
Object Reference

Version 13.0

The tool of thought for expert programming

Dyalog is a trademark of Dyalog Limited

Copyright 1982-2011 by Dyalog Limited.

All rights reserved.

Version 13.0

First Edition April 2011

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents

hereof and specifically disclaims any implied warranties of merchantability or fitness

for any particular purpose. Dyalog Limited reserves the right to revise this
publication without notification.

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The Open Group.
Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.

All other trademarks and copyrights are acknowledged.

 iii

Contents

C H A P T E R 1 Summary .. 1

C H A P T E R 2 A-Z Reference .. 47

Abort .. Method 103 ... 48

Accelerator ... Property ... 48

AcceptFiles ... Property ... 49

ActivateApp .. Event 139 .. 49

Active... Property ... 50

ActiveXContainer Object .. 51

ActiveXControl Object .. 52

AddChildren ... Method 310 ... 55

AddCol ... Event 153 .. 56

AddComment .. Method 220 ... 57

AddItems .. Method 308 ... 58

AddRow ... Event 152 .. 59

Align .. Property ... 60

AlignChar ... Property ... 62

AlphaBlend ... Property ... 62

AlwaysShowBorder Property ... 63

AlwaysShowSelection Property ... 63

AmbientChanged ... Event 533 .. 64

Animation ... Object .. 65

Animate .. Method 29 ... 66

AnimClose .. Method 291 ... 67

AnimOpen .. Method 290 ... 68

AnimPlay ... Method 292 ... 69

AnimStarted .. Event 294 .. 70

AnimStop ... Method 293 ... 70

AnimStopped .. Event 295 .. 71

APLVersion .. Property ... 72

ArcMode .. Property ... 73

Array .. Property ... 73

Attach... Property ... 74

AutoArrange ... Property ... 78

AutoBrowse .. Property ... 78

AutoConf .. Property ... 78

AutoExpand .. Property ... 79

AutoPlay .. Property ... 80

BadValue .. Event 180 .. 80

BandBorders ... Property ... 81

BCol... Property ... 81

BeginEditLabel ... Event 300 .. 83

 Contents iv

Bitmap ... Object .. 84

Bits .. Property ... 86

Border ... Property ... 86

Browse .. Method 585 ... 87

BrowseBox .. Object .. 88

BrowseFor ... Property ... 89

BtnPix ... Property ... 90

Btns ... Property ... 91

Button.. Object .. 92

Calendar ... Object .. 95

CalendarCols Property ... 98

CalendarDblClick Event 273 .. 99

CalendarDown ... Event 271 .. 100

CalendarMove .. Event 274 .. 102

CalendarUp .. Event 272 .. 103

Cancel ... Property ... 103

CancelToClose ... Method 367 ... 104

Caption .. Property ... 104

CaseSensitive ... Property ... 104

CBits .. Property ... 105

CellChange .. Event 150 .. 105

CellChanged .. Event 164 .. 107

CellDblClick .. Event 163 .. 108

CellDown .. Event 161 .. 109

CellError .. Event 157 .. 110

CellFonts ... Property ... 111

CellFromPoint .. Method 200 ... 112

CellHeights .. Property ... 112

CellMove ... Event 151 .. 113

CellOver .. Event 160 .. 114

CellSelect .. Property ... 115

CellSet ... Property ... 117

CellTypes .. Property ... 117

CellUp ... Event 162 .. 118

CellWidths ... Property ... 119

Change .. Event 36 .. 119

Changed... Property ... 121

CharFormat .. Property ... 122

CharSet .. Property ... 124

CheckBoxes ... Property ... 126

Checked ... Property ... 127

ChildEdge ... Property ... 127

ChildList .. Property ... 127

ChooseFont .. Method 240 ... 128

Circle... Object .. 129

CircleToday ... Property ... 131

ClassID ... Property ... 131

 Contents v

ClassName .. Property ... 132

ClickComment Event 225 .. 133

Clipboard .. Object .. 134

ClipCells .. Property ... 136

ClipChange ... Event 120 .. 137

Close .. Event 33 .. 137

CloseUp ... Event 46 .. 138

CMap ... Property ... 139

ColChange .. Method 159 ... 141

Collate .. Property ... 141

ColLineTypes ... Property ... 142

ColorButton .. Object .. 143

ColorChange ... Event 430 .. 145

ColorMode ... Property ... 145

ColSorted ... Method 174 ... 146

ColSortImages .. Property ... 147

ColTitle3D .. Property ... 149

ColTitleAlign .. Property ... 149

ColTitleBCol .. Property ... 150

ColTitleDepth ... Property ... 151

ColTitleFCol ... Property ... 152

ColTitles ... Property ... 152

ColumnClick ... Event 320 .. 153

ColumnWidth ... Property ... 153

Combo.. Object .. 154

ComboEx ... Object .. 157

Configure ... Event 31 .. 159

Container .. Property ... 161

ContextMenu .. Event 410 .. 161

CoolBand .. Object .. 162

CoolBar .. Object .. 164

Coord ... Property ... 165

Copies .. Property ... 167

Create ... Event 34 .. 167

CurCell ... Property ... 168

CurrentColor ... Property ... 168

CurrentState .. Property ... 168

Cursor .. Object .. 169

CursorObj ... Property ... 170

CustomColors ... Property ... 171

CustomFormat .. Property ... 172

Data ... Property ... 173

DateTime .. Property ... 174

DateTimeChange ... Event 267 .. 174

DateTimePicker .. Object .. 175

DateToIDN ... Method 264 ... 177

DblClickToggle Property ... 178

 Contents vi

DDE .. Event 50 .. 178

Decimals .. Property ... 179

Default... Property ... 179

DefaultColors ... Property ... 180

DelCol ... Method 155 ... 180

DelComment ... Method 221 ... 181

DeleteChildren ... Method 311 ... 181

DeleteItems .. Method 309 ... 182

DeleteTypeLib ... Method 521 ... 182

DelRow ... Method 154 ... 183

Depth... Property ... 183

Detach ... Method 270 ... 185

DevCaps .. Property ... 186

Directory.. Property ... 186

DisplayChange ... Event 137 .. 187

Divider ... Property ... 187

Dockable ... Property ... 188

DockAccept ... Event 483 .. 189

DockCancel ... Event 485 .. 189

DockChildren ... Property ... 190

Docked .. Property ... 191

DockEnd .. Event 484 .. 191

DockMove ... Event 481 .. 192

DockRequest .. Event 482 .. 193

DockShowCaption Property ... 193

DockStart ... Event 480 .. 195

Dragable .. Property ... 195

DragDrop ... Event 11 .. 197

DragItems .. Property ... 198

DrawMode ... Property ... 198

DropDown ... Event 45 .. 200

DropFiles ... Event 450 .. 201

DropObjects ... Event 455 .. 202

Duplex ... Property ... 203

DuplicateColumn .. Method 178 ... 203

DuplicateRow .. Method 177 ... 204

DyalogCustomMessage1 Event 95 .. 205

EdgeStyle .. Property ... 206

Edit ... Object .. 208

EditImage .. Property ... 212

EditImageIndent ... Property ... 212

EditLabels .. Property ... 213

Ellipse ... Object .. 213

Encoding.. Property ... 218

End .. Property ... 220

EndEditLabel ... Event 301 .. 220

EndSplit ... Event 282 .. 221

 Contents vii

EnterReadOnlyCells Property ... 222

Event .. Property ... 223

EventList .. Property ... 230

ExitApp .. Event 132 .. 231

ExitWindows .. Event 131 .. 232

Expanding .. Event 302 .. 232

ExportedFns .. Property ... 233

ExportedVars .. Property ... 234

Expose.. Event 32 .. 235

FCol ... Property ... 236

FieldType ... Property ... 238

File... Property ... 241

FileBox .. Object .. 242

FileBoxCancel .. Event 72 .. 244

FileBoxOK ... Event 71 .. 244

FileMode .. Property ... 245

FileRead ... Method 90 ... 245

FileWrite .. Method 91 ... 245

FillCol .. Property ... 246

Filters ... Property ... 247

FirstDay .. Property ... 247

Fixed .. Property ... 247

FixedOrder .. Property ... 248

FlatSeparators Property ... 248

Flush .. Method 135 ... 248

Font.. Object .. 249

FontCancel ... Event 242 .. 250

FontList .. Property ... 251

FontObj .. Property ... 252

FontOK .. Event 241 .. 254

Form .. Object .. 255

Formats .. Property ... 259

FormatString ... Property ... 259

FrameContextMenu Event 411 .. 261

FStyle ... Property ... 262

FullRowSelect Property ... 263

GetBuildID ... Method 192 ... 264

GetCellRect .. Method 201 ... 265

GetCommandLine Method 145 ... 265

GetCommandLineArgs Method 148 ... 266

GetComment .. Method 222 ... 266

GetDayStates .. Event 266 .. 267

GetEnvironment .. Method 510 ... 269

GetEventInfo .. Method 551 ... 270

GetFocus .. Method 511 ... 271

GetItemHandle .. Method 313 ... 271

GetItemPosition .. Method 323 ... 272

 Contents viii

GetItemState .. Method 306 ... 272

GetMethodInfo ... Method 552 ... 273

GetMinSize .. Method 275 ... 274

GetParentItem .. Method 312 ... 274

GetPropertyInfo .. Method 550 ... 275

GetTextSize ... Method 92 ... 276

GetTipText ... Event 325 .. 277

GetTypeInfo ... Method 553 ... 278

GetVisibleRange .. Method 262 ... 279

GotFocus ... Event 40 .. 279

GreetBitmap ... Method 138 ... 280

Grid ... Object .. 281

GridBCol ... Property ... 286

GridCopy ... Event 191 .. 287

GridCopyError ... Event 196 .. 288

GridCut.. Event 190 .. 289

GridDelete ... Event 193 .. 290

GridDropSel ... Event 195 .. 291

GridFCol ... Property ... 292

GridKeyPress ... Event 24 .. 293

GridLineFCol ... Property ... 294

GridLineWidth ... Property ... 294

GridLines ... Property ... 295

GridPaste ... Event 192 .. 296

GridPasteError ... Event 194 .. 298

GridSelect .. Event 165 .. 299

GripperMode ... Property ... 300

Group .. Object .. 301

HAlign... Property ... 302

Handle ... Property ... 303

HasApply ... Property ... 303

HasButtons .. Property ... 304

HasCheckBox .. Property ... 304

HasEdit .. Property ... 304

HasHelp ... Property ... 305

HasLines .. Property ... 305

HasTicks .. Property ... 305

HasToday ... Property ... 306

Header ... Property ... 306

Help .. Event 400 .. 307

HelpButton .. Property ... 307

HelpFile ... Property ... 308

HideComment ... Event 224 .. 308

Hint ... Property ... 309

HintObj.. Property ... 309

HotSpot ... Property ... 310

HotTrack ... Property ... 310

 Contents ix

HScroll ... Property ... 311

HScroll ... Event 39 .. 312

Icon .. Object .. 313

IconObj .. Property ... 314

Idle... Event 130 .. 315

IDNToDate ... Method 263 ... 315

Image ... Object .. 316

ImageCount .. Property ... 318

ImageIndex ... Property ... 318

ImageList ... Object .. 319

ImageListObj .. Property ... 320

Indents.. Property ... 321

Index .. Property ... 321

IndexChanged ... Event 210 .. 322

Input... Property ... 323

InputMode .. Property ... 325

InputModeKey .. Property ... 326

InputProperties .. Property ... 327

InstanceMode .. Property ... 328

Interval ... Property ... 328

Italic ... Property ... 329

ItemDblClick .. Event 342 .. 329

ItemDown ... Event 340 .. 330

ItemGroupMetrics Property ... 331

ItemGroups ... Property ... 332

Items .. Property ... 332

ItemUp ... Event 341 .. 333

Justify... Property ... 333

KeepBits ... Property ... 334

KeepOnClose .. Property ... 335

KeyError .. Event 23 .. 336

KeyPress .. Event 22 .. 337

Label .. Object .. 339

LastError .. Property ... 341

LicenseKey ... Property ... 341

Limits ... Property ... 341

List... Object .. 342

ListTypeLibs ... Method 520 ... 344

ListView ... Object .. 345

LocalAddr .. Property ... 350

LocalAddrName .. Property ... 350

Locale .. Property ... 351

LocalPort .. Property ... 352

LocalPortName ... Property ... 352

Locator ... Object .. 353

Locator ... Event 80 .. 355

LockColumns .. Method 227 ... 356

 Contents x

LockRows .. Method 226 ... 357

LostFocus .. Event 41 .. 359

LStyle .. Property ... 360

LWidth .. Property ... 360

MakeGIF ... Method 261 ... 361

MakePNG .. Method 260 ... 361

MapCols .. Property ... 362

Marker ... Object .. 363

Mask ... Property ... 366

MaskCol .. Property ... 366

Masked .. Property ... 367

MaxButton ... Property ... 367

MaxDate ... Property ... 367

MaxLength .. Property ... 368

MaxSelCount ... Property ... 368

MDIActive ... Property ... 368

MDIActiveObject Property ... 369

MDIActivate .. Event 42 .. 369

MDIArrange .. Method 112 ... 370

MDICascade .. Method 110 ... 370

MDIClient ... Object .. 371

MDIDeactivate ... Event 43 .. 373

MDIMenu .. Property ... 373

MDITile... Method 111 ... 374

Menu ... Object .. 374

MenuBar .. Object .. 376

MenuItem .. Object .. 378

Metafile ... Object .. 379

MetafileObj .. Property ... 381

MethodList .. Property ... 383

MinButton ... Property ... 383

MinDate ... Property ... 384

MonthDelta ... Property ... 384

MouseDblClick .. Event 5 .. 385

MouseDown ... Event 1 .. 386

MouseEnter .. Event 6 .. 387

MouseLeave ... Event 7 .. 388

MouseMove ... Event 3 .. 389

MouseUp ... Event 2 .. 390

MouseWheel .. Event 8 .. 391

Moveable ... Property ... 392

MsgBox ... Object .. 393

MsgBtn1 .. Event 61 .. 397

MsgBtn2 .. Event 62 .. 397

MsgBtn3 .. Event 63 .. 397

MultiColumn .. Property ... 398

MultiLine ... Property ... 398

 Contents xi

MultiSelect ... Property ... 399

NameFromHandle Method 136 ... 399

NetClient .. Object .. 400

NetControl .. Object .. 401

NetType ... Object .. 404

NewLine .. Property ... 405

NewPage .. Method 102 ... 405

OCXClass ... Object .. 406

OKButton ... Property ... 407

OLEAddEventSink Method 540 ... 407

OLEClient .. Object .. 408

OLEControls ... Property ... 409

OLEDeleteEventSink Method 541 ... 409

OLEListEventSinks Method 542 ... 409

OLEQueryInterface Method 543 ... 410

OLERegister ... Method 530 ... 410

OLEServer .. Object .. 411

OLEServers .. Property ... 412

OLEUnregister .. Method 531 ... 413

OnTop .. Property ... 414

Orientation .. Property ... 415

OtherButton .. Property ... 415

OverflowChar ... Property ... 416

PageActivate ... Event 360 .. 417

PageActive ... Property ... 417

PageActiveObject .. Property ... 417

PageApply .. Event 350 .. 418

PageBack .. Event 353 .. 418

PageCancel ... Event 351 .. 419

PageChanged .. Event 356 .. 419

PageDeactivate .. Event 361 .. 420

PageFinish .. Event 355 .. 420

PageHelp .. Event 352 .. 421

PageNext .. Event 354 .. 421

PageWidth .. Property ... 422

PaperSize .. Property ... 422

PaperSizes .. Property ... 423

PaperSource .. Property ... 423

PaperSources .. Property ... 423

ParaFormat ... Property ... 424

Password .. Property ... 425

PathWordBreak ... Property ... 425

Picture .. Property ... 425

PName.. Property ... 427

Points ... Property ... 427

Poly.. Object .. 428

Popup .. Property ... 431

 Contents xii

Posn .. Property ... 432

PreCreate ... Event 534 .. 433

Print .. Method 100 ... 433

Printer.. Object .. 434

PrintList ... Property ... 436

PrintRange ... Property ... 437

ProgressBar .. Object .. 438

ProgressStep .. Method 250 ... 440

ProgressStyle Property ... 441

PropertyPage .. Object .. 442

PropertySheet ... Object .. 446

PropList ... Property ... 447

Protected .. Event 470 .. 447

QueueEvents ... Property ... 448

Radius ... Property ... 449

RadiusMode ... Property ... 449

Range .. Property ... 449

ReadOnly ... Property ... 450

RealSize... Property ... 450

Rect ... Object .. 451

Redraw .. Property ... 454

RemoteAddr ... Property ... 455

RemoteAddrName Property ... 455

RemotePort .. Property ... 456

RemotePortName Property ... 456

ReportInfo ... Property ... 457

ResizeCols ... Property ... 457

ResizeColTitles .. Property ... 458

ResizeRows ... Property ... 458

ResizeRowTitles ... Property ... 459

Resolution .. Property ... 459

Resolutions .. Property ... 460

Retracting .. Event 304 .. 460

RichEdit... Object .. 461

Root .. Object .. 463

Rotate .. Property ... 464

RowChange ... Method 158 ... 465

RowLineTypes ... Property ... 465

Rows ... Property ... 466

RowSetVisibleDepth Method 173 ... 466

RowTitleAlign ... Property ... 468

RowTitleBCol .. Property ... 468

RowTitleDepth ... Property ... 469

RowTitleFCol .. Property ... 470

RowTitles .. Property ... 471

RowTreeDepth ... Property ... 471

RowTreeImages ... Property ... 473

 Contents xiii

RowTreeStyle ... Property ... 473

RTFPrint .. Method 461 ... 474

RTFPrintSetup .. Method 460 ... 475

RTFText ... Property ... 476

RunMode .. Property ... 477

Scroll.. Object .. 478

Scroll.. Event 37 .. 482

ScrollOpposite Property ... 483

SelDate .. Property ... 484

SelDateChange .. Event 265 .. 484

Select ... Event 30 .. 485

SelImageIndex .. Property ... 486

SelItems ... Property ... 486

SelRange .. Property ... 486

SelText ... Property ... 487

Separator .. Object .. 488

ServerVersion ... Property ... 489

SetCellSet ... Method 171 ... 489

SetCellType .. Method 156 ... 490

SetColSize .. Event 176 .. 490

SetEventInfo ... Method 547 ... 492

SetFinishText .. Method 366 ... 494

SetFnInfo .. Method 545 ... 495

SetItemImage .. Method 315 ... 498

SetItemPosition ... Event 322 .. 499

SetItemState .. Method 307 ... 500

SetMethodInfo .. Method 546 ... 501

SetPropertyInfo ... Method 554 ... 503

SetRowSize .. Event 175 .. 504

SetSpinnerText .. Event 421 .. 505

Setup .. Method 101 ... 505

SetVarInfo .. Method 546 ... 506

SetWizard ... Event 365 .. 508

ShowCaptions Property ... 509

ShowComment ... Event 223 .. 510

ShowDropDown Property ... 511

ShowHelp ... Method 580 ... 512

ShowInput .. Property ... 513

ShowItem ... Method 316 ... 514

ShowProperties ... Method 560 ... 514

ShowSession ... Property ... 515

ShowSIP ... Method 25 ... 515

ShowThumb ... Property ... 516

SingleClickExpand Property ... 516

SIPMode .. Property ... 517

SIPResize .. Property ... 517

Size .. Property ... 518

 Contents xiv

Sizeable ... Property ... 519

SM .. Object .. 520

SocketNumber .. Property ... 522

SocketType .. Property ... 522

SortItems ... Property ... 522

Spin ... Event 420 .. 523

Spinner .. Object .. 524

SplitObj1 ... Property ... 526

SplitObj2 ... Property ... 527

Splitter ... Object .. 528

Splitting ... Event 281 .. 534

Start ... Property ... 535

StartIn.. Property ... 535

StartSplit .. Event 280 .. 536

State .. Property ... 536

StateChange ... Event 35 .. 537

Static ... Object .. 538

StatusBar ... Object .. 539

StatusField ... Object .. 541

Step ... Property ... 542

Style .. Property ... 543

SubForm .. Object .. 545

SysColorChange ... Event 134 .. 547

SysMenu .. Property ... 547

SysTrayItem ... Object .. 548

TabBar... Object .. 549

TabBtn... Object .. 551

TabButton ... Object .. 552

TabControl ... Object .. 553

TabFocus ... Property ... 557

TabIndex.. Property ... 557

TabJustify ... Property ... 558

TabObj .. Property ... 559

TabSize ... Property ... 559

Target .. Property ... 560

TargetState ... Property ... 560

TCPAccept .. Event 371 .. 561

TCPClose .. Event 374 .. 562

TCPConnect ... Event 372 .. 562

TCPError ... Event 370 .. 563

TCPGetHostID ... Method 376 ... 563

TCPGotAddr .. Event 377 .. 564

TCPGotPort ... Event 378 .. 564

TCPReady ... Event 379 .. 565

TCPRecv ... Event 373 .. 566

TCPSend ... Method 375 ... 567

TCPSendPicture ... Method 380 ... 568

 Contents xv

TCPSocket .. Object .. 569

Text.. Object .. 570

Text.. Property ... 573

TextSize ... Property ... 574

Thumb .. Property ... 575

ThumbDrag .. Event 440 .. 575

ThumbRect ... Property ... 576

TickAlign ... Property ... 576

TickSpacing .. Property ... 577

Timer ... Object .. 577

Timer ... Event 140 .. 578

Tip ... Property ... 578

TipField .. Object .. 579

TipObj .. Property ... 580

TitleHeight ... Property ... 580

TitleWidth .. Property ... 581

Today .. Property ... 581

ToolBar .. Object .. 582

ToolboxBitmap ... Property ... 584

ToolButton .. Object .. 585

ToolControl ... Object .. 587

TrackBar .. Object .. 589

TrackRect ... Property ... 592

Translate ... Property ... 592

Transparent ... Property ... 593

TreeView .. Object .. 594

Type ... Property ... 596

TypeLibID .. Property ... 597

TypeLibFile .. Property ... 597

TypeList ... Property ... 597

Underline .. Property ... 597

Undo .. Method 170 ... 598

UndocksToRoot .. Property ... 599

UpDown ... Object .. 600

UpperCase .. Property ... 601

ValidIfEmpty .. Property ... 601

VAlign ... Property ... 602

Value.. Property ... 602

Values .. Property ... 603

VariableHeight Property ... 603

View .. Property ... 603

Visible .. Property ... 605

VScroll ... Property ... 606

VScroll ... Event 38 .. 607

Wait ... Method 147 ... 608

WantsReturn ... Property ... 608

WeekNumbers ... Property ... 608

 Contents xvi

Weight ... Property ... 609

WinIniChange .. Event 133 .. 609

WordFormat ... Property ... 609

WorkspaceLoaded Event 525 .. 610

Wrap ... Property ... 610

XRange.. Property ... 611

Yield ... Property ... 611

YRange.. Property ... 612

 1

C H A P T E R 1

Summary

This chapter provides a summary listing all the objects, properties, events and methods
with a brief description.

 Dyalog APL/W Object Reference 2

Table of Objects

Object Description

ActiveXContainer Represents the application that is hosting an ActiveXControl

ActiveXControl Allows you to package a Dyalog APL application as an
ActiveX control.

Animation Plays simple animations from AVI files and resources

Bitmap A bitmap that can be used to fill an area, to define the
appearance of a Button, Menu or MenuItem, or as a
background pattern

BrowseBox Allows the user to browse for and select a folder or other
resource

Button A pushbutton, radio button or checkbox used to perform a task
or select an option

Calendar Provides an interface to the Month Calendar Control.

Circle Draws circles, arcs and pies

Clipboard Provides access to the Windows clipboard

ColorButton Allows the user to select a colour

Combo Combines a text entry field with a list of available choices for
the user to select

ComboEx An extended version of the Combo object that provides
additional features including item images

CoolBand Represents a band in a CoolBar.

CoolBar Acts as a container for CoolBand objects.

Cursor Creates a user-defined cursor that can be associated with an
object

 Chapter 1 Summary 3

3

Object Description

DateTimePicker An editable date/time field with an optional drop-down
Calendar

Edit A single or multi-line edit box for entering, editing, or
browsing data

Ellipse Draws ellipses, elliptical arcs and pies

FileBox A standard File Selection dialog box

Font A font resource

Form A window or dialog box that acts as a container for other
objects

Grid A spreadsheet object for displaying and editing a data matrix

Group A frame with border and optional title used to group other
objects together

Icon An icon that can be displayed or used when a Form is
minimised

Image A graphical object for displaying bitmaps and icons

ImageList Represents an array of bitmapped images

Label Fixed text that the user cannot change

List Displays a list of items (with or without scrollbar) from which
the user can choose

ListView Displays a collection of items

Locator Displays a moving/rubberbanding line, rectangle or ellipse for
graphics input

 Objects (continued)

 Dyalog APL/W Object Reference 4

Object Description

Marker Draws markers at a series of points

MDIClient Provides Multiple Document Interface (MDI) behaviour

Menu Container object for MenuItems.

MenuBar Displays a list of pulldown menus.

MenuItem A component of a Menu that actually performs an action or
makes a choice

Metafile Provides access to Windows Metafiles

MsgBox Displays a message in a dialog box and waits for the user to
respond

NetClient Represents an instance of a Microsoft .Net Class.

NetControl Used to instantiate a Microsoft .Net control in the Dyalog
GUI.

NetType Used to export a namespace as a Microsoft .Net Class.

OCXClass Represents an OLE Control

OLEClient Provides access to an OLE Automation Server

OLEServer Used to establish a namespace as an OLE Server object that
can be used by an OLE Automation client

Poly Draws lines, polygons and filled areas

Printer Controls output to a printer

 Objects (continued)

 Chapter 1 Summary 5

5

Object Description

ProgressBar Used to indicate the progress of a lengthy operation

PropertyPage Represents a single page within a PropertySheet

PropertySheet Displays a set of PropertyPages

Rect Draws filled and unfilled rectangles

RichEdit An edit object with word-processing capabilities

Root The system object that is the ultimate parent of all others

Scroll A horizontal or vertical scrollbar

Separator A horizontal or vertical line in a Menu, or specifies a vertical
break in a MenuBar

SM Allows character-mode applications using ⎕SM and ⎕SR to be
integrated into Forms and used in conjunction with GUI
objects

Spinner A data entry field that allows a value to be keyed in and
updated using spin buttons

Splitter Divides a container into resizable panes

Static A frame or box used to contain graphics

StatusBar Manages a set of StatusField objects

StatusField Displays context-sensitive help, application and keyboard
status

SubForm A child Form that is constrained within its parent

 Objects (continued)

 Dyalog APL/W Object Reference 6

Object Description

SysTrayItem Represents an item that you can create in the Windows System
Tray

TabBar Manages a set of TabBtn objects

TabBtn Tabs (brings forward) an associated SubForm

TabButton Represents an individual tab or button in a TabControl

TabControl Provides access to the native Windows tab control

TCPSocket Provides an interface to TCP/IP

Text Displays or prints arbitrary text

Timer Generates events at regular intervals

TipField Displays pop-up context-sensitive help

ToolBar Manages a block of controls including Buttons

ToolButton Represents a button in a ToolControl

ToolControl Provides a native Windows ToolBar

TrackBar Used to display or update a value using a slider and thumb

TreeView Displays a hierarchical list of items

UpDown A pair of spin buttons

 Objects (continued)

 Chapter 1 Summary 7

7

Table of Properties

Property Description

Accelerator Specifies a keystroke that will generate a Select event on
the object

AcceptFiles Specifies whether or not the object accepts drag-drop of
file icons from Windows Explorer

Active Determines whether or not an object is currently capable of
generating events

Align Determines the position of text relative to the symbol in a
Button. Also used to attach objects to an edge of a Form or
Group

AlignChar Specifies the character(s) on which columns in a Grid are
aligned

AlphaBlend Specifies the level of translucency for a Form (Windows
2000)

AlwaysShowBorder Specifies the appearance of the current cell when a Grid
loses the focus

AlwaysShowSelection Specifies the appearance of the hoghlighted selection when
a Grid loses the focus.

APLVersion Identifies the version of Dyalog APL in use

ArcMode Determines how arcs are drawn (Ellipse)

Array Sets or retrieves the contents of the Clipboard in APL
format

Attach Specifies how an object is reconfigured when its parent is
resized

AutoArrange Specifies whether or not items in a ListView are
automatically re-arranged when an item is repositioned

AutoBrowse Specifies whether or not APL attempts to fix functions and
variables in an OLEClient namespace when it is created

 Dyalog APL/W Object Reference 8

Property Description

AutoConf Governs how a child object reacts to its parent being resized, and
whether or not a parent object propagates resizes to its children

AutoExpand Specifies whether or not rows and columns are automatically
added to a Grid

AutoPlay Specifies whether or not an AVI is played automatically when
loaded by an Animation

BandBorders Specifies whether or not narrow lines are drawn to separate
adjacent bands in a CoolBar

BCol Specifies background colour

Bits Defines the pattern for a Bitmap, Cursor, or Icon

Border Determines whether or not an object has a border

BrowseFor Specifies the type of resource that is the target of a BrowseBox

BtnPix Associates Bitmaps with Button, Menu and MenuItem objects

Btns Determines the buttons shown in a MsgBox

CalendarCols Specifies the colours used for various elements in the Calendar
object

Cancel Used to associate the Esc key with a particular Button

Caption Specifies a text label for an object.

CaseSensitive Specifies whether or not string searches in a ComboEx are case-
sensitive

Properties (continued)

 Chapter 1 Summary 9

9

Property Description

CBits Represents the picture in a Bitmap object

CellFonts Specifies the fonts to be used by the cells in a Grid

CellHeights Specifies the heights of the cells in a Grid

CellSelect Specifies cells that user may select in a Grid

CellSet Identifies which cells in a Grid have values and which are empty

CellTypes Specifies the type of the cells in a Grid

CellWidths Specifies the widths of cells in a Grid

Changed Identifies whether or not an object has been altered by the user

CharFormat Specifies character formatting for the text in a RichEdit

CharSet Specifies the character set for a Font

CheckBoxes Specifies whether or not check boxes are displayed alongside
items in a ListView or TreeView object

Checked Determines whether or not a check mark is displayed alongside a
MenuItem

ChildEdge Specifies whether or not a CoolBand leaves space above and
below its child window

ChildList Reports the list of objects that can be created as a child of an
object

CircleToday Specifies whether or not a circle is drawn around the Today date
in a Calendar object

Properties (continued)

 Dyalog APL/W Object Reference 10

Property Description

ClassID Reports the class identifier (CLSID) of an OLEClient or
OLEServer object

ClassName Specifies the name of the OLE object to which an OLEClient
object is to be connected

ClipCells Specifies whether or not a Grid displays partial cells

CMap Defines a colour map for a Bitmap or Icon

Collate Specifies whether or not multiple copies of printer output are
collated

ColLineTypes Specifies appearance of vertical grid lines in a Grid

ColorMode Specifies whether or not printing is done in colour

ColSortImages Specifies Bitmaps to be used to display sort images in the
column titles of a Grid

ColTitle3D Specifies whether or not a 3-dimensional effect is applied to the
column titles in a ListView

ColTitleAlign Specifies alignment of column titles in a Grid and ListView

ColTitleBCol Specifies background colour for column titles in a Grid

ColTitleDepth Specifies the structure for hierarchical column titles in a Grid

ColTitleFCol Specifies the colour of the text in the column titles of a Grid

ColTitles Specifies the column titles for a Grid

ColumnWidth Specifies the with of columns in a multi-column List

Properties (continued)

 Chapter 1 Summary 11

11

Property Description

Container The Object Representation of an ActiveXContainer object

Coord Specifies the co-ordinate system for an object

Copies Specifies the number of copies to be printed

CurCell Identifies the current cell in a Grid

CurrentColor Specifies the currently selected colour in a ColorButton

CurrentState Reports the current state of a TCPSocket object

CursorObj Associates a Cursor with an object

CustomColors Identifies the custom colours associated with a ColorButton

CustomFormat Specifies a custom format for the date/time display in a
DateTimePicker

Data Associates arbitrary data with an object

DateTime Specifies the value of date/time in a DateTimePicker

DblClickToggle Specifies whether or not the user must single-click or double-
click to toggle the state of a child CoolBand

Decimals Specifies the number of decimal places for a Numeric field

Default Nominates a Button to be the default one that is selected when
the user presses the Enter key

DefaultColors Specifies the colours displayed in the colour selection drop-down
of a ColorButton

Properties (continued)

 Dyalog APL/W Object Reference 12

Property Description

Depth Specifies the structure of items in a TreeView

DevCaps Reports the device capabilities of the screen or printer

Directory Specifies the directory for a FileBox

Divider Controls the presence or absence of a recessed line in a
ToolControl object

Dockable Specifies whether or not an object may be docked and
undocked

DockChildren Specifies a list of objects that may be docked into an object

Docked Specifies whether or not an object is currently docked in
another

DockShowCaption Specifies whether or not a Form has a title bar when docked
as a SubForm

Dragable Specifies whether or not the user may drag an object with the
mouse

DragItems Specifies whether or not the items in a ListView may be
drag-dropped

DrawMode Provides direct control over the low-level drawing operation
performed by graphical objects

Duplex Specifies whether pages are printed on separate sheets or
back-to-back

EdgeStyle Specifies 3-dimensional appearance

EditImage Specifies whether or not the edit control portion of the
ComboEx displays an image for selected items

Properties (continued)

 Chapter 1 Summary 13

13

Property Description

EditImageIndent Specifies whether or not the indents associated with items in
a ComboEx object are honoured in the edit control portion of
the ComboEx

EditLabels Specifies whether or not the user may edit the labels in a
ListView or TreeView

Encoding Specifies character encoding/translation for a TCPSocket

End Specifies arc ending angles for Circle and Ellipse objects

EnterReadOnlyCells Specifies whether or not the user may visit read-only cells

Event Associates an event with a callback function or ⎕DQ
termination

EventList Reports the names of the events generated by an object.

ExportedFns Specifies the functions to be exposed as methods by an
OLEServer object.

ExportedVars Specifies the variables to be exposed as properties by an
OLEServer object

FCol Specifies foreground colour

FieldType Specifies formatting and validation for Edit and Label
objects

File Specifies a filename

FileMode Specifies the mode (read or write) for a FileBox object

FillCol Specifies fill colour

Filters Specifies file filters for a FileBox

Properties (continued)

 Dyalog APL/W Object Reference 14

Property Description

FirstDay Specifies the day that is considered to be the first day of the
week for a Calendar object

Fixed Specifies whether a font is fixed-width or proportional

FixedOrder Specifies whether or not the CoolBar displays CoolBands in
the same order

FlatSeparators Specifies whether or not separators are drawn between
buttons in a TabControl object

FontObj Specifies the font to be used

FontList Provides a list of available fonts

Formats Reports the data formats currently available from the
Clipboard

FormatString Specifies a ⎕FMT specification to format a numeric field

FStyle Specifies fill style

FullRowSelect Specifies whether or not the entire row is highlighted when
an item in a ListView or a TreeView is selected

GridBCol Specifies the colour for the unused portion of a Grid

GridFCol Specifies the colour of (all) the gridlines in a Grid

GridLineFCol Specifies the colours of the gridlines in a Grid

GridLineWidth Specifies the widths of the gridlines in a Grid

Properties (continued)

 Chapter 1 Summary 15

15

Property Description

GridLines Specifies whether or not lines are displayed between items in
a ListView object

GripperMode Specifies whether or not the CoolBand has a gripper bar

HAlign Specifies horizontal text alignment

Handle Reports the window handle of an object

HasApply Specifies whether or not a PropertySheet has an Apply
button

HasButtons Specifies whether or not buttons are shown in a TreeView

HasCheckBox Specifies whether or not a checkbox is displayed alongside
the value in a DateTimePicker

HasEdit Specifies whether or not a BrowseBox has an edit field.

