
The tool of thought for expert programming

Dyalog for Windows

User

Commands

for Dyalog APL V13

Dyalog Limited

Minchens Court

Minchens Lane

Bramley

Hampshire

RG26 5BH

United Kingdom

tel: +44 (0)1256 830030

fax: +44 (0)1256 830031

email: support@dyalog.com

http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited

Copyright  1982-2008

mailto:support@dyalog.com
http://www.dyalog.com/

Introduction
Version 12.1 introduced “User Commands” to Dyalog APL. Like system commands,

user commands are tools which are available to developers at any time, in any

workspace – as part of the development environment. Unlike system commands, user

commands are written in APL. Dyalog APL is shipped with a set of user commands,

with APL source code that you can inspect and modify – or use as the basis for

writing completely new user commands of your own. User commands are intended to

make it easy to write and share development tools. A section of the APL Wiki,

http://aplwiki.com/UserCmdsDyalog, is devoted to sharing user

commands.

If an input line begins with a closing square bracket “]”, the system will interpret the

line as a user command, temporarily load the required code into the session

namespace where it cannot conflict with any code in the active workspace, and

execute it. For example:

)load util
util saved …
]fns S* -format
SET SETMON SETWX SM_TS SNAP

Help is easily accessible for user commands:

]?fns
Command "fnsLike"
Syntax: accepts switches -format -regex -date=
Script location: C:\ProgramFiles\D121U\SALT\Spice\wsutils

Arg: pattern; Produces a list of fns & ops whose names match
the pattern given
-format Return result as)FNS would
-regex uses full regular expression
-date takes a YYMMDD value preceded by > or <

As we can see above, the full name of the command is fnslike, but unambiguous

abbreviations are allowed. The source code is in a file called wsutils.dyalog in

the folder which is identified in the above output. New user commands can be

installed simply by dropping new source code files into the command folder, making

them instantly accessible without restarting any part of the system. A full list of

installed user commands is available at any time:

]?
Commands:
APLMON calendar cd commentAlign Compare
…
varsLike wscompare wsloc wspeek Xref

Type "]?+" for a summary or "]??" for general help or "]?CMD"
for info on command CMD

Implementation
When an input line begins with a closing square bracket, the system will look for a

function named ⎕SE.UCMD and – if it exists – call this function passing the rest of

 User Commands 2

the input line as the right argument. The default session files (.DSE) all contain a

function which passes the command to the Spice command processor, which is based

on the simple tool for managing APL code in Unicode text files known as SALT.

SALT and Spice were introduced with version 11.0. As a result any Spice commands

that you may have developed are now available as user commands in version 12.1.

You can write your own user command implementation by redefining ⎕SE.UCMD,

but Dyalog recommends that you refrain from doing so, in order to promote a single

user command format that allows all user commands to be shared. If you use the

Spice framework, this will also allow the use of any user commands that you develop

with versions 11.0 and 12.0 via the “Spice command line” (see Help | Documentation

Centre for more information about SALT and Spice).

In the longer term, Dyalog aims to add the ability to load, edit and save APL source

code held in Unicode files into the interpreter itself. Through SALT and Spice, user

commands are thus built on the framework which is likely to become the

recommended mode of development in the future.

Dyalog‟s user commands are similar in concept to those implemented in other APL

systems in the past – but the text based implementation is intended to allow much

easier sharing of development tools.

Using User Commands
All user commands are entered in the session starting with a right bracket, in the same

way that system commands start with a right parenthesis.

To execute command xyz type]xyz

To find all available commands type]?

To get a summarized list of all commands type]?+

To get more general help type]??

To find all the available commands in a specific folder type]? \folder\name

To get info on command XYZ type]?xyz

To get detailed help/info on command XYZ type]??xyz

To assign the result of a command to a variable type]nl←cmdx …

 User Commands 3

Example:

To view help on a particular command type]?cmdname . For example, to find help

on command „Find‟:

The names of commands are case insensitive, so FIND and find are the same

command.

Upon hitting Enter, the line is sent to the command processor which determines

which command has been selected, brings in the code to run it, runs it, and then

cleans up.

 User Commands 4

Groups
Commands with common features can be regrouped under a single name. To find all

the commands related to a particular group type]?grpname

For example, to list all the commands in the transfer group:

 User Commands 5

Creating Commands
A user command is implemented as a namespace or class saved in a Unicode text file

with the extension .dyalog. You just need to write three simple APL functions called

List, Help and Run (plus any additional functions that you need for your

implementation) - and there are worked examples which show you how to wrap it all

up as a class. You do NOT need to use a class but if you decide to do so you have to

make sure the functions are public. A single namespace/class can host as many

commands as you like, so you can get away with doing it once if you prefer. The

following examples will act as a tutorial and hopefully get you started as an

implementer of user commands.

Examples

Example #1: The TIME command
Here is a very simple example: A user command that will show us the current time.

Here is the code required to implement our first user command:

:Class timefns
 ⎕ML ⎕IO←1 ⍝ always set to avoid inheriting external values

 ∇ r←List
 :Access Shared Public
 r←⎕NS¨1⍴⊂''
 r.(Group Parse Name)←⊂'TimeGrp' '' 'Time'
 r[1].Desc←'Time example Script'
 ∇

 ∇ r←Run(cmd argz)
 :Access Shared Public
 r←⎕TS[4 5 6] ⍝ show time
 ∇

 ∇ r←Help Cmd
 :Access Shared Public
 r←'Time (no arguments)'
 ∇
:EndClass

The List function is used to tell the user command framework about the command

itself. This allows it to display a little summary when the user types „]?+‟ to list user

commands. List returns one namespace per command. Each namespace contains 4

variables. The summary is stored in Desc. Three more variables must be set: the

command Name, the Group that the command belongs to and the Parse

information for optional arguments. We‟ll get to parsing in a bit.

The Help function is used to report more detailed information when you type

]?time. Since the class may harbour more than one command, the functions Help

and Run both take the command name as an argument to decide what to do. Here

there is only one command, so the argument will always be „Time‟ so we ignore it

and always return some help for that command.

 User Commands 6

The Run function is the one executing your code for the command. It is always called

with 2 arguments: the command name and the rest of the line after it. Here we ignore

both as all we do is call ⎕TS.

We can write this code in a file named timefns.dyalog using Notepad and put it

in the SALT\Spice folder or write it in APL and use the]save command
1

to put

it there.

Once in the Spice folder (the default location for user commands), it is available for

use. All we need to do is type]time. Et voilà! The current time appears in the

session as 3 numbers
2
.

