
The tool of thought for expert programming

Tuning Applications
Using the

]PROFILE User Command

Dyalog Limited

Minchens Court

Minchens Lane

Bramley

Hampshire

RG26 5BH

United Kingdom

tel: +44 (0)1256 830030

fax: +44 (0)1256 830031

email: support@dyalog.com

http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited

Copyright  1982-2011

mailto:support@dyalog.com

Copyright  2011,2012 by Dyalog Limited.

All rights reserved.

Version 13.1.0

Second Edition March 2012

Contents

C H A P T E R 1 Q UICK START GUIDE . 2
Introduction .. 2

Quick Start Guide ... 2

Textual Reports ... 5

C H A P T E R 2 C OLLECTING DATA . 6
Basics .. 6

Timer Overhead .. 7

Storing Data .. 7

C H A P T E R 3 R EPORTING . 8
Overview .. 8

Command Summary ... 8

Data Selection Switches.. 9

Output (or Input) Redirection ... 10

Other Switches .. 10

Examples .. 10

C H A P T E R 4 T HE DASHBOARD . 13
Introduction .. 13

Drill Down .. 14

Display Options .. 14

Right Click Menus .. 15

File and Help Menus ... 15

Windows Menu ... 15

Single Function Mode ... 16

APPENDIX A : XML F ILE FORMAT . 17
XML Example Files ... 18

APPENDIX B : CSV F ILE FORMAT . 19

 Tuning Applications 2

C H A P T E R 1

Quick Start Guide

Introduction

After an application has been in use for some time, usage patterns and data volumes

often change in ways that mean that original assumptions about performance no

longer hold. The ⎕PROFILE system function and the associated]PROFILE user

command are designed to make it easy to locate the “hot spots” in your application,

where significant quantities of CPU or Elapsed time is being spent. Tuning these hot

spots is usually the most effective way to improve application performance.

Note: ⎕PROFILE replaces an older system function called ⎕MONITOR, which is now

considered obsolete. The old function still works, so that tools which use it will

continue to function until they are no longer needed - but Dyalog recommends

rewriting tools to use ⎕PROFILE as soon as possible, and is likely to retire

⎕MONITOR in a future release. The new mechanism provides high precision timing,

calling tree analysis, and it also handles dfns and recursive code well, which the older

mechanism did not. For more detailed information about ⎕PROFILE itself, see the

Version 13.0 Release Notes or the Dyalog Language Reference.

The]PROFILE user command provides reporting functionality which is intended to

make it easy to summarize, filter and “drill down” on the (frequently large amounts

of) data returned by ⎕PROFILE.

Quick Start Guide

Before you start: ⎕PROFILE can generate very large quantities of data. To profile a

large application, you may need to increase workspace size significantly: You might

need a few hundred megabytes of additional workspace. Saving a result set as an

XML file is a particularly hungry operation.

Let us assume that we have decided to see whether the sample function Rain in the

RainPro workspace can be speeded up. If we are using Dyalog APL under

Windows, the easiest way to get a quick overview of the performance profile of this

function is to use the]PROFILE “dashboard” feature:

)load rainpro1
C:\...\ws\rainpro saved Fri Mar 11 09:12:28 2011
… Release date: 28th Aug 2008 …

 ⎕PROFILE 'start' ⋄ Rain 93 ⋄ ⎕PROFILE 'stop'
View PG ⍝⍝⍝ to see graph for 1993 rainfall
]profile

1 The RainPro examples in this manual were developed using the version of RainPro which

shipped with Dyalog APL v13.0. The version of RainPro that is shipped with Dyalog APL

v13.1 has changed slightly and the Rain function is located at Samples.Rain

 Tuning Applications 3

(if your data set is large, it may take some seconds to open the dashboard)

Under Windows, the user command enters dashboard mode by default:

The default dashboard layout uses a pie chart in the top left quadrant of the screen

showing usage broken down by function, and a table on the right showing the

individual lines of code that were responsible for the highest consumption. On both

sides, a drop-down allows you to switch between table and pie chart views of the

same data.