HasHelp Specifies whether or not a PropertySheet or PropertyPage
has a Help button

HasLines Specifies whether or not tree lines are drawn in a TreeView

HasTicks Specifies whether or not ticks are drawn in a TrackBar

HasToday Specifies whether or not the Today date is displayed in the
bottom left corner of a Calendar object

Header Specifies whether or not a ListView displays column titles

Properties (continued)

 Dyalog APL/W Object Reference 16

Property Description

HelpButton Specifies whether or not a Question (?) button appears in the
title bar of a Form or SubForm

HelpFile Reports the name of the help file associated with an OLE
Control

Hint Specifies the text for a context sensitive help message

HintObj Specifies the object in which to display a Hint

HotSpot Specifies the hotspot for a Cursor

HotTrack Specifies whether or not the tabs or buttons in a TabControl
object are automatically highlighted by the mouse pointer

HScroll Determines whether or not an object has a horizontal
scrollbar

IconObj Associates an Icon with a Form to be displayed when the
Form is minimised

ImageCount Reports the number of images in an ImageList

ImageIndex Maps images in an ImageList to an object or to items in a
ListView or TreeView

ImageListObj Specifies the names of ImageList objects associated with an
object

Indents Specifies the amount by which items in a ComboEx object
are indented

Properties (continued)

 Chapter 1 Summary 17

17

Property Description

Index Specifies the position of items in a Combo or List object, the
selected filter in a FileBox, and the sequential position of a
CoolBand

Input Specifies the names of the Edit or Label objects associated
with the cells of a Grid

InputMode Determines the behaviour of cursor movement keys in a Grid

InputModeKey Specifies the keystroke used to switch input modes in a Grid

InputProperties Specifies the names of properties of an OCXClass (ActiveX
Control) or .NET Class that are to be mapped to the Values
property in a Grid

InstanceMode Specifies how APL attempts to connect an OLEClient to an
OLE Server

Interval Specifies the frequency with which a Timer generates events

Italic Specifies whether or not a font is italic

ItemGroupMetrics Specifies caption, colours and spacing for grouped items in a
ListView object

ItemGroups Specifies groupings for items in a ListView object

Items Specifies a list of selectable items in a Combo or List object

Justify Determines how text is justified within an object

KeepBits Determines how Bitmap, Icon and Cursor objects are stored
in the workspace

KeepOnClose Specifies whether or not objects retain namespace
components

Properties (continued)

 Dyalog APL/W Object Reference 18

Property Description

LastError Provides information about the most recent error reported by
OLE

LicenseKey Specifies the license key for an ActiveX control

Limits Specifies the minimum and maximum values for an object

LocalAddr Specifies the IP address of your computer

LocalAddrName Specifies the host name of your computer

Locale Specifies the language in which the OLE server, attached to
an OLEClient, exposes its methods and properties

LocalPort Identifies the port number associated with a TCPSocket
object

LocalPortName Specifies the port name of the local service that you wish to
offer as a server

LStyle Specifies line style

LWidth Specifies line width

MapCols Specifies whether button colours in bitmaps and icons in an
ImageList are re-mapped to reflect the users colour
preferences

Mask Specifies the mask for a Cursor or Icon

MaskCol Specifies the transparent colour for a Bitmap or Form

Masked Specifies whether an ImageList contains masked images

Properties (continued)

 Chapter 1 Summary 19

19

Property Description

MaxButton Determines whether or not a Form has a maximise button in
its title bar

MaxDate Specifies the largest date that may be displayed by a
Calendar object

MaxLength Specifies the maximum number of characters that the user
may type into a single-line Edit object

MaxSelCount Specifies the maximum number of contiguous days that the
user may select in a Calendar object

MDIActive Specifies the name of the active SubForm in an MDI
application

MDIActiveObject Specifies a ref to the active SubForm in an MDI application

MDIMenu Nominates a particular Menu to be the Windows menu in an
MDI application

MetafileObj Accesses clipboard data in Windows Metafile format

MethodList Reports the names of methods provided by an OLE Control

MinButton Determines whether or not a Form has a minimise button in
its title bar

MinDate Specifies the smallest date that may be displayed by a
Calendar object

MonthDelta Specifies the number of months by which a Calendar object
scrolls when the user clicks its scroll buttons

Moveable Determines whether or not a Form may be moved to another
position on the screen by the user

MultiColumn Specifies whether or not a List object displays multiple
columns

Properties (continued)

 Dyalog APL/W Object Reference 20

Property Description

MultiLine Determines whether or not the tabs or buttons will be
arranged in multiple flights or multiple rows/columns in a
TabControl or ToolControl object

MultiSelect Specifies whether or not the user can select more than one
button in a TabControl at the same time

NewLine Specifies whether or not a CoolBand starts a new row in a
CoolBar

OKButton Pocket APL only. Speciifes whether a Form has an [OK]
button or an [X] button in the top right corner of the title bar.

OLEControls Reports a list of OLE Controls installed on the computer

OLEServers Reports the names and CLSIDs of all the OLE Automation
servers installed on your computer

OnTop Specifies that a Form is raised to the front even when it does
not have the focus

Orientation Specifies the orientation of the paper for a Printer object

OtherButton Specifies whether or not the user may access the Windows
Colour Selection dialog box from a ColorButton object

OverflowChar Specifies the character used to fill a Grid cell when it
overflows

PageActive Specifies the name of the current PropertyPage

PageActiveObject Specifies a ref to the current PropertyPage

PageWidth Specifies the width of the page in a RichEdit

PaperSize Specifies the size of paper to be used for printing

Properties (continued)

 Chapter 1 Summary 21

21

Property Description

PaperSizes Provides the names and dimensions of the various different
paper sizes supported by a Printer object

PaperSource Specifies the name of the paper bin to be used as the paper
source for printing

PaperSources Provides the names of the paper bins installed on a Printer

ParaFormat Specifies the paragraph formatting for the text in a RichEdit

Password Specifies the symbol for a password field

PathWordBreak Specifies whether or not the edit control portion of the
ComboEx will use the forward slash (/), back slash (\), and
period (.) characters as word delimiters

Picture Specifies a Bitmap, Icon or Metafile object to be drawn

PName Specifies the device for a Printer object

Points Specifies points for graphical objects

Popup Specifies the name of a (popup) Menu object that is
associated with a ToolButton

Posn Specifies the position of an object within its parent

PrintList Reports the list of installed printers

PrintRange Specifies the range of pages to be printed

ProgressStyle Specifies the appearance of a ProgressBar control

Properties (continued)

 Dyalog APL/W Object Reference 22

Property Description

PropList Reports the list of properties that are applicable to the object

QueueEvents Specifies whether or not incoming events for an instance of
an OCXClass object (an ActiveX control) are queued

RadiusMode Specifies whether or not a perfectly round circle should be
drawn

Radius Specifies the radius for a Circle

Range Specifies the range of a scrollbar

ReadOnly Specifies whether or not the user may modify text in an Edit
or Spinner or the state of a Check or Radio Button

RealSize Specifies the size for a placeable Metafile

RemoteAddr Specifies the IP address of the remote computer

RemoteAddrName Specifies the host name of the remote computer to which you
wish to make a connection

RemotePort Identifies the port number associated with a service on a
remote computer

RemotePortName Specifies the port name of the remote service to which you
wish to make a connection

ReportInfo Specifies associated data to be displayed in a ListView

ResizeCols Specifies whether or not the user may resize Grid columns

ResizeColTitles Specifies whether or not the user may resize Grid column
titles

ResizeRows Specifies whether or not the user may resize Grid rows

Properties (continued)

 Chapter 1 Summary 23

23

Property Description

ResizeRowTitles Specifies whether or not the user may resize Grid row titles

Resolutions Reports the available printer resolutions of a Printer object

Rotate Specifies the angle of rotation for a Font

RowLineTypes Specifies appearance of horizontal grid lines in a Grid

Rows Specifies the number of rows displayed in the drop-down list
part of a Combo

RowTitleAlign Specifies the alignment of row titles in a Grid

RowTitleBCol Specifies background colour for row titles in a Grid

RowTitleDepth Specifies the structure for hierarchical row titles in a Grid

RowTitleFCol Specifies the colour of the row title text in a Grid

RowTitles Specifies the row titles for a Grid

RowTreeDepth Specifies the depth of rows for a treeview like display in the
Grid

RowTreeImages Specifies the Bitmaps used to provide a treeview like display
in the Grid

RowTreeStyle Specifies the appearance of the lines and images used to
provide a treeview like display in the Grid

RTFText Specifies the contents of the clipboard or a RichEdit in Rich
Text Format (RTF)

RunMode Specifies the way in which an OLEServer object serves
multiple clients

Properties (continued)

 Dyalog APL/W Object Reference 24

Property Description

ScrollOpposite Specifies that unneeded tabs scroll to the opposite side of a
TabControl

SelDate Identifies the range of dates that is currently selected in a
Calendar object

SelImageIndex Determines which bitmapped images in an ImageList
correspond to items in a TreeView object when the item is
selected

SelItems Specifies the selected item(s) in a List or Combo

SelRange Specifies a selection range for a TrackBar

SelText Specifies the selected text in an Edit or Combo

ServerVersion Specifies the version number of an OLEServer object

ShowCaptions Specifies whether or not the captions of individual
ToolButton objects are drawn

ShowDropDown Specifies whether or not a drop-down menu symbol is drawn
in ColorButton and ToolButton objects

ShowInput Specifies how Grid cells are displayed

ShowSession Specifies whether or not the APL Session window is
displayed when an OLEServer object is started by an OLE
client

ShowThumb Specifies whether or not the thumb in a TrackBar is visible

SingleClickExpand Specifies whether or not an item in a TreeView control is
expanded when the user selects the item

SIPMode Pocket APL only. Specifies the behaviour of the Input Panel.

Properties (continued)

 Chapter 1 Summary 25

25

Property Description

SIPResize Pocket APL only. Specifies how a Form resizes when the
Input Panel is rasied and lowered.

Size Specifies the size of an object

Sizeable Specifies whether or not the user may resize an object using
the mouse

SocketNumber An integer whose value is the Window handle of the socket
attached to the TCPSocket object

SocketType Specifies the type of the TCP/IP socket

SortItems Specifies whether or not the Items in a List object are sorted.

SplitObj1 Specifies the name of an object managed by a Splitter

SplitObj2 Specifies the name of an object managed by a Splitter

Start Specifies start angles for arcs of Circle and Ellipse objects

StartIn Specifies the start point and root for a BrowseBox object

State Specifies the state of a Button or Form

Step Specifies the increments for movement within an object

Style Specifies the style of an object

SysMenu Determines whether or not a Form has a standard system
menu in its title bar

TabFocus Specifies the focus behaviour for the TabControl object

Properties (continued)

 Dyalog APL/W Object Reference 26

Property Description

TabIndex Specifies the tabbing order for controls

TabJustify Specifies the positions at which the picture and caption are
drawn within a TabButton

TabObj Specifies the name of the SubForm associated with a TabBtn
or TabButton

TabSize Specifies the size of fixed size tabs or buttons in a
TabControl object

Target Specifies the chosen folder or other resource selected by the
user in a BrowseBox object

Text Specifies/reports the text in an Edit, MsgBox, or in the edit
field of a Combo

TextSize Reports the bounding rectangle for text

Thumb Specifies the position of the thumb in an object

ThumbRect Reports the position and size of the thumb in a TrackBar

TickAlign Specifies the position of tick marks in a TrackBar

TickSpacing Specifies the spacing of tick marks in a TrackBar

Tip Specifies the text for a pop-up help message

TipObj Specifies the object in which to display the Tip

TitleHeight Specifies the height of the column titles in a Grid

TitleWidth Specifies the width of the row titles in a Grid

Properties (continued)

 Chapter 1 Summary 27

27

Property Description

Today Specifies today’s date in a Calendar object

ToolboxBitmap Specifies a bitmap image (tool) for a COM object

TrackRect Reports the position and size of the slider in a TrackBar

Translate Specifies whether or not character data is translated to and
from ⎕AV

Transparent Specifies whether or not a ToolControl is transparent

Type Specifies the type of an object

TypeLibID Specifies the value of the globally unique identifier (GUID)
of the Type Library associated with a COM object

TypeLibFile Specifies the name of the file in which the Type Library for a
COM object is stored

TypeList Reports the names of data types associated with an OLE
Control

Underline Specifies whether or not a font is underlined

UndocksToRoot Specifies the parent adopted by an object when its Type
changes to a Form as a result of an undocking operation

UpperCase Specifies that property names are to be reported in uppercase

ValidIfEmpty Specifies whether or not an empty numeric object is deemed
to be valid

VAlign Specifies vertical text alignment

Properties (continued)

 Dyalog APL/W Object Reference 28

Property Description

Value The value of a number, date or time in an Edit or Label
object

Values The data matrix in a Grid

VariableHeight Specifies whether or not a CoolBar displays bands at the
minimum required height, or all the same height

View Specifies the appearance of a ListView

Visible Specifies whether or not an object is currently visible

VScroll Specifies whether or not an object has a vertical scrollbar

WantsReturn Determines the behaviour of the Enter key in an Edit or
RichEdit

WeekNumbers Specifies whether or not a Calendar object displays week
numbers

Weight Specifies the weight (boldness) of a font

WordFormat Specifies the word formatting for text in a RichEdit

Wrap Determines how an object behaves when its value overflows

XRange Specifies origin and scale on the x-axis

Yield Specifies how frequently Dyalog APL/W yields control

YRange Specifies origin and scale on the y-axis

Properties (continued)

 Chapter 1 Summary 29

29

Table of Events

Event Description

ActivateApp 139 User has switched to or from the APL application

AddCol 153 User has appended a column to a Grid object. Also used
to insert a new column under program control

AddRow 152 User has appended a row to a Grid object. Also used to
insert a new row under program control.

AmbientChanged 533 Reported when any of the ambient properties change in
an application hosting an ActiveXControl object.

AnimStarted 294 Reported by an Animation object just before an AVI clip
starts playing

AnimStopped 295 Reported by an Animation object just after an AVI clip
has stopped playing

BadValue 180 User has attempted to leave an Edit object containing text
that is invalid in relation to its FieldType

BeginEditLabel 300 User has started to edit an item in a ListView or
TreeView

CalendarDblClick 273 Reported when the user double-clicks the left mouse
button over a Calendar object

CalendarDown 271 Reported when the user depresses the left mouse button
over a Calendar object

CalendarMove 274 Reported when the user moves the left mouse button over
a Calendar object

CalendarUp 272 Reported when the user releases the left mouse button
over a Calendar object

 Dyalog APL/W Object Reference 30

Event Description

CellChange 150 User is modifying the contents of a cell in a Grid object

CellChanged 164 User has modified the contents of a cell in a Grid object

CellDblClick 163 User has double-clicked the mouse on a cell in a Grid

CellDown 161 User has depressed a mouse button over a cell in a Grid

CellError 157 User has input invalid data into a cell in a Grid

CellMove 160 User has moved the mouse pointer over a cell in a Grid
object

CellOver 151 User has moved to a new cell in a Grid object

CellUp 162 User has released a mouse button over a cell in a Grid

Change 36 User has altered the text in an Edit or Combo

ClickComment 225 Generated when the user clicks the mouse in a Grid
comment window

ClipChange 120 Data in the clipboard has changed

Close 33 A Form is about to be closed

CloseUp 46 Reported by a DateTimePicker object just before the
drop-down calendar is hidden

ColorChange 430 User has changed the colour in a ColorButton object

ColumnClick 320 User has clicked on a column heading in a ListView

Events (continued)

 Chapter 1 Summary 31

31

Event Description

Configure 31 The configuration (position and/or size) of an
object is about to change

ContextMenu 410 Reported when the user performs the standard
Windows action to display a context menu

Create 34 Reported immediately after an object has been
created

DateTimeChange 267 Reported by a DateTimePicker object when the
user changes the DateTime value

DDE 50 A DDE message has been received or sent

DisplayChange 137 User has changed screen resolution and/or
number of colours

DockAccept 483 Reported by a host object just before it accepts a
client object docking operation

DockCancel 485 Reported by a client object when the user aborts a
docking operation by pressing Escape

DockEnd 484 Reported by a client object after it has been
successfully docked in a host object

DockMove 481 Reported by a host object when a dockable object
(the client) is dragged over it

DockRequest 482 Reported by a client object just before it is docked
in a host object, when the user releases the mouse
button

DockStart 480 Reported by a dockable object when the user
starts to drag it using the mouse

Events (continued)

 Dyalog APL/W Object Reference 32

Event Description

DragDrop 11 User has moved an object using a drag & drop
operation

DropDown 45 Reported when the user clicks the drop-down
button in a Combo, ComboEx, DateTimePicker
or Menu object, just before the drop-down list,
calendar or menu is displayed

DropFiles 450 User has drag-dropped file icons onto the object

DropObjects 455 User has drag-dropped APL object icons onto the
object

DyalogCustomMessage1 95 Allows external applications and dynamic link
libraries to insert events into the Dyalog APL/W
message queue

EndEditLabel 301 User has finished editing an item in a ListView or
TreeView

EndSplit 282 Reported when user releases the left mouse button
to signify the end of a drag operation on a Splitter
object

ExitApp 132 User has selected End Task from the Windows
Task List

ExitWindows 131 User has requested Windows to terminate

Expanding 302 Reported by a TreeView and a Grid when it is
about to expand its tree

Expose 32 Part or all of a Form or a Static has been exposed
and may need to be redrawn

FileBoxCancel 72 User selected the Cancel button in a FileBox

Events (continued)

 Chapter 1 Summary 33

33

Event Description

FileBoxOK 71 User selected the OK button in a FileBox

FontCancel 242 User cancelled a font selection (ChooseFont)

FontOK 241 User executed a font selection (ChooseFont)

FrameContextMenu 411 Reported when the user clicks and releases the
right mouse button over the non-client area of an
object, e.g. the title bar in a Form

GetDayStates 266 Reported when a Calendar object requires the APL
program to provide day state information

GotFocus 40 An object has received the input focus

GridCopy 191 User has copied a block of Grid cells to the
clipboard

GridCopyError 196 User has attempted to copy a block of Grid cells to
the clipboard, but the operation is impossible

GridCut 190 User has cut a block of Grid cells to the clipboard

GridDelete 193 User has deleted a block of Grid cells

GridDropSel 195 User has drag-dropped a block of Grid cells

GridKeyPress 24 Reported when the user presses a key in a Grid

GridPaste 192 User has pasted data into a Grid

GridPasteError 194 User has attempted to paste inappropriate data into
a Grid

GridSelect 165 User has selected a block of Grid cells

Events (continued)

 Dyalog APL/W Object Reference 34

Event Description

Help 400 User has requested help on the object

HideComment 224 Generated just before a comment window is hidden as a
result of the user moving the mouse-pointer

HScroll 39 User has requested a movement of the thumb in the
horizontal scrollbar of a Form

Idle 130 Generated when system is idle

IndexChanged 210 The Index property of a Grid has changed

ItemDblClick 342 User has double-clicked on an item in a ListView or
TreeView

ItemDown 340 User has pressed the left mouse button over an item in a
ListView or TreeView

ItemUp 341 User has released the left mouse button over an item in a
ListView or TreeView

KeyError 23 User has pressed an invalid key in an object

KeyPress 22 User has pressed a key on the keyboard

Locator 80 User terminated interaction with a Locator object

LostFocus 41 Object has lost the input focus

MDIActivate 42 Generate when an MDI SubForm becomes the active one

MDIDeactivate 43 Generated when an MDI SubForm is deactivated

Events (continued)

 Chapter 1 Summary 35

35

Event Description

MouseDblClick 5 User has double-clicked a mouse button (clicked twice in
quick succession)

MouseDown 1 User pressed mouse button down

MouseEnter 6 User has moved the mouse into the object

MouseLeave 7 User has moved the mouse out of the object

MouseMove 3 User has moved the mouse

MouseUp 2 User released a mouse button

MouseWheel 8 User rotated the mouse wheel

MsgBtn1 61 User selected first button in a MsgBox

MsgBtn2 62 User selected second button in a MsgBox

MsgBtn3 63 User selected third button in a MsgBox

PageActivate 360 User has switched to this PropertyPage

PageApply 350 User has pressed the Apply button in a PropertySheet

PageBack 353 User has pressed the Back button in a PropertySheet

PageCancel 351 User has pressed the Cancel button in a PropertySheet

PageChanged 356 User has altered the data in a PropertyPage

Events (continued)

 Dyalog APL/W Object Reference 36

Event Description

PageDeactivate 361 User has switched to another PropertyPage

PageFinish 355 User has pressed the Finish button in a PropertySheet

PageHelp 352 User has pressed the Help button in a PropertySheet

PageNext 354 User has pressed the Next button in a PropertySheet

PreCreate 534 Reported when an instance of an ActiveXControl is created

Protected 470 User has attempted to change protected text in a RichEdit

Retracting 304 A TreeView or a Grid is about to collapse part of its tree

Scroll 37 User has requested a movement of the thumb in a scrollbar

SelDateChange 265 Reported when the user changes the date that is selected in a
Calendar object

Select 30 User has selected the object

SetColSize 176 User has changed the width of a column in a Grid or
ListView

SetItemPosition 322 User has drag-dropped an item in a ListView

SetRowSize 175 User has changed the height of a row in a Grid

SetSpinnerText 421 Reported just before the text is changed in a Spinner

Events (continued)

 Chapter 1 Summary 37

37

Event Description

SetWizard 365 User has clicked the Next or Back button in a Wizard
PropertySheet

ShowComment 223 User has hovered the mouse pointer over a commented Grid
cell

Spin 420 User has incremented a Spinner

Splitting 281 Reported while a Splitter object is being dragged, between a
StartSplit and an EndSplit

StartSplit 280 Reported when the user depresses the left mouse button over
a Splitter object

StateChange 35 A Form is about to change state

SysColorChange 134 The system colour scheme has changed

TCPAccept 371 Reported when a client connects to a server TCPSocket
object

TCPClose 374 Reported when the remote end of a TCP/IP connection
breaks the connection

TCPConnect 372 Reported when a server accepts the connection of a client
TCPSocket object

TCPError 370 Generated when a fatal TCP/IP error occurs

TCPGotAddr 377 Reported when a name is resolved to an IP address

TCPGotPort 378 Reported when a port name is resolved to a port number

TCPReady 379 Reported when the TCP/IP buffers are free and there is no
data waiting to be sent in the internal APL queue

Events (continued)

 Dyalog APL/W Object Reference 38

Event Description

TCPRecv 373 Reported when data is received by a TCPSocket object

ThumbDrag 440 User has dragged the thumb in a TrackBar

Timer 140 Event generated by a Timer object

VScroll 38 User has requested a movement of the thumb in the
vertical scrollbar of a Form

WinIniChange 133 WIN.INI has changed

WorkspaceLoaded 525 Reported when a workspace has been loaded

Events (continued)

 Chapter 1 Summary 39

39

Table of Methods

Method Description

Abort 103 Aborts a print job

AddChildren 310 Adds child items to an item in a TreeView

AddComment 220 Associates a comment with the cell in a Grid

AddItems 308 Adds items to a TreeView

Animate 29 Produces special effects when showing or hiding objects

AnimClose 291 Closes the AVI file that is currently loaded in an Animation
object

AnimOpen 290 Opens an AVI file in an Animation object

AnimPlay 292 Plays an AVI clip in an Animation object

AnimStop 293 Stops playing an AVI clip in an Animation object

Browse 585 Causes APL to browse the object's type library and to fix
functions and variables in the OLEClient namespace

CancelToClose 367 Changes the buttons in a PropertySheet

CellFromPoint 200 Converts from Grid co-ordinates to cell co-ordinates

ChooseFont 240 Displays a font selection dialog box

ColChange 159 Sets new values for a complete column of cells in a Grid

 Dyalog APL/W Object Reference 40

Method Description

ColSorted 173 Selects an image to be displayed in the column title of a
Grid to indicate that it is sorted

DateToIDN 264 Converts a date from ⎕TS format into an IDN suitable for
use in a Calendar object

DelCol 155 Deletes a column from a Grid object

DelComment 221 Removes the comment associated with a cell in a Grid

DeleteChildren 311 Removes child items from a parent item in a TreeView

DeleteItems 309 Removes items from a TreeView

DeleteTypeLib 521 Removes a loaded Type Library from the workspace

DelRow 154 Deletes a row from a Grid object

Detach 270 Detaches the GUI component from an object

DuplicateColumn 178 Duplicates a column in a Grid

DuplicateRow 177 Duplicates a row in a Grid

FileRead 90 Causes a graphical object to be read from a file

FileWrite 91 Causes a graphical object to be written to a file

Flush 135 Forces any objects that have been created to be displayed

GetBuildID 192 Used to obtain the Build ID of a file (e.g. DYALOG.EXE)

Methods (continued)

 Chapter 1 Summary 41

41

Method Description

GetCellRect 201 Returns the rectangle associated with a Grid cell

GetCommandLine 145 Returns the command line that was used to start the
current Dyalog APL session or application

GetCommandLineArgs 148 Returns the command line that was used to start the
current Dyalog APL session or application and its
arguments (as a nested array)

GetComment 222 Retrieves the comment associated with a cell in a Grid

GetEnvironment 510 Obtains APL start-up parameters

GetEventInfo 551 Obtains information about an Event of an OLE Control

GetFocus 511 Returns the name of the object that has the input focus

GetItemHandle 313 Obtains the Windows handle of an item in a TreeView

GetItemPosition 323 Obtains the position of an item in a ListView

GetItemState 306 Obtains the status of an item in a TreeView

GetMethodInfo 552 Obtains information about a method of an OLE
Control

GetMinSize 275 Obtains the minimum size that you must specify for a
Calendar object for it to display a complete month

GetParentItem 312 Obtains the index of the parent of an item in a
TreeView

GetPropertyInfo 550 Obtains information about a property of an OLE
Control

Methods (continued)

 Dyalog APL/W Object Reference 42

Method Description

GetTextSize 92 Obtains the size of the bounding rectangle of a text item
in a given font

GetTypeInfo 553 Obtains information about a TypeList of an OLE Control

GetVisibleRange 262 Obtains the range of dates that is currently visible in a
Calendar object

GreetBitmap 138 Used to display or remove a bitmap during APL start-up

IDNToDate 263 Used to convert a date from an IDN into ⎕TS format

ListTypeLibs 520 Returns a list of loaded Type Libraries

LockColumns 227 Locks columns in a Grid

LockRows 226 Locks rows in a Grid

MakeGIF 261 Generates an uncompressed GIF representation of a
picture from a Bitmap object

MakePNG 260 Generates a PNG representation of a picture from a
Bitmap object

MDIArrange 112 Causes an MDIClient to arrange the icons associated
with its minimised SubForms

MDICascade 110 Causes an MDIClient to rearrange its SubForms as
overlapping windows

MDITile 111 Causes an MDIClient to rearrange its SubForms into a
row or column

NameFromHandle 136 Obtains the name of an object from its Handle property

NewPage 102 Throws a new page on a Printer

Methods (continued)

 Chapter 1 Summary 43

43

Method Description

OLEAddEventSink 540 Connects a named event sink to a COM object

OLEDeleteEventSink 541 Disconnects a named event sink from a COM object

OLEListEventSinks 542 Returns the names of event sinks that are currently
connected to a COM object

OLEQueryInterface 543 Used to obtain the methods and properties associated
with a particular interface that is provided by a COM
object

OLERegister 530 Used to register an OLEServer object

OLEUnregister 531 Used to unregister an OLEServer object

Print 100 Spools Printer output

ProgressStep 250 Increments the thumb in a ProgressBar

RowChange 158 Sets new values for a complete row of cells in a Grid

RowSetVisibleDepth 173 Displays or hides rows in a Grid that is using a
treeview like display.

RTFPrint 461 Prints the contents of a RichEdit

RTFPrintSetup 460 Invokes the print set-up dialog box for a RichEdit

SetCellSet 171 Sets the value of the CellSet property of a Grid for a
particular cell

SetCellType 156 Changes the CellTypes property for a specific cell in
a Grid object

Methods (continued)

 Dyalog APL/W Object Reference 44

Method Description

SetEventInfo 547 Used to register an event that may be generated by an
ActiveXControl object

SetFinishText 366 Sets the caption of the Finish button in a Wizard-
style PropertySheet

SetFnInfo 545 Used to describe an APL function that is to be
exported as a method, or as a property, of an
ActiveXControl object

SetItemImage 315 Allocates a picture icon to an item in a TreeView

SetItemState 307 Sets the status of an item in a TreeView

SetMethodInfo 546 Used to describe a method that is exported by a COM
object

SetPropertyInfo 554 Used to describe a property that is exported by a
COM object

Setup 101 Displays printer Setup dialog box

SetVarInfo 546 Used to describe an APL variable that is to be
exported as a property of an ActiveXControl object

ShowHelp 580 Displays a help topic for an OLE Control

ShowItem 316 Displays an item in a TreeView

ShowProperties 560 Displays a property sheet for an OLE Control

Methods (continued)

 Chapter 1 Summary 45

45

Method Description

ShowSIP 25 PockAPL only. Raises or lowers the Input Panel.

TCPGetHostID 376 Used to obtain the IP Address of your PC

TCPSend 375 Used to send data to a remote process connected to a
TCPSocket object

TCPSendPicture 380 Transmits a picture represented by a Bitmap object to
a TCP/IP socket

Undo 170 Reverses the last change made to a Grid object

Wait 147 Executes ⎕DQ on an object

Methods (continued)

 Dyalog APL/W Object Reference 46

 47

C H A P T E R 2

A-Z Reference

This chapter provides a complete reference in alphabetical order to the objects,
properties, events and methods through which Dyalog APL supports the Graphical
User Interface.

48 Dyalog APL/W Object Reference

Abort Method 103

Applies to Printer

This method causes the current print job to be aborted and all pending output to be
discarded.

The Abort method is niladic.

If you attach a callback function to this event and have it return a value of 0, the print
job will continue.

Accelerator Property

Applies to ActiveXControl, Bitmap, Button, Calendar, Circle, Clipboard,
ColorButton, Combo, ComboEx, Cursor, DateTimePicker, Edit,
Ellipse, Form, Grid, Group, Icon, Image, Label, List, ListView,
Locator, Marker, MDIClient, Menu, MenuItem, Metafile, Poly,
Printer, ProgressBar, Rect, RichEdit, Scroll, Spinner, Static,
StatusBar, StatusField, SubForm, TabBar, TabBtn, Text, ToolBar,
ToolButton, TrackBar, TreeView, UpDown

This property specifies a keystroke that, when pressed by the user, will generate a Select
event on an object. It applies to all objects whether or not they possess a “natural”

Select event. You can therefore associate a keystroke with an arbitrary action on any
object you desire.

The Accelerator property is a 2-element integer vector. The first element is a key
number which is the number by which Windows knows the key. The second element is
the shift state which is the sum of 1 (Shift key), 2 (Control key) and 4 (Alt key).

For example, to attach the keystroke Ctrl+A to an object, you would set its Accelerator
to (65 2). To attach the keystroke Shift+Ctrl+F1 (key number 112), you would set its
Accelerator to (112 3). Key numbers may be obtained by displaying the messages
generated by the KeyPress event.

Note that a keystroke used as an Accelerator will not generate a KeyPress event.

 Chapter 2 A-Z Reference 49

49

AcceptFiles Property

Applies to ActiveXControl, Animation, Button, Combo, ComboEx,
DateTimePicker, Edit, Form, Grid, Group, Image, Label, List,
ListView, ProgressBar, PropertyPage, RichEdit, Scroll, SM, Spinner,
Static, StatusBar, SubForm, TabBar, ToolBar, TrackBar, TreeView,
UpDown

The AcceptFiles property is Boolean and specifies whether or not an object will accept
a file drag/drop operation. Its default value is 0. If set to 1, the object will report a
DropFiles event when file icons are dropped on it.

ActivateApp Event 139

Applies to Root

If enabled, this event is reported when the user switches to or from a Dyalog APL
application.

The event is reported for information only and cannot be modified or annulled by the
result of a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object name : character vector

[2] Event code : 'ActivateApp' or 131

[3] Activation flag : 0 or 1

The Activation flag is 0 when the user switches from Dyalog APL to another
application

The Activation flag is 1 when the user switches to Dyalog APL from another
application.

50 Dyalog APL/W Object Reference

Active Property

Applies to ActiveXControl, Animation, Button, Calendar, ColorButton, Combo,
ComboEx, DateTimePicker, Edit, Form, Grid, Group, Label, List,
ListView, Menu, MenuItem, ProgressBar, PropertyPage,
PropertySheet, RichEdit, Scroll, Spinner, Splitter, Static, StatusBar,
SubForm, TabBar, TabBtn, Text, Timer, ToolBar, ToolButton,
TrackBar, TreeView, UpDown

This property specifies whether or not an object is currently responsive to user actions.
It is a single number with the value 0 (object is inactive and does not generate events) or
1 (object is active and capable of generating events). The default is 1.

Setting Active to 0 disables the object (and all its children), even though the object may
be referenced in the argument to ⎕DQ. It is therefore possible to deactivate an object
from a callback function.

In general, the text associated with an object whose Active property is 0 is displayed in
the appropriate inactive colour.

 Chapter 2 A-Z Reference 51

51

ActiveXContainer Object

Purpose The ActiveXContainer object represents the application that is
currently hosting an instance of an ActiveXControl object.

Parents ActiveXControl

Children (None)

Properties Type, Event, FontObj, FCol, BCol, Data, KeepOnClose, MethodList,

ChildList, EventList, PropList

Events AmbientChanged, Close, Create

Methods Detach, OLEQueryInterface

An ActiveXContainer is used to represent the host application that is hosting an
ActiveXControl object, and provides access to its ambient properties such as font, and
colour.

An ActiveXContainer object is created using the Container property of the
ActiveXControl object. For example, the following expression, executed within an
ActiveXControl instance, creates an ActiveXContainer named 'CONT'

 'CONT' ⎕NS ⎕WG'Container'

The ambient properties of the host application are reported by the FontObj, FCol and
BCol properties which are all read-only.

The ActiveXContainer object supports the AmbientChanged event which is reported
when any of the ambient properties change. This event allows the ActiveXContainer to
react to such changes.

52 Dyalog APL/W Object Reference

ActiveXControl Object

Purpose The ActiveXControl object represents a Dyalog APL namespace as an
ActiveX control.

