
Version 13.1

The tool of thought for expert programming

Language Reference
Language Reference - Volume 2

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2012 by Dyalog Limited

All rights reserved.

Version: 13.1

Revision: 22185

Nopart of this publicationmay be reproduced in any form by any means without the prior written per-
mission of Dyalog Limited.

Dyalog Limitedmakes no representations or warranties with respect to the contents hereof and spe-
cifically disclaims any impliedwarranties of merchantability or fitness for any particular purpose. Dya-
log Limited reserves the right to revise this publicationwithout notification.

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The OpenGroup.

Windows, Windows Vista, Visual Basic andExcel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

All other trademarks and copyrights are acknowledged.

Contents

Chapter 1: Primitive Functions 1
Scalar Functions 1
Mixed Functions 4
Conformability 7
Fill Elements 7
Axis Operator 8
Functions (A-Z) 8

Abort: 9
Add: 10
And, Lowest Common Multiple: 11
Assignment: 12
Assignment (Indexed): 15
Assignment (Selective): 19
Binomial: 20
Branch: 20
Catenate/Laminate: 23
Catenate First: 25
Ceiling: 25
Circular: 26
Conjugate: 27
Deal: 27
Decode: 28
Depth: 30
Direction (Signum): 30
Disclose: 32
Divide: 33
Drop: 34
Drop with Axes: 35
Enclose: 36
Enclose with Axes: 37
Encode: 38
Enlist: 40
Equal: 41
Excluding: 42
Execute (Monadic): 43
Execute (Dyadic): 43
Expand: 44
Expand First: 45

iv

Exponential: 45
Factorial: 45
Find: 46
First: 47
Floor: 47
Format (Monadic): 48
Format (Dyadic): 52
Grade Down (Monadic): 54
Grade Down (Dyadic): 55
Grade Up (Monadic): 57
Grade Up (Dyadic): 59
Greater: 60
Greater Or Equal: 61
Identity: 61
Index: 62
Index with Axes: 65
Index Generator: 66
Index Of: 67
Indexing: 68
Intersection: 72
Left: 73
Less: 74
Less Or Equal: 74
Logarithm: 75
Magnitude: 75
Match: 76
Matrix Divide: 77
Matrix Inverse: 79
Maximum: 80
Membership: 80
Minimum: 80
Minus: 80
Mix: 81
Multiply: 82
Nand: 82
Natural Logarithm: 82
Negative: 83
Nor: 83
Not: 83
Not Equal: 84
Not Match: 84
Or, Greatest Common Divisor: 86
Partition: 87
Partitioned Enclose: 89
Pi Times: 90

v

Pick: 90
Plus: 91
Power: 91
Ravel: 92
Ravel with Axes: 92
Reciprocal: 95
Replicate: 95
Reshape: 97
Residue: 97
Reverse: 98
Reverse First: 98
Right: 98
Roll: 99
Rotate: 99
Rotate First: 101
Same: 102
Shape: 102
Signum: 103
Split: 103
Subtract: 103
Table: 104
Take: 105
Take with Axes: 106
Times: 107
Transpose (Monadic): 107
Transpose (Dyadic): 107
Type: 108
Union: 109
Unique: 109
Without: 109
Zilde: 109

Chapter 2: PrimitiveOperators 111
Operator Syntax 111
Axis Specification 112
Operators (A-Z) 113

Assignment (Modified): 113
Assignment (Indexed Modified): 114
Assignment (Selective Modified): 115
Axis (with Monadic Operand): 115
Axis (with Dyadic Operand): 116
Commute: 119
Composition (Form I): 120
Composition (Form II): 121

vi

Composition (Form III): 122
Composition (Form IV): 122
Each (with Monadic Operand): 123
Each (with Dyadic Operand): 124
Inner Product: 125
Outer Product: 126
Power Operator: 127
Reduce: 129
Reduce First: 132
Reduce N-Wise: 132
Scan: 133
Scan First: 134
Spawn: 135
Variant: 136
I-Beam: 139
Syntax Colouring: 140
Core to APLCore: (UNIX only) 141
Number of Threads: 142
Parallel Execution Threshold: 142
Memory Manager Statistics: 143
Update DataTable: 144
Read DataTable: 147
Export To Memory: 150
Component ChecksumValidation: 150
Fork New Task: (UNIX only) 151
Change User: (UNIX only) 152
Reap Forked Tasks: (UNIX only) 153
Signal Counts: (UNIX only) 155
Thread Synchronisation Mechanism: 155
RandomNumber Generator: 156

Chapter 3: SystemFunctions &Variables 157
System Variables 159
System Namespaces 160
System Constants 161
System Functions 162

Character Input/Output: 170
Evaluated Input/Output: 172
Underscored Alphabetic Characters: 174
Alphabetic Characters: 174
Account Information: 175
Account Name: 175
Arbitrary Output: 176
Attributes: 177

vii

Atomic Vector: 181
Atomic Vector - Unicode: 181
Base Class: 184
Class: 185
ClearWorkspace: 187
Execute Windows Command: 188
Start Windows Auxiliary Processor: 191
Canonical Representation: 192
Change Space: 194
Comparison Tolerance: 196
Copy Workspace: 197
Digits: 199
Decimal Comparison Tolerance: 199
Display Form: 200
Division Method: 203
Delay: 203
Diagnostic Message: 204
Extended Diagnostic Message: 205
Dequeue Events: 210
Data Representation (Monadic): 213
Data Representation (Dyadic): 214
Edit Object: 215
Event Message: 215
Exception: 216
Expunge Object: 217
Export Object: 219
File Append Component: 220
File System Available: 220
File Check and Repair: 221
File Copy: 222
File Create: 224
File Drop Component: 226
File Erase: 227
File History: 227
File Hold: 229
Fix Script: 230
Component File Library: 231
Format (Monadic): 232
Format (Dyadic): 233
File Names: 240
File Numbers: 241
File Properties: 242
Floating-Point Representation: 245
File Read Access: 247
File Read Component Information: 248

viii

File Read Component: 248
File Rename: 249
File Replace Component: 250
File Resize: 251
File Size: 252
File Set Access: 252
File Share Tie: 253
Exclusive File Tie: 254
File Untie: 255
Fix Definition: 255
Instances: 256
Index Origin: 257
Key Label: 258
Line Count: 258
Load Workspace: 259
Lock Definition: 260
Latent Expression: 261
Map File: 261
Migration Level: 263
Set Monitor: 265
Query Monitor: 266
Name Association: 267
Native File Append: 295
Name Classification: 296
Native File Create: 307
Native File Erase: 307
New Instance: 308
Name List: 309
Native File Lock: 313
Native File Names: 315
Native File Numbers: 315
Enqueue Event: 316
Nested Representation: 318
Native File Read: 319
Native File Rename: 321
Native File Replace: 321
Native File Resize: 323
Create Namespace: 323
Namespace Indicator: 325
Native File Size: 325
Native File Tie: 326
Null Item: 327
Native File Untie: 328
Native File Translate: 328
Sign Off APL: 329

ix

Variant: 329
Object Representation: 330
Search Path: 334
Program Function Key: 336
Print Precision: 337
Profile Application: 338
Print Width: 344
Cross References: 345
Replace: 346
Random Link: 365
Space Indicator: 367
Response Time Limit: 368
Search: 368
Save Workspace: 368
Screen Dimensions: 369
Session Namespace: 369
Execute (UNIX) Command: 370
Start UNIX Auxiliary Processor: 371
State Indicator: 372
Shadow Name: 373
Signal Event: 374
Size of Object: 377
Screen Map: 378
Screen Read: 381
Source: 385
State Indicator Stack: 386
State of Object: 387
Set Stop: 389
Query Stop: 390
Set Access Control: 391
Query Access Control: 392
Shared Variable Offer: 393
Query Degree of Coupling: 395
Shared Variable Query: 395
Shared Variable Retract Offer: 396
Shared Variable State: 397
Terminal Control: 398
Thread Child Numbers: 399
Get Tokens: 399
This Space: 401
Current Thread Identity: 402
Kill Thread: 402
Current Thread Name: 403
Thread Numbers: 403
Token Pool: 403

x

Put Tokens: 404
Set Trace: 405
Query Trace: 406
Trap Event: 407
Token Requests: 411
Time Stamp: 412
Wait for Threads to Terminate: 413
Unicode Convert: 414
Using (Microsoft .Net Search Path): 417
Vector Representation: 418
Verify & Fix Input: 419
Workspace Available: 420
Windows Create Object: 421
Windows Get Property: 424
Windows Child Names: 425
Windows Set Property: 426
Workspace Identification: 427
Window Expose: 428
XML Convert: 429
Extended State Indicator: 443
Set External Variable: 444
Query External Variable: 446

Chapter 4: SystemCommands 447
Introduction 447

List Classes: 449
ClearWorkspace: 449
Windows Command Processor: 450
Save Continuation: 451
Copy Workspace: 452
Change Space: 454
Drop Workspace: 454
Edit Object: 455
List Events: 456
List Global Defined Functions: 456
Display Held Tokens: 457
List Workspace Library: 458
Load Workspace: 459
List Methods: 460
Create Namespace: 460
List Global Namespaces: 461
List Global Namespaces: 461
Sign Off APL: 461
List Global Defined Operators: 461

xi

Protected Copy: 462
List Properties: 463
Reset State Indicator: 463
Save Workspace: 463
Execute (UNIX) Command: 465
State Indicator: 466
Clear State Indicator: 467
State Indicator & Name List: 467
Thread Identity: 468
List Global Defined Variables: 469
Workspace Identification: 469
Load without Latent Expression: 470

Chapter 5: Error Messages 471
Introduction 471
Standard Error Action 472
APL Errors 473
Operating System Error Messages 477
Windows Operating System Error Messages 479
APL Error Messages 480

bad ws 480
cannot create name 480
clear ws 480
copy incomplete 480
DEADLOCK 480
defn error 481
DOMAIN ERROR 482
EOF INTERRUPT 482
EXCEPTION 482
FIELD CONTENTS RANK ERROR 483
FIELD CONTENTS TOO MANY COLUMNS 483
FIELD POSITION ERROR 483
FIELD CONTENTS TYPEMISMATCH 483
FIELD TYPE BEHAVIOUR UNRECOGNISED 483
FIELD ATTRIBUTES RANK ERROR 483
FIELD ATTRIBUTES LENGTH ERROR 483
FULL SCREEN ERROR 483
KEY CODE UNRECOGNISED 484
KEY CODE RANK ERROR 484
KEY CODE TYPE ERROR 484
FORMAT FILE ACCESS ERROR 484
FORMAT FILE ERROR 484
FILE ACCESS ERROR 485
FILE ACCESS ERROR CONVERTING 485

xii

FILE COMPONENT DAMAGED 485
FILE DAMAGED 486
FILE FULL 486
FILE INDEX ERROR 486
FILE NAME ERROR 486
FILE NAME QUOTA USED UP 487
FILE SYSTEM ERROR 487
FILE SYSTEM NO SPACE 487
FILE SYSTEM NOT AVAILABLE 487
FILE SYSTEM TIES USED UP 487
FILE TIE ERROR 488
FILE TIED 488
FILE TIED REMOTELY 488
FILE TIE QUOTA USED UP 489
FORMAT ERROR 489
HOLD ERROR 489
incorrect command 490
INDEX ERROR 490
INTERNAL ERROR 491
INTERRUPT 491
is name 491
LENGTH ERROR 492
LIMIT ERROR 492
NONCE ERROR 492
NO PIPES 492
name is not a ws 493
Name already exists 493
Namespace does not exist 493
not copied name 494
not found name 494
not saved this ws is name 494
OPTION ERROR 495
PROCESSOR TABLE FULL 495
RANK ERROR 496
RESIZE 496
name saved date time 496
SYNTAX ERROR 497
sys error number 498
TIMEOUT 498
TRANSLATION ERROR 498
TRAP ERROR 498
too many names 499
VALUE ERROR 499
warning duplicate label 499
warning duplicate name 500

xiii

warning pendent operation 500
warning label name present 500
warning unmatched brackets 501
warning unmatched parentheses 501
was name 501
WS FULL 502
ws not found 502
ws too large 502

Operating System Error Messages 503
FILE ERROR 1 Not owner 503
FILE ERROR 2 No such file 503
FILE ERROR 5 I O error 503
FILE ERROR 6 No such device 503
FILE ERROR 13 Permission denied 503
FILE ERROR 20 Not a directory 503
FILE ERROR 21 Is a directory 504
FILE ERROR 23 File table overflow 504
FILE ERROR 24 Too many open 504
FILE ERROR 26 Text file busy 504
FILE ERROR 27 File too large 504
FILE ERROR 28 No space left 504
FILE ERROR 30 Read only file 505

Appendices: PCRESpecifications 507
Appendix A - PCRE Syntax Summary 508

Symbolic Index 515

Index 521

1

Chapter 1:

Primitive Functions

Scalar Functions
There is a class of primitive functions termed SCALAR FUNCTIONS. This class is
identified in Table 1 below. Scalar functions are pervasive, i.e. their properties apply
at all levels of nesting. Scalar functions have the following properties:

Table 1: Scalar Primitive Functions

Symbol Monadic Dyadic

+ Identity Plus (Add)

- Negative Minus (Subtract)

× Signum Times (Multiply)

÷ Reciprocal Divide

| Magnitude Residue

⌊ Floor Minimum

⌈ Ceiling Maximum

* Exponential Power

⍟ Natural Logarithm Logarithm

○ Pi Times Circular

! Factorial Binomial

~ Not $

? Roll $

∊ Type (See Enlist) $

2 Dyalog APL/W Language Reference

Symbol Monadic Dyadic

^ And

∨ Or

⍲ Nand

⍱ Nor

< Less

≤ Less Or Equal

= Equal

≥ Greater Or Equal

> Greater

≠ Not Equal

$ Dyadic form is not scalar

Monadic Scalar Functions
l The function is applied independently to each simple scalar in its argument.
l The function produces a result with a structure identical to its argument.
l When applied to an empty argument, the function produces an empty

result. With the exception of + and ∊, the type of this result depends on
the function, not on the type of the argument. By definition + and ∊ return
a result of the same type as their arguments.

Example
÷2 (1 4)

0.5 1 0.25

Chapter 1: Primitive Functions 3

Dyadic Scalar Functions
l The function is applied independently to corresponding pairs of simple sca-

lars in its arguments.
l A simple scalar will be replicated to conform to the structure of the other

argument. If a simple scalar in the structure of an argument corresponds to a
non-simple scalar in the other argument, then the function is applied
between the simple scalar and the items of the non-simple scalar. Rep-
lication of simple scalars is called SCALAR EXTENSION.

l A simple unit is treated as a scalar for scalar extension purposes. A UNIT is
a single element array of any rank. If both arguments are simple units, the
argument with lower rank is extended.

l The function produces a result with a structure identical to that of its argu-
ments (after scalar extensions).

l If applied between empty arguments, the function produces a composite
structure resulting from any scalar extensions, with type appropriate to the
particular function. (All scalar dyadic functions return a result of numeric
type.)

Examples
2 3 4 + 1 2 3

3 5 7

2 (3 4) + 1 (2 3)
3 5 7

(1 2) 3 + 4 (5 6)
5 6 8 9

10 × 2 (3 4)
20 30 40

2 4 = 2 (4 6)
1 1 0

(1 1⍴5) - 1 (2 3)
4 3 2

1↑''+⍳0
0

1↑(0⍴⊂' ' (0 0))×''
0 0 0

Note: The Axis operator applies to all scalar dyadic functions.

4 Dyalog APL/W Language Reference

Mixed Functions
Mixed rank functions are summarised in Table 2. For convenience, they are sub-
divided into five classes:

Table 2: Mixed rank functions

Structural These functions change the structure of the arguments in
some way.

Selection These functions select elements from an argument.

Selector These functions identify specific elements by a Boolean map
or by an ordered set of indices.

Miscellaneous These functions transform arguments in some way, or
provide information about the arguments.

Special These functions have special properties.

In general, the structure of the result of a mixed primitive function is different from
that of its arguments.

Scalar extension may apply to some, but not all, dyadic mixed functions.

Mixed primitive functions are not pervasive. The function is applied to elements of
the arguments, not necessarily independently.

Examples
'CAT' 'DOG' 'MOUSE'⍳⊂'DOG'

2
3↑ 1 'TWO' 3 'FOUR'

1 TWO 3

In the following tables, note that:

l [] Implies axis specification is optional
l $ This function is in another class

Chapter 1: Primitive Functions 5

Table 3: Structural Primitive Functions

Symbol Monadic Dyadic

⍴ $ Reshape

, Ravel [] Catenate/Laminate[]

⍪ Table Catenate First / Laminate []

⌽ Reverse [] Rotate []

⊖ Reverse First [] Rotate First []

⍉ Transpose Transpose

↑ Mix/Disclose (First) [] $

↓ Split [] $

⊂ Enclose [] Partitioned Enclose []

∊ Enlist (See Type) $

Table 4: Selection Primitive Functions

Symbol Monadic Dyadic

⊃ Disclose /Mix Pick

↑ $ Take []

↓ $ Drop []

/ Replicate []

⌿ Replicate First []

\ Expand []

⍀ Expand First []

~ $ Without (Excluding)

∩ Unique Intersection

∪ Union

⊣ Same Left

⊢ Identity Right

6 Dyalog APL/W Language Reference

Table 5: Selector Primitive Functions

Symbol Monadic Dyadic

⍳ Index Generator Index Of

∊ $ Membership

⍋ Grade Up Grade Up

⍒ Grade Down Grade Down

? $ Deal

⍷ Find

Table 6: Miscellaneous Primitive Functions

Symbol Monadic Dyadic

⍴ Shape $

≡ Depth Match

≢ Not Match

⍎ Execute Execute

⍕ Format Format

⊥ Decode (Base)

⊤ Encode (Representation)

⌹ Matrix Divide Matrix Inverse

Table 7: Special Primitive Functions

Symbol Monadic Dyadic

→ Abort

→ Branch

← $ Assignment

[I]← $ Assignment(Indexed)

(I)← Assignment(Selective)

[] Indexing

Chapter 1: Primitive Functions 7

Conformability
The arguments of a dyadic function are said to be CONFORMABLE if the shape of
each argument meets the requirements of the function, possibly after scalar extension.

Fill Elements
Some primitive functions may include fill elements in their result. The fill element
for an array is the enclosed type of the disclose of the array (⊂∊⊃Y for array Y). The
Type function (∊) replaces a numeric value with zero and a character value with ' '.

The Disclose function (⊃) returns the first item of an array. If the array is empty, ⊃Y is
the PROTOTYPE of Y. The prototype is the type of the first element of the original
array.

Primitive functions which may return an array including fill elements are Expand (\
or ⍀), Replicate (/ or ⌿), Reshape (⍴) and Take (↑).

Examples
∊⍳5

0 0 0 0 0

∊⊃(⍳3)('ABC')
0 0 0

⊂∊⊃(⍳3)('ABC')
0 0 0

⊂∊⊃⊂(⍳3)('ABC')
0 0 0

A←'ABC' (1 2 3)
A←0⍴A
⊂∊⊃A

' '=⊂∊⊃A
1 1 1

8 Dyalog APL/W Language Reference

Axis Operator
The axis operator may be applied to all scalar dyadic primitive functions and certain
mixed primitive functions. An integer axis identifies a specific axis along which the
function is to be applied to one or both of its arguments. If the primitive function is
to be applied without an axis specification, a default axis is implied, either the first or
last.

Example
1 0 1/[1] 3 2⍴⍳6

1 2
5 6

1 2 3+[2]2 3⍴10 20 30
11 22 33
11 22 33

Sometimes the axis value is fractional, indicating that a new axis or axes are to be
created between the axes identified by the lower and upper integer bounds of the
value (either of which might not exist).

Example
'NAMES',[0.5]'='

NAMES
=====

⎕IO is an implicit argument of an axis specification.

Functions (A-Z)
Scalar and mixed primitive functions are presented in alphabetical order of their
descriptive names as shown in Figures 3(i) and 3(ii) respectively. Scalar functions
are described in terms of single element arguments. The rules for extension are
defined at the beginning of this chapter.

The class of the function is identified in the heading block. The valence of the func-
tion is implied by its syntax in the heading block.

Chapter 1: Primitive Functions 9

Abort: →

This is a special case of the Branch function used in the niladic sense. If it occurs in
a statement it must be the only symbol in an expression or the only symbol forming
an expression in a text string to be executed by ⍎. It clears the most recently sus-
pended statement and all of its pendent statements from the state indicator.

The Abort function has no explicit result. The function is not in the function domain
of operators.

Examples
∇ F

[1] 'F[1]'
[2] G
[3] 'F[3]'

∇

∇ G
[1] 'G[1]'
[2] →
[3] 'G[3]'

∇

F
F[1]
G[1]

⎕VR'VALIDATE'
∇ VALIDATE

[1] →(12=1↑⎕AI)⍴0 ⋄ 'ACCOUNT NOT AUTHORISED' ⋄ →
∇

VALIDATE
ACCOUNT NOT AUTHORISED

1↑⎕AI
52

10 Dyalog APL/W Language Reference

Add: R←X+Y

Ymust be numeric. Xmust be numeric. R is the arithmetic sum of X and Y. R is
numeric. This function is also known as Plus.

Examples
1 2 + 3 4

4 6

1 2 + 3,⊂4 5
4 6 7

1J1 2J2 + 3J3
4J4 5J5

¯5 + 4J4 5J5
¯1J4 0J5

Chapter 1: Primitive Functions 11

And, Lowest Common Multiple: R←X^Y

Case 1: X and Y are Boolean
R is Boolean is determined as follows:

X Y R

0 0 0
0 1 0
1 0 0
1 1 1

Note that the ASCII caret (^) will also be interpreted as an APLAnd (^).

Example
0 1 0 1 ^ 0 0 1 1

0 0 0 1

Case 2: Either or both X and Y are numeric (non-Boolean)
R is the lowest common multiple of X and Y. Note that in this case, ⎕CT is an implicit
argument.

Example
15 1 2 7 ^ 35 1 4 0

105 1 4 0

2 3 4 ∧ 0j1 1j2 2j3
0J2 3J6 8J12

2j2 2j4 ∧ 5j5 4j4
10J10 ¯4J12

12 Dyalog APL/W Language Reference

Assignment: X←Y

Assignment allocates the result of the expression Y to the name or names in X.

If Y is an array expression, Xmust contain one or more names which are variables, sys-
tem variables, or are undefined. Following assignment, the name(s) in X become var-
iable(s) with value(s) taken from the result of the expression Y.

If X contains a single name, the variable assumes the value of Y.

The assignment arrow (or specification arrow) is often read as 'Is' or 'Gets'.

Examples
A←2.3
A

2.3

A←⍳3
A

1 2 3

More than one name may be specified in X by using vector notation. If so, Ymust be
a vector or a scalar. If Y is a scalar, its value is assigned to all names in X. If Y is a
vector, each element of Y is assigned to the corresponding name in X.

Examples
A B←2
A

2

B
2

P ⎕IO Q←'TEXT' 1 (1 2 3)
P

TEXT
⎕IO

1
Q

1 2 3

Chapter 1: Primitive Functions 13

For compatibility with IBM's APL2, the list of names specified in Xmay be enclosed
in parentheses.

Examples
(A B C)←1 2 3
(D E)←'Hello' 'World'

Multiple assignments are permitted. The value of Y is carried through each assign-
ment:

I←J←K←0

I,J,K
0 0 0

Function Assignment
If Y is a function expression, Xmust be a single name which is either undefined, or is
the name of an existing function or defined operator. Xmay not be the name of a sys-
tem function, or a primitive symbol.

Examples
PLUS←+
PLUS

+

SUM←+/
SUM

+/

MEAN←{(+/⍵)÷⍴⍵}

14 Dyalog APL/W Language Reference

Namespace Reference Assignment
If an expression evaluates to a namespace reference, or ref, you may assign it to a
name. A name assigned to a simple scalar ref, has name class 9, whereas one assigned
to an array containing refs has name class 2.

'f1'⎕WC'Form'
'ns1' ⎕NS ''

N←ns1
⎕NC'N' ⍝ name class of a scalar ref

9
F←f1
⎕NC'F' ⍝ name class of a scalar ref

9
refs←N F ⍝ vector of refs.
⎕NC'refs' ⍝ nameclass of vector.

2
F2←2⊃refs
⎕NC 'F2'

9

Re-Assignment
A name that already exists may be assigned a new value if the assignment will not
alter its name class, or will change it from 2 to 9 or vice versa. The table of permitted
re-assignments is as follows:

Ref Variable Function Operator

Ref Yes Yes

Variable Yes Yes

Function Yes Yes

Operator Yes Yes

Chapter 1: Primitive Functions 15

Assignment (Indexed): {R}←X[I]←Y

Indexed Assignment is the Assignment function modified by the Indexing function.
The phrase [I]← is treated as the function for descriptive purposes.

Ymay be any array. Xmay be the name of any array. Imust be a valid index
specification. The shape of Ymust conform with the shape (implied) of the indexed
structure defined by I. If Y is a scalar or a unit vector it will be extended to
conform. A side effect of Indexed Assignment is to change the value of the indexed
elements of X.

R is the value of Y. If the result is not explicitly assigned or used it is suppressed.

⎕IO is an implicit argument of Indexed Assignment.

Three forms of indexing are permitted.

Simple Indexed Assignment
For vector X, I is a simple integer array whose items are from the set ⍳⍴R. Elements
of X identified by index positions I are replaced by corresponding elements of Y.

Examples
+A←⍳5

1 2 3 4 5

A[2 3]←10 ⋄ A
1 10 10 4 5

The last-most element of Y is assigned when an index is repeated in I:

A[2 2]←100 101 ⋄ A
1 101 10 4 5

For matrix X, I is composed of two simple integer arrays separated by the semicolon
character (;). The arrays select indices from the rows and columns of X respectively.

Examples
+B←2 3⍴'REDSUN'

RED
SUN

B[2;2]←'O' ⋄ B
RED
SON

16 Dyalog APL/W Language Reference

For higher-order array X, I is a series of simple integer arrays with adjacent arrays sep-
arated by a single semicolon character (;). Each array selects indices from an axis of
X taken in row-major order.

Examples
C

11 12 13
14 15 16

21 22 23
24 25 26

C[1;1;3]←103 ⋄ C
11 12 103
14 15 16

21 22 23
24 25 26

An indexing array may be ELIDED. That is, if an indexing array is omitted from the
Kth axis, the indexing vector ⍳(⍴X)[K] is implied:

C[;1;2 3]←2 2⍴112 113 122 123 ⋄ C
11 112 113
14 15 16

21 122 123
24 25 26

C[;;]←0 ⋄ C
0 0 0
0 0 0

0 0 0
0 0 0

Chapter 1: Primitive Functions 17

Choose Indexed Assignment
The index specification I is a non-simple integer array. Each item identifies a single
element of X by a set of indices with one element per axis of X in row-major order.

Examples
C

11 12 13 14
21 22 23 24

C[⊂1 1]←101 ⋄ C
101 12 13 14
21 22 23 24

C[(1 2) (2 3)]←102 203 ⋄ C
101 102 13 14
21 22 203 24

C[2 2⍴(1 3)(2 4)(2 1)(1 4)]←2 2⍴103 204 201 104 ⋄ C
101 102 103 104
201 22 203 204

A scalar may be indexed by the enclosed empty vector:

S
10

S[⊂⍳0]←⊂'VECTOR' ⋄ S
VECTOR

S[⊂⍳0]←5 ⋄ S
5

Choose Indexed Assignment may be used very effectively in conjunction with Index
Generator (⍳) and Structural functions in order to assign into an array:

C
11 12 13 14
21 22 23 24

⍳⍴C
1 1 1 2 1 3 1 4
2 1 2 2 2 3 2 4

C[1 1⍉⍳⍴C]←1 2 ⋄ C
1 12 13 14

21 2 23 24

C[2 ¯1↑⍳⍴C]←99 ⋄ C
1 12 13 99

21 2 23 99

18 Dyalog APL/W Language Reference

Reach Indexed Assignment
The index specification I is a non-simple integer array, each of whose items reach
down to a nested element of X. The items of an item of I are simple vectors (or sca-
lars) forming sets of indices that index arrays at successive levels of X starting at the
top-most level. A set of indices has one element per axis at the respective level of
nesting of X in row-major order.

Examples
D←(2 3⍴⍳6)(2 2⍴'SMITH' 'JONES' 'SAM' 'BILL')

D
1 2 3 SMITH JONES
4 5 6 SAM BILL

≡J←⊂2 (1 2)
¯3

D[J]←⊂'WILLIAMS' ⋄ D
1 2 3 SMITH WILLIAMS
4 5 6 SAM BILL

D[(1 (1 1))(2 (2 2) 1)]←10 'W' ⋄ D
10 2 3 SMITH WILLIAMS
4 5 6 SAM WILL

E
GREEN YELLOW RED

E[⊂2 1]←'M' ⋄ E
GREEN MELLOW RED

The context of indexing is important. In the last example, the indexing method is
determined to be Reach rather than Choose since E is a vector, not a matrix as would
be required for Choose. Observe that:

⊂2 1 ←→ ⊂(⊂2),(⊂1)

Note that for any array A, A[⊂⍬] represents a scalar quantity, which is the whole of
A, so:

A←5⍴0
A

0 0 0 0 0
A[⊂⍬]←1
A

1

Chapter 1: Primitive Functions 19

Assignment (Selective): (EXP X)←Y

X is the name of a variable in the workspace. EXP is an expression that selects ele-
ments of X. Y is an array expression. The result of the expression Y is allocated to the
elements of X selected by EXP.

The following functions may appear in the selection expression. Where appropriate
these functions may be used with axis [].

↑ Take
↓ Drop
, Ravel
⌽ Reverse, Rotate
⍴ Reshape
⊃ Disclose, Pick
⍉ Transpose (Monadic and Dyadic)
/ Replicate
\ Expand
⌷ Index
∊ Enlist (⎕ML≥1)

Note: Mix and Split (monadic ↑ and ↓), Type (monadic ∊ when ⎕ML<1) and Mem-
bership (dyadic ∊) may not be used in the selection expression.

Examples
A←'HELLO'
((A∊'AEIOU')/A)←'*'

A
H*LL*

Z←3 4⍴⍳12
(5↑,Z)←0

Z
0 0 0 0
0 6 7 8
9 10 11 12

20 Dyalog APL/W Language Reference

MAT←3 3⍴⍳9
(1 1⍉MAT)←0

MAT
0 2 3
4 0 6
7 8 0

Binomial: R←X!Y

X and Ymay be any numbers except that if Y is a negative integer then Xmust be a
whole number (integer). R is numeric. An element of R is integer if corresponding ele-
ments of X and Y are integers. Binomial is defined in terms of the function Factorial
for positive integer arguments:

X!Y ←→ (!Y)÷(!X)×!Y-X

For other arguments, results are derived smoothly from the Beta function:

Beta(X,Y) ←→ ÷Y×(X-1)!X+Y-1

For positive integer arguments, R is the number of selections of X things from Y
things.

Example
1 1.2 1.4 1.6 1.8 2!5

5 6.105689248 7.219424686 8.281104786 9.227916704 10

2!3j2
1J5

Branch: →Y

Ymay be a scalar or vector which, if not empty, has a simple numeric scalar as its first
element. The function has no explicit result. It is used to modify the normal
sequence of execution of expressions or to resume execution after a statement has
been interrupted. Branch is not in the function domain of operators.

Chapter 1: Primitive Functions 21

The following distinct usages of the branch function occur:

Entered in a Statement
in a Defined Function Entered in Immediate Execution Mode

→LINE
Continue with the
specific line

Restart execution at the specific line of
the most recently suspended function

→⍳0
Continue with the next
expression No effect

In a defined function, if Y is non-empty then the first element in Y specifies a state-
ment line in the defined function to be executed next. If the line does not exist, then
execution of the function is terminated. For this purpose, line 0 does not exist.
(Note that statement line numbers are independent of the index origin ⎕IO).

If Y is empty, the branch function has no effect. The next expression is executed on
the same line, if any, or on the next line if not. If there is no following line, the func-
tion is terminated.

The :GoTo statement may be used in place of Branch in a defined function.

Example
∇ TEST

[1] 1
[2] →4
[3] 3
[4] 4

∇

TEST
1
4

In general it is better to branch to a LABEL than to a line number. A label occurs in
a statement followed by a colon and is assigned the value of the statement line
number when the function is defined.

Example
∇ TEST

[1] 1
[2] →FOUR
[3] 3
[4] FOUR:4

∇

22 Dyalog APL/W Language Reference

The previous examples illustrate unconditional branching. There are numerous APL
idioms which result in conditional branching. Some popular idioms are identified in
the following table:

Branch Expression Comment

→TEST/L1
Branches to label L1 if TEST results in 1 but
not if TEST results in 0.

→TEST⍴L1 Similar to above.

TEST↑L1 Similar to above.

→L1⍴⍨TEST Similar to above.

→L1⌈⍳TEST Similar to above but only if ⎕IO←→1.

→L1×⍳TEST Similar to above but only if ⎕IO←→1.

→(L1,L2,L3)[N] Unconditional branch to a selected label.

→(T1,T2,T3)/L1,L2,L3
Branches to the first selected label dependent
on tests T1,T2,T3. If all tests result in 0, there
is no branch.

→N⌽L1,L2,L3
Unconditional branch to thefirst label after
rotation.

A branch expression may occur within a statement including ⋄ separators:

[5] →NEXT⍴⍨TEST ⋄ A←A+1 ⋄ →END
[6] NEXT:

In this example, the expressions 'A←A+1' and '→END' are executed only if TEST
returns the value 1. Otherwise control branches to label NEXT.

In immediate execution mode, the branch function permits execution to be continued
within the most recently suspended function, if any, in the state indicator. If the state
indicator is empty, or if the argument Y is the empty vector, the branch expression
has no effect. If a statement line is specified which does not exist, the function is
terminated. Otherwise, execution is restarted from the beginning of the specified
statement line in the most recently suspended function.

Chapter 1: Primitive Functions 23

Example
∇ F

[1] 1
[2] 2
[3] 3

∇

2 ⎕STOP'F'
F

1

F[2]
)SI

#.F[2]*
→2

2
3

The system constant ⎕LC returns a vector of the line numbers of statement lines in
the state indicator, starting with that in the most recently suspended function. It is
convenient to restart execution in a suspended state by the expression:

→⎕LC

Catenate/Laminate: R←X,[K]Y

Ymay be any array. Xmay be any array. The axis specification is optional. If spec-
ified, Kmust be a numeric scalar or unit vector which may have a fractional value. If
not specified, the last axis is implied.

The form R←X⍪Ymay be used to imply catenation along the first axis.

Two cases of the function catenate are permitted:

1. With an integer axis specification, or implied axis specification.
2. With a fractional axis specification, also called laminate.

Catenation with Integer or Implied Axis Specification
The arrays X and Y are joined along the required axis to form array R. A scalar or unit
vector is extended to the shape of the other argument except that the required axis is
restricted to a unit dimension. X and Ymust have the same shape (after extension)
except along the required axis, or one of the arguments may have rank one less than
the other, provided that their shapes conform to the prior rule after augmenting the
array of lower rank to have a unit dimension along the required axis.

The rank of R is the greater of the ranks of the arguments, but not less than 1.

24 Dyalog APL/W Language Reference

Examples
'FUR','LONG'

FURLONG

1,2
1 2

(2 4⍴'THISWEEK')⍪'='
THIS
WEEK
====

S,[1]+⌿S←2 3⍴⍳6
1 2 3
4 5 6
5 7 9

If, after extension, exactly one of X and Y have a length of zero along the joined axis,
then the data type of R will be that of the argument with a non-zero length. Other-
wise, the data type of R will be that of X.

Lamination with Fractional Axis Specification
The arrays X and Y are joined along a new axis created before the ⌈Kth axis. The
new axis has a length of 2. Kmust exceed ⎕IO (the index origin) minus 1, and K
must be less than ⎕IO plus the greater of the ranks of X and Y. A scalar or unit vector
argument is extended to the shape of the other argument. Otherwise X and Ymust
have the same shape.

The rank of R is one plus the greater of the ranks of X and Y.

Examples
'HEADING',[0.5]'-'

HEADING

'NIGHT',[1.5]'*'
N*
I*
G*
H*
T*

⎕IO←0
'HEADING',[¯0.5]'-'

HEADING

Chapter 1: Primitive Functions 25

Catenate First: R←X⍪[K]Y

The form R←X⍪Y implies catenation along the first axis whereas the form R←X,Y
implies catenation along the last axis (columns). See Catenate/Laminate above.

Ceiling: R←⌈Y

Ceiling is defined in terms of Floor as ⌈Y←→-⌊-Y

Ymust be numeric.

If an element of Y is real, the corresponding element of R is the least integer greater
than or equal to the value of Y.

If an element of Y is complex, the corresponding element of R depends on the rela-
tionship between the real and imaginary parts of the numbers in Y.

Examples
⌈¯2.3 0.1 100 3.3

¯2 1 100 4

⌈1.2j2.5 1.2j¯2.5
1J3 1J¯2

For further explanation, see "Floor:" on page 47.

⎕CT is an implied argument of Ceiling.

26 Dyalog APL/W Language Reference

Circular: R←X○Y

Ymust be numeric. Xmust be an integer in the range ¯12 ≤ X ≤ 12. R is numeric.

X determines which of a family of trigonometric, hyperbolic, Pythagorean and com-
plex functions to apply to Y, from the following table. Note that when Y is complex,
a and b are used to represent its real and imaginary parts, while θ represents its
phase.

(-X) ○ Y X X ○ Y

(1-Y*2)*.5 0 (1-Y*2)*.5

Arcsin Y 1 Sine Y

Arccos Y 2 Cosine Y

Arctan Y 3 Tangent Y

(Y+1)×((Y-1)÷Y+1)*0.5 4 (1+Y*2)*.5

Arcsinh Y 5 Sinh Y

Arccosh Y 6 Cosh Y

Arctanh Y 7 Tanh Y

-8○Y 8 (-1+Y*2)*0.5

Y 9 a

+Y 10 |Y

Y×0J1 11 b

*Y×0J1 12 θ

Examples
0 ¯1 ○ 1

0 1.570796327

1○(PI←○1)÷2 3 4
1 0.8660254038 0.7071067812

2○PI÷3
0.5

9 11○3.5J¯1.2
3.5 ¯1.2

9 11∘.○3.5J¯1.2 2J3 3J4

Chapter 1: Primitive Functions 27

3.5 2 3
¯1.2 3 4

Conjugate: R←+Y

If Yis complex, R is Y with the imaginary part of all elements negated.

If Y is real or non-numeric, R is the same array unchanged.

Examples
+3j4

3J¯4
+1j2 2j3 3j4

1J¯2 2J¯3 3J¯4

3j4++3j4
6

3j4×+3j4
25

+A←⍳5
1 2 3 4 5

+⎕EX'A'
1

Deal: R←X?Y

Ymust be a simple scalar or unit vector containing a non-negative integer. Xmust be
a simple scalar or unit vector containing a non-negative integer and X≤Y.

R is an integer unit vector obtained by making X random selections from ⍳Y without
repetition.

Examples
13?52

7 40 24 28 12 3 36 49 20 44 2 35 1

13?52
20 4 22 36 31 49 45 28 5 35 37 48 40

⎕IO and ⎕RL are implicit arguments of Deal. A side effect of Deal is to change the
value of ⎕RL. See "RandomNumber Generator:" on page 156 and "Random Link: "
on page 365.

28 Dyalog APL/W Language Reference

Decode: R←X⊥Y

Ymust be a simple numeric array. Xmust be a simple numeric array. R is the
numeric array which results from the evaluation of Y in the number system with radix
X.

X and Y are conformable if the length of the last axis of X is the same as the length of
the first axis of Y. A scalar or unit vector is extended to a vector of the required
length. If the last axis of X or the first axis of Y has a length of 1, the array is
extended along that axis to conform with the other argument.

The shape of R is the catenation of the shape of X less the last dimension with the
shape of Y less the first dimension. That is:

⍴R ←→ (¯1↓⍴X),1↓⍴Y

For vector arguments, each element of X defines the ratio between the units for cor-
responding pairs of elements in Y. The first element of X has no effect on the result.

This function is also known as Base Value.

Examples
60 60⊥3 13

193

0 60⊥3 13
193

60⊥3 13
193

2⊥1 0 1 0
10

Chapter 1: Primitive Functions 29

Polynomial Evaluation
If X is a scalar and Y a vector of length n, decode evaluates the polynomial(Index
origin 1):

     Y X Y X Y n X1 + 2 + ... +
n n−1 −2 0

Examples
2⊥1 2 3 4

26
3⊥1 2 3 4

58
1j1⊥1 2 3 4

5J9

For higher order array arguments, each of the vectors along the last axis of X is taken
as the radix vector for each of the vectors along the first axis of Y.

Examples
M

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

A
1 1 1
2 2 2
3 3 3
4 4 4

A⊥M
0 1 1 2 1 2 2 3
0 1 2 3 4 5 6 7
0 1 3 4 9 10 12 13
0 1 4 5 16 17 20 21

Scalar extension may be applied:

2⊥M
0 1 2 3 4 5 6 7

Extension along a unit axis may be applied:

+A←2 1⍴2 10
2

10
A⊥M

0 1 2 3 4 5 6 7
0 1 10 11 100 101 110 111

30 Dyalog APL/W Language Reference

Depth: (⎕ML) R←≡Y

Ymay be any array. R is the number of levels of nesting of Y. A simple scalar (rank-0
number, character or namespace-reference) has a depth of 0.

A higher rank array, all of whose items are simple scalars, is termed a simple array
and has a depth of 1. An array whose items are not all simple scalars is nested and has
a depth 1 greater than that of its most deeply nested item.

Y is of uniform depth if it is simple or if all of its items have the same uniform depth.

If ⎕ML<2 and Y is not of uniform depth then R is negated.

If ⎕ML<2, a negative value of R indicates non-uniform depth.

Examples
≡1

0
≡'A'

0
≡'ABC'

1
≡1 'A'

1

⎕ML←0

≡A←(1 2)(3 (4 5)) ⍝ Non-uniform array
¯3

≡¨A ⍝ A[1] is uniform, A[2] is non-uniform
1 ¯2

≡¨¨A
0 0 0 1

⎕ML←2

≡A
3

≡¨A
1 2

≡¨¨A
0 0 0 1

Direction (Signum): R←×Y

Y may be any numeric array.

Chapter 1: Primitive Functions 31

Where an element of Y is real, the corresponding element of R is an integer whose
value indicates whether the value is negative (¯1), zero (0) or positive (1).

Where an element of Y is complex, the corresponding element of R is a number with
the same phase but with magnitude (absolute value) 1. It is equivalent to Y÷|Y.

Examples
×¯15.3 0 101

¯1 0 1

×3j4 4j5
0.6J0.8 0.6246950476J0.7808688094

{⍵÷|⍵}3j4 4j5
0.6J0.8 0.6246950476J0.7808688094

|×3j4 4j5
1 1

32 Dyalog APL/W Language Reference

Disclose: (⎕ML) R←⊃Y or R←↑Y

The symbol chosen to represent Disclose depends on the current Migration Level.

If ⎕ML<2, Disclose is represented by the symbol: ⊃.

If ⎕ML≥2, Disclose is represented by the symbol: ↑.

Ymay be any array. R is an array. If Y is non-empty, R is the value of the first item of
Y taken in ravel order. If Y is empty, R is the prototype of Y.

Disclose is the inverse of Enclose. The identity R←→⊃⊂R holds for all R. Disclose is
also referred to as First.

Examples
⊃1

1

⊃2 4 6
2

⊃'MONDAY' 'TUESDAY'
MONDAY

⊃(1 (2 3))(4 (5 6))
1 2 3

⊃⍳0
0

' '=⊃''
1

⊃1↓⊂1,⊂2 3
0 0 0

Chapter 1: Primitive Functions 33

Divide: R←X÷Y

Ymust be a numeric array. Xmust be a numeric array. R is the numeric array result-
ing from X divided by Y. System variable ⎕DIV is an implicit argument of Divide.

If ⎕DIV=0 and Y=0 then if X=0, the result of X÷Y is 1; if X≠0 then X÷Y is a DOMAIN
ERROR.

If ⎕DIV=1 and Y=0, the result of X÷Y is 0 for all values of X.

Examples
2 0 5÷4 0 2

0.5 1 2.5

3j1 2.5 4j5÷2 1j1 .2
1.5J0.5 1.25J¯1.25 20J25

⎕DIV←1
2 0 5÷4 0 0

0.5 0 0

34 Dyalog APL/W Language Reference

Drop: R←X↓Y

Ymay be any array. Xmust be a simple scalar or vector of integers. If X is a scalar, it
is treated as a one-element vector. If Y is a scalar, it is treated as an array whose shape
is (⍴X)⍴1. After any scalar extensions, the shape of Xmust be less than or equal to
the rank of Y. Any missing trailing items in X default to 0.

R is an array with the same rank as Y but with elements removed from the vectors
along each of the axes of Y. For the Ith axis:

l if X[I] is positive, all but the first X[I] elements of the vectors result.
l if X[I] is negative, all but the last X[I] elements of the vectors result.

If the magnitude of X[I] exceeds the length of the Ith axis, the result is an empty
array with zero length along that axis.

Examples
4↓'OVERBOARD'

BOARD

¯5↓'OVERBOARD'
OVER

⍴10↓'OVERBOARD'
0

M
ONE
FAT
FLY

0 ¯2↓M
O
F
F

¯2 ¯1↓M
ON

1↓M
FAT
FLY

M3←2 3 4⍴⎕A

1 1↓M3
QRST
UVWX

¯1 ¯1↓M3
ABCD
EFGH

Chapter 1: Primitive Functions 35

Drop with Axes: R←X↓[K]Y

Ymay be any non scalar array. Xmust be a simple integer scalar or vector. K is a vec-
tor of zero or more axes of Y.

R is an array of the elements of Y with the first or last X[i] elements removed. Ele-
ments are removed from the beginning or end of Y according to the sign of X[i].

The rank of R is the same as the rank of Y:

⍴⍴R ←→ ⍴⍴Y

The size of each axis of R is determined by the corresponding element of X:

(⍴R)[,K] ←→ 0⌈(⍴Y)[,K]-|,X

Examples
⎕←M←2 3 4⍴⍳24

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

1↓[2]M
5 6 7 8
9 10 11 12

17 18 19 20
21 22 23 24

2↓[3]M
3 4
7 8

11 12

15 16
19 20
23 24

2 1↓[3 2]M
7 8

11 12

19 20
23 24

36 Dyalog APL/W Language Reference

Enclose: R←⊂Y

Ymay be any array. R is a scalar array whose item is the array Y. If Y is a simple sca-
lar, R is the simple scalar unchanged. Otherwise, R has a depth whose magnitude is
one greater than the magnitude of the depth of Y.

Examples
⊂1

1

⊂'A'
A

⊂1 2 3
1 2 3

⊂1,⊂'CAT'
1 CAT

⊂2 4⍴⍳8
1 2 3 4
5 6 7 8

⊂⍳0

⊂⊂⍳0

⊂⊂10
10

Chapter 1: Primitive Functions 37

Enclose with Axes: R←⊂[K]Y

Ymay be any array. K is a vector of zero or more axes of Y. R is an array of the ele-
ments of Y enclosed along the axes K. The shape of R is the shape of Y with the K
axes removed:

⍴R ←→ (⍴Y)[(⍳⍴⍴R)~K]

The shape of each element of R is the shape of the K'th axes of Y:

⍴⊃R ←→ (⍴Y)[,K]

Examples
]display A←2 3 4⍴'DUCKSWANBIRDWORMCAKESEED'

┌┌→───┐
↓↓DUCK│
││SWAN│
││BIRD│
││ │
││WORM│
││CAKE│
││SEED│
└└────┘

]display ⊂[3]A
┌→─────────────────────┐
↓ ┌→───┐ ┌→───┐ ┌→───┐ │
│ │DUCK│ │SWAN│ │BIRD│ │
│ └────┘ └────┘ └────┘ │
│ ┌→───┐ ┌→───┐ ┌→───┐ │
│ │WORM│ │CAKE│ │SEED│ │
│ └────┘ └────┘ └────┘ │
└∊─────────────────────┘

]display ⊂[2 3]A
┌→──────────────┐
│ ┌→───┐ ┌→───┐ │
│ ↓DUCK│ ↓WORM│ │
│ │SWAN│ │CAKE│ │
│ │BIRD│ │SEED│ │
│ └────┘ └────┘ │
└∊──────────────┘

]display ⊂[1 3]A
┌→─────────────────────┐
│ ┌→───┐ ┌→───┐ ┌→───┐ │
│ ↓DUCK│ ↓SWAN│ ↓BIRD│ │
│ │WORM│ │CAKE│ │SEED│ │
│ └────┘ └────┘ └────┘ │
└∊─────────────────────┘

38 Dyalog APL/W Language Reference

Encode: R←X⊤Y

Ymust be a simple numeric array. Xmust be a simple numeric array. R is the
numeric array which results from the representation of Y in the number system
defined by X.

The shape of R is (⍴X),⍴Y (the catenation of the shapes of X and Y).

If X is a vector or a scalar, the result for each element of Y is the value of the element
expressed in the number system defined by radix X. If Y is greater than can be
expressed in the number system, the result is equal to the representation of the res-
idue (×/X)|Y. If the first element of X is 0, the value will be fully represented.

This function is also known as Representation.

Examples
10⊤5 15 125

5 5 5

0 10⊤5 15 125
0 1 12
5 5 5

Chapter 1: Primitive Functions 39

If X is a higher order array, each of the vectors along the first axis of X is used as the
radix vector for each element of Y.

Examples
A

2 0 0
2 0 0
2 0 0
2 0 0
2 8 0
2 8 0
2 8 16
2 8 16

A⊤75
0 0 0
1 0 0
0 0 0
0 0 0
1 0 0
0 1 0
1 1 4
1 3 11

The example shows binary, octal and hexadecimal representations of the decimal
number 75.

Examples
0 1⊤1.25 10.5

1 10
0.25 0.5

4 13⊤13?52
3 1 0 2 3 2 0 1 3 1 2 3 1

12 2 4 12 1 7 6 3 10 1 0 3 8

40 Dyalog APL/W Language Reference

Enlist: (⎕ML≥1) R←∊Y

Migration level must be such that ⎕ML≥1 (otherwise see "Type:" on page 108).

Ymay be any array, R is a simple vector created from all the elements of Y in ravel
order.

Examples
⎕ML←1 ⍝ Migration level 1
MAT←2 2⍴'MISS' 'IS' 'SIP' 'PI' ⋄ MAT

 MISS IS
 SIP PI

∊MAT
MISSISSIPPI

M←1 (2 2⍴2 3 4 5) (6(7 8))
M

1 2 3 6 7 8
4 5

∊M
1 2 3 4 5 6 7 8

Chapter 1: Primitive Functions 41

Equal: R←X=Y
Ymay be any array. Xmay be any array. R is Boolean. ⎕CT is an implicit argument of
Equal.

If X and Y are character, then R is 1 if they are the same character. If X is character and
Y is numeric, or vice-versa, then R is 0.

If X and Y are numeric, then R is 1 if X and Y are within comparison tolerance of each
other.

For real numbers X and Y, X is considered equal to Y if (|X-Y) is not greater than
⎕CT×(|X)⌈|Y.

For complex numbers X=Y is 1 if the magnitude of X-Y does not exceed ⎕CT times
the larger of the magnitudes of X and Y; geometrically, X=Y if the number smaller in
magnitude lies on or within a circle centred on the one with larger magnitude, hav-
ing radius ⎕CT times the larger magnitude.

42 Dyalog APL/W Language Reference

Examples
3=3.1 3 ¯2 ¯3

0 1 0 0

a←2+0j1×⎕CT
a

2J1E¯14
a=2j.00000000000001 2j.0000000000001

1 0

'CAT'='FAT'
0 1 1

'CAT'=1 2 3
0 0 0

'CAT'='C' 2 3
1 0 0

⎕CT←1E¯10
1=1.000000000001

1

1=1.0000001
0

Excluding: R←X~Y

Xmust be a scalar or vector. R is a vector of the elements of X excluding those ele-
ments which occur in Y taken in the order in which they occur in X.

Elements of X and Y are considered the same if X≡Y returns 1 for those elements.

⎕CT is an implicit argument of Excluding. Excluding is also known as Without.

Examples
'HELLO'~'GOODBYE'

HLL
'MONDAY' 'TUESDAY' 'WEDNESDAY'~'TUESDAY' 'FRIDAY'

MONDAY WEDNESDAY

5 10 15~⍳10
15

For performance information, see Programmer's Guide: "Search Functions and Hash
Tables".

Chapter 1: Primitive Functions 43

Execute (Monadic): R←⍎Y

Ymust be a simple character scalar or vector. If Y is an empty vector, it is treated as
an empty character vector. Y is taken to be an APL statement to be executed. R is
the result of the last-executed expression. If the expression has no value, then ⍎Y has
no value. If Y is an empty vector or a vector containing only blanks, then ⍎Y has no
value.

If Y contains a branch expression which evaluates to a non-empty result, R does not
yield a result. Instead, the branch is effected in the environment from which the
Execute was invoked.

Examples
⍎'2+2'

4
4=⍎'2+2'

1
A

1 2 3
4 5 6

⍎'A'
1 2 3
4 5 6

⍎'A←2|¯1↑⎕TS ⋄ →0⍴⍨A ⋄ A'
0

A
0

Execute (Dyadic): R←X⍎Y

Ymust be a simple character scalar or vector. If Y is an empty vector, it is treated as
an empty character vector. Xmust be a namespace reference or a simple character sca-
lar or vector representing the name of a namespace. Y is then taken to be an APL
statement to be executed in namespace X. R is the result of the last-executed
expression. If the expression has no value, then X⍎Y has no value.

Example
⎕SE ⍎ '⎕NL 9'

44 Dyalog APL/W Language Reference

Expand: R←X\[K]Y

Ymay be any array. X is a simple integer scalar or vector. The axis specification is
optional. If present, Kmust be a simple integer scalar or unit vector. The value of K
must be an axis of Y. If absent, the last axis of Y is implied. The form R←X⍀Y implies
the first axis. If Y is a scalar, it is treated as a one-element vector.

If Y has length 1 along the Kth (or implied) axis, it is extended along that axis to
match the number of positive elements in X. Otherwise, the number of positive ele-
ments in Xmust be the length of the Kth (or implied) axis of Y.

R is composed from the sub-arrays along the Kth axis of Y. If X[I] (an element of X)
is the Jth positive element in X, then the Jth sub-array along the Kth axis of Y is rep-
licated X[I] times. If X[I] is negative, then a sub-array of fill elements of Y
(⊂∊⊃Y) is replicated |X[I] times and inserted in relative order along the Kth axis
of the result. If X[I] is zero, it is treated as the value ¯1. The shape of R is the shape
of Y except that the length of the Kth axis is +/1⌈|X.

Examples
0\⍳0

0

1 ¯2 3 ¯4 5\'A'
A AAA AAAAA

M
1 2 3
4 5 6

1 ¯2 2 0 1\M
1 0 0 2 2 0 3
4 0 0 5 5 0 6

1 0 1⍀M
1 2 3
0 0 0
4 5 6

1 0 1\[1]M
1 2 3
0 0 0
4 5 6

1 ¯2 1\(1 2)(3 4 5)
1 2 0 0 0 0 3 4 5

Chapter 1: Primitive Functions 45

Expand First: R←X⍀Y

The form R←X⍀Y implies expansion along the first axis whereas the form R←X\Y
implies expansion along the last axis (columns). See "Expand:" above.

Exponential: R←*Y

Ymust be numeric. R is numeric and is the Yth power of e, the base of natural log-
arithms.

Example
*1 0

2.718281828 1

*0j1 1j2
0.5403023059J0.8414709848 ¯1.131204384J2.471726672

1+*○0j1 ⍝ Euler Identity
0

Factorial: R←!Y

Ymust be numeric excluding negative integers. R is numeric. R is the product of the
first Y integers for positive integer values of Y. For non-integral values of Y, !Y is
equivalent to the gamma function of Y+1.

Examples
!1 2 3 4 5

1 2 6 24 120

!¯1.5 0 1.5 3.3
¯3.544907702 1 1.329340388 8.85534336

!0j1 1j2
0.4980156681J¯0.1549498283 0.1122942423J0.3236128855

46 Dyalog APL/W Language Reference

Find: R←X⍷Y

X and Ymay be any arrays. R is a simple Boolean array the same shape as Y which
identifies occurrences of X within Y.

If the rank of X is smaller than the rank of Y, X is treated as if it were the same rank
with leading axes of size 1. For example a vector is treated as a 1-row matrix.

If the rank of X is larger than the rank of Y, no occurrences of X are found in Y.

⎕CT and ⎕DCT are implicit arguments to Find.

Examples
'AN'⍷'BANANA'

0 1 0 1 0 0

'ANA'⍷'BANANA'
0 1 0 1 0 0

'BIRDS' 'NEST'⍷'BIRDS' 'NEST' 'SOUP'
1 0 0

MAT
IS YOU IS
OR IS YOU
ISN'T

'IS'⍷MAT
1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0

'IS YOU'⍷MAT
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Chapter 1: Primitive Functions 47

First: (⎕ML) R←⊃Y or R←↑Y

See function "Disclose:" on page 32.

Floor: R←⌊Y

Ymust be numeric.

For real numbers, R is the largest integer value less than or equal to Y within the com-
parison tolerance ⎕CT.

Examples
⌊¯2.3 0.1 100 3.3

¯3 0 100 3

⌊0.5 + 0.4 0.5 0.6
0 1 1

For complex numbers, R depends on the relationship between the real and imaginary
parts of the numbers in Y.

⌊1j3.2 3.3j2.5 ¯3.3j¯2.5
1J3 3J2 ¯3J¯3

The following (deliberately) simple function illustrates one way to express the rules
for evaluating complex Floor.

∇ fl←CpxFloor cpxs;a;b
[1] ⍝ Complex floor of scalar complex number (a+ib)
[2] a b←9 11○cpxs
[3] :If 1>(a-⌊a)+b-⌊b
[4] fl←(⌊a)+0J1×⌊b
[5] :Else
[6] :If (a-⌊a)<b-⌊b
[7] fl←(⌊a)+0J1×1+⌊b
[8] :Else
[9] fl←(1+⌊a)+0J1×⌊b
[10] :EndIf
[11] :EndIf

∇

CpxFloor¨1j3.2 3.3j2.5 ¯3.3j¯2.5
1J3 3J2 ¯3J¯3

⎕CT is an implicit argument of Floor.

48 Dyalog APL/W Language Reference

Format (Monadic): R←⍕Y

Ymay be any array. R is a simple character array which will display identically to
the display produced by Y. The result is independent of ⎕PW. If Y is a simple char-
acter array, then R is Y.

Example
+B←⍕A←2 6⍴'HELLO PEOPLE'

HELLO
PEOPLE

B ≡ A
1

If Y is a simple numeric scalar, then R is a vector containing the formatted number
without any spaces. A floating point number is formatted according to the system
variable ⎕PP. ⎕PP is ignored when formatting integers.

Examples
⎕PP←5

⍴C←⍕⍳0
0

⍴C←⍕10
2

C
10

⍴C←⍕12.34
5

C
12.34

⍕123456789
123456789

⍕123.456789
123.46

Scaled notation is used if the magnitude of the non-integer number is too large to rep-
resent with ⎕PP significant digits or if the number requires more than five leading
zeroes after the decimal point.

Chapter 1: Primitive Functions 49

Examples
⍕123456.7

1.2346E5

⍕0.0000001234
1.234E¯7

If Y is a simple numeric vector, then R is a character vector in which each element of
Y is independently formatted with a single separating space between formatted ele-
ments.

Example
⍴C←⍕¯123456 1 22.5 ¯0.000000667 5.00001

27

C
¯1.2346E5 1 22.5 ¯6.67E¯7 5

If Y is a simple numeric array rank higher than one, R is a character array with the
same shape as Y except that the last dimension of Y is determined by the length of the
formatted data. The format width is determined independently for each column of Y,
such that:

a. the decimal points for floating point or scaled formats are aligned.
b. the E characters for scaled formats are aligned, with trailing zeros added to

the mantissae if necessary.
c. integer formats are aligned to the left of the decimal point column, if any, or

right-adjusted in the field otherwise.
d. each formatted column is separated from its neighbours by a single blank

column.
e. the exponent values in scaled formats are left-adjusted to remove any

blanks.

Examples
C←22 ¯0.000000123 2.34 ¯212 123456 6.00002 0

⍴C←⍕2 2 3⍴C
2 2 29

C
22 ¯1.2300E¯7 2.3400E0

¯212 1.2346E5 6.0000E0

0 2.2000E1 ¯1.2300E¯7
2.34 ¯2.1200E2 1.2346E5

50 Dyalog APL/W Language Reference

If Y is non-simple, and all items of Y at any depth are scalars or vectors, then R is a
vector.

Examples
B←⍕A←'ABC' 100 (1 2 (3 4 5)) 10

⍴A
4

≡A
¯3

⍴B
26

≡B
1

A
ABC 100 1 2 3 4 5 10

B
ABC 100 1 2 3 4 5 10

By replacing spaces with ^, it is clearer to see how the result of ⍕ is formed:

^ABC^^100^^1^2^^3^4^5^^^10

Chapter 1: Primitive Functions 51

If Y is non-simple, and all items of Y at any depth are not scalars, then R is a matrix.

Example
D←⍕C←1 'AB' (2 2⍴1+⍳4) (2 2 3⍴'CDEFGHIJKLMN')

C
1 AB 2 3 CDE

4 5 FGH

IJK
LMN

⍴C
4

≡C
¯2

D
1 AB 2 3 CDE

4 5 FGH

IJK
LMN

⍴D
5 16

≡D
1

By replacing spaces with ^, it is clearer to see how the result of ⍕ is formed:

1^^AB^^2^3^^CDE^
^^^^^^^4^5^^FGH^
^^^^^^^^^^^^^^^^
^^^^^^^^^^^^IJK^
^^^^^^^^^^^^LMN^

⎕PP is an implicit argument of Monadic Format.

52 Dyalog APL/W Language Reference

Format (Dyadic): R←X⍕Y

Ymust be a simple real (non-complex) numeric array. Xmust be a simple integer sca-
lar or vector. R is a character array displaying the array Y according to the spec-
ification X. R has rank 1⌈⍴⍴Y and ¯1↓⍴R is ¯1↓⍴Y. If any element of Y is complex,
dyadic ⍕ reports a DOMAIN ERROR.

Conformability requires that if X has more than two elements, then ⍴Xmust be
2×¯1↑⍴Y. If X contains one element, it is extended to (2×¯1↑⍴Y)⍴0,X. If X con-
tains 2 elements, it is extended to (2×¯1↑⍴Y)⍴X.

X specifies two numbers (possibly after extension) for each column in Y. For this pur-
pose, scalar Y is treated as a one-element vector. Each pair of numbers in X identifies
a format width (W) and a format precision (P).

If P is 0, the column is to be formatted as integers.

Examples
5 0 ⍕ 2 3⍴⍳6

1 2 3
4 5 6

4 0⍕1.1 2 ¯4 2.547
1 2 ¯4 3

If P is positive, the format is floating point with P significant digits to be displayed
after the decimal point.

Example
4 1⍕1.1 2 ¯4 2.547

1.1 2.0¯4.0 2.5

If P is negative, scaled format is used with |P digits in the mantissa.

Example
7 ¯3⍕5 15 155 1555

5.00E0 1.50E1 1.55E2 1.56E3

If W is 0 or absent, then the width of the corresponding columns of R are determined
by the maximumwidth required by any element in the corresponding columns of Y,
plus one separating space.

Example
3⍕2 3⍴10 15.2346 ¯17.1 2 3 4

 10.000 15.235 ¯17.100
 2.000 3.000 4.000

Chapter 1: Primitive Functions 53

If a formatted element exceeds its specified field width when W>0, the field width for
that element is filled with asterisks.

Example
3 0 6 2 ⍕ 3 2⍴10.1 15 1001 22.357 101 1110.1

10 15.00
*** 22.36
101******

If the format precision exceeds the internal precision, low order digits are replaced by
the symbol '_'.

Example
26⍕2*100

1267650600228229_______________._________________________
_

⍴26⍕2*100
59

0 20⍕÷3
0.3333333333333333____

0 ¯20⍕÷3
3.333333333333333____E¯1

The shape of R is the same as the shape of Y except that the last dimension of Y is the
sum of the field widths specified in X or deduced by the function. If Y is a scalar, the
shape of R is the field width.

⍴5 2 ⍕ 2 3 4⍴⍳24
2 3 20

54 Dyalog APL/W Language Reference

Grade Down (Monadic): R←⍒Y

Ymust be a simple character or simple numeric array of rank greater than 0. R is an
integer vector being the permutation of ⍳1↑⍴Y that places the sub-arrays of Y along
the first axis in descending order. The indices of any set of identical sub-arrays in Y
occur in R in ascending order.

If Y is a numeric array of rank greater than 1, the elements in each of the sub-arrays
along the first axis are compared in ravel order with greatest weight being given to
the first element and least weight being given to the last element.

Example
M

2 5 3 2
3 4 1 1
2 5 4 5
2 5 3 2
2 5 3 4

⍒M
2 3 5 1 4

M[⍒M;]
3 4 1 1
2 5 4 5
2 5 3 4
2 5 3 2
2 5 3 2

If Y is a character array, the implied collating sequence is the numerical order of the
corresponding Unicode code points (Unicode Edition) or the ordering of characters
in ⎕AV (Classic Edition).

⎕IO is an implicit argument of Grade Down.

Chapter 1: Primitive Functions 55

Note that character arrays sort differently in the Unicode and Classic Editions.

Example
M

Goldilocks
porridge
Porridge
3 bears

Unicode Edition Classic Edition

⍒M
2 3 1 4

⍒M
3 1 4 2

M[⍒M;]
porridge
Porridge
Goldilocks
3 bears

M[⍒M;]
Porridge
Goldilocks
3 bears
porridge

Grade Down (Dyadic): R←X⍒Y

Ymust be a simple character array of rank greater than 0. Xmust be a simple char-
acter array of rank 1 or greater. R is a simple integer vector of shape 1↑⍴Y con-
taining the permutation of ⍳1↑⍴Y that places the sub-arrays of Y along the first axis
in descending order according to the collation sequence X. The indices of any set of
identical sub-arrays in Y occur in R in ascending order.

If X is a vector, the following identity holds:

X⍒Y ←→ ⍒X⍳Y

A left argument of rank greater than 1 allows successive resolution of duplicate order-
ings in the following way.

Starting with the last axis:

l The characters in the right argument are located along the current axis of
the left argument. The position of the first occurrence gives the ordering
value of the character.

l If a character occurs more than once in the left argument its lowest position
along the current axis is used.

l If a character of the right argument does not occur in the left argument, the
ordering value is one more than the maximum index of the current axis - as
with dyadic iota.

56 Dyalog APL/W Language Reference

The process is repeated using each axis in turn, from the last to the first, resolving
duplicates until either no duplicates result or all axes have been exhausted.

For example, if index origin is 1:

Left argument: Right argument:
abc
ABA

ab
ac
Aa
Ac

Along last axis:

Character: Value: Ordering:
ab
ac
Aa
Ac

1 2
1 3
1 1
1 3

3
=1 <-duplicate ordering with
4
=1 <-respect to last axis.

Duplicates exist, so resolve these with respect to the first axis:

Character: Value: Ordering:
ac
Ac

1 1
2 1

2
1

So the final row ordering is:

ab 3
ac 2
Aa 4
Ac 1

That is, the order of rows is 4 2 1 3 which corresponds to a descending row sort of:

Ac 1
ac 2
ab 3
Aa 4

Chapter 1: Primitive Functions 57

Examples
⍴S1

2 27
S1

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

S2
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

S3
AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz

S4
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

The following results are tabulated for comparison:

X X[S1⍒X;] X[S2⍒X;] X[S3⍒X;] X[S4⍒X;]
FIRsT TAPE rAT TAPE TAPE
TAP TAP fIRST TAP TAP
RATE RATE TAPE rAT RATE
FiRST rAT TAP RATE rAT
FIRST RAT RATE RAT RAT
rAT MAT RAT MAT MAT
fIRST fIRST MAT fIRST FIRsT
TAPE FiRST FiRST FiRST FiRST
MAT FIRsT FIRsT FIRsT FIRST
RAT FIRST FIRST FIRST fIRST

⎕IO is an implicit argument of Grade Down.

Grade Up (Monadic): R←⍋Y

Ymust be a simple character or simple numeric array of rank greater than 0. R is an
integer vector being the permutation of ⍳1↑⍴Y that places the sub-arrays along the
first axis in ascending order.

If Y is a numeric array of rank greater than 1, the elements in each of the sub-arrays
along the first axis are compared in ravel order with greatest weight being given to
the first element and least weight being given to the last element.

58 Dyalog APL/W Language Reference

Examples
⍋22.5 1 15 3 ¯4

5 2 4 3 1

M
2 3 5
1 4 7

2 3 5
1 2 6

2 3 4
5 2 4

⍋M
3 2 1

If Y is a character array, the implied collating sequence is the numerical order of the
corresponding Unicode code points (Unicode Edition) or the ordering of characters
in ⎕AV (Classic Edition).

⎕IO is an implicit argument of Grade Up

Note that character arrays sort differently in the Unicode and Classic Editions.

M
Goldilocks
porridge
Porridge
3 bears

Unicode Edition Classic Edition

⍋M
4 1 3 2

⍋M
2 4 1 3

M[⍋M;]
3 bears
Goldilocks
Porridge
porridge

M[⍋M;]
porridge
3 bears
Goldilocks
Porridge

Chapter 1: Primitive Functions 59

Grade Up (Dyadic): R←X⍋Y

Ymust be a simple character array of rank greater than 0. Xmust be a simple char-
acter array of rank 1 or greater. R is a simple integer vector being the permutation of
⍳1↑⍴Y that places the sub-arrays of Y along the first axis in ascending order accord-
ing to the collation sequence X.

If X is a vector, the following identity holds:

X⍋Y ←→ ⍋X⍳Y

If X is a higher order array, each axis of X represents a grading attribute in increasing
order of importance. If a character is repeated in X, it is treated as though it were
located at the position in the array determined by the lowest index in each axis for all
occurrences of the character. The character has the same weighting as the character
located at the derived position in X.

Examples
(2 2⍴'ABBA') ⍋ 'AB'[?5 2⍴2] ⍝ A and B are

equivalent
1 2 3 4 5

]display A←2 14⍴' abcdegiklmnrt ABCDEGIKLMNRT'
┌→─────────────┐
↓ abcdegiklmnrt│
│ ABCDEGIKLMNRT│
└──────────────┘

V←'Ab' 'AB' 'aba' 'ABA' 'abaca' 'abecedarian'
V,←'Abelian' 'black' 'blackball' 'black belt'
V,←'blacking' 'Black Mass'

]display M←↑V
┌→──────────┐
↓Ab │
│AB │
│aba │
│ABA │
│abaca │
│abecedarian│
│Abelian │
│black │
│blackball │
│black belt │
│blacking │
│Black Mass │
└───────────┘

60 Dyalog APL/W Language Reference

]display M (M[(,A)⍋M;]) (M[(,⍉A)⍋M;]) (M[A⍋M;])
┌→──┐
│ ┌→──────────┐ ┌→──────────┐ ┌→──────────┐ ┌→──────────┐ │
│ ↓Ab │ ↓aba │ ↓aba │ ↓Ab │ │
│ │AB │ │abaca │ │abaca │ │AB │ │
│ │aba │ │abecedarian│ │abecedarian│ │aba │ │
│ │ABA │ │black │ │Ab │ │ABA │ │
│ │abaca │ │black belt │ │Abelian │ │abaca │ │
│ │abecedarian│ │blackball │ │AB │ │abecedarian│ │
│ │Abelian │ │blacking │ │ABA │ │Abelian │ │
│ │black │ │Ab │ │black │ │black │ │
│ │blackball │ │Abelian │ │black belt │ │black belt │ │
│ │black belt │ │AB │ │blackball │ │Black Mass │ │
│ │blacking │ │ABA │ │blacking │ │blackball │ │
│ │Black Mass │ │Black Mass │ │Black Mass │ │blacking │ │
│ └───────────┘ └───────────┘ └───────────┘ └───────────┘ │
└∊──┘'

Greater: R←X>Y

Ymust be numeric. Xmust be numeric. R is Boolean. R is 1 if X is greater than Y
and X=Y is 0. Otherwise R is 0.

⎕CT is an implicit argument of Greater.

Examples
1 2 3 4 5 > 2

0 0 1 1 1

⎕CT←1E¯10

1 1.00000000001 1.000000001 > 1
0 0 1

Chapter 1: Primitive Functions 61

Greater Or Equal: R←X≥Y

Ymust be numeric. Xmust be numeric. R is Boolean. R is 1 if X is greater than Y or
X=Y. Otherwise R is 0.

⎕CT is an implicit argument of Greater Or Equal.

Examples
1 2 3 4 5 ≥ 3

0 0 1 1 1

⎕CT←1E¯10

1≥1
1

1≥1.00000000001
1

1≥1.00000001
0

Identity: R←⊢Y

Ymay be any array. The result R is the argument Y.

Example
⊢'abc' 1 2 3

abc 1 2 3

62 Dyalog APL/W Language Reference

Index: R←{X}⌷Y

Dyadic case

Xmust be a scalar or vector of depth ≤2 of integers each ≥⎕IO. Ymay be any array.
In general, the result R is similar to that obtained by square-bracket indexing in that:

(I J ... ⌷ Y) ≡ Y[I;J;...]

The length of left argument Xmust be less than or equal to the rank of right argument
Y. Any missing trailing items of X default to the index vector of the corresponding
axis of Y.

Note that in common with square-bracket indexing, items of the left argument Xmay
be of any rank and that the shape of the result is the concatenation of the shapes of
the items of the left argument:

(⍴X⌷Y) ≡ ↑,/⍴¨X

Index is sometimes referred to as squad indexing.

Note that index may be used with selective specification.

⎕IO is an implicit argument of index.

Chapter 1: Primitive Functions 63

Examples
⎕IO←1

VEC←111 222 333 444
3⌷VEC

333
(⊂4 3)⌷VEC

444 333
(⊂2 3⍴3 1 4 1 2 3)⌷VEC

333 111 444
111 222 333

⎕←MAT←10⊥¨⍳3 4
11 12 13 14
21 22 23 24
31 32 33 34

2 1⌷MAT
21

2⌷MAT
21 22 23 24

3(2 1)⌷MAT
32 31

(2 3)1⌷MAT
21 31

(2 3)(,1)⌷MAT
21
31

⍴(2 1⍴1)(3 4⍴2)⌷MAT
2 1 3 4

⍴⍬ ⍬⌷MAT
0 0

(3(2 1)⌷MAT)←0 ⋄ MAT ⍝ Selective assignment.
11 12 13 14
21 22 23 24
0 0 33 34

64 Dyalog APL/W Language Reference

Monadic case

If Y is an array, Y is returned.

If Y is a ref to an instance of a Class with a Default property, all elements of the
Default property are returned. For example, if Item is the default property of
MyClass, and imc is an Instance of MyClass, then by definition:

imc.Item≡⌷imc

NONCE ERROR is reported if the Default Property is Keyed, because in this case
APL has no way to determine the list of all the elements.

Note that the values of the index set are obtained or assigned by calls to the cor-
responding PropertyGet and PropertySet functions. Furthermore, if there is a
sequence of primitive functions to the left of the Index function, that operate on the
index set itself (functions such as dyadic ⍴,↑,↓,⊃) as opposed to functions that
operate on the values of the index set (functions such as +,⌈,⌊,⍴¨), calls to the
PropertyGet and PropertySet functions are deferred until the required index set has
been completely determined. The full set of functions that cause deferral of calls to
the PropertyGet and PropertySet functions is the same as the set of functions that
applies to selective specification.

If for example, CompFile is an Instance of a Class with a Default Numbered Prop-
erty, the expression:

1↑⌽⌷CompFile

would only call the PropertyGet function (for CompFile) once, to get the value of
the last element.

Note that similarly, the expression

10000⍴⌷CompFile

would call the PropertyGet function 10000 times, on repeated indices if CompFile
has less than 10000 elements. The deferral of access function calls is intended to be
an optimisation, but can have the opposite effect. You can avoid unnecessary repet-
itive calls by assigning the result of ⌷ to a temporary variable.

Chapter 1: Primitive Functions 65

Index with Axes: R←{X}⌷[K]Y

Xmust be a scalar or vector of depth ≤2, of integers each ≥⎕IO. Ymay be any array.
K is a simple scalar or vector specifying axes of Y. The length of Kmust be the same
as the length of X:

(⍴,X) ≡ ⍴,K

In general, the result R is similar to that obtained by square-bracket indexing with
elided subscripts. Items of K distribute items of X along the axes of Y. For example:

I J ⌷[1 3] Y ←→ Y[I;;J]

Note that index with axis may be used with selective specification. ⎕IO is an
implicit argument of index with axis.

Examples
⎕IO←1

⎕←CUBE←10⊥¨⍳2 3 4
111 112 113 114
121 122 123 124
131 132 133 134

211 212 213 214
221 222 223 224
231 232 233 234

2⌷[1]CUBE
211 212 213 214
221 222 223 224
231 232 233 234

2⌷[3]CUBE
112 122 132
212 222 232

CUBE[;;2] ≡ 2⌷[3]CUBE
1

(1 3)4⌷[2 3]CUBE
114 134
214 234

CUBE[;1 3;4] ≡ (1 3)4⌷[2 3]CUBE
1

66 Dyalog APL/W Language Reference

(2(1 3)⌷[1 3]CUBE)←0 ⋄ CUBE ⍝ Selective assignment.
111 112 113 114
121 122 123 124
131 132 133 134

0 212 0 214
0 222 0 224
0 232 0 234

Index Generator: R←⍳Y

Ymust be a simple scalar or vector array of non-negative numbers. R is a numeric
array composed of the set of all possible coordinates of an array of shape Y. The
shape of R is Y and each element of R occurs in its self-indexing position in R. In par-
ticular, the following identity holds:

⍳Y ←→ (⍳Y)[⍳Y]

⎕IO is an implicit argument of Index Generator. This function is also known as Inter-
val.

Examples
⎕IO

1
⍴⍳0

0
⍳5

1 2 3 4 5

⍳2 3
1 1 1 2 1 3
2 1 2 2 2 3

⊢A←2 4⍴'MAINEXIT'
MAIN
EXIT

A[⍳⍴A]
MAIN
EXIT

Chapter 1: Primitive Functions 67

⎕IO←0
⍳5

0 1 2 3 4

⍳2 3
0 0 0 1 0 2
1 0 1 1 1 2

A[⍳⍴A]
MAIN
EXIT

Index Of: R←X⍳Y

Ymay be any array. Xmay be any vector. R is a simple integer array with the same
shape as Y identifying where elements of Y are first found in X. If an element of Y can-
not be found in X, then the corresponding element of R will be ⎕IO+⍴X.

Elements of X and Y are considered the same if X≡Y returns 1 for those elements.

⎕IO and ⎕CT are implicit arguments of Index Of.

Examples
⎕IO←1

2 4 3 1 4⍳1 2 3 4 5
4 1 3 2 6

'CAT' 'DOG' 'MOUSE'⍳'DOG' 'BIRD'
2 4

For performance information, see Programmer's Guide: "Search Functions and Hash
Tables".

68 Dyalog APL/W Language Reference

Indexing: R←X[Y]

Xmay be any array. Ymust be a valid index specification. R is an array composed of
elements indexed from X and the shape of X is determined by the index specification.

Bracket Indexing does not follow the normal syntax of a dyadic function.

⎕IO is an implicit argument of Indexing.

Three forms of indexing are permitted. The form used is determined by context.

Simple Indexing
For vector X, Y is a simple integer array composed of items from the set ⍳⍴X.

