
The tool of thought for expert programming

SQAPL User Guide
Version 6.2

Dyalog Limited

Minchens Court, Minchens Lane

Bramley, Hampshire

RG26 5BH

United Kingdom

tel:
National (01256) 830030

International +44 1256 830030

fax: +44 (0)1256 830031

email: support@dyalog.com

http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited

Copyright  1982-2013

mailto:support@dyalog.com

Copyright  2013 by Dyalog Limited.

All rights reserved.

Version 6.2.0

First Edition January 2013

No part of this publication may be reproduced in any form by any means without the

prior written permission of Dyalog Limited, Minchens Court, Minchens Lane, Bramley,

Hampshire, RG26 5BH, United Kingdom.

Dyalog Limited makes no representations or warranties with respect to the contents

hereof and specifically disclaims any implied warranties of merchantability or fitness for

any particular purpose. Dyalog Limited reserves the right to revise this publication

without notification.

TRADEMARKS:

IBM is a registered trademark of International Business Machines Corporation.

Microsoft, MS and MS-DOS are registered trademarks of Microsoft Corporation.

SQAPL is copyright of Insight Systems ApS.

UNIX is a trademark of X/Open Ltd.

Windows, Windows NT, Visual Basic and Excel are trademarks of Microsoft Corporation.

All other trademarks and copyrights are acknowledged.

Contents

C H A P T E R 1 INTRODUCTION .. 2
ODBC... 2
SQAPL ... 2
The LOADDATA Workspace .. 4
Integrating SQAPL with Your Application ... 4

C H A P T E R 2 GETTING STARTED ... 6
Initialisation .. 6
Connecting to a Service .. 6
Return Codes .. 7
SQAPL “Objects” ... 8
Disconnecting from a Service ... 8
Data Dictionary ... 8
Executing SQL Statements .. 9
Bind Variables ... 10
Output Variables ... 11
APL Types .. 12
Explicit Type Conversions ... 13
Data Types Supported by a DSN ... 14

C H A P T E R 3 USING DATA TYPES .. 15
Simple Numeric Types .. 15
High Precision Numbers ... 15
Complex Numbers .. 16
Character Data .. 16
Very Wide Char Columns .. 17
UTF-8 Data .. 17
Binary Data ... 18
Dates and Timestamps ... 19
APL Arrays ... 21
Conversion Errors ... 21

C H A P T E R 4 PREPARE, EXEC, FETCH .. 22
Low Level Interface ... 22
SQA.Prepare ... 23
Nulls .. 25
Errors During Statement Execution .. 26
SQA.Describe .. 27
SQA.ExecDirect ... 28
SQA.Fetch ... 28
Fetching Nulls ... 28
Optimising Fetches ... 28

C H A P T E R 5 ADVANCED FEATURES .. 31
Large Objects and Partial Binding ... 31
SQA.PutData ... 31
SQA.GetData ... 32
SCAR Conversion Functions .. 33

Transactions ... 34
Remote Procedure Calls ... 35

C H A P T E R 6 TROUBLESHOOTING GUIDE .. 36
Common Error Codes ... 36

No Error Messages ... 36
Exception Handling ... 38
SQA.GetInfo .. 38
SQA.NativeSQL ... 39

FUNCTION REFERENCE .. 40
SQAPL Quick Reference Card .. 41

SQA.Apl2Scar .. 42
SQA.BrowseConnect ... 42
SQA.Cancel ... 42
SQA.Close ... 43
SQA.Columns .. 43
SQA.Connect ... 44
SQA.CursorName .. 45
SQA.Describe .. 46
SQA.Do .. 49
SQA.Exec ... 50
SQA.ExecDirect ... 50
SQA.Fetch ... 51
SQA.GetInfo .. 52
SQA.GetWarning... 52
SQA.Init ... 52
SQA.NativeSQL ... 53
SQA.Parse ... 53
SQA.Prepare ... 54
SQA.Scar2Apl .. 54
SQA.Tables .. 55
SQA.Tree ... 56
SQA.Transact .. 56
SQA.TypeInfo .. 57
SQA.X .. 58

APPENDIX A: ERRORS AND WARNINGS.. 59
SQAPL Error Codes .. 60

APPENDIX B: SCHEMA INFORMATION .. 64
SQA.Tables .. 64
SQA.Columns .. 65
SQA.TypeInfo .. 68

APPENDIX C: MORE ABOUT TRANSLATION .. 72
Locating the Required Tables ... 73

 ODBC User Guide 2

C H A P T E R 1

Introduction

ODBC

Since 1992, Open Database Connectivity (ODBC) has been a standard interface for

accessing database management systems. In general, ODBC drivers will use

Structured Query Language (SQL) to express queries and make updates to data. As a

result, the use of an ODBC interface requires some understanding of SQL, unless you

can make do with the functionality provided by the LoadSQL function described in

this chapter.

ODBC drivers now exist for a very wide variety of databases, from simple drivers

which give limited access to "flat" DOS files, through more sophisticated local

database managers such as Microsoft Access, to multi-user DBMS systems such as

Microsoft SQL Server, MySQL, Oracle, or DB2 running on a variety of server

operating systems. ODBC drivers are even available for data sources which are not

databases at all. For example, Dyalog provides an ODBC driver which allows APL

applications to present themselves as “relational” data sources via ODBC (at the time

of going to press, this product is still only available on a “project” basis).

ODBC has been the most widely used standard for database access under Microsoft

Windows since the mid-1990’s – and the ODBC interface (known as SQAPL) is

bundled with Dyalog APL at no extra cost under Windows. Under Linux and other

Unix platforms, ODBC adoption has accelerated since about 2005, and it now makes

sense to think of ODBC as a standard on that platform. However, as will be explained

below, ODBC is provided in a number of slightly different ways on other platforms,

and as a result SQAPL is still sold separately - and only available for selected ODBC

infrastructure components – on platforms other than Microsoft Windows.

The emergence of ODBC as a standard under Linux means that ODBC is likely to

continue to be the most widely used standard for the foreseeable future, and is a

particularly good choice for the development of portable applications.

SQAPL

SQAPL provides an interface between APL and database drivers which conform to

the Microsoft ODBC specification. SQAPL consists of an APL workspace containing

a set of interface functions which make calls to a DLL (under Windows) or Shared

Library (under Unix), which is written in C and provides a high-performance gateway

to ODBC.

To be precise, SQAPL communicates with a component known as the Driver

Manager, which is responsible for loading and managing database drivers. Under

Microsoft Windows, Microsoft provides a standard Driver Manager, and a version of

 ODBC User Guide 3

SQAPL which is compatible with this is bundled with Dyalog APL at no additional

cost. On other platforms, a number of competing driver managers are competing for

market share, and SQAPL needs to be compiled or at least linked with each of these

different managers. For this reason, SQAPL is sold separately from the APL

interpreter on all platforms other than Microsoft Windows, and a porting fee may also

apply in less common environments. Dyalog has tested SQAPL extensively with the

driver manager and associated ODBC drivers from Progress Software, and is able to

sell and support SQAPL bundled with Progress drivers on most platforms. Contact

sales@dyalog.com for more information regarding SQAPL for Linux and Unix.

With the exception of the SQA.BrowseConnect function, which only works under

Microsoft Windows, all functionality described in this manual should be identical on

all platforms where SQAPL is available.

Overview of ODBC Functionality
Using SQAPL, you can:

 Retrieve a list of available data sources, and connect to one or more of them.

 Query the database catalogue, to determine which tables, view and columns

exist in a data source.

 Prepare and then repeatedly execute SQL statements, or execute SQL

statements immediately without first preparing them. Multiple statements may

be active simultaneously.

 Retrieve data from a result set. Retrieve a description of the contents of a

result set.

 Execute SQL statements multiple times using a matrix containing a row of

data for each execution (known as Bulk Input).

 Commit or roll back transactions.

 If connected with sufficient privileges, execute any SQL statement supported

by the database management system, including the creation of tables or views

(Data Definition Language – or DDL), indexes, stored procedures, or GRANT

statements (etc).

 Retrieve a list of data types supported by a data source.

Most ODBC drivers are able to provide all of the functionality mentioned above.

However, the ability to commit or roll back transactions and other more sophisticated

functionality is often missing from drivers which access essentially non-SQL data

sources such as CSV files.

The ODBC standard also defines SQL Grammar Conformance Levels. Some simple

drivers lack all but the most basic SQL grammar, and support a very limited set of

data types. Drivers for some systems often depart from the standard when it comes to

data type names - the same data type may go under the name VARCHAR,

LONGCHAR, MEMO, TEXT or NOTE depending on the driver being used.

While it is usually straightforward to write portable applications to execute queries,

this becomes harder if you want to update data, and can be quite tricky if you want to

create your own databases, as the DDL dialects can differ substantially.

If you use SQAPL functionality which is not supported by a driver, the result will

typically be a "Driver not capable" or "SQL syntax error" message from the driver.

 ODBC User Guide 4

The LOADDATA Workspace

If all you need to do is load some data from an ODBC data source – or populate a

table with data, the functions LoadSQL and SaveSQL from the utility workspace

LOADDATA may be all that you need. The following example loads data from

Microsofts sample Access Database called Northwind. The arguments to LoadSQL

are [1] a DSN optionally followed by a password and user id if necessary, [2] a table

name, [3] optionally a list of column names to be retrieved:

)LOAD LOADDATA
C:\...\ws\loaddata saved Fri Mar 11 09:13:46 2011

 LoadSQL 'NorthWind' 'products'('ProductName' 'UnitPrice')
 Chai 18
 Chang 19
 Aniseed Syrup 10
 Chef Anton's Cajun Seasoning 22
 Chef Anton's Gumbo Mix 21.35
…etc…

Below, we build an APL matrix and then use the SaveSQL function to create and

populate a table to contain it:

 data←⍪'Jill' 'Jack' 'Betty' 'Bobby'
 data,←'1995-10-15' '1996-03-31' '1992-01-17' '1994-10-31'
 data,←167 175 172 180
 data
 Jill 1995-10-15 167
 Jack 1996-03-31 175
 Betty 1992-01-17 172
 Bobby 1994-10-31 180

 stmt←'create table sqatest'
 stmt,←'(name char(10),dob date,height integer)'
 DSN←'MySQL' 'secret' 'mkrom' ⍝ DSN, password, userid
 SaveSQL data DSN 'sqatest' stmt
0 4 4

 LoadSQL DSN 'sqatest' ⍝ Check that it worked
 Jill 1995-10-15 167
 Jack 1996-03-31 175
 Betty 1992-01-17 172
 Bobby 1994-10-31 180

For more information, see the comments in the two functions. The two utility

functions demonstrated above are built on top of SQAPL and provide an easy way to

move data between an ODBC data source and an APL workspace. The rest of this

document describes how to use the SQAPL functions that the utilities above were

built on top of. The sqatest table created above will be used in many of the

examples.

Integrating SQAPL with Your Application

SQAPL is a workspace containing APL code, which you need to)COPY into your

application (and may need to re-copy each time there is a new version of SQAPL).

Having its origins in the 2
nd

 millennium, SQAPL was originally designed as a “flat”

workspace, which functions with names like SQAInit and SQAConnect. Version

5.0, released in 2005, placed the interface functions in a namespace called SQA.

Dyalog recommends that you only)COPY this namespace into your application, and

use the functions with names like SQA.Init and SQA.Connect, that can be found

within it. A set of functions with the old names are still provided in order to support

 ODBC User Guide 5

old application code, but they are simply cover-functions which call SQA.Init,

SQA.Connect, and so forth. This documentation will use direct calls to the

functions contained in the SQA namespace.

 ODBC User Guide 6

C H A P T E R 2

Getting Started

Initialisation

Before you can use SQAPL, you must call the function SQA.Init. This function

loads and initialises the appropriate SQAPL library.

 SQA.Init ''
0 SQAPL loaded from: C:\Program Files\Dyalog\Dyalog APL
13.0 Unicode\bin\cndya61Uni

Note that the first element of the result of SQA.Init is a return code – as is the case

for all SQAPL functions. If the operation was completely successful the return code

is zero, and in the event of a non-fatal error (warning), the return code is negative.

The second element provides information about the version that was loaded.

Connecting to a Service

To establish a conversation with a driver, you must first create a connection object.

The function SQA.Connect takes a right argument which must contain an object

name and a data source name (DSN), and optionally a password and a user id if the

data source requires them. It is possible to have several connections open at the same

time, and the object name is used to identify the connection in subsequent calls to

SQAPL.

The following example creates a connection object named C1 that is connected to the

data source name MySQL using the password secret and the user id mkrom (the

password is provided first in case you connect to a data source which has a default

user ID). The DSN (MySQL), is the name of an ODBC data source which has been

defined using Windows Control Panel => Administrative Tools => Data Sources

(ODBC)
1
.

 SQA.Connect 'C1' 'MySQL' 'secret' 'mkrom'
0

The return code of 0 indicates that the connection was successful. You can create

several connection objects, and access more than one data source at the same time.

For example:

 ro←'ReadOnly' 1
 SQA.Connect 'C2' 'PROD DB2' 'secret' 'bhc' ro
0

When experimenting with live or production data, you can prevent yourself from

accidentally damaging the data by using the ReadOnly option. This is also useful in

applications where you give users the ability to enter SQL statements in a report

generator, as it allows you to ensure that users will not be able to accidentally (or

1 It is possible to connect to databases for which there is no pre-defined data source – see the

description of the SQA.Connect function, in particular the DriverOptions parameter.

Also see the warning on the next page regarding 32- vs 64-bit ODBC drivers under Windows.

 ODBC User Guide 7

intentionally) modify the database. SQA.Connect takes a large number of optional

parameters which are described in the Function Reference section.

 SQA.BrowseConnect 'C3'
0

The last example above uses the function SQA.BrowseConnect, which instructs

the driver manager to produce a dialog box which allows the user to select the data

source and provide connection parameters interactively (this functionality is only

available under Microsoft Windows).

You can also use the SQA.DSN function to get a list of available data source names:

 SQA.DSN ''
0 CRMIS SQL Server
 dBASE Files Microsoft Access dBASE Driver
 Excel Files Microsoft Excel Driver
 MS Access Database Microsoft Access Driver
 Northwind Microsoft Access Driver (*.mdb)
 APLSRV DataDirect OpenAccess SDK 6.0
 MySQL MySQL ODBC 5.1 Driver

Warning: If you have a mixture of 32- and 64- bit data sources under 64-bit

Windows, note that Windows Control Panel => Administrative Tools => Data

Sources (ODBC) only administers 64-bit drivers, despite being a short cut to a file

called %windir%\system32\odbcad32.exe. The 32-bit administrator is

available on a 64-bit system, but it is in the folder %windir%\sysWOW64.

SQA.DSN cannot be relied upon to return the complete list of 32- and 64-bit drivers

in a mixed environment, although you should be able to connect to them all.

Return Codes

Errors: In the event that a function should fail, the first element of the result will be a

positive number identifying the source of the error message. This number will either

be 1 for errors originating in SQAPL or 4 for errors issued by an ODBC component
2
.

The second element will be one or more condition codes. The third element will

contain a textual error message, and the fourth element provides a row index which is

only relevant when multiple rows of input were involved (see SQA.X). See the

Troubleshooting section and the appendix Errors and Warnings for further help on

interpreting error return codes.

Warnings: If an SQAPL function receives a warning during execution, the result will

have the normal form, but the return code will be minus one (¯1). You can retrieve

the warning message using the function SQA.GetWarning. For example,

connecting to Microsoft SQL Server nearly always produces one or two warning

messages:

 SQA.Connect 'C1' 'CRMIS'
¯1
 t←SQA.GetWarning 'C1'
 1⊃t ⍝ Return code for GetWarning itself
0
 ⍴2⊃t ⍝ How many warnings?
2
 2 1⊃t ⍝ First warning
4 01000 5701 [Microsoft][ODBC SQL Server Driver][SQL
Server]Changed database context to 'CRM'. 0

2 Return codes 2, 3 and 5 were returned by a product called SequeLink which predates ODBC.

 ODBC User Guide 8

 (⍳4),⍪⍕¨2 2⊃t ⍝ Second warning (formatted)
1 4
2 01000 5703
3 [Microsoft][ODBC SQL Server Driver][SQL Server]
 Changed language setting to us_english.
4 0

Taking a closer look at the second element of the result of SQA.GetWarning, we

can see that it is a 2-element vector (one for each warning) of 4-element vectors

(return code structures). Looking at the 2
nd

 warning, we see that [1] the source of the

error message is 4, meaning that an ODBC component issued the error, [2] the return

code was 01000 5703 (try searching the internet for “SQL Server 01000 5703” for

more information), [3] the textual error message which also clearly identifies the

source, and finally [4] a row index of 0.

SQAPL “Objects”

Note that SQAPL predates the introduction of real objects in Dyalog APL by about a

decade; the “objects” described in this document are all external to the APL

workspace, and referred to by names held in character vectors.

SQAPL is built around four classes of objects. The function SQA.Init creates a

root object, which is named '.' or '#' (you can use either name). SQA.Connect

creates connection objects as children of the root. Later, we will see how the function

SQA.Prepare creates cursor objects as children of a connection. A cursor object

contains an SQL statement and status information for a query.

Each segment of the name of an SQAPL object must begin with a letter of the

English alphabet. The rest of the segment name must be alphanumeric. The names

are case sensitive.

