.Net Interface Guide

Version 13.2

The tool of thought for expert programming

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2013 by Dyalog Limited

All rights reserved.

Version: 13.2

Revision: 22186

No part of this publication may be reproduced in any form by any means without the prior written per-

mission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents hereof and spe-
cifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Dya-

log Limited reserves the right to revise this publication without notification.

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The Open Group.

Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Array Editor is copyright of davidliebtag.com

All other trademarks and copyrights are acknowledged.

Contents

Chapter1: OVerVieW . 1
IntrodUCtion ... 1
PrereqUISIteS - 3
Files Installed with Dyalog 4
Configuring the .Net Framework 4
Chapter2: Accessing.NetClasses 7
INtrodUuCtion 7
Locating .NET Classes and Assemblies 7
Using NET Classes ...l 10
Browsing INet Classes L 13
Advanced Techniques il 21
More EXamples ... 24
EUM e atiONS | . 28
Handling Pointers with Dyalog. ByRef 29
Chapter 3: UsingWindows.Forms 33
Introduction 33
Creating GUI Objects o . 33
Object Hierarchy 34
Positioning and Sizing Forms and Controls 34
Modal Dialog BOXES 34
Non-Modal Forms 39
Chapter4: Writing NetClasses inDyalog APL 41
IntrodUCtiON ... 41
Assemblies, Namespaces and Classesoooooooiii i 41
Example | ol 42
EXample 2 47
Example 2a . 50
EXample 3 . 52
EXample 4 . 55
EXample 5 .. 59
Interfaces - 63

Chapter5:Dyalog APLand IS 65

IntrOdU Gt 0N 65
IS Applications and Virtual Directories 66
Internet Services Manager L 67
Chapter 6: WritingWeb Services 75
IntrodUCtion ... o 75
Web Service (aSmX) SCriptS 76
CompilatioN il 77
Exporting Methods ... L 78
Web Service Data Types 79
EX U IO L. L 79
Global.asax and Application and Session Objects oo i, 80
Sample Web Service: EGl .. 80
Sample Web Service: LoanService 83
Sample Web Service: GolfService 88
Sample Web Service: EG2 106
Chapter 7: CallingWeb Services 111
IntrodUCtiON . 111
The MakeProxy function i 111
Using LoanService from Dyalog APL 112
Using GolfService from Dyalog APL 113
Exploring Web ServiCes oo 117
Asynchronous USe o oo 119
Chapter 8: Writing ASP.NETWeb Pages 123
Introduction ..ol 123
Your first APL Web Page .. . 124
The Page Load Event . L 129
Code Behind 132
Workspace Behind 135
Chapter 9: Writing Custom Controls for ASP.NET 153
Introduction 153
The SimpleCtl Control 154
The TemperatureConverterCtll Control 158
The TemperatureConverterCtl2 Control 163
The TemperatureConverterCtl3 Control 170
Chapter10: APLS it . . 175

I O dUCH O o 175

The APLScript Compiler 176
Creating an APLScript File .. . 178
Transferring code from the Dyalog APL Session i, 179
General principles of APLScript .. . 180
Creating Programs (.exe) with APLScript 181
Creating .NET Classes with APLScript 184
Creating ASP.NET Classes with APLScript 191
Chapter 11: Visual Studio Integration 195
IntroductioN . iill. 195
Hello World Example 195
Using an Existing WorksSpace oo o 200
Chapter12: ImplementationDetails 203
IntrodUCtiON _ il 203
Isolation Mode ... il 204
Structure ofthe Active Workspaceo oo 205
Threading ... 208
Debugging an APL.INET Class o 210

Chapter 1:

Overview

Introduction

This manual describes the Dyalog APL interface to the Microsoft .NET Framework.
This document does not attempt to explain the features of the .NET Framework,
except in terms of their APL interfaces. For information concerning the NET Frame-
work, see the documentation, articles and help files, which are available from Micro-
soft and other sources.

The NET interface features include:

e The ability to create and use objects that are instances of .NET Classes

e The ability to define new .NET Classes in Dyalog APL that can then be
used from other .NET languages such as C# and VB.NET.

e The ability to write Web Services in Dyalog APL.

e The ability to write ASP.NET web pages in Dyalog APL

Dyalog APL/W .Net Interface Guide

.NET Classes

The .NET Framework defines a so-called Common Type System. This provides a set
of data types, permitted values, and permitted operations. All cooperating languages
are supposed to use these types so that operations and values can be checked (by the
Common Language Runtime) at run time. The NET Framework provides its own
built-in class library that provides all the primitive data types, together with higher-
level classes that perform useful operations.

Dyalog APL allows you to create and use instances of .NET Classes, thereby gaining
access to a huge amount of component technology that is provided by the NET
Framework.

It is also possible to create Class Libraries (Assemblies) in Dyalog APL. This allows
you to export APL technology packaged as NET Classes, which can then be used
from other NET programming languages such as C# and Visual Basic.

The ability to create and use classes in Dyalog APL also provides you with the pos-
sibility to design APL applications built in terms of APL (and non-APL) com-
ponents. Such an approach can provide benefits in terms of reliability, software
management and re-usage, and maintenance.

GUI Programming with System.Windows.Forms

One of the most important .NET class libraries is called

System.Windows .Forms, which is designed to support traditional Windows
GUI programming. Visual Studio .NET, which is used to develop GUI applications
in Visual Basic and C#, produces code that uses System.Windows .Forms. Dya-
log APL allows you to use System.Windows . Forms, instead of (and in some
cases, in conjunction with) the built-in Dyalog APL GUI objects such as the Dyalog
APL Grid, to program the Graphical User Interface.

Web Services

Web Services are programmable components that can be called by different appli-
cations. Web Services have the same goal as COM, but are technically platform inde-
pendent and use HTTP as the communications protocol with an application. A Web
Service can be used either internally by a single application or exposed externally
over the Internet for use by any number of applications.

Chapter 1: Overview 3

ASP.NET and WebForms

ASP.NET is a new version of Microsoft Active Server Page technology that makes it
easier to develop and deploy dynamic Web applications. To supplement ASP.NET,
there are some important new .NET class libraries, including WebForms which allow
you to build browser-based user interfaces using the same object-oriented mechanism
as you use Windows . Forms for the Windows GUI. The use of these component
libraries replaces basic HTML programming.

ASP.NET pages are server-side scripts, that are usually written in C# or Visual Basic.
However, you can also employ Dyalog APL directly as a scripting language (4PL-
Script) to write ASP.NET web pages. In addition, you can call Dyalog APL work-
spaces directly from ASP.NET pages, and write custom server-side controls that can
be incorporated into ASP.NET pages.

These features give you a wide range of possibilities for using Dyalog APL to build
browser-based applications for the Intemet, or for your corporate Intranet.

Prerequisites

The Dyalog APL .NET interface requires a computer running a current version of
Windows, from Windows 2000 up to and including Windows 7 and Windows
Server 2008, with the following elements installed:

e The Microsoft .NET Framework SDK V2.0 with Service Pack 1 (Version
2.0.50727) or higher.

e Microsoft Internet Information Services (IIS) 5.0 or higher

e Microsoft Internet Explorer Version 6.00 (or higher)

Dyalog APL/W .Net Interface Guide

Files Installed with Dyalog

NET Interface Components

The components used to support the NET interface are summarised below. Different
versions of each component are supplied according to the target platform. There are:

e developer/debug and runtime versions
e 32-bit and 64-bit versions
e Classic and Unicode Edition versions

For a list of these different versions and their corresponding file names, See User
Guide, Chapter 1.

e The Bridge DLL. This is the interface library through which all calls
between Dyalog APL and the NET Framework are processed

e The DyalogProvider DLL. This DLL performs the initial processing of an
APLScript.

e The APLScript Compiler. This is itself written in Dyalog APL and packaged
as an executable.

e The DyalogNet DLL; a subsidiary library

e The Dyalog DLL. This is the engine that executes all APL code that is
hosted by and called from another .NET application.

Code Samples

The samples subdirectory contains several sub-directories relating to the NET
interface:

e aplclasses; a sub-directory that contains examples of .NET classes
written in APL.

e aplscript; a sub-directory that contains APLScript examples.

e asp.net; a sub-directory that is mapped to the IIS Virtual Directory
dyalog.net, and contains various sample APL Web applications.

e winforms; a sub-directory that contains sample applications that use the
System.Windows.Forms GUI classses.

Configuring the .Net Framework

If you have more than one version of the .Net Framework installed, you may select
which version APL uses from the .Net Framework tab of the Configuration dialog.

Chapter 1: Overview 5

B Dyalog APL/W Configuration
General] Unicode Input] Fepboard Shortouts] “Workspace] Wwindoves Sezzion] Log]
Trace/E dit] Auta Complete] SALT] Iser Commands] Object Syntax .Met Framework

[v Specify Met Yersion

|v2.050727 |

conhfig file contents:

<configuration:
< startup uzelegacyv 2RuntimedctivationPolicp="tue'">
{supportedRuntime version="v2.0. 50727"/>
£/ztartups
Lruntimes
<MetFx40_LegacySecurntyPolicy enabled="tue"/>
<Auntimes
</oonfiguration:

(]9 | Cancel

This dialog box allows you to specify which version of the .Net Framework you
want to use with Dyalog APL. It is only necessary to do this if you have more than
one version of the .Net Framework installed.

If Specify .Net Version is selected, APL will display the versions of the .Net Frame-
work that are installed in the combo box below.

Choose the version you require and click OK.

Unlike the other configuration dialogs, which typically set values in the Registry,
this dialog creates a configuration file dyalog.exe.config in the same directory
as the Dyalog APL program. Note the following:

e Version 13.2 does not read the contents of an existing
dyalog.exe.config file.

e For .Net Version 2, no configuration file is required; if you select Version 2
having previously selected Version 4, the file will be deleted.

e You will need suitable permissions to write the configuration file, or delete
it — you may wish to start APL by right clicking on the Dyalog shortcut
and selecting Run as administrator.

The dialog box shows the contents of this file as illustrated above.

Dyalog APL/W .Net Interface Guide

Chapter 2:

Accessing .Net Classes

Introduction

NET classes are implemented as part of the Common Type System. The Type System
provides the rules by which different languages can interact with one another. Types
include interfaces, value types and classes. The .NET Framework provides built-in
primitive types plus higher-level types that are useful in building applications.

A Class is a kind of Type (as distinct from interfaces and value types) that encap-
sulates a particular set of methods, events and properties. The word object is usually
used to refer to an instance of a class. An object is typically created by calling the sys-
tem function (ONEW, with the class as the first element of the argument.

Classes support inheritance in the sense that every class (but one) is based upon
another so-called Base Class.

An assembly is a file that contains all of the code and metadata for one or more
classes. Assemblies can be dynamic (created in memory on-the-fly) or static (files on
disk). For the purposes of this document, the term Assembly refers to a file (usually
with a .DLL extension) on disk.

Locating .NET Classes and Assemblies

Unlike COM objects, which are referenced via the Windows Registry, NET
assemblies and the classes they contain, are generally self-contained independent
entities (they can be based upon classes in other assemblies). In simple terms, you can
install a class on your system by copying the assembly file onto your hard disk and
you can de-install it by erasing the file.

Although classes are arranged physically into assemblies, they are also arranged log-
ically into namespaces. These have nothing to do with Dyalog APL namespaces and,
to avoid confusion, are henceforth referred to in this document as .NET namespaces.

Dyalog APL/W .Net Interface Guide

Often, a single NET namespace maps onto a single assembly and usually, the name
ofthe NET namespace and the name of its assembly file are the same; for example,
the .NET namespace System.Windows.Forms is contained in an assembly
named System.Windows.Forms.dll.

However, it is possible for a NET Namespace to be implemented by more than one
assembly; there is not a one-to-one-mapping between NET Namespaces and
assemblies. Indeed, the main top-level .NET Namespace, System, is spread over a
number of different assembly files.

Within a single .NET Namespace there can be any number of classes, but each has its
own unique name. The full name of a class is the name of'the class itself, prefixed by
the name of the .NET namespace and a dot. For example, the full name of the
DateTime class in the NET namespace Systemis System.DateTime.

There can be any number of different versions of an assembly installed on your com-
puter, and there can be several NET namespaces with the same name, implemented
in different sets of assembly files; for example, written by different authors.

To use a .NET Class, it is necessary to tell the system to load the assembly (d11)in
which it is defined. In many languages (including C#) this is done by supplying the
names of the assemblies or the pathnames of the assembly files as a compiler direc-
tive.

Secondly, to avoid the verbosity of programmers having to always refer to full class
names, the C# and Visual Basic languages allow the .NET namespace prefix to be
elided. In this case, the programmer must declare a list of NET namespaces with
Using (C#) and Imports (Visual Basic) declaration statements. This list is then
used to resolve unqualified class names referred to in the code.

In either language, when the compiler encounters the unqualified name of a class, it
searches the specified .NET namespaces for that class.

In Dyalog APL, this mechanism is implemented by the JUSING system variable.
[JUSING performs the same two tasks that Using/Imports declarations and com-
piler directives provide in C# and Visual Basic; namely to give a list of NET names-
paces to be searched for unqualified class names, and to specify the assemblies which
are to be loaded.

[USING is a vector of character vectors each element of which contains 1 or 2
comma-delimited strings. The first string specifies the name of a NET namespace;
the second specifies the pathname of an assembly file. This may be a full pathname
or a relative one, but must include the file extension (. d11). If just the file name is
specified, it is assumed to be located in the standard .NET Framework directory that
was specified when the .NET Framework was installed (e.g. C:\w-
indows\Microsoft. NET\Framework\v2.0.50727)

Chapter 2: Accessing .Net Classes 9

It is convenient to treat .NET namespaces and assemblies in pairs. For example:

JUSING<«'System,mscorlib.dll"'

OQUSING,«c'System.Windows.Forms,
System.Windows.Forms.dll' [OUSING,«c'System.Drawing,
System.Drawing.dll'

Note that because Dyalog APL automatically loads mscorlib.d11 (which con-
tains the most commonly used classes in the System Namespace), it is not actually
necessary to specify it explicitly in JUSING.

Note that JUSING has Namespace scope, i.e. each Dyalog APL Namespace, Class or
Instance has its own value of JUSING that is initially inherited from its parent space
but which may be separately modified. JUS ING may also be localised in a function
header, so that different functions can declare different search paths for NET names-
paces/assemblies.

Within a Class script, you may instead employ one or more : Us i ng statements to
specify the NET search path. Each of these statements is equivalent to appending an
enclosed character vector to JUSING.

:Using System,mscorlib.dll
:Using System.Windows.Forms,System.Windows.Forms.dll
:Using System.Drawing,System.Drawing.dll

Classes also inherit from the namespace they are contained in. The statement
:Using

Is equivalent to
OUSING«0pc""'

...and allows a class to clear the inherited value before appending to JUSING, or to
state that no :Net assemblies should be loaded. IfJUSING is empty, APL will not
search for .Net classes in order to resolve names which would otherwise give a
VALUE ERROR.

Note that assigning a simple character vector to JUSING is equivalent to setting it to
the enclose of that vector. The statement (QUSING<«"' ") does not empty QUSING, it
sets it to a single empty element, which gives accesstomscor lib.dl | and the
Bridge DLL without a namespace prefix. The equivalentisa : Us i ng statement fol-
lowed by a comma separator but no namespace prefix and no assembly name:

:Using ,

10

Dyalog APL/W .Net Interface Guide

Using .NET Classes

To create a Dyalog APL object as an instance of a NET class, you use the [INEW sys-
tem function. The ONEW system function is monadic. It takes a 1 or 2-element argu-
ment, the first element being a class.

Ifthe argument is a scalar or a 1-element vector, an instance of the class is created
using the constructor that takes NO argument.

If the argument is a 2-element vector, an instance of the class is created using the con-
structor whose argument matches the disclosed second element.

For example, to create a DateTime object whose value is the 30t April 2008:

OQUSING«'System'

mydt<[ONEW DateTime (2008 4 30)

The result of [ONEW is an reference to the newly created instance:

[ONC <c'mydt'
9.2

If you format a reference to a NET Object, APL calls its ToString method to
obtain a useful description or identification of the object. This topic is discussed in
more detail later in this chapter.

mydt
30/04/2008 00:00:00

If you want to use fully qualified class names instead, one of the elements of
[USING must be an empty vector. For example:

QUSING«,c""’

mydt<[INEW System.DateTime (2008 4 30)

When creating an instance of the DateTime class, you are required to provide an
argument with two elements: (the class and the constructor argument, in our case a
3-element vector representing the date). Many classes provide a default constructor
which takes no arguments. From Dyalog APL, the default constructor is called by
calling [INEW with only a reference to the class in the argument. For example, to
obtain a default But ton object, we only need to write:

mybtn<[JNEW Button

Chapter 2: Accessing .Net Classes 1

The above statement assumes that you have defined JUSING correctly; there must be
areference to System.Windows.Forms.dl |, and a namespace prefix which
allows the name But ton to be recognised as
System.Windows.Forms.Button.

The mechanism by which APL associates the class name with a class in a NET
namespace is described below.

Constructors and Overloading

Each NET Class has one or more constructor methods. A constructor is a method
which is called to initialise an instance of the Class. Typically, a Class will support
several constructor methods - each with a different set of parameters. For example,
System.DateTime supports a constructor that takes three Int 32 parameters
(year, month, day), another that takes six Int 32 parameters (year, month, day, hour,
minute, second), and so forth. These different constructor methods are not dis-
tinguished by having different names but by the different sets of parameters they
accept.

This concept, which is known as overloading, may seem somewhat alien to the APL
programmer. After all, we are used to defining functions that accept a whole range of
different arguments. However, type checking, which is fundamental to the .NET
Framework, requires that a method is called with the correct number of parameters,
and that each parameter is of a predefined type. Overloading solves this issue.

When you create an instance of a class in C#, you do so using the new operator. This
is automatically mapped to the appropriate constructor method by matching the
parameters you supply to the various forms of the constructor. A similar mechanism
is implemented in Dyalog APL using the ONEW system function.

How the [JNEW System Function is implemented
When APL executes an expression such as:
mydt<[JNEW DateTime (2008 4 30)
the following logic is used to resolve the reference to DateTime correctly.

The first time that APL encounters a reference to a non-existent name (i.e. a name that
would otherwise generate a VALUE ERROR), it searches the .NET names-
paces/assemblies specified by JUSING fora .NET class of that name. If found, the
name (in this case DateTime) is recorded in the APL symbol table with a name
class 0f 9.6 and is associated with the corresponding .NET namespace. If not, VALUE
ERROR is reported as usual. Note that this search ONLY takes place if JUSING has
been assigned a value.

12

Dyalog APL/W .Net Interface Guide

Subsequent references to that symbol (in this case DateTime) are resolved directly
and do not involve any assembly searching.

If you use ONEW with only a class as argument, APL will attempt to call the version
of'its constructor that is defined to take no arguments. If no such version of the con-
structor exists, the call will fail witha LENGTH ERROR.

Otherwise, if you use [INEW with a class as argument and a second element, APL will
call the version of the constructor whose parameters match the second element you
have supplied to ONEW. Ifno such version of the constructor exists, the call will fail
witha LENGTH ERROR.

Displaying a .NET Object

When you display a reference to a .NET object, APL calls the object's ToString
method and displays the result. All objects provide a ToString method because all
objects ultimately inherit from the NET class System.Object. Many NET
classes will provide their own ToString that overrides the one inherited from
System.Object, and return a useful description or identifier for the object in ques-
tion. ToString usually supports a range of calling parameters, but APL always
calls the version of ToString that is defined to take no calling parameters. Mona-
dic format (%) and monadic JFMT have been extended to provide the same result, and
provides a quick shorthand method to call ToString in this way. The default
ToString supplied by System.Object returns the name of the object’s Type.
This can be changed using the system function [JDF. For example,

z<[IJNEW DateTime OTS
z. ([IDF (sDayOfWeek),, 'G< 99:99>'[JFMT 1001Hour Minute)

Z
Saturday 09:17

Note that if you want to check the type of an object, this can be obtained using the
GetType method, which is supported by all .Net objects.

Chapter 2: Accessing .Net Classes 13

Browsing .Net Classes

Microsoft supplies a tool for browsing .NET Class libraries called ILDASM. EXE 1

As a convenience, the Dyalog APL Workspace Explorer has been extended to per-
form a similar task as TLDASM so that you can gain access to the information within
the context of the APL environment.

The information that describes .NET classes, which is known as its Metadata, is part
of'the definition of the class and is stored with it. This Metadata corresponds to Type
Information in COM, which is typically stored in a separate Type Library.

To enable the display of Metadata in the Workspace Explorer, you must have the
Type Libraries option of the View menu checked.

L ILDASM.EXE can be found in the NET SDK and is distributed with Visual Studio

14

Dyalog APL/W .Net Interface Guide

To gain information about one or more Net Classes, open the Workspace Explorer,

right click the Metadata folder, and choose Load.

] Exploring CLEAR WS [#]

Lo

File Edit WYiew Columns Tools

A== = =N

Contents of MetaData

Wiorkspace Tree
=L
OsE

Tt MetaData
m &% Typelibs

This brings up the Browse .Net Assembly dialog box as shown below. Navigate to
the .NET assembly of your choice, and click Open.

-

Browse .Net Assembly

=)&)

D

My Recent
Documents

=

Dezktop

e

=

My Documents

s

tdp Computer

b M etk

Look n: | (3 v2.0.50215 x| @ > @
MName Size | Tvpe Date [“l
\}] Microsoft_Wsavh,dil 7KE Application Extension 09704
\i&] MrncAspExt.dil gz kB Application Extension 0304
\}] mscordaceks , dll @54 KE Application Extension 09/04
\i&] mscordbe, dil 63 KB Application Extension 0304
\}] mscordbi,dll 291 KB Application Extension 09704
\i&] rmscorie, dll 3z KB Application Extension 0304
\}] mscorjic. dll 315 KB Application Extension 09/04] =
7o kB Application Extension 0304
4,304 KB Application Extension 09704
\i&] mscorpe,dll 92 KB Application Extension 0304
\}] mscorrc. dil 309 KB Application Extension 03704
_ﬁj mscorsec,dll 62 KB Application Extension 03/04
\}] mscorsn,dil 8KE Application Extension 05704
_"53 rmscorsyve.dil 265 KB Application Extension DB;’EH[V]
[<-] i | [#]
File hame: |mscorlih.dll [V] [Dpen]
Files of type: | Net Assemblies [dl) v| [cancel |

Chapter 2: Accessing .Net Classes 15

Note that the NET Classes provided with the .NET Framework are typically located
in C: \WINDOWS\Microsoft.NET\Framework\V2.0.50215. The last
named folder is the Version number.

The most commonly used classes of the NET Namespace System are stored in this
directory in an Assembly named mscorlib.dl1, along with a number of other fun-
damental NET Namespaces.

The result of opening this Assembly is illustrated in the following screen shot. The
somewhat complex tree structure that is shown in the Workspace Explorer merely
reflects the structure of the Metadata itself.

2] Exploring CLEAR WS [#] E]@

File Edit Wiew Columns Tools
rxQrE = [E0mE (354

Workspace Tree

= Xift mzcorlib :A:

—-dét Modules
oKt G AWINDOWSAMicrosoft . HETYFrameworkyv2.0.50215mscorlib.d1[|
--fEt Hamespaces
w0t [Unnamed]

It Microsoft.Win32
Bt Microsoft. Win32.SafeHandles

¥+

System

System.Collections
System.Collections.Generic
System.Collections.ObjectModel
System.Configuration.Assemblies
System.Deployment. Internal
System.Deployment . Internal.Izolation
System.Diagnostics
System.Diagnostics.Codefnalysis
System.Diagnostics. SymbolStore
System.Globalization

System. IO :v:

16

Dyalog APL/W .Net Interface Guide

Opening the System/ Classes sub-folder causes the Explorer to display the list of
classes contained in the NET Namespace System as shown in the picture below.

') Exploring CLEAR WS [#] g@“

File Edit Wiew Columns Tools

PBRXQE ¢ ([EEEE |6

Wiorkspace Tree

o Bt System [A]
= Tt Classes [
j System. _AppDomain

System.bccessViolationException
System.Actiaon™]

System.ActivationContext
System.Activator

System.Applomain
System.Applomain+EvidenceCollection
system.ApplomainInitializer
System.AppDomainInitializerInfot+ltemInfo
System.ApplomainManager

BEEEEE e e E

[

System.Applomainietup
11 [)]

M

Chapter 2: Accessing .Net Classes 17

The Constructors folder shows you the list of all of the valid constructors and their
parameter sets with which you may create a new instance of the Class by calling
New. The constructors are those named .ctor; you may ignore the one named .cctor,
(the class constructor) and any labelled as Private.

For example, you can deduce that DateT ime . New may be called with three
numeric (Int32) parameters, or six numeric (Int32) parameters, and so forth. There
are in fact seven different ways that you can create an instance ofa DateTime.

4 Exploring CLEAR WS [#] MmEX

File Edit Wew Columns Tools
Xy | |EEES (40 = o
Watkspace Tree Conkent:
—-Jigt System.DateTime A
+-Jigt Base Class
—.0ét Constructors
et (Privatel¥oid .cctor()
Mt (Private)V¥oid .ctor(Intel, System.DateTimelind, Boolean)
Bt (PrivatelVoid .ctor(System.Runtime.Serialization.3erializatior
et (PrivatelWoid .ctor(UIntgl)
Mt Yoid .ctor(Int32, Int32, Int32]
Bt Yoid .etor(Int32, Int32, Int32, Int32, Int32, Int32)
et Woid .ctor(Int32, Int32, Int32, Int32, Int32, Int32, Int3Z]
Rt Woid .ctor(Int32, Int32, Int32, Int32, Int32, Int32, Int32, S
Bt Void .ctor(Int32, Int32, Int32, Int32, Int32, Int32, Int32, S5,
Hgt Void .ctor(Int32, Int32, Int32, Int32, Int32, Int32, Int32, S5,
Rt Woid .ctor(Int32, Int32, Int32, Int32, Int32, Int32, System.D:
Mt Woid .eotor(Int32, Int32, Int32, Int32, Int32, Int32, System.GI
Ht Yoid .otor(Int32, Int32, Int32, System.Blobalization.Calendar)
Bft Void .ctor(Intél)
Mgt Woid .ctor(IntBl, System.DateTimekind)
+ J&t Fields
+ -0t Methaods
+-Jiet Properties

For example, the following statement may be used to create a new instance of
DateTime (09:30 in the morning on 30t April 2001):

mydt<[INEW DateTime (2001 4 30 9 30 0)

mydt
30/04/2001 09:30:00

18

Dyalog APL/W .Net Interface Guide

The Properties folder provides a list of the properties supported by the Class. It
shows the name of the property followed by its data type. For example, the
DayOfYear property is defined to be of type Int32.

[2] Exploring CLEAR WS [#] E]@“
File Edit Yiew Columns Tools
P RXQE (@0 mEE|[3 s

Workspace Tree

=-ft System.DateTime
IE'T Base Clazs
]i'ér Constructors
w0 Fields
]i’:"rMethu:ds
=-f&t Properties

%kt Date
Bt Day
Bt DayOfWeek
Bt DayOfYear

Tt (PrivatellnternalKind
Ht (PrivatelInternalTicks

Swstem.UIntel
System. IntGl

System.DateTime
System. Int32

System.DayOfiWeck
Swstem.[nt32

J&t Hour System. Int32

JiEt Kind System.DateTimeKind

Wt Millisecond System.Int32

Bt Minute System.Int32

Bt Month System. Int32

Bt How : System.DateTime

Bt Second System.Int32

Bt Ticks System. Intel

Bt TimeOfDay Swstem.Timespan

Jiét Today System.DateTime

Bt UtcMow @ system.DateTime

Bt Year System. Int32 [v]
P | &)

You can query a property by direct reference:

mydt.DayOfWeek
Monday

Chapter 2: Accessing .Net Classes 19

Notice too that the data types of some properties are not simple data types, but

Classes in their own right. For example, the data type of the Now property is itself
System.DateTime. This means that when you reference the Now property, you
get back an object that represents an instance of the System.DateTime object:

mydt.Now
07/11/2001 11:30:48
aTs
2001 11 7 11 30 48 O

The Methods folder lists the methods supported by the Class. The Explorer shows the
data type of the result of the method, followed by the name of the method and the
types of its arguments. For example, the IsLeapYear method takesan Int32
parameter (year) and returns a Boolean result.

mydt.IsLeapYear 2000

4] Exploring CLEAR WS [#] M=%

File Edit Yiew Columns Tools

T XQdE | | EDEEE (4ol edbl
‘iorkspace Tree

[PrivatelVoid Finalizel(] A:

[(PrivatelVoid System.ﬁuntime.Seria]izatiun.ISerializﬁ

Boolean Equals(System.DateTime)

Boolean Equals(System.DateTime, System.DateTime)
Boolean Equals(System.Object)

Boolean IsDaylightSavwingTime()

iBoolean IslLeapYear([Int32]

Boolean op_Equality(System.DateTime, System.DateTime)
Boolean op_GreaterThan(System.DateTime, System.DateTi
Boolean op_GreaterThanOrEqual (System.DateTime, 3Swstem
Boolean op_Inequality(System.DateTime, System.DateTim
Boolean op_LessThan(System.DateTime, System.DateTime)
Boolean op_LessThanOrEqual(System.DateTime, System.Da
Boolean TryParse(System.String, System.DateTime ByRef
Boolean TryParse(System.String, System.IFormatProvide
Boolean TryParseExact(System.String, Svstem.String, S
Boolean TryParseExact(System.String, System.Stringl[],

_ Double TolADatel) “v:
<] Ed

20 Dyalog APL/W .Net Interface Guide

Many of the reported objects are listed as Private, which means they are inaccessible
to users of the class — you are not able to call them or inspect their value. For more
information about classes, see the chapter on Object Oriented Programming in the
Dyalog APL Language Reference Manual.

B Exploring CLEAR WS [#] M=1E3

File Edit Wiew Columns Tools

P RXQE (@5 ES (56 eo

Workspace Tree

%t (Private)Uoid Finalize() L
fiét (Private)Uoid asustem.Funtime.Serialization. [Seric
fiét Boolean EqualsCiustem.DateT ime)

fiét Boolean EqualsCSustem.DateTime, Sustem.DateTime)
fiét Boolean EqualsCsustem.Object)

fiét Boolean IsDaul ightSavingT imeC)

fiét Boolean IsLeapyearCIntdzd

fit Boolean op Equalitutiustem.DateTime, Sustem.Datel
fiét Boolean op_GreaterThanCSustem.DateT ime, Sustem.D:
fiét Boolean op_GreaterThanOrEqualtsystem.DateT ime, S
fiét Boolean op_Inequal ituCsustem.DateTime, Sustem.Dad
fiét Boolean op_LessThantCsustem.DateTime, Sustem.Datel
fiét Boolean op_LessThanOrEqual Csustem.DateT ime, Suste
fiét Boolean TryParse(Sustem.5tring, Sustem.DateTime
fiét Boolean TryParse(Sustem.5tring, Sustem.IFormatPrc
fiét Boolean TryParseExactCSustem. 5tring, Sustem.Strir
fiét Boolean TryParseExactCSustem. 5tring, Sustem.Strir
%iét Double ToOADateld

fiét [ntaz CompareCsustem.DateTime, Sustem.DateTimel

£ >
1 object(s). 53.9Mb (56518472 bytes) free.

Chapter 2: Accessing .Net Classes 21

Advanced Techniques

Shared Members
Certain .NET Classes provide

methods
, fields and properties, that can be called directly without the need to create an
instance of the Class first. These members are known as shared, because they have
the same definition for the class and for any instance of the class.

The methods Now and IsLeapYear exported by System.DateTime fall into this cat-
egory. For example:

JUSING«,c'System'

DateTime.Now
07/11/2008 11:30:48

DateTime.IsLeapYear 2000
1

APL language extensions for .NET objects

The .NET Framework provides a set of standard operators (methods) that are sup-
ported by certain classes. These operators include methods to compare two .NET
objects and methods to add and subtract objects.

In the case of the DateTime Class, there are operators to compare two DateTime
objects. For example:

DT1«[JNEW DateTime (2008 4 30)
DT2<[INEW DateTime (2008 1 1)

A Is DT1 equal to DT2 ?
DateTime.op_Equality DT1 DT2
0

The op_Additionand op Subtraction operators add and subtract
TimeSpan objects to DateTime objects. For example:

DT3«DateTime.Now
DT3
07/11/2008 11:33:45

TS«[ONEW TimeSpan (1 1 1)
TS
01:01:01

22 Dyalog APL/W .Net Interface Guide

DateTime.op_Addition DT3 TS
07/11/2008 12:34:46

DateTime.op_Subtraction DT3 TS
07/11/2008 10:32:44

The corresponding APL primitive functions have been extended to accept .NET
objects as arguments and simply call these standard NET methods internally. The
methods and the corresponding APL primitives are shown in the table below.

NET Method APL Primitive Function

op_Addition +

op_Subtraction -

op_Multiply x

op_Division +

op_Equality =

op_Inequality #

op_LessThan <

op_LessThanOrEqual

IA

op_GreaterThan >

op_GreaterThanOrEqual >

So instead of calling the appropriate NET method to compare two objects, you can
use the familiar APL primitive instead. For example:

DT1=DT2
0
DT1>DT2
1
DT3+TS
07/11/2008 12:34:46
DT3-TS

07/11/2008 10:32:44

Apart from being easier to use, the primitive functions automatically handle arrays
and support scalar extension; for example:

DT1>DT2 DT3
10

Chapter 2: Accessing .Net Classes 23

In addition, the monadic form of Grade Up (4) and Grade Down (¥), and the Mini-
mum (L) and Maximum ([') primitive functions have been extended to work on
arrays of references to .NET objects. Note that the argument(s) must be a homog-
eneous set of references to objects of the same .NET class, and in the case of Grade
Up and Grade Down, the argument must be a vector. For example:

ADT1 DT2 DT3
213

L/DT1 DT2 DT3
01/01/2008 00:00:00

Exceptions

When a .Net object generates an error, it does so by throwing an exception. An excep-
tion is in fact a .Net class whose ultimate base class is System.Exception.

The system constant JEXCEPTION returns a reference to the most recently generated
exception object.

For example, if you attempt to create an instance ofa DateTime object with a year
that is outside its range, the constructor throws an exception. This causes APL to
report a (trappable) EXCEPTION error (error number 90) and access to the exception
object is provided by JEXCEPTION.

OQUSING<«'System'

DT«[INEW DateTime (100000 0 0)
EXCEPTION

DT+[ONEW DateTime (100000 0 0)

OEN
90

OEXCEPTION.Message
Year, Month, and Day parameters describe
an unrepresentable DateTime.

[JEXCEPTION.Source
mscorlib

[JEXCEPTION.StackTrace
at System.DateTime.DateToTicks(Int32 year,
Int32 month,
Int32 day)

at System.DateTime..ctor(Int32 year,
Int32 month,
Int32 day)

24

Dyalog APL/W .Net Interface Guide

More Examples

Directory and File Manipulation

The NET Namespace System. IO (also in the Assembly mscorlib.d1ll) pro-
vides some useful facilities for manipulating files. For example, you can create a
DirectoryInfo object associated with a particular directory on your computer,
call its GetFiles method to obtain a list of files, and then get their Name and
CreationTime properties.

[JUSING<,c'System.IO'
d<[INEW DirectoryInfo (c'C:\Dyalog')

d is an instance of the Directory Class, corresponding to the directory
c:\Dyalog.

d
C:\Dyalog!

The GetFiles method returns a list of files; actually, FileInfo objects, that rep-
resent each of the files in the directory: Its optional argument specifies a filter; for
example:

d.GetFiles c'x,exe'
evalstub.exe exestub.exe dyalog.exe dyalogrt.exe

The Name property returns the name of the file associated with the File object:

(d.GetFiles c'x.,exe').Name
evalstub.exe exestub.exe dyalog.exe dyalogrt.exe

And the CreationTime property returns its creation time, which isa DateTime
object:

(d.GetFiles c'x.exe').CreationTime

01/04/2004 09:37:01 01/04/2004 09:37:01 08/06/2004 ...

Ifyou call GetFiles without an argument (in APL, with an argument of 8), it
returns a complete list of files:

files«d.GetFiles @&

1n this document, we will refer to the location where Dyalog APL Version 13.2 resides as
C:\Dyalog. Your installation of Dyalog APL may be in a different folder or even on a different
drive but the examples should work just the same it you replace C:\Dyalog by your folder name

Chapter 2: Accessing .Net Classes 25

Taking advantage of namespace reference array expansion, an expression to display
file names and their creation times is as follows.

files,[1.5]files.CreationTime

relnotes.hlp 03/02/200% 11:47:02
relnotes.cnt 03/02/2004 11:47:02
def_uk.dse 22/03/2004 12:13:31
DIALOGS.HLP 22/03/2004 12:13:31
dyares32.dll 22/03/2004 12:13:40

Sending an email
The .NET Namespace System.Web.Mail provides objects for handing email.

You can create a new email message as an instance of the Mai1Message class, set
its various properties, and then send it using the SmtpMail class.

Please note that these examples will only work if your computer is configured to
allow you to send email in this way.