A click on a pie segment or row of a table will cause the body of the function in

question to be displayed in the corresponding window at the bottom of the screen.

The screen shot above was taken after the user had clicked in the pie segment for the

CH∆SET function on the left, and the row for the CH∆Q function in the table on the

right.

From the above, we can see that the function CH∆Q is responsible for about a third of

the CPU consumption, with a single line (line 4) responsible for 20% of CPU

consumption on its own. We can see that CH∆Q was called a large number of times,

which means that there may be two opportunities for reducing the consumption: We

can tune the function itself, and investigate whether it is being “misused” by the

functions that call it.

We can look at how the function is being used by right-clicking on the relevant pie

segment and selecting “Show Calls” from the menu. In the following screen shot, the

user has also double-clicked in the top function quadrant, which gives the two

function windows all the available space, and then clicked in the CH∆AXES pie

segment to inspect that function.

 Tuning Applications 4

In “calls” mode, the information that is displayed shows how many calls were made,

and how much of the consumption that occurred in the calls that originated in a given

function or line.

The above shows little evidence that the function is being over-used, so we should

probably look at tuning the function itself. We can see from the first screen shot that

the line:

CH∆Q[4] ST←4⊃CH⍙SET[CH⍙SET[;1]⍳⊂ID;]

… is responsible for 20% of the CPU consumption on its own. By putting a stop on

the function, we can discover that the CH⍙SET matrix is a 233×5 nested array, and

using the cmpx function from the dfns workspace we can see that repeatedly

indexing the first column out of the matrix in order to search it is costing about half

the CPU time (in other words, 10% of overall CPU consumption):

 cmpx 'CH⍙SET[CH⍙SET[;1]⍳⊂ID;4]' 'CH⍙SET[;1]'
 CH⍙SET[CH⍙SET[;1]⍳⊂ID;4] → 1.2E¯5 | 0% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕
* CH⍙SET[;1] → 5.5E¯6 | -53% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕

Since the application searches this column 311 times, we can see that we might be

able to speed the application up by 10% by devising a new strategy for the

representation of option settings, where the IDs are cached separately for lookups.

 Tuning Applications 5

Textual Reports

The dashboard is the easiest way to get started if you are on a system which supports

the Windows GUI, but the same information is available as textual output from the

]profile user command. We could have performed the same analysis that was

described above using a few commands. The information in the pie chart

(consumption by function) can be found using:

]profile summary -expr="Rain 93" -first=10
Total time: 35.6 msec

 Element msec % Calls
 #.Rain 35.6 100.0 1
 #.ch.Step 24.5 68.9 1
 #.ch.CH∆Q 11.8 33.1 311
 #.ch.CH∆SET 11.1 31.1 44
 #.ch.Set 5.8 16.4 9
 #.ch.CH∆STEP 4.7 13.1 1

#.ch.CH∆VALUES 4.1 11.5 2
 #.ch.Vline 3.4 9.5 1
 #.ch.CH∆XLAB 3.1 8.8 13
 #.ch.CH∆AXES 2.7 7.5 1

The -expr switch allows the specification of an APL statement to run, and is

equivalent to executing:

⎕PROFILE 'clear' ⋄ ⎕PROFILE 'start' ⋄ Rain 93 ⋄ ⎕PROFILE 'stop'

-first=10 limits the output to the top 10 functions. To see the top 5 lines of code,

you can follow the above with:

]profile summary -lines -first=5
 Total time: 35.6 msec

 Element msec % Calls
 #.Rain[25] 24.6 68.9 1
 #.ch.CH∆Q[4] 7.6 21.3 311
 #.ch.Set[4] 5.2 14.6 9
 #.ch.Step[53] 4.7 13.2 1
 #.ch.Step[43] 4.4 12.4 1

And finally, we can get the call analysis report for the CH∆Q function:

]profile calls -fn=#.ch.CH∆Q -first=5
 Total time: 35.6 msec; Selected time: 11.1 msec

 Element msec % Calls
 #.ch.CH∆AXES 1.7 4.8 43
 #.ch.CH∆YLAB 1.3 3.8 34
 #.ch.CH∆XTIC 1.1 3.0 28
 #.ch.CH∆YTIC 1.0 2.9 26

#.ch.CH∆FIX 0.8 2.2 21

 Tuning Applications 6

C H A P T E R 2

Collecting Data

Basics

The ⎕PROFILE system function registers usage data for all APL functions that are

executed between calls to (⎕PROFILE 'start') and (⎕PROFILE 'stop'). Data

collection can be turned on and off several times, and the results will be accumulated.

