
The tool of thought for expert programming

Dyalog for Windows

Conga User Guide
Version 2.2.0

Dyalog Limited

Minchens Court

Minchens Lane

Bramley

Hampshire

RG26 5BH

United Kingdom

tel:
National (01256) 830030

International +44 1256 830030

fax: +44 (0)1256 830031

email: support@dyalog.com

http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited

Copyright  1982-2011

mailto:support@dyalog.com

Copyright  2012 by Dyalog Limited.

All rights reserved.

Version 2.2.0

First Edition March 2012

No part of this publication may be reproduced in any form by any means without the

prior written permission of Dyalog Limited, Minchens Court,

Minchens Lane, Bramley, Hampshire, RG26 5BH, United Kingdom.

Dyalog Limited makes no representations or warranties with respect to the contents

hereof and specifically disclaims any implied warranties of merchantability or fitness for

any particular purpose. Dyalog Limited reserves the right to revise this publication

without notification.

All other trademarks and copyrights are acknowledged.

Contents

INTRODUCTION . 1

0. RELEASE NOTES . 2
New Functionality .. 2

Changed Functionality .. 2

Licensing Information .. 2

1. CONGA FUNDAMENTALS . 3
1.1 A Simple Conga Client ... 3

1.2. A Simple Server ... 4

1.3 Command Mode ... 6

1.4 Parallel Commands ... 8

1.5 More on Multi-Threading ... 8

1.6 Conga versus TCPSocket objects ... 9

1.7 Deflate and HTTP Compression ... 10

2. SECURE SOCKETS . 12
2.1 CA Certificates ... 12

2.2 Client and Server Certificates ... 13

2.3 Creating a Secure Client ... 14

2.3 Creating a Secure Server ... 16

2.4 Using the DRC.X509Cert Class .. 16

3. SAMPLES . 18
3.1 Overview .. 18

3.2 The Samples Namespace .. 19

3.3 Web Client .. 19

3.4 Web Server ... 21

3.5 RPC Client and Server .. 22

3.6 FTP Client ... 23

3.7 Telnet Server ... 24

3.8 Telnet Client ... 25

3.9 TODServer .. 25

APPENDIX A : FUNCTION REFERENCE . 26
Checking DRC Return Codes .. 26

APPENDIX B : CREATING AND CONVERTING CERTI FICATES 43

APPENDIX C : TLS FLAG S . 45

APPENDIX D : ERROR CO DES . 46

APPENDIX E : UPGRADIN G TO CONGA V2.2 . 47

APPENDIX F : CHANGE H ISTORY . 48
v2.0 New Functionality... 48

v2.0 Changed Functionality .. 48

New Functionality .. 49

Changed Functionality .. 49

Introduction

Conga
1

, also known as the Dyalog Remote Communicator, is a tool for

communication between applications. Conga can be used to transmit APL arrays

between two Dyalog applications which are both using Conga, and it can be used to

exchange messages with many other applications, like HTTP servers (also known as

“web servers”), web browsers, or any other web clients and servers including Telnet,

SMTP, POP3 and so forth.

Uses of Conga include, but are not limited to the following:

 Retrieving information from – or “posting” data to – the internet.

 Accessing internet-based services like FTP, SMTP, or Telnet

 Writing an APL application that acts as a Web (HTTP) Server, mail server or any

other kind of service available over an intra- or the internet.

 APL “Remote Procedure Call” (RPC) servers which receive APL arrays from

client applications, process data, and return APL arrays as the result.

From version 12.0 of Dyalog, Conga replaces the use of TCPSocket objects as the

recommended mechanism for managing TCP-based communications from Dyalog.

(Although Conga currently only uses the TCP protocol, the interface to Conga is at a

level where other communication mechanisms could be added in the future.) The

programming model for Conga is significantly simpler, and supports multi-threaded

applications more easily than do TCPSocket objects. Conga also supports secure

communication using TLS (Transport Layer Security), which is the successor to SSL

(Secure Sockets Layer).

Conga is implemented as a Windows Dynamic Link Library or a Unix/Linux Shared

Library. The library is loaded and accessed through the companion namespace named

DRC, found in the distributed workspace named Conga. The Conga workspace also

contains a number of sample applications, which illustrate its use, and are discussed

in this document.

1 Named after one of the earliest known forms of long distance messaging, the Conga drum.

 Conga User Guide 2

0. Release Notes

Version 2.2
Conga version 2.2 is an incremental update to Conga version 2.1. While released as

a companion to Dyalog APL version 13.1, Conga v2.2 can be used with earlier

versions of Dyalog APL as well.

New Functionality

 Deflate Compression: Conga v2.2 includes a new class, #.DRC.flate, which

implements the Deflate compression scheme using the zlib open source

compression library. For more information on zlib, please refer to http://zlib.net.

Deflate compression is one of several content encoding schemes used by all major

web servers and browsers to optimize the flow of data across networks.

 DRC.Version function: Returns the current version of Conga. This is useful if

you write code that dynamically loads Conga.

Changed Functionality

 DRC.Send function: Allows a new value, 2, for the close connection parameter.

This is used to send a command without expecting a response. On the client side,

the command is disposed of after sending. On the server side, the command is

disposed of after receipt, thereby preventing the server from doing a subsequent

DRC.Respond.

 DRC.Version function: The GnuTLS version is reported.

 Samples.HTTPGet function: Now supports deflate HTTP compression.

Licensing Information

 If you redistribute code that uses Conga, please refer to the "Licenses for third-

party components" document found in the help directory of the Dyalog APL

installation.

http://zlib.net/

 Conga User Guide 3

1. Conga fundamentals

This chapter introduces Conga Client and Server objects, and demonstrates their use

through simple examples.

1.1 A Simple Conga Client

A Conga client is used to establish contact with a service which is already running

and “listening” on a pre-determined “port” at a known TCP “address”. The service

might be an APL application which has created a Conga server, but it can also be any

application or service which provides services through TCP sockets. For example,

most Unix systems, and many Windows servers, provide a set of simple services like

the Time of Day (TOD) service, or the Quote of the Day (QOTD) service, both of

which respond with a text message as soon as a connection is made to them. Once the

message has been sent, they immediately close the connection.

The interface to Conga is provided in a namespace called DRC (for Dyalog Remote

Communicator
2
). Before using any DRC functions, we need to initialize the system by

loading the Windows DLL or Unix Shared Library. To do this, we need to load the

Conga workspace or copy the DRC namespace from it, and call DRC.Init:

)COPY Conga DRC
…Conga saved… some time on some day…
 DRC.Init ''
0 Conga loaded from: …\bin\Conga20Uni

The function DRC.Clt is used to create a Conga client. In the following example, we

provide an argument with five elements, which are:

 the name that we want to use to refer to the client object (C1)

 the IP address or name of the server machine providing the service (localhost),

 the port on which the service is listening (13 – the “Time of Day” service),

 the type of socket (Text), and finally

 the size of the buffer which should be created to receive data (1000).

 DRC.Clt 'C1' 'localhost' 13 'Text' 1000
1111 ERR_CONNECT_DATA /* Could not connect … */

In the event of an error, the first element of the result of all DRC functions is a return

code, the second is an error name, and in some cases the third element contains more

information about the error. You should not assume a fixed length for the result;

additional information may be included in future versions.

The above is the most likely result if you try the example under Windows; there is

not usually a TOD service running. Under some versions of Windows, you can go to

Control Panel|Programs|Turn Windows features on or off, and enable Simple TCPIP services.

2 Or the Democratic Republic of Congo, the home of many Congas.

 Conga User Guide 4

If you got the 1111 error, you can either enable the services on your machine, write

your own (see the next section), or use the address of a host which does provide a

TOD service – for example:

 DRC.Clt 'C1' 'myLinuxBox' 13 'Text' 0
0

The result code of zero indicates that the client was successfully created. To receive

incoming data, call DRC.Wait with the name of the object on which to wait:

 DISP DRC.Wait 'C1'
┌─┬──┬─────┬─────────────────────────┐
│0│C1│Block│09:58:40 13-02-2008(crlf)│
└─┴──┴─────┴─────────────────────────┘

The elements of the result are the return code (0), the name of the object (C1), the

type of event (Block), and data associated with the event.

Finally, we should close the client object:

 DRC.Close 'C1'
0

The above illustrates the simplest possible use of a Conga client (for a further

example, see the function Samples.TestSimpleServices in the Conga

workspace). Most uses of a client would also require the use of the function

DRC.Send to transmit data to the service before receiving a result – and an

understanding of a few more possible return codes and event types from DRC.Wait.

We’ll take a look at a few examples of this later on, but first we’ll take a look at the

simplest imaginable Conga server:

1.2. A Simple Server

The Time of Day service used in the previous example is a very simple server, and

can be implemented using a handful of calls to Conga to create a server object. The

following function is provided under the name TODServer.Run in the Conga

workspace:

 Conga User Guide 5

 ∇ Run port;wait;data;event;obj;rc;r
[1] ⍝ Time of Day Server Example (use port 13 by default)
[2]
[3] ##.DRC.Init '' ⋄ DONE←0 ⍝ DONE is used to stop service
[4] :If 0≠1⊃r←##.DRC.Srv 'TOD' '' port 'Text'
[5] ⎕←'Unable to start TOD server: ',⍕r
[6] :Else
[7] ⎕←'TOD Server started on port ',⍕port
[8] :While ~DONE
[9] rc obj event data←4↑wait←##.DRC.Wait 'TOD' 1000
 ⍝ Time out every second
[10] :Select rc
[11] :Case 0
[12] :Select event
[13] :Case 'Connect'
[14] r←(,'ZI2,<:>,ZI2,<:>,ZI2,< >,ZI2,<->,ZI2,<->,ZI4'
 ⎕FMT 1 6⍴⎕TS[4 5 6 3 2 1]),⎕AV[4 3]
[15] {}##.DRC.Send obj r 1 ⍝ 1=Close connection
[16] :Else
[17] {}##.DRC.Close obj ⍝ Anything unexpected
[18] :EndSelect
[19] :Case 100 ⍝ Time out - Housekeeping Here
[20] :Else
[21] ⎕←'Error in Wait: ',⍕wait ⋄ DONE←1
[22] :EndSelect
[23] :EndWhile
[24] {}##.DRC.Close'TOD' ⋄ ⎕←'TOD Server terminated.'
[25] :EndIf
 ∇

This function enters a loop where it waits for connections. Therefore, if we want to

be able experiment with using this service without starting a second APL session, we

start it in using the spawn operator (&) so that it runs in a separate thread:

 TODServer.Run&13
TOD Server started on port 13

The right argument is the port number: If your machine is already running a TOD

service on port 13, you will probably get socket error number 10048, and you will

need to use a different port for the new service. The following examples assume that

port 13 was available:

 DRC.Clt 'C1' 'localhost' 13 'Text'
0
 DRC.Wait 'C1'
 0 C1 Block 14:36:23 06-05-2007
 DRC.Close 'C1'
0

Note that the above service is a completely normal TOD service, in the sense that it

could be used by any program which is written to use a TOD service – not only

Dyalog applications using Conga. We can stop the server as follows (it may take a

second for the Server to time out and discover that it has been asked to shut down):

 TODServer.DONE←1
TOD Server terminated.

The function Run works as follows:

[3] Call DRC.Init and set global flag DONE to zero.