R consists of elements selected according to index positions in Y. R has the same
shape as Y.

Examples
A←10 20 30 40 50

A[2 3⍴1 1 1 2 2 2]
10 10 10
20 20 20

A[3]
30

'ONE' 'TWO' 'THREE'[2]
TWO

For matrix X, Y is composed of two simple integer arrays separated by the semicolon
character (;). The arrays select indices from the rows and columns of X respectively.

Examples
+M←2 4⍴10×⍳8

10 20 30 40
50 60 70 80

M[2;3]
70

Chapter 1: Primitive Functions 69

For higher order array X, Y is composed of a simple integer array for each axis of X
with adjacent arrays separated by a single semicolon character (;). The arrays select
indices from the respective axes of X, taken in row-major order.

Examples
⊢A←2 3 4⍴10×⍳24

10 20 30 40
50 60 70 80
90 100 110 120

130 140 150 160
170 180 190 200
210 220 230 240

A[1;1;1]
10

A[2;3 2;4 1]
240 210
200 170

If an indexing array is omitted for the Kth axis, the index vector ⍳(⍴X)[K] is
assumed for that axis.

Examples
A[;2;]

50 60 70 80
170 180 190 200

M
10 20 30 40
50 60 70 80

M[;]
10 20 30 40
50 60 70 80

M[1;]
10 20 30 40

M[;1]
10 50

70 Dyalog APL/W Language Reference

Choose Indexing
The index specification Y is a non-simple array. Each item identifies a single element
of X by a set of indices with one element per axis of X in row-major order.

Examples
M

10 20 30 40
50 60 70 80

M[⊂1 2]
20

M[2 2⍴⊂2 4]
80 80
80 80

M[(2 1)(1 2)]
50 20

A scalar may be indexed by the enclosed empty vector:

S←'Z'
S[3⍴⊂⍳0]

ZZZ

Simple and Choose indexing are indistinguishable for vector X:

V←10 20 30 40

V[⊂2]
20

⊂2
2

V[2]
20

Chapter 1: Primitive Functions 71

Reach Indexing
The index specification Y is a non-simple integer array, each of whose items reach
down to a nested element of X. The items of an item of Y are simple vectors (or sca-
lars) forming sets of indices that index arrays at successive levels of X starting at the
top-most level. A set of indices has one element per axis at the respective level of
nesting of X in row-major order.

Examples
G←('ABC' 1)('DEF' 2)('GHI' 3)('JKL' 4)
G←2 3⍴G,('MNO' 5)('PQR' 6)
G

ABC 1 DEF 2 GHI 3
JKL 4 MNO 5 PQR 6

G[((1 2)1)((2 3)2)]
DEF 6

G[2 2⍴⊂(2 2)2]
5 5
5 5

G[⊂⊂1 1]
ABC 1

G[⊂1 1]
ABC 1

V←,G

V[⊂⊂1]
ABC 1

V[⊂1]
ABC 1

V[1]
ABC 1

72 Dyalog APL/W Language Reference

Intersection: R←X∩Y

Ymust be a scalar or vector. Xmust be a scalar or vector. A scalar X or Y is treated as
a one-element vector. R is a vector composed of items occurring in both X and Y in
the order of occurrence in X. If an item is repeated in X and also occurs in Y, the item
is also repeated in R.

Items in X and Y are considered the same if X≡Y returns 1 for those items.

⎕CT is an implicit argument of Intersection.

Examples
'ABRA'∩'CAR'

ARA

1 'PLUS' 2 ∩ ⍳5
1 2

For performance information, see Programmer's Guide: "Search Functions and Hash
Tables".

Chapter 1: Primitive Functions 73

Left: R←X⊣Y

X and Ymay be any arrays.

The result R is the left argument X.

Example
42⊣'abc' 1 2 3

42

Note that when ⊣ is applied using reduction, the derived function selects the first
sub-array of the array along the specified dimension. This is implemented as an
idiom.

Examples
⊣/1 2 3

1

mat←↑'scent' 'canoe' 'arson' 'rouse' 'fleet'
⊣⌿mat ⍝ first row

scent
⊣/mat ⍝ first column

scarf

⊣/[2]2 3 4⍴⍳24 ⍝ first row from each plane
1 2 3 4

13 14 15 16

Similarly, with expansion:

⊣\mat
sssss
ccccc
aaaaa
rrrrr
fffff

⊣⍀mat
scent
scent
scent
scent
scent

74 Dyalog APL/W Language Reference

Less: R←X<Y

Ymay be any numeric array. Xmay be any numeric array. R is Boolean. R is 1 if X
is less than Y and X=Y is 0. Otherwise R is 0.

⎕CT is an implicit argument of Less.

Examples
(2 4) (6 8 10) < 6

1 1 0 0 0

⎕CT←1E¯10

1 0.99999999999 0.9999999999<1
0 0 1

Less Or Equal: R←X≤Y

Ymay be any numeric array. Xmay be any numeric array. R is Boolean. R is 1 if X
is less than Y or X=Y. Otherwise R is 0.

⎕CT is an implicit argument of Less Or Equal.

Examples
2 4 6 8 10 ≤ 6

1 1 1 0 0

⎕CT←1E¯10

1 1.00000000001 1.00000001 ≤ 1
1 1 0

Chapter 1: Primitive Functions 75

Logarithm: R←X⍟Y

Ymust be a positive numeric array. Xmust be a positive numeric array. X cannot be 1
unless Y is also 1. R is the base X logarithm of Y.

Note that Logarithm (dyadic ⍟) is defined in terms of Natural Logarithm (monadic ⍟)
as:

X⍟Y←→(⍟Y)÷⍟X

Examples
10⍟100 2

2 0.3010299957

2 10⍟0J1 1J2
0J2.266180071 0.3494850022J0.4808285788

1 ⍟ 1
1

2 ⍟ 1
0

Magnitude: R←|Y

Ymay be any numeric array. R is numeric composed of the absolute (unsigned)
values of Y.

Note that the magnitude of a complex number a ib(+) is defined to be a b+
2 2

Examples
|2 ¯3.4 0 ¯2.7

2 3.4 0 2.7

|3j4
5

76 Dyalog APL/W Language Reference

Match: R←X≡Y

Ymay be any array. Xmay be any array. R is a simple Boolean scalar. If X is iden-
tical to Y, then R is 1. Otherwise R is 0.

Non-empty arrays are identical if they have the same structure and the same values in
all corresponding locations. Empty arrays are identical if they have the same shape
and the same prototype (disclosed nested structure).

⎕CT is an implicit argument of Match.

Examples
⍬≡⍳0

1
''≡⍳0

0
A

THIS
WORD

A≡2 4⍴'THISWORD'
1

A≡⍳10
0

+B←A A
THIS THIS
WORD WORD

A≡⊃B
1

(0⍴A)≡0⍴B
0

' '=⊃0⍴B
1 1 1 1
1 1 1 1

' '=⊃0⍴A
1

Chapter 1: Primitive Functions 77

Matrix Divide: R←X⌹Y

Ymust be a simple numeric array of rank 2 or less. Xmust be a simple numeric array
of rank 2 or less. Ymust be non-singular. A scalar argument is treated as a matrix
with one-element. If Y is a vector, it is treated as a single column matrix. If X is a vec-
tor, it is treated as a single column matrix. The number of rows in X and Ymust be
the same. Ymust have at least the same number of rows as columns.

R is the result of matrix division of X by Y. That is, the matrix product Y+.×R is X.

R is determined such that (X-Y+.×R)*2 is minimised.

The shape of R is (1↓⍴Y),1↓⍴X.

Examples
⎕PP←5

B
3 1 4
1 5 9
2 6 5

35 89 79 ⌹ B
2.1444 8.2111 5.0889

A
35 36
89 88
79 75

A ⌹ B
2.1444 2.1889
8.2111 7.1222
5.0889 5.5778

78 Dyalog APL/W Language Reference

If there are more rows than columns in the right argument, the least squares solution
results. In the following example, the constants a and b which provide the best fit for
the set of equations represented by P = a + bQ are determined:

Q
1 1
1 2
1 3
1 4
1 5
1 6

P
12.03 8.78 6.01 3.75 ¯0.31 ¯2.79

P⌹Q
14.941 ¯2.9609

Example: linear regression on complex numbers
x←j⌿¯50+?2 13 4⍴100
y←(x+.×3 4 5 6) + j⌿0.0001×¯50+?2 13⍴100
⍴x

13 4
⍴y

13
y ⌹ x

3J0.000011066 4J¯0.000018499 5J0.000005745 6J0.000050328
⍝ i.e. y⌹x recovered the coefficients 3 4 5 6

Chapter 1: Primitive Functions 79

Matrix Inverse: R←⌹Y

Ymust be a simple array of rank 2 or less. Ymust be non-singular. If Y is a scalar, it
is treated as a one-element matrix. If Y is a vector, it is treated as a single-column
matrix. Ymust have at least the same number of rows as columns.

R is the inverse of Y if Y is a square matrix, or the left inverse of Y if Y is not a square
matrix. That is, R+.×Y is an identity matrix.

The shape of R is ⌽⍴Y.

Examples
M

2 ¯3
4 10

+A←⌹M
0.3125 0.09375

¯0.125 0.0625

Within calculation accuracy, A+.×M is the identity matrix.

A+.×M
1 0
0 1

j←{⍺←0 ⋄ ⍺+0J1×⍵}
x←j⌿¯50+?2 5 5⍴100
x

¯37J¯41 25J015 ¯5J¯09 3J020 ¯29J041
¯46J026 17J¯24 17J¯46 43J023 ¯12J¯18

1J013 33J025 ¯47J049 ¯45J¯14 2J¯26
17J048 ¯50J022 ¯12J025 ¯44J015 ¯9J¯43
18J013 8J038 43J¯23 34J¯07 2J026

⍴x
5 5

id←{∘.=⍨⍳⍵} ⍝ identity matrix of order ⍵
⌈/,| (id 1↑⍴x) - x+.×⌹x

3.66384E¯16

80 Dyalog APL/W Language Reference

Maximum: R←X⌈Y

Ymay be any numeric array. Xmay be any numeric array. R is numeric. R is the
larger of the numbers X and Y.

Example
¯2.01 0.1 15.3 ⌈ ¯3.2 ¯1.1 22.7

¯2.01 0.1 22.7

Membership: R←X∊Y

Ymay be any array. Xmay be any array. R is Boolean. An element of R is 1 if the
corresponding element of X can be found in Y.

An element of X is considered identical to an element in Y if X≡Y returns 1 for those
elements.

⎕CT is an implicit argument of Membership.

Examples
'THIS NOUN' ∊ 'THAT WORD'

1 1 0 0 1 0 1 0 0

'CAT' 'DOG' 'MOUSE' ∊ 'CAT' 'FOX' 'DOG' 'LLAMA'
1 1 0

For performance information, see Programmer's Guide: "Search Functions and Hash
Tables".

Minimum: R←X⌊Y

Ymay be any numeric array. Xmay be any numeric array. R is numeric. R is the
smaller of X and Y.

Example
¯2.1 0.1 15.3 ⌊ ¯3.2 1 22

¯3.2 0.1 15.3

Minus: R←X-Y

See "Subtract:" on page 103.

Chapter 1: Primitive Functions 81

Mix: (⎕ML) R←↑[K]Y or R←⊃[K]Y

The symbol chosen to represent Mix depends on the current Migration Level.

If ⎕ML<2, Mix is represented by the symbol: ↑.

If ⎕ML≥2, Mix is represented by the symbol: ⊃.

Ymay be any array. All of the items of Ymust be scalars and/or arrays of the same
rank. It is not necessary that nonscalar items have the same shape.

K is an optional axis specification. If present it must be a scalar or unit vector. The
value of Kmust be a fractional number indicating the two axes of Y between which
new axes are to be inserted. If absent, new ones are added at the end.

R is an array composed from the items of a Y assembled into a higher order array with
one less level of nesting. If items of Y have different shapes, each is padded with the
corresponding prototype to a shape that represents the greatest length along each
axis of all items in Y. The shape of R is the shape of Y with the shape of a typical
(extended) item of Y inserted between the ⌊Kth and the ⌈Kth axes of Y.

Examples
↑(1)(1 2)(1 2 3)

1 0 0
1 2 0
1 2 3

↑[0.5](1) (1 2) (1 2 3)
1 1 1
0 2 2
0 0 3

A←('andy' 19)('geoff' 37)('pauline' 21)

↑A
andy 19
geoff 37
pauline 21

↑[0.5]A
andy geoff pauline

19 37 21

82 Dyalog APL/W Language Reference

Multiply: R←X×Y

Ymay be any numeric array. Xmay be any numeric array. R is the arithmetic prod-
uct of X and Y.

This function is also known as Times.

Example
3 2 1 0 × 2 4 9 6

6 8 9 0

2j3×.3j.5 1j2 3j4 .5
¯0.9J1.9 ¯4J7 ¯6J17 1J1.5

Nand: R←X⍲Y

Ymust be a Boolean array. Xmust be a Boolean array. R is Boolean. The value of R
is the truth value of the proposition "not both X and Y", and is determined as follows:

X Y R

0 0 1
0 1 1
1 0 1
1 1 0

Example
(0 1)(1 0) ⍲ (0 0)(1 1)

1 1 0 1

Natural Logarithm: R←⍟Y

Ymust be a positive numeric array. R is numeric. R is the natural (or Napierian) log-
arithm of Y whose base is the mathematical constant e=2.71828....

Example
⍟1 2

0 0.6931471806

⍟2 2⍴0j1 1j2 2j3 3j4
0.000000000J1.570796327 0.8047189562J1.107148718
1.282474679J0.9827937232 1.6094379120J0.927295218

Chapter 1: Primitive Functions 83

Negative: R←-Y

Ymay be any numeric array. R is numeric and is the negative value of Y. For complex
numbers both the real and imaginary parts are negated.

Example
-4 2 0 ¯3 ¯5

¯4 ¯2 0 3 5

-1j2 ¯2J3 4J¯5
¯1J¯2 2J¯3 ¯4J5

Nor: R←X⍱Y

Ymust be a Boolean array. Xmust be a Boolean array. R is Boolean. The value of R
is the truth value of the proposition "neither X nor Y", and is determined as follows:

X Y R

0 0 1
0 1 0
1 0 0
1 1 0

Example
0 0 1 1 ⍱ 0 1 0 1

1 0 0 0

Not: R←~Y

Ymust be a Boolean array. R is Boolean. The value of R is 0 if Y is 1, and R is 1 if Y
is 0.

Example
~0 1

1 0

84 Dyalog APL/W Language Reference

Not Equal: R←X≠Y

Ymay be any array. Xmay be any array. R is Boolean. R is 0 if X=Y. Otherwise R
is 1.

For Boolean X and Y, the value of R is the “exclusive or” result, determined as fol-
lows:

X Y R

0 0 0
0 1 1
1 0 1
1 1 0

⎕CT is an implicit argument of Not Equal.

Examples
1 2 3 ≠ 1.1 2 3

1 0 0

⎕CT←1E¯10

1≠1 1.00000000001 1.0000001
0 0 1

1 2 3 ≠'CAT'
1 1 1

Not Match: R←X≢Y

Y may be any array. Xmay be any array. R is a simple Boolean scalar. If X is iden-
tical to Y, then R is 0. Otherwise R is 1.

Non-empty arrays are identical if they have the same structure and the same values in
all corresponding locations. Empty arrays are identical if they have the same shape
and the same prototype (disclosed nested structure).

⎕CT is an implicit argument of Not Match.

Examples
⍬≢⍳0

0
''≢⍳0

1
⊢A←⊂(⍳3) 'ABC'

1 2 3 ABC

Chapter 1: Primitive Functions 85

86 Dyalog APL/W Language Reference

A≢(⍳3)'ABC'
1

A≢⊂(⍳3) 'ABC'
0

⍬≢0⍴A
1

(1↑0⍴A)≢⊂(0 0 0) ' '
1

Or, Greatest Common Divisor: R←X∨Y

Case 1: X and Y are Boolean
R is Boolean and is determined as follows:

X Y R

0 0 0
0 1 1
1 0 1
1 1 1

Example
0 0 1 1 ∨ 0 1 0 1

0 1 1 1

Case 2: X and Y are numeric (non-Boolean)
R is the Greatest Common Divisor of X and Y.

Examples
15 1 2 7 ∨ 35 1 4 0

5 1 2 7

rational←{↑⍵ 1÷⊂1∨⍵} ⍝ rational (⎕CT) approximation
⍝ to floating array.

rational 0.4321 0.1234 6.66, ÷1 2 3
4321 617 333 1 1 1

10000 5000 50 1 2 3

⎕CT is an implicit argument in case 2.

Chapter 1: Primitive Functions 87

Partition: (⎕ML≥3) R←X⊂[K]Y

Ymay be any non scalar array.

Xmust be a simple scalar or vector of non-negative integers.

The axis specification is optional. If present, it must be a simple integer scalar or one
element array representing an axis of Y. If absent, the last axis is implied.

R is an array of the elements of Y partitioned according to X.

A new partition is started in the result whenever the corresponding element in X is
greater than the previous one. Items in Y corresponding to 0s in X are not included in
the result.

Examples
⎕ML←3

]display 1 1 1 2 2 3 3 3⊂'NOWISTHE'
┌→─────────────────┐
│ ┌→──┐ ┌→─┐ ┌→──┐ │
│ │NOW│ │IS│ │THE│ │
│ └───┘ └──┘ └───┘ │
└∊─────────────────┘

]display 1 1 1 0 0 3 3 3⊂'NOWISTHE'
┌→────────────┐
│ ┌→──┐ ┌→──┐ │
│ │NOW│ │THE│ │
│ └───┘ └───┘ │
└∊────────────┘

TEXT←' NOW IS THE TIME '
]display (' '≠TEXT)⊂TEXT

┌→────────────────────────┐
│ ┌→──┐ ┌→─┐ ┌→──┐ ┌→───┐ │
│ │NOW│ │IS│ │THE│ │TIME│ │
│ └───┘ └──┘ └───┘ └────┘ │
└∊────────────────────────┘

]display CMAT←⎕FMT(' ',ROWS),COLS⍪NMAT
┌→─────────────────────────┐
↓ Jan Feb Mar │
│ Cakes 0 100 150 │
│ Biscuits 0 0 350 │
│ Buns 0 1000 500 │
└──────────────────────────┘

88 Dyalog APL/W Language Reference

]display (∨⌿' '≠CMAT)⊂CMAT ⍝ Split at blank cols.
┌→──────────────────────────────┐
↓ ┌→───────┐ ┌→──┐ ┌→───┐ ┌→──┐ │
│ │ │ │Jan│ │ Feb│ │Mar│ │
│ └────────┘ └───┘ └────┘ └───┘ │
│ ┌→───────┐ ┌→──┐ ┌→───┐ ┌→──┐ │
│ │Cakes │ │ 0│ │ 100│ │150│ │
│ └────────┘ └───┘ └────┘ └───┘ │
│ ┌→───────┐ ┌→──┐ ┌→───┐ ┌→──┐ │
│ │Biscuits│ │ 0│ │ 0│ │350│ │
│ └────────┘ └───┘ └────┘ └───┘ │
│ ┌→───────┐ ┌→──┐ ┌→───┐ ┌→──┐ │
│ │Buns │ │ 0│ │1000│ │500│ │
│ └────────┘ └───┘ └────┘ └───┘ │
└∊──────────────────────────────┘

]display N←4 4⍴⍳16
┌→──────────┐
↓ 1 2 3 4│
│ 5 6 7 8│
│ 9 10 11 12│
│13 14 15 16│
└~──────────┘

]display 1 1 0 1⊂N
┌→─────────────┐
↓ ┌→──┐ ┌→┐ │
│ │1 2│ │4│ │
│ └~──┘ └~┘ │
│ ┌→──┐ ┌→┐ │
│ │5 6│ │8│ │
│ └~──┘ └~┘ │
│ ┌→───┐ ┌→─┐ │
│ │9 10│ │12│ │
│ └~───┘ └~─┘ │
│ ┌→────┐ ┌→─┐ │
│ │13 14│ │16│ │
│ └~────┘ └~─┘ │
└∊─────────────┘

]display 1 1 0 1⊂[1]N
┌→────────────────────────┐
↓ ┌→──┐ ┌→──┐ ┌→──┐ ┌→──┐ │
│ │1 5│ │2 6│ │3 7│ │4 8│ │
│ └~──┘ └~──┘ └~──┘ └~──┘ │
│ ┌→─┐ ┌→─┐ ┌→─┐ ┌→─┐ │
│ │13│ │14│ │15│ │16│ │
│ └~─┘ └~─┘ └~─┘ └~─┘ │
└∊────────────────────────┘

Chapter 1: Primitive Functions 89

Partitioned Enclose: (⎕ML<3) R←X⊂[K]Y

Ymay be any array. Xmust be a simple Boolean scalar or vector.

The axis specification is optional. If present, it must be a simple integer scalar or
one-element vector. The value of Kmust be an axis of Y. If absent, the last axis of Y
is implied.

Xmust have the same length as the Kth axis of Y. However, if X is a scalar or one-ele-
ment vector, it will be extended to the length of the Kth axis of Y.

R is a vector of items selected from Y. The sub-arrays identified along the Kth axis of
Y at positions corresponding to each 1 in X up to the position before the next 1 in X
(or the last element of X) become the successive items of Y. The length of R is +/X
(after possible extension).

Examples
0 1 0 0 1 1 0 0 0 ⊂⍳9

2 3 4 5 6 7 8 9

1 0 1 ⊂[1] 3 4⍴⍳12
1 2 3 4 9 10 11 12
5 6 7 8

1 0 0 1 ⊂[2]3 4⍴⍳12
1 2 3 4
5 6 7 8
9 10 11 12

90 Dyalog APL/W Language Reference

Pi Times: R←○Y

Ymay be any numeric array. R is numeric. The value of R is the product of the math-
ematical constant π=3.14159... (Pi), and Y.

Example
○0.5 1 2

1.570796327 3.141592654 6.283185307

○0J1
0J3.141592654

*○0J1 ⍝ Euler
¯1

Pick: R←X⊃Y

Ymay be any array.

X is a scalar or vector of indices of Y, viz. ⍳⍴Y.

R is an item selected from the structure of Y according to X.

Elements of X select from successively deeper levels in the structure of Y. The items
of X are simple integer scalars or vectors which identify a set of indices, one per axis
at the particular level of nesting of Y in row-major order. Simple scalar items in Y
may be picked by empty vector items in X to any arbitrary depth.

⎕IO is an implicit argument of Pick.

Examples
G←('ABC' 1)('DEF' 2)('GHI' 3)('JKL' 4)

G←2 3⍴G,('MNO' 5)('PQR' 6)

G
ABC 1 DEF 2 GHI 3
JKL 4 MNO 5 PQR 6

((⊂2 1),1)⊃G
JKL

(⊂2 1)⊃G
JKL 4

Chapter 1: Primitive Functions 91

((2 1)1 2)⊃G
K

(5⍴⊂⍳0)⊃10
10

Plus: R←X+Y

See "Add: " on page 10.

Power: R←X*Y

Ymust be a numeric array. Xmust be a numeric array. R is numeric. The value of R
is X raised to the power of Y.

If Y is zero, R is defined to be 1.

If X is zero, Ymust be non-negative.

If X is negative, and Y can be approximated as a rational number of the form P÷Q
where P and Q are relatively prime integers, then:

l if Q is even, X*Y gives a DOMAIN ERROR
l if Q is odd and P is even, then X*Y ←→ (|X)*Y
l if Q and P are both odd, then X*Y ←→ -(|X)*Y

If X is negative, and Y cannot be approximated as a rational number, then:

X*Y ←→ -(|X)*Y.

Examples
2*2 ¯2

4 0.25

9 64*0.5
3 8

¯27*3 2 1.2 .5
¯19683 729 ¯42.22738244J¯30.67998919 0J5.196152423

*2 2⍴0j1 1j2 2j3 ¯4j¯5
0.5403023059J0.8414709848 ¯1.131204384000J2.471726672

¯7.3151100950J1.042743656 0.005195454155J0.01756331074

*○0J1 ⍝ Euler
¯1

92 Dyalog APL/W Language Reference

Ravel: R←,Y

Ymay be any array. R is a vector of the elements of Y taken in row-major order.

Examples
M

1 2 3
4 5 6

,M
1 2 3 4 5 6

A
ABC
DEF
GHI
JKL

,A
ABCDEFGHIJKL

⍴,10
1

Ravel with Axes: R←,[K]Y

Ymay be any array.

K is either:

l A simple fractional scalar adjacent to an axis of Y, or
l A simple integer scalar or vector of axes of Y, or
l An empty vector.

Ravel with axis can be used with selective specification.

R depends on the case of K above.

If K is a fraction, the result R is an array of the same shape as Y, but with a new axis of
length 1 inserted at the K'th position.

⍴⍴R ←→ 1+⍴⍴Y
⍴R ←→ (1,⍴Y)[⍋K,⍳⍴⍴Y]

Chapter 1: Primitive Functions 93

Examples
,[0.5]'ABC'

ABC
⍴,[0.5]'ABC'

1 3
,[1.5]'ABC'

A
B
C

⍴,[1.5]'ABC'
3 1

MAT←3 4⍴⍳12
⍴,[0.5]MAT

1 3 4
⍴,[1.5]MAT

3 1 4
⍴,[2.5]MAT

3 4 1

If K is an integer scalar or vector of axes of Y, then:

l K must contain contiguous axes of Y in ascending order.
l R contains the elements of Y raveled along the indicated axes.

Note that if K is a scalar or single element vector, R ←→ Y.

⍴⍴R ←→ 1+(⍴⍴Y)-⍴,K

Examples
M

 1 2 3 4
 5 6 7 8
 9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

⍴M
2 3 4

94 Dyalog APL/W Language Reference

,[1 2]M
 1 2 3 4
 5 6 7 8
 9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24

⍴,[1 2]M
6 4

,[2 3]M
 1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24

⍴,[2 3]M
2 12

If K is an empty vector a new last axis of length 1 is created.

⍴R ←→ (⍴Y),1

Examples
Q1←'January' 'February' 'March'
]display Q1

┌→─────────────────────────────┐
│ ┌→──────┐ ┌→───────┐ ┌→────┐ │
│ │January│ │February│ │March│ │
│ └───────┘ └────────┘ └─────┘ │
└∊─────────────────────────────┘

]display ,[⍳0]Q1
┌→───────────┐
↓ ┌→──────┐ │
│ │January│ │
│ └───────┘ │
│ ┌→───────┐ │
│ │February│ │
│ └────────┘ │
│ ┌→────┐ │
│ │March│ │
│ └─────┘ │
└∊───────────┘

Chapter 1: Primitive Functions 95

Reciprocal: R←÷Y

Ymust be a numeric array. R is numeric. R is the reciprocal of Y; that is 1÷Y. If
⎕DIV=0, ÷0 results in a DOMAIN ERROR. If ⎕DIV=1, ÷0 returns 0.

⎕DIV is an implicit argument of Reciprocal.

Examples
÷4 2 5

0.25 0.5 0.2

÷0j1 0j¯1 2j2 4j4
0J¯1 0J1 0.25J¯0.25 0.125J¯0.125

⎕DIV←1
÷0 0.5

0 2

Replicate: R←X/[K]Y

Ymay be any array. X is a simple integer vector or scalar.

The axis specification is optional. If present, Kmust be a simple integer scalar or unit
vector. The value of Kmust be an axis of Y. If absent, the last axis of Y is implied.
The form R←X⌿Y implies the first axis of Y.

If Y has length 1 along the Kth (or implied) axis, it is extended along that axis to
match the length of X. Otherwise, the length of Xmust be the length of the Kth (or
implied) axis of Y. However, if X is a scalar or one-element vector, it will be extended
to the length of the Kth axis.

R is composed from sub-arrays along the Kth axis of Y. If X[I] (an element of X) is
positive, then the corresponding sub-array is replicated X[I] times. If X[I] is zero,
then the corresponding sub-array of Y is excluded. If X[I] is negative, then the fill
element of Y (⊂∊⊃Y) is replicated |X[I] times. Each of the (replicated) sub-arrays
and fill items are joined along the Kth axis in the order of occurrence. The shape of R
is the shape of Y except that the length of the (implied) Kth axis is +/|X (after pos-
sible extension).

This function is sometimes called Compress when X is Boolean.

96 Dyalog APL/W Language Reference

Examples
1 0 1 0 1/⍳5

1 3 5

1 ¯2 3 ¯4 5/⍳5
1 0 0 3 3 3 0 0 0 0 5 5 5 5 5

M
1 2 3
4 5 6

2 0 1/M
1 1 3
4 4 6

0 1⌿M
4 5 6

0 1/[1]M
4 5 6

If Y is a singleton (1=×/⍴,Y) its value is notionally extended to the length of X
along the specified axis.

1 0 1/4
4 4

1 0 1/,3
3 3

1 0 1/1 1⍴5
5 5

Chapter 1: Primitive Functions 97

Reshape: R←X⍴Y

Ymay be any array. Xmust be a simple scalar or vector of non-negative integers. R
is an array of shape X whose elements are taken from Y in row-major sequence and
repeated cyclically if required. If Y is empty, R is composed of fill elements of Y
(⊂∊⊃Y). If X contains at least one zero, then R is empty. If X is an empty vector,
then R is scalar.

Examples
2 3⍴⍳8

1 2 3
4 5 6

2 3⍴⍳4
1 2 3
4 1 2

2 3⍴⍳0
0 0 0
0 0 0

Residue: R←X|Y

Ymay be any numeric array. Xmay be any numeric array.

For positive arguments, R is the remainder when Y is divided by X. If X=0, R is Y. For
other argument values, R is Y-N×X where N is some integer such that R lies between
0 and X, but is not equal to X.

⎕CT is an implicit argument of Residue.

Examples
3 3 ¯3 ¯3|¯5 5 ¯4 4

1 2 ¯1 ¯2

0.5|3.12 ¯1 ¯0.6
0.12 0 0.4

¯1 0 1|¯5.25 0 2.41
¯0.25 0 0.41

1j2|2j3 3j4 5j6
1J1 ¯1J1 0J1

Note that the ASCII Broken Bar (⎕ucs 166, U+00A6) is not interpreted as Residue.

98 Dyalog APL/W Language Reference

Reverse: R←⌽[K]Y

Ymay be any array. The axis specification is optional. If present, Kmust be an
integer scalar or one-element vector. The value of Kmust be an axis of Y. If absent,
the last axis is implied. The form R←⊖Y implies the first axis.

R is the array Y rotated about the Kth or implied axis.

Examples
⌽1 2 3 4 5

5 4 3 2 1

M
1 2 3
4 5 6

⌽M
3 2 1
6 5 4

⊖M
4 5 6
1 2 3

⌽[1]M
4 5 6
1 2 3

Reverse First: R←⊖[K]Y

The form R←⊖Y implies reversal along the first axis. See "Reverse:" above.

Right: R←X⊢Y

X and Ymay be any arrays. The result R is the right argument Y.

Example
42 ⊢'abc' 1 2 3

 abc 1 2 3

Note that when ⊢ is applied using reduction, the derived function selects the last
sub-array of the array along the specified dimension. This is implemented as an
idiom.

Chapter 1: Primitive Functions 99

Examples
⊢/1 2 3

3
mat←↑'scent' 'canoe' 'arson' 'rouse' 'fleet'
⊢⌿mat ⍝ last row

fleet
⊢/mat ⍝ last column

tenet

⊢/[2]2 3 4⍴⍳24 ⍝ last row from each plane
9 10 11 12

21 22 23 24

Roll: R←?Y

Ymay be any positive integer array. R has the same shape as Y at each depth.

For each element of Y, y, the corresponding element of R is an integer, pseudo-ran-
domly selected from the integers ⍳y with each integer in this population having an
equal chance of being selected.

⎕IO and ⎕RL are implicit arguments of Roll. A side effect of Roll is to change the
value of ⎕RL. See "RandomNumber Generator:" on page 156 and "Random Link: "
on page 365.

Examples
?9 9 9

2 7 5

Rotate: R←X⌽[K]Y

Ymay be any array. Xmust be a simple integer array. The axis specification is
optional. If present, Kmust be a simple integer scalar or one-element vector.

The value of Kmust be an axis of Y. If absent, the last axis of Y is implied. The form
R←X⊖Y implies the first axis.

If Y is a scalar, it is treated as a one-element vector. Xmust have the same shape as
the rank of Y excluding the Kth dimension. If X is a scalar or one-element vector, it
will be extended to conform. If Y is a vector, then Xmay be a scalar or a one-element
vector.

R is an array with the same shape as Y, with the elements of each of the vectors along
the Kth axis of Y rotated by the value of the corresponding element of X. If the value

100 Dyalog APL/W Language Reference

is positive, the rotation is in the sense of right to left. If the value is negative, the rota-
tion is in the sense of left to right.

Chapter 1: Primitive Functions 101

Examples
3 ⌽ 1 2 3 4 5 6 7

4 5 6 7 1 2 3
¯2 ⌽ 1 2 3 4 5

4 5 1 2 3

M
1 2 3 4
5 6 7 8

9 10 11 12
13 14 15 16

I
0 1 ¯1 0
0 3 2 1

I⌽[2]M
1 6 7 4
5 2 3 8

9 14 11 16
13 10 15 12

J
2 ¯3
3 ¯2

J⌽M
3 4 1 2
6 7 8 5

12 9 10 11
15 16 13 14

Rotate First: R←X⊖[K]Y

The form R←X⊖Y implies rotation along the first axis. See "Rotate:" above.

102 Dyalog APL/W Language Reference

Same: R←⊣Y

Ymay be any array.

The result R is the argument Y.

Examples
⊣'abc' 1 2 3

abc 1 2 3

Shape: R←⍴Y

Ymay be any array. R is a non-negative integer vector whose elements are the dimen-
sions of Y. If Y is a scalar, then R is an empty vector. The rank of Y is given by ⍴⍴Y.

Examples
⍴10

⍴'CAT'
3

⍴3 4⍴⍳12
3 4

+G←(2 3⍴⍳6)('CAT' 'MOUSE' 'FLEA')
1 2 3 CAT MOUSE FLEA
4 5 6

⍴G
2

⍴⍴G
1

⍴¨G
2 3 3

⍴¨¨G
3 5 4

Chapter 1: Primitive Functions 103

Signum: R←×Y

Y may be any numeric array. R is an integer array whose value indicates whether the
value of Y is negative (¯1), zero (0) or positive (1).

Example
×¯15.3 0 101

¯1 0 1

Split: R←↓[K]Y

Ymay be any array. The axis specification is optional. If present, Kmust be a simple
integer scalar or one-element vector. The value of Kmust be an axis of Y. If absent,
the last axis is implied.

The items of R are the sub-arrays of Y along the Kth axis. R is a scalar if Y is a scalar.
Otherwise R is an array whose rank is ¯1+⍴⍴Y and whose shape is (K≠⍳⍴⍴Y)/⍴Y.

Examples
↓3 4⍴'MINDTHATSTEP'

MIND THAT STEP

↓2 5⍴⍳10
1 2 3 4 5 6 7 8 9 10

↓[1]2 5⍴⍳10
1 6 2 7 3 8 4 9 5 10

Subtract: R←X-Y

Ymay be any numeric array. Xmay be any numeric array. R is numeric. The value of
R is the difference between X and Y.

This function is also known as Minus.

Example
3 ¯2 4 0 - 2 1 ¯2 4

1 ¯3 6 ¯4

2j3-.3j5 ⍝ (a+bi)-(c+di) = (a-c)+(b-d)i
1.7J¯2

104 Dyalog APL/W Language Reference

Table: R←⍪Y

Ymay be any array. R is a 2-dimensional matrix of the elements of Y taken in row-
major order, preserving the shape of the first dimension of Y if it exists

Table has been implemented according to the Extended APL Standard (ISO/IEC
13751:2001).

Examples
]display {⍵ (⍴⍵)} ⍪'a'

┌→──────────┐
│ ┌→┐ ┌→──┐ │
│ ↓a│ │1 1│ │
│ └─┘ └~──┘ │
└∊──────────┘

]display {⍵ (⍴⍵)} ⍪'hello'
┌→──────────┐
│ ┌→┐ ┌→──┐ │
│ ↓h│ │5 1│ │
│ │e│ └~──┘ │
│ │l│ │
│ │l│ │
│ │o│ │
│ └─┘ │
└∊──────────┘

]display {⍵ (⍴⍵)} ⍪2 3 4⍴⍳24
┌→───┐
│ ┌→──────────────────────────────────┐ ┌→───┐ │
│ ↓ 1 2 3 4 5 6 7 8 9 10 11 12│ │2 12│ │
│ │13 14 15 16 17 18 19 20 21 22 23 24│ └~───┘ │
│ └~──────────────────────────────────┘ │
└∊───┘

Chapter 1: Primitive Functions 105

Take: R←X↑Y

Ymay be any array. Xmust be a simple integer scalar or vector.

If Y is a scalar, it is treated as a one-element array of shape (⍴,X)⍴1. The length of
Xmust be the same as or less than the rank of Y. If the length of X is less than the rank
of Y, the missing elements of X default to the length of the corresponding axis of Y.

R is an array of the same rank as Y (after possible extension), and of shape |X. If
X[I] (an element of X) is positive, then X[I] sub-arrays are taken from the begin-
ning of the Ith axis of Y. If X[I] is negative, then X[I] sub-arrays are taken from
the end of the Ith axis of Y.

If more elements are taken than exist on axis I, the extra positions in R are filled with
the fill element of Y (⊂∊⊃Y).

Examples
5↑'ABCDEF'

ABCDE

5↑1 2 3
1 2 3 0 0

¯5↑1 2 3
0 0 1 2 3

5↑(⍳3) (⍳4) (⍳5)
1 2 3 1 2 3 4 1 2 3 4 5 0 0 0 0 0 0

M
1 2 3 4
5 6 7 8

2 3↑M
1 2 3
5 6 7

¯1 ¯2↑M
7 8

M3←2 3 4⍴⎕A
1↑M3

ABCD
EFGH
IJKL

¯1↑M3
MNOP
QRST
UVWX

106 Dyalog APL/W Language Reference

Take with Axes: R←X↑[K]Y

Ymay be any non scalar array. Xmust be a simple integer scalar or vector. K is a vec-
tor of zero or more axes of Y.

R is an array of the first or last elements of Y taken along the axes K depending on
whether the corresponding element of X is positive or negative respectively.

The rank of R is the same as the rank of Y:

⍴⍴R ←→ ⍴⍴Y

The size of each axis of R is determined by the corresponding element of X:

(⍴R)[,K] ←→ |,X

Examples
⎕←M←2 3 4⍴⍳24

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

2↑[2]M
1 2 3 4
5 6 7 8

13 14 15 16
17 18 19 20

2↑[3]M
1 2
5 6
9 10

13 14
17 18
21 22

2 ¯2↑[3 2]M
5 6
9 10

17 18
21 22

Chapter 1: Primitive Functions 107

Times: R←X×Y

See "Multiply:" on page 82.

Transpose (Monadic): R←⍉Y

Ymay be any array. R is an array of shape ⌽⍴Y, similar to Y with the order of the
axes reversed.

Examples
M

1 2 3
4 5 6

⍉M
1 4
2 5
3 6

Transpose (Dyadic): R←X⍉Y

Ymay be any array. Xmust be a simple scalar or vector whose elements are included
in the set ⍳⍴⍴Y. Integer values in Xmay be repeated but all integers in the set ⍳⌈/X
must be included. The length of Xmust equal the rank of Y.

R is an array formed by the transposition of the axes of Y as specified by X. The Ith
element of X gives the new position for the Ith axis of Y. If X repositions two or
more axes of Y to the same axis, the elements used to fill this axis are those whose
indices on the relevant axes of Y are equal.

⎕IO is an implicit argument of Dyadic Transpose.

Examples
A

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

108 Dyalog APL/W Language Reference

2 1 3⍉A
1 2 3 4

13 14 15 16

5 6 7 8
17 18 19 20

9 10 11 12
21 22 23 24

1 1 1⍉A
1 18

1 1 2⍉A
1 2 3 4

17 18 19 20

Type: (⎕ML<1) R←∊Y

Migration level must be such that ⎕ML<1 (otherwise ∊means Enlist. See "Enlist:" on
page 40).

Ymay be any array. R is an array with the same shape and structure as Y in which a
numeric value is replaced by 0 and a character value is replaced by ' '.

Examples
∊(2 3⍴⍳6)(1 4⍴'TEXT')

0 0 0
0 0 0

' '=∊'X'
1

Chapter 1: Primitive Functions 109

Union: R←X∪Y

Ymust be a vector. Xmust be a vector. If either argument is a scalar, it is treated as a
one-element vector. R is a vector of the elements of X catenated with the elements of
Y which are not found in X.

Items in X and Y are considered the same if X≡Y returns 1 for those items.

⎕CT is an implicit argument of Union.

Examples
'WASH' ∪ 'SHOUT'

WASHOUT

'ONE' 'TWO' ∪ 'TWO' 'THREE'
ONE TWO THREE

For performance information, see Programmer's Guide: "Search Functions and Hash
Tables".

Unique: R←∪Y

Ymust be a vector. R is a vector of the elements of Y omitting non-unique elements
after the first.

⎕CT is an implicit argument of Unique.

Examples
∪ 'CAT' 'DOG' 'CAT' 'MOUSE' 'DOG' 'FOX'

CAT DOG MOUSE FOX

∪ 22 10 22 22 21 10 5 10
22 10 21 5

Without: R←X~Y

See "Excluding:" on page 42.

Zilde: R←⍬

The empty vector (⍳0) may be represented by the numeric constant ⍬ called ZILDE.

110 Dyalog APL/W Language Reference

111

Chapter 2:

Primitive Operators

Operator Syntax
Operators take one or two operands. An operator with one operand is monadic. The
operand of a monadic operator is to the left of the operator. An operator with two
operands is dyadic. Both operands are required for a dyadic operator.

Operators have long scope to the left. That is, the left operand is the longest function
or array expression to its left (see Programmer's Guide: "Operators"). A dyadic oper-
ator has short scope on the right. Right scope may be extended by the use of paren-
theses.

An operand may be an array, a primitive function, a system function, a defined func-
tion or a derived function. An array may be the result of an array expression.

An operator with its operand(s) forms a DERIVED FUNCTION. The derived func-
tion may be monadic or dyadic and it may or may not return an explicit result.

Examples
+/⍳5

15
(*∘2)⍳3

1 4 9

PLUS ← + ⋄ TIMES ← ×
1 PLUS.TIMES 2

2

⎕NL 2
A
X

⎕EX¨↓⎕NL 2
⎕NL 2

112 Dyalog APL/W Language Reference

Axis Specification
Some operators may include an axis specification. Axis is itself an operator. How-
ever the effect of axis is described for each operator where its specification is per-
mitted. ⎕IO is an implicit argument of the function derived from the Axis operator.

The description for each operator follows in alphabetical sequence. The valence of
the derived function is specifically identified to the right of the heading block.

Table 8: Primitive Operators

Class of
Operator Name Producing Monadic

derived function
Producing Dyadic
derived function

Monadic

Assignment

Assignment

Assignment

Commute

Each

I-Beam

Reduction

Scan

Spawn

f¨Y

A⌶Y

f/Y []

f⌿Y []

f\Y []

f⍀Y []

f&Y

Xf←Y

X[I]f←Y

(EXP X)f←Y

Xf⍨Y

Xf¨Y

Xf&Y

Dyadic

Axis

Composition

Inner Product

Outer Product

Power

Variant

f[B]Y

f∘gY

A∘gY

(f∘B)Y

f⍣gY

f⍠gY

Xf[B]Y

Xf∘gY

Xf.gY

X∘.gY

Xf⍣gY

Xf⍠gY

[]Indicates optional axis specification

Chapter 2: Primitive Operators 113

Operators (A-Z)
Monadic and Dyadic primitive operators are presented in alphabetical order of their
descriptive names as shown in Table 8 above.

The valence of the operator and the derived function are implied by the syntax in the
heading block.

Assignment (Modified): {R}←Xf←Y

fmay be any dyadic function which returns an explicit result. Ymay be any array
whose items are appropriate to function f. Xmust be the name of an existing array
whose items are appropriate to function f.

R is the “pass-through” value, that is, the value of Y. If the result of the derived func-
tion is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the value of the array named by X to the
result of XfY.

Examples
A

1 2 3 4 5

A+←10

A
11 12 13 14 15

⎕←A×←2
2

A
22 24 26 28 30

vec←¯4+9?9 ⋄ vec
3 5 1 ¯1 ¯2 4 0 ¯3 2

vec/⍨←vec>0 ⋄vec
3 5 1 4 2

114 Dyalog APL/W Language Reference

Assignment (Indexed Modified): {R}←X[I]f←Y

fmay be any dyadic function which returns an explicit result. Ymay be any array
whose items are appropriate to function f. Xmust be the name of an existing array.
Imust be a valid index specification. The items of the indexed portion of Xmust be
appropriate to function f.

R is the “pass-through” value, that is, the value of Y. If the result of the derived func-
tion is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the indexed elements of X, that is X[I],
to the result of X[I]fY. This result must have the same shape as X[I].

Examples
A

1 2 3 4 5

+A[2 4]+←1
1

A
1 3 3 5 5

A[3]÷←2

A
1 3 1.5 5 5

If an index is repeated, function f will be applied to the successive values of the
indexed elements of X, taking the index occurrences in left-to-right order.

Example
B←5⍴0

B[2 4 1 2 1 4 2 4 1 3]+←1

B
3 3 1 3 0

Chapter 2: Primitive Operators 115

Assignment (Selective Modified): {R}←(EXP X)f←Y

fmay be any dyadic function which returns an explicit result. Ymay be any array
whose items are appropriate to function f. Xmust be the name of an existing array.
EXP is an expression that selects elements of X. (See "Assignment (Selective):" on
page 19 for a list of allowed selection functions.) The selected elements of Xmust be
appropriate to function f.

R is the “pass-through” value, that is, the value of Y. If the result of the derived func-
tion is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the selected elements of X to the result of
X[I]fY where X[I] defines the elements of X selected by EXP.

Example
A

12 36 23 78 30

((A>30)/A) ×← 100
A

12 3600 23 7800 30

Axis (with Monadic Operand): R←f[B]Y

fmust be a monadic primitive mixed function taken from those shown in Table 9
below, or a function derived from the operators Reduction (/) or Scan (\). Bmust be
a numeric scalar or vector. Ymay be any array whose items are appropriate to func-
tion f. Axis does not follow the normal syntax of an operator.

Table 9: Primitive monadic mixed functions with optional axis.

Function Name Range of B

⌽ or ⊖ Reverse B∊⍳⍴⍴Y

↑ Mix (0≠1|B)^(B>⎕IO-1)^(B<⎕IO+⍴⍴Y)

↓ Split B∊⍳⍴⍴Y

, Ravel fraction, or zero or more axes of Y

⊂ Enclose (B≡⍳0)∨(^/B∊⍳⍴⍴Y)

116 Dyalog APL/W Language Reference

In most cases, B is required to be an integer which identifies a specific axis of Y. An
exception occurs when f is the Mix function (↑) in which case B is a fractional value
whose lower and upper integer bounds select an adjacent pair of axes of Y or an
extreme axis of Y. For Ravel (,) and Enclose (⊂) , B can be a vector of two or more
axes.

⎕IO is an implicit argument of the derived function which determines the meaning
of B.

Examples
⌽[1]2 3⍴⍳6

4 5 6
1 2 3

↑[.1]'ONE' 'TWO'
OT
NW
EO

Axis (with Dyadic Operand): R←Xf[B]Y

fmust be a dyadic primitive scalar function, or a dyadic primitive mixed function
taken from Table 10 below. Bmust be a numeric scalar or vector. X and Ymay be any
arrays whose items are appropriate to function f. Axis does not follow the normal
syntax of an operator.

Table 10: Primitive dyadic mixed functions with optional axis.

Function Name Range of B

/ or ⌿ Replicate B∊⍳⍴⍴Y

\ or ⍀ Expand B∊⍳⍴⍴Y

⊂
Partitioned
Enclose B∊⍳⍴⍴Y

⌽ or ⊖ Rotate B∊⍳⍴⍴Y

, or ⍪
Catenate/
Laminate

(0≠1|B)^(B>⎕IO-
1)^(B<⎕IO+(⍴⍴X)⌈⍴⍴Y)

↑ Take zero or more axes of Y

↓ Drop zero or more axes of Y

In most cases, Bmust be an integer value identifying the axis of X and Y along which
function f is to be applied.

Chapter 2: Primitive Operators 117

Exceptionally, Bmust be a fractional value for the Laminate function (,) whose
upper and lower integer bounds identify a pair of axes or an extreme axis of X and Y.
For Take (↑) and Drop (↓) , B can be a vector of two or more axes.

⎕IO is an implicit argument of the derived function which determines the meaning
of B.

Examples
1 4 5 =[1] 3 2⍴⍳6

1 0
0 1
1 0

2 ¯2 1/[2]2 3⍴'ABCDEF'
AA C
DD F

'ABC',[1.1]'='
A=
B=
C=

'ABC',[0.1]'='
ABC
===

⎕IO←O

'ABC',[¯0.5]'='
ABC
===

Axis with Scalar Dyadic Functions
The axis operator [X] can take a scalar dyadic function as operand. This has the
effect of ‘stretching’ a lower rank array to fit a higher rank one. The arguments must
be conformable along the specified axis (or axes) with elements of the lower rank
array being replicated along the other axes.

For example, if H is the higher rank array, L the lower rank one, X is an axis spec-
ification, and f a scalar dyadic function, then the expressions Hf[X]L and Lf[X]H
are conformable if (⍴L)←→(⍴H)[X]. Each element of L is replicated along the
remaining (⍴H)~X axes of H.

In the special case where both arguments have the same rank, the right one will play
the role of the higher rank array. If R is the right argument, L the left argument, X is an
axis specification and f a scalar dyadic function, then the expression Lf[X]R is con-
formable if (⍴L)←→(⍴R)[X].

118 Dyalog APL/W Language Reference

Examples
mat

10 20 30
40 50 60

mat+[1]1 2 ⍝ add along first axis
11 21 31
42 52 62

mat+[2]1 2 3 ⍝ add along last axis
11 22 33
41 52 63

cube
100 200 300
400 500 600

700 800 900
1000 1100 1200

cube+[1]1 2
101 201 301
401 501 601

702 802 902
1002 1102 1202

cube+[3]1 2 3
101 202 303
401 502 603

701 802 903
1001 1102 1203

cube+[2 3]mat
110 220 330
440 550 660

710 820 930
1040 1150 1260

cube+[1 3]mat
110 220 330
410 520 630

740 850 960
1040 1150 1260

Chapter 2: Primitive Operators 119

Commute: {R}←{X}f⍨Y

fmay be any dyadic function. X and Ymay be any arrays whose items are appro-
priate to function f.

The derived function is equivalent to YfX. The derived function need not return a
result.

If left argument X is omitted, the right argument Y is duplicated in its place, i.e.

f⍨Y ←→ Y f⍨Y

Examples
N

3 2 5 4 6 1 3

N/⍨2|N
3 5 1 3

⍴⍨3
3 3 3

mean←+/∘(÷∘⍴⍨) ⍝ mean of a vector
mean ⍳10

5.5

The following statements are equivalent:

F/⍨←I
F←F/⍨I
F←I/F

Commute often eliminates the need for parentheses

120 Dyalog APL/W Language Reference

Composition (Form I): {R}←f∘gY

fmay be any monadic function. gmay be any monadic function which returns a
result. Ymay be any array whose items are appropriate to function g. The items of
gYmust be appropriate to function f.

The derived function is equivalent to fgY. The derived function need not return a
result.

Composition allows functions to be glued together to build up more complex func-
tions.

Examples
RANK ← ⍴∘⍴
RANK ¨ 'JOANNE' (2 3⍴⍳6)

1 2

+/∘⍳¨2 4 6
3 10 21

⎕VR'SUM'
∇ R←SUM X

[1] R←+/X
∇

SUM∘⍳¨2 4 6
3 10 21

Chapter 2: Primitive Operators 121

Composition (Form II): {R}←A∘gY

gmay be any dyadic function. Amay be any array whose items are appropriate to
function g. Ymay be any array whose items are appropriate to function g.

The derived function is equivalent to AgY. The derived function need not return a
result.

Examples
2 2∘⍴ ¨ 'AB'

AA BB
AA BB

SINE ← 1∘○

SINE 10 20 30
¯0.5440211109 0.9129452507 ¯0.9880316241

The following example uses Composition Forms I and II to list functions in the work-
space:

⎕NL 3
ADD
PLUS

⎕∘←∘⎕VR¨↓⎕NL 3
∇ ADD X

[1] →LAB⍴⍨0≠⎕NC'SUM' ⋄ SUM←0
[2] LAB:SUM←SUM++/X

∇
∇ R←A PLUS B

[1] R←A+B
∇

122 Dyalog APL/W Language Reference

Composition (Form III): {R}←(f∘B)Y

fmay be any dyadic function. Bmay be any array whose items are appropriate to
function f. Ymay be any array whose items are appropriate to function f.

The derived function is equivalent to YfB. The derived function need not return a
result.

Examples
(*∘0.5)4 16 25

2 4 5

SQRT ← *∘.5

SQRT 4 16 25
2 4 5

The parentheses are required in order to distinguish between the operand B and the
argument Y.

Composition (Form IV): {R}←Xf∘gY

fmay be any dyadic function. gmay be any monadic function which returns a
result. Ymay be any array whose items are appropriate to function g. Also gYmust
return a result whose items are appropriate as the right argument of function f. X
may be any array whose items are appropriate to function f.

The derived function is equivalent to XfgY. The derived function need not return a
result.

Examples
+∘÷/40⍴1 ⍝ Golden Ratio! (Bob Smith)

1.618033989

0,∘⍳¨⍳5
0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5

Chapter 2: Primitive Operators 123

Each (with Monadic Operand): {R}←f¨Y

fmay be any monadic function. Ymay be any array, each of whose items are sep-
arately appropriate to function f.

The derived function applies function f separately to each item of Y. The derived
function need not return a result. If a result is returned, R has the same shape as Y,
and its elements are the items produced by the application of function f to the cor-
responding items of Y.

If Y is empty, the prototype of R is determined by applying the operand function
once to the prototype of Y.

Examples
G←('TOM' (⍳3))('DICK' (⍳4))('HARRY' (⍳5))
⍴G

3
⍴¨G

2 2 2

⍴¨¨G
3 3 4 4 5 5

+⎕FX¨('FOO1' 'A←1')('FOO2' 'A←2')
FOO1 FOO2

124 Dyalog APL/W Language Reference

Each (with Dyadic Operand): {R}←Xf¨Y

fmay be any dyadic function. X and Ymay be any arrays whose corresponding
items (after scalar extension) are appropriate to function f when applied separately.

The derived function is applied separately to each pair of corresponding elements of
X and Y. If X or Y is a scalar or single-element array, it will be extended to conform
with the other argument. The derived function need not produce an explicit result.
If a result is returned, R has the same shape as Y (after possible scalar extension)
whose elements are the items produced by the application of the derived function to
the corresponding items of X and Y.

If X or Y is empty, the operand function is applied once between the first items of X
and Y to determine the prototype of R.

Examples
+G←(1 (2 3))(4 (5 6))(8 9)10

1 2 3 4 5 6 8 9 10
1⌽¨G

2 3 1 5 6 4 9 8 10

1⌽¨¨G
1 3 2 4 6 5 8 9 10

1⌽¨¨¨G
1 2 3 4 5 6 8 9 10

1 2 3 4↑¨G
1 4 5 6 8 9 0 10 0 0 0

'ABC',¨'XYZ'
AX BY CZ

Chapter 2: Primitive Operators 125

Inner Product: R←Xf.gY

fmust be a dyadic function. gmay be any dyadic function which returns a result.
The last axis of Xmust have the same length as the first axis of Y.

The result of the derived function has shape (¯1↓⍴X),1↓⍴Y. Each item of R is the
result of f/xg¨y where x and y are typical vectors taken from all the combinations
of vectors along the last axis of X and the first axis of Y respectively.

Function f (and the derived function) need not return a result in the exceptional case
when 2=¯1↑⍴X. In all other cases, function fmust return a result.

If the result of xg¨y is empty, for any x and y, a DOMAIN ERROR will be reported
unless function f is a primitive scalar dyadic function with an identity element
shown in "Identity Elements" on page 129.

Examples
1 2 3+.×10 12 14

76

1 2 3 PLUS.TIMES 10 12 14
76

+/1 2 3×10 12 14
76

NAMES
HENRY
WILLIAM
JAMES
SEBASTIAN

NAMES^.='WILLIAM '
0 1 0 0

126 Dyalog APL/W Language Reference

Outer Product: {R}←X∘.gY

gmay be any dyadic function. The left operand of the operator is the symbol ∘. X
and Ymay be any arrays whose elements are appropriate to the function g.

Function g is applied to all combinations of the elements of X and Y. If function g
returns a result, the shape of R is (⍴X),⍴Y. Each element of R is the item returned
by function g when applied to the particular combination of elements of X and Y.

Examples
1 2 3∘.×10 20 30 40

10 20 30 40
20 40 60 80
30 60 90 120

1 2 3∘.⍴'AB'
A B
AA BB
AAA BBB

1 2∘.,1 2 3
1 1 1 2 1 3
2 1 2 2 2 3

(⍳3)∘.=⍳3
1 0 0
0 1 0
0 0 1

If X or Y is empty, the result R is a conformable empty array, and the operand function
is applied once between the first items of X and Y to determine the prototype of R.

Chapter 2: Primitive Operators 127

Power Operator: {R}←{X}(f⍣g)Y

If right operand g is a numeric integer scalar, power applies its left operand function
f cumulatively g times to its argument. In particular, gmay be Boolean 0 or 1 for
conditional function application.

If right operand g is a scalar-returning-returning dyadic function, then left operand
function f is applied repeatedly until ((f Y) g Y) or until a strong interrupt
occurs. In particular, if g is = or ≡, the result is sometimes termed a fixpoint of f.

If a left argument X is present, it is bound as left argument to left operand function f:

X (f ⍣ g) Y → (X∘f ⍣ g) Y

A negative right operand g applies the inverse of the operand function
f,(|g)times. In this case, fmay be a primitive function or an expression of prim-
itive functions combined with primitive operators:

∘ compose

¨ each

∘. outer product

⍨ commute

\ scan

[] axis

⍣ power

Defined, dynamic and some primitive functions do not have an inverse. In this case, a
negative argument g generates DOMAIN ERROR.

128 Dyalog APL/W Language Reference

Examples

(,∘⊂∘,⍣(1=≡,vec))vec ⍝ ravel-enclose if simple.

a b c←1 0 1{(⊂⍣⍺)⍵}¨abc ⍝ enclose first and last.

cap←{(⍺⍺⍣⍺)⍵} ⍝ conditional application.

a b c←1 0 1⊂cap¨abc ⍝ enclose first and last.

succ←1∘+ ⍝ successor function.

(succ⍣4)10 ⍝ fourth successor of 10.
14

(succ⍣¯3)10 ⍝ third predecessor of 10.
7

1+∘÷⍣=1 ⍝ fixpoint: golden mean.
1.618033989

f←(32∘+)∘(×∘1.8) ⍝ Fahrenheit from Celsius.
f 0 100

32 212

c←f⍣¯1 ⍝ c is Inverse of f.
c 32 212 ⍝ Celsius from Fahrenheit.

0 100

invs←{(⍺⍺⍣¯1)⍵} ⍝ inverse operator.

+\invs 1 3 6 10 ⍝ scan inverse.
1 2 3 4

2∘⊥invs 9 ⍝ decode inverse.
1 0 0 1

dual←{⍵⍵⍣¯1 ⍺⍺ ⍵⍵ ⍵} ⍝ dual operator.

mean←{(+/⍵)÷⍴⍵} ⍝ mean function.

mean dual⍟ 1 2 3 4 5 ⍝ geometric mean.
2.605171085

+/dual÷ 1 2 3 4 5 ⍝ parallel resistance.
0.4379562044

mean dual(×⍨)1 2 3 4 5 ⍝ root-mean-square.
3.31662479

⍉dual↑ 'hello' 'world' ⍝ vector transpose.
hw eo lr ll od

Chapter 2: Primitive Operators 129

Reduce: R←f/[K]Y

fmust be a dyadic function. Ymay be any array whose items in the sub-arrays along
the Kth axis are appropriate to function f.

The axis specification is optional. If present, Kmust identify an axis of Y. If absent,
the last axis of Y is implied. The form R←f⌿Y implies the first axis of Y.

R is an array formed by applying function f between items of the vectors along the
Kth (or implied) axis of Y.

Table 11: Identity Elements

Function Identity

Add + 0

Subtract - 0

Multiply × 1

Divide ÷ 1

Residue | 0

Minimum ⌊ M(1)

Maximum ⌈ -M(1)

Power * 1

Binomial ! 1

And ∧ 1

Or ∨ 0

Less < 0

Less or Equal ≤ 1

Equal = 1

Greater > 0

Greater or Equal ≥ 1

Not Equal ≠ 0

130 Dyalog APL/W Language Reference

Encode ⊤ 0

Union ∪ ⍬

Replicate /⌿ 1

Expand \⍀ 1

Rotate ⌽⊖ 0

Notes:

1. M represents the largest representable value: typically this is 1.7E308, unless FR
is 1287, when the value is 1E6145.

For a typical vector Y, the result is:

⊂(1⊃Y)f(2⊃Y)f......f(n⊃Y)

The shape of R is the shape of Y excluding the Kth axis. If Y is a scalar then R is a
scalar. If the length of the Kth axis is 1, then R is the same as Y. If the length of the
Kth axis is 0, then DOMAIN ERROR is reported unless function f occurs in Table 1,
in which case its identity element is returned in each element of the result.

Examples
∨/0 0 1 0 0 1 0

1

MAT
1 2 3
4 5 6

+/MAT
6 15

+⌿MAT
5 7 9

+/[1]MAT
5 7 9

+/(1 2 3)(4 5 6)(7 8 9)
12 15 18

,/'ONE' 'NESS'
ONENESS

+/⍳0
0

,/''
DOMAIN ERROR

Chapter 2: Primitive Operators 131

,/''
^

132 Dyalog APL/W Language Reference

Reduce First: R←f⌿Y

The form R←f⌿Y implies reduction along the first axis of Y. See "Reduce:" above.

Reduce N-Wise: R←Xf/[K]Y

fmust be a dyadic function. Xmust be a simple scalar or one-item integer array. Y
may be any array whose sub-arrays along the Kth axis are appropriate to function f.

The axis specification is optional. If present, Kmust identify an axis of Y. If absent,
the last axis of Y is implied. The form R←Xf⌿Y implies the first axis of Y.

R is an array formed by applying function f between items of sub-vectors of length X
taken from vectors along the Kth (or implied) axis of Y.

X can be thought of as the width of a ‘window’ which moves along vectors drawn
from the Kth axis of Y.

If X is zero, the result is a (⍴Y)+(⍴⍴Y)=⍳⍴⍴Y array of identity elements for the
function f. See "Identity Elements" on page 129.

If X is negative, each sub-vector is reversed before being reduced.

Examples
⍳4

1 2 3 4

3+/⍳4⍝ (1+2+3) (2+3+4)
6 9

2+/⍳4⍝ (1+2) (2+3) (3+4)
3 5 7

1+/⍳4⍝ (1) (2) (3) (4)
1 2 3 4

0+/⍳4⍝ Identity element for +
0 0 0 0 0

0×/⍳4⍝ Identity element for ×
1 1 1 1 1

2,/⍳4⍝ (1,2) (2,3) (3,4)
1 2 2 3 3 4

¯2,/⍳4⍝ (2,1) (3,2) (4,3)
2 1 3 2 4 3

Chapter 2: Primitive Operators 133

Scan: R←f\[K]Y

fmay be any dyadic function that returns a result. Ymay be any array whose items
in the sub-arrays along the Kth axis are appropriate to the function f.

The axis specification is optional. If present, Kmust identify an axis of Y. If absent,
the last axis of Y is implied. The form R←f⍀Y implies the first axis of Y.

R is an array formed by successive reductions along the Kth axis of Y. If V is a typical
vector taken from the Kth axis of Y, then the Ith element of the result is determined
as f/I↑V.

The shape of R is the same as the shape of Y. If Y is an empty array, then R is the
same empty array.

Examples
∨\0 0 1 0 0 1 0

0 0 1 1 1 1 1

^\1 1 1 0 1 1 1
1 1 1 0 0 0 0

+\1 2 3 4 5
1 3 6 10 15

+\(1 2 3)(4 5 6)(7 8 9)
1 2 3 5 7 9 12 15 18

134 Dyalog APL/W Language Reference

M
1 2 3
4 5 6

+\M
1 3 6
4 9 15

+⍀M
1 2 3
5 7 9

+\[1]M
1 2 3
5 7 9

,\'ABC'
A AB ABC

T←'ONE(TWO) BOOK(S)'

≠\T∊'()'
0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0

((T∊'()')⍱≠\T∊'()')/T
ONE BOOK

Scan First: R←f⍀Y

The form R←f⍀Y implies scan along the first axis of Y. See "Scan:" above.

Chapter 2: Primitive Operators 135

Spawn: {R}←{X}f&Y

& is a monadic operator with an ambivalent derived function. & spawns a new thread
in which f is applied to its argument Y (monadic case) or between its arguments X
and Y (dyadic case). The shy result of this application is the number of the newly
created thread.

When function f terminates, its result (if any), the thread result, is returned. If the
thread number is the subject of an active ⎕TSYNC, the thread result appears as the
result of ⎕TSYNC. If no ⎕TSYNC is in effect, the thread result is displayed in the ses-
sion in the normal fashion.

Note that & can be used in conjunction with the each operator ¨ to launch many
threads in parallel.

Examples
÷&4 ⍝ Reciprocal in background

0.25

⎕←÷&4 ⍝ Show thread number
1
0.25

FOO&88 ⍝ Spawn monadic function.

2 FOO&3 ⍝ dyadic

{NIL}&0 ⍝ niladic

⍎&'NIL' ⍝ ..

X.GOO&99 ⍝ thread in remote space.

⍎&'⎕dl 2' ⍝ Execute async expression.

'NS'⍎&'FOO' ⍝ .. remote

PRT&¨↓⎕nl 9 ⍝ PRT spaces in parallel.

136 Dyalog APL/W Language Reference

Variant: {R}←{X}(f ⍠ B)Y

The Variant operator ⍠ specifies the value of an option to be used by its left operand
function f. An option is a named property of a function whose value in some way
affects the operation of that function.

For example, the Search and Replace operators include options named IC and
Modewhich respectively determine whether or not case is ignored and in what
manner the input document is processed.

One of the set of options may be designated as the Principal option whose value
may be set using a short-cut form of syntax as described below. For example, the Prin-
cipal option for the Search and Replace operators is IC.

⍠ and ⎕OPT are synonymous though only the latter is available in the Classic Edi-
tion.

In Version 13.0 the Variant operator is used solely to specify options for the ⎕S and
⎕R operators but it is anticipated that its use will become more widespread in later
versions.

For the operand function with right argument Y and optional left argument X, the
right operand B specifies the values of one or more options that are applicable to that
function. Bmay be a scalar, a 2-element vector, or a vector of 2-element vectors
which specifies values for one or more options as follows:

l If B is a 2-element vector and the first element is a character vector, it spec-
ifies an option name in the first element and the option value (which may
be any suitable array) in the second element.

l If B is a vector of 2-element vectors, each item of B is interpreted as above.
l If B is a scalar (a rank-0 array of any depth), it specifies the value of the Prin-

cipal option,

Option names and their values must be appropriate for the left operand function,
otherwise an OPTION ERROR (error code 13) will be reported.

Chapter 2: Primitive Operators 137

The following illustrations and examples apply to functions derived from the Search
and Replace operators.

Examples of operand B

The following expression sets the IC option to 1, the Mode option to 'D' and the
EOL option to 'LF'.

⍠('Mode' 'D')('IC' 1)('EOL' 'LF')

The following expression sets just the EOL property to 'CR'.

⍠'EOL' 'CR'

The following expression sets just the Principal option
(which for the Search and Replace operators is IC) to 1.

⍠ 1

The order in which options are specified is typically irrelevant but if the same option
is specified more than once, the rightmost one dominates. The following expression
sets the option IC to 1:

⍠('IC' 0) ('IC' 1)

The Variant operator generates a derived function f⍠B and may be assigned to a
name. The derived function is effectively function f bound with the option values
specified by B.

The derived function may itself be used as a left operand to Variant to produce a sec-
ond derived function whose options are further modified by the second application
of the operator. The following sets the same options as the first example above:

⍠'Mode' 'D'⍠'IC' 1⍠'EOL' 'LF'

When the same option is specified more than once in this way, the outermost (right-
most) one dominates. The following expression also sets the option IC to 1:

⍠'IC' 0⍠'IC' 1

138 Dyalog APL/W Language Reference

Further Examples

The following derived function returns the location of the word 'variant' within
its right argument using default values for all the options.

f1 ← 'variant' ⎕S 0
f1 'The variant Variant operator'

4

It may be modified to perform a case-insensitive search:

(f1 ⍠ 1) 'The variant Variant operator'
4 12

This modified function may be named:

f2 ← f1 ⍠ 1
f2 'The variant Variant operator'

4 12

The modified function may itself be modified, in this case to revert to a case sensitive
search:

f3 ← f2 ⍠ 0
f3 'The variant Variant operator'

4

This is equivalent to:

(f1 ⍠ 1 ⍠ 0) 'The variant Variant operator'
4

Chapter 2: Primitive Operators 139

I-Beam: R←{X}(A⌶)Y

I-Beam is a monadic operator that provides a range of system related services.

WARNING:Although documentation is provided for I-Beam functions, any service
provided using I-Beam should be considered as “experimental” and subject to
change – without notice - from one release to the next. Any use of I-Beams in appli-
cations should therefore be carefully isolated in cover-functions that can be adjusted
if necessary.

A is an integer that specifies the type of operation to be performed as shown in the
table below. Y is an array that supplies further information about what is to be done.

X is currently unused.

R is the result of the derived function.

A Derived Function

200 Syntax Colouring

685 Core to APLCore

1111 Number of Threads

1112 Parallel Execution Threshold

1113 Thread Synchronisation Mechanism

2000 Memory Manager Statistics

2010 Update DataTable

2011 Read DataTable

2100 Export to Memory

3002 Component Checksum Validation

4000 Fork New Task

4001 Change User

4002 Reap Forked Tasks

4007 Signal Counts

16807 Random Number Generator

140 Dyalog APL/W Language Reference

Syntax Colouring: R←200⌶Y

This function obtains syntax colouring information for a function.

Y is a vector of character vectors containing the ⎕NR representation of a function or
operator.

R is a vector of integer vectors with the same shape and structure of Y in which each
number identifies the syntax colour element associated with the corresponding char-
acter in Y.

{(↑⍵),↑ 200⌶⍵} 'foo; local' 'global'
'local←⍴⍴''hello'''

foo; local 21 21 21 19 3 31 31 31 31 31 0 0 0 0 0
global 7 7 7 7 7 7 0 0 0 0 0 0 0 0 0
local←⍴⍴'hello' 31 31 31 31 31 19 23 23 4 4 4 4 4 4 4

In this example:

21 is the syntax identifier for “function name”
19 is the syntax identifier for “primitive”
3 is the syntax identifier for “white space”
31 is the syntax identifier for “local name”
7 is the syntax identifier for “global name”
23 is the syntax identifier for “idiom”

Chapter 2: Primitive Operators 141

Core to APLCore: (UNIX only) X (685⌶)Y

This function is used to extract a workspace from a core file and convert it to an
aplcore file. It may then be possible to recover objects from the aplcore file. For
further assistance in this matter, please contact support@dyalog.com.

X and Y are character vectors that specify the names of the core file and aplcore
file respectively.

Core files differ between AIX and Linux, thus the APL used must be for the same
Unix.

A 64-bit APL can be used to extract a 32 bit core file but a 32-bit APL cannot be
used to extract a 64-bit core file. The process maps the core file into memory so a
low value ofMAXWSmay be appropriate if a 32-bit APL is being used;mapped
files use a separate area of the process's address space from that occupied by the
workspace.

This function relies on certain markers being present in the workspace, and will oper-
ate only on core files generated by Version 12.1 or higher dated after 4th July 2011.

142 Dyalog APL/W Language Reference

Number of Threads: R←1111⌶Y

Specifies how many threads are to be used for parallel execution.

Y is an integer that specifies the number of threads that are to be used henceforth for
parallel execution. Prior to this call, the default number of threads is specified by an
environment variable named APL_MAX_THREADS. If this variable is not set, the
default is the number of CPUs that the machine is configured to have.

R is the previous value

Note that (unless APL_MAX_THREADS is set), the number of CPUs for which the
machine is configured is returned by the first execution of 1111⌶. The following
expression obtains and resets the number of threads back to this value.

{}1111⌶ ncpu←1111⌶1

Parallel Execution Threshold: R←1112⌶Y

Y is an integer that specifies the array size threshold at which parallel execution takes
place. If a parallel-enabled function is invoked on an array whose number of ele-
ments is equal to or greater than this threshold, execution takes place in parallel. If
not, it doesn’t.

Prior to this call, the default value of the threshold is specified by an environment var-
iable named APL_MIN_PARALLEL. If this variable is not set, the default is 32768.

R is the previous value

Chapter 2: Primitive Operators 143

Memory Manager Statistics: R←2000⌶Y

This function returns information about the state of the workspace. This I-Beam is
provided for performance tuning and is VERY LIKELY to change in the next
release.

Y is a simple integer scalar or vector.

The result R is an array with the same structure as Y, but with values in Y replaced by
the following statistics. For any value in Y outside those listed below, the result is
undefined.

Value Description

0 Workspace available (a "quick" ⎕WA)

1 Workspace used

2 Number of compactions since the workspace was loaded

3 Number of garbage collections that found garbage

4 Current number of garbage pockets in the workspace

Note that while all other operations are relatively fast, the operation to count the
number of garbage pockets (4) may take a noticeable amount of time, depending
upon the size and state of the workspace.

Examples
2000⌶0

65374272

2000⌶ 0 1 2 3 4
65374272 184256 2 1 0

144 Dyalog APL/W Language Reference

Update DataTable: R←{X}2010⌶Y

This function performs a block update of an instance of the ADO.NET object Sys-
tem.Data.DataTable. This object may only be updated using an explicit row-wise
loop, which is slow at the APL level. 2010⌶ implements an internal row-wise loop
which is much faster on large arrays. Furthermore, the function handles NULL values
and the conversion of internal APL data to the appropriate .Net datatype in a more
efficient manner than can be otherwise achieved. These 3 factors together mean that
the function provides a significant improvement in performance compared to calling
the row-wise programming interface directly at the APL level.

Y is a 2, 3 or 4-item array containing dtRef, Data, NullValues and Rows as
described in the table below.

The optional argument X is the Boolean vector ParseFlags as described in the
table below.

Argument Description

dtRef A reference to an instance of System.Data.DataTable.

Data A matrix with the same number of columns as the table.

NullValues
An optional vector with one element per column, containing
the value which should be mapped to DBNull when this
column is written to the DataTable.

Rows
Row indices (zero origin) of the rows to be updated. If not
provided, data will be appended to the DataTable.

ParseFlags
A Boolean vector, where a 1 indicates that the corresponding
element of Data is a string which needs to be passed to the
Parse method of the data type of column in question.

Chapter 2: Primitive Operators 145

Example
Shown firstly for comparison is the type of code that is required to update a DataT-
able by looping:

⎕USING←'System' 'System.Data,system.data.dll'
dt←⎕NEW DataTable
ac←{dt.Columns.Add ⍺ ⍵}
'S1' 'S2' 'I1' 'D1' ac¨String String Int32 DateTime

S1 S2 I1 D1

NextYear←DateTime.Now+{⎕NEW TimeSpan (4↑⍵)}¨⍳n←365
data←(⍕¨⍳n),(n⍴'odd' 'even'),(10|⍳n),⍪NextYear
¯2 4↑data

364 even 4 18-01-2011 14:03:29
365 odd 5 19-01-2011 14:03:29

ar←{(row←dt.NewRow).ItemArray←⍵ ⋄ dt.Rows.Add row}
t←3⊃⎕ai ⋄ ar¨↓data ⋄ (3⊃⎕ai)-t

449

This result shows that this code can only insert roughly 100 rows per second (3⊃⎕AI
returns elapsed time in milliseconds), because of the need to loop on each row and
perform a noticeable amount of work each time around the loop.

2010⌶ does all the looping in compiled code:

dt.Rows.Clear ⍝ Delete the rows inserted above
SetDT←2010⌶
t←3⊃⎕AI ⋄ SetDT dt data ⋄ (3⊃⎕AI)-t4

So in this case, using 2010⌶ achieves something like 10,000 rows per second.

Using ParseFlags
Sometimes it is more convenient to handle .Net datatypes in the workspace as strings
rather than as the appropriate APL array equivalent. The System.DateTime datatype
(which by default is represented in the workspace as a 6-element numeric vector) is
one such example. 2010⌶ will accept such character data and convert it to the appro-
priate .Net datatype internally.

If specified, the optional left argument X(ParseFlags) instructs the system to
pass the corresponding columns of Data to the Parse() method of the data type in
question prior to performing the update.

146 Dyalog APL/W Language Reference

NextYear←⍕¨DateTime.Now+{⎕NEW TimeSpan
(4↑⍵)}¨⍳n←365

data←(⍕¨⍳n),(n⍴'odd' 'even'),(10|⍳n),NextYear
¯2 4↑data

364 even 4 18-01-2011 14:03:29
365 odd 5 19-01-2011 14:03:29

SetDT←2010⌶ 0 0 0 1 SetDT dt data

Handling Nulls

If applicable, NullValues is a vector with as many elements as the DataTable has
columns, indicating the value that should be converted to System.DBNull as data
is written. For example, using the same DataTable as above:

t
<null> odd 1 21-01-2010 14:50:19
two even 2 22-01-2010 14:50:19
three odd 99 23-01-2010 14:50:19

dt.Rows.Clear ⍝ Clear the contents of dt
SetDT dt t ('<null>' 'even' 99 '')

Above, we have declares that the string '<null>' should be considered to be a
null value in the first column, 'even' in the second column, and the integer 99 in
the third.

Updating Selected Rows
Sometimes, you may have read a very large number of rows from a DataTable, but
only want to update a single row, or a very small number of rows. Row indices can
be provided as the fourth element of the argument to 2010⌶. If you are not using
NullValues, you can just use an empty vector as a placeholder. Continuing from
the example above, we could replace the first row in our DataTable using:

SetDT←2010⌶
SetDT dt (1 4⍴'one' 'odd' 1 DateTime.Now) ⍬ 0

Note

l the values must be provided as a matrix, even if you only want to update a
single row,

l row indices are zero origin (the first row has number 0).

Warning
If you are experimenting with writing to a DataTable, note that you should call
dt.Rows.Clear each time to clear the current contents of the table. Otherwise you will
end up with a very large number of rows after a while.

Chapter 2: Primitive Operators 147

Read DataTable: R←{X}2011⌶Y

This function performs a block read from an instance of the ADO.NET object Sys-
tem.Data.DataTable. This object may only be read using an explicit row-wise loop,
which is slow at the APL level. 2011⌶ implements an internal row-wise loop which
is much faster on large arrays. Furthermore, the function handles NULL values and
the conversion of .Net datatypes to the appropriate internal APL form in a more effi-
cient manner than can be otherwise achieved. These 3 factors together mean that the
function provides a significant improvement in performance compared to calling the
row-wise programming interface directly at the APL level.

Y is a scalar or a 2-item array containing dtRef, and NullValues as described in
the table below.

The optional argument X is the Boolean vector ParseFlags as described in the
table below.

The result R is the array Data as described in the table below.

Argument Description

dtRef A reference to an instance of System.Data.DataTable.

Data A matrix with the same number of columns as the table.