Disconnecting from a Service

The function SQA.Close can be used to close any SQAPL object. When applied to

a connection object, all children of the connection (its cursors) are closed, and you are

disconnected from the driver. All files, network conversations and host logons

associated with the connection are also closed.

 SQA.Close 'C1'
0
 SQA.Close '.'
0

If you close the root object using an argument of '.' or '#', you will disconnect all

existing services, and unload the database drivers.

Data Dictionary

The functions SQA.Tables and SQA.Columns can be used to query the database

catalogue. The first element of the result is the usual return code; the second contains

information about tables or columns. The following examples all assume that we

have a database which contains only the sqatest table that was created at the end

of the section on the LOADDATA workspace in Chapter 1.

 2⊃SQA.Tables 'C1'
 TABLE_CAT TABLE_SCHEM TABLE_NAME TABLE_TYPE REMARKS
 mkrom sqatest TABLE

 ODBC User Guide 9

 (⍳18),⍉2⊃SQA.Columns 'C1'
 1 TABLE_CAT
 2 TABLE_SCHEM
 3 TABLE_NAME sqatest sqatest sqatest
 4 COLUMN_NAME name dob height
 5 DATA_TYPE ¯8 91 4
 6 TYPE_NAME char date integer
 7 COLUMN_SIZE 10 10 10
 8 BUFFER_LENGTH 30 6 4
 9 DECIMAL_DIGITS 0 0 0
10 NUM_PREC_RADIX 0 0 10
11 NULLABLE 1 1 1
12 REMARKS
13 COLUMN_DEF
14 SQL_DATA_TYPE ¯8 9 4
15 SQL_DATETIME_SUB 0 91 0
16 CHAR_OCTET_LENGTH 30 0 0
17 ORDINAL_POSITION 1 2 3
18 IS_NULLABLE YES YES YES

Note that the result of SQA.Columns is transposed, and has column numbers

appended to the front. For a precise explanation of each of the output columns, see

the appendix titled Schema Information.

You can follow the connection name with optional parameters which are used to

filter the table name and (in the case of SQA.Columns) column names. For

example, we can filter the result on tables with names beginning with “sqa” and

columns with names beginning with “n”:

 (2⊃SQA.Columns 'C1' 'sqa%' 'n%')[;3 4 5 6]
 TABLE_NAME COLUMN_NAME DATA_TYPE TYPE_NAME
 sqatest name ¯8 char

Executing SQL Statements

The simplest way to execute SQL statements against a data source is to use the

function SQA.Do, which simply takes a connection and an SQL statement as its

arguments. For example:

 stmt←'select * from sqatest where name like ''J%'''
 SQA.Do 'C1' stmt
0 C1.s1 Jill 1995-10-15 167 6
 Jack 1996-03-31 175

The SQA.Do function creates a temporary cursor object under the connection named

in the first element of the right argument. The name of the cursor object is returned as

the second element of the result. The result of the SQL expression (if any) is returned

as the third element. For reasons explained in the detailed description of the

SQA.Fetch function which SQA.Do makes use of, the third element is a one-

element vector containing the result matrix. The fourth element contains a status flag

which will typically have one of the values 5 (more data to fetch) or 6 (all data has

been fetched).

Note that quotes need to be doubled up in the SQL expression, in the same way as

they would need to be if you were creating a vector containing an APL expression to

be executed.

When there is no left argument, or the left argument is 1, SQA.Do will loop until all

data has been fetched. If you need to deal with arbitrarily large amounts of data, you

may need to block the output. The block size is determined by the MaxRows

parameter, which you can set when you connect. If you want to set different values

 ODBC User Guide 10

for the block size for each query, you must use the low-level functions described later

in this chapter.

To fetch one block at a time, give SQA.Do a left argument of 0 (as in the above

example). Fetch subsequent blocks by calling SQA.Do again with no left argument,

and a right argument containing the name of the cursor:

 SQA.Connect 'C1' 'MySQL' 'secret' 'mkrom' ('MaxRows' 3)
0

 0 SQA.Do 'C1' 'select * from sqatest'
0 C1.s1 Jill 1995-10-15 167 5
 Jack 1996-03-31 175
 Betty 1992-01-17 172
 SQA.Do 'C1.s1'
0 C1.s1 Bobby 1994-10-31 180 6
 SQA.Do 'C1.s1'
1 10043 APL No data available 0

Important: The database cursor remains open until you have fetched all the records

in the result set. If you are connected to a multi-user server, there may be important

resources allocated to or locked by the cursor, which will not be released until you

have fetched all the data. Be particularly careful when experimenting interactively, as

you may lock other users out of one or more tables.

Not all databases are equally temperamental about this - some will allow you to have

SELECT cursors open without locking others out completely, but as a general rule

you should close cursors as soon as you no longer need them. If you decide that you

do not want to fetch the rest of the data, or if you have been using SQA.Do with a left

argument of 0, you should always call SQA.Close to close the cursor:

 SQA.Close 'C1.s1'
0

Bind Variables

So far, all values used in our SQL have been provided as constants embedded in the

SQL expression, which character strings surrounded by doubled quotes. In

application code, it is often convenient to use SQL statements containing parameters,

which are provided separately from the statement itself. There are at least two reasons

for this: In the next chapter, we will look at using functions which allow us to

prepare a statement and then execute it more than once – which gives more control

and better performance. Even if you are using SQA.Do and are only able to execute a

statement once, the use of parameters allows you to provide APL values directly,

rather than formatting them for use as constants in the SQL statement, doubling

quotes, etc.

The ODBC terminology for parameters which are “bound” at execution time is bind

variables.

Bind Variable Notation
When using SQA.Do bind variable declarations are made “in-line” in the SQL

statements, between colons. For example:

 SQA.Do 'C1' 'select * from sqatest where
 name like :n<C10: or height > :h<I:' 'J%' 175
0 C1.s1 Jill 1995-10-15 167 6
 Jack 1996-03-31 175
 Bobby 1994-10-31 180

 ODBC User Guide 11

This statement declares a statement with two bind variables. The first is a character

string of up to 10 characters (:n<C10:), and the second is an integer (:h<I:). The

two values for the variables are provided as trailing elements of the argument to

SQA.Do. When you use the syntax with “inline” declarations, SQAPL will replace

each bind variable declaration with a “?” before passing the statement to the ODBC

driver. Apart from this, statements are always passed unchanged to the driver. Bind

variable values must be provided in the same order as variables appear in the

statement.

SQAPL allows a name to precede the < symbol, for example :name<C10: or

:height<I:. For bind variables, this name is only currently used when doing

partial binding of values which are too large to be provided in a single call (see the

chapter titled Advanced Topics). The names also appear in the output of

SQA.Describe 3
, which can make it easier to understand the output of this

function.

Note that numeric types generally do not require a length to be provided, but almost

all other types do.

Output Variables

While it is your responsibility to declare all bind variables, ODBC will always

provide data type information for the columns in the output, or result set of an SQL

query. For every one of the 22 ODBC data types in the following table, SQAPL

automatically selects a default APL type which is capable of representing the data.

The table shows the ODBC type name, the type number, the code letter that must be

used if you want to explicitly select an ODBC type conversion for a bind variable,

and the APL type that is used if you do not explicitly select an APL type on output.

The final column shows whether a declaration of precision and scale is relevant in a

type declaration:

ODBC

Type Name

Type

Number

Code

Letter

Default

APL Type

WLongVarChar -10 Q Char (C)
WVarChar -9 W Char (C)

WChar -8 U Char (C)

Bit -7 B Char (C)

TinyInt -6 K Integer (I)

BigInt -5 G Integer(I)

LongVarBinary -4 Z Binary (X)

VarBinary -3 Y Binary (X)

Binary -2 X Binary (X)

LongVarChar -1 L Char (C)

Char 1 C Char (C)

Numeric 2 N Float (F)

Decimal 3 M Float (F)

Integer 4 I Integer (I)

SmallInt 5 H Integer (I)

Float 6 F Float (F)

Real 7 R Float (F)

Double 8 E Float (F)

VarChar 12 V Char (C)

Date 91 D Char (C10)

3 A utility function which displays information about prepared statements – see Chapter 4.

 ODBC User Guide 12

Time 92 T Char (C8)

Timestamp 93 S Char (C18-26)

Select (or Output) variables are declared in the same way as bind variables, except

that the inline form begins with a >, and column [;1] contains a 0 in the matrix

form. For example, we can ask to have the dates converted to day numbers since

1900-01-01 using the APL type J (see the table on the next page) as follows:

 stmt←'select :name>C10:,:dob>J:,:height>I: from sqatest'
 SQA.Do 'C1' stmt
0 C1.s1 Jill 34985 167 6
 Jack 35153 175
 Betty 33618 172
 Bobby 34636 180

Note that it is not necessary to declare output types; SQAPL will always select a type

which can receive the data, but in many cases it will use character vectors as the

default, as it would for dates and times. Careful selection of a good output type can

simplify your code (and generally make it run faster, too).

Also note that, while the position of a bind variable must correspond exactly to its use

in the SQL statement, several output variables can declared in a single declaration,

separated by commas. We could have written either of:

 stmt←'select :*>C10,J,I: from sqatest'
 stmt←'select * from sqatest :>C10,J,I:'

Any text to between the leading : and the > will be passed through to the database.

The latter form will often be used in this document. Using names in select

declarations makes the output of SQA.Describe easier to read. It also makes it

possible to declare the type of an individual columns, for example:

 stmt←'select name,:dob>J:,height from sqatest'

There is no reason to declare the type of name and height, as the defaults are fine.

If you have both input and output declarations for the same column in a statement,

you need to use the real name of the column for output declarations, and should use

no name or a modified name for the bind variables, where the name generally has no

significance.

APL Types

SQAPL version 6.1 recognizes 13 different APL variable “types”. First, there are the

four types that APL and ODBC have in common, that are sufficient to represent all

ODBC types in APL, and are mentioned in the ODBC type table on the previous

page: Integers (I), Floating-point numbers (F), Character vectors (C – translated to

VarChar in a “Classic” interpreter or WVarChar when using Unicode) – and a

“Binary” type (X) to map single-byte character data (Classic or Unicode) to a byte

stream without translation.

Three types have been added to allow the representation of APL types that ODBC

does not support: Complex numbers (O), 128-bit decimal numbers (G) and the

general Array type (Z), which can be used to serialize any APL array to a character

representation that can be stored in a Char or Binary columns.

Finally, no less than six types have been added to provide different mappings from

Dates and Timestamps to different APL representations (D, T, S, Y, H and J).

In the same way that SQAPL has a default APL type that it maps ODBC types to on

output, there is a default ODBC type that is used for each APL type on input – unless

 ODBC User Guide 13

a different type is explicitly selected. The following table lists all the APL types, the

letters to use when declaring types in-line and the numbers to use in the matrix form,

and the default ODBC type that will be used to store the value unless you specify a

type to use.

APL

Type Name

 Default

ODBC Type

Description

Char 1 C VarChar (V) or

WVarChar (W)

WVarChar for Unicode, Classic

translates to ANSI VarChar

Integer 2 I Integer (I) Integer value

Float 3 F Double (E) Floating point value

Binary 4 X Binary (X) Stream of bytes (untranslated

characters)

Complex 5 O VarChar (V) Complex number

Array 6 Z LongVarChar (L) Serialized APL Array (SCAR)

Date 7 D Date (D) 3-vector: yyyy mm dd

Time 8 T Time (T) 3-vector: hh mm ss

Stamp 9 S Timestamp (S) 7-vector in ⎕TS format:
 yyyy mm dd hh mm ss fff

 (fff is 0-999 msec)

DateInt 10 Y Date (D) 8-digit integer: yyyymmdd

TimeInt 11 H Time (T) 6-digit integer: hhmmss

StampFloat 12 J TimeStamp (S) Floating point value: Days since 1900 1

1, with time in the fractional part

Decf 13 G VarChar (V) 128-bit decimal value

Explicit Type Conversions

In the early days of ODBC, drivers were often very bad at doing type conversions. If

you had an input column of type Bit and provided an Integer value, early drivers

would complain. For this reason, SQAPL has the ability to perform explicit type casts

for many types. A type declaration of :<I(B): would be an instruction to accept an

APL Integer (I) and cast it to ODBC Bit (B). Nowadays, drivers are pretty flexible,

as demonstrated by the following example using MySQL (return codes are not

displayed, they were all simply (0 C1.s1):

 SQA.Do 'C1' 'create table testbit (abit bit(4))'
 SQA.Do 'C1' 'insert into testbit values(b''0101'')'
 SQA.Do 'C1' 'insert into testbit values(:<I:)' 6
 SQA.Do 'C1' 'insert into testbit values(:<F:)' 7
 SQA.Do 'C1' 'insert into testbit values(:<C1:)' (⎕UCS 8)

 ,⎕UCS¨ 3 1⊃SQA.Do 'C1' 'select * from testbit'
 5 6 7 8

 SQA.Do 'C1' 'drop table testbit'

 ODBC User Guide 14

However, it is still possible that you will encounter a situation where explicit

conversions are necessary. Apart from lazy drivers, they are necessary for the

insertion of large character vectors – see the section titled Very Wide Char Columns.

Data Types Supported by a DSN
The function SQA.TypeInfo returns a table which lists the data types supported by

a particular driver - assuming the driver supports the SQLTypeInfo ODBC API

function. These days, most drivers can provide the information, and most drivers

support a fairly complete set of types. However, drivers for file systems which are not

real relational databases often support a restricted set. For example, if you connect to

a driver for Microsoft Excel files, you might only have a handful of types. Note that

the result has been transposed below – the 2
nd

 element of the result of

SQA.TypeInfo is a matrix with 19 columns:

 ⍉2⊃SQA.TypeInfo'C2'
 TYPE_NAME LOGICAL CURRENCY NUMBER VARCHAR DATETIME
 DATA_TYPE ¯7 2 8 12 93
 COLUMN_SIZE 1 19 53 255 19
 LITERAL_PREFIX ' #
 LITERAL_SUFFIX ' #
 CREATE_PARAMS
 NULLABLE 0 1 1 1 1
 CASE_SENSITIVE 0 0 0 1 0
 SEARCHABLE 2 2 2 3 2
 UNSIGNED_ATTRIBUTE 0 0 0 0 0
 FIXED_PREC_SCALE 0 1 0 0 0
 AUTO_UNIQUE_VALUE 0 0 0 0 0
 LOCAL_TYPE_NAME
 MINIMUM_SCALE 0 4 0 0 0
 MAXIMUM_SCALE 0 4 0 0 0
 SQL_DATA_TYPE ¯7 2 8 12 9
 SQL_DATETIME_SUB 0 0 0 0 3
 NUM_PREC_RADIX 0 10 2 0 0
 INTERVAL_PRECISION 0 0 0 0 0

From the above, we can see the names that the driver uses for (TYPE_NAME) the five

data types that it supports, the corresponding ODBC data type number

(DATA_TYPE) for each of the types, the number of bytes consumed by an element

of the type, and a number of other items of information about the type. For a detailed

explanation, see the appendix titled Schema Information.

 ODBC User Guide 15

C H A P T E R 3

Using Data Types

This chapter provides discussions and examples of the ODBC and APL types that are

supported by SQAPL.

Simple Numeric Types

ODBC supports 3 flavours of integer and 3 flavours of floating-point, which can be

mapped to APL integers and floats without problems (the range of the APL types is

greater than the ODBC types):

ODBC

Type Name

Type

Number

Code

Letter

Default

APL Type

TinyInt -6 K Integer (I)

Integer 4 I Integer (I)

SmallInt 5 H Integer (I)

Float 6 F Float (F)

Real 7 R Float (F)

Double 8 E Float (F)

TinyInt has a range of 0-255, SmallInt is equivalent to the APL type 163 (from

¯32,768 to 32,767) and Integer is equivalent to APL type 323. Obviously, you won’t

be able to store numbers bigger than 255 in a TinyInt (etc), but apart from that the

APL type I will work without problems.

Float and Double are synonyms, which both map exactly APL type 645. Real is a

single-precision float, with ~7 digits of precision and an exponent range of +/-38.

You will lose precision saving APL floats to a Real column, but otherwise the APL

type F should work fine.

High Precision Numbers

ODBC has three types which have the potential to overflow the precision of the APL

Integer and Float types:

ODBC

Type Name

Type

Number

Code

Letter

Default

APL Type

BigInt -5 G Integer (C)

Numeric 2 N Float (F)

Decimal 3 M Float (F)

BigInt is a 64-bit integer type, which is formatted and mapped to Char. Numeric and

Decimal are synonyms for a fixed precision type with 38 decimal digits and a range

of -1E38+1 to +1E38-1 are mapped to APL Floats – with the potential to lose

significant precision. From version 13.0, it is probably better to map all types to the

new 128-bit decimal floating-point type (G), but the default mappings have been

retained in order to maintain backwards compatibility. The following examples show

how to use G with these types:

 ODBC User Guide 16

 SQA.Do 'C1' 'create table testbignums
 (col1 bigint, col2 numeric(19,2))'
 SQA.Do 'C1' 'insert into testbignums values
 (123456789012345678,12345678901234567.89)'
 ⎕pp←10 ⋄ ⎕fr←645
 expr←'select * from testbignums'
 3 1⊃SQA.Do 'C1' expr
 123456789012345678 1.23456789E16
 ⎕dr¨3 1⊃SQA.Do 'C1' expr
80 645
 ⎕pp ⎕fr←30 1287
 3 1⊃SQA.Do 'C1' (expr,':>G,G:')
123456789012345678 12345678901234567.89
 0.001+3 1⊃SQA.Do 'C1' (expr,':>G,G:')
123456789012345678.001 12345678901234567.891

Note that the maximum precision of these types is 38, and 128-bit decimal numbers

have 34 digits of precision, so there is still a risk that precision will be lost.