[4] Create a Server object named TOD on selected port in Text mode.

 Conga User Guide 6

[8] Repeat the following until DONE is equal to 1:

[9] Wait for any event and split the result into rc (return code), obj (object

name), event and data. obj will be a string identifying a “child object”

of TOD, with a name like 'TOD.CON00000000'.

[14] If return code was 0 and the event was Connect, format the time of day

[15] Send the time of day to obj. The 1 in the 3rd element of the argument to

Send instructs Conga to close the object as soon as the data has been sent.

[17] For any other event, we simply close the connection. (We are a very

simple service.)

[19] If you want the service to periodically do housekeeping tasks, we will

arrive here every 1000 milliseconds (specified in the argument to Wait on

line 9).

[21] Any return code from Wait other than 0 or 100 will cause a shutdown of

the service.

[24] When we are done, close the server object

1.3 Command Mode

As we have seen in the preceding sections, we can use Conga as a client to connect to

an existing server and make requests, or as a server to wait for connection from

clients and provide a service.

In the above examples, we used Text connections, which are appropriate for most

web applications. Even when remote procedure calls are made over the internet, with

arguments and results containing arguments which are not simply text strings, the

parameters are usually encoded using SOAP/XML, which is a text-based encoding.

Conga clients and servers support three different connection types:

Text Allows transmission of character strings, which must consist of characters

with Unicode code points less than 256. To transmit characters outside

this range, it is recommended that you UTF-8 encode the data (see ⎕UCS).

Raw Essentially the same as a Text connection, except that data is represented

as integers in the range 0 to 255 (for coding simplicity, negative integers

¯128 to ¯1 are also accepted and mapped to 128-255).

Command Each transmission consists of a complete APL object in a binary format.

Text and Raw connections are essentially equivalent, and are typically used when

only one end of the connection is an APL application.

Command connections are designed to make it easy for APL clients and servers to

communicate with each other. The internal representation is the binary format used

by APL itself, it is more compact that a textual representation, and numbers do not

need to be formatted and interpreted in order to be transmitted. No buffer size needs

to be declared, and DRC.Wait only reports incoming data when an entire APL array

has arrived. For connections between APL clients and servers, Command mode is

therefore more convenient.

When using Text and Raw connections, Wait will report incoming data each time a

TCP packet arrives, or the receive buffer is full. The recipient may need to buffer

 Conga User Guide 7

incoming data in the workspace and analyze it to determine whether a complete

message has arrived.

We could produce a Command Mode Time-of-Day server for use by APL clients

only, which returns the time as a 7-element array in ⎕TS format.

To do this, we need to make the following changes to TODServer.Run: Remove

'Text' from the end of line Run[4] (Comamnd mode is the default). Lines [13-
15] can be replaced by the following:

[13] :Case 'Connect' ⍝ Ignore
[14] :Case 'Receive'
[15] {}##.DRC.Respond obj ⎕TS

In Command mode, all communication on a connection is synchronous and broken

up into “commands”, each consisting of a request from the client followed by a

response from the server. Unlike the text mode TOD service, a server in Command

mode cannot initiate the transmission of data when the connection is made, but has to

wait for the client to send a request to which it can respond. If our TOD server

wanted to record connections, it could use the Connect case statement for this, but

we will ignore this for now and simply respond with the current timestamp regardless

of the content of the request.

Note that, in Command mode, the function DRC.Respond is used in place of

DRC.Send. A function called DRC.Progress can be used to send progress messages

while the server is processing a command, to allow the client to show the user a

progress bar or other status information.

We can now start the modified server – ideally on some other port that 13, so that it is

not confused with a “normal” TOD server. We could run both at the same time, in

different threads, if we so desire:

 TODServer.Run&913
TOD Server started on port 913

A Dyalog client can now retrieve a numeric timestamp from the server, as follows:

 DRC.Clt 'C1' 'localhost' 913
0 C1
 DRC.Send 'C1' ''
0 C1.Auto00000000

The first element of the argument to Send is a command name. If the name of the

connection is used instead, Conga will generate a command name automatically, in

this case C1.Auto00000000. The command name is always returned in the second

element of the result.

 Dyalog client can now retrieve a numeric timestamp from the server, as follows:

 DRC.Wait 'C1'
0 C1.Auto00000000 Receive 2008 2 13 10 41 39 585

Element 4 of the result is now a 7-element integer vector rather than a formatted

timestamp, which is more useful to an APL client. However, the server is of now

unusable by other TCP client programs, if they are expecting a Text mode TOD

server. For this reason, it would be unwise to run the command mode service as a

listener on port 13.

 Conga User Guide 8

Note that the Command mode server also does not close the connection after sending

a timestamp, so we can ask for the time of day again if we like (this time we will

supply a maximum wait time of 5 seconds to DRC.Wait):

 DRC.Send 'C1' ''
0 C1.Auto00000001
 DRC.Wait 'C1' 5000
0 C1.Auto00000001 Receive 2008 2 14 21 20 8 169

1.4 Parallel Commands

Although the command more protocol is synchronous, you can have more than one

command active at the same time, and it is not necessary to wait for the response to

one command before the next is sent. You can start multiple commands and retrieve

the results in any order that you like. In the above examples, the command name was

automatically generated, but you can also specify command names if you prefer:

 DRC.Send 'C1.TS1' ''
0 C1.TS1
 DRC.Send 'C1.TS2' ''
0 C1.TS2
 DRC.Wait 'C1.TS2' 1000
0 C1.TS2 Receive 2008 2 14 21 52 17 48
 DRC.Wait 'C1.TS1' 1000
0 C1.TS1 Receive 2008 2 14 21 52 14 873

Note that the timestamp shows that the TS1 command was executed first, even

though the result was retrieved last.

The command mode protocol allows multiple threads to work independently. Unlike

TCPSocket objects, which can only be “dequeued” by the thread which created

them, any thread can wait for the result of a command, so long as it knows the name

(for predictable results, only one thread should wait for each command). Multiple

threads can share the same sever connection, so a thread can send a command and

then dispatch a new thread to wait for and process the result of a command, while the

main thread continues with other work. For example:

 DRC.Send 'C1.TS1' ''
0 C1.TS1
 DRC.Send 'C1.TS2' ''
0 C1.TS2
 {⎕TID,DRC.Wait ⍵ 1000}&¨ 'C1.TS1' 'C1.TS2'
29 0 C1.TS1 Receive 2008 2 14 21 55 39 465
30 0 C1.TS2 Receive 2008 2 14 21 55 39 553

The above expression asynchronously runs a dynamic function – each in a separate

thread - for each command. Each function call returns the thread number and the

result of Wait. Calls to Wait are “thread switching points”, which means that APL

will suspend a waiting thread, and allow other threads continue working. Also note

that command names can be reused as soon as the result has been received – but not

before.

1.5 More on Multi-Threading

Conga is specifically designed to support multi-threaded applications. In particular,

the ability to have a program work as both client and server simultaneously, without

blocking other threads, has been a key design goal. All calls to Conga are

implemented as asynchronous calls to an external Windows DLL or Unix/Linux

Shared Library. Threads waiting on a result from Conga are suspended, but all other

threads can continue execution.

 Conga User Guide 9

For example, the RPCServer namespace contains an example of a server working in

Command mode. This server is able to execute APL statements in the server

workspace and return results to client applications. The function

Samples.TestRPCServer starts the RPC server and then exercises it by making a

number of calls. Each client call is made in a separate thread. On the server side, the

function RPCServer.Process is dispatched in a new thread to handle each request.

(Keep an eye on the thread count at the bottom of the session as you run this

function.)

If this server needed to know the time, we could safely add a call to a Time-Of-Day

service accessed through Conga to the function which processes client requests,

simply by adding a couple of lines to the beginning of the function

RPCServer.Process:

[2.1] tod←2⊃##.DRC.Clt '' 'localhost' 13 'Text' 1000
[2.2] time←4⊃##.DRC.Wait tod 1000 ⋄ ##.DRC.Close tod

(Adding error checking and localization of tod and time is left as an exercise for the

reader .)

The TOD service could be external, but it could also safely run in the same

workspace as everything else – so long as it was launched as a separate thread as

shown in section 1.2. Outside the APL session, Conga (which is written in C) uses

multiple operating system threads to handle TCP communications. It will handle

communications independently of what the interpreter is doing, and return each result

to the APL thread which is waiting, as appropriate.

The application developer only needs to take care that there is an APL thread waiting

on each server object that has been created. (Otherwise requests will not be serviced.)

Having more than one thread waiting on the same object is not recommended – it can

lead to unpredictable behaviour.

Tip If you experiment with adding the above functionality and everything seems to

lock up, try using the Threads|Resume all Threads menu item. By default, all threads

are paused on error and resuming execution of a suspended function does not restart

other threads by default.

1.6 Conga versus TCPSocket objects

Experienced Dyalog users will recognize that the functionality provided by Conga is

similar to that provided by the Dyalog TCPSocket component, and wonder why

Dyalog is introducing a second mechanism to address essentially the same

requirements.

The TCPSocket object is implemented as a GUI object and closely models the

underlying TCP socket which it is covering. Although this approach is very flexible,

experience has shown that most applications fall into a small handful of usage

patterns, and that many APL programmers struggle to manage correctly all the issues

related to initialising sockets, handling errors, and – last but definitely not easiest –

closing sockets. In addition, because events on TCP socket objects are “received”

using the system function ⎕DQ, which is also used to handle GUI events, TCPSocket

objects are often a little tricky to use to implement remote-calling mechanisms that

will be used inside – or in parallel with – callback functions in a GUI application.

Multi-threaded and multi-tier applications can be quite difficult to implement using

this model.

Conga is designed to make it easy for APL developers to embed client or server

components in APL applications. Conga hides many of the details of TCP socket

 Conga User Guide 10

handling, notifies the application of incoming data, connection events and errors –

but the application does not need to do anything other than handle the data which

arrives. Conga makes it straightforward to make remote calls in a multi-threaded

client environment.

Finally, because Conga hides most of the details of TCP sockets, it can be ported to

work on top of other communications mechanisms at some point in the future.

1.7 Deflate and HTTP Compression

The DRC.flate namespace contains functions to provide support for "deflate" data

compression. Deflate is one of several content encoding schemes that can be used to

implement HTTP compression. All major web browsers and web servers support

deflate.

The first step to using deflate is to make sure the deflate compression library is

loaded.

 DRC.flate.IsAvailable
1

While deflate can be used as a general data compression utility, we will focus on its

use to provide HTTP compression. HTTP compression is a technique to improve

throughput between HTTP clients and servers by transmitting less data across the

network. Typically a client will be a web browser like Microsoft Internet Explorer,

Google Chrome, Mozilla Firefox, and Apple Safari and a server will be a web server

like Microsoft IIS, Apache, or IBM WebSphere. DRC.flate enables Conga-based

clients and servers to implement and support HTTP compression.

How HTTP Compression Works

In order for HTTP compression to work, both the client and server need to support

the same content encoding scheme. The client informs the server what compression

schemes it supports via the Accept-Encoding HTTP header that is send with the

request. Accept-Encoding is a comma-delimited list of compression schemes that

the client can process. Gzip and deflate are, at present, the two predominant

compression schemes in use.