NullValues
An optional vector with one element per column, containing
the value to which a DBNull in the corresponding column of
the DataTable should be mapped in the result array Data.

ParseFlags

A Boolean vector, where a 1 indicates that the corresponding
element of Data should be converted to a string using the
ToString() method of the data type of column in
question. It is envisaged that this argument may be extended
in the future, to allow other conversions – for example
converting Dates to a floating-point format.

148 Dyalog APL/W Language Reference

First for comparison is shown the type of code that is required to read a DataTable by
looping:

t←3⊃⎕AI ⋄ data1←↑(⌷dt.Rows).ItemArray ⋄ (3⊃⎕AI)-t
191

The above expression turns the dt.Rows collection into an array using ⌷, and mixes
the ItemArray properties to produce the result. Although here there is no explicit
loop, involved, there is an implicit loop required to reference each item of the col-
lection in succession. This operation performs at about 200 rows/sec.

2011⌶ does the looping entirely in compiled code and is significantly faster:

GetDT←2011⌶
t←3⊃⎕AI ⋄ data2←GetDT dt ⋄ (3⊃⎕AI)-t

25

ParseFlags Example

In the example shown above, 2011⌶ created 365 instances of System.DateTime
objects in the workspace. If we are willing to receive the timestamps in the form of
strings, we can read the data almost an order of magnitude faster:

t←3⊃⎕AI ⋄ data3←0 0 0 1 GetDT dt ⋄ (3⊃⎕AI)-t
3

The left argument to 2011⌶ allows you to flag columns which should be returned as
the ToString() value of each object in the flagged columns. Although the result-
ing array looks identical to the original, it is not: The fourth column contains char-
acter vectors:

¯2 4↑data3
364 even 4 18-01-2011 14:03:29
365 odd 5 19-01-2011 14:03:29

Depending on your application, you may need to process the text in the fourth col-
umn in some way – but the overall performance will probably still be very much
better than it would be if DateTime objects were used.

Chapter 2: Primitive Operators 149

Handling Nulls

Using the DataTable produced by the corresponding example shown for 2010⌶ it
can be shown that by default null values will be read back into the APL workspace
as instances of System.DBNull.

GetDT←2011⌶>

⎕←z←GetDT dt

odd 1 21-01-2010 14:50:19
two 2 22-01-2010 14:50:19
three odd 23-01-2010 14:50:19

(1 1⍉z).GetType

System.DBNull System.DBNull System.DBNull

However, by supplying a NullValues argument to 2011⌶, we can request that
nulls in each column are mapped to a corresponding value of our choice; in this case,
'<null>', 'even', and 99 respectively.

GetDT dt ('<null>' 'even' 99 '')
<null> odd 1 21-01-2010 14:50:19
two even 2 22-01-2010 14:50:19
three odd 99 23-01-2010 14:50:19

150 Dyalog APL/W Language Reference

Export To Memory: R←2100⌶Y

This function exports the current active workspace as an in-memory .NET.Assembly.

Ymay be any array and is ignored.

The result R is 1 if the operation succeeded or 0 if it failed.

Component Checksum Validation: {R}←3002⌶Y

Checksums allow component files to be validated and repaired using ⎕FCHK.

FromVersion 13.1 onwards, components which contain checksums are also val-
idated on every component read.

Although not recommended, applications which favour performance over security
may disable checksum validation by ⎕FREAD using this function.

Y is an integer defined as follows:

Value Description

0 ⎕FREAD will not validate checksums.

1 ⎕FREAD will validate checksums when they are present. This is
the default.

The shy result R is the previous value of this setting.

Chapter 2: Primitive Operators 151

Fork New Task: (UNIX only) R←4000⌶Y

Ymust be is a simple empty vector but is ignored.

This function forks the current APL task. This means that it initiates a new separate
copy of the APL program, with exactly the same APL execution stack.

Following the execution of this function, there will be two identical APL processes
running on the machine, each with the same execution stack and set of APL objects
and values. However, none of the external interfaces and resources in the parent proc-
ess will exist in the newly forked child process.

The function will return a result in both processes.

l In the parent process, R is the process id of the child (forked) process.
l In the child process, R is a scalar zero.

The following external interfaces and resources that may be present in the parent
process are not replicated in the child process:

l Component file ties
l Native file ties
l Mapped file associations
l Auxiliary Processors
l .NET objects
l Edit windows
l Clipboard entries
l GUI objects (all children of '.')
l I/O to the current terminal

Note that External Functions established using ⎕NA are replicated in the child proc-
ess.

The function will fail with a DOMAIN ERROR if there is more than one APL thread
running.

The function will fail with a FILE ERROR 11 Resource temporarily
unavailable if an attempt is made to exceed the maximum number of processes
allowed per user.

152 Dyalog APL/W Language Reference

Change User: (UNIX only) R←4001⌶Y

Yis a character vector that specifies a valid UNIX user name. The function changes
the userid (uid) and groupid (gid) of the process to values that correspond to the spec-
ified user name.

Note that it is only possible to change the user name if the current user name is root
(uid=0).

This call is intended to be made in the child process after a fork (4000⌶⍬) in a
process with an effective user id of root. It can however be used in any APL process
with an effective user id of root.

If the operation is successful, R is the user name specified in Y.

If the operation fails, the function generates a FILE ERROR 1 Not Owner error.

If the argument to 4001⌶ is other than a non-empty simple character vector, the func-
tion generates a DOMAIN ERROR.

If the argument is not the name of a valid user the function generates a FILE ERROR
3 No such process.

If the argument is the same name as the current effective user, then the function
returns that name, but has no effect.

If the argument is a valid name other than the name of the effective user id of the cur-
rent process, and that effective user id is not root the function generates a FILE
ERROR 1 Not owner.

Chapter 2: Primitive Operators 153

Reap Forked Tasks: (UNIX only) R←4002⌶Y

Under UNIX, when a child process terminates, it signals to its parent that it has ter-
minated and waits for the parent to acknowledge that signal. 4002⌶ is the mech-
anism to allow the APL programmer to issue such acknowledgements.

Ymust be a simple empty vector but is ignored.

The result R is a matrix containing the list of the newly-terminated processes which
have been terminated as a result of receiving the acknowledgement, along with infor-
mation about each of those processes as described below.

R[;1] is the process ID (PID) of the terminated child

R[;2] is ¯1 if the child process terminated normally, otherwise it is the signal
number which caused the child process to terminate.

R[;3] is ¯1 if the child process terminated as the result of a signal, otherwise it is
the exit code of the child process

The remaining 15 columns are the contents of the rusage structure returned by the
underlying wait3() system call. Note that the two timevalstructs are each
returned as a floating point number.

The current rusage structure contains:

struct rusage {
struct timeval ru_utime; /* user time used */
struct timeval ru_stime; /* system time used */
long ru_maxrss; /* maximum resident set size */
long ru_ixrss; /* integral shared memory size */
long ru_idrss; /* integral unshared data size */
long ru_isrss; /* integral unshared stack size */
long ru_minflt; /* page reclaims */
long ru_majflt; /* page faults */
long ru_nswap; /* swaps */
long ru_inblock; /* block input operations */
long ru_oublock; /* block output operations */
long ru_msgsnd; /* messages sent */
long ru_msgrcv; /* messages received */
long ru_nsignals; /* signals received */
long ru_nvcsw; /* voluntary context switches */
long ru_nivcsw; /* involuntary context switches */

};

154 Dyalog APL/W Language Reference

4002⌶may return the PID of an abnormally terminated Auxiliary Processor; APL
code should check that the list of processes that have been reaped is a superset of the
list of processes that have been started.

Example
∇ tryforks;pid;fpid;rpid

[1] rpids←fpids←⍬
[2] :For i :In ⍳5
[3] fpid←4000⌶'' ⍝ fork() a process
[4] ⍝ if the child, hang around for a while
[5] :If fpid=0
[6] ⎕DL 2×i
[7] ⎕OFF
[8] :Else
[9] ⍝ if the parent, save child's pid
[10] +fpids,←fpid
[11] :EndIf
[12] :EndFor
[13]
[14] :For i :In ⍳20
[15] ⎕DL 3
[16] ⍝ get list of newly terminated child processes
[17] rpid←4002⌶''
[18] ⍝ and if not empty, make note of their pids
[19] :If 0≠⊃⍴rpid
[20] +rpids,←rpid[;1]
[21] :EndIf
[22] ⍝ if all fork()'d child processes accounted for
[23] :If fpids≡fpids∩rpids
[24] :Leave ⍝ quit
[25] :EndIf
[26] :EndFor

∇

Chapter 2: Primitive Operators 155

Signal Counts: (UNIX only) R←4007⌶Y

Ymust be a simple empty vector but is ignored.

The result R is an integer vector of signal counts. The length of the vector is system
dependent. On AIX 32-bit it is 63 on AIX 64-bit it is 256 but code should not rely
on the length.

Each element is a count of the number of signals that have been generated since the
last call to this function, or since the start of the process. R[1] is the number of occur-
rences of signal 1 (SIGHUP), R[2] the number of occurrences of signal 2, and so
forth.

Each time the function is called it zeros the counts; it is therefore inadvisable to call
it in more than one APL thread.

Currently, only SIGHUP, SIGINT, SIGQUIT, SIGTERM and SIGWINCH are
counted and all other corresponding elements of R are 0.

Thread Synchronisation Mechanism: R←1113⌶Y

Y is Boolean and specifies whether or not the main thread does a busy wait for the
others to complete or uses a semaphore when a function is executed in parallel.

The default and recommended value is 0 (use a semaphore). This function is provided
only for Operating Systems that do not support semaphores.

A value of 1 must be set if you are running AIX Version 5.2 which does not support
Posix semaphores. Later versions of AIX do not have this restriction.

R is the previous value

156 Dyalog APL/W Language Reference

Random Number Generator: R←16807⌶Y

Specifies the random number generator that is to be used by Roll and Deal.

Y is an integer that specifies which random number generator is to be enabled and
must be one of the numbers listed in the first column of the table below.

R is an integer that identifies the previous random number generator in use.

The 3 random number generators are as follows :

Id Algorithm

0 Lehmer linear congruential generator.

1 Mersenne Twister.

2 Operating System random number generator.

UnderWindows, the Operating System random number generator uses the
CryptGenRandom() function. Under Unix/Linux it uses /dev/urandom[3].

The default random number generator in a CLEAR WS is 0 (Lehmer linear con-
gruential). The default is likely to be changed to 1 (Mersenne Twister) in a future
release of Dyalog APL. In preparation for this change, avoid writing code which
assumes that ⎕RL will be a scalar integer.

The Lehmer linear congruential generator RNG0 was the only random number gen-
erator provided in versions of Dyalog APL prior to Version 13.1. The imple-
mentation of this algorithm has several limitations including limited value range
(2*31), short period and non-uniform distribution (some values may appear more
frequently than others). It is retained for backwards compatibility.

The Mersenne Twister algortithm RNG1 produces 64-bit values with good dis-
tribution.

The Operating System algorithm RNG2 does not support a user modifiable random
number seed, so when using this scheme, it is not possible to obtain a repeatable ran-
dom number series.

For further information, see "Random Link: " on page 365.

157

Chapter 3:

System Functions & Variables

System Functions, Variables, Constants and Namespaces provide information and
services within the APL environment. Their case-insensitive names begin with ⎕.

⍞ ⎕ ⎕Á ⎕A ⎕AI

⎕AN ⎕ARBIN ⎕ARBOUT ⎕AT ⎕AV

⎕AVU ⎕BASE ⎕CLASS ⎕CLEAR ⎕CMD

⎕CR ⎕CS ⎕CT ⎕CY ⎕D

⎕DCT ⎕DF ⎕DIV ⎕DL ⎕DM

⎕DMX ⎕DQ ⎕DR ⎕ED ⎕EM

⎕EN ⎕EX ⎕EXCEPTION ⎕EXPORT ⎕FAPPEND

⎕FAVAIL ⎕FCHK ⎕FCOPY ⎕FCREATE ⎕FDROP

⎕FERASE ⎕FHIST ⎕FHOLD ⎕FIX ⎕FLIB

⎕FMT ⎕FNAMES ⎕FNUMS ⎕FPROPS ⎕FR

⎕FRDAC ⎕FRDCI ⎕FREAD ⎕FRENAME ⎕FREPLACE

⎕FRESIZE ⎕FSIZE ⎕FSTAC ⎕FSTIE ⎕FTIE

⎕FUNTIE ⎕FX ⎕INSTANCES ⎕IO ⎕KL

⎕LC ⎕LOAD ⎕LOCK ⎕LX ⎕MAP

⎕ML ⎕MONITOR ⎕NA ⎕NAPPEND ⎕NC

⎕NCREATE ⎕NERASE ⎕NEW ⎕NL ⎕NLOCK

⎕NNAMES ⎕NNUMS ⎕NQ ⎕NR ⎕NREAD

⎕NRENAME ⎕NREPLACE ⎕NRESIZE ⎕NS ⎕NSI

⎕NSIZE ⎕NTIE ⎕NULL ⎕NUNTIE ⎕NXLATE

158 Dyalog APL/W Language Reference

⎕OFF ⎕OPT ⎕OR ⎕PATH ⎕PFKEY

⎕PP ⎕PROFILE ⎕PW ⎕R ⎕REFS

⎕RL ⎕RSI ⎕RTL ⎕S ⎕SAVE

⎕SD ⎕SE ⎕SH ⎕SHADOW ⎕SI

⎕SIGNAL ⎕SIZE ⎕SM ⎕SR ⎕SRC

⎕STACK ⎕STATE ⎕STOP ⎕SVC ⎕SVO

⎕SVQ ⎕SVR ⎕SVS ⎕TC ⎕TCNUMS

⎕TGET ⎕THIS ⎕TID ⎕TKILL ⎕TNAME

⎕TNUMS ⎕TPOOL ⎕TPUT ⎕TRACE ⎕TRAP

⎕TREQ ⎕TS ⎕TSYNC ⎕UCS ⎕USING

⎕VFI ⎕VR ⎕WA ⎕WC ⎕WG

⎕WN ⎕WS ⎕WSID ⎕WX ⎕XML

⎕XSI ⎕XT

Chapter 3: System Functions & Variables 159

System Variables
System variables retain information used by the system in some way, usually as
implicit arguments to functions.

The characteristics of an array assigned to a system variable must be appropriate;
otherwise an error will be reported immediately.

Example
⎕IO←3

DOMAIN ERROR
⎕IO←3
^

System variables may be localised by inclusion in the header line of a defined func-
tion or in the argument list of the system function ⎕SHADOW. When a system variable
is localised, it retains its previous value until it is assigned a new one. This feature is
known as “pass-through localisation”. The exception to this rule is ⎕TRAP.

A system variable can never be undefined. Default values are assigned to all system
variables in a clear workspace.

Name Description Scope

⍞ Character Input/Output Session

⎕ Evaluated Input/Output Session

⎕AVU Atomic Vector – Unicode Namespace

⎕CT Comparison Tolerance Namespace

⎕DCT Decimal Comp Tolerance Namespace

⎕DIV Division Method Namespace

⎕FR Floating-Point Representation Workspace

⎕IO Index Origin Namespace

⎕LX Latent Expression Workspace

⎕ML Migration Level Namespace

⎕PATH Search Path Session

⎕PP Print Precision Namespace

⎕PW Print Width Session

⎕RL Random Link Namespace

160 Dyalog APL/W Language Reference

⎕RTL Response Time Limit Namespace

⎕SM Screen Map Workspace

⎕TRAP Event Trap Workspace

⎕USING Microsoft .Net Search Path Namespace

⎕WSID Workspace Identification Workspace

⎕WX Window Expose Namespace

In other words, ⎕, ⍞, ⎕SE, ⎕PATH and ⎕PW relate to the session. ⎕LX, ⎕SM, ⎕TRAP
and ⎕WSID relate to the active workspace. All the other system variables relate to
the current namespace.

Session Workspace Namespace

⍞ ⎕FR ⎕AVU

⎕ ⎕LX ⎕CT

⎕PATH ⎕SM ⎕DCT

⎕PW ⎕TRAP ⎕DIV

⎕WSID ⎕IO

⎕ML

⎕PP

⎕RL

⎕RTL

⎕USING

⎕WX

System Namespaces
⎕SE is currently the only system namespace.

Chapter 3: System Functions & Variables 161

System Constants
System constants, which can be regarded as niladic system functions, return infor-
mation from the system. They have distinguished names, beginning with the quad
symbol, ⎕. A system constant may not be assigned a value. System constants may
not be localised or erased. System constants are summarised in the following table:

Name Description

⎕Á Underscored Alphabetic upper case characters

⎕A Alphabetic upper case characters

⎕AI Account Information

⎕AN Account Name

⎕AV Atomic Vector

⎕D Digits

⎕DM Diagnostic Message

⎕DMX Extended Diagnostic Message

⎕EN Event Number

⎕EXCEPTION Reports the most recent Microsoft .Net Exception

⎕LC Line Count

⎕NULL Null Item

⎕SD Screen (or window) Dimensions

⎕TC Terminal Control (backspace, linefeed, newline)

⎕TS Time Stamp

⎕WA Workspace Available

162 Dyalog APL/W Language Reference

System Functions
System functions provide various services related to both the APL and the external
environment. System functions have distinguished names beginning with the ⎕
symbol. They are implicitly available in a clear workspace.

The following Figure identifies system functions divided into relevant categories.
Each function is described in alphabetical order in this chapter

System Commands
These functions closely emulate system commands (see "System Commands" on page
447)

Name Description

⎕CLEAR Clear workspace (WS)

⎕CY Copy objects into active WS

⎕EX Expunge objects

⎕LOAD Load a saved WS

⎕NL Name List

⎕OFF End the session

⎕SAVE Save the active WS

External Environment
These functions provide access to the external environment, such as file systems,
Operating System facilities, and input/output devices.

Name Description

⎕ARBIN Arbitrary Input

⎕ARBOUT Arbitrary Output

⎕CMD
Execute the Windows Command Processor or another
program

⎕CMD Start a Windows AP

⎕MAP Map a file

⎕NA Declare a DLL function

⎕SH Execute a UNIX command or another program

⎕SH Start a UNIX AP

Chapter 3: System Functions & Variables 163

Defined Functions and Operators
These functions provide services related to defined functions and operators.

Name Description

⎕AT Object Attributes

⎕CR Canonical Representation

⎕CS Change Space

⎕ED Edit one or more objects

⎕EXPORT Export objects

⎕FX Fix definition

⎕LOCK Lock a function

⎕MONITOR Monitor set

⎕MONITOR Monitor query

⎕NR Nested Representation

⎕NS Create Namespace

⎕OR Object Representation

⎕PATH Search Path

⎕PROFILE Profile Application

⎕REFS Local References

⎕SHADOW Shadow names

⎕STOP Set Stop vector

⎕STOP Query Stop vector

⎕THIS This Space

⎕TRACE Set Trace vector

⎕TRACE Query Trace vector

⎕VR Vector Representation

164 Dyalog APL/W Language Reference

Error Trapping
These functions are associated with event trapping and the system variable ⎕TRAP.

Name Description

⎕EM Event Messages

⎕SIGNAL Signal event

Shared Variables
These functions provide the means to communicate between APL tasks and with
other applications.

Name Description

⎕SVC Set access Control

⎕SVC Query access Control

⎕SVO Shared Variable Offer

⎕SVO Query degree of coupling

⎕SVQ Shared Variable Query

⎕SVR Retract offer

⎕SVS Query Shared Variable State

Object Oriented Programming
These functions provide object oriented programming features.

Name Description

⎕BASE Base Class

⎕CLASS Class

⎕DF Display Format

⎕FIX Fix

⎕INSTANCES Instances

⎕NEW New Instance

⎕SRC Source

⎕THIS This

Chapter 3: System Functions & Variables 165

Graphical User Interface
These functions provide access to GUI components.

Name Description

⎕DQ Await and process events

⎕NQ Place an event on the Queue

⎕WC Create GUI object

⎕WG Get GUI object properties

⎕WN Query GUI object Names

⎕WS Set GUI object properties

⎕WX Expose GUI property names

External Variables
These functions are associated with using external variables.

Name Description

⎕XT Associate External variable

⎕XT Query External variable

⎕FHOLD External variable Hold

166 Dyalog APL/W Language Reference

Component Files
The functions provide the means to store and retrieve data on APL Component Files.
See User Guide for further details.

Name Description

⎕FAPPEND Append a component to File

⎕FAVAIL File system Availability

⎕FCHK File Check and Repair

⎕FCOPY Copy a File

⎕FCREATE Create a File

⎕FDROP Drop a block of components

⎕FERASE Erase a File

⎕FHIST File History

⎕FHOLD File Hold

⎕FLIB List File Library

⎕FNAMES Names of tied Files

⎕FNUMS Tie Numbers of tied Files

⎕FPROPS File Properties

⎕FRDAC Read File Access matrix

⎕FRDCI Read Component Information

⎕FREAD Read a component from File

⎕FRENAME Rename a File

⎕FREPLACE Replace a component on File

⎕FRESIZE File Resize

⎕FSIZE File Size

⎕FSTAC Set File Access matrix

⎕FSTIE Share-Tie a File

⎕FTIE Tie a File exclusively

⎕FUNTIE Untie Files

Chapter 3: System Functions & Variables 167

Native Files
The functions provide the means to store and retrieve data on native files.

Name Description

⎕NAPPEND Append to File

⎕NCREATE Create a File

⎕NERASE Erase a File

⎕NLOCK Lock a region of a file

⎕NNAMES Names of tied Files

⎕NNUMS Tie Numbers of tied Files

⎕NREAD Read from File

⎕NRENAME Rename a File

⎕NREPLACE Replace data on File

⎕NRESIZE File Resize

⎕NSIZE File Size

⎕NTIE Tie a File exclusively

⎕NUNTIE Untie Files

⎕NXLATE Specify Translation Table

168 Dyalog APL/W Language Reference

Threads
These functions are associated with threads created using the Spawn operator (&).

Name Description

⎕TCNUMS Thread Child Numbers

⎕TGET Get Tokens

⎕TID Current Thread Identity

⎕TKILL Kill Threads

⎕TNAME Current Thread Name

⎕TNUMS Thread Numbers

⎕TPOOL Token Pool

⎕TPUT Put Tokens

⎕TREQ Token Requests

⎕TSYNC Wait for Threads to Terminate

Search and Replace
These operators implement Search and Replace functionality utilising the open-
source regular-expression search engine PCRE.

Name Description

⎕R Replace

⎕S Search

⎕OPT Variant Operator

Chapter 3: System Functions & Variables 169

Miscellaneous
These functions provide various miscellaneous services.

Name Description

⎕AVU Atomic Vector - Unicode

⎕DL Delay execution

⎕DR Data Representation (Monadic)

⎕DR Data Representation (Dyadic)

⎕FMT Resolve display

⎕FMT Format array

⎕KL Key Labels

⎕NC Name Classification

⎕NSI Namespace Indicator

⎕PFKEY Programmable Function Keys

⎕RSI Space Indicator

⎕SI State Indicator

⎕SIZE Size of objects

⎕SR Screen Read

⎕STACK Report Stack

⎕STATE Return State of an object

⎕UCS Unicode Convert

⎕VFI Verify and Fix numeric

⎕XSI Extended State Indicator

170 Dyalog APL/W Language Reference

Character Input/Output: ⍞
⍞ is a variable which communicates between the user's terminal and APL. Its behav-
iour depends on whether it is being assigned or referenced.

When ⍞ is assigned with a vector or a scalar, the array is displayed without the nor-
mal ending new-line character. Successive assignments of vectors or scalars to ⍞
without any intervening input or output cause the arrays to be displayed on the same
output line.

Example
⍞←'2+2' ⋄ ⍞←'=' ⋄ ⍞←4

2+2=4

Output through ⍞ is independent of the print width in ⎕PW. The way in which lines
exceeding the print width of the terminal are treated is dependent on the char-
acteristics of the terminal. Numeric output is formatted in the same manner as direct
output (see Programmer's Guide: "Display of Arrays").

When ⍞ is assigned with a higher-order array, the output is displayed in the same
manner as for direct output except that the print width ⎕PW is ignored.

When ⍞ is referenced, terminal input is expected without any specific prompt, and
the response is returned as a character vector.

If the ⍞ request was preceded by one or more assignments to ⍞ without any inter-
vening input or output, the last (or only) line of the output characters are returned as
part of the response.

Example
mat←↑⌽⍞⍞⍞⍞⍞

Examples
⍞←'OPTION : ' ⋄ R←⍞

OPTION : INPUT

R
OPTION : INPUT

⍴R
14

Chapter 3: System Functions & Variables 171

The output of simple arrays of rank greater than 1 through ⍞ includes a new-line char-
acter at the end of each line. Input through ⍞ includes the preceding output through
⍞ since the last new-line character. The result from ⍞, including the prior output, is
limited to 256 characters.

A soft interrupt causes an INPUT INTERRUPT error if entered while ⍞ is awaiting
input, and execution is then suspended (unless the interrupt is trapped):

R←⍞

(Interrupt)

INPUT INTERRUPT

A time limit is imposed on input through ⍞ if ⎕RTL is set to a non-zero value:

⎕RTL←5 ⋄ ⍞←'PASSWORD ? ' ⋄ R←⍞
PASSWORD ?
TIMEOUT

⎕RTL←5 ⋄ ⍞←'PASSWORD : ' ⋄ R←⍞
^

The TIMEOUT interrupt is a trappable event.

172 Dyalog APL/W Language Reference

Evaluated Input/Output: ⎕
⎕ is a variable which communicates between the user’s terminal and APL. Its behav-
iour depends on whether it is being assigned or referenced.

When ⎕ is assigned an array, the array is displayed at the terminal in exactly the same
form as is direct output (see Programmer's Guide: "Display of Arrays").

Example
⎕←2+⍳5

3 4 5 6 7

⎕←2 4⍴'WINEMART'
WINE
MART

When ⎕ is referenced, a prompt (⎕:) is displayed at the terminal, and input is
requested. The response is evaluated and an array is returned if the result is valid. If
an error occurs in the evaluation, the error is reported as normal (unless trapped by a
⎕TRAP definition) and the prompt (⎕:) is again displayed for input. An EOF inter-
rupt reports INPUT INTERRUPT and the prompt (⎕:) is again displayed for input.
A soft interrupt is ignored and a hard interrupt reports INTERRUPT and the prompt
(⎕:) is redisplayed for input.

Examples
10×⎕+2

⎕:
⍳3

30 40 50

2+⎕
⎕:

X
VALUE ERROR

X
^

⎕:
2+⍳3

5 6 7

Chapter 3: System Functions & Variables 173

A system command may be entered. The system command is effected and the prompt
is displayed again (unless the system command changes the environment):

⍴3,⎕
⎕:

)WSID
WS/MYWORK
⎕:

)SI
⎕
⎕:

)CLEAR
CLEAR WS

If the response to a ⎕: prompt is an abort statement (→), the execution will be
aborted:

1 2 3 = ⎕
⎕:

→

A trap definition on interrupt events set for the system variable ⎕TRAP in the range
1000-1008 has no effect whilst awaiting input in response to a ⎕: prompt.

Example
⎕TRAP←(11 'C' '''ERROR''')(1000 'C' '''STOP''')

2+⎕
⎕:

(Interrupt Signal)
INTERRUPT
⎕:

'C'+2
ERROR

A time limit set in system variable ⎕RTL has no effect whilst awaiting input in
response to a ⎕: prompt.

174 Dyalog APL/W Language Reference

Underscored Alphabetic Characters: R←⎕Ⓐ

⎕Ⓐ is a deprecated feature. Dyalog strongly recommends that you move away from
the use of ⎕Ⓐand of the underscored alphabet itself, as these symbols now constitute
the sole remaining non-standard use of characters in Dyalog applications.

In Versions of Dyalog APL prior to Version 11.0, ⎕Ⓐ was a simple character vector,
composed of the letters of the alphabet with underscores. If the Dyalog Alt font was
in use, these symbols displayed as additional National Language characters.

Version 10.1 and Earlier
⎕Ⓐ

ⒶⒷⒸⒹⒺⒻⒼⒽⒾⒿⓀⓁⓂⓃⓄⓅⓆⓇⓈⓉⓊⓋⓌⓍⓎⓏ

For compatibility with previous versions of Dyalog APL, functions that contain ref-
erences to ⎕Ⓐ will continue to return characters with the same index in ⎕AV as before.
However, the display of ⎕Ⓐ is now ⎕Á, and the old underscored symbols appear as
they did in previous Versions when the Dyalog Alt font was in use.

Current Version
⎕Á

ÁÂÃÇÈÊËÌÍÎÏÐÒÓÔÕÙÚÛÝþãìðòõ

Alphabetic Characters: R←⎕A

This is a simple character vector, composed of the letters of the alphabet.

Example
⎕A

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Chapter 3: System Functions & Variables 175

Account Information: R←⎕AI

This is a simple integer vector, whose four elements are:

⎕AI[1] user identification.1

⎕AI[2] compute time for the APL session in milliseconds.

⎕AI[3] connect time for the APL session in milliseconds.

⎕AI[4] keying time for the APL session in milliseconds.

Elements beyond 4 are not defined but reserved.

Example
⎕AI

52 7396 2924216 2814831

1UnderWindows, this is the aplnid (network ID from configuration dialog
box).Under UNIX and LINUX, this is the UID of the account.

Account Name: R←⎕AN

This is a simple character vector containing the user (login) name.

Example
⎕AN

Pete

⍴⎕AN
4

176 Dyalog APL/W Language Reference

Arbitrary Output: {X}⎕ARBOUT Y

This transmits Y to an output device specified by X.

UnderWindows, the use of ⎕ARBOUT to the screen or to RS232 ports is not sup-
ported.

Ymay be a scalar, a simple vector, or a vector of simple scalars or vectors. The items
of the simple arrays of Ymust each be a character or a number in the range 0 to 255.
Numbers are sent to the output device without translation. Characters undergo the
standard ⎕AV to ASCII translation. If Y is an empty vector, no codes are sent to the
output device.

X defines the output device. If X is omitted, output is sent to standard output
(usually the screen). If X is supplied, it must be a simple numeric scalar or a simple
text vector.

If it is a numeric scalar, it must correspond to a DOS handle or UNIX stream number.

If it is a text vector, it must correspond to a valid device or file name.

You must have permission to write to the chosen device.

Examples

Write ASCII digits '123' to UNIX stream 9:

9 ⎕ARBOUT 49 50 51

Write ASCII characters 'ABC' to MYFILE:

'MYFILE' ⎕ARBOUT 'ABC'

Beep 3 times:

⎕ARBOUT 7 7 7

Prompt for input:

⍞← 'Prompt: ' ⋄ ⎕arbout 12 ⋄ ans←⍞

Chapter 3: System Functions & Variables 177

Attributes: R←{X} ⎕AT Y

Y can be a simple character scalar, vector or matrix, or a vector of character vectors
representing the names of 0 or more defined functions or operators. Used dyadically,
this function closely emulates the APL2 implementation. Used monadically, it
returns information that is more appropriate for Dyalog APL.

Y specifies one or more names. If Y specifies a single name as a character scalar, a char-
acter vector, or as a scalar enclosed character vector, the result R is a vector. If Y spec-
ifies one or more names as a character matrix or as a vector of character vectors R is a
matrix with one row per name in Y.

Monadic Use
If X is omitted, R is a 4-element vector or a 4 column matrix with the same number of
rows as names in Y containing the following attribute information:

R[1] or R[;1]: Each item is a 3-element integer vector representing the function
header syntax:

1 Function result
0 if the function has no result
1 if the function has an explicit result
¯1 if the function has a shy result

2 Function valence

0 if the object is a niladic function or not a function
1 if the object is a monadic function
2 if the object is a dyadic function
¯2 if the object is an ambivalent function

3 Operator valence
0 if the object is not an operator
1 if the object is a monadic operator
2 if the object is a dyadic operator

The following values correspond to the syntax shown alongside:

0 0 0 ∇ FOO
1 0 0 ∇ Z←FOO

¯1 0 0 ∇ {Z}←FOO
0 ¯2 0 ∇ {A} FOO B

¯1 1 2 ∇ {Z}←(F OP G)B

R[2] or R[;2]: Each item is the (⎕TS form) timestamp of the time the function was
last fixed.

178 Dyalog APL/W Language Reference

R[3] or R[;3]: Each item is an integer reporting the current ⎕LOCK state of the
function:

0 Not locked

1 Cannot display function

2 Cannot suspend function

3 Cannot display or suspend

R[4] or R[;4]: Each item is a character vector - the network ID of the user who last
fixed (edited) the function.

Example
∇ {z}←{l}(fn myop)r

[1] ...

∇ z←foo
[1] ...

∇ z←{larg}util rarg
[1] ...

⎕LOCK'foo'

util2←util

]display ⎕AT 'myop' 'foo' 'util' 'util2'
.→--.
↓ .→------. .→-----------------. .→---. |
| |¯1 ¯2 1| |1996 8 2 2 13 56 0| 0 |john| |
| '~------' '~-----------------' '----' |
| .→----. .→------------. .⊖. |
| |1 0 0| |0 0 0 0 0 0 0| 3 | | |
| '~----' '~------------' '-' |
| .→-----. .→------------------. .→---. |
| |1 ¯2 0| |1996 3 1 14 12 10 0| 0 |pete| |
| '~-----' '~------------------' '----' |
| .→-----. .→-------------------. .→-----. |
| |1 ¯2 0| |1998 8 26 16 16 42 0| 0 |graeme| |
| '~-----' '~-------------------' '------' |
'∊--'

Chapter 3: System Functions & Variables 179

Dyadic Use
The dyadic form of ⎕AT emulates APL2. It returns the same rank and shape result
containing information that matches the APL2 implementation as closely as pos-
sible.

The number of elements or columns in R and their meaning depends upon the value
of X which may be 1, 2, 3 or 4.

If X is 1, R specifies valences and contains 3 elements (or columns) whose meaning is
as follows:

1 Explicit result 1 if the object has an explicit result or is a variable
0 otherwise

2 Function valence
0 if the object is a niladic function or not a function
1 if the object is a monadic function
2 if the object is an ambivalent function

3 Operator valence
0 if the object is not an operator
1 if the object is a monadic operator
2 if the object is a dyadic operator

If X is 2, R specifies fix times (the time the object was last updated) for functions and
operators named in Y. The time is reported as 7 integer elements (or columns) whose
meaning is as follows. The fix time reported for names in Y which are not defined
functions or operators is 0.

1 Year

2 Month

3 Day

4 Hour

5 Minute

6 Second

7 Milliseconds (this is always reported as 0)

180 Dyalog APL/W Language Reference

If X is 3, R specifies execution properties and contains 4 elements (or columns)
whose meaning is as follows:

1 Displayable 0 if the object is displayable
1 if the object is not displayable

2 Suspendable 0 if execution will suspend in the object
1 if execution will not suspend in the object

3 Weak Interrupt
behaviour

0 if the object responds to interrupt
1 if the object ignores interrupt

4 (always 0)

If X is 4, R specifies object size and contains 2 elements (or columns) which both
report the ⎕SIZE of the object.

Chapter 3: System Functions & Variables 181

Atomic Vector: R←⎕AV

⎕AV is a deprecated feature and is replaced by ⎕UCS.

This is a simple character vector of all 256 characters in the Classic Dyalog APL char-
acter.

In the Classic Edition the contents of ⎕AV are defined by the Output Translate Table.

In the Unicode Edition, the contents of ⎕AV are defined by the system variable
⎕AVU.

Examples
⎕AV[48+⍳10]

0123456789

5 52⍴12↓⎕av
%'⍺⍵_abcdefghijklmnopqrstuvwxyz__¯.⍬0123456789_¤¥$£¢
∆ABCDEFGHIJKLMNOPQRSTUVWXYZ__ý·�⍙ÁÂÃÇÈÊËÌÍÎÏÐÒÓÔÕÙÚÛ
ÝÞãìðòõ{€}⊣⌷¨ÀÄÅÆ⍨ÉÑÖØÜßàáâäåæçèéêëíîïñ[/⌿\⍀<≤=≥>≠∨^
-+÷×?∊⍴~↑↓⍳○*⌈⌊∇∘(⊂⊃∩∪⊥⊤|;,⍱⍲⍒⍋⍉⌽⊖⍟⌹!⍕⍎⍫⍪≡≢óôöø"#_&'
___________@ùúû^ü`⌷¶:⍷¿¡⋄←→⍝)]��§⎕⍞⍣%'⍺⍵_abcdefghijk

Atomic Vector - Unicode: ⎕AVU

⎕AVU specifies the contents of the atomic vector, ⎕AV, and is used to translate data
between Unicode and non-Unicode character formats when required, for example
when:

l Unicode Edition loads or copies a Classic Edition workspace or a work-
space saved by a Version prior to Version 12.0.

l Unicode Edition reads character data from a non-Unicode component file,
or receives data type 82 from a TCP socket.

l Unicode Edition writes data to a non-Unicode component file
l Unicode Edition reads or writes data from or to a Native File using con-

version code 82.
l Classic Edition loads or copies a Unicode Edition workspace
l Classic Edition reads character data from a Unicode component file, or

receives data type 80, 160, or 320 from a TCP socket.
l Classic Edition writes data to a Unicode component file.

⎕AVU is an integer vector with 256 elements, containing the Unicode code points
which define the characters in ⎕AV.

182 Dyalog APL/W Language Reference

Note
In Versions of Dyalog prior to Version 12.0 and in the Classic Edition, a character is
stored internally as an index into the atomic vector, ⎕AV. When a character is dis-
played or printed, the index in ⎕AV is translated to a number in the range 0-255
which represents the index of the character in an Extended ASCII font. This mapping
is done by the Output Translate Table which is user-configurable. Note that although
ASCII fonts typically all contain the same symbols in the range 0-127, there are a
number of different Extended ASCII font layouts, including proprietary APL fonts,
which provide different symbols in positions 128-255. The actual symbol that
appears on the screen or on the printed page is therefore a function of the Output
Translate Table and the font in use. Classic Edition provides two different fonts (and
thus two different ⎕AV layouts) for use with the Development Environment, named
Dyalog Std (with APL underscores) and Dyalog Alt (without APL underscores

The default value of ⎕AVU corresponds to the use of the Dyalog AltOutput Trans-
late Table and font in the Classic Edition or in earlier versions of Dyalog APL.

2 13⍴⎕AVU[97+⍳26]
193 194 195 199 200 202 203 204 205 206 207 208 210
211 212 213 217 218 219 221 254 227 236 240 242 245

⎕UCS 2 13⍴⎕AVU[97+⍳26]
ÁÂÃÇÈÊËÌÍÎÏÐÒ
ÓÔÕÙÚÛÝþãìðòõ

⎕AVU has namespace scope and can be localised, in order to make it straightforward
to write access functions which receive or read data from systems with varying
atomic vectors. If you have been using Dyalog Alt for most things but have some
older code which uses underscores, you can bring this code together in the same
workspace and have it all look “as it should” by using the Alt and Std definitions for
⎕AVU as you copy each part of the code into the same Unicode Edition workspace.

)COPY avu.dws Std.⎕AVU
C:\Program Files\Dyalog\Dyalog APL 12.0 Unicode\ws\avu
saved Thu Dec 06 11:24:32 2007

2 13⍴⎕AVU[97+⍳26]
9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408
9409 9410
9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421
9422 9423

⎕UCS 2 13⍴⎕AVU[97+⍳26]
ⒶⒷⒸⒹⒺⒻⒼⒽⒾⒿⓀⓁⓂ
ⓃⓄⓅⓆⓇⓈⓉⓊⓋⓌⓍⓎⓏ

Chapter 3: System Functions & Variables 183

Rules for Conversion on Import
When the Unicode Edition imports APL objects from a non-Unicode source, func-
tion comments and character data of type 82 are converted to Unicode. When the
Classic Edition imports APL objects from a Unicode source, this translation is per-
formed in reverse.

If the objects are imported from a Version 12.0 (or later) workspace (i.e. from a work-
space that contains its own value of ⎕AVU) the value of #.⎕AVU (the value of ⎕AVU
in the root) in the source workspace is used. Otherwise, such as when APL objects
are imported from a pre-Version 12 workspace, from a component file, or from a TCP
socket, the local value of ⎕AVU in the target workspace is used.

Rules for Conversion on Export
When the Unicode Edition exports APL objects to a non-Unicode destination, such
as a non-Unicode Component File or non-Unicode TCPSocket Object, function com-
ments (in ⎕ORs) and character data of type 82 are converted to ⎕AV indices using the
local value of ⎕AVU.

When the Classic Edition exports APL objects to a Unicode destination, such as a
Unicode Component File or Unicode TCPSocket Object, function comments (in
⎕ORs) and character data of type 82 are converted to Unicode using the local value
of ⎕AVU.

In all cases, if a character to be translated is not defined in ⎕AVU, a TRANSLATION
ERROR (event number 92) will be signalled.

184 Dyalog APL/W Language Reference

Base Class: R←⎕BASE.Y

⎕BASE is used to access the base class implementation of the name specified by Y.

Ymust be the name of a Public member (Method, Field or Property) that is provided
by the Base Class of the current Class or Instance.

⎕BASE is typically used to call a method in the Base Class which has been super-
seded by a Method in the current Class.

Note that ⎕BASE.Y is special syntax and any direct reference to ⎕BASE on its own
or in any other context, is meaningless and causes SYNTAX ERROR.

In the following example, Class DomesticParrot derives from Class Parrot
and supersedes its Speakmethod. DomesticParrot.Speak calls the Speak
method in its Base Class Parrot, via ⎕BASE.

:Class Parrot: Bird
∇ R←Speak

:Access Public
R←'Squark!'

∇
:EndClass ⍝ Parrot

:Class DomesticParrot: Parrot
∇ R←Speak

:Access Public
R←⎕BASE.Speak,' Who''s a pretty boy, then!'

∇
:EndClass ⍝ DomesticParrot

Maccaw←⎕NEW Parrot
Maccaw.Speak

Squark!

Polly←⎕NEW DomesticParrot
Polly.Speak

Squark! Who's a pretty boy, then!

Chapter 3: System Functions & Variables 185

Class: R←{X}⎕CLASS Y

Monadic Case
Monadic ⎕CLASS returns a list of references to Classes and Interfaces that specifies
the class hierarchy for the Class or Instance specified by Y.

Ymust be a reference to a Class or to an Instance of a Class.

R is a vector or vectors whose items represent nodes in the Class hierarchy of Y. Each
item of R is a vector whose first item is a Class reference and whose subsequent items
(if any) are references to the Interfaces supported by that Class.

Example 1
This example illustrates a simple inheritance tree or Class hierarchy. There are 3
Classes, namely:

Animal

Bird (derived from Animal)

Parrot (derived from Bird)

:Class Animal
...
:EndClass ⍝ Animal

:Class Bird: Animal
...
:EndClass ⍝ Bird

:Class Parrot: Bird
...
:EndClass ⍝ Parrot

⎕CLASS Eeyore←⎕NEW Animal
#.Animal

⎕CLASS Robin←⎕NEW Bird
#.Bird #.Animal

⎕CLASS Polly←⎕NEW Parrot
#.Parrot #.Bird #.Animal

⎕CLASS¨ Parrot Animal
#.Parrot #.Bird #.Animal #.Animal

186 Dyalog APL/W Language Reference

Example 2
The Penguin Class example (see Programmer's Guide: "Penguin Class Example")
illustrates the use of Interfaces.

In this case, the Penguin Class derives from Animal (as above) but additionally
supports the BirdBehaviour and FishBehaviour Interfaces, thereby inher-
iting members from both.

Pingo←⎕NEW Penguin
⎕CLASS Pingo

#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

Dyadic Case
If X is specified, Ymust be a reference to an Instance of a Class and X is a reference to
an Interface that is supported by Instance Y or to a Class upon which Instance Y is
based.

In this case, R is a reference to the implementation of Interface X by Instance Y, or to
the implementation of (Base) Class X by Instance Y, and is used as a cast in order to
access members of Y that correspond to members of Interface of (Base) Class X.

Example 1:
Once again, the Penguin Class example Programmer's Guide: "Penguin Class Exam-
ple" is used to illustrate the use of Interfaces.

Pingo←⎕NEW Penguin
⎕CLASS Pingo

#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

(FishBehaviour ⎕CLASS Pingo).Swim
I can dive and swim like a fish

(BirdBehaviour ⎕CLASS Pingo).Fly
Although I am a bird, I cannot fly

(BirdBehaviour ⎕CLASS Pingo).Lay
I lay one egg every year

(BirdBehaviour ⎕CLASS Pingo).Sing
Croak, Croak!

Chapter 3: System Functions & Variables 187

Example 2:

This example illustrates the use of dyadic ⎕CLASS to cast an Instance to a lower
Class and thereby access a member in the lower Class that has been superseded by
another Class higher in the tree.

Polly←⎕NEW DomesticParrot
Polly.Speak

Squark! Who's a pretty boy, then!

Note that the Speakmethod invoked above is the Speakmethod defined by Class
DomesticParrot, which supersedes the Speakmethods of sub-classes Parrot
and Bird.

You may use a cast to access the (superseded) Speakmethod in the sub-classes
Parrot and Bird.

(Parrot ⎕CLASS Polly).Speak
Squark!

(Bird ⎕CLASS Polly).Speak
Tweet, tweet!

Clear Workspace: ⎕CLEAR

A clear workspace is activated, having the name CLEAR WS. The active workspace
is lost. All system variables assume their default values. The maximum size of work-
space is available.

The contents of the session namespace ⎕SE are not affected.

Example
⎕CLEAR
⎕WSID

CLEAR WS

188 Dyalog APL/W Language Reference

Execute Windows Command: R←⎕CMD Y

⎕CMD executes a Windows Command Processor or UNIX shell or starts anotherWin-
dows application program. ⎕CMD is a synonym of ⎕SH. Either system function may
be used in either environment (Windows or UNIX) with exactly the same effect.
⎕CMD is probably more natural for the Windows user. This section describes the
behaviour of ⎕CMD and ⎕SH underWindows. See "Execute (UNIX) Command: " on
page 370 for a discussion of the behaviour of these system functions under UNIX.

The system commands)CMD and)SH provide similar facilities but may only be
executed from the APL Session.

Executing a Windows Command
If Y is a simple character vector, ⎕CMD invokes the Windows Command Processor
(normally cmd.exe) and passes Y to it for execution. R is a vector of character vec-
tors containing the result of the command. Each element in R corresponds to a line
of output produced by the command.

Example
Z←⎕CMD'DIR'
⍴Z

8
↑Z

Volume in drive C has no label
Directory of C:\DYALOG

. <DIR> 5-07-89 3.02p

.. <DIR> 5-07-89 3.02p
SALES DWS 110092 5-07-89 3.29p
EXPENSES DWS 154207 5-07-89 3.29p

If the command specified in Y already contains the redirection symbol (>) the capture
of output through a pipe is avoided and the result R is empty. If the command spec-
ified by Y issues prompts and expects user input, it is ESSENTIAL to explicitly redi-
rect input and output to the console. If this is done, APL detects the presence of a
">" in the command line, runs the command processor in a visible window, and does
not direct output to the pipe. If you fail to do this your system will appear to hang
because there is no mechanism for you to receive or respond to the prompt.

Chapter 3: System Functions & Variables 189

Example
⎕CMD 'DATE <CON >CON'

(Command Prompt window appears)

Current date is Wed 19-07-1995

Enter new date (dd-mm-yy): 20-07-95

(COMMAND PROMPT window disappears)

Implementation Notes

The right argument of ⎕CMD is simply passed to the appropriate command processor
for execution and its output is received using an unnamed pipe.

By default, ⎕CMD will execute the string ('cmd.exe /c',Y); where Y is the argu-
ment given to ⎕CMD. However, the implementation permits the use of alternative
command processors as follows.

Before execution, the argument is prefixed and postfixed with strings defined by the
APL parameters CMD_PREFIX and CMD_POSTFIX. The former specifies the name
of your command processor and any parameters that it requires. The latter specifies a
string which may be required. If CMD_PREFIX is not defined, it defaults to the
name defined by the environment variable COMSPEC followed by "/c". If COM-
SPEC is not defined, it defaults to cmd.exe. If CMD_POSTFIX is not defined, it
defaults to an empty vector.

⎕CMD treats certain characters as having special meaning as follows:

marks the start of a trailing comment,

; divides the command into sub-commands,

>
if found within the last sub-command, causes ⎕CMD to use a visible
window.

If you simply wish to open a Command Prompt window, you may execute the com-
mand as a Windows Program (see below). For example:

⎕CMD 'cmd.exe' ''

190 Dyalog APL/W Language Reference

Executing a Windows Program
If Y is a 2-element vector of character vectors, ⎕CMD starts the executable program
named by Y[1] with the initial window parameter specified by Y[2]. The shy
result is an integer scalar containing the window handle allocated by the window
manager.

Y[1]must specify the name or complete pathname of an executable program. If the
name alone is specified, Windows will search the following directories:

1. the current directory,
2. the Windows directory,
3. the Windows system directory,
4. the directories specified by the PATH variable,
5. the list of directories mapped in a network.

Note that Y[1]may contain the complete command line, including any suitable
parameters for starting the program. If Windows fails to find the executable program,
⎕CMD will fail and report FILE ERROR 2.

Y[2] specifies the window parameter and may be one of the following. If not, a
DOMAIN ERROR is reported.

'Normal'
''

Application is started in a normal window, which is given
the input focus

'Unfocused'
Application is started in a normal window, which is NOT
given the input focus

'Hidden' Application is run in an invisible window

'Minimized'
'Minimised'

Application is started as an icon which is NOT given the
input focus

'Maximized'
'Maximised'

Application is started maximized (full screen) and is given
the input focus

An application started by ⎕CMDmay ONLY be terminated by itself or by the user.
There is no way to close it from APL. Furthermore, if the window parameter is HID-
DEN, the user is unaware of the application (unless it makes itself visible) and has no
means to close it.

Examples
Path←'c:\Program Files\Microsoft Office\Office\'
⎕←⎕CMD (Path,'excel.exe') ''

33
⎕CMD (Path,'winword /mMyMacro') 'Minimized'

Chapter 3: System Functions & Variables 191

Start Windows Auxiliary Processor: X ⎕CMD Y

Used dyadically, ⎕CMD starts an Auxiliary Processor. The effect, as far as the APL
workspace is concerned, is identical under both Windows and UNIX, although the
method of implementation differs. ⎕CMD is a synonym of ⎕SH. Either function may
be used in either environment (Windows or UNIX) with exactly the same effect.
⎕CMD is probably more natural for the Windows user. This section describes the
behaviour of ⎕CMD and ⎕SH underWindows. See "Start UNIX Auxiliary Processor:
" on page 371 for a discussion of the behaviour of these system functions under
UNIX.

Xmust be a simple character vector containing the name (or pathname) of a Dyalog
APL Auxiliary Processor (AP). See User Guide for details of how to write an AP.

Ymay be a simple character scalar or vector, or a vector of character vectors. Under
Windows the contents of Y are ignored.

⎕CMD loads the Auxiliary Processor into memory. If no other APs are currently run-
ning, ⎕CMD also allocates an area of memory for communication between APL and
its APs.

The effect of starting an AP is that one or more external functions are defined in the
workspace. These appear as locked functions and may be used in exactly the same
way as regular defined functions.

When an external function is used in an expression, the argument(s) (if any) are
passed to the AP for processing via the communications area described above. APL
halts whilst the AP is processing, and waits for a result. UnderWindows, unlike
under UNIX, it is not possible for external functions to run in parallel with APL.

192 Dyalog APL/W Language Reference

Canonical Representation: R←⎕CR Y

Ymust be a simple character scalar or vector which represents the name of a defined
function or operator.

If Y is a name of a defined function or operator, R is a simple character matrix. The
first row of R is the function or operator header. Subsequent rows are lines of the
function or operator. R contains no unnecessary blanks, except for leading inden-
tation of control structures, trailing blanks that pad each row, and the blanks in
comments. If Y is the name of a variable, a locked function or operator, an external
function, or is undefined, R is an empty matrix whose shape is 0 0.

Example
∇R←MEAN X ⍝ Arithmetic mean

[1] R←(+/X)÷⍴X
[2] ∇

+F←⎕CR'MEAN'
R←MEAN X ⍝ Arithmetic mean
R←(+/X)÷⍴X

⍴F
2 30

The definition of ⎕CR has been extended to names assigned to functions by spec-
ification (←), and to local names of functions used as operands to defined operators.

If Y is a name assigned to a primitive function, R is a one-element vector containing
the corresponding function symbol. If Y is a name assigned to a system function, R is
a one element nested array containing the name of the system function.

Examples
PLUS←+
+F←⎕CR'PLUS'

+
⍴F

1
C←⎕CR
C'C'

⎕CR
⍴C'C'

1

Chapter 3: System Functions & Variables 193

∇R←CONDITION (FN1 ELSE FN2) X
[1] →CONDITION/L1
[2] R←FN2 X ⋄ →0
[3] L1:R←FN1 X
[4] ∇

2 ⎕STOP 'ELSE'
(X≥0) ⌊ ELSE ⌈ X←¯2.5

ELSE[2]
X

¯2.5
⎕CR'FN2'

⌈
→⎕LC

¯2

If Y is a name assigned to a derived function, R is a vector whose elements represent
the arrays, functions, and operators from which Y was constructed. Constituent func-
tions are represented by their own ⎕CRs, so in this respect the definition of ⎕CR is
recursive. Primitive operators are treated like primitive functions, and are rep-
resented by their corresponding symbols. Arrays are represented by themselves.

Example
BOX←2 2∘⍴
+F←⎕CR'BOX'

2 2 ∘⍴
⍴F

3
]display F

.→----------.
| .→--. |
| |2 2| ∘ ⍴ |
| '~--' - - |
'∊----------'

If Y is a name assigned to a defined function, R is the ⎕CR of the defined function. In
particular, the name that appears in the function header is the name of the original
defined function, not the assigned name Y.

Example
AVERAGE←MEAN
⎕CR'AVERAGE'

R←MEAN X ⍝ Arithmetic mean
R←(+/X)÷⍴X

194 Dyalog APL/W Language Reference

Change Space: {R}←{X}⎕CS Y

Ymust be namespace reference (ref) or a simple character scalar or vector identifying
the name of a namespace.

If specified, X is a simple character scalar, vector, matrix or a nested vector of char-
acter vectors identifying zero or more workspace objects to be exported into the
namespace Y.

The identifiers in X and Ymay be simple names or compound names separated by
'.' and including the names of the special namespaces '⎕SE', '#', and '##'.

The result R is the full name (starting #.) of the space in which the function or oper-
ator was executing prior to the ⎕CS.

⎕CS changes the space in which the current function or operator is running to the
namespace Y and returns the original space, in which the function was previously run-
ning, as a shy result. After the ⎕CS, references to global names (with the exception
of those specified in X) are taken to be references to global names in Y. References to
local names (i.e. those local to the current function or operator) are, with the excep-
tion of those with name class 9, unaffected. Local names with name class 9 are how-
ever no longer visible.

When the function or operator terminates, the calling function resumes execution in
its original space.

The names listed in X are temporarily exported to the namespace Y. If objects with
the same name exist in Y, these objects are effectively shadowed and are inaccessible.
Note that Dyadic ⎕CSmay be used only if there is a traditional function in the state
indicator (stack). Otherwise there would be no way to retract the export. In this case
(for example in a clear workspace) DOMAIN ERROR is reported.

Note that calling ⎕CS with an empty argument Y obtains the namespace in which a
function is currently executing.

Example

This simple example illustrates how ⎕CSmay be used to avoid typing long path-
names when building a tree of GUI objects. Note that the objects NEW and OPEN are
created as children of the FILEmenu as a result of using ⎕CS to change into the
F.MB.FILE namespace.

Chapter 3: System Functions & Variables 195

∇ MAKE_FORM;F;OLD
[1] 'F'⎕WC'Form'
[2] 'F.MB'⎕WC'MenuBar'
[3] 'F.MB.FILE'⎕WC'Menu' '&File'
[4]
[5] OLD←⎕CS'F.MB.FILE'
[6] 'NEW'⎕WC'MenuItem' '&New'
[7] 'OPEN'⎕WC'MenuItem' '&Open'
[8] ⎕CS OLD
[9]
[10] 'F.MB.EDIT'⎕WC'Menu' '&Edit'
[11]
[12] OLD←⎕CS'F.MB.EDIT'
[13] 'UNDO'⎕WC'MenuItem' '&Undo'
[14] 'REDO'⎕WC'MenuItem' '&Redo'
[15] ⎕CS OLD
[16] ...

∇

Example

Suppose a form F1 contains buttons B1 and B2. Each button maintains a count of the
number of times it has been pressed, and the formmaintains a count of the total
number of button presses. The single callback function PRESS and its subfunction
FMT can reside in the form itself

)CS F1
#.F1

⍝ Note that both instances reference
⍝ the same callback function
'B1'⎕WS'Event' 'Select' 'PRESS'
'B2'⎕WS'Event' 'Select' 'PRESS'

⍝ Initialise total and instance counts.
TOTAL ← B1.COUNT ← B2.COUNT ← 0

∇ PRESS MSG
[1] 'FMT' 'TOTAL'⎕CS⊃MSG ⍝ Switch to instance space
[2] (TOTAL COUNT)+←1 ⍝ Incr total & instance count
[3] ⎕WS'Caption'(COUNT FMT TOTAL)⍝ Set instance caption

∇

∇ CAPT←INST FMT TOTL ⍝ Format button caption.
[1] CAPT←(⍕INST),'/',⍕TOTL ⍝ E.g. 40/100.

∇

196 Dyalog APL/W Language Reference

Example

This example uses ⎕CS to explore a namespace tree and display the structure. Note
that it must export its own name (tree) each time it changes space, because the name
tree is global.

∇ tabs tree space;subs ⍝ Display namespace tree
[1] tabs,space
[2] 'tree'⎕CS space
[3] →(⍴subs←↓⎕NL 9)↓0
[4] (tabs,'. ')∘tree¨subs

∇

)ns x.y
#.x.y

)ns z
#.z

''tree '#'
#
. x
. . y
. z

Comparison Tolerance: ⎕CT

The value of ⎕CT determines the precision with which two numbers are judged to be
equal. Two numbers, X and Y, are judged to be equal if:

(|X-Y)≤⎕CT×(|X)⌈|Y where ≤ is applied without tolerance.

⎕CTmay be assigned any value in the range from 0 to 16*¯8. A value of 0 ensures
exact comparison. The value in a clear workspace is 1E¯14.

⎕CT is an implicit argument of the monadic primitive functions Ceiling (⌈), Floor (⌊)
and Unique (∪), and of the dyadic functions Equal (=), Excluding (~), Find (⍷),
Greater (>), Greater or Equal (≥), Index of (⍳), Intersection (∩), Less (<), Less or Equal
(≤), Match (≡), Membership (∊), Not Match (≢), Not Equal (≠), Residue (|) and
Union (∪), as well as ⎕FMT O-format.

Examples
⎕CT←1E¯10
1.00000000001 1.0000001 = 1

1 0

Chapter 3: System Functions & Variables 197

Copy Workspace: {X}⎕CY Y
Ymust be a simple character scalar or vector identifying a saved workspace. X is
optional. If present, it must be a simple character scalar, vector or matrix. A scalar or
vector is treated as a single row matrix. Each (implied) row of X is interpreted as an
APL name.

Each (implied) row of X is taken to be the name of an active object in the workspace
identified by Y. If X is omitted, the names of all defined active objects in that work-
space are implied (defined functions and operators, variables, labels and names-
paces).

Each object named in X (or implied) is copied from the workspace identified by Y to
become the active object referenced by that name in the active workspace if the
object can be copied. A copied label is re-defined to be a variable of numeric type.
If the name of the copied object has an active referent in the active workspace, the
name is disassociated from its value and the copied object becomes the active ref-
erent to that name. In particular, a function in the state indicator which is dis-
associated may be executed whilst it remains in the state indicator, but it ceases to
exist for other purposes, such as editing.

You may copy an object from a namespace by specifying its full pathname. The
object will be copied to the current namespace in the active workspace, losing its
original parent and gaining a new one in the process. You may only copy a GUI
object into a namespace that is a suitable parent for that object. For example, you
could only copy a Group object from a saved workspace if the current namespace in
the active workspace is itself a Form, SubForm or Group.

See "Copy Workspace: " on page 452 for further information and, in particular, the
manner in which dependant objects are copied.

A DOMAIN ERROR is reported in any of the following cases:

l Y is ill-formed, or is not the name of a workspace with access authorised for
the active user account.

l Any name in X is ill-formed.
l An object named in X does not exist as an active object in workspace

named in Y.

An object being copied has the same name as an active label.

When copying data between Classic and Unicode Editions, ⎕CY will fail and a
TRANSLATION ERROR will be reported if any object in workspace Y fails con-
version between Unicode and ⎕AV indices, whether or not that object is specified by
X. See "Atomic Vector - Unicode: " on page 181 for further details.

198 Dyalog APL/W Language Reference

A WS FULL is reported if the active workspace becomes full during the copying
process.

Example
⎕VR'FOO'

∇ R←FOO
[1] R←10

∇
'FOO' ⎕CY 'BACKUP'
⎕VR'FOO'

∇ R←FOO X
[1] R←10×X

∇

System variables are copied if explicitly included in the left argument, but not if the
left argument is omitted.

Example
⎕LX

(2 3⍴'⎕LX X')⎕CY'WS/CRASH'
⎕LX

→RESTART

A copied object may have the same name as an object being executed. If so, the
name is disassociated from the existing object, but the existing object remains
defined in the workspace until its execution is completed.

Example
)SI

#.FOO[1]*

⎕VR'FOO'
∇ R←FOO

[1] R←10
∇

'FOO'⎕CY'WS/MYWORK'

FOO
1 2 3

)SI
#.FOO[1]*

→⎕LC
10

Chapter 3: System Functions & Variables 199

Digits: R←⎕D

This is a simple character vector of the digits from 0 to 9.

Example
⎕D

0123456789

Decimal Comparison Tolerance: ⎕DCT

The value of ⎕DCT determines the precision with which two numbers are judged to
be equal when the value of ⎕FR is 1287. If ⎕FR is 645, the system uses ⎕CT.

⎕DCTmay be assigned any value in the range from 0 to
2.3283064365386962890625E¯10. A value of 0 ensures exact comparison.
The value in a clear workspace is 1E¯28.

For further information, see "Comparison Tolerance: " on page 196.

Examples
⎕DCT←1E¯10
1.00000000001 1.0000001 = 1

1 0

200 Dyalog APL/W Language Reference

Display Form: R←⎕DF Y

⎕DF sets the Display Form of a namespace, a GUI object, a Class, or an Instance of a
Class.

Ymust be a simple character array that specifies the display form of a namespace. If
defined, this array will be returned by the format functions and ⎕FMT instead of the
default for the object in question. This also applies to the string that is displayed
when the name is referenced but not assigned (the default display).

The result R is the previous value of the Display Form which initially is ⎕NULL.

'F'⎕WC'Form'
⍕F

#.F
⍴⍕F

3
⎕FMT F

#.F
⍴⎕FMT F

1 3
F ⍝ default display uses ⍕

#.F

F.⎕DF 'Pete''s Form'
⍕F

Pete's Form
⍴⍕F

11
⎕FMT F

Pete's Form
⍴⎕FMT F

1 11

Notice that ⎕DF will accept any character array, but ⎕FMT always returns a matrix.

F.⎕DF 2 2 5⍴⎕A
F

ABCDE
FGHIJ

KLMNO
PQRST

⍴⍕F
2 2 5

Chapter 3: System Functions & Variables 201

⍴⎕←⎕FMT F
ABCDE
FGHIJ

KLMNO
PQRST
5 5

Note that ⎕DF defines the Display Form statically, rather than dynamically.

'F'⎕WC'Form' 'This is the Caption'
F

#.F

F.(⎕DF Caption)⍝ set display form to current
caption

F
This is the Caption

F.Caption←'New Caption' ⍝ changing caption does not
⍝ change the display form

F
This is the Caption

You may use the Constructor function to assign the Display Form to an Instance of a
Class. For example:

:Class MyClass
∇ Make arg

:Access Public
:Implements Constructor
⎕DF arg

∇
:EndClass ⍝ MyClass

PD←⎕NEW MyClass 'Pete'
PD

Pete

202 Dyalog APL/W Language Reference

It is possible to set the Display Form for the Root and for ⎕SE

)CLEAR
clear ws

#
#

⎕DF ⎕WSID
#

CLEAR WS

⎕SE
⎕SE

⎕SE.⎕DF 'Session'
⎕SE

Session

Note that ⎕DF applies directly to the object in question and is not automatically
applied in a hierarchical fashion.

'X'⎕NS ''
X

#.X

'Y'X.⎕NS ''
X.Y

#.X.Y
X.⎕DF 'This is X'
X

This is X

X.Y
#.X.Y

Chapter 3: System Functions & Variables 203

Division Method: ⎕DIV

The value of ⎕DIV determines how division by zero is to be treated. If ⎕DIV=0,
division by 0 produces a DOMAIN ERROR except that the special case of 0÷0
returns 1.

If ⎕DIV=1, division by 0 returns 0.

⎕DIVmay be assigned the value 0 or 1. The value in a clear workspace is 0.

⎕DIV is an implicit argument of the monadic function Reciprocal (÷) and the dyadic
function Divide (÷).

Examples
⎕DIV←0

1 0 2 ÷ 2 0 1
0.5 1 2

÷0 1
DOMAIN ERROR

÷0 1
^

⎕DIV←1

÷0 2
0 0.5

1 0 2 ÷ 0 0 4
0 0 0.5

Delay: {R}←⎕DL Y

Ymust be a simple non-negative numeric scalar or one element vector. A pause of
approximately Y seconds is caused.

The shy result R is an integer scalar value indicating the length of the pause in
seconds.

The pause may be interrupted by a strong interrupt.

204 Dyalog APL/W Language Reference

Diagnostic Message: R←⎕DM

This niladic function returns the last reported APL error as a three-element vector, giv-
ing error message, line in error and position of caret pointer.

Example
2÷0

DOMAIN ERROR
2÷0

^

⎕DM
DOMAIN ERROR 2÷0 ^

Chapter 3: System Functions & Variables 205

Extended Diagnostic Message: R←⎕DMX

⎕DMX is a system object that provides information about the last reported APL error.
⎕DMX has thread scope, i.e. its value differs according to the thread from it is ref-
erenced. In a multi-threaded application therefore, each thread has its own value of
⎕DMX.

⎕DMX contains the following Properties (name class 2.6). Note that this list is likely
to change. Your code should not assume that this list will remain unchanged. You
should also not assume that the display form of ⎕DMX will remain unchanged.

Category
character
vector The category of the error

DM
nested
vector

Diagnostic message. This is the same as
⎕DM, but thread safe

EM
character
vector

Event message; this is the same as ⎕EM
⎕EN

EN integer Error number. This is the same as ⎕EN,
but thread safe

ENX integer Sub-error number

HelpURL
character
vector

URL of a web page that will provide help
for this error. Version 13.1 identifies and
has a handler for URLs starting with http:,
https:, mailto: and www. This list may be
extended in future

InternalLocation
nested
vector

Identifies the line of interpreter source
code (file name and line number) which
raised the error. This information may be
useful to Dyalog support when
investigating an issue

Message
character
vector Further information about the error

OSError
see
below

If applicable, identifies the error generated
by the Operating System

Vendor
character
vector

For system generated errors, Vendor will
always contain the character vector
'Dyalog'. This value can be set using
⎕SIGNAL

206 Dyalog APL/W Language Reference

OSError is a 3-element vector whose items are as follows:

1 integer

This indicates how the operating system error was
retrieved.
0 = by the C-library errno() function
1 = by the Windows GetLastError() function

2 integer Error code. The error number returned by the operating
system using errno() or GetLastError() as above

3
character
vector

The description of the error returned by the operating
system

Example
1÷0

DOMAIN ERROR
1÷0

∧
⎕DMX

EM DOMAIN ERROR
Message Divide by zero
HelpURL http://help.dyalog.com/dmx/13.1/General/1

⎕DMX.InternalLocation
arith_su.c 554

Isolation of Handled Errors
⎕DMX cannot be explicitly localised in the header of a function. However, for all
trapped errors, the interpreter creates an environment which effectively makes the cur-
rent instance of ⎕DMX local to, and available only for the duration of, the trap-han-
dling code.

With the exception of ⎕TRAP with Cutback, ⎕DMX is implicitly localised within:

l Any function which explicitly localises ⎕TRAP
l The :Case[List] or :Else clause of a :Trap control structure.
l The right hand side of a D-function Error-Guard.

Chapter 3: System Functions & Variables 207

and is implicitly un-localised when:

l A function which has explicitly localised ⎕TRAP terminates (even if the
trap definition has been inherited from a function further up the stack).

l The :EndTrap of the current :Trap control structure is reached.
l A D-function Error-Guard exists.

During this time, if an error occurs then the localised ⎕DMX is updated to reflect the
values generated by the error.

The same is true for ⎕TRAP with Cutback, with the exception that if the cutback trap
event is triggered, the updated values for ⎕DMX are preserved until the function that
set the cutback trap terminates.

The benefit of the localisation strategy is that code which uses error trapping as a
standard operating procedure (such as a file utility which traps FILE NAME ERROR
and creates missing files when required) will not pollute the environment with irrel-
evant error information.

Example
∇ tie←NewFile name

[1] :Trap 22
[2] tie←name ⎕FCREATE 0
[3] :Else
[4] ⎕DMX
[5] tie←name ⎕FTIE 0
[6] name ⎕FERASE tie
[7] tie←name ⎕FCREATE 0
[8] :EndTrap
[9] ⎕FUNTIE tie

∇

⎕DMX is cleared by)RESET, .

)reset
⍴⎕FMT ⎕DMX

0 0

The first time we run NewFile 'pete', the file doesn't exist and the ⎕FCREATE
in NewFile[2] succeeds.

NewFile 'pete'
1

208 Dyalog APL/W Language Reference

If we run the function again, the ⎕FCREATE in NewFile[2]generates an error
which triggers the :Else clause of the :Trap. On entry to the :Else clause, the
values in ⎕DMX reflect the error generated by ⎕FCREATE. The file is then tied, erased
and recreated.

EM FILE NAME ERROR
Message File exists
HelpURL http://help.dyalog.com/dmx/13.1/Componentfilesystem/9
1

After exiting the :Trap control structure, the shadowed value of ⎕DMX is discarded,
revealing the orignal value that it shadowed.

⍴⎕FMT ⎕DMX
0 0

Example

The EraseFile function also uses a :Trap in order to ignore the situation when
the file doesn't exist.

∇ EraseFile name;tie
[1] :Trap 22
[2] tie←name ⎕FTIE 0
[3] name ⎕FERASE tie
[4] :Else
[5] ⎕DMX
[6] :EndTrap

∇

The first time we run the function, it succeeds in tieing and then erasing the file.

EraseFile 'pete'

The second time, the ⎕FTIE fails. On entry to the :Else clause, the values in ⎕DMX
reflect this error.

EraseFile 'pete'
EM FILE NAME ERROR
Message Unable to open file
OSError 1 2 The system cannot find the file specified.
HelpURL http://help.dyalog.com/dmx/13.1/Componentfilesystem/11

Chapter 3: System Functions & Variables 209

Once again, the local value of ⎕DMX is discarded on exit from the :Trap, revealing
the shadowed value as before.

⍴⎕FMT ⎕DMX
0 0

Example

In this example only the error number (EN) propery of ⎕DMX is displayed in order to
simplify the output:

∇ foo n;⎕TRAP
[1] 'Start foo'⎕DMX.EN
[2] ⎕TRAP←(2 'E' '→err')(11 'C' '→err')
[3] goo n
[4] err:'End foo:'⎕DMX.EN

∇

∇ goo n;⎕TRAP
[1] ⎕TRAP←5 'E' '→err'
[2] ⍎n⊃'÷0' '1 2+1 2 3' '∘'
[3] err:'goo:'⎕DMX.EN

∇

In the first case a DOMAIN ERROR (11) is generated on goo[2]. This error is not
included in the definition of ⎕TRAP in goo, but rather the the Cutback ⎕TRAP def-
inition in foo. The error causes the stack to be cut back to foo, and then execution
branches to foo[4]. Thus ⎕DMX.EN in foo retains the value set when the error
occurred in goo.

foo 1
Start foo 0
End foo: 11

In the second case a LENGTH ERROR (5) is raised on goo[2]. This error is included
in the definition of ⎕TRAP in goo so the value ⎕DMX.EN while in goo is 5, but
when goo terminates and foo resumes execution the value of ⎕DMX.EN localised in
goo is lost.

foo 2
Start foo 0
goo: 5
End foo: 0

210 Dyalog APL/W Language Reference

In the third case a SYNTAX ERROR (2) is raised on goo[2]. Since the ⎕TRAP state-
ment is handled within goo (although the applicable ⎕TRAP is defined in foo), the
value ⎕DMX.EN while in goo is 2, but when goo terminates and foo resumes
execution the value of ⎕DMX.EN localised in goo is lost.

foo 3
Start foo 0
goo: 2
End foo: 0

Dequeue Events: {R}←⎕DQ Y

⎕DQ awaits and processes events. Y specifies the GUI objects(s) for which events are
to be processed. Objects are identified by their names, as character scalars/vectors, or
by namespace references. These may be objects of type Root, Form, Locator, Filebox,
MsgBox, PropertySheet, TCPSocket, Timer, Clipboard and pop-up Menu. Sub-
objects (children) of those named in Y are also included. However, any objects
which exist, but are not named in Y, are effectively disabled (do not respond to the
user).

If Y is '.', all objects currently owned and subsequently created by the current
thread are included in the ⎕DQ. Note that because the Root object is owned by thread
0, events on Root are reported only to thread 0.

If Y is empty it specifies the object associated with the current namespace and is only
valid if the current space is one of the objects listed above.

Otherwise, Y contains the name(s) of or reference(s) to the objects for which events
are to be processed. Effectively, this is the list of objects with which the user may
interact. A DOMAIN ERROR is reported if an element of Y refers to anything other
than an existing "top-level" object.

Associated with every object is a set of events. For every event there is defined an
"action" which specifies how that event is to be processed by ⎕DQ. The "action" may
be a number with the value 0, 1 or ¯1, or a character vector containing the name of a
"callback function", or a character vector containing the name of a callback function
coupled with an arbitrary array. Actions can be defined in a number of ways, but the
following examples will illustrate the different cases.

Chapter 3: System Functions & Variables 211

OBJ ⎕WS 'Event' 'Select' 0

OBJ ⎕WS 'Event' 'Select' 1

OBJ ⎕WS 'Event' 'Select' 'FOO'

OBJ ⎕WS 'Event' 'Select' 'FOO' 10

OBJ ⎕WS 'Event' 'Select' 'FOO&'

These are treated as follows:

Action = 0 (the default)

⎕DQ performs "standard" processing appropriate to the object and type of event. For
example, the standard processing for a KeyPress event in an Edit object is to action
the key press, i.e. to echo the character on the screen.

Action = ¯1
This disables the event. The "standard" processing appropriate to the object and type
of event is not performed, or in some cases is reversed. For example, if the "action
code" for a KeyPress event (22) is set to ¯1, ⎕DQ simply ignores all keystrokes for
the object in question.

Action = 1

⎕DQ terminates and returns information pertaining to the event (the event message in
R as a nested vector whose first two elements are the name of the object (that gen-
erated the event) and the event code. Rmay contain additional elements depending
upon the type of event that occurred.

Action = fn {larg}

fn is a character vector containing the name of a callback function. This function is
automatically invoked by ⎕DQ whenever the event occurs, and prior to the standard
processing for the event. The callback is supplied the event message (see above) as
its right argument, and, if specified, the array larg as its left argument. If the call-
back function fails to return a result, or returns the scalar value 1, ⎕DQ then performs
the standard processing appropriate to the object and type of event. If the callback
function returns a scalar 0, the standard processing is not performed or in some cases
is reversed.

If the callback function returns its event message with some of the parameters
changed, these changes are incorporated into the standard processing. An example
would be the processing of a keystroke message where the callback function sub-
stitutes upper case for lower case characters. The exact nature of this processing is
described in the reference section on each event type.

212 Dyalog APL/W Language Reference

Action = ⍎expr

If Action is set to a character vector whose first element is the execute symbol (⍎)
the remaining string will be executed automatically whenever the event occurs. The
default processing for the event is performed first and may not be changed or inhib-
ited in any way.

Action = fn& {larg}

fn is a character vector containing the name of a callback function. The function is
executed in a new thread. The default processing for the event is performed first and
may not be changed or inhibited in any way.

⎕DQ terminates in one of four instances. Note that its result is shy.

Firstly, ⎕DQ terminates when an event occurs whose "action code" is 1. In this case,
its result is a nested vector containing the event message associated with the event.
The structure of an event message varies according to the event type (see Object Ref-
erence). However, an event message has at least two elements of which the first is a
character vector containing the name of the object, and the second is a numeric code
specifying the event type.

⎕DQ also terminates if all of the objects named in Y have been deleted. In this case,
the result is an empty character vector. Objects are deleted either using ⎕EX, or on
exit from a defined function or operator if the names are localised in the header, or on
closing a form using the systemmenu.

Thirdly, ⎕DQ terminates if the object named in its right argument is a special modal
object, such as a MsgBox, FileBox or Locator, and the user has finished inter-
acting with the object (e.g. by pressing an "OK" button). The return value of ⎕DQ in
this case depends on the action code of the event.

Finally, ⎕DQ terminates with a VALUE ERROR if it attempts to execute a callback
function that is undefined.

Chapter 3: System Functions & Variables 213

Data Representation (Monadic): R←⎕DR Y

Monadic ⎕DR returns the type of its argument Y. The result R is an integer scalar con-
taining one of the following values. Note that the internal representation and data
types for character data differ between the Unicode and Classic Editions.

Table 12: Unicode Edition

Value Data Type

11 1 bit Boolean

80 8 bits character

83 8 bits signed integer

160 16 bits character

163 16 bits signed integer

320 32 bits character

323 32 bits signed integer

326 32 bits Pointer

645 64 bits Floating

1287 128 bits Decimal

Table 13: Classic Edition

Value Data Type

11 1 bit Boolean

82 8 bits character

83 8 bits signed integer

163 16 bits signed integer

323 32 bits signed integer

326 32 bits Pointer

645 64 bits Floating

1287 128 bits Decimal

Note that types 80, 160 and 320 and 83 and 163 and 1287 are exclusive to Dyalog
APL.

214 Dyalog APL/W Language Reference

Data Representation (Dyadic): R←X ⎕DR Y

Dyadic ⎕DR converts the data type of its argument Y according to the type spec-
ification X. See "Data Representation (Monadic):" above for a list of data types but
note that 1287 is not a permitted value in X.

Case 1:
X is a single integer value. The bits in the right argument are interpreted as elements
of an array of type X. The shape of the resulting new array will typically be changed
along the last axis. For example, a character array seen as Boolean will have 8 times
as many elements along the last axis.

Case 2:
X is a 2-element integer value. The bits in the right argument are interpreted as type
X[1]. The system then attempts to convert the elements of the resulting array to type
X[2] without loss of precision. The result R is a two element nested array comprised
of:

1. The converted elements or a fill element (0 or blank) where the conversion
failed

2. A Boolean array of the same shape indicating which elements were suc-
cessfully converted.

Case 3: Classic Edition Only
X is a 3-element integer value and X[2 3] is 163 82. The bits in the right argu-
ment are interpreted as elements of an array of type X[1]. The system then converts
them to the character representation of the corresponding 16 bit integers. This case is
provided primarily for compatibility with APL*PLUS. For new applications, the use
of the [conv] field with ⎕NAPPEND and ⎕NREPLACE is recommended.

Conversion to and from character (data type 82) uses the translate vector given by
⎕NXLATE 0. By default this is the mapping defined by the current output translate
table (usually WIN.DOT).