Complex Numbers

From version 13.0, APL also supports complex numbers, and an APL type O

supports this type. However, since there is no corresponding ODBC type, data must

be stored in a Char or Binary column. The following example shows the use of both

types in a single table:

 c←*0J1 ⍝ A complex number
 SQA.Do 'C1' 'create table testcomplex
 (c1 char(47), c2 Binary(16))'

47 characters are required to format a complex number. Only 16 bytes are required to
store the untranslated internal form of a complex number. In the following statement,
the first column is inserted using the default Char form, the second is explicitly cast
to Binary (X):

 SQA.Do 'C1' 'insert into testcomplex
 values (:<O:,:<O(X):)' c c
 expr←'select * from testcomplex'
 3 1⊃SQA.Do 'C1' expr
 5.4030230586813977e-001j8.4147098480789650e-001Œ µ(Já?î •Tíê?
 c=3 1⊃SQA.Do 'C1' (expr,':>O,O:')
1 1

If we select the data without specifying an APL output type, the raw character and

binary data is returned to APL. The final statement forces conversion back to

complex numbers in APL, and as we can see they have survived the round trip.

Character Data

ODBC has three basic (single-byte) character types: Char which is typically used for

narrow, fixed-width fields containing text, VarChar which was added to allow the

storage of longer strings (generally up to 255 characters), and LongVarChar for very

long strings (with an upper limit of 64k, and sometimes more). Not all databases

support all three types or have the same length limits, and the optimization strategies

vary from one database to another, and are beyond the scope of this document.

With the advent of Unicode, each of the basic types has a “wide” equivalent, with the

addition of WChar, WVarChar and WLongVarChar, bringing the total to 6 character

types:

 ODBC User Guide 17

ODBC

Type Name

Type

Number

Code

Letter

Default

APL Type

Char 1 C Char (C)

VarChar 12 V Char (C)

LongVarChar -1 L Char (C)

WChar -8 U Char (C)

WVarChar -9 W Char (C)

WLongVarChar -10 Q Char (C)

In all cases, the default APL type is Char, denoted by the letter C. In a Classic

interpreter, SQAPL will translate character data between ⎕AV and the ANSI character

set, which means that the “wide” types are not really usable, and you will need to use

a Binary column to store anything other ANSI data (or better: upgrade to Unicode!).

When using the Unicode edition of Dyalog APL, all character types should “just

work”. For example (return codes not displayed if 0):

 SQA.Connect 'C2' 'MSSQLSRV'
 SQA.Do 'C2' 'create table testuni
 (name char(10),body ntext)'
 i←'insert into testuni values (:n<C10:,:b<C50:)'
 SQA.Do'C2' i 'avg' '{+/⍵÷⍴⍵}'
 SQA.Do'C2' i 'tally' '{⊃⍴⍵}'
 3 1⊃SQA.Do 'C2' 'select * from crm.testuni'
 avg {+/⍵÷⍴⍵}
 tally {⊃⍴⍵}

The example shows that Unicode strings (containing APL symbols) can be stored and

faithfully retrieved from a WLongVarChar column in MS SQL Server, which calls

that column type ntext.

Very Wide Char Columns

By default, the APL character type maps to the ODBC type WVarChar (W), which

has a maximum length of 4,000 characters. For really long strings, you will need to

explicitly select an ODBC type of Q for WLongVarChar (or if the data is all single-

byte, L for LongVarChar). For example:

 SQA.Do 'C1' 'insert into testtab (a_wide_col)
 values (:<C10000(L):)' (10000⍴⎕A)

UTF-8 Data

Many databases do not have “native” Unicode support. The previous example using a

WLongVarChar type had to be performed with Microsoft SQL Server rather than

MySQL, because MySQL has no “W” data types. In databases without actual

Unicode data types, it is common to store Unicode data using an encoding known as

UTF-8. UTF-8 is a variable-length encoding which is identical to 7-bit ASCII for

code points 0-127, and then uses multi-byte sequences to represent characters outside

that range. UTF-8 encoded text files are now so widespread that it is common for

people to simply refer to UTF-8 as “Unicode”, can cause much confusion.

 The following utility functions can be used to convert to and from UTF-8:

 toUTF8←{⎕UCS 'UTF-8' ⎕UCS ⍵}
 fromUTF8←{'UTF-8' ⎕UCS ⎕UCS ⍵}

 ODBC User Guide 18

 ⎕←fromUTF8 ⎕←⎕UCS ⎕←toUTF8 '{+/⍵÷⍴⍵}'
{+/â•µÃ·â•´â•µ}
123 43 47 226 141 181 195 183 226 141 180 226 141 181 125
{+/⍵÷⍴⍵}

Using these utility functions, we can repeat the Unicode experiment using “ordinary”

character columns and MySQL:

 SQA.Do 'C1' 'create table testuni
 (name char(10),body varchar(100))'
0 C1.s1
 i←'insert into testuni values (:n<C10:,:b<C256:)'
 SQA.Do'C1' i 'avg' (toUTF8 '{+/⍵÷⍴⍵}')
0 C1.s1
 SQA.Do'C1' I 'tally' (toUTF8 '{⊃⍴⍵}')
0 C1.s1
 SQA.Do 'C1' 'select * from testuni'
0 C1.s1 avg {+/â•µÃ·â•´â•µ} 6
 tally {âŠ ƒ â•´â•µ}
 data←3 1⊃SQA.Do 'C1' 'select * from testuni'
 fromUTF8¨data
 avg {+/⍵÷⍴⍵}
 tally {⊃⍴⍵}

With a little extra work, UTF-8 allows us to store Unicode text in SQL databases
without native support for Unicode data.

Binary Data

In the past, Character data was typically restricted to ASCII values in the range 0-

127, while Binary columns could store “byte” values with a range of 0-255. Under

the Classic edition of APL, character data was translated when written to Character

buffers, but not when written to Binary.

Over time, Character columns have been extended to store values up to 255,

accelerated by the advent of Unicode and the need to store UTF-8 values in Character

columns. At the same time, Unicode APL means that character data no longer needs

to be translated, and there is no difference between the APL types C and X. Note that

you should always specify the size of the buffer that you need, for example :<C10:

or :>X256:.

As a result, there is now practically no difference between Character and Binary

columns. However, the ODBC and APL types still exist:

ODBC

Type Name

Type

Number

Code

Letter

Default

APL Type

Binary -2 X Binary (X)

VarBinary -3 Y Binary (X)

LongVarBinary -4 Z Binary (X)

Bit -7 B Binary (X)

Use of the X APL type is important to avoid translating data when using the Classic

edition, otherwise it should make no difference whether you use C or X. The X type

does accept a modifier which allows you to specify that you do want translation of

Binary data (for example, :<X256#1:). This only applies to the Classic edition.

 ODBC User Guide 19

Dates and Timestamps

ODBC provides three types for storing dates and times:

ODBC

Type Name

Type

Number

Code

Letter

Default

APL Type

Date 91 D Char (C10)

Time 92 T Char (C8)

Timestamp 93 S Char (C19)

By default, SQAPL will map all three types to character strings on selection.

However, no less than six APL types are provided in order to provide flexible

mapping for dates and times to APL arrays:

APL

Type Name

 Default

ODBC Type

Description

Date 7 D Date (D) 3-vector: yyyy mm dd

Time 8 T Time (T) 3-vector: hh mm ss

Stamp 9 S Timestamp (S) 7-vector in ⎕TS format:
 yyyy mm dd hh mm ss fff

 (fff is 0-999 msec)

DateInt 10 Y Date (D) 8-digit integer: yyyymmdd

TimeInt 11 H Time (T) 6-digit integer: hhmmss

StampFloat 12 J TimeStamp (S) Floating point value: Days since 1900 1

1, with time in the fractional part

The following example creates a table and populates it with one date, one time and

one timestamp value (as usual, 0 return codes are not displayed). First, we inspect the

“typeinfo” to see what MySQL calls these types:

 t←2⊃SQA.TypeInfo 'C1'
 3↑[2](t[;2]∊91 92 93 'DATA_TYPE')⌿t
 TYPE_NAME DATA_TYPE COLUMN_SIZE
 date 91 10
 time 92 8
 datetime 93 21
 timestamp 93 14

The above reveals that there are two timestamp formats to choose between, with

varying precision. 14 digits is only enough to store whole seconds

(yyyymmddhhmmss), 21 gives 6 additional digits. We’ll go for the type called

“datetime”, as we do want to store milliseconds:

 SQA.Do 'C1' 'create table testts
 (d date, t time, s datetime)'
 ⎕←now←⎕ts
2011 3 26 22 45 40 282
 sql←'insert into testts values(:<D:,:<T:,:<S:)'
 SQA.Do 'C1' sql (3↑now) (3↑3↓now) now
 3 1⊃SQA.Do 'C1' 'select * from testts'
 2011-03-26 22:45:40 2011-03-26 22:45:40

As can be seen above, the default on output is to map all three data types to character

vectors (C10, C8 and C19, respectively). If we want the values returned in the same

format as we provided as input, we need explicit output declarations:

 ODBC User Guide 20

 3 1⊃SQA.Do 'C1' 'select * from testts :>D,T,S:'
 2011 3 26 22 45 40 2011 3 26 22 45 40 0

Well… almost! The observant reader will notice that we have lost our 282

milliseconds. There are a couple of reasons for this - for one thing, the default “scale”

for the S type is 0, meaning no decimals. This default has been chosen because some

databases will give an error if fractional timestamps are provided. To input

milliseconds, you need to specify a scale of 3, using a declaration like :<S.3:, or

:<S23.3: if you prefer.

Despite the reported precision of 21, a search on the internet finds the page

http://dev.mysql.com/doc/refman/5.1/en/datetime.html, which says that “…

microseconds cannot be stored into a column of any temporal data type. Any

microseconds part is discarded.”

The ability to store fractions of seconds is one of the areas where the ODBC standard

turns out not to be fully supported by all databases. Despite reporting that it supports

microseconds when asked, MySQL does not. Other (commercial) databases suffer

from similar problems in this area which vary from version to version, you will need

to experiment with your own database to find out what is possible. Recent versions of

Microsoft SQL Server will accept millisecond input but the internal precision is not

quite high enough, so you may not get the same number back:

 SQA.Prepare 'C1.I1' 'insert into sqatest
 values (:<C10:,:<S23.3:,:<I:)'
0
 SQA.Exec 'C1.I1' 'Mary' (1962 10 31 1 2 3 456) 170
0 1
 3 1⊃SQA.Do 'C1' 'select * from sqatest'
 Mary 1962-10-31 01:02:03.457 170

Types Y, H and J allow the manipulation of time, date and timestamp values as scalar

numeric values:

 3 1⊃SQA.Do 'C1' 'select * from testts :>Y,H,J:'
20110326 224540 40626.948379629626

Y allows dates to be represented as a single 8-digit integer in (yyyymmdd) format. H

is the equivalent for time columns (hhmmss). Finally, J represents timestamps as

“the number of days since 1900-01-01”. The fraction represents the time (22:45:20)

as a fraction of a 24-hour day.

As all APL programmers will agree (ahem), “the number of days since 1900-01-01”

means that the first of January 1900 will have the number zero. However, in order to

make it easier for you to adapt to the various strange (but popular) date numbering

systems actually adopted by users of other programming languages, the J data takes a

modifier which follows a hash (#) sign. In J#0 (the default), 1900-01-01 is day

number 0. In J#1, it is day number 1. In J#2, 1900-01-01 is also day number 1, but

from March 1
st
 1900 and onwards, the offset is 2. J#2 represents the numbering

system used by Excel, also known as the “OLE Date Time”, in which February 29
th

1900 is day number 60, even though 1900 was not a leap year.

 SQA.Do 'C1' 'create table testdt
 (ch1 char(10), dt1 datetime)'
 ⎕←data←3 2⍴'Jan 1' '1900-01-01'
 'Feb28' '1900-02-28' 'Mar 1' '1900-03-01'
 Jan 1 1900-01-01
 Feb28 1900-02-28
 Mar 1 1900-03-01

http://dev.mysql.com/doc/refman/5.1/en/datetime.html

 ODBC User Guide 21

 stmt←'insert into testdt values(:<C5:,:<C10:)'
 SQA.ExecDirect 'C1.I1' stmt data ('Bulk' 3)
0 3 3
 3 1⊃SQA.Do 'C1' 'select ch1,dt1,dt1,dt1,dt1,dt1
 from testdt :>C10,S,J,J#0,J#1,J#2:'
 Jan 1 1900 1 1 0 0 0 0 0 0 1 1
 Feb28 1900 2 28 0 0 0 0 58 58 59 59
 Mar 1 1900 3 1 0 0 0 0 59 59 60 61

APL Arrays

The Z type allows the storage of entire APL arrays in any sufficiently wide character

or binary column, by “serializing” the array. In the following example we shall use a

LongVarChar column, although a LongVarBinary column would allow a more

efficient and compact representation. It is important to specify a length which is large

enough to accommodate the largest array that you are planning to serialize.

 SQA.Do 'C1' 'create table testarrays (array text)'
 stmt←'insert into testarrays values(:<Z500(L):)'
 SQA.Do 'C1' stmt (2 3⍴⍳6)
0 C1.s3
 3 1⊃SQA.Do 'C1' 'select * from testarrays'
 ALASCII & (" " P $" P0%!@ =F[]"6V< (!
 SQA.Do 'C1' 'select * from testarrays :>Z:'
0 C1.s3 1 2 3 6
 4 5 6

If we select the data without specifying the Z type, we see the character encoding that

was used to store the array. With a Binary column, the (L) is not necessary. However,

if you omit the (L) when using a Char column, any nulls in the binary representation

will cause premature termination when reading data from the database, resulting in a

ill-formed array representation, which can cause a crash of the SQAPL library.

The format used is known as Self-Contained Array (SCAR), has been published and

placed in the public domain by Insight Systems, and is supported by APL systems

from Dyalog, IBM and APL2000: Data is stored without loss or conversion in the

internal format of the writing system, and is only converted if necessary by the

recipient. This allows SQL databases to be used as an efficient storage mechanism for

arrays, and for the exchange of APL arrays between different APL implementations.

Utility functions to convert arrays to and from SCAR are described in the Advanced

Topics chapter.

Conversion Errors

If you use a bind variable type which the driver is unable to convert to the required

type, the result will either be an error or a warning. Nowadays, such errors are

fortunately quite rare, as drivers have become very good at type conversions.

However, they can still occur in edge cases, and it is useful to know that an explicit

type conversion can usually solve the problem. The following example was captured

in 1990’s:

 SQA.Do 'C' 'insert into tbl values(:<C10:)' 'Text'
 4 07006 0 [Q+E Software][ODBC dBase driver]
 Unable to convert column 1 to SQL_CHAR.
 Error in parameter 1.

It turns out that this old dBase driver was expecting a LongVarChar and was unable

to convert the provided VarChar to that. The solution was to declare it as

:<C10(L):.

 ODBC User Guide 22

C H A P T E R 4

Prepare, Exec, Fetch

Low Level Interface

So far, all our examples have used the “high level” interface to ODBC, SQA.Do – or

the even higher level tools found in the loaddata workspace. The SQA.Do

function performs a number of steps that are required by the ODBC interface: It will

prepare and then execute the statement, fetch the results (possibly several times), and

finally close the database cursor. It is very convenient for ad-hoc queries or

prototyping, but gives you little control over the use of database or workspace

resources. SQA.Do only returns the result of the last call to SQA.Fetch; if

warnings were issued by earlier calls, they will not be reported. If the last fetch did

return a warning, the cursor will often have been closed, so you will not be able to

retrieve the warnings using SQA.GetWarning.

If you are writing an application which performs updates, needs to detect warnings,

or needs control over the use of database cursors, it is probably worth learning to use

the some of the following Low Level functions:

SQA.Prepare Creates a new cursor object, and prepares an SQL statement

for execution

SQA.Describe Describes the input and output for a prepared statement

SQA.Exec Binds values (if any) to a statement and executes it

SQA.X Executes a statement multiple times using a matrix of input

data

SQA.ExecDirect Prepares and executes a statement in a single call

SQA.Fetch Fetches one or more blocks of data

SQA.Close Closes a cursor object

SQA.Transact Commits or rolls back the current transaction

SQA.Cancel Discards the current cursor context without destroying the

cursor

The most common sequence of low level functions is the set that SQA.Do is using

under the covers: Prepare, Exec, Fetch, Close. For example:

 SQA.Prepare 'C1.S1' 'select * from sqatest
 where name like ''J%'''
0
 SQA.Exec 'C1.S1'
0 2
 0 SQA.Fetch'C1.S1'
0 Jill 1995-10-15 167 6
 Jack 1996-03-31 175
 SQA.Close 'C1.S1'
0

 ODBC User Guide 23

We will start by examining each of these functions in a bit more detail.