To start a completely new recording session, use (⎕PROFILE 'clear'). By

default, ⎕PROFILE will register CPU usage data using the best available counter. If

you are more interested in elapsed time, use (⎕PROFILE 'start' 'elapsed').

Note that you must do a clear before you can switch from recording CPU to

elapsed time or vice versa.

Note: Unlike ⎕MONITOR, which needed to be turned on and off for each function to

be monitored and which stored data in the function body within the active workspace,

⎕PROFILE is turned on or off for all functions in a single operation and stores usage

data outside the workspace. Thus, it can be used for functions which are dynamically

paged in and out of the workspace, although the results will be confusing if several

different functions with the same name are used at different times during execution.

At any time, you can determine whether ⎕PROFILE is collecting data using

(⎕PROFILE 'state'):

 ⎕PROFILE 'start' 'Elapsed'
 ⎕PROFILE 'state'
 active elapsed 0.001215608791 0

The first element of the result is either active (started) or inactive (stopped).

The second reports the name of the counter being used for timing, which will either

be CPU or elapsed. The third and fourth element report the best estimate for the

cost of calling the timer that is in use, and - if it has been possible to determine it - the

granularity of the timer (smallest measurable interval measurable). On most

platforms, the fourth element will be zero, indicating that the granularity is smaller

than the cost, and can therefore not be estimated.

The timer cost and granularity are estimated the first time ⎕PROFILE is used in an

APL session. If you suspect that the system was particularly busy at that time, you

can request a new calibration using (⎕PROFILE 'calibrate').

Once data has been collected, summarised data per function and function line can be

retrieved using (⎕PROFILE 'data'). Data can also be broken down by calling

trees, so that data is summarized separately for every different path that led to the

function being executed. (⎕PROFILE 'tree') returns this data. In both cases, a

very large quantity of data may be returned, and]PROFILE is provided in order to

produce a number of reports based on this data - and to save recorded information

and analyze it later.

 Tuning Applications 7

For each function, and for each individual line in a function, the following data is

recorded:

 Calls: The number of times the line or function was executed

 Exclusive Time: Milliseconds spent, excluding time spent in functions that

were called.

 Inclusive Time: Milliseconds spent, including time spent in functions that

were called.

 Exclusive Timer Count: Number of times the timer was inspected in order

to produce the Exclusive Time total.

 Inclusive Timer Count: Number of times the timer was inspected in order

to produce the Inclusive Time total.

Timer Overhead

Unfortunately, most system timers have a significant cost associated with them (it

takes a significant amount of time to ask what time it is). In applications with

relatively inexpensive lines of APL code, the overhead can be significant. It is rarely

enough to defeat the search for hot spots, but can skew certain results.

The estimate for the timer cost and the timer counts are provided in order to allow

results to be corrected for the effects of the overhead of constantly inspecting the

system timer (by multiplying timer counts with the estimated cost of asking what

time it is). By default, the reports produced by]PROFILE automatically adjust for

“timer bias”, using the recorded bias. You can disable this adjustment for a report

using a switch setting of -bias=0.

NOTE: Experiments show that the cost of querying a timer can be extremely variable

if the system is loaded. Repeatable timings are only possible if there is very little

activity on the system other than the APL system which is being profiled. It is

always a good idea to increase the priority of a system which is being profiled, but

this will not remove the variability of the timer cost, as this involves calls to the

operating system kernel, which is servicing all processes on the machine.

