first trace
window.

Y Pos Trace_First_Y (page 48)
The initial vertical position in
characters of the first trace
window.

X Offset Trace_Offset_X (page
48)

The initial horizontal position in
characters of the second and
subsequent trace windows
relative to the previous one.

Y Offset Trace_Offset_Y (page 48)

The initial vertical position in
characters of the second and
subsequent trace windows
relative to the previous one.

106 Installation and Configuration Guide

Table 10: Configuration dialog: Windows (QuadSM Window)
Label Parameter Description

Width SM_Cols (page 47) The width of the ⎕SM and
prefect windows.

Height SM_Rows (page 47) The height of the ⎕SM and
prefect windows.

Session Tab

Table 11: Configuration dialog: Session
Label Parameter Description

⎕IO Default_IO (page 29) The default value of ⎕IO in a
clear ws.

⎕ML Default_ML (page 29) The default value of ⎕ML in a
clear ws

⎕PP Default_PP (page 29) The default value of ⎕PP in a
clear ws.

Chapter 2: Configuring the IDE 107

Label Parameter Description

⎕RTL Default_RTL (page 30) The default value of ⎕RTL in a
clear ws.

⎕DIV Default_DIV (page 29) The default value of ⎕DIV in a
clear ws.

⎕WX Default_WX (page 30) The default value of ⎕WX in a
clear ws.

Auto PW Auto_PW (page 24)
If checked, the value of ⎕PW is
dynamic and depends on the
width of the Session Window.

Input buffer size Input_Size (page 38)

The size of the buffer used to
store marked lines (lines
awaiting execution) in the
Session.

History size History_Size (page 36)
The size of the buffer used to
store previously entered (input)
lines in the Session

PFKey buffer
size PFKey_Size (page 43)

The size of the buffer used to
store PFKey definitions
(⎕PFKEY)

Confirm on
Deletion from
Session log

Confirm_Session_Delete
(page 29)

Specifies whether or not you are
prompted to confirm the deletion
of a line from the Session (and
Session log).

Session log size Log_Size (page 40) The size of the Session log
buffer.

Session file Session_File (page 46)
The name of the Session file in
which the definition of your
session (⎕SE) is stored.

Use log file Log_File_InUse (page
40)

Specifies whether or not the
Session log is saved in a session
log file

Use log file Log_File (page 40) The full pathname of the Session
log file

Extended
Multiline Input
(experimental)

Dyalog_LineEditor_
Mode (page 32)

Specifies whether or not multi-
line input is enabled in the
Session.

108 Installation and Configuration Guide

Note: The value of size-related values defined in the above table is specified as an
integer value followed by one of K, M, G, T, P or E. The default, where no
character is included, is K (Kilobytes).

Trace/Edit Tab

Table 12: Configuration dialog: Trace/Edit
Label Parameter Description

Classic Dyalog
mode ClassicMode (page 27) Selects pre-Version 9 behaviour

for Edit and Trace windows.

Allow session
above edit
windows

SessionOnTop (page 46)
Specifies whether or not the
Session may appear on top of
Edit and Trace Windows

Single trace
window SingleTrace (page 46) Specifies whether or not there is

a single Trace window

Chapter 2: Configuring the IDE 109

Label Parameter Description

Remember
previous
window
position

ClassicModeSavePosition
(page 28)

Specifies whether or not the
current size and location of the
first of the editor and tracer
windows are remembered in the
registry for next time.

Allow floating
edit windows

DockableEditWindows
(page 30)

Allows individual Edit windows
to be undocked from (and re-
docked in) the main Edit
window

Show status
bars StatusOnEdit (page 47)

Specifies whether or not status
bars are displayed along the
bottom of individual Edit
windows

Show tool bars ToolBarsOnEdit (page
47)

Specifies whether or not tool
bars are displayed along the top
of individual Edit windows

Show trace
stack on error

Trace_On_Error (page
49)

Specifies whether or not the
Tracer is automatically invoked
when an error or stop occurs in a
defined function

Allow search to
wrap WrapSearch (page 51)

Specifies whether or not
Search/Replace in the Editor
stops at the top or bottom of the
text, or continues from the start
or end as appropriate.

Show message
box if text
wraps

WrapSearchMsgBox
(page 51)

Specifies whether or not a
message box is displayed to
inform the user when the search
wraps.