SQA.Prepare

The right argument of SQA.Prepare must contain a cursor object name followed

by an SQL statement. The first segment of the cursor name must be the name of an

existing connection. The right argument may contain additional elements in order to

set options such as the maximum block size for each subsequent call to SQA.Fetch.

For example:

 SQA.Prepare 'C1.S1' 'select * from sqatest where
 name like :<C1: and height > :>I:' ('MaxRows' 5)
0

The example above prepares a statement named S1 attached to the connection C1

and reserves buffer space for five records per fetch. The return code 0 indicates that

the statement was successfully prepared.

A utility function SQA.CursorName can be used to generate a free cursor name, so

that an application can avoid hard-coding these names:

 SQA.CursorName 'C1'
0 C1.s1

Variable Declarations, Revisited
If you use SQA.Prepare or SQA.ExecDirect (as we shall see in a moment),

you can elect to use standard ODBC SQL syntax, in which each bind variable is

denoted by a question mark, and provide type declarations in a separate 8-column

numeric matrix:

To represent the two input variables of type C10 and I (as in the first example in the

previous section), we need:

 ⎕←BIND←2 8⍴(8↑1 1 1 0 10),8↑1 2 2
1 1 1 0 10 0 0 0
1 2 2 0 0 0 0 0
| | | | | | | |
| | | | | | | [;8] Type Variant (see Handling Dates)
| | | | | | [;7] Partial Flag (see Partial Binding)
| | | | | [;6] Scale (number of digits following decimal point)
| | | | [;5] Precision (number of chars or digits)
| | | [;4] ODBC Type Number to use (0 means use default)
| | [;3] APL Type Number (1=C and 2=I, see table on next page)
| [;2] Index into list of Bind or Select variables
[;1] Direction (1=Bind or Input, 0=Select or Output)

 SQA.Prepare 'C1.S1' 'select * from sqatest
 where name like ? or height > ?' BIND
0
 SQA.Exec 'C1.S1' 'B%' 170
0 3
 SQA.Fetch 'C1.S1'
0 Jack 1996-03-31 175 6
 Betty 1992-01-17 172
 Bobby 1994-10-31 180
 SQA.Close 'C1.S1'
0

A slight variant of the example used to demonstrate the use of variants of the J type

for representing dates, which also uses a bind variable of type J:

 ODBC User Guide 24

 3 1⊃SQA.Do 'C1' 'select ch1,dt1,dt1,dt1,dt1,dt1
 from testdt :>C10,S,J,J#0,J#1,J#2:
 where dt1= :<J:' 59

… could be implemented as follows:

 info←⍪7↑1 ⍝ 1 Bind, 6 Select
 info,←1,⍳6 ⍝ Indices
 info,←12 1 9 12 12 12 12 ⍝ J C S J J J J
 info[6 7;8]←1 2 ⍝ #1 and #2
 info
1 1 12 0 0 0 0 0
0 1 1 0 0 0 0 0
0 2 9 0 0 0 0 0
0 3 12 0 0 0 0 0
0 4 12 0 0 0 0 0
0 5 12 0 0 0 0 1
0 6 12 0 0 0 0 2

 SQA.Prepare 'C1.S1' 'select ch1,dt1,dt1,dt1,dt1,dt1
 from testdt where dt1=?' info
 SQA.Exec 'C1.S1' 59
 SQA.Fetch 'C1.S1'
0 Mar 1 1900 3 1 0 0 0 0 59 59 60 61

In the above example, it may seem a little cumbersome to use the matrix form,

compared to the inline declarations. A utility function SQA.Parse is provided to

help convert from the inline form to the matrix form:

 SQA.Parse 'select blah where xxx=:<C10: :>S,J#2:'
 select blah where xxx=? 1 1 1 0 10 0 0 0
 0 1 9 0 0 0 0 0
 0 2 12 0 0 0 0 2

If you are generating SQL statements using some kind of data dictionary, the matrix

form can be easier to create under program control. Also, when using the inline form,

if you want to declare an output type for the 3
rd

 output column, you must be able to

provide a name which exactly matches the name that the database gives to the

column. This can be tricky with calculated or joined columns. The matrix form

avoids these issues.

 SEL←1 8⍴8↑0 2 12 ⍝ Output, 2nd col, Type J
 SQA.Prepare 'C1.S1' 'select * from sqatest' SEL
 SQA.Exec 'C1.S1'
 2⊃SQA.Fetch 'C1.S1'
 Jill 34985 167
 Jack 35153 175
 Betty 33618 172
 Bobby 34636 180

SQA.Exec and SQA.X
Once a statement has been prepared, the next step is to execute the statement using

SQA.Exec or SQA.X. We have already seen an example of the use of both in the

previous section on bind variables. While SQA.Exec allows a single execution of a

statement, SQA.X accepts a matrix of bind values and will cause the statement to be

executed once for each input row. If the ODBC driver supports bulk input, the data

will be transferred to the server in a single operation and the looping will be done in

the database server, providing very high performance on large data volumes. If the

driver does not support this, SQAPL will do the looping and there will be a smaller

performance gain.

 ODBC User Guide 25

Use of SQA.X requires the use of the Bulk when preparing the statement. This

option specifies the largest number of rows or sets of bind variables you intend to

provide, so that SQAPL knows how much buffer space to set aside. In the following

example, we will prepare a statement once and then use it with both SQA.X and

SQA.Exec:. In both cases, the argument is the name of the prepared statement, and

bind variable values. For SQA.Exec, the values follow on after the name as district

arguments, in the case of SQA.X a single matrix provides data for all:

First, we extract all records from our existing table, delete them from the table, and

immediately re-insert them using a single call to SQA.X:

 ⎕←data←3 1⊃SQA.Do 'C1' 'select * from sqatest
 :>C10,J,I:'
 Jill 34985 167
 Jack 35153 175
 Betty 33618 172
 Bobby 34636 180
 SQA.Do 'C1' 'delete from sqatest'
 SQA.Prepare 'C1.I1' 'insert into sqatest
 values (:n<C10:,:d<J:,:h<I:)' ('Bulk' 10)
 SQA.X 'C1.I1' data
0 4 4

Unfortunately, the result of SQA.X will vary from one driver to the next, but in

theory if should mean that 4 database rows were affected and 4 input rows were

processed. Regrettably, you cannot rely on these numbers to determine whether the

execution was completely successful, and you must inspect the return code.

We can proceed to add one more row using SQA.Exec:

 SQA.Exec 'C1.I1' 'Fred' 35000 185
0 1

In this case, the second element of the result is the number of rows modified by the

execution of the statement – and this is fairly reliable.

Nulls

SQL databases allow a value to be set to null, to indicate that it is unknown. If we

have another person to add to the database, but her height is unknown, we can enter

the height as null rather than simply setting it to zero. We can provide null flags by

following the bind variable values with an equal number of boolean elements, where

1's indicate nulls. You still have to provide a placeholder value (in this case 0) for the

columns which will be nulled:

 SQA.Exec 'C1.I1' 'Fiona' 35100 0 0 0 1
0 1

And we can add

 ⎕←data←2 3⍴'Harry' 35234 0 ,'Hermione' 34987 168
 Harry 35234 0
 Hermione 34987 168
 SQA.X 'C1.I1' data (2 3⍴0 0 1, 0 0 0)
0 2 2

In SQL databases, nulls are considered to be different from all other values, including

other nulls – which makes them hard to find:

 stmt←'select * from sqatest where height=:<I:'
 ⍴3 1⊃SQA.Do 'C1' stmt 0 ⍝ Height=0
0 3
 ⍴3 1⊃SQA.Do 'C1' stmt 0 1 ⍝ Height=[null]
0 3

 ODBC User Guide 26

In fact, a special SQL keyword is used to find null values:

 3 1⊃SQA.Do'C1' 'select * from sqatest
 where height is null'
 Fiona 1996-02-07 0
 Harry 1996-06-20 0

Note that null indicators are not retrieved by default, so the output of a query can be

deceptive: Null indicators can be retrieved using SQA.Fetch. Strictly speaking, the

value returned for elements which are null is undefined, but in practice it is usually 0

for numeric columns and '' for characters.

Unfortunately, although the SQL standard is quite explicit about the treatment of

nulls, few databases follow the standard exactly. A few databases do allow you to

find nulls by binding a null value to a search parameter, although this violates the

standard. Other interesting questions include: How many groups should you get if

you do a GROUP BY on a column with multiple null values? Can you JOIN tables

on nulls in your database? Writing portable applications which use nulls requires

much testing.

Errors During Statement Execution

If the execution of a statement fails when using SQA.Exec, the error will either be

returned as the result of the function, but it may also be returned as a warning:

 SQA.Do 'C1' 'create unique index uname
 on sqatest(name)'
 SQA.Exec 'C1.I1' 'Fred' 35000 185
¯1 0
 SQA.GetWarning 'C1.I1'
0 4 23000 1062 [MySQL][ODBC 5.1 Driver][mysqld-
5.1.41-3ubuntu12.10]Duplicate entry 'Fred' for key
'uname' 0

If we use SQA.X, more than one error may be produced, and the 2
nd

 element of the

result of SQA.GetWarning may contain more than one error:

 data
 Harry 35234 0
 Hermione 34987 168
 SQA.X 'C1.I1' data
¯1 0 2
 ⍴t←2⊃SQA.GetWarning 'C1.I1'
1
 1 2 3 4,⍪⍕¨1⊃t
1 4
2 23000 1062
3 [MySQL][ODBC 5.1 Driver][mysqld-5.1.41-
3ubuntu12.10]Duplicate entry 'Hermione' for key 'uname'
4 0

Unfortunately, drivers handle errors in different ways when using SQA.X. The result

of SQA.X indicated that 2 records were processed, but only one message was

returned. The 4
th

 element, which is supposed to be the index of the input row that

caused the error, is 0. Other database drivers would have returned two errors.

It is possible to get more reliable behaviour by instructing SQAPL not to use the

ability of the driver to loop ('Loop' 0), and stop on the first error and report it as

an error rather than a warning using ('StopOnError' 1), but this may

significantly reduce performance:

 ODBC User Guide 27

 SQA.Prepare 'C1.I1'
 'insert into sqatest values (:<C10:,:<J:,:<I:)'
 ('Bulk' 10)('Loop' 0)('StopOnError' 1)
0
 SQA.X 'C1.I1' (('Polly' 35555 175)⍪data)
4 23000 1062 [MySQL][ODBC 5.1 Driver][mysqld-5.1.41-
3ubuntu12.10]Duplicate entry 'Harry' for key 'uname' 1

In this case, the row number will be the 0-origin index into the input matrix.

SQA.Describe

The function SQA.Describe allows you to retrieve a description of any SQAPL

object. At this point, we will only show how to use it in conjunction with prepared

statements, but the function reference explains how to use it on other objects.

 SQA.Prepare 'C5.S2' 'select name,height,:dob>J:
 from sqatest where name like :wname<C10:
 or height>:wheight<I:'
0
 SQA.Exec 'C5.S2' 'J%' 170
 SQA.Fetch 'C5.S2'
…data…
 SQA.Describe 'C5.S2'
0 Cursor C5.S2: Status=Fetch Completed, MaxRows=50

 select name,height,:dob>J: from sqatest where name
like :wname<C10: or height>:wheight<I:

 Bind Vars: 2
 Name APL DB Prec. Scale Length Buf
 wname C 0 10 0 22 W U
 wheight I 0 0 0 4 I I

 Select vars: 3
 Name APL DB Prec. Scale Length Buf
 name C 1 10 0 11 C C
 height I 4 10 0 4 I I
 dob J 93 23 3 16 S S

With some database drivers, information is available after Prepare. In other cases,

some or all of the information does not become available until the statement has been

executed, and in some cases only after the first fetch.

When used without a left argument, or with a left argument of 1, SQA.Describe

provides a formatted report for the SQAPL object named in its right argument. The

most common use is to describe a cursor, as in the example above. The first two

columns of output give you the Name and the APL type of each variable. The DB

type column gives the ODBC type. Precision is the number of significant digits in a

numeric field, or the length of a character field. Scale is the number of digits to the

right of the decimal point, where applicable. The Length column shows the number of

bytes consumed for this column in each row of output. The Int and Buf columns give

internal logical and C buffer types.

With a left argument of 0, the second element of the result of SQA.Describe is an

APL array containing unformatted information for the named object and all of its

children all the way down the object hierarchy. Each item is a two-element vector,

where the first element contains information about the object itself, and the second

element is a vector containing the result of SQA.Describe applied to each child

(without return codes). For details, see SQA.Describe in the Function Reference

section.

 ODBC User Guide 28

SQA.ExecDirect

You can prepare and execute a statement in a single call using this “new” function

(introduced ca. 2005):

 SQA.Do 'C1' 'create table tenkrows
 (col1 char(10),col2 integer)'
 ⍴data←(↓'ZI10' ⎕FMT ⍪⍳10000),⍪⍳10000
10000 2
 stmt←'insert into tenkrows values(:c1<C10:,:c2<I:)'
 SQA.ExecDirect'C1.I2' stmt data ('Bulk' 10000)
0 10000 10000

… or using a matrix to declare the bind variables:

 stmt←'insert into tenkrows values (?,?)'
 bind←2 8⍴(8↑1 1 1 0 10),8↑1 2 2
 SQA.ExecDirect'C1.I2' stmt data bind ('Bulk' 10000)
0 10000 10000

Note that, since the function essentially combines SQA.Prepare and SQA.Exec,

all options for these two functions are valid as options of SQA.ExecDirect (with

the exception that there is no support for Nulls. Also note that following the call, the

cursor is open - even if an error was returned. You are expected to call SQA.Fetch

to retrieve results (if any), and finally SQA.Close.

SQA.Fetch

After a statement has been executed using either SQA.Exec, SQA.X or

SQA.ExecDirect, SQA.Fetch is used to retrieve the output.

 stmt←'select * from sqatest :>C10,J,I:'
 SQA.Prepare 'C1.S1' stmt ('MaxRows' 3)
 SQA.Exec 'C1.S1'
 0 SQA.Fetch 'C1.S1'
0 Jill 34985 167 5
 Jack 35153 175
 Betty 33618 172

When called with no left argument, or a left argument of 1, SQAFetch loops until all

data is returned and the cursor is closed. Above, we have used a left argument of zero

to request that SQAFetch only fetch one block of data, which contains the 3 rows

requested through the use of the MaxRows parameter when preparing the statement.

Fetching Nulls

The Nulls option allows us to request that the 3
rd

 element of the result (which is

normally empty) be populated with null indicators in the form of a boolean array with

the same shape as the data:

 0 SQA.Fetch 'C1.S1' ('Nulls' 1)
0 Bobby 34636 180 0 0 0 5
 Fred 35000 185 0 0 0
 Fiona 35100 0 0 0 1

Optimising Fetches

By default, SQA.Fetch returns all columns of output in a single nested matrix. This is

a relatively inefficient format, both in terms of the memory required to store the

result, and the processing time required to move the individual elements of this array.

 ODBC User Guide 29

The ColumnWise option can be used to request that each column be returned as a

separate simple array:

]disp 2⊃0 SQA.Fetch 'C1.S1' ('ColumnWise' 1)
┌→─────────┬─────────────────┬─────────┐
│Harry │ │ │
│Hermione │35234 34987 35555│0 168 175│
│Polly ↓ │ │
└─────────→┴~───────────────→┴~───────→┘

Each element of the result is now a simple array, including character columns.

Depending on your data, you may observe significant speedups.

If the application needs character data to be returned as a vector of character vectors,

the number of bytes used to store the each element can be combined with null

indications, using ('Nulls' 3):

]disp ⍪0 SQA.Fetch 'C1.S1'('ColumnWise' 1)('Nulls' 3)
┌→───────────────────────────────────────┐
↓ 0 │
├~───────────────────────────────────────┤
│┌→─────────┬─────────────────┬─────────┐│
││Bobby │ │ ││
││Fred │34636 35000 35100│180 185 0││
││Fiona ↓ │ ││
│└─────────→┴~───────────────→┴~───────→┘│
├───────────────────────────────────────→┤
│ ┌→──────┬────────┬──────┐ │
│ │10 8 10│16 16 16│4 4 ¯1│ │
│ └~─────→┴~──────→┴~────→┘ │
├───────────────────────────────────────→┤
│ 5 │
└~───────────────────────────────────────┘

In this case, the null flags are ¯1 for null values, and otherwise the number of bytes

used.

Note: SQA.Connect also supports the Columnwise option, allowing you to set a

default for the connection. For example:

 SQA.Connect 'C1' 'MySQL' 'secret' 'userid'
 ('MaxRows' 1000)('Columnwise' 1)

If the option is set on the connection, it will also affect the shape of the data returned

by SQA.Do.

SQA.Cancel
The function SQA.Cancel is used to release all resources used by a cursor without

closing it. For example, you could use this function on a cursor to release it before

you have fetched all records.

 SQA.Cancel 'C1.S1'
0

Unfortunately, this function does not have the same effect with all drivers. Some

drivers will not allow you to re-execute a cancelled statement. SQAPL will solve

some of these problems, for example by re-preparing the statement if the driver

returns ODBC Sequence Error on execution of a cancelled statement. The only

completely portable strategy is to close the cursor, and re-prepare the statement

yourself if you need it again.