Example #2: Another command in the same class: UTC
We may want to have another command to display the current UTC time instead of

the current local time. Since this new command is related to our first „Time‟

command, we could – and should – put the new code in the same class, adding a new

function Zulu3
 and modifying Run, List & Help accordingly. Like this:

:Class timefns
 ⎕ML ⎕IO←1

 ∇ r←List
 :Access Shared Public
 r←⎕NS¨2⍴⊂''
 r.(Group Parse)←⊂'TimeGrp' ''
 r.Name←'Time' 'UTC'
 r.Desc←'Shown local time' 'Show UTC time'
 ∇

 ∇ r←Run(Cmd argz);dt
 :Access Shared Public
 ⎕USING←'System'
 dt←DateTime.Now
 :If 'UTC'≡Cmd
 dt←Zulu dt
 :EndIf
 r←(r⍳' ')↓r←⍕dt ⍝ remove date
 ∇

 ∇ r←Help Cmd;which
 :Access Shared Public
 which←'Time' 'UTC'⍳⊂Cmd
 r←which⊃'Time (no arguments)' 'UTC (no arguments)'
 ∇

 ∇ r←Zulu date
 ⍝ Use .Net to retrieve UTC info

1
 ⎕SE.SALT.Save 'timefns Spice\timefns' can also be used.

2
 This requires SALT/Spice version 1.3 or later. If you are not using Dyalog v12.1 or later, check which

version you are using type ⎕SE.SALT.Version and download a new one if necessary.
3
 UTC is sometimes denoted as Z time – Zero offset zone time – or Zulu time from the NATO phonetic

alphabet

 User Commands 7

 r←TimeZone.CurrentTimeZone.ToUniversalTime date
 ∇
:EndClass

The List function now accounts for the „UTC‟ command and returns a list of 2

namespaces so]?+ will now return info for both commands. Same for Help
which makes use of its argument to return the proper help information.

The Run function now makes use of the Cmd argument and, if it is „UTC‟, calls the

Zulu function. It still does not use the 2
nd

 argument, it ignores it. It then returns the

data nicely formatted, an improvement over the previous code.

Example #3: Time in Cities around the world
We could then add a new function to tell the time in Paris, another one for Toronto,

etc. Each time we would have to modify the 3 shared functions above, OR, we could

have a single function that takes an argument (the location) and computes the time

accordingly
4
. Like this:

:Class timefns

 ⎕ML ⎕IO←1

 ∇ r←List
 :Access Shared Public
 r←⎕NS¨2⍴⊂''
 r.(Group Parse)←⊂'TimeGrp' ''
 r.Name←'Time' 'UTC'
 r.Desc←'Show local time in a city' 'Show UTC time'
 ∇

 ∇ r←Run(Cmd Arg);dt;offset;cities;diff;lc
 :Access Shared Public
 ⎕USING←'System'
 dt←DateTime.Now ⋄ offset←0
 :If 'UTC'≡Cmd
 cities←'l.a.' 'montreal' 'copenhagen' 'sydney'
 lc←⎕SE.Dyalog.Utils.lcase Arg~' '
 offset←¯8 ¯5 2 10 0[cities⍳⊂lc]
 :OrIf ' '∨.≠Args
 dt←Zulu dt
 :EndIf
 diff←⎕NEW TimeSpan(3↑offset)
 r←(r⍳' ')↓r←⍕dt+diff ⍝ remove date
 ∇

 ∇ r←Help Cmd;which
 :Access Shared Public
 which←'Time' 'UTC'⍳⊂Cmd
 r←which⊃'Time [city]' 'UTC (no arguments)'
 ∇

4
 The function does not deal with daylight savings time. An exercise for the reader?

 User Commands 8

 ∇ r←Zulu date
 ⍝ Use .Net to retrieve UTC info
 r←TimeZone.CurrentTimeZone.ToUniversalTime date
 ∇
:EndClass

Here, List and Help have been updated to provide more accurate information but

the main changes are in Run which now makes use of the 2
nd

 argument. This one is

used to determine if we should use the Zulu function and compute the offset from

UTC by looking it up in the list of cities we know the time zone (offset) for. We

allow uppercase letters by simply lowercasing the whole argument with the utility

⎕SE.Dyalog.Utils.lcase which is available to everyone.

The first argument to Run is always the command name (here called Cmd) and the

second argument is whatever you entered after the command (here it is called Arg).

When there are no special rules this argument will always be a string.

For example, if the user entered:

]time Sydney

Cmd will contain „Time‟ and Arg will contain „Sydney‟ which is whatever was

entered after the first space after the command name. Notice the first argument will

contain the Name of the command as spelled out in List no matter how the user

cases it and that any extra space the user enters will be included in the argument

which is why we take care of removing those spaces on line [6].

Switches
There are times when it makes more sense for a command to accept switches instead

of writing an entirely new (similar) command. A command switch (also known as

modifier or flag or option) is an instruction that the command should change its

default behaviour.

For example, the SALT command list is used to list .dyalog files in a folder.

The command accepts an argument which is used as a filter (e.g. „a*‟ to list only the

files starting with „a‟) and accepts also some switches (e.g. „-versions‟ to list all

the versions). Thus the command „]list a* -ver‟ will only list the files

starting with „a‟ with all their versions instead of listing everything without version,

which is the default.

The Spice framework upon which user commands is built allows you to define

switches that your command will accept. If the Parse element for your command is

empty (as defined in your List function), Run„s 2
nd

 argument will simply contain

everything following the command name, and you can interpret it any way you like

just like we did so far; by setting Parse to non-empty values, you can get the

framework to handle switches for you.
5

Let‟s take a look at an example using “parsing”.

Example #4: The Supplied sample Command

5
 The parser upon which this functionality is based is described in an article found in Vector Vol 19, #4:

Tools, Part 1: Basics.

 User Commands 9

The default installation includes a sample command to demonstrate the use of

arguments and switches.

In file aSample.dyalog you will find a class with 2 commands: one named

sampleA which does not use the parser and one that does.

The second command, named sampleB, uses the parser. It is similar to the

„time/utc‟ command described earlier: it accepts one and only one argument and one

switch, called TZ, which MUST be given a value. For example you could write:

The framework is used to validate that there is exactly one argument, and that TZ, if

supplied, has been given a value - and that no unknown switches are used.

This is accomplished by setting the Parse variable for that command to „1 -TZ=‟

(in your List function).