QUSING«'System.Web.Mail,System.Web.dll'
m<[OJNEW MailMessage

m.From<«'tony.blair@uk.gov'
m.To«'sales@dyalog.com'

m.Subject<«'order'

m.Body<«'Send me 100 copies of Dyalog APL now'

SmtpMail.Send m

However, note that the Send method of the SmtpMail object is overloaded and
may be called with a single parameter of type
System.Web.Mail.MailMessage as above, or four parameters of type
System.String:

So instead, you can just say:

SmtpMail.Send 'tony.blair@uk.gov'
‘sales@dyalog.com’
‘order'
'Send me the goods'

26

Dyalog APL/W .Net Interface Guide

Web Scraping

The .NET Framework provides a whole range of classes for accessing the internet
from a program. The following example illustrates how you can read the contents of
a web page. It is complicated, but realistic, in that it includes code to cater for a fire-
wall/proxy connection to the internet. It is only 9 lines of APL code, but each line
requires careful explanation.

First we need to define JUSING so that it specifies all of the NET Namespaces and
Assemblies that we require.

JUSING<«'System,System.dll' 'System.Net' 'System.IO'

The WebRequest class in the .NET Namespace System.Net implements the
NET Framework's request/response model for accessing data from the Internet. In
this example we create a WebRequest object associated with the URI
http://www.cdnow.com. Note that WebRequest is an example of a static
class. You don't make instances ofit; you just use its methods.

wrg«<WebRequest.Create c'http://www.cdnow.com'

In fact (and somewhat confusingly) if the URI specifies a scheme of "http://" or
"https://", you get back an object of type Ht t pWebRequest rather than a plain and
simple WebRequest. So, at this stage, wrq is an Ht tpiWebRequest object.

wrq
System.Net.HttpWebRequest

This class has a Proxy property through which you specify the proxy information
for a request made through a firewall. The value assigned to the Proxy property has
to be an object of type System.Net .WebProxy. So first we must create a new
WebProxy object specifying the hostname and port number for the firewall. You
will need to change this statement to suit your own internet configuration (it may
even not be necessary to do this).

PX<(NEW WebProxy(c'http://dyagate.dyadic.com:8080")
PX
System.Net.WebProxy

Having set up the WebProxy object as required, we then assign it to the Proxy
property of the Ht tpRequest object wrq.

wrq.Proxy<«PX

Chapter 2: Accessing .Net Classes 27

The Ht tpRequest class has a GetResponse method that returns a response from
an internet resource. No it's not HTML (yet), the result is an object of type
System.Net.HttpWebResponse.

wr<wrqg.GetResponse
wr
System.Net.HttpWebResponse

The Ht tpWebResponse class has a GetResponseStream method whose result
isoftype System.Net.ConnectStream. This object, whose base class is
System.IO.Stream,provides methods to read and write data both synchronously
and asynchronously from a data source, which in this case is physically connected to
a TCP/IP socket.

str<wr.GetResponseStream
str
System.Net.ConnectStream

However, there is yet another step to consider. The St ream class is designed for
byte input and output; what we need is a class that reads characters in a byte stream
using a particular encoding. This is a job forthe System.IO.StreamReader
class. Given a St ream object, you can create a new instance ofa StreamReader
by passing it the St ream as a parameter.

rdr<[ONEW StreamReader str
rdr
System.IO.StreamReader

Finally, we can use the ReadToEnd method of the St reamReader to get the con-
tents of the page.

s«rdr.ReadToEnd
ps
45242
Note that to avoid running out of connections, it is necessary to close the Stream:

str.Close

28

Dyalog APL/W .Net Interface Guide

Enumerations

An enumeration is a set of named constants that may apply to a particular operation.
For example, when you open a file you typically want to specify whether the file is
to be opened for reading, for writing, or for both. A method that opens a file will take
a parameter that allows you to specify this. If this is implemented using an enu-
merated constant, the parameter may be one of a specific set of (typically) integer
values; for example, 1=read, 2=write, 3=both read and write. However, to avoid
using meaningless numbers in code, it is conventional to use names to represent par-
ticular values. These are known as enumerated constants or, more simply, as enums.

In the NET Framework, enums are implemented as classes that inherit from the base
class System.Enum. The class as a whole represents a set of enumerated constants;
each of the constants themselves is represented by a static field within the class.

The next chapter deals with the use of System.Windows . Forms to create and
manipulate the user interface. The classes in this NET Namespace use enums exten-
sively.

For example, there is a class named
System.Windows.Forms.FormBorderStyle that contains a set of static
fields named None, FixedDialog, Sizeable, and so forth. These fields have spe-
cific integer values, but the values themselves are of no interest to the programmer.

Typically, you use an enumerated constant as a parameter to a method or to specify
the value of a property. For example, to create a Form with a particular border style,
you would set its BorderStyle property to one of the members of the
FormBorderStyle class, viz.

[JUSING+«'System'

JUSING,«c'System.Windows.Forms,
system.windows.forms.dl L'
f1«<[INEW Form
f1.BorderStyle«FormBorderStyle.FixedDialog
FormBorderStyle.INL "2 a List enum members
Fixed3D FixedDialog FixedSingle FixedToolWindow None
Sizable SizableToolWindow

Chapter 2: Accessing .Net Classes 29

An enum has a value, which you may use in place of the enum itself when such
usage is unambiguous. For example, the FormBorderStyle.Fixed3D enum has
an underlying value is 2:

Convert.ToInt32 FormBorderStyle.Fixed3D
2

You could set the border style of the Form f1 to FormBorderStyle.Fixed3D
with the expression:

fl1.BorderStyle<«2

However, this practice is not recommended. Not only does it make your code less
clear, but also if a value for a property or a parameter to a method may be one of sev-
eral different enum types, APL cannot tell which is expected and the call will fail.

For example, when the constructor for System.Drawing. Font is called with 3
parameters, the 3" parameter may be eithera FontStyle enumora
GraphicsUnit enum. If you were to call Font with a 3™ parameter of 1, APL can-
not tell whether this refersto a FontStyle enum, ora GraphicsUnit enum, and
the call will fail.

Handling Pointers with Dyalog.ByRef

Certain NET methods take parameters that are pointers.

An example is the Di vRem method that is provided by the System.Math class.
This method performs an integer division, returning the quotient as its result, and the
remainder in an address specified as a pointer by the calling program.

APL does not have a mechanism for dealing with pointers, so Dyalog provides a
.NET class for this purpose. This is the Dyalog.ByRef class, which is a provided
by an Assembly that is loaded automatically by the Dyalog APL program.

Firstly, to gain access to the Dyalog .Net Namespace, it must be specified by
OUSING. Note that you need not specify the Assembly (DLL) from which it is
obtained (the Bridge DLL), because (like mscorlib.d11)itis automatically
loaded by when APL starts.

JUSING<«'System' 'Dyalog’

The Dyalog.ByRef class represents a pointer to an object of type
System.Object. It has a number of constructors, some of which are used inter-
nally by APL itself. You only need to be concerned about two of them; the one that
takes no parameters, and the one that takes a single parameter of type
System.Object. The former is used to create an empty pointer; the latter to create
a pointer to an object or some data.

30

Dyalog APL/W .Net Interface Guide

For example, to create a empty pointer:
ptri<[INEW ByRef
Or, to create pointers to specific values,

ptr2<[NEW ByRef 0
ptr‘3<—|:|NEW ByRef (c110)
ptri4«<[ONEW ByRef ([INEW DateTime (2000 4 30))

Notice that a single parameter is required, so you must enclose it if it is an array with
several elements. Alternatively, the parameter may be a NET object.

The ByRef class has a single property called Value.

ptr2.Value
0
ptr3.Value
12345678910
ptri&.Value

30/04/2000 00:00:00

Note that if you reference the Value property without first setting it, you get a
VALUE ERROR.

ptri.Value

VALUE ERROR
ptri.Value
A

Returning to the example, we recall that the Di vRem method takes 3 parameters:

1. the numerator

2. the denominator

3. apointer to an address into which the method will write the remainder after
performing the division.

remptr«<(JNEW ByRef

remptr.Value
VALUE ERROR

remptr.Value

A

Math.DivRem 311 99 remptr

remptr.Value
14

Chapter 2: Accessing .Net Classes 31

In some cases a NET method may take a parameter that is an Array and the method
expects to fill in the array with appropriate values. In APL there is no syntax to allow
a parameter to a function to be modified in this way. However, we can use the
Dyalog.ByRef class to call this method. For example, the
System.IO.FileStream class contains a Read method that populates its first
argument with the bytes in the file.

Ousing«'System.I0' 'Dyalog' 'System'
fs«[INEW FileStream ('c:\tmp\jd.txt' FileMode.Open)
fs.Length
25
fs.Read(arg<«[JNEW ByRef,cc25p0)0 25
25
arg.Value
io4 101 108 108 111 32 102 114 111 109 32 106 111 104 110
32 100 97 105 110 116 114 101 101 10

32 Dyalog APL/W .Net Interface Guide

33

Chapter 3:

Using Windows.Forms

Introduction

System.Windows.Forms is a NET namespace that provides a set of classes for
creating the Graphical User Interface for Windows applications. For languages such
as C# and Visual Basic, this mechanism is intended to replace the Windows API as
the means to write the GUL For Dyalog APL developers,
System.Windows.Formns is an alternative to the Dyalog APL built-in GUI,
which will continue to be maintained for the foreseeable future.

One advantage of using System.Windows . Forms is that it provides immediate
access to the latest Microsoft GUI components. Whenever Microsoft develops a new
Windows .Forms component, it can immediately be incorporated into a Dyalog
APL application; you do not need to wait for Dyalog to provide a specific interface
to it. The same applies to GUI components developed by third parties.

Unless otherwise specified, all the examples described in this Chapter may be found
in the samples\winforms\winforms.dws workspace.

Creating GUI Objects

GUI objects are represented by .NET classes in the NET Namespace
System.Windows.Forms. In general, these classes correspond closely to the GUI
objects provided by Dyalog APL, which are themselves based upon the Windows
APL

For example, to create a form containing a button and an edit field, you would create
instances of the Form, Button and TextBox classes.

34

Dyalog APL/W .Net Interface Guide

Object Hierarchy

The most striking difference between the Windows . Forms GUI and the Dyalog
GUTI s that in Windows . Forms the container hierarchy represented by forms,
group boxes, and controls is not represented by an object hierarchy. Instead, objects
that represent GUI controls are created stand-alone (i.e. without a parent) and then
associated with a container, such as a Form, by calling the Add method of the par-
ent’s Controls collection. Notice too that Windows . Forms objects are associated
with APL symbols that are namespace references, but Windows . Forms objects do
not have implicit names.

Positioning and Sizing Forms and Controls

The position of a form or a control is specified by its Location property, which is
measured relative to the top left corner of the client area of'its container.

Location hasadatatype of System.Drawing.Point.To set Location,you
must first create an object of type System.Drawing.Point then assign that
object to Location.

Similarly, the size of an object is determined by its Size property, which has a data
type of System.Drawing. Size. This time, you must create a
System.Drawing.Size object before assigning it to the Size property of the
control or form.

Objects also have Top (Y) and Left (X) properties that may be specified or
referenced independently. These accept simple numeric values.

The position of a Form may instead be determined by its DeskTopLocation prop-
erty, which is specified relative to the taskbar. Another alternative is to set the
StartPosition property whose default setting is
WindowsDefaultLocation, which represents a computed best location.

Modal Dialog Boxes

Dialog Boxes are displayed modally to prevent the user from performing tasks out-
side of the dialog box.

To create a modal dialog box, you create a Form, set its BorderStyle property to
FixedDialog,setits ControlBox,MinimizeBox and MaximizeBox prop-
erties to false, and display it using ShowDialog.

Chapter 3: Using Windows.Forms 35

A modal dialog box hasa DialogResult property that is set when the Form is
closed, or when the user presses OK or Cancel. The value of this property is returned
by the ShowDialog method, so the simplest way to handle user actions is to check
the result of ShowDialog and proceed accordingly. Example 1 illustrates a simple
modal dialog box.

Example 1

Function EG1 illustrates how to create and use a simple modal dialog box. Much of
the function is self explanatory, but the following points are noteworthy.

EG1[1-2] setJUSING to include the NET Namespaces
System.Windows.Forms and System.Drawing.

EG1[6,8,9] create a Form and two Button objects. As yet, they are uncon-
nected. The constructor for both classes is defined to take no arguments, so the INEW
system function is only called with a class argument.

EG1[14] shows how the Location property is set by first creating a new Point
object with a specific pair of (x and y) values.

EG1[18] computes the values for the Point object forbutton2.Location,
from the values of the Left, Height and Top properties of but ton1; thus posi-
tioning but ton?2 relative to buttonli.

V EG1l;formi;buttoni;button2;true;false;[JUSING;Z
[1] [JUSING«,c'System.Windows.Forms,
System.Windows.Forms.dl L'
[2] QUSING,«c'System.Drawing,System.Drawing.dll’
[3] true false«l 0

[4]

[5] A Create a new instance of the form.

[6] form1<[ONEW Form

[7] A Create two buttons to use as the accept and cancel btns

[8] button1<«[JNEW Button
[9] button2<«[JNEW Button

[10]
[11] A Set the text of buttonil to "OK".
[12] buttonl.Text<«'OK'
[13] A Set the position of the button on the form.
[14] buttonl.Location<[JNEW Point,c10 10
[15] A Set the text of button2 to "Cancel".
[16] button2.Text<«'Cancel’
[17] A Set the position of the button relative to buttont.
[18] button2.Location<[INEW Point,
cbuttoni.Left buttoni.(Height+Top+10)

36

Dyalog APL/W .Net Interface Guide

EG1[21,23] setsthe DialogResult property of buttonl and button? to
DialogResult.OKand DialogResult.Cancel respectively. Note that
DialogResult is an enumeration with a predefined set of member values.

Similarly, EG1[32] defines the BorderStyle property of the form using the
FormBorderStyle enumeration.

EG1[38 40] defines the AcceptButton and CancelButton properties of the
Formto button1 and but ton2 respectively. These have the same effect as the
Dyalog GUI Default and Cancel properties.

EG1[42] setsthe StartPosition ofthe Form to be centre screen. Once again
this is specified using an enumeration; FormStartPosition

[20] @ Make buttonl's dialog result OK.

[21] buttonl.DialogResult«DialogResult.OK
[22] a Make button2's dialog result Cancel.
[23] button2.DialogResult«DialogResult.Cancel
[24]

[25]

[26] A Set the title bar text of the form.
[27] forml.Text«'My Dialog Box'

[28] A Display a help button on the form.
[29] formi.HelpButton<«true

[30]

[31] A Define the border style of the form to that of a
dialog box.

[32] formi.BorderStyle«FormBorderStyle.FixedDialog

[33] A Set the MaximizeBox to false to remove the

maximize box.
[34] forml.MaximizeBox«false
[35] A Set the MinimizeBox to false to remove the
minimize box.
[36] forml.MinimizeBox«false
[37] A Set the accept button of the form to buttont.
[38] forml.AcceptButton«buttonil
[39] A Set the cancel button of the form to button2.
[40] formi.CancelButton<button2
[41] A Set the start position of the form to the center
of the screen.
[42] formi.StartPosition«FormStartPosition.CenterScreen

EG1[45 46] associate the buttons with the Form. The Controls property of the
Form returns an object of type Form.ControlCollection. This class has an
Add method that is used to add a control to the collection of controls that are owned
by the Form.

Chapter 3: Using Windows.Forms 37

EG1[50] calls the ShowDialog method (with no argument; hence the 8). The
result is an object of type Form.DialogResult, which is an enumeration.

EG1[52] compares the result returned by ShowDialog with the enumeration
member DialogResult.OK (note that the primitive function = has been extended
to compare objects).

[44] A Add buttonl to the form.

[45] formil.Controls.Add buttoni

[46] A Add button2 to the form.

[47] formi.Controls.Add button2

[48]

[49] A Display the form as a modal dialog box.

[50] Z«forml.ShowDialog &

[51] A Determine if the OK button was clicked on the

dialog box.
[52] :If Z=DialogResult.OK
[53] A Display a message box saying that the OK
button was clicked.
[54%] Z«MessageBox.Showc'The OK button on the form
was clicked.'
[55] :Else
[56] A Display a message box saying that the Cancel
button was clicked.
[57] Z+MessageBox.Showc'The Cancel button on the

form was clicked.'
[58] :EndIf
v

Warning: The use of modal forms in .NET can lead to problematic situations while
debugging. As the control is passed to .NET the APL interpreter cannot regain con-
trol in the event of an unforeseen error. It is advisable to change the code to some-
thing like the following until the code is fully tested:

[52] formil.Visible«1
[53] :While forml.Visible ¢ :endwhile

38

Dyalog APL/W .Net Interface Guide

Example 2

Functions EG2 and EG2A illustrate how the Each operator (") and the extended
namespace reference syntax in Dyalog APL may be used to produce more succinct,
and no less readable, code.

[22]
[23]
[24]
[25]

v

v

EG2;formil;labell;textBox1;true;false;[JUSING;Z
(QUSING«,c'System.Windows.Forms,

System.Windows.Forms.dll'
OUSING,«c'System.Drawing,System.Drawing.dll"'
true false«l O

A Create a new instance of the form.
formi«<[ONEW Form

textBox1<[INEW TextBox
labe l1<[INEW Label

A Initialize the controls and their bounds.
labell.Text«'First Name'
labell.Location<[DNEW Point (48 48)
labell.Size<[INEW Size (104 16)
textBox1.Text«""

textBox1.Location<[JNEW Point (48 64)
textBox1.Size<[JNEW Size (104 16)

A Add the TextBox control to the form's control
collection.

formi.Controls.Add textBox1

A Add the Label control to the form's control
collection.

formi.Controls.Add labell

A Display the form as a modal dialog box.
Z«<forml.ShowDialog &

EG2A[7] takes advantage of the fact that .NET classes are namespaces, so the expres-
sion Form TextBox Label isa vector of namespace refs, and the expression
[ONEW 'Form TextBox Label runstheINEW system function on each of them.

Similarly, EG2A[10 11 12] combine the use of extended namespace reference and
the Each operator to set the Text, Location and Size properties in several
objects together.

Chapter 3: Using Windows.Forms 39

V EG2A;forml;labell;textBox1;true;false;[JUSING;Z
[1] A Compact version of EG2 taking advantage of ref
syntax and ”
[2] [JUSING<«'System.Windows.Forms,System.Windows.Forms.dll'
[3] QUSING,«c'System.Drawing,System.Drawing.dll'
[4] true false«l 0

[5]

[6] A Create a new instance of the form, TextBox and Label.
[7] (form1l textBox1 labell)<«[INEW 'Form TextBox Label

[8]

[9] A Initialize the controls and their bounds.

[10] (labell textBox1).Text«'First Name' ''
[11] (labell textBox1).Location<[INEW 'Point, (48 48) (48 64)
[12] (labell textBox1).Size<«[INEW 'Size, (104 16) (104 16)

[14] A Add the Label and TextBox controls to the form's
control collection.
[15] forml.Controls.AddRangeclabell textBox1

]
17] A Display the form as a modal dialog box.
] Z«formi.ShowDialog &

Non-Modal Forms

Non-modal Forms are displayed using the Run method of the
System.Windows.Forms.Application object. This method is designed to be
called once, and only once, during the life of an application and this poses problems
during APL development. Fortunately, it turns out that, in practice, the restriction is
that Application.Run may only be run once on a single system thread. How-
ever, it may be run successively on different system threads. During development,
you may therefore test a function that calls Application.Run, by running it on a
new APL thread using Spawn (&). See Chapter 13 for further details.

DataGrid Examples

Three functions in the samples\winforms\winforms.dws workspace provide
examples of non-modal Forms. These examples also illustrate the use ofthe Win-
Forms.DataGrid class.

Function Grid1 is an APL translation of the example given in the help file for the
DataGrid class in the .NET SDK Betal. The original code has been slightly modified
to work with the current version of the SDK.

Function Grid2 is an APL translation of the example given in the help file for the
DataGrid class in the .NET SDK Beta2.

40

Dyalog APL/W .Net Interface Guide

Function Grid is an APL translation of the example given in the file:

C:\Program Files\Microsoft.Net\SDK\v1l.1\...
QuickStart\winforms\samples\Data\Grid\vb\Grid.vb

This example uses Microsoft SQL Server 2000 to extract sample data from the sample
NorthWind database. To run this example, you must have SQL Server running and
you must modify function Grid_Load to specify the name of your server.

GDIPLUS Workspace

The samples\winforms\gdiplus.dws workspace contains a sample that dem-
onstrates the use of non-rectangular Forms. It is a direct translation into APL from a
C# sample (WinForms-Graphics-GDIPlusShape) that was distributed on the Visual
Studio .NET Beta 2 Resource CD.

TETRIS Workspace

The samples\winforms\tetris.dws workspace contains a sample that dem-
onstrates the use of graphics. It is a direct translation into APL from a C# sample
(WinForms-Graphics-Tetris) that was distributed on the Visual Studio .NET Beta 2
Resource CD.

WEBSERVICES Workspace

An example of a non-modal Form is provided by the WFGOLF function in the
samples\asp.net\webservices\webservices.dws workspace. This
function performs exactly the same task as the GOLF function in the same workspace,
but it uses Windows.Forms instead of the built-in Dyalog GUL

WFGOLF, and its callback functions WFBOOK and WF SS perform exactly the same
task, with almost identical dialog box appearance, of GOLF and its callbacks BOOK
and SS that are described in Chapter 7.

Note that when you run WFGOLF or GOLF for the first time, you must supply an argu-
ment of 1 to force the creation of the proxy class for the Gol fService web service.

41

Chapter 4:

Writing .Net Classes in Dyalog APL

Introduction

Dyalog APL allows you to build new .NET Classes, components and controls. A
component is a class with emphasis on cleanup and containment and implements spe-
cific interfaces. A control is a component with user interface capabilities.

With one exception, every .NET Class inherits from exactly one base class. This
means that it begins with all of the behaviour of the base class, in terms of the base
class properties, methods and events. You add functionality by defining new prop-
erties, methods and events on top of those inherited from the base class or by over-
riding base class methods with those of your own.

Assemblies, Namespaces and Classes

To create a .NET class in Dyalog APL, you simply create a standard APL Class and
export the workspace as a Microsoft .Net Assembly (*.dll). See User Guide Chapter
2.

NET Classes are organised in NET Namespaces. If you wrap your Class (or Classes)
within an APL namespace, the name of that namespace will be used to identify the
name of the corresponding NET Namespace in your Assembly.

Ifa Class is to be based upon a specific .NET Class, the name of that NET Class must
be specified as the Base Class in the :Class statement, and the : Us i ng statement(s)
must correctly locate the base class. If not, the Class is assumed to be based upon Sys-
tem.Object. If you use any .NET Types within your Class, you must ensure that these
too are located by :Using.

Once you have defined the functionality of your NET classes, you are ready to save
them in an assembly. This is simply achieved by selecting Export from the Session
File menu.

42

Dyalog APL/W .Net Interface Guide

You will be prompted to specify the directory and name of the assembly (DLL) and it
will then be created and saved. Your .NET class is now ready for use by any .Net
development environment, including APL itself.

When an APL NET class is invoked by a client application, it automatically loads
the Dyalog DLL, the developer/debug or run-time dynamic link library version of
Dyalog APL. You decide which of these DLLs is to be used according to the setting
of'the Runtime application checkbox in the Create bound file dialog box. See the
User Guide for further details.

If you want to repeat the most recent export after making changes to the class, you
can click on the icon to the right of the save icon on the WS button bar at the top of
the session. Note that the workspace itselfis not saved when you do an export, so if
you want the export options to be remembered you must) SAVE the workspace after
you have exported it.

Example 1

This example builds an Assembly called APL.Classesl.dl1l in the sub-directory
samples\aplclasses, which contains a NET Namespace called APLClasses.

APLClasses contains a single .NET Class called Primitives that exports a sin-
gle method called IndexGen.

First we create a container namespace #.APLClasses that will represent the .NET
Namespace in the assembly:

clear ws
JNS APLClasses
#.APLClasses

Next, using the editor, we create a class called Primi t i ves. Note that the default
base class for an exported .net class is System.Object.

)ed OAPLClasses.Primitives!

and enter the following:

1The character before the name APLClasses.Primitives, o, is typically obtained with Ctrl-O.
It is used to tell the editor to edit a class

Chapter 4: Writing .Net Classes in Dyalog APL 43

:Class Primitives
:Using System
V r<«IndexGen n
:Access public
:Signature Int32[]«IndexGen Int32 n
r<in
\'4
:EndClass

The class Primi tives has now been defined with one public function in it.

The public characteristics for the exported method are included in the definition of
the class and its functions. Those are specified in the : Signature statement.

Its syntax is:

:Signature [return type<«] fnname [argitype [arginame]
[,argNtype [argNname]]x]

that is: The type of the result returned by the function - followed by arrow - if any,
the exported name (it can be different from the APL function name but it must be pro-
vided), and, if any arguments are to be supplied, their types and optional names, each
type-name pair separated from the next by a comma. In the example above the func-
tion returns an array of 32-bit integers and takes a single integer as its argument. For
further details, see Language Reference.

Note that, when the class is fixed, APL will try to find the .Net data types you have
specified for the result and for the parameters. If one or more of the data types are not
recognised as available .NET Types, you will be informed in the status window and
APL will refuse to fix the class. If you see such a warning you have either entered an
incorrect data type name, or you have not set : Us i ng correctly, or some other syn-
tax problem has been detected (for example the function is missing a terminating V.
In the previous example, the only data type used is System. Int32. Since we have
set :Using System, the name Int32 is found in the right place and all is well.

It should be noted that in the previous release of Dyalog APL the statements
:Returns and :Parameterlist were used instead of :Signature. They are
still accepted for backwards compatibility but are considered deprecated. Their syn-
tax will not be documented here but a list can be found in Appendix A.

The next step is not strictly necessary, but it does make good sense to) SAVE the
workspace at this stage. The name you choose for the workspace will be the default
name for the assembly

44 Dyalog APL/W .Net Interface Guide

)CS
#

JWSID samples\APLClasses\aplclassesl
was CLEAR WS

)SAVE
samples\aplclasses\aplclasses! saved

Now you are ready to create the assembly. This is done by selecting Export... from
the Session File menu. This displays the following dialog box.

.
Create bound file
Savein; |L§ aplclazzes [v] €] ? B m,
) \i}] aplclasses1.dll
| 2? \ﬁaplclassesz.dll
My Recent \i}] aplclasses3.dil
Dacuments | %] aplclasses4.dl

\i}] aplclassess.dil
@ \i-';] aplclassese.di

\i}] aplclasses?.dll

-

Deskiop
My Documents

s

by Cornputer

File name: |aplclasses1 i [V] Save

[|
Save as ype: |Micmsnft.Nel.-’-\ssembly {*.dl [v] [Cancel]

My Newark
O& |

Izolation kMode: | Each host process has a single workspace [v]

This gives you the opportunity to change the name or path of the assembly. The Run-
time application checkbox allows you to choose to which if the two versions of the
Dyalog APL dynamic link library the assembly will be bound. The Isolation Mode
Combo box allows you to choose which Isolation Mode you require. See the User
Guide for further details.

Chapter 4: Writing .Net Classes in Dyalog APL 45

Finally, click Save. APL now makes the assembly and, as it does so, displays infor-
mation in the Status window as shown below. If any errors occur during this process,
the Status window will inform you.

5 Dyalog APL/W - Status E@

File Options

Declared Assembly aplclassesl
Declared Hodule aplclassesl in file C:wProgram FileswDualogsDualog APL 11.0.Zamplessaplclassessaplclassesl.dll
Declared Tupe APLClasses.Primitives
Compiling Method "IndexGen”
Parameter tupe "Int32" resolued to Sustem.Int3dz
Result tupe "Int3201" resolved to System.Int32C]
Compiled Hethod "IndexGen”
Emitted Tupe APLClasses.Primitives
Emitted Assembly to file "C:~Program FilessDualogsDualog APL 11.0-3amplessaplclassessaplclassesl.dll”

Close

Note that when APL makes a NET Assembly, it does not save the workspace at the
same time. If you made any changes to the options in the dialog on the previous
page, or have any unsaved code changes, you should)SAVE the workspace again
after exporting it.

aplfns1.cs

The following C# source, called samples\APLClasses\aplfnsl.cs,canbe
used to call your APL NET Class.

The using statements specify the names of .NET namespaces to be searched for
unqualified class names.

The program creates an object named apl oftype Primitives by calling the new
operator on that class. Then it calls the IndexGen method with a parameter of 10.

using System;
using APLClasses;
public class MainClass
{
public static void Main ()
{
Primitives apl = new Primitives();
int[] rslt = apl.IndexGen(10);
for (int i=0;i<rslt.Length;i++)
Console.WriteLine (rslt[i]);

46

Dyalog APL/W .Net Interface Guide

Then, to compile and run the program from a Command Prompt window, change
directory to the samples\aplclasses sub-directory, and then type the fol-
lowing commands shown in bold. The first command is required to set up envi-
ronment variables and your PATH. Note that all this assumes that you have Visual
Studio.NET installed. If the following fails you may still be able to call csc by reset-
ting the PATH manually by adding its location.

APLClasses>setpath.bat
C:\dyalog\samples\aplclasses>"C:\Program Files\
Microsoft Visual Studio .NET 2003\
Common7\Tools\"\vsvars32.bat
Setting environment for using Microsoft Visual Studio .NET 2003
tools. (If you have another version of Visual Studio or Visual
C++ installed and wish to use its tools from the command line,
run vcvars32.bat for that version.)
APLClasses>csc /r:APLClassesl.dll aplfnsl.cs
Microsoft (R) Visual C# .NET Compiler version 7.10.3052.4 for
Microsoft (R) .NET Framework version 2.0.50727 Copyright (C)
Microsoft Corporation 2001-2002. All rights reserved.

APLClasses>aplfnsl

H©OOo Jo U W

0

Calling IndexGen from Dyalog APL

Assuming \Dyal og is where Dyalog APL is installed:

JQUSING«'APLClasses,
\Dyalog\samples\APLclasses\aplclassesi.dll"'
PR<(NEW Primitives
PR.IndexGen 10
1234567 89 10

Chapter 4: Writing .Net Classes in Dyalog APL 47

Example 2

In Example 1, we said nothing about a constructor used to create an instance of the
Primitives class. In Example 2, we will show how this is done.

In fact, in Example 1, APL supplied a default constructor, which is inherited from the
base class (System.Object)and is called without arguments.

Example 2 will extend Example 1 by adding a constructor that specifies the value of
01o.

First, we will) LOAD the aplclasses1 workspace we saved in Example 1, and
change to the APLClasses.Primitives. namespace.

JLOAD samples\APLClasses\aplclassest
samples\APLClasses\aplclassesl saved
Jed o APLClasses.Primitives

Next, we will define a function called CTOR that simply sets JI0 to the value ofits
argument. The name of this function is purely arbitrary. This function is a
constructor.

v CTOR IO
[1]:Access public
[2]:Signature CTOR Int32 IO
[3]:Implements constructor
[4] 0JI10<«IO0

\'4

Then we rename and save the workspace:

JWSID samples\APLClasses\aplclasses?
was samples\APLClasses\aplclassest

)SAVE
samples\aplclasses\aplclasses2 saved ...

48

Dyalog APL/W .Net Interface Guide

Finally, we can build a new NET Assembly using File/Export... as before.

Create bound file
Save in |@ aplclazzes M (I ? 2 '

Ty aplclasses1.dil
[_-\3 aplclassesZ.di
ty Recent aplclasses3.dil
Dacuments aplclasses4.dl
aplclassess.dil
aplclassess.dil
Desktop aplclasses?. di

© R

My Documents

k‘.&j«

rdy Computer

File name: |aplclassesZ.dII M Save

o

[l
Savesstype | Miciosoft Net Assembly [l v| [cancel |

BRuntime application

lzolation Mode: | Each host process hag a single workspace M

Please note that, in this case, it is essential (for Example 2a) that the Build runtime
assembly checkbox is not checked. We will need the development version for debug-
ging purposes.

5 Dyalog APLIW - Status Lo

File Qptions

Declared Assembly aplclasses?
Declared Hodule aplclassesZ in File C:vProgram FilessDyalogsDualog APL 11.0~Sampleswaplclasseswaplclasses?.dll
Declared Type APLClasses.Primitives
Compiling Constructor "CTOR"
Parameter type "Int32" resolued to System.Int3Z2
Result tupe "<emptys” resolued to Sustem.Uoid
Compiled Constructor "CTOR"
Compiling Hethod "IndexGen"
Parameter type "Int32" resolued to System.Int3Z2
Result type "Int3201" resolued to System.Int320]
Compiled Hethod "IndexGen”
Emitted Tupe APLClasses.Primitives
Emitted Assemblu to file "C:~Program Files~Dualog-Dualog APL 11.0%3amplessaplclassestaplclassesZ.dll”

Close

Chapter 4: Writing .Net Classes in Dyalog APL 49

aplfns2.cs

The following C# source, called samples\APLClasses\aplfns2.cs,canbe
used to call your APL NET Class.

using System;
using APLClasses;
public class MainClass

{

public static void Main ()

{
Primitives apl = new Primitives(0);
int[] rslt = apl.IndexGen(10);

for (int i=0;i<rslt.Length;i++)
Console.WriteLine (rslt[i]);
}

}

The program is the same as in the previous example, except that the code that creates
an instance ofthe Primitives class is simply changed to specify an argument; in
this case 0.

Primitives apl = new Primitives(0);

When the code is compiled, this call is matched with the various constructors avail-
able in the Primitives class, in this case the only CTOR constructor which takes a
single integer argument. The program compiles successfully with this line calling
CTORwith a parameter of 0. When the program runs, the output is 0-9 as expected.

APILClasses>setpath.bat

APLClasses>csc /r:APLClasses2.dll aplfns2.cs

Microsoft (R) Visual C# .NET Compiler version 7.10.3052.4 for
Microsoft (R) .NET Framework version 2.0.50727

Copyright (C) Microsoft Corporation 2001-2002. All rights
reserved.

APLClasses>aplfns2

OO -Jo Ul WN - O

50

Dyalog APL/W .Net Interface Guide

Example 2a

In Example 2, the argument to CTOR, the constructor for the Primitives class,
was defined to be Int32. This means that the NET Framework will allow a client to
specify any integer when it creates an instance ofthe Primitives class. What
happens if the client uses a parameter of 2? Clearly this is going to cause an APL
DOMAIN ERROR when used to set IO.

aplfns2a.cs

The following C# source, called samples\APLClasses\aplfns2a.cs,canbe
used to demonstrate what happens.

using System;
using APLClasses;
public class MainClass

{

public static void Main ()

{
Primitives apl = new Primitives(2);
int[] rslt = apl.IndexGen(10);

for (int i=0;i<rslt.Length;i++)
Console.WriteLine (rslt[i]);
}

}

The code is the same as in the previous example, except that the line that creates an
instance of the Primitives class specifies an inappropriate argument; in this case
2.

Primitives apl = new Primitives(2);

Then, when the program is compiled and run ...

APLClasses>setpath.bat

APLClasses>csc /r:APLClasses2.dll aplfns2a.cs

Microsoft (R) Visual C# .NET Compiler version 7.10.3052.4 for
Microsoft (R) .NET Framework version 2.0.50727 Copyright (C)
Microsoft Corporation 2001-2002. All rights reserved.

APLClasses>aplfns2a

... the APL Session appears, and the Tracer can be used to debug the problem. You
can see that the constructor CTOR has stopped with a DOMAIN ERROR. Meanwhile,
the C# program is still waiting for the call (to create an instance of Primitives)to
finish.

Chapter 4: Writing .Net Classes in Dyalog APL 51

,ﬁ! aplclasses? (AppDomain_aplfns2?a_exe.Assembly_aplclasses?. APLClasses.[Primitives])- Dyalog APLAY E]@
Fle Edt Yiew Vindows Session Log Action Options Iools Threads Help

ws [= 06 & %] | object B B B ¥ Tool @ G % [+ 3 | Edt B o Session (5 |Dyalog &td TT h 84
~

1:DO0HAIN ERROR J
CTORC4]1 OI0<IO0 8
& a
1
2
18I
[#.AppDomain_aplfns2a_exe.Assembly_aplclasses2.APLClasses.[Primitives]] #.AppDomain_aplfns2a_exe.Assembluy_
CTORC41=
HainClass.Hain[]
71 (system thread:1612)] v
Debugger =lalx|
1 Tid |
1 Int32 10
E
=
Function Last saved by: DanB:03 Apri 2006 19:32 Fos: 4,0 w
Ready. .. Ins |Uni NUH
Curbbj: g:2 Opg:0 OTRAP O=I:1 |0I0:1 |OML:O

In this case, debugging is simple, and you can simply type:

I0+1
~{LC

Now, the CTOR function completes, the aplfns2a program continues and the out-
put is displayed.

HWOWOoJoy Ul WN -

0

Notice that in Dyalog APL, the) ST System Command provides information about
the entire calling stack, including the .NET function calls that are involved. Notice
too that the CTOR function, the constructor for this APL .NET class, is running here
in APL thread 1, which is associated with the system thread 1612. See Chapter 12 for
further information on debugging APL classes.

52

Dyalog APL/W .Net Interface Guide

Example 3

The correct NET behaviour when an APL function fails with an error is to throw an
exception, and this example shows how to do it.

In the NET Framework, exceptions are implemented as NET Classes. The base
exception is implemented by the System.Exception class, but there are a
number of super classes, such as System.ArgumentException and
System.ArithmeticException that inherit from it.

[JSIGNAL has been extended to allow you to throw an exception. To do so, its right
argument should be 90 and its left argument should be an object of type
System.Exception oran object that inherits from System.Exception
(Other options for the left argument may be implemented later).