 ODBC User Guide 30

SQA.Close
It is a good idea to close objects that you no longer need, so that they do not keep

files open, tables locked, or reserve other server resources:

 SQA.Close 'C1.S1' ⍝ Close a cursor
 SQA.Close 'C1' ⍝ Connection and all related cursors
 SQA.Close '.' ⍝ All connections and reloads Library

 ODBC User Guide 31

C H A P T E R 5

Advanced Features

Large Objects and Partial Binding

SQAPL itself imposes no limitations on record or data element size. The only limits

result from workspace size and other memory limitations, plus limitations in the

drivers or databases themselves. These limitations are probably fading as everyone

moves towards 64-bit operating systems, but there are still situations where it is

impractical or undesirable to pass all data in a single function call. ODBC supports

very large data elements in inputs (bind variables) and results using a protocol known

as "Partial Binding".

To support partial binding, SQAPL provides two functions called SQA.GetData

and SQA.PutData, and a special modifier in bind variable declarations.

SQA.PutData

Assume that we have created a table as follows (this example was done using

Microsoft Access):

 SQA.Do 'C1' 'create table persons
 (id counter, ename text(50), fname text(50),
 birth datetime,comment longtext, extra longtext)'

The last two fields have the ODBC type LongVarChar, which can hold up to 64k of

text in each element. If we do not feel that we can safely provide all this information

at once, we can use partial binding to provide the values. This is done using a trailing

P for Partial in the bind variable declaration (when using the matrix form, put a 1 in

column [;7] to indicate a partly bound variable.

 SQA.Prepare'C1.I1' 'insert into persons values
 (:<C50:,:<C50:,:<Y:,
 :comment<C65536(L)P:,:extra<C65536(L)P:)'

The two type declarations provide SQAPL with the following information:

comment The name of the bind variable

<C65536 It is an input variable and we will provide up to 64k

elements of character data

(L) We want SQAPL to convert the data to LongVarChar

P We will use partial binding

When we execute the statement, we supply values for the fully bound variables using

a normal call to SQA.Exec. For each partially bound variable, we provide an integer

 ODBC User Guide 32

which indicates the maximum size of a block of data that we might use when we

provide the data:

 SQA.Exec 'C1.I3' 'Clinton' 'Bill' 19500616 500 500
0 ¯1 C1.I3.comment

SQA.Exec returns a zero return code to let us know that all is well, that ¯1 rows

have been modified (indicating that the work has not yet been done). The third

element of the result contains the name of the first partial buffer for which data is

expected (using the name that we provided in the declaration).

We are now expected to make repeated calls to SQA.PutData for the first partial

variable.

 SQA.PutData 'C1.I3.comment'(100⍴'USA ')0
0 0 C1.I3.comment
 SQA.PutData 'C1.I3.comment'(200⍴'USA ')0
0 0 C1.I3.comment
 SQA.PutData 'C1.I3.comment'(150⍴'USA ')1
0 ¯1 C1.I3.extra

The arguments to SQA.PutData are the name of the buffer, the next block of data,

and a flag which allows us to declare whether we are done with this variable. When

we declare that we are done, SQAPL tells us that there is more data to supply for the

buffer called C1.I3.extra. We continue providing data:

 SQA.PutData'C1.I3.extra'(100⍴'USA ')0
0 0 C1.I3.extra
 SQA.PutData'C1.I3.extra'(200⍴'USA ')0
0 0 C1.I3.extra
 SQA.PutData'C1.I3.extra'(150⍴'USA ')1
S1000 ¯1302 [Microsoft][ODBC Microsoft Access 97
Driver] Table 'persons' is exclusively locked by user
'Admin' on machine 'GOLLUM'.

Apart from revealing that this demo is rather old, we can see that the author was

careless and had the table in question open in Microsoft Access while creating the

example. After shutting Access down and repeating the experiment, the final call

completes successfully:

…all over again…
 SQA.PutData'C1.I3.extra'(150⍴'USA ')1
0 0

SQA.GetData

The procedure for reading data using partial binding is almost identical to providing

input values, in reverse:

 SQA.Prepare 'C1.S1' 'select id, ename, fname,
birth, :comment>C15P:, :extra>C160P: from persons'

Again, the trailing P in the output variable declarations are the clue that lets us know

that these variables will be fetched "partially". When partial fetching is in use,

MaxRows is automatically set to 1 – you cannot combine partial fetching with

blocking records on output.

 SQA.Exec 'C1.S1'
0 0
 0 SQA.Fetch 'C1.S1'
0 1 Lennon John 1950-07-18 00:00:00 5

 ODBC User Guide 33

You must use SQA.Fetch with a left argument of zero, so that only one block

(containing one record) is fetched. There is no indication that partial data is available;

it is our responsibility to pick up partial data using SQA.GetData after fetching

each record. If we continue fetching SQAPL and ODBC will allow us to proceed

without protests.

 SQA.GetData 'C1.S1.comment'
¯1 This is one of ¯11 5
 SQA.GetData 'C1.S1.comment'
0 the Beatles 0 5
 SQA.GetData 'C1.S1.extra'
0 He is playing the guitar 0 5

The first element of the result is 0 if all is well, ¯1 if there was a warning, and a

positive number if there was an error (as for any SQAPL function). The second

element contains the data, and the third element is the number of elements of data

which have not yet been fetched. The fourth element is the state of the entire fetch

operation, and 5 means there are more records available. Once we have fetched all the

partial data we want for the current record, we can proceed to the next one – until we

are done:

 0 SQAFetch 'C.S1'
0 2 Star Ringo 1945-09-04 00:00:00 5

SCAR Conversion Functions

In order to make it possible to read and write APL objects using partial binding and

fetching, there are two functions which convert APL objects to the Self-Contained

Array (SCAR) format which is used to represent arrays passed using APL type Z -

and back again. Of course, the functions can also be used to convert APL arrays to

the SCAR format and write them to other types of files, or transfer them across

sockets to other APL systems.

The functions are SQA.APL2Scar and SQA.Scar2Apl

 z←SQA.Apl2Scar (⍳3) 0

The first element of the argument is the array to be converted, the second element is 1

if the result must use printable ASCII characters only, 0 if full 8-bit representation

may be used. You can only use the latter if the database column you are going to

store the data in is Binary or Long Binary.

 8↑2⊃z
BLASCII
 ⎕UCS 8↓2⊃SQA.Apl2Scar (⍳3) 0
16 0 0 0 2 1 0 0 3 0 0 0 1 2 3 0

The first eight bytes of the SCAR representation identify the encoding used: The first

byte is A for ASCII Printable (can be saved in a Char column) or B for Binary. The

second byte is L for Little-Endian (Intel) byte order or B for Big-Endian. The

remaining 6 bytes are the name of the translate table (entry in APLUNICD.INI) used,

in order to provide translation of characters to the alphabet used by the decoding

system. For Unicode systems, the translate table is called “ASCII”, which is

unfortunately a little misleading. Following the 8-byte header is the data, where data

values are stored in the internal format used by the interpreter that created the SCAR.

 ODBC User Guide 34

To convert the data back to an APL array, pass the SCAR to the function

SQA.Scar2Apl:

 SQAScar2Apl 2⊃z
0 1 2 3

Transactions

Most multi-user SQL databases support the concept of a transaction. This allows an

application to ensure that a group of related changes (the transaction) is performed as

a unit, or not at all.

However, the default for most ODBC drivers is to operate in “autocommit” mode,

where every individual modification to a database table is committed immediately.

You may be able to turn this off using ('OdbcAutoCommit' 0) as a parameter to

SQA.Connect, if this does not work you will need to read the documentation for

your database and ODBC driver to find out how to use transactions.

Once transactions are enabled, the first transaction starts when a connection is

created. It lasts until you call the function SQA.Transact and decide whether the

changes performed should be committed (made permanent) or rolled back

(discarded). The call to SQA.Transact also triggers the start of the next

transaction.

The function SQA.Transact takes a connection name and a flag which is 0 in

order to commit or 1 to do a roll back.

 SQA.Prepare 'C1.U2' 'update emp
 set hourly_rate = :newrate<F:
 where name = :name:'
0
 SQA.Exec 'C1.U2' 36 'Randall, David'
0 1
 SQA.Exec 'C1.U2' 37 'Moore, Holly'
0 1
 SQA.Transact 'C1' 0
0

Closing a connection causes a roll back, so changes will normally be discarded if the

connection is lost or terminated during a transaction. However, closing a cursor does

not affect the changes performed using the cursor; they are still part of the current

unit of recovery.

Transaction Portability Issues
Some databases do not support transactions, and it is common for systems to

configured to auto-commit. This is often done in order to improve performance. Some

databases also support statements like “BEGIN TRANSACTION” and “COMMIT

TRANSACTION”, which you can execute as an alternative to using

SQA.Transact. You should not mix the use of SQA.Transact with BEGIN

TRANSACTION statements!

Check with your database administrator to find out whether your database and driver

support transactions (if you are the database administrator, read the documentation

)!

Two-phase Commit
SQAPL does not let you include changes made through two different connections in a

single unit of recovery. The ability to support distributed units of recovery is

sometimes referred to as two-phase commit in SQL DBMS terminology. If the

database manager you are using has a distributed architecture, you may in fact be

 ODBC User Guide 35

using more than one physical database through one connection. If the DBMS itself

supports two-phase commit, you will be able to make use of this capability with

SQAPL - but this will not be apparent to you (that's the whole point).

Releasing Cursor Resources
Relational database managers use a system of locks to ensure data integrity when

accessed by several users simultaneously. Unfortunately, relational database systems

behave quite differently when acquiring and releasing these locks. Some acquire

locks when a statement is prepared, others wait until the statement is executed. Some

systems lock entire tables while others are capable of locking single rows or items of

data. Some automatically release locks when you have fetched all data, others require

you to explicitly cancel or close the cursor in order for locks to be released. Some

databases purge all prepared statements when a commit or rollback is performed. You

or the system administrator may be able to set options which change the behaviour of

the DBMS.

If you want to write portable applications, you must either learn the behaviour of each

class of database and code alternatives depending on the type, or write "defensive"

code which always assumes the worst and explicitly closes cursors if there is any

doubt as to how a database will react. Compared to reusing objects when possible,

this strategy may give a significant reduction in performance, especially when using

drivers provide sophisticated "cursor caching" mechanisms.

Remote Procedure Calls

If you are going to develop applications which perform non-trivial transactions, you

will probably need to make use of more sophisticated techniques than commit and

rollback. Many modern SQL DBMS systems provide additional transaction

processing facilities, which are unfortunately quite different from one vendor to the

next. Common names for these facilities are stored procedures or triggers. These

facilities make it possible to have the DBMS system execute multiple SQL statements

under control of a procedure. The execution of such procedures can be initiated using

a statement, or be triggered by the update of a particular table.

Almost all databases declare the output of normal SELECT statements, but some do

not describe the output of a stored procedure. SQAPL allows you to declare the

expected output of a statement and thus extract results from a driver even if the driver

does not provide the information.

Buffers
Data for bind and select variables is stored in buffers. SQAPL allocates buffers when

a statement is prepared, and releases them when the cursor is closed. The size of each

buffer depends on the data type and the number of records which SQAPL is asked to

fetch in each call to SQA.Fetch.

You can limit the number of records for which SQAPL allocates buffers using the

MaxRows parameter. A high number should increase performance by reducing the

number of times you need to execute SQA.Fetch, but it also increases the amount

of buffer space which is required. In some environments, buffer space may be a

critical resource, so you may need to be careful. A SELECT statement with a large

number of output columns can easily consume many megabytes of buffer space if

you get enough for thousands of records at a time. As a rule of thumb, the

performance improvement is marginal once you exceed a few hundred records.

 ODBC User Guide 36

C H A P T E R 6

Troubleshooting Guide

Common Error Codes

SQAPL uses numeric error codes which can be looked up in the appendix titled

Errors and Warnings. This section discusses some of the most commonly occurring

return codes.

No Error Messages

If you are not seeing any textual error messages, this is because SQAPL can’t find the

error message file. Check that you have a file named sqapl.err in the same folder

as the SQAPL library (cndya61uni.dll for a version 13.0 Unicode system). If you

don’t have this file, you will only get numeric error messages, for example:

 SQA.Exec 'C1.NoSuchCursor'
1 10010 0

Instead of:

1 10010 OBJ Object not found 0

¯1 (Warning)
This does not generally indicate an error. For example, SQA.Connect almost

always gives a return code of ¯1 when connecting to Microsoft SQL Server, but this

is just in order to provide information. At other times, it does indicate a real problem:

SQA.X will return ¯1 even when fatal errors have occurred, so that you can call

SQA.GetWarning to retrieve the relevant messages from multiple statement

executions and decide whether further action needs to be taken:

 SQA.Connect 'C2' 'CRMIS'
¯1
 SQA.GetWarning 'C2'
0 4 01000 5701 [Microsoft][ODBC SQL Server
Driver][SQL Server]Changed database context to 'CRM'.
0 4 01000 5703 [Microsoft][ODBC SQL Server
Driver][SQL Server]Changed language setting to
us_english.

10001 APL Length Error
Typically happens when the argument to an SQAPL function has the wrong number

of arguments:

 SQA.Prepare 'C2.I1' 'insert into sqatest values
 (:<C10:,:<J:,:<I:)'
0
 SQA.Exec 'C2.I1' 'Fred' 35123 ⍝ Only 2 bind vars
1 10001 APL Length Error 0

 ODBC User Guide 37

10002 APL Rank Error
An argument has the wrong rank. Below, SQA.X is expecting a matrix of bind

values:

 SQA.X 'C1.I1' (⍳6)
1 10002 APL Rank Error 0

10007 OBJ Parent Not Found
This error often happens when you use the name of a connection which has been

closed. For example:

 SQA.Prepare 'C1.S1' 'select * from sqatest'
1 10007 OBJ Parent not found 0

10009 OBJ Name already in use
This error often happens when you have forgotten that the name of a connection or

cursor is still in use:

 SQA.Prepare 'C1.S1' 'select * from sqatest'
1 10009 OBJ Name already in use 0
 SQA.Close 'C1.S1'
0
 SQA.Prepare 'C1.S1' 'select * from sqatest'
0

10010 OBJ Object Not Found
You are trying to use an object that has been closed:

 SQA.Prepare 'C2.I1' 'insert into sqatest values
 (:<C10:,:<J:,:<I:)'
0
 SQA.Exec 'C1.S1'
1 10010 OBJ Object not found 0

10081 APL Length error
This error is issued when a bind variable value has an unexpected length – usually

because it is too long:

 SQA.Prepare 'C2.I1' 'insert into sqatest values
 (:<C10:,:<J:,:<I:)'
0
 SQA.Exec 'C2.I1' 'MuchTooLongName'
1 10081 APL Length error 0

10084 APL Domain error
A bind variable has the wrong type:

 SQA.Prepare 'C2.I1' 'insert into sqatest values
 (:<C10:,:<J:,:<I:)'
0
 SQA.Exec 'C2.I1' 'Fred' 35123 170.5
1 10084 APL Domain error 0

The last bound value is floating-point, but needs to be integer.

 ODBC User Guide 38

10086 APL Index error
For “implementation reasons”, this error message is occasionally given when “rank

error” would be more natural.

 SQA.Prepare 'C2.I1' 'insert into sqatest values
 (:<C10:,:<J:,:<I:)'
0
 SQA.Exec 'C1.I1' 'Fred' '1995-03-26' 170
1 10086 APL Index error 0

Exception Handling

SQAPL traps all exceptions occurring within the SQAPL C code, or the ODBC driver

that it is calling. In the event of a failure in or below the SQAPL library, you will see

something like the following:

[SQAPL] Exception c0000005 at 642574b Memory read at 10
ExecDirect[3] r←⍙SQAPL'ExecDirect'y
 ∧

The event number signalled is 11 (DOMAIN ERROR). You can trap this error in

order to prevent your application from crashing. However, we do not recommend that

you attempt to automate recovery by using error trapping - because the internal state

of SQAPL and any ODBC drivers you have been using is unknown following an

exception of this kind. If you must restart, you should at least unload and reload the

SQAPL library using (SQA.Close'.') followed by a new call to SQA.Init.