The 1 means that one and only one argument must be present. -TZ= declares that „-„

is the switch delimiter, that TZ is a valid switch for the command, and the trailing „=‟

means that a value must be supplied. The names of switches are case sensitive and

follow the same rules as APL identifiers.

If you don‟t declare the number of arguments to your command, any number of

arguments will be accepted (including 0).

When your command is used, your function will only be called if the arguments and

switches comply with the rules that you have declared. The framework will package

the argument and switch(es) into a namespace and pass this as the second argument to

Run, which is called Arg in our example.

That second argument, a namespace, will contain a vector of strings named

Arguments, with one string per argument to the command (in our example there

will always be a single –enclosed- string because of the „1‟ in „1 –TZ=‟), and a

variable named TZ which will either be a numeric scalar 0 if the switch was not

specified, or a character vector containing the supplied value.

Let‟s try to go over that again. The user enters:

]sampleb xyz –TZ=123

This is OK since there is one argument (arguments are separated by spaces) which

has the value „xyz‟, and the switch TZ has been given a value: „123‟.

Run will be called with 2 right arguments where the first one is 'sampleB' and the

second one is a namespace containing Arguments (,⊂'xyz') and TZ ('123').

The Run function then runs its course with those values.

 User Commands 10

Here‟s another example:

]sampleB x y z

3 arguments have been supplied: x, y and z, so the framework rejects the command

without calling your code:

Command Execution Failed: too many arguments

Another example:

]SAMPLEB 'x y z' -TZ

Here there is only ONE argument as quotes have been used to delimit the argument of

5 characters: „x, space, y, space, z‟ BUT the switch TZ has not been given a value so:

Command Execution Failed: value required for switch <TZ>

One more:

]Sampleb zyx -TT=321

Here one argument is OK but TT is not a recognized switch and:

Command Execution Failed: unknown switch: <TT>

What if we don‟t supply ANY argument?

]Sampleb -T=xx

T is OK as an unambiguous abbreviation for TZ, but 0 arguments is not enough and:

Command Execution Failed: too few arguments

The following general rules apply to the parser:

- Commands take 0 or more arguments followed by 0 or more switches

- Arguments come first, switches last

- Arguments are separated by spaces

- A special character ('-' is recommended) identifies and precedes a switch

- Switches may be absent or present and may accept a value with the use of '='

- Switches can be entered in any order

- Switches are case sensitive

- Arguments and switch values may be surrounded by single or double quotes
6
 in

order to embed spaces, quotes or switch delimiters.

After verifying that the specified rules have been followed, the user command

framework will put all the arguments into the variable Arguments in a new

6
 If quoted, an argument must begin and end with the same quote symbol (“ or '). Whichever is used,

the other quote symbol can be embedded within the argument, for example “I'm”. The same quote
symbol can also be embedded by doubling it, for example 'I''m'.

 User Commands 11

namespace. It will also insert a variable of the same name as each switch. The

namespace is then passed as the 2
nd

 argument to Run.

There are a few more things the parser can do but this should cover most cases. See

Advanced Topics in the following for details.

Location of Commands
By default, the files defining user commands are located in the folder SALT\Spice

below the main Dyalog program folder. You can change that by specifying a new

location.

You can change the location using Options/Configure User Commands Tab, just

remember the change won‟t effective until the next restart:

You can also change the location of user commands immediately (no need to restart)

using the command]settings.

]settings takes 0, 1 or 2 arguments. With 0 arguments, it displays the current

value of ALL settings. With 1 argument it shows the value of that particular setting.

With 2 arguments it resets the value of the setting specified.

The setting to use for the user command folder is „cmddir‟. Thus

]settings cmddir

will report the folder(s) currently in use. The installed default is

[Dyalog]\SALT\Spice, where [Dyalog] is shorthand for the Dyalog program

folder. If you wish to use another folder, e.g. \my\user\cmds you should type

 User Commands 12

]settings cmddir \my\user\cmds

Note that this will change the setting for the duration of the session only. If you wish

to make this permanent you should use the –permanent switch:

]settings cmddir \my\user\cmds -permanent
More than one folder can be specified by separating the folders with semi colons (;),

e.g.

]settings cmddir \my\user\cmds;\my\other\goodies

The folders will be used in the order specified. If a command with the same name

appears in more than one folder, only the first occurrence will be used.

Because spaces are important in folder names you must take care NOT to introduce

ANY spaces inappropriately.

If you replace the command folder with your own, you effectively disable most

installed commands. Only the commands which are part of the SALT and Spice

framework will remain active. See below for details on those.

If you wish to ADD to the existing settings you can either retype the list of folders

including the previous ones or precede your new folder with a comma to mean ADD

(in front), e.g.

]settings cmddir ,\my\spice\cmds;\my\other\goodies
will add the 2 folders specified to any existing setting.

If your folder includes spaces or a dash you should use quotes:

]settings cmd '\tmp\a –b c;\apl\with 2 spaces'

When you change the command folder it takes effect immediately. The next time you

ask for]? or a command it scans the new folder(s) specified to cache the info related

to all commands: name, description, parsing rules.

 User Commands 13

Advanced Topics
By default, all errors in user commands are trapped, possibly making it difficult to

debug commands as you are working on them. To prevent this, you can set the

DEBUG mode ON, as follows:

]udebug ON

Tracing User Commands
You can trace into a user commands just like any other APL expression. Because

there is a setup involved in executing a user command it can take quite a few

keystrokes to get to the actual code: First the UCMD function is called then the Spice

processor, and finally your Run function. To speed up the process you can ask Spice

to stop just prior to calling Run by adding a dash at the end of your command

expressions, e.g.

]command arguments –

The dash will be stripped off and APL will stop on the line calling your Run

function, allowing you to trace into your code.

This will only work when the DEBUG mode, as shown above, is ON.

Default Values for Switches
A switch always has a value, either 0 if not present, 1 if present without a value or a

string matching the value of the switch. For example, if you use –X=123 then X will

be a 3-element character vector, not an integer.

If you wish to default a switch to a specific value, you can either test its value for 0

and set it to your desired default, e.g.

:if X=0 ⋄ X←123 ⋄ :endif

or you can use the function Switch which is found in your namespace (in the 2nd

argument).

Monadic Switch returns the value of the switch as if it had been requested directly

except that it returns 0 for invalid switches (a VALUE error normally).