When you create the instance of the Exception class, you may specify a string
(which will turn up in its Message property) containing information about the error.

Starting with the APLCLASSES2.DWS workspace, the following changes add excep-
tion handling to the CTOR function

JLOAD samples\APLClasses\aplclasses2
samples\aplclasses\aplclasses2 saved
Jed o APLClasses.Primitives

Then modify the CTOR function to perform exception handling in the approved
manner.

v CTOR IO;EX

[1] tAccess public
[2] :Signature CTOR Int32 IO
[3] :Implements constructor
(4] :If I0eO0 1
[5] JI10<«IO
[6] :Else
[7] EX<[ONEW ArgumentException,cc'IndexOrigin must be
0 or 1'
[8] EX OSIGNAL 90
[9] :EndIf
v

JWSID samples\APLClasses\aplclasses3
was samples\APLClasses\aplclasses?2
)SAVE
samples\aplclasses\aplclasses3 saved

Chapter 4: Writing .Net Classes in Dyalog APL 53

and make a new .NET Assembly called aplclasses3.d11.

P =

Create bound file I_]ﬁ

Save in: |E‘ aplclazzes M | _? = '

\| aplclassest.di
aplclassesz.dil
aplclasses3.dl
aplclassess,dil
aplclassess.dl
aplclassesa,dil
aplclasses7.dl

My Recent
Documents

&

Dezkbop

®

b p Documents

by Computer
File name: |aplclassesﬂ M I Save l
" Saveashype: | Miciosoft Net Assembly dl) v| | canca |

My Metwark,

Buntime application

a

|zolation Mode: | Each host process hag a single workspace

[Dyalog APL/W - Status M=%

Fle Options

Declared Assembly aplclasses3d
Declared Module aplclassesd in file C:Program FileswDyalog~Dyalog APL 11.0~Samplestaplclassessaplclassesd.dll
Declared Tupe APLClasses.Primitives
Compiling Constructor “CTOR"
Parameter tupe "Int32" resolved to Sustem.Int3dz
Result tupe "<emptu:" resolved to Sustem.Uoid
Compiled Constructor "CTOR"
Compiling Hethod "IndexGen”
Parameter tupe "Int32" resolved to Sustem.Int3z
Result type "Int3201" resolved to System.Int320]
Compiled Hethod "IndexGen”
Emitted Tupe AFLClasses.Primitives
Emitted Assembly to file "C:~Program Files~DualogwDualog APL 11.0-Zamplessaplclassessaplclassesd.dll”

<] m =

54 Dyalog APL/W .Net Interface Guide

aplfns3.cs

The following C# source, called samples\APLClasses\aplfns3.cs,canbe
used to invoke the new CTOR function. apl fns3. cs contains code to catch the
exception and to display the exception message.

using System;
using APLClasses;
public class MainClass
{
public static void Main ()
try {
Primitives apl = new Primitives(2);
int[] rslt = apl.IndexGen(10);
for (int i=0;i<rslt.Length;i++)
Console.WriteLine (rslt[i]);
}
catch (Exception e)
{
Console.WritelLine (e.Message) ;
}
}

Then, when the program is compiled and run ...

APLClasses>setpath.bat

APLClasses>csc /r:APLClasses3.dll aplfns3.cs

Microsoft (R) Visual C# .NET Compiler version 7.10.3052.4 for
Microsoft (R) .NET Framework version 2.0.50727 Copyright (C)
Microsoft Corporation 2001-2002. All rights reserved.
APLClasses>aplfns3

IndexOrigin must be 0 or 1

Chapter 4: Writing .Net Classes in Dyalog APL 55

Example 4

This example builds on Example 3 and illustrates how you can implement con-
structor overloading, by establishing several different constructor functions.

By way of an example, when a client application creates an instance of the
Primitives class, we want to allow it to specify the value of JI0 or the values of
both [JI0 and OML.

The simplest way to implement this is to have two public constructor functions
CTOR1 and CTOR2, which call a private constructor function CTOR as listed below.

JLOAD samples\APLClasses\aplclasses3
c:\...\samples\APLClasses\aplclasses3 saved...

Jed o APLClasses.Primitives

v CTOR1 IO
[1] :Implements constructor
[2] :Access public
[3] :Signature CTOR1 Int32 IO
[4] CTOR IO O
\'4
v CTOR2 IOML
[1] :Implements constructor
[2] tAccess public
[3] :Signature CTOR2 Int32 IO,Int32 ML
[4] CTOR IOML
v
v CTOR IOMLEX
[1] IO ML<«IOML
[2] :If ~I0eO 1
[3] EX<[JNEW ArgumentException,cc'IndexOrigin must
be 0 or 1'
[4] EX OSIGNAL 90
[5] tEndIf
[6] :If ~MLeO 1 2 3
[7] EX<[INEW ArgumentException,cc'MigrationLevel
must be 0, 1, 2 or 3'
[8] EX OSIGNAL 90
[9] :EndIf
[10] 010 OML«IO ML

v

56

Dyalog APL/W .Net Interface Guide

The :Signature statements for these three functions show that CTOR1 is defined
as a constructor that takes a single Tnt 32 parameter, CTOR2 is defined as a con-
structor that takes two Int 32 parameters, and CTOR has no .NET Properties defined
at all.

Note that in NET terms, CTOR is not a Private Constructor; it is simply an internal
function that is invisible to the outside world.

Next, a function called Get IOML is defined and exported as a Public Method. It
simply returns the current values of JI0 and [ML.

V R«<GetIOML
[1] tAccess public
[2] :Signature Int32[]«GetIOML
[3] R<[I0 OML

Having done this, the workspace is renamed aplclasses4.dws, and saved, and a new
Assembly aplclasses4.dll isbuilt.

JWSID samples\APLClasses\aplclassest
was samples\APLClasses\aplclassest

)SAVE
samples\aplclasses\aplclassest

Chapter 4: Writing .Net Classes in Dyalog APL 57

=

Create bound file

Save in: |@ aplclazzes M € _? = '

plclasses1.dil
aplclassesz.dil

My Recent aplclasses3.dil
Dacuments aplclasses4.di
plclassess, dll

@ aplclassesa, dil
Desktop aplclasses?.dil

=

tp Documents

My Camputer

File name: |aplclasses4 M I Save l
" Saveastype: | Microsoft Net Assembly [*.di] v | cancal |
dy Network,

[Buntime application

|zolation Mode: | Each host process has a single work space I_I

JD Dyalog APL/W - Status [M[=1] %]

Eile Cptions

Declared Assemblu aplclassesd
Declared Hodule aplclasses4 in file CisProgram FileswDuyalogsDualog APL 11.0wSamplestaplclassessaplclasses4.dll
Declared Type APLClasses.Primitives
Compiling Constructor "CTORL"
Parameter type "Int32" resolued to System.Int3z
Result tupe "<emptu>” resolued to Sustem.lUoid
Compiled Constructor "CTORL"
Compiling Constructor “CTORZ"
Parameter tupe "Int32" resolved to System.Intd2
Parameter tupe "Int32" resolved to Sustem.Intd2
Result tupe "<emptu>" resolued to Sustem.Unoid
Compiled Constructor “CTORZ"
Compiling Hethod "GetIOHL"
Result tupe "Int3Z01" resolued to Sustem.Int3Z0]
Compiled Hethod "GetIOML"
Compiling Hethod "IndexBen”
Parameter tupe "Int32" resolued to System.IntdZ2
Result type "Int3201" resolued to System.[nt320]
Compiled Hethod "IndexGen”
Emitted Tupe APLClasses.Primitives
Emitted Assembly to file "C:<Program Files-Dualog~Dualog APL 11.0~Zampleswaplclasses-aplclasses4.dll”

Closs

58 Dyalog APL/W .Net Interface Guide

aplfns4.cs

The following C# source, called samples\APLClasses\aplfns4.cs, may be
used to invoke the two different constructor functions CTOR1 and CTOR2 in the new
aplclasses4.dll Assembly .

using System;
using APLClasses;
public class MainClass

{

public static void Main ()
{
Primitives apll0 = new Primitives(1l);
int[] rsltl0 = apll0.GetIOML() ;
for (int i=0;i<rsltl0.Length;i++)
Console.WriteLine (rsltl10[i]);
Primitives apl03 = new Primitives (0, 3);
int[] rslt03 = apl03.GetIOML() ;
for (int i=0;i<rslt03.Length;i++)
Console.WriteLine (rsl1lt03[1]);
}
}

In this example, the code creates two instances of the Primitives class named ap110
and apl03. The first is created with a constructor parameter of (1) ; the second with
a constructor parameter of (0, 3) . The C# compiler matches the first call with
CTOR1, because CTOR1 is defined to accept a single Int32 parameter. The second
call is matched to CTOR2 because CTOR?2 is defined to accept two Int32 param-
eters

Then, when the program is compiled and run ...

APLClasses>setpath.bat

APLClasses>csc /r:APLClasses4.dll aplfnsd.cs

Microsoft (R) Visual C# .NET Compiler version 7.10.3052.4 for
Microsoft (R) .NET Framework version 2.0.50727. Copyright (C)
Microsoft Corporation 2001-2002. All rights reserved.

APLClasses>aplfns4
1

0
0
3

Chapter 4: Writing .Net Classes in Dyalog APL 59

Example 5

This example takes things a stage further and illustrates how you can implement
method overloading.

In this example, the requirement is to export three different versions of the
IndexGen method; one that takes a single number as an argument, one that takes
two numbers, and a third that takes any number of numbers. These are represented by
three functions named IndexGen1, IndexGen2 and IndexGena3 respectively.
Because monadic t performs all of these operations, the three APL functions are in
fact identical. However, their public interfaces, as defined in their :Signature
statement, are all different.

The overloading is achieved by entering the same name for the exported method
(IndexGen)in the box provided, for each of the three APL functions.

JLOAD samples\APLClasses\aplclasses5
samples\aplclasses\aplclasses5 saved
Jed o APLClasses.Primitives

(those fns should be present:)
CTOR CTOR1 CTOR2 1IndexGenl IndexGen2 IndexGen3

V R«IndexGenil N
[1] tAccess public
[2] :Signature Int32[]«IndexGen Int32 N
[3] R<1N

\'4

This is the version we have seen before. The method is defined to take a single argu-
ment of type Int32, and to return a 1-dimensional array (vector) of type Int32.

V R«IndexGen2 N
[1] :Access public
[2] :Signature Int32[][,]«IndexGen Int32 N1, Int32 N2
[3] R«<1N

This version is defined to take two arguments of type Int32, and to return a 2-
dimensional array, each of whose elements is a 1-dimensional array (vector) of type
Int32.

V R«IndexGen3 N
[1] :Access public
[2] :Signature Array<IndexGen Int32[] N
[3] R«1N

60 Dyalog APL/W .Net Interface Guide

In principle, we could define 7 more different versions of the method, taking 3, 4, 5
etc numeric parameters. Instead, this method is defined more generally, to take a sin-
gle parameter that is a 1-dimemsional array (vector) of numbers, and to return a result
oftype Array. In practice we might use this version alone, but for a C# programmer,
this is harder to use than the two other specific cases.

Notice also that all function use the same descriptive name, <IndexGen>.

.
Create bound file

Save in: |Lf.‘ aplclasses [v]] ? o -

) \§] aplclasses1.di
53 \}] aplclasses2.dil
My Recert \§] aplclasses3.di
Documents %] apiclasses4.di

\§] aplclassess.di
@ \}] aplclassess.dil

Deskiop \§] aplclasses7.di

-

T,

=

ky Documents

w8

tdp Computer

File name: | aplclasses5 vl [save |
"jg Saveastype: | Microsoft Net Assembly [* dl] ~]
My Notwerk

Carncel

|zolation kode: | E ach host process has a single workspace [v]

Chapter 4: Writing .Net Classes in Dyalog APL 61

5 Dyalog APL/W - Status =%

Eile ©ptions

Declared Assembly aplclassesS
Declared Hodule aplclassesS in file C:Program Files\Dyalog\Dyalog APL 11.0-SampleswaplclassessaplclassesS.dll
Declared Tupe APLClasses.Primitives
Compiling Constructor "CTOR1"
Parameter tupe "Int32" resoluved to Syustem.IntdZz
Result tupe "<emptu>" resolved to Sustem.Uoid
Compiled Constructor "CTOR1"
Compiling Constructor "CTORZ2"
Parameter tupe "Int32" resolved to Sustem.Int3dz
Parameter tupe "Int32" resoluved to Syustem.IntdZ2
Result tupe "<emptu>" resolved to Sustem.Uoid
Compiled Constructor "CTORZ"
Compiling Method "GetIOHML"
Result tupe "Int3201" resolved to System.Int32C]
Compiled Method "GetIOML"
Compiling Hethod "IndexGenl”
Parameter tupe "Int32" resolved to Sustem.Int3z
Result tupe "Int3201" resolued to System.Int320]
Compiled Method "IndexGenl"
Compiling Method "IndexGen2"
Parameter tupe "Int32" resolved to System.Int3z
Parameter tupe "Int32" resolved to Sustem.Int3z
Result tupe "Int32010,1" resolued to System.Int3201C0,1
Compiled Method "IndexGenz"
Compiling Method "IndexGend"
Parameter tupe "Int3201" resolved to Sustem.Int3Z[1]
Result tupe "Array” resolwved to Sustem.Array
Compiled Method "IndexGen3"
Emitted Tupe AFLClasses.Primitives
Emitted Assembly to file "C:~Program Files~DualogwDualog APL 11.0-ZamplessaplclassessaplclassesS.dll”

m &

62 Dyalog APL/W .Net Interface Guide

aplfns5.cs

The following C# source, called samples\APLClasses\aplfns5.cs,canbe
used to invoke the three different variants of IndexGen, in the new aplclasses5.dll
Assembly .

using System;
using APLClasses;
public class MainClass
{
static void PrintArray(int[] arr)
{
for (int i=0;i<arr.Length;i++)
{
Console.Write(arr[i]);
if (i!=arr.Length-1)
Console.Write(",");
}
}

public static void Main ()
{
Primitives apl = new Primitives(0);
int[] rslt = apl.IndexGen (10);
PrintArray(rslt);
Console.WriteLine ("") ;

int[,][] rslt2 = apl.IndexGen(2,3);
for (int 1=0;1i<2;i++)
{
for (int j=0;73<3;3j++)
{

int[] row = rslt2[i,j];

Console.Write (" (") ;
PrintArray (row) ;
Console.Write(")");
}
Console.WriteLine ("");

}

int[] args = new int[3];

args[0]1=2;
args[1]1=3;
args[2]1=4;

Array rslt3 = apl.IndexGen (args);
Console.WriteLine (rslt3);

Chapter 4: Writing .Net Classes in Dyalog APL 63

Then, when the program is compiled and run ...

APLClasses>setpath.bat

APLClasses>csc /r:APLClasses5.dll aplfns5.cs

Microsoft (R) Visual C# .NET Compiler version 7.10.3052.4 for
Microsoft (R) .NET Framework version 2.0.50727. Copyright (C)
Microsoft Corporation 2001-2002. All rights reserved.

APLClasses>aplfns5
0,1,2,3,4,5,6,7,8,9
(0,0) (0,1) (0,2)
(1,0) (1,1) (1,2)
System.Object|[,,]

It is possible for a function to have several : Signature statements. Given that our
three functions perform exactly the same operation, it might have made more sense to
use a single function:

V R«IndexGeni N
[1] :Access public
[2] :Signature Int32[]«IndexGen Int32 N
[3] :Signature Int32[][,]J«IndexGen Int32 N1, Int32 N2
[4] :Signature Array«IndexGen Int32[] N
[5] R<1N
\'4

Interfaces

Interfaces define additional sets of functionality that classes can implement; how-
ever, interfaces contain no implementation, except for static methods and static
fields. An interface specifies a contract that a class implementing the interface must
follow. Interfaces can contain shared (known as "static" in many compiled lan-
guages) or instance methods, shared fields, properties, and events. All interface
members must be public. Interfaces cannot define constructors. The .NET runtime
allows an interface to require that any class that implements it must also implement
one or more other interfaces.

When you define a class, you list the interfaces which it supports following a colon
after the class name. The value of JUSING (possibly set by :Using)isused to
locate Interface names.

If you specify that your class implements a certain Interface, you must provide
all of the members (methods, properties, and so forth) defined for that Interface.
However, some Interfaces are only marker Interfaces and do not actually specify any
members.

64 Dyalog APL/W .Net Interface Guide

An example is the TemperatureControlCt12 custom control described in
Chapter 10, which derives from System.Web.UI.Control. The first line of this
class definition reads:

:Class TemperatureConverterCtl2: System.Web.UI.Control,
System.Web.UI.IPostBackDataHandler,
System.Web.UI.IPostBackEventHandler

Following the colon, the first name is the base class. Following the (optional) base
class name is the list of interfaces which are implemented. The
TemperatureControlCtl2 custom control implements two interfaces named
IPostBackDataHandler and IPostBackEventHandler. These interfaces
are required for a custom control that intends to render the HTML for its own form
elements in a Web page. These interfaces define certain methods that get called at the
appropriate time by the page framework when a Web page is constructed for the
browser. It is therefore essential that the class implements all the methods specified
by the interface, even if they do nothing.

The base class, System.Web.UI.Control,defines an optional Interface called
INamingContainer. A class based on Control that implements
INamingContainer specifies that its child controls are to be assigned unique ID
attributes within an entire application. This is a marker interface with no methods or
properties defined for it.

See these examples in Chapter 10 for further details.

65

Chapter 5:

Dyalog APL and IIS

Introduction

Microsoft Internet Information Services (IIS) is a comprehensive Web Server software
package that allows you to publish information on your Intranet, or on the World
Wide Web. IIS is included with Professional and Server versions of all recent Win-
dows operating systems; all you need add is a network connection to run your own
Web site.

IIS includes Active Server Page (ASP) technology. The basic idea of ASP is to permit
web pages to be created dynamically by the web server. An ASP file is a character
file that contains a mixture of HTML and scripts. When IIS receives a request for an
ASP file, it executes the server-side scripts contained in the file to build the Web
page that is to be sent to the browser. In addition to server-side scripts, ASP files can
contain HTML (including related client-side scripts) as well as calls to components
that can perform a variety of tasks such as database lookup, calculations, and busi-
ness logic.

Basically, each script inside an ASP page generates a stream of HTML. The server
runs the scripts and assembles the resulting HTML into a single stream (Web page)
that is sent to the browser.

ASP.NET is a new version of ASP and is based upon the Microsoft NET Framework
technology. It offers significantly better performance and a host of new features
including support for Web Services.

66 Dyalog APL/W .Net Interface Guide

IIS Applications and Virtual Directories

IIS supports the concept of an Application. An application is a logically separate serv-
ice or web site. IIS can run any number of Applications concurrently. The files asso-
ciated with an application are stored in a physical directory on disk, which is linked
to an IIS Virtual Directory. The name of the Virtual Directory is the name of the
Application or Web Site.

The Dyalog APL distribution contains a directory named
Dyalog\Samples\asp.net and a set of sub-directories each of which contains a
sample application.

During the installation of Dyalog APL, these are automatically registered as IIS Vir-
tual Directories, under a common root called dyalog.net I Versions of Dyalog
APL prior to Version 11.0 created Virtual Directories under apl.net.

When you want to run the Web Services and Web Page examples, you do so by spec-
ifying the URL http://localhost/dyalog.net/

These samples can be easily found by selecting the Documentation Centre menu
item from the Help menu on the Dyalog session, and scrolling down to the Tutorials
section.

1Actually dyalog.net.classic ordyalog.net.unicode, according to your installed ver-

sion of Dyalog.

Chapter 5: Dyalog APL and IIS 67

Internet Services Manager

As its name suggests, Internet Services Manager is a tool for managing IIS. If you are
developing Web Pages and/or Web Services, you will be using this tool a lot, and it
makes sense to add it as a shortcut on your desktop.

To do this, open Control Panel, then open Administrative Tools, right-click Internet
Services Manager, and select Send To Desktop (create shortcut).

The dyalog.net Virtual Directory

Following a successful installation of Dyalog APL, the dyalog.net Virtual Directory
should appear in Internet Services Manager as shown below.

% Internet Information Services ['-_|['E|E|
File Action Wiew Help
XEDB @
""""" ” qalf (L epidemic
kemp [Aloan
webservices 3 spider
gt webservices ackfns [tutorial
aFtFns Bin [Awap
+-(1 Bin codeview [8] CvALOG.MET Tutarial.
+-[7 codeview data @ web. config
+-171 data b I
£ b3 £ b3

In case you need to set up your own IIS Virtual Directories yourself, the procedure is
described below.

68

Dyalog APL/W .Net Interface Guide

Creating the dyalog.net Virtual Directory

Ifthat Dyalog installation package did not installs the Virtual Directories, or should
you wish to install them again "by hand", perform the following actions.

Start Internet Services Manager, open the icon associated with your computer (in
this case, pdport) and select Default Web Site (or the appropriate name).

'?';f Internet Information Services

chticun Wigw |J¢' -P|||@

=10 x|

B2y = |

Tree I

Marne

| path -

Internet Information Services
- 2} * pdpart

-l Default FTP Site

2B, Focfault web Site

Zﬁ} Default SMTP Yirtual Server

EiSu:ripts

& 115 8dmin
@IISSamples
A msapc
& 115Help
@Webpub
EiPrinters
L@ _vti_bin
@pdcdemn
@dyadic
@Dyalug
@QuickStart
@Ruthlra
@CrussLang
%Clsh‘iew

4

c:hinetpubhscripks
CWIMNTYSwstem 32 ine
cinetpubtiissamples
c:\program fileshcommon__
c:hwinntihelpiiishelp

A Inetpubiwebpub
CWINNTywebiprinters
Z:\Proaram FilestConnm
c:hinetpubhdtrootpdede
c:dvadic
CDyvalog20iaspsyr
Ci\Program FilesiMicros

Ci\Program Files\Micros
Ci\Program FilesiMicros

Ci\Program FiIes'l,MicflnLI
e T 3

Select New Virtual Directory from the Action menu or from the item’s context menu.
This brings up the Virtual Directory Creation Wizard. Click Next to bring up the first
page and enter dyalog.net into the Alias field.

Chapter 5: Dyalog APL and IIS 69

Virtual Directory Creation Wizard

Yirtual Directory Alias
“ou must give the wirtual directony a short name, or alias, for quick reference.

Type the aliaz you want to uze to gain access to this Web virtual directory. Use the
zame naming conventions that pow would for naming a directon.

Alias:
dpalog.net

¢ Back | Mest » | Cancel

Click Next, then enter the full pathname to the Dyalog\samples\asp.net direc-
tory as shown below.

70 Dyalog APL/W .Net Interface Guide

Virtual Directory Creation Wizard

Web Site Content Directory
YWhere iz the content you want to publizh of the ‘web zite?

Enter the path to the directory that containg the content.

Directony:

C:A\DypaloghS amples Browse...

¢ Back | Meut » | Cancel

Accept the default Access Permissions, as shown below, and click Next.

Chapter 5: Dyalog APL and IIS 4|

Virtual Directory Creation Wizard

Accesz Permiszions
What access permiszions do wou want ko zet far thig wirtual directan?

Allaws the Following:

[v Run zchpts [such as ASP)

[Execute [such az ISAP| applications or CGI)
['Wirite

[Browsze

Click Mext to complete the wizard.

¢ Back | Mest » | Cancel

Then finally, click Finish.

72 Dyalog APL/W .Net Interface Guide

¥irtual Directory Creation Wizard x|
You have successfully
completed the Virtual

Directory Creation Wizard.

Click Finizh to continue.

[Cancel |

¢ Back

Creating the dyalog.net Virtual Sub-Directories

The golf, temp and webservices sub-directories in dyalog. net represent sep-
arate IIS Applications, so these need to be registered as IIS Virtual Directories too.

Open the newly created dyalog.net item shown in the left pane of Internet Services
Manager, bring up the context menu of the Golf sub-directory, and select Properties.

Click the Create button; this turns the sub-directory into an IIS Virtual Directory (a
separate IIS application) named Golf.

Chapter 5: Dyalog APL and IIS 73

golf Properties

Yirtual Directory | Documents | Directory Secunty | HT TP Headers | Custom Erors

YWhen connecting o thiz rezounce, the content should come from;
{(#) & directory located on this computer
(") & share located on another computer
() A redirection to a URL

Local Path: |E:'nyaIng'xsamples'xasp.net'xgu:ulf | [Browse. ..
[] Script source access Log wisits

Bead Index this rezource

[]wdrite

[] Directary browsing
Application Settings

Application name: |dya|u:ug.net"-.gnlf | [Riemave]
Starting paint: <Default wWeb Site. \golf
Execute Permizsions: | Scripts and Executables w |
Application Pratection: | Low [I15 Processz) b |
[k.] [Cancel] [Apply] [Help

Note that the Application Protection entry dictates whether your application is
loaded into the IIS process (Low), a shared DLLHost task (Medium) or its own
DLLHost task (High). The last choice isolates your application from all other IIS
applications, and is the safest option.

Follow the same procedure to define Temp and webservices as Virtual Direc-
tories (as sub-directories of dyalog.net).

It is not necessary to do this now, but you will need to do this during development
and it won’t hurt now.

Restart IIS. You can do this from the context menu of the item associated with your
computer at the top of the tree. Restarting IIS causes it to unload all the assemblies
associated with your Applications.

74 Dyalog APL/W .Net Interface Guide

75

Chapter 6:

Writing Web Services

Introduction

A Web Service can be thought of as a Remote Procedure Call. However, it is a
remote procedure call that can be made over the Internet using character-based mes-
sages.

Web Services are implemented using Simple Object Access Protocol (SOAP), Exten-
sible Mark-up Language (XML) and Hypertext Transfer Protocol (HTTP). Web Serv-
ices do not require proprietary network protocols or software. Web Service calls and
responses can successfully be transmitted over the Internet without the need to spe-
cially configure firewalls.

A Web Service is a class that may be called by any program running on the com-
puter, any program running on a computer on the same LAN, or any program running
on any computer on the internet.

Web Services are hosted (i.e. executed) by ASP.NET running under Microsoft IIS.
Any one Web Service sits on a single server computer and runs there under
ASP.NET/IIS. The messages that invoke the Web Service, pass its arguments, and
return its results, utilise standard HTTP/SOAP/XML protocols.

A Web Service consists of a single text script file, with the extension . asmx, in an
IIS Virtual Directory on the server computer.

A Web Service may expose a number of Methods and Properties. Methods may be
called synchronously (the calling process waits for the result) or asynchronously (the
calling process invokes the method, continues for a bit, and then subsequently
checks for the result of the previous call).

76

Dyalog APL/W .Net Interface Guide

Web Service (.asmx) Scripts

Web Services may be written in a variety of languages, including APLScript, the
scripting version of Dyalog APL (see Chapter 10).

The first statement in the script file declares the language and the name of the service.
For example, the following statement declares a Dyalog APL Web Service named
GolfService.

<%@ WebService Language="Dyalog" Class="GolfService" %>

Note that Language="Dyalog" is specifically connected to the Dyalog APL
script compiler through the application’s web.config file or through the global
ASP.NET system file Machine. config. Note that versions of Dyalog prior to
11.0 used Language="APL".

The syntax ofthis first line is common to all Web Services, regardless of the lan-
guage in which they are written.

A Dyalog APL Web Service script starts with a : Class statement and ends with an
:EndClass statement. These statements are directives used by the Dyalog APL
script compiler and are specific to Dyalog APL.

The : Cl ass statement declares the name of the Class (which must be the same as
the name declared in the WebService statement) and the Base Class from which it
inherits, which is normally System.Web.Services.WebService.

:Class GolfService: System.Web.Services.WebService

Following the : Class statement, there may appear any number of APL expressions
and function bodies. Following these there must be a : EndCl ass statement. Inter-
nal sub-classes (nested classes) may also be defined within the main : Class
:EndClass block.

Because the functions usually take arguments and return results whose types must be
known, the statement

:Using System

must almost always appear immediately after the : Cl ass statement to locate them.

Chapter 6: Writing Web Services 77

Compilation

When the Web Service, specified by the . asmx file, is called for the first time,
ASP.NET invokes the appropriate language compiler (in this case, the Dyalog APL
Script compiler) whose job is to produce an Assembly that defines and describes a
class. When the Web Service is used subsequently, the request is satisfied by creating
and using an instance of the class. However, ASP.NET detects ifthe . asmx script
has been modified, and recompiles it in this case.

The Dyalog APL Script compiler creates a DLL containing a workspace, which itself
contains the Web Service class. The class contains all the functions, which are
defined within the script, together with any variables that were established by expres-
sions in the script. A single function comprises all the statements enclosed within a
pair of del (V) symbols.

For example, the following script would define a class, instances of which would run
using [DML+«2, containing a single function FOO and a variable X.

:Class MyClass
OML<2
X<10
V Z<FOO Y
L<Y+X
v
:EndClass

Note that all expressions in the class script are executed by the script compiler when
it creates the assembly. They are not executed when the Web Service is invoked.

If your script contains a [JCY statement, it will be executed by the compiler when
establishing the class. This may be used to import functions from other workspaces
and obviate the need to include them in the . asmx file.

78

Dyalog APL/W .Net Interface Guide

Exporting Methods

Your Web Service will be of no use unless it exports at least one method. To export a
function as a method, you must include declaration statements. Such declarations
may be supplied anywhere within the function body, but it is recommended that they
appear together as the first block of statements in your code. All declaration state-
ments begin with the colon (:) character and the following declaration statements are
supported:

:Access WebMethod
This statement causes the function to be exported as a method and must be present.
:Signature type « fnname type namel, type name2,

This statement declares the data type of the result and the arguments of the method
where type may specify any valid .NET type that is supported by Web Services.
Note that the assignment arrow (<) is necessary if the function returns a result.

The declaration of each parameter of the method is separated from the next by a
comma. Each name may be any ASCII character string. Note that names are optional.

Add1

V R«<Add1l args
:Access WebMethod
:Signature Int32«Add Int32 argl,Int32 arg2
R«+/args

v

The Add1 function defined above is exported as a method named Add, that takes
exactly (and only) two parameters of type Int 32 and returns a result of type Int32.
Armed with this definition, which is recorded in the metadata associated with the
class, the .NET Framework guarantees that the method will only be called in this
way.

Add2

V R«Add2 arg
:Access WebMethod
:Signature Double«Add Double[] argl
R«+/arg

v

The Add2 function defined above is exported as a method that takes an array of
Double and returns a result of type Double. Depending on the type of the argu-
ments provided when the method is invoked, NET and Dyalog APL will call Add1
or Add2 - or generate an exception if the argument does not match any of'the sig-
natures.

Chapter 6: Writing Web Services 79

Web Service Data Types

In principle, Web Services are designed to support most, if not all, of the data types
supported by the NET Framework, and to support any new .NET classes that you
choose to define.

In practice, the current set of data types supported by Web Services is somewhat
restricted; in particular:

e Multi-dimensional arrays are not supported; only vectors.
o Arbitrary nested arrays are not supported.

However, despite these restrictions, it is possible to build effective Web Services, as
you will see in the following examples.

Execution

When your Web Service (or Page) is invoked, ASP.NET requests an instance of the
corresponding Class from the Assembly (DLL) that was created when it was com-
piled. The first time this happens for any Dyalog APL Web Service or Web Page, the
Dyalog APL dynamic link library (see Chapter 12) is loaded into the ASP.NET host
process and the namespace corresponding to your Web Service class is) COPYed
from the Assembly. The Dyalog APL dynamic link library then delivers an instance
of this namespace to the client (calling) process.

In general, every call on a method in a Web Service causes a new instance of the
Web Server class to be created. If you need to maintain/update variables between
calls, you need to write them to permanent storage.

Ifa client invokes a different Dyalog APL Web Service or Web Page, its class is)
COPYed from its Assembly into the workspace managed by the Dyalog APL
dynamic link library. When you export a class, you can select one of three Isolation
Modes:

1. Each host process has a single workspace
2. Each AppDomain has its own workspace
3. Each Assembly has its own workspace

In this context, "workspace" is synonymous with "Dyalog APL process": Each work-
space is managed by a separate process running dyalog.dll. Under option 1, all Dya-
log APL Web Services (and Web Pages) hosted by the IIS host process share the same
workspace when they are invoked.

The isolation mode selected has implications for the way that you access and manage
global resources such as component files. Finer isolation modes may be implemented
in future versions of Dyalog APL.

80 Dyalog APL/W .Net Interface Guide

Global.asax and Application and Session Objects

When a Web Service runs, it has access to the Application and Session objects.
These are objects provided by ASP.NET through which you can manage the
execution of the Web Service. ASP.NET creates an Application object when it first
starts the Application, i.e. when any client requests any Web Service or Web Page
stored in the same IIS Virtual Directory. It also creates a Session object for each client
process.

When the first request comes in for an ASP.NET application, ASP.NET checks for an
optional file named global . asax, and ifit is there it compiles it. The appli-
cation’s global . asax instance is then used to apply application events.

global.asax typically defines callback functions to be executed on the various
Applicationand Session events,suchasApplication Start,
Application End, Session Start,Session_ Endand so forth.

Dyalog APL allows you to use APL functions in the global . asax script. This
allows you to initialise your APL application when it is first invoked, and to close it
down cleanly when it is terminated.

For example, you can use global . asax to tie a component file on start-up, and
untie it on termination.

Sample Web Service: EG1

The first APLExample sample is supplied in
samples\asp.net\webservices\egl.asmx which is mapped via an IIS Vir-
tual Directory to the URL
http://localhost/dyalog.net/webservices/egl.asmx

<%@ WebService Language="Dyalog" Class="APLExample" %>

:Class APLEXample: System.Web.Services.WebService
:Using System

V R<Add args
:Access WebMethod
:Signature Int32«Add Int32 argl,Int32 arg2
R«+/args

v

:EndClass

The Add function defined above is exported as a method that takes exactly (and
only) two parameters of type Int 32 and returns a result of type Int32.

Chapter 6: Writing Web Services 81

Line [3] could in fact be coded as:

R«args[1]+args[2]
because .NET guarantees that a client can only call the method by providing two 32-
bit integers as parameters.

Testing APLExample from IE

If you connect, using Internet Explorer, to a URL that represents a Web Service, it dis-
plays a page that displays information about the service and the methods that it con-
tains. In certain cases, but by no means all, the page also contains form fields that let
you invoke a method from the browser.

The screen shot below shows the page displayed by IE when it is pointed at

egl .asmx. It shows that the Web Service is called APLExample, and that it
exports a single method called Add. Furthermore, the Add method takes two param-
eters of type int, named arg/ and arg?2.

2 APLExample Web Service - Microsoft Internet Explorer [ZI[EI[‘S_TI
¥

u

File
() Back - = [2 o | search <7 Favorites 4 * g (W

Address @http:,l',l'lu:ucalhost,l'd';.falu:ug.net,l'wel:uservices,l'egl.asmx?u:up=.ﬁ.du:| b Go Links **
APLExample

Click here for a complete list of operations.

Edit View Faworites Tools Help

»

Add

Test

To test the operation using the HTTP POST protocol, click the 'Invoke'
button,

Parameter ‘“alue

argl: |23 |

argz: |19 |

&) Dane %J | acal intranet

82

Dyalog APL/W .Net Interface Guide

The following screen shot shows the result of entering the values 23 and 19 into the
form fields and then pressing the Invoke button.

In this case, the method returns an int value 42.

A http:/localhost/dyalog. nethwebservices/egl.as. .. |Z| |E|

File Edit Wiew Favorites Tools Help ;'f

)) - [®) [@ P search +f Favorites 42

fddress @http:,l',l'lu:u:alhu:ust,l'd';.-'alu:ug.net,l'wel:-serviu:es,l'a v Go Links *

>

<7xml wersion="1.0" encoding="utf-8" 7=
<int #mins="http:/ /tempuri.org/">42</int>

@ Cone “-j Local inkranet

It is important to understand what is happening here.

Accessed in this way from a browser, a Web Service appears to be behaving like a
Web Server; this is not the case.

It is simply that the browser detects that the target URL is a Web Service, and
invokes an ASP+ page named DefaultSdlHelpGenerator.aspx that inspects
the compiled class and returns an HTML view of'the Web service.

Chapter 6: Writing Web Services 83

Sample Web Service: LoanService

The LoanService sample is supplied in
Dyalog\Samples\asp.net\Loan\Loan.asmx, which is mapped via an IIS
Virtual Directory to the URL
http://localhost/dyalog.net/Loan/Loan.asmx

This APLScript sample defines a class named LoanService that is based upon
System.Web.Services.WebService. The LoanService class defines a
sub-class called LoanResult and a method called CalcPayments.