SQA.GetInfo

The function SQA.GetInfo makes it possible to ask a driver to provide information

regarding the capabilities of the data source, and optional settings. The argument to

SQA.GetInfo is a connection name followed by a vector of integer information

codes. The list of valid arguments can be found in the ODBC C header file

sqlext.h, which can be easily found by searching the internet. For example, a

copy can be found at:

http://www.opensource.apple.com/source/iodbc/iodbc-36/iodbc/include/sqlext.h

The definitions can be found following comments containing the name SQLGetInfo

in the file. Unfortunately, you will need to read the ODBC reference documentation

to know what they all mean – but a few are easy to guess. The first useful snippet

begins with:

/*
 * SQLGetInfo - ODBC 2.x extensions to the X/Open
standard
 */
#define SQL_INFO_FIRST 0
#define SQL_ACTIVE_CONNECTIONS 0 /*
MAX_DRIVER_CONNECTIONS */
#define SQL_ACTIVE_STATEMENTS 1 /*
MAX_CONCURRENT_ACTIVITIES */
#define SQL_DRIVER_HDBC 3
#define SQL_DRIVER_HENV 4
#define SQL_DRIVER_HSTMT 5
#define SQL_DRIVER_NAME 6
#define SQL_DRIVER_VER 7
#define SQL_ODBC_API_CONFORMANCE 9
#define SQL_ODBC_VER 10
#define SQL_ROW_UPDATES 11
#...etc...

http://www.opensource.apple.com/source/iodbc/iodbc-36/iodbc/include/sqlext.h

 ODBC User Guide 39

We can find out the name and version of the current ODBC driver, the ODBC version

that is supported, and whether it supports “Row Updates” as follows:

 SQA.GetInfo 'C1' (6 7 10 11)
0 myodbc5.dll 05.01.0008 03.80.0000 N

SQA.NativeSQL

Under some circumstances, an ODBC driver will make slight changes to SQL

statements before they are submitted to the database engine. This typically happens

when the database is using a slightly non-standard dialect of SQL. If you need to

know exactly what the “native” SQL statement is, you can retrieve it using this

function. For example:

 SQA.Prepare 'C1.S1' 'select * from datedemo'
 2⊃SQA.NativeSQL 'C1.S1'
SELECT *

FROM datedemo;

The result is a character vector. The above example used an early version of

Microsoft Access; the “Access SQL” statement contains embedded carriage returns.

You are in dire straits if this is really useful to you as a diagnostic tool, hopefully you

will only ever use it to satisfy your curiosity.

 ODBC User Guide 40

Function Reference

Naming Conventions
All functions in the SQAPL workspace which have names beginning with an

uppercase letter are public functions that should be usable from applications. Every

attempt will be made to ensure "upwards compatibility" of these functions from one

release to the next.

Any functions with lowercase names, or names beginning with the symbol ⍙ should
not be used. These functions are for internal use by SQAPL, and may change

without notice.

Function Descriptions
The following pages describe each documented SQAPL application function; its

syntax, arguments and results.

Unless otherwise noted, the results described in the following are the results returned

by successful calls to the functions in question . In the event of errors, all functions

return the same form of result, described in the Errors and Warnings section.

 ODBC User Guide 41

SQAPL Quick Reference Card

rc scar ← Apl2Scar array ascii

rc ← BrowseConnect con

rc ← Cancel cur

rc ← Close obj

rc data ← Columns con [tbl col qua own]

rc ← Connect con dsn [pwd usr]

rc cur ← CursorName con

rc data ← [fmt] Describe obj

rc cur data nul ← [all] Do con stmt [bind]

rc rows ← Exec cur [val[,nul]]

rc rows ← ExecDirect cur stmt [val vars]

rc data nul ← [all] Fetch cur

rc data ← GetInfo con infodefs

rc msgs ← GetWarning obj

rc ← Init inifile

rc stmt ← NativeSQL cur

stmt vars ← Parse stmt

rc ← Prepare name sql [vars]

rc array ← Scar2Apl scar

rc data ← Tables con [tbl typ qua own]

rc ← Transact con state

rc tree ← Tree obj

rc ← TypeInfo con

rc rows rows ← X cur [bind] [nul]

array Any APL array own Owner name (or prefix%)

ascii 1 for Ascii, 0 for Binary pwd Logon password

all 1 to fetch all data qua Qualifier (or prefix%)

con Connection name rc Return code

col Column name (or prefix%) rows Row count

cur Cursor name scar Self-contained array

data Output values state 0=commit, 1=rollback

dsn ODBC Data Source Name tbl Table name (or prefix%)

fmt 1 to format, 0 for raw data tree Nested object tree

infodefs Numeric ids from sqlext.h typ Type (TABLE or VIEW)

inifile Name of sqapl.ini file or '' vars Bind and Select definitions

msgs vector of 4-element vecs val Bind variable values

nul Null matrix or empty vector usr Logon user id

obj '.', connection or cursor

In addition, many functions will accept options in the form of (name value) pairs.

 ODBC User Guide 42

SQA.Apl2Scar
Purpose: “Serialize” any APL array to a character vector, for storage in a

 character or binary column.

Syntax: rc scar ← SQA.Apl2Scar array ascii

 rc 0

 scar A character vector

array Any APL array

ascii 1 to create a SCAR using printable ASCII chars

 only (suitable for a Char field), or 1 to use 8-bit binary.

See also Scar2Apl.

Example:

 SQA.Apl2Scar (⍳3) 1
0 ALASCII $ (! # 0(# !

SQA.BrowseConnect
Purpose: Browse available data sources and connect interactively.

 This functionality is only available under Microsoft Windows.

Syntax: rc ← SQA.BrowseConnect con

 rc 0

 con Name of a connection (which is not already in use).

Example:

 SQA.BrowseConnect 'C1'
0

SQA.Cancel
Purpose: Deactivate a cursor (rolls changes back if the driver is capable

of this, and releases any resources that it might be holding).

Syntax: rc ← SQA.Cancel cur

 rc 0

 cur A cursor name

Example:

 SQA.Cancel 'C1.S1'
0

 ODBC User Guide 43

SQA.Close
Purpose: Close an SQAPL object.

Syntax: rc ← SQA.Close cur|con|root

 rc 0

cur|con|root Name of a cursor, a connection,

 or the root object.

Example:

 SQA.Close 'C1.S1'
0

SQA.Columns
Purpose: List names and types of columns contained by a table or view

Syntax: rc data ← SQA.Columns con [tbl col qua own]

 rc 0

 data Output matrix – see Appendix B for details.

  con Name of the connection.

  tbl Table name

  col Column name

  qua Qualifier

  own Owner

 The last four arguments are optional, and used to filter the

 result. You can use SQL wildcards, for example values like 'T%'
 to find all values starting with T.

Example:

 (⍳18),⍉2⊃SQA.Columns 'C1' 'sqatest'
 1 TABLE_CAT
 2 TABLE_SCHEM
 3 TABLE_NAME sqatest sqatest sqatest
 4 COLUMN_NAME name dob height
 5 DATA_TYPE ¯8 91 4
 6 TYPE_NAME char date integer
 7 COLUMN_SIZE 10 10 10
 8 BUFFER_LENGTH 30 6 4
 9 DECIMAL_DIGITS 0 0 0
10 NUM_PREC_RADIX 0 0 10
11 NULLABLE 1 1 1
12 REMARKS
13 COLUMN_DEF
14 SQL_DATA_TYPE ¯8 9 4
15 SQL_DATETIME_SUB 0 91 0
16 CHAR_OCTET_LENGTH 30 0 0
17 ORDINAL_POSITION 1 2 3
18 IS_NULLABLE YES YES YES

 ODBC User Guide 44

SQA.Connect
Purpose: Connect to a data source.

Syntax: rc ← SQA.Connect con dsn [pwd] [user] [opt]

 rc 0

 con The name of the connection object to be created.

 dsn A character vector containing the name of a

 service.

 pwd Optional password.

 user Optional user id.

 opt Optional parameters

Optional Parameters for SQA.Connect

SQA.Connect accepts a number of optional parameters which may be specified

after srv. The first four parameters may be specified in the order in which they are

defined, the rest should be added using keyword/value pairs.

Name Description

Password Password

UserID User Id

MaxCursors The maximum number of cursors which can be opened on the

connection

MaxRows The default number of rows reserved to hold blocks of data

when fetching

DriverOptions Driver specific options (passed to Driver for processing)

WindowHandle The handle of an existing Window (form). BrowseConnect

uses this to to guide the user through logon interactively.

BindType The method of giving the input variables (default ?)

BindChar Character used to delimit bind variable declarations (default :)

DefaultType Default type for undeclared variables (default <C80:)

Cache Yes/No depending on whether closed statements should be

stored in the cache

AplServer Indicates that the data source is an SQAPL Server, which is

capable of returning a single APL object as the result of a

query

OdbcAutoCommit Whether to set the AutoCommit option (for drivers which

support it).

MaxColSize The maximum column size to reserve space for when fetching

or binding variables of unspecified width.

ReadOnly If 1, the data source is opened in a mode where it can only be

used to select data. Any attempt to update data will fail.

Columnwise Sets the default to be used for SQA.Prepare.

 ODBC User Guide 45

Examples:

 SQA.Connect 'C2' 'NorthWind' ('MaxRows' 10000)
0
 SQA.Connect 'C1' 'Ingres' 'changeit'
0
 SQA.Connect 'NW' 'Microsoft Access Database'
 ('DriverOptions' 'DBQ=Northwind.mdb')
0

If you connect to a data source using SQA.Connect (or SQA.BrowseConnect)

having specified the DriverOptions or WindowHandle parameter, SQAPL

uses an ODBC call named SQLDriverConnect, rather than SQLConnect which is used

in simple cases. In these cases, SQA.Describe can be used to extract a complete

list of driver options used to connect, including values set by the driver (as opposed to

being provided from APL). For example:

 SQA.BrowseConnect 'X'
0
 2 1 7⊃0 SQA.Describe 'X'
DSN=Costs;DBQ=c:\Windows\Desktop\odbcii.mdb;DriverId=25;F
IL=MS Access;MaxBufferSize=512;PageTimeout=5;UID=admin;

This string can be stored and provided as DriverOptions, to exactly recreate the

connection. Note that the result may contain both userid AND PASSWORD if these

were specified, so your application may want to remove these before saving the

parameters in permanent storage.

SQA.CursorName
Purpose: Generate an unused cursor name.

Syntax: rc cur ← SQA.CursorName con

 rc 0

con Name of an existing connection object.

cur Good name for a new cursor.

Example:

 SQA.CursorName 'C1'
0 C1.s1

 ODBC User Guide 46

SQA.Describe
Purpose: Provide information about an SQAPL object.

Syntax: rc data← [fmt] SQA.Describe obj

 rc 0

 data If fmt is 1 or elided, a formatted report for the object. If

 fmt is 0, unformatted data for the object and all its

 children (see below for details).

 fmt Optional flag; 0 to avoid formatting the output.

 obj An object name

Example:

 SQA.Describe 'C5.S2'
0 Cursor C5.S2: Status=Fetch Completed, MaxRows=50

 select name,height,:dob>J: from sqatest where name
like :wname<C10: or height>:wheight<I:

 Bind Vars: 2
 Name APL DB Prec. Scale Length Buf
 wname C 0 10 0 22 W U
 wheight I 0 0 0 4 I I

 Select vars: 3
 Name APL DB Prec. Scale Length Buf
 name C 1 10 0 11 C C
 height I 4 10 0 4 I I
 dob J 93 23 3 16 S S

With a left argument of 0, the second element of the result of SQA.Describe is an

APL array containing unformatted information for the object named in the right

argument, and all of its children all the way down the object hierarchy (as for all

SQAPL functions, the first element is a zero return code indicating success).

The first element of this array contains information about the named object. The

second element is a vector containing two-element vectors resulting from the

application of SQA.Describe to each child (discarding the return codes). The data

returned for each SQAPL object class is as follows:

 ODBC User Guide 47

Root

 Element Contents

 2 Class (1 for Root)

 3 SQAPL Version

 4 Full pathname of INI file

 5 ODBC Environment Handle

Connection

 Element Contents

 2 Class (2 for Connection)

 3 ODBC Connection Handle

 4 Service (ODBC Data Source) Name

 5 MaxCursors

 6 Block Size (MaxRows)

 7 DriverOptions for connection

 8 Boolean vector of ODBC Functions Supported (see ODBC

documentation for SQLGetFunctions)

Cursor

 Element Contents

 2 Class (3 for Cursor)

 3 State: 1=New, 2=Executed, 3=Fetching, 4=Fetch Completed, 5=Free

(cached)

 4 Number of Bind Variables

 5 Number of Select Variables

 6 SQL Statement

 7 Block Size (MaxRows)

 8 Statement Handle

 ODBC User Guide 48

Buffer

 Element Contents

 2 Class (4 for Buffer)

 3 Type (0=Select, 1=Bind)

 4 APL Type: (formatted as CIFXOZDTSYHJG)
 1=CHAR, 2=INTEGER, 3=FLOAT, 4=BINARY

 5=COMPLEX, 6=ARRAY, 7=DATE, 8=TIME,

 9=TIMESTAMP, 10=YYYYMMDD, 11=HHMMSS,

 12=DAYNO, 13=DECF

 5 ODBC Type: CNMIHFEUDTSV

1=CHAR, 2=NUMERIC, 3=DECIMAL,

4=INTEGER, 5=SMALLINT, 6=FLOAT,

7=REAL, 8=DOUBLE, 9=DATE,

10=TIME, 11=TIMESTAMP, 12=VARCHAR

And: LXYZGKBUWQ
-1=LONG VARCHAR, -2=BINARY,

-3=VAR BINARY, -4=LONG VAR BINARY,

-5=BIG INTEGER, -6=TINY INTEGER,

-7=BIT, -8=WCHAR, -9=WVARCHAR

-10=WLONGVARCHAR

(see the ODBC Programmers Reference for details)

 6 Internal (Logical) Type: XCIFDTSU

 1=Binary, 2=Char, 3=Integer, 4=Float,

 5=Date, 6=Time, 7=Stamp, 8=Unicode

 7 Database Type Number

 8 Precision: The number of significant digits, or the length of

a character field.

 9 Scale: The number of digits to the right of the decimal

point, if any.

 10 Length: The number of bytes of storage consumed by one

item of data.

Note that some of the type information is not available (will be reported as zero) until

after the first fetch.

 ODBC User Guide 49

SQA.Do
Purpose: Create a cursor, prepare a statement for execution, execute it, and

 fetch results.

Syntax: rc cur data nul← [all] SQA.Do con stmt [bind]

then: rc cur data nul← SQA.Do cur

 rc 0

 cur Name of cursor which was created by the first call to

 SQA.Do.

 data Output

 nul Although SQA.Do does not support the 'Nulls' option,

 it still returns the empty null result from SQA.Fetch as

 the fourth element of the result.

 all 1 or elided: fetch all data. Use 0 to fetch one block only,

 then make repeated calls to SQA.Do with the cursor name

 as the right argument to fetch following blocks.

 con Connection name

 stmt The SQL statement to be executed.

 bind Data for bind variables, if any.

Example:

 SQA.Do 'C1' 'select * from emp'
0 C1.S1 Alcott, Scott Sr Programmer 50 ...
 Bee, Charles Sr Programmer 43 ...
 Applegate, Donald Analyst 51 ...
...

Note that the fifth element of the result contains a status flag for the cursor. Under

normal circumstances, only two values should be returned:

5=Fetching (more records to come)

6=Fetch completed

 ODBC User Guide 50

SQA.Exec
Purpose: Execute a prepared statement.

Syntax: rc rows← SQA.Exec cur [val]

 rc 0

 rows The number of rows modified by execution of the

statement.

 cur The name of a cursor.

 val Data for bind variables, if any. To input nulls, follow bind

 values by equal number of boolean elements where 1's

 indicate nulls.

Example:

 SQA.Exec 'C1.S1' 'Programmer' 30
0 0

SQA.ExecDirect
Purpose: Execute a prepared statement.

Syntax: rc rows← SQA.ExecDirect cur stmt
 [val vars opt]

 rc 0

 rows The number of rows modified by execution of the

 statement.

 cur The name of a cursor.

 stmt An SQL statement.

 val Optional data for bind variables, if any.

 vars Optional bind variable declarations.

 opt SQA.ExecDirect accepts all options supported by

 SQA.Prepare and SQA.X.

Example:

 data←(↓'ZI10' ⎕FMT ⍪⍳100),⍪⍳100
 stmt←'insert into numtable values (?,?)'
 bind←2 8⍴(8↑1 1 1 0 10),8↑1 2 2
 SQA.ExecDirect 'C1.I2' stmt data bind ('Bulk' 100)
0 0 100

 ODBC User Guide 51

SQA.Fetch
Purpose: Fetch results of an executed statement.

Syntax: rc data nul← [all] SQA.Fetch cur [opt]

 rc 0

 data One-element vector containing data matrix.

 nul Empty unless Nulls parameter is 1 (see opt). If Nulls is 1,

 boolean data with same shape as data indicates a null

 was returned for the corresponding element of data.

 all 0 if you only want to fetch one block of data. 1 or elided

 to fetch all data.

 cur The name of a cursor which has been executed.

  opt Options (see below)

 Elements after the first must be two-element vectors containing

 (option name) (value) pairs. Valid options are:

  nullsIf set to 1, the third element of the result contains null

 indicators. The default is 0. If set to 3…

columnwise If set to 1, returns each column as a

 simple vector or matrix.

Example:

 SQA.Fetch 'C1.S1' ('Nulls' 1)
0 Belter, Kris Programmer 0 0
 Beringer, Tom 0 1
 Holton, Connie Programmer 0 0
...

In the example, the data in the second row of column two was a null.

Note that the fifth element of the result contains a status flag for the cursor. Under

normal circumstances, only two values should be returned:

5=Fetching (more records to come)

6=Fetch completed

This allows you to avoid the final unnecessary call to SQA.Fetch, returning an

empty block.

 ODBC User Guide 52

SQA.GetInfo
Purpose: Retrieve information regarding a connection.

Syntax: rc data← SQA.GetInfo con keys

 rc 0

 keys Vector of numeric constants from the file sqlext.h.

 data Vector of results, one for each key.