The server examines at the Accept-Encoding header received from the client and if

it supports one or more of the listed schemes, it may choose to encode the body of
its response using one of the schemes. The server is not required to use the
content encoding scheme, but if it does, it informs the client of the content
encoding scheme it used via the Content-Encoding HTTP header.

Finally, when the client receives the response, it checks the Content-Encoding
HTTP header and, if found, the body of the response using that scheme.

The open source library, zlib, used to implement deflate compression prepends a
2-byte header, normally 120 156, to the beginning of the compressed data.
Most web browsers handle this without difficulty, however Microsoft's Internet
Explorer does not properly process these bytes, and as such, web servers tend to
strip them off. This requires some consideration for both client and server sides.

One choice you will need to make is whether to use 'text' or 'raw' mode with
clients and servers that will use deflate. 'text' mode is more convenient for
the parsing and processing of the HTTP message wrapper, whereas 'raw' mode
is better suited for passing data to DRC.flate.Deflate and
DRC.flate.Inflate.

 Conga User Guide 11

Client Side Considerations

If you plan to implement a client that uses deflate compression:

 Add the HTTP header:
Accept-Encoding: deflate
to the HTTP headers sent with the client request.

 DRC.flate.Inflate takes as its right argument an integer vector of values

in the range 0-255. As such, it is best suited to be used with DRC.Clt

'raw' mode. However, if you use 'text' mode, you should use
 'UTF-8' ⎕UCS DRC.flate.Inflate 256|83 ⎕DR data

to covert the data to a form suitable for DRC.flate.Inflate.

 Check the Content-Encoding HTTP header in the response, and if it

contains 'deflate', prepend 120 156 to the response before calling
DRC.flate.Inflate

 See the function Samples.HTTPGet for an example of the use of client-side

HTTP compression.

Server Side Considerations

If you need to implement a server which supports deflate compression:

 The first choice is to decide when to use HTTP compression. For small

responses, the CPU overhead to perform the compression may outweigh the

gains of transmitting less data. Also, there is no benefit to compressing data

which is already in a compressed format. These would include compressed

files such as .zip and .gz files and many graphics formats such as .jpg/.jpeg

and .gif.

 When a request from a client is received, check for the existence of the

Content-Encoding HTTP header and, if found, that it contains 'deflate'.

 When you do use deflate to compress your response, add the HTTP header:
Accept-Encoding: deflate
to the HTTP headers sent with the server response.

 DRC.flate.Deflate takes as its right argument an integer vector of

values in the range 0-255. However, responses, such as web pages, are best

assembled as text. As such, you'll probably need to perform some

conversion. The following is a slightly modified sample of code from

MiServer, an APL-based web server. Note how the 2-byte header is

dropped from the result.

∇ (rc raw)←Compress buf;toutf8
:Implements Method ContentEncoder.Compress
toutf8←{3=10|⎕DR ⍵: 256|⍵ ⋄ 'UTF-8' ⎕UCS ⍵}
:Trap 0
 ⍝↓↓ drop of 789C header (IE cannot process it)
 raw←{(2×120 156≡2↑⍵)↓⍵}#.DRC.flate.Deflate toutf8 buf
 rc←0
:Else
 (rc raw)←1 ⎕DM
:EndTrap
∇

 Conga User Guide 12

2. Secure Sockets

Conga supports secure connections using SSL/TLS protocols. If you do not intend to

use secure communications, you can safely skip to the next chapter which discusses

the samples which are included with Conga. Secure connections allow client and

server applications to:

1. Verify the identity of the partner that they are connected to.

2. Encrypt messages so that the contents cannot be deciphered by a third party, even

when using text or raw mode connections.

3. Ensure that messages have not been tampered with by a third party, during

transmission.

SSL/TLS is a generic term for a set of related protocols used to add confidentiality

and authentication to communications channels such as sockets. TLS, which stands

for “Transport Layer Security” is the successor to SSL, the “Secure Socket Layer”

protocol V3 designed by Netscape. TLS is defined by the IETF and described in

RFC 2246. There are only minor differences between the two protocols, so their

names are often used interchangeably. A good discussion of SSL/TLS may be found

at http://technet.microsoft.com/en-us/library/cc784450(WS.10).aspx

A good overview of the public key cryptography techniques used in SSL/TLS can be

found at:

http://developer.mozilla.org/en/docs/Introduction_to_Public-Key_Cryptography

The sections on the SSL protocol, and CA (certificate authority) certificates are

recommended reading for anyone who would like to make use of secure

communications. The page http://en.wikipedia.org/wiki/X.509 also contains an

introduction to how X.509 certificates and how CAs (Certificate Authorities) are

used to establish trust.

To use TLS/SSL, Conga simply needs to be passed the necessary Certificate and

Public Key files, when Client and Server objects are created. Once a secure

connection is established, the same functions are used to send and receive data – and

with the same arguments – as when using a non-secure connection.

2.1 CA Certificates

CAs (Certificate Authorities) are trusted third parties that sign certificates to indicate

that a certificate belongs to whom it claims to belong to. Assuming that you trust the

CA that signed a certificate that some third party presents to you, and the CA

certificate is still valid, you can use the certificate to verify the identity of your

communications partner, or “Peer”. To check the CAs signature on a certificate, you

need to have access to the CAs public certificate (often called a root certificate).

Conga can be used to secure many different types of system, which may require

different (and sometimes private) root certificates. Therefore, you may need to obtain

the root certificates from several CAs. All public root certificates that you wish to use

with Conga need to be placed in a root certificate directory. Conga needs to be

http://technet.microsoft.com/en-us/library/cc784450(WS.10).aspx
http://developer.mozilla.org/en/docs/Introduction_to_Public-Key_Cryptography
http://en.wikipedia.org/wiki/X.509

 Conga User Guide 13

informed about the location of the root certificates with a call to the function

SetProp. For example, you should be able to use the sample root certificates by

typing:

 DRC.SetProp '.' 'RootCertDir' (Samples.CertPath,'ca')

Samples.CertPath is a function which returns the location of the TestCertificates

folder (if it can find it).

You may be lucky enough to have a system administrator who provides you with all

the necessary certificates, but in case you do not, fairly recent copies of the most

common certificates are shipped with Conga, and you can download the latest

certificates from the CAs websites.

The following table lists the download pages for root certificates for the most widely

used CAs, and whether their main root certificates are shipped with Conga (in which

case you can find them in the folder PublicCACerts below the main Dyalog program

folder). Please note that PublicCACerts contains only the CA main root certificates.

Most CAs have additional certificates available for download, some that may be

application specific.

Authority Included Download root certificates from

VeriSign,

Geotrust &

Thawte

 http://www.verisign.com/support/roots.html

Comodo  http://www.comodo.com/repository/

GoDaddy &

ValiCert

 https://certs.godaddy.com/Repository.go

Cybertrust  http://cybertrust.omniroot.com/support/sureserver/rootcert_ap.cfm

Entrust  http://www.entrust.net/developer/index.cfm

CAcert  http://www.cacert.org/index.php?id=3

GlobalSign  https://www.globalsign.com/support/root-certificate/osroot.htm

IPS

Servidores

 http://www.ips.es/Declaraciones/NuevasCAS/NuevasCAS.html

Note that some organizations use root certificates generated within the company, in

which case you may be using root certificates generated by your own system

administrators rather than one of the above authorities.

Conga accepts certificates in files with one of the extensions .cer, .pem or .der files.

These files must contain data in either PEM or DER format. See Appendix B for

instructions on how to create certificate files.

2.2 Client and Server Certificates

These certificates are files used to identify the machines at each end of a secure

connection, so that a peer can decide whether or not they are who they claim to be.

Conga uses X.509 certificates to establish the identity of the peer in a TLS/SSL

connection. A X.509 certificate contains the public portions of a certificate, including

details of the public key algorithm and signing certificates signature to validate the

contents of the certificate

http://www.verisign.com/support/roots.html
http://www.comodo.com/repository/
https://certs.godaddy.com/Repository.go
http://cybertrust.omniroot.com/support/sureserver/rootcert_ap.cfm
http://www.entrust.net/developer/index.cfm
http://www.cacert.org/index.php?id=3
https://www.globalsign.com/support/root-certificate/osroot.htm
http://www.ips.es/Declaraciones/NuevasCAS/NuevasCAS.html

 Conga User Guide 14

The Dyalog installation includes a set of test certificates which can be used to test

SSL support, and are used by the functions with names beginning with TestSecure

in the Samples namespace. The test certificates are found in the folder

TestCertificates, which has 3 subfolders called ca, Server and Client. These

certificates can be used for testing your own code, but should never be used in

production code.

TestCertificates/ca/ca-key.pem: The private key for the test CA, which

was used to sign the client/server & CA certificates. As this is distributed with Conga

no certificate that relies on this can be considered truly secure.

TestCertificates/ca/ca-cert.pem: The public certificate for the test CA.

Used to authenticate the client/server certificates.

TestCertificates/ca/DyalogCaPublic.pem: The public certificate for

the test CA for https://ssltest.dyalog.com/ (which is used in the function

TestSecureWebClient). Note that this is again a self-signed certificate, but using a

different CA key to the one for ca-cert.pem.

TestCertificates/client/client-cert.pem and client-key.pem:

The certificate/key pair used for sample clients.

TestCertificates/server/server-cert.pem and server-key.pem:

The certificate/key pair used for sample servers.

Certificate Stores

Certificates can also be stored in common repository known as a certificate store.

Conga v2.1 supports the ability to read certificates from the MicroSoft certificate

store under Windows.

Revocation Lists

Conga does not currently support the use of Certificate Revocation Lists. However

this may be added in future versions if required.

2.3 Creating a Secure Client

Secure Conga Clients are created by passing certificate and key information to the

Clt function. Beginning with Conga v2.1, the recommended way to do this is to use

the DRC.X509Cert.

 cert←⊃DRC.X509Cert.ReadCertFromFile
 path,'client/client-cert.pem'
 cert.KeyOrigin←'DER' (path,'client/client-key.pem)
 certs←('X509' cert)('SSLValidation' 16)
 DRC.Clt 'C1' 'localhost' 713 'Text', certs

The first line uses the X509Cert class method ReadCertFromFile to read the

certificate and create an instance that contains all of the information for the

certificate. The second line specifies the location of the file containing the private

key.

Another technique, which is similar to that used in Conga v2.0, is to specify the

locations of the certificate and key files.

https://ssltest.dyalog.com/

 Conga User Guide 15

 certs←⊂('PublicCertFile' ('DER' (path,'client/client-
 cert.pem')))
 certs,←⊂('PrivateKeyFile' ('DER' (path,'client/client-
 key.pem')))
 certs,←⊂('SSLValidation' 16)
 DRC.Clt 'C1' 'localhost' 713 'Text', certs

PublicCertFile and PrivateKeyFile identify the files containing the public

certificate and private key files.

In fact, a certificate is not required in order to create a secure client; many secure

servers accept connections from clients without certificates. In this case, the server

cannot verify the identity of the client, but the connection is still encrypted and safe

from tampering. Most web commerce sites use this type of connection to protect

sensitive used data transmitted over the internet without requiring that customers

have a digital signature. To create a secure connection with no certificate, you may

create an empty certificate as in ('X509' (⎕NEW DRC.X509Cert)).

SSLValidation contains the sum of TLS flags (see Appendix C for a complete list).