<%@ WebService Language="Dyalog" Class="LoanService" %>
:Class LoanService: System.Web.Services.WebService
:Using System
:Class LoanResult
:Access public
:Field Public Int32[] Periods
:Field Public Double[] InterestRates
:Field Public Double[] Payments
:EndClass

V R«CalcPayments X;LoanAmt;LenMax;LenMin;IntrMax;
IntrMin; PERIODS; INTEREST ;NI ;NM
[1] :Access WebMethod
[2] :Signature LoanResult<«CalcPayments Int32 LoanAmt,
Int32 LenMax,Int32 LenMin,
Int32 IntrMax,Int32 IntrMin

[3]

[#] @A Calculates loan repayments

[5] A Argument X specifies:

[6] ~n LoanAmt Loan amount

[7] =~ LenMax Maximum loan period

[8] =~ LenMin Minimum loan period

[9] =~ IntrMax Maximum interest rate
[10] n IntrMin Minimum interest rate
[11]

[12] LoanAmt LenMax LenMin IntrMax IntrMin<X
[13] R<[INEW LoanResult

[14] R.Periods« 1+LenMin+11+LenMax-LenMin
[15] R.InterestRates«0.5x 1+(2xIntrMin)+11+2x

IntrMax-IntrMin
[16] NI<pINTEREST«R.InterestRates+100x12
[17] NM<pPERIODS«R.Periodsx12
[18] R.Payments<«, (LoanAmt)x((NI,NM)pNM/INTEREST)+
1-1+(1+INTEREST)o.*xPERIODS

v
:EndClass

84

Dyalog APL/W .Net Interface Guide

CalcPayments takes five integer parameters (see comments for their descriptions)
and returns an object of type LoanResult.

Note that the block of APLScript that defines the sub-class LoanResult must
reside between the : Class and : EndCl ass statements of the main class,
LoanService. You may define any number of internal classes in this way.

The LoanResult class is made up only of Fields and it does not export any meth-
ods or properties. Furthermore, there are no constructor methods defined and it relies
solely on its default constructor that is inherited from its base class,
System.Object. The default constructor is called without any parameters and in
fact does nothing except to create an instance of the class. In particular, the fields it
contains initialised to zero. In this case, that is sufficient, as all the fields will be
filled in explicitly later.

:Class LoanResult

:Access public
:Field Public Int32[] Periods
:Field Public Double[] InterestRates
:Field Public Double[] Payments

:EndClass

The : Class statement starts the definition of a new class and specifies its name. The
:EndClass statement terminates it definition.

The three : Fie ld declaration statements specify the names and data types of three
public fields. The Pub L i ¢ attributes are necessary to make the fields visible to meth-
ods within the LoanService class as a whole, as well as to external clients.

The Periods field is defined to be an array of integers; the InterestRates field
an array of Double. Both these arrays are 1-dimensional, i.e. vectors. These will con-
tain the numbers of years, and the different interest rates, to which the repayments
matrix applies.

Notice however that Payments is also defined to be 1-dimensional when in fact it
is, more naturally, a 2-dimesional matrix. The reason for this is that, currently, Web
Services do not support multi-dimensional arrays. This is a NET restriction and not a
Dyalog restriction.

CalcPayments([13] getsanew instance ofthe LoanResul t class by doing
[ONew LoanResult.Itthen assigns values to each of the three fields in lines [14],
[15] and [18].

Chapter 6: Writing Web Services 85

Testing LoanService from IE

Like the methods exported by the APLEXample Web Services described above, the
CalcPayments method exported by LoanService is callable from a browser
and the page that is displayed when you point IE at it is shown below.

2 LoanService Web Service - Microsoft Internet Explorer |'._||'E|r5__<|
File Edit ‘jew Fawaoribes Tools Help ;'f

»

QbBack -) - [*] @) t») search T Favories £ -

Address @ http:f flocalhost) dyalog. netfloanloan, asmxfop==CalcPz % G0 Links **

Click here for a complete list of operations.

CalcPayments

Test

To test the operation using the HTTP POST protocol, click the 'Invoke'
button.

Farameter Walue

Loanamt: | 100000 |

LenMax: |12 |

LenMin: |10 |
IntrMax: |3 |
IntrMin: |1 |
< > i
I@ Done &J Local intranet

To test the CalcPayments method, you can enter numbers into the form fields in
this page, as shown in the screen shot above, and then press the nvoke button. The
result of the method is then displayed in a separate window as illustrated below.

86

Dyalog APL/W .Net Interface Guide

Notice that the result is described using XML, which is in fact the very language
used to invoke a Web Service and return its result.

You can see that the result is of type LoanResult, and it contains 3 fields named
Payments, InterestRates and Periods. This information was derived by our
definition ofthe LoanResult class in the APLScript file.

Asyou can see, the InterestRates field shows that it contains a vector of float-
ing-point values (double) from the minimum rate to the maximum rate that we spec-
ified on the input form. This time, the increment is 0.5.

Similarly, the Payments field contains the calculated repayment values.

Finally the Periods field, contains a vector of integers from the minimum period to
the maximum period that we specified on the input form, in increments of 1.

Chapter 6: Writing Web Services 87

<A http:Hlocalhost/dyalog. net/loan/loan.asmx/CalcPaymen... [Z| [E| E'
File Edit %ew Favorites Tools Help .",','

" - *

¢ 3 - [®] &) (e) Search 57 Favarites 42 - oy
Address |iE| http: /flocalhost/dvalog. netloan)loan. asmx) CalcPay Vl Go Links ¥
~

<?aml version="1.0" encoding="utf-8" 7=
- <LoanResult
umlns: msd="http:/ /www.w3.orq/2001/XMLSchema"
smins:xsi="http:/ fwww . w3.org/ 2001/ XMLSchema-
instance" xmins="http:f ftempuri.org/"=

- «InterestRates:
<doubles1</doubles
<double=1.5</double=
<double=2</double:
<double=2.5</double=
<double>3</double:

</InterestRates:

- <Paymentss
zdouble=876.041213701641</double=
zdouble=800.32145394954341 < /double=
zdouble=737.2332094140891 7= /double=
zdouble=897.91499795031632<//double=
zdouble=822.266042599729</double=
zdouble=759.25120113057892<//double:=
<double=920.1345384255726</double:
<double=844.59078506699518</double
<double=781.68369185089932 - /double
<double=942.69901703959488 < /double=
zdouble=867.29464305512761</double=
zdouble=804.52938380079788< /double=
zdouble=965.60744698391056</double=
zdouble=890.37635433798073</double=
zdouble=827.7866894480519</double=

</Payments=

- =Periods=
<int=10</int=
<int=11</nt=
<int=12</nt=

</Periodsz
<fLoanResults

£ >
&) Done % J Lacal intranet

88 Dyalog APL/W .Net Interface Guide

Sample Web Service: GolfService

GolfService isan example Web Service that resides in the directory
samples\asp.net\Golf and is associated with the IIS Virtual Directory
dyalog.net/Golf. This example makes extensive use of internal classes to
define data structures that are appropriate for a client application, such as C# or VB.

The directory contains a global . asax script, which is used to initialise the appli-
cation.

The Golf Web Service example manages the reservation of tee-times at golf courses.
All the data is held in a component file called GolfData.dcf. This file may be
initialised using the function Gol f . INITFILE in the workspace
samples\asp.net\webservices\webservices.dws. You may need to
alter the file path first.

Each golf course managed by the application has a unique code (integer) and a name
(string). This is handled by defining a class (structure) called Gol fCourse with two
fields, Code and Name.

GolfService provides 3 methods:

GetCourses ()

Retumns a list of Golf Courses (CourseCode and CourseName). The
result of this method is an array of Gol fCourse objects.

GetStartingSheet (CourseCode, Date)

Returns the starting sheet for a specified golf course on a given day. A
starting sheet is a list of starting times with a list of the golfers booked
to start their round at that time. The result of this method is a
StartingSheet object.

MakeBooking (CourseCode, TeeTime, GimmeNearest, Namel,Name2, Name3,
Named))

Requests a tee reservation at the course specified by CourseCode.
TeeTime isa DateTime object that specifies the requested date and
time. GimmeNearest is Boolean. If 1, requests the nearest tee-time
to that specified; if 0, requests only the specified tee-time. Name1-4
are strings specifying up to 4 players. Note that all parameters are
required. The result of this method is a Booking object.

Chapter 6: Writing Web Services 89

GolfService: Global.asax

<script language="Dyalog" runat=server>

vV Application_Start;GOLFID
:Access Public
GOLFID+'c:\Dyalog\samples\asp.net\golf\GolfData' OFTIE 01
Application[c'GOLFID']«GOLFID

v

vV Application_End;GOLFID
:Access Public
:Trap 6
GOLFID«Application[<'GOLFID']
[OFUNTIE GOLFID
:EndTrap
v
</script>

The Application_Start function is called when the Gol£Service Web Serv-
ice is invoked for the first time. It ties the Gol fData component file then stores the
tie number in a new Item called GOLFID in the Application object. This item is then
subsequently available to methods in the GolfService for the duration of the
application.

The Application_End function is invoked when the Gol fService Web Serv-
ice terminates. It unties the Gol fData component file.

This example may be considered slightly weak in that the location of the data file is
hard-coded in the application's Global . asax file. An alternative is to store this
information in the <appsettings> section of the appropriate web . config file
orin the global machine.config file. This is preferable if the resource (in this
case a file name) is to be accessed from more than one script. For further information
on ASP.NET config files, see the documentation for the NET Framework SDK.

Note that the GolfData file may be initialised using the function
Golf.INITFILE inthe
samples\asp.net\webservices\webservices.dws workspace. The func-
tion will prompt you for the path of'the file, initialize it and update the
Global.asax file accordingly.

1This file needs to be located where it can be modified.

90

Dyalog APL/W .Net Interface Guide

GolfService: GolfCourse class

The GolfCourse class is effectively a structure with two fields named Code and
Name. Code is an integer code that provides a shorthand way to refer to a specific
golf course; Name is a St ring containing its full name.

:Class GolfCourse
tAccess Public
:Field Public Int32 Code
:Field Public String Name

V ctor args
:Implements Constructor
:Access public
:Signature fn Int32, String
Code Name<args

V ctor_def
:Implements Constructor
:Access public
ctor 71 "'
v
:EndClass

The GolfCourse class provides two constructors. The first, named ctor_def,
takes no arguments and therefore overrides the default constructor that is inherited
from System.Object. ctor_def calls ctor to initialise the instance with a

Code of ~1 and an empty Name.

The constructor named ctor accepts two parameters named CourseCode (an
integer) and CourseName (a string), and simply assigns these values into the cor-
responding fields.

Therefore, valid ways to create an instance ofa GolfCourse are:

GC<[INEW GolfCourse
GC.(Code Name)«1 'St Andrews'

Or, more simply
GC<[INEW GolfCourse (1 'St Andrews')

Note that the names of the constructor functions are not visible outside the class. Con-
structors are identified by their signatures (basically, the : Imp lements
Constructor statement) and not by their names.

Chapter 6: Writing Web Services 91

GolfService: Slot class

The S1ot class is effectively a structure with two fields named Time and Players.
Time is a DateTime object that represents a time that can be reserved on the first
tee. Players is an array of (up to 4) strings that contains the names of the golfers
who have reserved to start their round of golf at that time.

:Class Slot
tAccess Public
:Field Public DateTime Time
:Field Public String[] Players

V ctorl arg
:Implements Constructor
:Access public
:Signature fn DateTime
Time<«arg
Players« Opc''

V ctor2 args
:Implements Constructor
tAccess public
:Signature fn DateTime, Stringl[]
Time Players<«args

V ctor_def
:Implements Constructor
:Access public
v
:EndClass

This class provides two constructor functions named ctor1 and ctor2. However,
for internal reasons, if a class defines any constructor functions, it is currently nec-
essary to provide a dummy default constructor (the form of the constructor that takes
no parameters); hence ctor_def.

The constructor ctor1 accepts a single DateTime parameter, which it assigns to
the Time, field, and initialises the P1ayers field to an empty array.

The constructor ctor2 accepts two arguments, a specified tee time, and an array of
strings that contains golfers' names. It assigns these parameters to Time and
Players respectively.

92

Dyalog APL/W .Net Interface Guide

GolfService: Booking class

The Booking class represents the result of the MakeBooking method. It contains 4
fields named OK, Course, TeeTime and Message

OK is Boolean and indicates whether or not the attempt to make a reservation was
successful. If OK is false (0), the Message field (a string) indicates the reason for fail-
ure.

IfOK is true (1) the Course field contains an instance ofa GolfCourse object,
and the TeeTime field contains an instance ofa S1ot object. Together, these
objects identify the reserved golf course and starting slot. The latter specifies both
the starting time, and the names of all the golfers who have been allocated that start-
ing time and who will therefore play together.

:Class Booking
:Access Public
:Field Public Boolean OK
:Field Public GolfCourse Course
:Field Public Slot TeeTime
:Field Public String Message

V ctor args
:Implements Constructor
:Access public
:Signature fn Boolean, GolfCourse, Slot, String
OK Course TeeTime Message<«args

V ctor_def
:Access public
:Implements Constructor
v
:EndClass

This class provides a single constructor method, which must be called with values for
all four fields.

Chapter 6: Writing Web Services 93

GolfService: StartingSheet class

The StartingSheet class represents the result of the GetStartingSheet
method. It contains 5 fields named OK, Course, Date, Slots and Message. OK is
Boolean and indicates whether or not a starting sheet is available for the specified
course and date.

If OK is false (0), the Message field (a string) indicates the reason for failure.

IfOK is true (1) the Course field contains an instance ofa GolfCourse object, the
Date field contains the date in question, and the S1ots field contains an array of
Slot objects. Each S1ot object specifies a starting time and the names of golfers
who are booked to play at that time.

:Class StartingSheet
:Access Public
:Field Public Boolean OK
:Field Public GolfCourse Course
:Field Public DateTime Date
:Field Public Slot[] Slots
:Field Public String Message

V ctor args
:Implements Constructor
tAccess public
:Signature fn Boolean, GolfCourse, DateTime
OK Course Date<«args

V ctor_def
:Implements Constructor
:Access public

\'4
tEndClass

Like the Booking class, the StartingSheet class provides a single constructor
method. In this case, the constructor is called with values for just 3 of the fields; the
values of the other fields are expected to be assigned later.

94

Dyalog APL/W .Net Interface Guide

GolfService: GetCourses function

V R«<GetCourses; COURSECODES; COURSES; INDEX;GOLFID

[1] A
[2] :Access WebMethod
[3] :Signature GolfCourse[]«fn

[5] GOLFID«Application[<c'GOLFID']

[6] COURSECODES COURSES INDEX<[JFREAD GOLFID 1

[7] R<[INEW 'Gol fCourse, ‘¢ {§+COURSECODES COURSES
\'4

The GetCourses function retrieves the tie number of the Gol fData component
file from the Application object and reads its first component.

The function then creates a Gol fCourse object for each of the courses recorded on
the file, and returns the array of Gol fCourse objects as its result.

GolfService: GetStartingSheet function

The GetStartingSheet function retrieves the tie number of the GolfData com-
ponent file from the Application object and reads its first component. Line [10]
creates an instance ofa StartingSheet object and uses it to initialise the result R.
The value of the OK field is set to zero to indicate failure.

It then validates the requested CourseCode. If invalid, it simply sets the Message
field in the result and returns it. Similarly, it checks to see if there is a starting sheet
on file for the requested date. If not, it sets the Message field to indicate this, and
returns.

Note that line [15] extracts the Year, Month and Day properties from the requested
tee time, a DateTime object, and converts them to an IDN. This is used to index the
component containing the starting sheet for that day.

Chapter 6: Writing Web Services 95

V R<GetStartingSheet ARGS;CODE ;COURSE;DATE;GOLFID;
COURSECODES ; COURSES ; INDEX ; COURSEI ; IDN;DATES ; COMPS ;
IDATE;TEETIMES;GOLFERS;IT

A

tAccess WebMethod

:Signature StartingSheet«fn Int32 CCode,
DateTime Date

WN B~

FWNPFPOOWONOJTFWNRPFOLILJILILILILY e

CODE DATE<«ARGS

GOLFID«Application[<c'GOLFID']

COURSECODES COURSES INDEX<«[JFREAD GOLFID 1
COURSEI«~COURSECODES1CODE

COURSE<«[INEW GolfCourse (CODE(COURSEI-COURSES,c''))

L B e B e N e s s N s N s N s B s B e N s s s N s N s N s N s B e B s B e § Lo N e N e |

L
5

6

7

8

9

10] R<[JNEW StartingSheet (0 COURSE DATE)

11] :If COURSEI>pCOURSECODES

12] R.Message<«'Invalid course code'

13] :Return

14] tEndIf

15] IDN«2 [INQ'.' 'DateToIDN',DATE.(Year Month Day)
16] DATES COMPS<«[JFREAD GOLFID,COURSEI-INDEX

17] IDATE<DATES1IDN

18] :If IDATE>pDATES

19] R.Message«'No Starting Sheet available'
20] :Return

21] :EndIf

22] TEETIMES GOLFERS<[JFREAD GOLFID,IDATE-COMPS
23] R.0OK<«1

24]

T<[ONEW 'DateTime, "¢ (<DATE.(Year Month Day)),”
3t74[1]24% 60TTEETIMES

[25] R.Slots<«[INEW'Slot, c"T,oc”{GOLFERS

v

Line[23] sets the OK field of the result to 1 (success).
Line[24] converts the stored tee times (in minutes) to DateTime objects.

Line[25] combines the tee times and golfers into a vector of 2-element arrays, and
creates a S1ot object for each of them. The result is assigned to the S1ots field of
the result R.

96

Dyalog APL/W .Net Interface Guide

GolfService: MakeBooking function

The MakeBooking function checks that the requested tee-time is available, for the
specified number of players and updates the starting sheet accordingly. The result of
the function is a Booking object.

MakeBooking first retrieves the tie number of the Gol fData component file from
the Application object and reads its first component.

Lines[13 14] create instances of GolfCourse and S1ot objects, which at this stage
are not validated. Line[15] then initialises the result R, a Booking object, which
includes these instances. At this stage, R . OK is 0 indicating failure.

Line[16] validates the requested CourseCode, and, if invalid, simply sets
R.Message and returns.

Similarly, lines [20 23] check that the requested tee time is within the next 30 days
from now. If not, the function assigns the appropriate error message to R .Message
and returns. Note that these two statements employ the APL primitive function > (
rather that the op_GreaterThan method) to compare the requested tee time (a
DateTime object) with a new DateTime object that represents now and now+30
days respectively.

Notice that line[24] uses the AddDays method to create a new DateTime object
that represents now + 30 days. An alternative expression, to get now+30 days is:

TEETIME.Now+[NEW TimeSpan (30 0 0 0)

Lines[28-47] are concemed with retrieving the appropriate component from the file,
initialising it or re-using an old one, if it is not present. Each component represents
the starting sheet for a particular course on a particular day.

Lines[48-63] check whether or not the requested slot is available (for the specified
number of golfers). If not it returns an error message as before or, if GimmeNearest
is 1 (true), it attempts to allocate the slot closest to the requested time.

If an appropriate slot is found, Lines[72 73] update the S1ot object with the
assigned time and names of the golfers. Line[74] then inserts the modified S1ot
object into the result, and sets the OK field to 1 (true) to indicate success.

Chapter 6: Writing Web Services

vV R«MakeBooking ARGS;CODE ;COURSE;SLOT;TEETIME ;GOLFID;
COURSECODES ; COURSES ; INDEX; COURSEI ; IDN;
DATES;COMPS ; IDATE; TEETIMES ; GOLFERS s
OLD;COMP ; HOURS sMINUTES ;NEAREST ; TIME;
NAMES ; FREE;FREETIMES;I;J;DIFF

:Access WebMethod

:Signature Booking«Int32 CourseCode,
DateTime TeeTime,
Boolean GimmeNearest,
String Namel,
String Name2,
String Name3,
String Namek

p If GimmeNearest=0, books (or fails) for specified time
A If GimmeNearest=1, books (or fails) for nearest to
specified time

CODE TEETIME NEAREST<«31tARGS
GOLFID<«Application[<'GOLFID']
COURSECODES COURSES INDEX<[JFREAD GOLFID 1
COURSEI+COURSECODES1CODE
COURSE<[INEW GolfCourse,cCODE(COURSEISCOURSES,c'")
SLOT<[INEW Slot TEETIME
R<[JNEW Booking (0 COURSE SLOT '')
:If COURSEI>pCOURSECODES
R.Message<«'Invalid course code'
:Return
tEndIf
:If TEETIME.Now>TEETIME
R.Message<«'Requested tee-time is in the past'
:Return
tEndIf
:If TEETIME>TEETIME.Now.AddDays 30
R.Message«'Requested tee-time is more than
30 days from now'

:Return
:EndIf
IDN«2 [ONQ'.' 'DateToIDN',TEETIME.(Year Month Day)
DATES COMPS<[JFREAD GOLFID,COURSEISINDEX
IDATE<«DATEStIDN

:If IDATE>pDATES
TEETIMES«(60x7)+10x"1+11+8%x6
A 10 minute intervals, 07:00 to 15:00
GOLFERS«((pTEETIMES),4)pc"’
A up to 4 golfers allowed per tee time
:If 0=0LD+>(DATES<
2 ONQ'.' 'DateToIDN',3t0TS)/1pDATES
COMP«(TEETIMES GOLFERS)OFAPPEND GOLFID
DATES,<«IDN
COMPS ,«~COMP
(DATES COMPS)OFREPLACE GOLFID,COURSEISINDEX

98 Dyalog APL/W .Net Interface Guide

[42]
[43]
[4t]
[45]
[46]
[47]
(48]
[49]
[50]
[51]

[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]

[72]
[73]
[74]

:Else
DATES[OLD]<«IDN
(TEETIMES GOLFERS)OFREPLACE
GOLFID,COMP<+0OLD>COMPS
DATES COMPS [JFREPLACE GOLFID,COURSEISINDEX
:EndIf
:Else
COMP<IDATE>COMPS
TEETIMES GOLFERS«[JFREAD GOLFID COMP
:EndIf
HOURS MINUTES<«TEETIME. (Hour Minute)
NAMES<«(34ARGS)~8""
TIME«60LHOURS MINUTES
TIME«10x|[0.5+TIME+10 A Round to nearest
10-minute interval
:If ~NEAREST
I«TEETIMES1TIME
:If I>pTEETIMES
:0rIf (pNAMES)>>,/+/0=p GOLFERS[I;]
R.Message<«'Not available'
:Return
:EndIf
:Else
:If ~v/FREE«(pNAMES)<>,/+/0=p GOLFERS
R.Message<«'Not available'
:Return
:EndIf
FREETIMES«(FREEXTEETIMES)+32767x~FREE
DIFF<«|FREETIMES-TIME
I<DIFFt|/DIFF
tEndIf
J«<(>,/0=p"GOLFERS[I;])/4
GOLFERS[I;(pNAMES)tJ]«NAMES
(TEETIMES GOLFERS)[FREPLACE GOLFID COMP
TEETIME<[INEW DateTime,cTEETIME.(Year Month Day),
3t24 60TI-TEETIMES
SLOT.Time«TEETIME
SLOT.Players<(>,/0<p " GOLFERS[I;])/GOLFERS[I;]
R.(OK TeeTime)«1 SLOT

Chapter 6: Writing Web Services 99

Testing GolfService from IE

If you point your browser at the URL
http://localhost/dyalog.net/Golf/Golf.asmx,GolfService will
be compiled and ASP.NET will fabricate a page about it for the browser to display as

shown below.

The three methods exposed by GolfService are listed.

‘2 GolfService Web Service - Microsoft Internet Explorer E”E”‘S__q
File Edit Wiew Favorites Tools Help .1."

() Back - = [o search <'- Favorites 42 ~ &g

Address |&] http:{flocalhostfdvalog. net{GalfGalf. asmx v Go | Links ¥

»

The following operations are supported. For a formal definition, please
review the Service Description,

« GetStartingSheet

¢ GetCourses

» MakeBooking 3

I@ Done % Local intranet

Invoking the GetCourses method generates the following output.

Notice that the data type of the result is ArrayOfGolfCourse, and the data type
of each element of the result is Gol fCourse. Furthermore, the public fields defined
for the GolfCourse object are clearly named.

All this information is derived from the declarations in the Golf . asmx script.

100 Dyalog APL/W .Net Interface Guide

As supplied, the Gol fData component file contains only 3 golf courses as shown
below.

2} http:Hlocalhost/dyalog. net/GolffGolf.asmx/GetCourse. .. |Z| |E|

File Edit ‘Wiew Favorites Tools Help

X]
'11

3 3 - [®] @) @» S search 57 Favorites £ * i

Address @http:,l',l'lncalhcust,l'dyalcug.net,l'Gu:uIF,l'Gu:uIF.asmx,l'GetCu:n v Go Links **

=?aml wersion="1.0" encoding="utf-8" 7=
- <ArrayOfGolfCourse
smins: ssd="http:f fwww. w3.org/ 2001/ XMLSchema"
smins: wsi="http:f A vwww o w3.org/ 2001/ XMLSchema
-instance" sxmlns="http:/ ftempuri.org/">
- «GolfCourses
zCode=1</Code=
zMame=58t Andrews</Mame=
= /GolfCourse=
- =GolfCourses
<Code=2</Codex
zMHamezHindhead</MNamez
</GolfCourses
- «GolfCourses
zCode=3</Code=
<Mame=Basingstoke</Mamex
= /GolfCourse=
=/ ArrayOfGolfCoursex

< |
&] Done %J Lacal intranet

|

ASP.NET generates a Form containing fields that allow the user to invoke the
MakeBookings method as shown below.

Notice the way a DateTime value is specified. Note too that the GimmeNearest
parameter is Boolean, so you must enter "True""or "False".IfyouenterOorl,
it will cause an error and the application will refuse to try to call MakeBookings
because you have specified the wrong type for a parameter.

Chapter 6: Writing Web Services 101

When you try this yourself, remember to enter a date that is within the next 30 days,
and a time between 07:00 and 15:00. Alteratively, you may wish to experiment
with invalid data to check the error handling.

i=E3

Help S
(JBack ~ ERE:! . /':'Search '+ Favorites) -l W o »

Address @http:,I',I'Iucalhu:ust,l'dg.-'alcug.net,l'GDII‘,l'Gu:uIF.asmx?up=MakﬁBuang hd GD Links

2 GolfService Web Service - Microsoft Internet Explorer
Edit

Tools

File Wigw Favorites

Click here for a complete list of operations.

MakeBooking

Test
To test the operation using the HTTP POST protocol, click the 'Involke' button,

Farameter Value

CourseiCode: |3 |

TeeTime: |2006/6/12 7:00 |

Gimmekearest: |True |

Marnel: |T.Wuu:u:|s |
Mamez2: |E-.H|:u;|an |
Marne3: |P.D|:|ne||3.r |
Marned: | |
b
A3 2
@ Done \;._! Local inkrarmet

The result of invoking MakeBooking with this data is shown below.

Notice how all the information about the Booking object structure, including the
structure of the sub-objects, is provided.

102 Dyalog APL/W .Net Interface Guide

e http:fflocalhost/dyalog. netfGolf/Golf. asmx/MakeBooking ... |z| |E|[')__(|
File Edit Wiew Favorites Tools Help ['?r
< 7 |ﬂ @ :\ /':' Search "“ Favorites 4 - =

Address |iE| http:flocalhostfdyalog.net/Golf Galf , asmx MakeBoakir V| o | Links #

]

<7uml version="1.0" encoding="utf-8" 7=
- <Booking
xmins:xsd="http:/ fwsww . w3.0orq/2001/¥MLSchema"
smlns: xsi="http:/ Avoww w3 .org /2001 S XMLSchema-
instance" zmins="http:/ ftempuri.org/":>
- =iCourse
<Code=3</Code=
<Mame=Basingstoke</MName:
< /Courses
<Message /=
0K =trues /0K
- =TeaTime:=
- <Players»
<string=T.Woods</string>
<string=B.Hogan</string=
<string=P.Donelly</string=
</Players=
<Time=2006-06-12T07:00:00.0000000-
04:00=/Time=
=/ TeeTimes
</Booking=

@ Done ‘j Local intranet

The following picture shows data suitable for invoking the GetStartingSheet
method.

If you try this for yourself, choose a course and date on which you have made at least
one successful booking.

Chapter 6: Writing Web Services 103

2 GolfService Web Service - Microsoft Internet Explorer |:||E|E|
e

File Edit Wiew Favarites Tools Help k

»

QBack ~) - [¥] [2] @) Search 57 Favorites £ - i (W -

fddress @htt|:|:,l',flu:ucalhu:ust,fdvalu:ug.net,l'Gu:uIF,l'Gu:uIF.asmx?u:up=GetStartint_ b (€1a] Links **

Click here for a complete list of operations. —

GetStartingSheet

Test

To test the operation using the HTTP POST protocol, click the 'Tnvaoke'
button,

Pararneter Yalue

CourseCode: |3 |

Date: |2006/6/12 |
bt
25)
@l Done “-_g Local intranet

Finally, the result of the GetStartingSheet function is illustrated below.

The output clearly shows that the result,a StartingSheet object, contains an
array of S1ot objects, each of which contains a Time field and a Players field.

104 Dyalog APL/W .Net Interface Guide

A hitp: Hlocalhost/dyalog, net/Golf/Golf.asmx/GetStartingSh... [= |[B]

3
'lr

File Edit Wiew Favorites Tools Help i
¢ 3 [®] [@» O search 7 Favorites 4 = .
Address |i§| http:f flocalhostfdyalog. net/Golf fGolf , asmzfGet Skarting V| Go Links *
.
<7aml version="1.0" encoding="utf-8" 7= K
- =StartingSheet E
xmins: xsd="http:/ fwwvsw w3 0rg/2001/XMLSchema"”
xmins: xsi="http:/ fvevewr w3 org/ 2001/ XMLSchema-
instance" zmins="http:/ /tempuri.org/">
+ <Course=
<0ate=2006-06-12T00:00:00.0000000-
04:00=/Date=
0K =true /0K
- <5Slots=
- =Slots
- <Playerss>
<string=T.Woods</string=
<string=B.Hogan</string=
<string=P.Donelly</string=
<string /=
=/Players=
=Time>2006-06-12T07:00:00.0000000-
04:00</Time:=
=/Slot=
- <5Slot=
- <Players»
z=tring /=
zstring /=
zstring /=
<string /=
</Playvers=>
<Time=2006-06-12T07:10:00.0000000-
04:00=/Time:=

|

< SNt

:El “-J Local inkranet

Chapter 6: Writing Web Services 105

Using GolfService from C#

The csharp sub-directory in samples\asp.net\golf contains sample files for
accessing the GolfService Web Service from C#. The C# source code in
Golf.cs isshown below.

using System;
class MainClass {

static void Main (String[] args)
{
GolfService golf = new GolfService();
int nArgs = args.Length;
Booking booking;

booking=golf.MakeBooking (

/* Course Code */ 1,

/* Desired Tee Time */ DateTime.Parse(args[0]),

/* nearest is OK */ true,

/* player 1 */ (nArgs > 1) ? args[1l] ",
/* player 2 */ (nArgs > 2) ? argsl[2] : "",
/* player 3 */ (nArgs > 3) ? args[3] : "",
/* player 4 */ (nArgs > 4) ? args([4] "

)i

Console.WritelLine (booking.OK) ;
Console.WritelLine (booking.TeeTime.Time.ToString()) ;
foreach (String player in booking.TeeTime.Players)
Console.WriteLine (player) ;
}
}

The following example shows how you may run the C# program golf.exe froma
Command Prompt window. Please remember to specify a reasonable date and time
rather than the one used in this example.

csharp>golf 2006-08-07T08:00:00 T.Woods A.Palmer P.Donnelly
True

25/08/2008 08:00:00

T.Woods

A.Palmer

P.Donnelly

csharp>

106

Dyalog APL/W .Net Interface Guide

Sample Web Service: EG2

In all the previous examples, we have relied upon ASP.NET to compile the
APLScript into a .NET class prior to running it. This sample illustrates how you
can make a .NET class yourself.

For this example, the Web Service script, which is supplied in the file
samples\asp.net\webservices\eg2.asmx (mapped via an IIS Virtual
Directory to the URL
http://localhost/dyalog.net/webservices/eg2.asmx) isreduced to
a single statement that merely invokes the pre-defined class called
APLServices.Example.

The entire file, viewed in Notepad, is shown below.

i eq2.asmx - Notepad 10| x|
File Edit Format Help

<%@ WebService Class="APLServices.Example" %> =l

-

4 k v

Given this instruction, ASP.NET will locate the APLServices.Example Web
Service by searching the Bin sub-directory for assemblies. Therefore, to make this
work, we have only to create a NET assembly in samples\asp.net\Bin. The
assembly should contain a NET Namespace named APLServices, which in turn
defines a class named Example.

The procedure for creating .NET classes and assemblies in Dyalog APL was dis-
cussed in Chapter 3. Making a WebService class is done in exactly the same way.

Starting with a CLEAR WS, we first create a namespace called APLServices. This
will act as the container corresponding to a .NET Namespace in the assembly.

JNS APLServices
#.APLServices

Within APLServices, we next create a class called Examp Le that inherits from
System.Web.Services.WebService. This is the Web Service class.

Chapter 6: Writing Web Services 107

)CS APLServices
#.APLServices
JED oExample
:Class Example: WebService
:Using System
:Using System.Web.Services,System.Web.Services.dll
V R<Add arg
tAccess webmethod
:Signature Int32«<Add Int32 argl,Int32 arg2
R«+/arg
v
tendclass

Within APLServices.Example, we have a function called Add that will rep-
resent the single method to be exported by this Web Service.

It is a good idea to) SAVE the workspace, although this is not absolutely essential.

)CS
#

JWSID Samples\asp.net\webservices\Bin\EG2
was CLEAR WS

)SAVE
Samples\asp.net\webservices\Bin\EG2 saved

Then, select the Export... item from the Session File menu, and save the assembly in
samples\asp.net\webservices\Bin. The name of the assembly is unim-
portant.

108

Dyalog APL/W .Net Interface Guide

e

Create bound file mw1

Save i |@ Ein I:I &) _? % [~

_E EG2.dl

tp Recent
Documents

&)

Deskiop

=

My Documents

5

by Cornputer

File name: EG2.dI i~ [_save |
[Cancel]

.’g Save astype | Microsoft Net ssembly *.di] [v]
My Notwerk

[1Buntime application

|zolation kode: | Each host process has a single waorkspace M

When you click Save, the Status Window displays the following information to con-
firm that the assembly has been created correctly.

FD Dyalog APL/W - Status [[f=1] |

Fle Options

Declared Assembly EG2
Declared Hodule EGZ in file C:~Program FileswDualoghDualog APL 11.0~Zampleswasp.netswebservicessBinwEGZ.dl1
Declared Tupe APLServices.Example
Compiling HebHethod "Add”
Parameter tupe "Int32" resolved to Sustem.Int3z
Parameter type "Int32" resolued to System.Int32
Result tupe "Int32" resolued to Sustem.Int3Z2
Compiled HebHethod "Add"
Emitted Tupe APLServices.Example
Emitted Assembly to file "C:wProgram Files~Dualog~Dualog APL 11.0vZampleswasp.netwwebservicessBinsEG2Z.d11"

Cloze:

Chapter 6: Writing Web Services 109

Testing EG2 from IE

If you point your browser at the URL
http://localhost/dyalog.net/webservices/eg2.asmx, ASPNET
will fabricate a page about it for the browser to display as shown below.

The Add method exposed by APLServices.Example is shown, together with a
Form from which you can invoke it.

3 Example Web Service - Microsoft Internet Explorer ['._”'E|rz|
File Edit \jew Favorites Tools Help :,'
O Back ~ Iﬂ @ o D search <7 Favorites 42 | (W - i

Address @http:,l',l'lu:ucalhost,l’dvalu:ug.net,l'webservices,l’eg2.asmx?u:up=.ﬁ.dd A GD Links >

Click here for a complete list of operations.

Add

Test
Ta test the aperation using the HTTP POST protocal, click the 'Invoke' buttan,

Parameter Yalue

argl: | 123 |
argz: |4 56 |
bt
< | >
@ Done ‘:_g Local inkranet

If you enter the numbers 123 and 456 in the fields provided, then press Invoke, the
method will be called and the result displayed as shown below.

110 Dyalog APL/W .Net Interface Guide

2 http:Mlocalhost/dyalog. net/webservices/eg2.asm... |: E|

File Edit Wiew Favorites Tools Help

|
-

Address

S - [[2) o P seaxrch TrFavorites €

@ httpsfflocalbostfdyalog, net fwebservicesfeg:

3
ﬂ'

>

Go Lirks »

=?uml wersion="1.0" encading="utf-8" 7=
<int zmlns="http:/ ftempuri.org/">579</int>

@ Dane

‘a Local inkranet

11

Chapter 7:

Calling Web Services

Introduction

In order to call a Web Service, you need a "proxy class" on the client, which exposes
the same methods and properties as the web service. The proxy creates the illusion
that the web service is present on the client. Client applications create instances of
the proxy class, which in turn communicate with the Web Service via IIS, using
TCP/IP and HTTP/XML protocols.

Microsoft provides a utility called WSDL . EXE that queries the metadata (Web Serv-
ice Definition Language) of a Web Service and generate C# source code for a match-
ing proxy class.

The MakeProxy function

The MakeProxy function is provided in the supplied workspace
samples\asp.net\webservices\webservices.dws.

MakeProxy is monadic and its argument specifies the URL of the Web Service to
which you want to connect. For example, the following expressions uses
MakeProxy to connect to the LoanService sample Web Service provided with Dya-
log .Net:

MakeProxy'http://localhost/dyalog.net/Loan/Loan.asmx"'

MakeProxy runs the Microsoft utility WSDL . EXE passing the name of your URL to
it as an argument. The utility then creates a C# source code file in your current direc-
tory that contains the code necessary to create a proxy class. The name of the C# file
is the name ofthe Web Service (as declared in its header line) followed by the exten-
sion .cs.

MakeProxy then calls the C# compiler to compile this file, creating an assembly
with the same name, but with a .dll extension, in your current directory. This
assembly contains a .NET class of the same name.

