
 

 1 

 

Simple APL Library Toolkit (SALT) 
For Version 2.00 dated 2011-3-11 

Introduction 

SALT is a source code management system for Classes and script-based Namespaces in 
Dyalog APL. SALT is also capable of storing code (e.g. functions) and some variables (not 
forms for instance) but it was designed for scripted namespaces. The source code for each 

object is stored in a single Unicode text file with a default file extension of “.dyalog”. SALT also 
supports the loading and starting of applications from an “application file” with an extension of 
“.dyapp”. 

 

Classes provide a convenient mechanism for wrapping tools in a way which makes them easy 

to share. SALT is intended to provide a common mechanism for APL users to develop and 
share code in “Open Source” libraries. 

 

SALT aims to provide the minimum useful set of functionality for a small team of developers, 
and provides the following set of functions (in a “likely” order of usage )  (casing of switches is 
not important): 

 

Function Modifiers Discussion 
List „folder|object’ -Folders Only list folders, not individual objects 

 -Recursive Recursively list contents below named folder 

 -Versions Also list intermediate version copies of object 

 -Raw Returns unformatted data 

 -Full=1 or -Full 
-Full=2 

-Type 

Show full pathnames below root folder 
Show complete pathnames 

Show the type of object in the file 

Explore „name’  Opens Disk Explorer if name is a folder or 

Notepad on source if name is an object 

 -Mode=normal|max… in Normal or Maximized window 

 -Use= Use specific program to edit the file 
 -Permanent Remember permanently the program to use 

Load „name’ -Version=  Loads a particular version 

 -Target=Namespace Defines the object in a specific ns 

 -Source[=no] Returns the source as a nested vector instead 

of defining the object in the workspace. If „no‟ is 
specified it instead means “define the 
namespace without a script”1. 

 -NoName Returns a ref to the object but does not “name” 
it in the workspace 

 -NoLink 
 

-Disperse[=nl] 

Do not manage the source for the object after 
loading it into the workspace 

Brings in the objects specified (or all) 

                                                
1 This only works with namespaces that do not contain classes or referenced 

functions  



 

 2 

-Protect Prevents redefining an existing object 

New „name’ [arg]  Creates an instance of class „name‟ 

  

-Version= 

without naming the class in the workspace 

Use a specific version 

Save „ref  file’ -Version= 

-Noprompt 

-MakeDir 

-Banner= 

 

-Convert 

Save particular version number 

Skip prompt to replace the file 

Create folders if necessary 

Add a banner at the top of converted scripts2, 
must be used with -Convert 

Convert the namespace to script form 

Compare „name’ -Version=n | ws Compare current (last) version with version n 

(default is to compare last 2 versions) or 
workspace if n=‟ws' 

 -Version=n1 n2 Compare two particular versions 

 -Use= Use specific program to compare (APL default) 

 -Permanent Remember permanently the program to use 
if Use=APL is  -Zone= # of lines to show before and after matches 
used -Trim Ignore spaces at the ends 

RemoveVersions 

„name’ 

-Version=[<>]n 

-Collapse 

-All 

Drop specific version(s) n 

keep last version 

Forget ALL backup versions  

Boot „app’  

-Function 

-Xload 

Loads and runs an application from a .dyapp file 

or from a function in a .dyalog file 

Do not run the []LX if any  

Settings'[id [v]]'  

-Reset 

Returns[/sets] registry values 

Reload settings from registry 

 -Permanent Save settings to registry 

Snap „[path]‟  Save new and modified objects to path given or 

current workdir if unspecified (see down below) 

 -Version[=x] Use version number (=x) 

 -NoPrompt Skip replacement prompt 

 -MakeDir Create intermediate folders if necessary 

 -Show[=details] Only show, do not save. Details are filename 

 -FilePrefix=str Prefix all files by „str‟ 

 -Class=[~]3 4 9 Use (~=don‟t) classes given 

 -Pattern=[~]str* Use (~=don‟t) names starting with „str‟ 

 -LoadFn[=newp] Save boot function <merge_ws> in path or 

newp 

 -Vars[=vn] 

 

-Banner= 

Save #‟s variables in a separate namespace vn 

for when booting the workspace  

Add a banner at the top of converted scripts, 
must be used with 

 -Convert Convert namespaces permanently into source 
form 

 

The use of text files as a storage mechanism means that SALT and other tools written in APL 
can be combined with industry standard tools for source code management. For example, 
SALT allows comparison between versions of a class to be done using an external add-on. 

 

SALT is included and activated with a standard Dyalog APL installation for Windows but can be 
deactivated. See the section on Configuration below. 