Warn if trace
stack bigger
than

Trace_Level_Warn (page
48)

Specifies the maximum stack
size for automatic deployment of
the Tracer.

Confirm edit
window close
on Close

Confirm_Close (page 28)

Specifies whether or not a
confirmation dialog is displayed
if the user alters the contents of
an edit window, then closes it
without saving

110 Installation and Configuration Guide

Label Parameter Description

Confirm edit
window close
on Edit (and
Fix)

Confirm_Fix (page 29)

Specifies whether or not a
confirmation dialog is displayed
if the user alters the contents of
an edit window, then saves it
using Fix or Exit

Confirm edit
window close
on Abort

Confirm_Abort (page 28)

Specifies whether or not a
confirmation dialog is displayed
if the user alters the contents of
an edit window, then aborts
using

Autoformat
functions AutoFormat (page 26)

Selects automatic indentation for
Control Structures when
function is opened for editing

Autoindent AutoIndent (page 27)
Selects semi-automatic
indentation for Control
Structures while editing

Double-click to
Edit

DoubleClickEdit (page
31)

Specifies whether or not double-
clicking over a name invokes
the editor

Skip blank lines
when tracing SkipLines (page 47)

If enabled, this causes the Tracer
to automatically skip blank
lines.

Skip comment
lines when
tracing

SkipLines (page 47)
If enabled, this causes the Tracer
to automatically skip comment
lines.

Skip locals
lines when
tracing

SkipLines (page 47)
If enabled, this causes the Tracer
to automatically skip locals
lines.

Limit tracer
display to
current function
in script

AddClassHeaders (page
19)

When Tracing the execution of a
function in a script, the Tracer
displays either just the first line
of the script and the function in
question (option enabled), or the
entire script (option disabled).

Paste text as
Unicode
(Classic Edition
only)

UnicodeToClipboard
(page 49)

Specifies whether or not text
transferred to and from the
Windows clipboard is to be
treated as Unicode

Chapter 2: Configuring the IDE 111

Label Parameter Description

Tab stops every TabStops (page 47)
The number of spaces inserted
by pressing Tab in an edit
window

Exit and fix ... InitFullScriptSusp (page
37) See Fixing Scripts below

If not ... InitFullScriptNormal on
page 37 See Fixing Scripts below

Fixing Scripts
When using the Editor to edit a script such as a Class or Namespace you can
specify whether, when you Fix the script and Exit the Editor, just the functions in
the script are re-fixed, or whether the whole script is re-executed, thereby re-
initialising any Fields or variables defined within.

These two actions always appear in the Editor File menu, but you can specify
which is associated with the <EP> (Esc) key by selecting the appropriate option in
the drop-downs labelled:

l Exit and save changes (EP) in a suspended class or namespace should fix:
l If not suspended fix:

In both cases, you may select either Only Functions or Everything.

The label for the corresponding items on the Editor File menu (see UI Guide:
Editor (The File Menu, editing a script)) will change according to which behaviour
applies. Note that if you specify a keystroke for <S1> in the Keyboard Shortcuts
tab, this will be associated with the unselected action.

112 Installation and Configuration Guide

Auto Complete Tab

Note: To enter values in the OK Key and Cancel Keyfields, click on the field with
the mouse and then press the desired keystroke.

Table 13: Configuration dialog: Auto Complete
Label Parameter Description

Use Auto
Complete

AutoComplete/Enabled (page
25)

Specifies whether or not
Auto Completion is enabled.

Make
suggestions
after

AutoComplete/PrefixSize
(page 26)

Specifies the number of
characters you must enter
before Auto Completion
begins to make suggestions

Delay
completion for

KeyboardInputDelay (page
38)

Specifies the delay in
milliseconds before Auto
Completion begins to make
suggestions

Chapter 2: Configuring the IDE 113

Label Parameter Description

Suggest up to AutoComplete/Rows (page
26)

Specifies the maximum
number of rows (height) in
the AutoComplete pop-up
suggestions box.

Show up to AutoComplete/Cols (page 25)

Specifies the maximum
number of columns (width)
in the AutoComplete pop-up
suggestion box

Keep History AutoComplete/History (page
25)

Specifies whether or not
AutoComplete maintains a
list of previous
AutoCompletions.

History Length AutoComplete/HistorySize
(page 26)

Specifies the number of
previous AutoCompletions
that are maintained

Include
filenames

AutoComplete/ShowFiles
(page 26)

Specifies whether or not
AutoCompletion suggests
directory and file names for
)LOAD,)COPY and)DROP
system commands.