Dyadic Switch returns the value of the left argument if the switch is undefined (0)

or the value of the switch if defined but with a twist: if the value of the default is

numeric it assumes the value of the switch should be also and will transform it into a

number, so if –X=123 was entered, then

99 Args.Switch 'X' ⍝ default to 99 if undefined
will return (,123) , not „123‟

7

Restricted Names
If possible, avoid using switches named Arguments, SwD, Switch, Propagate

or Delim, as these names are used by the parser itself (remember that switch names

are case sensitive). You can use these names, but they will not be defined as variables

7
 the result is always a vector with Switch, this makes it easy to subsequently tell between 0 (switch

not there) and ,0 (value supplied by the user)

 User Commands 14

in the argument namespace. They will only be available thru function Switch, for

ex: Args.Switch 'SwD' will return the value of switch named SwD.

Long arguments
There are times when arguments need to contain spaces. The user can put quotes

around related elements. For example, if the user command newid accepts 2

arguments, say full name and address you would set Parse to „2‟ and the user would

use, e.g.

]newid 'joe blough' '42 Main str'

If the command needed arguments name, surname and address (3 arguments), the

user would not need the quotes before „joe‟ and after „blough‟, but would need them

for the 3
rd

 argument to keep the three parts of the address together.

If you want the last argument to contain “whatever is left”, then you can declare the

command as „long‟. If there are too many arguments, the “extra” ones will be merged

into the last one (with a single space inserted between them). To do this, append an

„L‟ after the number of arguments, for example „3L‟ (plus switches if any).

An example of a command requiring one compulsory long argument would be a

logging command coded „1L‟:

]log all this text is the argument.

Note that if there are multiple blanks anywhere in the text, they will be converted into

single spaces.

Short arguments
There are times when you only know the MAXIMUM number of arguments. For

example there may be 0, 1 or 2 but no more. In that case you would code the parse

string as „2S‟ for 2 Shorted arguments.

Another example is when you have a single argument which can be defaulted if not

supplied. You would then use „1S‟ (plus switches if any) as parse string. If the user

enters no argument (0=⍴Args.Arguments) then your program takes the proper action

(e.g. default to a specific value).

Forcing a reload of all commands
When you use a command which the framework does not recognize, it will scan the

command folder(s) to see whether new commands have been added. However, if you

make a change to the help or the list of commands, this may not be detected right

away and]? for example may not reflect the actual situation. Use the command

]ureset to force a complete reload of all user commands.

Monitoring your code
It is possible to use []MONITOR on your code to find where code is being executed

and how long it took to run. To do so use]Umonitor ON|OFF. When ON, each

function that is called is recorded along with the monitoring information. See below

for details.

SALT Commands
Because SALT is part of the user command framework, the commands which

implement SALT itself are always available, even if you remove the default

 User Commands 15

command folder from the cmddir setting. The commands in question are load,
save, compare, explore, list, settings, removeversions and

snap. If you “shadow” these with your own command with the same names, you

will effectively make them invisible, but you will always be able to call them directly

by using the functions in ⎕SE.SALT, for example ⎕SE.SALT.Load.

Spice Commands
uload: allows you to load in the workspace the script related to the command given

as argument. This is typically used when you are developing a command in order to

modify (debug) it. Note that while you are executing a user command the code being

executed can be debugged and modified. If your source script happened to be in the

workspace the framework will use it instead of reloading it from disk.

There is no need for a usave command since SALT’s save command already saves

code and subsequent changes are handled by the editor‟s callback function. However,

there is a command for creating a new command:

unew: This command puts up a GUI form which allows you to specify command

arguments and switches for one or more commands then puts you into the editor with

a script created using the information that you have provided.

ureset: Forces a reload of all user commands (may be required to make some

changes effective like new short help).

udebug: Switches debugging on or off.

umonitor: Switches monitoring on or off. When ON, all active functions see their

[]CR and their []MONITOR information paired in global variable #.UCMDMonitor

uversion: reports various versions: APL. SALT, .Net, UCMD…

uclean: this command cleans up the workspace of all traces of SALT. Once you run

it the editor will no longer put changes back in the source file(s).

Detailed Help
It is possible to provide several levels of help for your commands. When the user

enters]?xyz the framework calls your <Help> function with the name of the

command (here „xyz‟) as right argument. If your command accepts a left argument it

will be given the number 0 for “basic help”.

It is possible to use more than one „?‟ to specify the level of help required. Entering

]??xyz is requesting more help than]?xyz.]???xyz even more so. In effect the left

argument to your <Help> function is the number of extra „?‟ See command

HelpExample for details.

More Implementation Details
User commands are implemented thru a call to ⎕SE.UCMD which is given the string

to the right of the] as the right argument and a reference to calling space as the left

argument. For example, if you happen to be in namespace #.ABC and enter the

command

]XYZ –mySwitch=blah

APL will make the following call to ⎕SE.UCMD:

 User Commands 16

 #.ABC ⎕SE.UCMD 'XYZ –mySwitch=blah'

preserving the command line exactly. The result returned by UCMD is displayed in the

session.

This means that application code can invoke user commands by calling ⎕SE.UCMD

directly and that if you erase the function, you will disable user commands

completely.

By default, ⎕SE.UCMD calls Spice, which implements user commands as described

in this document. Its right argument is simply passed on to Spice using (here) the call:

 ⎕SE.SALTUtils.Spice 'XYZ –mySwitch=blah'

<Spice> will make UCMD‟s left argument available to your command via “glocal”

##.THIS so you can reference the calling environment if you need to.

It is not recommended that you call Spice directly. Dyalog reserves the right to

change the implementation at this level. However, calling ⎕SE.UCMD should be safe

for the foreseeable future. It is possible to modify ⎕SE.UCMD in order to implement

your own user command mechanism, but Dyalog recommends that you refrain from

this, in order to promote maximum sharing of development tools amongst all users of

Dyalog APL.

Assigning the result of a command
It s possible to assign the result of a command by simply inserting an assignment

between] and the command name. For example to assign the result of list to „a‟:

]a←list -raw
 ⍴⎕←a
 <DIR> lib 2010 7 8 17 38 10 879
 <DIR> SALT 2010 7 8 17 38 10 889
 <DIR> spice 2010 7 8 21 0 52 715
 <DIR> study 2010 7 8 17 38 10 930
 <DIR> tools 2010 7 8 17 38 10 948
5 5

To discard the result do not specify a variable:

]←list -raw

To display line by line (as opposed to block by block) use quad:

 ⎕pw←30
]disp 2 32⍴';'
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

 ;;
 ;;
]⎕←disp 2 32⍴';'
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

 User Commands 17

 ;;

 User Commands 18

Appendix A – “Public” User Commands
WARNING: Version 12.1 was the first release which includes user commands. The

user command mechanism should be considered experimental: While the intention is

that user commands built with version 12.1 will continue to work in future releases,

the mechanism may be extended and many of the user commands shipped with the

product are likely to be renamed or significantly extended and changed in the first

couple of releases. V13 already has some changes which are mainly additions to the

12.1 set.