                                                
2 If the string starts with ⍎ the string is executed before 



 

 3 

Implementation Details 

File Format 
Each version of each source object is stored in a Unicode text file with an extension of 
“.dyalog” by default. The Unicode file format used is known as UTF-8. These files can store 
text which uses the “Basic Multilingual Plane” of Unicode, which contains most of the world's 
languages and the APL character set. This format is supported by very many applications 

(including Windows Notepad). 

 

The source code for SALT is itself “salted”, consisting of four files in the SALT\SALT folder. 

 

Application files are stored in text files with an extension of “.dyapp”. When Dyalog APL is 
installed, it sets up associations for the new extensions: 

 

.dyapp  Used by Dyalog APL which should Boot the application. Opens with Notepad. 

.dyalog  Opens with Notepad. 

Configuration 
Under Windows the registry key “HKEY_CURRENT_USER\Software\Dyalog\Dyalog APL/W 
12.1\SALT” contains some values which provide configuration information for SALT3. SALT will 

be loaded into the session if the registry string SALT\AddSALT has the value “1” (the 
default). If SALT is active, you should not get a VALUE error if you type 

 

⎕SE.SALT 
 
If SALT is not enabled you can enable it using the SALT workspace. Simply type 
 

)LOAD SALT 
enableSALT 

 
With V12 you can also use the configuration menu to en/disable SALT but the effect is only 
effective at the next APL startup. 

 

There are only a few settings and they can all be changed via SALT‟s Settings command 
shown later on. 

 

Shaking the SALT 
SALT is used to maintain itself, and the source can be found in the “SALTed objects” in the 
Dyalog folder SALT\SALT. As mentioned earlier, these files are loaded if the registry entry 
SALT\AddSalt has the value “1”. If so, SALTUtils and SALT are loaded into ⎕SE, and the 

function SALTUtils.EditorFix is connected to a callback on exit from the Dyalog Editor.  

 

When SALT loads an object, it tags it with data. For class 9 objects it inserts a special 

namespace named SALT_Data in it, and variables inside this namespace contain the source file 
name, the version number and the last write time of the file when it was loaded. This last item 
of information is used to prevent accidental updates of the same version by two different users 
or from two different sessions. For class 3 & 4 objects a special comment is appended to the 
code with similar information. For variables a special namespace in # holds the same info. 

SALT Applications 
In addition to managing individual source code files, SALT is able to load and run applications 
defined by files with an extension of “.dyapp”. The format of these files is documented under 

                                                
3 Under Unix a configuration file exists under the /home/[user] folder 



 

 4 

the Boot command. The Dyalog installation sets Dyalog APL as the application which is used to 

“start” these files, and SALT examines the command line to know what to do. 

Comparing Files 
SALT has its own built-in comparison program but since the source code for each version of an 
object is stored in a Unicode file, any file comparison tool which can compare Unicode files can 

be used. SALT is able to use any product if it can be launched using a command which takes 
the names of the two files to be compared as parameters. To inform SALT to use the above 
product you should do: 

  

⎕SE.SALT.Settings ‘compare [ProgramFiles]myFavorite\comparePgm’ 
 

SALT appends the two file names and calls “comparePgm”. If such a program is unavailable 
then SALT will use it own primitive comparison code and show the results in the session. 

Versions 
SALT files may be versioned. When versioning is switched ON for an object, SALT creates files 
which have a version number immediately before the .dyalog4 extension (for example, 
MyClass.3.dyalog). The List function in SALT shows this number as [3]. 

 

Each time an object saved in a versioned file is changed, a new file is created. You can quickly 
end up with a large number of intermediate versions. You will need to use RemoveVersions 

to tidy up. 

 

Using SALT 

A standard Dyalog APL installation contains a collection of classes which can be used to 
explore object oriented programming. SALT commands allow you to explore and use this 
library. 

List 
The List command takes an object or folder name as its argument. An empty argument will 
list the top-level files and folders (immediately below the first folder named in the workdir 

setting5): 

 

      ⎕SE.SALT.List '' 
Type   Name   Version  Size  Last Update          
 <DIR>  lib                   2010/11/24 14:38:44  
 <DIR>  SALT                  2010/11/24 14:38:44  
 <DIR>  spice                 2010/11/24 14:38:45 
 <DIR>  study                 2010/11/24 14:38:46 
 <DIR>  tools                 2010/11/24 14:38:46 
 
If you get a VALUE ERROR when you try to use SALT functions, check that SALT is enabled 

(see Configuration, above). 

 

The SALT folder contains the core code, study contains code which is referenced in 

documentation or provided for self-study, lib contains SALT utilities, tools contains various 
developers tools and spice contains basic User Commands - more on that in the User 
Commands document. 

                                                
4 Any extension can be used, .dyalog is the default. 
5 This setting may contain more than one folder but they must be separated by a 

semi-colon. When listing a file or folder the first one found is listed. 