112 Dyalog APL/W .Net Interface Guide

MakeProxy attempts to determine the correct path for WSDL . EXE and CSC . EXE,
but future versions of Microsoft. NET or Visual Studio require changes, in which case
you will have to modify this function to locate these tools.

Using LoanService from Dyalog APL

For example, the above call to MakeProxy will create a C# source code file called
LoanService.cs,and an assembly called LoanService.dll in your current
directory. The name of the proxy class in LoanService.dll is LoanService.

You use this proxy class in exactly the same way that you use any .NET class. For
example:

JUSING <«,c',.\LoanService.dll'

LN«<[INEW LoanService

LN.CalcPayments 100000 20 10 15 2
LoanResult

Notice that, as expected, the result of CalcPayments is an object of type
LoanResult. For convenience, we will assign this to LR and then reference its
fields:

LR«<LN.CalcPayments 100000 20 10 15 2

LR.Periods
10 11 12 13 14 15 16 17 18 19 20

LR.InterestRates
22.533.5445565.566.577.588.599.510 10.5

LR.(((pInterestRates),pPeriods)pPayments)
920.1345384% 844 .5907851 781.6836919 728.4970675 682.947

The Payments field is, of course, a vector because it was defined that way. How-
ever, as can be seen above, it is easy to give it the "right" shape.

When you execute the CalcPayments method in the proxy class, the class trans-
forms and packages up your arguments into an appropriate SOAP/XML stream and
sends them, using TCP/IP, to the URL that represents the Web Service wherever that
URL is on the internet or your Intranet. It then decodes the SOAP/XML that comes
back, and returns the response as the result of the method.

Note that, depending upon the speed of your connection, and the logical distance
away of the Web Service itself, calling a Web Service method can take a significant
amount of time; regardless of how much time it actually takes to execute on its
server.

Chapter 7: Calling Web Services 113

Using GolfService from Dyalog APL

The workspace samples\asp.net\webservices\webservices contains
functions that present a GUI interface to the Gol fService web service.

The GOLF function accesses GolfService through a proxy class. GOLF is called
with an argument of 0 or 1. Use 1 to force GOLF to create or rebuild the proxy class,
which it does by calling MakeProxy. You must use an argument of 1 the first time
you call GOLF, orifyou ever change the GolfService APL code.

Note that you cannot make the proxy for GolfService unless the Web Server
class has been compiled on the server. At present, the only way to trigger the com-
pilation of golf.asmx into a Web Service is to visit the page once using Internet
Explorer as described in the previous chapter.

The first few lines of the function are listed below. If the argument is 1, line[2] makes
the proxy class GolfService.DLL in the current directory; if not it is assumed to
be there already. Line[6] defines JUSING to use it, and Line[7] creates a new
instance which is assigned to GS. Line[8] calls the GetCourses method, which
returns a vector of Gol fCourse objects. Notice how namespace reference array
expansion is used to extract the course codes and names from the Code and Name
fields respectively.

V GOLF FORCE;F;DLL;COURSES;COURSECODES;N;GS;[JUSING
] :If FORCE#0

] DLL<«<MakeProxy
‘http://localhost/dyalog.net/golf/golf.asmx’
] :Else

] DLL«'.\GolfService.dll"'

] :EndIf

] JUSING<«'System'(',"',DLL)

] GS<[INEW GolfService

] COURSECODES COURSES<«{®tGS.GetCourses.(Code Name)

Lo N e N e N e N e B e | Lo N |

The following screen shot illustrates the user interface provided by GOLF. In this
example, the user has typed the names of two golfers (one rather more famous than
the other - at least in APL circles) and then presses the Book it! button.

114 Dyalog APL/W .Net Interface Guide

Al Dyalog APL Tee Reseryvation - |EI|5|

Select a Courze I St Andrevs j
Date & Time |08/06/2001 =| |o70000 =
Player 1 ITiger "Woods

Player 2 IF'eter Dannely

Player 3 ||

Player 4 I

[v Give me the nearest slat if my chosen me i unavalable

Boaok it I Starting Sheet LCancel

This action fires the BOOK callback function which is shown below.

vV BOOK;CCODE ; YMD; HOUR ;MINUTES; FLAG; NAMES ; BOOKING;M

[1] CCODE<«>F .COURSE.SelItems/COURSECODES
[2] YMD<«31tF.DATE. (IDNToDateoDateTime)
[3] HOUR MINUTES<«2114F.TIME.DateTime
(4] FLAG<1=F.Nearest.State
[5] NAMES<«<F.(Namel Name2 Name3 Namek).Text
[6] BOOKING«GS.MakeBooking CCODE
(ONEW DateTime (YMD,HOUR MINUTES 0)),FLAG,NAMES
[7] 'M'0OWC'MsgBox'
[8] :If BOOKING.OK
[9] M.Text«'Tee reserved for
',724>,/BOOKING.TeeTime.Players, 'c', '
[10] M.Text,«' at ',BOOKING.Course.Name
[11] M.Text,«' on ',BOOKING.TeeTime.Time.
(ToLongDateString,' at ',ToShortTimeString)
[12] :Else
[13] M.Text<BOOKING. (Course.Name, "',
TeeTime.Time.(ToLongDateString,
' at ',ToShortTimeString),' ',Message)
[14] tEndIf
[15] [(bQ'M!
\'4

Line[6] calls the MakeBooking method of the GS object, passing it the data entered
by the user. The result, a Booking object, is assigned to BOOKING. Line[8] checks
its OK field to tell whether or not the reservation was successful. If so, lines[9-11] dis-
play the message box illustrated below.

Chapter 7: Calling Web Services 115

Notice how the various fields are extracted and notice how the
ToLongDateStringand ToShortTime String methods are employed.

B x|

Tee reserved For Tiger Woods, Peter Donnelly at St Andrews on Friday, June 08, 2001 ak 07:00

Pressing the Starting Sheet button runs the SS callback listed below.

VvV SS;CCODE;YMD;M;SHEET;OK;COURSE; TEETIME;S;DATA;N
s TIMES
[1] CCODE<«>F.COURSE.SelItems/COURSECODES
[2] YMD<«31F .DATE. (IDNToDate>DateTime)
[3] SHEET«GS.GetStartingSheet CCODE([DNEW DateTime YMD)
[4] :If SHEET.OK

[5] DATA«<t(SHEET.Slots).Players
[6] TIMES«(SHEET.Slots).Time
[7] 'S'OWC'Form'('Starting Sheet for ',

SHEET.Course.Name,' ',
SHEET.Date.TolLongDateString)
('Coord' 'Pixel')('Size' 400 480)

[8] 'S.G'OWC'Grid'DATA(O 0)(S.Size)

[9] S.G.RowTitles«TIMES.ToShortTimeString

[10] S.G.ColTitles«<'Player 1' 'Player 2'
'Player 3' 'Player 4'

[11] S.G.TitleWidth«60

[12] doQ's"

[13] :Else

[14] 'M'OWC'MsgBox ' ('Starting Sheet for ',

SHEET.Course.Name,"' ',
SHEET.Date.ToLongDateString)
('Style' 'Error')

[15] M.Text«SHEET.Message
[16] OoQ'M'
[17] :EndIf

\'4

Line[3] calls the Get StartingSheet method ofthe GS object. The result, a
StartingSheet object, is assigned to SHEET. Line[4] checks its OK field to see if
the call succeeded. If so, lines[5-12] display the result in a Grid, which is illustrated
below.

116 Dyalog APL/W .Net Interface Guide

Af¢ Starting Sheet for 5t Andrews Friday, June 08, 2001 ;|g|5|
Player 1 Player 2 Player 3 Flayer 4 I
0700 Tiger Wands Peter Donnelly |
07:10

07:20
07:30
07:40
07:50
0&:00 l

Chapter 7: Calling Web Services 117

Exploring Web Services

You can use the Workspace Explorer to browse the proxy class associated with a
Web Service, in exactly the same way that you can browse any other NET
Assembly. The following screen shots show the Metadata for LoanService,
loaded from the LoanService.d11 proxy.

Remember, LoanService was written in APLScript, but it appears and behaves
just like any other .NET class.

The first picture displays the structure of the LoanResult class.

s 1| Exploring C:WProgram Files\Dvalog\Dvyalog APL 11.0%Samples\asp.netwebser... E]@
File Edit Wiew Columns Tools
R XQE| [EEED| 3o
‘Workspace Tree
oy # A
+ OsE
--Jiet HetaData
—-fét Loaded Hetadata
--Jiet loanservice
--fét Hodules
--figt cindocuments and settingsspetesdesktopuloanservice.dll
--figt Namespaces
--Jiet [Unnamed]
=Xt Classes
—-Jet LoanPesult
+ Jitt Base Class
+- Tt Constructors
=-Xiet Fields
It InterestRates : Sustem.Doublel]
fet Payments @ Sustem.Doublel]
It Periods @ Sustem. Int3zZLC1]
+-Jigt Hethods) |
-t LoanService ™

21 ohject(s). 62.06Mb (65075820 bytes) free. 109900 bytes used (0 bytes selected) in Local Scope

The second picture shows the methods exposed by LoanService. In addition to
CalcPayments, which was written in APLScript, there are a large number of
other methods, which have been inherited from the base class.

118

Dyalog APL/W .Net Interface Guide

1] Exploring C:\dyalog101\sampleslasp. netwebservices\WEBSERVICES [#] = |09

File Edit Wiew Columns Tools
TRXQE HEEE |6l eb

Wharkspace Tree

=-fift LoanService sl

#-Jift Base Class

+-Jiet Constructors

+-fét Events

--fiet Hethods
fet (PrivatelBoolean get_DesignHoder(l
figt (Privatel)System.Componentdodel .EventHandlerlist get Ewer
fét (PrivatelSystem.lAsuncResult Beginlnwoke(System.String,
&t (PrivatelSystem.Met.HebRequest GetHebRequest(Sustem.Uri!
fet (PrivatelSustem.Met.HebResponse GetHebResponse(Sustem.M:
fiet (Privatel)System.Met.HebResponse GetHebResponse(Sustem. M
&t (PrivatelSystem.Object GetService(Sustem.Tupel
et (PrivatelSustem.Object HemberwizeClone(d
fiet (Privatel)System.0Objectl] EndInvokelSustem.IAsuncResult)
&t (PrivatelSystem.Objectl] Inwoke(Sustem.String, Sustem.Ot
et (PrivatelUoid AsuncBufferedserial izeC(Sustem.Met.HebRequ:
figt (PrivatellUoid Dispose(Boolean) -
fét (PrivatelUnid Finalize()
et (PrivatelUoid Initial izefAsuncRequest(Sustem.Met.HebRequ:
figt Boolean Equals(3ystem.Object)
fét Boolean get AllowAutoRedirect(l
§&t Boolean get_Prefuthenticate()
figt Boolean get UnsafefAuthenticatedConnectionSharing()
&t Int32 get Timeouwt()
fét Int32 GetHashCode(d
et LoanResult CalcPauments(Int32, Int32, Int3Z, Intd2, Int!
fiet LoanResult EndCalcPauments(System. IAsuncResult)
Fét System.ComponentHodel . IContainer get_Containerc) W

15 object(s), 3.832Mb (4018440 bytes) free.

Chapter 7: Calling Web Services 119

Asynchronous Use

Web Services provide both synchronous (client calls the function and waits fora
result) and asynchronous operation.

Each method is exposed as a function with the same name (the synchronous version)
together with a pair of functions with that name prefixed with Begin and End
respectively.

The Beginxxx functions take two additional parameters; a delegate class that rep-
resents a callback function and a state parameter.

To initiate the call, you execute the Beginxxx method using the standard param-
eters followed by two objects. The first is an object of type
System.AsyncCallback that represents an asynchronous callback, i.e. a call-
back to be invoked when the asynchronous call is complete. The second is an object
which is used to supply extra information. We will see how callbacks are used later
in this section. If you are not using a callback, these items should be null object ref-
erences. You can specify a reference to a null object using the expression (ONS' ').
For example, using the LoanService sample as above:

A<LN.BeginCalcPayments 10000 16 10 12
9(ONS' ") (ONS' ")

The result is an object of type WebClientAsynchResult.

A
System.IAsyncResult [JCLASS
System.Web.Services.Protocols.WebClientAsyncResult

Then, some time later, you call the Endxxx method with this object as a parameter.
For example:

LN.EndCalcPayments A
LoanResult

You can execute several asynchronous calls in parallel:

Al<LN.BeginCalcPayments 20000 20 10 15
7(ONS" ") (ONS' ")
A2<LN.BeginCalcPayments 30000 10 8 12
3(ONS" ") (ONS' ")

LN.EndCalcPayments Al
LoanResult

LN.EndCalcPayments A2
LoanResult

120 Dyalog APL/W .Net Interface Guide

Using a callback

The simple approach described above is not always practical. If it can take a sig-
nificant amount of time for the web service to respond, you may prefer to have the
system notify you, via a callback function, when the result from the method is avail-
able.

The example function TestAsynclLoan in the workspace
samples\asp.net\webservices\webservices.dws illustrates how you
can do this. It is somewhat artificial, but hopefully explains the mechanism that is
involved.

TestAsyncLoan itselfis just a convenience function that calls AsyncLoan with
suitable arguments. TestAsynclLoan takes an argument of 1 or O that determines
whether or not a Proxy class for LoanService is to be built.

V TestAsyncLoan MAKEPROXY
[1] (sMAKEPROXY),"' AsyncLoan 10000 10 8 5 3'
[2] MAKEPROXY AsyncLoan 10000 10 8 5 3

v

The AsynclLoan function and its callback function GetLoanResult are more
interesting.

v {MAKEPROXY}AsyncLoan ARGS;DLL;SINK;LN;AS;AR
:If 2#[INC'MAKEPROXY' ¢ MAKEPROXY<«0 ¢ :EndIf
:If MAKEPROXY
DLL+MakeProxy'http://localhost/dyalog.net/loan/
loan.asmx'

Lo N e N e |
WN +—~

FWNF OLILILIL LI [T

e e e

tElse

DLL«'.\LoanService.dll'
:EndIf
OUSING<'System'("',',DLL)
LN<[INEW LoanService
AS<[INEW System.AsyncCal lback,<[JOR'GetLoanResult'
AR«<LN.BeginCalcPayments ARGS,AS,LN
"AsyncLoan waits for async call to complete'
:While 0=AR.IsCompleted

D(_I.I
:EndWhile

L N s N s N s N s N s B s N s N e N s N e |
== e = \0 00N OoN0F

V GetLoanResult arg;OBJ;LR;RSLT
[1] 'GetLoanResult callback fires ...'
[2] OBJ«arg.AsyncState
[3] LR«OBJ.EndCalcPayments arg
[4] RSLT<LR.(((pPeriods),(pInterestRates))pPayments)
[5] RSLT«((c''),LR.Periods),(LR.InterestRates),[1]RSLT
[6] 'Result is'
[7] 0«RSLT

Chapter 7: Calling Web Services 121

The effect of running TestAsyncLoan is as follows:

TestAsyncLoan 0
0 AsyncLoan 10000 10 8 4 3

...AsynclLoan waits for async call to complete...
...GetLoanResult callback fires

...Result is

3 3.5 4
8 117.2957193 105.7694035 96.5607447
9 119.5805173 108.0741442 98.88586746
121.892753 110.409689 101.2451382

AsynclLoan[8] creates a new instance of the LoanService class called LN. The
next line creates an object of type System.AsyncCallback named AS. This
object, which is termed a delegate, identifies the callback function that is to be
invoked when the asynchronous call to CalcPayments is complete. In this case,
the name of the callback function is GetLoanResult. Note that [JOR is necessary
because the AsyncCallback constructor must be called with a parameter of type
System.Object. Theline AsyncLoan[10] calls BeginCalcPayments with
the parameters for CalcPayments, followed by references to AS (which identifies
the callback) and LN, which identifies the object in question. The latter will turn up
in the argument supplied to the GetLoanResul t callback. Lines[12-14] loop, dis-
playing dots, until the asynchronous call is complete. GetLoanResul t will be
invoked during or immediately after this loop, and will be executed in a different
APL thread.

When the GetLoanResul t callback is invoked, its argument arg is an object of
type System.Web.Services.Protocols.WebClientAsyncResult. Itis
in fact a reference to the same object AR that was the result returned by
BeginCalcPayments.

This object has an AsyncState property that references the LoanService object
LN that we passed as the final parameter to BeginCalcPayments.
GetLoanResult[2] retrieves this object and assigns it to OBJ.
GetLoanResult[3] callsthe EndCalcPayments method, passing it arg as
the AsyncResult parameter as before. The resulting LoanResult object is then
formatted and displayed.

122 Dyalog APL/W .Net Interface Guide

123

Chapter 8:

Writing ASP.NET Web Pages

Introduction

Under Microsoft IIS, a static web page is defined by a simple text file with the exten-
sion .htm or .html that contains simple HTML. When a browser requests such a page,
IIS simply reads it and sends its content back to the client. The contents of a static
web page are constant and, until somebody changes it, the page appears the same to
all users at all times.

A dynamic web page is represented by a simple text file with the extension .aspx.
Such a file may contain a mixture of (static) HTML, ASP.NET objects and a server-
side script. ASP.NET objects are built-in .NET classes that generate HTML when the
page is processed. Scripts contain functions and subroutines that are invoked by
events (such as the Page Load event) or by user interaction.

Typically, a script will generate HTML dynamically, when the page is loaded. For
example, a script could perform a database operation and return an HTML table con-
taining a list of products and prices. A script may also contain code to process user
interaction, for example to process the contents of a Form that is filled in and then
submitted by the user. These scripts are referred to as server-side scripts because they
are executed on the server. The browser sees only the results produced by the scripts
and not the scripts themselves. Code in a server-side script always involves the gen-
eration of a new page by the server for display in the browser.

The first time ASP.NET processes a .NET web page, it compiles the entire page into a
NET Assembly. Subsequently, it calls the code in the assembly directly. The lan-
guage used to compile the page is defined in the <script> section, which is typically
defined at the top of the page. If the <script> section is omitted, or if it fails to explic-
itly specify the language attribute, the page is compiled using the default scripting
language. This is configurable, but is typically VB or C#.

124

Dyalog APL/W .Net Interface Guide

This Chapter is made up almost entirely of examples, the source code of which is sup-
plied in the samples\asp.net directory and the sub-directories it contains. This direc-
tory is mapped as an IIS Virtual Directory named dyalog.net, so you may execute
the examples by specifying the URL http://localhost/dyalog.net/ fol-
lowed by the name of the sub-directory and page. You can get an overview of the
samples by starting on the page
http://localhost/dyalog.net/index.htmand follow links from there

Touse APLScript effectively in Web Pages, you need to have a thorough under-
standing of how ASP.NET works.

In the first example, an outline description ASP.NET technology is provided. For fur-
ther information, see the Microsoft NET Framework documentation and Beginning
ASP.NET using VB.NET, Wrox Press Ltd, ISBN 1861005040.

Your first APL Web Page

The first web page example is tutorial/introl.aspx, which is listed below.
This page displays a button whose text is reversed each time you press it.

<script language="Dyalog" runat="server">

VReverse args

:Access public

:Signature Reverse Object,EventArgs
(oargs).Text«d(2args).Text

v

</script>

<html>

<body>

<Form runat=server>
<asp:Button id="Pressme"
Text="Press Me"
runat="server"
OnClick="Reverse"
/>

</form>

</body>

</html>

In this example, the page language is defined in the <script> section to be
"Dyalog". This in turn is mapped to the APLScript compiler via information in
the application’s web.config file or the global IIS configuration file,
machine.config.

Chapter 8: Writing ASP.NET Web Pages 125

The page layout is described in the section between the <html> and </html> tags.
This page contains a Form in which there is a Button labelled (initially) "Press Me"

The Form and Button page elements may appear to be simple HTML, but in fact
there is more to them than meets the eye and they are actually both types of
ASP.NET intrinsic controls.

Firstly, the runat="server" attribute indicates that an HTML element should be
parsed and treated as an HTML server control. Instead of being handled as pure text
that is to be transmitted to the browser "as is", an HTML server control is effectively
compiled into statements that then generate HTML when executed. Furthermore, an
HTML server control can be accessed programmatically by code in the Script,
whereas a pure HTML element cannot. On its own, runat="server" identifies
the HTML element as a so-called basic intrinsic control.

When you add runat="server" to a Form, ASP.NET automatically adds other
attributes that cause the values of'its controls to be POSTed back to the same page. In
addition, ASP.NET adds a HIDDEN control to the form and stores state information
in it. This means that when the page is reloaded into the browser the state and con-
tents of some or all of its controls can be maintained, without the need for you to
write additional code.

The asp: prefix for the Button, identifies the control as a special ASP.NET intrinsic
control. These are fully-fledged .NET Classes in the NET Namespace
System.Web.UI.WebControls that expose properties corresponding to the
standard attributes that are available for the equivalent HTML element. You manip-
ulate the control as an object, while it, at runtime, emits HTML that is inserted into
the page.

At this point, it is instructive to study what happens when the page is first loaded
and the appearance of the page is illustrated below.

3 http:Hlocalhost/dyalog. net/tutorialfintrol.aspx - M... E|[E|E|

File Edit ‘jew Favorites Tools Help ,',"

{}Back M - | |ﬂ @ ;“ ,'-:'Search 7 Favorites £ -

Address @http:,I',I'Icucalhnst,l'd';.falng.net,l'tutu:urial,l'intru:ul.aspx v (30 Links **

&) Done & J | ocal intranst

126

Dyalog APL/W .Net Interface Guide

The HTML that is transmitted to the browser is:

<html>
<body>

<form name="ctrll" method="post" action="introl.aspx"
id="ctrll">
<input type="hidden" name=" VIEWSTATE"
value="YTB6NTQ30DgOMjcyX19feA==5725bd57" />

<input type="submit" name="Pressme" value="Press Me"
id="Pressme" />
</form>
</body>
</html>

Firstly, notice that, as expected, the contents of the <script> section are not
present. Secondly, because the Form and Button are intrinsic controls, ASP.NET has
added certain attributes to the HTML that were not specified in the source code.

The Button now has the added attribute input type="submit", which means
that pressing the Button causes the contents of the Form to be transmitted back to the
sever.

The Form now has method="post" and action="introl.aspx" attributes,
which means that, when the Form is submitted, the data is POSTed back to
introl.aspx,the page that generated the HTML in the first place.

So when the user presses the button, the browser sends back a POST statement, with
the contents of the Form, including the value of the HIDDEN field, requesting the
browser to load introl.aspx.

In the server, ASP.NET reloads the page and processes it again. In fact, because of the
stateless nature of HTTP, the server does not know that it is reprocessing the same
page, except that it is being executed by a POST command with the hidden data
embedded in the Form that it put there the first time around. This is the mechanism
by which ASP.NET remembers the state of a page from one invocation to another.

This time, because a POST back is loading the page, and because the Pressme but-
ton caused the POST, ASP.NET executes the function associated with its onClick
attribute, namely the APLScript function Reverse.

When it is called, the argument supplied to Reverse contains two items. The first of
these is an object that represents the control that generated the onC1ick event; the
second is an object that represents the event itself. In fact, Reverse and its argu-
ment are very similar to a standard Dyalog APL callback function.

Chapter 8: Writing ASP.NET Web Pages 127

VReverse args

:Access public

:Signature Reverse Object,EventArgs
(oargs).Text«d(2args).Text

v

The code in the Reverse function is simple. The expression (2args) is a names-
pace reference (ref) to the Button, and (2args).Text refers to its Text property whose
value is reversed. Note that Reverse could just as easily refer to the Button by
name, and use Pressme. Text instead.

After pressing the button, the page is redisplayed as shown below:

3 http:Hlocalhost/dyalog. net/tutorialfintrol.aspx - M... |Z||E|rz|
File Edit ‘jew Favorites Tools Help ,1.'

(JBack -~ EIlE! o) Search < Favorites 49 -

Address @http:,I',I'Ic'calhnst,l'd';.faln:ng.net,l'tutn:nrial,l'intrn:nl.aspx w G0 Links

I@ Done % J Local intranet

o

|

This time, the HTML generated by introl.aspxis:

<html>
<body>

<form name="ctrll" method="post" action="introl.aspx"
id="ctrll">
<input type="hidden" name="_ VIEWSTATE"
value="YTBONTQ30DgOMjcyX2Ewel90ejV6MXhfYTB6X2h6NXoxeF 9hMHph
MHpoelR1IXHhOX2VNIHNzZXJQeF9feF9feHhfeHhfeF9feA==45acf576"
/>

<input type="submit" name="Pressme" value="eM sserP"
id="Pressme" />
</form>
</body>
</html>

Returning to the Reverse function, note that the declaration statements at the top
of'the function are essential to make it callable in this context.

VReverse args

tAccess public

:Signature Reverse Object,EventArgs
(oargs).Text«d(2args).Text

v

128

Dyalog APL/W .Net Interface Guide

Firstly the Reverse function must be declared as a public member of the script. This
is achieved with the statement.

:Access Public

Secondly, the NET runtime will only call the function if it possesses the correct sig-
nature, which is derived from its parameters and their types.

The required signature for a method connected to an event, such as the OnClick
event of a Button, is that it takes two parameters; the first of which is of type
System.Object and the second is of type System.EventArgs. The Reverse
function declares its parameters with the statements:

:Signature Reverse Object,EventArgs

Note that the parameter declarations do not include the System prefix. This is
because when the script is compiled the names are resolved using the current value of
[JUSING. When the APLScript is compiled, the default value for JUSING is auto-
matically defined to contain System along with most of the other namespaces that
will be used when writing web pages

(Strictly speaking, the first argument is expected to be of type
System.Web.UI.WebControls.Button,but as this type inherits ultimately
from System.Object the function signature is satisfied.)

Note that if the Reverse function is defined with a signature that does not match
that expected signature for the OnClick callback, the function will not be run.

Furthermore, if the function associated with the OnClick statement is not defined as a
public method in the APLScript the page will appear to compile but the
Reverse function will not get executed.

Note that unlike Web Services, there is no requirement fora :Class or
:EndClass statement in the script. This is because a file with an . aspx extension
implicitly generates a class that inherits from System.Web.UI.Page.

Chapter 8: Writing ASP.NET Web Pages 129

The Page_Load Event

Intro3.aspx illustrates how you can dynamically initialise the contents ofa Web
Page using the Page Load event. This example also introduces another type of Web
Control, the DropDownList object.

<script language="Dyalog" runat="server">

VPage_Load

tAccess Public

:if 0=IsPostBack
list.Items.Add c'Apples'
list.Items.Add <'Oranges'
list.Items.Add <'Bananas'

tendif

v

VSelect args

:Access public

:Signature Reverse Object,EventArgs

out.Text<«'You selected ',list.SelectedItem.Text

v

</script>

<body>

<form runat=server>
<asp:DropDownList id="list" runat="server"/>
<p>

<asp:Label id=out runat="server" />
<p>

<asp:Button id="btn"

Text="Submit"

runat="server"

OnClick="Select"

/>

</form>

</body>

When an ASP.NET web page is loaded, it generates a Page Load event. You can
use this event to perform initialisation simply by defining a public function called
Page_Load in your APLScript. This function will automatically be called every
time the page is loaded. The Page_Load function should be niladic.

130

Dyalog APL/W .Net Interface Guide

Note that, if the page employs the technique illustrated in Introl . aspx, whereby
the page is continually POSTed back to itself by user interaction, your Page_Load
function will be run every time the page is loaded and you may not wish to repeat
the initialisation every time. Fortunately, you can distinguish between the initial
load, and a subsequent load caused by the post back, using the IsPostBack prop-
erty. This property is inherited from the System.Web.UI.Page class, which is the
base class for any . aspx page.

The Page_Load function in this example checks the value of IsPostBack. If0
(the page is being loaded for the first time) it initialises the contents ofthe List
object, adding 3 items "Apples", "Oranges" and "Bananas". The explanation for the
statement:

list.Items.Add <'..."

is that the DropDownList WebControl has an ITtems property that is a collection
of ListItem objects. The collection implements an Add function that takes a
String Argument that can be used to add an item to the list.

Notice that the name of'the object L ist is defined by the id="11ist" attribute of
the DropDownList control that is defined in the page layout section of the page.

2 http:Hlocalhost/dyalog. net/tutorialfintro3.aspx - M... E”E”E|
File Edit ‘iew Favorites Tools Help ,1.’

QbBack - & ~ [¢] [2] (o S search 7 Favorites) -

Address :Elhttp:,l',l'lcucalhnst,l'dyalng.net,l'tutu:urial,l'intru:uS.aspx » Go Links *

.S
'

@ htkpsflocalhost fdyalog. net, \:g Local intranet

In this example, the page is processed by a POST back caused by pressing the
Submi t button. As it stands, changing the selection in the L ist object does not
cause the text in the out object to be changed; you have to press the Submi t but-
ton first.

Chapter 8: Writing ASP.NET Web Pages 131

A http:Hlocalhost/dyalog. net/tutorialfintro3.aspx - M... |Z||E|[Z|
File Edit YWiew Favorites Tools Help ,1.'
@QeBack ~) - [¥] [2] @» O search 7 Favorites) -

Address :EIhttp:,I',I'Icucalhnst,l'dyalng.net,l'tutu:urial,l'intru:uS.aspx A G0 Lirks

>

.Y
You selected Bananas]

[5.1

I@ Dione %J Local intranet

However, you can make this happen automatically by adding the following attrib-
utes to the List object (see intro4d.aspx):

AutoPostback="true"
OnSelectedIndexChanged="Select"/>

AutoPostback causes the object to generate HTML that will provoke a post back
whenever the selection is changed. When it does so, the
OnSelectedIndexChanged event will be generated in the server-side script
which in turn will call Se lect, which in turn will cause the text in the out object to
change.

Note that this technique, which can be used with most of the ASP.NET controls
including CheckBox, RadioButton and TextBox controls, relies on a round trip to
the server every time the value of the control changes. It will not perform well except
on a fast connection to a lightly loaded server.

132

Dyalog APL/W .Net Interface Guide

Code Behind

It is often desirable to separate the code content of a page completely from the
HTML and other text, layout or graphical information by placing it in a separate file.
In ASP.NET parlance, this technique is known as code behind.

The intro5.aspx example illustrates this technique.

%@Page Language="Dyalog" Inherits="FruitSelection"
src="fruit.apl" %>

<html>

<body>

<form runat="server" >
<asp:DropDownList id="1list" runat="server"
autopostback="true"
OnSelectedIndexChanged="Select"/>
<p>

<asp:Label id=out runat="server" />
</form>

</body>

</html>

The statement

%$@Page Language="Dyalog" Inherits="FruitSelection"
src="fruit.apl" %>

says that this page, when compiled, should inherit from a class called
FruitSelection. Furthermore, the FruitSelection classis written in the
"Dyalog" language, and its source code resides in a file called fruit.apl.
FruitSelection is effectively the base class for the . aspx page.

In this case, fruit.apl is simply another text file containing the APLScript
code and is shown below.

Chapter 8: Writing ASP.NET Web Pages 133

:Class FruitSelection: System.Web.UI.Page
:Using System

VPage_Load

:Access Public

:if 0=IsPostBack
list.Items.Add <'Pears'
list.Items.Add <'Nectarines'
list.Items.Add <'Strawberries'

tendif

\'4

VSelect args

:Access public

:Signature Select Object,EventArgs
out.Text«'You selected ',list.SelectedItem.Text
v

:EndClass

The first thing to notice is that the file requires :Class and :EndClass state-
ments. These are required to tell the APLScript compiler the name of the class
being defined, and the name ofits base class. When the source code isina . aspx
file, this information is provided automatically by the APLScript compiler.

The name of'the class, in this case FruitSelection, must be the same name as is
referenced in the . aspx web page file itself (intro5. aspx). The base class must
be System.Web.UI.Page

The body of'the script is just the same as the script section from the previous exam-
ple. Only the names of the fruit have been changed so that it is clear which example
is being executed.

134 Dyalog APL/W .Net Interface Guide

3 http:/llocalhost/dyalog. net/tutorialfintro5.aspx - M... |
File Edit Wiew Favorites Tools Help .'.,'

QBak -~ & ~ [x] [1» O search F7Favortes £ (-

Address @http:,l',l'lcucalhnst,l'dyalng.net,l'tutu:urial,l'intru:uE.aspx v Go Links *®

|F'ears V|

@ ‘ﬂ Local inkranet

)

23 http:Hlocalhost/dyalog. netftutorialfintro5.aspx - M... |: E|

File Edit ‘iew Favorites Tools Help .','
r X
@Back A > |ﬂ @ :‘ ,.':' Search =7 Favorites € | (-
Address @http:,l',l'ln:u:alhn:nst,l'd':.faln:ng.net,l'tutn:-rial,l'intrn:-E.aspx “ G0 Links ¥
-
|Strawherries V|
You selected Strawhbernes
w

@ Cione ‘ﬂ Local inkranet

Chapter 8: Writing ASP.NET Web Pages 135

Workspace Behind

The previous section discussed how APL logic can be separated from page layout, by
placing it in a separate APLScript file which is referred to from the . aspx web page.
It is also possible to have the code reside in a separate workspace. This allows you to
develop web pages using a traditional workspace approach, and it is probably the
quickest way to give an HTML front-end to an existing Dyalog APL application.

In the previous example, you saw that the fruit.apl file defined a new class
called FruitSelection that inherits from System.Web.UI.Page. This class
contains a Page_L oad function that (by virtue of its name) overrides the Page
Load method of the underlying base class and will be called every time the web
page is loaded or posted back. The Page_Load function takes whatever action is
required; for example, initialisation. The class also contained a callback function to
perform some action when the user pressed a button.

A similar technique is employed when the code behind the web page is implemented
in a separate workspace. The workspace should contain a class that inherits from
System.Web.UI.Page. This class may contain a Page_Load function that will
be invoked every time the corresponding web page is loaded, and as many callback
functions as are required to provide the application logic. The workspace is hooked
up to one or more web pages by the Inherits="<classname>" and
src="<workspace>" declarations in the Page directive statement that appears at
the beginning of the web page script.

The ACTFNS sub-directory in samples\asp.net contains some examples of Dya-
log APL systems that have been converted to run as Web applications using this tech-
nique.

Dyalog is grateful to David Hughes who provided the original workspaces and
advised on their conversion.

The two workspaces are named ACTFNS . DWS and PROJ . DWS. The original code
used the Dyalog APL GUI to display an input Form, collect and validate the user's
input, and calculate and display the results. The original logic supported field level
validation and results were immediately recalculated whenever any field was
changed. With some exceptions, this has been changed so that the user must press a
button to tell the system to recalculate the results. This approach is more appropriate
in an Internet application, especially when connection speed is low. Apart from this
change, the applications run more-or-less as originally designed.

136

Dyalog APL/W .Net Interface Guide

actfns.htm

sla_tab.aspx

sla_disp.asp

ACTFNS. DWS

proj.aspx

l

proj_xod.asp

l

PROJ. DAWS

The diagram above illustrates the structure of the web application and the various

files involved. The starting page, act fns . htm, simply provides a menu of choices
which link to various . aspx web pages. These pages in tumn are linked to one of the
two workspaces via the src="" declaration

Chapter 8: Writing ASP.NET Web Pages 137

File Edit Wiew Favorites Tools Help
QeBack ~ 3 - [¥] [o S search 7 Favorites £ - ?
Address @http:,I',I'Icucalhnst,l'dyalng.net,l'actfns,l'actfns.htm b Go Links *
A
Dyalog.Net Actuarial
Examples
¥
@ Done ‘ﬂ Local inkranet

The actfns.htm start page offers 3 application choices

Dyalog APL/W .Net Interface Guide

[@ ACTFNS Example - Microsoft Internet Explorer g@
- »
AN ") I e
Ele Edt YWisw Favorites Tools Help e - |ﬂ @ 'Jj 7 W ""
Back Forward Stop Refresh Home Search Favorites
Address @ httpeflocalbost fapl et fackfrsisla_tab, aspx v Go Links @ Actuarial,Met i

Single Life Assurance and Annuity Values

Moraly Table | A1s67 70gjseect_[v]

Interest Rate 325

Mortality Tables
®UK Assured Lives Initial Age 30
O UK Immediate Annuitant Initial Duration 0
O UK Pension Annuitant

Endowment Term 10

Calculate

Table Format @ Age ¥, durs tt+10 O Ages x-x+10, durt

a[x]+t:n-t A[x]+l:n-t
23.7359 0.252864 0727068
23,4851 0.260758 0.750589
232292 0.268813 0774854
229677 0.277045 0.799897
226984 0.285521 0.825765
224214 0.204243 0.852486
221365 0.303210 0.820029
21.8439 0.312420 0.808606
21.5436 0.321872 0.938072
21,2357 0.331565 0.968523
209202 0.341494 0.000000

‘-j Local intranet

The result of choosing Tabulate single life insurance and annuity values

When you choose the first option, the system loads s1la tab.aspx. This defines
the screen layout in terms of ASP.NET controls, including the DataGrid control for
tabulating the results. The sla_tab.aspx script contains the declarations
Inherits="actuarial" src="actfns.dws, so ASP.NET loads the
actuarial class from this workspace (via a call to Dyalog APL). When the page is
loaded, it generates a Page Load event, which in turn calls its Page Load
method. This populates the ASP controls with data, and the resulting web page is dis-
played. The mechanism is described below.

For further details, see the sla tab.aspx script and ACTFNS . DWS workspace.

Chapter 8: Writing ASP.NET Web Pages 139

Converting an Existing Workspace

The steps involved in converting the workspaces were as follows:

1.