Use]? To list commands currently installed.

Commands are divided into groups. Each group is presented here along with its

commands.

To get examples or more information use]?? command , e.g. to get detailed info on

command wsloc do

]??wsloc

Group SysMon
This group contains three commands for measuring CPU consumption in various

ways: CPUTime simply measures the total time spent executing a statement, Monitor

uses MONITOR to break CPU consumption down by line of application code, and

APLMON breaks consumption down by APL Primitive.

Command APLMON
From version 12.0, Dyalog APL provides a root method which allows profiling of

application code execution, breaking CPU usage down by APL primitive rather than

by code line. The APLMON command gives access to this functionality.

As with Monitor, you can either run the command with the switch –on to enable

monitoring, run your application, and then run the command again with the switch –
report to produce a report, or you can pass an expression as an argument, in which

case the command will switch monitoring on, run the expression, and produce a

report immediately. The only other switch is –filename=, which allows

specification of the APLMON output file to be used. If it is omitted, a filename will

be generated in the folder which holds your APL session log file.

Examples:

]aplmon ⍴{+/1=⍵∨⍳⍵}¨⍳1000 –file=\tmp\data
1000
Written: C:\tmp\data.csv
The above command generated a log file name, enabled APLMON logging, ran the expression

and switched APLMON off again. You can report on the contents of this file using the

“aplmon” workspace, or send it to Dyalog for analysis.

)load aplmon
 InitMon '\tmp\data.csv'
Total CPU Time = 0.15 seconds
Total primitives = 5,003
 count sum hitcount sum time pct
time

 User Commands 19

 1. or │ 7 1,000 0.136557 94.03 ▏
 2. equal │ 6 1,000 0.00454 3.13 ▏
 3. iota │ 1 1,001 0.003087 2.13 ▏
 4. plus slash │ 6 1,000 0.001038 0.71 ▏

Command CPUTime
This command is used to measure the CPU and Elapsed time required to execute an

APL expression. There are two switches, -repeat= which allows you to have the

expression repeated a number of times and/or some period of time and –details=

which specifies how much details should be included. By default, the expression is

executed once. The report always shows the average time for a single execution.

It can also accept a combination of both iterations and period, for ex the maximum

between 10 iterations and 1000 milisecs. If 1 second is not enough to run the

expression 10 times it repeats until the expression has been executed 10 times. On the

other hand if the expression ran 10 times in less than 1 sec it continues to run until 1

sec has gone by. It would be specified this way: -repeat=10 ⌈ 1s

With –details=none only the numbers are returned as a 2 col matrix (CPU and

elapsed), 1 row per expression.

With –details=ai only the same numbers plus the 2 []AI numbers are returned

(Nx4 matrix).

With –details or –details=all nothing is returned; instead, a report that

includes the number of times repeated and the []AI and []MONITOR numbers is

shown.

Examples:

]cputime {+/1=⍵∨⍳⍵}¨⍳1000
* Benchmarking "{+/1=⍵∨⍳⍵}¨⍳1000"
 Exp
 CPU (avg): 63
 Elapsed: 67

]cputime {+/1=⍵∨⍳⍵}¨⍳1000 -repeat=1s
* Benchmarking "{+/1=⍵∨⍳⍵}¨⍳1000", repeat=1s
 Exp
 CPU (avg): 54.6
 Elapsed: 55.2

]cpu {+/1=⍵∨⍳⍵}¨⍳100 ⍳⍨⍳1e6 -details=ai -rep=50
 0.64 0.46 0.64 0.46
30.58 30.52 30.58 30.52
The last example shows the 2x4 result for the 2 expressions tested.

Command Monitor
This command is used to find out which lines of code in your application are

consuming most CPU. You can either run the command with the switch –on to

enable monitoring, run your application, and then run the command again with the

switch –report to produce a report, or you can pass an expression as an argument,

in which case the command will switch monitoring on, run the expression, and

produce a report immediately. Other switches are:

Switch Effect

 User Commands 20

-top=n Limits report to the n functions consuming the most CPU

-min=n Only reports lines which consume at least n% of the total,

either CPU or Elapsed time

-fns=fn1,fn2,… Only monitors named functions

-caption=text Caption for the tab created for this report

Examples:

]monitor –on
Monitoring switched on for 44 functions

 5↑[1]NTREE '⎕SE'
⎕SE (Session)
├─Chart (Namespace)
│ ├─CheckData (Function)
│ ├─Do (Function)
│ ├─DoChart (Function)

]mon -rep -cap=NTREE
(Pops up the following dialog)

Command profile
This command is used in conjunction with the new []PROFILE system function to

produce reports and graphs in order to tune applications.

See the document on this user command for details.

Group SALT
This group contains commands that correspond to the SALT functions of the same

name: Save, Load, List, Compare, Explore, Settings,Snap and

RemoveVersions. (found in ⎕SE.SALT)

 User Commands 21

Example:

]save myClass \tmp\classX -ver
This will do the same as

 ⎕SE.SALT.Save 'myClass \tmp\classX -ver'

Group Sample
There are commands in this group used to demonstrate the use of help and parsing

user command lines. You should have a look at the classes and read the comments in

them and the description earlier in this document to better understand the examples.

Command HelpExample
This command is an example of a command using different levels of Help with a left

argument to the <Help> function.

Command sampleA
This command is an example of a command NOT using parsing, where the argument

is the entire string after the command name.

Command sampleB
This command is an example of a command using parsing, where the string after the

command name is parsed and turned into a namespace containing the arguments

tokenized and each switch identified.

Group Spice
This group contains eight commands: UClean, UDebug, Uload, UNew, USetup,

UReset, Usetup and UVersion.

Command UClean
This command removes any trace of SALT in the workspace by removing all tags

associated with SALT with each object in the workspace.