OK Key
AutoComplete/CompleteKey1
(page 25)
AutoComplete/CompleteKey2
(page 25)

Specifies two possible keys
that may be used to select
the current option from the
Auto Complete suggestion
box.

Cancel Key

AutoComplete/CancelKey1
(page 24)
AutoComplete/CancelKey2
(page 24)

Specifies two possible keys
that may be used to cancel
(hide) the Auto Complete
suggestion box.

Common Key AutoComplete/CommonKey1
(page 25)

Specifies the key that will
auto-complete the common
prefix.

114 Installation and Configuration Guide

SALT Tab
SALT is the Simple APL Library Toolkit, a simple source code management system
for Classes and script-based Namespaces. SPICE uses SALT to manage
development tools which "plug in" to the Dyalog session

Chapter 2: Configuring the IDE 115

Table 14: Configuration dialog: SALT
Label Parameter Description

Enable
Salt AddSALT Specifies whether or not SALT is

enabled

Compare
command
line:

CompareCMD

The command line for a 3rd party
file comparison tool to be used
to compare two versions of a file.
See note.

Editor
command line: Editor

Name of the program to be used
to edit script files (default
"Notepad").

Source
folders: SourceFolder

Sets the SALT working
directory; a list of folders to be
searched for source code. Include
"." on a separate line to include
source files from the current
working directory

116 Installation and Configuration Guide

User Commands Tab

This page is used to specify and organise a list of folders that contain User-
Command files. When you issue a User Command, these folders will be searched
for the source of the command in the order in which they appear in this list.

Table 15: Configuration dialog: User Commands
Label Parameter Description

Source Folders SALT\CommandFolder
Use this field to add folders to
the list of folders that will be
searched for User Commands.

Chapter 2: Configuring the IDE 117

Object Syntax Tab

The Object Syntax tab of the Configuration dialog is used to set your default
preferences for Object Syntax. Use Options/Object Syntax to change the settings
for the current workspace.

Table 16: Configuration dialog: Object Syntax
Label Parameter Description

Expose
properties of
GUI
Namespaces

Default_WX (page 30) Specifies the value of ⎕WX in a
clear workspace.

Expose
properties of
Root

PropertyExposeRoot
(page 43)

Specifies whether or not the
names of properties, methods and
events of the Root object are
exposed.

Expose
properties of
Session
Namespace

PropertyExposeSE (page
43)

Specifies whether or not the
names of properties, methods and
events of the Session object are
exposed.

118 Installation and Configuration Guide

Saved ResponsesTab

The Saved Responses tab of the Configuration dialog is used to remove preferences
that the user has previously established.

In the example illustrated above, the user has at some point chosen to save a text
file with a .h extension as text in the workspace and, by checking the option Save
this response for all files with a ".h" extension, saved this as a preference for all
such text files. Similarly, the user has checked the option Do not show this
message again when responding to the warning dialog Saving as text will

If the user wishes to reverse these decisions, even temporarily, it is necessary to
select the corresponding option /preference name(s) and click Delete. The names
are intended to be self-explanatory and are not listed here.

Chapter 2: Configuring the IDE 119

120 Installation and Configuration Guide

Colour Selection Dialog

The Colour Selection dialog box allows you to select colours for:

l Syntax colouring in the Session window
l Variables
l Edit and Trace windows
l Status window

To choose for which of which of these items you want to define colours by
selecting the appropriate tab.

The colour selection dialog box is selected by the [ChooseColor] system
action which by default is attached to the Options/Colours menu item on the
Session menubar and to the Colours menu item in the Session pop-up menu.

Chapter 2: Configuring the IDE 121

Syntax Colouring
Syntax colouring allows you to visually identify various components in the
function edit and session windows by assigning different colours to them, such as:

l Global references (functions and variables)
l Local references (functions and variables)
l Primitive functions
l System functions
l Localised System Variables
l Comments
l Character constants
l Numeric constants
l Labels
l Control Structures
l Unmatched parentheses, quotes, and braces

Colour Schemes
You may define a number of different syntax colouring schemes which are suitable
for different purposes and a selection of schemes is provided. Choose the scheme
you wish to use from the Combo box provided. If you change a colour allocation,
you may overwrite an existing Colour Scheme or define a new one by clicking
Save As and then entering the name of the Scheme. You may delete a Colour
Scheme using the Delete button.