Storing Data

All of the reports will accept a switch -outfile=, which names a file to which the

report data should be written. By default, the data is stored in an XML format. The

switch -format= accepts three options: xml, csv and also txt, which just means

that the formatted report output is written to a file. Although all of the reports can be

written to file, the tree report in xml format is the only way to store a complete

data set that can be reused for reporting at a later time using the -infile= switch.

In other words:

]profile tree -outfile=c:\temp\one.xml -title="Testing"

… can later (and not necessarily in the same APL session) be followed by …

]profile summary -infile=c:\temp\one.xml

Note that user commands can be executed under program control, which means that

your application can record its own usage data. For example:

⎕SE.UCMD 'profile tree -outfile=c:\abctree.xml -title="ABC"'

 Tuning Applications 8

C H A P T E R 3

Reporting

Overview

The]profile command is always followed by a command keyword, which is

typically the name of a report. The summary and calls commands are the most

frequently used reporting tools. dashboard provides a graphical user interface, and

state simply displays the current ⎕profile state in a friendly fashion. The tree

command is typically used to extract a complete set of profile data and write it to file.

Finally, the data command can be used to write raw data to file, most often for

analysis using Excel or other tools.

The reporting commands take a number of switches which filter the data which is

displayed, or add optional output columns, and switches which can be used to read

input from a previously saved file, or store the results of a command in a file.

An overview of commands and the switches that they accept are provided below:

Command Summary

Command Description

summary Summary report showing the number of calls, total

consumption, and consumption as a percentage of overall

consumption. This is the default on systems with no GUI.

calls Call analysis report, showing how the consumption of a

named function (the -fn= switch is required) is broken

down by calling function.

dashboard Starts the graphical dashboard under Microsoft Windows

only, and is the default if no command is provided.

state Formats the result of (⎕PROFILE 'state').

tree Returns the raw data produced by (⎕PROFILE 'tree').

Intended as a tool for storing data using the -outfile=

option, for subsequent reporting using -infile=.

data Returns the raw data produced by (⎕PROFILE 'data').

This command is essentially provided as a mechanism for

writing this data to file for use with other tools than

]profile.

 Tuning Applications 9

Data Selection Switches

The summary and calls commands support the following switches, which select

data to be included in the report.

Switch Description

-lines Display consumption by individual line. The default is to

produce totals per function. The -code switch also forces
-lines mode.

-exclusive Show the consumption of each line or function excluding

consumption in sub-functions called.

-first=n Only displays the n first functions or lines after sorting in

descending order by consumption

-avg Include a column showing the average consumption per

execution of the line or function.

-cumpct For each row of output, show the percentage of overall

consumption that this row and all rows above it were

responsible for. This column of output is usually only useful

if -exclusive is also selected.

-pct=n As an alternative to -first=, show only those entries

where the cumulative percentage is less than or equal to n.

-fn=name For calls, this switch is required and selects the function

for which a call report will be produced. For summary and

dashboard, it filters the output so that it only includes

data for the selected function and other functions that it

calls. A list of function names separated by commas

specifies a drill down path (see dashboard chapter for

details).

-code When output is not directed to file, this switch can be used

to add a column containing the source code for the line in

question. Note that -code forces -lines mode.

 Tuning Applications 10

Output (or Input) Redirection

The following switches can be used to direct output to a file rather than display it in

the session - or load

Switch Description

-outfile= Causes output to be directed to a file rather than being

displayed in the APL Session. The parameter value must be

a valid file name in an existing folder.

-format=
xml|csv|txt

Selects a file format for -outfile (the default is xml).

txt indicates that the formatted report should be saved in a

text file exactly as it would have been displayed. The other

formats write unformatted data to the file.

-separators= For use with -format=csv, allows you to set the decimal

and comma separators. In Europe, you will typically want to

use -separators=",;".

-infile= Files in xml format, resulting from the use of the tree

command, can be used as input to the summary and calls

commands. When used, the report or views are generated

based on the data found in the file, rather than the current

data reported by ⎕PROFILE.

Other Switches

Switch Description

-decimal=n For columns which are not whole numbers, decides the

number of decimals to display in formatted output.