Command UDebug
This command turns debugging ON and OFF in order to stop on errors when they

happen. Otherwise the error will be reported in the calling environment. It also

enables the „stop before calling the run function‟ feature which consists in adding a

dash at the end of the command as in

]mycmd myarg -

UDebug can also turn system debugging on and off
8
. For example, to turn the „w‟

debug flag on use

]udebug +w
to turn it off use

]udebug -w

8
 system debug flags are used to debug the interpreter itself. See the User Guide for details on this

topic.

 User Commands 22

Command ULoad
This command is used to bring in the workspace the class associated with a user

command. It is typically used when debugging a user command and you need the

code to work with.

Example: load the code for the UNew command:

]uload unew
Command unew is now found in #.newcmd

The namespace containing the code the for the UNew user command was brought in

from file and produced object newcmd. We can now edit it and modify the

command. When we exit from the editor, it will automatically be saved back to the

script file from whence it came.

Command UMonitor
This command turns monitoring ON or OFF. This allows you to run []MONITOR on

your user command code.

Results are set in #.UCMDMonitor after each invocation of a cmd.

-var= sets the name of the variable to store the result

Command UNew
This command is used to create a class containing one or more user commands. It

creates a form which is used to input all the basic information about the commands

contained in a Spice class: the command names, their groups, their short and long

description and details of switches.

Each command‟s info is entered one after another.

When finished it creates a class which you can edit and finally save as a file.

Command UReset
Forces a reload of all user commands – this may be required for ex. after adding a

command for]? to show them.

Command USetup
This command is used by versions prior to V12.1 to automatically initialize Spice‟s

command bar to the user‟s preferences. It can still be customized and used to modify

your session preferences, e.g. to setup your PF keys.

Command UVersion
This command reports various version numbers: for APL, SALT, .NET and UCMD

itself.

Group svn
This group contains a series of commands used as cover to SubVersion functions of

the same name. For example, svnci is equivalent to „svn ci‟ and commits changes

made to the current working copy.

 User Commands 23

Group Tools
This group contains a series of commands used to perform tasks related to everyday

activities.

Command calendar
This command is similar to Unix‟ cal program and displays a calendar for the year or

the month requested.

Example:

]cal 2010 3
 March 2010
Su Mo Tu We Th Fr Sa
 1 2 3 4 5 6
 7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

Command cd
This command will change directory in Windows. It reports the previous directory or

the current directory if the argument is empty.

Example: switch to directory \tmp for the remaining of the session:

]cd \tmp
C:\Users\Danb\Desktop

Command Demo
Demo provides a “playback” mechanism for live demonstrations of code written in

Dyalog APL

Demo takes a script (a text file) name as argument and executes each APL line in it

after displaying it on the screen.

It also sets F12 to display the next line and F11 to display the previous line. This

allows you to rehearse a demo comprising a series of lines you call, in sequence, by

using F12.

For example, if you wish to demo how to do something special, statement by

statement you could put them in file \tmp\mydemo.txt and demo it by doing

]demo \tmp\mydemo
The extension TXT will be assumed if no extension is present.

The first line will be shown and executed when you press Enter. F12 will show the

next which will be executed when you press Enter, etc.

Command dinput
This command is used to test multi line D-expressions.

 User Commands 24

Example:

]Dinput ⍝ multi-line expression
····{ ⍝ dup:
········⍵ ⍵
····}{ ⍝ twice:
········⍺⍺ ⍺⍺ ⍵
····}7
 7 7 7 7

Command disp
This command will display APL expressions using boxes around enclosed elements

as per the familiar disp function.

Example:

disp ⍳¨⍳2 3
┌→────┬─────────┬─────────────┐
↓┌→──┐│┌→──┬───┐│┌→──┬───┬───┐│
│↓1 1││↓1 1│1 2││↓1 1│1 2│1 3││
│└~─→┘↓└~─→┴~─→┘↓└~─→┴~─→┴~─→┘↓
├────→┼────────→┼────────────→┤
│┌→──┐│┌→──┬───┐│┌→──┬───┬───┐│
│↓1 1││↓1 1│1 2││↓1 1│1 2│1 3││
│├~─→┤│├~─→┼~─→┤│├~─→┼~─→┼~─→┤│
││2 1│││2 1│2 2│││2 1│2 2│2 3││
│└~─→┘↓└~─→┴~─→┘↓└~─→┴~─→┴~─→┘↓
└────→┴────────→┴────────────→┘

Command display
This command will display APL expressions using boxes around enclosed elements

as per the familiar DISPLAY function.

Note that this command is different from the disp command just like the 2 functions

disp and DISPLAY are different and you must enter at least „displ‟ to use it.

 User Commands 25

Example:

]display ⍳¨⍳2 3
┌→──┐
↓ ┌→──────┐ ┌→────────────┐ ┌→──────────────────┐ │
│ ↓ ┌→──┐ │ ↓ ┌→──┐ ┌→──┐ │ ↓ ┌→──┐ ┌→──┐ ┌→──┐ │ │
│ │ │1 1│ │ │ │1 1│ │1 2│ │ │ │1 1│ │1 2│ │1 3│ │ │
│ │ └~──┘ │ │ └~──┘ └~──┘ │ │ └~──┘ └~──┘ └~──┘ │ │
│ └∊──────┘ └∊────────────┘ └∊──────────────────┘ │
│ ┌→──────┐ ┌→────────────┐ ┌→──────────────────┐ │
│ ↓ ┌→──┐ │ ↓ ┌→──┐ ┌→──┐ │ ↓ ┌→──┐ ┌→──┐ ┌→──┐ │ │
│ │ │1 1│ │ │ │1 1│ │1 2│ │ │ │1 1│ │1 2│ │1 3│ │ │
│ │ └~──┘ │ │ └~──┘ └~──┘ │ │ └~──┘ └~──┘ └~──┘ │ │
│ │ ┌→──┐ │ │ ┌→──┐ ┌→──┐ │ │ ┌→──┐ ┌→──┐ ┌→──┐ │ │
│ │ │2 1│ │ │ │2 1│ │2 2│ │ │ │2 1│ │2 2│ │2 3│ │ │
│ │ └~──┘ │ │ └~──┘ └~──┘ │ │ └~──┘ └~──┘ └~──┘ │ │
│ └∊──────┘ └∊────────────┘ └∊──────────────────┘ │
└∊──┘

Command factorsof
This command will return the factors that constitute a number.

Example:

]fac 123456789
3 3 3607 3803

Command FFind
This command searches the .dyalog files in the current working directory for the

string given as argument in SALT script files. It needs ONE long argument which is a

.Net regular expression
9
.

It reports all the hits in each script file where found.

To search different directories use the switch –folder to specify the new location.