Parents Form

Children ActiveXContainer, Animation, Bitmap, BrowseBox, Button,

Calendar, Circle, Clipboard, ColorButton, Combo, ComboEx,
CoolBar, Cursor, DateTimePicker, Edit, Ellipse, FileBox, Font, Form,
Grid, Group, Icon, Image, ImageList, Label, List, ListView, Locator,
Marker, MDIClient, Menu, MenuBar, Metafile, MsgBox, OCXClass,
OLEClient, OLEServer, Poly, Printer, ProgressBar, PropertySheet,
Rect, RichEdit, Scroll, Spinner, Splitter, Static, StatusBar, SubForm,
TabBar, TabControl, TCPSocket, Text, Timer, TipField, ToolBar,
ToolControl, TrackBar, TreeView, UpDown

Properties Type, ClassName, Posn, Size, Coord, Border, Active, Visible, Event,

Dragable, FontObj, FCol, BCol, Picture, CursorObj, AutoConf,
YRange, XRange, Data, TextSize, EdgeStyle, Handle, Translate,
Accelerator, AcceptFiles, ClassID, Container, KeepOnClose,
HelpFile, ToolboxBitmap, TypeLibID, TypeLibFile, LastError,
Redraw, TabIndex, MethodList, ChildList, EventList, PropList

Events AmbientChanged, Close, Configure, ContextMenu, Create,

DragDrop, DropFiles, DropObjects, Expose, FontCancel, FontOK,
GotFocus, Help, KeyPress, LostFocus, MouseDblClick, MouseDown,
MouseEnter, MouseLeave, MouseMove, MouseUp, MouseWheel,
PreCreate, Select

Methods Animate, ChooseFont, Detach, GetFocus, GetTextSize, SetEventInfo,

SetFnInfo, SetVarInfo, ShowSIP

The ActiveXControl object represents a Dyalog APL namespace as an ActiveX control.

During development, an ActiveXControl is a container object that is the child of a Form
and acts as a wrapper for one or more other GUI objects.

To make an ActiveXControl available to another application, you must select Make
OCX from the Session File menu. This creates an .OCX file that contains your entire
workspace and all of the ActiveXControls within it. The OCX file is then registered,
thereby installing the ActiveXControls on your computer. If an ActiveXControl
contains one or more embedded OLEServer objects, these are saved and registered too.

 Chapter 2 A-Z Reference 53

53

Once an ActiveXControl has been saved in an .OCX file, any application that supports
ActiveX may create and use instances of it.

When an ActiveX control is loaded by a host application, it and any code that it
requires, is loaded into the host application’s address space; it does not run in a separate

address space.

During development, an ActiveXControl is powered by the development version of
Dyalog APL. However, an ActiveXControl object that is loaded by a host application, is
powered by a DLL version of Dyalog APL. This automatically gets loaded when a host
application creates the first instance of any Dyalog APL ActiveX control. However,
within a single host application, other instances of the same or other Dyalog APL
ActiveX controls share the same copy of the appropriate Dyalog APL DLL..

The Dyalog APL DLL maintains a single active workspace. When an application loads
an ActiveXControl, the Dyalog APL DLL copies the top-level namespace that owns the
ActiveXControl, together with everything it contains, into the active workspace. For
example, if the ActiveXControl is named Controls.Form1.Ctrl1, the act of
creating the first instance of Ctrl1 will cause the entire contents of the Controls
namespace to be copied, from the corresponding .OCX file, into the active workspace.
This affords the potential for controls from different OCX files to clash, but the name
clash conflict is restricted to just one name.

Each instance of an ActiveXControl, is represented by a separate namespace which is
automatically cloned from the original ActiveXControl namespace. Each instance
namespace is entirely separate from any other instance namespace and there is no way
for one instance to reference or see any other instance; nor can it reference the original
class namespace from which it was cloned. In fact, each instance appears to itself to be
the one and only original class namespace. Using the previous example, each instance
of Ctrl1 believes that its full pathname is #.Controls.Form1.Ctrl1, although
each instance is in fact a separate clone of that namespace.

When an application creates an instance of an ActiveXControl, it does so as the child of
some object within its own GUI hierarchy. From the instance’s viewpoint, its parent

Form is replaced by a different GUI object that imposes position, size, font, background
colour, and other ambient properties.

The external name of an ActiveXControl is made up of the character vector defined by
the ClassName property, prefixed by the string “Dyalog”, and followed by the string

“Control”. If ClassName is empty (which is the default), the name of the

ActiveXControl namespace is inserted instead. Note that the name should not include
APL symbols such as Á or ∆. ClassName may only be specified when you create the
ActiveXControl with ⎕WC and may not be changed using ⎕WS.

54 Dyalog APL/W Object Reference

The Coord property is read-only and its value is always 'Pixel'. If you wish to use a
different co-ordinate system for the children of an ActiveXControl object, it is
necessary to set Coord separately on each one of them.

Posn and Size are negotiable properties. When an instance of the ActiveXControl is
created, the values of Posn and Size will be assigned by the host application. You may
change these values using ⎕WS, but the host application has the right to refuse them and
there is no guarantee that you will get what you set.

The Border and EdgeStyle properties may be used to control the outline appearance of
the ActiveXControl object.

The Dragable and KeepOnClose properties apply only during development and are
otherwise ignored.

The ToolboxBitmap property specifies the name of a Bitmap object that may be used by
a host application during its design mode. For example, if you add an ActiveX control
to the Microsoft Visual Basic development environment, its bitmap is added to the
toolbox. The Bitmap should therefore be of an appropriate size, usually 24 x 24 pixels.

The Container property provides access to an ActiveXContainer object that represents
the host application itself. This may be used to obtain the values of ambient properties,
or to access methods exposed by the host application via OLE interfaces.

When an instance of an ActiveXControl is created, it generates first a PreCreate event,
and then a Create event. The PreCreate event is generated at the point the instance is
made.

The Create event is generated at the point when the host application requires the
instance to appear visually. If, as is recommended, you create child controls of the
instance when it is created, you must respond to the Create event, because at the time
that PreCreate is generated, the object does not have a window.

Host applications which support two different modes of operation, namely design mode
and run mode, differ in the way that they create instances of ActiveX controls.
Microsoft Access does not require an ActiveX control to appear properly in design
mode. Instead, it draws a simple box containing just the name of the object. If your
ActiveXControl is hosted by Microsoft Access, it will get a PreCreate Event when an
instance is created in design mode, and a Create event only when it enters run mode.
Microsoft Visual Basic, however, requires the object to draw itself immediately, even in
design mode, and so a Create event will be generated immediately after a PreCreate
event in this case.

 Chapter 2 A-Z Reference 55

55

AddChildren Method 310

Applies to TreeView

This method is used to add child items to an item in a TreeView object

The argument to AddChildren is a 3, 4 or 5 element array as follows:

[1] Item number: Integer.

[2] New items: Vector of character vectors.

[3] Depth vector: Integer vector.

[4] Picture vector Integer vector.

[5] Selected picture vector Integer vector.

Item number specifies the index of the item to which the child items are to be added.

New items is a vector of character vectors containing the labels for the new child items.

Depth vector is an integer vector specifying the depth of each of the new items relative
to the parent item to which they are being added. The first element of this array must be
0.

Picture vector and Selected picture vector are optional and specify values of
ImageIndex and SelImageIndex respectively for each of the new items.

The result is the index at which the first new item has been inserted.

56 Dyalog APL/W Object Reference

AddCol Event 153

Applies to Grid

If enabled, this event is reported by the Grid object if the user presses the Cursor Right
key, and the current cell (CurCell) is within the last column on the Grid. The default
action is to append a new column to the contents of the Grid. If you attach a callback
function to this event and have it return a value of 0, a new column will not be
appended to the Grid. Note that the event will not be generated unless the second
element of the AutoExpand property is set to 1.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'AddCol' or 153

[3] Column number: number of the new column (integer)

An application may insert a new column into a Grid by calling AddCol as a method.
The argument is a 1 to 7-element array as follows:

[1] Column number: number of the new column (integer)

[2] Column title: character vector or matrix

[3] Column width: integer

[4] Undo flag: 0 or 1

[5] Resize flag: 0 or 1

[6] Title colour: negative scalar integer or 3-element RBG

[7] Line type: integer

If you are using default column headings, Column title will be ignored and the columns
will be re-labelled with the default titles. If you have set ColTitles, the title you specify
will be inserted. If you omit the Column title parameter, a blank title will be inserted.

Similarly, if you have not previously set CellWidths, ResizeCols, ColTitleFCol or
ColLineTypes, or if you have given them a scalar value, the corresponding parameter
will be ignored. However, if you have specified CellWidths, ResizeCols, ColTitleFCol
or ColLineTypes to be a vector, the number you specify in the corresponding parameter
will be inserted into the appropriate property vector. If you omit to specify Column

width for the new column, it will be assigned a default value; new values for the other
properties default to 0.

 Chapter 2 A-Z Reference 57

57

Undo flag (default 1) specifies whether or not the addition of the new column may
subsequently be undone by an Undo event.

To insert a new column before the first one, you must specify the Column number as 1
(or 0 if ⎕IO is 0). To add a new column after the last one, you may specify any number
greater than the current number of columns. The data in the new column will be set to 0
if the Values property is numeric, or to an empty character vector otherwise.

AddComment Method 220

Applies to Grid

This method is used to add a new comment.

The argument to AddComment is a 3, 4 or 5 element array as follows:

[1] Row: integer

[2] Column: integer

[3] Comment text character array

[4] Height in pixels integer

[5] Width in pixels integer

For example, the following statement associates a comment with the cell at row 2,
column 1; the text of the comment is “Hello”, and the size of the comment window is

50 pixels (high) by 60 pixels (wide).

 F.G.AddComment 2 1 'Hello' 50 60

Note that if you specify a row number of ¯1, the comment is added to the
corresponding column title. Similarly, if you specify a column number of ¯1, the
comment is added to the corresponding row title.

The height and width of the comment window, specified by the last 2 elements of the
argument are both optional. If the cell already has an associated comment, the new
comment replaces it.

You can use a Dynamic Function to add several comments in one statement; for
example:

 (1 2)(2 3){F.G.AddComment ⍺,⊂⍵}¨'Hello' 'Goodbye'

58 Dyalog APL/W Object Reference

Note that just before the comment is displayed, the Grid generates a ShowComment
event which gives you the opportunity to (temporarily) change the text and/or window
size of a comment dynamically.

The comment text specified by the 5th element of the argument to ⎕NQ must be a
simple character scalar, vector, matrix or vector of vectors. Text specified by a simple
character vector will be wrapped automatically if necessary. A matrix or vector of
vectors may be used to explicitly specify multi-line text. If the array is a vector whose
first element is an opening brace ({), the text is assumed to be in rich-text format (RTF)
and is displayed accordingly. Note that there is no way for the user to scroll the text in
the comment window and it is entirely your responsibility to ensure that the size of the
window is appropriate for its contents.

AddItems Method 308

Applies to TreeView

This method is used to add items to a TreeView object

The argument to AddItems is a 3,4 or 5-element array as follows:

[1] Item number: Integer.

[2] New items: Vector of character vectors.

[3] Depth vector: Integer vector.

[4] Picture vector Integer vector.

[5] Selected picture vector Integer vector.

Item number specifies the index of the item to which the child items are to be added.

New items is a vector of character vectors containing the labels for the new child items.

Depth vector is an integer vector specifying the depth of each of the new items relative
to the parent item to which they are being added. The first element of this array must be
0. This element may be omitted. If so, it is assumed to be all 0s.

Picture vector and Selected picture vector are optional and specify values of
ImageIndex and SelImageIndex respectively for each of the new items.

The new items are inserted with the first one being placed at the same level in the
hierarchy as the item specified in element [1].

 Chapter 2 A-Z Reference 59

59

The result is an integer that reports the index position at which the first of the new items
has been inserted.

AddRow Event 152

Applies to Grid

If enabled, this event is reported by the Grid object if the user presses the Cursor Down
key, and the current cell (CurCell) is within the last row on the Grid. The default action
is to append a new row to the contents of the Grid. If you attach a callback function to
this event and have it return a value of 0, a new row will not be appended to the Grid.
Note that the event will not be generated unless the first element of the AutoExpand
property is set to 1.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3 element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'AddRow' or 152

[3] Row number: integer

An application may insert a new row into a Grid by calling AddRow as a method. The
argument is a 1 to 7-element array as follows:

[1] Row number: integer

[2] Row title: character vector or matrix

[3] Row height: integer

[4] Undo flag: 0 or 1

[5] Resize flag 0 or 1

[6] Title colour: negative scalar integer or 3-element RBG

[7] Line type: integer

If you are using default row titles, Row title will be ignored and the rows will be re-
labelled with default titles. If you have set RowTitles, the title you specify will be
inserted. If you omit Row title, a blank title will be inserted.

60 Dyalog APL/W Object Reference

Similarly, if you have not previously set CellHeights, ResizeRows, RowTitleFCol or
RowLineTypes or if you have given them a scalar value, the corresponding parameter
will be ignored. However, if you have specified CellHeights, ResizeRows,
RowTitleFCol or RowLineTypes to be a vector, the number you specify in the
corresponding parameter will be inserted into the appropriate property vector. If you
omit Row height, it will be assigned a default value; new values for the other properties
default to 0.

Undo flag (default 1) specifies whether or not the addition of the new row may
subsequently be undone by an Undo event.

To insert a new row before the first one, you must specify the Row number as 1 (or 0 if
⎕IO is 0). To add a new row after the last one, you may specify any number greater
than the current number of rows. The data in the new row will be set to 0 if the Values
property is numeric, or to an empty character vector otherwise.

Align Property

Applies to Animation, Button, CoolBar, DateTimePicker, ListView, Menu,
MenuItem, Scroll, Spinner, Splitter, StatusBar, StatusField, TabBar,
TabBtn, TabControl, ToolBar, ToolControl

For an Animation, the Align property may be 'None' or 'Centre' ('Center'). If
Align is 'None', the Animation window is automatically resized to fit the AVI being
played. If Align is 'Centre', the AVI is centred in the Animation window. If the
window is too small, the AVI is clipped.

For a Button, Menu, or MenuItem the Align property may be 'None', 'Left' or
'Right'. If the Button Style is 'Radio' or 'Check' this property specifies the
position of the text relative to the button symbol. The default is 'Right'. For a Button
with Style 'Push', the value of Align is 'None'.

For a Button with Style 'Radio' or 'Check' that is created as a child of a Grid the
value of the Align property may also be 'Centre' or 'Center'. Either of these
values causes the symbol part of the Button (the circle or checkbox) to be centred
within the corresponding Grid cell(s).

For a DateTimePicker, the Align property specifies the horizontal alignment of the
drop-down Calendar which may be 'Left' (the default) or 'Right'. This applies
only if the If Style of the DateTimePicker is 'Combo'.

 Chapter 2 A-Z Reference 61

61

For a Menu , MenuItem, or StatusField, Align 'Right' is used to position the object
at the right end of its parent MenuBar or StatusBar. 'None' is equivalent to 'Left'
which is the default.

For objects of type CoolBar, Splitter, Scroll, StatusBar, TabBar, ToolBar and
ToolControl, Align may be 'None', 'Top', 'Bottom', 'Left' or 'Right'. It
specifies to which (if any) of the four sides of the parent the object is anchored and also
the default position and size of the object. Specifying Align typically causes the Attach
property to be set to appropriate values as follows :

 Align Attach

 'Top' 'Top' 'Left' 'Top' 'Right'
 'Bottom' 'Bottom' 'Left' 'Bottom' 'Right'
 'Left' 'Top' 'Left' 'Bottom' 'Left'
 'Right' 'Top' 'Right' 'Bottom' 'Right'

These settings cause the object to remain at a fixed distance (in pixels) from the
corresponding edge of the parent. Furthermore, the object will have a fixed height or
width, but its length will stretch and shrink as the Form is resized.

Note that this does not apply to a TabControl for which the default value of Attach is
'None' 'None' 'None' 'None', regardless of the value of Align.

The default value of Align is 'Right' for a vertical Scroll, 'Bottom' for a
horizontal Scroll, and 'Top' for a CoolBar, TabBar, TabControl, ToolBar and
ToolControl. Furthermore, unless Posn and Size are specified explicitly, the object is
placed along the corresponding edge of its parent.

For a Scroll object, Align also determines the direction of a Scroll object unless it is
overridden by setting HScroll or VScroll directly. If neither HScroll or VScroll is
defined and Align is 'Top' or 'Bottom', a horizontal scrollbar is provided. If
neither HScroll or VScroll is defined and Align is 'None', 'Left' or 'Right', a
vertical scrollbar is provided.

The value of the Align property may only be assigned by ⎕WC and may not be changed
using ⎕WS.

62 Dyalog APL/W Object Reference

AlignChar Property

Applies to Grid

The AlignChar property specifies a character on which the data displayed in a column
of a Grid is to be aligned vertically. It is useful to align columns of numbers that are
formatted by the FormatString property. AlignChar may be a scalar or singleton that
applies to all columns of the Grid.

If the data in the column is left-justified, it is aligned using the first occurrence of the
alignment character in each cell counting from the left. If the data is right-justified, it is
aligned using the first occurrence of the alignment character from the right-hand end of
the text.

If the text in a cell does not contain an alignment character, it is aligned as if the
alignment character were placed following the last digit.

AlphaBlend Property

Applies to Form

The AlphaBlend property specifies a level of translucency which allows the area behind
a Form to show through.

AlphaBlend is a scalar integer value in the range 0 to 255.

A value of 255 (the default) specifies no translucency, and the Form is entirely opaque
obliterating anything behind it.

A value of 0 specifies total translucency and the Form itself is not visible. Furthermore,
mouse events over the Form will not be reported by the Form itself but will be passed to
any other windows underneath the Form.

Values in between specify varying levels of translucency.

 Chapter 2 A-Z Reference 63

63

AlwaysShowBorder Property

Applies to Grid

The AlwaysShowBorder property specifies whether or not the border around the current
cell in a Grid is displayed when the Grid loses the focus.

It is a Boolean value with a default value of 1.

AlwaysShowSelection Property

Applies to Grid, ListView, TreeView

The AlwaysShowSelection property specifies whether or not the selection remains
highlighted when the object loses the focus.

It is a Boolean value with a default value of 1.

If AlwaysShowSelection is 1, the highlight is dimmed. If AlwaysShowSelection is 0,
the highlight disappears.

64 Dyalog APL/W Object Reference

AmbientChanged Event 533

Applies to ActiveXContainer, ActiveXControl

If enabled, this event is reported when any of the ambient properties change in an
application hosting an ActiveXControl object. The new values of the ambient properties
are available from the FontObj, FCol and BCol properties of the ActiveXContainer.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1 or by returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object name character vector

[2] Event name or code 'AmbientChanged' or 533

[3] Property code integer

[4] Description character vector

For properties supported by Dyalog APL, Property code and Description may be one of
the following:

Property Code Description Meaning

¯701 DISPID_AMBIENT_BACKCOLOR BCol has changed
¯703 DISPID_AMBIENT_FORECOLOR FCol has changed
¯705 DISPID_AMBIENT_FONT Font has changed
¯1 DISPID_AMBIENT_UNKNOWN unknown

Note that other ambient properties may be reported, although these have no
corresponding Dyalog APL property.

 Chapter 2 A-Z Reference 65

65

Animation Object

Purpose The Animation object plays simple animations from AVI files and
resources.

Parents ActiveXControl, Form, Group, PropertyPage, SubForm

Children Bitmap, Circle, Cursor, Ellipse, Font, Marker, Poly, Rect, Text, Timer

Properties Type, Posn, Size, File, Coord, Border, Active, Visible, Event,

Sizeable, Dragable, BCol, AutoConf, Data, Attach, EdgeStyle,
Handle, Hint, HintObj, Tip, TipObj, Translate, AcceptFiles,
KeepOnClose, AutoPlay, Transparent, Align, MethodList, ChildList,
EventList, PropList

Events AnimStarted, AnimStopped, Close, Configure, ContextMenu, Create,

DragDrop, DropFiles, DropObjects, Expose, GotFocus, Help,
KeyPress, LostFocus, MouseDblClick, MouseDown, MouseEnter,
MouseLeave, MouseMove, MouseUp, MouseWheel

Methods Animate, AnimClose, AnimOpen, AnimPlay, AnimStop, Detach,

GetFocus, GetTextSize, ShowSIP

The Animation object displays simple animations from basic .AVI files or resources.

The Animation object can only play AVI files or resources that have no sound and can
only display uncompressed AVI files or .AVI files that have been compressed using
Run-Length Encoding (RLE).

For more sophisticated animations, you may use the Windows Media Player (OCX).

To display an AVI file, you must first use the AnimOpen method to open it. If the
AutoPlay property is set to 1, the animation will play immediately. Otherwise, only the
first frame will be displayed.

The AnimPlay method may be used to play the animation and allows you to specify the
start, number of frames, and repeat count.

The Align property may be 'None' or 'Centre' ('Center'). If Align is 'None',
the Animation window is automatically resized to fit the AVI being played. If Align is
'Centre', the AVI is centred in the Animation window. If the window is too small,
the AVI is clipped.

66 Dyalog APL/W Object Reference

The AnimStop method causes the animation to stop.

The AnimClose method closes the current AVI file and resets the contents of the
object's window to its background colour.

The AnimStarted and AnimStopped events are reported when the animation starts and
stops respectively.

Animate Method 29

Applies to ActiveXControl, Animation, Button, Calendar, ColorButton, Combo,
ComboEx, CoolBar, DateTimePicker, Edit, Form, Grid, Group,
Label, List, ListView, MDIClient, ProgressBar, PropertyPage,
RichEdit, Scroll, SM, Spinner, Static, StatusBar, SubForm, TabBar,
TabControl, ToolBar, ToolControl, TrackBar, TreeView, UpDown

Windows 2000 only

The Animate method enables you to produce special effects when showing or hiding
objects. There are three types of animation: roll, slide, and alpha-blended fade.

The argument to Animate is a 1 or 2-element array as follows:

[1] Effects: integer

[2] Play time: integer

 Chapter 2 A-Z Reference 67

67

The value of the Effects parameter is the sum of the following flags:

Flag Value Description

AW_HOR_POSITIVE 1 Animates the window from left to right. This flag
can be used with roll or slide animation. It is
ignored when used with the AW_CENTER flag.

AW_HOR_NEGATIVE 2 Animates the window from right to left. This flag
can be used with roll or slide animation. It is
ignored when used with the AW_CENTER flag.

AW_VER_POSITIVE 4 Animates the window from top to bottom. This flag
can be used with roll or slide animation. It is
ignored when used with the AW_CENTER flag.

AW_VER_NEGATIVE 8 Animates the window from bottom to top. This flag
can be used with roll or slide animation. It is
ignored when used with the AW_CENTER flag.

AW_CENTER 16 Makes the window appear to collapse inward if
being hidden or expand outward if being displayed

AW_SLIDE 262144 Uses slide animation. By default, roll animation is
used. This flag is meaningless on its own but is
ignored when used with the AW_CENTER flag.

AW_BLEND 524288 Uses a fade effect. This flag can be used only for a
Form.

The Playtime parameter is optional and specifies the length of time over which the
animation is played in milliseconds. The default value depends upon the animation but
is typically 200 milliseconds.

AnimClose Method 291

Applies to Animation

The AnimClose method closes the AVI file that is currently loaded in an Animation
object. The display is reset to the object's background colour.

AnimClose is niladic.

68 Dyalog APL/W Object Reference

AnimOpen Method 290

Applies to Animation

The AnimOpen method opens an AVI file in an Animation object.

The argument to AnimOpen is a 1 or 2-element array as follows:

[1] File: character vector

[2] Resource id: integer

If a single element is specified, it represents the name of a .AVI file.

If 2 elements are specified, the first element specifies the name of a DLL or EXE and
the second element identifies the particular AVI resource stored in that file. The
identifier may be its name (a character string) or its resource id (a non-zero positive
integer).

If the AutoPlay property is set to 1, the animation will play immediately. Otherwise,
only the first frame will be displayed.

Note that the Animation object can only play AVI files or resources that have no sound
and can only display uncompressed AVI files or AVI files that have been compressed
using Run-Length Encoding (RLE). If you attempt to open an inappropriate AVI file,
the operation will fail with a DOMAIN ERROR and the following message will be
displayed in the Status Window:

AVI file includes sound data or is in a format not supported by the Animation object

 Chapter 2 A-Z Reference 69

69

AnimPlay Method 292

Applies to Animation

The AnimPlay method plays an AVI clip in an Animation object.

The argument to AnimPlay is a 3-element array as follows:

[1] Repeat: integer

[2] From: integer

[3] To: integer

Repeat specifies the number of times the clip is repeated. A value of -1 causes the clip
to be repeated indefinitely.

From is a 0-based index of the frame where playing begins and must be less than
65536. A value of zero means begin with the first frame in the AVI clip

To is a 0-based index of the frame where playing ends and must be less than 65536. A
value of -1 means end with the last frame in the AVI clip

The last frame remains displayed until the clip is unloaded using AnimClose or until
another clip is loaded.

70 Dyalog APL/W Object Reference

AnimStarted Event 294

Applies to Animation

If enabled, this event is reported by an Animation object just before an AVI clip starts
playing

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'AnimStarted' or 294

This event is reported for information only and cannot be disabled or modified in any
way.

AnimStop Method 293

Applies to Animation

The AnimStop method stops playing an AVI clip in an Animation object.

AnimStop is niladic.

The last frame remains displayed until the clip is unloaded using AnimClose or until
another clip is loaded.

 Chapter 2 A-Z Reference 71

71

AnimStopped Event 295

Applies to Animation

If enabled, this event is reported by an Animation object just after an AVI clip has
stopped playing

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'AnimStopped' or 295

This event is reported for information only and cannot be disabled or modified in any
way.

72 Dyalog APL/W Object Reference

APLVersion Property

Applies to Root

Description

This is a read-only property that provides information about the Version of Dyalog APL
that you are using. It is a 4-element vector of character vectors as described in the table
below.

Note: In future releases these values may change, be removed, or new ones added.

Index Description Possible Values

[1] Target Environment Windows
Windows-64
Windows Mobile
Linux
Linux-64
AIX
AIX-64
Solaris
Solaris-64

[2] Version Number

[3] Version Type W : Windows
S : Server (terminal) version
Wine : GUI version running under WINE
M : Motif
P : PocketAPL

[4] Program Type Development
Runtime
DLL

Example:

]display '.' ⎕WG'APLVersion'
┌→──┐
│ ┌→──────┐ ┌→──────────┐ ┌→┐ ┌→──────────┐ │
│ │Windows│ │12.1.0.3300│ │W│ │Development│ │
│ └───────┘ └───────────┘ └─┘ └───────────┘ │
└∊──┘

 Chapter 2 A-Z Reference 73

73

ArcMode Property

Applies to Circle, Ellipse

This property determines how arcs are drawn. Its value is 0, 1 or 2.

 0 : only the arc is drawn

 1 : arcs define "arc segments", with a single straight line
 joining the two ends of the arc together

 2 : arcs define "pie segments", with lines drawn from the start
 and end points of the arc to the centre

Note that the segments defined by ArcMode 1 and 2 may be filled (by setting FStyle).

Array Property

Applies to Clipboard

This property may be used to set or retrieve the contents of the Windows clipboard as a
Dyalog APL array.

74 Dyalog APL/W Object Reference

Attach Property

Applies to Animation, Button, Calendar, ColorButton, Combo, ComboEx,
CoolBar, DateTimePicker, Edit, Grid, Group, Label, List, ListView,
MDIClient, NetControl, ProgressBar, RichEdit, Scroll, SM, Spinner,
Static, StatusBar, StatusField, SubForm, TabBar, TabBtn,
TabControl, ToolBar, ToolControl, TrackBar, TreeView, UpDown

This property specifies how an object responds to its parent being resized. It is a 4-
element vector of character vectors which defines how each of the four edges of the
object moves in response to a resize request made by the parent. Note that this property
is only effective if the value of AutoConf on the parent is 2 or 3 and AutoConf for the
object itself is 1 or 3.

The 4 elements of Attach refer to the Top, Left, Bottom and Right edges of the object
respectively. Their values may be defined as follows :

Element Value Meaning

[1] 'Top' The top edge of the object is attached to the top edge of its
parent.

 'Bottom' The top edge of the object is attached to the bottom edge of
its parent.

 'None' The top edge of the object is not attached to its parent.

[2] 'Left' The left edge of the object is attached to the left edge of its
parent.

 'Right' The left edge of the object is attached to the right edge of
its parent

 'None' The left edge of the object is not attached to its parent.

 Chapter 2 A-Z Reference 75

75

Element Value Meaning

[3] 'Top' The bottom edge of the object is attached to the top edge of
its parent.

 'Bottom' The bottom edge of the object is attached to the bottom
edge of its parent.

 'None' The bottom edge of the object is not attached to its parent.

[4] 'Left' The right edge of the object is attached to the left edge of
its parent.

 'Right' The right edge of the object is attached to the right edge of
its parent.

 'None' The right edge of the object is not attached to its parent.

If an edge of the object is attached to an edge of its parent, its position in absolute
(pixel) terms remains fixed relative to that edge when its parent is resized. Thus if
Coord is 'Pixel', the corresponding Posn or Size property of the object remains
unaffected by the resize. If Coord has any other value, the value of Posn or Size will
change.

If an edge of the object is not attached to its parent, its absolute position (in pixels) will
change in proportion to the size change (in the corresponding direction) of its parent.
Thus if Coord is 'Pixel', the corresponding Posn or Size property of the object will
change as a result of the resize. If Coord has any other value, the value of Posn or Size
will be unaffected.

The default value of Attach is ('None' 'None' 'None' 'None'). This causes
the object to reposition and resize itself in proportion to its parent.

76 Dyalog APL/W Object Reference

Some objects have an Align property which, among other things, provides a quick way
to set their Attach property. Examining this mechanism may help to further explain how
the Attach property works. Setting Align to 'Top' has the effect of setting Attach to
('Top' 'Left' 'Top' 'Right'). Attaching the top edge of the object to the
top edge of its parent causes the object to remain at a fixed distance from the top edge
of its parent. The additional measure of attaching its bottom edge to the top edge of its
parent causes the height of the object to remain fixed. Attaching the left and right edges
of the object to the corresponding edges of its parent causes the object to shrink and
expand as the parent is resized horizontally. If you position the object at (0 0) and set its
width to be the same as the width of its parent, you have an object that always occupies
the entire length of its parent, yet remains of fixed height. This is precisely the
behaviour required for a ToolBar or a top Scroll. For further details, see Align property.

The illustration below shows a Form containing a Static. The subsequent four
illustrations show the result after the Form has been resized, using different settings for
the Attach property of the Static.

 Chapter 2 A-Z Reference 77

77

78 Dyalog APL/W Object Reference

AutoArrange Property

Applies to ListView

The AutoArrange property is Boolean and specifies whether or not the items in a
ListView object are automatically re-arranged when a single item is repositioned. Its
default value is 0.

AutoBrowse Property

Applies to OLEClient

This property is retained for backwards compatibility with previous versions of Dyalog
APL, but is no longer relevant. Setting it has no effect.

AutoConf Property

Applies to ActiveXControl, Animation, Button, Calendar, Circle, ColorButton,
Combo, ComboEx, DateTimePicker, Edit, Ellipse, Form, Grid,
Group, Image, Label, List, ListView, Marker, Poly, ProgressBar,
Rect, RichEdit, Scroll, SM, Spinner, Static, StatusBar, StatusField,
SubForm, TabBar, TabBtn, Text, ToolBar, TrackBar, TreeView,
UpDown

This property determines what happens to an object when its parent is resized, and how
resizing an object affects its children. It may take one of the following values; the
default is 3.

 0 : Ignore resize by parent. Do not propagate resize to children.
 1 : Accept resize by parent. Do not propagate resize to children.
 2 : Ignore resize by parent. Do propagate resize to children.
 3 : Accept resize by parent. Do propagate resize to children.

If AutoConf is 0 or 2, the object's physical size (in pixels) and position (in pixels)
relative to the top left corner of its parent remains unchanged when its parent is resized.
If the object has 'Prop' or 'User' co-ordinates, the values of its Posn and Size
properties will change as a result.

 Chapter 2 A-Z Reference 79

79

If AutoConf is 1 or 3, by default the object is physically reconfigured when its parent is
resized, such that its relative size and position within its parent remain unchanged. If
the object has 'Pixel' co-ordinates, the values of its Posn and Size properties will
change as a result. Note that this default processing can be prevented by inhibiting the
Configure (31) Event (see below).

If AutoConf is 0 or 1 and the object is resized, either by its parent or directly by the
user, it does not attempt to physically reconfigure its children. This means that if the
children have 'Prop' or 'User' co-ordinates, the values of their Posn and Size co-
ordinates will change as a result.

If AutoConf is 2 or 3 and the object is resized, either by its parent or directly by the
user, it propagates a Configure (31) Event to each of its children. By default this means
that the object's children will be physically reconfigured so that they maintain their
relative positions and sizes within it. If their co-ordinate system is 'Pixel', the values
of their Posn and Size properties will change as a result.

Note that additional or alternative control may be imposed by inhibiting the Configure
(31) Event. This can be done either by setting the event's "action" code to ¯1 or by
returning a 0 from a callback function attached to it.

AutoExpand Property

Applies to Grid

This property is a 2-element Boolean value that specifies whether or not rows and
columns may be added to a Grid object by the user.

If the first element of AutoExpand is 1, a row is added when the current cell is within
the last row of the Grid and the user presses Cursor Down. Similarly, if the second
element is 1, a column is added when the current cell is within the last column of the
Grid and the user presses Cursor Right. The default value for AutoExpand is (0 0).

Note that when a row or column is added, the appropriate properties (including Values
and CellTypes)are expanded accordingly.

If AutoExpand is enabled, the Grid generates AddRow and AddCol events. You can
return a zero from a callback function to selectively prevent the addition of rows and
columns if appropriate.

80 Dyalog APL/W Object Reference

AutoPlay Property

Applies to Animation

Specifies whether or not an AVI clip is played immediately when loaded in an
Animation object.

AutoPlay is a single number with the value 0 (the default) or 1. If AutoPlay is 1, the
AVI clip is automatically played through once from beginning to end when loaded from
a file by the AnimOpen method.

BadValue Event 180

Applies to Edit, Spinner

If enabled, this event is reported by an Edit object whose FieldType property is set
when the user enters invalid data into the object and then switches focus to another
control or to another application. The default action of the event is to sound the bell
(beep). You can disable this action by returning 0 from a callback function or by setting
its action code to ¯1. Note that in neither case is the Value property of the object
updated. The event message reported as the result of ⎕DQ, or supplied as the right
argument to your callback function, is a 3-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'BadValue' or 180

[3] Object: ref or character vector

The third element of the event message is either the name of the control to which the
user has switched the focus, or is an empty vector if the focus has gone to another
application.

 Chapter 2 A-Z Reference 81

81

BandBorders Property

Applies to CoolBar

The BandBorders property specifies whether or not narrow lines are drawn to separate
adjacent bands in a CoolBar.

BandBorders is a single number with the value 0 (no lines) or 1 (lines are displayed);
the default is 0.