 

 5 

 

The List function takes a number of modifiers. All SALT functions can be called with a single „?‟ 

argument, in which case they remind you of the available modifiers: 

 

      ⎕SE.SALT.List '?' 
Show all .dyalog files found in a path (default current workdir) 
Modifiers: 
-Full[=1|2]     1 shows full pathnames below first folder found;  

          2 returns "rooted" names. 
-Recursive      Recurse through folders 
-Versions       List versions 
-Folders        Only list folders 
-Raw            Return unformatted date and version numbers 
-type           Show the type for functions and spaces (slower) 
 

We can get a complete list of class folders as follows: 

       

      ⎕SE.SALT.List '-recursive -folders' 
 lib                  
 SALT                 
 spice                
 study                
 study\files          
 study\GUI            
 study\math           
 study\OO             
 study\OO\QuickIntro  
 tools                
 tools\DanB           
 tools\SJT            
 

List the contents of the study\OO\QuickIntro folder: 

 

      ⎕SE.SALT.List 'study\OO\QuickIntro' 
 Type  Name     Version  Size  Last Update          
       Product            574  2008/01/24 16:06:12  
       Sale               756  2008/01/24 16:06:12 
 

Load 
The Load command takes an object name or a pattern as its argument: 

 

      ⎕←⎕SE.SALT.Load 'study\files\ComponentFile' 
#.ComponentFile 
      cf←⎕new ComponentFile 'c:\temp\compfile' 
      cf.Count 
2 
 ⎕←⎕SE.SALT.Load '\myutils\gui*’ 
guiin guimsg … guiout  
 

Load returns a shy reference to the loaded namespace(s) or a message for functions. By 
default, Load also gives the loaded class/namespace a "global name", in this case 

ComponentFile, where it has been called. See the description of the New command below for 



 

 6 

a description of the –noname option, which allows you to avoid the creation of the global 

name and use a class “without loading it into the workspace”. 

 

Load‟s modifiers are: 

      +⎕SE.SALT.Load '?' 
Load [path]classname                                                       
Load a class in the workspace                                              
                                                                           
Modifiers:                                                                 
-Target=Namespace      Specifies target namespace for load                 
-Disperse[=nam1,nam2]  Disperse elements in the Target ns specified 
-NoName                Only return ref, do not create name                 
-NoLink                Do not "link" loaded class to source file           
-Version=              Load specific version                               
-Source                Return the source                                   
-Source=no       Define the namespace without a source 
 

The–Target modifier allows you to load a class into a particular namespace: 

 

      'MyFiles' ⎕NS '' 
      ⎕←⎕SE.SALT.Load 'study\files\ComponentFile -Target=MyFiles' 
#.MyFiles.ComponentFile 
 

The -Disperse modifier allows you to bring in the objects that are IN the file as opposed to 
the object itself into the target namespace. If only specific objects need to be brought in they 
can be specified after as in –disperse=obj1,obj2,etc. The result of Load in this case is a 
message explaining that it did or why it did not do it. No tracking information is kept in this 
case (see NoLink below). 

 

      ⎕←⎕SE.SALT.Load'GUIutils -disperse' 
15 objects dispersed 
 

The –Version= modifier allows you to load a particular version of an object, we‟ll show 
examples of this a bit later. 

 

The -Source modifier will make Load return the source instead. If –source=no is specified 
the object (a namespace) is defined without the source. This can be used in production 
environments to save space. 

 

Finally, you can use the modifier –NoLink to specify that SALT should not insert tracking 

information into the object. If you use –NoLink, editing a SALTed object will NOT cause SALT 
to offer to save the source upon exit from the editor. If you wish to save the object again you 
will need to use the Save or the Snap command. 

New 
The Load command takes a modifier called –NoName which allows you to specify that you do 
not want the global name created. This allows you to use a class without giving it a name in 
the workspace. The following example defines an unnamed class which is used to open a 
component file and return the number of components, but leaves no trace in the active 

workspace: 

 

 ⎕EX 'ComponentFile' 
      (⎕NEW (⎕SE.SALT.Load 'study\files\ComponentFile -NoName') 
                                             'c:\temp\compfile').Count 
2 



 

 7 

      ⎕NC 'ComponentFile' 
0 
 

The New command provides a more direct way to instantiate objects from a source file: 

 

      cf←⎕SE.SALT.New 'study\files\ComponentFile' 'c:\temp\compfile' 
      cf[1] 
 comp 1 
 

New passes the first element of its argument to Load, appending the –noname option, and 
then makes a new instance of the loaded class using the rest of the argument. 