-options will accept a value of I (insensitive), S (Singleline mode) or M (Multiline

mode – the default) to change search behavior.

-types will accept the extensions to use when searching (default .dyalog)

Example:

]find \b(abc|\w{7})\b –folder=\tmp -type=txt log
will find „abc‟ or all 7 letter words in all .txt or .log files in \tmp, and below.

Command FnCalls
This command is used to find the calls made by a program in a script file or in the

workspace.

It takes 1 or 2 arguments: the function name and the namespace or filename where it

resides (default current namespace). With switch –details it can provide extra

9
 to look for or replace strings in the workspace use command WSLOC

 User Commands 26

details on all the names involved such as locals, globals, unused, recursively called,

etc.

With switch –treeview it will show the result in a treeview window instead of the

session log.

If the switch –file is provided the namespace is assumed to be the name of a file.

Example:

]fncalls Spice '\Dya -APL\12.1\SALT\SALTUtils'10 -fil
Level 1: →Spice
⍝ Handle KeyPress in command window
⍝ The function can also be used directly with a string
F:isChar F:isHelp F:isRelPath
F:BootSpice F:GetSpiceList F:SpiceHELP

Level 2: Spice→isChar
…
Level 2: Spice→BootSpice
⍝ Set up Spice
F:GetList R:Spice

Level 3: BootSpice→GetList
⍝ Retrieve the list of all Spice commands
F:getEnvir F:lCase F:splitOn F:ClassFolder

Level 4: GetList→ClassFolder
⍝ Produce full path by merging root and folder name
…
At each level the calling function is followed by the called function which is detailed.

It lists each function called preceded by either an F (for function) or an R (for

recursive call). We can see at the 1
st
 level that function Spice calls 6 other functions

and at the 2
nd

 level function isChar calls nothing and BootSpice calls 2

functions: GetList and Spice, recursively. At the 3
rd

 level GetList calls 4

functions and so on.

With –full the output repeats for already shown functions. This may produce

output where the same function calls may be different if objects are shadowed up the

stack.

With –details each object is preceded by either F or R as above or a character

meaning:

○: local
G: global
!: undefined local
↑: glocal (global localized higher on the stack)
L: label
l: unreferenced label
*: previously described in the output11

10
 the 2nd argument is surrounded by quotes because it contains a dash

11
 this won’t happen when switch –full is used

 User Commands 27

Command FReplace
This command searches the .dyalog files current working directory for the string

given as first argument in SALT script files and replaces occurrences by the second

(long) argument. It needs TWO arguments which are .Net regular expressions (see

http://msdn.microsoft.com/en-us/library/az24scfc(VS.71).aspx for details).

To work on a different directory use the switch –folder to specify the new

location.

-options will accept a value of I (insensitive), S (Singleline mode) or M (Multiline

mode – the default) to change search behavior.

-types will accept the extensions to use when searching (default .dyalog)

Example:

]replace Name:\s+(\w+)\s+(\w+) Name: $2, $1 -fol=\tmp

will reverse every occurrence of 2 words when they follow „Name:‟, i.e

Name: Joe Blough
will become

Name: Blough, Joe
in every file it finds in the directory \tmp

Command fromhex
This command will display an hexadecimal value in decimal

Example:

]fromhex FFF A0
4095 160

Command ftttots
This command will display a number representing a file component time information

into a []TS form (7 numbers).

]ftttots 3⌷⎕frdci 4 1
2011 3 10 23 16 28 0

Command GUIProps
This command will report the properties (and their values), childlist, eventlist and

proplist of the event given as argument or, if none provided, the object on which the

session has focus (the object whose name appears in the bottom left corner of the

session log).

Command latest
This command will list the names of the youngest functions changed (most likely

today, otherwise of the last changed day), the most recently changed first.

http://msdn.microsoft.com/en-us/library/az24scfc(VS.71).aspx

 User Commands 28

Command Summary
This command produces a summary of the functions in a class in a script file. It takes

a full pathname as single (long) argument. If the switch –file is provided the name is

assumed to be a file.

]summary ⎕SE.Parser
name scope size syntax
 fixCase 24 n0f
 if 24 n0f
 init PC 4500 n1f
 xCut 532 r2m
 Parse P 5748 r1f
 Propagate S 1220 r2f
 Switch 1152 r2f
Scope shows S if shared, P if public, C if constructor and D if destructor

Size is in bytes

Syntax is a 3 letter code:

[1] n=no result, r=result
[2] # of arguments (valence)
[3] f=function, m=monadic operator, d=dyadic operator

Command tohex
This command will display a number in hexadecimal value

Example:

]tohex 100 256
64 100

Command tohtml
This command will produce HTML text that displays a namespace or a class in a

browser. It accepts 5 switches:

-title= will take a string to be displayed at the top of the page, e.g. –title=<center>My

best Class</center>

-full will include the full HTML code, including the <head> section before the

<body>

-filename= write the result to the file specified

-clipboard will put the result on the clipboard, ready to be pasted elsewhere

-xref will produce a Cross-reference of the names used in the class in relation to all

the methods

Command WSpeek
Executes an expression in a temp copy a workspace. As its name suggests, WSpeek is

used to view, rather than to change, a saved workspace; any changes made in the

copy are discarded on termination of the command. A Wsid='.' means the saved copy

of the current workspace.

 User Commands 29

]WSpeek wsid [expr ...] ⍝ expr defaults to ⍎⎕LX

Example: execute the <queens> program from the „dfns‟ workspace

]wsp dfns 0 disp queens 5

Command Xref
This command returns a Cross-reference of the objects in a script file. If the switch

–file is provided the name is assumed to be a file.

It produces a very crude display of all references on top against all functions to the

left. At the intersection of a function and a reference is shown a symbol denoting the

nature of the reference in relation to the function: o means local, G mean global, F

means function, L means label.

Example:

]xref \Program Files\Dyalog\SALT\lib\rundemo -file
 ccfkllnpssszzzFFILNPPS
 llieaiaa_cn...iinieaoc
 .lybnms ri.NRllinxtsr
 Tes eet ip.eaeetethni
 e . . e p .sw . . . p
 x . . . t .t. N . . t
 t
 - - - - : - - - - : -
 Edit ○ . . G . : G
 Init ○:F:GG
 Load .○. .○. : ○GGG.F. G G

As can be seen in this report, name script is a local in function Edit. The characters

dot, dash and semi colon only serve as alignment decorators and have no special

meaning.