BCol Property

Applies to ActiveXContainer, ActiveXControl, Animation, Button, Circle,
Combo, ComboEx, CoolBand, CoolBar, Edit, Ellipse, Form, Grid,
Group, Label, List, ListView, MDIClient, Menu, MenuItem, Poly,
ProgressBar, Rect, RichEdit, Scroll, Separator, SM, Spinner, Splitter,
Static, StatusBar, StatusField, SubForm, TabBar, TabBtn, Text,
TipField, ToolBar, TrackBar, TreeView, UpDown

This property defines the background colour(s) of an object. A single colour is
represented by a single number which refers to a standard colour, or by a 3-element
vector which defines a colour explicitly in terms of its red, green and blue intensities.

For objects such as graphical objects and the Grid, FCol may specify a vector of
foreground colours. Note that when specifying a single foreground colour for these
objects, a 3-element RGB colour vector must be enclosed.

If BCol is 0 (which is the default) the background colour is defined by your current
colour scheme for the object in question. For example, if you select yellow as your
Windows "Menu Bar" colour, you will by default get a yellow background in Menu and
MenuItem objects, simply by not specifying BCol or by setting it to 0.

82 Dyalog APL/W Object Reference

A negative value of BCol refers to a standard Windows colour as described below.
Positive values are reserved for a possible future extension.

 BCol Colour Element BCol Colour Element

 0 Default ¯11 Active Border
 ¯1 Scroll Bars ¯12 Inactive Border
 ¯2 Desktop ¯13 Application Workspace
 ¯3 Active Title Bar ¯14 Highlight
 ¯4 Inactive Title Bar ¯15 Highlighted Text
 ¯5 Menu Bar ¯16 Button Face
 ¯6 Window Background ¯17 Button Shadow
 ¯7 Window Frame ¯18 Disabled Text
 ¯8 Menu Text ¯19 Button Text
 ¯9 Window Text ¯20 Inactive Title Bar Text
 ¯10 Active Title Bar Text ¯21 Button Highlight

If BCol is set to ⍬ (zilde), Dyalog APL will never paint the background of the object.
This means that if the object is overlaid by another window and then exposed, its
background will not be redrawn and it will simply contain whatever was previously
shown on that area of the screen.

If BCol contains a 3-element vector, it specifies the intensity of the red, green and blue
components of the colour as values in the range 0-255. For example, (255 0 0) is red
and (255 255 0) is yellow. Note however that the colour realised depends upon the
capabilities of the display adapter and driver.

For a Button, BCol is only effective if the Style is 'Radio' or 'Check' and is
ignored if the Style is 'Push'.

It is recommended that you only use pure background colours in Combo and Edit
objects. This is because the text written in these objects cannot itself have a dithered
background.

For the Ellipse, Poly and Rect objects, BCol specifies the background colour of the line
drawn around the perimeter of the object and is effective only when a non-solid line
(LStyle 1-4) is used. It also specifies the colour used to fill the spaces between hatch
lines if a hatch fill (FStyle 1-6) is used.

 Chapter 2 A-Z Reference 83

83

BeginEditLabel Event 300

Applies to ListView, TreeView

If enabled, this event is reported when the user clicks on an item in a ListView or
TreeView object that has the focus, and signals the start of an edit operation. The
default processing for the event is to display a pop-up edit box around the item and to
permit the user to change its text.

You may disable the operation by setting the action code for the event to ¯1. You may
prevent a particular item from being edited by returning 0 from a callback function. You
may also initiate the edit operation by calling BeginEditLabel as a method.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'BeginEditLabel' or 300

[3] Item number: Integer. The index of the item.

84 Dyalog APL/W Object Reference

Bitmap Object

Purpose A graphical object used to represent a bitmap which may be used
 both to display a picture or as a pattern (brush) used to fill other
 objects.

Parents ActiveXControl, Animation, Button, CoolBand, Form, Grid, Group,

ImageList, ListView, Menu, MenuBar, MenuItem, NetType,
OLEServer, Printer, ProgressBar, PropertyPage, PropertySheet,
RichEdit, Root, StatusBar, SubForm, TCPSocket, ToolBar,
ToolButton, ToolControl, TrackBar, TreeView, UpDown

Children Circle, Ellipse, Font, Image, Marker, Metafile, Poly, Rect, Text,

Timer

Properties Type, File, Bits, CMap, KeepBits, Size, Coord, Event, FontObj,

YRange, XRange, Data, TextSize, Translate, Accelerator,
KeepOnClose, CBits, MaskCol, MethodList, ChildList, EventList,
PropList

Events Close, Create, Select

Methods Detach, FileRead, FileWrite, GetTextSize, MakeGIF, MakePNG

A Bitmap may be created either from a file (.BMP) or from APL arrays. To create a
Bitmap object using ⎕WC, you can either specify the File property or the CBits property,
or the Bits and CMap properties.

If you specify File, it should contain the name of a bitmap file from which the bitmap is
to be read. If omitted, a .BMP file extension is added. You may also load a Bitmap from
a DLL or from the DYALOG.EXE executable. See File property for details.

If instead you want to create a Bitmap dynamically from APL variables, you may do so
in one of two ways.

For a palette of up to 256 colours, you may specify the image using the Bits and CMap
properties. The alternative is to use the CBits property which works for any size of
colour palette.

If MaskCol is non-zero, it specifies the transparent colour for the Bitmap. Any pixels
specified with the same colour will instead be displayed in whatever colour is
underneath the Bitmap. This achieves similar behaviour to that of an Icon.

 Chapter 2 A-Z Reference 85

85

The KeepBits property has the value 0 or 1, and controls how a Bitmap is saved in the
workspace.

A value of 0 (the default) means that the values of CBits, Bits and CMap are not kept in
the workspace. If you request the values of CBits, Bits or CMap with ⎕WG, they are
obtained directly from the corresponding Windows bitmap resource. When the
workspace is)LOADed, the Bitmap is recreated from the associated file defined by the
value of the File property. Note that if this file doesn't exist when the workspace is
)LOADed, the Bitmap is not created, but no error is generated. However, when you
reference the object you will get a VALUE ERROR.

If KeepBits is 1, the values of CBits, Bits and CMap are stored permanently in the
workspace, and are used to rebuild the Bitmap when the workspace is)LOADed. In this
case, the file name (if any) is ignored. Setting KeepBits to 1 uses more workspace, but
may be more convenient if you want to distribute applications.

The Size property allows you to query the size of a Bitmap without having to retrieve
the CBits or Bits property and then take its "shape". This will be noticeably faster for a
large Bitmap. If you set the Size property using ⎕WS the Bitmap is scaled to the new
size.

A useful feature of a Bitmap is that it can be the parent of any of the graphical objects.
This allows you to create or edit a bitmap by drawing lines, circles, etc. in it.

The FileRead and FileWrite methods allow you to dynamically manage bitmap files
(.BMP). The expression :

 bmname.FileWrite

causes the Bitmap called bmname to be written to the file specified by the current value
of the File property. The file is automatically written in standard bitmap format.
Similarly, the expression :

 bmname.FileRead

causes the Bitmap called bmname to be redefined from the bitmap file specified by the
current value of the File property.

The MakeGIF and MakePNG methods may be used to convert the image represented by
a Bitmap object into an uncompressed GIF or PNG data stream, suitable for display in a
web browser. The TCPSendPicture method may be used to transfer a Bitmap on a
TCP/IP socket.

Using a bitmap is always a 2-stage process. First you create a Bitmap object with ⎕WC.
Then you use it by specifying its name as a property of another object.

86 Dyalog APL/W Object Reference

The Picture property specifies the name of a Bitmap to be displayed in an
ActiveXControl, Button, Form, Group, Image, MDIClient, SM, Static, StatusBar,
StatusField, SubForm, TabBar, or ToolBar. The BtnPix property specifies three
Bitmaps to be used to represent the 3 states of a Button, Menu or MenuItem. The FStyle
property specifies the name of a Bitmap to be used as a pattern to fill a Poly, Ellipse or
Rect object.

Bits Property

Applies to Bitmap, Clipboard, Cursor, Icon

This property defines the pattern in a Bitmap, Cursor, or Icon object, or the pattern of a
bitmap stored in the Windows clipboard.

For a Bitmap, Clipboard or Icon, Bits is an integer matrix each of whose elements
represents the colour of the corresponding pixel in the bitmap. The colours are specified
as 0-origin indices into the CMap property, which itself defines the complete set of
different colours (the colour map) used by the object. See CMap for further details.

Please note that Bits and CMap may only be used to represent an image with a colour
palette of 256 colours or less. If the colour palette is larger, the values of Bits and
CMap reported by ⎕WG will be (0 0). For a high-colour image, use CBits instead.

For a Cursor, Bits is a Boolean matrix which specifies the shape of the cursor. For a
Cursor and Icon, Bits is used in conjunction with the Mask property.

Border Property

Applies to ActiveXControl, Animation, Button, Calendar, Combo, ComboEx,
DateTimePicker, Edit, Form, Grid, Group, Label, List, ListView,
MDIClient, RichEdit, Scroll, SM, Spinner, Static, StatusBar,
StatusField, SubForm, TabBtn, ToolBar, TrackBar, TreeView,
UpDown

This property specifies whether or not an object is displayed with a border around it.
The value of Border may only be set by ⎕WC. It is a single number with the value 0 (no
border), 1 (border) or 2. The value 2 applies only to a Form and is used in combination
with ('EdgeStyle' 'Dialog') to obtain standard dialog box appearance

For a Form or SubForm, the value of the Border property is only relevant if Sizeable,
Moveable, SysMenu, MaxButton and MinButton are all 0.

 Chapter 2 A-Z Reference 87

87

Browse Method 585

Applies to OCXClass, OLEClient

The Browse method causes APL to browse a type library and to create methods and
properties in an OCXClass or OLEClient namespace that correspond to each of the
methods and properties described in the type library.

If there is no type information automatically associated with a COM object, the
OLEClient or OCXClass namespace created by ⎕WC will not contain any of the
methods and properties that should be exported by the object. Browse is used to correct
this situation manually.

This method is supported by all OLEClient objects, i.e. the top-level OLEClient that is
associated with the OLE object, and all the namespaces associated with any sub-objects
exposed as the result of methods, properties or events.

The argument is ⍬, a simple character vector, or a 1 or 2-element array as follows:

[1] Interface name: character vector

[2] File name: character vector

Interface name is the name or CLSID of the interface

File name is he name of the type library file to be browsed.

If called with an argument of ⍬, Browse attempts to use the type library that is
associated with the object (if any).

88 Dyalog APL/W Object Reference

BrowseBox Object

Purpose The BrowseBox object allows the user to browse for and select a
folder or other resource.

Parents ActiveXControl, CoolBand, Form, Grid, OLEServer, PropertyPage,

PropertySheet, Root, StatusBar, SubForm, TCPSocket, ToolBar,
ToolControl

Children Timer

Properties Type, Caption, BrowseFor, Target, StartIn, HasEdit, Event, Data,

Translate, KeepOnClose, MethodList, ChildList, EventList, PropList

Events Close, Create, FileBoxCancel, FileBoxOK

Methods Detach, Wait

The BrowseBox object is a dialog box that allows the user to browse for and select a
folder (directory) or other resource.

The BrowseFor property specifies the type of resource and may be 'Directory' (the
default), 'File', 'Computer' or 'Printer'.

The StartIn property specifies the path name where browsing should start.

The HasEdit property specifies whether or not the dialog box contains an edit field into
which the user can type the name of the folder or other resource, rather than browsing
for it. The default is 0.

A BrowseBox may only be used by the execution of a modal ⎕DQ. The action code for
the FileBoxOK and FileBoxCancel events must be set to 1 so that the appropriate result
is returned by the modal ⎕DQ.

 Chapter 2 A-Z Reference 89

89

After the user has pressed OK or Cancel, the Target property contains the name of the
chosen folder or other resource.

Example:

 ∇ DIR←{START_DIR}GetDir CAPTION;BB;MSG
[1] ⍝ Ask user for a Directory name
[2] ⍝ CAPTION specifies Caption for dialog box
[3] ⍝ START_IN (optional) specifies starting directory
[4] ⍝ DIR is empty if user cancels
[5] :With 'BB'⎕WC'BrowseBox'
[6] :If 2=⎕NC'START_DIR'
[7] StartIn←START_DIR
[8] :Else
[9] StartIn←''
[10] :EndIf
[11] onFileBoxOK←onFileBoxCancel←1
[12] Caption←CAPTION
[13] HasEdit←1
[14] MSG←⎕DQ''
[15] :If 'FileBoxOK'≡2⊃MSG
[16] DIR←Target ⍝ = 3⊃MSG
[17] :Else
[18] DIR←''
[19] :EndIf
[20] :EndWith
 ∇

BrowseFor Property

Applies to BrowseBox

The BrowseFor property is a character vector that specifies the type of resource to be
the target of a BrowseBox object.

BrowseFor may be 'Directory' (the default), 'File', 'Computer' or
'Printer'.

90 Dyalog APL/W Object Reference

BtnPix Property

Applies to Button, Menu, MenuItem

This property is used to customise the appearance of a Button, Menu or MenuItem. It
specifies the names of, or refs to, up to 3 Bitmap objects to be used to display the object
under different circumstances. In general, BtnPix is a 3-element vector of character
vectors or refs. However, if it defines a single Bitmap, it may be a single ref, a simple
character scalar or vector, or an enclosed character vector.

The first Bitmap is displayed when the object is shown in its normal state. For a Button,
this is when its State is 0. The second Bitmap is used for a Menu or MenuItem, when
the object is selected (highlighted), or for a Button when its State is 1. The third Bitmap
is used when the object is disabled by having its Active property set to 0.

For a Button with Style 'Push', this means that when the user clicks the Button, its
appearance switches from the first to the second Bitmap, and then back again. To
maintain the standard 3-D appearance, the Bitmaps should contain the correct shadow
lines around their edges. For Buttons with Style 'Radio' or 'Check', the Button
will display one or other of the two Bitmaps according to its current State.

For example, to have a Button that displays a "Tick" or a "Cross" according to its State :

 'YES' ⎕WC 'Bitmap' 'C:\DYALOG82\YES.BMP'
 'NO' ⎕WC 'Bitmap' 'C:\DYALOG82\NO.BMP'

 'f1.r1' ⎕WC 'Button'('Style' 'Check')
 ('BtnPix' 'YES' 'NO')

 Chapter 2 A-Z Reference 91

91

Btns Property

Applies to MsgBox

The Btns property determines the set of buttons to be displayed in a MsgBox. It is a
simple vector (one button) or a matrix with up to 3 rows, or a vector of up to 3 character
vectors specifying the captions for up to 3 buttons. The buttons are arranged along the
bottom of the dialog box in the order specified.

Under Windows, there are restrictions on these buttons. However the property has been
designed more generally to be useful under different GUIs. Under Windows, the Btns
property may specify one of six sets of buttons as follows.

 'OK'
 'OK' 'CANCEL'
 'RETRY' 'CANCEL'
 'YES' 'NO'
 'YES' 'NO' 'CANCEL'
 'ABORT 'RETRY' 'IGNORE'

If any other combination is specified, ⎕WC and ⎕WS will report a DOMAIN ERROR. The
names of the buttons are however case-insensitive, so the system will accept 'ok',
'Ok', 'oK' or 'OK'.

If the Btns property is not specified, it assumes a default according to Style as follows :

 Style Btns

 'Msg' or 'Info' 'OK'
 'Warn' or 'Error' 'OK' 'CANCEL'
 'Query' 'YES' 'NO'

If Style is not specified, Btns defaults to 'OK'.

92 Dyalog APL/W Object Reference

Button Object

Purpose Allows the user to initiate an action or to select an option using a
 button.

Parents ActiveXControl, CoolBand, Form, Grid, Group, PropertyPage,

SubForm, ToolBar, ToolControl

Children Bitmap, Circle, Cursor, Ellipse, Font, Marker, Poly, Rect, Text, Timer

Properties Type, Caption, Posn, Size, Style, Coord, Align, State, Default,

Cancel, Border, Justify, Active, Visible, Event, Sizeable, Dragable,
FontObj, FCol, BCol, Picture, BtnPix, CursorObj, AutoConf, Data,
Attach, EdgeStyle, Handle, Hint, HintObj, Tip, TipObj, ReadOnly,
Translate, Accelerator, AcceptFiles, KeepOnClose, Redraw,
TabIndex, MethodList, ChildList, EventList, PropList

Events Close, Configure, ContextMenu, Create, DragDrop, DropFiles,

DropObjects, Expose, FontCancel, FontOK, GotFocus, Help,
KeyPress, LostFocus, MouseDblClick, MouseDown, MouseEnter,
MouseLeave, MouseMove, MouseUp, MouseWheel, Select

Methods Animate, ChooseFont, Detach, GetFocus, GetTextSize, ShowSIP

The type of button displayed is determined by the Style property which may take the
value 'Push', 'Radio', 'Check' or 'Toggle'. Under Windows, 'Toggle'
and 'Check' are treated identically.

Differing values of Style with State 0 and 1

 Chapter 2 A-Z Reference 93

93

Push buttons are used to generate actions. When the user "presses" a pushbutton, it
generates a Select event (30). To cause an action, you simply associate the name of a
callback function with this event for the Button in question.

Radio buttons and Check boxes are used to select options. They each have two states
between which the user can toggle by clicking the mouse. When the Button (option) is
selected, its State property has the value 1; otherwise it is 0.

Only one of a group of Radio buttons which share the same parent can be set (State is 1)
at any one time. Radio buttons are therefore used for a set of choices that are mutually
exclusive. Check boxes however, may be set together to signify a combination of
options. These are used for making choices which are not mutually exclusive.

Radio and Check buttons also generate Select events when their State changes, and you
can attach callback functions to these events to keep track of their settings. However, as
Radio and Check buttons are not normally used to generate actions, it is perhaps easier
to wait until the user signifies completion of the dialog box in some way, and then
query the State of the buttons using ⎕WG. For example, if you have a set of Radio or
Check buttons in a Group called f1.options, the following statements retrieve their
settings.

 OPTIONS ← (⎕WN 'f1.options') ⎕WG¨⊂'State'
or
 OPTIONS ← ⎕WG∘'State' ¨ ⎕WN 'f1.options'

The Caption property determines the text displayed in the Button. Its default value is an
empty vector. If Style is 'Radio' or 'Check', the text may be aligned to the left or
right of the button graphic using the Align property. Its default value is 'Right'.

If Posn is omitted, the button is placed in the centre of its parent. If either element of
Posn is set to ⍬, the button is centred along the corresponding axis.

If Size is not specified, the size of the button is determined by its Caption. If either
element of Size is set to ⍬ the corresponding dimension is determined by the height or
width of its Caption. If Caption is not specified, or is set to an empty vector, the value
of Size is set to a default value.

Button colours can be specified using FCol and BCol. However, pushbuttons (Style
'Push') ignore BCol and instead use the standard Windows colour.

94 Dyalog APL/W Object Reference

The Picture (or Bitmap) property is used to display a bitmap on a pushbutton. This
property is a 2-element array containing the name of a Bitmap object and the "mode" in
which it is to be displayed. The default mode (3) is the most useful, as it causes the
Bitmap to be superimposed on the centre of the Button. The surrounding edges of the
Button (which gives it its 3-dimensional appearance and pushbutton behaviour) are
unaffected.

An alternative is to use the BtnPix property. This property specifies the names of up to
3 Bitmap objects. The first Bitmap is displayed when the State of the Button is 0. The
second is displayed when its State is 1. The third is shown when the Button is inactive
(Active 0). BtnPix is more flexible than Bitmap, but if you want your Button to exhibit
pushbutton behaviour, you must design your bitmap accordingly.

The ReadOnly property is Boolean and specifies whether or not the user may change
the state of the Button. It applies only to Style 'Radio' and Style 'Check'.

 Chapter 2 A-Z Reference 95

95

Calendar Object

Purpose The Calendar object provides an interface to the Month Calendar
Control.

Parents ActiveXControl, Form, Group, PropertyPage, SubForm, ToolBar

Children Cursor, Font, Menu, MsgBox, TCPSocket, Timer

Properties Type, Posn, Size, Style, Coord, Border, Active, Visible, Event,

FirstDay, MaxSelCount, SelDate, MinDate, MaxDate, CalendarCols,
Today, HasToday, CircleToday, WeekNumbers, MonthDelta,
Sizeable, Dragable, FontObj, CursorObj, AutoConf, Data, Attach,
EdgeStyle, Handle, Hint, HintObj, Tip, TipObj, Accelerator,
KeepOnClose, Redraw, TabIndex, MethodList, ChildList, EventList,
PropList

Events CalendarDblClick, CalendarDown, CalendarMove, CalendarUp,

Close, Configure, ContextMenu, Create, DragDrop, DropFiles,
DropObjects, Expose, FontCancel, FontOK, GetDayStates, GotFocus,
Help, KeyPress, LostFocus, MouseDblClick, MouseDown,
MouseEnter, MouseLeave, MouseMove, MouseUp, MouseWheel,
SelDateChange, Select

Methods Animate, ChooseFont, DateToIDN, Detach, GetFocus, GetMinSize,

GetTextSize, GetVisibleRange, IDNToDate, ShowSIP

The Calendar object displays a calendar and allows the user to select a date or range of
dates. The following illustration shows a default Calendar object.

96 Dyalog APL/W Object Reference

The Calendar object will display as many full months as it can fit into the area specified
by its Size property. The minimum size required to encompass a single month may be
obtained using the GetMinSize method.

The Today property is an IDN that specifies the current day. Its default value is today’s
date, i.e. the local date set on your computer. An IDN is an integer that represents a date
as the number of days starting at Jan 1st 1900, i.e. Jan 01 1900 is IDN 1. Note that IDNs
calculated by Dyalog APL do not precisely match IDNs calculated by Microsoft Excel
which incorrectly assumes that 1900 was a Leap Year.

The CircleToday property is either 0 or 1 (the default) and specifies whether or not the
Today date is circled when the Calendar object is showing the corresponding month.

The HasToday property is either 0 or 1 (the default) and specifies whether or not the
Today date is displayed (using the Windows short date format) in the bottom left of the
Calendar object.

The WeekNumbers property is either 0 (the default) or 1 and specifies whether or not
the Calendar displays week numbers.

The FirstDay property is an integer whose value is in the range 0-6. FirstDay specifies
the day that is considered to be the first day of the week and which appears first in the
Calendar. The default value for FirstDay depends upon your International Settings.

The MinDate and MaxDate properties are integers that specify the minimum and
maximum IDN values that the user may display and select in the Calendar object. By
default these properties specify the entire range of dates that the Windows Month
Calendar control can provide.

The MonthDelta property specifies the number of months by which the Calendar object
scrolls when the user clicks its scroll buttons. The default is empty (zilde) which implies
the number of months currently shown.

The Style property may be either 'Single' (the default) or 'Multi'. If Style is
'Single', the user may select a single date. If Style is 'Multi', the user may select
a contiguous range of dates. In this case, the maximum number of contiguous days that
can be selected is defined by the MaxSelCount property which is an integer whose
default value is 7.

 Chapter 2 A-Z Reference 97

97

The SelDate property is a 2-element integer vector of IDN values that identifies the first
and last dates that are currently selected.

When the user selects one or more dates, the Calendar object generates a
SelDateChange event. This event is also generated when the Calendar object is scrolled,
and the selection changes automatically to another month.

The Calendar displays day numbers using either the normal or the bold font attribute
and you may specify which attribute is to be used for each day shown. However, the
Calendar object does not store this information beyond the month or months currently
displayed.

When the Calendar control scrolls (and potentially at other times), it generates a
GetDayStates event that, in effect, asks you (the APL program) to tell it which (if any)
of the dates that are about to be shown should be displayed in bold.

If you wish any dates to be displayed using the bold font attribute, you must attach a
callback function to the GetDayStates event which returns this information in its result.
By default, all dates are displayed using the normal font attribute, so you only need a
callback function if you want any dates to be displayed in bold.

You may also set the font attribute for particular days in the range currently displayed
by calling GetDayStates as a method.

The CalendarCols property specifies the colours used for various elements in the
Calendar object.

You may convert dates between IDN and ⎕TS representations using the IDNToDate
and DateToIDN methods. Note that these methods apply to all objects and not just to
the Calendar object itself.

The GetVisibleRange method reports the range of dates that is currently visible in the
Calendar object.

98 Dyalog APL/W Object Reference

CalendarCols Property

Applies to Calendar, DateTimePicker

The CalendarCols property specifies the colours used for various elements in the
Calendar object.

CalendarCols is a 6-element integer vector whose elements specify the colours as
follows:

[1] Background colour displayed between months

[2] Background colour displayed within the month.

[3] Text colour within a month

[4] Background colour displayed in the calendar's title

[5] Colour used to display text within the calendar's title

[6] Colour used to display header day and trailing day text. Header and
trailing days are the days from the previous and following months that
appear on the current month calendar.

Each element of CalendarCols may be 0 (which means default colour), a negative
singleton that specifies a particular Windows colour, or a 3-element integer vector of
RGB values.

Note: At the time of writing, setting the first element of CalendarCols has no effect.
Dyadic believes this to be a Windows problem that may be corrected in due course.

 Chapter 2 A-Z Reference 99

99

CalendarDblClick Event 273

Applies to Calendar

If enabled, this event is reported when the user double-clicks the left mouse button over
a Calendar object.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1 or by returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'CalendarDblClick' or 273

[3] Item Number: integer

[4] Mouse Button: integer

[5] Shift State: integer. Sum of 1=shift key, 2=ctrl key,
4=alt key

[6] Element Type: integer

For the meaning of elements 3 and 6, see CalendarDown.

100 Dyalog APL/W Object Reference

CalendarDown Event 271

Applies to Calendar

If enabled, this event is reported when the user depresses the left mouse button over a
Calendar object.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1 or by returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'CalendarDown' or 271

[3] Item Number: integer (see below)

[4] Mouse Button: integer

[5] Shift State: integer. Sum of 1=shift key, 2=ctrl key,
4=alt key

[6] Element Type: integer (see below)

 Chapter 2 A-Z Reference 101

101

The 6th element of the event message is one of the following values:

Value Description

0 NOWHERE The mouse pointer was not on the month calendar control, or it
was in an inactive portion of the control.

1 CALENDARBK The mouse pointer was in the calendar's background.

2 CALENDARDATE The mouse pointer was on a particular date within the
calendar

3 CALENDARDATENEXT The mouse pointer was over a date from the next
month (partially displayed at the end of the currently displayed month). If
the user clicks here, the month calendar will scroll its display to the next
month or set of months.

4 CALENDARDATEPREV The mouse pointer was over a date from the
previous month (partially displayed at the end of the currently displayed
month). If the user clicks here, the month calendar will scroll its display to
the previous month or set of months.

5 CALENDARDAY The mouse pointer was over a day abbreviation ("Fri",
for example).

6 CALENDARWEEKNUM The mouse pointer was over a week number

7 TITLEBK The mouse pointer was over the background of a month's title.

8 TITLEBTNNEXT The mouse pointer was over the button at the top right
corner of the control. If the user clicks here, the month calendar will scroll
its display to the next month or set of months.

9 TITLEBTNPREV The mouse pointer was over the button at the top left
corner of the control. If the user clicks here, the month calendar will scroll
its display to the previous month or set of months.

10 TITLEMONTH The mouse pointer was in a month's title bar, over a month
name.

11 TITLEYEAR The mouse pointer was in a month's title bar, over the year
value.

102 Dyalog APL/W Object Reference

If the value of the 6th element of the event message is 2 (CALENDARDATE), the 3rd
element is the corresponding date reported as an IDN.

If the value of the 6th element of the event message is 5 (CALENDARDAY), the 3rd
element is the index of the corresponding weekday (0-6).

If the value of the 6th element of the event message is 6 (CALENDARWEEKNUM), the
3rd element is the date of the first (leftmost) day in the corresponding week, reported as
an IDN.

Otherwise, the 3rd element of the event message is 0.

CalendarMove Event 274

Applies to Calendar

If enabled, this event is reported when the user moves the left mouse button over a
Calendar object.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1 or by returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'CalendarMove' or 274

[3] Item Number: integer

[4] Mouse Button: integer

[5] Shift State: integer. Sum of 1=shift key, 2=ctrl key,
4=alt key

[6] Element Type: integer

For the meaning of elements 3 and 6, see CalendarDown.

 Chapter 2 A-Z Reference 103

103

CalendarUp Event 272

Applies to Calendar

If enabled, this event is reported when the user releases the left mouse button over a
Calendar object.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1 or by returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object name character vector

[2] Event name or code 'CalendarUp' or 272

[3] Item Number integer

[4] Mouse Button integer

[5] Shift State integer. Sum of 1=shift key, 2=ctrl key,
4=alt key

[6] Element Type integer

For the meaning of elements 3 and 6, see CalendarDown.

Cancel Property

Applies to Button

This property determines which (if any) Push button in a Form or SubForm is to be
associated with the Escape key. It has the value 1 or 0.

Pressing the Escape key will generate a Select event on the Button whose Cancel
property is 1, regardless of which object has the keyboard focus.

As only one button in a Form or SubForm can be the Cancel button, setting Cancel to 1
for a particular button automatically sets Cancel to 0 for all others in the same Form.

104 Dyalog APL/W Object Reference

CancelToClose Method 367

Applies to PropertySheet

This method is used to change the buttons in a PropertySheet object. Its effect is to
disable the Cancel button and, if the Style of the PropertySheet is 'Standard', it
changes the text of the OK button to “Close”. There is no result.

The CancelToClose method is niladic.

Caption Property

Applies to BrowseBox, Button, ColorButton, CoolBand, FileBox, Form, Group,
Label, Menu, MenuItem, MsgBox, PropertyPage, PropertySheet,
Root, StatusField, SubForm, TabBtn, TabButton, ToolButton

The Caption property is a character vector specifying fixed text associated with the
object. For example, Caption defines the label on a Button, the title of a Form, SubForm
or MsgBox, the heading in a Group, and the text of a Menu or a MenuItem.

For the Root object, Caption specifies the text displayed when Alt+Tab is used to
switch to the Dyalog APL/W application. It may be used in conjunction with the
IconObj property which specifies the name of an Icon object to be displayed alongside
this text.

Its default value is an empty vector.

CaseSensitive Property

Applies to ComboEx

Specifies whether or not string searches in the items displayed by a ComboEx object
will be case sensitive. Searching occurs when text is being typed into the edit box
portion of the ComboEx

 Chapter 2 A-Z Reference 105

105

CBits Property

Applies to Bitmap, Clipboard

The CBits property represents the picture in a Bitmap object.

CBits provides an alternative representation to that provided by the Bits and CMap
properties which apply only to Bitmaps with 256 colours or under. CBits may be used
to represent both low-colour and high-colour bitmaps.

CBits is a rank-2 numeric array whose dimensions represent the rows and columns of
pixels in the Bitmap. The values in CBits represent the colour of each pixel.

The colour value of each pixel is obtained by encoding the red, green and blue
components, i.e.

 PIXEL←256⊥RED GREEN BLUE

CellChange Event 150

Applies to Grid

If enabled, this event is reported when the user changes the contents of a cell in a Grid
object and then attempts to move to another cell or to another control outside the Grid

The purpose of this event is to give the application the opportunity to perform additional
validation before the update occurs (and to prevent it if necessary) or to update other
cells in the Grid as a result of the change.

The default action for the CellChange event is to update the appropriate element of the
Values property with the new data. This action can be disabled by returning 0 from the
attached callback function. Notice however, that the user is not prevented from moving
away from the cell. If you are using this event to perform additional validation and you
require the user to correct the data before moving away, you must force the user back to
the cell in question by generating a CellMove event.

106 Dyalog APL/W Object Reference

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is an 8-element vector as follows:

[1] Object: ref or character vector

[2] Event code: 'CellChange' or 150

[3] Cell row: integer

[4] Cell column: integer

[5] New data: number or character array

[6] New object: ref or character vector (object to which the
user has transferred focus)

[7] New cell row: integer

[8] New cell column: integer

If the user moves to another cell in the Grid, the 6th element of the event message is the
name of the Grid object and elements 7 and 8 specify the new cell address (⎕IO
dependent).

If the user switches the input focus to another control or selects a MenuItem, the 6th
element of the event message contains the name of that control or MenuItem. If the user
switches to another application, the 6th element of the event message is an empty
character vector. In all these cases, the 7th and 8th elements are 0.

The 5th element of the event message contains the data value that will be used to update
the Values property. This will be numeric if the FieldType of the associated Edit object
is Numeric, LongNumeric, Date, LongDate or Time. Otherwise, it will be a character
array.

An application can update an individual cell in the Grid under program control by
calling CellChange as a method. If so, the New object, New cell row and New cell

column parameters may be omitted.

 Chapter 2 A-Z Reference 107

107

CellChanged Event 164

Applies to Grid

If enabled, this event is reported after the user has changed the contents of a cell in a
Grid object and then moved to another cell or to another control outside the Grid. The
purpose of this event is to give the application the opportunity to perform calculations,
and perhaps to update other cells in the Grid as a result of the change.

Note that this event is reported after the change has taken place, and after the Values
property has been updated. Furthermore, neither setting the event action code to ¯1 nor
returning 0 from a callback function has any effect. If you wish to validate the new data
you should use the CellChange (150) event instead.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is an 5-element vector as follows:

[1] Object: ref or character vector

[2] Event code: 'CellChanged' or 164

[3] Cell row: integer

[4] Cell column: integer

[5] New data: number or character array

The 5th element of the event message contains the data value that has been used to
update the Values property. This will be numeric if the FieldType of the associated Edit
object is Numeric, LongNumeric, Date, LongDate or Time. Otherwise, it will be a
character array.

If you want to update an individual cell under program control, you may call
CellChange, but not CellChanged, as a method.

108 Dyalog APL/W Object Reference

CellDblClick Event 163

Applies to Grid

If enabled, this event is reported when the user double-clicks a mouse button whilst
over a cell in a Grid. The purpose of this event is to allow an application to enable some
special action on double-click. This event may not be disabled.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is an 8 element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'CellDblClick' or 163

[3] Y: y-position of mouse (number)

[4] X: x-position of mouse (number)

[5] Button: button pressed (number)
1 = left button
2 = right button
4 = middle button

[6] Shift State: sum of shift key codes (number)
 1 = Shift key is down
 2 = Ctrl key is down
 4 = Alt key is down

[7] Cell row: integer

[8] Cell column: integer

[9] Title index integer

The y and x position of the mouse are reported relative to the top-left corner of the Grid.

The cell row and column are ⎕IO dependent.

If the user clicks over a row title, the value reported for the column is ¯1, and the value
reported for Title index is the index of that row title in RowTitles, or, if RowTitles is
not defined, the row number. Column titles are handled in a similar fashion.

 Chapter 2 A-Z Reference 109

109

CellDown Event 161

Applies to Grid

If enabled, this event is reported when the user presses a mouse button down whilst over
a cell in a Grid. The purpose of this event is to allow an application to display a pop-up
Menu or a Locator over a cell in a Grid or to take some other special action.

The default action is to generate a CellMove event which will then position the user on
the new cell. This action can be prevented by returning 0 from the callback function, in
which case the normally ensuing CellMove event will not occur.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 9 element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'CellDown' or 161

[3] Y: y-position of mouse (number)

[4] X: x-position of mouse (number)

[5] Button: button pressed (number)
 1 = left button
 2 = right button
 4 = middle button

[6] Shift State: sum of shift key codes (number)
 1 = Shift key is down
 2 = Ctrl key is down
 4 = Alt key is down

[7] Cell row: integer

[8] Cell column: integer

[9] Title index integer

The y and x position of the mouse are reported relative to the top-left corner of the Grid.