Note. The internal representation of data may be modified during workspace com-
paction. For example, numeric arrays and (in the Unicode Edition) character arrays
will, if possible, be squeezed to occupy the least possible amount of memory. How-
ever, the internal representation of the result R is guaranteed to remain unmodified
until it is re-assigned (or partially re-assigned) with the result of any function.

Chapter 3: System Functions & Variables 215

Edit Object: {R}←{X}⎕ED Y

⎕ED invokes the Editor. Y is a simple character vector, a simple character matrix, or a
vector of character vectors, containing the name(s) of objects to be edited. The
optional left argument X is a character scalar or character vector with as many ele-
ments as there are names in Y. Each element of X specifies the type of the cor-
responding (new) object named in Y, where:

∇ function/operator

→ simple character vector

∊ vector of character vectors

- character matrix

⍟ Namespace script

○ Class script

∘ Interface

If an object named in Y already exists, the corresponding type specification in X is
ignored.

If ⎕ED is called from the Session, it opens Edit windows for the object(s) named in Y
and returns a null result. The cursor is positioned in the first of the Edit windows
opened by ⎕ED, but may be moved to the Session or to any other window which is
currently open. The effect is almost identical to using)ED.

If ⎕ED is called from a defined function or operator, its behaviour is different. On
asynchronous terminals, the Edit windows are automatically displayed in "full-
screen" mode (ZOOMED). In all implementations, the user is restricted to those win-
dows named in Y. The user may not skip to the Session even though the Session may
be visible

⎕ED terminates and returns a result ONLY when the user explicitly closes all the win-
dows for the named objects. In this case the result contains the names of any objects
which have been changed, and has the same structure as Y.

Event Message: R←⎕EM Y

Ymust be a simple non-negative integer scalar or vector of event codes. If Y is a sca-
lar, R is a simple character vector containing the associated event message. If Y is a
vector, R is a vector of character vectors containing the corresponding event mes-
sages.

216 Dyalog APL/W Language Reference

If Y refers to an undefined error code "n", the event message returned is "ERROR
NUMBER n".

Example
⎕EM 11

DOMAIN ERROR

Exception: R←⎕EXCEPTION

This is a system object that identifies the most recent Exception thrown by a Micro-
soft .Net object.

⎕EXCEPTION derives from the Microsoft .Net class System.Exception. Among its
properties are the following, all of which are strings:

Source
The name of the .Net namespace in which the exception was
generated

StackTrace The calling stack

Message The error message

⎕USING←'System'
DT←DateTime.New 100000 0 0

EXCEPTION
DT←DateTime.New 100000 0 0

⎕EN
90

⎕EXCEPTION.Message
Specified argument was out of the range of valid values.

Parameter name: Year, Month, and Day parameters describe
an unrepresentable DateTime.

⎕EXCEPTION.Source
mscorlib

⎕EXCEPTION.StackTrace
at System.DateTime.DateToTicks(Int32 year,

Int32 month, Int32 day)

at System.DateTime..ctor(Int32 year,
Int32 month, Int32 day)

Chapter 3: System Functions & Variables 217

Expunge Object: {R}←⎕EX Y

Ymust be a simple character scalar, vector or matrix, or a vector of character vectors
containing a list of names. R is a simple Boolean vector with one element per name
in Y.

Each name in Y is disassociated from its value if the active referent for the name is a
defined function, operator, variable or namespace.

The value of an element of R is 1 if the corresponding name in Y is now available for
use. This does not necessarily mean that the existing value was erased for that
name. A value of 0 is returned for an ill-formed name or for a distinguished name in
Y. The result is suppressed if not used or assigned.

Examples
⎕EX'VAR'
+⎕EX'FOO' '⎕IO' 'X' '123'

1 0 1 0

If a named object is being executed the existing value will continue to be used until
its execution is completed. However, the name becomes available immediately for
other use.

Examples
)SI

#.FOO[1]*

⎕VR'FOO'
∇ R←FOO

[1] R←10
∇
+⎕EX'FOO'

1
)SI

#.FOO[1]*

∇FOO[⎕]
defn error

FOO←1 2 3
→⎕LC

10
FOO

1 2 3

218 Dyalog APL/W Language Reference

If a named object is an external variable, the external array is disassociated from the
name:

⎕XT'F'
FILES/COSTS

⎕EX'F' ⋄ ⎕XT'F'

If the named object is a GUI object, the object and all its children are deleted and
removed from the screen. The expression ⎕EX'.' deletes all objects owned by the
current thread except for the Root object itself. In addition, if this expression is
executed by thread 0, it resets all the properties of '.' to their default values. Fur-
thermore, any unprocessed events in the event queue are discarded.

If the named object is a shared variable, the variable is retracted.

If the named object is the last remaining external function of an auxiliary process, the
AP is terminated.

If the named object is the last reference into a dynamic link library, the DLL is freed.

Chapter 3: System Functions & Variables 219

Export Object: {R}←{X}⎕EXPORT Y

⎕EXPORT is used to set or query the export type of a defined function (or operator)
referenced by the ⎕PATHmechanism.

Y is a character matrix or vector-of-vectors representing the names of functions and
operators whose export type is to be set or queried.

X is an integer scalar or vector (one per name in the namelist) indicating the export
type. X can currently be one of the values:

l 0 - not exported.
l 1 - exported (default).

A scalar or 1-element-vector type is replicated to conform with a multi-name list.

The result R is a vector that reports the export type of the functions and operators
named in Y. When used dyadically to set export type, the result is shy.

When the path mechanism locates a referenced function (or operator) in the list of
namespaces in the ⎕PATH system variable, it examines the function’s export type:

0

This instance of the function is ignored and the search is resumed at the
next namespace in the ⎕PATH list. Type-0 is typically used for functions
residing in a utility namespace which are not themselves utilities, for
example the private sub-function of a utility function.

1
This instance of the function is executed in the namespace in which is
was found and the search terminated. The effect is exactly as if the
function had been referenced by its full path name.

Warning: The left domain of ⎕EXPORTmay be extended in future to include extra
types 2, 3,... (for example, to change the behaviour of the function). This means that,
while ⎕EXPORT returns a Boolean result in the first version, this may not be the case
in the future. If you need a Boolean result, use 0≠ or an equivalent.

(0≠⎕EXPORT ⎕nl 3 4)⌿⎕nl 3 4 ⍝ list of exported
⍝ functions and ops.

220 Dyalog APL/W Language Reference

File Append Component: {R}←X ⎕FAPPEND Y

Access code 8

Ymust be a simple integer scalar or a 1 or 2 element vector containing the file tie
number followed by an optional passnumber. If the passnumber is omitted it is
assumed to be zero. Xmay be any array including, for example, the ⎕OR of a
namespace.

The shy result R is the number of the component to which X is written, and is 1
greater than the previously highest component number in the file, or 1 if the file is
new.

Examples
(1000?1000) ⎕FAPPEND 1

⎕←(2 3⍴⍳6) 'Geoff' (⎕OR'FOO') ⎕FAPPEND 1
12

⎕←A B C ⎕FAPPEND¨1
13 14 15

Dump←{
tie←⍺ ⎕FCREATE 0 ⍝ create file.
(⎕FUNTIE tie){}⍵ ⎕FAPPEND tie ⍝ append and untie.

}

File System Available: R←⎕FAVAIL

This niladic function returns the scalar value 1 unless the component file system is
unavailable for some reason, in which case it returns scalar 0. If ⎕FAVAIL does
return 0, most of the component file system functions will generate the error message:

FILE SYSTEM NOT AVAILABLE

See User Guide for further details.

Chapter 3: System Functions & Variables 221

File Check and Repair: R←{X} ⎕FCHK Y

⎕FCHK validates and repairs component files, and validates files associated with
external variables, following an abnormal termination of the APL process or oper-
ating system.

Y must be a simple character scalar or vector which specifies the name of the file to
be exclusively checked or repaired. For component files, the file must be named in
accordance with the operating system's conventions, and may be a relative or abso-
lute pathname. The file must exist and must not be tied. For files associated with
external variables, any filename extension must be specified even if ⎕XT would not
require it. See User Guide for file naming conventions underWindows and UNIX.
The file must exist and must not be associated with an external variable.

The optional left-argument Xmust be a vector of zero or more character vectors from
among 'force', 'repair' and 'rebuild', which determine the detailed oper-
ation of the function. Note that these options are case-sensitive.

l If X contains 'force' ⎕FCHK will validate the file even if it appears to
have been cleanly untied.

l If X contains 'repair' ⎕FCHK will repair the file, following validation,
if it appears to be damaged. This option may be used in conjunction with
'force'.

l If X contains 'rebuild' ⎕FCHK will repair the file unconditionally.

If X is omitted, the default behaviour is as follows:

1. If the file appears to have been cleanly untied previously, return ⍬, i.e.
report that the file is OK.

2. Otherwise, validate the file and return the appropriate result. If the file is cor-
rupt, no attempt is made to repair it.

The result R is a vector of the numbers of missing or damaged components. Rmay
include non-positive numbers of "pseudo components" that indicate damage to parts
of the file other than in specific components:

0 ACCESS MATRIX.

¯1 Free-block tree.

¯2 Component index tree.

Other negative numbers represent damage to the file metadata; this set may be
extended in the future.

222 Dyalog APL/W Language Reference

Following a check of the file, a non-null result indicates that the file is damaged.

Following a repair of the file, the result indicates those components that could not
be recovered. Un-recovered components will give a FILE COMPONENT DAMAGED
error if read but may be replaced without error.

Repair can recover only check-summed components from the file, i.e. only those com-
ponents that were written with the checksum option enabled (see "File Properties: "
on page 242).

Following an operating system crash, repair may result in one or more individual
components being rolled back to a previous version or not recovered at all, unless
Journaling levels 2 or 3 were also set when these components were written.

File Copy: R←X ⎕FCOPY Y

Access Code: 4609

Ymust be a simple integer scalar or 1 or 2-element vector containing the file tie
number and optional passnumber. The file need not be tied exclusively.

X is a character vector containing the name of a new file to be copied to.

⎕FCOPY creates a copy of the tied file specified by Y, named X. The new file X will
be a 64-bit file, but will otherwise be identical to the original file. In particular all
component level information, including the user number and update time, will be the
same. The operating system file creation, modification and access times will be set to
the time at which the copy occurred.

The result R is the file tie number associated with the new file X.

Note that the Access Code is 4609, which is the sum of the Access Codes for
⎕FREAD (1), ⎕FRDCI (512) and ⎕FRDAC (4096).

Example
told←'oldfile32'⎕FTIE 0
'S' ⎕FPROPS told

32
tnew←'newfile64' ⎕FCOPY told

'S' ⎕FPROPS tnew
64

If X specifies the name of an existing file, the operation fails with a FILE NAME
ERROR.

Chapter 3: System Functions & Variables 223

Note: This operation is atomic. If an error occurs during the copy operation (such as
disk full) or if a strong interrupt is issued, the copy will be aborted and the new file X
will not be created.

224 Dyalog APL/W Language Reference

File Create: {R}←X ⎕FCREATE Y

Ymust be a simple integer scalar or a 1 or 2 element vector containing the file tie
number followed by an optional address size. .

The file tie numbermust not be the tie number associated with another tied file.

The address size is an integer and may be either 32 or 64. A value of 32 causes the
internal component addresses to be represented by 32-bit values which allow a max-
imum file size of 4GB. A value of 64 (the default) causes the internal component
addresses to be represented by 64-bit values which allows file sizes up to operating
system limits. Note that 32-bit component files will. See below.

Note:

l a 32-bit component file may not contain Unicode character data.
l a 64-bit component file may not be accessed by versions of Dyalog APL

prior to Version 10.1.0

Xmust be either

a. a simple character scalar or vector which specifies the name of the file to be
created. See User Guide for file naming conventions under UNIX and Win-
dows.

b. a vector of length 1 or 2 whose items are:

i. a simple character scalar or vector as above.
ii. an integer scalar specifying the file size limit in bytes.

The newly created file is tied for exclusive use.

The shy result of ⎕FCREATE is the tie number of the new file.

Automatic Tie Number Allocation
A tie number of 0 as argument to a create or tie operation, allocates, and returns as an
explicit result, the first (closest to zero) available tie number. This allows you to sim-
plify code. For example:

from:

tie←1+⌈/0,⎕FNUMS ⍝ With next available number,
file ⎕FCREATE tie ⍝ ... create file.

to:

tie←file ⎕FCREATE 0 ⍝ Create with first available..

Chapter 3: System Functions & Variables 225

Examples
'..\BUDGET\SALES' ⎕FCREATE 2 ⍝ Windows
'../budget/SALES.85' ⎕FCREATE 2 ⍝ UNIX

'COSTS' 200000 ⎕FCREATE 4 ⍝ max size
200000

'LARGE' ⎕FCREATE 5 64 ⍝ 64-bit file
'SMALL' ⎕FCREATE 6 32 ⍝ 32-bit file

Important Note
Dyalog intends to withdraw support for 32-bit component files in future releases.

If you have any existing 32-bit component files, or applications which create and/or
use them, Dyalog recommends that you prepare for this in the following ways:

l Ensure that Dyalog is not started with the command-line option –F32. This
option sets the default component file type which is created to 32-bit.

l Ensure that no ⎕FCREATE within your applications explicitly specifies that
32-bit files are to be created.

l Make plans to convert any existing 32-bit component files to 64-bit using
⎕FCOPY. ⎕FCOPY will create a 64-bit copy even if the file being copied is
32-bit.

Note: in order to allow the use of legacy files retrieved from backups etc., Dyalog
will continue to provide a means to convert 32-bit files to supported formats for a
minimum of 10 years after direct support is withdrawn.

226 Dyalog APL/W Language Reference

File Drop Component: {R}←⎕FDROP Y

Access code 32

Ymust be a simple integer vector of length 2 or 3 whose elements are:

[1] a file tie number

[2]

a number specifying the position and number of components to be
dropped. A positive value indicates that components are to be
removed from the beginning of the file; a negative value indicates that
components are to be removed from the end of the file

[3] an optional passnumber which if omitted is assumed to be zero

The shy result of a ⎕FDROP is a vector of the numbers of the dropped components.
This is analogous to ⎕FAPPEND in that the result is potentially useful for updating
some sort of dictionary:

cnos,←vec ⎕FAPPEND¨tie ⍝ Append index to dictionary

cnos~←⎕FDROP tie,-⍴vec ⍝ Remove index from dict.

Note that the result vector, though potentially large, is generated only on request.

Examples
⎕FSIZE 1

1 21 5436 4294967295

⎕FDROP 1 3 ⋄ ⎕FSIZE 1
4 21 5436 4294967295

⎕FDROP 1 ¯2 ⋄ ⎕FSIZE 1
4 19 5436 4294967295

Chapter 3: System Functions & Variables 227

File Erase: {R}←X ⎕FERASE Y

Access code 4

Ymust be a simple integer scalar or 1 or 2 element vector containing the file tie
number followed by an optional passnumber. If the passnumber is omitted it is
assumed to be zero. Xmust be a character scalar or vector containing the name of the
file associated with the tie number Y. This name must be identical with the name
used to tie the file, and the file must be exclusively tied. The file named in X is
erased and untied. See User Guide for file naming conventions under UNIX and
Windows.

The shy result of ⎕FERASE is the tie number of the erased file.

Examples
'SALES'⎕FERASE 'SALES' ⎕FTIE 0

'./temp' ⎕FCREATE 1
'temp' ⎕FERASE 1

FILE NAME ERROR
'temp'⎕FERASE 1
^

File History: R←⎕FHIST Y

Access code 16384

Ymust be a simple integer vector of length 1 or 2 containing the file tie number and
an optional passnumber. If the passnumber is omitted it is assumed to be zero.

The result is a numeric matrix with shape (5 2) whose rows represent the most recent
occurrence of the following events.

1. File creation (see note)
2. (Undefined)
3. Last update of the access matrix
4. Last tie (See User Guide: APL_FHIST_TIE parameter)
5. Last update performed by ⎕FAPPEND, ⎕FCREATE, ⎕FDROP or

⎕FREPLACE

For each event, the first column contain the user number and the second a timestamp.
Like the timestamp reported by ⎕FRDCIthis is measured in 60ths of a second since
1st January 1970 (UTC).

Currently, the second row of the result (undefined) contains (0 0).

228 Dyalog APL/W Language Reference

Note: ⎕FHIST collects information only if journaling and/or checksum is in oper-
ation. If neither is in use, the collection of data for ⎕FHIST is disabled and its result
is entirely 0. If a file has both journaling and checksum disabled, and then either is
enabled, the collection of data for ⎕FHIST is enabled too. In this case, the infor-
mation in row 1 of ⎕FHIST relates to the most recent enabling ⎕FPROPS operation
rather than the original ⎕FCREATE.

In the examples that follow, the FHist function is used below to format the result of
⎕FHIST.

∇ r←FHist tn;cols;rows;fhist;fmt;ToTS;I2D
[1] rows←'Created' 'Undefined' 'Last ⎕FSTAC'
[2] rows,←'Last Tied' 'Last Updated'
[3] cols←'User' 'TimeStamp'
[4] fmt←'ZI4,2(⊂-⊃,ZI2),⊂ ⊃,ZI2,2(⊂:⊃,ZI2)'|
[5] I2D←{+2 ⎕NQ'.' 'IDNToDate'⍵}
[6] ToTS←{d t←1 1 0 0 0⊂⍉⌊0 24 60 60 60⊤⍵
[7] ↓fmt ⎕FMT(0 ¯1↓↑I2D¨25568+,d),0 ¯1↓t}
[8] fhist←⎕FHIST tn
[9] fhist[;2]←ToTS fhist[;2]
[10] fhist[;1]←⍕¨fhist[;1]
[11] r←((⊂''),rows),cols⍪fhist

∇

Examples
'c:\temp'⎕FCREATE 1 ⋄ FHist 1

User TimeStamp
Created 0 2012-01-14 12:29:53
Undefined 0 1970-01-01 00:00:00
Last ⎕FSTAC 0 2012-01-14 12:29:53
Last Tied 0 2012-01-14 12:29:53
Last Updated 0 2012-01-14 12:29:53

(⍳10)⎕FAPPEND 1 ⋄ FHist 1
User TimeStamp

Created 0 2012-01-14 12:29:53
Undefined 0 1970-01-01 00:00:00
Last ⎕FSTAC 0 2012-01-14 12:29:53
Last Tied 0 2012-01-14 12:29:53
Last Updated 0 2012-01-14 12:29:55

⎕FUNTIE 1

'c:\temp'⎕FCREATE 1 ⋄ FHist 1
User TimeStamp

Created 0 2012-01-14 12:29:53
Undefined 0 1970-01-01 00:00:00
Last ⎕FSTAC 0 2012-01-14 12:29:53
Last Tied 0 2012-01-14 12:29:57
Last Updated 0 2012-01-14 12:29:55

Chapter 3: System Functions & Variables 229

File Hold: {R}←⎕FHOLD Y

Access code 2048
This function holds component file(s) and/or external variable(s).

If applied to component files, then Y is an integer scalar, vector, or one-row matrix of
file tie numbers, or a two-row matrix whose first row contains file tie numbers and
whose second row contains passnumbers.

If applied to external variables, then Y is a non-simple scalar or vector of character
vectors, each of which is the name of an external variable. (NOT the file names asso-
ciated with those variables).

If applied to component files and external variables, Y is a vector whose elements are
either integer scalars representing tie numbers, or character vectors containing names
of external variables.

The effect is as follows:

1. The user's preceding holds (if any) are released.
2. Execution is suspended until the designated files are free of holds by any

other task.
3. When all the designated files are free, execution proceeds. Until the hold is

released, other tasks using ⎕FHOLD on any of the designated files will wait.

If Y is empty, the user's preceding hold (if any) is released, and execution continues.

A hold is released by any of the following:

l Another ⎕FHOLD
l Untying or retying all the designated files. If some but not all are untied or

retied, they become free for another task but the hold persists for those that
remain tied.

l Termination of APL.
l Any untrapped error or interrupt.
l A return to immediate execution.

Note that a hold is not released by a request for input through ⎕ or ⍞.

Note also that point 5 above implies that ⎕FHOLD is generally useful only when
called from a defined function, as holds set in immediate execution (desk calculator)
mode are released immediately.

The shy result of ⎕FHOLD is a vector of tie numbers of the files held.

230 Dyalog APL/W Language Reference

Examples:
⎕FHOLD 1

⎕FHOLD ⍬

⎕FHOLD ⊂'XTVAR'

⎕FHOLD 1 2,[0.5]0 16385

⎕FHOLD 1 'XTVAR'

Fix Script: {R}←{X}⎕FIX Y

⎕FIX fixes a Class from the script specified by Y.

Ymust be a vector of character vectors or character scalars that contains a well-
formed Class script. If so, the shy result R is a reference to the new Class fixed by
⎕FIX.

The Class specified by Ymay be named or unnamed.

If specified, Xmust be a numeric scalar. If X is omitted or non-zero, and the Class
script Y specifies a name (for the Class), ⎕FIX establishes that Class in the work-
space.

If X is 0 or the Class specified by Y is unnamed, the Class is not established per se,
although it will exist for as long as a reference to it exists.

In the first example, the Class specified by Y is named (MyClass) but the result of
⎕FIX is discarded. The end-result is that MyClass is established in the workspace
as a Class.

⎕←⎕FIX ':Class MyClass' ':EndClass'
#.MyClass

In the second example, the Class specified by Y is named (MyClass) and the result
of ⎕FIX is assigned to a different name (MYREF). The end-result is that a Class
named MyClass is established in the workspace, and MYREF is a reference to it.

MYREF←⎕FIX ':Class MyClass' ':EndClass'
)CLASSES

MyClass MYREF
⎕NC'MyClass' 'MYREF'

9.4 9.4
MYREF

#.MyClass

Chapter 3: System Functions & Variables 231

In the third example, the left-argument of 0 causes the named Class MyClass to be
visible only via the reference to it (MYREF). It is there, but hidden.

MYREF←0 ⎕FIX ':Class MyClass' ':EndClass'
)CLASSES

MYREF
MYREF

#.MyClass

The final example illustrates the use of un-named Classes.

src←':Class' '∇Make n'
src,←'Access Public' 'Implements Constructor'
src,←'⎕DF n' '∇' ':EndClass'
MYREF←⎕FIX src
)CLASSES

MYREF
MYINST←⎕NEW MYREF'Pete'
MYINST

Pete

Component File Library: R←⎕FLIB Y

Ymust be a simple character scalar or vector which specifies the name of the direc-
tory whose APL component files are to be listed. If Y is empty, the current working
directory is assumed.

The result R is a character matrix containing the names of the component files in the
directory with one row per file. The number of columns is given by the longest file
name. Each file name is prefixed by Y followed by a directory delimiter character.
The ordering of the rows is not defined.

If there are no APL component files accessible to the user in the directory in ques-
tion, the result is an empty character matrix with 0 rows and 0 columns.

Note that if a file is exclusively tied (as opposed to share tied) then it is not reported
by ⎕FLIB.

Examples
⎕FLIB ''

SALESFILE
COSTS

⎕FLIB '.'
./SALESFILE
./COSTS

232 Dyalog APL/W Language Reference

⎕FLIB '../budget'
../budget/SALES.85
../budget/COSTS.85

Format (Monadic): R←⎕FMT Y

Ymay be any array. R is a simple character matrix which appears the same as the
default display of Y. If Y contains control characters from ⎕TC, they will be resolved.

Examples
A←⎕FMT '∩' ,⎕TC[1],'∘'

⍴A
1 1

A
⍝

A←⎕VR 'FOO'

A
∇ R←FOO

[1] R←10
∇

⍴A
31

B←⎕FMT A

B
∇ R←FOO

[1] R←10
∇

⍴B
3 12

Chapter 3: System Functions & Variables 233

Format (Dyadic): R←X ⎕FMT Y

Ymust be a simple array of rank not exceeding two, or a non-simple scalar or vector
whose items are simple arrays of rank not exceeding two. The simple arrays in Y
must be homogeneous, either character or numeric. All numeric values in Ymust be
simple; if Y contains any complex numbers, dyadic ⎕FMT will generate a DOMAIN
ERROR. Xmust be a simple character vector. R is a simple character matrix.

X is a format specification that defines how columns of the simple arrays in Y are to
appear. A simple scalar in Y is treated as a one-element matrix. A simple vector in Y
is treated as a one-column matrix. Each column of the simple arrays in Y is formatted
in left-to-right order according to the format specification in X taken in left-to-right
order and used cyclically if necessary.

R has the same number of rows as the longest column (or implied column) in Y, and
the number of columns is determined from the format specification.

The format specification consists of a series of control phrases, with adjacent phrases
separated by a single comma, selected from the following:

rAw Alphanumeric format

rEw.s Scaled format

rqFw.d Decimal format

rqG⍞pattern⍞ Pattern

rqIw Integer format

Tn Absolute tabulation

Xn Relative tabulation

⍞t⍞ Text insertion

(Alternative surrounding pairs for Pattern or Text insertion are < >, ⊂ ⊃, ⎕ ⎕ or
¨ ¨.)

234 Dyalog APL/W Language Reference

where:

r
is an optional repetition factor indicating that the format phrase
is to be applied to r columns of Y

q
is an optional usage of qualifiers or affixtures from those
described below.

w
is an integer value specifying the total field width per column
of Y, including any affixtures.

s
is an integer value specifying the number of significant digits
in Scaled format; s must be less than w-1

d
is an integer value specifying the number of places of decimal
in Decimal format; d must be less than w.

n

is an integer value specifying a tab position relative to the
notional left margin (for T-format) or relative to the last
formatted position (for X-format) at which to begin the next
format.

t
is any arbitrary text excluding the surrounding character pair.
Double quotes imply a single quote in the result.

pattern see following section G format

Qualifiers q are as follows:
B leaves the field blank if the result would otherwise be zero.

C
inserts commas between triads of digits starting from the
rightmost digit of the integer part of the result.

Km
scales numeric values by 1Em where m is an integer; negation
may be indicated by ¯ or - preceding the number.

L left justifies the result in the field width.
Ov⍞t⍞ replaces specific numeric value v with the text t.

S⍞p⍞

substitutes standard characters. p is a string of pairs of symbols
enclosed between any of the Text Insertion delimiters. The first
of each pair is the standard symbol and the second is the
symbol to be substituted. Standard symbols are:
* overflow fill character
. decimal point
, triad separator for C qualifier
0 fill character for Z qualifier
_ loss of precision character

Z
fills unused leading positions in the result with zeros (and
commas if C is also specified).

9 digit selector

Chapter 3: System Functions & Variables 235

Affixtures are as follows:

M⍞t⍞
prefixes negative results with the text t instead of the negative
sign.

N⍞t⍞ post-fixes negative results with the text t
P⍞t⍞ prefixes positive or zero results with the text t.
Q⍞t⍞ post-fixes positive or zero results with the text t.

R⍞t⍞

presets the field with the text t which is repeated as necessary
to fill the field. The text will be replaced in parts of the field
filled by the result, including the effects of other qualifiers and
affixtures except the B qualifier

The surrounding affixture delimiters may be replaced by the alternative pairs
described for Text Insertion.

Examples
A vector is treated as a column:

'I5' ⎕FMT 10 20 30
10
20
30

The format specification is used cyclically to format the columns of the right argu-
ment:

'I3,F5.2' ⎕FMT 2 4⍴⍳8
1 2.00 3 4.00
5 6.00 7 8.00

The columns of the separate arrays in the items of a non-simple right argument are for-
matted in order. Rows in a formatted column beyond the length of the column are
left blank:

'2I4,F7.1' ⎕FMT (⍳4)(2 2⍴ 0.1×⍳4)
1 0 0.2
1 0 0.4
3
4

Characters are right justified within the specified field width, unless the L qualifier is
specified:

'A2' ⎕FMT 1 6⍴'SPACED'
S P A C E D

236 Dyalog APL/W Language Reference

If the result is too wide to fit within the specified width, the field is filled with aster-
isks:

'F5.2' ⎕FMT 0.1×5 1000 ¯100
0.50

Relative tabulation (X-format) identifies the starting position for the next format
phrase relative to the finishing position for the previous format, or the notional left
margin if none. Negative values are permitted providing that the starting position is
not brought back beyond the left margin. Blanks are inserted in the result, if nec-
essary:

'I2,X3,3A1' ⎕FMT (⍳3)(2 3⍴'TOPCAT')
1 TOP
2 CAT
3

Absolute tabulation (T-format) specifies the starting position for the next format rel-
ative to the notional left margin. If position 0 is specified, the next format starts at
the next free position as viewed so far. Blanks are inserted into the result as
required. Over-written columns in the result contain the most recently formatted
array columns taken in left-to-right order:

X←'6I1,T5,A1,T1,3A1,T7,F5.1'

X ⎕FMT (1 6⍴⍳6)('*')(1 3⍴'ABC')(22.2)
ABC4*6 22.2

If the number of specified significant digits exceeds the internal precision, low order
digits are replaced by the symbol _:

'F20.1' ⎕FMT 1E18÷3
3333333333333333__._

The Text Insertion format phrase inserts the given text repeatedly in all rows of the
result:

MEN←3 5⍴'FRED BILL JAMES'
WOMEN←2 5⍴'MARY JUNE '

'5A1,<|>' ⎕FMT MEN WOMEN
FRED |MARY |
BILL |JUNE |
JAMES| |

Chapter 3: System Functions & Variables 237

The last example also illustrates that a Text Insertion phrase is used even though the
data is exhausted. The following example illustrates effects of the various qualifiers:

X←'F5.1,BF6.1,X1,ZF5.1,X1,LF5.1,K3CS<.,,.>F10.1'

X ⎕FMT ⍉5 3⍴¯1.5 0 25
¯1.5 ¯1.5 ¯01.5 ¯1.5 ¯1.500,0
0.0 000.0 0.0 0,0

25.0 25.0 025.0 25.0 25.000,0

Affixtures allow text to be included within a field. The field width is not extended
by the inclusion of affixtures. N and Q affixtures shift the result to the left by the
number of characters in the text specification. Affixtures may be used to enclose neg-
ative results in parentheses in accordance with common accounting practice:

'M<(>N<)>Q< >F9.2' ⎕FMT 150.3 ¯50.25 0 1114.9
150.30
(50.25)

0.00
1114.90

One or more format phrases may be surrounded by parentheses and preceded by an
optional repetition factor. The format phrases within parentheses will be re-used the
given number of times before the next format phrase is used. A Text Insertion phrase
will not be re-used if the last data format phrase is preceded by a closing parenthesis:

'I2,2(</>,ZI2)' ⎕FMT 1 3⍴⌽100|3↑⎕TS
20/07/89

G Format
Only the B, K, S and O qualifiers are valid with the G option

⍞pattern⍞ is an arbitrary string of characters, excluding the delimiter characters.
Characters '9' and 'Z' (unless altered with the S qualifier) are special and are known as
digit selectors.

The result of a G format will have length equal to the length of the pattern.

The data is rounded to the nearest integer (after possible scaling). Each digit of the
rounded data replaces one digit selector in the result. If there are fewer data digits
than digit selectors, the data digits are padded with leading zeros. If there are more
data digits than digit selectors, the result will be filled with asterisks.

A '9' digit selector causes a data digit to be copied to the result.

238 Dyalog APL/W Language Reference

A 'Z' digit selector causes a non-zero data digit to be copied to the result. A zero data
digit is copied if and only if digits appear on either side of it. Otherwise a blank
appears. Similarly text between digit selectors appears only if digits appear on either
side of the text. Text appearing before the first digit selector or after the last will
always appear in the result.

Examples
'G⊂99/99/99⊃'⎕FMT 0 100 100 ⊥8 7 89

08/07/89

'G⊂ZZ/ZZ/ZZ⊃'⎕FMT 80789 + 0 1
8/07/89
8/07/9

'G⊂Andy ZZ Pauline ZZ⊃' ⎕FMT 2721.499 2699.5
Andy 27 Pauline 21
Andy 27

⍴⎕←'K2G⊂DM Z.ZZZ.ZZ9,99⊃' ⎕FMT 1234567.89 1234.56
DM 1.234.567,89
DM 1.234,56
2 15

An error will be reported if:

l Numeric data is matched against an A control phrase.
l Character data is matched against other than an A control phrase.
l The format specification is ill-formed.
l For an F control phrase, d>w-2
l For an E control phrase, s>w-2

O Format Qualifier
The O format qualifier replaces a specific numeric value with a text string and may
be used in conjunction with the E, F, I and G format phrases.

An O-qualifier consists of the letter "O" followed by the optional numeric value
which is to be substituted (if omitted, the default is 0) and then the text string within
pairs of symbols such as "<>". For example:

O - qualifier Description
O<nil> Replaces the value 0 with the text "nil"
O42<N/A> Replaces the value 42 with the text "N/A"
O0.001<1/1000> Replaces the value 0.001 with the text "1/1000"

Chapter 3: System Functions & Variables 239

The replacement text is inserted into the field in place of the numeric value. The text
is normally right-aligned in the field, but will be left-aligned if the L qualifier is also
specified.

It is permitted to specify more than one O-qualifier within a single phrase.

The O-qualifier is ⎕CT sensitive.

Examples
'O<NIL>F7.2'⎕FMT 12.3 0 42.5

12.30
NIL

42.50

'O<NIL>LF7.2'⎕FMT 12.3 0 42.5
12.30
NIL
42.50

'O<NIL>O42<N/A>I6'⎕FMT 12 0 42 13
12

NIL
N/A
13

'O99<replace>F20.2'⎕fmt 99 100 101
replace
100.00
101.00

240 Dyalog APL/W Language Reference

File Names: R←⎕FNAMES

The result is a character matrix containing the names of all tied files, with one file
name per row. The number of columns is that required by the longest file name.

A file name is returned precisely as it was specified when the file was tied. If no files
are tied, the result is a character matrix with 0 rows and 0 columns. The rows of the
result are in the order in which the files were tied.

Examples
'/usr/pete/SALESFILE' ⎕FSTIE 16

'../budget/COSTFILE' ⎕FSTIE 2

'PROFIT' ⎕FCREATE 5

⎕FNAMES
/usr/pete/SALESFILE
../budget/COSTFILE
PROFIT

⍴⎕FNAMES
3 19

⎕FNUMS,⎕FNAMES
16 /usr/pete/SALESFILE
2 ../budget/COSTFILE
5 PROFIT

Chapter 3: System Functions & Variables 241

File Numbers: R←⎕FNUMS

The result is an integer vector of the tie numbers of all tied files. If no files are tied,
the result is empty. The elements of the result are in the order in which the files were
tied.

Examples
'/usr/pete/SALESFILE' ⎕FSTIE 16

'../budget/COSTFILE' ⎕FSTIE 2

'PROFIT' ⎕FCREATE 5

⎕FNUMS
16 2 5

⎕FNUMS,⎕FNAMES
16 /usr/pete/SALESFILE
2 ../budget/COSTFILE
5 PROFIT

⎕FUNTIE ⎕FNUMS
⍴⎕FNUMS

0

242 Dyalog APL/W Language Reference

File Properties: R←X ⎕FPROPS Y

Access Code 1 (to read) or 8192 (to change properties)

⎕FPROPS reports and sets the properties of a component file.

Ymust be a simple integer scalar or a 1 or 2-element vector containing the file tie
number followed by an optional passnumber. If the passnumber is omitted, it is
assumed to be 0.

Xmust be a simple character scalar or vector containing one or more valid Identifiers
listed in the table below, or a 2-element nested vector which specifies an Identifier
and a (new) value for that property. To set new values for more than one property, X
must be is a vector of 2-element vectors, each of which contains an Identifier and a
(new) value for that property.

If the left argument is a simple character array, the result R contains the current values
for the properties identified by X. If the left argument is nested, the result R contains
the previous values for the properties identified by X.

Identifier Property Description / Legal Values

S
File Size
(read
only)

32 = Small Component Files (<4Gb)
64 = Large Component Files

E

Endian-
ness
(read
only)

0 = Little-endian
1 = Big-endian

U Unicode 0 = Characters must be written as type 82 arrays
1 = Characters must be written as Unicode arrays

J Journaling

0 = Disable Journaling
1 = Enable APL crash proof Journaling
2 = Enable System crash proof Journaling; repair
needed on recovery
3 = Enable full System crash proof Journaling

C Checksum 0 = Disable checksum
1 = Enable checksum

Chapter 3: System Functions & Variables 243

The default properties for a newly created file are as follows:

l S = 64
l U = 1 (Unicode Edition and 64-bit file) or 0 (otherwise)
l J = 1
l C = 1
l E depends upon the computer architecture.

Journaling Levels
Level 1 journaling (APL crash-proof) automatically protects a component file from
damage in the event of abnormal termination of the APL process. The file state will
be implicitly committed between updates and an incomplete update will auto-
matically be rolled forward or back when the file is re-tied. In the event of an oper-
ating system crash the file may be more seriously damaged. If checksumwas also
enabled it may be repaired using ⎕FCHK but some components may be restored to a
previous state or not restored at all.

Level 2 journaling (system crash-proof – repair needed on recovery) extends level 1
by ensuring that a component file is fully repairable using ⎕FCHK with no com-
ponent loss in the event of an operating system failure. If an update was in progress
when the system crashed the affected component will be rolled back to the previous
state. Tying and modifying such a file without first running ⎕FCHK may however
render it un-repairable.

Level 3 journaling (system crash-proof) extends level 1 further by protecting a com-
ponent file from damage in the event of abnormal termination of the APL process and
also the operating system. Rollback of an incomplete update will be automatic and
no explicit repair will be needed.

Enabling journaling on a component file will reduce performance of file updates;
higher journaling levels have a greater impact.

Journaling levels 2 and 3 cannot be set unless the checksum option is also enabled.

The default level of journaling may be changed using the APL_FCREATE_
PROPS_J parameter (see User Guide).

Checksum Option
The checksum option is enabled by default. This enables a damaged file to be
repaired using ⎕FCHK. It will however will reduce the performance of file updates
slightly and result in larger component files. The default may be changed using the
APL_FCREATE_PROPS_C parameter (See User Guide).

244 Dyalog APL/W Language Reference

Enabling the checksum option on an existing non-empty component file, will mean
that all components that had previously been written without a checksum, will be
check-summed and converted. This operation which will take place when ⎕FPROPS
is changed, may not, therefore, be instantaneous.

Journaling and checksum settings may be changed at any time a file is exclusively
tied.

Component files written with Checksum enabled cannot be read by versions of
Dyalog APL prior to Version 12.1.

Example
tn←'myfile64' ⎕FCREATE 0
'SEUJ' ⎕FPROPS tn

64 0 1 0

tn←'myfile32' ⎕FCREATE 0 32
'SEUJ' ⎕FPROPS tn

32 0 0 0

The following expression disables Unicode and switches Journaling on. The func-
tion returns the previous settings:

('U' 0)('J' 1) ⎕FPROPS tn
1 0

Note that to set the value of just a single property, the following two statements are
equivalent:

'J' 1 ⎕FPROPS tn
(,⊂'J' 1) ⎕FPROPS tn

The Unicode property applies only to 64-bit component files. 32-bit component files
may not contain Unicode character data and the value of the Unicode property is
always 0. To convert a 32-bit component file to a 64-bit component file, use
⎕FCOPY.

Properties may be read by a task with ⎕FREAD permission (access code 1), and set by
a task with ⎕FSTAC access (8192). To set the value of the Journaling property, the
file must be exclusively tied.

If Journaling or Unicode properties are set, the file cannot be tied by Versions prior
to Version 12.0. If journaling is set to a value higher than 1, or checksums are ena-
bled, the file cannot be tied by versions prior to 12.1.

Chapter 3: System Functions & Variables 245

Floating-Point Representation: ⎕FR

The value of ⎕FR determines the way that floating-point operations are performed.

If ⎕FR is 645, all floating-point calculations are performed using IEEE 754 64-bit
floating-point operations and the results of these operations are represented inter-
nally using binary641 floating-point format.

If ⎕FR is 1287, all floating-point calculations are performed using IEEE 754-2008
128-bit decimal floating-point operations and the results of these operations are rep-
resented internally using decimal1282 format.

Note that when you change ⎕FR, its new value only affects subsequent floating-
point operations and results. Existing floating-point values stored in the workspace
remain unchanged.

The default value of ⎕FR (its value in a clear ws) is configurable.

⎕FR has workspace scope, and may be localised. If so, like most other system var-
iables, it inherits its initial value from the global environment.

However:Although ⎕FR can vary, the system is not designed to allow “seamless”
modification during the running of an application and the dynamic alteration of is
not recommended. Strange effects may occur. For example, the type of a constant
contained in a line of code (in a function or class), will depend on the value of ⎕FR
when the function is fixed. Thus, it would be possible for the first line of code above
to return 0, if it is in the body of a function. If the function was edited and while sus-
pended and execution is resumed, the result would become 1.

Also note:

⎕FR←1287
x←1÷3

⎕FR←645
x=1÷3

1

1http://en.wikipedia.org/wiki/Double_precision_floating-point_format
2http://en.wikipedia.org/wiki/Decimal128_floating-point_format

246 Dyalog APL/W Language Reference

The decimal number has 17 more 3’s. Using the tolerance which applies to binary
floats (type 645), the numbers are equal. However, the “reverse” experiment yields 0,
as tolerance is much narrower in the decimal universe:

⎕FR←645
x←1÷3
⎕FR←1287
x=1÷3

0

Since ⎕FR can vary, it will be possible for a single workspace to contain floating-
point values of both types (existing variables are not converted when ⎕FR is
changed). For example, an array that has just been brought into the workspace from
external storage may have a different type from ⎕FR in the current namespace. Con-
version (if necessary) will only take place when a new floating-point array is gen-
erated as the result of “a calculation”. The result of a computation returning a
floating-point result will not depend on the type of the arrays involved in the expres-
sion: ⎕FR at the time when a computation is performed decides the result type, alone.

Structural functions generally do NOT change the type, for example:

⎕FR←1287
x←1.1 2.2 3.3

⎕FR←645
⎕DR x

1287
⎕DR 2↑x

1287

128-bit decimal numbers not only have greater precision (roughly 34 decimal digits);
they also have significantly larger range – from ¯1E6145 to 1E6145. Loss of pre-
cision is accepted on conversion from 645 to 1287, but the magnitude of a number
may make the conversion impossible, in which case a DOMAIN ERROR is issued:

⎕FR←1287
x←1E1000
⎕FR←645 ⋄ x+0

DOMAIN ERROR

Chapter 3: System Functions & Variables 247

When experimenting with ⎕FR it is important to note that numeric constants entered
into the Session are evaluated (and assigned a data type) before the line is actually
executed. This means that constants are evaluated according to the value of ⎕FR that
pertained before the line was entered. For example:

⎕FR←645
⎕FR

645

⎕FR←1287 ⋄ ⎕DR 0.1
645

⎕DR 0.1
1287

WARNING: The use of COMPLEX numbers when ⎕FR is 1287 is not rec-
ommended, because:

any 128-bit decimal array into which a complex number is inserted or appended will
be forced in its entirety into complex representation, potentially losing precision.

all comparisons are done using ⎕DCT when ⎕FR is 1287, and the default value of
1E¯28 is equivalent to 0 for complex numbers.

File Read Access: R←⎕FRDAC Y

Access code 4096

Ymust be a simple integer scalar or 1 or 2 element vector containing the file tie
number followed by an optional passnumber. If the passnumber is omitted it is
assumed to be zero. The result is the access matrix for the designated file.

See "File Access Control" in User Guide for further details.

Examples
⎕FRDAC 1

28 2105 16385
0 2073 16385

31 ¯1 0

248 Dyalog APL/W Language Reference

File Read Component Information: R←⎕FRDCI Y

Access code 512

Ymust be a simple integer vector of length 2 or 3 containing the file tie number, com-
ponent number and an optional passnumber. If the passnumber is omitted it is
assumed to be zero.

The result is a 3 element numeric vector containing the following information:

1. the size of the component in bytes (i.e. how much disk space it occupies).
2. the user number of the user who last updated the component.
3. the time of the last update in 60ths of a second since 1st January 1970

(UTC).

Example
⎕FRDCI 1 13

2200 207 3.702094494E10

File Read Component: R←⎕FREAD Y

Access code 1

Ymust be a simple 2 or 3 element integer vector containing the file tie number, the
component number, and an optional passnumber. If the passnumber is omitted it is
assumed to be zero.

The result is the value of the array stored on the tied file at the given component
number.

Examples
⍴SALES←⎕FREAD 1 241

3 2 12

GetFile←{⎕io←0 ⍝ Extract contents.
tie←⍵ ⎕fstie 0 ⍝ new tie number.
fm to←2↑⎕fsize tie ⍝ first and next component.
cnos←fm+⍳to-fm ⍝ vector of component nos.
cvec←{⎕fread tie ⍵}¨cnos ⍝ vector of components.
cvec{⍺}⎕funtie tie ⍝ ... untie and return.

}

Chapter 3: System Functions & Variables 249

File Rename: {R}←X ⎕FRENAME Y

Access code 128

Ymust be a simple 1 or 2 element integer vector containing a file tie number and an
optional passnumber. If the passnumber is omitted it is assumed to be zero.

Xmust be a simple character scalar or vector containing the new name of the file.
This name must be in accordance with the operating system's conventions, and may
be specified with a relative or absolute pathname.

The file being renamed must be tied exclusively.

The shy result of ⎕FRENAME is the tie number of the file.

Examples
'SALES' ⎕FTIE 1
'PROFIT' ⎕FTIE 2

⎕FNAMES
SALES
PROFIT

'SALES.85' ⎕FRENAME 1
'../profits/PROFIT.85' ⎕FRENAME 2

⎕FNAMES
SALES.85
../profits/PROFITS.85

Rename←{
fm to←⍵
⎕FUNTIE to ⎕FRENAME fm ⎕FTIE 0

}

250 Dyalog APL/W Language Reference

File Replace Component: {R}←X ⎕FREPLACE Y

Access code 16

Ymust be a simple 2 or 3 element integer vector containing the file tie number, the
component number, and an optional passnumber. If the passnumber is omitted it is
assumed to be zero. The component number specified must lie within the file's com-
ponent number limits.

X is any array (including, for example, the ⎕OR of a namespace), and overwrites the
value of the specified component. The component information (see "File Read Com-
ponent Information: " on page 248) is also updated.

The shy result of ⎕FREPLACE is the file index (component number of replaced rec-
ord).

Example
SALES←⎕FREAD 1 241

(SALES×1.1) ⎕FREPLACE 1 241

Define a function to replace (index, value) pairs in a component file JMS.DCF:

Frep←{
tie←⍺ ⎕FTIE 0
_←{⍵ ⎕FREPLACE tie ⍺}/¨⍵
⎕FUNTIE tie

}

'jms'Frep(3 'abc')(29 'xxx')(7 'yyy')

Chapter 3: System Functions & Variables 251

File Resize: {R}←{X}⎕FRESIZE Y

Access code 1024

Ymust be a simple integer scalar or 1 or 2 element vector containing the file tie
number followed by an optional passnumber. If the passnumber is omitted it is
assumed to be zero.

X is an integer that specifies the maximum permitted size of the file in bytes. For a
64-bit file, the value 0 means that there will be no explicit limit put on the size of the
file. For a 32-bit file, the value of X is ignored and has no effect on the maximum file
size.

An attempt to update a component file that would cause it to exceed its maximum
size will fail with a FILE FULL error (21).A side effect of ⎕FRESIZE is to cause
the file to be compacted. Any interrupt entered at the keyboard during the com-
paction is ignored. Note that if the left argument is omitted, the file is simply com-
pacted and the maximum file size remains unchanged.

During compaction, the file is restructured by reordering the components and by
amalgamating the free areas at the end of the file. The file is then truncated and
excess disk space is released back to the operating system. For a large file with many
components, this process may take a significant time.

The shy result of ⎕FRESIZE is the tie number of the file.

Example
'test'⎕FCREATE 1 ⋄ ⎕FSIZE 1

1 1 120 1.844674407E19
(10 1000⍴1.1)⎕FAPPEND 1 ⋄ ⎕FSIZE 1

1 2 80288 1.844674407E19

100000 ⎕FRESIZE 1 ⍝ Limit size to 100000 bytes

(10 1000⍴1.1)⎕FAPPEND 1
FILE FULL

(10 1000⍴1.1)⎕FAPPEND 1
∧

⎕FRESIZE 1 ⍝ Force file compaction.

252 Dyalog APL/W Language Reference

File Size: R←⎕FSIZE Y

Ymust be a simple integer scalar or 1 or 2 element vector containing the file tie
number followed by an optional passnumber. If the passnumber is omitted it is
assumed to be zero. The result is a 4 element numeric vector containing the fol-
lowing:

Element Description

1 the number of first component

2 1 + the number of the last component, (i.e. the result of the next
⎕FAPPEND)

3 the current size of the file in bytes

4 the file size limit in bytes

Example
⎕FSIZE 1

1 21 65271 4294967295

File Set Access: {R}←X ⎕FSTAC Y

Access code 8192

Ymust be a simple integer scalar or 1 or 2 element vector containing the file tie
number followed by an optional passnumber. If the passnumber is omitted it is
assumed to be zero.

Xmust be a valid access matrix, i.e. a 3 column integer matrix with any number of
rows.

See "File Access Control" in User Guide for further details.

The shy result of ⎕FSTAC is the tie number of the file.

Examples
SALES ⎕FCREATE 1
(3 3⍴28 2105 16385 0 2073 16385 31 ¯1 0) ⎕FSTAC 1
((⎕FRDAC 1)⍪21 2105 16385) ⎕FSTAC 1

(1 3⍴0 ¯1 0)⎕FSTAC 2

Chapter 3: System Functions & Variables 253

File Share Tie: {R}←X ⎕FSTIE Y

Ymust be 0 or a simple 1 or 2 element integer vector containing an available file tie
number to be associated with the file for further file operations, and an optional
passnumber. If the passnumber is omitted it is assumed to be zero. The tie number
must not already be associated with a tied file.

Xmust be a simple character scalar or vector which specifies the name of the file to
be tied. The file must be named in accordance with the operating system's con-
ventions, and may be specified with a relative or absolute pathname.

The file must exist and be accessible by the user. If it is already tied by another task,
it must not be tied exclusively.

The shy result of ⎕FSTIE is the tie number of the file.

Automatic Tie Number Allocation
A tie number of 0 as argument to a create, share tie or exclusive tie operation, allo-
cates the first (closest to zero) available tie number and returns it as an explicit result.
This allows you to simplify code. For example:

from:

tie←1+⌈/0,⎕FNUMS ⍝ With next available number,
file ⎕FSTIE tie ⍝ ... share tie file.

to:

tie←file ⎕FSTIE 0 ⍝ Tie with 1st available number.

Example
'SALES' ⎕FSTIE 1

'../budget/COSTS' ⎕FSTIE 2

254 Dyalog APL/W Language Reference

Exclusive File Tie: {R}←X ⎕FTIE Y

Access code 2

Ymust be 0 or a simple 1 or 2 element integer vector containing an available file tie
number to be associated with the file for further file operations, and an optional
passnumber. If the passnumber is omitted it is assumed to be zero. The tie number
must not already be associated with a share tied or exclusively tied file.

Xmust be a simple character scalar or vector which specifies the name of the file to
be exclusively tied. The file must be named in accordance with the operating sys-
tem's conventions, and may be a relative or absolute pathname.

The file must exist and be accessible by the user. It may not already be tied by
another user.

Automatic Tie Number Allocation
A tie number of 0 as argument to a create, share tie or exclusive tie operation, allo-
cates the first (closest to zero) available tie number, and returns it as an explicit result.
This allows you to simplify code. For example:

from:

tie←1+⌈/0,⎕FNUMS ⍝ With next available number,
file ⎕FTIE tie ⍝ ... tie file.

to:

tie←file ⎕FTIE 0 ⍝ Tie with first available number.

The shy result of ⎕FTIE is the tie number of the file.

Examples
'SALES' ⎕FTIE 1

'../budget/COSTS' ⎕FTIE 2

'../budget/expenses' ⎕FTIE 0
3

Chapter 3: System Functions & Variables 255

File Untie: {R}←⎕FUNTIE Y

Ymust be a simple integer scalar or vector (including Zilde). Files whose tie
numbers occur in Y are untied. Other elements of Y have no effect.

If Y is empty, no files are untied, but all the interpreter's internal file buffers are
flushed and the operating system is asked to flush all file updates to disk. This spe-
cial facility allows the programmer to add extra security (at the expense of per-
formance) for application data files.

The shy result of ⎕FUNTIE is a vector of tie numbers of the files actually untied.

Example
⎕FUNTIE ⎕FNUMS ⍝ Unties all tied files

⎕FUNTIE ⍬ ⍝ Flushes all buffers to disk

Fix Definition: {R}←⎕FX Y

Y is the representation form of a function or operator which may be:

l its canonical representation form similar to that produced by ⎕CR except
that redundant blanks are permitted other than within names and constants.

l its nested representation form similar to that produced by ⎕NR except that
redundant blanks are permitted other than within names and constants.

l its object representation form produced by ⎕OR.
l its vector representation form similar to that produced by ⎕VR except that

additional blanks are permitted other than within names and constants.

⎕FX attempts to create (fix) a function or operator in the workspace or current names-
pace from the definition given by Y. ⎕IO is an implicit argument of ⎕FX.

If the function or operator is successfully fixed, R is a simple character vector con-
taining its name and the result is shy. Otherwise R is an integer scalar containing the
(⎕IO dependent) index of the row of the canonical representation form in which the
first error preventing its definition is detected. In this case the result R is not shy.

Functions and operators which are pendent, that is, in the State Indicator without a
suspension mark (*), retain their original definition until they complete, or are
cleared from the State Indicator. All other occurrences of the function or operator
assume the new definition. The function or operator will fail to fix if it has the same
name as an existing variable, or a visible label.

256 Dyalog APL/W Language Reference

Instances: R←⎕INSTANCES Y

⎕INSTANCES returns a list all the current instances of the Class specified by Y.

Ymust be a reference to a Class.

R is a vector of references to all existing Instances of Class Y.

Examples
This example illustrates a simple inheritance tree or Class hierarchy. There are 3
Classes, namely:

Animal

Bird (derived from Animal)

Parrot (derived from Bird)

:Class Animal
...
:EndClass ⍝ Animal

:Class Bird: Animal
...
:EndClass ⍝ Bird

:Class Parrot: Bird
...
:EndClass ⍝ Parrot

Eeyore←⎕NEW Animal
Robin←⎕NEW Bird
Polly←⎕NEW Parrot

⎕INSTANCES Parrot
#.[Parrot]

⎕INSTANCES Bird
#.[Bird] #.[Parrot]

⎕INSTANCES Animal
#.[Animal] #.[Bird] #.[Parrot]

Eeyore.⎕DF 'eeyore'
Robin.⎕DF 'robin'
Polly.⎕DF 'polly'

Chapter 3: System Functions & Variables 257

 ⎕INSTANCES Parrot
polly

⎕INSTANCES Bird
robin polly

⎕INSTANCES Animal
eeyore robin polly

Index Origin: ⎕IO

⎕IO determines the index of the first element of a non-empty vector.

⎕IOmay be assigned the value 0 or 1. The value in a clear workspace is 1.

⎕IO is an implicit argument of any function derived from the Axis operator ([K]), of
the monadic functions Fix (⎕FX), Grade Down (⍒), Grade Up (⍋), Index Generator
(⍳), Roll (?), and of the dyadic functions Deal (?), Grade Down (⍒), Grade Up (⍋),
Index Of (⍳), Indexed Assignment, Indexing, Pick (⊃) and Transpose (⍉).

Examples
⎕IO←1
⍳5

1 2 3 4 5

⎕IO←0
⍳5

0 1 2 3 4

+/[0]2 3⍴⍳6
3 5 7

'ABC',[¯.5]'='
ABC
===

258 Dyalog APL/W Language Reference

Key Label: R←⎕KL Y

Classic Edition only.

Y is a simple character vector or a vector of character vectors containing Input Codes
for Keyboard Shortcuts. In the Classic Edition, keystrokes are associated with Key-
board Shortcuts by the Input Translate Table.

R is a simple character vector or a vector of character vectors containing the labels
associated with the codes. If Y specifies codes that are not defined, the cor-
responding elements of R are the codes in Y.

⎕KL provides the information required to build device-independent help messages
into applications, particularly full-screen applications using ⎕SM and ⎕SR.

Examples:
⎕KL 'RC'

Right

⎕KL 'ER' 'EP' 'QT' 'F1' 'F13'
Enter Esc Shift+Esc F1 Shift+F1

Line Count: R←⎕LC

This is a simple vector of line numbers drawn from the state indicator (See "The State
Indicator" on page 1). The most recently activated line is shown first. If a value cor-
responds to a defined function in the state indicator, it represents the current line
number where the function is either suspended or pendent.

The value of ⎕LC changes immediately upon completion of the most recently acti-
vated line, or upon completion of execution within ⍎ or ⎕. If a ⎕STOP control is set,
⎕LC identifies the line on which the stop control is effected. In the case where a stop
control is set on line 0 of a defined function, the first entry in ⎕LC is 0 when the con-
trol is effected.

The value of ⎕LC in a clear workspace is the null vector.

Examples
)SI

#.TASK1[5]*
⍎
#.BEGIN[3]

⎕LC
5 3

Chapter 3: System Functions & Variables 259

→⎕LC
⎕LC

⍴⎕LC
0

Load Workspace: ⎕LOAD Y

Ymust be a simple character scalar or vector containing the identification of a saved
workspace.

If Y is ill-formed or does not identify a saved workspace or the user account does not
have access permission to the workspace, a DOMAIN ERROR is reported.

Otherwise, the active workspace is replaced by the workspace identified in Y. The
active workspace is lost. If the loaded workspace was saved by the)SAVE system
command, the latent expression (⎕LX) is immediately executed, unless APL was
invoked with the -x option. If the loaded workspace was saved by the ⎕SAVE sys-
tem function, execution resumes from the point of exit from the ⎕SAVE function,
with the result of the ⎕SAVE function being 0.

The workspace identification and time-stamp when saved is not displayed.

If the workspace contains any GUI objects whose Visible property is 1, these
objects will be displayed. If the workspace contains a non-empty ⎕SM but does not
contain an SM GUI object, the form defined by ⎕SM will be displayed in a window
on the screen.

Under UNIX, the interpreter attempts to open the file whose name matches the con-
tents of Y. UnderWindows, unless Y contains at least one ".", the interpreter will
append the file extension ".DWS" to the name.

260 Dyalog APL/W Language Reference

Lock Definition: {X}⎕LOCK Y

Ymust be a simple character scalar, or vector which is taken to be the name of a
defined function or operator in the active workspace.

The active referent to the name in the workspace is locked. Stop, trace and monitor
settings, established by the ⎕STOP, ⎕TRACEand ⎕MONITORfunctions, are cancelled.

The optional left argument X specifies to what extent the function code is hidden. X
may be 1, 2 or 3 (the default) with the following meaning:

1. The object may not be displayed and you may not obtain its character form
using ⎕CR, ⎕VR or ⎕NR.

2. Execution cannot be suspended with the locked function or operator in the
state indicator. On suspension of execution the state indicator is cut back
to the statement containing the call to the locked function or operator.

3. Both 1 and 2 apply. You can neither display the locked object nor suspend
execution within it.

Locks are additive, so that the following are equivalent:

1 ⎕LOCK'FOO'
2 ⎕LOCK'FOO'
3 ⎕LOCK'FOO'

DOMAIN ERROR is reported if:

l Y is ill-formed.
l The name in Y is not the name of a visible defined function or operator

which is not locked.

Examples
⎕VR'FOO'

∇ R←FOO
[1] R←10

∇

⎕LOCK'FOO'
⎕VR'FOO'

⎕LOCK'FOO'
DOMAIN ERROR

⎕LOCK'FOO'
^

Chapter 3: System Functions & Variables 261

Latent Expression: ⎕LX

This may be a character vector or scalar representing an APL expression. The expres-
sion is executed automatically when the workspace is loaded. If APL is invoked
using the -x flag, this execution is suppressed.

The value of ⎕LX in a clear workspace is ''.

Example
⎕LX←'''GOOD MORNING PETE'''

)SAVE GREETING
GREETING saved Tue Sep 8 10:49:29 1998

)LOAD GREETING
./GREETING saved Tue Sep 8 10:49:29 1998
GOOD MORNING PETE

Map File: R←{X}⎕MAP Y

⎕MAP function associates a mapped file with an APL array in the workspace.

Two types of mapped files are supported; APL and raw. An APLmapped file contains
the binary representation of a Dyalog APL array, including its header. A file of this
type must be created using the supplied utility function ∆MPUT. When you map an
APL file, the rank, shape and data type of the array is obtained from the information
on the file.

A raw mapped file is an arbitrary collection of bytes. When you map a raw file, you
must specify the characteristics of the APL array to be associated with this data. In
particular, the data type and its shape.

The type of mapping is determined by the presence (raw) or absence (APL) of the left
argument to ⎕MAP.

The right argument Y specifies the name of the file to be mapped and, optionally, the
access type and a start byte in the file. Ymay be a simple character vector, or a 2 or 3-
element nested vector containing:

1. file name (character scalar/vector)
2. access code (character scalar/vector) : one of : 'R' , 'W', 'r' or 'w'
3. start byte offset (integer scalar/vector). Must be a multiple of 4 (default 0)

If X is specified, it defines the type and shape to be associated with raw data on file.
Xmust be an integer scalar or vector. The first item of X specifies the data type and
must be one of the following values:

262 Dyalog APL/W Language Reference

Classic Edition 11, 82, 83, 163, 323 or 645

Unicode Edition 11, 80, 83, 160, 163, 320, 323 or 645

The values are more fully explained in "Data Representation (Monadic):" on page
213.

Following items determine the shape of the mapped array. A value of ¯1 on any (but
normally the first) axis in the shape is replaced by the system to mean: read as many
complete records from the file as possible. Only one axis may be specified in this
way.

NB: If X is a singleton, the data on the file is mapped as a scalar and only the first
value on the file is accessible.

If no left argument is given, file is assumed to contain a simple APL array, complete
with header information (type, rank, shape, etc). Such mapped files may only be
updated by changing the associated array using indexed/pick assignment:
var[a]←b, the new values must be of the same type as the originals.

Note that a raw mapped file may be updated only if its file offset is 0.

Examples
Map raw file as a read-only vector of doubles:

vec←645 ¯1 ⎕MAP'c:\myfile'

Map raw file as a 20-column read-write matrix of 1-byte integers:

mat←83 ¯1 20 ⎕MAP'c:\myfile' 'W'

Replace some items in mapped file:

mat[2 3;4 5]←2 2⍴⍳4

Map bytes 100-180 in raw file as a 5×2 read-only matrix of doubles:

dat←645 5 2 ⎕MAP'c:\myfile' 'R' 100

Put simple 4-byte integer array on disk ready for mapping:

(⊃83 323 ⎕DR 2 3 4⍴⍳24)∆MPUT'c:\myvar'

Then, map a read-write variable:

var←⎕MAP'c:\myvar' 'w'

Chapter 3: System Functions & Variables 263

Note that a mapped array need not be named. In the following example, a ‘raw’ file is
mapped, summed and released, all in a single expression:

+/163 ¯1 ⎕MAP'c:\shorts.dat'
42

If you fail to specify the shape of the data, the data on file will be mapped as a scalar
and only the first value in the file will be accessible:

83 ⎕MAP 'myfile' ⍝ map FIRST BYTE of file.
¯86

Compatibility between Editions
In the Unicode Edition ⎕MAP will fail with a TRANSLATION ERROR (event
number 92) if you attempt to map an APL file which contains character data type 82.

In order for the Unicode Edition to correctly interpret data in a raw file that was
written using data type 82, the file may be mapped with data type 83 and the char-
acters extracted by indexing into ⎕AVU.

Migration Level: ⎕ML

⎕ML determines the degree of migration of the Dyalog APL language towards IBM's
APL2. Setting this variable to other than its default value of 0 changes the inter-
pretation of certain symbols and language constructs.

⎕ML←0 Native Dyalog (Default)

⎕ML←1 Z←∊R Monadic '∊' is interpreted as 'enlist' rather than 'type'.

⎕ML←2 Z←↑R Monadic '↑' is interpreted as 'first' rather than 'mix'.

Z←⊃R Monadic '⊃' is interpreted as 'mix' rather than 'first'.

Z←≡R
Monadic '≡' returns a positive rather than a negative
value, if its argument has non-uniform depth.

⎕ML←3 R←X⊂[K]Y
Dyadic '⊂' follows the APL2 (rather than the original
Dyalog APL) convention.

⎕TC
The order of the elements of ⎕TC is the same as in
APL2.

Subsequent versions of Dyalog APL may provide further migration levels.

264 Dyalog APL/W Language Reference

Examples
X←2(3 4)

⎕ML←0
∊X

0 0 0
↑X

2 0
3 4

⊃X
2

≡X
¯2

⎕ML←1
∊X

2 3 4
↑X

2 0
3 4

⊃X
2

≡X
¯2

⎕ML←2
∊X

2 3 4
↑X

2
⊃X

2 0
3 4

≡X
2

Chapter 3: System Functions & Variables 265

Set Monitor: {R}←X ⎕MONITOR Y

Ymust be a simple character scalar or vector which is taken to be the name of a vis-
ible defined function or operator. Xmust be a simple non-negative integer scalar or
vector. R is a simple integer vector of non-negative elements.

X identifies the numbers of lines in the function or operator named by Y on which a
monitor is to be placed. Numbers outside the range of line numbers in the function
or operator (other than 0) are ignored. The number 0 indicates that a monitor is to be
placed on the function or operator as a whole. The value of X is independent of ⎕IO.

R is a vector of numbers on which a monitor has been placed in ascending order. The
result is suppressed unless it is explicitly used or assigned.

The effect of ⎕MONITOR is to accumulate timing statistics for the lines for which the
monitor has been set. See "Query Monitor: " on page 266 for details.

Examples
+(0,⍳10) ⎕MONITOR 'FOO'

0 1 2 3 4 5

Existing monitors are cancelled before new ones are set:

+1 ⎕MONITOR 'FOO'
1

All monitors may be cancelled by supplying an empty vector:

⍬ ⎕MONITOR 'FOO'

Monitors may be set on a locked function or operator, but no information will be
reported. Monitors are saved with the workspace.

266 Dyalog APL/W Language Reference

Query Monitor: R←⎕MONITOR Y

Ymust be a simple character scalar or vector which is taken to be the name of a vis-
ible defined function or operator. R is a simple non-negative integer matrix of 5 col-
umns with one row for each line in the function or operator Y which has the monitor
set, giving:

Column 1 Line number

Column 2 Number of times the line was executed

Column 3 CPU time in milliseconds

Column 4 Elapsed time in milliseconds

Column 5 Reserved

The value of 0 in column one indicates that the monitor is set on the function or oper-
ator as a whole.

Example
∇ FOO

[1] A←?25 25⍴100
[2] B←⌹A
[3] C←⌹B
[4] R1←⌊0.5+A+.×B
[5] R2←A=C

∇

(0,⍳5) ⎕MONITOR 'FOO' ⍝ Set monitor

FOO ⍝ Run function

⎕MONITOR 'FOO' ⍝ Monitor query
0 1 1418 1000 0
1 1 83 0 0
2 1 400 0 0
3 1 397 0 0
4 1 467 1000 0
5 1 100 0 0

Chapter 3: System Functions & Variables 267

Name Association: {R}←{X}⎕NA Y

⎕NA provides access from APL to compiled functions within a Dynamic Link
Library (DLL). A DLL is a collection of functions typically written in C (or C++)
each of which may take arguments and return a result.

Instructional examples using ⎕NA can be found in supplied workspace:
QUADNA.DWS.

The DLL may be part of the standard operating system software, purchased from a
third party supplier, or one that you have written yourself.

The right argument Y is a character vector that identifies the name and syntax of the
function to be associated. The left argument X is a character vector that contains the
name to be associated with the external function. If the ⎕NA is successful, a function
(name class 3) is established in the active workspace with name X. If X is omitted, the
name of the external function itself is used for the association.

The shy result R is a character vector containing the name of the external function
that was fixed.

For example, math.dllmight be a library of mathematical functions containing a
function divide. To associate the APL name div with this external function:

'div' ⎕NA 'F8 math|divide I4 I4'

where F8 and I4, specify the types of the result and arguments expected by
divide. The association has the effect of establishing a new function: div in the
workspace, which when called, passes its arguments to divide and returns the
result.

)fns
div

div 10 4
2.5

268 Dyalog APL/W Language Reference

Type Declaration
In a compiled language such as C, the types of arguments and results of functions
must be declared explicitly. Typically, these types will be published with the doc-
umentation that accompanies the DLL. For example, function dividemight be
declared:

double divide(int32_t, int32_t);

which means that it expects two long (4-byte) integer arguments and returns a double
(8-byte) floating point result. Notice the correspondence between the C declaration
and the right argument of ⎕NA:

C: double divide (int32_t, int32_t);

APL:'div' ⎕NA 'F8 math|divide I4 I4 '

It is imperative that care be taken when coding type declarations. A DLL cannot
check types of data passed fromAPL. A wrong type declaration will lead to erro-
neous results or may even cause the workspace to become corrupted and crash.

The full syntax for the right argument of ⎕NA is:

[result] library|function [arg1] [arg2] ...

Note that functions associated with DLLs are never dyadic. All arguments are passed
as items of a (possibly nested) vector on the right of the function.

Locating the DLL
The DLL may be specified using a full pathname, file extension, and function type.

Pathname:
APL uses the LoadLibrary() system function underWindows and dlopen()
under UNIX and LINUX to load the DLL. If a full or relative pathname is omitted,
these functions search standard operating system directories in a particular order. For
further details, see the operating system documentation about these functions.

Alternatively, a full or relative pathname may be supplied in the usual way:

⎕NA'... c:\mydir\mydll|foo ...'

Chapter 3: System Functions & Variables 269

Errors:
If the specified DLL (or a dependent DLL) fails to load it will generate:

FILE ERROR 1 No such file or directory

If the DLL loads successfully, but the specified library function is not accessible, it
will generate:

VALUE ERROR

File Extension:
UnderWindows, if the file extension is omitted, .dll is assumed. Note that some
DLLs are in fact .exe files, and in this case the extension must be specified explicitly:

⎕NA'... mydll.exe|foo ...'

Example
⎕NA'... mydll.exe.P32|foo ...'⍝ 32 bit Pascal

Call by Ordinal Number
UnderWindows, a DLL may associate an ordinal numberwith any of its functions.
This number may then be used to call the function as an alternative to calling it by
name. Using ⎕NA to call by ordinal number uses the same syntax but with the func-
tion name replaced with its ordinal number. For example:

⎕NA'... mydll|57 ...'

Multi-Threading

Appending the ‘&’ character to the function name causes the external function to be
run in its own system thread. For example:

⎕NA'... mydll|foo& ...'

This means that other APL threads can run concurrently with the one that is calling
the ⎕NA function.

270 Dyalog APL/W Language Reference

Data Type Coding Scheme
The type coding scheme introduced above is of the form:

[direction] [special] type [width] [array]

The options are summarised in the following table and their functions detailed
below.

Description Symbol Meaning

Direction

< Pointer to array input to DLL function.

> Pointer to array output from DLL function

= Pointer to input/output array.

Special
0 Null-terminated string.

Byte-counted string

Type

I int

U unsigned int

C char

T char1

F float

D decimal

J complex

P uintptr-t2

A APL array

Z APL array with header (as passed to a TCP/IP socket)

1Classic Edition: - translated to/from ANSI
2equivalent to U4 on 32-bit Versions and U8 on 64-bit Versions

Chapter 3: System Functions & Variables 271

Description Symbol Meaning

Width

1 1-byte

2 2-byte

4 4-byte

8 8-byte

16 16-byte (128-bit)

Array
[n] Array of length n elements

[] Array, length determined at call-time

Structure {...} Structure.

In the Classic Edition, C specifies untranslated character, whereas T specifies that the
character data will be translated to/from ⎕AV.

In the Unicode Edition, C and T are identical (no translation of character data is per-
formed) except that for C the default width is 1 and for T the default width is "wide"
(2 bytes underWindows, 4 bytes under UNIX).

The use of T with default width is recommended to ensure portability between Edi-
tions.

Direction
C functions accept data arguments either by value or by address. This distinction is
indicated by the presence of a ‘*’ or ‘[]’ in the argument declaration:

int num1; // value of num1 passed.
int *num2; // Address of num2 passed.
int num3[]; // Address of num3 passed.

An argument (or result) of an external function of type pointer, must be matched in
the ⎕NA call by a declaration starting with one of the characters: <, >, or =.

In C, when an address is passed, the corresponding value can be used as either an
input or an output variable. An output variable means that the C function overwrites
values at the supplied address. Because APL is a call-by-value language, and doesn’t
have pointer types, we accommodate this mechanism by distinguishing output var-
iables, and having them returned explicitly as part of the result of the call.

272 Dyalog APL/W Language Reference

This means that where the C function indicates a pointer type, we must code this as
starting with one of the characters: <, > or =.

<
indicates that the address of the argument will be used by C as an
input variable and values at the address will not be over-written.

>

indicates that C will use the address as an output variable. In this case,
APL must allocate an output array over which C can write values.
After the call, this array will be included in the nested result of the
call to the external function.

=

indicates that C will use the address for both input and output. In this
case, APL duplicates the argument array into an output buffer whose
address is passed to the external function. As in the case of an output
only array, the newly modified copy will be included in the nested
result of the call to the external function.

Examples
<I2 Pointer to 2-byte integer - input to external function
>C Pointer to character output from external function.
=T Pointer to character input to and output from function.
=A Pointer to APL array modified by function.

Chapter 3: System Functions & Variables 273

Special
In C it is common to represent character strings as null-terminated or byte counted
arrays. These special data types are indicated by inserting the symbol 0 (null-ter-
minated) or # (byte counted) between the direction indicator (<, >, =) and the type (T
or C) specification. For example, a pointer to a null-terminated input character string
is coded as <0T[], and an output one coded as >0T[].

Note that while appending the array specifier ‘[]’ is formally correct, because the
presence of the special qualifier (0 or #) implies an array, the ‘[]’ may be omitted:
<0T, >0T, =#C, etc.

Note also that the 0 and # specifiers may be used with data of all types (excluding A
and Z) and widths. For example, in the Classic Edition, <0U2may be useful for deal-
ing with Unicode.

274 Dyalog APL/W Language Reference

Type
The data type of the argument is represented by one of the symbols i, u, c, t, f, a,
which may be specified in lower or upper case:

Type Description

I Integer The value is interpreted as a 2s complement signed
integer

U
Unsigned
integer The value is interpreted as an unsigned integer

C Character

The value is interpreted as a character. In the Unicode
Edition, the value maps directly onto a Unicode code
point. In the Classic Edition, the value is interpreted as
an index into ⎕AV. This means that ⎕AV positions map
onto corresponding ANSI positions.
For example, with ⎕IO=0:
⎕AV[35] = 's', maps toANSI[35] = ’

Type Description

T
Translated
character

The value is interpreted as a character. In the Unicode
Edition, the value maps directly onto a Unicode code
point. In the Classic Edition, the value is translated using
standard Dyalog ⎕AV to ANSI translation. This means
that ⎕AVcharacters map onto corresponding ANSI
characters.
For example, with ⎕IO=0:
⎕AV[35] = 's', maps toANSI[115] = ’s’

F Float The value is interpreted as an IEEE 754-2008 binary64
floating point number

D Decimal The value is interpreted as an IEEE 754-2008 decimal128
floating point number (DPD format)

J Complex

P uintptr-t This is equivalent to U4 on 32-bit versions and U8 on
64-bit Versions

Z
APL array
with
header

This is the same format as is used to transmit APL arrays
over TCP/IP Sockets

Chapter 3: System Functions & Variables 275

Width
The type specifier may be followed by the width of the value in bytes. For example:

I4 4-byte signed integer.
U2 2-byte unsigned integer.
F8 8-byte floating point number.
F4 4-byte floating point number.
D16 16-byte decimal floating-point number

Type Possible values for Width Default value for Width

I 1, 2, 4, 8 4

U 1, 2, 4, 8 4

C 1,2,4 1

T 1,2,4 wide character(see below)

F 4, 8 8

D 16 16

J 16 16

P Not applicable

A Not applicable

Z Not applicable

In the Unicode Edition, the default width is the width of a wide character according
to the convention of the host operating system. This translates to T2 underWindows
and T4 under UNIX or Linux.

Note that 32-bit versions can support 64-bit integer arguments, but not 64-bit integer
results.

Examples
I2 16-bit integer
<I4 Pointer to input 4-byte integer
U Default width unsigned integer
=F4 Pointer to input/output 4-byte floating point number.

276 Dyalog APL/W Language Reference

Arrays
Arrays are specified by following the basic data type with [n] or [], where n indi-
cates the number of elements in the array. In the C declaration, the number of ele-
ments in an array may be specified explicitly at compile time, or determined
dynamically at runtime. In the latter case, the size of the array is often passed along
with the array, in a separate argument. In this case, n, the number of elements is
omitted from the specification. Note that C deals only in scalars and rank 1 (vector)
arrays.

int vec[10]; // explicit vector length.
unsigned size, list[]; // undetermined length.

could be coded as:

I[10] vector of 10 ints.
U U[] unsigned integer followed by an array of unsigned integers.

Confusion sometimes arises over a difference in the declaration syntax between C
and ⎕NA. In C, an argument declaration may be given to receive a pointer to either a
single scalar item, or to the first element of an array. This is because in C, the address
of an array is deemed to be the address of its first element.

void foo (char *string);
char ch = 'a', ptr = "abc";
foo(&ch);// call with address of scalar.
foo(ptr);// call with address of array.

However, from APL’s point of view, these two cases are distinct and if the function is
to be called with the address of (pointer to) a scalar, it must be declared: '<T'.
Otherwise, to be called with the address of an array, it must be declared: '<T[]'.
Note that it is perfectly acceptable in such circumstances to define more than one
name association to the same DLL function specifying different argument types:

'FooScalar'⎕NA'mydll|foo <T' ⋄ FooScalar'a'
'FooVector'⎕NA'mydll|foo <T[]' ⋄ FooVector'abc'

Chapter 3: System Functions & Variables 277

Structures
Arbitrary data structures, which are akin to nested arrays, are specified using the sym-
bols {}. For example, the code {F8 I2} indicates a structure comprised of an 8-
byte float followed by a 2-byte int. Furthermore, the code <{F8 I2}[3]means an
input pointer to an array of 3 such structures.

For example, this structure might be defined in C thus:

typedef struct
{

double f;
short i;

} mystruct;

A function defined to receive a count followed by an input pointer to an array of
such structures:

void foo(unsigned count, mystruct *str);

An appropriate ⎕NA declaration would be:

⎕NA'mydll.foo U <{F8 I2}[]'

A call on the function with two arguments - a count followed by a vector of struc-
tures:

foo 4,⊂(1.4 3)(5.9 1)(6.5 2)(0 0)

Notice that for the above call, APL converts the two Boolean (0 0) elements to an
8-byte float and a 2-byte int, respectively.

Specifying Pointers Explicitly
⎕NA syntax enables APL to pass arguments to DLL functions by value or address as
appropriate. For example if a function requires an integer followed by a pointer to an
integer:

void fun(int valu, int *addr);

You might declare and call it:

⎕NA'mydll|fun I <I' ⋄ fun 42 42

The interpreter passes the value of the first argument and the address of the second
one.

278 Dyalog APL/W Language Reference

Two common cases occur where it is necessary to pass a pointer explicitly. The first
is if the DLL function requires a null pointer, and the second is where you want to
pass on a pointer which itself is a result from a DLL function.

In both cases, the pointer argument should be coded as P. This causes APL to pass
the pointer unchanged, by value, to the DLL function.

In the previous example, to pass a null pointer, (or one returned from another DLL
function), you must code a separate ⎕NA definition.

'fun_null'⎕NA'mydll|fun I P' ⋄ fun_null 42 0

Now APL passes the value of the second argument (in this case 0 - the null pointer),
rather than its address.