Explore 
As an example of using SALT, we are going to load one of the QuickStart example classes, 
modify it and save it under a new name. The Explore command can be used to open Windows 

Explorer up on a folder, for example: 

 

      ⎕SE.SALT.Explore 'study\OO\QuickIntro' 
 

You should see explorer open up to show the contents of the Dyalog folder: 

 

 

 
 

If the argument to the Explore command is an object name rather than a folder name, Explore 
will start the Windows Notepad: 

 

      ⎕SE.SALT.Explore 'study\OO\QuickIntro\Product' 
 

We can experiment with the „Product‟ file: 



 

 8 

 
 

Load it into the workspace and edit the class, changing its name to MyProd: 

 

      ⎕←⎕SE.SALT.Load 'study\OO\QuickIntro\Product   -nolink'6 
#.Product 
      )ed Product 

Save 
We are now ready to save our class called MyProd in the folder Mine (which does not exist yet, 
so we use the –makedir modifier). Save returns the full name of the file which was created: 

 

      ⎕SE.SALT.Save 'MyProd Mine\MyProd  -makedir' 
C:\Program Files\Dyalog\Dyalog APL 12.0\SALT\Mine\MyProd.dyalog 
 

Now, edit MyProd again and make a small change – for example to the comment. As you exit 
from the editor, you should see a pop-up similar to the following: 

 

 
 

                                                
6 we add the –NOLINK modifier because we don‟t want SALT to track the changes 



 

 9 

Click Yes and use Notepad and Explorer to verify that the file contains the new version of 

MyProd7. Experiment with clearing the workspace, loading Mine\MyProd, and verifying that all 
the changes you make are being saved in the file. 

 

Save accepts other modifiers: 

 

      ⎕se.SALT.Save '?' 
Save class filename                                                 
Save class in a specific file                                       
                                                                    
Modifiers:                                                          
-Convert        Convert the namespace into source form if necessary 
-Noprompt       Do not prompt for confirmation                      
-MakeDir        Create any necessary directories                    
-Version[=]     Version number to save  
-Banner=     Add a banner at the top of the converted namespace                             
 

Normally non scripted namespaces cannot be saved but SALT manages to do it by creating a 
temporary script that can be put onto file8. 

With –convert you get to keep the new format and, as a bonus, SALT can keep track of the 
changes and save them automatically when you edit the script. 

With –banner you can add a banner at the top of the converted namespace. 

 

-noprompt allows you to skip the confirmation window and save without it. 

Versions 
By default, SALT maps your object to a single file, and any change you make to the object 
overwrites the file. If you give your object a version number, SALT will start taking numbering 

the files each time you make a change (note that modifiers can be abbreviated, as long as 

they are uniquely identified): 

 

      ⎕SE.SALT.Save 'MyProd -ver=1' 
C:\Program Files\Dyalog\...\SALT\Mine\MyProd.1.dyalog 
 

When SALT notices that you are giving an object a version number for the first time, it starts 
saving the existing object under a name that includes a version number. 

 

Each time you change MyProd and update the file, you will see a message confirming the 
creation of a new file with a version number up one from the previous version. Make one or 
two more changes to MyProd and then call List with the -Versions modifier: 

 

      ⎕SE.SALT.List 'Mine -vers' 
Type  Name    Version  Size  Last Update          
       MyProd  [2]       301  2008/02/02  9:28:30  
       MyProd  [1]       301  2008/02/02  9:27:05  
 

Imagine that we are now planning a new release of MyProd, which we are going to save under 
version 10, skipping a few versions. We start the version 10 project by saving the new 
version: 

                                                
7 There is a way to prevent SALT from asking confirmation each time you edit a 

script, see Settings below 
8 there are restrictions and embedded GUI objects, for example, will prevent a 

successful save 



 

 10 

 

      ⎕SE.SALT.Save 'MyProd -version=10' 
C:\Program Files\Dyalog\…\SALT\Mine\MyProd.10.dyalog 
      ⎕SE.SALT.List 'Mine' 
 Type  Name    Version  Size  Last Update          
       MyProd            301  2008/02/02  9:29:32  
 

Since we haven't made any changes to MyProd yet, this version is identical to the last one. To 
see all versions we need to include the –version switch: 

 
      ⎕SE.SALT.List 'Mine -ver' 
Type  Name    Version  Size  Last Update          
       MyProd  [10]      301  2008/02/02  9:29:32  
       MyProd  [2]       301  2008/02/02  9:28:30  
       MyProd  [1]       301  2008/02/02  9:27:05  
 

Now, change the constructor function in MyProd so that it sets the display form for the 
instance (this will create version 11), for example: 

 

    ∇ New(name price) 
      :Access Public 
      :Implements Constructor 
      Name Price←name price 
      ⎕DF'[',(⍕Name,'@',(⍕Price),']' 
    ∇ 
 

By default, the Load command will load the most recent version of an object. Verify that Load 
is loading the latest version by default, but that the other versions are still available: 

 

      ⎕←⎕SE.SALT.Load 'Mine\MyProd' 
#.MyProd 
      ⎕NEW MyProd ('Widget' 100) 
[Widget@100] 
      ⎕SE.SALT.New 'Mine\MyProd -ver=1'  ('Widget' 100) 
#.[MyProd] 
 

If we combine the -version and -noname modifiers, we can in fact work with multiple 
versions of the same class at once. 