The cell row and column are ⎕IO dependent.

If the user clicks over a row title, the value reported for the column is ¯1, and the value
reported for Title index is the index of that row title in RowTitles, or, if RowTitles is
not defined, the row number. Column titles are handled in a similar fashion.

110 Dyalog APL/W Object Reference

An application can position the user on a particular cell in a Grid by calling CellDown
as a method, but it is recommended that a CellMove event is used instead.

CellError Event 157

Applies to Grid

If enabled, this event is reported when the user inserts invalid data into the Edit object
associated with a cell in a Grid object and then attempts to move to another cell or to
another control outside the Grid. It is also reported if the user selects a MenuItem.

The default action for the CellError event is to sound the bell (beep). This action can be
disabled by returning 0 from the attached callback function. Whatever the result of the
callback, the user will be prevented from moving to another cell in the Grid and the
CurCell and Values properties will remain unchanged. The user is not prevented from
switching to any other control or to another application. However, if and when the user
returns to the Grid, the current cell (CurCell) remains the invalid one and the user may
not select a different one until the invalid data in the cell has been corrected. If you wish
to allow the user to move to another cell without correcting the data, you may do so by
generating a CellMove event explicitly. However, the Values property will remain
unchanged and the invalid contents of the Edit object will simply be discarded.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is an 8-element vector as follows:

[1] Object: ref or character vector

[2] Event code: 'CellError' or 157

[3] Cell row: integer

[4] Cell column: integer

[5] Invalid data: character vector

[6] Object name: ref or character vector (object to which the
user has transferred focus)

[7] New cell (row): integer

[8] New cell (column): integer

 Chapter 2 A-Z Reference 111

111

If the user moves to another cell in the Grid, the 6th element of the event message is the
name of the Grid object and elements 7 and 8 specify the new cell address (⎕IO
dependent).

If the user switches the input focus to another control or selects a MenuItem, the 6th
element of the event message contains the name of that control or MenuItem. If the user
switches to another application, the 6th element of the event message is an empty
character vector. In all these cases, the 7th and 8th elements are 0.

The 5th element of the event message contains the character vector in the Text property
of the associated Edit object which is inconsistent with its FieldType.

CellFonts Property

Applies to Grid

This property specifies the name or names of font objects to be used to display the
Values in a Grid object.

CellFonts is either a single ref or simple character scalar or vector, or a vector of refs or
character vectors. If it is simple, it specifies a single font object, this will be used to
draw the text in all of the cells in the Grid. If it specifies more than one font object,
these are mapped to individual cells through the CellTypes property.

112 Dyalog APL/W Object Reference

CellFromPoint Method 200

Applies to Grid

This method converts from Grid co-ordinates to cell co-ordinates.

The argument to CellFromPoint is a 2-element array as follows:

[1] y-coordinate: number in Grid co-ordinates

[2] x-coordinate: number in Grid co-ordinates

The result is a 2-element vector containing the following:

[1] y-coordinate: number in cell co-ordinates

[2] x-coordinate: number in cell co-ordinates

CellHeights Property

Applies to Grid

This property specifies the height of each row in a Grid object in the units specified by
its Coord property. It may be a scalar or a vector whose length is the same as the
number of rows implied by the Values property. If it is a scalar, it specifies a constant
row height. If it is a vector it specifies the height of each row individually.

 Chapter 2 A-Z Reference 113

113

CellMove Event 151

Applies to Grid

If enabled, this event is reported when the user attempts to position the cursor over a
cell in a Grid by clicking the left mouse button or by pressing a cursor movement key.
The purpose of this event is to allow an application to perform some action prior to the
user entering a cell, or to inhibit entry to a cell.

The default action is to position the user on the new cell. This action can be prevented
by returning a 0 from the callback function attached to the event.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 7 element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'CellMove' or 151

[3] New cell row: integer

[4] New cell column: integer

[5] Scroll flag: 0 or 1

[6] Selection flag 0, 1 or 2

[7] Mouse flag 0 or 1

The 5th element of the event message is 1 if switching to the new cell caused the Grid
to scroll.

The 6th element of the event message is 1 if the user is moving to the new cell by
extending the selection. It is 2 if the user selects an entire row or column (by clicking on
a title), which moves the current cell to the first one in the selection.

The 7th element of the event message is 1 if the mouse is used to switch to a new cell.

An application can position the user on a particular cell in a Grid by calling CellMove
as a method. If so, the argument need contain only the New cell row and New cell

column parameters.

114 Dyalog APL/W Object Reference

CellOver Event 160

Applies to Grid

If enabled, this event is reported when the user moves the mouse pointer whilst over a
cell in a Grid.

There is no default action for this event.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 9 element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'CellOver' or 160

[3] Y: y-position of mouse (number)

[4] X: x-position of mouse (number)

[5] Button: button pressed (number)
 1 = left button
 2 = right button
 4 = middle button

[6] Shift State: sum of shift key codes (number)
 1 = Shift key is down
 2 = Ctrl key is down
 4 = Alt key is down

[7] Cell row: integer

[8] Cell column: integer

[9] Title index integer

The y and x position of the mouse are reported relative to the top-left corner of the Grid.

The cell row and column are ⎕IO dependent.

If the user moves the mouse over a row title, the value reported for the column is ¯1,
and the value reported for Title index is the index of that row title in RowTitles, or, if
RowTitles is not defined, the row number. Column titles are handled in a similar
fashion.

 Chapter 2 A-Z Reference 115

115

CellSelect Property

Applies to Grid

The Grid supports the selection of contiguous and non-contiguous blocks of cells by the
user, using the mouse and/or the keyboard. The ability to select a range of cells is
determined by the CellSelect property. This may be a character vector or a vector of
character vectors comprising the following:

'Rows' User may select an entire row by clicking on a row title and

may select contiguous multiple rows by dragging the mouse
over contiguous row titles.

'MultiRows' Same as 'Rows', but user may additionally select several
non-contiguous rows and blocks of rows using the Ctrl key.

'Columns' User may select an entire column by clicking on a column
title and may select multiple columns by dragging the mouse
over contiguous column titles.

'MultiColumns' Same as 'Columns', but user may additionally select
several non-contiguous columns and blocks of columns
using the Ctrl key.

'Partial' User may select any rectangular block of cells by either
dragging the mouse or using Shift+cursor keys.

'MultiPartial' Same as 'Partial', but user may additonally select
multiple rectangular blocks of cells using the Ctrl key.

'Whole' User may select the entire Grid by clicking in the space to
the left of the column titles and above the row titles.

'Any' Same as ('Rows' 'Columns' 'Partial'
'Whole'). This is the default.

'Multi' Same as ('MultiRows' 'MultiColumns'
'MultiPartial' 'Whole').

'None' User may not select any cells in the Grid.

For example, the following expression would allow the user to select only contiguous
rows and columns:

 Gridname.CellSelect←'Rows' 'Columns'

The following expression would allow the user to select all cells, a continguous block of
cells, or multiple rows and blocks of rows.

 Gridname.CellSelect←'Whole' 'Partial' 'MultiRows'

116 Dyalog APL/W Object Reference

When the user performs a selection , the Grid generates a GridSelect event.

The range of cells currently selected is given by the SelItems property. You can obtain
the current selection by querying this property with ⎕WG and you can set it with ⎕WS.

Note that the user may delete the contents of the selected range, or cut and copy them to
the clipboard by pressing Delete, Shift+Delete or Ctrl+Insert respectively. The user may
also replace the current selection with the contents of the clipboard by pressing
Shift+Insert. These operations generate GridDelete, GridCut, GridCopy and GridPaste
events which you may disable (by setting the event action code to ¯1 or to which you
may attach a callback function.

Note that if the user selects more than one block of cells, these operations are honoured
only if the blocks begin and end on the same rows or begin and end on the same
columns. If so, the data placed in the clipboard is the result of joining the blocks
horizontally or vertically as appropriate.

You can also invoke these events as methods. This allows you to attach these actions to
MenuItems and Buttons. For example, the following expression could be used to
implement Cut as a MenuItem:

 name ⎕WC 'MenuItem' 'Cu&t'
 ('Event' 'Select' '⍎gridname.GridCut')

In addition to the ability to copy blocks of cells through the clipboard, the user may also
drag a block of cells from one part of the Grid to another.

If the user has selected a single contiguous block of cells, and then places the mouse
pointer over any of the four edges of a selected block of cells, the cursor changes from a
cross to an arrow pointer. The user may now drag the border of the selected block to a
new location. If the Ctrl key is pressed at the same time, the contents of the selected
cells are copied to the new location. If not, the operation is a move and the original
block of cells is cleared (emptied). In either case, the contents of the original block
replace the contents of the target block (marked by the dragging rectangle) and the
target block become selected.

These operations generate a GridDropSel event. You may prevent the user from moving
and copying blocks of cells by disabling this event (by setting its event action code to
¯1) or you may control these operations selectively with a callback function. Note that
although the operation of inserting cells (using Ctrl+Shift) has not been implemented,
you may provide this facility yourself with the information provided by the event
message. You may also move or copy a block of cells (which need not necessarily be
selected) under program control by calling GridDropSel as a method.

 Chapter 2 A-Z Reference 117

117

CellSet Property

Applies to Grid

This property identifies which cells in a Grid are set (i.e. have values) and which are
empty. Its purpose is to allow large numeric matrices containing blank cells to be
displayed and edited efficiently.

The CellSet property is a Boolean matrix with the same shape as the Values property. If
an element of CellSet is 0, the cell is defined to be empty. Empty cells are displayed as
blank and the corresponding elements of the Values property are ignored.

A more direct way to handle empty cells is to set the corresponding elements of Values
to empty vectors. However, if Values is otherwise entirely numeric, this makes the array
nested when it would otherwise be simple. For large numeric matrices, this penalty can
be severe. For example, a 100x100 array of 2-byte integer values occupies about 20Kb
of workspace. Setting one or more elements of the array to an empty vector increases its
size to 200Kb. However, because it is Boolean, the size of the CellSet property for a
100x100 array is only 1.27Kb and represents a significant saving of space.

Note that if the Values property contains text and is therefore nested anyway, the
CellSet property is not helpful in conserving workspace, although it may still be useful
to separate empty cells from real data.

You can dynamically change a single element of CellSet using the SetCellSet method.

CellTypes Property

Applies to Grid

This property specifies the type of each cell in a Grid object. It is a matrix whose
elements are indices into other property arrays (including FCol, BCol, CellFonts and
Input).

For example, if CellTypes[1;1] is 3, the first cell in the Grid is displayed using the
foreground colour specified by the 3rd element of FCol, the background colour
specified by the 3rd element of BCol, and so forth. Note however that scalar property
arrays are extended if necessary. Therefore if you require 5 different foreground colours
but only one background colour, BCol need specify only a single colour.

You can dynamically change a single element of CellTypes using the SetCellType
method.

118 Dyalog APL/W Object Reference

CellUp Event 162

Applies to Grid

If enabled, this event is reported when the user releases a mouse button down whilst
over a cell in a Grid. This event is a companion to the CellDown event and could be
used to hide a pop-up which was displayed in response to the CellDown. The CellUp
event performs no default action and may not be disabled.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is an 9 element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'CellUp' or 162

[3] Y: y-position of mouse (number)

[4] X: x-position of mouse (number)

[5] Button: button released (number)
 1 = left button
 2 = right button
 4 = middle button

[6] Shift State: sum of shift key codes (number)
 1 = Shift key is down
 2 = Ctrl key is down
 4 = Alt key is down

[7] Cell row: integer

[8] Cell column: integer

[9] Title index integer

The y and x position of the mouse are reported relative to the top-left corner of the Grid.

The cell row and column are ⎕IO dependent.

If the user clicks over a row title, the value reported for the column is ¯1, and the value
reported for Title index is the index of that row title in RowTitles, or, if RowTitles is
not defined, the row number. Column titles are handled in a similar fashion.

 Chapter 2 A-Z Reference 119

119

CellWidths Property

Applies to Grid

This property specifies the width of each column in a Grid object in the units specified
by its Coord property. It may be a scalar or a vector whose length is the same as the
number of columns implied by the Values property. If it is a scalar, it specifies a
constant column width. If it is a vector it specifies the width of each column
individually.

Change Event 36

Applies to Combo, Edit, RichEdit, Spinner

If enabled, this event is reported when the user alters the text in a Combo or Edit object
(by typing). The event is not applicable for a Combo with Style 'Drop' because this
Style does not allow the user to alter data. The Change event is not reported repeatedly
as the user edits the data. Instead, it is reported when the user indicates that he has
finished with the field by :

a) clicking on another object
or

b) causing an event on another object (without altering the input focus) which
will fire a callback function or cause ⎕DQ to terminate. This can occur if
the user chooses a MenuItem, or fires a Button with the Default or Cancel
property by pressing Enter or Esc, or selects an object using an accelerator
key.

The purpose of the Change event is to allow the application to validate data which has
been newly entered to the field, before proceeding with another action. It is for this
reason that the event is fired not just when the input focus changes, but also when the
user takes some action that could cause the application to do something else.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'Change' or 36

[3] Object: ref or character vector (object that is to
receive the focus or generate an event)

120 Dyalog APL/W Object Reference

If the focus is transferred to an external application, the third element is an empty
vector.

The default processing for this event is to allow the focus to change (if applicable) and
to reset the internal flag that indicates that the data in the field has changed.

If you disable the event by setting the "action" code to ¯1, or inhibit it by returning 0
from a callback, the focus change (if applicable) is allowed to proceed, but the internal
flag is not reset. If you wish to prevent the focus change you must explicitly reset the
focus back onto the object that generated the event.

If the event was generated because the user switched to another application, and you
return a 0 from your callback (because the data was not valid), the flag marking the
Combo or Edit as having been changed remains set. If the user returns to your
application by re-focusing on the same Combo or Edit, nothing happens immediately,
but because the field is marked as changed (the flag was not reset) you will get another
Change event when he leaves it. However, if the user returns to your application in
some other way, e.g. by focusing on another object or by selecting a MenuItem, a
second Change event will be generated immediately.

The following function illustrates how Change events can be processed. The Check
function referred to in line[4] is assumed to return 1 if the data is valid and 0 if not.

[0] R←VALIDATE Msg
[1] ⍝ Validates field contents after Change event
[2]
[3] ⍝ Normal exit (R←1) if data is valid
[4] →(R←Check⊃Msg)/Exit
[5]
[6] ⍝ R now 0, so field remains marked as "changed"
[7]
[8] ⍝ If user has switched to another application,
[9] ⍝ we need take no further action because we will
[10] ⍝ get a second Change event when he returns.
[11] →(''≡3⊃Msg)/Exit
[12]
[13] ⍝ Display error box (prepared earlier)
[14] 'ERR' ⎕WS 'Text' 'Data is invalid'
[15] ⎕DQ'ERR'
[16]
[17] ⍝ Restore focus to bad field
[18] ⎕NQ(⊃Msg)40
[19]
[20] Exit:

 Chapter 2 A-Z Reference 121

121

Changed Property

Applies to Edit, PropertyPage, RichEdit, Spinner

The Changed property, in conjunction with the Change event, provides the means to
control the validation of an object after the user has finished interacting with it.

Initially, the value of the Changed property of an object is set to 0. When the user gives
the focus to the object and causes either the Text or (in the case of a Spinner) the
Thumb property to be altered, the Changed property is immediately set to 1. When the
object loses the input focus and the value of the Changed property is 1, the object
generates a Change event. The value of the Changed property is then determined as
follows:

 If there is no callback function attached to the Change event, or if the Change event
is disabled, the Changed property is reset to 0.

 If an attached callback returns no result or returns 1, the Change property is reset to
0.

 If an attached callback function returns 0, the Changed property is not altered and
remains set to 1. The object will therefore generate another Change event when the
user next tries to leave it, even if the text and/or Thumb are not altered this time.

Note that the object generates a Change event when it loses the focus only if the value
of the Changed property is 1 at the time.

122 Dyalog APL/W Object Reference

CharFormat Property

Applies to RichEdit

The CharFormat property describes or applies formatting to the currently selected text
in a RichEdit object. If the selection is empty, it reports or specifies the default character
formatting for the object. It is a 5-element nested array structured as follows:

[1] A vector of character vectors which describes the text attributes and is
comprised of the following keywords:

'Autocolour' default colour (Windows text colour)
'Bold' bold text
'Italic' italic text
'Underline' underlined
'StrikeOut' line through text
'Protected' protected (read-only) text

[2] A character vector that specifies the face name of the font used to draw the text

[3] Character height in Twips.

[4] Text colour. A single integer or an enclosed vector of 3 RGB values. The
default is 0 which implies the standard Windows text colour.

[5] Integer specifying the vertical offset of the character from the base line in
Twips. This is used to specify superscript (positive offset) and subscript
(negative offset) symbols. The default value is 0.

When you set the character format using ⎕WC or ⎕WS the following rules apply.

 If you just want to set a single text attribute (element 1) you may specify a simple
vector, for example (⎕WS 'CharFormat' 'Protected') is valid and will
add the protected text attribute to the current set of text attributes.

 To cancel a text attribute (element 1) you must insert the tilde (~) character before
the name of the attribute. For example, the expression (⎕WS 'CharFormat'
'~Bold') will turn the bold text attribute off.

 You need only specify the number of elements required, but you must insert proper
values for the elements you wish to remain unaltered. However, you may use '' in
the first element to leave the text attributes unchanged.

 Chapter 2 A-Z Reference 123

123

If there is no text selected, CharFormat specifies the default character format, i.e. the
format that will be used to draw the next (and subsequent) characters that the user
enters. If there is text selected it specifies the format of the selected block of text. If the
format is not strictly homogeneous, ⎕WG may report the format of the first character in
the selected block, or, if the block contains characters which use completely different
fonts, the result of (⎕WG 'CharFormat') will be empty.

(⎕WS 'CharFormat' ...) will set the format of the currently selected block of
text.

To set the format of an arbitrary block of text you must select it first using
(⎕WS 'SelText' ...).

124 Dyalog APL/W Object Reference

CharSet Property

Applies to Font

This property applies to the Classic Edition only. In the Unicode Edition, its value

is ignored.

CharSet is an integer that specifies the character encoding of the Font object.

The following table illustrates some of the character set encodings supported by
Windows. Note that this set may vary according to the edition of Windows that is
installed.

Language CharSet

Western (Ansi) 0

Hebrew 177

Arabic 178

Greek 161

Turkish 162

Baltic 186

Central European 238

Cyrillic 204

Vietnamese 163

Windows fonts typically contain glyphs for the ASCII character set in their first 128
positions, and glyphs for the Western European character set in positions 129-256.
Additional sets of character glyphs are stored in positions 257 onwards in what are
sometimes referred to as codepages.

When you change the character set encoding, to (say) Greek (161), the set of Greek
characters are mapped into the top 128 positions of the font.

For example, if the CharSet is 0 (ANSI), the character code Hex EC is displayed as ì (i-
grave). However, if you change CharSet to 161 (Greek), the same character code is
displayed as the Greek µ.

 Chapter 2 A-Z Reference 125

125

The following example illustrates how the character string 'ôï üíïìá ìïõ Ýéíáé Ðåôå'
appears differently according to the value of CharSet.

 'F'⎕WC'FORM' 'CharSet Property'('Size' 300 400)
 ('Coord' 'Pixel')
 F.Coord←'Prop'

 'F.F1'⎕WC'Font' ('Size' 32) ('CharSet' 0)
 'F.F2'⎕WC'Font' ('Size' 32) ('CharSet' 161)
 'F.F3'⎕WC'Font' ('Size' 32) ('CharSet' 178)

 STRING←'ôï üíïìá ìïõ Ýéíáé Ðåôå'

 'F.E1'⎕WC'Edit'STRING(10 10)(⍬ 80)('Font' 'F.F1')
 'F.E2'⎕WC'Edit'STRING(40 10)(⍬ 80)('Font' 'F.F2')
 ('Translate' 'ANSI')
 'F.E3'⎕WC'Edit'STRING(70 10)(⍬ 80)('Font' 'F.F3')
 ('Translate' 'ANSI')

Note that setting Translate to 'ANSI' means that characters entered into the Edit fields
using a corresponding National Language keyboard (Greek and Arabic) will appear in
that language as intended

126 Dyalog APL/W Object Reference

CheckBoxes Property

Applies to ListView, TreeView

The CheckBoxes property specifies whether or not check boxes are displayed alongside
items in a ListView or TreeView object.

CheckBoxes is a single number with the value 0 (check boxes are not displayed) or 1
(check boxes are displayed); the default is 0.

Note that check boxes will only be displayed if the object also displays images. You
cannot use CheckBoxes without images.

For a ListView, CheckBoxes applies to all settings of the View property.

The GetItemState method can be used to determine if a specific item in a ListView or
TreeView is checked. The result of the method will have the 13th bit set if the item is
checked.

 STATE←Form.ListView.GetItemState 11
 13⊃⌽(32⍴2)⊤STATE
1

The SetItemState method may be used to toggle the state of a check box for a particular
item.

The picture below illustrates the effect on the appearance of a ListView object, of
setting CheckBoxes to 1.

 Chapter 2 A-Z Reference 127

127

Checked Property

Applies to MenuItem

This property determines whether or not a check mark or radio button (according to the
value of Style) is displayed alongside the text in a MenuItem.

Checked is a single number with the value 0 (not checked) or 1 (checked). The default
is 0.

ChildEdge Property

Applies to CoolBand

The ChildEdge property specifies whether or not the CoolBand leaves space above and
below its child window.

ChildEdge is a single number with the value 0 (no space) or 1 (space is provided); the
default is 0.

ChildList Property

Applies to ActiveXContainer, ActiveXControl, Animation, Bitmap, BrowseBox,
Button, Calendar, Circle, Clipboard, ColorButton, Combo, ComboEx,
CoolBand, CoolBar, Cursor, DateTimePicker, Edit, Ellipse, FileBox,
Font, Form, Grid, Group, Icon, Image, ImageList, Label, List,
ListView, Locator, Marker, MDIClient, Menu, MenuBar, MenuItem,
Metafile, MsgBox, NetControl, OCXClass, OLEClient, OLEServer,
Poly, Printer, ProgressBar, PropertyPage, PropertySheet, Rect,
RichEdit, Root, Scroll, Separator, SM, Spinner, Splitter, Static,
StatusBar, StatusField, SubForm, SysTrayItem, TabBar, TabBtn,
TabButton, TabControl, TCPSocket, Text, Timer, TipField, ToolBar,
ToolButton, ToolControl, TrackBar, TreeView, UpDown

This is a read-only property that reports the types of those objects that may be created as
children of the object in question.

ChildList is a vector of character vectors in which the order of the items is not
significant.

128 Dyalog APL/W Object Reference

ChooseFont Method 240

Applies to ActiveXControl, Button, Calendar, Combo, ComboEx,
DateTimePicker, Edit, Font, Form, Grid, Group, Label, List,
ListView, PropertyPage, PropertySheet, RichEdit, Root, Spinner,
Static, StatusBar, SubForm, TabBtn, Text, TipField, TreeView

This method is used to display the standard Windows font selection dialog box.

The argument to ChooseFont is ⍬ or a 1 or 2-element array as follows:

[1] Printer name: character scalar or vector.

[2] Modify flag: 0 or 1.

If the argument is ⍬ or the first element of the argument is '', the user is offered a list
of fonts suitable for use on the screen. If not, the user is offered a choice of fonts
suitable for the specified Printer object. If you omit the 2nd element, the modify flag
defaults to 0.

The dialog box is initialised with the properties of the Font object specified in the first
element of the event message.

When the user presses the OK button, the Cancel button or closes the dialog box,
ChooseFont terminates. Its result is either 0 (user pressed Cancel) or a 2-element vector.
In the latter case, the first element is a 7-element array that describes the selected font
(see FontObj property) and the second element is a 3-element RGB colour vector.

If the modify flag was 1, the Font object is redefined to match the user’s selections and

all the objects that reference the Font are redrawn.

 Chapter 2 A-Z Reference 129

129

Circle Object

Purpose A Graphical object to draw circles, arcs, and pie-slices.

Parents ActiveXControl, Animation, Bitmap, Button, Combo, ComboEx,

Edit, Form, Grid, Group, Label, List, ListView, MDIClient, Metafile,
Printer, ProgressBar, PropertyPage, PropertySheet, RichEdit, Scroll,
Spinner, Static, StatusBar, SubForm, TabBar, TipField, ToolBar,
TrackBar, TreeView, UpDown

Children Timer

Properties Type, Points, Radius, FCol, BCol, Start, End, ArcMode, LStyle,

LWidth, FStyle, FillCol, Coord, Visible, Event, Dragable, OnTop,
CursorObj, AutoConf, Data, Accelerator, KeepOnClose, DrawMode,
RadiusMode, MethodList, ChildList, EventList, PropList

Events Close, Create, DragDrop, Help, MouseDblClick, MouseDown,

MouseMove, MouseUp, Select

Methods Detach

The Points property contains the co-ordinates of the centre of the circle. The size of the
circle is determined by the Radius property. This specifies the radius along the x-axis,
the height is calculated so that the object is circular.

The RadiusMode property determines whether or not the circle is adjusted by a pixel, if
required in order to appear perfectly round and perfectly centred. The default value is 0
(no adjustment is made).

The Start and/or End properties are used to draw partial circles. They specify start and
end angles respectively, measuring from the x-axis in a counter-clockwise direction and
are expressed in radians. The type of arc is controlled by ArcMode as follows:

 ArcMode Effect

 0 An arc is drawn from Start to End.

 1 An arc is drawn from Start to End. In addition, a single
 straight line is drawn from one end of the arc to the other,
 resulting in a chord segment.

 2 An arc is drawn from Start to End. In addition, two lines
 are drawn from each end of the arc to the centre, resulting
 in a pie-slice.

130 Dyalog APL/W Object Reference

Points, Radius, Start and End can specify vectors so that several arcs, circles, pie slices,
etc. can be drawn in one call (and with one name).

If Start is specified, but not End, end angles default to (¯1↓+\Start),○2. If End is
specified, but not Start, start angles default to 0,¯1↓+\End

This means that you can draw a pie-chart using either Start or End angles; you do not
have to specify both.

Examples

A circle whose centre is (50,50) and radius 20

 'g.p1' ⎕WC 'Circle' (50 50) 20

An arc

 'g.arc' ⎕WC 'Circle' (50 50) 20 ('Start' (○0.75))
 ('End' (○1.25))

Complete pie

 Data←12 27 21 40
 ANGLES←0,¯1↓((○2)÷+/Data)×+\Data
 COLS←(255 0 0)(0 255 0)(255 255 0)(0 0 255)
 PATS←1 2 3 4

 'g.pie' ⎕WC 'Circle' (50 50) 20 ('Start' ANGLES)
 ('ArcMode' 2) ('FCol' (⊂0 0 0))
 ('FStyle' PATS) ('FillCol' COLS)

Same pie as above, but 2nd slice is exploded by changing its centre and 4th slice is
shrunk by reducing its radius :

 CY←50 52 50 50 ⍝ y-coord of centres
 R←20 20 20 17.5 ⍝ radii

 'g.pie' ⎕WC 'Circle' (50 CY) R ('Start' ANGLES)
 ('ArcMode' 1) ('FCol' (⊂0 0 0))
 ('FStyle' PATS) ('FillCol' COLS)

 Chapter 2 A-Z Reference 131

131

CircleToday Property

Applies to Calendar, DateTimePicker

The CircleToday property specifies whether or not a circle is drawn around the Today
date in a Calendar object, or in the drop down calendar in a DateTimePicker, when the
month containing that date is visible.

CircleToday is a single number with the value 0 (a circle is not drawn) or 1 (a circle is
drawn); the default is 1.

See also HasToday property.

ClassID Property

Applies to ActiveXControl, OCXClass, OLEClient, OLEServer

The ClassID property specifies the class identifier (usually abbreviated to CLSID) of an
APL object that is used to represent a COM object. The CLSID is a globally unique
identifier (GUID) that uniquely identifies the object.

When you create or recreate an ActiveXControl or OLEServer using ⎕WC, you may
specify ClassID. This allows you to re-use a value that was previously allocated to that
control by the system. However, you should not specify any other value because that
value could be allocated now or in the future to another object on any other computer in

the world. Otherwise, a new ClassID is automatically allocated by the system.

Note that the CLSID is not actually recorded on your computer (in the registry) until
you register it using)SAVE or Make OCX, or by executing the OLERegister method.

132 Dyalog APL/W Object Reference

ClassName Property

Applies to ActiveXControl, NetControl, OCXClass, OLEClient, OLEServer

For an OLEClient, the ClassName property specifies the name of the OLE object to
which an OLEClient object named by the left argument of ⎕WC is to be connected.
Similarly, for a NetControl, the ClassName property specifies the name of the .Net class
to be instantiated. Note that for both these objects, ClassName is mandatory for ⎕WC
and may not subsequently be changed using ⎕WS.

For an ActiveXControl or OLEServer, ClassName specifies the external name with
which the object is registered, and by which it is referenced by other applications.

For an ActiveXControl, the external name is ‘Dyalog xxx Control’, where xxx is the

value of the ClassName property, or, if ClassName is not specified, the name of the
ActiveXControl namespace.

For an OLEServer, the external name is “Dyalog.xxx” where xxx is derived in the same

way.

For a NetControl, the external name is the name of the .Net class which must be
expressed relative to a corresponding element of ⎕USING. For example, to load one of
the standard .Net controls:

 ⎕USING,←⊂'System.Windows.Forms,system.windows.forms.dll'

 Chapter 2 A-Z Reference 133

133

ClickComment Event 225

Applies to Grid

If enabled, a ClickComment event is generated when the user clicks the mouse in a
comment widow.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows:

[1] Object: ref or character vector

[2] Event name or code: 'ClickComment' or 225

[3] Row: integer

[4] Column: integer

The event message reports the co-ordinates of the cell. The default action is to raise the
comment window so that it appears above all other, potentially overlapping, comment
windows.

Note that if the comment window relates to a row or column title, the value reported in
element [3] or [4] of the event message is ¯1.

134 Dyalog APL/W Object Reference

Clipboard Object

Purpose This object provides access to the Windows clipboard.

Parents ActiveXControl, CoolBand, Form, OLEServer, PropertyPage,

PropertySheet, Root, TCPSocket

Children Timer

Properties Type, Event, Data, Formats, Text, Bits, CMap, CBits, MetafileObj,

Picture, Array, RTFText, Translate, Accelerator, KeepOnClose,
MethodList, ChildList, EventList, PropList

Events ClipChange, Close, Create, Select

Methods Detach, Wait

When an application places data in the Windows clipboard, it may store it in one or
more formats. An application wishing to retrieve data from the clipboard can then
choose which format to read it in. Dyalog APL supports standard clipboard formats,
including CF_TEXT, CF_BITMAP and CF_METAFILE. If there is any data in the
clipboard, the Formats property lists the formats in which it may be retrieved.

In addition, the Array property may be used to set or retrieve clipboard contents in
Dyalog APL array format.

Data is read from the clipboard using ⎕WG, specifying the appropriate name of the
property for the data that you want.

If the data has been stored in CF_TEXT format, the value of Formats will include
'Text' and you may retrieve the data by querying the value of the Text property with
⎕WG.

If the data has been stored in device-independent bitmap format, the value of Formats
will include 'CBits', 'Bits' and 'CMap'. To retrieve the bitmap pattern and
colour map, you may query the values of the CBits, or Bits and CMap properties
(according to the palette size) using ⎕WG.

If the data has been stored in the older device-dependent bitmap format, only the
bitmap pattern is available and Formats will contain 'Bits' but not 'CMap'. In this
case you can query the Bits property but not CMap without which you cannot realise
the bitmap. However, if data was posted in the older format, it is highly probable that
the current Windows colour map applies to it. For a standard 16-colour device this is
given under the description of the CMap property.

 Chapter 2 A-Z Reference 135

135

The following example retrieves text from the clipboard :

 'CL' ⎕WC 'Clipboard'
 Data ← CL.Text

The next example retrieves a bitmap from the clipboard and defines it as a Bitmap
object named 'BM' ready for use :

 'BM' ⎕WC 'Bitmap' ('CBits' CL.CBits)

Data may be placed in the clipboard using assignment, ⎕WC or ⎕WS. To store text, you
simply set the Text property. You may use a simple character vector or matrix, or a
vector of character vectors. For example :

 CL.Text ← 'Hello World'

To store a bitmap you can set either the Picture property to the name of a Bitmap
object, or you can set the CBits or Bits and CMap properties explicitly. The former is
more efficient, especially for large bitmaps, for example :

 CL.Picture ← 'BM'
or
 CL.CBits ← BM.CBits

Note that if you use Bits and CMap, you must set both properties in one ⎕WS statement.
This is also true if you wish to store data in more than one format.

The MetafileObj property allows graphical information to be stored in and retrieved
from the clipboard in Windows Metafile format. See the description of the MetafileObj
property for details.

The Array property allows you to use the Windows clipboard to store and retrieve an
arbitrary Dyalog APL array.

A ClipChange (120) Event is generated when another application places data in the
clipboard.

136 Dyalog APL/W Object Reference

ClipCells Property

Applies to Grid

This property determines whether or not the Grid displays partial cells. The default is 1.
If you set ClipCells to 0, the Grid displays only complete cells and automatically fills
the space between the last visible cell and the edge of the Grid with the GridBCol
colour.

The first picture below shows a default Grid (ClipCells is 1) in which the third column
of data is in fact incomplete (clipped), although this is by no means apparent to the user.
The second picture shows the effect on the Grid of setting ClipCells to 0 which prevents
such potential confusion.

 Chapter 2 A-Z Reference 137

137

ClipChange Event 120

Applies to Clipboard

If enabled, this event is reported when another application changes the contents of the
Windows clipboard.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'ClipChange' or 120

Close Event 33

Applies to ActiveXContainer, ActiveXControl, Animation, Bitmap, BrowseBox,
Button, Calendar, Circle, Clipboard, ColorButton, Combo, ComboEx,
CoolBand, CoolBar, Cursor, DateTimePicker, Edit, Ellipse, FileBox,
Font, Form, Grid, Group, Icon, Image, ImageList, Label, List,
ListView, Locator, Marker, MDIClient, Menu, MenuBar, MenuItem,
Metafile, MsgBox, NetType, OLEServer, Poly, Printer, ProgressBar,
PropertyPage, PropertySheet, Rect, RichEdit, Scroll, Separator, SM,
Spinner, Splitter, Static, StatusBar, StatusField, SubForm,
SysTrayItem, TabBar, TabBtn, TabButton, TabControl, TCPSocket,
Text, Timer, TipField, ToolBar, ToolButton, ToolControl, TrackBar,
TreeView, UpDown

A Close event is generated when an object is destroyed.

For a Form or SubForm, the event may be generated by the user selecting "Close" from
its System Menu. In this case, the event is reported before the window is destroyed, and
you may prevent it from going ahead by associating a callback function which returns a
result of 0.

By trapping this event you can control termination of your application in many different
ways. For example, you can :

 automatically close all Forms in your application when the master Form is
closed.

 prevent the user from terminating the application if it is inappropriate at that
 time.

 display an "Are you sure ?" MsgBox.