A typical flag value used for a client connection would be 16 (accept the server

certificate even if its hostname does not match the one we asked to connect to), or 32

(accept without validating). The latter can be useful to determine the reason why a

connection is failing. For example, if we try to connect to a secure site, and have not

set RootCertDir to point to the required CA certificates, all attempts to make

secure connections will fail:

 args←'' 'ssltest.dyalog.com' 443 'Text' 100000
 args,←⊂('X509' (⎕NEW DRC.X509Cert ''))

 DRC.SetProp '.' 'RootCertDir' 'c:\wrong_folder'
 DRC.Clt args
1202 ERR_INVALID_PEER_CERTIFICATE
 /* The peers certificate is not valid */

Without access to the necessary CA certificate, validation fails. But we can connect if

we disable validation:

 DRC.Clt args, ⊂'SSLValidation' 32
0 CLT00000051

Having connected without validation, we can retrieve the certificate information and

use this to decide whether we wish to proceed with the conversation with this server

(output above has been adjusted to increase readability):

 rc cert←DRC.GetProp 'CLT00000051' 'PeerCert'
 ,[1.5]1⊃cert.Formatted.(ValidFrom ValidTo Issuer Subject)
Mon Dec 17 15:56:44 2007
Sat Dec 15 15:56:44 2012
C=UK,ST=Hampshire,L=Bramley,O=Dyalog ltd.,CN=Dyalog Ltd. Test
 Root CA,EMAIL=jonathan@dyalog.com
C=UK,ST=Hampshire,L=Bramley,O=Dyalog ltd.,CN=Dyalog Ltd. Test
 Root CA,EMAIL=jonathan@dyalog.com

We can also correct the problem by pointing to the root certificates:

 DRC.SetProp '.' 'RootCertDir' 'C:\..\TestCertificates\ca'
0
 DRC.Clt args, ⊂'SSLValidation' 0
0 CLT00000052

 Conga User Guide 16

(The final element above is redundant; 0 is the default value.) Once a Secure Client

has been created, the rest of the communication works in exactly the same was as for

a non-secure client.

2.3 Creating a Secure Server

Secure Servers are created using the same additional arguments as for Clients (see the

previous section on creating secure clients for an explanation). Unlike a secure client,

a secure server must have a certificate.

When a client has connected to a secure server, it is possible to use GetProp on the

new connection to retrieve information about the client certificate. However, since

client certificates are not required, information about client certificates is only

transmitted to the server if this had been requested through the use of one of the flags

RequestClientCertificate (64) or RequireClientCertificate (128). The former allows

connections without client certificates and fetches information if the client has a

certificate, the latter will only allow connections from clients which do have a

certificate. If no client certificate has been requested, or no certificate exists, the

certificate information will have zero rows when queried.

Note that validation of client certificates requires access to root certificates, so you

must first have used SetProp to identify the folder containing these certificates.

The flags controlling certificates have the same meaning for a server as for a client,

except that in the case of a server they are applied each time a new connection is

made, rather than on creation of the server object. Note that connections which are

rejected due to certificate validation failure do not generate events on the server that

application code will need to handle.

2.4 Using the DRC.X509Cert Class

Conga v2.1 introduces a new class, DRC.X509Cert, to encapsulate certificate

handling. DRC.X509Cert has methods to read certificates from files, folders, and

Microsoft certificate stores. A complete description of the class can be found in the

Reference section of this document.

Read one or more certificates from file. (Statements have been formatted for

readability.)

 path←Samples.CertPath
 file←path,'client/client-cert.pem'
 ⍴mycert←DRC.X509Class.ReadCertFromFile file
1

Since there’s only a single certificate, we’ll peel away the outermost layer of

nesting.

 ⊢mycert←⊃mycert
#.DRC.X509Cert.[X509Cert]
 mycert.⎕NL ¯2 ⍝ examine its properties
 Cert CertOrigin Elements Extended Formatted KeyOrigin
LDRC ParentCert UseMSStoreAPI

Elements, Extended, and Formatted contain specific information about the

certificate. Elements contains the information in a basic format while

Formatted and Extended have the same elementsin a more human readable

format, and Extended may, in some instances, contain more information.

 Conga User Guide 17

 mycert.Elements.⎕nl -2
 AlgorithmID AlgorithmParams Description EnhancedKeyUsage
Extensions FriendlyName Issuer IssuerID Key KeyContainer
KeyHex KeyID KeyLength KeyParams KeyProvider
KeyProviderType SerialNo Subject SubjectID ValidFrom
ValidTo Version

 mycert.Elements.(ValidFrom ValidTo)
 2008 2 15 11 19 50 0 2018 2 12 11 20 4 0
 mycert.Formatted.(ValidFrom ValidTo)
 Fri Feb 15 11:19:50 2008
 Mon Feb 12 11:20:04 2018
 mycert.Extended.(ValidFrom ValidTo)
 Fri Feb 15 11:19:50 2008
 Mon Feb 12 11:20:04 2018

 mycert.⎕nl ¯3 ⍝ examine methods
 AsArg Chain IsCert ReadCertFromFile ReadCertFromFolder
ReadCertFromStore

 mycert.IsCert ⍝ my certificate is indeed a certificate!
1

Certificate Chains

A certificate chain, also known as a certification path, is a list of certificates used for

authentication. The chain starts with the certificate for an entity. Each certificate in

the chain is signed by the issuer which is the next entity in the chain. This continues

until a root CA certificate is reached.

In Conga v2.0 you could specify a certificate chain by supplying a list of comma

separated file names

 mycert.Chain
 #.DRC.X509Cert.[X509Cert] #.DRC.X509Cert.[X509Cert]

Here we have the certificate chain for the test client certificate which consists of the

client certificate and the test CA certificate. You can verify this by seeing that is

issuer for the lower certificate is the same at the subject for the higher one. You

might also notice that the Test CA certificate is self-signed, meaning the subject and

issuer are the same.

]display mycert.Chain.Formatted.Issuer
┌→──┐
│ ┌→───────────────────┐ ┌→───────────────────┐ │
│ │O=Test CA,CN=Test CA│ │O=Test CA,CN=Test CA│ │
│ └────────────────────┘ └────────────────────┘ │
└∊──┘
]display mycert.Chain.Formatted.Subject
┌→──┐
│ ┌→─────────────┐ ┌→───────────────────┐ │
│ │CN=Test client│ │O=Test CA,CN=Test CA│ │
│ └──────────────┘ └────────────────────┘ │
└∊──┘

 Conga User Guide 18

3. Samples

The distributed workspace Conga contains a number of working examples, which are

intended to demonstrate how to use most of the capabilities of Conga. Although they

are simple, many of the samples have enough functionality to be used as the starting

point for communicating Dyalog applications.

For a complete list of Conga functions, see Appendix A.

3.1 Overview

The Samples workspace contains the following classes and namespaces:

DRC The Conga interface functions – see Appendix A for a

complete function reference

FTPClient A class which implements a “Passive Mode” FTP

Client, exposing functions to List the contents of a

folder on an FTP Server, Get and Put in binary and

text mode

HTTPUtils A collection of utilities useful for manipulating HTTP

headers

Parser A utility which is used by the TelnetClient class to

parse constructor options

RPCServer A framework for a Remote Procedure Server based

on Command-mode clients for communication

between APL systems

Samples A collection of functions which demonstrate and test

everything else in the workspace. The function

Samples.HTTPGet is a tool for extracting the

contents of any web page

TelnetClient A class which allows you to control Telnet sessions

(log on to a remote computer, collect session output)

TelnetServer An oversimplified Telnet server, which (unlike the

TelnetClient) does not properly support Telnet

session option negotiation

TODServer The simple “Time Of day” service, discussed in the

introductory chapter

WebServer A simple (but functional) HTTP Server, which can be

used to provide simple Web Services

 Conga User Guide 19

3.2 The Samples Namespace

The Samples namespace contains a number of functions with names beginning with

Test. Between them, these examples should show examples of most of the different

ways that the above components can be used. In alphabetical order, the test functions

supplied with Conga v2.1 are:

TestAll, TestAllSecure Cover-functions which run several other Test

functions

TestFTPClient Uses the FTPClient class to connect to

ftp.mirrorservice.org and downloads the file

pub/readme.txt

TestSecureConnection Creates a secure server and connects a secure client to

it, sends one transaction back and forth.

TestSecureWebClient Secure version of TestWebClient.

TestSecureWebServer Secure version of TestWebServer.

TestSecureTelnetServer Secure version of TestSecureTelnetServer.

TestRPCServer Starts an RPCServer on port 5050 and then starts a

number of threads which make several remote

procedure calls to functions Foo and Goo in the

RPCServer namespace

TestSimpleServices Tries to connect to and use the TOD (Time of Day)

and QOTD (Quote of the Day) services on a named

host

TestTelnetServer Starts the Telnet Server sample and logs two sessions

on to it (the TelnetServer example is

oversimplified and should be reworked)

TestWebClient Exercises the HTTPGet function

TestWebFunctionServer Starts the WebServer example in the mode where it

calls a user-defined function

WebServer.TimeServer to handle all requests:

illustrates how you can write APL code to provide

“virtual” web pages

TestWebServer Start the WebServer to serve pages from the

asp.net samples folder, and start a bunch of threads

which each use HTTPGet to request the text of a page

from this folder.

TestX509Certs Read a number of certificate and key files to build

certificate variables used by the secure tests.

The following sections discuss most of the above examples in more detail, starting

with Web Clients and Servers.

3.3 Web Client

The function Samples.HTTPGet shows how Conga can be used to retrieve the

contents of a web page from an internet site. For example:

 Conga User Guide 20

 z←Samples.HTTPGet 'http://www.dyalog.com/news.htm'

The function returns 3 elements containing return code, HTTP headers, and data:

 1⊃z
0

A return code of 0 indicates success; if the value is anything other than zero, the

request has failed.

 2⊃z
 http/1.1 200 ok
 eate Mon, 10 Dec 2007 09:10:28 GMT
 server Apache/2.2.4 (Ubuntu) PHP/...etc...
 last-modified Fri, 30 Nov 2007 00:15:32 GMT
 dtag "228c056-50eb-5426d100"
 accept-ranges bytes
 content-length 20715
 content-type text/html; charset=utf-8

The HTTP headers (above) are returned as a 2-column matrix of attribute names and

values. Browsers use this information to know how to encode or decode data, and

provide other functionality to the end user. The third element contains the data, as a

character vector:

 ⍴3⊃z
20715
 60↑3⊃z
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//E

If the content-type header specified charset=utf-8, HTTPGet will also have performed

the necessary decoding from UTF-8.

The function also supports the retrieval of web pages protected using “basic

authentication”, if you supply a URL containing user id and password as follows:

 z←Samples.HTTPGet 'http://user:pass@www.secret.com'

HTTPGet can also retrieve secure web pages and will make a secure connection if a

left argument is provided or the URL begins with https. In this case, the 4
th

 element

of the result will contain certificate information for the server. If the server requires a

client certificate, a left argument must be provided, containing the CertFiles,

KeyFile and optionally SSLValidation parameters for the connection.

 Conga User Guide 21

The HTTPGet sample uses Conga as follows:

[7] Call DRC.Init to ensure DRC is initialised

[20] Arguments are constructed for use in constructing a secure client, if

necessary.

[25] A Basic Authentication header is added if a user id and password have

been supplied.