-bias=n Overrides the function call overhead estimated by

⎕PROFILE during the current session (or read from an

infile), and uses n instead. Use n=0 to ignore bias, or

some other fixed value if you want to make sure that you

use the same bias for data collected at different times.

Examples

The following examples are intended to show at least one use of every command and

switch:

)load rainpro
C:\...\ws\rainpro saved Fri Mar 11 09:12:28 2011

Execute the expression “Rain 93” and bring up an summary showing the five

functions which consumed the most CPU:

]profile summary -expr="Rain 93" -first=5
Total time: 68.4 msec

 Element msec % Calls
 #.Rain 68.4 100.0 1

 Tuning Applications 11

 #.ch.Step 47.1 68.9 1
 #.ch.CH∆Q 23.0 33.7 311
 #.ch.CH∆SET 20.8 30.4 44

#.ch.Set 11.0 16.0 9

Show the five biggest CPU consumers, excluding CPU spend in sub-functions. Use 3

decimals to display fractions, include a cumulative % column and only include

functions up to 65% of the cumulative CPU:

]profile summary -exclusive -dec=3 -cumpct -pct=65
 Total time: 68.4 msec

 Element msec % Calls %(cum)
 #.ch.CH∆Q 23.032 33.672 311 33.672
 #.ch.CH∆SET 7.866 11.500 44 45.172
 #.ch.CH∆FMT 3.422 5.003 77 50.176
 #.ch.CH∆R 3.402 4.973 37 55.149
 #.ch.CH∆VALUES 3.240 4.737 2 59.885
 #.ch.split 2.381 3.481 33 63.367

Include the average CPU consumption per call, and do not adjust for timer bias (note

the numbers are somewhat higher, the total time is 3.3 msec higher and the function

CH∆Q is reported as having consumed 0.788 msec more:

]profile summary -excl -dec=3 -avg -bias=0 -first=3
 Total time: 71.7 msec

 Element msec % Calls avg
 #.ch.CH∆Q 23.820 33.232 311 0.077
 #.ch.CH∆SET 8.112 11.317 44 0.184
 #.ch.CH∆FMT 3.497 4.879 77 0.045

The data command allows us to take a look at the raw data recorded for a function

(without bias adjustment, but with counters for the number of clock inspections):

]profile data -fn=#.ch.CH∆Q
 Total time: 276.9 msec; Selected time: 23.8 msec

 Element Calls msec(inc) msec(exc) ticks(inc) ticks(exc)
 #.ch.CH∆Q 311 23.8 23.8 4043 4043
 #.ch.CH∆Q[1] 311 0.3 0.3 311 311
 #.ch.CH∆Q[2] 311 0.3 0.3 311 311
 #.ch.CH∆Q[3] 311 0.3 0.3 311 311
 #.ch.CH∆Q[4] 311 15.3 15.3 311 311
 #.ch.CH∆Q[5] 311 1.7 1.7 311 311
 #.ch.CH∆Q[6] 311 4.3 4.3 311 311

We can see that the timer was inspected 4043 times while profiling the function.

There fact that there is no difference between inclusive and exclusive time tells us

that no sub-functions were called. If we multiply the count by the estimated cost,

found using the state command:

]profile state
state : inactive
timer : CPU
timer cost : 0.0001949486972
granularity : 0

… we can verify that the difference caused by the timer “bias” is

4043×0.0001949486972, or 0.788 msec, which is fortunately the same as the

difference that we had observed when we applied -bias=0 earlier.