HotKeys
You may associate a different hot key with any or all of your colour schemes.When
you depress a hot key over a function in an Edit window, the function is displayed
using the scheme associated with the hot key. Releasing the hot key causes it to be
displayed in the normal scheme.This feature is intended to allow you to quickly
check for certain syntax elements. For example, you may define a special scheme
that only highlights global names and associate a hot key with it. Pressing the hot
key will temporarily highlight the globals for you.

Changing Colours
To allocate a colour to a syntax element, you must first select the syntax element.
You may select a syntax element from the Combo box provided, or by clicking on
an example in the sample function provided. Having selected a syntax element,
choose a colour using the Foreground or Background selectors as appropriate.

122 Installation and Configuration Guide

Table 17: Colour Selection
Label Description

Schemes Choose the scheme you want to edit using this dropdown
box.

HotKey
To associate a hot key with the currently selected colour
scheme, click here, and then make the desired keystroke. To
disassociate a hot key, use <backspace>.

Save As Click to overwrite the current colour scheme or save as a
new one.

Delete Click to delete the currently selected colour scheme.

Foreground Choose the foreground colour from the colour picker

Italic Enable/disable italic foreground

Bold Enable/disable bold foreground

Single
Background

Allows you to choose whether to impose a single
background colour, or to allow the use of different
background colours for different syntax elements.

Show Idioms Allows you to choose whether or not idioms are to be
identified by syntax colouring.

Function Editor Check this box if you want to enable syntax colouring in
Edit windows.

Function Tracer Check this box if you want to enable syntax colouring in
Trace windows.

Session Input

Check this box if you want to enable syntax colouring in
the Session window. Note that the colour scheme used for
the Session may differ from the colour scheme selected for
Edit windows and is specified by the Session Colour
Scheme box on the Session/Trace tab.

Only current
input line

This option only applies if Session syntax colouring is
enabled. Check this box if you want syntax colouring to
apply only to the current input line. Clear this box, if you
want to apply syntax colouring to all the input lines in the
current Session window. Note that syntax colouring of
input lines is not remembered in the Session log, so input
lines from previous sessions do not have syntax colouring.

Chapter 2: Configuring the IDE 123

Print Configuration Dialog Box
The Print Configuration dialog box is displayed by the system operation
[PrintSetup] that is associated with the File/Print Setup menu item. It is also
available from Edit windows and from the Workspace Explorer and Find Objects
tools.

There are four separate tabs namely Setup, Margins, Header/Footer and Printer.

Note that the printing parameters are stored in the Registry in the Printing sub-
folder

Setup Tab

124 Installation and Configuration Guide

Table 18: Print Configuration dialog: Setup
Label Parameter Description

Color scheme InColour

Check this box if you want to
print functions with syntax
colouring. Note that that printing
in colour is slower than printing
without colour.

Color scheme SchemeName Select the colour scheme to be
used for printing.

This text WrapWithText

Check this option button if you
wish to prefix wrapped lines
(lines that exceed the width of
the paper) with a particular text
string

This text WrapLeadText Specifies the text for prefixing
wrapped lines

This many
spaces WrapWithSpaces

Check this option button if you
wish to prefix wrapped lines
with spaces.

This many
spaces WrapLeadSpaces

Specifies the number of spaces to
be inserted at the beginning of
wrapped lines.

Line numbers
on functions LineNumsFns

Check this box if you want line
numbers to be printed in defined
functions.

Line numbers
on variables LineNumsVars

Check this box if you want line
numbers to be printed in
variables. If you choose this
option, line numbering starts at
⎕IO.

Font Font
Click to select the font to be
used for printing. Note that only
fixed-pitch fonts are supported.