Replace the Dyalog APL GUI with the equivalent HTML Forms, which are
defined in one or more separate .aspx web pages. To retain consistency, it
is helpful to give the ASP controls the same names as the original GUI con-
trols, which they are replacing.

Attach the names of APL callback functions to the appropriate ASP con-
trols; essentially, any controls that will be involved in a postback operation,
such as the Submit button.

Starting with a CLEAR WS, create a Class that represents a .NET class
based upon System.Web.UI.Page. For example, in converting the
ACTFNS workspace, we started by creating the class:

Jedit o actuarial

then defining JUSING as follows:

:Using System

:Using System.Web.UI,system.web.dll
:Using System.Web.UI.WebControls
:Using System.Web.UI.HtmlControls
:Using System.Data,system.data.dll

The name you choose for this class will replace classname in the
Inherits="classname" declaration in the . aspx web page(s) that call
it.

Create a namespace, change into it, and copy the workspace to be con-
verted; in this case, the starting point was a workspace named DH_ACTFNS:

JNS actuarial_utils

)CS actuarial_utils
#.actuarial_utils

)COPY DH_ACTFNS
DHACTFNS saved

Modify the code as appropriate, inserting a Page_Load function and what-
ever callback functions that are required.
Make sure the class 'actuarial' has an :Include actuarial utils statement

140

Dyalog APL/W .Net Interface Guide

The Page_Load function

The Page_Load function must be declared as :Access Public. Page Load must be
spelled correctly as it is this name that causes the function to supercede the base class
Page Load method of the same name.

For example, the Page Load function ofthe actuarial classin ACTFNS.DWS is
shown below:

V Page_Load;INT;AGE;DUR; TERM; TAB_DURS;MPC1;INT1;INT2;
INTY;RUN_OPTION;OPT
:Access public
:Signature Page_lLoad
A Overrides Page_Load method of Page class
A Called when Page is loaded or re-loaded after postback
A Initialise fields and calculate on initial load only
:If 0=IsPostBack
RUN_OPTION«GET_RUN_OPTION
:Select RUN_OPTION
:Case 1
EINT.Text«sINT«3.25
EAGE.Text«sAGE«30
EDUR.Text«3sDUR«0
ETRM.Text«sTERM«10
TA.Checked«TAB_DURS«1
CHANGE_TABLES @
:Case 2
CPLAN.Items.Clear
:For OPT :In 4>0PTSPLAN
CPLAN.Items.Add{82€[lDR 1pw:cw ¢ w}DETRAIL OPT
:EndFor
EMPC1.Text«sMPC1«100
EINT1.Text«sINT1«3.25
EINT2.Text«sINT2+«3.25
EINTY.Text«sINTY<+99
EAGE.Text«sAGE«30
EDUR.Text«sDUR«0
ETRM.Text«'N/A'
CHANGE_TABLES &
:EndSelect
:EndIf
v

If exported correctly, Page_Load will be called every time the calling web page is
loaded. This occurs when the page is loaded for the first time, and whenever the page
is submitted back to the web server by the browser (postback). A postback will occur
whenever a callback function is involved, and potentially at other times.

Chapter 8: Writing ASP.NET Web Pages 141

The Page_Load function may determine whether it is being invoked by a first time
load, or by a postback, from the value ofthe IsPostBack property. This is a prop-
erty that it inherits from its base class System.Web.UI.Page.

The Page_Load example shown above uses this property to control the initial-
isation of the controls in the calling web page. The names EINT, EAGE, EDUR and so
forth refer to names of controls in the calling web page. When Page_Load is
executed, the actuarial object is associated with the web page itself, and so the
names of all its controls are visible as sub-objects within it.

Note that the actuarial classisused by two different web pages, and the function
GET_RUN_OPTION function determines which of these are involved. (It does so by
detecting the presence or otherwise of a particular control on the page).

Callback functions

The actuarial class in ACTFNS.DWS provides four callback functions named CALC_
FSLTAB_RESULTS,CALC_FSL_RESULTS, CHANGE_TABLES and CHANGE _
TABLE_FORMAT. The first two of these functions are attached as callbacks to the
Calculate button in each of two separate web pages sla_tab.aspxand sla
disp.aspx. For example, the statement that defines the button in sla_ tab.aspx
is:

<asp:Button id=Buttonl runat="server" Text="Calculate"
onClick="CALC_ FSLTAB RESULTS"></asp:Button>

The third callback, CHANGE_TABLES, is called by sla_tab.aspx when the user
selects a different set of Mortality Tables from the three provided. CHANGE _TABLE _
FORMAT is called when the user clicks either of the two radio buttons that select how
the output is to be displayed.

Like the Page_L oad function, callback functions must be declared as being Public
methods. This is done using the :4ccess statement.

In addition, and this is essential, APL callback functions must be declared to have
the correct signature expected of NET callback functions. This means that they must
be monadic, and their argument must be declared to be a 2-element nested array con-
taining two .NET objects; the object that generated the event, and an object that rep-
resents the arguments to the event.

Specifically, these parameters must be of type System.Object and
System.EventArgs respectively. However, as our JUSING contains System, it
is not necessary to include the System prefix.

142 Dyalog APL/W .Net Interface Guide

For example, the statements for the function CALC_FSLTAB_RESULTS is shown
below:

tAccess Public
:Signature CALC_FSLTAB_RESULTS Object obj, EventArgs ev

Validation functions

In a Dyalog APL web page application, there are basically two approaches to val-
idation. You can handle it entirely yourself, or you can exploit the various validation
controls that come with ASP.NET. The sample application uses the latter approach
by way of illustration. For example:

<asp:TextBox id=EINT runat="server"></asp:TextBox>
<asp:RequiredFieldValidator id="REFVINT"
ControlToValidate="EINT"
ErrorMessage="Interest Rate must be a number
between 0 and 20"
Text:H *n
runat="server"/></td>

These ASP.NET statements associate a RequiredFieldvValidator named
RFVINT with the EINT field, the field used to enter Interest Rate. If the user leaves
this field blank, the system will automatically generate the specified error message.
The page defines a separate ValidationSummary control as follows:

<asp:ValidationSummary id="Summaryl"
HeaderText="Please enter a value in the following
fields"
Font-Size="smaller"
ShowSummary="false"
ShowMessageBox="true"
EnableClientScript="true"
runat="server"/>

The ValidationSummary control collects error messages from all the other val-
idation controls on the page, and displays them together. In this case, a pop-up mes-
sage box is used. One advantage of this approach is that this type of validation can
be carried out client-side by local JavaScript that is generated automatically on the
server and incorporated in the HTML that is sent to the browser.

Logical field validation for this page is carried out on the server by APL functions
that are attached to CustomValidator controls. For example:

Chapter 8: Writing ASP.NET Web Pages 143

<asp:CustomValidator id="CustomValidator INT"
OnServerValidate="VALIDATE INT"
ControlToValidate="EINT"
Display="Dynamic"
ErrorMessage="Interest Rate must be a number between
0 and 20"
runat="server"/>

These ASP.NET statements associate a CustomValidator control named
CustomValidator INT with the Interest Rate field EINT. The statement
OnServerValidate="VALIDATE INT" specifiesthat VALIDATE_INT isthe
validation function for the CustomValidator INT object.

The VALIDATE_INT function and its .Net Properties page are shown below.

V VALIDATE_INT MSG;sources;args
A Validates Interest Rate
tAccess Public
:Signature VALIDATE_INT Object source,
ServerValidateEventArgs args
source args<«MSG
:Trap O
INT<Convert.ToDouble args.Value
:Else
args.IsValid<«0
:Return
] :EndTrap
] args.IsValid«(0<INT)*202INT
v

WN =

Lo N N s N e N s N s N e N ey | Lo e N e |
==~ \O0~NOo U1 F
[l e J T [TR S S - —ee

To make the VALIDATE_INT function available to the calling web page, it is
exported as a method. Its calling signature, namely that it takes two parameters of
type System.Object and
System.Web.UI.WebControls.ServerValidateEventArgs respec-
tively, identifies it as a validation function. All these factors are essential in making
it recognizable and callable.

VALIDATE_INT[4] assigns its (2-element) argument to source and args respec-
tively. Both are namespace references to .NET objects. source is the object that
fired the event (CustomValidator INT). args is an object that represents the event.
Its Value property returns the text in the control being validated, in this case the
control named EINTI.

VALIDATE_INT[6] converts the text in the EINT control to a number, using the
ToDouble method of the System.Convert class. You could of course use [JVF I,
but the Convert methods automatically cater for National Language numerical for-
mats. This statement is executed within a : Trap control structure because the
method will generate a .NET exception if the data in the field is not a valid number.

144

Dyalog APL/W .Net Interface Guide

VALIDATE_INT[8 11] setthe IsValid property ofthe
ServerValidateEventArgs object args to 0 or 1 accordingly. This also sets
the IsValid property of the validation control represented by source. The system
will automatically display the error message associated with any validation control
whose IsValid property is 0. Furthermore, the page itselfhas an Tsvalid prop-
erty, which is the logical-and of all the TsValid properties of all the validation con-
trols on the page. This is used later by the calculation function CALC_FSLTAB_
VALUES.

In this case, the validation function stores the numeric value of'the control in a var-
iable INT, which will subsequently be used by the calculation functions.

When the page is posted back to the server, ASP.NET executes its own built-in val-
idation controls and then calls the functions associated with the
CustomValidator controls, in the order they are defined on the page. In addition
to the VALIDATE_INT function, there are eight other custom validation functions.
Three of these, which validate the Initial Age, Endowment Term and Initial Duration
fields, are listed below. Note that all ofthe VALIDATE _xxx functions have the
same .NET signature as VALIDATE_INT.

V VALIDATE_AGE MSG;source;args

[1] A Validates Age

[2] :Access Public

[3] :Signature VALIDATE_AGE Object source,
ServerValidateEventArgs args

(4] source args<«MSG

[5] :Trap 0

[6] AGE«Convert.ToInt32 args.Value

[7] :Else

[8] args.IsValid«0

[9] :Return

[10] :EndTrap

[11] args.IsValid«(10<AGE)~802AGE

v

VALIDATE_AGE issimilarto VALIDATE_INT, except that, because it expects an
integer value, it uses the ToInt32 method instead of the ToDouble method.

VALIDATE_TERM, which validates the Endowment Term field, is slightly more
interesting because there are two levels of checking involved. The first check that the
user has entered an integer number, is performed by lines [10-15] in the same way as
in the previous examples, using the ToInt 32 method ofthe System.Convert
class within a : Trap control structure. However, validation of the Endowment Term
field depends upon the value of another field, namely /Initial Age.

Chapter 8: Writing ASP.NET Web Pages 145

Not only must the user enter an integer, but also its value must be between 10 and
(90-AGE) where AGE is the value in the /nitial Age field. However, if the user has
entered an incorrect value in the Initial Age field, this, the second level of validation
cannot be performed.

V VALIDATE_TERM MSG;source;args
] A Validates Endowment Term
] tAccess Public
] :Signature VALIDATE_TERM Object source,
ServerValidateEventArgs args
] source args<«MSG
1 :If ~/(RFVAGE CustomValidator_AGE).IsValid
] source.ErrorMessage<«'Endowment Term must
be an integer between 10 and ',(390-AGE),
" (90-Age)'
:Else
source.ErrorMessage«'Endowment Term must
be an integer between 10 and (90-Age)'
tEndIf
:Trap O
TERM<«Convert.ToInt32 args.Value
tElse
args.IsValid<«0
:Return
:EndTrap
:If ~/(RFVAGE CustomValidator_AGE).IsValid
args.IsValid«(TERM210)*TERM<90-AGE
:EndIf

[o BE N1

O~NOUITFWN - O ——

Lo B e B e B s N s N s N s N s B B e | Lo N e |
L R L | B | Sl B | B) B |

[T T T T Y T Ve)

146 Dyalog APL/W .Net Interface Guide

At this stage it is worth reviewing the sequence of events that occurs when a user
action in the browser causes a postback to the server.

1.

The page, including all the contents of its fields, is sent back to the
ASP.NET server using an http POST command.

The postback causes the creation of a new instance of the page; which is
represented by a new clone of the actuarial namespace.

The creation of a new page instance raises the Page Load event which in
tumn invokes the Page Load method associated with the Page class, or an
override method is one is specified. In this case, it calls our Page_Load
function in the newly cloned instance of the actuarial namespace. The
Page_Load function typically deals with initialisation, such as opening a
component file or establishing a connection to a data source. In this case, it
does nothing on a postback.

Because the Calculate button was pressed (see Forcing Validation), each
of the CustomvValidator controls on the page raises an
OnServerValidate event, which in turn calls the associated function in
the current instance of the page. These events occur in the order the controls
are defined within the page. Note that built-in validation controls, includ-
ing any RequiredFieldvalidator controls, are invoked first, poten-
tially in the browser prior to the postback.

Because the Calculate button was pressed (see Forcing Validation), each
of the Customvalidator controls on the page raises an
OnServerValidate event, which in turn calls the associated function in
the current instance of the page. These events occur in the order the controls
are defined within the page. Note that built-in validation controls, includ-
ing any RequiredFieldvValidator controls, are invoked first, poten-
tially in the browser prior to the postback.

The control that caused the postback raises an appropriate event, which in
turn fires the associated callback function.

After all the control events have been raised and processed the Page
UnLoad event is raised and the associated function (if any) is invoked. This
function is a good place to implement termination code, such as closing a
component file or data source.

The instance of the page is destroyed. Any global variables in the names-
pace, that were defined by the Page Load function, the validation functions
and the callback function, are lost because the clone of the actuarial
namespace disappears.

Chapter 8: Writing ASP.NET Web Pages 147

This means that within the life of the cloned instance of the actuarial namespace, the
system runs our Page_Load function followed by VALIDATE_INT, followed by
VALIDATE_AGE,VALIDATE_TERM, VALIDATE_DUR etc. and finally by CALC_
FSLTAB_RESULTS. These functions take their input from the values passed in their
arguments (as in the case ofthe VALIDATE _xxx functions) or from the properties of
any of the controls on the Page. They perform output by modifying these properties,
or by invoking standard methods on the Page.

Notice that, if successful, the VALIDATE_INT function set up a global variable
(strictly speaking, only global within the current instance of the actuarial namespace)
called INT that contains the value in the Inferest Rate field. Similarly, VALIDATE _
AGE defines a variable called AGE. These variables are subsequently available for use
by the calculation function.

This technique, of having each validation function define a variable for its associated
field, saves repeating the conversion work in the calculation routine CALC_
FSLTAB_RESULTS that will be called when the validation is complete. It also saves
repeating the conversion work in a validation routine that needs to know the value
of'a previously validated field.

Returning to the explanation of VALIDATE_TERM, line [16] checks to see that both
the RequiredFieldValidator and CustomValidator controls for the Ini-
tial Age field register that the value in the field is valid, before attempting to perform
the second stage of the validation which depends upon AGE. Note that AGE must
exist (and be a reasonable value) if CustomValidator AGE.IsValidistrue.
Notice too that it is insufficient just to check the CustomValidator control,
because its validation function will not be invoked (and the control will register that
the field is valid) if the field is empty.

Line [5] uses similar logic to set up an appropriate error message, which is assigned
to the ErrorMessage property of the corresponding CustomvValidator con-
trol, represented by source.

VALIDATE_DUR, which validates the Initial Duration field, uses similar logic to
check that the value in the Endowment Term field is correct and that TERM, on which
it depends, is therefore defined. In addition, in line [8] it refers to the Checked prop-
erty of the RadioButton controls named TA and TB respectively.

148

Dyalog APL/W .Net Interface Guide

vV VALIDATE_DUR MSG;source;args;DT

Lo N e N e |
WN —~

L U W W W W W |
= \O 00 ~NOo O F
[J S S N S S - —_

[11]

A Validates Initial Duration
:Access Public
:Signature VALIDATE_DUR Object source,
ServerValidateEventArgs args
source args<MSG
:If 2=GET_RUN_OPTION
DT+1
tElse
DT«+/10 1x(TA TB).Checked
tEndIf
:If ~/(RFVTRM CustomValidator_TERM).IsValid

source.ErrorMessage«'Initial Duration must be an
integer between 0 and ', (sTERM-DT),
" (TERM-',(3DT),")"
tElse
source.ErrorMessage«'Initial Duration must be an
integer between 0 and (Term-',(sDT),"')"
:EndIf
:Trap O
DUR<«Convert.ToInt32 args.Value
:Else
args.IsValid<«0
:Return
:EndTrap
:If ~/(RFVTRM CustomValidator_TERM).IsValid
args.IsValid«(0<DUR)ADUR<TERM-DT
tEndIf
v

Forcing Validation

Validation controls are automatically invoked when the user activates a Button con-
trol, but not when other postbacks occur. For example, when the user selects a dif-
ferent Mortality Table (represented by a RadioButtonList control), the page
calls the CHANGE_TABLES function.

<asp:

<asp:
<asp:

<asp:

RadioButtonList id=MT runat="server"
RepeatDirection="Vertical" RepeatRows="3" tabIndex=1
onSelectedIndexChanged="CHANGE TABLES"
AutoPostBack="true">

ListItem Value="UK Assured Lives">

Selected="True">UK Assured Lives</asp:ListItem>
ListItem Value="UK Immediate Annuitant">

UK Immediate Annuitant</asp:ListItem>

ListItem Value="UK Pension Annuitant">

UK Pension Annuitant</asp:ListItem>

</asp:RadioButtonList>

Chapter 8: Writing ASP.NET Web Pages 149

A RadioButtonList control does not cause validation to occur, so this must be
done explicitly. This is easily achieved by calling the Validate method of the
Page itselfas shown in CHANGE_TABLES[11] below.

V CHANGE_TABLES ARGS;TableNames;TableName;OPTSMORT;
MORT_OPTION;RUN_OPTION
[1] :Access public
[2] :Signature CHANGE_TABLES Object obj, EventArgs ev
[3] RUN_OPTION<«GET_RUN_OPTION
[4] MORT_OPTION«1+MT.SelectedIndex
[5] OPTSMORT«MORT_OPTION>OPTSMORT_ASS OPTSMORT_ANNI
OPTSMORT_ANNP
[6] TableNames<+>0OPTSMORT A Assured lives/term
assurance tables

[7] TableNames<«{ (2=[JNC 0 143>0PTSMORT)#TableNames
[8] TableNames<«TableNames~"" '
[9] CMTAB.Items.Clear
[10] :For TableName :In TableNames
[11] CMTAB.Items.Add TableName
[12] :EndFor
[13] Page.Validate A Force page validation
[14] :Select RUN_OPTION
[15] :Case 1
[16] CALC_FSLTAB_RESULTS &
[17] :Case 2
[18] CALC_FSL_RESULTS &
[19] :EndSelect

150 Dyalog APL/W .Net Interface Guide

Calculating and Displaying Results

The function CALC_FSLTAB_RESULTS, which for brevity is only partially shown
below, isused by the sla_ tab.aspx page to calculate and display results.

V CALC_FSLTAB_RESULTS ARGS;X;ULT;MORTOPT;QTAB;TABLE;
TAB_DURS;RUN_OPTION;MORT_OPTION;UNIX;DOS;
CURRENTDATE ; CURRENTTIME ; OPTSMORT ; TABLES;MSG;data

[1] :If IsValid a Is page valid ?
[6] MORT_OPTION<«1+MT.SelectedIndex
[7] OPTSMORT«MORT_OPTION>OPTSMORT_ASS

OPTSMORT_ANNI
OPTSMORT_ANNP

[8]

[9] TABLES«{3>0PTSMORT

[10] MORTOPT<«(pTABLES)pO

[11] MORTOPT[1+CMTAB.SelectedIndex]«1

[12] TABLE«>MORTOPT/TABLES

[15] TAB_DURS<«TA.Checked

[41] FSLT<((pX)p(3 0)(3 0)(3 0)(11 4)(11 6)(12 4)
(11 6)(8 0))s X

[42] FSLT«FSLT~"" '

[43] :With data<[INEW DataTable

[44] cols<«Columns.Add <" ##.FSL_HEADER

[45] {

[46] row<NewRow &

[47] row.ItemArray<«w

[48] Rows.Add row

[49] YUV ##OFSLT

[50] :EndWith

[51] fsl.DataSource<[JNEW DataView data

[52] fsl.DataBind

[53] fsl.Visible«l

[54] :Else

[55] fsl.Visible<«0

[56] :EndIf

Chapter 8: Writing ASP.NET Web Pages 151

The results of the calculation are displayed in a DataGrid object named f£s1. This is
defined within the sla tab.aspx page as follows:

<asp:DataGrid id="fsl" runat="server" Width="700"
AllowPaging="false" BorderColor="black" CellPadding="3"
CellSpacing="0" Font-Size="9pt" PageSize="10">
<ItemStyle HorizontalAlign="right" Width="100">
</ItemStyle>
<HeaderStyle HorizontalAlign="center"
Font-Size="12pt" Font-Bold="true" BackColor="#17748A"
ForeColor="#FFFFFF"></HeaderStyle>
</asp:DataGrid>

CALC_FSLTAB_RESULTS[1] checks to see if the user input is valid. If not, [55]
hides the DataGrid object fs so that no results are displayed in the page. The
display of error messages is handled separately, and automatically, by the
ValidationSummary control on the page.

CALC_FSLTAB[11 15] obtain the values of the CMTAB (DropDownList)and
TA (RadioButton)controls on the page.

CALC_FSLTAB[43-53] store the calculated data table FSLT in the DataGrid
fsl.

152 Dyalog APL/W .Net Interface Guide

153

Chapter 9:

Writing Custom Controls for ASP.NET

Introduction

The previous chapter showed how you can build ASP.NET Web Pages by com-
bining APL code with the Web Controls provided in the NET Namespace
System.Web.UI.WebControls. These controls are in fact just ordinary .NET
classes. In particular, they are extensible components that can be used to develop
more complex controls that encapsulate additional functionality.

This chapter describes how you can go about building custom server-side controls,
for deployment in ASP.NET Web Pages.

A custom control is simply a NET class that inherits from the Control class in the
NET Namespace System.Web.UI, orinherits from a higher class that is itself
based upon the Control class. Like any other .NET class, a custom control is imple-
mented in an assembly, physically as a DLL file. This chapter explores three different
ways to implement a custom control.

The Control class provides a Render method whose job is to generate the HTML
that defines appearance of the control. The first example, the SimpleCt1 control,
overrides the Render method to display a simple string "Hello World" in the
browser.

The TemperatureConverterCtll control is an example of a compositional
control, i.e. one that is composed of other standard controls packaged with special
functionality. The TemperatureConverterCt12 control, uses the basic
approach of the SimpleCt1l control, but provides the same functionality as
TemperatureConverterCtll. The TemperatureConverterCtl3 control
illustrates how to generate events for the hosting page to catch and process.

154

Dyalog APL/W .Net Interface Guide

These examples, which are based upon a series of articles called Advanced ASP.NET
Server-Side Controls by George Shepherd that appeared in the msdn magazine
(October 2000, January 2001 and March 2001 issues), are implemented in a names-
pace called DyalogSamp Lles in the workspace
samples\asp.net\Temp\Bin\Temp.dws. The corresponding NET
Assembly samples\asp.net\Temp\Bin\Temp.dl1l was generated from this
workspace.

The SimpleCtl Control

JCLEAR
clear ws

Starting with a c Lear ws, the first step is to make the DyalogSamp les container
namespace, and then change into it.

JNS DyalogSamples
#.DyalogSamples

)CS DyalogSamples
#.DyalogSamples

Next we can build the first of the three example classes Simp leCt L , specifying its
base class to be Control (actually, System.Web.UI.Control:

Jed o SimpleCtl
:Class SimpleCtl: Control

we must define JUSING to include all of the NET Namespaces that will be needed
(this could also have been implemented with the : Us i ng statement, but the exam-
ples in this section were originally written for version 10.1 of Dyalog APL):

[JUSING<,c'System'
[(USING,«c'System.Collections.Specialized,system.dll"’
JUSING,«c'System.Web,System.Web.dL L'
[JUSING,«c'System.Web.UI"
[JUSING,«c'System.Web.WebControls'
JUSING,«c'System.Web.HtmlControls'

Having changed into the Simp leCt L namespace, we can define a function called
Render that supercedes the Render method that SimpleCt L has inherited from
its base class, System.Web.UI.Control.

Chapter 9: Writing Custom Controls for ASP.NET 155

The Render method defined by the System.Web.UI.Control base classis
void and takes a parameter of type Htm1TextWriter. When the SimpleCtl
control is referenced in a Web Page, ASP.NET creates an instance of it and calls its
Render method because itisa Control and is expected to have one. Moreover,
ASP.NET supplies an object of type Htm1lTextWriter as its parameter. You do
not need to worry where this object came from, or what it actually represents. You
need only know that an Htm1TextWriter provides a method called WritelLine
that may be used to output a text string to the browser. The mechanics of how this
actually happens are handled by the Htm1TextWriter object itself.

In APL terms, the argument to our Render function, output, will be a namespace
reference, and the function can simply call its WriteLine method with a character
vector argument. This argument can contain any valid HTML string and defines the
appearance ofthe SimpleCt1l control.

The next step is to define the Render function. The function is defined to be void
(i.e. it does not return a result) and to take a single parameter of type
HtmlTextWriter. Note that to successfully replace the base class method method,
the Render function must have exactly this :Signature.

V Render output;HTML
[1] :Access public
[2] :Signature Render HtmlTextWriter output
[3] HTML<«'<h3>Hello World</h3>'
[4] output.WriteLine cHTML

Finally, we can save the workspace and generate the NET Assembly. This must be
located in the Bin subdirectory of samples\asp.net\Temp which itselfis
mapped to the IIS Virtual Directory localhost/dyalog.net/Temp.

)SAVE
C:\Dyalog\samples\ASP .NET\TEMP\BIN\TEMP saved...

156 Dyalog APL/W .Net Interface Guide

-

Create bound file
Savein; |E}bin I:I € ? 4 "

%) TErMP I

iy Recent
Documents

|

Deskiop

o>

My Documents

<

tdy Cornputer

File name: |TEMF' M [Save]
[v]

Saveastype: | Microsoft Net Assembly [* dl] | Cancel |

b M et

@

When we select Export... from the File menu, the information displayed in the Status
window confirms that the SimpleCt1 class has been successfully emitted and

saved.

2 Dyalog APLI/W - Status

Elle ©Options
Parameter tupe "String” resolved to Sustem.String ~
Fesult tupe "<emptur" resolued to Sustem.Uoid
Compiled Hethod "RaisePostBackEuent"
Compiling Hethod "RaisePostDataChangedEwvent”
Result tupe "<emptu>" resolved to Sustem.Uoid
Compiled Hethod "RaisePostDataChangedEwvent”
Compiling Method “Render"
Parameter tupe "HimlTextHriter" resolued to System.Web.UT.HtmlTextHriter
Result tupe "<emptu>" resolved to Sustem.Uoid
Compiled Hethod "Render”
Emitted Tupe Dualogsamples.TemperatureConverterCtld
Emitted Assembly to File "Ci~Program FilesDyalog~Dyalog APL 11.0~3ampleswasp.net~TempsbinsTEHP.d11"
-
£ ‘ >

Chapter 9: Writing Custom Controls for ASP.NET 157

Using SimpleCtl

Our SimpleCtl control may now be included in any .NET Web Page from which
Temp.dll is accessible. The file samples\asp.net\Temp\Simple.aspx is
simply an example. The fact that this control is written in Dyalog APL is immaterial.

<%@ Register TagPrefix="Dyalog"
Namespace="DyalogSamples" Assembly="TEMP" %>

<html>
<body>
<Dyalog:SimpleCtl runat=server/>
</body>
</html>

The first line of the script specifies that any controls referenced later in the script that
are prefixed by Dyalog:, refer to custom controls in the NET Namespace called
DyalogSamples. In this case, DyalogSamples is located by searching the
Assembly TEMP.d11 in the Bin subdirectory.

A http:Hlocalhost/dyalog. net/temp/simple.aspx - Mic... E|E|

File Edit ‘iew Favorites Tools Help

]
'11

Qeack -) - [*] [@] @n S search <l Favorites 62 -

Address | @] http:f flocalhostidyalog.netitemp/simple. aspx % GD Links

Hello World

I:El Done %J Lacal intranet

158 Dyalog APL/W .Net Interface Guide

The TemperatureConverterCtl1 Control

The TemperatureConverterCtll control is an example of a compositional
control, i.e. a server-side custom control that is composed of other standard controls.

In this example, The TemperatureConverterCtl1 control gathers together two
textboxes and two push buttons into a single component as illustrated below. Type a
number into the Centigrade box, click the Centigrade To Fahrenheit button, and the
control converts accordingly. If you click the Fahrenheit To Centigrade button, the
reverse conversion is performed.

A http:Hlocalhost/dyalog. net/tempftemp1.aspx - Microsoft Inte... E][E|E|

File Edit Yiew Favorites Tools Help .';'
r 0 o
PBack ~) - [¥] [@ w) 5earch 5% Favorites 42 ~ iy W] -
Address ﬁElhttp:,l',l'lu:ucalhu:ust,l'dyalu:ug.net,l'temp,l'templ.aspx w . Go | Links **

Temperature Control

Falhrenheit: |56

Centigrade: 30

| Fahrenheit To Centigrade][Centigrade To Fahrenheit]

2] Done & Local inkranet

Starting with the TEMP workspace, the first step is to change into the
DyalogSamp les container namespace.

JLOAD SAMPLES\ASP.NET\TEMP\BIN\TEMP
C:\Dyalog\samples\ASP.NET\TEMP\BIN\TEMP saved...

)CS DyalogSamples
#.DyalogSamples

The TemperatureConverterCtl1 control is going to contain other standard
controls as child controls. A control that acts as a container should implement an
interface called INamingContainer.

Chapter 9: Writing Custom Controls for ASP.NET 159

This interface does not in fact require any methods; it merely acts as a marker. When
we create a c Lass to represent the control, we need to specify that it provides this
interface:

:Class TemperatureConverterCtlil: Control,
System.Web.UI.INamingContainer

Child Controls

Whenever ASP.NET initialises a Control, it callsits CreateChildControls
method (the default CreateChildControls method does nothing). So to make
the appropriate child controls, we simply define a function called
CreateChildControls with the appropriate public interface (no arguments and
no result) as shown below.

V CreateChildControls
:Access public override
:Signature CreateChildControls

Controls.Add [ONEW LiteralControl,cc'<h3>Fahrenheit: '
m_FahrenheitTextBox«[INEW TextBox
m_FahrenheitTextBox.Text«,'0"’

Controls.Add m_FahrenheitTextBox

Controls.Add [ONEW LiteralControl,cc'</h3>"

Controls.Add [INEW LiteralControl,cc'<h3>Centigrade: '
m_CentigradeTextBox<«[INEW TextBox
m_CentigradeTextBox.Text«,'0"

Controls.Add m_CentigradeTextBox

Controls.Add ONEW LiteralControl,cc'</h3>"

F2CButton<«[NEW Button
F2CButton.Text«'Fahrenheit To Centigrade'
F2CButton.onClick<[OR'F2CConvertBtn_Click'
Controls.Add F2CButton

C2FButton<[IJNEW Button
C2FButton.Text«'Centigrade To Fahrenheit'
C2FButton.onClick<«[JOR'C2FConvertBtn_Click"'
Controls.Add C2FButton

v

Line[2] creates an instance ofa LiteralControl (alabel) containing the text
"Fahrenheit" with an HTML tag "<H3>". Controls is a property ofthe Control
class (from which TemperatureConverterCtl1 inherits) that retumns a
ControlCollection object This has an Add method whose job is to add the
specified control to the list of child controls managed by the object.

160

Dyalog APL/W .Net Interface Guide

Lines[3-4] create a TextBox child control containing the text "0", and Line[5] adds
it to the child control list.

Line[6] adds a second LiteralControl to terminate the "<H3>" tag.
Lines [8-12] do the same for Centigrade.

Lines[14-15] create a But ton control labelled "Fahrenheit To Centigrade". Line[16]
associates the callback function F2CConvertBtn_CLlick with the button's
onClick event. Note that it is necessary to assign the [JOR ofthe function rather
than its name. Line[17] adds the button to the list of child controls.

Lines[19-22] create a Centigrade button in the same way.

This function is run every time the page is loaded; however in a postback situation,
other code steps in to modify the values in the textboxes, as we shall see.

The public interface forthe CreateChi ldControls function is defined on line
[1]using the : Access public statement.

Fahrenheit and Centigrade Values

The TemperatureConverterCtll maintains two public properties named
CentigradeValue and FahrenheitValue, which may be accessed by a client
application. These properties are not exposed directly as variables, but are obtained
and set via property get (or accessor) and property set (or mutator) functions. (This is
recommended practice for C# , so the example shows how it is done in APL.) In this
case, the values are simply stored in or obtained directly from the corresponding text-
boxes set up by CreateChildControls.

:Property CentigradeValue
V C«get
tAccess public
:Signature Double«get_CentigradeValue
C<em_CentigradeTextBox.Text
v

vV set C
:Access public
:Signature set_CentigradeValue Double Value
m_CentigradeTextBox.Text«sC.NewValue
v
:EndProperty A CentigradeValue

Chapter 9: Writing Custom Controls for ASP.NET 161

Notice that the Get function uses ¢ to convert the text in the textbox to a numeric
value. Clearly something more robust would be called for in a real application

Similar functions to handle the Fahrenheit property are provided but are not
shown here.

Responding to Button presses

We have seen how APL callback functions have been attached to the onClick
events in the two buttons. The C2FconvertBtn_CLlick callback function simply
obtains the CentigradeValue property, converts it to Fahrenheit using C2F, and
then sets the FahrenheitValue property.

vV C2FConvertBtn_Click args
:Access public
:Signature C2FConvertBtn_Click Object ,EventArgs
FahrenheitValue«C2F CentigradeValue

v

v f«C2F c
[1] f«32+cx1.8
v
V F2CConvertBtn_Click args
tAccess public
:Signature F2CConvertBtn_Click Object ,EventArgs
CentigradeValue«F2C FahrenheitValue

\
V c<F2C f

[1] c+(f-32)+1.8
\

These functions are all internal functions that are private to the control, and it is there-
fore not necessary to define public interfaces for them.

162

Dyalog APL/W .Net Interface Guide

Using the Control on the Page

The text of the script file samples\Temp\Templ . aspx is shown below. There is
really no difference between this example and the simple.aspx described earlier.

<%@ Register TagPrefix="Dyalog" Namespace="DyalogSamples"
Assembly="TEMP" %>

<html>

<body bgcolor="yellow">

<center>

<h3>Temperature

Control</h3>

<form runat=server>

<Dyalog:TemperatureConverterCtll id=TempCvtCtll runat=server/>
</form>

</center>

</body>

</html>

The HTML generated by the control at run-time is shown below. Notice that in place
of'the server-side control declaration in temp1l . aspx, there are two edit controls
with numerical values in them, and two push buttons to submit data entered on the
form to the server.

<html>

<body bgcolor="yellow">

<center>

<h3>Temperature
Control</h3>

<form name="ctrll" method="post" action="templ.aspx" id="ctrll">
<input type="hidden" name=" VIEWSTATE"
value="YTBO6MTc3MzAxNzYXNF9fX3g=03£01d88" />

<h3>Fahrenheit: <input name="TempCvtCtll:ctrll" type="text"
value="32" /></h3><h3>Centigrade: <input name="TempCvtCtll:ctrl4d"
type="text" value="0" /></h3><input type="submit"
name="TempCvtCtll:ctrl6" value="Fahrenheit To Centigrade"
/><input type="submit" name="TempCvtCtll:ctrl7" value="Centigrade
To Fahrenheit" />

</form>

</center>
</body>
</html>

Chapter 9: Writing Custom Controls for ASP.NET 163

The TemperatureConverterCtl2 Control

The previous example showed how to compose an ASP.NET custom control from
other standard controls. This example shows how you can instead generate standard
form elements on the browser by rendering the HTML for them directly.

Starting with the TEMP workspace, the first step is to change into the
DyalogSamples container namespace.

JLOAD SAMPLES\ASP.NET\TEMP\BIN\TEMP
C:\Dyalog\samples\ASP.NET\TEMP\BIN\TEMP saved...

)CS DyalogSamples
#.DyalogSamples

In the composite temperature control TemperatureConverterCtll, discussed
previously, all the data transfers between the browser and the server, relating to the
standard child controls that it contains, are handled automatically by the controls
themselves. Rendered controls require a bit more programming because it is up to the
control developer to do the data transfer. The data transfer is managed through two
interfaces, namely IPostBackDataHandler and
IPostBackEventHandler. We will see how these interfaces are used later.

When we create a c L ass to represent the control, we need to specify that it provides
these interfaces.

:Class TemperatureConverterCtl2: Control,
System.Web.UI.IPostBackDataHandler,
System.Web.UI.IPostBackEventHandler

Fahrenheit and Centigrade Values

Like the previous TemperatureConverterCt12 control, the
TemperatureConverterCtl2 maintains two public properties named
CentigradeValue and FahrenheitValue using property get and property set
functions.

This time, the control manages the current temperature values in two internal var-
iables named _CentigradeValue and _FahrenheitValue, which we must
initialise.

_CentigradeValue<«0

_FahrenheitValue<«0

The CentigradeValue’s get function simply returns the current value of _
CentigradeValue.Its NET Properties are defined as shown so that it is exported
as a property get function for the CentigradeValue property, and returns a
Double.