 Tuning Applications 12

For a summary or calls report, the -code switch can be used to add source code to the

report:

]profile summary -code -lines -first=5
 Total time: 68.4 msec

 Element msec % Calls Code
 #.Rain[25] 47.2 69.0 1 ch.Step(¯1↓1,⌽∨\⌽TOT[;2]>0)⌿TOT
 #.ch.CH∆Q[4] 15.3 22.3 311 ST←4⊃CH⍙SET[CH⍙SET[;1]⍳⊂ID;]
 #.ch.Set[4] 9.7 14.2 9 CH∆SET vec
 #.ch.Step[53] 8.9 13.1 1 cht←NZ CH∆STEP DATA
 #.ch.Step[43] 8.6 12.6 1 PG←PG,CH∆HEAD ⋄ ax←CH∆AXES

The -outfile switch makes it possible to direct output to a file instead of

displaying in the session. By default, the data format is xml, but the -format=

switch can be used to select csv or txt as alternatives. The appendices contain

examples of the xml and csv formats; using the txt format will simply cause the

report to be written to file in exactly the same format as it would otherwise have been

displayed.

The xml format generates very large files, but they have the advantage that they can

be used as input to the]profile command, as they can contain a complete

representation of the current state.

The csv format can be used to export data in a format that many external tools will

be able to load. For example:

]profile data -outfile=c:\temp\data.csv -format=csv
 -separators=",;"

The above creates a csv file using comma as the decimal separator and semicolon as
the field separators - for use with Danish Excel. We can now proceed to:

 'XL' ⎕WC 'OLEClient' 'Excel.Application'
 XL.Visible←1
 XL.Workbooks.Open⊂'c:\temp\data.csv'

… with the following result:

 Tuning Applications 13

C H A P T E R 4

The DashBoard

Introduction

Under Windows (or to be more precise, on systems where the Win32 API is available

to the Dyalog GUI),]PROFILE provides a graphical “DashBoard”, which quickly

provides an overview of the resource consumption of an application, and allows you

to drill down in pursuit of interesting tuning opportunities.

Where available, the dashboard is the default mode of operation. If you type

]profile with no arguments, the dashboard will give an overview of the data

which is currently stored by ⎕PROFILE (⎕PROFILE must be stopped, or

“inactive”). The -expr= and -infile= switches make it possible to start the

dashboard to look at other data than that which is currently active, for example:

]profile -expr="Rain 93"

(runs the expression “Rain 93” and then starts the dashboard to analyse the results

- this will destroy any existing ⎕PROFILE data)

]profile -infile="c:\temp\rain93-2011-03-22.xml"

(loads a previously saved dataset for analysis - and will not interfere with the current

state of ⎕PROFILE).

As can be seen on the next page, the dashboard is divided up into four quadrants by

splitters. By default, the left hand side is used to display consumption broken down

by function, while the right hand side breaks consumption down by line. A pie chart

is used for the function break down, and a table for the lines - but a drop-down in the

top right corner of each side allows you to change the display form.

 Tuning Applications 14

Drill Down

A single click in a pie segment or table row will cause the source code for the

selected function to be displayed in the quadrant below. A double-click will cause a

“drill down” to occur. A trail of “bread crumbs” is displayed at the top left of the

form, to illustrate the current filtering. A right arrow preceding a blue “crumb”

indicates a direct call to the function without intermediate functions. A star before a

light green crumb identifies a call sequence where other functions may have been

called in-between. A pink bread crumb is used to indicate a “show calls” step (which

will always be the final crumb, as no further drill down is possible from this mode).

The bread crumbs below show us that the root function is Rain, and we have drilled

down on the function CH∆SET2
.

Display Options

Immediately following the bread crumbs is a label which reports how large a

percentage of the overall consumption is currently included. The drop-down at the

top right allows you to choose whether percentages that are reported in tables or

“tips” on pie labels are computed as percentages of the overall consumption, or of the

selection.

The drop-down immediately below that allows you to select whether table view will

report inclusive or exclusive time. Pie charts always report exclusive time.

In the function detail views at the bottom of the screen, two check boxes allow you to

select whether you want to include lines which are either blank or consist of a single

comment, and whether lines which were not called at all should be displayed.

2 The current user interface does not provide a way to select a direct call, “drill down” always

allows indirect calls. The first crumb will be blue if]profile has identified a single top-

level function.

 Tuning Applications 15

Right Click Menus

A right click on a pie segment or label, or in a table row, provides the following

options:

Drill Down: Drills down on the function in question - same as a double click.