Chapter 2: Configuring the IDE 125

Margins Tab

126 Installation and Configuration Guide

Table 19: Print Configuration dialog: Margins
Label Parameter Description

Use margins UseMargins Check this box if you want
margins to apply

Left margin MarginLeft Specifies the width of the left
margin

Right margin MarginRight Specifies the width of the right
margin

Top margin MarginTop Specifies the height of the top
margin

Bottom margin MarginBottom Specifies the height of the
bottom margin

Inches MarginInch Specifies that the margin units
are inches

Centimetres MarginCM Specifies that the margin units
are centimetres

Chapter 2: Configuring the IDE 127

Header/Footer Tab

128 Installation and Configuration Guide

Table 20: Print Configuration dialog: Header/Footer
Label Parameter Description

Header DoHeader Specifies whether or not a header
is printed at the top of each page

Header HeaderText The header text

Footer DoFooter
Specifies whether or not a footer
is printed at the bottom of each
page

Footer FooterText The footer text

Prefix functions
with DoSepFn

Specifies whether or not text is
printed before each defined
function

Prefix functions
with SepFnText

The text to be printed before
each defined function. This can
include its name, timestamp and
author

Prefix variables
with DoSepVar Specifies whether or not text is

printed before each variable.

Prefix variables
with SepVarText

The text to be printed before
each variable. This can include
its name.

Prefix other
objects with DoSepOther

Specifies whether or not text is
printed before other objects.
These include locked functions,
external functions, ⎕NA
functions, derived functions and
namespaces.

Prefix other
objects with SepOtherText

The text to be printed before
other objects. This can include
its name.

Chapter 2: Configuring the IDE 129

The specification for headers and footers may include a mixture of your own text,
and keywords which are enclosed in braces, e.g. {objname}. Keywords act like
variables and are replaced at print time by corresponding values.

Any of the following fields may be included in headers, footers and separators.

{WSName} {WS} Workspace name
{NSName} {NS} Namespace name
{ObjName} {OB} Object name
{Author} {AU} Author
{FixDate} {FD} Date function was last fixed
{FixTime} {FT} Time function was fixed
{PrintDate} {PD} Today's date
{PrintTime} {PT} Current time
{CurrentPage} {CP} Current page number
{TotalPages} {TP} Total number of pages
{RightJustify} {RJ} Right-justifies subsequent text/fields
{HorizontalLine} {HL} Inserts a horizontal line
{CarriageReturn} {CR} Inserts a new-line

For example, the specification:

Workspace: {wsname} {objname} {rj} Printed {PrintTime} {PrintDate}

would cause the following header, footer or separator to be printed at the
appropriate position in each page of output:

Workspace: U:\WS\WDESIGN WIZ_change_toolbar Printed 14:40:11 02 March
1998

130 Installation and Configuration Guide

Printer Tab

Table 21: Print Configuration dialog: Print
Label Parameter Description

Name PrinterField
The name of the printer to be
used for printing from Dyalog
APL.

Properties Click this to set Printer options.

Where Reports the printer device

Print

Allows you to choose between
printing all of the current object
or just the selection. Note that
this option is present only when
the dialog box is displayed in
response to selecting Print.

131

Index

.

.NET Core 32

3

32-bit version 2

6

64-bit version 2

A

ActiveX control 77
AddClassHeaders 19
AddClassHeaders parameter 110
APL_CODE_E_MAGNITUDE 20
APL_COMPLEX_AS_V12 21
APL_FAST_FCHK 22
APL_FCREATE_PROPS_C 21
APL_FCREATE_PROPS_J 21
APL_MAX_THREADS parameter 22
APL_TextInAplCore parameter 22
aplcore 22, 41
aplcorename parameter 22
aplk parameter 99
APLK parameter 23
aplkeys parameter 99
APLKeys parameter 23
aplnid parameter 23
APLScript compiler 3-6
APLService

Logging Events 89
aplt parameter 100
APLT parameter 23
apltrans parameter 100
APLTrans parameter 24

aplunicd.ini 3, 5, 79
Array Editor 3-6, 58
Auto_PW parameter 24, 107
AutoComplete

registry entries 56
AutoDPI parameter 24, 96
AutoFormat parameter 26, 110
AutoIndent parameter 27, 110
auxiliary processors 65

B

bridge dll 3, 5, 74-75, 78
Build runtime application 71

C

CancelKey (AutoComplete) parameter 113
CancelKey1 parameter 24
CancelKey2 parameter 24
captions

registry entries 56
CFEXT parameter 27
Classic Edition 23, 41, 49, 110
ClassicMode 28, 30, 46
ClassicMode parameter 27-28, 34, 46, 48,
108
ClassicModeSavePosition 109
CMD_POSTFIX parameter 28
CMD_PREFIX parameter 28
colour selection dialog 120
colours

registry entries 56
ColourScheme parameter 50, 96
Cols (AutoComplete) parameter 113
Cols parameter 25
COM server

in-process 76
out-of-process 75

command line 13
command processor 65-66
CommandFolder parameter 116
CommonKey (AuotComplete) parameter 113
CommonKey1 parameter 25
CompleteKey (AutoComplete) parameter 113
CompleteKey1 parameter 25
CompleteKey2 parameter 25