Example:

Retrieve the name and version of the ODBC driver, the ODBC version that is

supported, and whether it supports “Row Updates” as follows:

 SQA.GetInfo 'C1' (6 7 10 11)
0 myodbc5.dll 05.01.0008 03.80.0000 N

SQA.GetWarning
Purpose: Fetch warnings encountered during last SQAPL function call on an

 object.

Syntax: rc msgs← SQA.GetWarning obj

 rc 0

 msgs Vector of four-element vectors. Each element is in the

 standard error format described in Errors and Warnings:

 (origin) (code) (text) (row index)

 One element is returned for each warning returned during the

 execution of the most recent SQAPL function call on the object

 in question.

 obj The name of any SQAPL object for which the most recent

 function call returned a return code of ¯1.

Example:

 SQA.GetWarning 'C1.S1'
 0 4 01004 0 [Q+E Software][ODBC Btrieve driver]
 Data truncated 0

SQA.Init
Purpose: Initialize SQAPL.

Syntax: rc ← SQA.Init inifile

 SQA.Init initializes functions which form the interface to

 ODBC, by loading the SQAPL library.

 The right argument is usually empty, but can be used to give the

 name of an sqapl.ini file to use for configuration.

 ODBC User Guide 53

SQA.NativeSQL
Purpose: Retrieve the exact SQL statement that was sent to the database.

Syntax: rc sql ← SQA.NativeSQL cur

 rc 0

 cur Name of a prepared cursor.

 sql The SQL that was sent to the database engine.

Example:

 SQA.Prepare 'C1.S1' 'select * from datedemo'
 2⊃SQA.NativeSQL 'C1.S1'
SELECT *

FROM datedemo;

SQA.Parse
Purpose: Convert a statement containing embedded variable declarations to

standard ODBC SQL and a numeric declaration matrix.

Syntax: sql vars ← SQA.Parse stmt

 stmt A statement containing variable declarations

 sql A statement without variable declarations

vars An 8-column matrix declaring variables

See also Apl2Scar.

Example:

 SQA.Parse 'select blah where xxx=:<C10: :>S,J#2:'
 select blah where xxx=? 1 1 1 0 10 0 0 0
 0 1 9 0 0 0 0 0
 0 2 12 0 0 0 0 2

The columns of the variable declaration matrix are:

[;1] Direction (1=Bind or Input, 0=Select or Output)
[;2] Index into list of Bind or Select variables
[;3] APL Type Number (See APL Type table)
[;4] ODBC Type Number to use (0 means use default)
[;5] Precision (number of chars or digits)
[;6] Scale (number of digits following decimal point)
[;7] Partial Flag (see Partial Binding)
[;8] Type Variant (see Handling Dates)

 ODBC User Guide 54

SQA.Prepare
Purpose: Prepare a statement for execution.

Syntax: rc← SQA.Prepare cur sql [opt]

  rc  0

  cur  Name of cursor object to be created. The name

 must have two segments separated by a dot,

 where the first segment is the name of an existing

 connection object.

  sql  The statement to be executed (usually an SQL

 expression).

 opt  Options (see below)

 Elements after number 2 must be two-element vectors containing

 (option name) (value) pairs. Valid options are:

  MaxRows Maximum block size for subsequent Fetch calls.

  Bulk  Preparing for a call to SQA.X: The maximum

 number of rows of input that will be provided.

Loop Set Loop to 0 to request that SQA.X should not

 ask the driver to loop on multiple rows of input.

StopOnError Request that SQA.X stop if an error occurs,

 rather than continuing with the rest of the input.

Example:

 SQAPrepare 'C1.S1' 'select name,sal* from emp'
 ('MaxRows' 10)
0

SQA.Scar2Apl
Purpose: Convert a serialized array created by SQA.Apl2Scar or inserted

into a table using APL type Z back into an APL array.

Syntax: rc array ← SQA.Scar2Apl scar

 rc 0

 scar A character vector

array Any APL array

See also Apl2Scar.

Example:

 z←2⊃SQA.Apl2Scar (⍳3) 1
 SQA.Scar2Apl z
0 1 2 3

 ODBC User Guide 55

SQA.Tables
Purpose: List the tables and views accessible through a particular

 connection.

Syntax: rc data← SQA.Tables con [tbl typ qua own]

  rc 0

  data A matrix with the following columns:

 TABLE_QUALIFIER, TABLE_OWNER

 TABLE_NAME, TABLE_TYPE, REMARKS

  con Connection Name

 tbl Table name

 typ Type: 'TABLE', 'VIEW', or other data source-specific

 identifiers. Comma-separated lists also accepted.

  qua Qualifier

  own Owner

 The last four arguments are optional, and used to select data

 from the result. For tbl, qua and own, you can use SQL

 wildcards, for example values like 'T%'.

Example:

 2⊃SQA.Tables 'd' 'C%'
TABLE_QUALIFIER TABLE_OWNER TABLE_NAME TABLE_TYPE REMARKS
D:\SMPLDATA CUSTOMER TABLE

 ODBC User Guide 56

SQA.Tree
Purpose: Returns a nested array naming all the children of an object.

Syntax: rc tree ← SQA.Tree obj

 rc 0

 obj The name of any SQAPL object

 tree A nested vector – see below

Each node in the tree is a 2-element vector containing the name of an object, followed

by a list of its children. For example, when called on a connection, the second

element will contain a list of cursors, and each cursor node will contain a list of input

or output buffers.

Example:

]disp 2⊃SQA.Tree 'C1'
┌→─┬─────────────────────────────┐
│ │┌→───────────────────┬──────┐│
│ ││┌→─┬───────────────┐│ ││
│ │││ │┌→─────┬──────┐││ ││
│ │││ ││┌→─┬─┐│┌→─┬─┐│││┌→─┬─┐││
│C1│││I2│││#1│0│││#2│0│││││S1│0│││
│ │││ ││└─→┴⊖┘│└─→┴⊖┘│││└─→┴⊖┘││
│ │││ │└─────→┴─────→┘││ ││
│ ││└─→┴──────────────→┘│ ││
│ │└───────────────────→┴─────→┘│
└─→┴────────────────────────────→┘

SQA.Transact
Purpose: Commit or roll back the current "unit of recovery".

Syntax: rc ← SQA.Transact con 0|1

 rc 0

 con A connection name

 0|1 0=Commit, 1=Roll Back

Example:

 SQA.Transact 'C1' 0
0

 ODBC User Guide 57

SQA.TypeInfo
Purpose: List the data types supported by a driver. This function may not be

 supported by all drivers.

Syntax: rc data← SQA.TypeInfo con

  rc 0

  data A matrix with the following columns:

 TYPE_NAME, DATA_TYPE, PRECISION,

 LITERAL_PREFIX, LITERAL_SUFFIX,

 CREATE_PARAMS, NULLABLE, CASE_SENSITIVE,

 SEARCHABLE, UNSIGNED_ATTRIBUTE, MONEY,

 AUTO_INCREMENT, LOCAL_TYPE_NAME

  con Connection Name

Example:

 2⊃SQATypeInfo 'c'
TYPE_NAME DATA_TYPE PRECISION LITERAL_PREFIX
LITERAL_SUFFIX
LONGCHAR ¯1 65500 ' '
CHAR 1 255 ' '
INTEGER 4 10
FLOAT 8 15
DATE 9 10 ' '

CREATE_PARAMS NULLABLE CASE_SENSITIVE SEARCHABLE
max length 1 1 3
length 1 1 3
 1 0 2
 1 0 2
 1 0 3

UNSIGNED_ATTRIBUTE MONEY AUTO_INCREMENT LOCAL_TYPE_NAM
 0 0 0 LONGCHAR
 0 0 0 CHAR
 0 0 0 INTEGER
 0 0 0 FLOAT
 0 0 0 DATE

 ODBC User Guide 58

SQA.X
Purpose: Execute a prepared statement, using a matrix of bind values.

Syntax: rc ra rp←SQA.X cur [val] [nul]

  rc 0

  ra Rows affected (not always reliable).

  rp Rows processed (ditto).

   cur Name of a prepared cursor.

  val A matrix of bind values, with no more than MaxRows

 rows (declared at SQA.Prepare time).

  nul A matrix of null flags, with the same shape as val.

Example:

 ⎕←data←2 3⍴'Harry' 35234 0 ,'Hermione' 34987 168
 Harry 35234 0
 Hermione 34987 168
 SQA.X 'C1.I1' data (2 3⍴0 0 1, 0 0 0)
0 2 2

 ODBC User Guide 59

Appendix A: Errors and Warnings

In the event of an error, all SQAPL functions return a four-element enclosed vector.

The same format is used for warning messages retrieved by the function

SQA.GetWarning:

[1] Origin Identifies the origin of the error message.

[2] Code One or more return codes.

[3] Text Wherever possible, SQAPL will obtain a textual error

message from the originator, or try to tell you where to look

for more information.

[4] Index Row index into multi-row input data

There are five possible origins of which only 2 are relevant to current-day SQAPL:

1: SQAPL Client (APL Code or AP)
 SQAPrepare 'C1.S1' 'select * from emp'
1 1007 OBJ Parent not found

The operation failed because SQAPL could not find the parent object (C1).

4: ODBC
 SQAPrepare 'C1.S1' 'select * from emp'
4 S0002 0 [Microsoft][ODBC dBASE Driver][dBASE]
 Invalid file name;file EMP.DBF not found

When an error is returned by ODBC, the second element contains two elements. The

first element is a character vector containing the ODBC state, and the second element

is either zero or a numeric native return code from the database server.

ODBC error messages also have one of two fixed formats. For errors that do not

occur in the data source, the error text will have the form:

"[vendor-identifier][ODBC-component-identifier]component-supplied-text"

For errors that do occur in the data source (such as the above example), the error text

will have the form:

"[vendor-identifier][ODBC-component-identifier][data-source-identifier]data-

source-supplied-text"

 ODBC User Guide 60

SQAPL Error Codes

The following errors are returned by SQAPL itself (origin code=1). The first three

letters of the error test identify the internal SQAPL module in which the error

occurred:

 Module Type of Error

 APL An error was detected in the shape, type, rank (etc) of an

argument

 INI There is an error in the SQAPL.INI file

 INT Internal error

 OBJ There is an error in one of the SQAPL object names in the

argument

 SQL SQAPL could not prepare the statement

Most error messages are explained in more detail below. The complete list of errors

can be found in the file sqapl.err:

10001 APL Length Error

 The length of an argument is incorrect

10002 APL Rank Error

 The rank of an argument is incorrect

10003 INT Function does not exist

 Internal error

10004 APL Domain Error

 The domain of an argument is incorrect

10005 APL Nonce Error

 This error is reserved for future enhancements

10006 OBJ Please call SQAInit

 After starting APL or closing the root, you must call SQAInit

10007 OBJ Parent not found

 You attempted to create a new object under a parent object which does

 not exist

 ODBC User Guide 61

10008 OBJ Wrong Class

 The operation is not allowed on that class of object

10009 OBJ Name already in use

 An object by that name already exists

10010 OBJ Object not found

 The named object does not exist

10011 OBJ Already initialised

 You called SQAInit, but SQAPL was already initialized

10012 INT Memory allocation error

 Internal error

10013 INT Unknown Class (ACT)

 Internal error

10014 INT Unknown Action (ACT)

 Internal error

10015 INT Function not supported (ACT)

 Internal error

10016 SQL Unbalanced bind characters

 The statement contains an odd number of bind characters (:)

10017 SQL Unbalanced single quotes

 The statement contains an odd number of single quotes

10018 SQL Unbalanced double quotes

 The statement contains an odd number of double quotes (")

10019 SQL Invalid variable definition

 A bind variable name is invalid

10020 SQL Bind variable syntax error

 A bind variable definition has invalid syntax

10021 SQL Invalid data type identifier

 You have used an invalid data type letter

10022 SQL Invalid data type modifier

 The data type modifier (following the type letter) is invalid

 ODBC User Guide 62

10023 OBJ Invalid object name

 The object name is not well-formed

10024 OBJ Invalid parent

 You are attempting to create an SQAPL object under a parent of the

 wrong type

10025 INI Invalid service definition

 There is an error in the section of SQAPL.INI which describes the

 named service.

10026 OBJ Nonce Error

 You attempted an operation which is not currently supported

10027 SQL Row too large

 The space required to represent one row of output as an APL variable

 exceeds 32,000 bytes

10028 SQL Unbalanced Parentheses

 ... in a bind variable declaration

10030 SQL Column not found

 A Group specification contains an unknown column name.

10031 SQL Maximum number of cursors exceeded

 The driver cannot open more cursors

10032 SQL Unsupported conversion requested

 An output declaration has requested a data type conversion which is not

 supported.

10033 PED Professional Edition Required

 Internal error – should no longer appear.

10034 SCA Bound value too large

 When converted to SCAR form, the bound value was bigger than the

 allocated buffer.

 ODBC User Guide 63

10035 SCA SCAR contains unsupported type

 You tried to read a SCAR which contains a data type which is not

 known to your version of SQAPL. It was probably written by a later

 version of SQAPL.

10036 SCA SCAR conversion error

 The data does not seem to be a valid SCAR.

10037 APL Invalid Option

 You have used an option name which is not applicable to the SQAPL

 function called.

No explanations are currently provided for the following errors, hopefully they are

reasonably self-explanatory. Contact support@dyalog.com for assistance if required.

10043=APL No data available

10044=OBJ Object is not defined as partial

10045=OBJ To many rows in bind variable

10046=APL Operation cancelled by user

10047=DD Cannot identify your licence

10050=SCA SCAR memory allocation

10051=SCA SCAR Conversion error

10080=APL Limit error

10081=APL Length error

10082=APL Rank error

10083=APL Value error

10084=APL Domain error

10085=APL Nonce error

10086=APL Index error

10087=APL Allocation error

10088=APL Conversion error

10089=APL Memory allocation error

10090=UNI Memory allocation

10091=UNI Translation not found

mailto:support@dyalog.com

 ODBC User Guide 64

Appendix B: Schema Information

SQA.Tables

Copied verbatim from ODBC documentation for SQLTables function:

[;1] TABLE_CAT
Catalog name; NULL if not applicable to the data source. If a driver supports

catalogs for some tables but not for others, such as when the driver retrieves data

from different DBMSs, it returns an empty string ("") for those tables that do not

have catalogs.

[;2] TABLE_SCHEM
Schema name; NULL if not applicable to the data source. If a driver supports

schemas for some tables but not for others, such as when the driver retrieves

data from different DBMSs, it returns an empty string ("") for those tables

that do not have schemas.

[;4] TABLE_NAME
Table name.

[;5] TABLE_TYPE
Table type name; one of the following: "TABLE", "VIEW", "SYSTEM

TABLE", "GLOBAL TEMPORARY", "LOCAL TEMPORARY", "ALIAS",

"SYNONYM", or a data source–specific type name.

The meanings of "ALIAS" and "SYNONYM" are driver-specific.

[;6] REMARKS
A description of the table.

 ODBC User Guide 65

SQA.Columns

[;1] TABLE_CAT (ODBC 1.0)
Catalog name; NULL if not applicable to the data source. If a driver supports

catalogs for some tables but not for others, such as when the driver retrieves

data from different DBMSs, it returns an empty string ("") for those tables

that do not have catalogs.

[;2] TABLE_SCHEM (ODBC 1.0)
Schema name; NULL if not applicable to the data source. If a driver supports

schemas for some tables but not for others, such as when the driver retrieves

data from different DBMSs, it returns an empty string ("") for those tables

that do not have schemas.

[;3] TABLE_NAME (ODBC 1.0)
Table name.

[;4] COLUMN_NAME (ODBC 1.0)
Column name. The driver returns an empty string for a column that does not

have a name.

[;5] DATA_TYPE (ODBC 1.0)
SQL data type. This can be an ODBC SQL data type or a driver-specific SQL

data type. For datetime and interval data types, this column returns the

concise data type (such as SQL_TYPE_DATE or

SQL_INTERVAL_YEAR_TO_MONTH, instead of the nonconcise data type

such as SQL_DATETIME or SQL_INTERVAL). For a list of valid ODBC

SQL data types, see SQL Data Types in Appendix D: Data Types. For

information about driver-specific SQL data types, see the driver's

documentation.

The data types returned for ODBC 3.x and ODBC 2.x applications may be

different. For more information, see Backward Compatibility and Standards

Compliance.

[;6] TYPE_NAME (ODBC 1.0)
Data source–dependent data type name; for example, "CHAR",

"VARCHAR", "MONEY", "LONG VARBINAR", or "CHAR () FOR BIT

DATA".

[;7] COLUMN_SIZE (ODBC 1.0)
If DATA_TYPE is SQL_CHAR or SQL_VARCHAR, this column contains

the maximum length in characters of the column. For datetime data types,

this is the total number of characters required to display the value when it is

converted to characters. For numeric data types, this is either the total number

of digits or the total number of bits allowed in the column, according to the

NUM_PREC_RADIX column. For interval data types, this is the number of

characters in the character representation of the interval literal (as defined by

http://msdn.microsoft.com/en-us/library/ms710150%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms714547%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms714547%28v=VS.85%29.aspx

 ODBC User Guide 66

the interval leading precision, see Interval Data Type Length in Appendix D:

Data Types). For more information, see Column Size, Decimal Digits,

Transfer Octet Length, and Display Size in Appendix D: Data Types.