[30] HTTPUtils.HostPort is used to detect a trailing port number (for

example :8080) if one was supplied, otherwise the default HTTP port of

80 (or 443 for SSL) is used

[32] A Text-mode client is created, with a buffer size of 100k

[33] An HTTP “GET” command is sent to the Web Server

[37] We wait for blocks of data. As soon as some data has arrived, we call

HTTPUtils.DecodeHeader to detect and extract the HTTP header

[42] HTTP headers are decoded (if the entire header has been received).

[45] We look for a content-length field in the header, as this will allow us to

know how much data to expect

[53-58] Various logic is used to determine whether all data has arrived. If the

declared Content-Length has been delivered, if the server delivered data

and closed the socket (BlockLast event), or if the text contains an

ending </html> tag (the latter is perhaps questionable).

[63] UTF-8 conversion of data if required.

[67] Retrieval of the server certificate.

[72] We close the client object

3.4 Web Server

The namespace WebServer contains an ultra-simple implementation of a web server.

This does not provide any of the services that sophisticated web servers provide.

Nonetheless, it shows just how little code is required to implement a web server that

interfaces to a web browser. The WebServer example supports serving real files

from the file system, or using APL functions to intercept requests and manufacture

virtual pages on request. A much more complete example of a web server called the

MildServer is available as an “Open Source” project on the APL Wiki.

The function WebServer.Run is used to start a web server; it takes an argument with

three elements: The first is either a path to the root of the file system to be served up,

or the name of a function in the active workspace which will intercept requests and

manufacture output. The second and third elements are always the port number on

which the server will listen, and the name of the Conga server object to create.

Samples.TestWebServer launches a web server which serves up pages from the

asp.net tutorial folder. This is perhaps a little odd, as the sample web server does

not support ASP.Net scripting, so any attempt to load .aspx or .asmx pages through

the server will only result in the source of the pages being delivered to the client

without any attempt to process the scripts contained within.

 Conga User Guide 22

Samples.TestWebFunctionServer starts a web server which uses the function

WebServer.TimeServer to generate output in response to each request. This

simple function returns an echo of the request with a timestamp.

Both test functions start a number of threads and use HTTPGet to request pages and

thus test that the web server that has been started is responding as expected.

The WebServer.Run function uses Conga as follows;

[4] Call DRC.Init to ensure DRC is initialised.

[13] Create a Raw-mode server. (Same as Text-mode except it returns byte

numbers in the range 0-255.)

[24] Loop on Wait, timing out every 10 seconds.

[27] Switch on the first element of the result of Wait.

[28] Code 0: Wait returned an application event.

[31] The event was an error on the socket, which will have been closed. Clean

up the data namespace for the client. (SpaceName generates a namespace

name based on the IP address and port number of the client.)

[38] Data arrived. Find the client namespace and call HandleRequest in a

new thread, passing the object name and input data to it. HandleRequest

will eventually call DRC.Send to send the answer to the client.

[46] If the client closed the connection, expunge the namespace.

[50] Insert code here to react to Connect events.

[56] If the return code was 100, nothing happened for 10 seconds. Insert

timekeeping code here. (For a busy web server, we will need to do

housekeeping even if we don’t have any timeouts.)

[60] If Wait returned 1010 (Object not found), this means that the server

object has disappeared. This probably means that another thread has

closed it. Many of the test functions do this once they have completed

client tests.

[72] If we get to the end of the while loop, this means that we shut down

because some component of the server set stop to 1. We close the server

object ourselves.

The WebServer.HandleRequest function manufactures the response to each web

request. In “file server” mode, it calls GetAnswer, which tries to read a file.

Otherwise, it calls the function nominated when the server was created. Finally, it

formats an HTTP response with status information, a Content-Length header, and the

content, and used DRC.Send to transmit the response to the client.

3.5 RPC Client and Server

The RPC Server is similar in structure to the web server discussed in the previous

section, except that Command sockets are used to transmit Remote Procedure Calls

to the server, which validates and executes them, and returns the array result to the

client. Both client and server need to be Conga users. A Command-mode client

application for use by other languages is possible; similar tools have been built in the

past. However, most non-APL clients already support SOAP/XML for remote

 Conga User Guide 23

procedure calls in the form of Web Services. In April 2011, Dyalog released SAWS,

the Stand Alone Web Services framework, as a means to enable users to provide and

consume Web Services from APL.

RPCServer.Run is very similar to WebServer.Run:

[4] Call DRC.Init to ensure DRC is initialised.

[6-12] In order to be able to return an error if it is unable to start the server, Run

first creates the Command-mode server on line [7], and only starts a new

handling thread on line [9] by calling itself recursively with a left

argument of 0 if the server could be created. The handler continues

execution from the :While on line [15].

[16] Loop on Wait, timing out every 5 seconds.

[18] Switch on the first element of the result of Wait.

[19] Code 0: Wait returned an application event:

[21] The event was an error. If the object in error was the server itself, we

close it and stop running. Otherwise, the error is ignored. (We might do

some housekeeping if we were tracking client sessions.)

[27] Data arrived. Validate the format of the incoming array, and confirm the

first element names a function that may be called. If all is OK, run

Process in a new thread, passing the object name and input data to it.

Process will eventually call DRC.Progress and subsequently

DRC.Respond to first signal progress and finally send the answer to the

client.

[38] We ignore connection events.

[44, 46] Codes 100 and 1010: See WebService.Run in the previous section.

[72] If we get to the end of the while loop, this means that we shut down

because some component of the server set stop to 1. We close the server

object ourselves.

3.6 FTP Client

The FTPClient class implements a basic Passive Mode FTP client. The code is

essentially the same as the FTP workspace which was distributed with versions 11.0

and earlier, rewritten to use Conga, and cast in the form of a class. The function

Samples.TestFTPClient shows an example of its use, by listing the contents of

the pub folder at ftp.mirrorservice.org, and retrieving the readme.txt file

from this folder.

The use of Conga by the class is as follows:

Open[4] Call DRC.Init to ensure DRC is initialised.

Open[6] Create a Text-mode client for issuing commands to

the FTP server.

Open[11-13] Use the function Do to enter user ID and password

and check for the expected responses from the server.

 Conga User Guide 24

Do[5] Send a command to the server. Do returns the FTP

state code following the command.

ReadReply[106] Wait for a response, called by Do.

GetData[3] Execute the PASV command to prepare for passive-

mode data transfer; server returns a dataport that it

has opened.

GetData[4] Connect a Text- or Raw-mode client to the dataport

identified by PASV.

GetData[5-6] Set ASCII or Binary mode and issue the command

which will return data.

GetData[9-11] Wait and collect output response until the server

closes connection.

GetData[14] Confirm the server thinks transfer was completed.

PutData[6-8] Same as GetData[4-6]

PutData[10] Send all data in a single call to DRC.Send; Conga

will break the data up into TCP Packets.

The FTP client protocol is surprisingly easy to implement.

3.7 Telnet Server

These examples were developed by Dyalog for internal use in testing. They are

provided as examples but not documented to the same degree as other examples. The

server does not really deserve to be called a ‘Telnet Server’, as it does not support

feature negotiation. However, it is perhaps mildly entertaining. If you start the server

by typing:

 TelnetServer.Run&⍬
Dyalog Timesharing System 'TELNETSRV' started on port 23

You can now start a Telnet session and connect to your own APL timesharing

system. Start a command shell and enter “Telnet localhost” to connect to the server.

If your machine is already running a Telnet server, you will need to modify the line

in TelnetServer which sets the variable port, and modify the command to Telnet
localhost:nnnn where nnnn is the new number you picked. You can also connect

from another machine on the network if you replace localhost by the network

name or IP address of the machine on which you started the server:

 Conga User Guide 25

It is a ‘real’ multi-user system, using a namespace to contain the ‘private workspace’

for each session. Two substitutions of input characters are made: use _ for ← and #

for ⎕. Modify TelnetServer.Process to extend its functionality. If you find a

terminal program which supports UTF-8, and modify the server code to translate it,

you can support entry of APL symbols.

Watch Out! You might be in violation of your Dyalog licence if you allow anyone

else to use it. And don’t leave it running for long in this form; it opens up a rather

large back door which will allow the knowledgeable hacker to wreak havoc with your

machine.

3.8 Telnet Client

This class implements a Telnet Client which supports Telnet feature negotiation and

can be used to log in to systems which provide Telnet access. It has been developed

by Dyalog for use in driving automated quality-assurance scripts and is provided

without documentation. The login sections have been tweaked to work with the Unix

systems that we need to use, it may need further work to connect to new servers.
3.9 TODServer

This example was discussed in detail in Chapter 1.

 Conga User Guide 26

Appendix A: Function Reference

This section documents the functions in the DRC namespace which are intended for

use by applications, in alphabetical order. Any additional functions found in the

namespace are for internal use and should not be called by application code.

Checking DRC Return Codes

The first element of the result returned by many of the functions in the DRC

namespace is a return code. If this element is 0, no error occurred and the rest of the

result is as described in the function documentation. If the element is not 0, the result

retuned by the function is a three element vector consisting of [1] return code, [2]

error name, [3] error description, if available.

Therefore, it is recommended that you first check the return code in the result before

attempting to process the other elements of the result.

 rc stores←DRC.Certs arg ⍝ not recommended,
 LENGTH ERROR could result

The following code snippet demonstrates one technique to properly check the return

code.

 :if 0≠1↑res←DRC.Certs arg
 rc err desc←res
 ... ⍝ error processing
 :else
 rc stores←res
 ... ⍝ normal processing

DRC.Certs

Purpose Provide low level interface to read certificates. DRC.Certs is

documented here for completeness. It is strongly recommended that the

DRC.X509Cert class be used for certificate processing.

 Syntax rc stores ← DRC.Certs 'ListMSStore'
rc certs ← DRC.Certs 'MSStore' storename
rc certs ← DRC.Certs 'DER' filename

rc return code 0 0 if no error, non-zero if an error

occurred (see Checking DRC Return

Codes at the beginning of the Function

Reference)

stores store names 'My'
'Root'

'ListMSStore' will return a vector of

character vectors each containing a

Microsoft certificate store name.

certs raw certificate data A vector of integer vectors each

 Conga User Guide 27

containing raw certificate information.

storename store name 'CA' 'MSStore' storename will return all

of the certificates in the named store.

filename folder and

filename of the

certificate file

 'DER' filename will return all of the

certificates in the named file. Files

should be of type .pem or .cer.

Examples

]display DRC.Cert 'ListMSStore'
┌→───┐
│ ┌→───┐ │
│ 0 │ ┌→─┐ ┌→───┐ ┌→────┐ ┌→─┐ ┌→─────┐ ┌→───────────────┐ │ │
│ │ │My│ │Root│ │Trust│ │CA│ │UserDS│ │TrustedPublisher│ │ │
│ │ └──┘ └────┘ └─────┘ └──┘ └──────┘ └────────────────┘ │ │
│ └∊───┘ │
└∊───┘

]display DRC.Cert 'MSStore' 'Root'

┌→──
│ ┌→──
│ 0 │ ┌→──
│ │ │48 ¯126 5 ¯103 48 ¯126 3 ¯127 ¯96 3 2 1 2 2 16 121 ¯83 22 ¯95
│ │ └~──
│ └∊──
└∊──
(display has been truncated, but you get the idea)

DRC.Clt

Purpose Creates a Conga Client.