 

      pclasses←{⎕SE.SALT.Load 'Mine\MyProd -noname -ver=',⍕⍵}¨1 11 
      pclasses 
 #.MyProd  #.MyProd  
      pclasses.SALT_Data.Version ⍝ SALT version tags 
 1  11  
      {⎕NEW ⍵ ('Widgets' 100)}¨pclasses 
 #.[MyProd]  [Widgets@100] 
 

Snap 
The Snap command allows you to do bulk save. It supports some of Save‟s modifiers 

(makedir, version, noprompt, banner) plus others to save selectively. It even can produce 
a .dyapp script or function to reload all the workspace. For example: 

 



 

 11 

 )LOAD myutils 
 ⎕SE.SALT.Snap ‘\store\here –makedir –loadfn –vars ’ 
 

will save everything in the workspace9 in individual files under the <\store\here> folder and 
produce a function to reload the workspace like this: 

 

 ⎕SE.SALT.Boot ‘\store\here\load_ws.dyalog’ 
See the appendix on Snap at the end of this document for full details. 

Compare 
The Compare command allows you to compare versions of an object. Note that if you want the 
Compare command to use a third party product like the Unicode version of “Compare It!” or a 
different file comparison tool, you must use the Settings command or, in V12, use the 
configuration menu to specify where it is. If you leave this setting empty APL will use its own 

simple comparison function. 

 

By default, Compare shows you the differences between the 2 most recent (highest) versions 
of the file given as argument (here MyProd). 

 

      ⎕SE.SALT.Compare'Mine\MyProd' 
 

Should bring up a screen which looks like this if you are using “Compare It!”: 

 

 
 

Compare also takes a modifier which allows you to specify exactly which versions you want to 

compare. You can compare the code for version 3 to the most recent version using: 

 

      ⎕SE.SALT.Compare 'Mine\MyProd -ver=3' 
 

If you want to compare two non recent versions, you need to provide 2 version numbers, for 
example: 

 

      ⎕SE.SALT.Compare 'Mine\MyProd -ver=1 10' 
 

                                                
9 There are restrictions, for example GUI objects cannot be saved 



 

 12 

If you want to compare the latest version of a class with a class with the same name IN THE 

WORKSPACE you can specify –version=ws: 

 

      ⎕SE.SALT.Compare 'Mine\MyClass -version=ws' 
 

Using a different program 

Should you decide to use a program other than the one specified in the registry to perform the 
comparison you can use the -use switch to specify which program to use. For example, if you 
have 'Beyond Compare' (another comparison tool from the Net) installed and you just want to 
try it you can do 

 

      ⎕SE.SALT.Compare 'Mine\MyProd –use=[ProgramFiles]\BC\BC2.exe' 
 

This will not change your registry entry and subsequent use of Compare will use whatever 
setting you currently have set in your session. 

RemoveVersions 
If you have requested versioning SALT creates a new file every time you edit an object. 
Therefore, you need to clean up versions occasionally. 

This command takes three modifiers, two of which are mutually exclusive: 

 

-Version=n Specifies the version(s) which should be deleted 

-All  All files with a version number should be deleted  

 

For example: 

 

      ⎕SE.SALT.RemoveVersions 'Mine\MyProd -ver= <4' 
 

produces 

 
 

3 versions deleted. 
 

You can also delete trailing versions. If trailing versions are deleted they can be collapsed into 
one using –collapse. For example, suppose you have been working of a script starting at 

version 13 and you are happy with the result after you have made many modifications, only 
the last of which (version 43) you want to keep. Instead of listing all the versions to remove 
as in –ver=14 15 16 17 18 19… you can type 

 

      ⎕SE.SALT.RemoveVersions 'Mine\MyProd -ver=>13 -collapse' 
 



 

 13 

 
 

29 versions deleted. 
 

Versions 14 to 42 are deleted and version 43 becomes version 14. 

In any case (-all or -ver=) versioning resumes at the highest number+1 after changes are 
made when –collapse is used. Note that if you remove all versions and –collapse isn‟t used 

you effectively remove versioning for that file. 

 

If the number of versions is too long to be described you can use a dash. For example, to 

delete versions 7 to 99 you use 

 

      ⎕SE.SALT.RemoveVersions 'Mine\MyProd –ver= 7-99’ 
 

 

Boot 
With the Boot command, you can use a script file to describe the loading and initialization of 
an application – as an alternative to using a saved workspace. The Boot command reads files 

with the extension .dyapp. or .dyalog Each line of a .dyapp script is either a SALT Load 
command or a Run command. There should be at least ONE line with the word Run, followed 
by the name of a method to call. 