Note that by using P, which is 4-byte for 32-bit processes and 8-byte for 64-bit proc-
esses, you will ensure that the code will run unchanged under both 32-bit and 64-bit
Versions of Dyalog APL.

Using a Function
A DLL function may or may not return a result, and may take zero or more argu-
ments. This syntax is reflected in the coding of the right argument of ⎕NA. Notice
that the corresponding associated APL function is niladic or monadic (never dyadic),
and that it always returns a vector result - a null one if there is no output from the
function. See Result Vector section below. Examples of the various combinations
are:

DLL function Non-result-returning:
⎕NA 'mydll|fn1' ⍝ Niladic
⎕NA 'mydll|fn2 <0T' ⍝ Monadic - 1-element arg
⎕NA 'mydll|fn3 =0T <0T' ⍝ Monadic - 2-element arg

DLL function Result-returning:
⎕NA 'I4 mydll|fn4' ⍝ Niladic
⎕NA 'I4 mydll|fn5 F8' ⍝ Monadic - 1-element arg
⎕NA 'I4 mydll|fn6 >I4[] <0T'⍝ Monadic - 2-element arg

When the external function is called, the number of elements in the argument must
match the number defined in the ⎕NA definition. Using the example functions
defined above:

fn1 ⍝ Niladic Function.
fn2, ⊂'Single String' ⍝ 1-element arg
fn3 'This' 'That' ⍝ 2-element arg

Chapter 3: System Functions & Variables 279

Note in the second example, that you must enclose the argument string to produce a
single item (nested) array in order to match the declaration. Dyalog converts the type
of a numeric argument if necessary, so for example in fn5 defined above, a Boolean
value would be converted to double floating point (F8) prior to being passed to the
DLL function.

Pointer Arguments
When passing pointer arguments there are three cases to consider.

< Input pointer:
In this case you must supply the data array itself as argument to the function. A
pointer to its first element is then passed to the DLL function.

fn2 ⊂'hello'

> Output pointer:
Here, you must supply the number of elements that the output will need in order for
APL to allocate memory to accommodate the resulting array.

fn6 10 'world' ⍝ 1st arg needs space for 10 ints.

Note that if you were to reserve fewer elements than the DLL function actually used,
the DLL function would write beyond the end of the reserved array and may cause
the interpreter to crash with a System Error (syserr 999 on Windows or SIGSEGV on
Unix).

= Input/Output:
As with the input-only case, a pointer to the first element of the argument is passed to
the DLL function. The DLL function then overwrites some or all of the elements of
the array, and the new value is passed back as part of the result of the call. As with
the output pointer case, if the input array were too short, so that the DLL wrote
beyond the end of the array, the interpreter would almost certainly crash.

fn3 '.....' 'hello'

280 Dyalog APL/W Language Reference

Result Vector
In APL, a function cannot overwrite its arguments. This means that any output from a
DLL function must be returned as part of the explicit result, and this includes output
via ‘output’ or ‘input/output’ pointer arguments.

The general form of the result from calling a DLL function is a nested vector. The
first item of the result is the defined explicit result of the external function, and sub-
sequent items are implicit results from output, or input/output pointer arguments.

The length of the result vector is therefore: 1 (if the function was declared to return
an explicit result) + the number of output or input/output arguments.

⎕NA Declaration Result Output Arguments Result Length

mydll|fn1 0 0

mydll|fn2 <0T 0 0 0

mydll|fn3 =0T <0T 0 1 0 1

I4 mydll|fn4 1 1

I4 mydll|fn5 F8 1 0 1

I4 mydll|fn6 >I4[] <0T 1 1 0 2

As a convenience, if the result would otherwise be a 1-item vector, it is disclosed.
Using the third example above:

⍴fn3 '.....' 'abc'
5

fn3 has no explicit result; its first argument is input/output pointer; and its second
argument is input pointer. Therefore as the length of the result would be 1, it has
been disclosed.

ANSI /Unicode Versions of Library Calls
UnderWindows, most library functions that take character arguments, or return char-
acter results have two forms: one Unicode (Wide) and one ANSI. For example, a func-
tion such as MessageBox(), has two forms MessageBoxA() and
MessageBoxW(). The A stands for ANSI (1-byte) characters, and the W for wide (2-
byte Unicode) characters.

It is essential that you associate the form of the library function that is appropriate for
the Dyalog Edition you are using, i.e. MessageBoxA() for the Classic Edition, but
MessageBoxW() for the Unicode Edition.

Chapter 3: System Functions & Variables 281

To simplify writing portable code for both Editions, you may specify the character *
instead of A or W at the end of a function name. This will be replaced by A in the Clas-
sic Edition and W in the Unicode Edition.

The default name of the associated function (if no left argument is given to ⎕NA),
will be without the trailing letter (MessageBox).

Type Definitions (typedefs)
The C language encourages the assignment of defined names to primitive and com-
plex data types using its #define and typedefmechanisms. Using such abstrac-
tions enables the C programmer to write code that will be portable across many
operating systems and hardware platforms.

Windows software uses many such names and Microsoft documentation will nor-
mally refer to the type of function arguments using defined names such as HANDLE
or LPSTR rather than their equivalent C primitive types: int or char*.

It is beyond the scope of this manual to list all the Microsoft definitions and their C
primitive equivalents, and indeed, DLLs from sources other than Microsoft may well
employ their own distinct naming conventions.

In general, you should consult the documentation that accompanies the DLL in order
to convert typedefs to primitive C types and thence to ⎕NA declarations. The doc-
umentation may well refer you to the ‘include’ files which are part of the Software
Development Kit, and in which the types are defined.

282 Dyalog APL/W Language Reference

The following table of some commonly encountered Windows typedefs and their
⎕NA equivalents might prove useful.

Windows typedef ⎕NA equivalent

HWND P

HANDLE P

GLOBALHANDLE P

LOCALHANDLE P

DWORD U4

WORD U2

BYTE U1

LPSTR =0T[] (note 1)

LPCSTR <0T[] (note 2)

WPARAM U

LPARAM U4

LRESULT I4

BOOL I

UINT U

ULONG U4

ATOM U2

HDC P

HBITMAP P

HBRUSH P

HFONT P

HICON P

HMENU P

HPALETTE P

HMETAFILE P

Chapter 3: System Functions & Variables 283

Windows typedef ⎕NA equivalent

HMODULE P

HINSTANCE P

COLORREF {U1[4]}

POINT {I I}

POINTS {I2 I2}

RECT {I I I I}

CHAR T or C

Notes

1. LPSTR is a pointer to a null-terminated string. The definition does not indi-
cate whether this is input or output, so the safest coding would be =0T[]
(providing the vector you supply for input is long enough to accommodate
the result). You may be able to improve simplicity or performance if the doc-
umentation indicates that the pointer is ‘input only’ (<0T[]) or ‘output
only’ (>0T[]). See Direction above.

2. LPCSTR is a pointer to a constant null-terminated string and therefore cod-
ing <0T[] is safe.

3.
4. Note that the use of type T with default width ensures portability of code

between Classic and Unicode Editions. In the Classic Edition, T (with no
width specifier) implies 1-byte characters which are translated between
⎕AV and ASCII, while In the Unicode Edition, T (with no width specifier)
implies 2-byte (Unicode) characters.

Dyalog32.dll or Dyalog64.dll
Included with Dyalog APL are utility DLLs called dyalog32.dll and dyalog64.dll.
These DLLs contain three functions: MEMCPY, STRNCPY and SRTLEN.

MEMCPY

MEMCPY is an extremely versatile function used for moving arbitrary data between
memory buffers.

Its C definition is:

void *MEMCPY(// copy memory
void *to, // target address
void *fm, // source address
size_t size // number of bytes to copy
);

284 Dyalog APL/W Language Reference

MEMCPY copies size bytes starting from source address fm, to destination address
to. The source and destination areas should not overlap; if they do the behaviour is
undefined and the result is the first argument.

MEMCPY’s versatility stems from being able to associate to it using many different
type declarations.

Example

Suppose a global buffer (at address: addr) contains (numb) double floating point
numbers. To copy these to an APL array, we could define the association:

'doubles' ⎕NA 'dyalog32|MEMCPY >F8[] I4 U4'
doubles numb addr (numb×8)

Notice that:

l As the first argument to doubles is an output argument, we must supply
the number of elements to reserve for the output data.

l MEMCPY is defined to take the number of bytes to copy, so we must mul-
tiply the number of elements by the element size in bytes.

Example
Suppose that a database application requires that we construct a record in global
memory prior to writing it to file. The record structure might look like this:

typedef struct {
int empno;// employee number.
float salary;// salary.
char name[20];// name.
} person;

Then, having previously allocated memory (addr) to receive the record, we can
define:

'prec' ⎕NA 'dyalog32|MEMCPY I4 <{P F4 T[20]} U4'
prec addr(99 12345.60 'Charlie Brown')(4+4+20)

Chapter 3: System Functions & Variables 285

STRNCPY

STRNCPY is used to copy null-terminated strings between memory buffers.

Its C definition is:

void *STRNCPY(// copy null-terminated string
char *to,// target address
char *fm,// source address
size_t size// MAX number of chars to copy
);

STRNCPY copies a maximum of size characters from the null-terminated source
string at address fm, to the destination address to. If the source and destination
strings overlap, the result is the first argument.

If the source string is shorter than size, null characters are appended to the des-
tination string.

If the source string (including its terminating null) is longer than size, only size
characters are copied and the resulting destination string is not null-terminated

Example

Suppose that a database application returns a pointer (addr) to a structure that con-
tains two pointers to (max 20-char) null-terminated strings.

typedef struct { // null-terminated strings:
char *first; // first name (max 19 chars + 1 null).
char *last; // last name. (max 19 chars + 1 null).
} name;

To copy the names from the structure:

'get'⎕NA'dyalog32|STRNCPY >0T[] P U4'
get 20 addr 20

Charlie
get 20 (addr+4) 20

Brown

Note that on a 64-bit Version, ⎕FR will need to be 1287 for the addition to be reli-
able.

To copy data from the workspace into an already allocated (new) structure:

'put'⎕NA'dyalog32|STRNCPY I4 <0T[] U4'
put new 'Bo' 20
put (new+4) 'Peep' 20

286 Dyalog APL/W Language Reference

Notice in this example that you must ensure that names no longer than 19 characters
are passed to put. More than 19 characters would not leave STRNCPY enough
space to include the trailing null, which would probably cause the application to
fail.

STRLEN

STRLEN calculates the length of a C string (a 0-terminated string of bytes in mem-
ory). Its C declaration is:

size_t STRLEN(// calculate length of string
const char *s // address of string
);

Example

Suppose that a database application returns a pointer (addr) to a null-terminated
string and you do not know the upper bound on the length of the string.

To copy the string into the workspace:

'len' ⎕NA'P dyalog32|STRLEN P'
'cpy'⎕NA'dyalog32|MEMCPY >T[] P P'
cpy l addr (l←len addr)

Bartholemew

Chapter 3: System Functions & Variables 287

Examples
The following examples all use functions from the Microsoft Windows user32.dll.

This DLL should be located in a standard Windows directory, so you should not nor-
mally need to give the full path name of the library. However if trying these exam-
ples results in the error message ‘FILE ERROR 1 No such file or directory’, you must
locate the DLL and supply the full path name (and possibly extension).

Example 1
The Windows function "GetCaretBlinkTime" retrieves the caret blink rate. It
takes no arguments and returns an unsigned int and is declared as follows:

UINT GetCaretBlinkTime(void);

The following statements would provide access to this routine through an APL func-
tion of the same name.

⎕NA 'U user32|GetCaretBlinkTime'
GetCaretBlinkTime

530

The following statement would achieve the same thing, but using an APL function
called BLINK.

'BLINK' ⎕NA 'U user32|GetCaretBlinkTime'
BLINK

530

Example 2
The Windows function "SetCaretBlinkTime" sets the caret blink rate. It takes a
single unsigned int argument, does not return a result and is declared as follows:

void SetCaretBlinkTime(UINT);

The following statements would provide access to this routine through an APL func-
tion of the same name:

⎕NA 'user32|SetCaretBlinkTime U'
SetCaretBlinkTime 1000

288 Dyalog APL/W Language Reference

Example 3
The Windows function "MessageBox" displays a standard dialog box on the screen
and awaits a response from the user. It takes 4 arguments. The first is the window
handle for the window that owns the message box. This is declared as an unsigned
int. The second and third arguments are both pointers to null-terminated strings con-
taining the message to be displayed in the Message Box and the caption to be used
in the window title bar. The 4th argument is an unsigned int that specifies the Mes-
sage Box type. The result is an int which indicates which of the buttons in the mes-
sage box the user has pressed. The function is declared as follows:

int MessageBox(HWND, LPCSTR, LPCSTR, UINT);

The following statements provide access to this routine through an APL function of
the same name. Note that the 2nd and 3rd arguments are both coded as input pointers
to type T null-terminated character arrays which ensures portability between Edi-
tions.

⎕NA 'I user32|MessageBox* P <0T <0T U'

The following statement displays a Message Box with a stop sign icon together with
2 push buttons labelled OK and Cancel (this is specified by the value 19).

MessageBox 0 'Message' 'Title' 19

The function works equally well in the Unicode Edition because the <0T spec-
ification is portable.

MessageBox 0 'Το Μήνυμα' 'Ο Τίτλος' 19

Note that a simpler, portable (and safer) method for displaying a Message Box is to
use Dyalog APL’s primitive MsgBox object.

Example 4
The Windows function "FindWindow" obtains the window handle of a window
which has a given character string in its title bar. The function takes two arguments.
The first is a pointer to a null-terminated character string that specifies the window's
class name. However, if you are not interested in the class name, this argument
should be a NULL pointer. The second is a pointer to a character string that specifies
the title that identifies the window in question. This is an example of a case
described above where two instances of the function must be defined to cater for the
two different types of argument. However, in practice this function is most often
used without specifying the class name. The function is declared as follows:

HWND FindWindow(LPCSTR, LPCSTR);

Chapter 3: System Functions & Variables 289

The following statement associates the APL function FW with the second variant of
the FindWindow call, where the class name is specified as a NULL pointer. To indi-
cate that APL is to pass the value of the NULL pointer, rather than its address, we
need to code this argument as I4.

'FW' ⎕NA 'P user32|FindWindow* I4 <0T'

To obtain the handle of the window entitled "CLEARWS - Dyalog APL/W":

⎕←HNDL←FW 0 'CLEAR WS - Dyalog APL/W'
59245156

Example 5
The Windows function "GetWindowText" retrieves the caption displayed in a win-
dow's title bar. It takes 3 arguments. The first is an unsigned int containing the win-
dow handle. The second is a pointer to a buffer to receive the caption as a null-
terminated character string. This is an example of an output array. The third argu-
ment is an int which specifies the maximum number of characters to be copied into
the output buffer. The function returns an int containing the actual number of char-
acters copied into the buffer and is declared as follows:

int GetWindowText(HWND, LPSTR, int);

The following associates the "GetWindowText" DLL function with an APL func-
tion of the same name. Note that the second argument is coded as ">0T" indicating
that it is a pointer to a character output array.

⎕NA 'I user32|GetWindowText* P >0T I'

Now change the Session caption using)WSID :

)WSID MYWS
was CLEAR WS

Then retrieve the new caption (max length 255) using window handle HNDL from
the previous example:

]display GetWindowText HNDL 255 255
.→-------------------------.
| .→------------------. |
| 19 |MYWS - Dyalog APL/W| |
| '-------------------' |
'∊-------------------------'

There are three points to note. Firstly, the number 255 is supplied as the second
argument. This instructs APL to allocate a buffer large enough for a 255-element
character vector into which the DLL routine will write. Secondly, the result of the
APL function is a nested vector of 2 elements. The first element is the result of the
DLL function. The second element is the output character array.

290 Dyalog APL/W Language Reference

Finally, notice that although we reserved space for 255 elements, the result reflects
the length of the actual text (19).

An alternative way of coding and using this function is to treat the second argument
as an input/output array.

e.g.

⎕NA 'I User32|GetWindowText* P =0T I'

]display GetWindowText HNDL (255⍴' ') 255
.→-------------------------.
| .→------------------. |
| 19 |MYWS - Dyalog APL/W| |
| '-------------------' |
'∊-------------------------'

In this case, the second argument is coded as =0T, so when the function is called an
array of the appropriate size must be supplied. This method uses more space in the
workspace, although for small arrays (as in this case) the real impact of doing so is
negligible.

Example 6
The function "GetCharWidth" returns the width of each character in a given
range Its first argument is a device context (handle). Its second and third arguments
specify font positions (start and end). The third argument is the resulting integer vec-
tor that contains the character widths (this is an example of an output array). The
function returns a Boolean value to indicate success or failure. The function is
defined as follows. Note that this function is provided in the library: gdi32.dll.

BOOL GetCharWidth(HDC, UINT, UINT, int FAR*);

The following statements provide access to this routine through an APL function of
the same name:

⎕NA 'U4 gdi32|GetCharWidth* P U U >I[]'

'P'⎕WC'Printer'

]display GetCharWidth ('P' ⎕WG 'Handle') 65 67 3
.→-------------.
| .→-------. |
| 1 |50 50 50| |
| '~-------' |
'∊-------------'

Chapter 3: System Functions & Variables 291

Note: 'P'⎕WG'Handle' returns a handle This is represented as a number. The
number will be in the range (0 - 2*32] on a 32-bit Version and (0 - 2*64] on a 64-bit
Version. These can be passed to a P type parameter. Older Versions used a 32-bit
signed integer.

Example 7

The following example from the supplied workspace: QUADNA.DWS illustrates sev-
eral techniques which are important in advanced ⎕NA programming. Function
DllVersion returns the major and minor version number for a given DLL.

In advanced DLL programming, it is often necessary to administer memory outside
APL’s workspace. In general, the procedure for such use is:

1. Allocate global memory.
2. Lock the memory.
3. Copy any DLL input information from workspace into memory.
4. Call the DLL function.
5. Copy any DLL output information from memory to workspace.
6. Unlock the memory.
7. Free the memory.

Notice that steps 1 and 7 and steps 2 and 6 complement each other. That is, if you
allocate global systemmemory, you must free it after you have finished using it. If
you continue to use global memory without freeing it, your system will gradually
run out of resources. Similarly, if you lock memory (which you must do before using
it), then you should unlock it before freeing it. Although on some versions ofWin-
dows, freeing the memory will include unlocking it, in the interests of good style,
maintaining the symmetry is probably a good thing.

292 Dyalog APL/W Language Reference

∇ version←DllVersion file;Alloc;Free;Lock;Unlock;Size
;Info;Value;Copy;size;hndl;addr;buff;ok

[1]
[2] 'Alloc'⎕NA'P kernel32|GlobalAlloc U4 U4'
[3] 'Free'⎕NA'P kernel32|GlobalFree P'
[4] 'Lock'⎕NA'P kernel32|GlobalLock P'
[5] 'Unlock'⎕NA'U4 kernel32|GlobalUnlock P'
[6]
[7] 'Size'⎕NA'U4 version|GetFileVersionInfoSize* <0T
>U4'
[8] 'Info'⎕NA'U4 version|GetFileVersionInfo*<0T U4 U4 P'
[9] 'Value'⎕NA'U4 version|VerQueryValue* P <0T >P >U4'
[10]
[11] 'Copy'⎕NA'dyalog64|MEMCPY >U4[] P P'
[12]
[13] :If ×size←⊃Size file 0 ⍝ Size of info
[14] :AndIf ×hndl←Alloc 0 size ⍝ Alloc memory
[15] :If ×addr←Lock hndl ⍝ Lock memory
[16] :If ×Info file 0 size addr ⍝ Version info
[17] ok buff size←Value addr'\' 0 0 ⍝ Version
value
[18] :If ok
[19] buff←Copy(size÷4)buff size ⍝ Copy info
[20] version←(2/2*16)⊤⊃2↓buff ⍝ Split
version
[21] :EndIf
[22] :EndIf
[23] ok←Unlock hndl ⍝ Unlock
memory
[24] :EndIf
[25] ok←Free hndl ⍝ Free memory
[26] :EndIf

∇

Lines [2-11] associate APL function names with the DLL functions that will be used.

Lines [2-5] associate functions to administer global memory.

Lines [7-9] associate functions to extract version information from a DLL.

Line[11] associates Copy with MEMCPY function from dyalog64.dll.

Lines [13-26] call the DLL functions.

Line [13] requests the size of buffer required to receive version information for the
DLL. A size of 0 will be returned if the DLL does not contain version information.

Chapter 3: System Functions & Variables 293

Notice that care is taken to balance memory allocation and release:

On line [14], the :If clause is taken only if the global memory allocation is successful,
in which case (and only then) a corresponding Free is called on line [25].

Unlock on line[23] is called if and only if the call to Lock on line [15] succeeds.

A result is returned from the function only if all the calls are successful Otherwise,
the calling environment will sustain a VALUE ERROR.

294 Dyalog APL/W Language Reference

More Examples
⎕NA'I4 advapi32 |RegCloseKey P'
⎕NA'I4 advapi32 |RegCreateKeyEx* P <0T U4 <0T U4 U4 P >P
>U4'
⎕NA'I4 advapi32 |RegEnumValue* P U4 >0T =U4 =U4 >U4 >0T
=U4'
⎕NA'I4 advapi32 |RegOpenKey* P <0T >P'
⎕NA'I4 advapi32 |RegOpenKeyEx* P <0T U4 U4 >P'
⎕NA'I4 advapi32 |RegQueryValueEx* P <0T =U4 >U4 >0T =U4'
⎕NA'I4 advapi32 |RegSetValueEx* P <0T =U4 U4 <0T U4'
⎕NA'P dyalog32 |STRNCPY P P P'
⎕NA'P dyalog32 |STRNCPYA P P P'
⎕NA'P dyalog32 |STRNCPYW P P P'
⎕NA'P dyalog32 |MEMCPY P P P'
⎕NA'I4 gdi32 |AddFontResource* <0T'
⎕NA'I4 gdi32 |BitBlt P I4 I4 I4 I4 P I4 I4 U4'
⎕NA'U4 gdi32 |GetPixel P I4 I4'
⎕NA'P gdi32 |GetStockObject I4'
⎕NA'I4 gdi32 |RemoveFontResource* <0T'
⎕NA'U4 gdi32 |SetPixel P I4 I4 U4'
⎕NA' glu32 |gluPerspective F8 F8 F8 F8'
⎕NA'I4 kernel32 |CopyFile* <0T <0T I4'
⎕NA'P kernel32 |GetEnvironmentStrings'
⎕NA'U4 kernel32 |GetLastError'
⎕NA'U4 kernel32 |GetTempPath* U4 >0T'
⎕NA'P kernel32 |GetProcessHeap'
⎕NA'I4 kernel32 |GlobalMemoryStatusEx ={U4 U4 U8 U8 U8 U8 U8 U8}'
⎕NA'P kernel32 |HeapAlloc P U4 P'
⎕NA'I4 kernel32 |HeapFree P U4 P'
⎕NA' opengl32 |glClearColor F4 F4 F4 F4'
⎕NA' opengl32 |glClearDepth F8'
⎕NA' opengl32 |glEnable U4'
⎕NA' opengl32 |glMatrixMode U4'
⎕NA'I4 user32 |ClientToScreen P ={I4 I4}'
⎕NA'P user32 |FindWindow* <0T <0T'
⎕NA'I4 user32 |ShowWindow P I4'
⎕NA'I2 user32 |GetAsyncKeyState I4'
⎕NA'P user32 |GetDC P'
⎕NA'I4 User32 |GetDialogBaseUnits'
⎕NA'P user32 |GetFocus'
⎕NA'U4 user32 |GetSysColor I4'
⎕NA'I4 user32 |GetSystemMetrics I4'
⎕NA'I4 user2 |InvalidateRgn P P I4'
⎕NA'I4 user32 |MessageBox* P <0T <0T U4'
⎕NA'I4 user32 |ReleaseDC P P'
⎕NA'P user32 |SendMessage* P U4 P P'
⎕NA'P user32 |SetFocus P'
⎕NA'I4 user32 |WinHelp* P <0T U4 P'
⎕NA'I4 winnm |sndPlaySound <0T U4'

Chapter 3: System Functions & Variables 295

Native File Append: {R}←X ⎕NAPPEND Y

This function appends the ravel of its left argument X to the end of the designated
native file. Xmust be a simple homogeneous APL array. Y is a 1- or 2-element
integer vector. Y[1] is a negative integer that specifies the tie number of a native
file. The optional second element Y[2] specifies the data type to which the array X
is to be converted before it is written to the file.

The shy file index result returned is the position within the file of the end of the rec-
ord, which is also the start of the following one.

Unicode Edition

Unless you specify the data type in Y[2], a character array will by default be written
using type 80.

If the data will not fit into the specified character width (bytes) ⎕NAPPEND will fail
with a DOMAIN ERROR.

As a consequence of these two rules, you must specify the data type (either 160 or
320) in order to write Unicode characters whose code-point are in the range 256-
65535 and >65535 respectively.

Example
n←'test'⎕NCREATE 0

'abc' ⎕nappend n

'ταβέρνα'⎕nappend n
DOMAIN ERROR

'ταβέρνα'⎕NAPPEND n
∧

'ταβέρνα'⎕NAPPEND n 160

⎕NREAD n 80 3 0
abc

⎕NREAD n 160 7
ταβέρνα

For compatibility with old files, you may specify that the data be converted to type
82 on output. The conversion (to ⎕AV indices) will be determined by the local value
of ⎕AVU.

296 Dyalog APL/W Language Reference

Name Classification: R←⎕NC Y

Ymust be a simple character scalar, vector, matrix, or vector of vectors that specifies a
list of names. R is a simple numeric vector containing one element per name in Y.

Each element of R is the name class of the active referent to the object named in Y.

If Y is simple, a name class may be:

Name Class Description

¯1 invalid name

0 unused name

1 Label

2 Variable

3 Function

4 Operator

9 Object (GUI, namespace, COM, .Net)

If Y is nested a more precise analysis of name class is obtained whereby different
types of functions (primitive, traditional defined functions, D-fns) are identified by a
decimal extension. For example, defined functions have name class 3.1, D-fns have
name class 3.2, and so forth. The complete set of name classification is as follows:

Array (2) Functions (3) Operators (4) Namespaces (9)

n.1 Variable Traditional Traditional Created by ⎕NS

n.2 Field D-fns D-ops Instance

n.3 Property Derived
Primitive

n.4 Class

n.5 N/A Interface

n.6 External
Shared External External Class

n.7 External Interface

Chapter 3: System Functions & Variables 297

In addition, values in R are negative to identify names of methods, properties and
events that are inherited through the class hierarchy of the current class or instance.

Variable (Name-Class 2.1)
Conventional APL arrays have name-class 2.1.

NUM←88
CHAR←'Hello World'

⎕NC ↑'NUM' 'CHAR'
2 2

⎕NC 'NUM' 'CHAR'
2.1 2.1

'MYSPACE'⎕NS ''
MYSPACE.VAR←10
MYSPACE.⎕NC'VAR'

2
MYSPACE.⎕NC⊂'VAR'

2.1

Field (Name-Class 2.2)
Fields defined by APL Classes have name-class 2.2.

:Class nctest
:Field Public pubFld
:Field pvtFld

∇ r←NameClass x
:Access Public
r←⎕NC x

∇
...
:EndClass ⍝ nctest

ncinst←⎕NEW nctest

The name-class of a Field, whether Public or Private, viewed from a Method that is
executing within the Instance Space, is 2.2.

ncinst.NameClass'pubFld' 'pvtFld'
2.2 2.2

298 Dyalog APL/W Language Reference

Note that an internal Method sees both Public and Private Fields in the Class
Instance. However, when viewed from outside the instance, only public fields are vis-
ible

⎕NC 'ncinst.pubFld' 'ncinst.pvtFld'
¯2.2 0

In this case, the name-class is negative to indicate that the name has been exposed by
the class hierarchy, rather than existing in the associated namespace which APL has
created to contain the instance. The same result is returned if ⎕NC is executed inside
this space:

ncinst.⎕NC'pubFld' 'pvtFld'
¯2.2 0

Note that the names of Fields are reported as being unused if the argument to ⎕NC is
simple.

ncinst.⎕NC 2 6⍴'pubFldpvtFld'
0 0

Property (Name-Class 2.3)
Properties defined by APL Classes have name-class 2.3.

:Class nctest
:Field pvtFld←99

:Property pubProp
:Access Public

∇ r←get
r←pvtFld

∇
:EndProperty

:Property pvtProp
∇ r←get

r←pvtFld
∇

:EndProperty

∇ r←NameClass x
:Access Public
r←⎕NC x

∇
...
:EndClass ⍝ nctest

ncinst←⎕NEW nctest

Chapter 3: System Functions & Variables 299

The name-class of a Property, whether Public or Private, viewed from a Method that
is executing within the Instance Space, is 2.3.

ncinst.NameClass'pubProp' 'pvtProp'
2.3 2.3

Note that an internal Method sees both Public and Private Properties in the Class
Instance. However, when viewed from outside the instance, only Public Properties
are visible

⎕NC 'ncinst.pubProp' 'ncinst.pvtProp'
¯2.3 0

In this case, the name-class is negative to indicate that the name has been exposed by
the class hierarchy, rather than existing in the associated namespace which APL has
created to contain the instance. The same result is returned if ⎕NC is executed inside
this space:

ncinst.⎕NC 'pubProp' 'pvtProp'
¯2.3 0

Note that the names of Properties are reported as being unused if the argument to
⎕NC is simple.

ncinst.⎕NC 2 6⍴'pubProppvtProp'
0 0

External Properties (Name-Class 2.6)
Properties exposed by external objects (.Net and COM and the APL GUI) have
name-class ¯2.6.

⎕USING←'System'
dt←⎕NEW DateTime (2006 1 1)
dt.⎕NC 'Day' 'Month' 'Year'

¯2.6 ¯2.6 ¯2.6

'ex' ⎕WC 'OLEClient' 'Excel.Application'
ex.⎕NC 'Caption' 'Version' 'Visible'

¯2.6 ¯2.6 ¯2.6

'f'⎕WC'Form'
f.⎕NC'Caption' 'Size'

¯2.6 ¯2.6

Note that the names of such Properties are reported as being unused if the argument
to ⎕NC is simple.

f.⎕NC 2 7⍴'CaptionSize '
0 0

300 Dyalog APL/W Language Reference

Defined Functions (Name-Class 3.1)
Traditional APL defined functions have name-class 3.1.

∇ R←AVG X
[1] R←(+/X)÷⍴X

∇
AVG ⍳100

50.5

⎕NC'AVG'
3

⎕NC⊂'AVG'
3.1

'MYSPACE'⎕NS 'AVG'
MYSPACE.AVG ⍳100

50.5

MYSPACE.⎕NC'AVG'
3

⎕NC⊂'MYSPACE.AVG'
3.1

Note that a function that is simply cloned from a defined function by assignment
retains its name-class.

MEAN←AVG
⎕NC'AVG' 'MEAN'

3.1 3.1

Whereas, the name of a function that amalgamates a defined function with any other
functions has the name-class of a Derived Function, i.e. 3.3.

VMEAN←AVG∘,
⎕NC'AVG' 'VMEAN'

3.1 3.3

D-Fns (Name-Class 3.2)
D-Fns (Dynamic Functions) have name-class 3.2

Avg←{(+/⍵)÷⍴⍵}

⎕NC'Avg'
3

⎕NC⊂'Avg'
3.2

Chapter 3: System Functions & Variables 301

Derived Functions (Name-Class 3.3)
Derived Functions and functions created by naming a Primitive function have name-
class 3.3.

PLUS←+
SUM←+/
CUM←PLUS\
⎕NC'PLUS' 'SUM' 'CUM'

3.3 3.3 3.3
⎕NC 3 4⍴'PLUSSUM CUM '

3 3 3

Note that a function that is simply cloned from a defined function by assignment
retains its name-class. Whereas, the name of a function that amalgamates a defined
function with any other functions has the name-class of a Derived Function, i.e. 3.3.

∇ R←AVG X
[1] R←(+/X)÷⍴X

∇

MEAN←AVG
VMEAN←AVG∘,
⎕NC'AVG' 'MEAN' 'VMEAN'

3.1 3.1 3.3

External Functions (Name-Class 3.6)
Methods exposed by the Dyalog APL GUI and COM and .NET objects have name-
class ¯3.6. Methods exposed by External Functions created using ⎕NA and ⎕SH all
have name-class 3.6.

'F'⎕WC'Form'

F.⎕NC'GetTextSize' 'GetFocus'
¯3.6 ¯3.6

'EX'⎕WC'OLEClient' 'Excel.Application'
EX.⎕NC 'Wait' 'Save' 'Quit'

¯3.6 ¯3.6 ¯3.6

⎕USING←'System'
dt←⎕NEW DateTime (2006 1 1)
dt.⎕NC 'AddDays' 'AddHours'

¯3.6 ¯3.6

302 Dyalog APL/W Language Reference

'beep'⎕NA'user32|MessageBeep i'

⎕NC'beep'
3

⎕NC⊂'beep'
3.6

'xutils'⎕SH''
)FNS

avx box dbr getenv hex ltom ltov
mtol ss vtol

⎕NC'hex' 'ss'
3.6 3.6

Operators (Name-Class 4.1)
Traditional Defined Operators have name-class 4.1.

∇FILTER∇
∇ VEC←(P FILTER)VEC ⍝ Select from VEC those elts ..

[1] VEC←(P¨VEC)/VEC ⍝ for which BOOL fn P is true.
∇

⎕NC'FILTER'
4

⎕NC⊂'FILTER'
4.1

D-Ops (Name-Class 4.2
D-Ops (Dynamic Operators) have name-class 4.2.

pred←{⎕IO ⎕ML←1 3 ⍝ Partitioned reduction.
⊃⍺⍺/¨(⍺/⍳⍴⍺)⊂⍵
}

2 3 3 2 +pred ⍳10
3 12 21 19

⎕NC'pred'
4

⎕NC⊂'pred'
4.2

Chapter 3: System Functions & Variables 303

External Events (Name-Class 8.6)
Events exposed by Dyalog APL GUI objects, COM and .NET objects have name-
class ¯8.6.

f←⎕NEW'Form'('Caption' 'Dyalog GUI Form')
f.⎕NC'Close' 'Configure' 'MouseDown'

¯8.6 ¯8.6 ¯8.6

xl←⎕NEW'OLEClient'(⊂'ClassName'
'Excel.Application')

xl.⎕NL -8
NewWorkbook SheetActivate SheetBeforeDoubleClick ...

xl.⎕NC 'SheetActivate' 'SheetCalculate'
¯8.6 ¯8.6

⎕USING←'System.Windows.Forms,system.windows.forms.dll'
⎕NC,⊂'Form'

9.6
Form.⎕NL -8

Activated BackgroundImageChanged BackColorChanged ...

Namespaces (Name-Class 9.1)
Plain namespaces created using ⎕NS, or fixed from a :Namespace script, have
name-class 9.1.

'MYSPACE' ⎕NS ''
⎕NC'MYSPACE'

9
⎕NC⊂'MYSPACE'

9.1

Note however that a namespace created by cloning, where the right argument to ⎕NS
is a ⎕OR of a namespace, retains the name-class of the original space.

'CopyMYSPACE'⎕NS ⎕OR 'MYSPACE'
'CopyF'⎕NS ⎕OR 'F'⎕WC'Form'

⎕NC'MYSPACE' 'F'
9.1 9.2

⎕NC'CopyMYSPACE' 'CopyF'
9.1 9.2

The Name-Class of .Net namespaces (visible through ⎕USING) is also 9.1

⎕USING←''
⎕NC 'System' 'System.IO'

9.1 9.1

304 Dyalog APL/W Language Reference

Instances (Name-Class 9.2)
Instances of Classes created using ⎕NEW, and GUI objects created using ⎕WC all have
name-class 9.2.

MyInst←⎕NEW MyClass
⎕NC'MyInst'

9
⎕NC⊂'MyInst'

9.2
UrInst←⎕NEW ⎕FIX ':Class' ':EndClass'
⎕NC 'MyInst' 'UrInst'

9.2 9.2

'F'⎕WC 'Form'
'F.B' ⎕WC 'Button'
⎕NC 2 3⍴'F F.B'

9 9
⎕NC'F' 'F.B'

9.2 9.2
F.⎕NC'B'

9
F.⎕NC⊂,'B'

9.2

Instances of COM Objects whether created using ⎕WC or ⎕NEW also have name-class
9.2.

xl←⎕NEW'OLEClient'(⊂'ClassName'
'Excel.Application')

'XL'⎕WC'OLEClient' 'Excel.Application'
⎕NC'xl' 'XL'

9.2 9.2

The same is true of Instances of .Net Classes (Types) whether created using ⎕NEW or
.New.

⎕USING←'System'
dt←⎕NEW DateTime (3↑⎕TS)
DT←DateTime.New 3↑⎕TS
⎕NC 'dt' 'DT'

9.2 9.2

Note that if you remove the GUI component of a GUI object, using the Detach
method, it reverts to a plain namespace.

F.Detach
⎕NC⊂,'F'

9.1

Chapter 3: System Functions & Variables 305

Correspondingly, if you attach a GUI component to a plain namespace using the
monadic form of ⎕WC, it morphs into a GUI object

F.⎕WC 'PropertySheet'
⎕NC⊂,'F'

9.2

Classes (Name-Class 9.4)
Classes created using the editor or ⎕FIX have name-class 9.4.

)ED ○MyClass

:Class MyClass
∇ r←NameClass x

:Access Public Shared
r←⎕NC x

∇
:EndClass ⍝ MyClass

⎕NC 'MyClass'
9

⎕NC⊂'MyClass'
9.4

⎕FIX ':Class UrClass' ':EndClass'
⎕NC 'MyClass' 'UrClass'

9.4 9.4

Note that the name of the Class is visible to a Public Method in that Class, or an
Instance of that Class.

MyClass.NameClass'MyClass'
9

MyClass.NameClass⊂'MyClass'
9.4

306 Dyalog APL/W Language Reference

Interfaces (Name-Class 9.5)
Interfaces, defined by :Interface ... :EndInterface clauses, have name-
class 9.5.

:Interface IGolfClub
:Property Club

∇ r←get
∇
∇ set
∇

:EndProperty

∇ Shank←Swing Params
∇

:EndInterface ⍝ IGolfClub

⎕NC 'IGolfClub'
9

⎕NC ⊂'IGolfClub'
9.5

External Classes (Name-Class 9.6)
External Classes (Types) exposed by .Net have name-class 9.6.

⎕USING←'System' 'System.IO'

⎕NC 'DateTime' 'File' 'DirectoryInfo'
9.6 9.6 9.6

Note that referencing a .Net class (type) with ⎕NC, fixes the name of that class in the
workspace and obviates the need for APL to repeat the task of searching for and load-
ing the class when the name is next used.

External Interfaces (Name-Class 9.7)
External Interfaces exposed by .Net have name-class 9.7.

⎕USING←'System.Web.UI,system.web.dll'

⎕NC 'IPostBackDataHandler' 'IPostBackEventHandler'
9.7 9.7

Note that referencing a .Net Interface with ⎕NC, fixes the name of that Interface in the
workspace and obviates the need for APL to repeat the task of searching for and load-
ing the Interface when the name is next used.

Chapter 3: System Functions & Variables 307

Native File Create: {R}←X ⎕NCREATE Y

This function creates a new file. UnderWindows the file is opened in compatibility
mode. The name of the new file is specified by the left argument X which must be a
simple character vector or scalar containing a valid pathname for the file. Y is 0 or a
negative integer value that specifies an (unused) tie number by which the file may
subsequently be referred.

The shy result of ⎕NCREATE is the tie number of the new file.

Automatic Tie Number Allocation
A tie number of 0 as argument to a create or tie operation, allocates, and returns as an
explicit result, the first (closest to zero) available tie number. This allows you to sim-
plify code. For example:

from:

tie←¯1+⌊/0,⎕NNUMS ⍝ With next available number,
file ⎕NCREATE tie ⍝ ... create file.

to:

tie←file ⎕NCREATE 0 ⍝ Create with first available
no.

Native File Erase: {R}←X ⎕NERASE Y

This function erases (deletes) a native file. Y is a negative integer tie number asso-
ciated with a tied native file. X is a simple character vector or scalar containing the
name of the same file and must be identical to the name used when it was opened by
⎕NCREATE or ⎕NTIE.

The shy result of ⎕NERASE is the tie number that the erased file had.

Example
file ⎕nerase file ⎕ntie 0

308 Dyalog APL/W Language Reference

New Instance: R←⎕NEW Y

⎕NEW creates a new instance of the Class or .Net Type specified by Y.

Ymust be a 1- or 2-item scalar or vector. The first item is a reference to a Class or to a
.Net Type, or a character vector containing the name of a Dyalog GUI object. The sec-
ond item, if specified, contains the argument to be supplied to the Class or Type Con-
structor.

The result R is a reference to a new instance of Class or Type Y.

For further information, see Interface Guide.

Class Example
:Class Animal

∇ Name nm
:Access Public
:Implements Constructor
⎕DF nm

∇
:EndClass ⍝ Animal

Donkey←⎕NEW Animal 'Eeyore'
Donkey

Eeyore

If ⎕NEW is called with just a Class reference (i.e. without parameters for the Con-
structor), the default constructor will be called. A default constructor is defined by a
niladic function with the :Implements Constructor attribute. For example, the Animal
Class may be redefined as:

:Class Animal
∇ NoName

:Access Public
:Implements Constructor
⎕DF 'Noname'

∇
∇ Name nm

:Access Public
:Implements Constructor
⎕DF nm

∇
:EndClass ⍝ Animal

Horse←⎕NEW Animal
Horse

Noname

Chapter 3: System Functions & Variables 309

.Net Examples
⎕USING←'System' 'System.Web.Mail,System.Web.dll'
dt←⎕NEW DateTime (2006 1 1)
msg←⎕NEW MailMessage
⎕NC 'dt' 'msg' 'DateTime' 'MailMessage'

9.2 9.2 9.6 9.6

Note that .Net Types are accessed as follows.

If the name specified by the first item of Y would otherwise generate a VALUE
ERROR, and ⎕USING has been set, APL attempts to load the Type specified by Y
from the .Net assemblies (DLLs) specified in ⎕USING. If successful, the name spec-
ified by Y is entered into the SYMBOL TABLE with a name-class of 9.6. Sub-
sequent references to that symbol (in this case DateTime) are resolved directly and
do not involve any assembly searching.

F←⎕NEW ⊂'Form'
F←⎕NEW'Form'(('Caption' 'Hello')('Posn' (10 10)))

⎕NEW'Form'(('Caption' 'Hello')('Posn' (10 10)))
#.[Form]

Name List: R←{X}⎕NL Y

Ymust be a simple numeric scalar or vector containing one or more of the values for
name-class. See also"Name Classification: " on page 296.

X is optional. If present, it must be a simple character scalar or vector. R is a list of the
names of active objects whose name-class is included in Y in standard sorted order.

If any element of Y is negative, positive values in Y are treated as if they were neg-
ative, and R is a vector of character vectors. Otherwise, R is simple character matrix.

Furthermore, if ⎕NL is being evaluated inside the namespace associated with a Class
or an Instance of a Class, and any element of Y is negative, R includes the Public
names exposed by the Base Class (if any) and all other Classes in the Class hierarchy.

If X is supplied, R contains only those names which begin with any character of X.
Standard sorted order is in Unicode point order for Unicode editions, and in the col-
lation order of ⎕AV for Classic editions.

If an element of Y is an integer, the names of all of the corresponding sub-name-
classes are included in R. For example, if Y contains the value 2, the names of all var-
iables (name-class 2.1), fields (2.2), properties (2.3) and external or shared variables
(2.6) are obtained. Otherwise, only the names of members of the corresponding sub-
name-class are obtained.

310 Dyalog APL/W Language Reference

Examples:
⎕NL 2 3

A
FAST
FIND
FOO
V

'AV' ⎕NL 2 3
A
V

⎕NL ¯9
Animal Bird BirdBehaviour Coin Cylinder

DomesticParrot Eeyore FishBehaviour Nickel Parrot
Penguin Polly Robin

⎕NL ¯9.3 ⍝ Instances
Eeyore Nickel Polly Robin

⎕NL ¯9.4 ⍝ Classes
Animal Bird Coin Cylinder DomesticParrot Parrot

Penguin
⎕NL ¯9.5 ⍝ Interfaces

BirdBehaviour FishBehaviour

⎕NL can also be used to explore Dyalog GUI Objects, .Net types and COM objects.

Dyalog GUI Objects

⎕NLmay be used to obtain lists of the Methods, Properties and Events provided by
Dyalog APL GUI Objects.

'F' ⎕WC 'Form'
F.⎕NL -2 ⍝ Properties

Accelerator AcceptFiles Active AlphaBlend AutoConf
Border BCol Caption ...

F.⎕NL -3 ⍝ Methods
Animate ChooseFont Detach GetFocus GetTextSize

ShowSIP Wait

F.⎕NL -8 ⍝ Events
Close Create DragDrop Configure ContextMenu
DropFiles DropObjects Expose Help ...

Chapter 3: System Functions & Variables 311

.Net Classes (Types)

⎕NL can be used to explore .Net types.

When a reference is made to an undefined name, and ⎕USING is set, APL attempts to
load the Type from the appropriate .Net Assemblies. If successful, the name is entered
into the symbol table with name-class 9.6.

⎕USING←'System'
DateTime

(System.DateTime)
⎕NL -9

DateTime
⎕NC,⊂'DateTime'

9.6

The names of the Properties and Methods of a .Net Type may then be obtained using
⎕NL.

DateTime.⎕NL -2 ⍝ Properties
MaxValue MinValue Now Today UtcNow

DateTime.⎕NL -3 ⍝ Methods
get_Now get_Today get_UtcNow op_Addition op_

Equality ...

In fact it is not necessary to make a separate reference first, because the expression
Type.⎕NL (where Type is a .Net Type) is itself a reference to Type. So, (with
⎕USING still set to 'System'):

Array.⎕NL -3
BinarySearch Clear Copy CreateInstance IndexOf

LastIndexOf Reverse Sort

⎕NL -9
Array DateTime

312 Dyalog APL/W Language Reference

Another use for ⎕NL is to examine .Net enumerations. For example:

⎕USING←'System.Windows.Forms,system.windows.forms.dll'

FormBorderStyle.⎕NL -2
Fixed3D FixedDialog FixedSingle FixedToolWindow None
Sizable SizableToolWindow

FormBorderStyle.FixedDialog.value__
3

FormBorderStyle.({⍵,[1.5]⍎¨⍵,¨⊂'.value__'}⎕NL -2)
Fixed3D 2
FixedDialog 3
FixedSingle 1
FixedToolWindow 5
None 0
Sizable 4
SizableToolWindow 6

COM Objects

Once a reference to a COM object has been obtained, ⎕NLmay be used to obtain
lists of its Methods, Properties and Events.

xl←⎕NEW'OLEClient'(⊂'ClassName'
'Excel.Application')

xl.⎕NL -2 ⍝ Properties
_Default ActiveCell ActiveChart ActiveDialog

ActiveMenuBar ActivePrinter ActiveSheet ActiveWindow
...

xl.⎕NL -3 ⍝ Methods
_Evaluate _FindFile _Run2 _Wait _WSFunction

ActivateMicrosoftApp AddChartAutoFormat AddCustomList
Browse Calculate ...

⎕NL -9
xl

Chapter 3: System Functions & Variables 313

Native File Lock: {R}←X ⎕NLOCK Y

This function assists the controlled update of shared native files by locking a range
of bytes.

Locking enables controlled update of native files by co-operating users. A process
requesting a lock on a region of a file will be blocked until that region becomes avail-
able. A write-lock is exclusive, whereas a read-lock is shared. In other words, any
byte in a file may be in one of only three states:

l Unlocked
l Write-locked by exactly one process.
l Read-locked by any number of processes.

Ymust be a simple integer scalar or vector containing 1, 2 or 3 items namely:

1. Tie number
2. Offset (from 0) of first byte of region. Defaults to 0
3. Number of bytes to lock. Defaults to maximum possible file size

Xmust be a simple integer scalar or vector containing 1 or 2 items, namely:

1. Type: 0: Unlock, 1:Read lock, 2:Write lock.
2. Timeout: Number of seconds to wait for lock before generating a

TIMEOUT error. Defaults to indefinite wait.

The shy result R is Y. To unlock the file, this value should subsequently be supplied
in the right argument to 0 ⎕NLOCK.

Examples:
2 ⎕NLOCK ¯1 ⍝ write-lock whole file
0 ⎕NLOCK ¯1 ⍝ unlock whole file.
1 ⎕NLOCK ¯1 ⍝ read (share) lock whole file.
2 ⎕NLOCK¨⎕NNUMS ⍝ write-lock all files.
0 ⎕NLOCK¨⎕NNUMS ⍝ unlock all files.

1 ⎕NLOCK ¯1 12 1 ⍝ read-lock byte 12.
1 ⎕NLOCK ¯1 0 10 ⍝ read-lock first 10 bytes.
2 ⎕NLOCK ¯1 20 ⍝ write-lock from byte 20 onwards.
2 ⎕NLOCK ¯1 10 2 ⍝ write-lock 2 bytes from byte 10
0 ⎕NLOCK ¯1 12 1 ⍝ remove lock from byte 12.

314 Dyalog APL/W Language Reference

To lock the region immediately beyond the end of the file prior extending it:

⎕←region←2 ⎕NLOCK ¯1, ⎕NSIZE ¯1 ⍝ write-lock from EOF.
¯1 1000

... ⎕NAPPEND ¯1 ⍝ append bytes to file

... ⎕NAPPEND ¯1 ⍝ append bytes to file

0 ⎕NLOCK region ⍝ release lock.

The left argument may have a second optional item that specifies a timeout value. If a
lock has not been acquired within this number of seconds, the acquisition is aban-
doned and a TIMEOUT error reported.

2 10 ⎕nlock ¯1 ⍝ wait up to 10 seconds for lock.

Notes:
There is no per-byte cost associated with region locking. It takes the same time to
lock/unlock a region, irrespective of that region’s size.

Different file servers implement locks in slightly different ways. For example on
some systems, locks are advisory. This means that a write lock on a region precludes
other locks intersecting that region, but doesn't stop reads or writes across the region.
On the other hand,mandatory locks block both other locks and read/write oper-
ations. ⎕NLOCK will just pass the server's functionality along to the APL programmer
without trying to standardise it across different systems.

All locks on a file will be removed by ⎕NUNTIE.

Blocked locking requests can be freed by a strong interrupt. UnderWindows, this
operation is performed from the Dyalog APL pop-up menu in the system tray.

Errors
In this release, an attempt to unlock a region that contains bytes that have not been
locked results in a DOMAIN ERROR.

A LIMIT ERROR results if the operating system lock daemon has insufficient
resources to honour the locking request.

Some systems support only write locks. In this case an attempt to set a read lock will
generate a DOMAIN ERROR, and it may be appropriate for the APL programmer to
trap the error and apply a write lock.

No attempt will be made to detect deadlock. Some servers do this and if such a con-
dition is detected, a DEADLOCK error (1008) will be reported.

Chapter 3: System Functions & Variables 315

Native File Names: R←⎕NNAMES

This niladic function reports the names of all currently open native files. R is a char-
acter matrix. Each row contains the name of a tied native file padded if necessary
with blanks. The names are identical to those that were given when opening the
files with ⎕NCREATE or ⎕NTIE. The rows of the result are in the order in which the
files were tied.

Native File Numbers: R←⎕NNUMS

This niladic function reports the tie numbers associated with all currently open
native files. R is an integer vector of negative tie numbers. The elements of the result
are in the order in which the files were tied.

316 Dyalog APL/W Language Reference

Enqueue Event: {R}←{X}⎕NQ Y

This system function generates an event or invokes a method.

While APL is executing, events occur "naturally" as a result of user action or of com-
munication with other applications. These events are added to the event queue as
and when they occur, and are subsequently removed and processed one by one by
⎕DQ. ⎕NQ provides an "artificial" means to generate an event and is analogous to
⎕SIGNAL.

If the left argument X is omitted or is 0, ⎕NQ adds the event specified by Y to the bot-
tom of the event queue. The event will subsequently be processed by ⎕DQ when it
reaches the top of the queue.

If X is 1, the event is actioned immediately by ⎕NQ itself and is processed in exactly
the same way as it would be processed by ⎕DQ. For example, if the event has a call-
back function attached, ⎕NQ will invoke it directly. See "Dequeue Events: " on
page 210 for further details.

Note that it is not possible for one thread to use 1 ⎕NQ to send an event to another
thread.

If X is 2 and the name supplied is the name of an event, ⎕NQ performs the default proc-
essing for the event immediately, but does not invoke a callback function if there is
one attached.

If X is 2 and the name supplied is the name of a (Dyalog APL) method, ⎕NQ invokes
the method. Its (shy) result is the result produced by the method.

If X is 3, ⎕NQ invokes a method in an OLE Control. The (shy) result of ⎕NQ is the
result produced by the method.

If X is 4, ⎕NQ signals an event from an ActiveXControl object to its host
application. The (shy) result of ⎕NQ is the result returned by the host application and
depends upon the syntax of the event. This case is only applicable to Activ-
eXControl objects.

Y is a nested vector containing an event message. The first two elements of Y are:

Y[1] Object name -a character vector

Y[2]
Event Type - a numeric scalar or character vector which specifies an
event or method.

Chapter 3: System Functions & Variables 317

Y[1]must contain the name of an existing object. If not, ⎕NQ terminates with a
VALUE ERROR. If Y[2] specifies a standard event type, subsequent elements must
conform to the structure defined for that event type. If not, ⎕NQ terminates with a
SYNTAX ERROR. If Y[2] specifies a non-standard event type, Y[3] onwards (if
present) may contain arbitrary information. Although any event type not listed
herein may be used, numbers in the range 0-1000 are reserved for future extensions.

If ⎕NQ is used monadically, or with a left argument of 0, its (shy) result is always an
empty character vector. If a left argument of 1 is specified, ⎕NQ returns Y unchanged
or a modified Y if the callback function returns its modified argument as a result.

If the left argument is 2, ⎕NQ returns either the value 1 or a value that is appropriate.

Examples
⍝ Send a keystroke ("A") to an Edit Field
⎕NQ 'TEST.ED' 'KeyPress' 'A'

⍝ Iconify all top-level Forms
{⎕NQ ⍵ 'StateChange' 1}¨'Form'⎕WN'.'

⍝ Set the focus to a particular field
⎕NQ 'TEST.ED3' 40

⍝ Throw a new page on a printer
1 ⎕NQ 'PR1' 'NewPage'

⍝ Terminate ⎕DQ under program control

'TEST'⎕WC 'Form' ... ('Event' 1001 1)
...
⎕DQ 'TEST'
...
⎕NQ 'TEST' 1001 ⍝ From a callback

⍝ Call GetItemState method for a TreeView 'F.TV'
+2 ⎕NQ'F.TV' 'GetItemState' 6

96

+2 ⎕NQ'.' 'GetEnvironment' 'Dyalog'
c:\Z\2\dyalog82

318 Dyalog APL/W Language Reference

Nested Representation: R←⎕NR Y

Ymust be a simple character scalar or vector which represents the name of a function
or a defined operator.

If Y is a name of a defined function or defined operator, R is a vector of text vectors.
The first element of R contains the text of the function or operator header. Sub-
sequent elements contain lines of the function or operator. Elements of R contain no
unnecessary blanks, except for leading indentation of control structures and the
blanks which precede comments.

If Y is the name of a variable, a locked function or operator, an external function or a
namespace, or is undefined, R is an empty vector.

Example
∇R←MEAN X ⍝ Average

[1] R←(+/X)÷⍴X
∇

+F←⎕NR'MEAN'
R←MEAN X ⍝Average R←(+/X)÷⍴X

⍴F
2

]display F
.→--.
| .→---------------------. .→----------. |
| | R←MEAN X ⍝ Average| | R←(+/X)÷⍴X| |
| '----------------------' '-----------' |
'∊--'

The definition of ⎕NR has been extended to names assigned to functions by spec-
ification (←), and to local names of functions used as operands to defined operators.
In these cases, the result of ⎕NR is identical to that of ⎕CR except that the rep-
resentation of defined functions and operators is as described above.

Chapter 3: System Functions & Variables 319

Example
AVG←MEAN∘,

+F←⎕NR'AVG'
R←MEAN X ⍝ Average R←(+/X)÷⍴X ∘,

⍴F
3

]display F
.→--.
| .→--. |
	.→---------------------. .→----------.	∘ ,				
		R←MEAN X ⍝ Average		R←(+/X)÷⍴X		- -
	'----------------------' '-----------'					
'∊--'						
'∊--'

Native File Read: R←⎕NREAD Y

This monadic function reads data from a native file. Y is a 3- or 4-element integer vec-
tor whose elements are as follows:

[1] negative tie number,
[2] conversion code (see below),
[3] count,
[4] start byte, counting from 0.

Y[2] specifies conversion to an APL internal form as follows. Note that the internal
formats for character arrays differ between the Unicode and Classic Editions.

320 Dyalog APL/W Language Reference

Table 14: Unicode Edition : Conversion Codes

Value Number of bytes read Result Type Result shape

11 count 1 bit Boolean 8 × count

80 count 8 bits character count

821 count 8 bits character count

83 count 8 bits integer count

160 2 × count 16-bits character count

163 2 × count 16 bits integer count

320 4 × count 32-bits character count

323 4 × count 32 bits integer count

645 8 × count 64bits floating count

Table 15: Classic Edition : Conversion Codes

Value Number of bytes read Result Type Result shape

11 count 1 bit Boolean 8 × count

82 count 8 bits character count

83 count 8 bits integer count

163 2 × count 16 bits integer count

323 4 × count 32 bits integer count

645 8 × count 64bits floating count

Note that types 80, 160 and 320 and 83 and 163 are exclusive to Dyalog APL.

If Y[4] is omitted, data is read starting from the current position in the file (initially,
0).

Example
DATA←⎕NREAD ¯1 160 (0.5×⎕NSIZE ¯1) 0 ⍝ Unicode
DATA←⎕NREAD ¯1 82 (⎕NSIZE ¯1) 0 ⍝ Classic

1Conversion code 82 is permitted in the Unicode Edition for compatibility and
causes 1-byte data on file to be translated (according to ⎕NXLATE) from ⎕AV indices
into normal (Unicode) characters of type 80, 160 or 320.

Chapter 3: System Functions & Variables 321

Native File Rename: {R}←X ⎕NRENAME Y

⎕NRENAME is used to rename a native file.

Y is a negative integer tie number associated with a tied native file. X is a simple
character vector or scalar containing a valid (and unused) file name.

The shy result of ⎕NRENAME is the tie number of the renamed file.

Native File Replace: {R}←X ⎕NREPLACE Y

⎕NREPLACE is used to write data to a native file, replacing data which is already
there.

Xmust be a simple homogeneous APL array containing the data to be written.

Y is a 2- or 3-element integer vector whose elements are as follows:

[1] negative tie number,
[2] start byte, counting from 0, at which the data is to be written,
[3] conversion code (optional).

See "Native File Read: " on page 319 for a list of valid conversion codes.

The shy result is the position within the file of the end of the record, or, equivalently,
the start of the following one. Used, for example, in:

⍝ Replace sequentially from indx.
{⍺ ⎕NREPLACE tie ⍵}/vec,indx

322 Dyalog APL/W Language Reference

Unicode Edition
Unless you specify the data type in Y[2], a character array will by default be written
using type 80. .

If the data will not fit into the specified character width (bytes) ⎕NREPLACE will fail
with a DOMAIN ERROR.

As a consequence of these two rules, you must specify the data type (either 160 or
320) in order to write Unicode characters whose code-point are in the range 256-
65535 and >65535 respectively.

Example
n←'test'⎕NTIE 0 ⍝ See "Example" on page 295

⎕NREAD n 80 3 0
abc

⎕NREAD n 160 7
ταβέρνα

⎕←'εστιατόριο'⎕NREPLACE n 3
DOMAIN ERROR

⎕←'εστιατόριο'⎕NREPLACE n 3
∧

⎕←'εστιατόριο'⎕NREPLACE n 3 160
23

⎕NREAD n 80 3 0
abc

⎕NREAD n 160 10
εστιατόριο

For compatibility with old files, you may specify that the data be converted to type
82 on output. The conversion (to ⎕AV indices) will be determined by the local value
of ⎕AVU.

Chapter 3: System Functions & Variables 323

Native File Resize: {R}←X ⎕NRESIZE Y

This function changes the size of a native file.

Y is a negative integer tie number associated with a tied native file.

X is a single integer value that specifies the new size of the file in bytes. If X is
smaller than the current file size, the file is truncated. If X is larger than the current
file size, the file is extended and the value of additional bytes is undefined.

The shy result of ⎕NRESIZE is the tie number of the resized file.

Create Namespace: {R}←{X}⎕NS Y

If specified, Xmust be a simple character scalar or vector identifying the name of a
namespace.

Y is either a character array which represents a list of names of objects to be copied
into the namespace, or is an array produced by the ⎕OR of a namespace.

In the first case, Ymust be a simple character scalar, vector, matrix or a nested vector
of character vectors identifying zero or more workspace objects to be copied into the
namespace X. The identifiers in X and Ymay be simple names or compound names
separated by '.' and including the names of the special namespaces '#', '##' and
'⎕SE'.

The namespace X is created if it doesn't already exist. If the name is already in use for
an object other than a namespace, APL issues a DOMAIN ERROR.

If X is omitted, an unnamed namespace is created.

The objects identified in the list Y are copied into the namespace X.

If X is specified, the result R is the full name (starting with #. or ⎕SE.) of the names-
pace X. If X is omitted, the result R is a namespace reference, or ref, to an unnamed
namespace.

324 Dyalog APL/W Language Reference

Examples
+'X'⎕NS'' ⍝ Create namespace X.

#.X
⊢'X'⎕NS'VEC' 'UTIL.DISP'⍝ Copy VEC and DISP to X.

#.X
)CS X ⍝ Change to namespace X.

#.X
⊢'Y'⎕NS'#.MAT' '##.VEC' ⍝ Create #.X.Y © in

#.X.Y
⊢'#.UTIL'⎕NS'Y.MAT' ⍝ Copy MAT from Y to UTIL

#.UTIL.
#.UTIL

⊢'#'⎕NS'Y' ⍝ Copy namespace Y to root.
#

⊢''⎕NS'#.MAT' ⍝ Copy MAT to currentspace.
#.X

⊢''⎕NS'' ⍝ Display current space.
#.X

⊢'Z'⎕NS ⎕OR'Y' ⍝ Create nspace from ⎕OR.
#.X.Z

NONAME←⎕NS '' ⍝ Create unnamed nspace
NONAME

#.[Namespace]

DATA←⎕NS¨3⍴⊂'' ⍝ Create 3-element vector of
⍝ distinct unnamed nspaces

DATA
#.[Namespace] #.[Namespace] #.[Namespace]

The second case is where Y is the ⎕OR of a namespace.

If Y is the ⎕OR of a GUI object, #.Zmust be a valid parent for the GUI object rep-
resented by Y, or the operation will fail with a DOMAIN ERROR.

Otherwise, the result of the operation depends upon the existence of Z.

l If Z does not currently exist (name class is 0), Z is created as a complete
copy (clone) of the original namespace represented by Y. If Y is the ⎕OR of
a GUI object or of a namespace containing GUI objects, the corresponding
GUI components of Y will be instantiated in Z.

l If Z is the name of an existing namespace (name class 9), the contents of Y,
including any GUI components, are merged into Z. Any items in Z with cor-
responding names in Y (names with the same path in both Y and Z) will be
replaced by the names in Y, unless they have a conflicting name class in
which case the existing items in Z will remain unchanged. However, all
GUI spaces in Z will be stripped of their GUI components prior to the
merge operation.

Chapter 3: System Functions & Variables 325

Namespace Indicator: R←⎕NSI

R is a nested vector of character vectors containing the names of the spaces from
which functions in the state indicator were called (⍴⎕NSI←→⍴⎕RSI←→⍴⎕SI).

⎕RSI and ⎕NSI are identical except that ⎕RSI returns refs to the spaces whereas
⎕NSI returns their names. Put another way: ⎕NSI←→⍕¨⎕RSI.

Note that ⎕NSI contains the names of spaces from which functions were called not
those in which they are currently running.

Example
)OBJECTS

xx yy

⎕VR 'yy.foo'
∇ r←foo

[1] r←⎕SE.goo
∇
⎕VR'⎕SE.goo'

∇ r←goo
[1] r←⎕SI,[1.5]⎕NSI

∇

)CS xx
#.xx

calling←#.yy.foo
]display calling

┌→─────────────┐
↓ ┌→──┐ ┌→───┐ │
│ │goo│ │#.yy│ │
│ └───┘ └────┘ │
│ ┌→──┐ ┌→───┐ │
│ │foo│ │#.xx│ │
│ └───┘ └────┘ │
└∊─────────────┘

Native File Size: R←⎕NSIZE Y

This reports the size of a native file.

Y is a negative integer tie number associated with a tied native file. The result R is
the size of the file in bytes.

326 Dyalog APL/W Language Reference

Native File Tie: {R}←X ⎕NTIE Y

⎕NTIE opens a native file.

X is a simple character vector or scalar containing a valid pathname for an existing
native file.

Y is a 1- or 2-element vector. Y[1] is a negative integer value that specifies an
(unused) tie number by which the file may subsequently be referred. Y[2] is
optional and specifies the mode in which the file is to be opened. This is an integer
value calculated as the sum of 2 codes. The first code refers to the type of access
needed from users who have already tied the native file. The second code refers to
the type of access you wish to grant to users who subsequently try to open the file
while you have it open.

Needed from existing users Granted to subsequent users

0 read access 0 compatibility mode

1 write access 16 no access (exclusive)

2 read and write access 32 read access

48 write access

64 read and write access

On Unix systems, the first code (16|mode) is passed to the open(2) call as the
access parameter. See include file fcntl.h for details.

Automatic Tie Number Allocation
A tie number of 0 as argument to a create or tie operation, allocates, and returns as an
explicit result, the first (closest to zero) available tie number. This allows you to sim-
plify code. For example:

from:

tie←¯1+⌊/0,⎕NNUMS ⍝ With next available number,
file ⎕NTIE tie ⍝ ... tie file.

to:

tie←file ⎕NTIE 0 ⍝ Tie with first available no.

Example
ntie←{ ⍝ tie file and return tie no.

⍺←2+64 ⍝ default all access.
⍵ ⎕ntie 0 ⍺ ⍝ return new tie no.

}

Chapter 3: System Functions & Variables 327

Null Item: R←⎕NULL

This is a reference to a null item, such as may be returned across the COM interface to
represent a null value. An example might be the value of an empty cell in a spread-
sheet.

⎕NULLmay be used in any context that accepts a namespace reference, in particular:

l As the argument to a defined function
l As an item of an array.
l As the argument to those primitive functions that take character data argu-

ments, for example: =, ≠, ≡, ≢, ,, ⍴, ⊃, ⊂

Example
'EX'⎕WC'OLEClient' 'Excel.Application'
WB←EX.Workbooks.Open 'simple.xls'

(WB.Sheets.Item 1).UsedRange.Value2
[Null] [Null] [Null] [Null] [Null]
[Null] Year [Null] [Null] [Null]
[Null] 1999 2000 2001 2002
[Null] [Null] [Null] [Null] [Null]
Sales 100 76 120 150
[Null] [Null] [Null] [Null] [Null]
Costs 80 60 100 110
[Null] [Null] [Null] [Null] [Null]
Margin 20 16 20 40

To determine which of the cells are filled, you can compare the array with ⎕NULL.

⎕NULL≢¨(WB.Sheets.Item 1).UsedRange.Value2
0 0 0 0 0
0 1 0 0 0
0 1 1 1 1
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
1 1 1 1 1

328 Dyalog APL/W Language Reference

Native File Untie: {R}←⎕NUNTIE Y

This closes one or more native files. Y is a scalar or vector of negative integer tie
numbers. The files associated with elements of Y are closed. Native file untie with a
zero length argument (⎕NUNTIE ⍬) flushes all file buffers to disk - see "File Untie: "
on page 255 for more explanation.

The shy result of ⎕NUNTIE is a vector of tie numbers of the files actually untied.

Native File Translate: {R}←{X}⎕NXLATE Y

This associates a character translation vector with a native file or, if Y is 0, with the
use by ⎕DR.

A translate vector is a 256-element vector of integers from 0-255. Each element maps
the corresponding ⎕AV position onto an ANSI character code.

For example, to map ⎕AV[17+⎕IO] onto ANSI 'a' (code 97), element 17 of the trans-
late vector is set to 97.

⎕NXLATE is a non-Unicode (Classic Edition) feature and is retained in the Unicode
Edition only for compatibility.

Y is either a negative integer tie number associated with a tied native file or 0. If Y is
negative, monadic ⎕NXLATE returns the current translation vector associated with
the corresponding native file. If specified, the left argument X is a 256-element vector
of integers that specifies a new translate vector. In this case, the old translate vector
is returned as a shy result. If Y is 0, it refers to the translate vector used by ⎕DR to con-
vert to and from character data.

The system treats a translate vector with value (⍳256)-⎕IO as meaning no trans-
lation and thus provides raw input/output bypassing the whole translation process.

The default translation vector established at ⎕NTIE or ⎕NCREATE time, maps ⎕AV
characters to their corresponding ANSI positions and is derived from the mapping
defined in the current output translation table (normally WIN.DOT)

Between them, ANSI and RAW translations should cater for most uses.

Chapter 3: System Functions & Variables 329

Unicode Edition

⎕NXLATE is relevant in the Unicode Edition only to process Native Files that con-
tain characters expressed as indices into ⎕AV, such as files written by the Classic Edi-
tion.

In the Unicode Edition, when reading data from a Native File using conversion code
82, incoming bytes are translated first to ⎕AV indices using the translation table spec-
ified by ⎕NXLATE, and then to type 80, 160 or 320 using ⎕AVU. When writing data
to a Native File using conversion code 82, characters are converted using these two
translation tables in reverse.

Sign Off APL: ⎕OFF

This niladic system function terminates the APL session, returning to the shell com-
mand level. The active workspace does not replace the last continuation workspace.

Although ⎕OFF is niladic, you may specify an optional integer I to the right of the
system function which will be reported to the Operating System as the exit code. If I
is an expression generating an integer, you should put the expression in parentheses.
Imust be in the range 0..255, but note that on UNIX processes use values greater
than 127 to indicate the signal number which was used to terminate a process, and
that currently APL itself generates values 0..8; this list may be extended in future.

Variant: {R}←{X}(f ⎕OPT B)Y

⎕OPT is synonymous with the Variant Operator symbol ⍠ and is the only form avail-
able in the Classic Edition.

See "Variant:" on page 136.

330 Dyalog APL/W Language Reference

Object Representation: R←⎕OR Y

⎕OR converts a function, operator or namespace to a special form, described as its
object representation, that may be assigned to a variable and/or stored on a com-
ponent file. Classes and Instances are however outside the domain of ⎕OR.

Taking the ⎕OR of a function or operator is an extremely fast operation as it simply
changes the type information in the object’s header, leaving its internal structure
unaltered. Converting the object representation back to an executable function or
operator using ⎕FX is also very fast. ⎕OR is therefore the recommended form for stor-
ing functions and operators on component files and is significantly faster than using
⎕CR, ⎕VR or ⎕NR.

However, the saved results of ⎕OR which were produced on a different hardware plat-
form or using an older Version of Dyalog APL may require a significant amount of
processing when re-constituted using ⎕FX. For optimum performance, it is strongly
recommended that you save ⎕ORs using the same Version of Dyalog APL and on the
same hardware platform that you will use to ⎕FX them.

⎕ORmay also be used to convert a namespace (either a plain namespace or a named
GUI object created by ⎕WC) into a form that can be stored in a variable or on a com-
ponent file. The namespace may be reconstructed using ⎕NS or ⎕WC with its original
name or with a new one. ⎕ORmay therefore be used to clone a namespace or GUI
object.

Ymust be a simple character scalar or vector which contains the name of an APL
object.

If Y is the name of a variable, the result R is its value. In this case, R←⎕OR Y is iden-
tical to R←⍎Y.

Otherwise, R is a special form of the name Y, re-classified as a variable. The rank of R
is 0 (R is scalar), and the depth of R is 1. These unique characteristics distinguish the
result of ⎕OR from any other object. The type of R (∊R) is itself. Note that although
R is scalar, it may not be index assigned to an element of an array unless it is
enclosed.

Chapter 3: System Functions & Variables 331

If Y is the name of a function or operator, R is in the domain of the monadic functions
Depth (≡), Disclose (⊃), Enclose (⊂), Rotate (⌽), Transpose (⍉), Indexing ([]), Format
(⍕), Identity (+), Shape (⍴), Type (∊) and Unique (∪), of the dyadic functions Assign-
ment (←), Without (~), Index Of (⍳), Intersection (∩), Match (≡), Membership (∊), Not
Match (≠) and Union (∪), and of the monadic system functions Canonical Rep-
resentation (⎕CR), Cross-Reference (⎕REFS), Fix (⎕FX), Format (⎕FMT), Nested Rep-
resentation (⎕NR) and Vector Representation (⎕VR).

Nested arrays which include the object representations of functions and operators are
in the domain of many mixed functions which do not use the values of items of the
arrays.

Note that a ⎕OR object can be transmitted through an 'APL-style' TCP socket. This
technique may be used to transfer objects including namespaces between APL ses-
sions.

The object representation forms of namespaces produced by ⎕ORmay not be used as
arguments to any primitive functions. The only operations permitted for such
objects (or arrays containing such objects) are ⎕EX, ⎕FAPPEND, ⎕FREPLACE, ⎕NS,
and ⎕WC.

Example
F←⎕OR ⎕FX'R←FOO' 'R←10'

⍴F

⍴⍴F
0

≡F
1

F≡∊F
1

The display of the ⎕OR form of a function or operator is a listing of the function or
operator. If the ⎕OR form of a function or operator has been enclosed, then the result
will display as the operator name preceded by the symbol ∇. It is permitted to apply
⎕OR to a locked function or operator. In this instance the result will display as for
the enclosed form.

332 Dyalog APL/W Language Reference

Examples
F

∇ R←FOO
[1] R←10

∇

⊂F
∇FOO

⎕LOCK'FOO'

⎕OR'FOO'
∇FOO

A←⍳5

A[3]←⊂F

A
1 2 ∇FOO 4 5

For the ⎕OR forms of two functions or operators to be considered identical, their
unlocked display forms must be the same, they must either both be locked or
unlocked, and any monitors, trace and stop vectors must be the same.

Example
F←⎕OR ⎕FX 'R←A PLUS B' 'R←A+B'

F≡⎕OR 'PLUS'
1

1 ⎕STOP 'PLUS'

F≡⎕OR 'PLUS'
0

Chapter 3: System Functions & Variables 333

Namespace Examples
The following example sets up a namespace called UTILS, copies into it the con-
tents of the UTIL workspace, then writes it to a component file:

)CLEAR
clear ws

)NS UTILS
#.UTILS

)CS UTILS
#.UTILS

)COPY UTIL
C:\WDYALOG\WS\UTIL saved Fri Mar 17 12:48:06 1995

)CS
#

'ORTEST' ⎕FCREATE 1
(⎕OR'UTILS')⎕FAPPEND 1

The namespace can be restored with ⎕NS, using either the original name or a new
one:

)CLEAR
clear ws

'UTILS' ⎕NS ⎕FREAD 1 1
#.UTILS

)CLEAR
clear ws

'NEWUTILS' ⎕NS ⎕FREAD 1 1
#.NEWUTILS

This example illustrates how ⎕OR can be used to clone a GUI object; in this case a
Group containing some Button objects. Note that ⎕WC will accept only a ⎕OR
object as its argument (or preceded by the “Type” keyword). You may not specify
any other properties in the same ⎕WC statement, but you must instead use ⎕WS to
reset them afterwards.

'F'⎕WC'Form'
'F.G1' ⎕WC 'Group' '&One' (10 10)(80 30)
'F.G1.B2'⎕WC'Button' '&Blue' (40 10)('Style' 'Radio')
'F.G1.B3'⎕WC'Button' '&Green' (60 10)('Style' 'Radio')
'F.G1.B1'⎕WC'Button' '&Red' (20 10)('Style' 'Radio')
'F.G2' ⎕WC ⎕OR 'F.G1'
'F.G2' ⎕WS ('Caption' 'Two')('Posn' 10 60)

Note too that ⎕WC and ⎕NSmay be used interchangeably to rebuild pure namespaces
or GUI namespaces from a ⎕OR object. You may therefore use ⎕NS to rebuild a Form
or use ⎕WC to rebuild a pure namespace that has no GUI components.

334 Dyalog APL/W Language Reference

Search Path: ⎕PATH

⎕PATH is a simple character vector representing a blank-separated list of
namespaces. It is approximately analogous to the PATH variable in Windows or
UNIX

The ⎕PATH variable can be used to identify a namespace in which commonly used
utility functions reside. Functions or operators (NOT variables) which are copied
into this namespace and exported (see "Export Object:" on page 219) can then be
used directly from anywhere in the workspace without giving their full path names.

Example

To make the DISPLAY function available directly from within any namespace.

⍝ Create and reference utility namespace.
⎕PATH←'⎕se.util'⎕ns''
⍝ Copy DISPLAY function from UTIL into it.
'DISPLAY'⎕se.util.⎕cy'UTIL'
⍝ (Remember to save the session to file).

In detail, ⎕PATH works as follows:

When a reference to a name cannot be found in the current namespace, the system
searches for it from left to right in the list of namespaces indicated by ⎕PATH. In
each namespace, if the name references a defined function (or operator) and the
export type of that function is non-zero (see "Export Object:" on page 219), then it is
used to satisfy the reference. If the search exhausts all the namespaces in ⎕PATH
without finding a qualifying reference, the system issues a VALUE ERROR in the nor-
mal manner.

The special character ↑ stands for the list of namespace ancestors:

##.## ##.##.## ...

In other words, the search is conducted upwards through enclosing namespaces, emu-
lating the static scope rule inherent in modern block-structured languages.

Note that the ⎕PATHmechanism is used ONLY if the function reference cannot be
satisfied in the current namespace. This is analogous to the case when the Windows
or UNIX PATH variable begins with a '.'.

Chapter 3: System Functions & Variables 335

Examples
 ⎕PATH Search in ...

1. '⎕se.util' Current space, then
⎕se.util, then
VALUE ERROR

2. '↑' Current space
Parent space: ##
Parent's parent space: ##.##
...
Root: # (or ⎕se if current space

was inside ⎕se)
VALUE ERROR

3. 'util ↑ ⎕se.util' Current space
util (relative to current space)
Parent space: ##
...
Root: # or ⎕se
⎕se.util
VALUE ERROR

Note that ⎕PATH is a session variable. This means that it is workspace-wide and sur-
vives)LOAD and)CLEAR. It can of course, be localised by a defined function or
operator.

336 Dyalog APL/W Language Reference

Program Function Key: R←{X}⎕PFKEY Y

⎕PFKEY is a system function that sets or queries the programmable function keys.
⎕PFKEY associates a sequence of keystrokes with a function key. When the user sub-
sequently presses the key, it is as if he had typed the associated keystrokes one by
one.

Y is an integer scalar in the range 0-255 specifying a programmable function key. If
X is omitted the result R is the current setting of the key. If the key has not been
defined previously, the result is an empty character vector.

If X is specified it is a simple or nested character vector defining the new setting of
the key. The value of X is returned in the result R.

The elements of X are either character scalars or 2-element character vectors which
specify Input Translate Table codes.

Programmable function keys are recognised in any of the three types of window (SES-
SION, EDIT and TRACE) provided by the Dyalog APL development environment.
⎕SR operates with the 'raw' function keys and ignores programmed settings.

Note that key definitions can reference other function keys.

The size of the buffer associated with ⎕PFKEY is specified by the pfkey_size param-
eter.