Group Transfer
This group contains four commands: in, out, inx and outx. In and Out read or write

APL Transfer Files in the standard ATF format, and should be compatible with

similarly named user or system commands in other APL implementations. Inx and

Outx use a format which has been extended to represent elements of a workspace

which have been introduced in Dyalog APL since the ATF format was defined.

See the “Dyalog APL Windows Workspace Transfer.v12.1” for more details.

Group WS
This group contains several commands used for workspace management and

debugging. Some of the commands take a filter as an argument, to identify a selection

of objects. By default, the filters are in the format used for filtering file names under

Windows or Unix, using ? as a wildcard for a single character and * for 0 or more

characters. For example, to denote all objects starting with the letter A you would use

the pattern A*.

If the .NET framework is available, regular expressions can be used to select objects.

You indicate that your filter is a regular expression by providing the switch –regex.

 User Commands 30

The commands which accept filters are fnslike, varslike, nameslike, reordlocals,

sizeof and commentalign. They all apply to THE CURRENT NAMESPACE, i.e. you

cannot supply a dotted name as argument.

Also, very often the same command will accept a –date switch which specifies the

date to which the argument applies. This will typically be used when functions are

involved, for example when looking for functions older than a date, say 2009-01-01,

you would use –date=<9010112
. The century, year and month are assumed to be

the current one so if using this expression in 2009 using –date=<101 would be

sufficient. You can use other comparison symbols and –date=≠80506 would look

for dates different than 2008-05-06. Ranges are possible too and –date=81011-
90203 would look for dates from 2008-10-11 to 2009-02-03 included.

Command CommentAlign
This command will align all the end of line comments of a series of functions to

column 40 or to the column specified with the –offset switch.

The arguments are DOS type patterns for names which can be viewed as a regular

expression pattern if switch –regex is supplied. The –date switch can also be

applied.

The result is the list of functions that were modified in column format or in)FNS

format if switch –format is supplied.

Example:

]commentalign HTML* -format -offset=30

This will align all comments at column 30 for all functions starting with „HTML‟ and

display the names of all the functions it modified in)FNS format

Command fncompare
This command will show the difference between 2 functions, including timestamps. It

can handle large functions and has switches to trim the functions first, exclude the

timestamps, etc.

12
 The value of date is ‘<90101’, the < is included which is why the syntax includes BOTH = and <

 User Commands 31

Example:

given: ∇fna ∇fnb
 [1] same line [1] same line
 [2] fna line 2 [2] fnb line 2
 [3] same line 3 [3] same line 3
 [4] ⍝ comment deleted [4] new common line
 [5] new common line [5] ⍝ new comment
 ∇ ∇

]fncomp fna fnb
←[0] fna
→ fnb
 [1] same line
←[2] fna line 2
→ fnb line 2
 [3] same line 3
←[4] ⍝ comment deleted
 [5] new common line
→ ⍝ new comment
Switches

-normalize removes excess space at the ends of each line

-delins change the delete/insert characters

-exts exclude timestamps in comparison

-zone specify how many lines to show before and after each difference

-nolastline exclude the last line of each function (ex ignore SALT tag lines)

Command fndiff
This command will show the different lines between 2 functions by showing the

differences side by side. It is more suited for small functions. With the same example

functions as in fncompare:

Example:

]fndiff fna fnb
·fna· · · · · │·fnb· · · · · · ·
·fna·line 2 · · · │·fnb·line 2 · · · · ·
⍝ comment deleted · │⍝ new comment · · · ·

Command fnslike
This command will show all functions names following a pattern in their names. It

accepts the –regex, -date and –format switches.

 User Commands 32

Command nameslike
This command will show all objects following a same pattern in their names. Each

name will be followed by the class of the name.

It accepts the –regex, -date and –format switches.

Example: find all names containing the letter „a‟:

]nameslike *a* -format
aplUtils.9 disableSALT.3 enableSALT.3
commandLineArgs.2 disableSPICE.3 enableSPICE.3

Command reordlocals
This command will reorder the local names in the header of the functions given in the

argument. The argument is a series of patterns representing the names to be affected.

It accepts the –regex, -date and –format switches.

Command sizeof
This command will show you the size of the variables and namespaces given in the

argument. The argument is a series of patterns (including none=ALL) representing

the names affected. It accepts the –class switch to specify the classes involved and the

-top switch to limit the number of items shown.

Example:

)obs
NStoScript aplUtils test
)vars
CR DELINS Describe FS
]size -top=4 –class=2 9
NStoScript 132352
aplUtils 40964
test 31996
Describe 10128

Command supdate
This command will update a namespace script with newly added variables and

functions.

This can come in handy when you‟ve added code and data inside a scripted

namespace.

Example:

]load myns
)cs myns
 V ←⍳9
 ⎕fx 'myfn' '2+2'
⍝ Now update the script to include these new objects
]supdate
Added 1 variables and 1 functions

Command varcompare

 User Commands 33

This command will compare 2 variables including namespaces which contain

functions and other variables and namespaces. For this reason it includes the same

switches as command fncompare plus the following:

-exnames= exclude names from the comparison

-nlines= show only the 1st n lines of each variable not in the other object

-show= show only specific sections of the comparison report

See]??varcompare for details

Command varslike
This command will show all variables following a same pattern in their names. It

accepts the –regex and –format switches.

Command wscompare
This command will show the difference between 2 workspaces. It is a combination of

the commands fncompare and varcompare being run on entire workspaces. The

workspaces are first copied into temporary namespaces and the comparison then

performed. It includes the switches of fncompare and varcompare plus the following:

-exstring= exclude object containing this string

-gatheroutput gather all the output and return it as a result (can be quite large)

-nssrc use the script definitions of the namespaces instead of each

individual items when comparing.

Command wsloc
This command will search strings in the current namespace. It accepts a number of

switches that allow it to screen out hits in comments, text, etc. It accepts normal and

regular expressions and will perform replacement on most objects. See its

documentation (]??wsloc) for details.

Example: look for the words ending in AV (“syntactically to the right”), regardless

of case, in text only (exclude Body and Comments):

]wsloc APL –syntactic=r –insensitive –exclude=bc
Search String (Find and Replace) for Dyalog V6.01

 ∇ #.xfrfrom (3 found)
[57] ⍎(∆⍙trans=2)/oNS,'∆AV←bUf'
 ∧
[72] ∆⍙CodT←∆⍙CodT,(∆⍙trans=2)/'%⎕av[%∆AV['
 ∧ ∧