Syntax rc name←DRC.Clt Name Address Port Mode BufferSize
 SSLValidation EOM IgnoreCase Protocol
 X509

Note that parameters can be named from Conga v2.0.

rc return code 0 0 if no error, non-zero

if an error occurred

(see Checking DRC

Return Codes at the

beginning of the

Function Reference)

name client name 'C1' If empty, will be

generated (and

returned in result).

Address IP address

or name

'192.168.1.1'
'www.dyalog.com'

Address of server to

connect to.

Port service port 80 Port that server is

listening on.

Mode type of client 'Command'|
'Raw'|'Text'

See DRC.Srv for

discussion.

MaxSize buffer size 10000 Maximum data size

 Conga User Guide 28

CertFiles public certificate mycert.pem File names, sep. by

commas, of the public

certificate and any

files in the signing

chain.

KeyFile private key mykey.pem File name

SSLValidation SSL flags 32 See appendix C

EOM End of message (⎕UCS 13 10 13
10)

Termination String(s)

– a simple character

vector or a vector of

vectors.

Applies to Text/Raw

mode only.

IgnoreCase Re EOM 1 1 to ignore case when

looking for EOM.

Protocol IPv4 or –v6 IPv4 IPv4 or IPv6:

Default is IP – which

means try IPv6 then –

v4.

X509 X509Cert
instance

 Refer to the X509Cert
documentation

elsewhere in the

reference.

Examples

DRC.Clt 'C1' '192.168.1.1' 5050

(Command-mode client of server at port 5050 at address 192.168.1.1)

DRC.Clt '' 'localhost' 13 'Text' 1000 ('EOM'(⎕UCS 13 10))

(Text-mode client with an auto-generated name, connected to server on port 13 on

the same machine, with a maximum buffer size of 1000 characters, and termination

sequence of CRLF)

myCert←⊃DRC.X509Cert.ReadCertFromFile 'client-cert.pem'
DRC.Clt 'C1' '192.168.1.1' 5050,⊂('X509' myCert)

(Secure command-mode client of server at port 5050 at address 192.168.1.1)

Typical Errors

1009 Object name already in use

1110, 1111 Nothing seems to be listening on the port

Plus all the TLS handshaking errors listed in Appendix C.

DRC.Close

Purpose Closes any Conga object

Syntax rc ← DRC.Close name

 Conga User Guide 29

rc return code 0 0 if no error, non-zero if an error occurred

(see Checking DRC Return Codes at the

beginning of the Function Reference)

name object name 'C1' Should be the name of an existing Conga

object

Example

 DRC.Close 'C1'
0

Typical Errors

1010 Object name does not exist

DRC.Describe

Purpose Return a description for a Conga object.

Syntax rc desc ← DRC.Describe name

rc return code 0 0 if no error, non-zero if an error occurred

(see Checking DRC Return Codes at the

beginning of the Function Reference)

desc object

description

 Varies by object

name object name '.' |
'C1'

Name of the object to describe

DRC.Describe is similar to DRC.Tree except that a) it returns information for only

the named object and not its children as well, and b) the descriptions are textual

rather than numeric codes.

For all objects except the root, the first three elements of the object description are:

[1] Name, [2] Type, [3] State.

The root object has [1] Name, [2] Version, [3] State, [4] Thread count.

Commands and messages (object types 4 and 5) have the additional elements [4]

expected size, and [5] received size. These are useful check when receiving large

command result. If the client times out, you can use these elements to determine if

the server is still sending information.

Examples

 DRC.Describe '.'
0 [DRC] Conga Dynamic Link Library 0.0.8590.0 Copyright
(C) 2004-2011 Dyalog Ltd. built Mar 24 2011 09:56:16
State=RootInit Threads=2

 DRC.Describe 'C1'
0 CLT00000000 Client Connected

See also DRC.Tree and DRC.Names

 Conga User Guide 30

DRC.Error

Purpose Converts an error number into a textual identification or description of the

error.

Syntax (no name desc) ← DRC.Error no

no error number 1201

name name of the error ERR_TLSHANDSHAKE

desc description

(optional)

/* unable to complete a TLS handshake with
the peer */

Example

 DRC.Error 1009
1009 ERR_NAME_IN_USE

DRC.Exists

Purpose Tests the existence of an object.

Syntax bool ← DRC.Exists name

bool result 1 1 if the named object exists, else 0

name object name 'C1' an object name

Example

 DRC.Exists 'C1'
1

DRC.flate.Deflate

Purpose Compresses data using the deflate compression scheme. Used to

implement server-side HTTP compression.

Syntax comp ← DRC.flate.Deflate data

data data to be

compressed

Integer vector with values in the range 0-255. If

converting from character data, use 'UTF-8'
UCS data

comp compressed data Integer vector with values in the range 0-255.

The first 2 elements comprise a header for the

zlib wrapper for the compressed data. This

header should generally be stripped off before

sending to the client.

Example

 DRC.flate.Deflate 256|83 ⎕DR 2000⍴'this is a test'
120 156 43 201 200 44 86 0 162 68 133 146 212 226 146 146 81
222 40 111 148 55 202 27 229 141 242 70 121 67 144 7 0 17 217
213 243

 Conga User Guide 31

DRC.flate.Inflate

Purpose Uncompresses data that has been compressed using the deflate

compression scheme. Used to implement client-side HTTP compression.

Syntax data ← DRC.flate.Inflate comp

comp compressed data Integer vector with values in the range 0-255.

The first 2 elements should be a header, 120
156,for the zlib wrapper for the compressed

data. If the header is not present, it should be

prepended before Deflate is called.

data uncompressed data Integer vector with values in the range 0-255. To

convert

Example

 tmp←DRC.flate.Deflate 256|83 ⎕DR 'this is a test'
 'UTF-8' ⎕UCS DRC.flate.Inflate 256|83 ⎕DR tmp
this is a test

DRC.flate.IsAvailable

Purpose Tests if the deflate compression library is loaded

Syntax bool ← DRC.flate.IsAvailable name

bool result 1 1 if the deflate compression library is loaded, else
0

Example

 DRC.flate.IsAvailable
1

DRC.GetProp

Purpose Retrieving properties from a Conga object.

Syntax rc res ← DRC.GetProp obj property

rc return code 0 if no error, non-zero if an error occurred (see Checking DRC

Return Codes at the beginning of the Function Reference)

res properties Depends on the object and the property requested – see table

below.

obj Name of the Conga object

property Name of the property

Examples:

 DRC.GetProp '.' 'PropList'
0 PropList Protocol ReadyStrategy RootCertDir
 DRC.GetProp '.' 'RootCertDir'
0 '/usr/rootcerts'

 Conga User Guide 32

Supported Properties:

 Name Objects Description

 LocalAddr Client,

Server,

Connection

Your own address: [1] Protocol, [2] Address

Name, [3] Address Bytes, [4] Port

 OwnCert Client,

Server,

Connection

X509Cert object containing information

about your own certificate.

 PeerAddr Client,

Connection

Address of peer – same format as LocalAddr.

 PeerCert Client,

Connection

X509Cert object containing information

about the certificate used at the other end of the

connection.

 PropList All Returns the list of property names

 Protocol Root ('.') The protocol to use (IPv4|IPv6|IP). The

Root property is inherited if none other is

specified when making a connection. If set to

IP (the default), Conga will try IPv6 and then

IPv4 if that fails.

 ReadyStrategy Server Strategy to use to decide which connection to

report as ready when more than one connection

has received data.

1=”Round Robin” in the object tree,

2=”Oldest First” This is the default strategy

and is considered to be the “fairest” but

consumes slightly more CPU than 1.

There is also a strategy of 0=”Use First” which

will use the first object in the tree. This is

potentially dangerous as other object in the tree

may not be serviced.

 RootCertDir Root ('.') Name of the folder containing Certificate

Authority root certificates (should be set using

SetProp)

More about Certificate Information:

Certificate information is returned as an X509Cert object. The specific content may

vary from certificate to certificate, but will normally include the certificate issuer,

subject, public key algorithm, certificate format version, serial number, valid from &

to dates. If no certificate exists, or in the case of a Server object no certificate

information has been requested (see the section on TLS Flags in Appendix C), the

result will be an empty vector.

Certificate information can be used to validate a peer certificate in combination with

flags such as CertAcceptWithoutValidating (see the TLS Flags section). It can also

allow a Server to confirm the identity of a Client without requiring a login.

DRC.Init

Purpose Loads and initializes, or reinitializes the Conga DLL or Shared Library

 Conga User Guide 33

Syntax rc ← {reset} DRC.Init ''

rc return code 0 0 if no error, non-zero if an error occurred (see

Checking DRC Return Codes at the beginning of the

Function Reference)

reset reset code 0 If Conga has been loaded previously, subsequent

calls to DRC.Init will have the following effect:

If reset is not supplied or is not either 1 or ¯1,

return a message indicating that Conga has already

been loaded.

If reset = 1, close any existing Conga objects.

If reset=¯1, reload the Conga DLL or Shared

Library.

The right argument is currently unused but is reserved for future extensions.

Example

 DRC.Init ''
0 Conge loaded from...

Typical Errors

1000 Unable to load the library

DRC.Names

Purpose Returns names of existing objects

Syntax names ← DRC.Names root

names object names Names of children of root

root root object ''|'C1 '

Example

 DRC.Names ''
 C1 C2 C3
 DRC.(Close¨Names '')
 0 0 0

See also DRC.Describe and RC.Tree

DRC.Progress

Purpose Send any APL array as a progress report to a client waiting on the named

Command. A server can call Progress any number of times before

Respond.

Syntax rc ← DRC.Progress name data

rc return code 0 0 if no error, non-zero if an error

occurred (see Checking DRC Return

Codes at the beginning of the Function

Reference)

 Conga User Guide 34

name command name 'C1.CMD1'

data any array

Example

 DRC.Progress (2⊃waitresult) 'Task 50% completed'

If the result of Wait on a Command is in waitresult, the above expression will

send a progress report to the client.

DRC.Respond

Purpose Send any APL array as the response to a command.

Syntax rc ← DRC.Respond name data

rc return code 0 0 if no error, non-zero if an error

occurred (see Checking DRC Return

Codes at the beginning of the Function

Reference)

name command name 'C1.CMD1'

data any array

Example

 DRC.Respond (2⊃waitresult) (Process 4⊃waitresult)

If the result of data received using Wait on a Command-mode server is in

waitresult, the above expression will call the function Process on the data which

accompanied the most recent command and send the result to the client.

See also DRC.Progress and DRC.Wait

DRC.Send

Purpose Send data to partner.

Syntax rc [command] ← DRC.Send name data [close]

rc return code 0 0 if no error, non-zero if an error

occurred (see Checking DRC Return

Codes at the beginning of the Function

Reference)

command command name 'C1.CMD1' Generated from Client name if

necessary (in command mode)

name client / command 'C1'
'C1.CMD1'

Client or Command name. In

command mode, if a client name is

supplied, command name is generated

automatically.

data any array

 Conga User Guide 35

close close flag 1 If 1, connection will be closed

If 2, the connection will be closed and

the Command object will be disposed

Command-mode Client example

 DRC.Send 'C1' ('PlusReduce' (⍳10))
0 C1.Auto00000001
 DRC.Wait 'C1.Auto00000001'
0 C1.Auto00000001 Receive 55

Creates a command below the named client, and sends an APL array to the server.