132 Installation and Configuration Guide

ConfigFile parameter 28
configuration dialog

autocomplete tab 112
help/dmx tab 103
input tab 99
keyboard shortcuts tab 101
object syntax tab 117
output tab 100
saved responses tab 118
session tab 106
trace/edit tab 108
unicode input tab 97
user commands tab 116
windows tab 104
workspace tab 102

configuration files 58
configuration parameters 18
Confirm 107
confirm_abort parameter 110
Confirm_Abort parameter 28
confirm_close parameter 109
Confirm_Close parameter 28
confirm_fix parameter 110
Confirm_Fix parameter 29
Confirm_Session_Delete parameter 29
Create bound file dialog 69
creating executables 68

D

Default_DIV parameter 29, 107
Default_IO parameter 29, 106
Default_ML parameter 29, 106
Default_PP parameter 29, 106
Default_PW parameter 30
Default_RTL parameter 30, 107
Default_WX parameter 30, 107, 117
Delay parameter 51, 96
development dll 3-6
development exe 3-6
division method 29
DMXOutputOnError parameter 30, 103
DockableEditWindows parameter 30, 109
Documentation 1
DoubleClickEdit parameter 31, 110
DPI-Aware 24

Dyalog APL DLL
classes, instances and cloning 82

dyalog dll 3, 5-6
Dyalog DLL

workspace management 82
dyalog parameter 23
Dyalog parameter 31
dyalog.chm 31
DYALOG_EVENTLOGGINGLEVEL
parameter 31
DYALOG_EVENTLOGNAME parameter 31
Dyalog_LineEditor_Mode 107
Dyalog_LineEditor_Mode parameter 32
Dyalog_NETCore parameter 32
DYALOG_NOPOPUPS parameter 32
Dyalog_Pixel_Type parameter 32, 96
DYALOG_SERIAL parameter 33
dyalog32 dll 79
DyalogEmailAddress parameter 31
DyalogHelpDir parameter 31
DyalogInstallDir parameter 32
dyalognet dll 3-6, 74-75, 78
dyalogprovider dll 3-6
DyalogStartup parameter 33
DyalogStartupSE parameter 33
DyalogWebSite parameter 33
dyares DLL 3-6, 79

E

edit window geometry 34
Edit_Cols parameter 34, 105
Edit_First_X parameter 34, 105
Edit_First_Y parameter 34, 105
Edit_Offset_X parameter 34, 105
Edit_Offset_Y parameter 34, 105
Edit_Rows parameter 34, 105
editor

registry entries 56
EditorState parameter 35
ENABLE_CEF parameter 35
Enabled (AutoComplete) parameter 112
Enabled parameter 25, 51, 96
environment variables 18
ErrorOnExternalException parameter 35
event viewer

registry entries 56

Index 133

exit codes 16, 22
Export menu item 68
external variables

sharing 67
ExternalHelpURL parameter 35, 103

F

file associations 8
file extensions 7
file_stack_size parameter 96
File_Stack_Size parameter 35
files 2

registry entries 56

G

GetEnvironment method 18
global assembly cache 74-75
Greet_Bitmap parameter 36

H

History (AutoComplete) parameter 113
History parameter 25
History_Size parameter 36, 107
HistorySize (AutoComplete) parameter 113
HistorySize parameter 26
hot keys

syntax colouring 121

I

index origin 29
IniFile parameter 36, 96
InitFullScriptNormal parameter 37, 111
InitFullScriptSusp parameter 37, 111
InitialKeyboardLayout 38
InitialKeyboardLayout parameter 97
InitialKeyboardLayoutInUse parameter 38,
97
InitialKeyboardLayoutShowAll parameter 38,
97
input translate table 23
Input_Size parameter 38, 107
interface with Windows 65

Interoperability 10

K

key operator 12
keyboard shortcuts

registry entries 57
KeyboardInputDelay parameter 38, 112

L

language bar
registry entries 57

lines_on_functions parameter 39
load parameter 39
localdyalogdir parameter 39
Log_File parameter 40, 107
Log_File_InUse parameter 107
Log_Size parameter 40, 107
logfileinuse parameter 40
lx parameter 40