164

Dyalog APL/W .Net Interface Guide

V C«get
:Access public
:Signature Double<«get
C«<_CentigradeValue

v

The CentigradeValue's set function simply resets the value of _
CentigradeValue to that ofits argument. Its NET Properties are defined as
shown so that it is exported as a property set function for the Centigradevalue
property, and takes a Double.

V set C

:Access public

:Signature set Double Value
_CentigradeValue«C.NewValue
v

The property get and property set functions for the FahrenheitValue property
are similarly defined. The .signatures for these functions are similar to those for the
CentigradeValue functions and are not shown.

Rendering the Control

Like the SimpleCt1 example described earlier in this Chapter, the
TemperatureConverterCtl2 control has a Render function that generates
the HTML to represent its appearance, and in this case its behaviour too.

Aswe saw in the SimpleCtl example, the Render method will be called by
ASP.NET with a parameter that represents an Htm1TextWriter object. This is rep-
resented by the APL local name output.

Lines[3-8] and lines [10-15] generate HTML that defines two text boxes in which the
user may enter the Fahrenheit and centigrade values respectively. Lines[8+15] use
the Write method ofthe Htm1TextWriter object to output the HTML.

Lines[4+11] obtain the fully qualified identifier for this particular instance of the
TemperatureConverterCtl2 control fromits UniqueID property. Thisisa
property, which it inherits from Control and is therefore also a property of the cur-
rent (APL) namespace.

Lines[17-21] and Lines[23-27] generate and output the HTML to represent the two
buttons that convert from Fahrenheit to Centigrade and from Centigrade to Fahren-
heit respectively.

Chapter 9: Writing Custom Controls for ASP.NET 165

vV Render output;C;F;BF;CF
:Access public override
:Signature Render HtmlTextWriter output

F<'<h3>Fahrenheit <input name='
F,«UniquelID

F,«' id=FahrenheitValue type=text value='
F,«3_FahrenheitValue

F,«'></h3>"

output.WritecF

C+'<h3>Centigrade <input name='

C,<«UniquelD

C,«' id=CentigradeValueKey type=text value='

C,«3_CentigradeValue

C,«'></h3>'

output.WritecC

BF«'<input type=button value=FahrenheitToCentigrade '

BF,«' onClick="jscript:'

BF ,«Page.GetPostBackEventReference
OTHIS'FahrenheitToCentigrade'

BF,«'">'

output.WritecBF

CF«'<input type=button value=CentigradeToFahrenheit

CF,«' onClick="jscript:'

CF,«Page.GetPostBackEventReference
OTHIS'CentigradeToFahrenheit'

CF,"I">l

output.WritecCF

output.WriteLineoc™ '
' '
'

v

Lines[17-27] generate HTML that wires the buttons up to JavaScript handlers to be
executed by the browser. The JavaScript simply causes the browser to execute a post-
back, i.e. send the page contents back to the server.
GetPostBackEventReference is a(shared) method provided by the
System.Web.UI.Page class that generates a reference to a client-side script func-
tion. In this case it is called with two parameters, an object that represents the current
instance ofthe TemperatureConverterCtl12 control, and a string that will be
passed to the server to indicate the cause of the postback (i.e. which button was
pressed). The first parameter is a reference to the current object, which is returned by
the system function JTHIS.

The client-side script is itself generated, and inserted into the HTML stream auto-
matically.

To help to understand this process fully, it is instructive to examine the HTML that is
generated by these functions. We will do this a bit later in the Chapter.

166

Dyalog APL/W .Net Interface Guide

Loading the Posted Data

Once the server-side control has rendered the HTML for the browser, the user is free
to type numbers into the text boxes and to press the buttons.

When the user presses a button, the browser runs the client-side JavaScript code that
in turn generates a postback to the server.

When we created TemperatureConverterCt12 we specified that it supported
the IPostBackDataHandler interface. This interface must be implemented by
controls that want to receive postback data (i.e., the contents of Form fields that the
user may have entered or changed) IpostBackDataHandler has two methods
LoadPostData and RaisePostDataChangedEvent. LoadPostData is
automatically invoked when a postback occurs, and the postback data is supplied as
a parameter.

So when the postback occurs, the server reloads the original page and, because this is
a postback situation and our control has advertised the fact that it implements
IPostBackDataHandler, ASPNET invokes its LoadPostBack method. This
method is called with two parameters. The first is a key and the second is a collection
of name/value pairs. This contains the names of all the Form fields on the page (and
there may be others not directly associated with our custom control) and the values
they had when the user pressed the button. The key provides the means to extract the
relevant part of this collection. The LoadPostData function is shown below.

V R<LoadPostData args;postDataKey;values;controlValues;new
:Signature Boolean<IPostBackDataHandler.LoadPostData
String postDataKey,
NameValueCollection values
postDataKey values<«args
controlValues«values[cpostDataKey]
new<ParseControlValues controlValues
R«v/new=_FahrenheitValue _CentigradeValue
_FahrenheitValue _CentigradeValue<new
v

Line[3] obtains the two parameters from the argument and Line[4] uses the key to
extract the appropriate data from the collection. ControlValues is a comma-
delimited string containing name/value pairs. The function
ParseControlValues simply extracts the values from this string, i.e. the con-
tents of the Fahrenheit and Centigrade text boxes.

Chapter 9: Writing Custom Controls for ASP.NET 167

Postback Events

The result of LoadPostData is Boolean and indicates whether or not any of the
values in a control have changed. If the result is True (1), ASP.NET will next call
the RaisePostDataChanged method. This method is called with no parameters
and merely signals that something has changed. The control knows what has
changed by comparing the old with the new, as in LoadPostData[10].

Finally, the page framework calls the Rai sePostBackEvent method, passing it a
string that identifies the page element that caused the post back.

The objective of these calls is to provide the control with the information it requires
to synchronise its internal state with its appearance in the browser.

In this case, we are not interested in which ofthe two text box values the user has
altered; what matters is which of the two buttons FarenheitToCentigrade or
CentigradeToFarenheit was pressed. Therefore, in this case, the control uses
RaisePostBackEvent ratherthan RaisePostDataChanged (orindeed,
LoadPostData itself, which is another option). The reason is that
RaisePostBackEvent receives the name of the button as its argument.

So in our case, the RaisePostDataChanged function does nothing. Nev-
ertheless, it is essential that the function is provided and essential that it supports the
correct public interface, namely that it takes no arguments are returns no result
(Void).

vV RaisePostDataChangedEvent
[1] :Access public
[2] :Signature RaisePostDataChangedEvent
[3] A Do nothing

v

The RaisePostBackEvent function simply switches on its argument, which is
the name of the button that the user pressed, and recalculates _CentigradeValue
or _FahrenheitValue accordingly.

V RaisePostBackEvent eventArgument

[1] tAccess public

[2] :Signature RaisePostBackEvent String eventArg
[3] :Select eventArgument

[4] :Case 'FahrenheitToCentigrade'’

[5] _CentigradeValue«F2C _FahrenheitValue

[6] :Case 'CentigradeTofahrenheit'

[7] _FahrenheitValue«C2F _CentigradeValue

[8] :EndSelect

168

Dyalog APL/W .Net Interface Guide

Finally, the page framework calls the OnPreRender and Render functions again,
which generate new HTML for the browser.

Using the Control on a Page

Once all the functions, and their public interfaces for the
TemperatureConverterCtl12 have been defined, the workspace is saved and
TEMP. DLL is remade using Export from the Session File menu. For brevity, this proc-
ess is not shown pictorially here.

So long as it has access to this DLL, our custom control may be accessed from any
ASP.NET Web Page, and a simple example is shown below.

<%@ Register TagPrefix="Dyalog" Namespace="DyalogSamples"
Assembly="TEMP" %>

<html>

<body bgcolor="yellow">

<center>

<h3>
Temperature Control</h3>

<h4>
Server-Side Noncompositional control</h4>

<form runat=server>
<Dyalog:TemperatureConverterCtl2 id=TempCvtCtl2
runat=server/>

</form>

</center>
</body>
</html>

The HTML that is generated by the control is illustrated below. Notice the presence
of'a JavaScript function named doPostBack. This is generated by the
RegisterPostBackScript method called from the OnPreRender function.
The code that wires the buttons to this function was generated by the
GetPostBackEventReference method called from the Render function.

Chapter 9: Writing Custom Controls for ASP.NET 169

<html>

<body bgcolor="yellow">

<center>

<h3>Temperature
Control</h3>

<h4>Server-Side
Noncompositional control</h4>

<form name="ctrll" method="post" action="temp2.aspx" id="ctrll">

<input type="hidden" name="__ EVENTTARGET" value="" />
<input type="hidden" name="_ EVENTARGUMENT" value="" />
<input type="hidden" name=" VIEWSTATE"

value="YTB6MTc3MzAxNzYxM19fX3g=9cfcfa5c" />

<script language="javascript">

<l=-
function doPostBack (eventTarget, eventArgument) ({
var theform = document.ctrll
theform. EVENTTARGET.value = eventTarget
theform. EVENTARGUMENT.value = eventArgument
theform.submit ()
}
/]==>
</script>

<h3>Fahrenheit <input name=TempCvtCtl2 id=FahrenheitValue
type=text value=0></h3><h3>Centigrade <input name=TempCvtCtl2
id=CentigradeValueKey type=text value=0></h3><input type=button
value=FahrenheitToCentigrade onClick="jscript: doPostBack
('TempCvtCtl2', 'FahrenheitToCentigrade') "><input type=button
value=CentigradeToFahrenheit onClick="jscript: doPostBack
('TempCvtCtl2', 'CentigradeToFahrenheit') ">

</form>
</center>

</body>
</html>

170 Dyalog APL/W .Net Interface Guide

A http:/localhost/dyalog. net/tempftemp2.aspx - Microsoft Inte... EI[E'E'

File Edit ‘iew Favorites Tools Help :,'

’ 0 >

OBack A S |il| &1 o~ Search =7 Favoribes 450 @ o

Address €] hetp:flocalhostidyalog. net tempftempz. aspx w . Go | Links **
"~

Temperature Control

Server-Side Moncompositional control

Falwenheit 0

Centigrade 0

[FahrenheitTaCentigrade][CentigradeToF ahrenheit]

&] Done %J Local intranet

The TemperatureConverterCtl3 Control

In the previous examples, events generated by control have been internal events, i.e.
events that have been detected and processed internally by the control itself.

A separate requirement is to be able to design a custom control that generates exter-
nal events, i.e. events that can be detected and handled by the page that is hosting
the control. This example illustrates how to do this.

The TemperatureConverterCtl3 namespace is a copy of TemperatureConverterCtl2
with a couple of changes.

The first change is to describe an event that the control is going to generate. This is
done using [NQ inside TemperatureConverterCtl3 like this:

2 ONQ '' 'SetEventInfo' 'Export'
(('Double' 'Fahrenheit')
('Double' 'Centigrade'))

Chapter 9: Writing Custom Controls for ASP.NET 17

To define an event, enter its name after the ' SetEventInfo' string. Then enter
the list of parameter type/name pairs that the event will include when it is generated.
In this case, the name of the event is Export and it will report two parameters named
Fahrenheit and Centigrade which are both of data type Double.

This version of the control will present a slightly different appearance to the previous
one. The control itselfis wrapped up in an HTML Table, with the conversion buttons
arranged in a column. These buttons generate internal events that are caught and han-
dled by the control itself. The third row of the table contains an additional button
labelled Export which will generate the Export event when pressed. The Render func-
tion is shown below.

V Render output;TableRow;HTML;SET
:Access public override
:Signature Render HtmlTextWriter output
TableRow+{
HTML<'<tr><td>',a, '</td><td><input name=',UniquelD
HTML,«' id=',a, 'Value type=text
HTML,«'value=", (3w), '></td>"'
HTML,+'<td><input type=button value=Convert'
HTML,«' onClick="jscript:"'
HTML,«(Page.GetPostBackEventReference [THIS a),
""></td></tr>!
HTML
}

HTML<""'
HTML«'<table>"'
HTML,«'Fahrenheit'TableRow _FahrenheitValue
HTML,«'Centigrade'TableRow _CentigradeValue
SET«'<tr><td><input type=button value=Export '
SET,«' onClick="jscript:'
SET,«Page.GetPostBackEventReference [JTHIS'Export'
SET,«'"></td></tr>"
HTML,«SET, '</table>"'
output.WritecHTML
v

Notice that Render [18] causes the Export button to generate a Postback event
which will call RaisePostBackEvent with the argument 'Export'. Upto
now, this is just an internal event just like the events generated by the conversion but-
tons.

The final stage is to modify RaisePostBackEvent to propagate this event to the
host page.

172 Dyalog APL/W .Net Interface Guide

V RaisePostBackEvent eventArgument

v

:Signature IPostBackEventHandler.RaisePostBackEvent

String eventArg

:Select eventArgument
:Case 'Fahrenheit’

_CentigradeValue<«F2C _FahrenheitValue

:Case 'Centigrade’

_FahrenheitValue«C2F _CentigradeValue

:Case 'Export'

4 ONQ'' 'Export'_FahrenheitValue
_CentigradeValue

:EndSelect

This is simply done by adding a third :Case statement, so that when the function is
invoked with the argument ' Export ', it fires an Export event. This is done by line
[7] using 4 [ONQ. The elements of the right argument are:

[1]

Specifies that the event is generated by this
instance of the control

[2]

"Export'’ The name of the event to be generated

[3]

_FahrenheitValue [The value of the first parameter, Fahrenheit

(4]

The value of the second parameter,

_CentigradeValue Centigrade

It is then up to the page that is hosting the control to respond to the event in what-
ever way it deems appropriate.

Chapter 9: Writing Custom Controls for ASP.NET 173

Hosting the Control on a Page

The following example illustrates an ASP.NET web page that hosts the Tem-
peratureConverterCtl3 custom control and responds to its Export event. The page
uses a <script> written in APL, but it could just as easily be written in VB.NET.

<%@ Register TagPrefix="Dyalog" Namespace="DyalogSamples"
Assembly="TEMP"%>

<script language="Dyalog" runat="server">
V ExportCB args;sender;e

(1] sender e<args

[2] (Flab Clab).Text«s e.(Fahrenheit Centigrade)
v

</script>

<html>

<body>

<center>

<h3>Temperature Control
</h3>

<hbk>Generating Events
</hk4>

<form runat=server>

<Dyalog:TemperatureConverterCtl3 id="TempcvtCtl3"
onExport="ExportCB"

runat=server/>

</form>

<p>Exported values are:</p>

<table>
<tr><td>Fahrenheit:</td>
<td><asp:Label id="Flab" Text="" runat="server">
</asp:Label></td>
</tr>
<tr><td>Centigrade:</td>
<td><asp:Label id="Clab" Text="" runat="server">
</asp:Label></td>
</tr>
</table>
</center>
</body>
</html>

In this example, the host page associates a callback function ExportCB with the
Export event The ExportCB callback function is defined within the
<script></script> section of the page. It simply sets the Text property of two Label
controls to display the parameters reported by the event.

174 Dyalog APL/W .Net Interface Guide

The picture below illustrates what happens when you run the page. Notice that the
user can independently convert values between the two temperature scales and
export these values from the control, to the host page, by pressing the Export button.

&1 http: fflocalhostfapl. netftempftemp3.aspx - ... g@
ol

>

File Edit View Favorites Tools e - &?\‘f_
Back.
Address :E[http: /flocalhostfapl, netftemp/temps, aspx b G0

Temperature Control

Generating Events

Fahrenheit 212 Convert

Centigrade | 100

Exported values are:

Fahrenheit: 212
Centigrade: 100

&] Done %J Local intranet

175

Chapter 10:

APLScript

Introduction

APLScript isaDyalog APL scripting language. It was originally designed spe-
cifically to program ASP.NET Web Pages and Web Services, but it has been
extended to be of more general use outside the Microsoft NET environment.

APLScript is not workspace oriented (although you can call workspaces from it)
but is simply a character file containing function bodies and expressions.

APLScript files may be viewed and edited using any character-based editor which
supports Unicode text files, such as Notepad. APLScript files may also be edited
using Microsoft Word, although they must be saved as text files without any Word
formatting.

APLScript files employ Unicode encoding so you need a Unicode font with APL
symbols, such as APL385 Unicode, to view them. In order to type Dyalog APL sym-
bols into an APLScript file, you also need the Dyalog APL Input Method Editor
(IME), or other APL compatible keyboard.

Ifyou choose to use the Dyalog APL IME it can be configured using Control
panel/Keyboard. In particular, you may change the associated . DIN file from the
dialog box obtained by pressing IME Settings in the Input Locales tab. Under Win-
dows XP for example, this is done using Control panel/Regional and Language
Options.

There are basically three types of APLScript files that may be identified by three dif-
ferent file extensions. APLScript files with the extension . aspx and . asmx specify
NET classes that represent ASP.NET Web Pages and Web Services respectively.
APLScript files with the extension . apl may specify .NET classes or may simply
represent an APL application in a script format as opposed to a workspace format.
Such applications do not necessarily require the Microsoft .NET Framework.

176

Dyalog APL/W .Net Interface Guide

The APLScript Compiler

APLScript files are compiled into executable code by the APLScript compiler whose

name is given in the table below.

Unicode Edition Classic Edition
32-Bit [dyalogc unicode.exe dyalogc.exe
64-Bit [dyalogc64 unicode.exe dyalogc64d.exe

This program is called automatically by ASP.NET when a client application
requests a Web Page (.aspx) or Web Service (.asmx) and in these circumstances

always generates the corresponding .NET class. However, the Script Compiler may

also be used to:

e Compile an APLScript into a workspace (. dws) that you may subsequently

run using DYALOG.EXE or DYALOGRT .EXE in the traditional manner.
Compile an APLScript into a .NET class (. d11) which may subsequently
be used by any other NET compatible host language such as C# or Visual
Basic.

Compile an APLScript into a native Windows executable program (. exe),
which may be run as a stand-alone executable. This program may be dis-
tributed, along with the Dyalog APL runtime DLL, as a packaged appli-
cation, and does not require any of the additional support files and registry
entries that are typically needed by the Dyalog APL run-time

DYALOGRT . EXE. Note too that the Dyalog APL dynamic link library does
not use MAXWS but instead allocates workspace dynamically as required.
See the User Guide for further details.

Compile a Dyalog APL Workspace (.dws) into a native Windows execut-
able program, with the same characteristics and advantages described above.

The Script is designed to be run from a command prompt. If in the 32-bit Classic Edi-
tion you type dyalogc /? (to query its usage) the following output is displayed:

Chapter 10: APLScript 177

Dyalog APLScript compiler 32 bit. Classic Mode. Version

13.1.12350.0

Copyright Dyalog Ltd 2012

dyalogc.exe command line options:

/?

/r:file
/olut]:file
/x:file
project file
/res:file
/icon:file
/q

/v

/s

/nonet

.Net
/runtime
/1lx:expression
/t:library
/t:nativeexe
/t:workspace
/nomessages
creating

/console
/c
/unicode
intepreter
/wx:[0]1]3]

Usage

Add reference to assembly

Output file name

Read source files from Visual Studio.Net

Add resource to output file

File containing main program icon

Operate quietly

Verbose

Treat warnings as errors

Creates a binary that does not use Microsoft

Build a non-debuggable binary

Specify entry point (Latent Expression)
Build .Net library (.d1l1l)

Build native executable (.exe).
Build dyalog workspace (.dws)
Process does not use windows messages. Use when

Default

a process to run under IIS

Creates a console application

Creates a console application

Creates an application that runs in a Unicode

Sets WX for default code

178 Dyalog APL/W .Net Interface Guide

Creating an APLScript File

Conceptually, the simplest way to create an APLScript file is with Notepad,
although you may use many other tools including Microsoft Visual Studio as
described in the next Chapter.

1.
2.

Start Notepad

Choose Format/Font from the Menu Bar and select an appropriate Unicode
font that contains APL symbols, such as APL 385 Unicode or Arial Unicode
MS.

Select an APL keyboard by clicking on your keyboard selector in the Sys-
tem Tray. Note that this keyboard setting (and button) is associated only
with the current instance of Notepad. If you start another instance of Note-
pad, or another editor, you will have to select the APL keyboard for it sep-
arately and there will be two floating toolbars on your display.

Now type in your APL code. If you use a Ctrl keyboard, you will discover
that Ctrl+ keystrokes generate APL symbols For example, Ctrl+n generates
T.

Choose File/Save. When the Save As dialog appears, ensure that Encoding
is set to Unicode and Save as type: is set to All Files. Enter the name of the
file, adding the extension .asmx or .aspx, and then click Save. Note that you
have to save the .asmx file somewhere in an IIS Virtual Directory structure.

Chapter 10: APLScript 179

Transferring code from the Dyalog APL Session

You may find it easier to write APL code using the Dyalog APL function or class
editor that is provided by the Dyalog APL Session. Or you may already have code in
a workspace that you want to copy into an APLScript file.

If so, you can transfer code from the Session into your APLScript editor (e.g. Note-
pad) using the clipboard. Notice that because APLScript requires Unicode encoding
(for APL symbols), you must ensure that character data is written to the clipboard in
Unicode.

In the Unicode interpreter this is always done. In the Classic interpreter this is con-
trolled by a parameter called UnicodeToClipboard that specifies whether or not data
is transferred to and from the Windows clipboard as Unicode. This parameter may be
changed using the Trace/Edit page of the Configure dialog box.

If set (the default), APL text pasted to the clipboard from the Session is written as Uni-
code and APL requests Unicode data back from the clipboard when it is required.
This makes it easy to transfer APL code between the Session and an APLScript

editor, which is using the Arial Unicode MS font.

In the Classic interpreter when pasting code into the Dyalog editor, there are two
menu items under the Edit menu, which allow you to explicitly select whether the
Unicode mapping should be used, or the old mapping which corresponds to the Dya-
log Std TT or Dyalog Alt TT fonts. You should use "Paste non-Unicode" when trans-
ferring text from the on line help, or text copied from earlier versions of Dyalog APL
without the Unicode option.

Unless you explicitly want to have line numbers in your APLScript, the simplest
way to paste APL code from the Session into an APLScript text editor is as follows:

open the function in the function editor

select all the lines of code, or just the lines you want to copy

select Edit/Copy or press Ctrl+Ins

switch to your APLScript editor and select Edit/Paste or press Shift+Ins.
Insert del (V) symbols at the beginning and end of the function.

LR WLbe=

180

Dyalog APL/W .Net Interface Guide

If you want to preserve line numbers (this is allowed, but not recommended in APL-
Script files), you may use the following technique:

1. In the Session window, type a del (V) symbol followed by the name of the
function, followed by another del (V) and then press Enter. This causes the
function to be displayed, with line numbers, in the Session window.

2. Select the function lines, including the surrounding dels (V) and choose
Edit/Copy or press Ctrl+Insert.

3. switch to your APLScript editor and select Edit/Paste or press Shift+Ins.

General principles of APLScript

The layout ofan APLScript file differs according to whether the script defines a
Web Page, a Web Service, a .NET class, or an APL application that may have noth-
ing to do with the .NET Framework. However, within the APLScript, the code lay-
out rules are basically the same.

An APLScript file contains a sequence of function bodies and executable statements
that assign values to variables. In addition, the file typically contains statements that
are directives to the APLScript compiler. If the script is a Web Page or Web Service,
it may also contain directives to ASP.NET. The former all start with a colon symbol
(:) in the manner of control structures. For example, the : Name s pace statement tells
the APLScript compiler to create, and change into, a new namespace. The

:EndNamespace statement terminates the definition of the contents of a names-
pace and changes back from whence it came.

Assignment statements are used to set up system variables, such as [JML, IO,
[JUSING and arbitrary APL variables. For example:

OML<2
J10<0
JUSINGu«c'System.Data'

A<88
B«<'Hello World'

gcy'Myws'

These statements are extracted from the APLScript and executed by the compiler
in the order that they appear. It is important to recognise that they are executed at
compile time, and not at run-time, and may therefore only be used for initialisation.

Notice that it is acceptable to execute [JCY to bring in functions and variables from a
workspace that are to be incorporated into the code. This is especially useful to
import a set of utilities. Note also that it is possible to export these functions as meth-
ods of .NET classes if the functions contain the appropriate colon statements.

Chapter 10: APLScript 181

The APLScript compiler will in fact execute any valid APL expression that you
include. However, the results may not be useful and may indeed simply terminate the
compiler. For example, it is not sensible to execute statements such as (JLOAD, or
0OoFF.

Function bodies are defined between opening and closing del (V) symbols. These are
fixed by the APLScript compiler using [JF X. Line numbers and white space for-
matting are ignored.

Creating Programs (.exe) with APLScript

The following examples, which illustrate how you can create an executable program
(. exe) direct from an APLScript file, may be found in the directory
samples\aplscript.

A simple GUl example

The following APLScript illustrates the simplest possible GUI application that dis-
plays a message box containing the string "Hello World".

:Namespace N

OLX«<'N.RUN'

VRUN ;M

'M'OWC'MsgBox' 'A GUI exe' 'Hello World'
aoQ'M’

v

:EndNamespace

This example, which is saved in the file egl . apl, is compiled to a Windows execut-
able (. exe)using dyalogc.exe and run from the same command window as
shown below. Notice that it is essential to surround the code with : Namespace /
:EndNamespace statements and to define a [JL X either in the APLScript itself, or
as a parameter to the dyalogc command.

AWINDOWS\system32\cmd.exe

C:\Program Files-Dyalog-~Dyalog APL 11.8“Samplessaplscript>dyvalogec egl.apl I:
Dyaloy APLScript compiler. Version 11.8
Copyright Dyalog Ltd 2886

C:“Program Files“Dyalog~Dypalog APL 11 ._8~Samplessaplscriptregl

C:“\Program Filesz“Dyalog-Dyalog APL 11.8“Samples~aplscript>

182

Dyalog APL/W .Net Interface Guide

a Ut exe ST

Hella \Warld

You can associate the . exe with a desktop icon, and it will run stand-alone, without
a Command Prompt window. Furthermore, any default APL output that would nor-
mally be displayed in the session window will simply be ignored.

A simple console example

The following APLScript illustrates the simplest possible application that displays
the text "Hello World".

This example, which is saved in the file eg2 . apl, is compiled to a Windows execut-
able (. exe) and run from a command window as shown below. Notice that the
/console flag is used to tell the APLScript compiler to create a console appli-
cation that runs from a command prompt. In this case, default APL output that would
normally be displayed in the session window turns up in the command window from
which the program was run.

:Namespace N
OLX«"'N.RUN'
VRUN

'Hello World'
v
:EndNamespace

Once more, it is essential to surround the code with
:Namespace/:EndNamespace statements and to define a[L X either in the APL-
Script itself, or as a parameter to the dyalogc command.

AWINDOWS\system32\cmd.exe

C-“FProgram Files“Dyalog~Dyalog APL 11.8~Samples*aplscript>dyaloge ~“console egZ.a

1
Dyalog APLScript compiler. Uersion 11.8

Copyright Dyalog Ltd 2886

C-“FProgram Files“Dypalog~Dyalog APL 11.@~Samples*aplscriptreqg2
Hello Yorld

C:~Program Files“Dyalog~Dyalog APL ii.8~Samples™aplscript>_

Chapter 10: APLScript 183

Defining Namespaces

Namespaces are specified in an APLScript using the : Namespace and
:EndNamespace statements. Although you may use NS and 0CS within func-
tions inside an APLScript, you should not use these system functions outside func-
tion bodies. Note that such use is not prevented, but that the results will be

unpredictable.

:Namespace Name
introduces a new namespace called Name relative to the current space.
:EndNamespace

terminates the definition of the current namespace. Subsequent statements and func-
tion bodies are processed in the context of the original space.

It is imperative that at least ONE namespace be specified.

All functions specified between the : Namespace and : EndNamespace state-
ments are fixed in that namespace. Similarly, all assignments define variables inside
that namespace.

The following example illustrates how APL namespace usage is handled in APL-
Script. The program, contained in the file eg3. apl, is as follows:

:Namespace N
OLX<"'N.RUN'

VRUN
OPATH«'t'
NS.START
END

v
VR«CURSPACE
R<>[INSI

v

VEND
'Ending in ',CURSPACE
v

:NameSpace NS

VSTART

‘Starting in ',CURSPACE
v

:EndNameSpace
:EndNameSpace

184 Dyalog APL/W .Net Interface Guide

Creating

This somewhat contrived example illustrates how a namespace is defined inside
another namespace using :NameSpace and : EndNamespace statements. The
namespace NS contains a single function called START, which is called from the
main function RUN.

Notice that JPATH is defined dynamically in function RUN. If it were defined out-
side a function in a static statement in the script (say, after the statement that sets
0LX), it would not be honoured when the application was run.

This program is shown, compiled and run as a console application, below.

v CAWINDOWS\system32\emd.exe

Ci\PPogram Files~Dvalog~Dyalog APL ii1.@8~Samples~aplscript>dyalogc ~console eg3d.a

P
Dyalog APLScript compiler. Uersion 11.8
Copyright Dyalog Ltd 2086

C:~Program Files“~Dyalog~Dyalog APL ii1.@~Samplessaplscriptreg3
Gtarting in H#.H.HNS
Ending in #.N

C:“Program Files\DyalogsDyalog APL 11.@\Samples>a

NET Classes with APLScript

It is possible to define and use new .NET classes within an APLScript.

A classis defined by :Class and :EndClass statements. The methods provided
by the class are defined as function bodies enclosed within these statements. Please
see the Language Reference for a complete discussion of writing classes in Dyalog
APL. This chapter will only provide a brief introduction to the subject, aimed spe-
cifically at APLScript.

You may also define sub-classes or nested classes using nested : Class and
:EndClass statements.

:Class Name: Type

Declares a new class called Name, which is based upon the Base Class Type, which
may be any valid .NET Class.

:EndClass
Terminates a class definition block

A class specified in this way will automatically support the methods, properties and
events that it inherits from its Base Class, together with any new public methods that
you care to specify.

Chapter 10: APLScript 185

However, the new class only inherits a default constructor (which is called with no
parameters) and does not inherit all of the other private constructors from its Base
Class. You can define a method to be a constructor using the : Implements
Constructor declarative comment. Constructor overloading is supported and you
may define any number of different constructor functions in this way, but they must
have unique parameter sets for the system to distinguish between them.

You can create and use instances of a class by using the ONEW system function in
statements elsewhere in the APLScript.

Exporting Functions as Methods

Within a : Class definition block, you may define private functions and public
functions. A public function is one that is exposed as a method and may be called by
a client that creates an instance of your class. Public functions must have a section of
declaration statements. Other functions are purely internal to the class and are not
directly accessible by a client application.

The declaration statements for public functions perform the same task for an
APLScript that is performed using the NET Properties dialog box, or by executing
SetMethodInfo in the Dyalog APL Session, prior to creating a .NET assembly. The
following declaration statements may be used.

:Access Public

Specifies that the function is callable. This statement applies only to a .NET class or
to a Web Page and is not applicable to a Web Service.

:Access WebMethod

Specifies that the function is callable as a Web Method. This statement applies only
to a Web Service (.asmx). From version 11.0, the statement is equivalent to:

tAccess Public
:Attribute System.Web.Services.WebMethodAttribute

:Implements Constructor

Specifies that the function is a constructor for a new .NET class. This function must
appear between :Class and :EndClass statements and this applies only to a
Web Page (.aspx). See Defining Classes in APLScript for further details. A con-
structor is called when you execute the New method in the class.

186

Dyalog APL/W .Net Interface Guide

:Signature result«fn typel Namel, type2 Name2,..

Declares the result of the method to have a given data type, if any. It also declares
parameters to the method to have given data types and names. Namex is optional and
may be any well-formed name that identifies the parameter. This name will appear in
the metadata and is made available to a client application as information. It is there-
fore sensible to choose meaningful names. The names you allocate to parameters
have no other meaning and are not associated with the names of local variables that
you may choose to receive them. However, it is not a bad idea to use the same local
names as the public names of your parameters.

A .NET Class example

The following APLScript illustrates how you may create a NET Class using APL-
Script. The example class is the same as Example 1 in Chapter 5. The APLScript
code, saved in the file samples\aplclasses\aplclasses6.apl,isas fol-
lows:

:Namespace APLClasses

:Class Primitives: Object
JUSING«,c'System'
:Access public

V R«IndexGen N

:Access Public

:Signature Int32[]«IndexGen Int32 number
R«1N

\'4

:EndClass

:EndNamespace

This APLScript code defines a namespace called APLClasses. This simply acts as
a container and is there to establish a NET namespace of the same name within the
resulting NET assembly. Within APLClasses is defined a .NET class called
Primitives whose base classis System.Object. This class has a single public
method named IndexGen, which takes a parameter called number whose data type
is Int 32, and returns an array of Int32 as its result.

The following command shows how aplclasses6.apl is compiled to a NET
Assembly using the /t:1library flag.

APLClasses>dyalogc /t:library aplclassesé6.apl

Dyalog APLScript compiler 32bit Classic Mode Version 13.0.8690.0
Copyright Dyalog Limited 2011

APLClasses>

Chapter 10: APLScript 187

The next picture shows a view of the resulting aplclasses6.dl1l using
ILDASM.

¥ C:\Program Files\Dyalog\Dyalog APL 11.0%S... E'@'El
File Wiew Help

=4 CAProgram Filez\DyvaloghDyalog APL 11,045 ampleshaplclaszeshaplcl
B MAMNIFEST

=-|JE Primitives
b class public auto ans
& $Tolyalog: private static clagzs [bidge110]T oD valog
o Bide: private int32
B $nitializelnstanceFields © vaoid()
$lnitiaizeSharedFields © void()
B $ost_ids: int32])
.cchar: woid()
B ctor: wvoid])
B BazeConstructor : vaoid]]
B IndexGen : int32[][int32]

£ >
.azzembly aplclazzesh b
w

-

7 aplclasses6.dlL - IL DASM mE[x]

File Miew Help

P MAMNIFEST
=W APLClaszes

=-JJE Primitives
P .clazs public auto ansi
& $ToDyalog : private static clazs [bridge]T oDyalog
o fide : private int3z2
B $BazeConstuctar ; vaid()
.cchor : void(]
B ctor: void])
B IndexGen : int32[][int32)

.aszembly aplclaszest [A]

188

Dyalog APL/W .Net Interface Guide

This NET Class can be called from APL just like any other. For example:

JCLEAR
clear ws

[JUSING«'APLClasses,Samples\APLClasses\
aplclassesé6.dll’
APL<[INEW Primitives
APL.IndexGen 10
1234567 89 10

Defining Properties

Properties are defined by :Property and :EndProperty statements. A property
pertains to the class in which it is defined.

:Property Name
V C«get
[1] tAccess public
[2] :Signature Double<«get
[3] Ce...
v

Declares a new property called Name whose data typeis System.Double. The
latter may be any valid NET type which can be located through JUSING.

:EndProperty
Terminates a property definition block

Within a : Property block, you must define the accessors of the property. The

accessors specify the code that is associated with referencing and assigning the value

ofthe property. No other function definitions or statements are allowed inside a
:Property block.

The accessor used to reference the value of the property is represented by a function
named get that is defined within the : Property block. The accessor used to
assign a value to the property is represented by a function named set that is defined
within the :Property block.

The get function is used to retrieve the value of the property and must be a niladic
result returning function. The data type of its result determines the Type of the prop-
erty. The set function is used to change the value of the property and must be a
monadic function with no result. The argument to the function will have a data type
Type specified by the : Signature statement. A property that contains a get func-
tion but no set function is effectively a read-only property.

Chapter 10: APLScript 189

The following APLScript, saved in the file
samples\aplclasses\aplclasses?.apl, shows how a property called
IndexOrigin can be added to the previous example. Within the :Property
block there are two functions defined called get and set which are used to ref-
erence and assign a new value respectively. These functions have the fixed names
and syntax specified for property get and property set functions as described above.

:Namespace APLClasses

:Class Primitives: Object
JUSING«,c'System'
:Access public

V R«IndexGen N

tAccess Public

:Signature Int32[]«IndexGen Int32 number
R«1N

\4

:Property IndexOrigin
Vio«get
:Signature Int32«get Int32 number
jo«[JIO
v

Vset io
:Signature set Int32 number
:If i0e0 1
0I0<io
tEndIf
v
:EndProperty

tEndClass

:EndNamespace

190 Dyalog APL/W .Net Interface Guide

The TLDASM view ofthe new aplclasses7.dl11, with the addition of an
IndexOrigin property, is illustrated below.

7 aplclasses7.dlL - IL DASM mEx]

File Wiew Help

P MAMNIFEST
=@ APLClazzes

=-|JE Frimitives
b class public auto ansi
& $ToDyalog : private static class [bndge]Tolyalog
o $ide : private int32
B $BaseConstructar : woid()
.cchar ; void]]
B ctor: vaid()
B IndexGen: int32[]lnt32)
B aet_IndexOrigin : ink32])
B et _|ndexOrigin ; woid(int32)
& IndexOrigin : int32()

.azzembly aplclazzes? i

For other examples of the use of property definitions, see The Component File Solu-
tion in Chapter 11.

This NET Class can be called from APL just like any other. For example:

JCLEAR
clear ws

[JUSING«'APLClasses,Samples\APLClasses\
APLClasses7.DLL'
APL<[JNEW Primitives
APL.IndexGen 10
1234567 89 10
APL.IndexOrigin

APL.IndexOrigin<«0
APL.IndexGen 10
01234567829

Chapter 10: APLScript 191

Indexers

An indexer is a property of a class that enables an instance of that class (an object) to
be indexed in the same way as an array, if the host language supports this feature.
Languages that support object indexing include C# and Visual Basic. Dyalog APL
does also allow indexing to be used on objects. This means that you can define an
APL class that exports an indexer and you can use the indexer from C#, Visual Basic
or Dyalog APL.