Make Root: Shows only consumption which originates in the selected function

(equivalent to starting with the -fn= switch selecting the function).

Show Calls: Switches to a mode where consumption is broken down according to the

functions and lines which have called the selected function. If drill down has already

occurred, the higher levels of filtering are also retained.

Reset: Returns to the starting position.

Up 1 Level: Equivalent to clicking on the next-to-last bread crumb.

File and Help Menus

The following functionality can be selected from the File menu:

File|Open: Allows analysis of a saved file - equivalent to starting the dashboard with

the -infile= switch.

File|Save: Saves the current dataset - equivalent to using the -outfile= switch.

File|Reset: Returns to the initial state.

File|Exit: Leaves the dashboard.

Help|About: Reports the version of the]PROFILE user command.

Windows Menu

The Windows menu provides a number of alternatives to resizing windows using the

splitters:

Windows|Reset: Moves the vertical splitter to the middle and the horizontal splitters

to a position about ¾ of the way down.

Windows|Functions: Moves the vertical splitter all the way to the right, showing

only the functions breakdown (equivalent to double-clicking at the top of the function

pane).

Windows|Function Details: Vertical splitter to the right, horizontal splitter to the

top, showing only function details (equivalent to double-clicking at the top of the

function detail pane).

Windows|Lines: Moves vertical splitter all the way left, showing only the line

breakdown (equivalent to double-clicking at the top of the lines pane).

Windows|Line Details: Vertical splitter to the left, horizontal splitter to the top,

showing only function details (equivalent to double-clicking at the top of the lines

pane).

As mentioned above, focus can be given to a window or pair of windows by double-

clicking at the top of one of the panes. A subsequent double-click will return the

splitters to the position that they had previously.

 Tuning Applications 16

Single Function Mode

If the dashboard is opened on a data set which only contains data for a single

function, for example as a result of:

)load dfns
]profile -expr="⍴queens 8"

… then the dashboard will open in mode where the left hand side is used only to

display the detailed view of the function body (horizontal splitter at the top), and the

right hand side shows only the breakdown by line (splitter at the bottom):

 Tuning Applications 17

Appendix A: XML File Format

The XML format produced by the]profile user command consists of an outer

<ProfileData> element, which contains a <ProfileSettings> element followed by a

number of <ProfileEntry> items, one for each row of output data.

The <ProfileSettings> element contains version number of the]PROFILE user

command that produced the file, the report title, information about timer cost and

other information regarding the report, including the total registered time for the

report.

Each <ProfileEntry> contains one element for each output column, depending on the

command and switches, selected from the following set:

Element Description

Depth Tree depth

Element Function Name

Line Line number, empty for a function summary entry

Calls Number of times the function or line was called

InclusiveTime
ExclusiveTime

Inclusive and Exclusive time

InclusiveTicks
ExclusiveTicks

Number of times the clock was inspected to record inclusive

and exclusive time, respectively

PctOfTot Consumption as percentage of total

CumPct Cumulative percentage

AvgTime Average Time per Call

These element names also appear as column headers when the csv file format is

used. The following page contains examples of xml output files produced by

]profile.

 Tuning Applications 18

XML Example Files

]profile tree -outfile=c:\temp\tree.xml

<ProfileData>
 <ProfileSettings>

 <Version>0.9.0</Version>
 <Title>2011/03/23 22:49:19</Title>
 <TimerBias>0.00019494869718528207</TimerBias>

 <Command>tree</Command>
 <TotalTime>272.9692285</TotalTime>
 <SelectedTime>272.9692285</SelectedTime>

 </ProfileSettings>

 <ProfileEntry>
 <Depth>0</Depth>

 <Function>#.Rain</Function>
 <Line></Line>
 <Calls>1</Calls>

 <InclusiveTime>0.8205615629464091</InclusiveTime>
 <ExclusiveTime>68.40049487792044</ExclusiveTime>
 <InclusiveTicks>73</InclusiveTicks>

 <ExclusiveTicks>16810</ExclusiveTicks>
 </ProfileEntry>

(… many more occurrences of <ProfileEntry> …)