M

mapchars parameter 41
MaxAplCores parameter 41
maxws parameter 64, 82, 84
MaxWS parameter 42, 102
Microsoft Document Explorer 35
migration level 29

N

nest 12
Net assembly 77

O

output translate table 23
over operator 12
OverstrikesPopup parameter 42

P

page width 30

134 Installation and Configuration Guide

PassExceptionsToOpSys parameter 42
PFKey_Size parameter 43, 107
PrefixSize (autocomplete) parameter 112
PrefixSize parameter 26
print configuration dialog 123

header/footer Tab 127
margins tab 125
printer tab 130
setup tab 123

print precision 29
printing

registry entries 57
programfolder parameter 43
PropertyExposeRoot parameter 43, 117
PropertyExposeSE parameter 43, 117

Q

qcmd_timeout parameter 43
quadna workspace 79

R

rank operator 12
registry keyboard 57
ResolveOverstrikes parameter 44
response time limit 30
return code 16
RIDE 45, 78
RIDE_Init parameter 44
RIDE_Spawned parameter 45
Rows (AutoComplete) parameter 113
Rows parameter 26
run-time

applications 73
bound 75
stand-alone 74
workspace based 73

run-time applications 71
run-time dll 3, 5, 76-78
run-time exe 3, 5, 73, 76
RunAsService parameter 45

S

SALT 114
registry entries 57

SaveContinueOnExit parameter 45
SaveLogOnExit parameter 45
SaveSessionOnExit parameter 46
serial number 17
Serial parameter 46
session object 28, 46, 50
Session_File parameter 46, 107
SessionOnTop parameter 46, 108
ShowFiles (AutoComplete) parameter 113
ShowFiles parameter 26
ShowStatusOnError parameter 46
SingleTrace parameter 46, 48, 108
SkipLines parameter 47, 110
SM_Cols parameter 47, 106
SM_Rows parameter 47, 106
SPICE 114
sqapl.dll 3, 5, 79
sqapl.err 3, 5, 79
sqapl.ini 3, 5, 79
StatusOnEdit parameter 47, 109
stencil operator 12
syntax colouring 121
system error dialog 42

T

TabStops parameter 26, 47, 111
ToolBarsOnEdit 109
ToolBarsOnEdit parameter 47
Trace_First_X parameter 48, 105
Trace_First_Y parameter 48, 105
Trace_Level_Warn parameter 48, 109
Trace_Offset_X parameter 48, 105
Trace_Offset_Y parameter 48, 105
Trace_On_Error parameter 49, 109
TraceStopMonitor parameter 49

U

Unicode and Classic Editions 2
Unicode Edition 38, 40, 42, 44, 51
UnicodeToClipboard parameter 49, 110

Index 135

Universal CRT 79
URLHighlight parameter 50, 96
UseExternalHelpURL parameter 50, 103
UserConfigFile parameter 50
UTIL workspace 67

V

value tips
ColourScheme parameter 96
Delay parameter 96
Enabled parameter 96
registry entries 57

valuetips
registry entries 57

variant operator 12
Version information

for a bound executable 72

W

WantsSpecialKeys parameter 51
where 12
Window Captions 62
window expose 30, 117
windowrects

registryentries 57
workspace explorer

registry entries 56
workspace size 42, 64, 82
WrapSearch 109
WrapSearch parameter 51
WrapSearchMsgBox 109
WrapSearchMsgBox parameter 51
WSEXT parameter 52
WSPath parameter 52, 102
WSPATH parameter 66, 79