[;8] BUFFER_LENGTH (ODBC 1.0)
The length in bytes of data transferred on an SQLGetData, SQLFetch, or

SQLFetchScroll operation if SQL_C_DEFAULT is specified. For numeric data,

this size may differ from the size of the data stored on the data source. This value

might differ from COLUMN_SIZE column for character data. For more

information about length, see Column Size, Decimal Digits, Transfer Octet

Length, and Display Size in Appendix D: Data Types.

[;9] DECIMAL_DIGITS (ODBC 1.0)
The total number of significant digits to the right of the decimal point. For

SQL_TYPE_TIME and SQL_TYPE_TIMESTAMP, this column contains the

number of digits in the fractional seconds component. For the other data types,

this is the decimal digits of the column on the data source. For interval data types

that contain a time component, this column contains the number of digits to the

right of the decimal point (fractional seconds). For interval data types that do not

contain a time component, this column is 0. For more information about decimal

digits, see Column Size, Decimal Digits, Transfer Octet Length, and Display Size

in Appendix D: Data Types. NULL is returned for data types where

DECIMAL_DIGITS is not applicable.

[;10] NUM_PREC_RADIX (ODBC 1.0)
For numeric data types, either 10 or 2. If it is 10, the values in COLUMN_SIZE and

DECIMAL_DIGITS give the number of decimal digits allowed for the column. For

example, a DECIMAL(12,5) column would return a NUM_PREC_RADIX of 10, a

COLUMN_SIZE of 12, and a DECIMAL_DIGITS of 5; a FLOAT column could

return a NUM_PREC_RADIX of 10, a COLUMN_SIZE of 15, and a

DECIMAL_DIGITS of NULL.

If it is 2, the values in COLUMN_SIZE and DECIMAL_DIGITS give the number of

bits allowed in the column. For example, a FLOAT column could return a RADIX of

2, a COLUMN_SIZE of 53, and a DECIMAL_DIGITS of NULL.

NULL is returned for data types where NUM_PREC_RADIX is not applicable.

[;11] NULLABLE (ODBC 1.0)
SQL_NO_NULLS if the column could not include NULL values.

SQL_NULLABLE if the column accepts NULL values.

SQL_NULLABLE_UNKNOWN if it is not known whether the column accepts

NULL values.

The value returned for this column differs from the value returned for the

IS_NULLABLE column. The NULLABLE column indicates with certainty that a

column can accept NULLs, but cannot indicate with certainty that a column does not

accept NULLs. The IS_NULLABLE column indicates with certainty that a column

cannot accept NULLs, but cannot indicate with certainty that a column accepts

NULLs.

http://msdn.microsoft.com/en-us/library/ms716230%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms712499%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms712499%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms712499%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms712499%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms712499%28v=VS.85%29.aspx

 ODBC User Guide 67

[;12] REMARKS (ODBC 1.0)
A description of the column.

[;13] COLUMN_DEF (ODBC 3.0)
The default value of the column. The value in this column should be interpreted as a

string if it is enclosed in quotation marks.

If NULL was specified as the default value, this column is the word NULL, not

enclosed in quotation marks. If the default value cannot be represented without

truncation, this column contains TRUNCATED, without enclosing single quotation

marks. If no default value was specified, this column is NULL.

The value of COLUMN_DEF can be used in generating a new column definition,

except when it contains the value TRUNCATED.

[;14] SQL_DATA_TYPE (ODBC 3.0)
SQL data type, as it appears in the SQL_DESC_TYPE record field in the IRD. This

can be an ODBC SQL data type or a driver-specific SQL data type. This column is

the same as the DATA_TYPE column, except for datetime and interval data types.

This column returns the nonconcise data type (such as SQL_DATETIME or

SQL_INTERVAL), instead of the concise data type (such as SQL_TYPE_DATE or

SQL_INTERVAL_YEAR_TO_MONTH) for datetime and interval data types. If this

column returns SQL_DATETIME or SQL_INTERVAL, the specific data type can be

determined from the SQL_DATETIME_SUB column. For a list of valid ODBC SQL

data types, see SQL Data Types in Appendix D: Data Types. For information about

driver-specific SQL data types, see the driver's documentation.

The data types returned for ODBC 3.x and ODBC 2.x applications may be different.

For more information, see Backward Compatibility and Standards Compliance.

[;15] SQL_DATETIME_SUB (ODBC 3.0)
The subtype code for datetime and interval data types. For other data types, this

column returns a NULL. For more information about datetime and interval subcodes,

see "SQL_DESC_DATETIME_INTERVAL_CODE" in SQLSetDescField.

[;16] CHAR_OCTET_LENGTH (ODBC 3.0)
The maximum length in bytes of a character or binary data type column. For all other

data types, this column returns a NULL.

[;17] ORDINAL_POSITION (ODBC 3.0)
The ordinal position of the column in the table. The first column in the table is

number 1.

[;18] IS_NULLABLE (ODBC 3.0)
"NO" if the column does not include NULLs.

"YES" if the column could include NULLs.

This column returns a zero-length string if nullability is unknown.

ISO rules are followed to determine nullability. An ISO SQL–compliant DBMS

cannot return an empty string. The value returned for this column differs from the

value returned for the NULLABLE column. (See the description of the NULLABLE

column.)

http://msdn.microsoft.com/en-us/library/ms710150%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms714547%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms713560%28v=VS.85%29.aspx

 ODBC User Guide 68

SQA.TypeInfo

Also copied unchanged from the SQLTypeInfo documentation.

[;1] TYPE_NAME (ODBC 2.0)
Data source–dependent data-type name; for example, "CHAR()", "VARCHAR()",

"MONEY", "LONG VARBINARY", or "CHAR () FOR BIT DATA". Applications

must use this name in CREATE TABLE and ALTER TABLE statements.

[;2] DATA_TYPE (ODBC 2.0)
SQL data type. This can be an ODBC SQL data type or a driver-specific SQL data

type. For datetime or interval data types, this column returns the concise data type

(such as SQL_TYPE_TIME or SQL_INTERVAL_YEAR_TO_MONTH). For a list

of valid ODBC SQL data types, see SQL Data Types in Appendix D: Data Types.

For information about driver-specific SQL data types, see the driver's documentation.

[;3] COLUMN_SIZE (ODBC 2.0)
The maximum column size that the server supports for this data type. For numeric

data, this is the maximum precision. For string data, this is the length in characters.

For datetime data types, this is the length in characters of the string representation

(assuming the maximum allowed precision of the fractional seconds component).

NULL is returned for data types where column size is not applicable. For interval

data types, this is the number of characters in the character representation of the

interval literal (as defined by the interval leading precision; see Interval Data Type

Length in Appendix D: Data Types).

For more information on column size, see Column Size, Decimal Digits, Transfer

Octet Length, and Display Size in Appendix D: Data Types.

[;4] LITERAL_PREFIX (ODBC 2.0)
Character or characters used to prefix a literal; for example, a single quotation mark

(') for character data types or 0x for binary data types; NULL is returned for data

types where a literal prefix is not applicable.

[;5] LITERAL_SUFFIX (ODBC 2.0)
Character or characters used to terminate a literal; for example, a single quotation

mark (') for character data types; NULL is returned for data types where a literal

suffix is not applicable.

[;6] CREATE_PARAMS (ODBC 2.0)
A list of keywords, separated by commas, corresponding to each parameter that the

application may specify in parentheses when using the name that is returned in the

TYPE_NAME field. The keywords in the list can be any of the following: length,

precision, or scale. They appear in the order that the syntax requires them to be used.

For example, CREATE_PARAMS for DECIMAL would be "precision,scale";

CREATE_PARAMS for VARCHAR would equal "length." NULL is returned if

there are no parameters for the data type definition; for example, INTEGER.

The driver supplies the CREATE_PARAMS text in the language of the

country/region where it is used.

http://msdn.microsoft.com/en-us/library/ms710150%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms716230%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms716230%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms712499%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms712499%28v=VS.85%29.aspx

 ODBC User Guide 69

[;7] NULLABLE (ODBC 2.0)
Whether the data type accepts a NULL value:

SQL_NO_NULLS if the data type does not accept NULL values.

SQL_NULLABLE if the data type accepts NULL values.

SQL_NULLABLE_UNKNOWN if it is not known whether the column accepts

NULL values.

[;8] CASE_SENSITIVE (ODBC 2.0)
Whether a character data type is case-sensitive in collations and comparisons:

SQL_TRUE if the data type is a character data type and is case-sensitive.

SQL_FALSE if the data type is not a character data type or is not case-sensitive.

[;9] SEARCHABLE (ODBC 2.0)
How the data type is used in a WHERE clause:

SQL_PRED_NONE if the column cannot be used in a WHERE clause. (This is the

same as the SQL_UNSEARCHABLE value in ODBC 2.x.)

SQL_PRED_CHAR if the column can be used in a WHERE clause, but only with

the LIKE predicate. (This is the same as the SQL_LIKE_ONLY value in ODBC

2.x.)

SQL_PRED_BASIC if the column can be used in a WHERE clause with all the

comparison operators except LIKE (comparison, quantified comparison,

BETWEEN, DISTINCT, IN, MATCH, and UNIQUE). (This is the same as the

SQL_ALL_EXCEPT_LIKE value in ODBC 2.x.)

SQL_SEARCHABLE if the column can be used in a WHERE clause with any

comparison operator.

[;10] UNSIGNED_ATTRIBUTE (ODBC 2.0)
Whether the data type is unsigned:

SQL_TRUE if the data type is unsigned.

SQL_FALSE if the data type is signed.

NULL is returned if the attribute is not applicable to the data type or the data type is

not numeric.

[;11] FIXED_PREC_SCALE (ODBC 2.0)
Whether the data type has predefined fixed precision and scale (which are data

source–specific), such as a money data type:

SQL_TRUE if it has predefined fixed precision and scale.

SQL_FALSE if it does not have predefined fixed precision and scale.

[;12] AUTO_UNIQUE_VALUE (ODBC 2.0)

 ODBC User Guide 70

Whether the data type is autoincrementing:

SQL_TRUE if the data type is autoincrementing.

SQL_FALSE if the data type is not autoincrementing.

NULL is returned if the attribute is not applicable to the data type or the data type is

not numeric.

An application can insert values into a column having this attribute, but typically

cannot update the values in the column.

When an insert is made into an auto-increment column, a unique value is inserted

into the column at insert time. The increment is not defined, but is data source–

specific. An application should not assume that an auto-increment column starts at

any particular point or increments by any particular value.

[;13] LOCAL_TYPE_NAME (ODBC 2.0)
Localized version of the data source–dependent name of the data type. NULL is

returned if a localized name is not supported by the data source. This name is

intended for display only, such as in dialog boxes.

[;14] MINIMUM_SCALE (ODBC 2.0)
The minimum scale of the data type on the data source. If a data type has a fixed

scale, the MINIMUM_SCALE and MAXIMUM_SCALE columns both contain this

value. For example, an SQL_TYPE_TIMESTAMP column might have a fixed scale

for fractional seconds. NULL is returned where scale is not applicable. For more

information, see Column Size, Decimal Digits, Transfer Octet Length, and Display

Size in Appendix D: Data Types.

[;15] MAXIMUM_SCALE (ODBC 2.0)
The maximum scale of the data type on the data source. NULL is returned where

scale is not applicable. If the maximum scale is not defined separately on the data

source, but is instead defined to be the same as the maximum precision, this column

contains the same value as the COLUMN_SIZE column. For more information, see

Column Size, Decimal Digits, Transfer Octet Length, and Display Size in Appendix

D: Data Types.

[;16] SQL_DATA_TYPE (ODBC 3.0)
The value of the SQL data type as it appears in the SQL_DESC_TYPE field of the

descriptor. This column is the same as the DATA_TYPE column, except for interval

and datetime data types.

For interval and datetime data types, the SQL_DATA_TYPE field in the result set

will return SQL_INTERVAL or SQL_DATETIME, and the SQL_DATETIME_SUB

field will return the subcode for the specific interval or datetime data type.

[;17] SQL_DATETIME_SUB (ODBC 3.0)
When the value of SQL_DATA_TYPE is SQL_DATETIME or SQL_INTERVAL,

this column contains the datetime/interval subcode. For data types other than

datetime and interval, this field is NULL.

http://msdn.microsoft.com/en-us/library/ms712499%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms712499%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms712499%28v=VS.85%29.aspx

 ODBC User Guide 71

For interval or datetime data types, the SQL_DATA_TYPE field in the result set will

return SQL_INTERVAL or SQL_DATETIME, and the SQL_DATETIME_SUB

field will return the subcode for the specific interval or datetime data type.

[;18] NUM_PREC_RADIX (ODBC 3.0)
If the data type is an approximate numeric type, this column contains the value 2 to

indicate that COLUMN_SIZE specifies a number of bits. For exact numeric types,

this column contains the value 10 to indicate that COLUMN_SIZE specifies a

number of decimal digits. Otherwise, this column is NULL.

[;19] INTERVAL_PRECISION (ODBC 3.0)
If the data type is an interval data type, then this column contains the value of the

interval leading precision. (See Interval Data Type Precision in Appendix D: Data

Types.) Otherwise, this column is NULL.

http://msdn.microsoft.com/en-us/library/ms716251%28v=VS.85%29.aspx

 ODBC User Guide 72

Appendix C: More about Translation

SQAPL performs two different types of translation of character data:

1. All character data must be translated between the APL Atomic Vector and the

operating system environment (Classic edition only).

2. APL objects containing text may need to be translated from the APL Atomic

Vector of the APL system which has saved a binary APL object in an ODBC

table or created an array used as the argument to SQA.Scar2Apl, to the

character set used by the receiving system.

The first form of translation is always required if you are using the Classic edition:

Whenever an item of textual information is moved between the APL system and a

database or back, character data must be translated. This requires knowledge of

character set used by the APL system and that used by the host. In the Unicode

edition, APL is using the same character set as the operating system, so no translation

is required.

The second form of translation is only used when you read an APL object originating

in a different APL system and containing character data, from the SCAR (Self

Contained ARay) format to an APL variable in the current workspace. This can

happen when you use an output variable in “Z” format, or when you call the function

SQA.Scar2Apl. This translation requires knowledge of the character sets used by

the sending and receiving APL systems.

The file APLUNICD.INI contains definitions of all the different characters sets

known to SQAPL: At least one for each APL platform to which SQAPL has been

ported (with some national variations), and for completeness, one representing the

operating system, named ASCII, defined as the first 256 UNICODE characters, also

known as ANSI. Each character set is defined as a list of 256 UNICODE characters.

Using these tables, SQAPL is able to translate text between any two character sets.

The standard distribution version of this file starts with the section

[Charsets]

APL2=IBMA

APLIII=MAN3

APLUNX=MAN3

APLWIN=MAN3

DYALOG=DYA_IN

SAXAPL=SAX_US

HOST=ASCII

The names on the left identify a particular implementation (or “port”) of SQAPL,

plus one entry for the host operating system. On the right is the name of the table

defining the alphabet which is used by the named environment.

When a SCAR object is created, character data is stored without translation (it is

stored as a sequence of bytes which are indices into the atomic vector). Part of the

header of the SCAR object names the translate table which was in use by the system

which created the SCAR. The system which reads the SCAR checks the header, and

if translation is necessary SQAPL needs to be able to locate BOTH tables (that of the

 ODBC User Guide 73

reader as well as the writer) in the APLUNICD.INI file, in order to create the

translate table between the two systems and perform the translation.

Locating the Required Tables

SQAPL searches the registry to find the string APL_UNICODE, which is used to

locate the file aplunicd.ini and SQAPLPATH, which identifies the path in which

sqapl.ini is located. The right argument to SQA.Init identifies the registry key

which should be searched, if no key is provided, the default is

HKEY_CURRENT_USER\Software\Insight\SQAPL.

If the files are not found, then for a Classic system SQA.Init will establish a

default translate table between APL and the DLL using ⎕NXLATE.

If your application was using the default translate table and had no special national

requirements, and you do not intend to transfer APL objects in SCAR format, you do

not need to worry about this, as translation of textual data between APL and SQL

databases will be done correctly.

If you intend to use SCAR as a transfer mechanism between APL systems, an error

message will be issued when a SCAR needs to be translated, unless the aplunicd file

has been found and contains the necessary definitions.

 ODBC User Guide 74

Appendix D: Release Change Notes

Version 6.2

SQAPL DLL/Shared Library Naming Convention

Beginning with version 6.2, the name of the DLL (under Windows) or shared library

(under Unix) file for SQAPL will use the following convention.

 c<platform>dya<version><classic/Unicode><bits><driver manager>.<ext>

Where:

platform is ‘x’ for Unix or ‘w’ for Windows

version is the major/minor version number of SQAPL

classic/Unicode is ‘c” for classic or ‘u’ for Unicode

bits is either 32 or 64

driver manager is ‘u’ for unixODBC, ‘d’ for DataDirect, or ‘w’ for Windows

ext is ‘so’ for Unix and ‘dll’ for Windows

For example:

The library for the version 6.2, 64 bit, Unicode version would be:

cxdya62u64u.so under Unix
cwdya62u64w.dll under Windows

Use of unixODBC Under Linux

Beginning with version 6.2, when running under Linux, SQAPL requires unixODBC

to be installed. If your Linux implementation does not have unixODBC installed

already, you may find information for how to download and install unixODBC at

http://www.unixodbc.org.

http://www.unixodbc.org/