 

For example, a .dyapp file might read as follows: 

 

Load study\files\ComponentFile 
Load study\files\KeyedFile 
Load MyApp 
Run MyApp.Main 
 

All scripts are loaded into #. 

Boot can also run a function in a .dyalog file. In that case the function is run „as is‟ but will be 
given the 2nd element of the argument if it takes an argument. The result will be discarded. 

For example, assuming monadic function <X> is in file /sale/x.dyalog: 

 

      ⎕SE.SALT.Boot '/sale/x –function' 'ABC' 
or 

      ⎕SE.SALT.Boot '/sale/x.dyalog' 'ABC' 
 

will run localized <X> with argument „ABC‟. If the function does not take an argument then 
„ABC‟ will be ignored. 

This will often be used in conjunction with Snap which can produce functions to be used for 
Boot. In that case the code will include a statement to execute []LX. To avoid this add the 
switch –xload. See Snap at the end of this document for details. 



 

 14 

 

Note that, if there are dependencies between classes (as above, where KeyedFile derives from 

ComponentFile), base classes must be loaded before any classes which derive from them. 
SALT does not perform any dependency analysis but you can include statements to tell SALT 
to load other classes before. For example, if script A requires script B you should add this 
statement somewhere in A: 

 

⍝∇:require path\B 
 
Where path may be replaced by „=‟ to signify „same path as mine’. 

Autostarting SALT Applications 
If SALT is active, and APL is started with the name of a .dyapp file on the command line 
instead of an APL workspace, SALT initialization will call the Boot command on the named file. 
In this way, a .dyapp file can be used to auto-start APL applications which are based on SALT. 
Note that the whole application does not need to be “salted”: Once started, the application can 
use ⎕CY or other mechanisms to bring in additional source code. 

 

Platform independence 
SALT should perform the same way under Windows® and *nix platforms. To avoid confusion 
for people dealing with both environments SALT will accept SALT pathnames (only) using 

either / or \ as folder separator. 

 

Under Unix there exist a version without GUI, which works in “terminal” mode. Under that 
system SALT must be enabled manually through the workspace „salt‟. Simply )LOAD salt and 
use <enableSALT>.  

The workspace can also be )LOADed at startup time, just like any other workspace, by issuing 

the apl startup command followed by the path of the salt workspace as in 

startapl ws/salt 

 

If another workspace must be )LOADed afterwards or if a .dyapp file must run after simply put 
it in between, e.g.: 

startapl  anotherws  ws/salt  

 

Settings 
Some commands require global parameters. For example, the Compare command needs to 
know which program to run to perform the comparison. This information is taken from the 

registry and loaded into SALT at boot time. It becomes a session parameter and can be 
modified using the Settings command.  

In some cases Settings can also be specified on the line with the command using the –USE= 
switch only for the duration of the command. 

For example if the default Explore program is not satisfactory and you want to try another 
one, say, vi.exe, then you can specify it on the command with –use=\myprogs\vi.exe  

If you find this is useful you may want to make the setting for the duration of the session by 

entering 

 

      ⎕SE.SALT.Settings 'editor \myprogs\vi.exe' 
 

Should this prove unacceptable you can enter 

 

      ⎕SE.SALT.Settings 'editor -reset' 
 

to reload the value from the registry. On the other hand if those values are quite acceptable 
and you wish to make them permanent you can issue 



 

 15 

 

      ⎕SE.SALT.Settings 'editor -permanent' 
 

and the registry will be altered accordingly. 

 

To see the list of all settings enter 

 

      ⎕SE.SALT.Settings '' 
 

Other settings are workdir and edprompt. 

 

workdir allows you to have multiple working directories separated by semi-colon. To add a 
directory use comma, to remove one use ~, like this: 

 

      ⎕SE.SALT.Settings 'workdir ,\proj\p1' ⍝ add \proj\p1 
 

from then on files are stored under \proj\p1 but retrieved from where they are first found in 
the list of directories. SALT's files are always assumed in [Dyalog]\SALT even if that path 

has been removed. 

 

edprompt determines whether you are prompted for confirmation to overwrite the file each 

time you make a modification to a script. The default of 1 prompts you each time. 

 

 

Conclusion 

The Simple APL Library Toolkit (SALT) provides basic source code management features for 

objects like APL classes and namespaces stored in Unicode script files. By themselves, Classes 
provide new ways to make code sharing easier within the APL community. However, we 

believe that the full benefit of Classes will only be felt by the community if it also has a 
common source code management system, or at least a common file format which can be 
manipulated by a family of tools. 

 

For all its complex definition SALT is fairly simple; it merely SAVEs and LOADs with a few 
utilities.  