The command name is generated if a complete name (for example 'C1.CMD1') is not

provided.

Command-mode Server example: Use DRC.Respond

Raw- or Text-mode example

 DRC.Send 'C1' ('Bye',CR) 1
0

The above example sends the text 'Bye' on the Client C1 and subsequently closes

the connection. When replying to a recently received message (in a server), you

would typically write use the result from wait and write something along the lines of:

 DRC.Send ((2⊃waitresult)) ('Bye',CR) 1
0

DRC.SetProp

Purpose Updating properties of Conga objects.

Syntax DRC.SetProp '.' property value

property Name of the property to set

value New value for the property

Example

 DRC.SetProp '.' 'RootCertDir' '/usr/rootcerts'

See GetProp for a complete list of properties supported by different Conga objects.

DRC.Srv

Purpose Create a Conga Server to listen on a selected port. If certificate

information is provided, a secure server is created.

Syntax rc name←DRC.Srv Name Address Port Mode BufferSize
 SSLValidation EOM IgnoreCase Protocol
 X509

Note that parameters can be named from Conga v2.0.

rc return code 0 0 if no error, non-zero

if an error occurred

(see Checking DRC

Return Codes at the

beginning of the

 Conga User Guide 36

Function Reference)

Name server name 'S1' If empty, will be

generated (and returned

in result).

Address IP address

or name

'192.168.1.1'
'localhost'

If empty, server will

listen on all addresses

that the machine has.

Port service port 80 Port number to listen

on.

Mode type of client 'Command'|
'Raw'|'Text'

See the discussion on

Mode and EOM

following this table.

MaxSize buffer size 16384 Maximum data size

SSLValidate SSL flags 32 See appendix C

EOM End of message (⎕UCS 13 10 13
10)

Termination String(s) –

a simple character

vector or a vector of

vectors.

IgnoreCase Re EOM 1 1 to ignore case when

looking for EOM.

Protocol IP Protocol to use IPv4 IPv4,IPv6 or IP:

Default is to use both if

available (IP)

X509 X509Cert instance Refer to the X509Cert
documentation

elsewhere in the

reference.

Mode and EOM

In Command mode, each transmission consists of an entire APL array; the DRC.Wait

function will only terminate when the entire APL array reaches its destination. In

Raw or Text modes, byte streams are transmitted. In Text mode these are translated

to a character vector on receipt; in Raw mode, integers between 0 and 255 are

returned.

In Text and Raw modes, you can set the End-of-message parameter, in which case

DRC.Wait will terminate on receipt of the specified termination string. If an empty

termination string is specified, DRC.Wait will terminate when the buffer contains

size bytes.

If no stop criteria are specified, DRC.Wait will return data each time a TCP packet is

received. If the packet is larger than size the data will be returned in chunks of the

specified size.

Examples

 DRC.Srv 'APLRPC' '' 5050 'Command'
0 APLRPC

Creates a Command mode server listening on port 5050.

 Conga User Guide 37

 DRC.Srv '' '' 23 'Text' 1000 ('EOM' (⎕UCS 13))
0 SRV00000001

Creates a Text-mode server listening on port 23, with a maximum buffer size of 1000

characters, and termination sequence of CR, with an auto-generated name.

 cert←⊃DRC.X509Class.ReadCertFromFile 'server-cert.pem'
 cert.KeyOrigin←'DER' 'server-key.pem'
 certs←('X509' cert)('SSLValidation' 64)
 DRC.Srv 'APLRPC' '' 5050 'Command',certs
0 APLRPC

Creates a secure Command server on port 5050 of the local machine using the named

certificate and key files, and the SSL Validationflag value 64 (RequestClientCertificate).

Typical Errors

1009 Object name already in use

1110, 1111 Nothing seems to be listening

Plus all the TLS-specific error listed in Appendix C.

DRC.Tree

Purpose Return state information about an object and all of its “children”.

Syntax rc tree ← DRC.Tree root

rc return code 0 0 if no error, non-zero if an error occurred

(see Checking DRC Return Codes at the

beginning of the Function Reference)

tree tree

(see below)

 Description of the object and its child nodes

root root object '.' | 'C1 ' Root object

A tree is a 2-element vector. The first element describes the root object, and the

second element is a vector of trees describing each of its children, empty if the object

has no children. DRC.Tree '.' returns a complete tree of all existing objects.

For all objects, the first three elements of the object description are:

[1] Name, [2] Type, [3] State. The root object also has additional information:

[4] Version, [5] Semaphore count. Commands and messages (object types 4 and 5)

have the additional information [4] expected size, and [5] received size. These are

useful to check when receiving large command result. If the client times out, you can

use these elements to determine if the server is still sending information.

Object Type codes (2nd element)

0 Root

1 Server

2 Client

3 Connection

4 Command

5 Message

 Conga User Guide 38

State codes (3rd element)

0 New

1 Incoming

2 RootInit

3 Listen

4 Connected

5 APL

6 ReadyToSend

7 Sending

8 Processing

9 ReadyToRecv

10 Receiving

11 Finished

12 MarkedForDeletion

13 Error

14 DoNotChange

15 Shutdown

16 SocketClosed

17 APLLast

18 SSL

Example

 (rc (root subtree))←DRC.Tree '.'
 rc
0

 DISP root
┌─┬─┬─┬───┬─┐
│.│0│2│Conga.Dynamic.Link.Library.1.1.14.0.Copyright….....│1│
└─┴─┴─┴───┴─┘

Interpretation The root object name is empty, it is an object of type 0 (Root), the

state is 2 (RootInit). The number of semaphores currently in use for thread

synchronization is 1.

 DISP 2 1⍴subtree
┌──────────────────────────────────────┐
│┌────────────┬───────────────────────┐│
││............│┌─────────────────────┐││
││............││┌─────────────────┬─┐│││
││┌──────┬─┬─┐│││┌───────────┬─┬─┐│.││││
│││RPCSRV│1│3│││││CON00000001│3│4││0││││
││└──────┴─┴─┘│││└───────────┴─┴─┘│.││││
││............││└─────────────────┴─┘│││
││............│└─────────────────────┘││
│└────────────┴───────────────────────┘│
├──────────────────────────────────────┤
│..........┌─────────────────┬─┐.......│
│..........│┌───────────┬─┬─┐│.│.......│
│..........││CLT00000000│2│4││0│.......│
│..........│└───────────┴─┴─┘│.│.......│
│..........└─────────────────┴─┘.......│
└──────────────────────────────────────┘

Interpretation There are two children of the root, named RPCSRV and

CLT00000000 (this example was ‘shot’ while running Samples.TestRPCserver).

RPCSRV is of type 1 (Server) and in state 3 (Listen). It has a child named

CON00000001 which is a Connection (3) in state Connected (4). CLT00000000 is a

client (2) in state Connected (4).

 Conga User Guide 39

See also DRC.Describe and RC.Names

DRC.Version

Purpose Return the Conga version

Syntax ver ← DRC.Version

ver version 2 2 11167 [1] major version
[2] minor version
[3] build number

Example

 DRC.Version
2 2 11167

DRC.Wait

Purpose Wait for an event to occur.

Syntax rc obj event data ← DRC.Wait name [timeout]

rc return code 0
100

0 means data was received

100 means timeout

other non-zero values indicate an error

occurred (see Checking DRC Return

Codes at the beginning of the Function

Reference)

obj object name 'C1.CMD1' Object on which an event occurred

event event name 'block' See below

data received data

name root name 'C1' If a server or connection name is used,

Wait will report events on the named

object or any any of its children. If a

command mode client wishes to wait on

a specific command, the full command

name can be given.

timeout how long to wait 1000 Optional: Number of milliseconds to

wait before timing out. If not specified,

defaults to 1000 milliseconds.

Events

The following events can be reported in the 3rd element of the result

Block A block of data was received (Text or Raw mode) and

the connection is still open.

BlockLast A block of data was received and the connection was

closed; no more data can be expected. If the

connection is closed while it is inactive, a

BlockLast event will be reported with empty data.

Connect obj is a newly created connection.

 Conga User Guide 40

Error An error occurred (data will contain an error

message)

Progress Command mode client only: The server transmitted

data using the DRC.Progress function

Receive Command mode only: data received

Command-mode server examples:

 DRC.Wait 'RPCSRV' 5000
0 RPCSRV.CON00000007 Connect 0

A client connected to the server, the connection name is RPCSRV.CON00000007.

 DRC.Wait 'RPCSRV' 1000
0 RPCSRV.CON00000002.Auto00000000 Foo 1
 DRC.Respond 'RPCSRV.CON00000002.Auto00000000' (Foo 1)

A command arrived from a command mode client, and we responded to it with the

result of executing (Foo 1).

DRC.X509Cert class

Purpose Provide a container to encapsulate X.509 style certificates and is the

recommended technique to use when providing secure communications.

Methods certs ← DRC.X509Cert.ReadCertFromFile filename
certs ← DRC.X509Cert.ReadCertFromFolder pathname
certs ← DRC.X509Cert.ReadCertFromStore storename

The shared methods listed above are all used to read certificates from various

sources. The instance methods are listed below.

 bool ← #.DRC.X509Cert.[X509Cert].IsCert
(verifies that the object is a structurally valid certificate)

certs ← #.DRC.X509Cert.[X509Cert].Chain
(returns the certificate chain for this certificate)

args ← #.DRC.X509Cert.[X509Cert].AsArg
(formats the certificate for use with Clt and Srv. This is an internal

routine and need not be used by the Conga user but is documented here

for completeness.)

certs vector of

certificate

instances

 Each element is of type
DRC.X509Cert

filename character vector

certificate file

name

'server-cert.pem' This is a single file name. The

file may contain multiple

certificates.

pathname character vector

path name

'c:\mycerts*.pem' Wildcarding is allowed. All of

the filenames found need to be

valid certificate files.

storename Microsoft

certificate store

'Root'
'CA'

Returns all of the certificates in

the specified certificate store.

 Conga User Guide 41

name DRC.Certs 'ListMSStore'
will return the list of certificate

store names.

bool Boolean value 1 | 0 Returns 1 if the certificate is of

valid structure.

args Used internally by Clt and Srv

Properties Each instance of DRC.X509Cert has the following properties.

Cert Raw certificate data in integer vector form.

CertOrigin 'MSStore' storename for certificates read from a certificate store.

'DER' filename for certificates read from a file

Elements Namespace containing unformatted certificate elements. See discussion

of Elements, Extended, and Formatted below.

Extended Namespace containing extended certificate elements. See discussion of

Elements, Extended, and Formatted below.

Formatted Namespace containing formatted certificate elements. See discussion of

Elements, Extended, and Formatted below.

KeyOrigin 'MSStore' storename for keys read from a certificate store.

'DER' filename for keys read from a file

LDRC Reference to the local DRC namespace. Used internally within the class.

ParentCert If this certificate is part of a certificate chain and has a parent,

ParentCert is an instance of the parent certificate.

UseMSStoreAPI Boolean to indicate whether to use the Microsoft certificate store API (1)

or the gnuTLS API (0).

The Elements, Extended, and Formatted namespaces contain certificate elements

in different formats. Not all certificates will have values for all elements. Some

elements are more useful than others; ValidFrom and ValidTo for instance, are

useful for determining if the certificate has expired. This section is not intended to be

a comprehensive reference of X.509 certificate structure, but is here to provide the

user with a basic understanding of the data with a certificate. Some of the more

interesting elements are listed below.