Indexers are defined in the same way as properties, between :Property Default
and :EndProperty statements. An There may be only one indexer defined for a
class.

Note: the :Property Default statement in Dyalog APL is closely modelled on
the indexer feature in C# and employs similar syntax. If you use ILDASM to browse
a NET class containing an indexer, you will see the indexer as the default property
of that class, which is how it is actually implemented.

Creating ASP.NET Classes with APLScript

As mentioned previously, the original purpose of APLScript was to provide the abil-
ity to write ASP.NET Web Pages and Web Services in Dyalog APL. Both these appli-
cations are based upon script files.

Web Page Layout

An ASP.NET Web Page typically consists of a mixture of HTML and code written in
a scripting language. The script code is separated from the HTML by being embed-
ded within <script> and </script> tags and normally appears in the <head> </head>
section of the page. Only one block of script is allowed in a page. The script block
normally consists of a collection of functions, which are invoked by some event on
the page, or on an element of the page.

APLScript code starts with a statement:
<script language="Dyalog" runat=server>
and finishes with:

</script>

Typically, the APLScript code consists of callback functions that are attached to
server-side events on the page.

192

Dyalog APL/W .Net Interface Guide

Web Service Layout

The first line in a Web Service script must be a declaration statement such as:
<%@ WebService Language="Dyalog" Class="ServiceName" %>
where ServiceName is an arbitrary name that identifies your Web Service.

The next statement must be a : Cl ass statement that declares the name of the Web
Service and its Base Class from which it inherits. The base class will normally be
System.Web.Services.WebService. Forexample:

:Class ServiceName: System.Web.Services.WebService
The last line in the script must be:
:EndClass

Although it may appear awkward to have to specify the name of your Web Service
twice, this is necessary because the two statements are being processed quite sep-
arately by different software components. The first statement is processed by
ASP.NET. When it sees Language="Dyalog", it then calls the Dyalog
APLScript compiler, passing it the remainder of the script file. The : Class state-
ment tells the APLScript compiler the name of the Web Service and its base class.

:Classand :EndClass statements are private directives to the APLScript
compiler and are not relevant to ASP.NET.

How APLScript is processed by ASP.NET

Like any other Web Page or Web Service, an APLScript file is processed by
ASPNET.

The first time ASP.NET processes a script file, it first performs a compilation process
whose output is a NET assembly. ASP.NET then calls the code in this assembly to
generate the HTML (for a Web Page) or to run a method (fora Web Service).

ASP.NET associates the compiled assembly with the script file, and only recompiles
it iffwhen it has changed.

ASP.NET does not itself compile a script; it delegates this task to a specialised com-
piler that is associated with the language declared in the script. This association is
made either in the application’s web.config file or in the global machine.config
file. Dyalog Installs a default web.config file which includes these settings in the
samples\asp.net folder.

The APLScript compileris itself written in Dyalog APL.

Chapter 10: APLScript 193

Although the compilation process takes some time, it is typically only performed
once, so the performance of an APLScript Web Service or Web Page is not com-
promised. Once it has been compiled, ASP.NET redirects all subsequent requests for
an APLScript to its compiled assembly.

Please note that the use of the word compile in this process does not imply that your
APL code is actually compiled into Microsoft Intermediate Language (MSIL).
Although the process does in fact generate some MSIL, your APL code will still be
interpreted by the Dyalog APL DLL engine at run-time. The word compile is used
only to be consistent with the messages displayed by ASP.NET when it first proc-
esses the script.

The web.config file

The default web.config file (installed with Dyalog) includes all the settings to asso-
ciate Language = "dyalog" with the Dyalog APLScript compiler dyalogc.exe.
In addition the file includes an <appSettings> section, as follows:

<appSettings>

<add key="DyalogIsolationMode"
value="DyalogIsolationProcess" />

<add key="DyalogCompilerEncoding" value="Unicode" />
</appSettings>

The "DyaloglsolationMode" setting is used to provide the isolation method which is
discussed in chapter 12. It can have one of the following values:

e "DyalogIsolationAssembly"
e "DyalogIsolationApplication"
e "DyalogIsolationProcess" (the default)

The DyalogCompilerEncoding setting determines which version of the script com-
piler is used, and this in turn determines if the application will run in a Classic or Uni-
code interpreter. It can have one of the following values:

e "Unicode"
e "Classic" (the default)

The web.config file also enables debugging so that compiled assemblies use the
development version of the dyalog interpreter.

194 Dyalog APL/W .Net Interface Guide

195

Chapter 11:

Visual Studio Integration

Introduction

Dyalog APL supports loose integration with Microsoft Visual Studio.NET. Loose
integration allows you to create Visual Studio projects using APLScript, and build
.EXEs and .DLLs using Visual Studio as the front-end tool.

Dyalog APL is not yet tightly integrated with Visual Studio, and does not, for exam-
ple, permit you to use the Visual Studio User Interface design tools directly. How-
ever, you can create class libraries in APL and easily call them from VB, C# or VC++
applications which have been created using the designers.

The Dyalog APL installation program adds some sample APL applications in the
appropriate Visual Studio directory, which are described in this Chapter.

To begin with, the Hello World example shows you how to go about creating a
.EXE program file using Visual Studio and APLScript.

Hello World Example

This example illustrates what is involved how you go about creating an application
program (.exe) using APLScript with Visual Studio. The examples use Visual Studio
2005.

Creating an APL.EXE Project

Start Visual Studio and click New Project, or select File/New/Project from the menu
bar. This gives you a choice of three APL templates as shown below.

e Dyalog .exe Project for building GUI applications.

e Dyalog console Project to build a runtime application which will send out-
put to the console (command line program, will not be able to use the APL
session for debugging).

e Dyalog .dll Project to build an assembly containing APL classes which will
be used by other .Net tools or applications.

196 Dyalog APL/W .Net Interface Guide

New Project

Project types: Templates: | E”
= Visual C# visual Studio installed templates
Windows
Smart Device bDy’ang .dll Project Dyalog .exe Project:
Database bDyalog console Project
Starter Kits
Other Languages My Templates
Other Project Types
Dyalog - Search Online Templates...
Create a Dyalog Application |
Mame: | Projectl |
Location: | C:'\Docs\Visual Studio 2005\Projects i | [Browse...]
Solution Mame: | Projectl | [¥] Create directory for solution
I OK l [Cancel]

In this case, Select Dyalog.exe Project, and click OK.

Visual Studio will now create a new Project, in this case named Project1, con-
taining a single source code file named main.dyalogand a ReadMe. txt as
shown below. The latter contains instructions about using Visual Studio with Dya-
log APL.

Chapter 11: Visual Studio Integration 197

solution Explorer - Solution 'Projectl’ (1 project) [X]
Y
'_a Solution 'Project1’ (1 project)
= =4 Projectl
[Source Files
.i°| main.dyalog
ReadMe, txt

Ll'a Solution Explorer |53 Class View

We recommend that you select Tools|Options|Environment|Fonts and Colours, and
select the APL385 Unicode font for use with APL projects.

main.dyalogisan APLScript file containing a single comment. Select the APL
keyboard (see Input Method Editor), and enter the following simple APLScript pro-
gram.

@9 Project1 - Microsoft Visual Studio |:||§|r>__(|

Eile Edit Wiew Project Buld Debug Tools ‘Window Community Help

Al 5 el & G 9 - F- 5 b Debug -

=)
5 '_n%.‘*-: E= i Ld A # A< /@5} <5
~ maindyalog® | Start Page ~ > | Solution Explorer -Sol... » 01 X

B This file is a| starter file for your APLScr’lf |

'_: Solution 'Projectl’ {1 project)
= (24 Project1

[Source Files

__"1 main.dyalog

[Z] ReadMe. txt

tNamespace Projecti
0lx~"Projectl.ix’

v1x:mb

R program entry peoint

‘mb' Owec 'msgbox' 'Projectl’ 'HELLO WORLD'
Odg 'mb*

v

tEndNamespace

|

5]
_'E,. Error List| =] Output|[g Breakpoints
Ready Lln1l Cal 17 Ch 17 INS

| %
e
v

198 Dyalog APL/W .Net Interface Guide

When it runs, the example should display a simple message box. Notice that:

e Your APL code must be surrounded by a :Namespace ...

:EndNamespace block.
e You must set [JLX to start your application, but you do not have to explic-

itly call JOFF to end it.

To run your application, press F5 (Start Debugging), or click on the "play" icon
shown below the Community menu item on the previous screen.

Dyalog APL

You can avoid this pop-up by using ctrl-F5 (run without debugging). If you confirm
that you would like to trace the latent expression, the next thing you see should be:

@ (Project1)- Dyalog APL/W
File Edit View Windows Session Log Action Options Tools Threads Help

ws O E 0 E 4] | Obiect B B By 7 Tool O () & [M || Edt Session

IDgang APLAH Uersion 11.0.0 ﬂ
: . . [n]

Fri Sep 23 1l4:46:42 2006 ET
Debugger =lalx|

3 T 4 M [> ’ D = X ﬂ |Pr‘0ject1.l><[l]*ﬂ program entey poirj

point
"Pro t1' 'HELLO HWORLD®
5
o
Function Last saved by: mkrom: 29, september 2006 14:46 Pos: 1,0 L
Ready... Ins |HO
CurlObj: il OoR:0 |[OTRAP |O51:1 |OI0:1 |OML:0

I you get a warning that the project is out of date, ignore it.

Chapter 11: Visual Studio Integration 199

If you continue to last line of the function, the program displays the dialog box
shown below, waits for you to click OK, and then exits.

Project1 PE|

HELLO WORLD

As aresult of building the project, you will also have an executable program named
Projectl.exe.

200

Dyalog APL/W .Net Interface Guide

Using an Existing Workspace

The next example takes the approach a stage further and illustrates how an appli-
cation built using Visual Studio can access an existing workspace.

Go to the Start page and click New Project.

This time, create a Dyalog console Project and name the project Hello World. Edit
the contents ofmain.dyalog so that the | x function calls the function DISPLAY
that is not itself defined in the script.

22 Hello World - Microsoft Visual Studio M=1E3
File Edit WView Project Buld Debug Tools Window Community
Help

G-l T # S 9 - E-21 "

.
ey

T, b ax | S 5 = 13 48 B O
< main.dyalog* | Start Page -

A This file is a starter file for your APLScript:'

RIED)
i
¥

=i -1

:Mamespace HelloWorld
Olx+"HelloWorld.Ix'

vix

A program entry point -
O-#.DISPLAY "HELLO WORLD'

v

:EndNamespace

||

£

i’j Error List|] Qutput jﬁrealqjcuints
Ready Ln 12 Col 1 ch 1

| w

The DISPLAY function will be provided by the DISPLAY workspace, which you
can add to the project as follows.

In the Solution Explorer window, select Source Files and click the right button to
bring up the context menu.

Chapter 11: Visual Studio Integration 201

solution Explorer - Solution "Hello World' (1 project) ¥
Y
'_m Solution 'Hello World' {1 project)
= .33 Hello World

3

.Tr~°| main.dyalog

[Z] readMe.txt

Select Add, and then Add Existing Item....

This brings up a file selection dialog. Navi-

gate to the ws folder below the main Dyalog folder and choose display.dws.

Add Existing Item - Project2

Look in: |) ws w | Q- Q ¥ Tl E - Tods~
— ﬂ arachnid. dws E dollar.wmf ﬂ ntutils. dws .!FI util.dws
|5 3 zrachnid.ico jdosuhls dws ﬂ ocxbrows.dws .!-'l wdesign.dws
Desktap ﬂ atfin.dws !-"] dwsin.dws ﬂ ops.dws ﬁwdesign.ico
ﬂ bmed. dws t’] dwsout.dws ﬂ patch.dws .!FI wintro.dws
= @bubbles.bmp ﬂdd\sout nfiles.dws ﬂ PodketWD.DWS .!!FI wiutor95. dws
.___J ﬂ buildse.dws B dyaloga.rif ﬂ postscri.dws IF| wiutor.dws
My Projects .!!1 buildsemkrom.DWS ’]EXEE| dws ﬂ predemo.dws .!PI wlate. dws
ﬂ calc.dws ﬂ fastis.dws ﬂ prefect.dws a yacht,wmf
= @ calcultr, wnf ﬂ fonts.dws ﬂ prt.dws Gl ves.bmp
S! @cars.bmp l-"] fip.dws ﬂ quadna.dws
My Computer || = ch2.avi l-"] graphs.dws ﬂ smdemo.dws
ﬂ dcomreg.dws ﬂ groups.dws ﬂ smdesign.dws
) ddb.dws #]lift. dws) smtutor.dws
default.dif t’] math.dws ﬂ sgapl.DWS
B Elno.bmp ﬂ tutor.dws
File name: | v | [Add |
Files of type: |,.-_\|| Files (=.%) w | Cancel

This file is then added to the project as shown below.

Solution Explorer - Solution 'Hello World' {1 project) [X]
e
'__J Solution 'Hello World' (1 project)
.35 Hello World
= &
& display.dws
_1"| main.dyalog
[Z] readMe.txt

202 Dyalog APL/W .Net Interface Guide

If you run the solution without debugging, Visual Studio will pause after it com-
pletes execution, and allow you to see the output. Press ctr/+F5 or use the menu item
Debug|Start without Debugging.

CAWINDOWS\system3 2\cmd.exe

.

Press any key to continue . . .

Console applications always run using a runtime APL engine, so any errors in the
application will cause a Runtime Violation. Y ou can debug console applications by
temporarily switching to session output, by changing the command line used to
build the application as follows:

In the solution explorer, right click on Hello World and select properties. Under
Configuration Properties, select the NMake page and edit the Build Command Line,
which should be:

"$DYALOGNETDIR132%\dyalogc.exe" /console /o:"Hello World.exe"
/x:"Hello World.vcproj"

Remove the /console switch to debug your application, and put it back again
when you are done and would like it to use the session again.

203

Chapter 12:

Implementation Details

Introduction

The Dyalog DLL is the Dyalog APL engine that hosts the execution of all NET
classes that have been written in Dyalog APL, including APL Web Pages and APL
Web Services. The Dyalog DLL provides the interface between client applications
(such as ASP.NET) and your APL code. It receives calls from client applications, and
executes the appropriate APL code. It also works the other way, providing the inter-
face between your APL code and any .NET classes that you may call.

The full developer version of the Dyalog DLL contains the APL Session, Editor,
Tracer and so forth, and may be used to develop and debug an APL .NET class while
it is executing

The re-distributable run-time version of the Dyalog DLL contains no debugging facil-
ities.

204

Dyalog APL/W .Net Interface Guide

Isolation Mode

For each application which uses a class written in Dyalog APL, at least one copy of
the development or run-time version of the Dyalog DLL will be started in order to
host and execute the appropriate APL code. Each of these engines will have an APL
workspace associated with it, and this workspace will contain classes and instances
of'these classes. The number of engines (and associated workspaces) which are
started will depend on the Isolation Mode which was selected when the APL
assemblies used by the application were generated. Isolation modes are:

e Each host process has a single workspace
e Each appdomain has its own workspace
e Each assembly has its own workspace

Note that, in this context, Microsoft Internet Information Services (IIS) is a single
application, even though it may be hosting a large number of different web pages.
Each ASP.Net application will be running in a separate AppDomain, a mechanism
used by .NET to provide isolation within an application. Other .NET applications
may also be divided into different AppDomains.

In other words, if you use the first option, ALL classes and instances used by any IIS
web page will be hosted in the same workspace and share a single copy of the inter-
preter. The second option will start a new Dyalog engine for each ASP.Net appli-
cation; the final option an engine for each assembly containing APL classes.

Chapter 12: Implementation Details 205

Structure of the Active Workspace

Each engine which is started has a workspace associated with it that contains all the
APL objects it is currently hosting.

Unless the highest isolation mode, "Each assembly has its own workspace", has been
selected, the workspace will contain one or more namespaces associated with NET
AppDomains. When .NET calls Dyalog APL to process an APL class, it specifies the
AppDomain in which it is to be executed. To maintain AppDomain isolation and
scope, Dyalog APL associates each different AppDomain with a namespace whose
name is that of the AppDomain, prefixed by AppDomain_.

Within each AppDoma i n_ namespace, there will be one or more namespaces asso-
ciated with the different Assemblies from which the APL classes have been loaded.
These namespaces are named by the Assembly name prefixed by Assemb Ly_. Ifthe
APL class is a Web Page ora Web Service, the corresponding Assembly is created
dynamically when the page is first loaded. In this case, the name of the Assembly
itself is manufactured by .NET. Below the Assemb L y_ namespace is a namespace
that corresponds to the .NET Namespace that represents the container of your class. If
the APL class is a Web Page or Web Service, this namespace is called ASP. Finally,
the namespace tree ends with a namespace that represents the APL class. This will
have the same name as the class. In the case ofa Web Page or Web Service, this is the
name of the . aspx or . asmx file.

Note that in the manufactured namespace names, characters that would be invalid
symbols in a namespace name are replaced by underscores.

The following picture shows the namespace tree that exists in the Dyalog DLL work-
space when the aplfnsl.exe program is executed. This example is discussed as
Examplel in Chapter 5. To cause the suspension, an error has been introduced in the
method IndexGen.

&1 Exploring aplclasses1 [#]

File Edit View

ERXQHE o BEEEE 2488l

Horkspace Tree Contents of #.AppDomain_aplfnsl_exe.Assembly_a
g # :Class Primitives

-3 AppDomain_aplfnsl_exe :Using Sustem |
-3 Assembly_aplclassesl < RelndexBen M

- iAccess public
Q APLLIasses :Signature Int32031«IndexGen Int3z
El Primitives

o

(@ OSE Rea
+-Jigt Hetalata e
«-#% Tupel ibs :EndClass A Primitives

Class Shape: Pos: 1,38

1 object(s). 434.8Mb (455934552 bytes) free,

206

Dyalog APL/W .Net Interface Guide

In the above example case, there is a single AppDomain involved whose name,
aplfnsl.exe, isspecified by NET. APL has made a corresponding namespace
called AppDomain_aplfnsi_exe.Next, there is a namespace associated with the
Assembly aplclassesl,named Assembly APLCLASSESL. Beneath thisisa
namespace called APLClasses associated with the NET Namespace of the same
name. Finally, there is a namespace called Primi tives that represents the APL
class of that name. This namespace contains all the code associated with the class; in
this case, just a single function called IndexGen.

Note that, if the assembly had been generated with isolation mode (Each assembly
has its own workspace), the AppDomain and Assembly structure is not created above
the classes which are in the workspace, so the workspace structure is much simpler:

B1 Exploring aplclasses1 [#] g@@

Elle Edit View Columns Tools

B8 X4 E | cf aloglal &y

Horkspace Tree Contents of #.APLClasses.Primitives
-y # ‘Class Primitives
-3 APLClasses ‘Using Sustem

ERlErimitives ¥ RelndexBen M
iAccess public
:ﬁzEaData t3ignature Int3201«IndexGen Int32

+-2% Tupel ibs Ret
=

tEndClass A Primitives

Class Shape: Pos: 0,0
1 object(s). 434.5Mb (456003716 bytes) free.

The next picture shows the APL Session window that is displayed with execution
suspended on IndexGen[1]. Notice that the State Indicator in Dyalog APL has
been extended to display the entire .NET calling structure, and not just the APL
stack. In this case, the State Indicator shows that IndexGen was called from
MainClass.Main, which combines the class and method names specified in
aplfnsl.cs. Note that NET calls are slightly indented.

This extension to) ST applies also to DYALOG.EXE. For example, if you attach an
APL callback function to a Winforms Button object, the callback is executed as a
result of a call from the Button object back into the APL environment. The State Indi-
cator will show the entire call stack, including methods in the .NET components.

Chapter 12: Implementation Details 207

& aplclasses1 (AppDomain_aplfns1_exe.Assembly_aplclasses1.APLClasses.[Primitives])- Dyalog APL/W

File Edit View Windows Session Log Action Options Tools Threads Help

ws O & 0 & & || obect B B 35 V Tool O G % [3R | |Edt (B vy cu Session [[DElFER
Tue Sep 26 21:53:05 2006 ~ =
1:SYNTAX ERROR ﬂ

IndexGenl3] =

A

Jsi

[#.AppDomain_aplfnsl_exe.Assembly_aplclassesl.APLClasses. [Primitives]] #.AppDomain_aplfnsl_ex
IndexGenl31=

HainClass.HainC]
%1 Csustem thread:40562

< >
Debugger =lBlx|
1: Tid | ﬁ IndexGen[3lz=
ST UM Py PrEXI 3 |prD0main_ap1Fnsl_exe.Hssembly_mj |
£
o
] =
Revl - £
un: T
Function Last saved by: mkrom:26. september 2006 21:44 Pos: 3,0 w L
Ready... Ins MO
Curbbj: g:2 ODg:0 |OTRAP |O=I:1 |OI0:1 |OML:D

Notice too that IndexGen has been started on APL thread 1 which, in this case, is
associated with system thread 4056. If the client application were to call IndexGen
on multiple system threads, this would be reflected by multiple APL threads in the
workspace. This topic is discussed in further detail below.

The possibility for the client to execute code in several instances of an object at the
same time requires that each executing instance is separated from all the others. Each
instance will be created as an unnamed object in the workspace, within the relevant
appdomain and assembly namespaces.

208

Dyalog APL/W .Net Interface Guide

Threading

The .NET Framework is inherently a multi-threaded environment. For example,
ASP.NET runs its own thread pool from which it allocates system threads to its
clients. Calls from ASP.NET into APL Web Pages and Web Services will typically
be made from different system threads. This means that APL will receive calls from
NET while it is processing a previous call. The situation is further complicated when
you write an APL Web Page that calls an APL Web Service, both of which may be
hosted by a single Dyalog DLL inside ASP.NET. In these circumstances, ASP.NET
may well allocate different system threads to the NET calls, which are made into the
two separate APL objects. Although in the first example (multiple clients) APL
could theoretically impose its own queuing mechanism for incoming calls, it cannot
do so in the second case without causing a deadlock situation.

It is important to remember that whether running as DY ALOG.EXE, or as the Dya-
log DLL, the Dyalog APL interpreter executes in a single system thread. However,
APL does provide the ability to run several APL threads at the same time. If you are
unfamiliar with APL threads, see Language Reference, Chapter 1 for an introduction
to this topic.

To resolve this situation, Dyalog APL automatically allocates APL threads to NET
system threads and maintains a thread synchronisation table so that calls on the same
system thread are routed to the same APL thread, and vice versa. This is important
because a GUI object (cf. System.Winforms)is owned by the system thread that
created it and can only be accessed by that thread.

The way that system threads are allocated to APL threads differs between the case
where APL is running as the primary executable (DYALOG.EXE) orasa DLL
hosted by another program. The latter is actually the simpler of the two and will be
considered first.

DYALOG DLL Threading
In this case, all calls into the Dyalog DLL are initiated by Microsoft .NET.

When a NET system thread first needs to run an APL function, APL starts a new

APL thread for it, and executes the function in that APL thread. For example, if the
first call is a request to create a new instance of an APL .NET object, its constructor
function will be run in APL thread 1. An entry is made in the internal thread table
that associates the originating system thread with APL thread 1. When the con-
structor function terminates, the APL thread is retained so that it is available for a sub-
sequent call on its associated system thread. In this respect, the automatically created
APL thread differs from an APL thread that was created using the spawn operator &
(See Language Reference).

Chapter 12: Implementation Details 209

When a subsequent call comes in, APL locates the originating system thread in its
internal thread table, and runs the appropriate APL function in the corresponding
APL thread. Once again, when the function terminates, the APL thread is retained for
future use. If a call comes in on a new system thread, a new APL thread is created.

Notice that under normal circumstances, APL thread 0 is never used in the Dyalog
DLL. It is only ever used if, during debugging, the APL programmer explicitly
changes to thread 0 by executing) TID 0 and then runs an expression.

Periodically, APL checks the existence of all of the system threads in the internal
thread table, and removes those entries that are no longer running. This prevents the
situation arising that all APL threads are in use.

DYALOG.EXE Threading

In these cases, all calls to Microsoft NET are initiated by Dyalog APL. However,
these calls may well result in calls being made back from NET into APL.

When you make a .NET call from APL thread 0, the NET call is run on the same sys-
tem thread that is running APL itself.

When you make a .NET call from any other APL thread, the .NET call is run on a dif-
ferent system thread. Once again, the correspondence between the APL thread
number and the associated system thread is maintained (for the duration of the APL
thread) so that there are no thread/GUI ownership problems. Furthermore, APL call-
backs invoked by .NET calls back into APL will automatically be routed to the
appropriate APL thread. Notice that, unlike a call to a DLL via [INA, there is no way
to control whether or not the system uses a different system thread fora NET call. It
will always do so if called from an APL thread other than APL thread 0.

Thread Switching

Dyalog APL will potentially thread switch, i.e. switch execution from one APL
thread to another, at the start of any line of APL code. In addition, Dyalog APL will
potentially thread switch when a .Net method is called or when a .Net property is ref-
erenced or assigned a value. If the .NET call accesses a relatively slow device, such
as a disk or the internet, this feature can improve overall throughput by allowing
other APL code while a .NET call is waiting. On a multi-processor computer, APL
may truly execute in parallel with the NET code.

Note that when running DYALOG.EXE, .NET calls made from APL thread 0 will
prevent any switching between APL threads. This is because the .NET code is being
executed in the same system thread as APL itself. If you want to use APL multi-
threading in conjunction with .NET calls, it is therefore advisable to perform all of
the NET calls from threads other than APL thread 0.

210

Dyalog APL/W .Net Interface Guide

Debugging an APL.NET Class

All DYALOG.NET objects are executed by the Dyalog DLL . The full development
version of the Dyalog DLL contains all of the development and debug facilities of
the APL Session, including the Editors and Tracer. The run-time version contains no
debugging facilities at all. The choice of which version of the Dyalog DLL is used is
made when the assembly is exported from APL using the File| Export menu, or com-
piled using dyalogc.exe.

Ifan APL NET object that is bound to the full development version generates an
untrapped APL error (such asa VALUE ERROR) and the client application is con-
figured so that it is allowed to interact with the desktop, the APL code will suspend
and the APL Session window will be displayed. Otherwise, it will throw an excep-
tion.

Ifan APL NET object that is bound to the run-time version ofthe Dyalog DLL gen-
erates an untrapped APL error it will throw an exception.

Specifying the DLL

There are a number of different ways that you choose to which of the two versions of
the Dyalog DLL your DYALOG.NET class will be bound. Note that the appropriate
DLL must be available when the class is subsequently invoked. If the DLL to which

the APL .NET class is bound is not present, it will throw an exception.

Ifyou build a .NET class from a workspace using the File/Export menu item, you use
the Runtime application checkbox. If Runtime application is unchecked, the NET
Class will be bound to the full development version. If Runtime application is
checked, the NET Class will be bound to the run-time version.

Ifyou build a .NET class using the APLScript compiler, it will by default be bound
to the full development version. If you specify the /runtime flag, it will be bound
to the run-time version.

If your APL .NET class is a Web Page or a Web Service, you specify to which of the
two DLLs it will be bound using the Debug attribute. This is specified in the open-
ing declaration statement in the . aspx, .asax or . asmx file. If the statement spec-
ifies "Debug=true", the Web Page or Web Service will be bound to the full
development version. Ifit specifies "Debug=false", the Web Page or Web Serv-
ice will be bound to the run-time version.

If you omit the Debug= attribute in your Web page, the value will be determined
from the various .NET config files on your computer.

Chapter 12: Implementation Details 211

Forcing a suspension

If an APL error occurs in an APL NET object, a suspension will occur and the Ses-
sion will be available for debugging. But what if you want to force this to happen so
that you can Trace your code and see what is happening?

If your APL class is built directly from a workspace, you can force a suspension by
setting stops in your code before using Export to build the DLL. If your class is a
Web Page or Web Service where the code is contained in a workspace using the
workspace behind technique (See Chapter 8), you can set stops in this workspace
before you) SAVE it.

If your APL class is defined entirely in a Web Page, Web Service, or an APLScript
file, the only way to set a break point is to insert a line that sets a stop explicitly
using [JSTOP. It is essential that this line appears after the definition of the function
in the script. For example, to set a stop in the Intro\introl.aspx example dis-
cussed in Chapter 8, the script section could be as follows:

<script language="dyalog" runat="server">

VRotate args
:Access Public
:Signature Reverse Object,EventArgs

(oargs).Text«¢Pressme.Text
v

3 JSTOP 'Rotate’
</script>
As an alternative, you can always insert a deliberate error into your code!

Finally, you can usually force a suspension by generating a Weak Interrupt. This is
done from the pop-up menu on the APL icon in the System Tray that is associated
with the full development version of the Dyalog DLL. Note that selecting Weak
Interrupt from this menu will not have an immediate effect, but it sets a flag that will
cause Dyalog APL to suspend when it next executes a line of APL code. You will
need to activate your object in some way, e.g. by calling a method, for this to occur.
Note that this technique may not work ifthe Dyalog DLL is busy because a thread
switch automatically resets the Weak Interrupt flag. In these circumstances, try again.

The run-time version of the Dyalog DLL does not display an icon in the System
Tray.

212

Dyalog APL/W .Net Interface Guide

Using the Session, Editor and Tracer

When an DYALOG.NET object suspends execution, all other active APL .NET
objects bound to the full development version of the Dyalog DLL that are currently
being executed by the same client application will also suspend. Furthermore, all the
classes currently being hosted by the Dyalog DLL are visible to the APL developer
whether active (an instance is currently being executed) or not. Note that ifa client
application, such as ASP.NET, is also hosting APL .NET objects bound to the run-
time version of the Dyalog DLL, these objects will be hosted in a separate workspace
attached to the run-time version of the Dyalog DLL and will not be visible to the
developer.

Debugging a running DYALOG.NET object is substantially the same process as
debugging a stand-alone multi-threaded APL application. However, there are some
important things to remember.

Firstly, the namespace structure above your APL class should be treated as being invi-
olate. There is nothing to prevent you from deleting namespaces, renaming names-
paces, or creating new ones in the workspace. However, you do so at your peril!

Similarly, you should not alter, delete or rename any functions that have been auto-
matically generated on your behalf by the APLScript compiler. These functions are
also inviolate.

If execution in the Dyalog DLL is suspended, you may not execute) CLEAR or)
RESET. You may execute)OFF or[JOFF, but if you do so, the client application
will terminate. If you attempt to close the APL Session window, you will be warmed
that this will terminate the client application and you may cancel the operation or
continue (and exit).

Ifyou fix a problem in a suspended function and then press Resume or Continue
(Tracer) or execute a branch, and the execution of the currently invoked method suc-
ceeds, you will be left with an empty State Indicator (assuming that no other threads
are actively involved). The Dyalog DLL is at this stage idle, waiting for the next
client request and the State Indicator will be empty.

If, at this point, you close the APL Session window, a dialog box will give you the
option of terminating the (client) application, or simply hiding the APL Session Win-
dow. If you execute)OFF or[JOFF the client application will terminate.

Note that in the discussion above, a reference to terminating the client application
means that APL executes Application.Exit (). This may cause the application
to terminate cleanly (as with ASP.NET) or it may cause it to crash.

213

Index

NET Classes
exploring 13
using 10
writing 41

.NET namespaces 7

A

Access:Constructor statement 185
accessors 188
ACTFNS workspace 135
Active Server Pages 65
adding .NET objects 21
APL language extensions
for NET objects 21
aplc.exe 176
APLScript 175
Access:Constructor statement 185

Access:Public statement 78, 128, 185

Access:WebMethod statement 185
Class statement 133,184,192
compiler 176,192

copying from workspaces 181
defining classes 184

defining properties 188

editing 178

EndClass statement 133,184,192
EndIndexer statement 191
EndNamespace statement 183
EndProperty statement 188
example of a NET Class 186

example of a console application 182

example of a GUI application 181
importing code 179
Indexer statement 191

layout 180

Namespace statement 183

ParameterList statement 128, 186

Property statement 188

Returns statement 78, 186

specifying namespaces 183

Web Page 191

Web Service 192
APLScript compiler 4
AppDomain 204
Application.Run method 39
Application_End method 89
Application_Start method 89
ASP.NET.config files 89
assemblies

browsing 117

creating 41

exploring 13
AsyncCallback class 121
asynchronous use

ofa Web Service 119
AutoPostback property 131

B

base class 7,28,41,47,76,84,117,130, 132-
133,154, 184-186, 192

bridge dll 4,9,29

BRIDGE.DLL 29

Browse .Net Assembly dialog box 14

Button class 35, 160

ByRefclass 29

C

C# 45,49-50, 54,58, 60,62
child controls

ofa custom control 159
class constructor 17
Class Methods 21
Class statement 133,184,192
code behind 132
Common Language Runtime 2
Common Operators 21

214 Dyalog APL/W .Net Interface Guide

Common Type System 2,7
comparing .NET objects 21
compositional control 158
config files

for ASPNET 89
constructor 35,47
constructor methods 11
constructor overloading 55
Constructor statement 185
Constructors 11
Constructors folder 17
Control class 153
ControlCollection class 159
Convert class 29, 143
CreateChildControls method 159
creating GUI objects 33
custom controls 153, 158

D

DataGrid class 151
examples 39
DataGrid control 138
debugging 51
Directory class 24
DivRem method 29
DropDownList class 129
dyalog dll 4,42,79,176,203,208-210
Dyalog namespace 29
dyalog.exe.config 5
dyalognet dll 4
dyalogprovider dll 4

E

EndClass statement 133,184,192
enumeration 36-37

enumerations 28

ErrorMessage property 147
EventArgs class 141

exception 23,52

Exception class 23

Export 41,48

F

File class 24

FileStream class 31

Font class 29

FontStyle class 29
Form.ControlCollection class 36
FormBorderStyle class 28,36
FormStartPosition class 36

G

GDIPlus workspace 40
GetPostBackEventReference method 165, 168
GetType method 12
global.asax file 89
GOLF function 40,113
GolfService
calling from C# 105
testing from a browser 99
using from Dyalog APL 113
writing 88
GraphicsUnit class 29
GUI objects 33

H

hidden fields 126

HtmlITextWriter class 164
HttpWebRequest class 26
HttpWebResponse class 27

I

IIS 65
application 66
virtual directory 66-68,72-73,75, 80, 83,
106, 124,155,178
ILDASM 13,187,190-191
INamingContainer Interface 158
Indexers 191
Input Method Editor (IME) 175
Interfaces 63

Index

215

intrinsic controls 125-126

IpostBackDataHandler Interface 166
IPostBackDataHandler Interface 163
IPostBackEventHandler Interface 163

Isolation Mode 204
IsPostBack property 130, 141
IsValid property 144

J
JavaScript 165, 168

L

LiteralControl class 159
LoadPostData method 166
LoanService
exploring 117
testing from a browser 85
using asynchronously 119
using from Dyalog APL 112
writing 83

M

MailMessage class 25
MakeProxy function 111,113
manipulating files. 24

Math class 29

MAXWS parameter 176
Metadata 13,15,117

method overloading 59
method signature 128
Methods folder 19

Microsoft Internet Information Services 65

modal dialog box 34-35

N

namespace reference array expansion 25,113

Net Classes 13
NET classes 7
New method 17,35, 185
New system function 11

non-modal Forms 39
Notepad 175

(0]

object hierarchy 34
OnServerValidate event 146
Overloading 11

overriding 41

P

Page Load event 129,138
Page Load function 139-140
Page Load method 138
ParameterList statement 186
PATH:in APLScript 184
Point class 34-35

Pointers 29

positioning Forms and controls 34

post back 126, 140, 160, 166
post back events 167
private 17,161
PROJ workspace 135
properties

defining 160

property get function 163

property set function 163-164

Properties folder 18
proxy class 40,111-113
ProxyData class 26

R

RadioButton control 147

RadioButtonList control 148-149
RaisePostBackEvent method 167
RaisePostDataChangedEvent method 166
RegisterPostBackScript method 168

Render method 154, 164, 168

RequiredFeildValidator control 142
RequiredFieldValidator control 146

Returns statement 186
runat attribute 125

216 Dyalog APL/W .Net Interface Guide

S

Sending an email 25

server controls 125
signature statement 43,78
Size class 34

sizing Forms and controls 34
SmtpMail class 25

State Indicator 206

Stream class 27
StreamReader class 27
subtracting NET objects 21

T

TestAsyncLoan function 120
TETRIS workspace 40
TextBox class 160

thread switching 209
ToDouble method 143
ToInt32 method 144
ToString method 10, 12

U

Unicode 175

Unicode font 178

UnicodeToClipboard parameter 179
URIclass 26

Using statement 9

USING system variable 8,26,35,63,128

\%

Validate method 149
Validation

of ASP.NET web pages 142
ValidationSummary control 142,151
virtual directory 66
Visual Studio

Hello World example 195
Visual Studio NET

and APLScript 195

W

Weak Interrupt
in dyalog101.dll 211
web pages
code behind 132
custom controls 153
writing 123
web scraping 26
Web Services 2
asynchronoususe 119
WEBSERVICES workspace 40,89,111,113
WFGOLF function 40
Windows.Forms 33
WINFORMS workspace 33,39
Workspace Explorer
browsing assemblies 117
WSDL.EXE 111