 

We hope that SALT will prove to be powerful enough that many users of Dyalog APL will 
decide to use it in real applications – at least as a tool to load shared utilities - and that it can 

be the beginning of a simple common source code management system which will provide the 
required platform for APL users to share utility classes and namespaces more effectively than 
they have been able to do so in the past. 

 



 

 16 

Appendix A - The Snap command 
 

Syntax:  

Snap [path]  –class=   –convert   -banner –fileprefix=   –loadfn[=]  –makedir  –noprompt –
nosource  –pattern=  –show[=]  –vars[=]   –version 

 

In the following text object refers to any APL object, either code (function, op) or data 
(including all namespaces). 

Snap by default saves all new objects in the current namespace to the path specified as 

argument and saves modified objects to their proper location. It returns the list of the names 
of the objects that have been saved, if any. If the path is not specified then the current 
workdir is used. 

Snap, in its present state, cannot save everything and some variables, function refs and 
instances (like forms) cannot be saved.  

Snap uses <Save> to store objects. 

 

Procedure 

Snap first finds the list of all objects and from those the ones that can be saved. It then 
determines which ones have been modified or are new. If any of them needs saving or if it 
cannot determine if they need to be saved (e.g. non scripted namespaces) then each one of 

these object is saved using <Save>. 

 

To find out which object needs to be saved SALT marks objects (functions and namespaces) 
with special tags when it loads them or when they are first saved. Because # variables cannot 
be tagged they cannot be saved in canonical form on file. Variables in namespaces, on the 
other hand, can be saved as part of the namespace without any problem as long as they don‟t 
contain anything „illegal‟ like forms, []ORs, etc. 

 

Snap can save non-scripted namespaces by making them into a script beforehand,  but 

tagging information cannot be retained and Snap will always overwrite (given permission) the 
existing file where they reside. Snap is non destructive in that respect and unless told 

otherwise (see below) it will keep the original non-scripted form even though it writes a source 
for them. If –convert and –banner are specified, the string to the right of –banner is added to 
the top of each namespace saved. This can be useful to add a note or copyright notice in each 
file. 

 

Alternate behaviour 

Snap accepts a series of modifiers to alter its operation. 

 

Selecting the objects to save 

It may be desirable to save only a subset of the workspace, for example only the functions or 
names starting with a specific pattern.  

 

To select specific name classes (e.g. functions or D-ops) you use the -class= modifier. It takes 
a value of one or more classes. Acceptable classes are 3=all functions, 4=all ops and 9=all 
namespaces. Finer numbers are also accepted, e.g. 4.1 for trad ops or 9.5 for interfaces. 

To select objects following a specific patter you use the –pattern= modifier. It takes a string 
where „*‟ means “any number of chars”. At the moment the pattern matching is restricted to 
strings ending in „*‟ and stars are ignored, effectively meaning “only names starting with the 
string given before the star” as in „util*‟10. 

Both can be combined and the following with save all namespaces starting with „GUI‟: 

                                                
10 Without the star the pattern would be an exact match for the name specified in 

which case the <Save> command might as well be used 



 

 17 

 []SE.SALT.Snap ‘/ws/utils  -class=9.1  -pattern=GUI*’ 

Both also accept the character „~‟ in the first position to exclude specified class or pattern, 
e.g. 

 []SE.SALT.Snap ‘/ws/utils   -pattern=~GUI*’ 

will save all objects NOT starting with „GUI‟. 

These modifiers allow you to save various subsets of functions/namespaces to different 
locations. Two or more different workspaces can use the same subset which can be updated 

independently of the workspaces. 

 

How two workspaces can share code 

 

 

 

 

 

 

Ws1 

 

 

 

 

 

 

 

 

 

 

 

 

Ws2 

 

 

 

 

 

Verifying what will happen. 

If you are not sure what will happen when you use Snap you can ask it to show you which 
objects would be saved only. For example,  

 []SE.SALT.Snap ‘/ws/utils  -class=~9  –show’ 

will only show you the names that would be saved without actually saving them. If you also 

want to know where they would be saved you can use „–show=details‟. 

Changing the filenames 

By default the filenames used are the same as each object‟s name followed by „.dyalog‟. If you 

wish to prefix these names by a special string you can use the –fileprefix modifiers. For 
example, 

 []SE.SALT.Snap ‘/ws/utils   -pattern=GUI* -fileprefix=Win’ 

will save all new objects starting with „GUI‟ to files starting with „Win‟, thus function „GUImenu‟ 
will be saved in file „/ws/utils/WinGUImenu.dyalog‟. 



 

 18 

Skipping prompts 

Unless your general prompting settings are set to NO, Snap will prompt you for replacement 
each time it finds a file that already exist. You will then have a choice of Yes to replace the 
file, No to skip that file or Cancel to skip the rest of the files. Snap will return only the names 
of the objects that have been effectively saved. If you wish to skip the prompting you can add 
the modifier –noprompt. 