AlgorithmID The cryptographic algorithm used to generate the signature.

Description Certificate description.

Issuer The issuer of the certificate. This is useful for validating certificate

chains. The issuer of a certificate should match the subject of the

parent certificate. Self-signed certificates have identical Issuer and

Subject elements.

Key For certificates that include a key, this is the key. Keys should be

carefully secured and not shared.

 Conga User Guide 42

KeyHex The key in hexadecimal format.

KeyID The type of key.

KeyLength Length of the key.

SerialNo The certificate serial number. This number is unique for a given CA.

Subject The subject of the certificate. Used in conjunction with the Issuer

element

ValidFrom,
ValidTo

Together , these elements determine the period of validity for the

certificate.

Version The X.509 version number of the certificate. As of the writing of this

document, version 3 is the most current.

 Conga User Guide 43

Appendix B: Creating and Converting
Certificates

There are many different file formats that can be used for storing X.509 certificates

including PEM, CER, DER, PFX, P7C and P12. The popularity of the formats varies

from one platform to the next. Conga supports the most popular formats, PEM and

DER format files, with file extensions .pem or .cer or .der - on all platforms. To use

certificates supplied in other formats, these must first be converted using freely

available tools such as GnuTLS and OpenSSL (a guide to converting between

formats using OpenSsl is available at:

http://gagravarr.org/writing/openssl-certs/general.shtml).

 PEM files begin and end with:

-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

And contain a base 64 encoded version of the certificates.

Some .cer files contain spaces as line separators, but the gnutls tools used by conga

only supports unix or windows standard line endings. You can check a .cer file by

opening it in notepad with wordwrap turned off. If you can see a space after the -----

BEGIN CERTIFICATE----- header you will need to replace all spaces in the base64

encoded portion of the file with newlines before the file will be recognised by Conga.

GnuTLS (see http://www.gnu.org/software/gnutls/) comes with a command line tool

called certtool that can be used for creating certificates, keys & certificate requests in

pem format files. Its documentation can be found at

http://www.gnu.org/software/gnutls/manual/html_node/Invoking-certtool.html

The following examples show the most common commands for creating private keys,

certificates, and certificate requests. Working through the samples in order will

generate a self signed CA certificate/key pair and a certificate/key pair that can be

used by a client or server (assuming their peer has a copy of the ca-cert.pem file).

Create a self signed test CA certificate & key:
certtool --generate-privkey --outfile ca-key.pem
certtool --generate-self-signed --load-privkey /
ca-key.pem --outfile ca-cert.pem

These self-signed files can be used to run an in house CA, or for signing test

certificates.

Create a private key & certificate request
certtool --generate-privkey --outfile client-key.pem
certtool --generate-request --load-privkey client-key.pem /
--outfile client-request.pem

http://gagravarr.org/writing/openssl-certs/general.shtml
http://www.gnu.org/software/gnutls/
http://www.gnu.org/software/gnutls/manual/html_node/Invoking-certtool.html

 Conga User Guide 44

This certificate request can now be turned into a certificate by a CA such as Verisign,

or your own in house CA using files generated in the “Create a self-signed test CA”

section above.

Generate & Sign a certificate request
 certtool --generate-certificate --load-request /
 client-request.pem --outfile client-cert.pem /
 --load-ca-certificate ca-cert.pem --load-ca-privkey ca-
key.pem

This creates a certificate that can be used by your client applications with the key file

that was used to generate the certificate request.

 Conga User Guide 45

Appendix C: TLS Flags

TLS Flags

Purpose These flags can be added together and passed to Clt or Svr to control

the certificate checking process. If you do not require any of these flags

simply pass 0 as the flags parameter of these functions.

Code Name Description

1 CertAcceptIfIssuerUnknown Accept the peer certificate even if the

issuer (root certificate) can’t be found.

2 CertAcceptIfSignerNotCA Accept the peer certificate even if it has

been signed by a certificate not in the

trusted root certificates directory.

4 CertAcceptIfNotActivated Accept the peer certificate even if it is

not yet valid (according to its valid

from information).

8 CertAcceptIfExpired Accept the peer certificate even if it has

expired (according to its valid to

information).

16 CertAcceptIfIncorrectHostName Accept the peer certificate even if its

hostname does not match the one we

asked to connect to.

32 CertAcceptWithoutValidating Accept the peer certificate without

checking it. This is useful if you want to

check the certificate manually (see

GetProp).

64 ReqestClientCertificate Only valid for a server, this asks the

client for a certificate, but will still

allow connections if the client does not

provide one.

128 RequireClientCertificate Only valid for a server, this asks the

client for a certificate and refuses the

connection if a valid certificate (subject

to any other flags) is not provided by

the client.

 Conga User Guide 46

Appendix D: Error Codes

TLS Related error codes

Purpose This table lists the TLS specific error messages that can be returned when

dealing with TLS connections.

Code Message Description

1201 ERR_TLSHANDSHAKE ERR_SECSOCK The handshake process sets up a

secure connection between the

client and server before the

certificates are exchanged. This

error indicates that process is

failing. The most likely causes

are that the systems can’t agree

an encryption protocol, or that

you are connecting to a

server/client that is not using

SSL/TLS.

1202 ERR_INVALID_PEER_CERTIFICATE The certificate supplied by the

peer is not valid. If you would

like to make the connection

anyway and examine the

certificate manually please

supply the

CertAcceptWithoutValidating

flag to DRC.Svr or DRC.Clt.

Once the connection has been

made you can examine the peer

certificate by calling GetProp

1203 ERR_COULD_NOT_LOAD_CERTIFICATE_FILES One or more of the specified

certificate files could not be

loaded. Either the file specified

does not exist, can’t be read or is

not a valid PEM or DER file.

Please check the filenames that

are being passed to the DRC.Srv

& DRC.Clt functions.

1204 ERR_INITIALISING_TLS There was an error setting up the

TLS libraries. This could be due

to missing or invalid GnutTLS

files.

1205 ERR_NO_SSL_SUPPORT There is no SSL support in the

available conga library. Please

contact Dyalog support for a

version with SSL support.

 Conga User Guide 47

Appendix E: Upgrading to Conga v2.2

Conga version 2.2 is released coincident with Dyalog APL version 13.1. If you have

existing applications using Conga you have a few options.

Use your existing Conga v2.0 or v2.1 application with Dyalog APL v13.1 or

later.

If you choose to continue to use Conga v2.0 or v2.1, you will need to copy the

their.dll files (under Windows) or .so files (under Unix variants) into the directory

where Dyalog v13.1 is installed.

Upgrade your existing Conga v2.0/2.1 application to use Conga v2.2 with Dyalog

APL v13.1 or later.

If you’re not using secure communications, you can simply replace the elements of

Conga v2.0/2.1 in your application with their v2.2 counterparts.

If you are using secure communications with Conga v2.0, you will need to modify

how certificate information is used. The affected functions are DRC.Clt, DRC.Srv,

DRC.GetProp, WebServer.HttpsRun, and Samples.HTTPGet.

Use Conga v2.2 with an earlier version 11, 12.0, or 12.1 of Dyalog APL.

You will need to copy the Conga v2.2 .dll files (under Windows) or .so files (under

Unix variants) into the directory where Dyalog APL is installed. You should then be

able to use the functions in Conga v2.2.

Still using Conga v1.0 and want use Dyalog APL v13.1 or later?

If you have an application using Conga v1.0 and want to use Dyalog APL v13.1 or

later, you can:

 Copy the DRC namespace into your application and modify your code to use

DRC.Clt and/or DRC.Srv. This will, in effect, convert your application to

Conga v2.1.

 Copy the DRC namespace into your application and use the cover functions

provided in the DRCv1 namespace. You should be able to use your existing

application code, though it is strongly recommended that you upgrade to

use the newer syntax in Conga v2.1 and later.

 Conga User Guide 48

Appendix F: Change History

This appendix contains the documented changes from prior versions of Conga.

Version 2.0
Conga version 2.0 is the first major update to Conga. In addition to new features,

some “tidying up” has been performed, to simplify applications built on Conga. Note

that this means that minor modifications may need to be made to existing

applications in order to switch to Conga v2.

v2.0 New Functionality

 IPv6: Support for the IPv6 protocol, which will replace the existing “IPv4” in the

years to come, as the world runs out of IP addresses. A property of the Root

object defines the default protocol, but the protocol can also be selected for each

Client or Server object.

 Named Parameters: Functions for creating client and server objects now support

named arguments (previously, all arguments were “positional”).

 Select Server IP Address: When you create a Server on a machine with several

addresses, you can specify which address it should listen on. Previously, Conga

servers would accept connections to any address that the machine had.

 Improved Scheduling: A flaw in the scheduling algorithm has been fixed,

avoiding problems which would favour certain connections and potentially

“starve” others.

v2.0 Changed Functionality

 New Srv and Clt functions: The functions SecureServer and Server have

been merged into a function called Srv. SecureClient and Client have

become Clt. A set of cover functions which implement the old functionality are

supplied in a namespace called DRCv1, but it is recommended that you migrate

away from the old functions at your earliest convenience.

 ReceiveD event removed: The ReceiveD event, which was issued when that a

message was received AND the connection had also been closed, has been

removed. In version 2.0, a Receive event is issued regardless of whether the

connection is still open.

 Peer Address removed from Connection Names: Incoming connections no

longer have names which contain an encoding of the peer address and port

number. New properties called LocalAddr and PeerAddr allow you to retrieve

the addresses of both ends of a connection.

 Stop Criteria changed: The format for specifying Stop Criteria has been

changed. A new property EOM allows you to set one or more termination strings,

which will trigger new Receive events. Messages are always cut at the END of a

 Conga User Guide 49

termination string. A property called IgnoreCase controls how the comparison

is done.

 Enhanced HTTPGet sample: The function Samples.HTTPGet has been

enhanced to handle secure connections (HTTPSGet has been withdrawn), basic

authentication and automatic UTF-8 conversion.

Version 2.1
Conga version 2.1 is an incremental update to Conga version 2.0. While released as

a companion to Dyalog APL version 13.0, it can be used with earlier versions of

Dyalog APL as well. The primary feature in this update modifies how certificates are

used to facilitate secure communications. This has resulted in changes to the

functions DRC.Srv and DRC.Clt when using certificates. Existing Conga v2.0

applications that use certificates will require minor modification to use Conga v2.1.

New Functionality

 DRC.X509Cert Class: This class encapsulates the structure and function

necessary to use X.509 certificates with Conga. This is the recommended method

for providing certificate information to DRC.Clt and DRC.Srv.

 DRC.Certs function: Provides the underlying functionality used by

DRC.X509Cert to read and decode certificates.

 MicroSoft Certificate Store support: Certificates located in Certificate Stores

under Windows can now be read and used with Conga.

Changed Functionality

 DRC.Srv and DRC.Clt functions: The syntax to pass certificate information for

both functions has changed.

 DRC.Init function: Now accepts a left argument of ¯1 to cause Conga to reload

its underlying drivers.

 Samples.HTTPGet function: The optional left hand argument is now an

X509Cert object.

 WebServer.HttpsRun function: Now accepts an X509Cert object argument.

 DRC.GetProp: Now returns an X509Cert object for 'PeerCert'