Examples
(')FNS',⊂'ER') ⎕PFKEY 1

)FNS ER

]display ⎕PFKEY 1
.→-------------.
| .→-. |
|) F N S |ER| |
| - - - - '--' |
'∊-------------'

(')VARS',⊂'ER') ⎕PFKEY 2
)VARS ER

'F1' 'F2' ⎕PFKEY 3 ⍝ Does)FNS and)VARS
F1 F2

Chapter 3: System Functions & Variables 337

Print Precision: ⎕PP

⎕PP is the number of significant digits in the display of numeric output.

⎕PPmay be assigned any integer value in the range 1 to 17. The value in a clear
workspace is 10. Note that in all Versions of Dyalog APL prior to Version 11.0, the
maximum value for ⎕PP was 16.

⎕PP is used to format numbers displayed directly. It is an implicit argument of mona-
dic function Format (⍕), monadic ⎕FMT and for display of numbers via ⎕ and ⍞ out-
put. ⎕PP is ignored for the display of integers.

Examples:
⎕PP←10

÷3 6
0.3333333333 0.1666666667

⎕PP←3

÷3 6
0.333 0.167

If ⎕PP is set to its maximum value of 17, floating-point numbers may be converted
between binary and character representation without loss of precision. In particular,
if ⎕PP is 17 and ⎕CT is 0 (to ensure exact comparison), for any floating-point number
N the expression N=⍎⍕N is true. Note however that denormal numbers are an excep-
tion to this rule.

Numbers, very close to zero, in the range 2.2250738585072009E¯308 to
4.9406564584124654E¯324 are called denormal numbers.

Such numbers can occur as the result of calculations and are displayed correctly.
However, denormals cannot be specified as literals and are converted to zero on
input.

Numbers below the lower end of this range (4.94E¯324) are indistinguishable from
zero in IEEE double floating point format.

338 Dyalog APL/W Language Reference

Profile Application: R←⎕PROFILE Y

⎕PROFILE facilitates the profiling of either CPU consumption or elapsed time for a
workspace. It does so by retaining time measurements collected for APL func-
tions/operators and function/operator lines. ⎕PROFILE is used to both control the
state of profiling and retrieve the collected profiling data.

Y specifies the action to perform and any options for that action, if applicable. Y is
case-insensitive.

Use Description

state←⎕PROFILE 'start' {timer}
Turn profiling on using the
specified timer or resume if
profiling was stopped

state←⎕PROFILE 'stop'
Suspend the collection of
profiling data

state←⎕PROFILE 'clear'
Turn profiling off, if active, and
discard any collected profiling
data

state←⎕PROFILE 'calibrate' Calibrate the profiling timer

state←⎕PROFILE 'state' Query profiling state

data←⎕PROFILE 'data' Retrieve profiling data in flat form

data←⎕PROFILE 'tree'
Retrieve profiling data in tree
form

Chapter 3: System Functions & Variables 339

⎕PROFILE has 2 states:

l active – the profiler is running and profiling data is being collected.
l inactive – the profiler is not running.

For most actions, the result of ⎕PROFILE is its current state and contains:

[1]
character vector indicating the ⎕PROFILE state having one of the
values 'active' or 'inactive'

[2]
character vector indicating the timer being used having one of the
values 'CPU' or 'elapsed'

[3]
call time bias in millis'econds. This is the amount of time, in
milliseconds, that is consumed for the system to take a time
measurement.

[4]
timer granularity in milliseconds. This is the resolution of the timer
being used.

state←⎕PROFILE 'start' {timer}

Turn profiling on; timer is an optional case-independent character vector con-
taining 'CPU' or 'elapsed' or 'none'. If omitted, it defaults to 'CPU'. If
timer is 'none', ⎕PROFILE can be used to record which lines of code are
executed without incurring the timing overhead.

The first time a particular timer is chosen, ⎕PROFILE will spend 1000 milliseconds
(1 second) to approximate the call time bias and granularity for that timer.

⎕PROFILE 'start' 'CPU'
active CPU 0.0001037499999 0.0001037499999

state←⎕PROFILE 'stop'
Suspends the collection of profiling data.

⎕PROFILE 'stop'
inactive CPU 0.0001037499999 0.0001037499999

state←⎕PROFILE 'clear'
Clears any collected profiling data and, if profiling is active, places profiling in an
inactive state.

⎕PROFILE 'clear'
inactive 0 0

340 Dyalog APL/W Language Reference

state←⎕PROFILE 'calibrate'

Causes ⎕PROFILE to perform a 1000 millisecond calibration to approximate the call
time bias and granularity for the current timer. Note, a timer must have been pre-
viously selected by using ⎕PROFILE 'start'.

⎕PROFILE will retain the lesser of the current timer values compared to the new
values computed by the calibration. The rationale for this is to use the smallest pos-
sible values of which we can be certain.

⎕PROFILE'calibrate'
active CPU 0.0001037499997 0.0001037499997

state←⎕PROFILE 'state'
Returns the current profiling state.

)clear
clear ws

⎕PROFILE 'state'
inactive 0 0

⎕PROFILE 'start' 'CPU'
 active CPU 0.0001037499997 0.0001037499997

⎕PROFILE 'state'
active CPU 0.0001037499997 0.0001037499997

data←⎕PROFILE 'data'

Retrieves the collected profiling data. Specifying 'data' returns:

[;1] function name
[;2] function line number or ⍬ for a whole function entry
[;3] number of times the line or function was executed

[;4]
accumulated time (ms) for this entry exclusive of items called by this
entry

[;5]
accumulated time (ms) for this entry inclusive of items called by this
entry

[;6] number of times the timer function was called for the exclusive time
[;7] number of times the timer function was called for the inclusive time

Chapter 3: System Functions & Variables 341

Example: (numbers have been truncated for formatting)
⎕PROFILE 'data'

#.foo 1 1.04406 39347.64945 503 4080803
#.foo 1 1 0.12488 0.124887 1 1
#.foo 2 100 0.58851 39347.193900 200 4080500
#.foo 3 100 0.21340 0.213406 100 100
#.NS1.goo 100 99.44404 39346.6053 50300 4080300
#.NS1.goo 1 100 0.61679 0.616793 100 100
#.NS1.goo 2 10000 67.80292 39314.9642 20000 4050000
#.NS1.goo 3 10000 19.60274 19.6027 10000 10000

data←⎕PROFILE 'tree'
Retrieve the collected profiling data in tree format:

[;1] depth level
[;2] function name
[;3] function line number or ⍬ for a whole function entry
[;4] number of times the line or function was executed

[;5]
accumulated time (ms) for this entry exclusive of items called by
this entry

[;6]
accumulated time (ms) for this entry inclusive of items called by
this entry

[;7]
number of times the timer function was called for the exclusive
time

[;8]
number of times the timer function was called for the inclusive
time

Example:
⎕PROFILE 'tree'

0 #.foo 1 1.04406 39347.64945 503 4080803
1 #.foo 1 1 0.12488 0.12488 1 1
1 #.foo 2 100 0.58851 39347.19390 200 4080500
2 #.NS1.goo 100 99.44404 39346.60538 50300 4080300
3 #.NS1.goo 1 100 0.61679 0.61679 100 100
3 #.NS1.goo 2 10000 67.80292 39314.96426 20000 4050000
4 #.NS2.moo 10000 39247.16133 39247.16133 4030000 4030000
5 #.NS2.moo 1 10000 39.28315 39.28315 10000 10000
5 #.NS2.moo 2 1000000 36430.65236 36430.65236 1000000 1000000
5 #.NS2.moo 3 1000000 1645.36214 1645.36214 1000000 1000000
3 #.NS1.goo 3 10000 19.60274 19.60274 10000 10000
1 #.foo 3 100 0.21340 0.21340 100 100

Note that rows with an even depth level in column [;1] represent function sum-
mary entries and odd depth level rows are function line entries. Recursive functions
will generate separate rows for each level of recursion.

342 Dyalog APL/W Language Reference

Notes
Profile Data Entry Types

The results of ⎕PROFILE 'data' and ⎕PROFILE 'tree' have two types of
entries; function summary entries and function line entries. Function summary entries
contain ⍬ in the line number column, whereas function line entries contain the line
number. Dynamic functions line entries begin with 0 as they do not have a header
line like traditional functions. The timer data and timer call counts in function sum-
mary entries represent the aggregate of the function line entries plus any time spent
that cannot be directly attributed to a function line entry. This could include time
spent during function initialisation, etc.

Example:
 #.foo 1 1.04406 39347.649450 503 4080803
 #.foo 1 1 0.12488 0.124887 1 1
#.foo 2 100 0.58851 39347.193900 200 4080500
#.foo 3 100 0.21340 0.213406 100 100

Timer Data Persistence
The profiling data collected is stored outside the workspace and will not impact
workspace availability. The data is cleared upon workspace load, clear workspace,
⎕PROFILE 'clear', or interpreter sign off.

The PROFILE User Command
]PROFILE is a utility which implements a high-level interface to ⎕PROFILE and
provides reporting and analysis tools that act upon the profiling data. For further
information, see Tuning Applications using the Profile User Command.

Using ⎕PROFILE Directly
If you choose to use ⎕PROFILE directly, the following guidelines and information
may be of use to you.

Note: Running your application with ⎕PROFILE turned on incurs a significant proc-
essing overhead and will slow your application down.

Decide which timer to use

⎕PROFILE supports profiling of either CPU or elapsed time. CPU time is generally
of more interest in profiling application performance.

Chapter 3: System Functions & Variables 343

Simple Profiling
To get a quick handle on the top CPU time consumers in an application, use the fol-
lowing procedure:

l Make sure the application runs long enough to collect enough data to over-
come the timer granularity – a reasonable rule of thumb is to make sure the
application runs for at least (4000×4⊃⎕PROFILE 'state') mil-
liseconds.

l Turn profiling on with ⎕PROFILE 'start' CPU
l Run your application.
l Pause the profiler with ⎕PROFILE 'stop'
l Examine the profiling data from ⎕PROFILE 'data' or ⎕PROFILE

'tree' for entries that consume large amounts of resource.

This should identify any items that take more than 10% of the run time.

To find finer time consumers, or to focus on elapsed time rather than CPU time, take
the following additional steps prior to running the profiler:

Turn off as much hardware as possible. This would include peripherals, network con-
nections, etc.

l Turn off as many other tasks and processes as possible. These include anti-
virus software, firewalls, internet services, background tasks.

l Raise the priority on the Dyalog APL task to higher than normal, but in gen-
eral avoid giving it the highest priority.

l Run the profiler as described above.

Doing this should help identify items that take more than 1% of the run time.

Advanced Profiling
The timing data collected by ⎕PROFILE is not adjusted for the timer’s call time
bias; in other words, the times reported by ⎕PROFILE include the time spent calling
the timer function. One effect of this can be to make “cheap” lines that are called
many times seem to consume more resource. If you desire more accurate profiling
measurements, or if your application takes a short amount of time to run, you will
probably want to adjust for the timer call time bias. To do so, subtract from the tim-
ing data the timer’s call time bias multiplied by the number of times the timer was
called.

Example:
CallTimeBias←3⊃⎕PROFILE 'state'
RawTimes←⎕PROFILE 'data'
Adjusted←RawTimes[;4 5]-RawTimes[;6 7]×CallTimeBias

344 Dyalog APL/W Language Reference

Print Width: ⎕PW

⎕PW is the maximum number of output characters per line before folding the display.

⎕PWmay be assigned any integer value in the range 42 to 32767. Note that in ver-
sions of Dyalog APL prior to 13.0 ⎕PW had a minimum value of 30; this was
increased to support 128-bit decimal values.

If an attempt is made to display a line wider than ⎕PW, then the display will be
folded at or before the ⎕PW width and the folded portions indented 6 spaces. The dis-
play of a simple numeric array may be folded at a width less than ⎕PW so that individ-
ual numbers are not split.

⎕PW ony affects output, either direct or through ⎕ output. It does not affect the result
of the function Format (⍕), of the system function ⎕FMT, or output through the sys-
tem functions ⎕ARBOUT and ⎕ARBIN, or output through ⍞.

Note that if the auto_pw parameter (Options/Configure/Session/Auto PW) is set to 1,
⎕PW is automatically adjusted whenever the Session window is resized. In these cir-
cumstances, a value assigned to ⎕PW will only apply until the Session window is
next resized.

Examples
⎕PW←42

⎕←3⍴÷3
0.3333333333 0.3333333333 0.3333333333

0.3333333333

Chapter 3: System Functions & Variables 345

Cross References: R←⎕REFS Y

Ymust be a simple character scalar or vector, identifying the name of a function or
operator, or the object representation form of a function or operator (see "Object Rep-
resentation: " on page 330). R is a simple character matrix, with one name per row, of
identified names in the function or operator in Y excluding distinguished names of
system constants, variables or functions.

Example
⎕VR'OPTIONS'

∇ OPTIONS;OPTS;INP
[1] ⍝ REQUESTS AND EXECUTES AN OPTION
[2] OPTS ←'INPUT' 'REPORT' 'END'
[3] IN:INP←ASK'OPTION:'
[4] →EX⍴⍨(⊂INP)∊OPTS
[5] 'INVALID OPTION. SELECT FROM',OPTS ⋄ →IN
[6] EX:→EX+OPTS⍳⊂INP
[7] INPUT ⋄ →IN
[8] REPORT ⋄ →IN
[9] END:

∇

⎕REFS'OPTIONS'
ASK
END
EX
IN
INP
INPUT
OPTIONS
OPTS
REPORT

If Y is locked or is an External Function, R contains its name only. For example:

⎕LOCK 'OPTIONS' ⋄ ⎕REFS 'OPTIONS'
OPTIONS

If Y is the name of a primitive, external or derived function, R is an empty matrix with
shape 0 0.

346 Dyalog APL/W Language Reference

Replace: R←{X}(A ⎕R B) Y

⎕R (Replace) and ⎕S (Search) are system operators which take search pattern(s) as
their left arguments and transformation rule(s) as their right arguments; the derived
function operates on text data to perform either a search, or a search and replace oper-
ation.

The search patterns may include Regular Expressions so that complex searches may
be performed. ⎕R and ⎕S utilise the open-source regular-expression search engine
PCRE, which is built into Dyalog APL and distributed according to the PCRE
license which is published separately.

The transformation rules are applied to the text which matches the search patterns;
they may be given as a simple character vector, numeric codes, or a function.

The two system operators, ⎕R for replace and ⎕S for search, are syntactically iden-
tical. With ⎕R, the input document is examined; text which matches the search pat-
tern is amended and the remainder is left unchanged. With ⎕S, each match in the
input document results in an item in the result whose type is dependent on the trans-
formation specified.The operators use the Variant operator to set options.

A specifies one or more search patterns, being given as a single character, a character
vector, a vector of character vectors or a vector of both characters and character vec-
tors. See ‘search pattern’ following.

B is the transformation to be performed on matches within the input document; it
may be either one or more transformation patterns (specified as a character, a char-
acter vector, a vector of character vectors, or a vector of both characters and character
vectors), one or more transformation codes (specified as a numeric scalar or a numeric
vector) or a function; see ‘transformation pattern’, ‘transformation codes’ and ‘trans-
formation function’ following.

Y specifies the input document; see ‘input document’ below.

X optionally specifies an output stream; see ‘output’ below.

R is the result value; see ‘output’ below.

Chapter 3: System Functions & Variables 347

Examples of replace operations
('.at' ⎕R '\u0') 'The cat sat on the mat'

The CAT SAT on the MAT

In the search pattern the dot matches any character, so the pattern as a whole matches
sequences of three characters ending ‘at’. The transformation is given as a character
string, and causes the entire matching text to be folded to upper case.

('\w+' ⎕R {⌽⍵.Match}) 'The cat sat on the mat'
ehT tac tas no eht tam

The search pattern matches each word. The transformation is given as a function,
which receives a namespace containing various variables describing the match, and
it returns the match in reverse, which in turn replaces the matched text.

Examples of search operations
STR←'The cat sat on the mat'
('.at' ⎕S '\u0') STR

CAT SAT MAT

The example is identical to the first, above, except that after the transformation is
applied to the matches the results are returned in a vector, not substituted into the
source text.

('.at' ⎕S {⍵.((1↑Offsets),1↑Lengths)}) STR
4 3 8 3 19 3

When searching, the result vector need not contain only text and in this example the
function returns the numeric position and length of the match given to it; the result-
ant vector contains these values for each of the three matches.

('.at' ⎕S 0 1) STR
4 3 8 3 19 3

Here the transformation is given as a vector of numeric codes which are a short-hand
for the position and length of each match; the overall result is therefore identical to
the previous example.

These examples all operate on a simple character vector containing text, but the text
may be given in several forms - character vectors, vectors of character vectors, and
external data streams. These various forms constitute a ‘document’. When the result
also takes the form of a document it may be directed to a stream.

348 Dyalog APL/W Language Reference

Input Document
The input document may be an array or a data stream.

When it is an array it may be given in one of two forms:

1. A character scalar or vector
2. A vector of character vectors

In Version 13.0 the only supported data stream is a native file, specified as tie
number, which is read from the current position to the end. If the file is read from the
start, and there is a valid Byte OrderMark (BOM) at the start of it, the data encoding
is determined by this BOM. Otherwise, data in the file is assumed to be encoded as
specified by the InEnc option.

Hint: once a native file has been read to the end by ⎕R or ⎕S it is possible to reset the
file position to the start so that it may be read again using:

{} ⎕NREAD tienum 82 0 0

The input document is comprised of lines of text. Line breaks may be included in the
data:

Implicitly

l Between each item in the outer vector (type 2, above)

Explicitly, as

l carriage return
l line feed
l carriage return and line feed together, in that order
l vertical tab (U+000B)
l newline (U+0085)
l form Feed (U+000C)
l line Separator (U+2028)
l paragraph Separator (U+2029)

The implicit line ending character may be set using the EOL option. Explicit line
ending characters may also be replaced by this character - so that all line endings are
normalised - using the NEOL option.

The input document may be processed in linemode, documentmode ormixedmode.
In document mode and mixed mode, the entire input document, line ending char-
acters included, is passed to the search engine; in line mode the document is split on
line endings and passed to the search engine in sections without the line ending char-
acters. The choice of mode affects both memory usage and behaviour, as documented
in the section ‘Line, document and mixed modes’.

Chapter 3: System Functions & Variables 349

Output
The format of the output is dependent on whether ⎕S or ⎕R are in use, whether an out-
put stream is specified and, for ⎕R, the form of the input and whether the ResultText
option is specified.

An output data streammay optionally be specified. In Version 13.0 the only sup-
ported data stream is a native file, specified as tie number, and all output will be
appended to it. Data in the stream is encoded as specified by theOutEnc option. If
this encoding specifies a Byte OrderMark and the file is initially empty then the
Byte OrderMark will be written at the start. Appending to existing data using a dif-
ferent encoding is permitted but unlikely to produce desirable results. If an input
stream is also used, care must be taken to ensure the input and output streams are not
the same.

⎕R
With no output stream specified and unless overridden by the ResultText option, the
derived function result will be a document which closely matches the format of the
input document, as follows:

A character scalar or vector input will result in a character vector output. Any
and all line endings in the output will be represented by line ending characters
within the character vector.

A vector of character vectors as input will result in a vector of character vectors as
document output. Any and all line endings in the output document will be implied
at the end of each character vector.

A stream as input will result in a vector of character vectors document output. Any
and all line endings in the output document will be implied at the end of each char-
acter vector.

Note that the shape of the output document may be significantly different to that of
the input document.

If the ResultText option is specified, the output type may be forced to be a character
vector or vector of character vectors as described above, regardless of the input doc-
ument.

With an output stream specified there is no result - instead the text is appended to the
stream. If the appended text does not end with a line ending character then the line
ending character specified by the EOL option is also appended.

350 Dyalog APL/W Language Reference

⎕S
With no output stream specified, the result will be a vector containing one item for
each match in the input document, of types determined by the transformation per-
formed on each match.

With an output stream specified there is no result - instead each match is appended to
the stream. If any match does not end with a line ending character then the line end-
ing character specified by the EOL option is also appended. Only text may be
written to the stream, which means:

l When a transformation function is used, the function may only generate a
character vector result.

l Transformation codes may not be used.

Search pattern
A summary of the syntax of the search pattern is reproduced from the PCRE doc-
umentation verbatim in Appendix A herein. A full description is provided in Appen-
dix A to the Version 13.0 Release Notes.

There may be multiple search patterns. If more than one search pattern is specified
and more than one pattern matches the same part of the input document then priority
is given to the pattern specified first.

Transformation pattern
For each match in the input document, the transformation pattern causes the creation
of text which, for ⎕R, replaces the matching text and, for ⎕S, generates one item in
the result.

There may be either one transformation pattern, or the same number of transformation
patterns as search patterns. If there are multiple search patterns and multiple trans-
formation patterns then the transformation pattern used corresponds to the search pat-
tern which matched the input text.

Transformation patterns may not be mixed with transformation codes or functions.

Chapter 3: System Functions & Variables 351

The following characters have special meaning:

% acts as a placeholder for the entire line (line mode) or document
(document mode or mixed mode) which contained the match

& acts as a placeholder for the entire portion of text which matched

\n represents a line feed character

\r represents a carriage return

\0 equivalent to &

\n acts as a placeholder for the text which matched the first to ninth
subpattern; n may be any single digit value from 1 to 9

\(n) acts as a placeholder for the text which matched the numbered
subpattern; n may have an integer value from 0 to 63.

\<name> acts as a placeholder for the text which matched the named
subpattern

\\ represents the backslash character

\% represents the percent character

\& represents the ampersand character

The above may be qualified to fold matching text to upper- or lower-case by using
the u and l modifiers respectively. Character sequences beginning with the backslash
place the modifier after the backslash; character sequences with no leading backslash
add both a backslash and the modifier to the start of the sequence, for example:

\u& acts as a placeholder for the entire portion of text which matched,
folded to upper case

\l0 equivalent to \l&

Character sequences beginning with the backslash other that those shown are
invalid. All characters other than those shown are literal values and are included in
the text without modification.

352 Dyalog APL/W Language Reference

Transformation codes
The transformation codes are a numeric scalar or vector. For each match in the input
document, a numeric scalar or vector of the same shape as the transformation codes is
created, with the codes replaced with values as follows:

0 The offset from the start of the line (line mode) or document (document
mode or mixed mode) of the start of the match, origin zero.

1 The length of the match.

2
In line mode, the block number in the source document of the start of
the match. The value is origin zero. In document mode or mixed mode
this value is always zero.

3 The pattern number which matched the input document, origin
zero.Transformation codes may only be used with ⎕S

.

Chapter 3: System Functions & Variables 353

Transformation Function
The transformation function is called for each match within the input document. The
function is monadic and is passed a namespace, containing the following variables:

Block
The entire line (line mode) or document (document mode or
mixed mode) in which the match was found.

BlockNum

With line mode, the block (line) number in the source
document of the start of the match. The value is origin zero.
With document mode or mixed mode the entire document
is contained within one block and this value is always
zero.

Pattern The search pattern which matched.

PatternNum The index-zero pattern number which matched.

Match The text within Block which matched Pattern.

Offsets

A vector of one or more index-zero offsets relative to the
start of Block. The first value is the offset of the entire
match; any and all additional values are the offsets of the
portions of the text which matched the subpatterns, in the
order of the subpatterns within Pattern.

Lengths
A vector of one or more lengths, corresponding to each
value in Offset.

Names

A vector of one or more character vectors corresponding to
each of the values in Offsets, specifying the names given to
the subpatterns within Pattern. The first entry
(corresponding to the match) and all subpatterns with no
name are included as length zero character vectors.

ReplaceMode
A Boolean indicating whether the function was called by
⎕R (value 1) or ⎕S (value 0).

TextOnly
A Boolean indicating whether the return value from the
function must be a character vector (value 1) or any value
(value 0).

354 Dyalog APL/W Language Reference

The return value from the function is used as follows:

With ⎕R the function must return a character vector. The contents of this vector are
used to replace the matching text.

With ⎕S the function may return no value. If it does return a value:

l When output is being directed to a stream it must be a character vector.
l Otherwise, it may be any value. The overall result of the derived function is

the catenation of the enclosure of each returned value into a single vector.

The passed namespace exists over the lifetime of ⎕R or ⎕S; the function may there-
fore preserve state by creating variables in the namespace.

The function may itself call ⎕R or ⎕S.

The locations of the match within Block and subpatterns within Match are given as
offsets rather than positions, i.e. the values are the number of characters preceding the
data, and are not affected by the Index Origin.

There may be only one transformation function, regardless of the number of search
patterns.

Options
Options are specified using the Variant operator. The Principal option is IC.

Default values are highlighted thus.

IC Option
When set, case is ignored in searches.

1 Matches are not case sensitive.

0 Matches are case sensitive.

Example:

('[AEIOU]' ⎕R 'X' ⍠ 'IC' 1) 'ABCDE abcde'
XBCDX XbcdX

('[AEIOU]' ⎕R 'X' ⍠ 1)'ABCDE abcde'
XBCDX XbcdX

Chapter 3: System Functions & Variables 355

Mode Option
Specifies whether the input document is interpreted in linemode, documentmode or
mixedmode.

L

When line mode is set, the input document is split into
separate lines (discarding the line ending characters
themselves), and each line is processed separately. This means
that the ML option applies per line, and the '̂ ' and '$' anchors
match the start and end respectively of each line. Because the
document is split, searches can never match across multiple
lines, nor can searches for line ending characters ever succeed.
Setting line mode can result in significantly reduced memory
requirements compared with the other modes.

D

When document mode is set, the entire input document is
processed as a single block. The ML option applies to this
entire block, and the '̂ ' and '$' anchors match the start and end
respectively of the block - not the lines within it. Searches can
match across lines, and can match line ending characters.

M

When mixed mode is set, the '̂ ' and '$' anchors match the start
and end respectively of each line, as if line mode is set, but in
all other respects behaviour is as if document mode is set - the
entire input document is processed in a single block.

Examples:
('$' ⎕R '[Endline]' ⍠ 'Mode' 'L') 'ABC' 'DEF'

ABC[Endline] DEF[Endline]

('$' ⎕R '[Endline]' ⍠ 'Mode' 'D') 'ABC' 'DEF'
ABC DEF[Endline

('$' ⎕R '[Endline]' ⍠ 'Mode' 'M') 'ABC' 'DEF'
ABC[Endline] DEF[Endline]

356 Dyalog APL/W Language Reference

DotAll Option
Specifies whether the dot (‘.’) character in search patterns matches line ending char-
acters.

0 The ‘.’ character in search patterns matches most characters,
but not line endings.

1 The ‘.’ character in search patterns matches all characters.

This option is invalid in line mode, because line endings are stripped from the input
document.

Example:
('.' ⎕R 'X' ⍠'Mode' 'D') 'ABC' 'DEF'

XXX XXX
('.' ⎕R 'X' ⍠('Mode' 'D')('DotAll' 1)) 'ABC' 'DEF'

XXXXXXXX

EOL Option
Sets the line ending character which is implicitly present between character vectors,
when the input document is a vector of character vectors.

CR Carriage Return (U+000D)

LF Line Feed (U+000A)

CRLF Carriage Return followed by New Line

VT Vertical Tab (U+000B)

NEL New Line (U+0085)

FF Form Feed (U+000C)

LS Line Separator (U+2028)

PS Paragraph Separator (U+2029)

In the Classic Edition, setting a value which is not in ⎕AVUmay result in a
TRANSLATION ERROR.

Example:
('\n' ⎕R'X' ⍠('Mode' 'D')('EOL' 'LF')) 'ABC' 'DEF'

ABCXDEF

Here, the implied line ending between ‘ABC’ and ‘DEF’ is ‘\n’, not the default ‘\r\n’.

Chapter 3: System Functions & Variables 357

NEOL Option
Specifies whether explicit line ending sequences in the input document are nor-
malised by replacing themwith the character specified using the EOL option.

0 Line endings are not normalised.

1 Line endings are normalised.

Example:
a←'ABC',(1↑2↓⎕AV),'DEF',(1↑3↓⎕AV),'GHI'
('\n'⎕S 0 ⍠ 'Mode' 'D' ⍠ 'NEOL' 1 ⍠ 'EOL' 'LF') a

3 7

‘\n’ has matched both explicit line ending characters in the input, even though they
are different.

ML Option
Sets a limit to the number of processed pattern matches per line (line mode) or doc-
ument (document mode and mixed mode).

Positive value n Sets the limit to the first n matches.

0 Sets no limit.

Negative value ¯n Sets the limit to exactly the nth match.

Examples:
('.' ⎕R 'x' ⍠ 'ML' 2) 'ABC' 'DEF'

xxC xxF
('.' ⎕R 'x' ⍠ 'ML' ¯2) 'ABC' 'DEF'

AxC DxF
('.' ⎕R 'x' ⍠ 'ML' ¯4 ⍠ 'Mode' 'D') 'ABC' 'DEF'

ABC xEF

358 Dyalog APL/W Language Reference

Greedy Option
Controls whether patterns are “greedy” (and match the maximum input possible) or
are not (and match the minimum). Within the pattern itself it is possible to specify
greediness for individual elements of the pattern; this option sets the default.

1 Greedy by default.

0 Not greedy by default.

Examples:
('[A-Z].*[0-9]' ⎕R 'X' ⍠ 'Greedy' 1)'ABC123 DEF456'

X
('[A-Z].*[0-9]' ⎕R 'X' ⍠ 'Greedy' 0)'ABC123 DEF456'

X23 X56

OM Option
Specifies whether matches may overlap.

1
Searching continues for all patterns and then from the
character following the start of the match, thus permitting
overlapping matches.

0 Searching continues from the character following the end of
the match.

This option may only be used with ⎕S. With ⎕R searching always continues from the
character following the end of the match (the characters following the start of the
match will have been changed).

Examples:
('[0-9]+' ⎕S '\0' ⍠ 'OM' 0) 'A 1234 5678 B'

1234 5678
('[0-9]+' ⎕S '\0' ⍠ 'OM' 1) 'A 1234 5678 B'

1234 234 34 4 5678 678 78 8

Chapter 3: System Functions & Variables 359

InEnc Option
This option specifies the encoding of the input stream when it cannot be determined
automatically.

When the stream is read from its start, and the start of the stream contains a rec-
ognised Byte OrderMark (BOM), the encoding is taken as that specified by the
BOM and this option is ignored. Otherwise, the encoding is assumed to be as spec-
ified by this option.

UTF8 The stream is processed as UTF-8 data. Note that ASCII is a
subset of UTF-8, so this default is also suitable for ASCII data.

UTF16LE The stream is processed as UTF16 little-endian data.

UTF16BE The stream is processed as UTF16 big-endian data.

ASCII
The stream is processed as ASCII data. If the stream contains
any characters outside of the ASCII range then an error is
produced.

ANSI The stream is processed as ANSI (Windows-1252) data.

For compatibility with theOutEnc option, the above UTF formats may be qualified
with -BOM (e.g. UTF-BOM). For input streams, the qualified and unqualified
options are equivalent.

OutEnc Option
When the output is written to a stream, the data may be encoded on one of the fol-
lowing forms:

Implied If input came from a stream then the encoding format is the
same as the input stream, otherwise UTF-8

UTF8 The data is written in UTF-8 format.

UTF16LE The data is written in UTF-16 little-endian format.

UTF16BE The data is written in UTF-16 big-endian format.

ASCII The data is written in ASCII format.

ANSI The data is written in ANSI (Windows-1252) format.

The above UTF formats may be qualified with -BOM (e.g. UTF8-BOM) to specify
that a Byte OrderMark should be written at the start of the stream. For files, this is
ignored if the file already contains any data.

360 Dyalog APL/W Language Reference

Enc Option
This option sets both InEnc and OutEnc simultaneously, with the same given value.
Any option value accepted by those options except Implied may be given.

ResultText Option
For ⎕R, this option determines the format of the result.

Implied The output will either be a character vector or a vector of
character vectors, dependent on the input document type

Simple
The output will be a character vector. Any and all line
endings in the output will be represented by line ending
characters within the character vector.

Nested
The output will be a vector of character vectors. Any and all
line endings in the output document will be implied at the
end of each character vector.

This option may only be used with ⎕R.

Examples:

⎕UCS ¨ ('A' ⎕R 'x') 'AB' 'CD'
120 66 67 68

⎕UCS ('A' ⎕R 'x' ⍠ 'ResultText' 'Simple') 'AB' 'CD'
120 66 13 10 67 68

Line, document and mixed modes
The Mode setting determines how the input document is packaged as a block and
passed to the search engine. In line mode each line is processed separately; in doc-
ument mode and mixed mode the entire document is presented to the search engine.
This affects both the semantics of the search expression, and memory usage.

Chapter 3: System Functions & Variables 361

Semantic differences
l The ML option applies per block of data.
l In line mode, search patterns cannot be constructed to span multiple lines.

Specifically, patterns that include line ending characters (such as ‘\r’) will
never match because the line endings are never presented to the search
engine.

l By default the search pattern metacharacters ‘^’ and ‘$’ match the start and
end of the block of data. In line mode this is always the start and end of
each line. In document mode this is the start and end of the document. In
mixed mode the behaviour of ‘^’ and ‘$’ are amended by setting the PCRE
option ‘MULTILINE’ so that they match the start and end of each line
within the document.

Memory usage differences

l Blocks of data passed to the search engine are processed and stored in the
workspace. Processing the input document in line mode limits the total
memory requirements; in particular this means that large streams can be proc-
essed without holding all the data in the workspace at the same time.

Technical Considerations
⎕R and ⎕S utilise the open-source regular-expression search engine PCRE, which is
built into the Dyalog software and distributed according to the PCRE license which
is published separately.

Before data is passed to PCRE it is converted to UTF-8 format. This converted data is
buffered in the workspace; processing large documents may have significant memory
requirements. In line mode, the data is broken into individual lines and each is proc-
essed separately, potentially reducing memory demands.

It is possible to save a workspace with an active ⎕R or ⎕S on the stack and execution
can continue when the workspace is reloaded with the same interpreter version. Later
versions of the interpreter may not remain compatible and may signal a DOMAIN
ERROR with explanatory message in the status window if it is unable to continue
execution.

PCRE has a buffer length limit of 231 bytes (2GB). UTF-8 encodes each character
using between 1 and 6 bytes (typically 1 or 3). In the very worst case, where every
character is encoded in 6 bytes, the maximum block length which can be searched
would be 357,913,940 characters.

362 Dyalog APL/W Language Reference

Further Examples
Several of the examples use the following vector as the input document:

text
To be or not to be– that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles

Replace all upper and lower-case vowels by 'X':
('[aeiou]' ⎕R 'X' ⍠ 'IC' 1) text

TX bX Xr nXt tX bX– thXt Xs thX qXXstXXn:
WhXthXr 'tXs nXblXr Xn thX mXnd tX sXffXr
ThX slXngs Xnd XrrXws Xf XXtrXgXXXs fXrtXnX,
Xr tX tXkX Xrms XgXXnst X sXX Xf trXXblXs

Replace only the second vowel on each line by '\VOWEL\':
('[aeiou]' ⎕R '\\VOWEL\\'⍠('IC' 1)('ML' ¯2)) text

To b\VOWEL\ or not to be– that is the question:
Wheth\VOWEL\r 'tis nobler in the mind to suffer
The sl\VOWEL\ngs and arrows of outrageous fortune,
Or t\VOWEL\ take arms against a sea of troubles

Case fold each word:
('(?<first>\w)(?<remainder>\w*)' ⎕R

'\u<first>\l<remainder>') text
To Be Or Not To Be– That Is The Question:
Whether 'Tis Nobler In The Mind To Suffer
The Slings And Arrows Of Outrageous Fortune,
Or To Take Arms Against A Sea Of Troubles

Extract only the lines with characters ‘or’ (in upper or lower case) on them:
↑('or' ⎕S '%' ⍠ ('IC' 1)('ML' 1)) text

To be or not to be– that is the question:
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles

Identify which lines contain the word ‘or’ (in upper or lower case) on them:
('\bor\b'⎕S 2⍠('IC' 1)('ML' 1))text

0 3

Note the difference between the characters ‘or’ (which appear in ‘fortune’) and the
word ‘or’.

Chapter 3: System Functions & Variables 363

Place every non-space sequence of characters in brackets:
('[^\s]+' ⎕R '(&)') 'To be or not to be, that is

the question'
(To) (be) (or) (not) (to) (be,) (that) (is) (the)
(question)

Replace all sequences of one or more spaces by newline. Note that the effect of
this is dependent on the input format:
Character vector input results in a single character vector output with embedded new-
lines:

]display ('\s+' ⎕R '\r') 'To be or not to be, that
is the question'
┌→───────┐
│To │
│be │
│or │
│not │
│to │
│be, │
│that │
│is │
│the │
│question│
└────────┘

A vector of two character vectors as input results in a vector of 10 character vectors
output:

]display ('\s+' ⎕R '\r') 'To be or not to be,' 'that is the
question'
┌→───┐
│ ┌→─┐ ┌→─┐ ┌→─┐ ┌→──┐ ┌→─┐ ┌→──┐ ┌→───┐ ┌→─┐ ┌→──┐ ┌→───────┐ │
│ │To│ │be│ │or│ │not│ │to│ │be,│ │that│ │is│ │the│ │question│ │
│ └──┘ └──┘ └──┘ └───┘ └──┘ └───┘ └────┘ └──┘ └───┘ └────────┘ │
└∊───┘

Change numerals to their expanded names, using a function:
∇r←f a

[1] r←' ',⊃(⍎a.Match)↓'zero' 'one' 'two' 'three' 'four'
'five' 'six' 'seven' 'eight' 'nine'

∇
verbose←('[0-9]' ⎕R f)
verbose ⍕27×56×87

one three one five four four

364 Dyalog APL/W Language Reference

Swap ‘red’ and ‘blue’:
('red' 'blue' ⎕R 'blue' 'red') 'red hat blue coat'

blue hat red coat

Convert a comma separated values (CSV) file so that

l dates in the first field are converted from European format to ISO, and
l currency values are converted from Deutsche Marks (DEM) to Euros (DEM

1.95583 to €1).

The currency conversion requires the use of a function. Note the nested use of ⎕R.

Input file:

01/03/1980,Widgets,DEM 10.20
02/04/1980,Bolts,DEM 61.75
17/06/1980,Nuts; special rate DEM 17.00,DEM 17.00
18/07/1980,Hammer,DEM 1.25

Output file:

1980-03-01,Widgets,€ 5.21
1980-04-02,Bolts,€ 31.57
1980-06-17,Nuts; special rate DEM 17.00,€ 8.69
1980-07-18,Hammer,€ 0.63

∇ ret←f a;d;m;y;v
[1] ⎕IO←0
[2] :Select a.PatternNum
[3] :Case 0
[4] d m
y←{a.Match[a.Offsets[⍵+1]+⍳a.Lengths[⍵+1]]}¨⍳3
[5] ret←y,'-',m,'-',d,','
[6] :Else
[7] v←⍎a.Block[a.Offsets[1]+⍳a.Lengths[1]]
[8] v÷←1.95583
[9] ret←',€ ',('(\d+\.\d\d).*'⎕R'\1')⍕v
[10] :EndSelect

∇

in ← 'x.csv' ⎕NTIE 0
out ← 'new.csv' ⎕NCREATE 0
dateptn←'(\d{2})/(\d{2})/(\d{4}),'
valptn←',DEM ([0-9.]+)'
out (dateptn valptn ⎕R f) in
⎕nuntie¨in out

Chapter 3: System Functions & Variables 365

Create a simple profanity filter. For the list of objectionable words:
profanity←'bleeding' 'heck'

first construct a pattern which will match the words:

ptn←(('^' '$' '\r\n') ⎕R '\\b(' ')\\b' '|'
⎕OPT 'Mode' 'D') profanity

ptn
\b(bleeding|heck)\b

then a function that uses this pattern:

sanitise←ptn ⎕R '****' ⎕opt 1
sanitise '"Heck", I said'

"****", I said

Random Link: ⎕RL

⎕RL establishes a base or seed for generating random numbers using Roll and Deal,
and returns the current state of such generation.

Three different random number generatators are provided, which are referred to here
as RNG0, RNG1 and RNG2. These are selected using (16807⌶). See "Random
Number Generator:" on page 156. ⎕RL is relevant only to RNG0 and RNG1 for
which repeatable pseudo-random series can be obtained by setting ⎕RL to a par-
ticular value first.

Using RNG0 or RNG1, you can set ⎕RL to any integer in the range 1 to ¯1+2*31 or
¯1+2*63 respectively. The latter case requires ⎕FR to be 1287.

In a clear ws, ⎕RL is initialised to the value defined by the default_rl parameter
which itself defaults to 16807 if it is not defined.

Using RNG0, ⎕RL returns an integer which represents the seed for the next random
number in the sequence.

Using RNG1, the system internally retains a block of 312 64-bit numbers which are
used one by one to generate the results of roll and deal. When the first block of 312
have been used up, the system generates a second block. In this case, ⎕RL returns an
integer vector of 32-bit numbers of length 625 (the first is an index into the block of
312) which represents the internal state of the random number generator. This means
that, as with RNG0, you may save the value of ⎕RL in a variable and reassign it later.

Internally, APL maintains the current state separately for RNG0 and RNG1. When
you switch from one RandomNumber Generator to the other, the appropriate state is
loaded into ⎕RL.

366 Dyalog APL/W Language Reference

RNG2 does not permit access to the seed, so in this case ⎕RL is not relevant and is not
used by Roll and Deal. It will accept any value but will always return zilde.

Examples
16807⌶1 ⍝ Select RNG1

0
⎕RL←16807
10?10

4 1 6 5 2 9 7 10 3 8
5↑⎕RL

10 0 16807 1819658750 ¯355441828
X←?1000⍴1000
5↑⎕RL

100 ¯465541037 ¯1790786136 ¯205462449 996695303

⎕RL←16807
10?10

4 1 6 5 2 9 7 10 3 8
Y←?1000⍴1000
X≡Y

1
5↑⎕RL

100 ¯465541037 ¯1790786136 ¯205462449 996695303

16807⌶0 ⍝ Select RNG0
1

⎕RL
16807

?9 9 9
2 7 5

?9
7

⎕RL
984943658

⎕RL←16807
?9 9 9

2 7 5
?9

7
⎕RL

984943658

16807⌶1 ⍝ Select RNG1
0

5↑⎕RL
100 ¯465541037 ¯1790786136 ¯205462449 996695303

Chapter 3: System Functions & Variables 367

Space Indicator: R←⎕RSI

R is a vector of refs to the spaces fromwhich functions in the state indicator were
called (⍴⎕RSI←→⍴⎕NSI←→⍴⎕SI).

⎕RSI and ⎕NSI are identical except that ⎕RSI returns refs to the spaces whereas
⎕NSI returns their names. Put another way: ⎕NSI←→⍕¨⎕RSI.

Note that ⎕RSI returns refs to the spaces from which functions were called not those
in which they are currently running.

Example
)OBJECTS

xx yy

⎕VR 'yy.foo'
∇ r←foo

[1] r←⎕SE.goo
∇
⎕VR'⎕SE.goo'

∇ r←goo
[1] r←⎕SI,[1.5]⎕RSI

∇

)CS xx
#.xx

calling←#.yy.foo
]display calling

┌→───────────┐
↓ ┌→──┐ │
│ │goo│ #.yy │
│ └───┘ │
│ ┌→──┐ │
│ │foo│ #.xx │
│ └───┘ │
└∊───────────┘

368 Dyalog APL/W Language Reference

Response Time Limit: ⎕RTL

A non-zero value in ⎕RTL places a time limit, in seconds, for input requested via ⍞ ,
⎕ARBIN , and ⎕SR. ⎕RTLmay be assigned any integer in the range 0 to 32767.
The value is a clear workspace is 0.

Example
⎕RTL←5 ⋄ ⍞←'FUEL QUANTITY?' ⋄ R←⍞

FUEL QUANTITY?
TIMEOUT

⎕RTL←5 ⋄ ⍞←'FUEL QUANTITY?' ⋄ R←⍞

Search: R←{X}(A ⎕S B) Y
See "Replace: " on page 346.

Save Workspace: {R}←{X}⎕SAVE Y

Ymust be a simple character scalar or vector, identifying a workspace name. Note
that the name must represent a valid file name for the current Operating System. R is
a simple logical scalar. The active workspace is saved with the given name in Y. In
the active workspace, the value 1 is returned. The result is suppressed if not used or
assigned.

The optional left argument X is either 0 or 1. If X is omitted or 1, the saved version of
the workspace has execution suspended at the point of exit from the ⎕SAVE
function. If the saved workspace is subsequently loaded by ⎕LOAD, execution is
resumed, and the value 0 is returned if the result is used or assigned, or otherwise the
result is suppressed. In this case, the latent expression value (⎕LX) is ignored.

If X is 0, the workspace is saved without any State Indicator in effect. The effect is the
same as if you first executed)RESET and then)SAVE. In this case, when the work-
space is subsequently loaded, the value of the latent expression (⎕LX) is honoured if
applicable.

A DOMAIN ERROR is reported if the name in Y is not a valid workspace name or file
name, or the reference is to an unauthorised directory.

⎕SAVE will fail and issue DOMAIN ERROR if any threads (other than the root thread
0) are running.

Note that the values of all system variables (including ⎕SM) and all GUI objects are
saved.

Chapter 3: System Functions & Variables 369

Example
(⊃'SAVED' 'ACTIVE' [⎕IO+⎕SAVE'TEMP']),' WS'

ACTIVE WS
⎕LOAD 'TEMP'

SAVED WS

Screen Dimensions: R←⎕SD

⎕SD is a 2-element integer vector containing the number of rows and columns on the
screen, or in the USER window.

For asynchronous terminals under UNIX, the screen size is taken from the terminal
database terminfo or termcap.

In window implementations of Dyalog APL, ⎕SD reports the current size (in char-
acters) of the USER window or the current size of the SM object, whichever is appro-
priate.

Session Namespace: ⎕SE

⎕SE is a system namespace. Its GUI components (MenuBar, ToolBar, and so forth)
define the appearance and behaviour of the APL Session window and may be cus-
tomised to suit individual requirements.

⎕SE is maintained separately from the active workspace and is not affected by
)LOAD or)CLEAR. It is therefore useful for containing utility functions. The con-
tents of ⎕SEmay be saved in and loaded from a .DSE file.

See User Guide for further details.

370 Dyalog APL/W Language Reference

Execute (UNIX) Command: {R}←⎕SH Y

⎕SH executes a UNIX shell or a Windows Command Processor. ⎕SH is a synonym
of ⎕CMD. Either function may be used in either environment (UNIX orWindows)
with exactly the same effect. ⎕SH is probably more natural for the UNIX user. This
section describes the behaviour of ⎕SH and ⎕CMD under UNIX. See "Execute Win-
dows Command: " on page 188 for a discussion of the behaviour of these system func-
tions underWindows.

Ymust be a simple character scalar or vector representing a UNIX shell command. R
is a nested vector of character vectors.

Ymay be any acceptable UNIX command. It could cause another process to be
entered, such as sed or vi. If the command does not return a result, R is ⊂'' but the
result is suppressed if not explicitly used or assigned. If the command has a non-zero
exit code, then APL will signal a DOMAIN ERROR. If the command returns a result
and has a zero exit code, then each element of R will be a line from the standard out-
put (stdout) of the command. Output from standard error (stderr) is not captured
unless redirected to stdout.

Examples
⎕SH'ls'

FILES WS temp

⎕SH 'rm WS/TEST'

⎕SH 'grep bin /etc/passwd ; exit 0'
bin:!:2:2::/bin:

⎕SH 'apl MYWS <inputfile >out1 2>out2 &'

Chapter 3: System Functions & Variables 371

Start UNIX Auxiliary Processor: X ⎕SH Y

Used dyadically, ⎕SH starts an Auxiliary Processor. The effect, as far as the APL user
is concerned, is identical under both Windows and UNIX although there are dif-
ferences in the method of implementation. ⎕SH is a synonym of ⎕CMD. Either func-
tion may be used in either environment (UNIX orWindows) with exactly the same
effect. ⎕SH is probably more natural for the UNIX user. This section describes the
behaviour of ⎕SH and ⎕CMD under UNIX. See "Start Windows Auxiliary Processor:
" on page 191 for a discussion of the behaviour of these system functions underWin-
dows.

Xmust be a simple character vector. Ymay be a simple character scalar or vector, or a
nested character vector.

⎕SH loads the Auxiliary Processor from the file named by X using a search-path
defined by the environment variable WSPATH.

The effect of starting an AP is that one or more external functions are defined in the
workspace. These appear as locked functions and may be used in exactly the same
way as regular defined functions.

When an external function is used in an expression, the argument(s) (if any) are piped
to the AP for processing. If the function returns a result, APL halts while the AP is
processing and waits for the result. If not it continues processing in parallel.

The syntax of dyadic ⎕SH is similar to the UNIX execl(2) system call, where
'taskname' is the name of the auxiliary processor to be executed and arg0 through
argn are the parameters of the calling line to be passed to the task, viz.

'taskname' ⎕SH 'arg0' 'arg1' ... 'argn'

See User Guide for further information.

Examples
'xutils' ⎕SH 'xutils' 'ss' 'dbr'

'/bin/sh' ⎕SH 'sh' '-c' 'adb test'

372 Dyalog APL/W Language Reference

State Indicator: R←⎕SI

R is a nested vector of vectors giving the names of the functions or operators in the
execution stack.

Example
)SI

#.PLUS[2]*
.
#.MATDIV[4]
#.FOO[1]*
⍎

⎕SI
PLUS MATDIV FOO

(⍴⎕LC)=⍴⎕SI
1

If execution stops in a callback function, ⎕DQ will appear on the stack, and may
occur more than once

)SI
#.ERRFN[7]*
⎕DQ
#.CALC
⎕DQ
#.MAIN

To edit the function on the top of the stack:

⎕ED ⊃⎕SI

The name of the function which called this one:

⊃1↓⎕SI

To check if the function ∆N is pendent:

((⊂∆N)∊1↓⎕SI)/'Warning : ',∆N,' is pendent'

See also "Extended State Indicator: " on page 443.

Chapter 3: System Functions & Variables 373

Shadow Name: ⎕SHADOW Y

Ymust be a simple character scalar, vector or matrix identifying one or more APL
names. For a vector Y, names are separated by one or more blanks. For a matrix Y,
each row is taken to be a single name.

Each valid name in Y is shadowed in the most recently invoked defined function or
operator, as though it were included in the list of local names in the function or oper-
ator header. The class of the name becomes 0 (undefined). The name ceases to be
shadowed when execution of the shadowing function or operator is completed.
Shadow has no effect when the state indicator is empty.

If a name is ill-formed, or if it is the name of a system constant or system function,
DOMAIN ERROR is reported.

If the name of a top-level GUI object is shadowed, it is made inactive.

Example
⎕VR'RUN'

∇ NAME RUN FN
[1] ⍝ RUNS FUNCTION NAMED <NAME> DEFINED
[2] ⍝ FROM REPRESENTATION FORM <FN>
[3] ⎕SHADOW NAME
[4] ⍎⎕FX FN

∇

0 ⎕STOP 'RUN'

'FOO' RUN 'R←FOO' 'R←10'
10

RUN[0]

)SINL
#.RUN[0]* FOO FN NAME

→⎕LC

FOO
VALUE ERROR

FOO
^

374 Dyalog APL/W Language Reference

Signal Event: {X}⎕SIGNAL Y

Ymust be a scalar or vector.

If Y is a an empty vector nothing is signalled.

If Y is a vector of more than one element, all but the first element are ignored.

If the first element of Y is a simple integer in the range 1-999 it is taken to be an event
number. X is an optional text message. If present, Xmust be a simple character scalar
or vector, or an object reference. If X is omitted or is empty, the standard event mes-
sage for the corresponding event number is assumed. See "APL Error Messages" on
page 473. If there is no standard message, a message of the form ERROR NUMBER n
is composed, where n is the event number in Y. Values outside the range 1-999 will
result in a DOMAIN ERROR.

If the first element of Y is a 2 column matrix or a vector of 2 element vectors of
name/values pairs, then it is considered to be a set of values to be used to override the
default values in a new instance of ⎕DMX. Any other value for the first element of Y
will result in a DOMAIN ERROR.

The names in the error specification must all appear in a system-generated ⎕DMX,
otherwise a DOMAIN ERROR will be issued. For each name specified, the default
value in the new instance of ⎕DMX is replaced with the value specified. EN must be
one of the names in the error specification. Attempting to specify certain names,
including InternalLocation and DM, will result in a DOMAIN ERROR. The value
which is to be assigned to a name must be appropriate to the name in question.

Dyalog may enhance ⎕DMX in future, thus potentially altering the list of valid and/or
assignable names.

If the first element of Y is an array of name/value pairs then specifying any value for
X will result in a DOMAIN ERROR.

The effect of the system function is to interrupt execution. The state indicator is cut
back to exit from the function or operator containing the line that invoked ⎕SIGNAL
or the Execute (⍎) expression that invoked ⎕SIGNAL, and an error is then generated.

An error interrupt may be trapped if the system variable ⎕TRAP is set to intercept the
event. Otherwise, the standard system action is taken (which may involve cutting
back the state indicator further if there are locked functions or operators in the state
indicator). The standard event message is replaced by the text given in X, if present.

Chapter 3: System Functions & Variables 375

Example
⎕VR'DIVIDE'

∇ R←A DIVIDE B;⎕TRAP
[1] ⎕TRAP←11 'E' '→ERR'
[2] R←A÷B ⋄ →0
[3] ERR:'DIVISION ERROR' ⎕SIGNAL 11

∇

2 4 6 DIVIDE 0
DIVISION ERROR

2 4 6 DIVIDE 0
^

If you are using the Microsoft .Net Framework, you may use ⎕SIGNAL to throw an
exception by specifying a value of 90 in Y. In this case, if you specify the optional
left argument X, it must be a reference to a .Net object that is or derives from the
Microsoft .Net class System.Exception. The following example illustrates a con-
structor function CTOR that expects to be called with a value for ⎕IO (0 or 1)

∇ CTOR IO;EX
[1] :If IO∊0 1
[2] ⎕IO←IO
[3] :Else
[4] EX←ArgumentException.New'IO must be 0 or 1'
[5] EX ⎕SIGNAL 90
[6] :EndIf

∇

Further examples
Example 1

'Hello'⎕SIGNAL 200
Hello

'Hello'⎕SIGNAL 200
∧
⎕DMX

EM Hello
Message
HelpURL

⎕DM
Hello 'Hello'⎕SIGNAL 200 ∧

376 Dyalog APL/W Language Reference

⎕SIGNAL⊂⊂('EN' 200)
ERROR 200

⎕SIGNAL⊂⊂('EN' 200)
∧

⎕DMX
EM ERROR 200
Message
HelpURL

⎕DM
ERROR 200 ⎕SIGNAL⊂⊂('EN' 200) ∧

Example 2
⎕SIGNAL⊂('EN' 200)('Vendor' 'Andy')('Message' 'My error')

ERROR 200: My error
⎕SIGNAL⊂('EN' 200)('Vendor' 'Andy')('Message' 'My error')
∧

⎕DMX
EM ERROR 200
Message My error
HelpURL

⍪⎕DMX.(EN EM Vendor)
200

ERROR 200
Andy

Be aware of the following case, in which the argument has not been sufficiently
nested:

⎕SIGNAL⊂('EN' 200)
DOMAIN ERROR: Unexpected name in signalled ⎕DMX specification

⎕SIGNAL⊂('EN' 200)
∧

Chapter 3: System Functions & Variables 377

Size of Object: R←⎕SIZE Y

Ymust be a simple character scalar, vector or matrix, or a vector of character vectors
containing a list of names. R is a simple integer vector of non-negative elements with
the same length as the number of names in Y.

If the name in Y identifies an object with an active referent, the workspace required
in bytes by that object is returned in the corresponding element of R. Otherwise, 0 is
returned in that element of R.

The result returned for an external variable is the space required to store the external
array. The result for a system constant, variable or function is 0. The result returned
for a GUI object gives the amount of workspace needed to store it, but excludes the
space required for its children.

Note: Wherever possible, Dyalog APL shares the whole or part of a workspace
object rather than generates a separate copy; however ⎕SIZE reports the size as
though nothing is shared. ⎕SIZE also includes the space required for the interpreter's
internal information about the object in question.

Examples
⎕VR 'FOO'

∇ R←FOO
[1] R←10

∇

A←⍳10

'EXT/ARRAY' ⎕XT'E' ⋄ E←⍳20

⎕SIZE 'A' 'FOO' 'E' 'UND'
28 76 120 0

378 Dyalog APL/W Language Reference

Screen Map: ⎕SM

⎕SM is a system variable that defines a character-based user interface (as opposed to a
graphical user interface). In versions of Dyalog APL that support asynchronous ter-
minals, ⎕SM defines a form that is displayed on the USER SCREEN. The imple-
mentation of ⎕SM in "window" environments is compatible with these versions. In
Dyalog APL/X, ⎕SM occupies its own separate window on the display, but is other-
wise equivalent. In versions of Dyalog APL with GUI support, ⎕SM either occupies
its own separate window (as in Dyalog APL/X) or, if it exists, uses the window
assigned to the SM object. This allows ⎕SM to be used in a GUI application in con-
junction with other GUI components.

In general ⎕SM is a nested matrix containing between 3 and 13 columns. Each row
of ⎕SM represents a field; each column a field attribute.

The columns have the following meanings:

Column Description Default

1 Field Contents N/A

2 Field Position - Top Row N/A

3 Field Position - Left Column N/A

4 Window Size - Rows 0

5 Window Size - Columns 0

6 Field Type 0

7 Behaviour 0

8 Video Attributes 0

9 Active Video Attributes ¯1

10 Home Element - Row 1

11 Home Element - Column 1

12 Scrolling Group - Vertical 0

13 Scrolling Group - Horizontal 0

With the exception of columns 1 and 8, all elements in ⎕SM are integer scalar values.

Chapter 3: System Functions & Variables 379

Elements in column 1 (Field Contents) may be:

l A numeric scalar
l A numeric vector
l A 1-column numeric matrix
l A character scalar
l A character vector
l A character matrix (rank 2)
l A nested matrix defining a sub-form whose structure and contents must con-

form to that defined for ⎕SM as a whole. This definition is recursive. Note
however that a sub-form must be a matrix - a vector is not allowed.

Elements in column 8 (Video Attributes) may be:

l An integer scalar that specifies the appearance of the entire field.
l An integer array of the same shape as the field contents. Each element spec-

ifies the appearance of the corresponding element in the field contents.

Screen Management (DOS & Async Terminals)
Dyalog APL for UNIX systems (Async terminals) manages two screens; the SES-
SION screen and the USER screen. If the SESSION screen is current, an assignment
to ⎕SM causes the display to switch to the USER screen and show the form defined
by ⎕SM.

If the USER screen is current, any change in the value of ⎕SM is immediately
reflected by a corresponding change in the appearance of the display. However, an
assignment to ⎕SM that leaves its value unchanged has no effect.

Dyalog APL automatically switches to the SESSION screen for default output, if it
enters immediate input mode (6-space prompt), or through use of ⎕ or ⍞. This means
that typing

⎕SM ← expression

in the APL session will cause the screen to switch first to the USER screen, display
the form defined by ⎕SM, and then switch back to the SESSION screen to issue the 6-
space prompt. This normally happens so quickly that all the user sees is a flash on
the screen.

To retain the USER screen in view it is necessary to issue a call to ⎕SR or for APL to
continue processing. e.g.

⎕SM ← expression ⋄ ⎕SR 1

or

⎕SM ← expression ⋄ ⎕DL 5

380 Dyalog APL/W Language Reference

Screen Management (Window Versions)
In Dyalog APL/X, and optionally in Dyalog APL/W, ⎕SM is displayed in a separate
USER WINDOW on the screen. In an end-user application this may be the only
Dyalog APL window. However, during development, there will be a SESSION win-
dow, and perhaps EDIT and TRACE windows too.

The USERWindow will only accept input during execution of ⎕SR. It is otherwise
"output-only". Furthermore, during the execution of ⎕SR it is the only active win-
dow, and the SESSION, EDIT and TRACEWindows will not respond to user input.

Screen Management (GUI Versions)
In versions of Dyalog APL that provide GUI support, there is a special SM object
that defines the position and size of the window to be associated with ⎕SM. This
allows character-mode applications developed for previous versions of Dyalog APL
to be migrated to and integrated with GUI environments without the need for a total
re-write.

Effect of Localisation
Like all system variables (with the exception of ⎕TRAP) ⎕SM is subject to "pass-
through localisation". This means that a localised ⎕SM assumes its value from the
calling environment. The localisation of ⎕SM does not, of itself therefore, affect the
appearance of the display. However, reassignment of a localised ⎕SM causes the new
form to overlay rather than replace whatever forms are defined further down the
stack. The localisation of ⎕SM thus provides a simple method of defining pop-up
forms, help messages, etc.

The user may edit the form defined by ⎕SM using the system function ⎕SR. Under
the control of ⎕SR the user may change the following elements in ⎕SM which may
afterwards be referenced to obtain the new values.

Column 1 Field Contents
Column 10 Home Element - Row (by scrolling vertically)
Column 11 Home Element - Column (by scrolling horizontally)

Chapter 3: System Functions & Variables 381

Screen Read: R←{X}⎕SR Y

⎕SR is a system function that allows the user to edit or otherwise interact with the
form defined by ⎕SM.

In versions of Dyalog APL that support asynchronous terminals, if the current screen
is the SESSION screen, ⎕SR immediately switches to the USER SCREEN and dis-
plays the form defined by ⎕SM.

In Dyalog APL/X, ⎕SR causes the input cursor to be positioned in the USER
window. During execution of ⎕SR, only the USERWindow defined by ⎕SM will
accept input and respond to the keyboard or mouse. The SESSION and any EDIT
and TRACEWindows that may appear on the display are dormant.

In versions of Dyalog APL with GUI support, a single SM object may be defined.
This object defines the size and position of the ⎕SM window, and allows ⎕SM to be
used in conjunctions with other GUI components. In these versions, ⎕SR acts as a
superset of ⎕DQ (see "Dequeue Events: " on page 210) but additionally controls the
character-based user interface defined by ⎕SM.

Y is an integer vector that specifies the fields which the user may visit. In versions
with GUI support, Ymay additionally contain the names of GUI objects with which
the user may also interact.

If specified, Xmay be an enclosed vector of character vectors defining EXIT_KEYS
or a 2-element nested vector defining EXIT_KEYS and the INITIAL_CONTEXT.

The result R is the EXIT_CONTEXT.

Thus the 3 uses of ⎕SR are:

EXIT_CONTEXT←⎕SR FIELDS

EXIT_CONTEXT←(⊂EXIT_KEYS)⎕SR FIELDS

EXIT_CONTEXT←(EXIT_KEYS)(INITIAL_CONTEXT)⎕SR FIELDS

382 Dyalog APL/W Language Reference

FIELDS
If an element of Y is an integer scalar, it specifies a field as the index of a row in ⎕SM
(if ⎕SM is a vector it is regarded as having 1 row).

If an element of Y is an integer vector, it specifies a sub-field. The first element in Y
specifies the top-level field as above. The next element is used to index a row in the
form defined by ⊃⎕SM[Y[1];1] and so forth.

If an element of Y is a character scalar or vector, it specifies the name of a top-level
GUI object with which the user may also interact. Such an object must be a "top-
level" object, i.e. the Root object ('.') or a Form or pop-up Menu. This feature is
implemented ONLY in versions of Dyalog APL with GUI support.

EXIT_KEYS
Each element of EXIT_KEYS is a 2-character code from the Input Translate Table for
the keyboard. If the user presses one of these keys, ⎕SR will terminate and return a
result.

If EXIT_KEYS is not specified, it defaults to:

'ER' 'EP' 'QT'

which (normally) specifies <Enter>, <Esc> and <Shift+Esc>.

INITIAL_CONTEXT
This is a vector of between 3 and 6 elements with the following meanings and
defaults:

Element Description Default

1 Initial Field N/A

2 Initial Cursor Position - Row N/A

3 Initial Cursor Position - Col N/A

4 Initial Keystroke ''

5 (ignored) N/A

6 Changed Field Flags 0

Chapter 3: System Functions & Variables 383

Structure of INITIAL_CONTEXT

INITIAL_CONTEXT[1] specifies the field in which the cursor is to be placed. It is
an integer scalar or vector, and must be a member of Y. It must not specify a field
which has ÂÞÝÝÔÓ behaviour (64), as the cursor is not allowed to enter such a field.

INITIAL_CONTEXT[2 3] are integer scalars which specify the initial cursor posi-
tion within the field in terms of row and column numbers.

INITIAL_CONTEXT[4] is either empty, or a 2-element character vector specifying
the initial keystroke as a code from the Input Translate Table for the keyboard.

INITIAL_CONTEXT[5] is ignored. It is included so that the EXIT_CONTEXT
result of one call to ⎕SR can be used as the INITIAL_CONTEXT to a subsequent
call.

INITIAL_CONTEXT[6] is a Boolean scalar or vector the same length as Y. It spec-
ifies which of the fields in Y has been modified by the user.

EXIT_CONTEXT
The result EXIT_CONTEXT is a 6 or 9-element vector whose first 6 elements have
the same structure as the INITIAL_CONTEXT. Elements 7-9 only apply to those
versions of Dyalog APL that provide mouse support.

Element Description

1 Final Field

2 Final Cursor Position - Row

3 Final Cursor Position - Col

4 Terminating Keystroke

5 Event Code

6 Changed Field Flags

7 Pointer Field

8 Pointer Position - Row

9 Pointer Position - Col

384 Dyalog APL/W Language Reference

Structure of the Result of ⎕SR

EXIT_CONTEXT[1] contains the field in which the cursor was when ⎕SR ter-
minated due to the user pressing an exit key or due to an event occurring. It is an
integer scalar or vector, and a member of Y.

EXIT_CONTEXT[2 3] are integer scalars which specify the row and column posi-
tion of the cursor within the field EXIT_CONTEXT[1] when ⎕SR terminated.

EXIT_CONTEXT[4] is a 2-element character vector specifying the last keystroke
pressed by the user before ⎕SR terminated. Unless ⎕SR terminated due to an event,
EXIT_CONTEXT[4] will contain one of the exit keys defined by X. The keystroke
is defined in terms of an Input Translate Table code.

EXIT_CONTEXT[5] contains the sum of the event codes that caused ⎕SR to
terminate. For example, if the user pressed a mouse button on a ÂÞÝÝÔÓ field (event
code 64) and the current field has ÒÔÇÍÊÍÈÇ behaviour (event code 2) EXIT_
CONTEXT[5] will have the value 66.

EXIT_CONTEXT[6] is a Boolean scalar or vector the same length as Y. It specifies
which of the fields in Y has been modified by the user during this ⎕SR, ORed with
INITIAL_CONTEXT[6]. Thus if the EXIT_CONTEXT of one call to ⎕SR is fed
back as the INITIAL_CONTEXT of the next, EXIT_CONTEXT[6] records the
fields changed since the start of the process.

EXIT_CONTEXT (Window Versions)
⎕SR returns a 9-element result ONLY if it is terminated by the user pressing a mouse
button. In this case:

EXIT_CONTEXT[7] contains the field over which the mouse pointer was posi-
tioned when the user pressed a button. It is an integer scalar or vector, and a member
of Y.

EXIT_CONTEXT[8 9] are integer scalars which specify the row and column posi-
tion of the mouse pointer within the field EXIT_CONTEXT[7] when ⎕SR ter-
minated.

Chapter 3: System Functions & Variables 385

Source: R←⎕SRC Y

⎕SRC returns the script that defines the scripted object Y.

Ymust be a reference to a scripted object. Scripted objects include Classes, Interfaces
and scripted Namespaces.

R is a vector of character vectors containing the script that was used to define Y.

)ed ○MyClass

:Class MyClass
∇ r←foo arg
:Access public shared
r←1+arg
∇
:EndClass

z←⎕SRC MyClass
⎕z

6
⍴¨z

14 15 27 13 5 9
⍪z

:Class MyClass
∇ r←foo arg

:Access public shared
r←1+arg

∇
:EndClass

Note: The only two ways to permanently alter the source of a scripted object are to
change the object in the editor, or by refixing it using ⎕FIX. A useful technique to
ensure that a scripted object is in sync with its source is to ⎕FIX ⎕SRC object_
reference.

386 Dyalog APL/W Language Reference

State Indicator Stack: R←⎕STACK

R is a two-column matrix, with one row per entry in the State Indicator.

Column 1 :⎕OR form of user defined functions or operators on the State Indicator.
Null for entries that are not user defined functions or operators.

Column 2 :Indication of the type of the item on the stack.

space user defined function or operator

⍎ execute level

⎕ evaluated input

* desk calculator level

⎕DQ in callback function

other primitive operator

Example
)SI

#.PLUS[2]*
.
#.MATDIV[4]
#.FOO[1]*
⍎

⎕STACK
*

∇PLUS
.

∇MATDIV
*

∇FOO
⍎
*

⍴⎕STACK
8 2

(⍴⎕LC)=1↑⍴⎕STACK
0

Chapter 3: System Functions & Variables 387

Pendent defined functions and operators may be edited in Dyalog APL with no result-
ing SI damage. However, only the visible definition is changed; the pendent version
on the stack is retained until its execution is complete. When the function or oper-
ator is displayed, only the visible version is seen. Hence ⎕STACK is a tool which
allows the user to display the form of the actual function or operator being executed.

Example

To display the version of MATDIV currently pendent on the stack:

⊃⎕STACK[4;1]
∇ R←A MATDIV B

[1] ⍝ Divide matrix A by matrix B
[2] C←A⌹B
[3] ⍝ Check accuracy
[4] D←⌊0.5+A PLUS.TIMES B

∇

State of Object: R←⎕STATE Y

Ymust be a simple character scalar or vector which is taken to be the name of an APL
object. The result returned is a nested vector of 4 elements as described below.
⎕STATE supplies information about shadowed or localised objects that is otherwise
unobtainable.

1⊃R
Boolean vector, element set to 1 if and only if this level shadows Y
.Note: (⍴1⊃R)=⍴⎕LC

2⊃R

Numeric vector giving the stack state of this name as it entered this
level. Note: (⍴2⊃R)=⍴⎕LC
0=not on stack
1=supended
2=pendent (may also be suspended)
3=active (may also be pendent or suspended)

3⊃R
Numeric vector giving the name classification of Y as it entered this
level. Note: (⍴3⊃R)=+/1⊃R

4⊃R
Vector giving the contents of Y before it was shadowed at this level.
Note: (⍴4⊃R)=+/0≠3⊃R

388 Dyalog APL/W Language Reference

Example
⎕FMT∘⎕OR¨'FN1' 'FN2' 'FN3'

∇ FN1;A;B;C ∇ FN2;A;C ∇ FN3;A
[1] A←1 [1] A←'HELLO' [1] A←100
[2] B←2 [2] B←'EVERYONE' [2] ∘
[3] C←3 [3] C←'HOW ARE YOU?' ∇
[4] FN2 [4] FN3

∇ ∇

)SI
#.FN3[2]*
#.FN2[4]
#.FN1[4]

⎕STATE 'A'
1 1 1 0 0 0 2 2 0 HELLO 1

R←⎕STATE '⎕TRAP'

Chapter 3: System Functions & Variables 389

Set Stop: {R}←X ⎕STOP Y

Ymust be a simple character scalar or vector which is taken to be the name of a vis-
ible defined function or operator. Xmust be a simple non-negative integer scalar or
vector. R is a simple integer vector of non-negative elements. X identifies the
numbers of lines in the function or operator named by Y on which a stop control is to
be placed. Numbers outside the range of line numbers in the function or operator
(other than 0) are ignored. The number 0 indicates that a stop control is to be placed
immediately prior to exit from the function or operator. If X is empty, all existing
stop controls are cancelled. The value of X is independent of ⎕IO.

R is a vector of the line numbers on which a stop control has been placed in ascend-
ing order. The result is suppressed unless it is explicitly used or assigned.

Examples
⊢(0,⍳10) ⎕STOP 'FOO'

0 1

Existing stop controls in the function or operator named by Y are cancelled before
new stop controls are set:

⊢1 ⎕STOP 'FOO'
1

All stop controls may be cancelled by giving X an empty vector:

⍴'' ⎕STOP 'FOO'
0

⍴⍬ ⎕STOP 'FOO'
0

Attempts to set stop controls in a locked function or operator are ignored.

⎕LOCK'FOO'

⊢0 1 ⎕STOP'FOO'

The effect of ⎕STOP when a function or operator is invoked is to suspend execution
at the beginning of any line in the function or operator on which a stop control is
placed immediately before that line is executed, and immediately before exiting from
the function or operator if a stop control of 0 is set. Execution may be resumed by a
branch expression. A stop control interrupt (1001) may also be trapped - see "Trap
Event: " on page 407.

390 Dyalog APL/W Language Reference

Example
⎕FX'R←FOO' 'R←10'

0 1 ⎕STOP'FOO'

FOO
FOO[1]

R
VALUE ERROR

R
^

→1
FOO[0]

R
10

→⎕LC
10

Query Stop: R←⎕STOP Y

Ymust be a simple character scalar or vector which is taken to be the name of a vis-
ible defined function or operator. R is a simple non-negative integer vector of the
line numbers of the function or operator named by Y on which stop controls are set,
shown in ascending order. The value 0 in R indicates that a stop control is set imme-
diately prior to exit from the function or operator.

Example
⎕STOP'FOO'

0 1

Chapter 3: System Functions & Variables 391

Set Access Control: R←X ⎕SVC Y

This system function sets access control on one or more shared variables.

Y is a character scalar, vector, or matrix containing names of shared variables. Each
name may optionally be paired with its surrogate. If so, the surrogate must be sep-
arated from the name by at least one space.

Xmay be a 4-element Boolean vector which specifies the access control to be
applied to all of the shared variables named in Y. Alternatively, Xmay be a 4-col-
umn Boolean matrix whose rows specify the access control for the corresponding
name in Y. Xmay also be a scalar or a 1-element vector. If so, it treated as if it were a
4-element vector with the same value in each element.

Each shared variable has a current access control vector which is a 4-element Bool-
ean vector. A 1 in each of the four positions has the following impact :

[1]
You cannot set a new value for the shared variable until after an
intervening use or set by your partner.

[2]
Your partner cannot set a new value for the shared variable until after
an intervening use or set by you.

[3]
You cannot use the value of the shared variable until after an
intervening set by your partner.

[4]
Your partner cannot use the value of the shared variable until after an
intervening set by you.

The effect of ⎕SVC is to reset the access control vectors for each of the shared var-
iables named in Y by OR-ing the values most recently specified by your partner with
the values in X. This means that you cannot reset elements of the control vector
which your partner has set to 1.

Note that the initial value of your partner's access control vector is normally 0 0 0 0.
However, if it is a non-APL client application that has established a hot DDE link,
its access control vector is defined to be 1 0 0 1. This inhibits either partner from set-
ting the value of the shared variable twice, without an intervening use (or set) by the
other. This prevents loss of data which is deemed to be desirable from the nature of
the link. (An application that requests a hot link is assumed to require every value of
the shared variable, and not to miss any). Note that APL's way of inhibiting another
application from setting the value twice (without an intervening use) is to delay the
acknowledgement of the DDE message containing the second value until the var-
iable has been used by the APL workspace. An application that waits for an
acknowledgement will therefore hang until this happens. An application that does
not wait will carry on obliviously.

392 Dyalog APL/W Language Reference

The result R is a Boolean vector or matrix, corresponding to the structure of X, which
contains the new access control settings. If Y refers to a name which is not a shared
variable, or if the surrogate name is mis-spelt, the corresponding value in R is 4⍴0.

Examples
1 0 0 1 ⎕SVC 'X'

1 0 0 1

1 ⎕SVC 'X EXTNAME'
1 1 1 1

(2 4⍴1 0 0 1 0 1 1 0) ⎕SVC ↑'ONE' 'TWO'
1 1 1 1
0 1 1 0

Query Access Control: R←⎕SVC Y

This system function queries the access control on one or more shared variables.

Y is a character scalar, vector, or matrix containing names of shared variables. Each
name may optionally be paired with its surrogate. If so, the surrogate must be sep-
arated from the name by at least one space.

If Y specifies a single name, the result R is a Boolean vector containing the current
effective access control vector. If Y is a matrix of names, R is a Boolean matrix
whose rows contain the current effective access control vectors for the corresponding
row in Y.

For further information, see the preceding section on setting the access control vec-
tor.

Example
⎕SVC 'X'

0 0 0 0

Chapter 3: System Functions & Variables 393

Shared Variable Offer: R←X ⎕SVO Y

This system function offers to share one or more variables with another APL work-
space or with another application. Shared variables are implemented using Dynamic
Data Exchange (DDE) and may be used to communicate with any other application
that supports this protocol. See Interface Guide for further details.

Y is a character scalar, vector or matrix. If it is a vector it contains a name and option-
ally an external name or surrogate. The first name is the name used internally in the
current workspace. The external name is the name used to make the connection with
the partner and, if specified, must be separated from the internal name by one or more
blanks. If the partner is another application, the external name corresponds to the
DDE item specified by that application. If the external name is omitted, the internal
name is used instead. The internal name must be a valid APL name and be either
undefined or be the name of a variable. There are no such restrictions on the content
of the external name.

Instead of an external name, Ymay contain the special symbol '⍎' separated from
the (internal) name by a blank. This is used to implement a mechanism for sending
DDE_EXECUTEmessages, and is described at the end of this section.

If Y is a scalar, it specifies a single 1-character name. If Y is a matrix, each row of Y
specifies a name and an optional external name as for the vector case.

The left argument X is a character vector or matrix. If it is a vector, it contains a
string that defines the protocol, the application to which the shared variable is to be
connected, and the topic of the conversation. These three components are separated
by the characters ':' and '|' respectively. The protocol is currently always
'DDE', but future implementations of Dyalog APL may support additional com-
munications protocols if applicable. If Y specifies more than one name, Xmay be a
vector or a matrix with one row per row in Y.

If the shared variable offer is a general one (server), X, or the corresponding row of X,
should contain 'DDE:'.

The result R is a numeric scalar or vector with one element for each name in Y and
indicates the "degree of coupling". A value of 2 indicates that the variable is fully
coupled (via a warm or hot DDE link) with a shared variable in another APL work-
space, or with a DDE item in another application. A value of 1 indicates that there is
no connection, or that the second application rejected a warm link. In this case, a
transfer of data may have taken place (via a cold link) but the connection is no longer
open. Effectively, APL treats an application that insists on a cold link as if it imme-
diately retracts the sharing after setting or using the value, whichever is appropriate.

394 Dyalog APL/W Language Reference

Examples
'DDE:' ⎕SVO 'X'

1

'DDE:' ⎕SVO 'X SALES_92'
1

'DDE:' ⎕SVO ↑'X SALES_92' 'COSTS_92'
1 1

'DDE:DYALOG|SERV_WS' ⎕SVO 'X'
2

'DDE:EXCEL|SHEET1' ⎕SVO 'DATA R1C1:R10C12'
2

A special syntax is used to provide a mechanism for sending DDE_EXECUTEmes-
sages to another application. This case is identified by specifying the '⍎' symbol in
place of the external name. The subsequent assignment of a character vector to a var-
iable shared with the external name of '⍎' causes the value of the variable to be
transmitted in the form of a DDE_EXECUTEmessage. The value of the variable is
then reset to 1 or 0 corresponding to a positive or negative acknowledgement from
the partner. In most (if not all) applications, commands transmitted in DDE_
EXECUTEmessages must be enclosed in square brackets []. For details, see the rel-
evant documentation for the external application.

Examples:
'DDE:EXCEL|SYSTEM' ⎕SVO 'X ⍎'

2

X←'[OPEN("c:\mydir\mysheet.xls")]'
X

1

X←'[SELECT("R1C1:R5C10")]'
X

1

Chapter 3: System Functions & Variables 395

Query Degree of Coupling: R←⎕SVO Y

This system function returns the current degree of coupling for one or more shared
variables.