138 Dyalog APL/W Object Reference

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'Close' or 33

CloseUp Event 46

Applies to DateTimePicker

If enabled, this event is reported by a DateTimePicker object just before the drop-down
calendar is hidden. It applies only if the Style of the DateTimePicker is 'Combo'.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'CloseUp' or 46

This event is reported for information only and cannot be disabled or modified in any
way.

 Chapter 2 A-Z Reference 139

139

CMap Property

Applies to Bitmap, Clipboard, Cursor, Icon

This property defines the table of colours (the colour map) used by a Bitmap or Icon
object or by a bitmap stored in the Windows clipboard. Its value is a 3-column integer
matrix of numbers in the range 0-255. Each row represents a separate colour which is
indexed (0-origin) by values in the Bits property. The 3 columns refer to the intensities
of the red, green and blue components of colour respectively.

Please note that Bits and CMap may only be used to represent an image with a colour
palette of 256 colours or less. If the colour palette is larger, the values of Bits and
CMap reported by ⎕WG will be (0 0). For a high-colour image, use CBits instead.

When you create a Bitmap or Icon by specifying Bits and CMap, the actual colours you
obtain are not necessarily those that you specified. This is partly due to hardware
restrictions and partly due to the way in which Windows manages colours. Firstly, your
display adapter and driver limit the number of pure colours that can be displayed at any
one time and therefore define a maximum size for the colour map. For example, on a
standard VGA you are limited to 16 different pure colours (additional ones are
provided by dithering).

Secondly, Windows reserves a certain number of colours in the colour map for its own
use. When an application requests a new colour (i.e. one that is not already installed in
the colour map), Windows either assigns it to a spare entry, or allocates the closest

match if the colour map is full. The value of Bits and CMap after ⎕WC reflect the actual
colours allocated and may bear little resemblance to the values you assigned to these
properties initially.

Note that if you are running 16 colours, Windows reserves all 16 entries in the colour
map for its own use. This means that on a 16-colour system, you cannot use any
colours other than the default ones reserved by Windows. In practice, the "standard" 16-
colour CMap is shown in the following table.

140 Dyalog APL/W Object Reference

Bits[] CMap Colour

0 0 0 0 Black
1 128 0 0 Dark Red
2 0 128 0 Dark Green
3 128 128 0 Olive Green
4 0 0 128 Dark Blue
5 128 0 128 Dark Magenta
6 0 128 128 Dark Cyan
7 128 128 128 Dark Grey
8 192 192 192 Light Grey
9 255 0 0 Red

10 0 255 0 Green
11 255 255 0 Yellow
12 0 0 255 Blue
13 255 0 255 Magenta
14 0 255 255 Cyan
15 255 255 255 White

The default 16-colour CMap

If you are using a 256-colour set-up, the first 9 and the last 7 entries of the 256-colour
CMap are the same as the first 9 and last 7 entries of the 16-colour CMap shown above.
The intervening entries represent additional colours or are initially unused (0 0 0). New
colours that you specify will be allocated to unused entries until the table is full.

 Chapter 2 A-Z Reference 141

141

ColChange Method 159

Applies to Grid

This method is used to change the data in a column of a Grid object.

The argument to ColChange is a 2-element array as follows:

[1] Column number: integer

[2] Column data: array

Note that the Column data must be a scalar or a vector whose length is equal to the
number of rows in the Grid. Its elements may be scalar numbers, character vectors or
matrices.

Collate Property

Applies to Printer

Specifies whether or not multiple copies of printer output are collated.

Collate is a single number with the value 0 or 1. If Collate is 1, multiple copies of
output are collated separately. If Collate is 0, copies are uncollated on output.

Collate is ignored unless Copies is >1.

The default value for Collate is derived from the current printer setting and Collate is
only effective if the printer supports this capability.

142 Dyalog APL/W Object Reference

ColLineTypes Property

Applies to Grid

This property specifies the appearance of the vertical grid lines in a Grid object.

ColLineTypes is an integer vector, whose length is normally equal to the number of
columns in the Grid. Each element in ColLineTypes specifies an index into the
GridLineFCol and GridLineWidth properties, thus selecting the colour and width of the
vertical grid lines.

For example, if ColLineTypes[1] is 3, the first vertical grid line in the Grid is displayed
using the colour specified by the 3rd element of GridLineFCol, and the width specified
by the 3rd element of GridLineWidth. Note that ColLineTypes is not ⎕IO dependant,
and the value 0 is treated the same as the value 1; both selecting the first colour and line
width specified by GridLineFCol and GridLineWidth respectively.

The default value of ColLineTypes is an empty numeric vector (⍬). If so, all vertical
grid lines are drawn using the first element of GridLineFCol and GridLineWidth.

A vertical grid line is drawn down the right edge of its associated column. One pixel is
drawn inside the column of cells; additional pixels (if any) are drawn between that
column of cells and the next one to its right.

 Chapter 2 A-Z Reference 143

143

ColorButton Object

Purpose Allows the user to choose a colour.

Parents ActiveXControl, Form, Grid, Group, PropertyPage, SubForm

Children (None)

Properties Type, Caption, Posn, Size, CurrentColor, DefaultColors,

CustomColors, OtherButton, Coord, Active, Visible, Event, Sizeable,
Dragable, CursorObj, AutoConf, Data, Attach, EdgeStyle, Handle,
Hint, HintObj, Tip, TipObj, Translate, Accelerator, KeepOnClose,
ShowDropDown, Redraw, TabIndex, MethodList, ChildList,
EventList, PropList

Events Close, ColorChange, Configure, ContextMenu, Create, DragDrop,

DropDown, DropFiles, DropObjects, Expose, GotFocus, Help,
KeyPress, LostFocus, MouseDblClick, MouseDown, MouseEnter,
MouseLeave, MouseMove, MouseUp, MouseWheel

Methods Animate, Detach, GetFocus, GetTextSize, ShowSIP

The ColorButton object displays a coloured box, with an optional drop down button.
When the user clicks the ColorButton with the left mouse button, a colour selection
drop-down appears below it, allowing the user to select a new colour.

The CurrentColor property (default 0 0 0) is a 3-element integer vector that specifies
and reports the RGB value of the currently selected colour.

The DefaultColors property is a nested matrix which specifies the RGB values of the
colours shown in the colour selection box. The shape of DefaultColors determines the
number of rows and columns in the colour selection drop-down. Each element of
DefaultColors is a 3-element integer vector specifying an RGB colour value.

The OtherButton property is Boolean and specifies whether or not the user can select a
colour using the Windows colour selection dialog box.

If OtherButton is 1 (the default), the final row of the colour selection drop-down
contains a button labelled "Other→". If the user clicks this button, the standard

Windows colour selection dialog box is displayed, allowing the user to select any colour
that the computer can render.

If OtherButton is 0, the button labelled "Other→" is not present and the user is

restricted to the choice of colours provided by the DefaultColors property.

144 Dyalog APL/W Object Reference

The CustomColors property is a 1-row, 16-column nested matrix which specifies the
RGB values of the Colours displayed in the Custom colors section of the Windows
colour selection dialog box. Each element of CustomColors is a 3-element integer
vector specifying an RGB colour value.

Note that the PocketPC 2002 colour selection dialog box does not provide the facility to
select custom colours, so this functionality is not available in Pocket APL.

The ShowDropDown property is Boolean (default 1) and specifies whether or not a
drop-down button is displayed in the ColorButton object.

When the user clicks a ColorButton with the left mouse button, the object generates a
DropDown event just before it displays the colour selection drop-down. This event may
be used to set the DefaultColors and/or CustomColors properties dynamically.

When the user selects a new colour, the ColorButton generates a ColorChange event.

 Chapter 2 A-Z Reference 145

145

ColorChange Event 430

Applies to ColorButton

If enabled, this event is reported by a ColorButton object when the user chooses a
colour from the colour selection drop-down.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'ColorChange' or 430

[3] New Colour: 3-element integer vector

The 3rd element of the event message contains the RGB value for the selected colour.

Note that the event is reported when the user chooses a colour, whether or not the newly
selected colour differs from the one that was previously selected.

This event is reported for information only and cannot be disabled or modified in any
way.

ColorMode Property

Applies to Printer

Specifies whether or not printing is done in colour.

ColorMode is a single number with the value 0 or 1. If ColorMode is 1, printing is done
in colour. If ColorMode is 0, printing is done using black ink only.

This property only applies to colour printers.

146 Dyalog APL/W Object Reference

ColSorted Method 174

Applies to Grid

This method is used to specify that an image is to be displayed in a Grid column title to
indicate the column has been sorted.

The argument to ColSorted is a 2-element array as follows:

[1] Column number: integer

[2] Sorted State: integer
 ¯1 = sorted down
 0 = not sorted
 1 = sorted up

The column title for the appropriate column is redrawn to include the appropriate
image. If you wish to use your own images, you may specify them using the
ColSortImages property.

 'F'⎕WC'Form' 'Grid: ColSorted Method'
 'F.G'⎕WC'Grid'('Posn' 0 0)(100 100)
 F.G.Values←(COUNTRIES,POPULATION,[1.5]AREA)
 F.G.ColTitles←'Country' 'Population' 'Area'
 F.G.TitleWidth←0

 Chapter 2 A-Z Reference 147

147

 F.G.Values←Values[⍋Values[;2];])
 F.G.ColSorted 2 1

ColSortImages Property

Applies to Grid

The ColSortImages property identifies the names of, or refs to, up to 3 Bitmap objects
that are used to specify the sort images for a Grid object.

If ColSortImages is not specified, default images are used.

The Bitmap specified by the 1st element of ColSortImages is used to display columns
that are sorted down.

The Bitmap specified by the 2nd element of ColSortImages is used to display columns
that are unsorted.

The Bitmap specified by the 3rd element of ColSortImages is used to display columns
that are sorted up.

148 Dyalog APL/W Object Reference

'F'⎕WC'Form' 'Grid: ColSortImages Property'
'F.G'⎕WC'Grid'('Posn' 0 0)(100 100)
F.G.Values←(COUNTRIES,POPULATION,[1.5]AREA)
F.G.ColTitles←'Country' 'Population' 'Area'
F.G.TitleWidth←0

'GD'⎕WC'BITMAP' 'grade_down.bmp'('MaskCol'(255 255 255))
'GU'⎕WC'BITMAP' 'grade_up.bmp'('MaskCol'(255 255 255))
F.G.ColSortImages←'GD' '' 'GU'
F.G.(Values←Values[⍋Values[;3];])
F.G.ColSorted 3 1

 Chapter 2 A-Z Reference 149

149

ColTitle3D Property

Applies to ListView

The ColTitle3D property is a Boolean value that specifies whether or not the column
titles in a ListView object are displayed with a 3-dimensional effect. Its default value is
1. A column heading with a 3-dimensional button appearance may be used to imply that
the user may click on it to sort by the values in that column.

ColTitle3D is only relevant if View is 'Report' and Header is 1. Note that this
property may only be set by ⎕WC and may not subsequently be changed using ⎕WS.

ColTitleAlign Property

Applies to Grid, ListView

The ColTitleAlign property specifies the alignment of column titles. For a ListView
object this is only relevant only when the View property is set to 'Report'.
ColTitleAlign is either a simple character vector, or a vector of character vectors with
the same number of elements as ColTitles.

For a Grid, ColTitleAlign may be: 'Top','Bottom', 'Left', 'Right',
'Centre', 'TopLeft', 'TopRight', 'BottomLeft', or 'BottomRight'.

For a ListView object, ColTitleAlign may be 'Left', 'Right' or 'Centre'.
Also, for a ListView the column data itself is aligned likewise. Note however that the
first column in a ListView is always left-aligned regardless of the setting of
ColTitleAlign. This is a Windows restriction.

Note that both spellings 'Centre' and 'Center' are accepted.

150 Dyalog APL/W Object Reference

ColTitleBCol Property

Applies to Grid

The ColTitleBCol property specifies the background colour of the column titles in a
Grid object

ColTitleBCol may be a scalar that specifies a single background colour to be used for
all of the column titles, or a vector that specifies the background colour of each of the
column titles individually. An element of ColTitleBCol may be an enclosed 3-element
vector of integer values in the range 0-255 which refer to the red, green and blue
components of the colour respectively, or it may be a scalar that defines a standard
Windows colour element (see BCol for details). Its default value is 0 which obtains the
colour defined for Button Face.

 Chapter 2 A-Z Reference 151

151

ColTitleDepth Property

Applies to Grid

ColTitleDepth specifies the structure of a set of hierarchical column titles. It is an
integer vector with the same length as the ColTitles property. A value of 0 indicates that
the corresponding element of ColTitles is a top-level title. A value of 1 indicates that the
corresponding title is a sub-title of the most recent title whose ColTitleDepth is 0; a
value of 2 indicates that the corresponding title is a sub-title of the most recent title
whose ColTitleDepth is 1, and so forth. For example:

 'F'⎕WC'Form'('Coord' 'Pixel')('Size' 200 498)
 'F'⎕WS'Caption' 'Hierarchical Column Titles'
 'F.G'⎕WC'Grid'(?10 12⍴100)(0 0)(200 498)
 'F.G'⎕WS('TitleWidth' 0)('TitleHeight' 60)
 'F.G'⎕WS'CellWidths' 40

 Q1←'First Quarter' 'Jan' 'Feb' 'Mar'
 Q2←'Second Quarter' 'Apr' 'May' 'Jun'
 Q3←'Third Quarter' 'Jul' 'Aug' 'Sep'
 Q4←'Fourth Quarter' 'Oct' 'Nov' 'Dec'

 CT←(⊂'1995'),Q1,Q2,Q3,Q4
 CD←0,16⍴1 2 2 2

 'F.G'⎕WS('ColTitles'CT)('ColTitleDepth'CD)

Note that the LockColumns method is not supported in combination with hierarchical
column titles.

152 Dyalog APL/W Object Reference

ColTitleFCol Property

Applies to Grid

The ColTitleFCol property specifies the colour of the column titles in a Grid object

ColTitleFCol may be a scalar that specifies a single colour to be used for all of the
column titles, or a vector that specifies the colour of each of the column titles
individually. An element of ColTitleFCol may be an enclosed 3-element vector of
integer values in the range 0-255 which refer to the red, green and blue components of
the colour respectively, or it may be a scalar that defines a standard Windows colour
element (see BCol for details). Its default value is 0 which obtains the colour defined for
Button text.

ColTitles Property

Applies to Grid, ListView

This property specifies the headings that are displayed above the columns in a Grid or
ListView object. If specified, it must be a vector of character vectors or matrices (Grid
only).

The default value of ColTitles in a Grid is an empty character vector. In this case, the
system displays “standard” spreadsheet column titles A-Z, AA-AZ, BA-BZ and so
forth.

To disable the display of column titles in a Grid, you should set the TitleHeight property
to 0.

 Chapter 2 A-Z Reference 153

153

ColumnClick Event 320

Applies to ListView

If enabled, this event is reported when the user clicks on the column heading in a
ListView object. This event may not be disabled or affected by a callback function in
any way.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'ColumnClick' or 320

[3] Column number: Integer.

[4] Button: button pressed (number)
1 = left button
2 = right button
4 = middle button

[5] Shift State: sum of shift key codes (number)
 1 = Shift key is down
 2 = Ctrl key is down
 4 = Alt key is down

ColumnWidth Property

Applies to List

This property specifies the column width in pixels of a multi-column List object. See
MultiColumn property for details.

154 Dyalog APL/W Object Reference

Combo Object

Purpose This object combines an input area with a list box and allows the
 user to enter a selection by typing text or by choosing an item from
 the list.

Parents ActiveXControl, CoolBand, Form, Grid, Group, PropertyPage,

SubForm, ToolBar, ToolControl

Children Circle, Cursor, Ellipse, Font, Marker, Poly, Rect, Text, Timer

Properties Type, Items, Text, Posn, Size, Style, Coord, Rows, Border, Active,

Visible, Event, VScroll, HScroll, SelItems, SelText, Sizeable,
Dragable, FontObj, FCol, BCol, CursorObj, AutoConf, Index, Data,
Attach, EdgeStyle, Handle, Hint, HintObj, Tip, TipObj, Translate,
Accelerator, AcceptFiles, KeepOnClose, Redraw, TabIndex,
MethodList, ChildList, EventList, PropList

Events Change, Close, Configure, ContextMenu, Create, DragDrop,

DropDown, DropFiles, DropObjects, Expose, FontCancel, FontOK,
GotFocus, Help, KeyPress, LostFocus, MouseDblClick, MouseDown,
MouseEnter, MouseLeave, MouseMove, MouseUp, MouseWheel,
Select

Methods Animate, ChooseFont, Detach, GetFocus, GetTextSize, ShowSIP

Three types of Combo box are provided by the Style property which may be 'Drop'
(the default), 'Simple' or 'DropEdit'.

The Items property specifies the list of items which are displayed in the list box and
from which the user can choose.

The SelItems property is a Boolean vector which specifies which (if any) of the items is
selected. When the user chooses an item from the list, it is copied to the edit field and a
Select event is generated. At this point you may use SelItems to identify the chosen
item. You can also use SelItems to pre-select the contents of the edit field.

If the Style is 'Simple' or 'DropEdit', the user may type text into the edit field.
In these cases, the contents of the edit field may also be specified or queried using the
Text property. Note that if the user first selects an item from the list box, then changes it
in the edit field, the entry in the list box is automatically deselected. There is therefore
no conflict between the value of Text and the value of SelItems.

 Chapter 2 A-Z Reference 155

155

156 Dyalog APL/W Object Reference

For a Combo with Style 'Simple', the Index property specifies or reports the position
of Items in the list box as a positive integer value. If Index has the value "n", it means
that the "nth" item in Items is displayed on the top line in the list box. Note that Index
can only be set using ⎕WS and not by ⎕WC and is ignored if all the Items fit in the list
box. The default value for Index is ⎕IO.

The SelText property identifies the portion of the edit field that is highlighted. It is not
applicable to a Combo with Style 'Drop' as the user cannot enter or change data in its
edit field.

The height of a Combo object with Style 'Drop' or 'DropEdit' is defined in a
manner that is different from other objects. The height of the edit field is fixed, and is
dependent only upon the size of the font. The height of the associated drop-down list
box is determined by the Rows property. The first element of the Size property (height)
is ignored. For a Simple combo box (whose list box is permanently displayed), the
overall height is determined by the first element of Size. Rows is a "read-only"
property.

If the Style is 'Simple' or 'DropEdit', the HScroll property determines whether
or not the edit field may be scrolled. If HScroll is 0, the data is not scrollable, and the
user cannot enter more characters once the field is full. If HScroll is ¯1 or ¯2 the field
is scrollable, and there is no limit on the number of characters that can be entered. In
neither case however is a horizontal scrollbar provided. If Style is 'Drop', the user is
not allowed to enter data into the edit field anyway, and the value of HScroll is ignored.

Note that when you change the Items property using ⎕WS, the Text, SelItems and
SelText properties are all reset to their default values.

The Combo object will report a Select event (if enabled) when the user chooses an item
from the list box. It will generate a Change event (if enabled) when the user manually
alters the contents of the edit field and then changes the focus to another object.

 Chapter 2 A-Z Reference 157

157

ComboEx Object

Purpose The ComboEx object is an extended version of the Combo object that
provides additional features including item images

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, SubForm,

ToolBar, ToolControl

Children Circle, Cursor, Ellipse, Font, Marker, Poly, Rect, Text, Timer

Properties Type, Items, Text, Posn, Size, Style, Coord, Rows, Border, Active,

Visible, Event, Indents, ImageListObj, ImageIndex, SelImageIndex,
CaseSensitive, EditImage, EditImageIndent, PathWordBreak,
VScroll, HScroll, SelItems, SelText, Sizeable, Dragable, FontObj,
FCol, BCol, CursorObj, AutoConf, Index, Data, Attach, EdgeStyle,
Handle, Hint, HintObj, Tip, TipObj, Translate, Accelerator,
AcceptFiles, KeepOnClose, Redraw, TabIndex, MethodList,
ChildList, EventList, PropList

Events Close, Configure, ContextMenu, Create, DragDrop, DropDown,

DropFiles, DropObjects, Expose, FontCancel, FontOK, GotFocus,
Help, KeyPress, LostFocus, MouseDblClick, MouseDown,
MouseEnter, MouseLeave, MouseMove, MouseUp, MouseWheel,
Select

Methods Animate, ChooseFont, Detach, GetFocus, GetTextSize, ShowSIP

The ComboEx object is a Combo Box that supports item images and indenting. It is a
superset of the Combo object and supports all its functionality. For further details, see
Combo Object.

For most purposes, you can use the ComboEx object in place of the Combo object
whether or not you make use of the extended features of the ComboEx.

Like the basic Combo, the list of text items in the ComboEx is specified by the Items
property. You may associate images with each of the text items using the ImageList,
ImageIndex and SelImageIndex properties.

To do so, ImageList specifies the name of an ImageList object that contains a set of
images. ImageIndex and SelImageIndex map individual images from the ImageList to
each of the text items specified by Items. ImageIndex specifies the image to be
displayed when the item is not selected; SelImageIndex specifies the image to be
displayed when the item is selected.

158 Dyalog APL/W Object Reference

The Indents property specifies the amount by which each of the items are indented in
units of 10 pixels

The appearance of the items is additionally controlled by the EditImage and
EditImageIndent properties. These are Boolean and their effect is summarised in the
table below. Notice that Images are displayed only if both these properties are set to 1
(which is the default).

There are certain restrictions that apply to a ComboEx object with Style 'Simple',
namely:

 images and indents do not apply to the edit control portion of the object.
 the object may not redraw properly if EditImage and/or EditImageIndent are

set to 0 or if CaseSensitive or PathWordBreak are set to 1.
 PathWordBreak does not work.

 EditImageIndent

EditImage 0 1

0 No images displayed, item text
is indented as specified by
Indents

No images displayed, item text
is indented as specified by
Indents plus the width of the
images in ImageList

1 No images displayed, item text
is indented as specified by
Indents

Images are displayed, items
are indented as specified by
Indents

 Chapter 2 A-Z Reference 159

159

Configure Event 31

Applies to ActiveXControl, Animation, Button, Calendar, ColorButton, Combo,
ComboEx, CoolBar, DateTimePicker, Edit, Form, Grid, Group,
Label, List, ListView, MDIClient, ProgressBar, PropertyPage,
RichEdit, Scroll, SM, Spinner, Static, StatusBar, SubForm, TabBar,
ToolBar, ToolControl, TrackBar, TreeView, UpDown

If enabled, this event is generated when the configuration of an object (position and/or
size) is about to change.

For a Form, the event is generated when the Form is resized or moved by the user.

For any object other than a Form, it can occur in one of two ways. Firstly, whenever a
Form is resized, the system (by default) re-arranges its children so as to maintain their
relative position and size. This generates a Configure event (if enabled) for each one of
them.

Secondly, it can occur as a result of the user resizing the object directly. This facility is
enabled by setting the object's Sizeable property to 1.

Note that a Configure event is not reported when an object is moved using "drag &
drop". See Dragable (property) and DragDrop (event) for details of this operation.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'Configure' or 31

[3] Y: y-position of top left corner

[4] X: x-position of top left corner

[5] H: height of object

[6] W: width of object

For any object, the operation can be prevented by returning a scalar 0 from the callback
function associated with the Configure event.

160 Dyalog APL/W Object Reference

Full-Drag Considerations

The user may choose a system option, described here as full-drag, whereby the contents
of the window are re-arranged during a resize operation.

If you manage the geometry of your controls using the Attach property, APL honours
full drag during resize, changing the size and position of your controls dynamically for
you.

However, if you manage the geometry of controls using Configure event callbacks, you
should consider the following.

If full drag is in enabled, APL generates Configure events during the resize operation,
allowing you to dynamically alter the geometry of controls as you wish. However, the
following restrictions apply:

1. Configure callbacks will only be executed when the interpreter is idle. For example

during a ⎕DQ or during Session input (6-space prompt). If the user attempts to
move/resize a window that has Configure callbacks attached when the interpreter is
busy, the move/resize is not started. This is similar to the operation in non full drag
mode, where the move/resize is allowed but the callback does not execute until the
interpreter again becomes idle.

2. The callback cannot be traced. It is necessary to debug the callback code with full

drag disabled.

3. Any untrapped errors in the Configure callback will not halt execution in the
normal way, but will instead be reported in the Status Window. Note that it is also
not possible to trap such errors higher up the SI stack than the Configure Callback.

4. There are some programming styles to be avoided if full drag Configure callbacks

are to be processed correctly. For example events generated by monadic ⎕NQ
within a Configure callback will not be processed until the entire resize operation
has been completed.

5. It is not possible to save a workspace from within a Configure Callback in full drag
mode.

The above restrictions apply to Configure events when full drag is enabled, but only
when full drag is enabled. The behaviour of Configure callbacks with full drag disabled
is the same as for other events.

 Chapter 2 A-Z Reference 161

161

Container Property

Applies to ActiveXControl

The Container property is a read-only property whose value is the ⎕OR of an
ActiveXContainer object that represents the ActiveX Site object of the application that is
hosting the ActiveXControl.

The value of Container may be converted to a namespace using ⎕NS or ⎕WC.

The resulting object may then be used to obtain the values of ambient properties, or to
access methods exposed by the host application via OLE interfaces. For further
information, see OLEQueryInterface.

ContextMenu Event 410

Applies to ActiveXControl, Animation, Button, Calendar, ColorButton, Combo,
ComboEx, CoolBar, DateTimePicker, Edit, Form, Grid, Group,
Label, List, ListView, MDIClient, ProgressBar, PropertyPage,
RichEdit, Scroll, Spinner, Static, StatusBar, SubForm, TabBar,
ToolBar, ToolControl, TrackBar, TreeView, UpDown

If enabled, this event is reported when the user performs the standard Windows action
to display a ContextMenu. These include clicking/releasing the right mouse button and
pressing F10.

If the object has its own standard context menu, for example an Edit object, the default
action is to display this menu. If the object is dockable (see Docking Property), the
default action is to display the standard (English) Dyalog APL docking menu.

You may use this event to display your own pop-up context menu, by ⎕DQ'ing it within
a callback function. In this case, your callback function should return 0 to disable the
standard context menu.

162 Dyalog APL/W Object Reference

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'ContextMenu' or 410

[3] Empty character vector: (reserved)

[4] Y: y-position of the mouse (number)

[5] X: x-position of the mouse (number)

CoolBand Object

Purpose The CoolBand object represents an area in a CoolBar that contains a
child window.

Parents CoolBar

Children Bitmap, BrowseBox, Button, Clipboard, Combo, ComboEx, Cursor,

Edit, FileBox, Font, Grid, Group, Icon, ImageList, Label, List,
ListView, Menu, Metafile, MsgBox, OCXClass, OLEClient, Printer,
ProgressBar, RichEdit, Scroll, Spinner, Static, StatusBar, SubForm,
TabControl, TCPSocket, Timer, TipField, ToolBar, ToolControl,
TrackBar, TreeView, UpDown

Properties Type, Caption, Posn, Size, Visible, Event, ImageIndex, FCol, BCol,

Picture, Index, Data, KeepOnClose, ChildEdge, NewLine,
GripperMode, Dockable, UndocksToRoot, MethodList, ChildList,
EventList, PropList

Events Close, Create, DockAccept, DockCancel, DockEnd, DockMove,

DockRequest, DockStart

Methods Detach

The CoolBand object is a container object that represents a band in a CoolBar.

A CoolBand can have any combination of a gripper bar, a bitmap, a text label, and a
single child object.

A CoolBand may not contain more than one child object, but that child object may itself
be a container such as a ToolControl or a SubForm.

 Chapter 2 A-Z Reference 163

163

The Caption property specifies a text string to be displayed to the left of the CoolBand.
The colour of the text is specified by the FCol property.

The ImageIndex property specifies an optional picture which is to be displayed
alongside the Caption. If specified, ImageIndex is an index into an ImageList whose
name is referenced via the ImageListObj property of the parent CoolBar.

The background in a CoolBand may be specified using its BCol or Bitmap properties.
Although typically, the visible background area is small, it is visible through a
transparent ToolControl.

The ChildEdge property specifies whether or not the CoolBand leaves space above and
below its child window.

The GripperMode property specifies whether or not the CoolBand has a gripper bar
which is used to reposition and resize the CoolBand within its parent CoolBar.
GripperMode may be 'Always' (the default), 'Never' or 'Auto'.

The position of a Cool Band within a CoolBar is determined by its Index and NewLine
properties, and by the position and size of preceding CoolBand objects in the same
CoolBar. For a CoolBand, Posn is a read-only property.

The Index property specifies the position of a CoolBand within its parent CoolBar,
relative to other CoolBands and is ⎕IO dependant. Initially, the value of Index is
determined by the order in which the CoolBands are created. You may re-order the
CoolBands within a CoolBar under program control by changing Index with ⎕WS.

The NewLine property specifies whether or not the CoolBand occupies the same row as
an existing CoolBand, or is displayed on a new line within its CoolBar parent. The
value of NewLine in the first CoolBand in a CoolBar is always 1, even if you specify it
to be 0. You may move a CoolBand to the previous or next row by changing its
NewLine property (using ⎕WS)from 1 to 0, or from 0 to 1 respectively.

The 2nd element of the Size property determines the width of the CoolBand; the value
of the 1st element is read-only.

Size may only be specified by ⎕WC. However, when you create a CoolBand, it will
automatically occupy all the available space in the current row, to the right of any
preceding CoolBands. Only when you create another CoolBand in the same row, will
the Size of the first CoolBand be honoured. The rightmost CoolBand will always extend
to the right edge of the CoolBar, whatever its Size.

If you create two or more CoolBands in the same row and you do not specify Size, the
first CoolBand will be maximised, and the others minimised.

164 Dyalog APL/W Object Reference

When the user drags a CoolBand to a different row its Index and NewLine properties
may change, as may the Index and NewLine properties of any another CoolBand that is
affected by the operation.

If you wish to remember the user’s chosen layout when your application terminates, you

must store the values of Index, Size and NewLine for each of the CoolBands. When
your application is next started, you must re-create the CoolBands with the same values
of these properties.

CoolBar Object

Purpose The CoolBar object acts as a container for CoolBand objects.

Parents ActiveXControl, Form

Children CoolBand, ImageList, Menu, Timer

Properties Type, Posn, Size, Align, Event, ImageListObj, FCol, BCol,

CursorObj, Data, Attach, Handle, KeepOnClose, BandBorders,
DblClickToggle, FixedOrder, VariableHeight, DockChildren,
Redraw, MethodList, ChildList, EventList, PropList

Events Close, Configure, ContextMenu, Create, DockAccept, DockCancel,

DockEnd, DockMove, DockRequest, DockStart, DragDrop,
DropFiles, DropObjects, Expose, Help

Methods Animate, Detach, GetFocus, GetTextSize, ShowSIP

A CoolBar contains one or more bands (CoolBands). Each band can have any
combination of a gripper bar, a bitmap, a text label, and a single child object. Using the
gripper bars, the user may drag bands from one row to another, resize bands in the same
row, and maximise or minimise bands in a row.

The VariableHeight property specifies whether or not the CoolBar displays bands in
different rows at the minimum required height (the default), or all the same height.

The BandBorders property specifies whether or not narrow lines are drawn to separate
adjacent bands. The default is 0 (no lines).

 Chapter 2 A-Z Reference 165

165

The DblClickToggle property specifies whether or not the user must single-click (the
default) or double-click to toggle a child CoolBand between its maximised and
minimised state.

The FixedOrder property specifies whether or not the CoolBar displays CoolBands in
the same order. If FixedOrder is 1, the user may move bands to different rows, but the
band order is static. The default is 0. Note that when the user moves a CoolBand within
a CoolBar, the values of its Index and NewLine properties will change accordingly.

If you wish to display pictures in one or more of the CoolBands owned by a CoolBar,
you do so by setting the ImageListObj property to the name of an ImageList object
which contains the pictures. Pictures are allocated to individual CoolBands via their
ImageIndex properties.

Coord Property

Applies to ActiveXControl, Animation, Bitmap, Button, Calendar, Circle,
ColorButton, Combo, ComboEx, DateTimePicker, Edit, Ellipse,
Form, Grid, Group, Image, Label, List, ListView, Locator, Marker,
MDIClient, Menu, Metafile, NetControl, Poly, Printer, ProgressBar,
PropertyPage, PropertySheet, Rect, RichEdit, Root, Scroll, SM,
Spinner, Splitter, Static, StatusBar, StatusField, SubForm, TabBar,
Text, ToolBar, TrackBar, TreeView, UpDown

This property defines an object's co-ordinate system. It is a character string with one of
the following values; 'Inherit', 'Prop', 'Pixel', 'User' or 'Cell'
(graphics children of a Grid only).

If Coord is 'Inherit', the co-ordinate system for the object is inherited from its
parent. Note that the default value of Coord for the system object '.' is 'Prop', so
by default all objects created by ⎕WC inherit 'Prop'.

If Coord is 'Prop', the origin of the object's parent is deemed to be at its top left
interior corner, and the scale along its x- and y-axes is 100. The object's position and
size (Posn and Size properties) are therefore specified and reported as a percentage of
the dimensions of the parent object, or, for a Form, of the screen.

166 Dyalog APL/W Object Reference

If Coord is 'Pixel', the origin of the object's parent is deemed to be at its top left
interior corner, and the scale along its x- and y-axes is measured in physical pixel units.
The object's size and position (Posn and Size properties) are therefore reported and set
in physical pixel units. If you set Coord on the system object to 'Pixel', the value of
its Size property gives you the resolution of your screen, e.g. (480,640). Note that pixels
are numbered from 0 to (Size-1).

If Coord is 'User', the origin and scale of the co-ordinate system are defined by the
values of the YRange and XRange properties of the parent object. Each of these is a 2-
element numeric vector whose elements define the co-ordinates of top left and bottom
right interior corners of the (parent) object respectively. The following examples
illustrate the principle.

Note that if Coord is 'User' and you change the values of YRange and/or XRange of
the parent, the object (and all its siblings with Coord 'User') are redrawn (and
clipped) according to the new origin and scale defined for the parent. The values of their
Posn, Size and Points properties are unaffected. Changing YRange and/or XRange
therefore provides a convenient and efficient means to "pan and zoom".

The Coord property for graphic objects created as a children of a Grid may also be set to
Cell. Apart from being easier to compute, a graphic drawn using cell co-ordinates will
expand and contract when the grid rows and columns are resized.

Example

This statement creates a button 10 pixels high, 20 pixels wide, and 5 pixels down and
along from the top-left corner of the parent Form.

'TEST.B1'⎕WC'Button' 'OK'(5 5)(10 20)('Coord' 'Pixel')

If you set Coord to 'Pixel' in the Root object '.', then query its Size, you get the
dimensions of the screen in pixels, i.e.

 '.' ⎕WS 'Coord' 'Pixel'
 '.' ⎕WG 'Size'
480 640

 Chapter 2 A-Z Reference 167

167

Copies Property

Applies to Printer

Specifies the number of copies to be printed.

Copies is a non-zero scalar integer value whose default is defined by the current printer
settings.