</ProfileData>

]profile summary -outfile=c:\temp\tree.xml

<ProfileData>

 <ProfileSettings>
 <Version>0.9.0</Version>

 <Title>2011/03/23 22:48:16</Title>

 <TimerBias>0.00019494869718528207</TimerBias>
 <Command>summary</Command>
 <TotalTime>68.40049488</TotalTime>

 <SelectedTime>68.40049488</SelectedTime>
 </ProfileSettings>
 <ProfileEntry>

 <Function>#.Rain</Function>
 <Line></Line>
 <InclusiveTime>68.40049487792044</InclusiveTime>

 <PctOfTot>100</PctOfTot>
 <Calls>1</Calls>
 </ProfileEntry>

 (… many more occurrences of <ProfileEntry> …)
 </ProfileData>

 Tuning Applications 19

Appendix B: CSV File Format

This section contains a few examples of output files created using -format=csv

(all files are encoded as UTF-8). The first row of each file contains column names,

selected from the same list as the element names that can appear in XML files, listed

in Appendix A.

]profile tree -outfile=c:\temp\data.csv -format=csv

"Depth","Element","Line","Calls","InclusiveTime","ExclusiveTime

","InclusiveTicks","ExclusiveTicks"

0,"#.Rain",,1,0.8205615629,68.40049488,73,16810

1,"#.Rain",1,1,0.001537095514,0.001537095514,1,1

1,"#.Rain",2,1,0.01035477506,0.01035477506,1,1

1,"#.Rain",3,1,0.001926992908,0.001926992908,1,1

1,"#.Rain",4,1,0.001034727703,0.001034727703,1,1

1,"#.Rain",5,1,0.003066692969,0.003066692969,1,1

1,"#.Rain",6,1,0.0872545383,0.1045749803,2,9

2,"#.Gilling.LEAP",,1,0.01732044204,0.01732044204,7,7

3,"#.Gilling.LEAP",1,1,0.0008172849135,0.0008172849135,1,1

3,"#.Gilling.LEAP",2,1,0.001597079731,0.001597079731,1,1

3,"#.Gilling.LEAP",3,1,0.01222178376,0.01222178376,1,1

1,"#.Rain",7,1,0.01708800315,0.1497280978,2,29

2,"#.Gilling.TOT∆MTHS",,1,0.07632241511,0.1326400946,8,27

3,"#.Gilling.TOT∆MTHS",1,1,0.0008022888807,0.0008022888807,1,1

3,"#.Gilling.TOT∆MTHS",2,1,0.06257103391,0.1188887134,2,21

(…etc…)

]profile data -outfile=c:\temp\data.csv -format=csv -
separators=",;"

"Element";"Line";"Calls";"InclusiveTime";"ExclusiveTime";"Inclu

siveTicks";"ExclusiveTicks"

"#.Rain";;1;0,8347928178;71,67758248;73;16810

"#.Rain";1;1;0,001732044211;0,001732044211;1;1

"#.Rain";2;1;0,01054972375;0,01054972375;1;1

"#.Rain";3;1;0,002121941606;0,002121941606;1;1

"#.Rain";4;1;0,0012296764;0,0012296764;1;1

"#.Rain";5;1;0,003261641666;0,003261641666;1;1

"#.Rain";6;1;0,08764443569;0,1063295186;2;9

"#.Rain";7;1;0,01747790054;0,15538161;2;29

"#.Rain";8;1;0,01985477505;2,402712708;2;445

"#.Rain";9;1;0,02023717445;1,841845304;2;466

(…etc…)

]profile summary -first=5 -outfile=c:\temp\data.csv -
format=csv

"Element","Line","Time","PctOfTot","Calls"

"#.Rain",,68.40049488,100,1

"#.ch.Step",,47.14893489,68.93069264,1

"#.ch.CH∆Q",,23.0318165,33.67200272,311

"#.ch.CH∆SET",,20.80886149,30.42209201,44

"#.ch.Set",,10.97602407,16.04670272,9

(…etc…)