Y is a character scalar, vector or matrix. If it is a vector it contains a shared variable
name and optionally its external name or surrogate separated from it by one of more
blanks.

If Y is a scalar, it specifies a single 1-character name. If Y is a matrix, each row of Y
specifies a name and an optional external name as for the vector case.

If Y specifies a single name, the result R is a 1-element vector whose value 0, 1 or 2
indicates its current degree of coupling. If Y specifies more than one name, R is a vec-
tor whose elements indicate the current degree of coupling of the variable specified
by the corresponding row in Y. A value of 2 indicates that the variable is fully cou-
pled (via a warm or hot DDE link) with a shared variable in another APL workspace,
or with a DDE item in another application. A value of 1 indicates that you have
offered the variable but there is no such connection, or that the second application
rejected a warm link. In this case, a transfer of data may have taken place (via a cold
link) but the connection is no longer open. A value of 0 indicates that the name is
not a shared variable.

Examples
⎕SVO 'X'

2
⎕SVO ↑'X SALES' 'Y' 'JUNK'

2 1 0

Shared Variable Query: R←⎕SVQ Y

This system function is implemented for compatibility with other versions of APL
but currently performs no useful function. Its purpose is to obtain a list of out-
standing shared variable offers made to you, to which you have not yet responded.

Using DDE as the communication protocol, it is not possible to implement ⎕SVQ
effectively.

396 Dyalog APL/W Language Reference

Shared Variable Retract Offer: R←⎕SVR Y

This system function terminates communication via one or more shared variables, or
aborts shared variable offers that have not yet been accepted.

Y is a character scalar, vector or matrix. If it is a vector it contains a shared variable
name and optionally its external name or surrogate separated from it by one of more
blanks. If Y is a scalar, it specifies a single 1-character name. If Y is a matrix, each
row of Y specifies a name and an optional external name as for the vector case.

The result R is vector whose length corresponds to the number of names specified by
Y, indicating the level of sharing of each variable after retraction.

See "Shared Variable State: " on page 397 for further information on the possible
states of a shared variable.

Chapter 3: System Functions & Variables 397

Shared Variable State: R←⎕SVS Y

This system function returns the current state of one or more shared variables.

Y is a character scalar, vector or matrix. If it is a vector it contains a shared variable
name and optionally its external name or surrogate separated from it by one of more
blanks. If Y is a scalar, it specifies a single 1-character name. If Y is a matrix, each
row of Y specifies a name and an optional external name as for the vector case.

If Y specifies a single name, the result R is a 4-element vector indicating its current
state. If Y specifies more than one name, R is a matrix whose rows indicate the cur-
rent state of the variable specified by the corresponding row in Y.

There are four possible shared variable states:

0 0 1 1
means that you and your partner are both aware of the current
value, and neither has since reset it. This is also the initial
value of the state when the link is first established.

1 0 1 0
means that you have reset the shared variable and your partner
has not yet used it. This state can only occur if both partners
are APL workspaces.

0 1 0 1
means that your partner has reset the shared variable but that
you have not yet used it.

0 0 0 0 the name is not that of a shared variable

Examples
⎕SVS 'X'

0 1 0 1

⎕SVS ↑'X SALES' 'Y' 'JUNK'
0 0 1 1
1 0 1 0
0 0 0 0

398 Dyalog APL/W Language Reference

Terminal Control: (⎕ML) R←⎕TC

⎕TC is a deprecated feature and is replaced by ⎕UCS (see note).

⎕TC is a simple three element vector. If ⎕ML < 3 this is ordered as follows:

⎕TC[1] Backspace

⎕TC[2] Linefeed

⎕TC[3] Newline

Note that ⎕TC≡⎕AV[⎕IO+⍳3] for ⎕ML< 3 .

If ⎕ML ≥ 3 the order of the elements of ⎕TC is instead compatible with IBM's
APL2:

⎕TC[1] Backspace

⎕TC[2] Newline

⎕TC[3] Linefeed

Elements of ⎕TC beyond 3 are not defined but are reserved.

Note

With the introduction of ⎕UCS in Version 12.0, the use of ⎕TC is discouraged and it
is strongly recommended that you generate control characters using ⎕UCS instead.
This recommendation holds true even if you continue to use the Classic Edition.

Control Character Old New

Backspace ⎕TC[1] ⎕UCS 8

Linefeed ⎕TC[2] (⎕ML<3)
⎕TC[3] (⎕ML≥3)

⎕UCS 10

Newline ⎕TC[3] (⎕ML<3)
⎕TC[2] (⎕ML≥3)

⎕UCS 13

Chapter 3: System Functions & Variables 399

Thread Child Numbers: R←⎕TCNUMS Y

Ymust be a simple array of integers representing thread numbers.

The result R is a simple integer vector of the child threads of each thread of Y.

Examples
⎕TCNUMS 0

2 3

⎕TCNUMS 2 3
4 5 6 7 8 9

Get Tokens: {R}←{X} ⎕TGET Y

Ymust be a simple integer scalar or vector that specifies one or more tokens, each
with a specific non-zero token type, that are to be retrieved from the pool.

X is an optional time-out value in seconds.

Shy result R is a scalar or vector containing the values of the tokens of type Y that
have been retrieved from the token pool.

Note that types of the tokens in the pool may be positive or negative, and the ele-
ments of Ymay also be positive or negative.

A request (⎕TGET) for a positive token will be satisfied by the presence of a token in
the pool with the same positive or negative type. If the pool token has a positive
type, it will be removed from the pool. If the pool token has a negative type, it will
remain in the pool. Negatively typed tokens will therefore satisfy an infinite number
of requests for their positive equivalents. Note that a request for a positive token will
remove one if it is present, before resorting to its negative equivalent

400 Dyalog APL/W Language Reference

A request for a negative token type will only be satisfied by the presence of a neg-
ative token type in the pool, and that token will be removed.

If, when a thread calls ⎕TGET, the token pool satisfies all of the tokens specified by
Y, the function returns immediately with a (shy) result that contains the values asso-
ciated with the pool tokens. Otherwise, the function will block (wait) until all of the
requested tokens are present or until a timeout (as specified by X) occurs.

For example, if the pool contains only tokens of type 2:

⎕TGET 2 4 ⍝ blocks waiting for a 4-token ...

The ⎕TGET operation is atomic in the sense that no tokens are taken from the pool
until all of the requested types are present. While this last example is waiting for a 4-
token, other threads could take any of the remaining 2-tokens.

Note also, that repeated items in the right argument are distinct. The following will
block until there are at least 3 × 2-tokens in the pool:

⎕TGET 3/2 ⍝ wait for 3 × 2-tokens ...

The pool is administered on a first-in-first-out basis. This is significant only if tokens
of the same type are given distinct values. For example:

⎕TGET ⎕TPOOL ⍝ empty pool.

'ABCDE'⎕TPUT¨2 2 3 2 3 ⍝ pool some tokens.

⊢⎕TGET 2 3
AC

⊢⎕TGET 2 3
BE

Timeout is signalled by the return of an empty numeric vector ⍬ (zilde). By default,
the value of a token is the same as its type. This means that, unless you have explic-
itly set the value of a token to ⍬, a ⎕TGET result of ⍬ unambiguously identifies a
timeout.

Beware - the following statement will wait forever and can only be terminated by an
interrupt.

⎕TGET 0 ⍝ wait forever ...

Note too that if a thread waiting to ⎕TGET tokens is ⎕TKILLed, the thread dis-
appears without removing any tokens from the pool. Conversely, if a thread that has
removed tokens from the pools is ⎕TKILLed, the tokens are not returned to the pool.

Chapter 3: System Functions & Variables 401

This Space: R←⎕THIS

⎕THIS returns a reference to the current namespace, i.e. to the space in which it is ref-
erenced.

If NC9 is a reference to any object whose name-class is 9, then:

NC9≡NC9.⎕THIS
1

Examples
⎕THIS

#
'X'⎕NS ''
X.⎕THIS

#.X
'F'⎕WC'Form'
'F.B'⎕WC'Button'
F.B.⎕THIS

#.F.B

Polly←⎕NEW Parrot
Polly.⎕THIS

#.[Parrot]

An Instance may use ⎕THIS to obtain a reference to its own Class:

Polly.(⊃⊃⎕CLASS ⎕THIS)
#.Parrot

or a function (such as a Constructor or Destructor) may identify or enumerate all
other Instances of the same Class:

Polly.(⍴⎕INSTANCES⊃⊃⎕CLASS ⎕THIS)
1

402 Dyalog APL/W Language Reference

Current Thread Identity: R←⎕TID

R is a simple integer scalar whose value is the number of the current thread.

Examples
⎕TID ⍝ Base thread number

0

⍎&'⎕TID' ⍝ Thread number of async ⍎.
1

Kill Thread: {R}←{X}⎕TKILL Y

Ymust be a simple array of integers representing thread numbers to be terminated. X
is a Boolean single, defaulting to 1, which indicates that all descendant threads
should also be terminated.

The shy result R is a vector of the numbers of all threads that have been terminated.

The base thread 0 is always excluded from the cull.

Examples
⎕TKILL 0 ⍝ Kill background threads.

⎕TKILL ⎕TID ⍝ Kill self and descendants.

0 ⎕TKILL ⎕TID ⍝ Kill self only.

⎕TKILL ⎕TCNUMS ⎕TID ⍝ Kill descendants.

Chapter 3: System Functions & Variables 403

Current Thread Name: ⎕TNAME

The system variable ⎕TNAME reports and sets the name of the current APL thread.
This name is used to identify the thread in the Tracer.

The default value of ⎕TNAME is an empty character vector.

You may set ⎕TNAME to any valid character vector, but it is recommended that con-
trol characters (such as ⎕AV[⎕IO]) be avoided.

Example:
⎕TNAME←'Dylan'
⎕TNAME

Dylan

Thread Numbers: R←⎕TNUMS

⎕TNUMS reports the numbers of all current threads.

R is a simple integer vector of the base thread and all its living descendants.

Example
⎕TNUMS

0 2 4 5 6 3 7 8 9

Token Pool: R←⎕TPOOL

R is a simple scalar or vector containing the token types for each of the tokens that
are currently in the token pool.

The following (⎕ML=0) function returns a 2-column snapshot of the contents of the
pool. It does this by removing and replacing all of the tokens, restoring the state of
the pool exactly as before. Coding it as a single expression guarantees that snap is
atomic and cannot disturb running threads.

snap←{(⎕TGET ⍵){(⍉↑⍵ ⍺){⍺}⍺ ⎕TPUT¨⍵}⍵}

snap ⎕TPOOL
1 hello world
2 2
3 2
2 three-type token
2 2

404 Dyalog APL/W Language Reference

Put Tokens: {R}←{X} ⎕TPUT Y

Ymust be a simple integer scalar or vector of non-zero token types.

X is an optional array of values to be stored in each of the tokens specified by Y.

Shy result R is a vector of thread numbers (if any) unblocked by the ⎕TPUT.

Examples
⎕TPUT 2 3 2 ⍝ put a 2-token, a 3-token and

another
2-token into the pool.

88 ⎕TPUT 2 ⍝ put another 2-token into the pool
this token has the value 88.

'Hello'⎕TPUT ¯4 ⍝ put a ¯4-token into the pool with
the value 'Hello'.

If X is omitted, the value associated with each of the tokens added to the pool is the
same as its type.

Note that you cannot put a 0-token into the pool; 0-s are removed from Y.

Chapter 3: System Functions & Variables 405

Set Trace: {R}←X ⎕TRACE Y

Ymust be a simple character scalar or vector which is taken to be the name of a vis-
ible defined function or operator. Xmust be a simple non-negative integer scalar or
vector.

X identifies the numbers of lines in the function or operator named by Y on which a
trace control is to be placed. Numbers outside the range of line numbers in the func-
tion or operator (other than 0) are ignored. The number 0 indicates that a trace con-
trol is to be placed immediately prior to exit from the function or operator. The value
of X is independent of ⎕IO.

R is a simple integer vector of non-negative elements indicating the lines in the func-
tion or operator on which a trace control has been placed.

Example
+(0,⍳10) ⎕TRACE'FOO'

0 1

Existing trace controls in the function or operator named by Y are cancelled before
new trace controls are set:

+ 1 ⎕TRACE'FOO'
1

All trace controls may be cancelled by giving X an empty vector:

⍴⍬ ⎕TRACE 'FOO'
0

Attempts to set trace controls in a locked function or operator are ignored.

⎕LOCK 'FOO'
+1 ⎕TRACE 'FOO'

The effect of trace controls when a function or operator is invoked is to display the
result of each complete expression for lines with trace controls as they are executed,
and the result of the function if trace control 0 is set. If a line contains expressions
separated by ⋄, the result of each complete expression is displayed for that line after
execution.

The result of a complete expression is displayed even where the result would nor-
mally be suppressed. In particular:

l the result of a branch statement is displayed;
l the result (pass-through value) of assignment is displayed;
l the result of a function whose result would normally be suppressed is dis-

played;

406 Dyalog APL/W Language Reference

For each traced line, the output from ⎕TRACE is displayed as a two element vector,
the first element of which contains the function or operator name and line number,
and the second element of which takes one of two forms.

l The result of the line, displayed as in standard output.
l → followed by a line number.

Example
⎕VR 'DSL'

∇ R←DSL SKIP;A;B;C;D
[1] A←2×3+4
[2] B←(2 3⍴'ABCDEF')A
[3] →NEXT×⍳SKIP
[4] 'SKIPPED LINE'
[5] NEXT:C←'one' ⋄ D←'two'
[6] END:R←C D

∇

(0,⍳6) ⎕TRACE 'DSL'

DSL 1
DSL[1] 14
DSL[2] ABC 14

DEF
DSL[3] →5
DSL[5] one
DSL[5] two
DSL[6] one two
DSL[0] one two
one two

Query Trace: R←⎕TRACE Y

Ymust be a simple character scalar or vector which is taken to be the name of a vis-
ible defined function or operator. R is a simple non-negative integer vector of the
line numbers of the function or operator named by Y on which trace controls are set,
shown in ascending order. The value 0 in R indicates that a trace control is set to dis-
play the result of the function or operator immediately prior to exit.

Example
⎕TRACE'DSL'

0 1 2 3 4 5 6

Chapter 3: System Functions & Variables 407

Trap Event: ⎕TRAP

This is a non-simple vector. An item of ⎕TRAP specifies an action to be taken when
one of a set of events occurs. An item of ⎕TRAP is a 2 or 3 element vector whose
items are simple scalars or vectors in the following order:

1. an integer vector whose value is one or more event codes selected from the
list in the Figure on the following two pages.

2. a character scalar whose value is an action code selected from the letters C,
E, N or S.

3. if element 2 is the letter C or E, this item is a character vector forming a
valid APL expression or series of expressions separated by ⋄. Otherwise,
this element is omitted.

An EVENT may be an APL execution error, an interrupt by the user or the system, a
control interrupt caused by the ⎕STOP system function, or an event generated by the
⎕SIGNAL system function.

When an event occurs, the system searches for a trap definition for that event. The
most local ⎕TRAP value is searched first, followed by successive shadowed values of
⎕TRAP, and finally the global ⎕TRAP value. Separate actions defined in a single
⎕TRAP value are searched from left to right. If a trap definition for the event is
found, the defined action is taken. Otherwise, the normal system action is followed.

The ACTION code identifies the nature of the action to be taken when an associated
event occurs. Permitted codes are interpreted as follows:

C Cutback

The state indicator is 'cut back' to the environment in which
the ⎕TRAP is locally defined (or to immediate execution
level). The APL expression in element 3 of the same ⎕TRAP
item is then executed.

E Execute The APL expression in element 3 of the same ⎕TRAP item is
executed in the environment in which the event occurred.

N Next
The event is excluded from the current ⎕TRAP definition.
The search will continue through further localised definitions
of ⎕TRAP

S Stop Stops the search and causes the normal APL action to be
taken in the environment in which the event occurred.

408 Dyalog APL/W Language Reference

Table 16: Trappable Event Codes

Code Event

0 Any event in range 1-999

1 WS FULL

2 SYNTAX ERROR

3 INDEX ERROR

4 RANK ERROR

5 LENGTH ERROR

6 VALUE ERROR

7 FORMAT ERROR

10 LIMIT ERROR

11 DOMAIN ERROR

12 HOLD ERROR

13 OPTION ERROR

16 NONCE ERROR

18 FILE TIE ERROR

19 FILE ACCESS ERROR

20 FILE INDEX ERROR

21 FILE FULL

22 FILE NAME ERROR

23 FILE DAMAGED

24 FILE TIED

25 FILE TIED REMOTELY

26 FILE SYSTEM ERROR

28 FILE SYSTEM NOT AVAILABLE

30 FILE SYSTEM TIES USED UP

31 FILE TIE QUOTA USED UP

32 FILE NAME QUOTA USED UP

Chapter 3: System Functions & Variables 409

Code Event

34 FILE SYSTEM NO SPACE

35 FILE ACCESS ERROR - CONVERTING FILE

38 FILE COMPONENT DAMAGED

52 FIELD CONTENTS RANK ERROR

53 FIELD CONTENTS TOO MANY COLUMNS

54 FIELD POSITION ERROR

55 FIELD SIZE ERROR

56 FIELD CONTENTS/TYPE MISMATCH

57 FIELD TYPE/BEHAVIOUR UNRECOGNISED

58 FIELD ATTRIBUTES RANK ERROR

59 FIELD ATTRIBUTES LENGTH ERROR

60 FULL-SCREEN ERROR

61 KEY CODE UNRECOGNISED

62 KEY CODE RANK ERROR

63 KEY CODE TYPE ERROR

70 FORMAT FILE ACCESS ERROR

71 FORMAT FILE ERROR

72 NO PIPES

76 PROCESSOR TABLE FULL

84 TRAP ERROR

90 EXCEPTION

92 TRANSLATION ERROR

200-499 Reserved for distributed auxiliary processors

500-999 User-defined events

410 Dyalog APL/W Language Reference

Code Event

1000 Any event in range 1001-1008

1001 Stop vector

1002 Weak interrupt

1003 INTERRUPT

1005 EOF INTERRUPT

1006 TIMEOUT

1007 RESIZE (Dyalog APL/X, Dyalog APL/W)

1008 DEADLOCK

See Programmer's Guide: "Trap Statement" as an alternative 'control structured'
error trapping mechanism.

Examples
⎕TRAP←⊂(3 4 5) 'E' 'ERROR' ⋄ ⍴⎕TRAP

1

⎕TRAP
3 4 5 E ERROR

Items may be specified as scalars. If there is only a single trap definition, it need not
be enclosed. However, the value of ⎕TRAP will be rigorously correct:

⎕TRAP←11 'E' '→LAB'

⎕TRAP
11 E →ERR

⍴⎕TRAP
1

The value of ⎕TRAP in a clear workspace is an empty vector whose prototype is

0⍴(⍬ '' ''). A convenient way of cancelling a ⎕TRAP definition is:

⎕TRAP←0⍴⎕TRAP

Event codes 0 and 1000 allow all events in the respective ranges 1-999 and 1000-
1006 to be trapped. Specific event codes may be excluded by the N action (which
must precede the general event action):

⎕TRAP←(1 'N')(0 'E' '→GENERR')

Chapter 3: System Functions & Variables 411

The 'stop' action is a useful mechanism for cancelling trap definitions during devel-
opment of applications.

The 'cut-back' action is useful for returning control to a known point in the appli-
cation system when errors occur. The following example shows a function that
selects and executes an option with a general trap to return control to the function
when an untrapped event occurs:

∇ SELECT;OPT;⎕TRAP
[1] ⍝ Option selection and execution
[2] ⍝ A general cut-back trap
[3] ⎕TRAP←(0 1000)'C' '→ERR'
[4] INP:⍞←'OPTION : ' ⋄ OPT←(OPT≠' ')/OPT←9↓⍞
[5] →EX⍴⍨(⊂OPT)∊Options ⋄ 'INVALID OPTION' ⋄ →INP
[6] EX:⍎OPT ⋄ →INP
[7] ERR:ERROR∆ACTION ⋄ →INP
[8] END:

∇

User-defined events may be signalled through the ⎕SIGNAL system function. A
user-defined event (in the range 500-999) may be trapped explicitly or implicitly by
the event code 0.

Example
⎕TRAP←500 'E' '''USER EVENT 500 - TRAPPED'''

⎕SIGNAL 500
USER EVENT 500 - TRAPPED

Token Requests: R←⎕TREQ Y

Y is a simple scalar or vector of thread numbers.

R is a vector containing the concatenated token requests for all the threads specified
in Y. This is effectively the result of catenating all of the right arguments together for
all threads in Y that are currently executing ⎕TGET.

Example
⎕TREQ ⎕TNUMS ⍝ tokens required by all threads.

412 Dyalog APL/W Language Reference

Time Stamp: R←⎕TS

This is a seven element vector which identifies the clock time set on the particular
installation as follows:

⎕TS[1] Year

⎕TS[2] Month

⎕TS[3] Day

⎕TS[4] Hour

⎕TS[5] Minute

⎕TS[6] Second

⎕TS[7] Millisecond

Example
⎕TS

1989 7 11 10 42 59 123

Note that on some systems, where time is maintained only to the nearest second, a
zero is returned for the seventh (millisecond) field.

Chapter 3: System Functions & Variables 413

Wait for Threads to Terminate: R←⎕TSYNC Y

Ymust be a simple array of thread numbers.

If Y is a simple scalar, R is an array, the result (if any) of the thread.

If Y is a simple non-scalar, R has the same shape as Y, and result is an array of
enclosed thread results.

Examples
dup←{⍵ ⍵} ⍝ Duplicate

⎕←dup&88 ⍝ Show thread number
11
88 88

⎕TSYNC dup&88 ⍝ Wait for result
88 88

⎕TSYNC,dup&88
88 88

⎕TSYNC dup&1 2 3
1 2 3 1 2 3

⎕TSYNC dup&¨1 2 3
1 1 2 2 3 3

Deadlock
The interpreter detects a potential deadlock if a number of threads wait for each other
in a cyclic dependency. In this case, the thread that attempts to cause the deadlock
issues error number 1008: DEADLOCK.

⎕TSYNC ⎕TID ⍝ Wait for self
DEADLOCK

⎕TSYNC ⎕TID
^

⎕EN
1008

414 Dyalog APL/W Language Reference

Potential Value Error

If any item of Y does not correspond to the thread number of an active thread, or if
any subject thread terminates without returning a result, then ⎕TSYNC does not
return a result. This means that, if the calling context of the ⎕TSYNC requires a result,
for example: rslt←⎕TSYNC tnums, a VALUE ERROR will be generated. This sit-
uation can occur if threads have completed before ⎕TSYNC is called.

⎕←÷&4 ⍝ thread (3) runs and terminates.
3
0.25

⎕TSYNC 3 ⍝ no result required: no prob
⎕←⎕tsync 3 ⍝ context requires result

VALUE ERROR

⎕←⎕tsync {}&0 ⍝ non-result-returning fn: no
result.
VALUE ERROR

Coding would normally avoid such an inconvenient VALUE ERROR either by
arranging that the thread-spawning and ⎕TSYNC were on the same line:

rslt ← ⎕TYSYNC myfn&¨ argvec

or

tnums←myfn&¨ argvec ⋄ rslt←⎕TSYNC tnums

or by error-trapping the VALUE ERROR.

Unicode Convert: R←{X} ⎕UCS Y

⎕UCS converts (Unicode) characters into integers and vice versa.

The optional left argument X is a character vector containing the name of a variable-
length Unicode encoding scheme which must be one of:

l 'UTF-8'
l 'UTF-16'
l 'UTF-32'

If not, a DOMAIN ERROR is issued.

If X is omitted, Y is a simple character or integer array, and the result R is a simple
integer or character array with the same rank and shape as Y.

If X is specified, Ymust be a simple character or integer vector, and the result R is a
simple integer or character vector.

Chapter 3: System Functions & Variables 415

Monadic ⎕UCS
Used monadically, ⎕UCS simply converts characters to Unicode code points and
vice-versa.

With a few exceptions, the first 256 Unicode code points correspond to the ANSI
character set.

⎕UCS 'Hello World'
72 101 108 108 111 32 87 111 114 108 100

⎕UCS 2 11⍴72 101 108 108 111 32 87 111 114 108 100
Hello World
Hello World

The code points for the Greek alphabet are situated in the 900's:

⎕UCS 'καλημέρα ελλάδ'
954 945 955 951 956 941 961 945 32 949 955 955 940 948

Unicode also contains the APL character set. For example:

⎕UCS 123 40 43 47 9077 41 247 9076 9077 125
{(+/⍵)÷⍴⍵}

Dyadic ⎕UCS
Dyadic ⎕UCS is used to translate between Unicode characters and one of three stand-
ard variable-length Unicode encoding schemes, UTF-8, UTF-16 and UTF-32. These
represent a Unicode character string as a vector of 1-byte (UTF-8), 2-byte (UTF-16)
and 4-byte (UTF-32) signed integer values respectively.

'UTF-8' ⎕UCS 'ABC'
65 66 67

'UTF-8' ⎕UCS 'ABCÆØÅ'
65 66 67 195 134 195 152 195 133

'UTF-8' ⎕UCS 195 134, 195 152, 195 133
ÆØÅ

'UTF-8' ⎕UCS 'γεια σου'
206 179 206 181 206 185 206 177 32 207 131 206 191 207
133

'UTF-16' ⎕UCS 'γεια σου'
947 949 953 945 32 963 959 965

'UTF-32' ⎕UCS 'γεια σου'
947 949 953 945 32 963 959 965

Because integers are signed, numbers greater than 127 will be represented as 2-byte
integers (type 163), and are thus not suitable for writing directly to a native file. To
write the above data to file, the easiest solution is to use ⎕UCS to convert the data to
1-byte characters and append this data to the file:

(⎕UCS 'UTF-8' ⎕UCS 'ABCÆØÅ') ⎕NAPPEND tn

416 Dyalog APL/W Language Reference

Note regarding UTF-16: For most characters in the first plane of Unicode (0000-
FFFF), UTF-16 and UCS-2 are identical. However, UTF-16 has the potential to
encode all Unicode characters, by using more than 2 bytes for characters outside
plane 1.

'UTF-16' ⎕UCS 'ABCÆØÅ⍒⍋'
65 66 67 198 216 197 9042 9035

⎕←unihan←⎕UCS (2×2*16)+⍳3 ⍝ x20001-x20003

'UTF-16' ⎕UCS unihan
55360 56321 55360 56322 55360 56323

Translation Error
⎕UCS will generate TRANSLATION ERROR (event number 92) if the argument can-
not be converted. In the Classic Edition, a TRANSLATION ERROR is generated if
the result is not in ⎕AV or the numeric argument is not in ⎕AVU.

Chapter 3: System Functions & Variables 417

Using (Microsoft .Net Search Path): ⎕USING

⎕USING specifies a list of Microsoft .Net Namespaces that are to be searched for a
reference to a .Net class.

⎕USING is a vector of character vectors, each element of which specifies the name of
a .Net Namespace followed optionally by a comma (,) and the Assembly in which it
is to be found.

If a pathname is specified, the file is loaded from that location. Otherwise the system
will attempt to load the assembly first from the directory in which the Dyalog pro-
gram (or host application) is located, and then from the .Net installation directory.

If the Microsoft .Net Framework is installed, the System namespace in
mscorlib.dll is automatically loaded when Dyalog APL starts. To access this
namespace, it is not necessary to specify the name of the Assembly.

⎕USING has namespace scope. If the local value of ⎕USING is anything other than
empty, and you reference a name that would otherwise generate a VALUE ERROR,
APL searches the list of .Net Namespaces and Assemblies specified by ⎕USING for a
class of that name. If it is found, an entry for the class is added to the symbol table in
the current space and the class is used as specified. Note that subsequent references to
that class in the current space will be identified immediately.

If ⎕USING is empty (its default value in a CLEAR WS) no such search is performed.

Note that when you assign a value to ⎕USING, you may specify a simple character
vector or a vector of character vectors. If you specify a simple character vector (includ-
ing an empty vector ''), this is equivalent to specifying a 1-element enclosed vector
containing the specified characters. Thus to clear ⎕USING, you must set it to 0⍴⊂''
and not ''.

Examples:
⎕USING←'System'
]display ⎕USING

.→---------.
| .→-----. |
| |System| |
| '------' |
'∊---------'

⎕USING,←⊂'System.Windows.Forms,System.Windows.Forms.dll'
⎕USING,←⊂'System.Drawing,System.Drawing.dll'

418 Dyalog APL/W Language Reference

An Assembly may contain top-level classes which are not packaged into .Net Names-
paces. In this case, you omit the Namespace name. For example:

⎕USING←,⊂',.\LoanService.dll'

Vector Representation: R←⎕VR Y

Ymust be a simple character scalar or vector which represents the name of a function
or defined operator.

If Y is the name of a defined function or defined operator, R is a simple character vec-
tor containing a character representation of the function or operator with each line
except the last terminated by the newline character (⎕TC[3]). Its display form is as
follows:

1. the header line starts at column 8 with the ∇ symbol in column 6,
2. the line number for each line of the function starts in column 1,
3. the statement contained in each line starts at column 8 except for labelled

lines or lines beginning with ⍝ which start at column 7,
4. the header line and statements contain no redundant blanks beyond column

7 except that the ⋄ separator is surrounded by single blanks, control struc-
ture indentation is preserved and comments retain embedded blanks as orig-
inally defined,

5. the last line shows only the ∇ character in column 6.

If Y is the name of a variable, a locked function or operator, an external function, or is
undefined, R is an empty vector.

Example
⍴V←⎕VR'PLUS'

128

V
∇ R←{A}PLUS B

[1] ⍝ MONADIC OR DYADIC +
[2] →DYADIC⍴⍨2=⎕NC'A' ⋄ R←B ⋄ →END
[3] DYADIC:R←A+B ⋄ →END
[4] END:

∇

The definition of ⎕VR has been extended to names assigned to functions by spec-
ification (←), and to local names of functions used as operands to defined operators.
In these cases, the result of ⎕VR is identical to that of ⎕CR except that the rep-
resentation of defined functions and operators is as described above.

Chapter 3: System Functions & Variables 419

Example
AVG←MEAN∘,

+F←⎕VR'AVG'
∇ R←MEAN X ⍝ Arithmetic mean

[1] R←(+/X)÷⍴X
∇ ∘,

⍴F
3

]display F
.→---.
| .→-----------------------------------. |
	∇ R←MEAN X ⍝ Arithmetic mean	∘ ,
	[1] R←(+/X)÷⍴X	- -
	∇	
'------------------------------------'		
'∊---'

Verify & Fix Input: R←{X}⎕VFI Y

Y must be a simple character scalar or vector. X is optional. If present, Xmust be a
simple character scalar or vector. R is a nested vector of length two whose first item
is a simple logical vector and whose second item is a simple numeric vector of the
same length as the first item of R.

Y is the character representation of a series of numeric constants. If X is omitted, adja-
cent numeric strings are separated by one or more blanks. Leading and trailing
blanks and separating blanks in excess of one are redundant and ignored. If X is
present, X specifies one or more alternative separating characters. Blanks in leading
and trailing positions in Y and between numeric strings separated also by the char-
acter(s) in X are redundant and ignored. Leading, trailing and adjacent occurrences
of the character(s) in X are not redundant. The character 0 is implied in Y before a
leading character, after a trailing character, and between each adjacent pair of char-
acters specified by X.

The length of the items of R is the same as the number of identifiable strings (or
implied strings) in Y separated by blank or the value of X. An element of the first
item of R is 1 where the corresponding string in Y is a valid numeric representation,
or 0 otherwise. An element of the second item of R is the numeric value of the cor-
responding string in Y if it is a valid numeric representation, or 0 otherwise.

420 Dyalog APL/W Language Reference

Examples
⎕VFI '2 -2 ¯2'

 1 0 1 2 0 ¯2

⎕VFI '12.1 1E1 1A1 ¯10'
1 1 0 1 12.1 10 0 ¯10

⊃(//⎕VFI'12.1 1E1 1A1 ¯10')
12.1 10 ¯10

','⎕VFI'3.9,2.4,,76,'
1 1 1 1 1 3.9 2.4 0 76 0

'⋄'⎕VFI'1 ⋄ 2 3 ⋄ 4 '
1 0 1 1 0 4

⍬≡⎕VFI''
1

Workspace Available: R←⎕WA

This is a simple integer scalar. It identifies the total available space in the active
workspace area given as the number of bytes it could hold.

A side effect of using ⎕WA is an internal reorganisation of the workspace and process
memory, as follows:

1. Any un-referenced memory is discarded. This process, known as garbage
collection, is required because whole cycles of refs can become un-ref-
erenced.

2. Numeric arrays are demoted to their tightest form. For example, a simple
numeric array that happens to contain only values 0 or 1, is demoted or
squeezed to have a ⎕DR type of 11 (Boolean).

3. All remaining used memory blocks are copied to the low-address end of the
workspace, leaving a single free block at the high-address end. This process
is known as compaction.

4. Workspace above a small amount (1/16 of the configured maximum work-
space size) of working memory is returned to the Operating System. On a
Windows system, you can see the process size changing by using Task Man-
ager.

Example
⎕WA

261412

Chapter 3: System Functions & Variables 421

Windows Create Object: {R}←{X}⎕WC Y

This system function creates a GUI object. Y is either a vector which specifies prop-
erties that determine the new object's appearance and behaviour, or the ⎕OR of a GUI
object that exists or previously existed. X is a character vector which specifies the
name of the new object, and its position in the object hierarchy.

If X is omitted, ⎕WC attaches a GUI component to the current namespace, retaining
any functions, variables and other namespaces that it may contain. Monadic ⎕WC is
discussed in detail at the end of this section.

If Y is a nested vector each element specifies a property. The Type property (which
specifies the class of the object)must be specified. Most other properties take
default values and need not be explicitly stated. Properties (including Type) may be
declared either positionally or with a keyword followed by a value. Note that Type
must always be the first property specified. Properties are specified positionally by
placing their values in Y in the order prescribed for an object of that type.

If Y is a result of ⎕OR, the new object is a complete copy of the one fromwhich the
⎕OR was made, including any child objects, namespaces, functions and variables that
it contained at that time.

The shy result R is the full name (starting #. or ⎕SE.) of the namespace X.

An object's name is specified by giving its full pathname in the object hierarchy. At
the top of the hierarchy is the Root object whose name is ".". Below "." there may
be one or more "top-level" objects. The names of these objects follow the standard
rules for other APL objects as described in Chapter 1.

Names for sub-objects follow the same rules except that the character "." is used as a
delimiter to indicate parent/child relationships.

The following are examples of legal and illegal names :

Legal Illegal

FORM1 FORM 1

form_23 form#1

Form1.Gp 11_Form

F1.g2.b34 Form+1

422 Dyalog APL/W Language Reference

If X refers to the name of an APL variable, label, function, or operator, a DOMAIN
ERROR is reported. If X refers to the name of an existing GUI object or namespace,
the existing one is replaced by the new one. The effect is the same as if it were
deleted first.

If Y refers to a non-existent property, or to a property that is not defined for the type
of object X, a DOMAIN ERROR is reported. A DOMAIN ERROR is also reported if a
value is given that is inconsistent with the corresponding property. This can occur
for example, if Y specifies values positionally and in the wrong order.

A "top-level" object created by ⎕WC whose name is localised in a function/operator
header, is deleted on exit from the function/operator. All objects, including sub-
objects, can be deleted using ⎕EX.

GUI objects are named relative to the current namespace, so the following examples
are equivalent:

'F1.B1' ⎕WC 'Button'

is equivalent to :

)CS F1
#.F1

'B1' ⎕WC 'Button'
)CS

#

is equivalent to :

'B1' F1.⎕WC 'Button'

Examples
⍝ Create a default Form called F1

'F1' ⎕WC 'Form'

⍝ Create a Form with specified properties (by position)
⍝ Caption = "My Application" (Title)
⍝ Posn = 10 30 (10% down, 30% across)
⍝ Size = 80 60 (80% high, 60% wide)

'F1' ⎕WC 'Form' 'My Application' (10 30)(80 60)

Chapter 3: System Functions & Variables 423

⍝ Create a Form with specified properties (by keyword)
⍝ Caption = "My Application" (Title)
⍝ Posn = 10 30 (10% down, 30% across)
⍝ Size = 80 60 (80% high, 60% wide)

PROPS←⊂'Type' 'Form'
PROPS,←⊂'Caption' 'My Application'
PROPS,←⊂'Posn' 10 30
PROPS,←⊂'Size' 80 60
'F1' ⎕WC PROPS

⍝ Create a default Button (a pushbutton) in the Form F1

'F1.BTN' ⎕WC 'Button'

⍝ Create a pushbutton labelled "Ôk"
⍝ 10% down and 10% across from the start of the FORM
⍝ with callback function FOO associated with EVENT 30
⍝ (this event occurs when the user presses the button)

'F1.BTN'⎕WC'Button' '&Ok' (10 10)('Event' 30 'FOO')

Monadic ⎕WC is used to attach a GUI component to an existing object. The existing
object must be a pure namespace or a GUI object. The operation may be performed
by changing space to the object or by running ⎕WC inside the object using the dot
syntax. For example, the following statements are equivalent.

)CS F
#.F

⎕WC 'Form' ⍝ Attach a Form to this namespace

)CS
#

F.⎕WC'Form' ⍝ Attach a Form to namespace F

424 Dyalog APL/W Language Reference

Windows Get Property: R←{X}⎕WG Y

This system function returns property values for a GUI object.

X is a namespace reference or a character vector containing the name of the object. Y
is a character vector or a vector of character vectors containing the name(s) of the
properties whose values are required. The result R contains the current values of the
specified properties. If Y specifies a single property name, a single property value is
returned. If Y specifies more than one property, R is a vector with one element per
name in Y.

If X refers to a non-existent GUI name, a VALUE ERROR is reported. If Y refers to a
non-existent property, or to a property that is not defined for the type of object X, a
DOMAIN ERROR is reported.

GUI objects are named relative to the current namespace. A null value of X (refer-
ring to the namespace in which the function is being evaluated) may be omitted.
The following examples are equivalent:

'F1.B1' ⎕WG 'Caption'
'B1' F1.⎕WG 'Caption'
'' F1.B1.⎕WG 'Caption'
F1.B1.⎕WG 'Caption'

Examples
'F1' ⎕WC 'Form' 'TEST'

'F1' ⎕WG 'Caption'
TEST

'F1' ⎕WG 'MaxButton'
1

'F1' ⎕WG 'Size'
50 50

]display 'F1' ⎕WG 'Caption' 'MaxButton' 'Size'
.→-----------------.
| .→---. .→----. |
| |TEST| 1 |50 50| |
| '----' '~----' |
'∊-----------------'

Chapter 3: System Functions & Variables 425

Windows Child Names: R←{X}⎕WN Y

This system function reports the Windows objects whose parent is Y.

If Y is a name (i.e. is a character vector) then the result R is a vector of character vec-
tors containing the names of the named direct Windows children of Y.

If Y is a reference then the result R is a vector of references to the direct Windows chil-
dren of Y, named or otherwise.

The optional left argument X is a character vector which specifies the Type ofWin-
dows object to be reported; if X is not specified, no such filtering is performed.

Names of objects further down the tree are not returned, but can be obtained by recur-
sive use of ⎕WN.

If Y refers to a non-existent GUI name, a VALUE ERROR is reported.

Note that ⎕WN reports only those child objects visible from the current thread.

GUI objects are named relative to the current namespace. The following examples
are equivalent:

⎕WN 'F1.B1'
F1.⎕WN 'B1'
F1.B1.⎕WN ''

Example
f←⎕NEW⊂'Form'
f.n←⎕ns'' ⍝ A non-windows object

f.l←f.⎕NEW⊂'Label' ⍝ A reference to a Label
'f.b1'⎕wc'Button' ⍝ A named Button
f.(b2←⎕new ⊂'Button') ⍝ A reference to a

Button
⎕wn 'f'

[Form].b1
⎕wn f

#.[Form].[Label] #.[Form].b1 #.[Form].[Button]
'Button' ⎕wn f

#.[Form].b1 #.[Form].[Button]

426 Dyalog APL/W Language Reference

Windows Set Property: {R}←{X}⎕WS Y

This system function resets property values for a GUI object.

X is a namespace reference or a character vector containing the name of the object. Y
defines the property or properties to be changed and the new value or values. If a sin-
gle property is to be changed, Y is a vector whose first element Y[1] is a character
vector containing the property name. If Y is of length 2, Y[2] contains the cor-
responding property value. However, if the property value is itself a numeric or
nested vector, its elements may be specified in Y[2 3 4 ...] instead of as a single
nested element in Y[2]. If Y specifies more than one property, they may be declared
either positionally or with a keyword followed by a value. Properties are specified
positionally by placing their values in Y in the order prescribed for an object of that
type. Note that the first property in Ymust always be specified with a keyword
because the Type property (which is expected first) may not be changed using ⎕WS.

If X refers to a non-existent GUI name, a VALUE ERROR is reported. If Y refers to a
non-existent property, or to a property that is not defined for the type of object X, or
to a property whose value may not be changed by ⎕WS, a DOMAIN ERROR is
reported.

The shy result R contains the previous values of the properties specified in Y.

GUI objects are named relative to the current namespace. A null value of X (refer-
ring to the namespace in which the function is being evaluated) may be omitted.
The following examples are equivalent:

'F1.B1' ⎕WS 'Caption' '&Ok'
'B1' F1.⎕WS 'Caption' '&Ok'
'' F1.B1.⎕WS 'Caption' '&Ok'
F1.B1.⎕WS 'Caption' '&Ok'

Examples
'F1' ⎕WC 'Form' ⍝ A default Form

'F1' ⎕WS 'Active' 0

'F1' ⎕WS 'Caption' 'My Application'

'F1' ⎕WS 'Posn' 0 0

'F1' ⎕WS ('Active' 1)('Event' 'Configure' 'FOO')

'F1' ⎕WS 'Junk' 10
DOMAIN ERROR

'F1' ⎕WS 'MaxButton' 0
DOMAIN ERROR

Chapter 3: System Functions & Variables 427

Workspace Identification: ⎕WSID

This is a simple character vector. It contains the identification name of the active
workspace. If a new name is assigned, that name becomes the identification name of
the active workspace, provided that it is a correctly formed name.

See Programmer's Guide: "Workspaces" for workspace naming conventions.

It is useful, though not essential, to associate workspaces with a specific directory in
order to distinguish workspaces from other files.

The value of ⎕WSID in a clear workspace is 'CLEAR WS'.

Example
⎕WSID

CLEAR WS

⎕WSID←'WS/MYWORK' (UNIX)

⎕WSID←'B:\WS\MYWORK' (Windows)

428 Dyalog APL/W Language Reference

Window Expose: ⎕WX

⎕WX is a system variable that determines:

a. whether or not the names of properties, methods and events provided by a
Dyalog APL GUI object are exposed.

b. certain aspects of behaviour of .Net and COM objects.

The permitted values of ⎕WX are 0, 1, or 3. Considered as a sum of bit flags, the first
bit in ⎕WX specifies (a), and the second bit specifies (b).

If ⎕WX is 1 (1st bit is set), the names of properties, methods and events are exposed as
reserved names in GUI namespaces and can be accessed directly by name. This
means that the same names may not be used for global variables in GUI namespaces.

If ⎕WX is 0, these names are hidden and may only be accessed indirectly using ⎕WG
and ⎕WS.

If ⎕WX is 3 (2nd bit is also set) COM and .Net objects adopt the Version 11 behav-
iour, as opposed to the behaviour in previous versions of Dyalog APL.

Note that it is the value of ⎕WX in the object itself, rather than the value of ⎕WX in the
calling environment, that determines its behaviour.

The value of ⎕WX in a clear workspace is defined by the default_wx parameter (see
User Guide) which itself defaults to 3.

⎕WX has namespace scope and may be localised in a function header. This allows
you to create a utility namespace or utility function in which the exposure of objects
is known and determined, regardless of its global value in the workspace.

Chapter 3: System Functions & Variables 429

XML Convert: R←{X} ⎕XML Y

⎕XML converts an XML string into an APL array or converts an APL array into an
XML string.

The optional left argument X specifies a set of option/value pairs, each of which is a
character vector. Xmay be a 2-element vector, or a vector of 2-element character vec-
tors.

For conversion from XML, Y is a character vector containing an XML string. The
result R is a 5 column matrix whose columns are made up as follows:

Column Description

1 Numeric value which indicates the level of nesting.

2 Element name, other markup text, or empty character vector when
empty.

3 Character data or empty character vector when empty.

4 Attribute name and value pairs, (0 2⍴⊂'') when empty.

5 A numeric value which indicates what the row contains.

The values in column 5 have the following meanings:

Value Description

1 Element

2 Child element

4 Character data

8 Markup not otherwise defined

16 Comment markup

32 Processing instruction markup

430 Dyalog APL/W Language Reference

Example
x←'<xml><document id="001">An introduction to XML'
x,←'</document></xml>'

]display v←⎕XML x
┌→───┐
↓ ┌→──┐ ┌⊖┐ ┌→────────┐ │
│ 0 │xml│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 3 │
│ └───┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→───────┐ ┌→─────────────────────┐ ┌→───────────┐ │
│ 1 │document│ │An introduction to XML│ ↓ ┌→─┐ ┌→──┐ │ 5 │
│ └────────┘ └──────────────────────┘ │ │id│ │001│ │ │
│ │ └──┘ └───┘ │ │
│ └∊───────────┘ │
└∊───┘

For conversion to XML, Y is a 3, 4 or 5 column matrix and the result R is a character
vector. The columns of Y have the same meaning as those described above for the
result of converting from XML.:

Example
⎕XML v

<xml>
<document id="001">An introduction to XML</document>

</xml>

Chapter 3: System Functions & Variables 431

Introduction to XML and Glossary of Terms
XML is an open standard, designed to allow exchange of data between applications.
The full specification1 describes functionality, including processing directives and
other directives, which can transform XML data as it is read, and which a full XML
processor would be expected to handle.

The ⎕XML function is designed to handle XML to the extent required to import and
export APL data. It favours speed over complexity - some markup is tolerated but
largely ignored, and there are no XML query or validation features. APL applications
which require processing, querying or validation will need to call external tools for
this, and finally call ⎕XML on the resulting XML to perform the transformation into
APL arrays.

XML grammar such as processing instructions, document type declarations etc may
optionally be stored in the APL array, but will not be processed or validated. This is
principally to allow regeneration of XML fromXML input which contains such
structures, but an APL application could process the data if it chose to do so.

The XML definition uses specific terminology to describe its component parts. The
following is a summary of the terms used in this section:

Character Data
Character data consists of free-form text. The free-form text should not include the
characters ‘>’, ‘<’ or ‘&’, so these must be represented by their entity references
(‘>’, ‘<’ and ‘&’ respectively), or numeric character references.

Entity References and Character References
Entity references are named representations of single characters which cannot nor-
mally be used in character data because they are used to delimit markup, such as >
for ‘>’. Character references are numeric representations of any character, such as
 for space. Note that character references always take values in the Unicode
code space, regardless of the encoding of the XML text itself.

⎕XMLconverts entity references and all character references which the APL character
set is able to represent into their character equivalent when generating APL array
data; when generating XML it converts any or all characters to entity references as
needed.

There is a predefined set of entity references, and the XML specification allows
others to be defined within the XML using the <!ENTITY >markup. ⎕XML does
not process these additional declarations and therefore will only convert the prede-
fined types.

1http://www.w3.org/TR/2008/REC-xml-20081126/

http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/

432 Dyalog APL/W Language Reference

Whitespace
Whitespace sequences consist of one or more spaces, tabs or line-endings. Within
character data, sequences of one or more whitespace characters are replaced with a
single space when this is enabled by the whitespace option. Line endings are rep-
resented differently on different systems (0x0D 0x0A, 0x0A and 0x0D are all used)
but are normalized by converting them all to 0x0A before the XML is parsed, regard-
less of the setting of the whitespace option.

Elements
An element consists of a balanced pair of tags or a single empty element tag. Tags are
given names, and start and end tag names must match.

An example pair of tags, named TagName is

<TagName></TagName>

This pair is shown with no content between the tags; this may be abbreviated as an
empty element tag as

<TagName/>

Tags may be given zero or more attributes, which are specified as name/value pairs;
for example

<TagName AttName=”AttValue”>

Attribute values may be delimited by either double quotes as shown or single quotes
(apostrophes); they may not contain certain characters (the delimiting quote, ‘&’ or
‘<’) and these must be represented by entity or character references.

The content of elements may be zero or more mixed occurrences of character data and
nested elements. Tags and attribute names describe data, attribute values and the con-
tent within tags contain the data itself. Nesting of elements allows structure to be
defined.

Because certain markup which describes the format of allowable data (such as ele-
ment type declarations and attribute-list declarations) is not processed, no error will
be reported if element contents and attributes do not conform to their restricted dec-
larations, nor are attributes automatically added to tags if not explicitly given.

Chapter 3: System Functions & Variables 433

Attributes with names beginning xml: are reserved. Only xml:space is treated spe-
cially by ⎕XML. When converting both from and to XML, the value for this attribute
has the following effects on space normalization for the character data within this ele-
ment and child elements within it (unless subsequently overridden):

l default – space normalization is as determined by the whitespace option.
l preserve - space normalization is disabled – all whitespace is preserved as

given.
l any other value – rejected.

Regardless of whether the attribute name and value have a recognised meaning, the
attribute will be included in the APL array / generated XML. Note that when the
names and values of attributes are examined, the comparisons are case-sensitive and
take place after entity references and character references have been expanded.

Comments
Comments are fully supported markup. They are delimited by ‘<!--‘ and ‘-->’ and all
text between these delimiters is ignored. This text is included in the APL array if
markup is being preserved, or discarded otherwise.

CDATA Sections
CDATA Sections are fully supported markup. They are used to delimit text within
character data which has, or may have, markup text in it which is not to be processed
as such. They and are delimited by ‘<![CDATA[‘ and ‘]]>’. CDATA sections are
never recorded in the APL array as markup when XML is processed – instead, that
data appears as character data. Note that this means that if you convert XML to an
APL array and then convert this back to XML, CDATA sections will not be regen-
erated. It is, however, possible to generate CDATA sections in XML by presenting
them as markup.

Processing Instructions
Processing Instructions are delimited by ‘<&’ and ‘&>’ but are otherwise treated as
other markup, below.

434 Dyalog APL/W Language Reference

Other markup
The remainder of XMLmarkup, including document type declarations, XML dec-
larations and text declarations are all delimited by ‘<!’ and ‘>’, and may contain
nested markup. If markup is being preserved the text, including nested markup, will
appear as a single row in the APL array. ⎕XML does not process the contents of such
markup. This has varying effects, including but not limited to the following:

l No validation is performed.
l Constraints specified in markup such element type declarations will be

ignored and therefore syntactically correct elements which fall outside their
constraint will not be rejected.

l Default attributes in attribute-list declarations will not be automatically
added to elements.

l Conditional sections will always be ignored.
l Only standard, predefined, entity references will be recognized; entity dec-

larations which define others entity references will have no effect.
l External entities are not processed.

Conversion from XML
l The level number in the first column of the result R is 0 for the outermost

level and subsequent levels are represented by an increase of 1 for each
level. Thus, for

l <xml><document id="001">An introduction to XML </document></xml>
l The xml element is at level 0 and the document id element is at level 1. The

text within the document id element is at level 2.
l Each tag in the XML contains an element name and zero or more attribute

name and value pairs, delimited by ‘<’ and ‘>’ characters. The delimiters are
not included in the result matrix. The element name of a tag is stored in col-
umn 2 and the attribute(s) in column 4.

l All XML markup other than tags are delimited by either ‘<!’ and ‘>’, or
‘<?’ and ‘>’ characters. By default these are not stored in the result matrix
but the markup option may be used to specify that they are. The elements
are stored in their entirety, except for the leading and trailing ‘<’ and ‘>’
characters, in column 2. Nested constructs are treated as a single block.
Because the leading and trailing ‘<’ and ‘>’ characters are stripped, such
entries will always have either ‘!’ or ‘&’ as the first character.

l Character data itself has no tag name or attributes. As an optimisation, when
character data is the sole content of an element, it is included with its par-
ent rather than as a separate row in the result. Note that when this happens,
the level number stored is that of the parent; the data itself implicitly has a
level number one greater.

Chapter 3: System Functions & Variables 435

l Attribute name and value pairs associated with the element name are stored
in the fourth column, in an (n x 2) matrix of character values, for the n
(including zero) pairs.

l Each row is further described in the fifth column as a convenience to sim-
plify processing of the array (although this information could be deduced).
Any given row may contain an entry for an element, character data, markup
not otherwise defined, a comment or a processing instruction. Furthermore,
an element will have zero or more of these as children. For all types except
elements, the value in the fifth column is as shown above. For elements, the
value is computed by adding together the value of the row itself (1) and
those of its children. For example, the value for a row for an element which
contains one or more sub-elements and character data is 7 – that is 1 (ele-
ment) + 2 (child element) + 4 (character data). It should be noted that:

l Odd values always represent elements. Odd values other than 1 indicate
that there are children.

l Elements which contain just character data (5) are combined into a single
row as noted previously.

l Only immediate children are considered when computing the value. For
example, an element which contains a sub-element which in turn contains
character data does not itself contain the character data.

l The computed value is derived from what is actually preserved in the array.
For example, if the source XML contains an element which contains a com-
ment, but comments are being discarded, there will be no entry for the com-
ment in the array and the fifth column for the element will not indicate that
it has a child comment.

Conversion to XML
Conversion to XML takes an array with the format described above and generates
XML text from it. There are some simplifications to the array which are accepted:

l The fifth column is not needed for XML generation and is effectively
ignored. Any numeric values are accepted, or the column may be omitted
altogether.

l If there are no attributes in a particular row then the (0 2⍴⊂'') may be
abbreviated as ⍬ (zilde). If the fifth column is omitted then the fourth col-
umn may also be omitted altogether.

l Data in the third column and attribute values in the fourth column (if
present) may be provided as either character vectors or numeric values.
Numeric values are implicitly formatted as if ⎕PP was set to 17.

436 Dyalog APL/W Language Reference

The following validations are performed on the data in the array:

l All elements within the array are checked for type.
l Values in column 1 must be non-negative and start from level 0, and the

increment from one row to the next must be ≤ +1.
l Tag names in column 2 and attribute names in column 4 (if present) must

conform to the XML name definition.

Then, character references and entity references are emitted in place of characters
where necessary, to ensure that valid XML is generated. However, markup, if present,
is not validated and it is possible to generate invalid XML if care in not taken with
markup constructs.

Options
There are 3 option names which may be specified in the optional left argument X;
whitespace , markup, and unknown-entity whose possible values are sum-
marised below. Note that the default value is shown first in bold text, and that the
option names and values are case-sensitive.

Errors detected in the input arrays or options will all cause DOMAIN ERROR.

whitespace

When converting fromXML whitespace specifies the default handling of white
space surrounding and within character data. When converting to XML
whitespace specifies the default formatting of the XML. Note that attribute
values are not comprised of character data so whitespace in attribute values is always
preserved.

Chapter 3: System Functions & Variables 437

Converting from XML

strip
All leading and trailing whitespace sequences are removed;
remaining whitespace sequences are replaced by a single space
character.

trim
All leading and trailing whitespace sequences are removed; all
remaining whitespace sequences are handled as preserve.

preserve
Whitespace is preserved as given except that line endings are
represented by Linefeed (⎕UCS 10).

Converting to XML

strip

All leading and trailing whitespace sequences are removed;
remaining whitespace sequences within the data are replaced by
a single space character. XML is generated with formatting and
indentation to show the data structure.

trim Synonymous with strip.

preserve

Whitespace in the data is preserved as given, except that line
endings are represented by Linefeed (⎕UCS 10). XML is
generated with no formatting and indentation other than that
which is contained within the data.

438 Dyalog APL/W Language Reference

]display eg
┌→───────────────────┐
│<xml> │
│ <a> │
│ Data1 │
│ <!-- Comment -->│
│ Data2 │
│ Data3 │
│ Data4 │
│ <c att="val"/> │
│ │
│</xml> │
└────────────────────┘

]display 'whitespace' 'strip' ⎕xml eg
┌→──┐
↓ ┌→──┐ ┌⊖┐ ┌→────────┐ │
│ 0 │xml│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 3 │
│ └───┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────┐ │
│ 1 │a│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 7 │
│ └─┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→──────────┐ ┌→────────┐ │
│ 2 │ │ │Data1 Data2│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └───────────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌→────┐ ┌→────────┐ │
│ 2 │b│ │Data3│ ⌽ ┌⊖┐ ┌⊖┐ │ 5 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────┐ ┌→────────┐ │
│ 2 │ │ │Data4│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────────┐ │
│ 2 │c│ │ │ ↓ ┌→──┐ ┌→──┐ │ 1 │
│ └─┘ └─┘ │ │att│ │val│ │ │
│ │ └───┘ └───┘ │ │
│ └∊────────────┘ │
└∊──┘

Chapter 3: System Functions & Variables 439

]display 'whitespace' 'preserve' ⎕xml eg
┌→──────────────────────────────────────┐
↓ ┌→──┐ ┌⊖┐ ┌→────────┐ │
│ 0 │xml│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 7 │
│ └───┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→─┐ ┌→────────┐ │
│ 1 │ │ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ │ │ │ │ │ │ │ │ │
│ └──┘ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────┐ │
│ 1 │a│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 7 │
│ └─┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────────┐ ┌→────────┐ │
│ 2 │ │ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ │ Data1│ │ │ │ │ │ │ │
│ │ │ │ └─┘ └─┘ │ │
│ │ Data2│ └∊────────┘ │
│ │ │ │
│ └─────────┘ │
│ ┌→┐ ┌→──────┐ ┌→────────┐ │
│ 2 │b│ │ Data3 │ ⌽ ┌⊖┐ ┌⊖┐ │ 5 │
│ └─┘ └───────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────────┐ ┌→────────┐ │
│ 2 │ │ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ │ Data4│ │ │ │ │ │ │ │
│ │ │ │ └─┘ └─┘ │ │
│ └─────────┘ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────────┐ │
│ 2 │c│ │ │ ↓ ┌→──┐ ┌→──┐ │ 1 │
│ └─┘ └─┘ │ │att│ │val│ │ │
│ │ └───┘ └───┘ │ │
│ └∊────────────┘ │
│ ┌⊖┐ ┌→─┐ ┌→────────┐ │
│ 2 │ │ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ │ │ │ │ │ │ │ │ │
│ └──┘ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→┐ ┌→────────┐ │
│ 1 │ │ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ │ │ │ │ │ │ │ │ │
│ └─┘ │ └─┘ └─┘ │ │
│ └∊────────┘ │
└∊──────────────────────────────────────┘

440 Dyalog APL/W Language Reference

markup

When converting fromXML, markup determines whether markup (other than entity
tags) appears in the output array or not. When converting to XML markup has no
effect.

Converting from XML

Strip Markup data is not included in the output array.

Preserve
Markup text appears in the output array, without the leading ‘<’
and trailing ‘>’ in the tag (2nd) column.

]display eg
┌→───────────────────┐
│<xml> │
│ <a> │
│ Data1 │
│ <!-- Comment -->│
│ Data2 │
│ Data3 │
│ Data4 │
│ <c att="val"/> │
│ │
│</xml> │
└────────────────────┘

Chapter 3: System Functions & Variables 441

]display 'markup' 'strip' ⎕xml eg
┌→──┐
↓ ┌→──┐ ┌⊖┐ ┌→────────┐ │
│ 0 │xml│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 3 │
│ └───┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────┐ │
│ 1 │a│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 7 │
│ └─┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→──────────┐ ┌→────────┐ │
│ 2 │ │ │Data1 Data2│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └───────────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌→────┐ ┌→────────┐ │
│ 2 │b│ │Data3│ ⌽ ┌⊖┐ ┌⊖┐ │ 5 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────┐ ┌→────────┐ │
│ 2 │ │ │Data4│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────────┐ │
│ 2 │c│ │ │ ↓ ┌→──┐ ┌→──┐ │ 1 │
│ └─┘ └─┘ │ │att│ │val│ │ │
│ │ └───┘ └───┘ │ │
│ └∊────────────┘ │
└∊──┘

442 Dyalog APL/W Language Reference

]display 'markup' 'preserve' ⎕xml eg
┌→──┐
↓ ┌→──┐ ┌⊖┐ ┌→────────┐ │
│ 0 │xml│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 3 │
│ └───┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────┐ │
│ 1 │a│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 23 │
│ └─┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────┐ ┌→────────┐ │
│ 2 │ │ │Data1│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→─────────────┐ ┌⊖┐ ┌→────────┐ │
│ 2 │!-- Comment --│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 16 │
│ └──────────────┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────┐ ┌→────────┐ │
│ 2 │ │ │Data2│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌→────┐ ┌→────────┐ │
│ 2 │b│ │Data3│ ⌽ ┌⊖┐ ┌⊖┐ │ 5 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────┐ ┌→────────┐ │
│ 2 │ │ │Data4│ ⌽ ┌⊖┐ ┌⊖┐ │ 4 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────────┐ │
│ 2 │c│ │ │ ↓ ┌→──┐ ┌→──┐ │ 1 │
│ └─┘ └─┘ │ │att│ │val│ │ │
│ │ └───┘ └───┘ │ │
│ └∊────────────┘ │
└∊──┘

Chapter 3: System Functions & Variables 443

Unknown-entity
When converting fromXML, this option determines what happens when an
unknown entity reference, or a character reference for a Unicode character which can-
not be represented as an APL character, is encountered; in Classic versions of Dyalog
APL that is any Unicode character which does not appear in ⎕AVU. When converting
to XML, this option determines what happens to Esc characters (⎕UCS 27) in data.

Converting from XML

replace The reference is replaced by a single ‘?’ character.

preserve The reference is included in the output data as given, but
with the leading ‘&’ replaced by Esc (⎕UCS 27).

Converting to XML

replace Esc (⎕UCS 27) is preserved

preserve Esc (⎕UCS 27) is replaced by ‘&’

Extended State Indicator: R←⎕XSI

R is a nested vector of character vectors giving the full path names of the functions or
operators in the execution stack. Note that if a function has changed space, its orig-
inal (home) space is reported, rather than its current one.

Example

In the following, function foo in namespace x has called goo in namespace y.
Function goo has then changed space (⎕CS) to namespace z where it has been sus-
pended:

)si
[z] y.goo[2]*
x.foo[1]

⎕XSI reports the full path name of each function:

⎕xsi
#.y.goo #.x.foo

This can be used for example, to edit all functions in the stack, irrespective of the cur-
rent namespace by typing: ⎕ed ⎕xsi

See also "State Indicator: " on page 372.

444 Dyalog APL/W Language Reference

Set External Variable: X ⎕XT Y

Ymust be a simple character scalar or vector which is taken to be a variable name. X
must be a simple character scalar or vector which is taken to be a file reference. The
name given by Y is identified as an EXTERNAL VARIABLE associated with an
EXTERNAL ARRAY whose value may be stored in file identified by X. See User
Guide for file naming conventions underWindows and UNIX.

If Y is the name of a defined function or operator, a label or a namespace in the active
workspace, a DOMAIN ERROR is reported.

Example
'EXT\ARRAY' ⎕XT 'V'

If the file reference does not exist, the external variable has no value until a value is
assigned:

V
VALUE ERROR

V
^

A value assigned to an external variable is stored in file space, not within the work-
space:

⎕WA
2261186

V←⍳100000

⎕WA
2261186

There are no specific restrictions placed on the use of external variables. They must
conform to the normal requirements when used as arguments of functions or as oper-
ands of operators. The essential difference between a variable and an external var-
iable is that an external variable requires only temporary workspace for an operation
to accommodate (usually) a part of its value.

Chapter 3: System Functions & Variables 445

Examples
V←⍳5
+/V

15

V[3]←⊂'ABC'

V
1 2 ABC 4 5

⍴¨V
3

Assignment allows the structure or the value of an external variable to be changed
without fully defining the external array in the workspace.

Examples
V,←⊂2 4⍴⍳8

⍴V
6

V[6]
1 2 3 4
5 6 7 8

V[1 2 4 5 6]×←10

V
10 20 ABC 40 50 10 20 30 40

50 60 70 80

An external array is (usually) preserved in file space when the name of the external
variable is disassociated from the file. It may be re-associated with any valid var-
iable name.

Example
⎕EX'V'

'EXT\ARRAY'⎕XT'F'

F
10 20 ABC 40 50 10 20 30 40

50 60 70 80

446 Dyalog APL/W Language Reference

In UNIX versions, if X is an empty vector, the external array is associated with a tem-
porary file which is erased when the array is disassociated.

Example
''⎕XT'TEMP'

TEMP←⍳10

+/TEMP×TEMP
385

⎕EX'TEMP'

An external array may be erased using the native file function: ⎕NERASE.

In a multi-user environment (UNIX or a Windows LAN) a new file associated with
an external array is created with access permission for owner read/write. An existing
file is opened for exclusive use (by the owner) if the permissions remain at this level.
If the access permissions allow any other users to read and write to the file, the file is
opened for shared use. In UNIX versions, access permissions may be modified using
the appropriate Operating System command, or in Windows using the supplied func-
tion XVAR from the UTIL workspace.

Query External Variable: R←⎕XT Y

Ymust be a simple character scalar or vector which is taken to be a variable name. R
is a simple character vector containing the file reference of the external array asso-
ciated with the variable named by Y, or the null vector if there is no associated exter-
nal array.

Example
⎕XT'V'

EXT\ARRAY

⍴⎕XT'G'
0

447

Chapter 4:

System Commands

Introduction
System commands are not executable APL expressions. They provide services or
information associated with the workspace and the external environment.

Command Presentation
System commands may be entered from immediate execution mode or in response to
the prompt ⎕: within evaluated input. All system commands begin with the symbol
), known as a right parenthesis. All system commands may be entered in upper or
lower case.

Each command is described in alphabetical order in this chapter.

Table 17: System Commands

Command Description

)CLASSES List classes

)CLEAR Clear the workspace

)CMD Y Execute a Windows Command

)CONTINUE
Save a Continue workspace and terminate
APL

)COPY {Y} Copy objects from another workspace

)CS {Y} Change current namespace

)DROP {Y} Drop named workspace

)ED Y Edit object(s)

)ERASE Y Erase object(s)

)EVENTS List events of GUI namespace or object

448 Dyalog APL/W Language Reference

Command Description

)FNS {Y} List user defined Functions

)HOLDS Display Held tokens

)LIB {Y} List workspaces in a directory

)LOAD {Y} Load a workspace

)METHODS List methods in GUI namespace or object

)NS {Y} Create a global Namespace

)OBJECTS {Y} List global namespaces

)OBS {Y} List global namespaces (alternative form)

)OFF Terminate the APL session

)OPS {Y} List user defined Operators

)PCOPY {Y} Perform Protected Copy of objects

)PROPS List properties of GUI namespace or object

)RESET Reset the state indicator

)SAVE {Y} Save the workspace

)SH {Y} Execute a (UNIX) Shell command

)SI State Indicator

)SIC Clear State Indicator

)SINL State Indicator with local Name Lists

)TID {Y} Switch current Thread Identity

)VARS {Y} List user defined global Variables

)WSID {Y} Workspace Identification

)XLOAD Y Load a workspace; do not execute ⎕LX

{ } indicates that the parameter(s) denoted by Y are optional.

Chapter 4: System Commands 449

List Classes:)CLASSES

This command lists the names of APL Classes in the active workspace.

Example:
)CLEAR

clear ws
)ED ○MyClass

:Class MyClass
∇ Make Name

:Implements Constructor
⎕DF Name

∇
:EndClass ⍝ MyClass

)CLASSES
MyClass

)COPY OO YourClass
.\OO saved Sun Jan 29 18:32:03 2006

)CLASSES
MyClass YourClass

⎕NC 'MyClass' 'YourClass'
9.4 9.4

Clear Workspace:)CLEAR

This command clears the active workspace and gives the report "clear ws". The
active workspace is lost. The name of a clear workspace is CLEAR WS. System var-
iables are initialised with their default values as described in "System Variables" on
page 159.

In GUI implementations of Dyalog APL,)CLEAR expunges all GUI objects, dis-
cards any unprocessed events in the event queue and resets the properties of the
Root object '.' to their default values.

Example
)CLEAR

clear ws

450 Dyalog APL/W Language Reference

Windows Command Processor:)CMD cmd

This command allowsWindows Command Processor or UNIX shell commands to be
given fromAPL.)CMD is a synonym of)SH. Either command may be given in
either environment (Windows or UNIX) with exactly the same effect.)CMD is prob-
ably more natural for the Windows user. This section describes the behaviour of
)CMD and)SH underWindows. See "Execute (UNIX) Command: " on page 465 for
a discussion of the behaviour of these commands under UNIX.

The system functions ⎕CMD and ⎕SH provide similar facilities but may be executed
fromwithin APL code.

Note that underWindows, you may not execute)CMD without a command. If you
wish to, you can easily open a new Command Prompt window outside APL.

Example
)CMD DIR

Volume in drive C has no label
Directory of C:\PETE\WS

. <DIR> 5-07-94 3.02p

.. <DIR> 5-07-94 3.02p
SALES DWS 110092 5-07-94 3.29p
EXPENSES DWS 154207 5-07-94 3.29p

If cmd issues prompts and expects user input, it is ESSENTIAL to explicitly redirect
input and output to the console. If this is done, APL detects the presence of a ">" in
the command line and runs the command processor in a visible window and does not
direct output to the pipe. If you fail to do this your system will appear to hang
because there is no mechanism for you to receive or respond to the prompt.

Example
)CMD DATE <CON >CON

(Command Prompt window appears)

Current date is Wed 19-07-1995
Enter new date (dd-mm-yy): 20-07-95

(Command Prompt window disappears)

Chapter 4: System Commands 451

Implementation Notes
The argument of)CMD is simply passed to the appropriate command processor for
execution and its output is received using an unnamed pipe.

By default,)CMD will execute the string ('cmd.exe /c',Y) where Y is the argu-
ment given to)CMD. However, the implementation permits the use of alternative
command processors as follows:

Before execution, the argument is prefixed and postfixed with strings defined by the
APL parameters CMD_PREFIX and CMD_POSTFIX. The former specifies the name
of your command processor and any parameters that it requires. The latter specifies a
string which may be required. If CMD_PREFIX is not defined, it defaults to the name
defined by the environment variable COMSPEC followed by "\c". If COMSPEC is
not defined, it defaults to COMMAND.COM or CMD.EXE as appropriate. If CMD_
POSTFIX is not defined, it defaults to an empty vector.

Save Continuation:)CONTINUE

This command saves the active workspace under the name CONTINUE and ends the
Dyalog APL session.

When you subsequently start another Dyalog APL session, the CONTINUE work-
space is loaded automatically. When a CONTINUE workspace is loaded, the latent
expression (if any) is NOT executed.

Note that the values of all system variables (including ⎕SM) and GUI objects are also
saved in CONTINUE.

452 Dyalog APL/W Language Reference

Copy Workspace:)COPY {ws {nms}}

This command brings all or selected global objects nms from a stored workspace
with the given name. A stored workspace is one which has previously been saved
with the system command)SAVE or the system function ⎕SAVE. See Programmer's
Guide: "Workspaces" for the rules for specifying a workspace name.

If the list of names is excluded, all defined objects (including namespaces) are
copied.

If the workspace name identifies a valid, readable workspace, the system reports the
workspace name, "saved" and the date and time when the workspace was last
saved.

Examples
)COPY WS/UTILITY

WS/UTILITY saved Mon Nov 1 13:11:19 1992

)COPY TEMP ⎕LX FOO X A.B.C
./TEMP saved Mon Nov 1 14:20:47 1992
not found X

Copied objects are defined at the global level in the active workspace. Existing
global objects in the active workspace with the same name as a copied object are
replaced. If the copied object replaces either a function in the state indicator, or an
object that is an operand of an operator in the state indicator, or a function whose left
argument is being executed, the original object remains defined until its execution is
completed or it is no longer referenced by an operator in the state indicator. If the
workspace name is not valid or does not exist or if access to the workspace is not
authorised, the system reports ws not found.

You may copy an object from a namespace by specifying its full pathname. The
object will be copied to the current namespace in the active workspace, losing its
original parent and gaining a new one in the process. You may only copy a GUI
object into a namespace that is a suitable parent for that object. For example, you
could only copy a Group object from a saved workspace if the current namespace in
the active workspace is itself a Form, SubForm or Group.

If the workspace name identifies a file that is not a workspace, the system reports
bad ws.

If the source workspace is too large to be loaded, the system reports ws too
large.

Chapter 4: System Commands 453

When copying data between Classic and Unicode Editions,)COPY will fail with
TRANSLATION ERROR if any object in the source workspace fails conversion
between Unicode and ⎕AV indices, whether or not that object is specified by nms.
See "Atomic Vector - Unicode: " on page 181 for further details.

If "ws" is omitted, the file open dialog box is displayed and all objects copied from
the selected workspace.

If the list of names is included, the names of system variables may also be included
and copied into the active workspace. The global referents will be copied.

If an object is not found in the stored workspace, the system reports not found fol-
lowed by the name of the object.

If the list of names includes the name of:

l an Instance of a Class but not the Class itself
l a Class but not a Class upon which it depends
l an array or a namespace that contains a ref to another namespace, but not

the namespace to which it refers

the dependant object(s)will also be copied but will be unnamed and hidden. In such
as case, the system will issue a warning message.

For example, if a saved workspace named CFWS contains a Class named
#.CompFile and an Instance (of CompFile) named icf,

)COPY CFWS icf
.\CFWS saved Fri Mar 03 10:21:36 2006
copied object created an unnamed copy of class #.CompFile

The existence of a hidden copy can be confusing, especially if it is a hidden copy of
an object which had a name which is in use in the current workspace. In the above
example, if there is a class called CompFile in the workspace into which icf is
copied, the copied instance may appear to be an instance of the visible CompFile,
but it will actually be an instance of the hidden CompFile - which may have very
different (or perhaps worse: very slightly different) characteristics to the named ver-
sion.

If you copy a Class without copying its Base Class, the Class can be used (it will use
the invisible copy of the Base Class), but if you edit the Class, you will either be
unable to save it because the editor cannot find the Base Class, or - if there is a vis-
ible Class of that name in the workspace - it will be used as the Base Class. In the
latter case, the invisible copy which was brought in by)COPY will now disappear,
since there are no longer any references to it - and if these two Base Classes were dif-
ferent, the behaviour of the derived Class will change (and any changes made to the
invisible Base Class since it was copied will be lost).

454 Dyalog APL/W Language Reference

Change Space:)CS {nm}

)CS changes the current space to the global namespace nm.

If no nm is given, the system changes to the top level (Root) namespace. If nm is not
the name of a global namespace, the system reports the error message Namespace
does not exist.

namemay be either a simple name or a compound name separated by '.', including
one of the special names '#' (Root) or '##' (Parent).

Examples
)CS

#
)CS X

#.X
)CS Y.Z

#.X.Y.Z
)CS ##

#.X.Y
)CS #.UTIL

#.UTIL

Drop Workspace:)DROP {ws}

This command removes the specified workspace from disk storage. See Pro-
grammer's Guide: "Workspaces" for information regarding the rules for specifying a
workspace name.

If ws is omitted, a file open dialog box is displayed to elicit the workspace name.

Example
)DROP WS/TEMP

Thu Sep 17 10:32:18 1998

Chapter 4: System Commands 455

Edit Object:)ED nms

)ED invokes the Dyalog APL editor and opens an Edit window for each of the
objects specified in nms.

If a name specifies a new symbol it is taken to be a function/operator. However, if a
name is localised in a suspended function/operator but is otherwise undefined, it is
assumed to be a vector of character vectors.

The type of a new object may be specified explicitly by preceding its name with an
appropriate symbol as follows:

∇ function/operator

→ simple character vector

∊ vector of character vectors

- character matrix

⍟ Namespace script

○ Class script

∘ Interface

The first object named becomes the top window on the stack. See User Guide for
details.)ED ignores names which specify GUI objects.

Examples
)ED MYFUNCTION

)ED ∇FOO -MAT ∊VECVEC

456 Dyalog APL/W Language Reference

List Events:)EVENTS

The)EVENTS system command lists the Events that may be generated by the object
associated with the current space.

For example:

⎕CS 'BB' ⎕WC 'BrowseBox'

)EVENTS
Close Create FileBoxCancel FileBoxOK

)EVENTS produces no output when executed in a pure (non-GUI) namespace, for
example:

⎕CS 'X' ⎕NS ''
)EVENTS

List Global Defined Functions:)FNS {nm}

This command displays the names of global defined functions in the active work-
space or current namespace. Names are displayed in ⎕AV collation order. If a name
is included after the command, only those names starting at or after the given name in
collation order are displayed.

Examples
)FNS

ASK DISPLAY GET PUT ZILCH
)FNS G

GET PUT ZILCH

Chapter 4: System Commands 457

Display Held Tokens:)HOLDS

System command)HOLDS displays a list of tokens which have been acquired or
requested by the :Hold control structure.

Each line of the display is of the form:

token: acq req req ...

Where acq is the number of the thread that has acquired the token, and req is the
number of a thread which is requesting it. For a token to appear in the display, a
thread (and only one thread) must have acquired it, whereas any number of threads
can be requesting it.

Example

Thread 300’s attempt to acquire token 'blue' results in a deadlock:

300:DEADLOCK
Sema4[1] :Hold 'blue'

^

)HOLDS
blue: 100
green: 200 100
red: 300 200 100

l Blue has been acquired by thread 100.
l Green has been acquired by 200 and requested by 100.
l Red has been acquired by 300 and requested by 200 and 100.

The following cycle of dependencies has caused the deadlock:

Thread 300 attempts to acquire blue, 300 → blue
which is owned by 100, ↑ ↓
which is waiting for red, red ← 100
which is owned by 300.

458 Dyalog APL/W Language Reference

List Workspace Library:)LIB {dir}

This command lists the names of Dyalog APL workspaces contained in the given
directory.

Example
)LIB WS

MYWORK TEMP

If a directory is not given, the workspaces on the user's APL workspace path
(WSPATH) are listed. In this case, the listing is divided into sections identifying the
directories concerned. The current directory is identified as ".".

Example
)LIB

.
PDTEMP WORK GRAPHICS

C:\DYALOG\WS
DISPLAY GROUPS

Chapter 4: System Commands 459

Load Workspace:)LOAD {ws}

This command causes the named stored workspace to be loaded. The current active
workspace is lost.

If "ws" is a full or relative pathname, only the specified directory is examined. If not,
the APL workspace path (WSPATH as specified in APL.INI) is traversed in search of
the named workspace. A stored workspace is one which has previously been saved
with the system command)SAVE or the system function ⎕SAVE. If ‘ws’ is omitted,
the File Open dialog box is displayed.

If the workspace name is not valid or does not exist or if access to the workspace is
not authorised, the system reports "ws not found". If the workspace name iden-
tifies a file or directory that is not a workspace, the system reports workspace name
"is not a ws". If successfully loaded, the system reports workspace name
"saved", followed by the date and time when the workspace was last saved. If the
workspace is too large to be loaded into the APL session, the system reports "ws
too large". After loading the workspace, the latent expression (⎕LX) is executed
unless APL was invoked with the -x option.

If the workspace contains any GUI objects whose Visible property is 1, these
objects will be displayed. If the workspace contains a non-empty ⎕SM but does not
contain an SM GUI object, the form defined by ⎕SM will be displayed in a window
on the screen.

Holding the Ctrl key down while entering a)LOAD command or selecting a work-
space from the session file menu now causes the incoming latent expression to be
traced.

Holding the Shift key down while selecting a workspace from the session file menu
will prevent execution of the latent expression.

Example
)LOAD SMDEMO

/usr/dyalog/WS/SMDEMO saved Wed Sep 6 21:46:27 1989
Type HOWDEMO for help

460 Dyalog APL/W Language Reference

List Methods:)METHODS

The)METHODS system command lists the Methods that apply to the object asso-
ciated with the current space.