X

XPLookAndFeel parameter 53, 96
XVAR function 67

Y

year 2000 compliance 53

yy_window parameter 53

136 Installation and Configuration Guide

	Chapter 1: Installation and Configuration
	Documentation
	Files and Directories
	APL Fonts
	Interoperability
	The APL Command Line
	APL Exit Codes
	Dyalog Serial Number
	Configuration Parameters
	AddClassHeaders
	APL_CODE_E_MAGNITUDE
	APL_COMPLEX_AS_V12
	APL_FCREATE_PROPS_C
	APL_FCREATE_PROPS_J
	APL_FAST_FCHK
	APL_MAX_THREADS
	APL_TextInAplCore
	AplCoreName
	APLK
	APLKeys
	aplnid
	APLT
	APLTrans
	Auto_PW
	AutoDPI
	AutoComplete/CancelKey1
	AutoComplete/CancelKey2
	AutoComplete/Cols
	AutoComplete/CommonKey1
	AutoComplete/CompleteKey1
	AutoComplete/CompleteKey2
	AutoComplete/Enabled
	AutoComplete/History
	AutoComplete/HistorySize
	AutoComplete/PrefixSize
	AutoComplete/Rows
	AutoComplete/ShowFiles
	AutoFormat
	AutoIndent
	CFEXT
	ClassicMode
	ClassicModeSavePosition
	CMD_PREFIX and CMD_POSTFIX
	ConfigFile
	Confirm_Abort
	Confirm_Close
	Confirm_Fix
	Confirm_Session_Delete
	Default_DIV
	Default_IO
	Default_ML
	Default_PP
	Default_PW
	Default_RTL
	Default_WX
	DMXOutputOnError
	DockableEditWindows
	DoubleClickEdit
	Dyalog
	DyalogEmailAddress
	DYALOG_EVENTLOGGINGLEVEL
	DYALOG_EVENTLOGNAME
	DyalogHelpDir
	DyalogInstallDir
	Dyalog_LineEditor_Mode
	Dyalog_NETCore
	DYALOG_NOPOPUPS
	Dyalog_Pixel_Type
	DYALOG_SERIAL
	DyalogStartup
	DyalogStartupSE
	DyalogWebSite
	Edit_Cols
	Edit_First_X
	Edit_First_Y
	Edit_Offset_X
	Edit_Offset_Y
	Edit_Rows
	ErrorOnExternalException
	EditorState
	ENABLE_CEF
	ExternalHelpURL
	File_Stack_Size
	Greet_Bitmap
	History_Size
	IniFile
	InitFullScriptNormal
	InitFullScriptSusp
	InitialKeyboardLayout
	InitialKeyboardLayoutInUse
	InitialKeyboardLayoutShowAll
	Input_Size
	KeyboardInputDelay
	lines_on_functions
	Load
	localdyalogdir
	Log_File
	Log_File_InUse
	Log_Size
	LX
	mapchars
	MaxAplCores
	MaxWS
	OverstrikesPopup
	PassExceptionsToOpSys
	PFKey_Size
	ProgramFolder
	PropertyExposeRoot
	PropertyExposeSE
	qcmd_timeout
	ResolveOverstrikes
	RIDE_Init
	RIDE_Spawned
	RunAsService
	SaveContinueOnExit
	SaveLogOnExit
	SaveSessionOnExit
	Serial
	Session_File
	SessionOnTop
	ShowStatusOnError
	SingleTrace
	SkipLines
	StatusOnEdit
	SM_Cols
	SM_Rows
	TabStops
	ToolBarsOnEdit
	Trace_First_X
	Trace_First_Y
	Trace_Level_Warn
	Trace_Offset_X
	Trace_Offset_Y
	Trace_On_Error
	TraceStopMonitor
	UnicodeToClipboard
	URLHighlight
	UseExternalHelpURL
	UserConfigFile
	ValueTips/ColourScheme
	ValueTips/Delay
	ValueTips/Enabled
	WantsSpecialKeys
	WrapSearch
	WrapSearchMsgBox
	WSEXT
	WSPath
	XPLookAndFeel
	yy_window

	Registry Sub-Folders
	Configuration Files
	Window Captions
	Workspace Management
	Interface with Windows
	Auxiliary Processors
	Access Control for External Variables
	Creating Executables and COM Servers
	Run-Time Applications and Components
	Run-Time Applications Additonal Considerations
	COM Objects and the Dyalog APL DLL
	APL Application as a Service
	Introduction
	Installing and Uninstalling a Dyalog Service
	The Application Workspace

	APLService Logging Events

	Chapter 2: Configuring the IDE
	The Configuration Dialog Box
	General Tab
	Unicode Input Tab (Unicode Edition Only)
	Input Tab (Classic Edition Only)
	Output Tab (Classic Edition Only)
	Keyboard Shortcuts Tab
	Workspace Tab
	Help/DMX Tab
	Windows Tab
	Session Tab
	Trace/Edit Tab
	Auto Complete Tab
	SALT Tab
	User Commands Tab
	Object Syntax Tab
	Saved ResponsesTab

	Colour Selection Dialog
	Print Configuration Dialog Box

	Index