Create Event 34

Applies to ActiveXContainer, ActiveXControl, Animation, Bitmap, BrowseBox,
Button, Calendar, Circle, Clipboard, ColorButton, Combo, ComboEx,
CoolBand, CoolBar, Cursor, DateTimePicker, Edit, Ellipse, FileBox,
Font, Form, Grid, Group, Icon, Image, ImageList, Label, List,
ListView, Locator, Marker, MDIClient, Menu, MenuBar, MenuItem,
Metafile, MsgBox, NetType, OLEServer, Poly, Printer, ProgressBar,
PropertyPage, PropertySheet, Rect, RichEdit, Scroll, Separator, SM,
Spinner, Splitter, Static, StatusBar, StatusField, SubForm,
SysTrayItem, TabBar, TabBtn, TabButton, TabControl, TCPSocket,
Text, Timer, TipField, ToolBar, ToolButton, ToolControl, TrackBar,
TreeView, UpDown

If enabled, this event is reported after an object has been created. You may not nullify
or modify the event with a 0-returning callback, nor may you generate the event using
⎕NQ, or call it as a method.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'Create' or 34
[3] Flag: 1 = object was created by ⎕WC
 0 = object was created by)LOAD,)COPY

or ⎕WC of its ⎕OR representation

This event also applies to the Session object ⎕SE and may be used to fire a start-up
function (in the ⎕SE namespace) when APL initialises.

168 Dyalog APL/W Object Reference

CurCell Property

Applies to Grid

This property specifies or reports the row and column co-ordinates of the current cell in
a Grid object. The current cell is the one that is currently addressed by the user. It is a 2-
element integer vector and is dependent on ⎕IO.

CurrentColor Property

Applies to ColorButton

The CurrentColor property is a 3-element integer vector that specifies and reports the
RGB value of the currently selected colour in a ColorButton object. Its default value is
(0 0 0) which is black.

CurrentState Property

Applies to TCPSocket

The CurrentState property is a read-only property that reports the current state of a
TCPSocket object. Its possible values and their meanings are as follows:

CurrentState Description

'Open' a client socket that is not yet connected or a UDP
socket

'Bound' a server socket that has been bound

'Listening' a server socket to which a client has not yet
connected

'Connected' a client or server socket that is connected

'IhaveClosed' a temporary state on the way to Closed

'PartnerHasClosed' a temporary state on the way to Closed

'Closed' a socket that has been closed by both client and
server

 Chapter 2 A-Z Reference 169

169

Cursor Object

Purpose This object defines a cursor.

Parents ActiveXControl, Animation, Button, Calendar, Combo, ComboEx,

CoolBand, DateTimePicker, Edit, Form, Grid, Group, ImageList,
Label, List, ListView, OLEServer, ProgressBar, PropertyPage,
PropertySheet, RichEdit, Root, Scroll, SM, Static, StatusBar,
SubForm, TCPSocket, ToolBar, ToolControl, TrackBar, TreeView,
UpDown

Children Timer

Properties Type, File, Bits, CMap, Mask, HotSpot, KeepBits, Event, Data,

Handle, Accelerator, KeepOnClose, MethodList, ChildList,
EventList, PropList

Events Close, Create, Select

Methods Detach, FileRead, FileWrite

The File property defines the name of a cursor file associated with the Cursor object, or
it specifies the name of a DLL and the resource number or name of the cursor therein.
Unless specified explicitly, the file extension .CUR is assumed. If supported by the
Operating System, you may also specify an animated cursor (.ANI) file. A Cursor is
used by setting the CursorObj property of another object to its name or ref. If the value
of the File property is set by ⎕WS, no immediate action is taken, but the corresponding
file may subsequently be read or written using the FileRead or FileWrite methods.

The Bits and Mask properties define the appearance of the cursor. Both are Boolean
matrices with a shape of 32 x 32. The colour of each pixel in the cursor is defined by the
following table. Note that a 0 in Bits combined with a 1 in Mask causes the
corresponding pixel to be the colour of the background. This is used to give the cursor a
non-rectangular shape.

Bits 0 1 0 1
Mask 0 0 1 1
Pixel Black White Background Inverse

The HotSpot property determines the point within the cursor that registers its position
over another object.

170 Dyalog APL/W Object Reference

CursorObj Property

Applies to ActiveXControl, Button, Calendar, Circle, ColorButton, Combo,
ComboEx, CoolBar, DateTimePicker, Edit, Ellipse, Form, Grid,
Group, Label, List, ListView, Locator, MDIClient, Poly, ProgressBar,
Rect, RichEdit, Root, Scroll, SM, Spinner, Splitter, Static, StatusBar,
SubForm, TabBar, Text, ToolBar, TrackBar, TreeView, UpDown

This property is used to associate a particular cursor with an object. Its value is either a
simple scalar number which specifies a standard Windows cursor, or the name of, or ref
to, a Cursor object. The standard Windows cursors are:

 0 arrow (Windows default)
 1 hourglass
 2 crosshair
 3 I-Beam
 4 crossing vertical/horizontal double-headed arrows
 5 diagonal double-headed arrows (left-to-right)
 6 vertical double-headed arrows
 7 diagonal double-headed arrows (right-to-left)
 8 horizontal double-headed arrows
 9 upward pointing arrow
 10 box
 11 crossing vertical/horizontal double-headed arrows
 12 no-entry sign
 13 arrow with hourglass

If CursorObj is set to anything other than an empty vector (which is the default) it
defines the appearance of the cursor when the mouse pointer is moved into the object. If
CursorObj is an empty vector, the shape of the cursor remains unchanged when the
mouse pointer enters the object. In effect, the cursor is "inherited" from its parent.
Exceptions to this rule are certain objects which have special cursors by default.

If the value of CursorObj for the Root object is set to anything other than an empty
vector, it applies to all Forms and their children, irrespective of their own CursorObj
values. Therefore, if you want to indicate that your application is "working" and is not
responsive to input, you can simply do :

 '.' ⎕WS 'CursorObj' 1 ⍝ Hourglass cursor

Then to reset the application you do :

 '.' ⎕WS 'CursorObj' ''

 Chapter 2 A-Z Reference 171

171

CustomColors Property

Applies to ColorButton

The CustomColors property is a 1-row, 16-column nested matrix which specifies the
RGB values of the colours displayed in the Custom colors section of the Windows
colour selection dialog box when displayed by a ColorButton object.

Each element of CustomColors is a 3-element integer vector specifying an RGB colour
value.

By default, each element of CustomColors is (0 0 0). If the user selects a new custom
colour from the Windows colour selection dialog box, its value will be reported by
CustomColors. CustomColors must always have shape (1 16).

Note that CustomColors is maintained separately for each separate ColorButton, and
CustomColors defaults to (1 16⍴⊂0 0 0) for each new ColorButton that you create.
If you want to maintain a global custom colour table for your application, you must do
this yourself.

Note that the Pocket PC 2002 colour selection dialog box does not provide the facility
to select custom colours, so this functionality is not available in Pocket APL.

172 Dyalog APL/W Object Reference

CustomFormat Property

Applies to DateTimePicker

Specifies a custom format for the date/time display in a DateTimePicker.

CustomFormat is a character vector that may contain a mixture of date/time format
elements and body text. The date/time elements are replaced by the actual date/time
values when the object is displayed. The body text is displayed as-is. Note that
CustomFormat may only be specified when the DateTimePicker object is created.

The date/time elements are defined by the following groups of characters, notice that
they are case-sensitive:

Element Description

d The one- or two-digit day.
dd The two-digit day. Single-digit day values are preceded by a zero.
ddd The three-character weekday abbreviation.
dddd The full weekday name.
h The one- or two-digit hour in 12-hour format.

hh The two-digit hour in 12-hour format. Single-digit values are preceded by a
zero.

H The one- or two-digit hour in 24-hour format.

HH The two-digit hour in 24-hour format. Single-digit values are preceded by a
zero.

m The one- or two-digit minute.
mm The two-digit minute. Single-digit values are preceded by a zero.
M The one- or two-digit month number.
MM The two-digit month number. Single-digit values are preceded by a zero.
MMM The three-character month abbreviation.
MMMM The full month name.
t The one-letter AM/PM abbreviation (that is, AM is displayed as "A").
tt The two-letter AM/PM abbreviation (that is, AM is displayed as "AM").
yy The last two digits of the year (that is, 1996 would be displayed as "96").
yyyy The full year (that is, 1996 would be displayed as "1996").

 Chapter 2 A-Z Reference 173

173

The body text is defined by sub-strings contained within single quotes. For example, to
display the current date with the format "Today is: 04:22:31 Tuesday Mar 23, 1996",
the format string is defined as follows:

 CustomFormat
'Today is: 'hh':'m':'s dddd MMM dd', 'yyyy

To include a single quote in your body text, use two consecutive single quotes. For
example, to produce output that looks like: "Don't forget Mar 23, 1996", CustomFormat
should be specified as follows:

 CustomFormat
'Don''t forget' MMM dd',' yyyy

Note non format characters that are not delimited by single quotes will result in
unpredictable display by the DateTimePicker object.

Data Property

Applies to ActiveXContainer, ActiveXControl, Animation, Bitmap, BrowseBox,
Button, Calendar, Circle, Clipboard, ColorButton, Combo, ComboEx,
CoolBand, CoolBar, Cursor, DateTimePicker, Edit, Ellipse, FileBox,
Font, Form, Grid, Group, Icon, Image, ImageList, Label, List,
ListView, Locator, Marker, MDIClient, Menu, MenuBar, MenuItem,
Metafile, MsgBox, OCXClass, OLEClient, OLEServer, Poly, Printer,
ProgressBar, PropertyPage, PropertySheet, Rect, RichEdit, Root,
Scroll, Separator, SM, Spinner, Splitter, Static, StatusBar, StatusField,
SubForm, SysTrayItem, TabBar, TabBtn, TabButton, TabControl,
TCPSocket, Text, Timer, TipField, ToolBar, ToolButton,
ToolControl, TrackBar, TreeView, UpDown

This property allows you to associate arbitrary data with an object. The value of the
Data property may be any APL array.

174 Dyalog APL/W Object Reference

DateTime Property

Applies to DateTimePicker

Specifies the value of date/time in a DateTimePicker.

The DateTime property represents the date and time value that is currently displayed in
a DateTimePicker object.

It is normally a 4-element integer vector containing the date (as an IDN), hour, minutes
and seconds respectively.

However, if the checkbox shown in the object is unset (see HasCheckBox), the value of
DateTime will be ⍬ (zilde).

DateTimeChange Event 267

Applies to DateTimePicker

If enabled, this event is reported by a DateTimePicker object when the user changes the
DateTime value. This occurs when the user selects a new date from the drop-down
calendar, or increments or decrements a date time element using the spinner buttons, or
edits a datetime element using the keyboard. In the latter case, the event may not be
generated until the input focus leaves the corresponding date time element.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'DateTimeChange' or 267

[3] IDN integer

[4] Hour integer

[5] Minute integer

[6] Second integer

This event is reported for information only and cannot be disabled or modified in any
way.

 Chapter 2 A-Z Reference 175

175

DateTimePicker Object

Purpose The DateTimePicker object is an editable date/time field with an
optional drop-down Calendar.

Parents ActiveXControl, Form, Grid, Group, PropertyPage, SubForm,

ToolBar

Children Cursor, Font, Menu, MsgBox, TCPSocket, Timer

Properties Type, Posn, Size, Style, Coord, Align, Border, Active, Visible, Event,

DateTime, MinDate, MaxDate, CalendarCols, Today, HasToday,
CircleToday, WeekNumbers, MonthDelta, HasCheckBox, FieldType,
CustomFormat, Sizeable, Dragable, FontObj, CursorObj, AutoConf,
Data, Attach, EdgeStyle, Handle, Hint, HintObj, Tip, TipObj,
Translate, Accelerator, AcceptFiles, KeepOnClose, Redraw,
TabIndex, MethodList, ChildList, EventList, PropList

Events Close, CloseUp, Configure, ContextMenu, Create, DateTimeChange,

DragDrop, DropDown, DropFiles, DropObjects, Expose, FontCancel,
FontOK, GotFocus, Help, KeyPress, LostFocus, MouseDblClick,
MouseDown, MouseEnter, MouseLeave, MouseMove, MouseUp,
MouseWheel, Select

Methods Animate, ChooseFont, DateToIDN, Detach, GetFocus, GetTextSize,

IDNToDate, ShowSIP

The DateTimePicker object represents the built-in Windows date and time picker
control. For most purposes, the DateTimePicker supersedes the use of Label, Edit and
Spinner objects for displaying and entering dates and times. Unlike the Edit and Spinner
objects, it is not possible for the user to enter an invalid date or time into a
DateTimePicker.

The Style property may be either 'Combo' (the default) or 'UpDown'. The former
provides a drop-down calendar that behaves in the same way as the Calendar object and
whose appearance and behaviour is controlled by a set of properties namely
CalendarCols, CircleToday, HasToday, MaxDate, MinDate, MonthDelta, Today and
WeekNumbers that are common to the Calendar. See the Calendar Object for further
details.

If Style is 'Combo', the Align property specifies the horizontal alignment of the drop-
down Calendar which may be 'Left' (the default) or 'Right'.

176 Dyalog APL/W Object Reference

If Style is 'UpDown', the DateTimePicker includes instead a pair of spinner buttons
that allow the user to increment and decrement values in the various sub-fields provided
by the control.

Note that the Style property may only be set when the object is created.

The DateTime property represents the date and time value that is currently displayed in
the object. This is a 4-element vector containing the IDN, hour, minutes and seconds
respectively.

The FieldType property specifies one of a set of pre-defined date/time formats to be
used by the control. This is a character vector that may be empty (the default), 'Date',
'DateCentury', 'LongDate', 'Time' or 'Custom'. Specifying an empty
vector is the same as specifying 'Date'. Note that 'DateCentury' always displays
a 4-digit year, regardless of the user's Windows settings.

If FieldType is set to 'Custom', the format is defined by the CustomFormat property.
CustomFormat is a character vector that may contain a mixture of date/time format
elements and body text.

The HasCheckBox property is a Boolean value (default 0) that specifies whether or not
a checkbox is displayed in the object. This allows the user to specify whether or not the
date/time displayed in the DateTimePicker is applicable.

 Chapter 2 A-Z Reference 177

177

DateToIDN Method 264

Applies to Calendar, DateTimePicker, Root

This method is used to convert a date from ⎕TS format into an IDN suitable for use in a
Calendar object.

The argument to DateToIDN is a 3-element array as follows:

[1] Year Integer

[2] Month Integer

[3] Day Integer

DateToIDN will also accept a single enclosed argument containing these values. In
either case, if you specify more than 3 numbers, excess elements they will be ignored.

Examples

 F.C.DateToIDN 1998 9 11
36048
 F.C.DateToIDN ⊂1998 9 11
36048
 F.C.DateToIDN ⎕TS
36048
 F.C.DateToIDN,⎕TS
36048

178 Dyalog APL/W Object Reference

DblClickToggle Property

Applies to CoolBar

The DblClickToggle property specifies whether or not the user must single-click or
double-click to toggle a child CoolBand between its maximised or minimised state.

DblClickToggle is a single number with the value 0 (single-click toggles state) or 1
(double-click toggles state); the default is 0.

DDE Event 50

Applies to Root

If enabled, a DDE event is generated whenever a DDE message is received by Dyalog
APL. This will occur whenever a server notifies APL that the value of a shared variable
has changed, and whenever a client application requests data from APL. If you have
several shared variables, you can determine which of them has changed or whose value
has been requested using ⎕SVS.

This event only applies to the Root object '.', so to enable it you must execute one of
the following statements :

 '.' ⎕WS 'Event' 50 1
or
 '.' ⎕WS 'Event' 50 fn
or
 '.' ⎕WS 'Event' 50 fn larg

The first statement would cause ⎕DQ to terminate on receipt of a DDE event. The
second would cause it to call fn each time. The third would do likewise but the value in
larg would be supplied as its left argument. Note that due to the nature of DDE
conversations, messages may be received when in fact no change in the value of any
shared variables has occurred. Your application code must therefore be prepared to cater
for this situation. The event message reported as the result of ⎕DQ, or supplied as the
right argument to your callback function is a 2-element vector as follows :

[1] Object name: '.' (1-element character vector)

[2] Event code: 'DDE' or 50

 Chapter 2 A-Z Reference 179

179

Decimals Property

Applies to Edit, Label, Spinner

This property specifies the number of decimal places to which a number is to be
displayed in an Edit or Label object with FieldType 'Numeric'. For an Edit object,
Decimals also specifies the maximum number of digits that the user may enter after a
decimal point. The default value of decimals is ¯1 which allows any number of decimal
places to be entered.

Default Property

Applies to Button, MsgBox

This property determines which of a set of push buttons in a Form, SubForm or
MsgBox is the default button.

In a Form or SubForm, the Default Button will generate a Select event (30) when the
user presses the Enter key, even though the Default Button may not have the focus at
the time.

If however, the user explicitly shifts the focus to another Push Button, the automatic
selection of the Default Button is disabled and the Enter key applies to the Button with
the focus.

For a Button, the Default property has the value 1 or 0. As only one Button can be the
Default Button, setting Default to 1 for a particular Button automatically sets Default to
0 for all others with the same parent.

In a MsgBox, Default specifies which button initially has the focus. It has the value 1, 2
or 3 corresponding to the three buttons that can be defined. See Btns property for further
details.

180 Dyalog APL/W Object Reference

DefaultColors Property

Applies to ColorButton

The DefaultColors property is a nested matrix which specifies the RGB values of the
colours shown in the colour selection drop-down displayed by a ColorButton object.

The shape of DefaultColors determines the number of rows and columns in the colour
selection drop-down.

Each element of DefaultColors is a 3-element integer vector specifying an RGB colour
value.

DelCol Method 155

Applies to Grid

This method is used to delete a specified column from a Grid object.

The argument to DelCol is a 1 or 2-element vector as follows:

[1] Column number: number of the column (integer) to delete

[2] Undo flag: 0 or 1 (optional; default 0)

If the Undo flag 1, the column may subsequently be restored by invoking the Undo
method. If the Undo flag is omitted or is 0, the operation may not be undone.

 Chapter 2 A-Z Reference 181

181

DelComment Method 221

Applies to Grid

This method is used to delete a comment.

The argument to DelComment is a 2 array as follows or ⍬:

[1] Row: integer

[2] Column: integer

For example, the following expression removes the comment associated with the cell at
row 2, column 1.

 F.G.DelComment 2 1

Note that to delete a comment associated with a row or column title, the appropriate
element in the argument should be ¯1.

If the argument is ⍬, all comments are deleted.

DeleteChildren Method 311

Applies to TreeView

This method is used to delete child items from a parent item in a TreeView object.

The argument to DeleteChildren is a scalar or 1 element array as follows:

 [1] Item number: Integer.

Item number specifies the index of the parent item from which the child items are to be
removed.

The result is an integer that indicates the number of children that have been removed
from the parent item.

182 Dyalog APL/W Object Reference

DeleteItems Method 309

Applies to TreeView

This method is used to delete items from a TreeView object.

The argument to DeleteItems is a 2-element array as follows:

[1] Item number: Integer.

[2] Number of Items: Integer.

Item number specifies the index of the first item to be removed.

Number of items specifies the number of items to be removed and refers to those items
at the same level in the TreeView hierarchy as the Item number. Number of items is
optional and defaults to 1.

Note that any children of these items will also be removed.

The result is an integer that indicates the total number of items, including children, that
have been removed from the TreeView.

DeleteTypeLib Method 521

Applies to Root

The DeleteTypeLib method removes a loaded Type Library from the workspace.

The argument to DeleteTypeLib is as follows:

[1] TypeLib: character vector

The Type Library may be identified by its name or by its class id.

The result is 0, 1 or ¯1.

If successful, the specified Type Library, and all dependant Type Libraries not
referenced by any other currently loaded Type Libraries, are removed from the active
workspace. The result is 1.

 Chapter 2 A-Z Reference 183

183

If the specified Type Library is in use, no action is taken and the result is 0.

If the argument is not the name or CLSID of a loaded Type Library, no action is taken
and the result is ¯1.

DelRow Method 154

Applies to Grid

This method is used to delete a specified row from a Grid object.

The argument to DelRow is a 1 or 2-element array as follows:

[1] Row number: number of the row (integer) to delete

[2] Undo flag: 0 or 1 (optional; default 0)

If the Undo flag is 1, the column may subsequently be restored by invoking the Undo
method. If the Undo flag is omitted or is 0, the operation may not be undone.

Depth Property

Applies to TreeView

The Depth property specifies the structure of the items in a TreeView object. It is either
a scalar 0 or an integer vector of the same length as the Items property.

A value of 0 indicates that the corresponding item is a top-level item. A value of 1
indicates that the corresponding item is a child of the most recent item whose Depth is
0; a value of 2 indicates that the corresponding item is a child of the most recent item
whose Depth is 1, and so forth.

184 Dyalog APL/W Object Reference

For example:

AIRPORTS DEPTH Description

Europe 0 Top-level (root) item
UK 1 1st sub-item of Europe
London Heathrow 2 1st sub-item of UK
London Gatwick 2 2nd sub-item of UK
Manchester 2 3rd sub-item of UK
France 1 2nd sub-item of Europe
Paris CDG 2 1st sub-item of France
Americas 0 Top-level (root) item
USA 1 1st sub-item of N.America
California 2 1st sub-item of USA
Los Angeles 3 1st sub-item of California
San Francisco 3 2nd sub-item of California
East Coast 2 2nd sub-item of USA
New York 3 1st sub-item of East Coast
Kennedy 4 1st sub-item of NY
La Guardia 4 2nd sub-item of NY

'F'⎕WC'FORM' 'International Airports'
'F.TV'⎕WC'TreeView'AIRPORTS(0 0)(100 100)('Depth'DEPTH)

 Chapter 2 A-Z Reference 185

185

Detach Method 270

Applies to ActiveXContainer, ActiveXControl, Animation, Bitmap, BrowseBox,
Button, Calendar, Circle, Clipboard, ColorButton, Combo, ComboEx,
CoolBand, CoolBar, Cursor, DateTimePicker, Edit, Ellipse, FileBox,
Font, Form, Grid, Group, Icon, Image, ImageList, Label, List,
ListView, Locator, Marker, MDIClient, Menu, MenuBar, MenuItem,
Metafile, MsgBox, OCXClass, OLEClient, OLEServer, Poly, Printer,
ProgressBar, PropertyPage, PropertySheet, Rect, RichEdit, Scroll,
Separator, SM, Spinner, Splitter, Static, StatusBar, StatusField,
SubForm, SysTrayItem, TabBar, TabBtn, TabButton, TabControl,
TCPSocket, Text, Timer, TipField, ToolBar, ToolButton,
ToolControl, TrackBar, TreeView, UpDown

This method is used to detach the GUI component from an object without losing the
functions, variables and sub-namespaces that it may contain..

The Detach method is niladic.

The effect of this method is to remove the GUI component associated with the named
object, leaving behind a plain namespace of the same name. All non-GUI child objects
are retained. GUI child objects are either destroyed, or similarly converted to plain
namespaces depending upon the values of their KeepOnClose properties.

186 Dyalog APL/W Object Reference

DevCaps Property

Applies to Printer, Root

This property reports the device capabilities of the screen or printer. It is a 3-element
nested vector as follows. New elements may be added to DevCaps in a future release.

[1] Height and Width: 2-element numeric vector of device in
pixels

[2] Height and Width: 2-element numeric vector of device in mm

[3] Number of colours: integer scalar

This property is useful if you want to make objects of a specific physical size on a
printer. For example, to draw a 10mm square on a Printer 'P' at (5,5):

 Size ← 10 × ⊃÷/2↑'.' ⎕WG 'DevCaps'
 'P.R' ⎕WC 'Rect' (5 5) Size ('Coord' 'Pixel')

Please note that the physical size reported for the screen is typically only a nominal
size, because, if you use a generic video driver, Windows has no way to tell that you
have a 14⍒ , 15⍒ or 17⍒ screen attached to your computer.

Directory Property

Applies to FileBox

The Directory property contains a simple character vector which specifies the initial
directory from which a list of suitable files is displayed.

If, whilst interacting with the FileBox, the user changes directory and exits by pressing
"OK" or by closing the FileBox, the value of the Directory property is updated
accordingly.

 Chapter 2 A-Z Reference 187

187

DisplayChange Event 137

Applies to Root

If enabled, this event is reported when the user changes the screen resolution or number
of colours. The event is reported for information only; you cannot prevent the change
from occurring.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'DisplayChange' or 137

[3] Height: Integer. Number of pixels in the y-
direction

[4] Width: Integer. Number of pixels in the x-
direction

[5] Number of colours: Integer.

Divider Property

Applies to ToolControl

The Divider property controls the presence or absence of a recessed line drawn above,
below, to the left of, or to the right of a ToolControl object.

Divider is a single number with the value 0 (dividing line is not drawn) or 1 (a dividing
line is drawn); the default is 1.

188 Dyalog APL/W Object Reference

Dockable Property

Applies to CoolBand, Form, SubForm, ToolControl

The Dockable property specifies whether or not an object may be docked or undocked.

Dockable is a character vector containing 'Never' (the default), 'Always' or
'Disabled'.

If Dockable is 'Never', the object may not be docked or undocked by the user, and
the docking menu items are not present in the object's context menu. This is the default.

If Dockable is 'Always', the object may be docked or undocked by the user, and the
docking menu items are present in the object's context menu.

If Dockable is 'Disabled', the object may not currently be docked or undocked by
the user, but the docking menu items are present in the object's context menu.

Note that by default, the user may switch between Dockable 'Always'and
'Disabled' by toggling the Dockable menu item. If you want to exercise full control
over this property, you may implement your own context menu (see ContextMenu
Event)

 Chapter 2 A-Z Reference 189

189

DockAccept Event 483

Applies to CoolBand, CoolBar, Form, SubForm, ToolControl

If enabled, this event is reported by a host object just before it accepts a client object
docking operation. This event is reported (by the host) immediately after the
DockRequest is reported (by the client).

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 7-element vector as follows :

[1] Host Object: ref or character vector

[2] Event name or code: 'DockAccept' or 483

[3] Client Object: ref or character vector

[4] Edge: character vector

[5] y-position: number

[6] x-position: number

[7] Outline rectangle: 4-element nested

Elements 4-7 of this event message are the same as those reported by DockMove, and
the effect of a callback function is identical. See DockMove for further information.

DockCancel Event 485

Applies to CoolBand, CoolBar, Form, SubForm, ToolControl

If enabled, this event is reported by a client object when the user aborts a docking
operation by pressing Escape.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Client Object: ref or character vector

[2] Event name or code: 'DockCancel' or 485

This event is reported for information only and cannot be cancelled or inhibited in any
way.

190 Dyalog APL/W Object Reference

DockChildren Property

Applies to CoolBar, Form, SubForm

The DockChildren property specifies the names of client objects that may be docked in
a host object.

DockChildren may be a single ref or simple character scalar or vector, or a vector of
refs or character vectors. Each item represents an object that may be docked. Notice that
iy you use a name, you must specify the simple name of the object, excluding any part
of its full pathname that refers to a parent; i.e. the specified names must not contain any
leading pathname information.

If the name of, or ref to, a dockable object occurs in the DockChildren property, the host
object will generate DockMove events when the client is dragged over it, and will
generate a DockAccept event when a docking operation takes place.

If the name of, or ref to, the client object is not present in its DockChildren property, the
object will not respond in any way as the client is dragged over it.

The following example shows the creation of 3 forms, all of which are dockable in a
host form called H1.

The first, C1, is a totally independent Form. When docked in H1, it will become a
SubForm H1.C1. When undocked, it will revert to an independent Form C1.

The second, C2, is created initially as a child of H1 and will therefore be displayed
above it in the window stacking order. When docked it will become a SubForm H1.C2.
When undocked, it will revert back to a dependant Form H1.C2. In all cases, it appears
on top of H1.

The third, C3, is created initially as a child of another Form, H2. When docked (in H1)
it will become a SubForm H1.C3. When undocked, it will become a dependant Form
H1.C3, and will therefore appear above H1 in the stacking order.

 'H1'⎕WC'Form' 'Host'

 'C1' ⎕WC 'Form' 'Client 1' ('Dockable' 'Always')
 'H1.C2' ⎕WC 'Form' 'Client 2' ('Dockable' 'Always')
 'H2.C3' ⎕WC 'Form' 'Client 3' ('Dockable' 'Always')

 Host.DockChildren←'C1' 'C2 'C3'

 Chapter 2 A-Z Reference 191

191

Docked Property

Applies to Form, SubForm

The Docked property is a read-only property that indicates whether or not an object is
currently docked.

Docked is a single number with the value 0 (is not docked) or 1 (is docked).

DockEnd Event 484

Applies to CoolBand, CoolBar, Form, SubForm, ToolControl

If enabled, this event is reported by a client object after it has been successfully docked
in a host object.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Client Object: ref or character vector

[2] Event name or code: 'DockEnd' or 484

[3] Original parent: ref or character vector

[4] New parent ref or character vector

[5] Flag Boolean

This event is reported for information only and cannot be cancelled or inhibited in any
way.

Flag is 1 if the object was docked; 0 if it was undocked..

192 Dyalog APL/W Object Reference

DockMove Event 481

Applies to CoolBand, CoolBar, Form, SubForm, ToolControl

If enabled, this event is reported by a host object when a dockable object (the client) is
dragged over it. The event will only be reported if the name of the client object is
included in the list of objects that the host object will accept, which is defined by its
DockChildren property.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 7-element vector as follows :

[1] Host Object: ref or character vector

[2] Event name or code: 'DockMove' or 481

[3] Client Object: ref or character vector

[4] Edge: character vector

[5] y-position: number

[6] x-position: number

[7] Outline rectangle: (see below)

The 4th element of the event message Edge is a character vector that indicates along
which edge of the host object the client object will be docked if the mouse button is
released. It is either 'Top', 'Bottom', 'Left', 'Right' or 'None'. The latter
indicates that the object will not be docked. An object will dock only if the mouse
pointer is inside, and sufficiently near to an edge of, the host.

The 5th and 6th elements of the event message report the position of the mouse pointer
in the host object.

The 7th element of the event message is a 4-element nested vector containing the y-
position, x-position, height and width of a rectangle. If Edge is 'None', this is the
bounding rectangle of the client object. Otherwise, the rectangle describes a docking
zone in the host that the client object will occupy when the mouse button is released.

If a callback function returns 0, the system displays the bounding rectangle and not a
docking zone, and the docking operation is inhibited. You could use this mechanism to
prohibit docking along one or more edges, whilst allowing it along others.

A callback function may modify the event message to cause a different sized docking
zone to be displayed, or to force docking along a particular edge.

The DockMove event is generated repeatedly as the docking object is dragged.

 Chapter 2 A-Z Reference 193

193

DockRequest Event 482

Applies to CoolBand, CoolBar, Form, SubForm, ToolControl

If enabled, this event is reported by a client object just before it is docked in a host
object, when the user releases the mouse button.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 7-element vector as follows :

[1] Client Object: ref or character vector

[2] Event name or code: 'DockRequest' or 482

[3] Host Object: ref or character vector

[4] Edge: character vector

[5] y-position: number

[6] x-position: number

[7] Outline rectangle: 4-element nested

Elements 4-7 of this event message are the same as those reported by DockMove, and
the effect of a callback function is identical. See DockMove for further information.

DockShowCaption Property

Applies to Form, SubForm

The DockShowCaption property specifies whether or not a Form displays a title bar
when it is docked as a SubForm.

DockShowCaption is a single number with the value 0 or 1 (the default).

The DockShowCaption property may be toggled on and off by the user from the object's
context menu.

194 Dyalog APL/W Object Reference

The first picture below illustrates a Form, docked as a SubForm, whose
DockShowCaption property is 1, but is about to be set to 0.

The next picture shows the same docked Form with DockShowCaption set to 0.

 Chapter 2 A-Z Reference 195

195

DockStart Event 480

Applies to CoolBand, CoolBar, Form, SubForm, ToolControl

If enabled, this event is reported by a dockable object (one whose Dockable property is
set to 1) when the user starts to drag it using the mouse.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'DockStart' or 480

A callback function may prevent the docking operation from starting by returning 0.

Dragable Property

Applies to ActiveXControl, Animation, Button, Calendar, Circle, ColorButton,
Combo, ComboEx, DateTimePicker, Edit, Ellipse, Grid, Group,
Image, Label, List, ListView, Marker, Poly, ProgressBar, Rect,
RichEdit, Scroll, SM, Spinner, Static, StatusField, Text, TrackBar,
TreeView, UpDown

This property determines whether or not an object may be the subject of a "drag and
drop" operation. It is a single number with the value 0, 1 or 2. A value of 0 (which is the
default) means that the object may not be drag/dropped. A value of 1 means that the
object may be drag/dropped and that during the "drag" operation, a box representing the
bounding rectangle around the object is displayed on the screen. A value of 2 means
that the outline of the object is displayed as the object is dragged, or, if the object is an
Image with a Bitmap property containing the name of an Icon object, the icon itself is
displayed as it is dragged. For rectangular non-graphical objects, values of 1 and 2 are
equivalent.

If an object is Dragable, the user may drag it by positioning the mouse pointer within
the object, depressing the left mouse button, then moving the mouse with the button
held down. During the drag operation, the mouse pointer is automatically changed to a
"drag" symbol. The object is "dropped" by releasing the left mouse button. The effect
depends upon where it is dropped, and on the action associated with the DragDrop
event for the object under the mouse pointer (if any).

If there is no object under the mouse pointer, the "drag and drop" operation is ignored.
Otherwise, the object under the mouse pointer generates a DragDrop event.

196 Dyalog APL/W Object Reference

If the object under the mouse pointer is the parent of the object that has been "dragged
and dropped", the default action is for the system to move that object to the new
location within its parent. If you wish to allow your user to freely move an object within
its parent Form or Group, simply set its Dragable property to 1; the system will take
care of the rest. If you want to allow the user to move an object, but you want to know
about it when it happens, you can associate a callback function to the DragDrop event
that queries the new position. To permit the operation to complete, the callback function
should either not return a result or it should return something other than a scalar 0. To
selectively disable movement, your callback function should return a scalar 0 in
circumstances when the "drop" is not to be permitted.

If the object under the mouse pointer is not the parent of the object being dragged, the
default action is for the system to ignore the operation. However, by enabling the
DragDrop event, your application can of course take whatever action is appropriate,
including perhaps moving the dragged object to a new parent.

Note that a Dragable object does not generate a Configure (31) event when it is dragged
and dropped.

 Chapter 2 A-Z Reference 197

197

DragDrop Event 11

Applies to ActiveXControl, Animation, Button, Calendar, Circle, ColorButton,
Combo, ComboEx, CoolBar, DateTimePicker, Edit, Ellipse, Form,
Grid, Group, Image, Label, List, ListView, Marker, MDIClient, Poly,
ProgressBar, PropertyPage, Rect, RichEdit, Scroll, SM, Spinner,
Static, StatusBar, SubForm, TabBar, Text, ToolBar, ToolControl,
TrackBar, TreeView, UpDown

If enabled, this event is reported when the user drops one object over another. It is
generated by the object which is being dropped on.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 7-element vector as follows:

[1] Object: ref or character vector (target object)

[2] Event code: 'DragDrop' or 11

[3] Object: ref or character vector (dragged object)

[4] Y: y-position of dragged object

[5] X: x-position of dragged object

[6] H: height of dragged object

[7] W: width of dragged object

[8] Shift State: numeric scalar containing the sum of the
values associated with the Shift(1), Ctrl(2)
and Alt(4) keys when the object was
dropped.