Using version numbers 

SALT has the ability to keep version numbers for each file. If you wish to enable that feature 
for the objects Snap is about to save use the modifier –version. You can also specify the 
version number to use in which case ALL objects will be saved with the same version number. 

Creating intermediate directories 

When Snap saves an object it assumes the directories in the path given as argument already 
exist and won‟t attempt to create them. If you know they don‟t exist (typically the first time 
you save objects) you must ask Snap to create the directories for you by using the –makedir 

modifier otherwise the command will fail. 

Converting namespaces to scripted form 

When Snap saves namespaces in non-scripted form it has to convert them first into scripted 
form in order to perform the save. It then gets rid of the converted format and keeps the 

original one. If you subsequently Snap the workspace it will redo the work even is no change 
occurred to these namespaces because they cannot be tagged to let know Snap of the 
changes.  If you wish to retain that form use the –convert modifier.  

Recreating the workspace  

You may be interested in recreating the workspace at a later moment in time. To do so you 
must remember which objects made up the workspace and bring them back one by one. Doing 
this by hand would be too tedious and prone to errors so Snap provides a way to do that for 
you. 

If you use the –loadfn modifier Snap will create a function named <load_ws> in the same 
path given as argument. That function, when executed, will bring every object needed in the 

current workspace11 and run the []LX. If you want the function to exist elsewhere use –
loadfn=/new/path instead. If the name „load_ws‟ does not suit you then you can change it by 
adding an extension. There are 2 possible extensions: „.dyalog‟ (or more simply „.‟) which will 
create a function or „.dyapp‟ which will create a script. Both are suitable for use by Boot and 
have the same effect. For example, to create a function named <loadit> do 

 []SE.SALT.Snap ‘/ws/myapp   -loadfn=/ws/myapp/loadit.dyalog’ 

Trick 

If the location of the function to reload the workspace is the same as the code of the 

workspace you can avoid re-entering the same pathname for the loadfn modifier by replacing 
the path by „=‟.  And use only „.‟ instead of „.dyalog‟. Using the example above it would 
become 

 []SE.SALT.Snap ‘/ws/myapp   -loadfn= =/loadit.’ 

You can bring that (load) function in a workspace to execute it or ask SALT to do it for you via 
the Boot command. Boot takes a path to a file to read in and run. If the path is a function 

you should add the „.dyalog‟ extension or use the –function modifier to remove any 
ambiguity.  For example: 

 []SE.SALT.Snap ‘/ws/myapp   -loadfn  -makedir’ ⍝ store the ws 

 )CLEAR 

 []SE.SALT.Boot ‘/ws/myapp/load_ws –function’   ⍝ bring it back 

                                                
11 It will merge the objects with the existing ones in the workspace, replacing them if 

necessary 



 

 19 

will save the workspace (and create /ws/myapp if it did not exist) and recreate it in a clear 

workspace. The WSID and the []LX will be the same. []LX will be run automatically. If it 
should not be run then use the –Xload modifier to Boot. 

Trick 

If you have several workspaces to snap whose directory name is the same as the workspace‟s 
name you can use „=‟ instead of the workspace name when specifying the target folder.  For 

example, let‟s say you want to store the workspaces in your personal library under /apl/wslib 
so that workspace „xyz‟ is stored under /apl/wslib/xyz you can use 

 )Xload xyz 

 []SE.SALT.Snap ‘/apl/wslib/=   -loadfn  -makedir’ 

for each workspace without having to retype the Snap line for each workspace; simply grab 

the line from the session log to re-execute it after each )XLOAD. 

 

If you wish to recreate the workspace without the scripts, for example to save space in a 

production environment, you can add the –nosource switch to the snap command. This way 
the <load_ws> function will load each namespace without their script. 

Restrictions 

In its present form Snap cannot store some objects like instances (e.g. GUI) in #. This 
restriction is unlikely to be lifted soon. Function refs are another kind of object impossible to 
store in this version. Some variables can also present a problem. 

Workarounds 

Recreating the variables or instances upon )LOADing the workspace (i.e. thru []LX) will almost 
always work but may not be practical because the work involved in recreating them will be 
substantial. For variables another way to do this would be to store them in a separate 
(scripted) namespace. When the workspace is reloaded the variables are moved to the root 
space. There is a modifier to do just that. 

This modifier, vars, will create a namespace with the definitions of all legal root variables and 
save it under the name „vars_ns‟.  When used in conjunction with the loadfn modifier the load 

function created will contain a statement to load the contents of the file and disperse its 
contents into root, effectively recreating all globals. If you prefer another name for the file you 
can use –vars=newname 

Epilogue 

For all its elaborate definition Snap is fairly simple. It merely saves all new objects where 
specified and modified ones where they belong. All the modifiers simply allow you to fine tune 
the process. 

 

Dyalog 2010 

 