For example:

⎕CS 'F' ⎕WC 'Form'
)METHODS

Animate ChooseFont Detach GetFocus GetTextSize Wait

)METHODS produces no output when executed in a pure (non-GUI) namespace, for
example:

⎕CS 'X' ⎕NS ''
)METHODS

Create Namespace:)NS {nm}

)NS creates a global namespace and displays its full name, nm.

nmmay be either a simple name or a compound name separated by '.', including
one of the special names '#' (Root) or '##' (Parent).

If name does not start with the special Root space identifier '#', the new namespace
is created relative to the current one.

If name is already in use for a workspace object other than a namespace, the com-
mand fails and displays the error message Name already exists.

If name is an existing namespace, no change occurs.

)NS with no nm specification displays the current namespace.

Examples
)NS

#

)NS W.X
#.W.X

)CS W.X
#.W.X

)NS Y.Z
#.W.X.Y.Z

)NS
#.W.X

Chapter 4: System Commands 461

List Global Namespaces:)OBJECTS {nm}

This command displays the names of global namespaces in the active workspace.
Names are displayed in the ⎕AV collating order. If a name is included after the com-
mand, only those names starting at or after the given name in collating order are
displayed. Namespaces are objects created using ⎕NS,)NS or ⎕WC and have name
class 9.

Note:)OBS can be used as an alternative to)OBJECTS

Examples
)OBJECTS

FORM1 UTIL WSDOC XREF

)OBS W
WSDOC XREF

List Global Namespaces:)OBS {nm}

This command is the same as the)OBJECTS command. See "List Global Names-
paces: " above

Sign Off APL:)OFF

This command terminates the APL session, returning to the Operating System com-
mand processor or shell.

List Global Defined Operators:)OPS {nm}

This command displays the names of global defined operators in the active work-
space or current namespace. Names are displayed in ⎕AV collation order. If a name
is included after the command, only those names starting at or after the given name in
collation order are displayed.

Examples
)OPS

AND DOIF DUAL ELSE POWER

)OPS E
ELSE POWER

462 Dyalog APL/W Language Reference

Protected Copy:)PCOPY {ws {nms}}

This command brings all or selected global objects from a stored workspace with the
given name provided that there is no existing global usage of the name in the active
workspace. A stored workspace is one which has previously been saved with the sys-
tem command)SAVE or the system function ⎕SAVE.

)PCOPY does not copy ⎕SM. This restriction may be removed in a later release.

If the workspace name is not valid or does not exist or if access to the workspace is
not authorised, the system reports "ws not found". If the workspace name iden-
tifies a file that is not a workspace, or is a workspace with an invalid version number
(one that is greater than the version of the current APL) the system reports "bad
ws". See Programmer's Guide: "Workspaces" for the rules for specifying a work-
space name.

If the workspace name is the name of a valid, readable workspace, the system reports
the workspace name, "saved", and the date and time that the workspace was last
saved.

If the list of names is excluded, all global defined objects (functions and variables)
are copied. If an object is not found in the stored workspace, the system reports "not
found" followed by the name of the object. If an object cannot be copied into the
active workspace because there is an existing referent, the system reports "not
copied" followed by the name of the object.

For further information, see "Copy Workspace: " on page 197.

Examples
)PCOPY WS/UTILITY

WS/UTILITY saved Mon Nov 1 13:11:19 1993
not copied COPIED IF
not copied COPIED JOIN

)PCOPY TEMP FOO X
./TEMP saved Mon Nov 1 14:20:47 1993
not found X

Chapter 4: System Commands 463

List Properties:)PROPS

The)PROPS system command lists the Properties of the object associated with the
current space.

For example:

⎕CS 'BB' ⎕WC 'BrowseBox'

)PROPS
BrowseFor Caption ChildList Data Event
EventList HasEdit KeepOnClose MethodList
PropList StartIn Target Translate Type

)PROPS produces no output when executed in a pure (non GUI) namespace, for
example:

⎕CS 'X' ⎕NS ''
)PROPS

Reset State Indicator:)RESET

This command cancels all suspensions recorded in the state indicator and discards
any unprocessed events in the event queue.

)RESET also performs an internal re-organisation of the workspace and process mem-
ory. See "Workspace Available: " on page 420 for details.

Example
)SI

#.FOO[1]*
⍎
#.FOO[1]*

)RESET

)SI

Save Workspace:)SAVE {ws}

This command compacts (see "Workspace Available: " on page 420 for details) and
saves the active workspace

The workspace is saved with its state of execution intact. A stored workspace may
subsequently be loaded with the system command)LOAD or the system function

464 Dyalog APL/W Language Reference

⎕LOAD, and objects may be copied from a stored workspace with the system com-
mands)COPY or)PCOPY or the system function ⎕CY.

This command may fail with one of the following error messages:

unacceptable char
The given workspace name was ill-
formed

not saved this ws is WSID

An attempt was made to change
the name of the workspace for the
save, and that workspace already
existed.

not saved this ws is CLEAR WS
The active workspace was CLEAR
WS and no attempt was made to
change the name.

Can't save - file could not
be created.

The workspace name supplied did
not represent a valid file name for
the current Operating System.

cannot create

The user does not have access to
create the file OR the workspace
name conflicts with an existing
non-workspace file.

cannot save with windows open
A workspace may not be saved if
trace or edit windows are open.

An existing stored workspace with the same name will be replaced. The active work-
space may be renamed by the system command)WSID or the system function
⎕WSID.

After a successful save, the system reports the workspace name, "saved", followed
by the time and date.

Example
)SAVE MYWORK

./MYWORK saved Thu Sep 17 10:32:20 1998

Chapter 4: System Commands 465

Execute (UNIX) Command:)SH {cmd}

This command allowsWINDOWS or UNIX shell commands to be given fromAPL.
)SH is a synonym of)CMD. Either command may be given in either environment
(WINDOWS or UNIX) with exactly the same effect.)SH is probably more natural
for the UNIX user. This section describes the behaviour of)SH and)CMD under
UNIX. See "Windows Command Processor: " on page 450 for a discussion of their
behaviour underWINDOWS.

The system commands ⎕SH and ⎕CMD provide similar facilities but may be executed
fromwithin APL code.

)SH allows UNIX shell commands to be given fromAPL. The argument must be
entered in the appropriate case (usually lower-case). The result of the command, if
any, is displayed.

)SH causes Dyalog APL to invoke the system() library call. The shell which is
used to run the command is therefore the shell which system() is defined to call.
For example, under AIX this would be /usr/bin/sh.

When the shell is closed, control returns to APL. See User Guide for further infor-
mation.

The parameters CMD_PREFIX and CMD_POSTFIX may be used to execute a dif-
ferent shell under the shell associated with system().

Example
)SH ls

EXT
FILES

466 Dyalog APL/W Language Reference

State Indicator:)SI

This command displays the contents of the state indicator in the active workspace.
The state indicator identifies those operations which are suspended or pendent for
each suspension.

The list consists of a line for each suspended or pendent operation beginning with
the most recently suspended function or operator. Each line may be:

l The name of a defined function or operator, followed by the line number at
which the operation is halted, and followed by the * symbol if the oper-
ation is suspended. The name of the function or operator is its full pathname
relative to the root namespace #. For example, #.UTIL.PRINT. In addi-
tion, the display of a function or operator which has dynamically changed
space away from its origin is prefixed with its current space. For example,
[⎕SE] TRAV.

l A primitive operator symbol.
l The Execute function symbol (⍎).
l The Evaluated Input symbol (⎕).
l The System Function ⎕DQ or ⎕SR (occurs when executing a callback func-

tion).

Examples
)SI

#.PLUS[2]*
.
#.MATDIV[4]
#.FOO[1]*
⍎

This example indicates that at some point function FOO was executed and suspended
on line 1. Subsequently, function MATDIV was invoked, with a function derived
from the Inner Product or Outer Product operator (.) having defined function PLUS
as an operand.

In the following, function foo in namespace x has called goo in namespace y. Func-
tion goo has then changed space (⎕CS) to namespace z where it has been sus-
pended:

)si
[z] y.goo[2]*
x.foo[1]

Chapter 4: System Commands 467

Threads
In a multithreading application, where parent threads spawn child threads, the state
indicator assumes the structure of a branching tree. Branches of the tree are rep-
resented by indenting lines belonging to child threads. For example:

)SI
· #.Calc[1]
&5
· · #.DivSub[1]
· &7
· · #.DivSub[1]
· &6
· #.Div[2]*
&4
#.Sub[3]
#.Main[4]

Here, Main has called Sub, which has spawned threads 4 and 5 with functions: Div
and Calc. Function Div, after spawning DivSub in each of threads 6 and 7, has
been suspended at line [2].

Clear State Indicator:)SIC

This command is a synonym for)RESET. See "Reset State Indicator: " on page 463

State Indicator & Name List:)SINL

This command displays the contents of the state indicator together with local names.
The display is the same as for)SI (see above) except that a list of local names is
appended to each defined function or operator line.

Example
)SINL

#.PLUS[2]* B A R DYADIC END
.
#.MATDIV[4] R END I J ⎕TRAP
#.FOO[1]* R
⍎

468 Dyalog APL/W Language Reference

Thread Identity:)TID {tid}

)TID associates the Session window with the specified thread so that expressions
that you subsequently execute in the Session are executed in the context of that
thread.

If you attempt to)TID to a thread that is paused or running, that thread will, if pos-
sible, be interrupted by a strong interrupt. If the thread is in a state which it would be
inappropriate to interrupt (for example, if the thread is executing an external func-
tion), the system reports:

Can't switch, this thread is n

If no thread number is given,)TID reports the number of the current thread.

Examples
⍝ State indicator
)si

· #.print[1]
&3
· · #.sub_calc[2]*
· &2
· #.calc[1]
&1

⍝ Current thread
)tid

is 2

⍝ Switch suspension to thread 3
)tid 3

was 2

⍝ State indicator
)si

· #.print[1]*
&3
· · #.sub_calc[2]
· &2
· calc[1]
&1

⍝ Attempt to switch to pendent thread 1
)tid 1

Can't switch, this thread is 3

Chapter 4: System Commands 469

List Global Defined Variables:)VARS {nm}

This command displays the names of global defined variables in the active work-
space or current namespace. Names are displayed in ⎕AV collation order. If a name
is included after the command, only those names starting at or after the given name in
collation order are displayed.

Examples
)VARS

A B F TEMP VAR

)VARS F
F TEMP VAR

Workspace Identification:)WSID {ws}

This command displays or sets the name of the active workspace.

If a workspace name is not specified,)WSID reports the name of the current active
workspace. The name reported is the full path name, including directory references.

If a workspace name is given, the current active workspace is renamed accordingly.
The previous name of the active workspace (excluding directory references) is
reported. See Programmer's Guide: "Workspaces" for the rules for specifying a work-
space name.

Examples
)LOAD WS/TEMP

WS/TEMP saved Thu Sep 17 10:32:19 1998

)WSID
is WS/TEMP

)WSID WS/KEEP
was WS/TEMP

)WSID
WS/KEEP

470 Dyalog APL/W Language Reference

Load without Latent Expression:)XLOAD {ws}

This command causes the named stored workspace to be loaded. The current active
workspace is lost.

)XLOAD is identical in effect to)LOAD except that)XLOAD does not cause the
expression defined by the latent expression ⎕LX in the saved workspace to be
executed.

471

Chapter 5:

Error Messages

Introduction
The error messages reported by APL are described in this chapter. Standard APL mes-
sages that provide information or report error conditions are summarised in "APL
Error Messages" on page 473 and described later in alphabetical order.

APL also reports messages originating from the Operating System (WINDOWS or
UNIX) which are summarised in "Typical Operating System Error Messages" on page
477 and "Windows Operating SystemMessages" on page 479. Only those Oper-
ating System error messages that might occur through normal usage of APL oper-
ations are described in this manual. Other messages could occur as a direct or
indirect consequence of using the Operating System interface functions ⎕CMD and
⎕SH or system commands)CMD and)SH, or when a non-standard device is specified
for the system functions ⎕ARBIN or ⎕ARBOUT. Refer to the WINDOWS or UNIX
reference manual for further information about these messages.

Most errors may be trapped using the system variable ⎕TRAP, thereby retaining con-
trol and inhibiting the standard system action and error report. The table, " Trap-
pable Event Codes " on page 408 identifies the error code for trappable errors. The
error code is also identified in the heading block for each error message when appli-
cable.

See User Guide for a full description of the Error Handling facilities in Dyalog APL.

472 Dyalog APL/W Language Reference

Standard Error Action
The standard system action in the event of an error or interrupt whilst executing an
expression is to suspend execution and display an error report. If necessary, the state
indicator is cut back to a statement such that there is no halted locked function vis-
ible in the state indicator.

The error report consists of up to three lines

1. The error message, preceded by the symbol ⍎ if the error occurred while
evaluating the Execute function.

2. The statement in which the error occurred (or expression being evaluated by
the Execute function), preceded by the name of the function and line
number where execution is suspended unless the state indicator has been
cut back to immediate execution mode. If the state indicator has been cut
back because of a locked function in execution, the displayed statement is
that from which the locked function was invoked.

3. The symbol ^ under the last referenced symbol or name when the error
occurred. All code to the right of the ^ symbol in the expression will have
been evaluated.

Examples
X PLUS U

VALUE ERROR
X PLUS U

^
FOO

INDEX ERROR
FOO[2] X←X+A[I]

^

CALC
⍎DOMAIN ERROR
CALC[5] ÷0

^

Chapter 5: Error Messages 473

APL Errors
Table 18: APL Error Messages

Error Code Report

bad ws

cannot create name

clear ws

copy incomplete

1008 DEADLOCK

defn error

11 DOMAIN ERROR

1005 EOF INTERRUPT

90 EXCEPTION

52 FIELD CONTENTS RANK ERROR

53 FIELD CONTENTS TOO MANY COLUMNS

54 FIELD POSITION ERROR

55 FIELD SIZE ERROR

56 FIELD CONTENTS/TYPE MISMATCH

57 FIELD TYPE/BEHAVIOUR UNRECOGNISED

58 FIELD ATTRIBUTES RANK ERROR

59 FIELD ATTRIBUTES LENGTH ERROR

60 FULL-SCREEN ERROR

61 KEY CODE UNRECOGNISED

62 KEY CODE RANK ERROR

63 KEY CODE TYPE ERROR

70 FORMAT FILE ACCESS ERROR

71 FORMAT FILE ERROR

474 Dyalog APL/W Language Reference

Error Code Report

19 FILE ACCESS ERROR

35 FILE ACCESS ERROR - CONVERTING FILE

38 FILE COMPONENT DAMAGED

23 FILE DAMAGED

21 FILE FULL

20 FILE INDEX ERROR

22 FILE NAME ERROR

32 FILE NAME QUOTA USED UP

26 FILE SYSTEM ERROR

34 FILE SYSTEM NO SPACE

28 FILE SYSTEM NOT AVAILABLE

30 FILE SYSTEM TIES USED UP

18 FILE TIE ERROR

24 FILE TIED

25 FILE TIED REMOTELY

31 FILE TIE QUOTA USED UP

7 FORMAT ERROR

incorrect command

12 HOLD ERROR

3 INDEX ERROR

insufficient resources

99 INTERNAL ERROR

1003 INTERRUPT

is name

5 LENGTH ERROR

10 LIMIT ERROR

Chapter 5: Error Messages 475

Error Code Report

16 NONCE ERROR

72 NO PIPES

name is not a ws

Name already exists

Namespace does not exist

not copied name

not found name

not saved this ws is name

13 OPTION ERROR

76 PROCESSOR TABLE FULL

4 RANK ERROR

1007 RESIZE

name saved date/time

2 SYNTAX ERROR

sys error number

1006 TIMEOUT

too many names

92 TRANSLATION ERROR

84 TRAP ERROR

6 VALUE ERROR

warning duplicate label

warning duplicate name

warning label name present in line 0

warning pendent operation

476 Dyalog APL/W Language Reference

Error Code Report

warning unmatched brackets

warning unmatched parentheses

was name

1 WS FULL

ws not found

ws too large

Chapter 5: Error Messages 477

Operating System Error Messages
Table 19 refers to Unix Operating Systems under which the error code reported by
Dyalog APL is (100 + the Unix file error number). The text for the error message,
which is obtained by calling perror(), will vary from one type of system to
another.

Table 20 refers to the equivalent error messages underWindows.

Table 19: Typical Operating System Error Messages

Error Code Report

101 FILE ERROR 1 Not owner

102 FILE ERROR 2 No such file or directory

103 FILE ERROR 3 No such process

104 FILE ERROR 4 Interrupted system call

105 FILE ERROR 5 I/O error

106 FILE ERROR 6 No such device or address

107 FILE ERROR 7 Arg list too long

108 FILE ERROR 8 Exec format error

109 FILE ERROR 9 Bad file number

110 FILE ERROR 10 No children

111 FILE ERROR 11 No more processes

112 FILE ERROR 12 Not enough code

113 FILE ERROR 13 Permission denied

114 FILE ERROR 14 Bad address

115 FILE ERROR 15 Block device required

116 FILE ERROR 16 Mount device busy

117 FILE ERROR 17 File exists

118 FILE ERROR 18 Cross-device link

119 FILE ERROR 19 No such device

478 Dyalog APL/W Language Reference

Error Code Report

120 FILE ERROR 20 Not a directory

121 FILE ERROR 21 Is a directory

122 FILE ERROR 22 Invalid argument

123 FILE ERROR 23 File table overflow

124 FILE ERROR 24 Too many open files

125 FILE ERROR 25 Not a typewriter

126 FILE ERROR 26 Text file busy

127 FILE ERROR 27 File too large

128 FILE ERROR 28 No space left on device

129 FILE ERROR 29 Illegal seek

130 FILE ERROR 30 Read-only file system

131 FILE ERROR 31 Too many links

132 FILE ERROR 32 Broken pipe

133 FILE ERROR 33 Math argument

134 FILE ERROR 34 Result too large

Chapter 5: Error Messages 479

Windows Operating System Error Messages
Table 20: Windows Operating SystemMessages

Error Code Report

101 FILE ERROR 1 No such file or directory

102 FILE ERROR 2 No such file or directory

103 FILE ERROR 3 Exec format error

105 FILE ERROR 5 Not enough memory

106 FILE ERROR 6 Permission denied

107 FILE ERROR 7 Argument list too big

108 FILE ERROR 8 Exec format error

109 FILE ERROR 9 Bad file number

111 FILE ERROR 11 Too many open files

112 FILE ERROR 12 Not enough memory

113 FILE ERROR 13 Permission denied

114 FILE ERROR 14 Result too large

115 FILE ERROR 15 Resource deadlock would occur

117 FILE ERROR 17 File exists

118 FILE ERROR 18 Cross-device link

122 FILE ERROR 22 Invalid argument

123 FILE ERROR 23 File table overflow

124 FILE ERROR 24 Too many open files

133 FILE ERROR 33 Argument too large

134 FILE ERROR 34 Result too large

145 FILE ERROR 45 Resource deadlock would occur

480 Dyalog APL/W Language Reference

APL Error Messages
There follows an alphabetical list of error messages reported fromwithin Dyalog
APL.

bad ws
This report is given when an attempt is made to)COPY or)PCOPY from a file that is
not a valid workspace file. Invalid files include workspaces that were created by a
version of Dyalog APL later than the version currently being used.

cannot create name
This report is given when an attempt is made to)SAVE a workspace with a name
that is either the name of an existing, non-workspace file, or the name of a workspace
that the user does not have permission to overwrite or create.

clear ws
This message is displayed when the system command)CLEAR is issued.

Example
)CLEAR

clear ws

copy incomplete
This report is given when an attempted)COPY or)PCOPY fails to complete. Rea-
sons include:

l Failure to identify the incoming file as a workspace.
l Not enough active workspace to accommodate the copy.

DEADLOCK 1008

If two threads succeed in acquiring a hold of two different tokens, and then each asks
to hold the other token, they will both stop and wait for the other to release its token.
The interpreter detects such cases and issues an error (1008) DEADLOCK.

Chapter 5: Error Messages 481

defn error
This report is given when either:

l The system editor is invoked in order to edit a function that does not exist,
or the named function is pendent or locked, or the given name is an object
other than a function.

l The system editor is invoked to define a new function whose name is
already active.

l The header line of a function is replaced or edited in definition mode with a
line whose syntax is incompatible with that of a header line. The original
header line is re-displayed by the system editor with the cursor placed at the
end of the line. Back-spacing to the beginning of the line followed by line-
feed restores the original header line.

Examples
X←1
∇X

defn error

∇FOO[0⎕]
[0] R←FOO
[0] R←FOO:X
defn error
[0] R←FOO:X

⎕LOCK'FOO'
∇FOO[⎕]

defn error

482 Dyalog APL/W Language Reference

DOMAIN ERROR 11

This report is given when either:

l An argument of a function is not of the correct type or its numeric value is
outside the range of permitted values or its character value does not con-
stitute valid name(s) in the context.

l An array operand of an operator is not an array, or it is not of the correct
type, or its numeric value is outside the range of permitted values. A func-
tion operand of an operator is not one of a prescribed set of functions.

l A value assigned to a system variable is not of the correct type, or its
numeric value is outside the range of permitted values

l The result produced by a function includes numeric elements which cannot
be fully represented.

Examples
1÷0

DOMAIN ERROR
1÷0
^

(×∘'CAT')2 4 6
DOMAIN ERROR

(×∘'CAT')2 4 6
^

⎕IO←5
DOMAIN ERROR

⎕IO←5
^

EOF INTERRUPT 1005

This report is given on encountering the end-of-file when reading input from a file.
This condition could occur when an input to APL is from a file.

EXCEPTION 90

This report is given when a Microsoft .Net object throws an exception. For details
see "Exception: " on page 216.

Chapter 5: Error Messages 483

FIELD CONTENTS RANK ERROR 52

This report is given if a field content of rank greater than 2 is assigned to ⎕SM.

FIELD CONTENTS TOO MANY COLUMNS 53

This report is given if the content of a numeric or date field assigned to ⎕SM has more
than one column.

FIELD POSITION ERROR 54

This report is given if the location of the field assigned to ⎕SM is outside the screen.

FIELD CONTENTS TYPE MISMATCH 56

This report is given if the field contents assigned to ⎕SM does not conform with the
given field type e.g. character content with numeric type.

FIELD TYPE BEHAVIOUR UNRECOGNISED 57

This report is given if the field type or behaviour code assigned to ⎕SM is invalid.

FIELD ATTRIBUTES RANK ERROR 58

This report is given if the current video attribute assigned to ⎕SM is non-scalar but its
rank does not match that of the field contents.

FIELD ATTRIBUTES LENGTH ERROR 59

This report is given if the current video attribute assigned to ⎕SM is non-scalar but its
dimensions do not match those of the field contents.

FULL SCREEN ERROR 60

This report is given if the required full screen capabilities are not available to ⎕SM.
This report is only generated in UNIX environments.

484 Dyalog APL/W Language Reference

KEY CODE UNRECOGNISED 61

This report is given if a key code supplied to ⎕SR or ⎕PFKEY is not recognised as a
valid code.

KEY CODE RANK ERROR 62

This report is given if a key code supplied to ⎕SR or ⎕PFKEY is not a scalar or a vec-
tor.

KEY CODE TYPE ERROR 63

This report is given if a key code supplied to ⎕SR or ⎕PFKEY is numeric or nested;
i.e. is not a valid key code.

FORMAT FILE ACCESS ERROR 70

This report is given if the date format file to be used by ⎕SM does not exist or cannot
be accessed.

FORMAT FILE ERROR 71

This report is given if the date format file to be used by ⎕SM is ill-formed.

Chapter 5: Error Messages 485

FILE ACCESS ERROR 19

This report is given when the user attempts to execute a file system function for
which the user is not authorised, or has supplied the wrong passnumber. It also
occurs if the file specified as the argument to ⎕FERASE or ⎕FRENAME is not exclu-
sively tied.

Examples
'SALES' ⎕FSTIE 1

⎕FRDAC 1
0 4121 0
0 4137 99

X ⎕FREPLACE 1
FILE ACCESS ERROR

X ⎕FREPLACE 1
^

'SALES' ⎕FERASE 1
FILE ACCESS ERROR

'SALES' ⎕FERASE 1
^

FILE ACCESS ERROR CONVERTING
When a new version of Dyalog APL is used, it may be that improvements to the com-
ponent file system demand that the internal structure of component files must alter.
This alteration is performed by the interpreter on the first occasion that the file is
accessed. If the operating system file permissions deny the ability to perform such a
restructure, this report is given.

FILE COMPONENT DAMAGED 38

This report is given if an attempt is made to access a component that is not a valid
APL object. This will rarely occur, but may happen as a result of a previous com-
puter system failure. Components files may be checked using qfsck. (See User
Guide.)

486 Dyalog APL/W Language Reference

FILE DAMAGED 23

This report is given if a component file becomes damaged. This rarely occurs but
may result from a computer system failure. Components files may be checked using
qfsck. (See User Guide.)

FILE FULL 21

This report is given if the file operation would cause the file to exceed its file size
limit.

FILE INDEX ERROR 20

This report is given when an attempt is made to reference a non-existent component.

Example
⎕FSIZE 1

1 21 16578 4294967295

⎕FREAD 1 34
FILE INDEX ERROR

⎕FREAD 1 34
^
⎕FDROP 1 50

FILE INDEX ERROR
⎕FDROP 1 50
^

FILE NAME ERROR 22

This report is given if:

l the user attempts to ⎕FCREATE using the name of an existing file.
l the user attempts to ⎕FTIE or ⎕FSTIE a non-existent file, or a file that is

not a component file.
l the user attempts to ⎕FERASE a component file with a name other than the

EXACT name that was used when the file was tied.

Chapter 5: Error Messages 487

FILE NAME QUOTA USED UP 32

This report is given when the user attempts to execute a file system command that
would result in the User's File Name Quota (see User Guide) being exceeded.

This can occur with ⎕FCREATE, ⎕FTIE, ⎕FSTIE or ⎕FRENAME .

FILE SYSTEM ERROR 26

This report is given if the File System Control Block (FSCB) is removed or altered
while files are tied.

Contact the System Administrator. If this occurs when a file is share-tied, the file
may be damaged. It is therefore advisable to check the integrity of all such files
using qfsck.

See User Guide for details.

FILE SYSTEM NO SPACE 34

This report is given if the user attempts a file operation that cannot be completed
because there is insufficient disk space.

FILE SYSTEM NOT AVAILABLE 28

This report is given if the File System Control Block (FSCB) is missing or
inaccessible. See User Guide for details.

FILE SYSTEM TIES USED UP 30

This report is given if the File System Control Block (FSCB) is full. See User Guide
for details.

488 Dyalog APL/W Language Reference

FILE TIE ERROR 18

This report is given when the argument to a file system function contains a file tie
number used as if it were tied when it is not or as if it were available when it is
already tied. It also occurs if the argument to ⎕FHOLD contains the names of non-
existent external variables.

Examples
⎕FNAMES,⎕FNUMS

SALES 1
COSTS 2
PROFIT 3

X ⎕FAPPEND 4
FILE TIE ERROR

X ⎕FAPPEND 4
^
'NEWSALES' ⎕FCREATE 2

FILE TIE ERROR
'NEWSALES' ⎕FCREATE 2
^

'EXTVFILE' ⎕XT'BIGMAT'
⎕FHOLD 'BIGMAT'

FILE TIE ERROR
⎕FHOLD 'BIGMAT'
^
⎕FHOLD⊂'BIGMAT'

FILE TIED 24

This report is given if the user attempts to tie a file that is exclusively tied by another
task, or attempts to exclusively tie a file that is already share-tied by another task.

FILE TIED REMOTELY 25

This report is given if the user attempts to tie a file that is exclusively tied by another
task, or attempts to exclusively tie a file that is already share-tied by another task;
and that task is running on other than the user's processor.

Chapter 5: Error Messages 489

FILE TIE QUOTA USED UP 31

This report is given if an attempt is made to ⎕FTIE, ⎕FSTIE or ⎕FCREATE a file
when the user already has the maximum number of files tied. (See File Tie Quota ,
User Guide)

FORMAT ERROR 7

This report is given when the format specification in the left argument of system func-
tion ⎕FMT is ill-formed.

Example
'A1,1X,I5'⎕FMT CODE NUMBER

FORMAT ERROR
'A1,1X,I5'⎕FMT CODE NUMBER
^

(The correct specification should be 'A1,X1,I5' .)

HOLD ERROR 12

This report is given when an attempt is made to save a workspace using the system
function ⎕SAVE if any external arrays or component files are currently held (as a
result of a prior use of the system function ⎕FHOLD).

Example
∇HOLD∆SAVE

[1] ⎕FHOLD 1
[2] ⎕SAVE 'TEST'

∇

'FILE' ⎕FSTIE 1

HOLD∆SAVE
HOLD ERROR
HOLD∆SAVE[2] ⎕SAVE'TEST'

^

490 Dyalog APL/W Language Reference

incorrect command
This report is given when an unrecognised system command is entered.

Example
)CLERA

incorrect command

INDEX ERROR 3

This report is given when either:

l The value of an index, whilst being within comparison tolerance of an
integer, is outside the range of values defined by the index vector along an
axis of the array being indexed. The permitted range is dependent on the
value of ⎕IO.

l The value specified for an axis, whilst being within comparison tolerance of
an integer for a derived function requiring an integer axis value or a non-
integer for a derived function requiring a non-integer, is outside the range of
values compatible with the rank(s) of the array argument(s) of the derived
function. Axis is dependent on the value of ⎕IO.

Examples
A

1 2 3
4 5 6

A[1;4]
INDEX ERROR

A[1;4]
^

↑ [2]'ABC' 'DEF'
INDEX ERROR

↑ [2]'ABC' 'DEF'
^

Chapter 5: Error Messages 491

INTERNAL ERROR 99

INTERNAL ERROR indicates a severe system error from which Dyalog APL has
recovered.

Should you encounter INTERNAL ERROR, Dyalog strongly recommends that you
save your work(space) , and report the issue.

INTERRUPT 1003

This report is given when execution is suspended by entering a hard interrupt. A
hard interrupt causes execution to suspend as soon as possible without leaving the
environment in a damaged state.

Example
1 1 2 ⍉(2 100⍴⍳200)∘.|?1000⍴200

(Hard interrupt)

INTERRUPT
1 1 2 ⍉(2 100⍴⍳200)∘.|?1000⍴200

^

is name
This report is given in response to the system command)WSID when used without a
parameter. name is the name of the active workspace including directory references
given when loaded or named. If the workspace has not been named, the system
reports is CLEAR WS.

Example
)WSID

is WS/UTILITY

492 Dyalog APL/W Language Reference

LENGTH ERROR 5

This report is given when the shape of the arguments of a function do not conform,
but the ranks do conform.

Example
2 3+4 5 6

LENGTH ERROR
2 3+4 5 6
^

LIMIT ERROR 10

This report is given when a system limit is exceeded. System limits are installation
dependent.

Example
(16⍴1)⍴1

LIMIT ERROR
(16⍴1)⍴1
^

NONCE ERROR 16

This report is given when a system function or piece of syntax is not currently imple-
mented but is reserved for future use.

NO PIPES 72

This message applies to the UNIX environment ONLY.

This message is given when the limit on the number of pipes communicating
between tasks is exceeded. An installation-set quota is assigned for each task. An
associated task may require more than one pipe. The message occurs on attempting
to exceed the account's quota when either:

l An APL session is started
l A non-APL task is started by the system function ⎕SH
l An external variable is used.

Chapter 5: Error Messages 493

It is necessary to release pipes by terminating sufficient tasks before proceeding with
the required activity. In practice, the error is most likely to occur when using the sys-
tem function ⎕SH.

Examples
'via' ⎕SH 'via'

NO PIPES
'via' ⎕SH 'via'
^

'EXT/ARRAY' ⎕XT 'EXVAR'
NO PIPES

'EXT/ARRAY' ⎕XT 'EXVAR'
^

name is not a ws
This report is given when the name specified as the parameter of the system com-
mands)LOAD,)COPY or)PCOPY is a reference to an existing file or directory that
is not identified as a workspace.

This will also occur if an attempt is made to)LOAD a workspace that was)SAVE’d
using a later version of Dyalog APL.

Example
)LOAD EXT\ARRAY

EXT\ARRAY is not a ws

Name already exists
This report is given when an)NS command is issued with a name which is already in
use for a workspace object other than a namespace.

Namespace does not exist
This report is given when a)CS command is issued with a name which is not the
name of a global namespace.

494 Dyalog APL/W Language Reference

not copied name
This report is given for each object named or implied in the parameter list of the sys-
tem command)PCOPY which was not copied because of an existing global referent
to that name in the active workspace.

Example
)PCOPY WS/UTILITY A FOO Z

WS/UTILITY saved Mon Nov 1 13:11:19 1993
not copied Z

not found name
This report is given when either:

l An object named in the parameter list of the system command)ERASE is
not erased because it was not found or it is not eligible to be erased.

l An object named in the parameter list (or implied list) of names to be cop-
ied from a saved workspace for the system commands)COPY or)PCOPY is
not copied because it was not found in the saved workspace.

Examples
)ERASE ⎕IO

not found ⎕IO

)COPY WS/UTILITY UND
WS/UTILITY saved Mon Nov 1 13:11:19 1993
not found UND

not saved this ws is name
This report is given in the following situations:

l When the system command)SAVE is used without a name, and the work-
space is not named. In this case the system reports not saved this ws
is CLEAR WS.

l When the system command)SAVE is used with a name, and that name is
not the current name of the workspace, but is the name of an existing file.

In neither case is the workspace renamed.

Chapter 5: Error Messages 495

Examples
)CLEAR
)SAVE

not saved this ws is CLEAR WS

)WSID JOHND
)SAVE
)WSID ANDYS
)SAVE JOHND

not saved this ws is ANDYS

OPTION ERROR 13

This report is given when an invalid right operand is given to the Variant operator ⍠
or ⎕OPT.

PROCESSOR TABLE FULL 76

This report can only occur in a UNIX environment.

This report is given when the limit on the number of processes (tasks) that the com-
puter system can support would be exceeded. The limit is installation dependent.
The report is given when an attempt is made to initiate a further process, occurring
when an APL session is started.

It is necessary to wait until active processes are completed before the required task
may proceed. If the condition should occur frequently, the solution is to increase the
limit on the number of processes for the computer system.

Example
'prefect' ⎕SH 'prefect'

PROCESSOR TABLE FULL
'prefect' ⎕SH 'prefect'
^

496 Dyalog APL/W Language Reference

RANK ERROR 4

This report is given when the rank of an argument or operand does not conform to the
requirements of the function or operator, or the ranks of the arguments of a function
do not conform.

Example
2 3 + 2 2⍴10 11 12 13

RANK ERROR
2 3 + 2 2⍴10 11 12 13
^

RESIZE 1007

This report is given when the user resizes the ⎕SM window. It is only applicable to
Dyalog APL/X and Dyalog APL/W.

name saved date time
This report is given when a workspace is saved, loaded or copied.

date/time is the date and time at which the workspace was most recently saved.

Examples
)LOAD WS/UTILITY

WS/UTILITY saved Fri Sep 11 10:34:35 1998

)COPY SPACES GEOFF JOHND VINCE
./SPACES saved Wed Sep 30 16:12:56 1998

Chapter 5: Error Messages 497

SYNTAX ERROR 2

This report is given when a line of characters does not constitute a meaningful
statement. This condition occurs when either:

l An illegal symbol is found in an expression.
l Brackets, parentheses or quotes in an expression are not matched.
l Parentheses in an expression are not matched.
l Quotes in an expression are not matched.
l A value is assigned to a function, label, constant or system constant.
l A strictly dyadic function (or derived function) is used monadically.
l A monadic function (or derived function) is used dyadically.
l A monadic or dyadic function (or derived function) is used without any

arguments.
l The operand of an operator is not an array when an array is required.
l The operand of an operator is not a function (or derived function) when a

function is required.
l The operand of an operator is a function (or derived function) with incorrect

valency.
l A dyadic operator is used with only a single operand.
l An operator is used without any operands.

Examples
A>10)/A

SYNTAX ERROR
A>10)/A
^

⊤2 4 8
SYNTAX ERROR

⊤2 4 8
^

A.+1 2 3
SYNTAX ERROR

A.+1 2 3
^

498 Dyalog APL/W Language Reference

sys error number
This report is given when an internal error occurs in Dyalog APL.

Under UNIX it may be necessary to enter a hard interrupt to obtain the UNIX com-
mand prompt, or even to kill your processes from another screen. UnderWINDOWS
it may be necessary to reboot your PC.

If this error occurs, please submit a fault report to your Dyalog APL distributor.

TIMEOUT 1006

This report is given when the time limit specified by the system variable ⎕RTL is
exceeded while awaiting input through character input (⍞) or ⎕SR.

It is usual for this error to be trapped.

Example
⎕RTL←5 ⋄ ⍞←'RESPOND WITHIN 5 SECONDS: ' ⋄ R←⍞

RESPOND WITHIN 5 SECONDS:
TIMEOUT

⎕RTL←5 ⋄ ⍞←'RESPOND WITHIN 5 SECONDS: ' ⋄ R←⍞
^

TRANSLATION ERROR 92

This report is given when the system cannot convert a character from Unicode to an
Atomic Vector index or vice versa. Conversion is controlled by the value of ⎕AVU.
Note that this error can occur when you reference a variable whose value has been
obtained by reading data from a TCPSocket or by calling an external function. This
is because in these cases the conversion to/from ⎕AV is deferred until the value is
used.

TRAP ERROR 84

This report is given when a workspace full condition occurs whilst searching for a
definition set for the system variable ⎕TRAP after a trappable error has occurred. It
does not occur when an expression in a ⎕TRAP definition is being executed.

Chapter 5: Error Messages 499

too many names
This report is given by the function editor when the number of distinct names (other
than distinguished names beginning with the symbol ⎕) referenced in a defined func-
tion exceeds the system limit of 4096.

VALUE ERROR 6

This report is given when either:

l There is no active definition for a name encountered in an expression.
l A function does not return a result in a context where a result is required.

Examples
X

VALUE ERROR
X
^

∇ HELLO
[1] 'HI THERE'
[2] ∇

2+HELLO
HI THERE
VALUE ERROR

2+HELLO
^

warning duplicate label
This warning message is reported on closing definition mode when one or more
labels are duplicated in the body of the defined function. This does not prevent the
definition of the function in the active workspace. The value of a duplicated label is
the lowest of the line-numbers in which the labels occur.

500 Dyalog APL/W Language Reference

warning duplicate name
This warning message is reported on closing definition mode when one or more
names are duplicated in the header line of the function. This may be perfectly valid.
Definition of the function in the active workspace is not prevented. The order in
which values are associated with names in the header line is described in " Defined
Functions &Operators" on page 1.

warning pendent operation
This report is given on opening and closing definition mode when attempting to edit
a pendant function or operator.

Example
[0] ∇FOO
[1] GOO
[2] ∇

[0] ∇GOO
[1] ∘
[2] ∇

FOO
SYNTAX ERROR
GOO[1] ∘

^

∇FOO
warning pendent operation
[0] ∇FOO
[1] GOO
[2] ∇
warning pendent operation

warning label name present
This warning message is reported on closing definition mode when one or more label
names also occur in the header line of the function. This does not prevent definition
of the function in the active workspace. The order in which values are associated
with names is described in " Defined Functions &Operators" on page 1.

Chapter 5: Error Messages 501

warning unmatched brackets
This report is given after adding or editing a function line in definition mode when it
is found that there is not an opening bracket to match a closing bracket, or vice versa,
in an expression. This is a warning message only. The function line will be
accepted even though syntactically incorrect.

Example
[3] A[;B[;2]←0
warning unmatched brackets
[4]

warning unmatched parentheses
This report is given after adding or editing a function line in definition mode when it
is found that there is not an opening parenthesis to match a closing parenthesis, or
vice versa, in an expression. This is a warning message only. The function line will
be accepted even though syntactically incorrect.

Example
[4] X←(E>2)^E<10)⌿A
warning unmatched parentheses
[5]

was name
This report is given when the system command)WSID is used with a parameter spec-
ifying the name of a workspace. The message identifies the former name of the
workspace. If the workspace was not named, the given report is was CLEAR WS.

Example
)WSID TEMP

was UTILITY

502 Dyalog APL/W Language Reference

WS FULL 1

This report is given when there is insufficient workspace in which to perform an
operation. Workspace available is identified by the system constant ⎕WA.

The maximumworkspace size allowed is defined by the environment variable
MAXWS. See User Guide for details.

Example
⎕WA⍴1.2

WS FULL
⎕WA⍴1.2
^

ws not found
This report is given when a workspace named by the system commands)LOAD,
)COPY or)PCOPY does not exist as a file, or when the user does not have read
access authorisation for the file.

Examples
)LOAD NOWS

ws not found

)COPY NOWS A FOO X
ws not found

ws too large
This report is given when:

l the user attempts to)LOAD a workspace that needs a greater work area than
the maximum that the user is currently permitted.

l the user attempts to)COPY or)PCOPY from a workspace that would
require a greater work area than the user is currently permitted if the work-
space were to be loaded.

The maximumwork area permitted is set using the environment variable MAXWS.

Chapter 5: Error Messages 503

Operating System Error Messages
There follows a numerically sorted list of error messages emanating from a typical
operating system and reported through Dyalog APL.

FILE ERROR 1 Not owner 101

This report is given when an attempt is made to modify a file in a way which is for-
bidden except to the owner or super-user, or in some instances only to a super-user.

FILE ERROR 2 No such file
This report is given when a file (which should exist) does not exist, or when a direc-
tory in a path name does not exist.

FILE ERROR 5 I O error 105

This report is given when a physical I/O error occurred whilst reading from or writing
to a device, indicating a hardware fault on the device being accessed.

FILE ERROR 6 No such device
This report is given when a device does not exist or the device is addressed beyond
its limits. Examples are a tape which has not been mounted or a tape which is being
accessed beyond the end of the tape.

FILE ERROR 13 Permission denied 113

This report is given when an attempt is made to access a file in a way forbidden to
the account.

FILE ERROR 20 Not a directory 120

This report is given when the request assumes that a directory name is required but
the name specifies a file or is not a legal name.

504 Dyalog APL/W Language Reference

FILE ERROR 21 Is a directory 121

This report is given when an attempt is made to write into a directory.

FILE ERROR 23 File table overflow 123

This report is given when the system limit on the number of open files is full and a
request is made to open another file. It is necessary to wait until the number of open
files is reduced. If this error occurs frequently, the system limit should be increased.

FILE ERROR 24 Too many open
This report is given when the task limit on the number of open files is exceeded. It
may occur when an APL session is started or when a shell command is issued to start
an external process through the system command ⎕SH. It is necessary to reduce the
number of open files. It may be necessary to increase the limit on the number of open
files to overcome the problem.

FILE ERROR 26 Text file busy 126

This report is given when an attempt is made to write a file which is a load module
currently in use. This situation could occur on assigning a value to an external var-
iable whose associated external file name conflicts with an existing load module's
name.

FILE ERROR 27 File too large 127

This report is given when a write to a file would cause the system limit on file size to
be exceeded.

FILE ERROR 28 No space left
This report is given when a write to a file would exceed the capacity of the device
containing the file.

Chapter 5: Error Messages 505

FILE ERROR 30 Read only file
This report is given when an attempt is made to write to a device which can only be
read from. This would occur with a write-protected tape.

506 Dyalog APL/W Language Reference

507

Appendices: PCRE Specifications

PCRE (Perl Compatible Regular Expressions) is an open source library used by the
⎕R and ⎕S system operators. The regular expression syntax which the library sup-
ports is not unique to APL nor is it an integral part of the language. Its doc-
umentation is reproduced verbatim in this Appendix and in the Appendices to the
Dyalog APL Release Notes Version 13.0.

There are two named sections: pcrepattern, which describes the full syntax and
semantics); and prcresyntax, a quick reference summary. Both sections are provided
in the Release Notes, only the latter is included herein.

508 Dyalog APL/W Language Reference

Appendix A - PCRE Syntax Summary
The following is a summary of search pattern syntax.

PCRESYNTAX(3) PCRESYNTAX(3)

NAME
PCRE - Perl-compatible regular expressions

PCRE REGULAR EXPRESSION SYNTAX SUMMARY

The full syntax and semantics of the regular expressions that are sup-
ported by PCRE are described in the pcrepattern documentation. This
document contains just a quick-reference summary of the syntax.

QUOTING

\x where x is non-alphanumeric is a literal x
\Q...\E treat enclosed characters as literal

CHARACTERS

\a alarm, that is, the BEL character (hex 07)
\cx "control-x", where x is any ASCII character
\e escape (hex 1B)
\f formfeed (hex 0C)
\n newline (hex 0A)
\r carriage return (hex 0D)
\t tab (hex 09)
\ddd character with octal code ddd, or backreference
\xhh character with hex code hh
\x{hhh..} character with hex code hhh..

CHARACTER TYPES

. any character except newline;
in dotall mode, any character whatsoever

\C one byte, even in UTF-8 mode (best avoided)
\d a decimal digit
\D a character that is not a decimal digit
\h a horizontal whitespace character
\H a character that is not a horizontal whitespace character
\N a character that is not a newline
\p{xx} a character with the xx property
\P{xx} a character without the xx property
\R a newline sequence
\s a whitespace character
\S a character that is not a whitespace character
\v a vertical whitespace character
\V a character that is not a vertical whitespace character
\w a "word" character
\W a "non-word" character
\X an extended Unicode sequence

Appendices: PCRE Specifications 509

In PCRE, by default, \d, \D, \s, \S, \w, and \W recognize only ASCII
characters, even in UTF-8 mode. However, this can be changed by setting
the PCRE_UCP option.

GENERAL CATEGORY PROPERTIES FOR \p and \P

C Other
Cc Control
Cf Format
Cn Unassigned
Co Private use
Cs Surrogate

L Letter
Ll Lower case letter
Lm Modifier letter
Lo Other letter
Lt Title case letter
Lu Upper case letter
L& Ll, Lu, or Lt

M Mark
Mc Spacing mark
Me Enclosing mark
Mn Non-spacing mark

N Number
Nd Decimal number
Nl Letter number
No Other number

P Punctuation
Pc Connector punctuation
Pd Dash punctuation
Pe Close punctuation
Pf Final punctuation
Pi Initial punctuation
Po Other punctuation
Ps Open punctuation

S Symbol
Sc Currency symbol
Sk Modifier symbol
Sm Mathematical symbol
So Other symbol

Z Separator
Zl Line separator
Zp Paragraph separator
Zs Space separator

PCRE SPECIAL CATEGORY PROPERTIES FOR \p and \P

Xan Alphanumeric: union of properties L and N
Xps POSIX space: property Z or tab, NL, VT, FF, CR
Xsp Perl space: property Z or tab, NL, FF, CR
Xwd Perl word: property Xan or underscore

510 Dyalog APL/W Language Reference

SCRIPT NAMES FOR \p AND \P

Arabic, Armenian, Avestan, Balinese, Bamum, Bengali, Bopomofo, Braille,
Buginese, Buhid, Canadian_Aboriginal, Carian, Cham, Cherokee, Common,
Coptic, Cuneiform, Cypriot, Cyrillic, Deseret, Devanagari, Egyp-
tian_Hieroglyphs, Ethiopic, Georgian, Glagolitic, Gothic, Greek,
Gujarati, Gurmukhi, Han, Hangul, Hanunoo, Hebrew, Hiragana, Impe-
rial_Aramaic, Inherited, Inscriptional_Pahlavi, Inscriptional_Parthian,
Javanese, Kaithi, Kannada, Katakana, Kayah_Li, Kharoshthi, Khmer, Lao,
Latin, Lepcha, Limbu, Linear_B, Lisu, Lycian, Lydian, Malayalam,
Meetei_Mayek, Mongolian, Myanmar, New_Tai_Lue, Nko, Ogham, Old_Italic,
Old_Persian, Old_South_Arabian, Old_Turkic, Ol_Chiki, Oriya, Osmanya,
Phags_Pa, Phoenician, Rejang, Runic, Samaritan, Saurashtra, Shavian,
Sinhala, Sundanese, Syloti_Nagri, Syriac, Tagalog, Tagbanwa, Tai_Le,
Tai_Tham, Tai_Viet, Tamil, Telugu, Thaana, Thai, Tibetan, Tifinagh,
Ugaritic, Vai, Yi.

CHARACTER CLASSES

[...] positive character class
[^...] negative character class
[x-y] range (can be used for hex characters)
[[:xxx:]] positive POSIX named set
[[:^xxx:]] negative POSIX named set

alnum alphanumeric
alpha alphabetic
ascii 0-127
blank space or tab
cntrl control character
digit decimal digit
graph printing, excluding space
lower lower case letter
print printing, including space
punct printing, excluding alphanumeric
space whitespace
upper upper case letter
word same as \w
xdigit hexadecimal digit

In PCRE, POSIX character set names recognize only ASCII characters by
default, but some of them use Unicode properties if PCRE_UCP is set.
You can use \Q...\E inside a character class.

QUANTIFIERS

? 0 or 1, greedy
?+ 0 or 1, possessive
?? 0 or 1, lazy
* 0 or more, greedy
*+ 0 or more, possessive
*? 0 or more, lazy
+ 1 or more, greedy
++ 1 or more, possessive
+? 1 or more, lazy
{n} exactly n
{n,m} at least n, no more than m, greedy

Appendices: PCRE Specifications 511

{n,m}+ at least n, no more than m, possessive
{n,m}? at least n, no more than m, lazy
{n,} n or more, greedy
{n,}+ n or more, possessive
{n,}? n or more, lazy

ANCHORS AND SIMPLE ASSERTIONS

\b word boundary
\B not a word boundary
^ start of subject

also after internal newline in multiline mode
\A start of subject
$ end of subject

also before newline at end of subject
also before internal newline in multiline mode

\Z end of subject
also before newline at end of subject

\z end of subject
\G first matching position in subject

MATCH POINT RESET

\K reset start of match

ALTERNATION

expr|expr|expr...

CAPTURING

(...) capturing group
(?<name>...) named capturing group (Perl)
(?'name'...) named capturing group (Perl)
(?P<name>...) named capturing group (Python)
(?:...) non-capturing group
(?|...) non-capturing group; reset group numbers for

capturing groups in each alternative

ATOMIC GROUPS

(?>...) atomic, non-capturing group

COMMENT

(?#....) comment (not nestable)

OPTION SETTING

(?i) caseless
(?J) allow duplicate names
(?m) multiline
(?s) single line (dotall)

512 Dyalog APL/W Language Reference

(?U) default ungreedy (lazy)
(?x) extended (ignore white space)
(?-...) unset option(s)

The following are recognized only at the start of a pattern or after
one of the newline-setting options with similar syntax:

(*NO_START_OPT) no start-match optimization (PCRE_NO_START_OPTIMIZE)
(*UTF8) set UTF-8 mode (PCRE_UTF8)
(*UCP) set PCRE_UCP (use Unicode properties for \d etc)

LOOKAHEAD AND LOOKBEHIND ASSERTIONS

(?=...) positive look ahead
(?!...) negative look ahead
(?<=...) positive look behind
(?<!...) negative look behind

Each top-level branch of a look behind must be of a fixed length.

BACKREFERENCES

\n reference by number (can be ambiguous)
\gn reference by number
\g{n} reference by number
\g{-n} relative reference by number
\k<name> reference by name (Perl)
\k'name' reference by name (Perl)
\g{name} reference by name (Perl)
\k{name} reference by name (.NET)
(?P=name) reference by name (Python)

SUBROUTINE REFERENCES (POSSIBLY RECURSIVE)

(?R) recurse whole pattern
(?n) call subpattern by absolute number
(?+n) call subpattern by relative number
(?-n) call subpattern by relative number
(?&name) call subpattern by name (Perl)
(?P>name) call subpattern by name (Python)
\g<name> call subpattern by name (Oniguruma)
\g'name' call subpattern by name (Oniguruma)
\g<n> call subpattern by absolute number (Oniguruma)
\g'n' call subpattern by absolute number (Oniguruma)
\g<+n> call subpattern by relative number (PCRE extension)
\g'+n' call subpattern by relative number (PCRE extension)
\g<-n> call subpattern by relative number (PCRE extension)
\g'-n' call subpattern by relative number (PCRE extension)

CONDITIONAL PATTERNS

(?(condition)yes-pattern)
(?(condition)yes-pattern|no-pattern)

(?(n)... absolute reference condition
(?(+n)... relative reference condition

Appendices: PCRE Specifications 513

(?(-n)... relative reference condition
(?(<name>)... named reference condition (Perl)
(?('name')... named reference condition (Perl)
(?(name)... named reference condition (PCRE)
(?(R)... overall recursion condition
(?(Rn)... specific group recursion condition
(?(R&name)... specific recursion condition
(?(DEFINE)... define subpattern for reference
(?(assert)... assertion condition

BACKTRACKING CONTROL

The following act immediately they are reached:

(*ACCEPT) force successful match
(*FAIL) force backtrack; synonym (*F)

The following act only when a subsequent match failure causes a back-
track to reach them. They all force a match failure, but they differ in
what happens afterwards. Those that advance the start-of-match point do
so only if the pattern is not anchored.

(*COMMIT) overall failure, no advance of starting point
(*PRUNE) advance to next starting character
(*SKIP) advance start to current matching position
(*THEN) local failure, backtrack to next alternation

NEWLINE CONVENTIONS

These are recognized only at the very start of the pattern or after a
(*BSR_...) or (*UTF8) or (*UCP) option.

(*CR) carriage return only
(*LF) linefeed only
(*CRLF) carriage return followed by linefeed
(*ANYCRLF) all three of the above
(*ANY) any Unicode newline sequence

WHAT \R MATCHES

These are recognized only at the very start of the pattern or after a
(*...) option that sets the newline convention or UTF-8 or UCP mode.

(*BSR_ANYCRLF) CR, LF, or CRLF
(*BSR_UNICODE) any Unicode newline sequence

CALLOUTS

(?C) callout
(?Cn) callout with data n

AUTHOR

Philip Hazel
University Computing Service

514 Dyalog APL/W Language Reference

Cambridge CB2 3QH, England.

REVISION

Last updated: 21 November 2010
Copyright (c) 1997-2010 University of Cambridge.

515

Symbolic Index

+ See add/identity/plus

- See minus/negate/subtract

× See multiply/signum/times

÷ See divide/reciprocal

⌹
See matrix divide/matrix
inverse

| See magnitude/residue

⌈ See ceiling/maximum

⌊ See floor/minimum

* See exponential/power

⍟ See logarithm

< See less

> See greater

≤ See less or equal

≥ See greater or equal

= See equal

≠ See not equal

≡ See depth/match

≢ See not match

~ See excluding/not/without

^ See and/caret pointer

∨ See or

⍲ See nand

⍱ See nor

∪ See union/unique

∩ See intersection

⊂
See
enclose/partition/partitioned
enclose

⊃ See disclose/mix/pick

? See deal/roll

! See binomial/factorial

⍋ See grade up

⍒ See grade down

⍎ See execute

⍕ See format

⊥ See decode

⊤ See encode

○ See circular/pi times

⍉ See transpose

⌽ See reverse/rotate

⊖ See reverse first/rotate first

, See catenate/laminate/ravel

⍪ See catenate first/table

⍳
See index generator/index
of

⍴ See reshape/shape

∊ See enlist/membership/type

⍷ See find

↑
See
disclose/mix/take/ancestry

↓ See drop/split

← See assignment

→ See abort/branch

.
See name separator/decimal
point/inner product

∘. See outer product

∘ See compose

/
See
compress/replicate/reduce

⌿ See replicate first/reduce

516 Dyalog APL/W Language Reference

first
\ See expand/scan

⍀ See expand first/scan first

¨ See each

⍨ See commute

& See spawn

⍣ See power operator

⍬ See zilde

¯ See negative sign

_ See underbar character

∆ See delta character

⍙ See delta-underbar character

'' See quotes

⌷ See index/axis

[] See indexing/axis

() See parentheses

{} See braces

⍺ See left argument

⍺⍺ See left operand

⍵ See right argument

⍵⍵ See right operand

See Root object

See parent object

⋄ See statement separator

⍝ See comment symbol

∇ See function self/del editor

∇∇ See operator self

;
See name separator/array
separator

: See label colon

:AndIf See and if condition

:Access See access statement

:Case See case qualifier

:CaseList See caselist qualifier

:Class See class statement

:Continue See continue branch

:Else See else qualifier

:ElseIf See else-if condition

:End See general end control

:EndClass See endclass statement

:EndFor See end-for control

:EndHold See end-hold control

:EndIf See end-if control

:EndNamespace See endnamespace

:EndProperty See endproperty statement

:EndRepeat See end-repeat control

:EndSelect See end-select control

:EndTrap See end-trap control

:EndWhile See end-while control

:EndWith See end-with control

:Field See field statement

:For...:In... See for statement

:GoTo See go-to branch

:Hold See hold statement

:Include See include statement

:If See if statement

:Implements See implements statement

:Interface See interface statement

:Leave See leave branch

:Namespace See namespace statement

:OrIf See or-if condition

:Property See property statement

:Repeat See repeat statement

:Return See return branch

:Section See section statement

:Select See select statement

Symbolic Index 517

:Trap See trap statement

:Until See until condition

:While See while statement

:With See with statement

⍞
See quote-quad/character
I\O

⎕ See quad/evaluated I\O

⎕Á See underscored alphabet

⎕A See alphabet

⎕AI See account information

⎕AN See account name

⎕ARBIN See arbitrary input

⎕ARBOUT See arbitrary output

⎕AT See attributes

⎕AV See atomic vector

⎕AVU See atomic vector - unicode

⎕BASE See base class

⎕CLASS See class

⎕CLEAR See clear workspace

⎕CMD
See execute DOS
command/start AP

⎕CR See canonical representation

⎕CS See change space

⎕CT See comparison tolerance

⎕CY See copy workspace

⎕D See digits

⎕DCT
See decimal comparison
tolerance

⎕DF See display form

⎕DIV See division method

⎕DL See delay

⎕DM See diagnostic message

⎕DQ See dequeue events

⎕DR See data representation

⎕ED See edit object

⎕EM See event message

⎕EN See event number

⎕EX See expunge object

⎕EXCEPTION See exception

⎕EXPORT See export object

⎕FAPPEND See file append component

⎕FAVAIL See file available

⎕FCHK See file check and repair

⎕FCOPY See file copy

⎕FCREATE See file create

⎕FDROP See file drop component

⎕FERASE See file erase

⎕FHOLD See file hold

⎕FIX See fix script

⎕FLIB See file library

⎕FMT See format

⎕FNAMES See file names

⎕FNUMS See file numbers

⎕FPROPS See file properties

⎕FR
See floating-point
representation

⎕FRDAC See file read access matrix

⎕FRDCI
See file read component
information

⎕FREAD See file read component

⎕FRENAME See file rename

⎕FREPLACE See file replace component

⎕FRESIZE See file resize

⎕FSIZE See file size

⎕FSTAC See file set access matrix

⎕FSTIE See file share tie

⎕FTIE See file tie

518 Dyalog APL/W Language Reference

⎕FUNTIE See file untie

⎕FX See fix definition

⎕INSTANCES See instances

⎕IO See index origin

⎕KL See key label

⎕LC See line counter

⎕LOAD See load workspace

⎕LOCK See lock definition

⎕LX See latent expression

⎕MAP See map file

⎕ML See migration level

⎕MONITOR See monitor

⎕NA See name association

⎕NAPPEND See native file append

⎕NC See name class

⎕NCREATE See native file create

⎕NERASE See native file erase

⎕NEW See new instance

⎕NL See name list

⎕NLOCK See native file lock

⎕NNAMES See native file names

⎕NNUMS See native file numbers

⎕NQ See enqueue event

⎕NR See nested representation

⎕NREAD See native file read

⎕NRENAME See native file rename

⎕NREPLACE See native file replace

⎕NRESIZE See native file resize

⎕NS See namespace

⎕NSI See namespace indicator

⎕NSIZE See native file size

⎕NTIE See native file tie

⎕NULL See null item

⎕NUNTIE See native file untie

⎕NXLATE See native file translate

⎕OFF See sign off APL

⎕OR See object representation

⎕OPT See variant

⎕PATH See search path

⎕PFKEY See program function key

⎕PP See print precision

⎕PROFILE See profile application

⎕PW See print width

⎕REFS See cross references

⎕R See replace

⎕RL See random link

⎕RTL See response time limit

⎕S See search

⎕SAVE See save workspace

⎕SD See screen dimensions

⎕SE See session namespace

⎕SH
See execute shell
command/start AP

⎕SHADOW See shadow name

⎕SI See state indicator

⎕SIGNAL See signal event

⎕SIZE See size of object

⎕SM See screen map

⎕SR See screen read

⎕SRC See source

⎕STACK See state indicator stack

⎕STATE See state of object

⎕STOP See stop control

⎕SVC See shared variable control

⎕SVO See shared variable offer

⎕SVQ See shared variable query

⎕SVR See shared variable retract

Symbolic Index 519

⎕SVS See shared variable state

⎕TC See terminal control

⎕TCNUMS See thread child numbers

⎕TGET See get tokens

⎕THIS See this space

⎕TID See thread identity

⎕TKILL See thread kill

⎕TNAME See thread name

⎕TNUMS See thread numbers

⎕TPOOL See token pool

⎕TPUT See put tokens

⎕TREQ See token requests

⎕TRACE See trace control

⎕TRAP See trap event

⎕TS See time stamp

⎕TSYNC See threads synchronise

⎕UCS See unicode convert

⎕USING See using path

⎕VFI See verify and fix input

⎕VR See vector representation

⎕WA See workspace available

⎕WC See window create object

⎕WG See window get property

⎕WN See window child names

⎕WS See window set property

⎕WSID
See workspace
identification

⎕WX See window expose names

⎕XSI See extended state indicator

⎕XT See external variable

)CLASSES See list classes

)CLEAR See clear workspace

)CMD See command

)CONTINUE See continue off

)COPY See copy workspace

)CS See change space

)DROP See drop workspace

)ED See edit object

)ERASE See erase object

)EVENTS See list events

)FNS See list functions

)HOLDS See held tokens

)LIB See workspace library

)LOAD See load workspace

)METHODS See list methods

)NS See namespace

)OBJECTS See list objects

)OBS See list objects

)OFF See sign off APL

)OPS See list operators

)PCOPY See protected copy

)PROPS See list properties

)RESET See reset state indicator

)SAVE See save workspace

)SH See shell command

)SI See state indicator

)SINL See state indicator name

)TID See thread identity

)VARS See list variables

)WSID See workspace identity

)XLOAD See quiet-load workspace

520 Dyalog APL/W Language Reference

521

Index

A

abort function 9
absolute value 75
access codes 248-252, 254
Account Information 175
Account Name 175
add arithmetic function 10
alphabetic characters 174
ancestors 334
and boolean function 11
APL

characters 181
error messages 480

aplcore 141
appending components to files 220
appending to native file 295
arbitrary output 176
array separator 15, 68
arrays

dimensions of 102
indexing 68
prototypes of 7
rank of 102
unit 3

assignment 12
indexed 15
indexed modified 114
modified by functions 113
re-assignment 14
selective 19
selective modified 115
simple 12

atomic vector 181
atomic vector - unicode 181, 197, 263, 295,

322, 329, 453, 498
attributes of operations 177

auto_pw parameter 344
auxiliary processors 191
axis operator 8

with dyadic operands 116
with monadic operands 115

axis specification 8, 112

B

bad ws 480
base class 184
best fit approximation 78
beta function 20
binomial function 20
Boolean functions

and (conjunction) 11
nand 82
nor 83
not 83
not-equal (exculsive disjunction) 84
or (inclusive disjunction) 86

bracket indexing 68
branch function 20
byte order mark 348

C

callback functions 212, 317
cannot create name 480
canonical representation of operations 192
caret pointer 204
catenate function 23
ceiling function 25
change user 152
changing namespaces 194, 454
character input/output 170
checksum 242-243
child names 425
child threads 399
choose indexed assignment 17
choose indexing 70
circular functions 26
class (system function) 185

522 Dyalog APL/W Language Reference

classes
base class 184
casting 186
class system function 185
copying 453
display form 200
external interfaces 306
fields 297
fix script 230
instances 256
list classes 449
name-class 305-306
new instance 308
properties 298
source 385
this space 401

classic edition 136, 329, 356
Classic Edition 54, 58, 181, 214, 258, 262,

320, 329, 398
classification of names 296
clear state indicator 463, 467
clear ws 480
clearing workspaces 187, 449
CMD_POSTFIX parameter 451, 465
CMD_PREFIX parameter 451, 465
command operating system 450
command processor 188, 450
commute operator 119
comparison tolerance 196
complex numbers

circular functions 26
floating-point representation 247

component files
checksum 242-243
file properties 242
journaling 243
unicode 242, 244

composition operator
form I 120
form II 121
form III 122
form IV 122

compress operation 95
Compute Time 175
conformability of arguments 7

conjunction 11
Connect Time 175
continue off 451
copy incomplete 480
copying component files 222
copying from other workspaces 197, 452
core to aplcore 141
CPU time 266
creating component files 224
creating GUI objects 421
creating namespaces 323, 460
creating native files 307
cross references 345
current thread identity 402
cutback error trap 407

D

data representation
dyadic 214
monadic 213

DEADLOCK 480
deal random function 27
decimal comparison tolerance 199
default property 64
defn error 481
delay times 203
denormal numbers 337
deprecated features

32-bit component files 225
atomic vector 181
terminal control 398
underscored alphabet 174

dequeuing events 210
derived functions 111
diagnostic messages 204
digits 0 to 9 199
dimensions of arrays 102
direction 103
direction function 30
disclose function 32
disjunction 86
display form 200
displaying held tokens 457

Index 523

divide arithmetic function 33
division methods 203
dmx 205, 374
DOMAIN ERROR 361, 482
DotAll option 356
drop function 34

with axes 35
dropping components from files 226
dropping workspaces 454
dyadic primitive functions

add 10
and 11
catenate 23
deal 27
divide 33
drop 34
encode 38
execute 43
expand 44
expand-first 45
find 46
format 52
grade down 55
grade up 59
greater 60
greater or equal 61
greatest common divisor 86
index function 62
index of 67
intersection 72
left 73
less 74
less or equal 74
logarithm 75
match 76
matrix divide 77
maximum 80
member of 80
minimum 80
nand 82
nor 83
not equal 84
not match 84
or . 86
partition 87

partitioned enclose 89
pick 90
power 91
replicate 95
reshape 97
residue 97
right 98
rotate 99
subtract 103
take 105
transpose 107
unique 109

dyadic primitive operators
axis 115-116
compose 120-122
each 124
inner product 125
outer product 126
replace 136, 346
search 136, 346
variant 136, 329, 346, 354

dyadic scalar functions 3
dynamic data exchange 393
dynamic link libraries 267

E

each operator
with dyadic operands 124
with monadic operands 123

editing APL objects 215, 455
editor 215
empty vectors 109
Enc option 360
enclose function 36

with axes 37
encode function 38
enlist function 40
enqueuing an event 316
EOF INTERRUPT 482
EOL option 356
equal relational function 41
erasing component files 227
erasing native files 307

524 Dyalog APL/W Language Reference

erasing objects from workspaces 217
error messages 471
error trapping system variable 407
evaluated input/output 172
event messages 215
exception 216, 482
excluding set function 42
exclusively tying files 254
execute error trap 407
execute operation

dyadic 43
monadic 43

executing commands
DOS 450
UNIX 370, 465
Windows 188

exit code 329
exiting APL system 329, 461
expand-first operation 45
expand operation 44

with axis 44
exponential function 45
exporting objects 219
exposing properties 428
expunge objects 217
extended diagnostic message 205, 374
extended state indicator 443
external arrays 444
external functions 191
external interfaces 306
external variables

query 446
set 444

F

factorial function 45
FIELD ... ERROR 483
fields 297
file

append component 220
available 220
check and repair 221
copy 222

create 224
drop component 226
erase 227
history 227
hold 229
library 231
names 240
numbers 241
read access matrix 247
read component 248
read component information 248
rename 249
replace component 250
resize 251
set access matrix 252
share-tie 253
size 252
tie (number) 254
untie 255

FILE ACCESS ERROR 485
FILE ACCESS ERROR ... 485
FILE COMPONENT DAMAGED 485
file copy 225
FILE DAMAGED 486
FILE FULL 486
file history 227
FILE INDEX ERROR 486
FILE NAME ERROR 486
FILE NAME QUOTA USED UP 487
file properties 242
file system availability 220
file system control block 487
FILE SYSTEM ERROR 487
FILE SYSTEM NO SPACE 487
FILE SYSTEM NOT AVAILABLE 487
FILE SYSTEM TIES USED UP 487
FILE TIE ERROR 488
FILE TIE QUOTA USED UP 489
FILE TIED 488
FILE TIED REMOTELY 488
files

APL component files 222, 224
mapped 261
operating system native files 307

fill elements 7

Index 525

find function 46
first function 47
fix script 230
fixing operation definitions 255
floating-point representation 199, 245

complex numbers 247
floor function 47
fork new task 151
FORMAT ERROR 489
FORMAT FILE ACCESS ERROR 484
FORMAT FILE ERROR 484
format function

dyadic 52
monadic 48

format specification 233
format system function

affixtures 235
digit selectors 237
G-format 237
O-format qualifier 238
qualifiers 234
text insertion 233

formatting system function
dyadic 233
monadic 232

FULL-SCREEN ERROR 483
function assignment 13
function keys 336
functions

mixed rank 4
pervasive 1
primitive 1
rank zero 1
scalar rank 1

G

gamma function 45
generating random numbers 365
get tokens 399
getting properties of GUI objects 424
grade-down function

dyadic 55
monadic 54

grade-up function
dyadic 59
monadic 57

greater-or-equal function 61
greater-than relational function 60
greatest common divisor 86
Greedy option 358
GUI objects 210

H

held tokens 457
HOLD ERROR 489
holding component files 229

I

i-beam 139
change user 152
fork new task 151
memory manager statistics 143
parallel execution threshold 142
read dataTable 147
reap forked tasks 153
signal counts 155
syntax colouring 140
thread synchrnisation mechanism 155
updata DataTable 144

IC option 136, 354
identification of workspaces 469
identity 61
identity elements 129
identity function 27
identity matrix 79
incorrect command 490
index

with axes 65
index-generator function 66
index-of function 67
INDEX ERROR 490
index function 62
index origin 257
indexed assignment 15
indexed modified assignment 114

526 Dyalog APL/W Language Reference

indexing arrays 68
InEnc option 359
inner-product operator 125
instances 256, 304
interfaces 306
INTERNAL ERROR 491
INTERRUPT 491
intersection set function 72
iota 66

J

journaling 242-243

K

KEY CODE RANK ERROR 484
KEY CODE TYPE ERROR 484
KEY CODE UNRECOGNISED 484
key labels 258
Keying Time 175
kill threads 402

L

labels 21
laminate function 23
latent expressions 261
least squares solution 78
left 73
legal names 421
LENGTH ERROR 492
less-or-equal function 74
less-than relational function 74
libraries of component files 231
LIMIT ERROR 492
line number counter 258
list classes 449
list names in a class 309
listing global defined functions 456
listing global defined operators 461
listing global namespaces 461
listing global objects 461
listing global variables 469

listing GUI events 456
listing GUI methods 460
listing GUI properties 463
listing workspace libraries 458
loading workspaces 259, 459

without latent expressions 470
localisation 373
lock native file 313
locking defined operations 260
logarithm function 75
logical conjunction 11
logical disjunction 86
logical equivalence 76
logical negation 83
logical operations 11

M

magic numbers 248
magnitude function 75
map file 261
markup 440
match relational function 76
matrix-divide function 77
matrix-inverse function 79
matrix product 77
maximum function 80
membership set function 80
MEMCPY 283
memory manager statistics 143
migration levels 32, 40, 81, 108, 263
minimum function 80
minus arithmetic function 80
miscellaneous primitive functions 4
mix function 81

with axis 81
mixed rank functions 4
ML option 357
Mode option 136, 355, 360
modified assignment 113
monadic primitive functions

branch 20
ceiling 25
direction 30

Index 527

disclose 32
enclose 36
enlist 40
execute 43
exponential 45
factorial 45
floor 47
format 48
grade down 54
grade up 57
identity 27, 61
index generator 66
magnitude 75
matrix inverse 79
mix 81
natural logarithm 82
negative 83
not 83
pi times 90
ravel 92
reciprocal 95
reverse 98
roll 99
same 102
shape 102
signum 30, 103
split 103
table 104
transpose 107
type 108
union 109

monadic primitive operators
assignment 113-115
commute 119
each 123
reduce 129, 132
scan 133-134
spawn 135

monadic scalar functions 2
monitoring operation statistics

query 266
set 265

MPUT utility 261
multiply arithmetic function 82

N

name already exists 493
name association 267, 301
name classifications 296
name is not a ws 493
name lists by classification 309
name of thread 403
name references in operations 345
name saved date/time 496
names

legal 421
names of tied component files 240
names of tied native files 315
namespace does not exist 493
namespace indicator 325
namespace reference 14, 194, 210, 424, 426
namespace reference assignment 14
namespace script 303
namespaces

create 460
search path 334
this space 401
unnamed 323

nand boolean function 82
Naperian logarithm function 82
natch 84
native file

append 295
create 307
erase 307
lock 313
names 315
numbers 315
read 319
rename 321
replace 321
resize 323
size 325
tie (number) 326
translate 328
untie 328

natural logarithm function 82
negate 83

528 Dyalog APL/W Language Reference

negative function 83
NEOL option 357
nested representation of operations 318
new instance 308
next error trap 407
niladic primitive functions

abort 9
zilde 109

NO PIPES 492
NONCE ERROR 64, 492
nor boolean function 83
not-equal relational function 84
not-match relational function 84
not boolean function 83
not copied name 494
not found name 494
not saved this ws is name 494
nsi 325
null 327
number of each thread 403
numbers

empty vectors 109
numbers of tied component files 241
numbers of tied native files 315

O

object representation of operations 330
OM option 358
operands 111
operators

dyadic 111
monadic 111
syntax 111

OPTION ERROR 495
or boolean function 86
OutEnc option 359
outer-product operator 126

P

parallel execution
parallel execution threshold 142
thread synchronisation mechanism 155

parallel execution threshold 142
partition function 87
partitioned enclose function 89

with axis 89
pass-through values 113
passnumbers of files 248
PCRE 346
pervasive functions 1
pi-times function 90
pick function 90
plus arithmetic function 91
power function 91
primitive function classifications 4
primitive functions 1
primitive operators 111

axis 115-116
commute 119
compose 120-122
each 123-124
indexed modified assignment 114
inner product 125
modified assignment 113
outer product 126
power 127
reduce 129
reduce-first 132
reduce n-wise 132
replace 136, 346
scan 133
scan-first 134
search 136, 346
selective modified assignment 115
spawn 135
variant 136, 329, 346

Principal option 136-137, 354
print precision in session 337
print width in session 344
PROCESSOR TABLE FULL 495
product

inner 125
outer 126

profile application 338
profile user command 342
programming function keys 336

Index 529

properties 298-299
propertyget Function 64
propertyset function 64

protected copying from workspaces 462
prototype 7, 123-124, 126
put tokens 404

Q

quad indexing 65
quietly loading workspaces 470

R

random link 365
RANK ERROR 496
rank of arrays 102
ravel function 92

with axes 92
re-assignment 14
reach indexed assignment 18
reach indexing 71
read DataTable 147
reading components from files 248
reading file access matrices 247
reading file component information 248
reading native files 319
reading properties of GUI objects 424
reading screen maps 381
reap forked tasks 153
reciprocal function 95
reduce-first operator 132
reduce operator 129
reduction operator

n-wise 132
with axis 129

regular expressions 346
releasing component files 229
renaming component files 249
renaming native files 321
replace operator 136, 346

DotAll 356
Enc 360
EOL 356

Greedy 358
IC 136, 354
InEnc 359
ML 357
Mode 136, 355, 360
NEOL 357
OutEnc 359

replacing components on files 250
replacing data in native files 321
replicate operation 95

with axis 95
reset state indicator 463, 467
reshape function 97
residue function 97
RESIZE 496
resizing component files 251
resizing native files 323
response time limit 368
reverse-first function 98, 101
reverse function 98

with axis 98
right 98
Right Parenthesis 447
roll random function 99
rotate function 99

with axis 99
rsi 367

S

same 102
saving continuation workspaces 451
saving workspaces 368, 463
scalar extension 3
scalar functions 1
scan-first operator 134
scan operator 133

with axis 133
screen dimensions 369
screen maps 378
screen read 381
search operator 136, 346

DotAll 356
Enc 360

530 Dyalog APL/W Language Reference

EOL 356
Greedy 358
IC 136, 354
InEnc 359
ML 357
Mode 136, 355, 360
NEOL 357
OM 358
OutEnc 359

search path 334, 417
selection primitive functions 4
selective assignment 19
selective modified assignment 115
selector primitive functions 4
session namespace 369
set difference 42
setting properties of GUI objects 426
shadowing names 373
shape function 102
share-tying files 253
shared variables

offer couplings 393
query access control 392
query couplings 395
query outstanding offers 395
retract offers 396
set access control 391
states 397

signal 374
signal counts 155
signing off APL 329, 461
signum function 30, 103
simple assignment 12
simple indexed assignment 15
simple indexing 68
size of objects 377
sizes of component files 252
sizes of native files 325
source 385
spawn thread operator 135
special primitive functions 4
specification

axis 8, 112
split function 103

with axis 103

squad indexing 62
stack 386
standard error action 472
starting auxiliary processors

DOS 191
UNIX 371

state indicator 372, 466
and name list 467
clear 463, 467
extension 443
reset 463, 467
stack 386

states of objects 387
stop control

query 390
set 389

stop error trap 407
STRLEN 286
STRNCPY 285
structural primitive functions 4
subtract arithmetic function 103
syntax colouring 140
SYNTAX ERROR 497
sys error number 498
system commands 447
system constants 161
system errors 498
system functions 157

categorized 162
system namespaces 160
system variables 157

T

table function 104
take function 105

with axes 106
terminal control vector 398
this space 401
thread

name 403
thread synchronisation mechanism 155
threads

child numbers 399

Index 531

identity 402
kill 402
numbers 403, 411
spawn 135
synchronise 413

tie numbers 241, 315
time stamp 412
TIMEOUT 498
times arithmetic function 107
token pool 403
token requests 411
tokens

get tokens 399
put tokens 404
time-out 399
token pool 403
token requests 411

too many names 499
tracing lines in defined operations

query 406
set 405

translating native files 328
TRANSLATION ERROR 183, 197, 263, 356,

453, 498
transpose function

dyadic 107
monadic 107

transposition of axes 107
TRAP ERROR 498
trapping error conditions 407
tying component files 253-254
tying native files 326
type function 108

U

underscored alphabetic characters 174
unicode 242, 244
unicode convert 181, 398, 414
Unicode Edition 54, 58, 181, 262-263, 319,

322, 329
union set function 109
unique set function 109
unit arrays 3

unknown-entity 443
unnamed copy 453
untying component files 255
untying native files 328
update DataTable 144
User Identification 175
using 417
UTF-16 415
UTF-32 415
UTF-8 415

V

VALUE ERROR 414, 499
variant operator 136, 329, 346, 354
vector representation of operations 418
vectors

empty character 189
verify and fix input 419

W

waiting for threads to terminate 413
warning duplicate label 499
warning duplicate name 500
warning label name present in line 0 500
warning pendent operation 500
warning unmatched brackets 501
warning unmatched parentheses 501
whitespace 436
wide character 275
window

create object 421
get property 424
names of children 425
set property 426

window expose names 428
without set function 109
workspace available 420
workspace identification 427, 469
writing file access matrices 252
WS FULL 502
ws not found 502
ws too large 502

532 Dyalog APL/W Language Reference

X

xml convert 429
markup 440
unknown-entity 443
whitespace 436

Z

zilde constant 109