Y and X give the position of the top-left corner of the dragged object in the object on
which it was dropped. H and W are the width and height of the dragged object in the
coordinate system of the object on which it was dropped.

198 Dyalog APL/W Object Reference

DragItems Property

Applies to ListView

The DragItems property is Boolean and specifies whether or not the items in a ListView
object may be drag/dropped by the user. Its default value is 1.

DrawMode Property

Applies to Circle, Ellipse, Marker, Poly, Rect, Text

The DrawMode property provides direct control over the low-level drawing operation
performed by graphical objects.

The DrawMode property specifies the current foreground mix mode. The Windows
GDI uses the foreground mix mode to combine pens and interiors of filled objects with
the colours already on the screen. The foreground mix mode defines how colours from
the brush or pen and the colours in the existing image are to be combined.

DrawMode affects every drawing operation performed by Dyalog APL and not just the
initial drawing operation when the object is created. Many of the drawing modes are
additive (the result depends not just on what is being drawn, but on what is already
there) and the effects may therefore vary. For this reason, DrawMode should normally
be used only with unnamed graphical objects.

You could use DrawMode to move or animate graphical objects in circumstances where
the standard Dyalog APL behaviour was not ideal.

 Chapter 2 A-Z Reference 199

199

DrawMode is an integer with one of the following values:

Value Name Resulting Pixel Colour

1 R2_BLACK Pixel is always 0.

2 R2_NOTMERGEPEN Pixel is the inverse of the R2_MERGEPEN color.

3 R2_MASKNOTPEN Pixel is a combination of the colors common to both
the screen and the inverse of the pen.

4 R2_NOTCOPYPEN Pixel is the inverse of the pen color.

5 R2_MASKPENNOT Pixel is a combination of the colors common to both
the pen and the inverse of the screen.

6 R2_NOT Pixel is the inverse of the screen color.

7 R2_XORPEN Pixel is a combination of the colors in the pen and
in the screen, but not in both.

8 R2_NOTMASKPEN Pixel is the inverse of the R2_MASKPEN color.

9 R2_MASKPEN Pixel is a combination of the colors common to both
the pen and the screen.

10 R2_NOTXORPEN Pixel is the inverse of the R2_XORPEN color.

11 R2_NOP Pixel remains unchanged.

12 R2_MERGENOTPEN Pixel is a combination of the screen color and the
inverse of the pen color.

13 R2_COPYPEN Pixel is the pen color.

14 R2_MERGEPENNOT Pixel is a combination of the pen color and the
inverse of the screen color.

15 R2_MERGEPEN Pixel is a combination of the pen color and the
screen color.

16 R2_WHITE Pixel is always 1.

200 Dyalog APL/W Object Reference

DropDown Event 45

Applies to ColorButton, Combo, ComboEx, DateTimePicker, Menu

If enabled, this event is reported when the user clicks the drop-down button in a
ColorButton, Combo, ComboEx, DateTimePicker or Menu object, just before the drop-
down colour selection box, list, calendar or -menu is displayed.

For a DateTimePicker this event only applies if the Style of the DateTimePicker is
'Combo'.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'DropDown' or 45

This event is reported for information only and cannot be disabled or modified in any
way.

 Chapter 2 A-Z Reference 201

201

DropFiles Event 450

Applies to ActiveXControl, Animation, Button, Calendar, ColorButton, Combo,
ComboEx, CoolBar, DateTimePicker, Edit, Form, Grid, Group,
Label, List, ListView, MDIClient, ProgressBar, PropertyPage,
RichEdit, Scroll, Spinner, Static, StatusBar, SubForm, TabBar,
ToolBar, ToolControl, TrackBar, TreeView, UpDown

If enabled, this event is reported when the user drags a file icon or a set of file icons and
drops them onto the object. The system takes no action other than to report the event.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'DropFiles' or 450

[3] Files Vector of character vectors containing the
file names.

[4] Item number: Integer. The index of the item within the
object onto which the file(s) was dropped.
Applies only to objects that have an Items
property such as List, ListView and
TreeView.

[5] Shift state: Integer. Sum of 1=shift key, 2=Ctrl key,
4=Alt key

202 Dyalog APL/W Object Reference

DropObjects Event 455

Applies to ActiveXControl, Animation, Button, Calendar, ColorButton, Combo,
ComboEx, CoolBar, DateTimePicker, Edit, Form, Grid, Group,
Label, List, ListView, MDIClient, ProgressBar, PropertyPage,
RichEdit, Scroll, Spinner, Static, StatusBar, StatusField, SubForm,
TabBar, TabBtn, ToolBar, ToolControl, TrackBar, TreeView,
UpDown

If enabled, this event is reported when the user drags an object icon or a set of object
icons from the Explorer tool (which is part of the Dyalog APL Session) and drops them
onto the object. The system takes no action other than to report the event. You can use
this event to extend drag-drop functionality in your Session. For example, you could
perform an operation by drag-dropping an APL object icon onto a Button in the Session
toolbar.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'DropObjects' or 455

[3] Objects Vector of character vectors containing the
object names.

[4] Item number: Integer. The index of the item within the
object onto which the file(s) was dropped.
Applies only to ListView and TreeView.
Otherwise this value is ¯1.

[5] Shift state: Integer. Sum of 1=Shift key, 2=Ctrl key,
4=Alt key

 Chapter 2 A-Z Reference 203

203

Duplex Property

Applies to Printer

Specifies whether pages are printed on separate sheets or back-to-back.

Duplex is a character vector which is either empty or contains 'Simplex',
'Vertical', or 'Horizontal'.

The default value for Duplex is derived from the current printer setting and
'Vertical' and 'Horizontal' are only effective if the printer supports a duplex
capability.

DuplicateColumn Method 178

Applies to Grid

This method is used to duplicate a column in a Grid object.

The argument to DuplicateColumn is a 2, 3, 4 or 5-element vector as follows:

[1] Source Column number: number of the column (integer) to be
duplicated

[2] Target Column number: new column number (integer)

[3] Comment flag: 0 or 1 (optional, default 1)

[4] Lock flag: 0 or 1 (optional, default 1)

[5] Undo flag: 0 or 1 (optional; default 0)

If the Comment flag is 1 (the default), any Comments associated with cells in the source
column are duplicated in the target column.

If the Lock flag is 1 (the default), the lock state of the column is duplicated; otherwise,
the new column is not locked.

If the Undo flag is 1, the column may subsequently be restored by invoking the Undo
method. If this element is omitted or is 0, the operation may not be undone.

204 Dyalog APL/W Object Reference

DuplicateRow Method 177

Applies to Grid

This method is used to duplicate a column in a Grid object.

The argument to DuplicateRow is a 2, 3, 4 or 5-element vector as follows:

[1] Source Row number: number of the row (integer) to be
duplicated

[2] Target Row number: new row number (integer)

[3] Comment flag: 0 or 1 (optional, default 1)

[4] Lock flag: 0 or 1 (optional, default 1)

[5] Undo flag: 0 or 1 (optional; default 0)

If the Comment flag is 1 (the default), any Comments associated with cells in the source
row are duplicated in the target column.

If the Lock flag is 1 (the default), the lock state of the row is duplicated; otherwise, the
new row is not locked.

If the Undo flag is 1, the row may subsequently be restored by invoking the Undo
method. If this element is omitted or is 0, the operation may not be undone.

 Chapter 2 A-Z Reference 205

205

DyalogCustomMessage1 Event 95

Applies to Form

This event allows external applications and dynamic link libraries to insert events into
the Dyalog APL/W message queue.

DyalogCustomMessage1 may be invoked from a C program as follows:

msg=RegisterWindowMessage("DyalogCustomMessage1");
SendMessage(hWnd,msg,wParam,lParam);

where hWnd is the window handle of the object in the Dyalog APL Workspace. If the
object is a Form, this may be obtained using FindWindow(). If not, hWnd may be
passed to the external process as an argument to a function.

The parameters wParam and lParam are reported as numeric arguments to the APL
callback function.

NOTE: It is not possible to pass pointers to data in wParam or lParam. When the
APL callback executes the pointers may not be valid.

If a callback function is attached to the event, the callback function will be run when the
event reaches the top of the queue.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1 or by returning 0 from a callback function.

The result of a callback function is not returned to the external application.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

 [1] Object: ref or character vector

 [2] Event name or code: 'DyalogCustomMessage1' or 95

 [3] wparam: integer

 [4] lparam: integer

206 Dyalog APL/W Object Reference

EdgeStyle Property

Applies to ActiveXControl, Animation, Button, Calendar, ColorButton, Combo,
ComboEx, DateTimePicker, Edit, FileBox, Form, Grid, Group,
Image, Label, List, ListView, MDIClient, Menu, MenuBar,
MenuItem, MsgBox, Printer, ProgressBar, PropertyPage,
PropertySheet, Rect, RichEdit, Root, Scroll, Separator, SM, Spinner,
Static, StatusBar, StatusField, SubForm, TabBtn, ToolBar, TrackBar,
TreeView, UpDown

This property is used to give a 3-dimensional appearance to screen objects. This is
achieved by drawing the object with a grey or white background colour and by drawing
a border around it using various combinations of black, white and dark grey lines. Note
that this border is drawn outside a control but inside a Form or SubForm. The value of
the EdgeStyle property is a character vector chosen from the following:

EdgeStyle Value Description

'None'
Object is drawn with no 3-dimensional effects and
the EdgeStyle properties of its children are ignored
(treated as None)

'Plinth'

Object is drawn with a light shadow along its top
and left edges and a dark shadow along its bottom
and right edges. This gives the illusion of a raised
effect

'Recess'

Object is drawn with a dark shadow along its top
and left edges and a light shadow along its bottom
and right edges. This gives the illusion of a sunken
effect.

'Groove' Object is drawn with a border that has the
appearance of a groove.

'Ridge' Object is drawn with a border that has the
appearance of a ridge.

'Shadow' Object is drawn with a dark border line along its top
and left edges.

'Default'
Object itself is drawn with no 3-dimensional border,
but the values of the EdgeStyle properties of its
children are observed.

'Dialog'

Used in conjunction with ('Border' 2), this
gives a Form the appearance of a standard 3-
dimensional dialog box. This setting applies only to
a Form or to a SubForm

 Chapter 2 A-Z Reference 207

207

The following illustration shows the result obtained using different values of the
EdgeStyle property with a Rect object.

For the Root object, the EdgeStyle property may be 'None' or 'Default'. If
EdgeStyle is 'None', screen objects are drawn without 3-dimensional effects of any
kind and the value of their EdgeStyle property is ignored. If EdgeStyle is 'Default',
all controls are drawn using their default EdgeStyle properties.

Note that MsgBox, FileBox and the set-up dialog box associated with the Printer object
are all drawn with 3-dimensional effects regardless of the value of EdgeStyle on Root.
These objects do not have their own EdgeStyle properties.

If you set EdgeStyle to 'None' on the Root object, all your objects will (by default) be
drawn without 3-dimensional effects.

Note that Dyalog APL does not add or remove 3-demensional effects to objects

which have already a natural built-in 3-dimensional appearance.

208 Dyalog APL/W Object Reference

Edit Object

Purpose Allows user to enter or edit data.

Parents ActiveXControl, CoolBand, Form, Grid, Group, PropertyPage,

SubForm, ToolBar, ToolControl

Children Circle, Cursor, Ellipse, Font, Marker, Poly, Rect, Text, Timer

Properties Type, Text, Posn, Size, Style, Coord, Border, Justify, Active, Visible,

Event, VScroll, HScroll, SelText, Sizeable, Dragable, FontObj, FCol,
BCol, CursorObj, AutoConf, Data, Attach, TextSize, EdgeStyle,
Handle, Hint, HintObj, Tip, TipObj, FieldType, MaxLength,
Decimals, Password, ValidIfEmpty, ReadOnly, FormatString,
Changed, Value, Translate, Accelerator, AcceptFiles, WantsReturn,
KeepOnClose, Redraw, TabIndex, MethodList, ChildList, EventList,
PropList

Events BadValue, Change, Close, Configure, ContextMenu, Create,

DragDrop, DropFiles, DropObjects, Expose, FontCancel, FontOK,
GotFocus, Help, KeyError, KeyPress, LostFocus, MouseDblClick,
MouseDown, MouseEnter, MouseLeave, MouseMove, MouseUp,
MouseWheel, Select

Methods Animate, ChooseFont, Detach, GetFocus, GetTextSize, ShowSIP

The value of the Style property, which may be 'Single' or 'Multi', determines
whether the object presents a single-line data entry field or an area for viewing and
editing a large block of text.

 Chapter 2 A-Z Reference 209

209

Single-Line Edit

The FieldType property (which applies only to a single-line Edit object) is either an
empty vector (the default) or specifies the type of the field. If FieldType is empty, the
object is a simple character field whose contents are defined by its Text property which
is a character vector. If FieldType is 'Numeric', 'LongNumeric', 'Currency',
'Date', 'LongDate', or 'Time' the object contains a number defined by the
Value property. For fields of these types, basic validation is provided during user input.
The field is revalidated when the user attempts to “leave” it and at this point the object

will generate a BadValue event if its contents are inconsistent with its FieldType.

The MaxLength property defines the maximum number of characters that the user may
enter into the object.

The Password property specifies the character that is displayed in response to the user
typing a character. Normally, Password is empty (the default) and the object displays
the character that was entered. However, if you set Password to (say) an asterisk (*) this
symbol will be displayed instead of the characters the user has entered. Note however
that the Text and Value properties will reflect what the user typed.

The HScroll property determines whether or not the data may be scrolled. If HScroll is
0, the data is not scrollable, and the user cannot enter more characters once the field is
full. If HScroll is ¯1 or ¯2 the field is scrollable, and there is no limit on the number of
characters that can be entered. In neither case however is a horizontal scrollbar
provided.

The picture below illustrates a standard single-line edit field and one with EdgeStyle set
to 'Plinth'. The second field is also smaller than the text it occupies and may be
scrolled.

210 Dyalog APL/W Object Reference

Multi-Line Edit

If the Style is 'Multi', Text may be a simple character vector, a matrix, or a vector of
vectors. If you specify Text as a matrix, "new-line" characters are automatically added
at the end of each row. Similarly, if you specify Text as a vector of vectors, "new-line"
characters are added after each vector. The user may insert a "new-line" character in the
text by pressing Ctrl-Enter.

If you specify (assign) Text as a vector or vector of vectors, it will be returned as a
vector of vectors when you query it. Otherwise, it will be returned as a matrix. "New-
line" characters are not returned.

The behaviour of the Enter key is defined by the WantsReturn property. If this is 0 (the
default) the Enter key is ignored by the Edit object and may instead generate a Select
event on a Button. In this case the user must press Ctrl+Enter to input a new line. If
WantsReturn is 1, the Enter key inputs a new line into the Edit object.

The Justify property determines whether the text in a multi-line Edit object is 'Left',
'Right', or 'Centre' justified. Setting Justify to 'Centre' or 'Right' also
forces word-wrapping and disables horizontal scrolling, whatever the value of HScroll.
Note that they keyword 'Centre' may also be spelled 'Center'. If Style is
'Single', Justify is ignored and the text is left-justified. Justify may only be
specified when the object is created using ⎕WC.

If Justify is 'Left', the HScroll property determines whether or not text may be
scrolled horizontally. If HScroll is set to ¯2, each individual line may be any length, but
the object does not have a horizontal scrollbar. Sideways scrolling is achieved using the
cursor keys, or by typing. If HScroll is ¯1, each individual line may be of any length
and the object will have a horizontal scrollbar. If HScroll is 0, lines are automatically
"word-wrapped" at the right edge of the object. This means that the number of lines
displayed may be greater than the number of lines implied by the rows of the matrix or
the number of vectors supplied. In particular, if you specify a single long vector, it will
be broken up into lines for you on the display, but still returned as a single vector by
⎕WG.

The VScroll property determines whether or not data may be scrolled vertically and
whether or not the object has a vertical scrollbar. A value of 0 inhibits scrolling; ¯2
means scrollable, without a scrollbar; ¯1 means scrollable with a scrollbar.

 Chapter 2 A-Z Reference 211

211

The picture below illustrates two different multi- line edit boxes. The box on the left is
defined with ('Style' 'Multi') ('HScroll' ¯2). Notice that the fourth
wine, "Chateau Balestard-La-Tonnelle", is only partially visible. It may be viewed by
scrolling sideways with the cursor keys. If HScroll had been set to ¯1 a horizontal
scrollbar would also be present. The box on the right is defined as with('Style'
'Multi') ('VScroll' ¯1)('Justify' 'Centre')

The setting of Justify forces word-wrapping. Notice how the fourth wine, "Chateau
Balestard-La-Tonnelle", is spread over two lines.

The SelText property identifies the portion of the text that is selected. It may be used to
pre-select (and highlight) a part of the text, or to report the part of the text selected by
the user. SelText is a 2-element integer vector which specifies the start and end of the
selected area. Its structure depends upon the nature of the data specified by Text. See
the description of SelText for details.

If the user changes any data in the field and attempts to change focus to another object,
the Edit object will generate a Change event. You can use this to validate the new data
in the field.

212 Dyalog APL/W Object Reference

EditImage Property

Applies to ComboEx

Specifies whether or not the edit control portion of the ComboEx displays an image for
selected items.

EditImage is a single number with the value 0 or 1 (the default). If EditImage is 1, the
image associated with the selected item is displayed in the edit control, portion of the
ComboEx object, to the left of the text. If EditImage is 0, only the item text is displayed
in the edit control.

EditImageIndent Property

Applies to ComboEx

Specifies whether or not the indents associated with items in a ComboEx object are
honoured in the edit control portion of the ComboEx.

EditImageIndent is a single number with the value 0 or 1 (the default).

If EditImageIndent is 1, the selected item which is displayed in the edit control portion
of the ComboEx object is indented in the same way as when it is displayed in the
dropdown portion of the object. The amount of indentation is specified by the Indents
property.

If EditImageIndent is 0, the item displayed in the edit control portion of the ComboEx is
not indented.

 Chapter 2 A-Z Reference 213

213

EditLabels Property

Applies to ListView, TreeView

The EditLabels property is Boolean and specifies whether or not the labels (specified by
the Items property) in a ListView or TreeView object may be edited by the user. Its
default value is 0 (editing is not allowed).

If EditLabels is 1, the user begins editing by clicking the label of the item that has the
focus. This causes a pop-up edit box to appear around the item and allows the use to
change it. A BeginEditLabel event is reported at the start of the edit operation and an
EndEditLabel event is reported on its completion. You may control the edit of a
particular label using callback functions attached to these events.

Ellipse Object

Purpose A Graphical object to draw ellipses, arcs, and pie-slices.

Parents ActiveXControl, Animation, Bitmap, Button, Combo, ComboEx,

Edit, Form, Grid, Group, Label, List, ListView, MDIClient, Metafile,
Printer, ProgressBar, PropertyPage, PropertySheet, RichEdit, Scroll,
Spinner, Static, StatusBar, SubForm, TabBar, TipField, ToolBar,
TrackBar, TreeView, UpDown

Children Timer

Properties Type, Points, Size, FCol, BCol, Start, End, ArcMode, LStyle,

LWidth, FStyle, FillCol, Coord, Visible, Event, Dragable, OnTop,
CursorObj, AutoConf, Data, Accelerator, KeepOnClose, DrawMode,
MethodList, ChildList, EventList, PropList

Events Close, Create, DragDrop, Help, MouseDblClick, MouseDown,

MouseMove, MouseUp, Select

Methods Detach

This object duplicates much of the functionality of the Circle object, but differs in two
major respects. Firstly, ellipses, circles, and arcs are specified in terms of their
bounding rectangles, rather than in terms of their centre(s) and radii. Secondly, the
Ellipse object behaves like any other (rectangular) object when it is resized by its
parent. The Circle object behaves differently in that when resized by its parent, it
maintains a constant ratio between its physical height and width.

214 Dyalog APL/W Object Reference

The Points property specifies one or more sets of co-ordinates which define the
position(s) of one or more bounding rectangles. The position is defined to be the
position of the corner that is nearest to the origin of its parent. The default is therefore
its top-left corner.

The Size property specifies the height and width of each bounding rectangle, measuring
away from the origin. To obtain a perfect circle, you must take the aspect ratio of the
device into account. This is available from the DevCaps property of the Root and
Printer objects. Alternatively you can use the Circle object.

The Start and/or End properties are used to draw partial ellipses and circles. They
specify start and end angles respectively, measuring from the x-axis at the centre of the
bounding rectangle in a counter-clockwise direction and are expressed in radians. The
type of arc is controlled by ArcMode as follows.

 ArcMode Effect

 0 An arc is drawn from Start to End.

 1 An arc is drawn from Start to End. In addition, a single
 straight line is drawn from one end of the arc to the other,
 resulting in a chord segment.

 2 An arc is drawn from Start to End. In addition, two lines
 are drawn from each end of the arc to the centre, resulting
 in a pie-slice.

LStyle and LWidth define the style and width of the lines used to draw the boundaries
of the ellipse(s), circle(s) or arc(s). FCol and BCol determine the colour of the lines.

FStyle specifies whether or not the ellipse(s), circle(s) or arc(s) are filled, and if so,
how. For a solid fill (FStyle 0), FillCol defines the fill colour used. For a pattern fill
(FStyle 1-6) FillCol defines the colour of the hatch lines and BCol the colour of the
spaces between them.

The value of Dragable determines whether or not the object can be dragged. The value
of AutoConf determines whether or not the Ellipse object is resized when its parent is
resized.

The structure of the property values is best considered separately for single and multiple
ellipses, circles or arcs :

 Chapter 2 A-Z Reference 215

215

Single Ellipse, Circle or Arc

For a single ellipse, circle or arc, Points is a 2-element vector which specifies the y-
coordinate and x-coordinate of the top-left corner of the bounding rectangle. Size is also
a simple 2-element vector whose elements specify the height and width of the bounding
rectangle. LStyle and LWidth are both simple scalar numbers.

FStyle is either a single number specifying a standard fill pattern, or the name of a
Bitmap object which is to be used to fill the ellipse, circle or arc. FCol, BCol and
FillCol are each either single numbers representing standard colours, or 3-element
vectors which specify colours explicitly in terms of their RGB values.

Examples

First make a Form :

 'F' ⎕WC 'Form'

Draw a complete ellipse within the bounding rectangle located at (y=10, x=5) with
(height=30, width=50) :

 'F.E1' ⎕WC 'Ellipse' (10 5)(30 50)

Draw an elliptical arc within the same bounding rectangle as above, occupying the
upper right quadrant (0 to 90 degrees):

 'F.E1' ⎕WC 'Ellipse' (10 5)(30 50)('End'(○0.5))

Ditto, but between 45 and 135 degrees :

 'F.E1' ⎕WC 'Ellipse' (10 5)(30 50)
 ('Start'(○0.25))('End'(○0.75))

Ditto, but join the points of the arc to the centre of the ellipse, making a "pie-slice":

 'F.E1' ⎕WC 'Ellipse' (10 5)(30 50)
 ('Start'(○0.25))('End'(○0.75))
 ('ArcMode' 2)

Ditto, but use a green line and solid red fill :

 'F.E1' ⎕WC 'Ellipse' (10 5)(30 50)
 ('Start'(○0.25))('End'(○0.75))
 ('ArcMode' 2) ('FCol' 0 0 255)
 ('FStyle' 0)('FillCol' 255 0 0)

216 Dyalog APL/W Object Reference

Multiple Ellipses, Circles or Arcs

To draw a set of ellipses, circles, or arcs with a single name, Points may be a simple 2-
element vector (specifying the location of all the bounding rectangles), or a 2-column
matrix whose first column specifies their y-coordinates and whose second column
specifies their x-coordinates, or a 2-element nested vector whose first element specifies
their y-coordinate(s) and whose second element specifies their x-coordinate(s).

Likewise, Size may be a simple 2-element vector (applying to all the bounding
rectangles), or a 2-column matrix whose first column specifies their heights and whose
second column specifies their widths, or a 2-element nested vector whose first element
specifies their height(s) and whose second element specifies their width(s).

If specified, Start and/or End define arcs in terms of the angles made by drawing a line
from the centre of the bounding box to the two ends of the arc. Both properties may be
simple scalars, or vectors containing one element per arc drawn.

If Start is specified, but not End, end angles default to (¯1↓+\Start),⊃2. If End is
specified, but not Start, start angles default to 0,¯1↓+\End

This means that you can draw a pie-chart using either Start or End angles; you do not
have to specify both.

ArcMode, LStyle and LWidth may each be simple scalar values (applying to all the
ellipses, circles or arcs) or simple vectors whose elements refer to each of the
corresponding ellipses, circles or arcs in turn.

FStyle may be a simple scalar numeric or a simple character vector (Bitmap name)
applying to all rectangles, or a vector whose elements refer to each of the corresponding
ellipses, circles or arcs in turn.

Similarly, FCol, BCol and FillCol may each be single numbers or a single (enclosed) 3-
element vector applying to all the rectangles. Alternatively, these properties may
contain vectors whose elements refer to each of the rectangles in turn. If so, their
elements may be single numbers or nested RGB triplets, or a combination of the two.

The Coord, Dragable and Data properties are specified for the object as a whole, and
may not be allocated different values for each individual ellipse, circle or arc that is
drawn.

 Chapter 2 A-Z Reference 217

217

Examples

First make a Form :

 'F' ⎕WC 'Form'

Draw two ellipses in bounding rectangles located at (y=5, x=10) and (y=5, x=60), each
of (height=40, width=10)

 'F.E1' ⎕WC 'Ellipse' ((5 5)(10 60)) (40 10)

Ditto, using scalar extension for (y=5) :

 'F.E1' ⎕WC 'Ellipse' (5(10 60)) (40 10)

Ditto, but draw the first with (height=40, width=30) and the second with (height=20,
width=10) :

 'F.E1' ⎕WC 'Ellipse' (5(10 60)) ((40 20)(30 10))

Draw an elliptical Pie-Chart in a bounding rectangle located at (y=5, x=10) with a
height and width equal to 40% of the height and width of the parent Form. Each of the 4
pie-slices is bounded by a black line :

 Data←12 27 21 40
 ANGLES←0,¯1↓((○2)÷+/Data)×+\Data
 COLS←(255 0 0)(0 255 0)(255 255 0)(0 0 255)
 PATS←1 2 3 4

 'F.PIE' ⎕WC 'Ellipse'(5 10)(40 40)('Start' ANGLES)
 ('ArcMode' 2) ('FCol' (⊂0 0 0))
 ('FStyle' PATS) ('FillCol' COLS)

218 Dyalog APL/W Object Reference

Encoding Property

Applies to TCPSocket

The Encoding property is a character vector that specifies how character data are
encoded or translated. The possible values are 'None', 'UTF-8', 'Classic', or
'Unicode', depending upon the the value of the Style property.

Unicode Edition

Style Encoding Description

'Raw' 'None'
(default)

Not applicable. Only integer data may be
transmitted/received.

'Char'

'None'
(default)

Transmission is limited to characters with Unicode code
points in the range 0-255. Attempting to transmit (or
receive) a character outside this range will cause
DOMAIN ERROR.

'UTF-8' Characters are transmitted/received using the UTF-8
encoding scheme.

'APL'

'Classic'
(default)

Characters are transmitted/received as indices of ⎕AV,
and translated according to the current value of ⎕AVU.
An attempt to transmit or receive a characters not
present in ⎕AVU will cause TRANSLATION ERROR

'Unicode' Characters are transmitted/received as is (as Unicode
code points).

 Chapter 2 A-Z Reference 219

219

Classic Edition

Style Encoding Description

'Raw' 'None'
(default)

Not applicable. Only integer data may be
transmitted/received.

'Char'

'None'
(default)

Characters (which are represented internally as indices
of ⎕AV) are translated to and from ASCII using the
Output Translate Table win.dot.

'UTF-8' Characters are converted to/from Unicode using ⎕AVU
and transmitted/received using the UTF-8 encoding
scheme. An attempt to transmit or receive a characters
not present in ⎕AVU will cause TRANSLATION
ERROR.

'APL'

'Classic'
(default)

Characters are transmitted/received as indices of ⎕AV.

'Unicode' Characters are transmitted/received as is (as Unicode
code points).

The default value of Encoding depends upon the value of Style as indicated in the above
tables.

An attempt to set the value of Encoding to a value not valid for the current Style, as
implied by the above tables, will cause DOMAIN ERROR.

If you change the value of the Style property, the value of Encoding will remain
unchanged if it is valid for the new Style. Otherwise it will revert to the default value
for the new value of Style.

 's0'⎕WC'TCPSocket' ('LocalPort' 2001)
 s0.(Style Encoding)
 Char None

 s0.Style←'APL'
 s0.(Style Encoding)
 Apl Classic

Note that the 'Classic' encoding is intended for use in communicating with the
Classic Edition, and with programs designed to communicate with Version 11.0 or
earlier. This is why it is the default for now. However, it is however intended that the
default will change to 'Unicode' in due course.

220 Dyalog APL/W Object Reference

End Property

Applies to Circle, Ellipse

This property specifies one or more end-angles for an arc, pie-slice, or chord of a circle
or ellipse. It may be used in conjunction with Start which specifies start angles. Angles
are measured counter-clockwise from the x-axis at the centre of the object.

If a single arc is being drawn, End is a single number that specifies the end angle of the
arc in radians (0 -> ○2). If multiple arcs are being drawn, End is either a single
number as before (the end angle for several concentric arcs) or a numeric vector with
one element per arc.

If Start is not specified, the default value of End is ⊃2. Otherwise, the default value of
End is ((¯1↓+\Start), ○2).

EndEditLabel Event 301

Applies to ListView, TreeView

If enabled, this event is reported when the user signals completion of an edit operation
in a ListView or TreeView object. This occurs when the item being edited loses the
focus or when the user presses the Enter key. The default processing for the event is to
update the item label (string) with the edited text in the pop-up edit box.

You may disable the update operation by setting the action code for the event to ¯1.
You may also prevent the update from occurring by returning 0 from a callback
function. You may specify the text used to update the item by returning the event
message (containing the desired text) from a callback function. Finally, you may change
the text of any item dynamically by calling EndEditLabel as a method.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'EndEditLabel' or 301

[3] Item number: Integer. The index of the item.

[4] Text: character vector containing the text that
will be used to update the item’s label.

 Chapter 2 A-Z Reference 221

221

EndSplit Event 282

Applies to Splitter

If enabled, this event is reported when the user releases the left mouse button to signify
the end of a drag operation on a Splitter object.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1 or by returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'EndSplit' or 282

[3] Y: y-position of top left corner

[4] X: x-position of top left corner

[5] H: height of the Splitter

[6] W: width of the Splitter

See also StartSplit, Splitting.

222 Dyalog APL/W Object Reference

EnterReadOnlyCells Property

Applies to Grid

This is a Boolean property that specifies whether or not the user may visit read-only
cells in a Grid object. Its default value is 1.

In this context, a read-only cell is one that satisfies one or more of the following
conditions:

 it has no associated Input object
 its associated Input object is a Label
 its associated Input object is an Edit object with ReadOnly set to 1.
 its associated Input object is inactive (Active 0)

If EnterReadOnlyCells Cells is set to 0 and the user clicks the mouse on a read-only
cell, the current cell does not change although CellDown, CellUp and CellDblClick
events are reported if enabled. If the user presses a cursor movement key that would
otherwise cause the cursor to move into a read-only cell, the cursor moves instead to the
nearest editable cell in the appropriate direction.

 Chapter 2 A-Z Reference 223

223

Event Property

Applies to ActiveXContainer, ActiveXControl, Animation, Bitmap, BrowseBox,
Button, Calendar, Circle, Clipboard, ColorButton, Combo, ComboEx,
CoolBand, CoolBar, Cursor, DateTimePicker, Edit, Ellipse, FileBox,
Form, Grid, Group, Icon, Image, ImageList, Label, List, ListView,
Locator, Marker, MDIClient, Menu, MenuBar, MenuItem, Metafile,
MsgBox, OCXClass, OLEClient, OLEServer, Poly, Printer,
ProgressBar, PropertyPage, PropertySheet, Rect, RichEdit, Root,
Scroll, Separator, SM, Spinner, Splitter, Static, StatusBar, StatusField,
SubForm, SysTrayItem, TabBar, TabBtn, TabButton, TabControl,
TCPSocket, Text, Timer, TipField, ToolBar, ToolButton,
ToolControl, TrackBar, TreeView, UpDown

This property defines how an object responds to user actions. Unlike other properties
which only have a single value, this property has a value corresponding to each of the
events that may be generated by a particular object. Each event setting is specified by a
2 or 3-element vector containing :

[1] event name(s) (optionally prefixed by the string 'on') or
event number(s) (numeric scalar or vector).

[2] action code (numeric scalar or character vector)

 ¯1 inhibit (ignore) event

 0 handle event, take no other action

 1 ignore event and terminate ⎕DQ

 fn execute callback function fn

 fn& execute callback function fn
asynchronously

 ⍎expr execute expression expr

[3] any array (optional)

The event number 0 and the event name 'All', apply to all events supported by that
object.

Like any other property, the Event property can be set using assignment. However,
certain special considerations apply which are discussed later.

224 Dyalog APL/W Object Reference

If action is set to ¯1, the event is ignored by APL. If, for example, you set the action on
a KeyPress event to ¯1, all keystrokes for the object in question will be ignored.
Similarly, if you set the action on a Close event for a Form to ¯1, the user will be
unable to close the Form. This is possible because APL intercepts most events before
Windows itself takes any action. However, certain events (e.g. focus change events) are
not notified to APL until after the event has occurred and after Windows has itself
responded in some way. In these circumstances it is not always practical for APL to
undo what Windows has already done, and an action code of ¯1 is treated as if it were
0. For further details, see the individual entries for each event type in this Chapter.

If action code is set to 0 (the default), the event is processed by APL and Windows in
the normal way (this is referred to herein as "default processing") but your program is
not notified in any way that the event has occurred. For example, the default processing
for a keystroke is to action it (via the translate table) and either echo a character in the
object or perform some other appropriate function.

If action code is set to 1, ⎕DQ terminates, returning an event message as its result. The
normal processing of the event is not actioned. The format of the event message is given
under the description of each event type in this Chapter.

If action code is set to a character vector that specifies the name of a function, this
function (termed a "callback") will be executed automatically by ⎕DQ whenever the
event occurs. Default processing of the event is deferred until after the callback has
been run, and may be inhibited or modified by its result. If the callback function returns
no result, or returns a scalar 1, normal processing of the event is allowed to continue as
soon as the callback completes. If the callback returns a scalar 0, normal processing of
the event is inhibited and the effect is identical to setting the action code to ¯1. A
callback function may also return an event message as its result. If so, ⎕DQ will action
this event rather than the original one that fired the callback.

Note that that if a callback function does not exist at the instant it is invoked, ⎕DQ
terminates with a VALUE ERROR. However, the name of the missing function is
reported in the Status Window.

If, in setting the Event property, the event name is prefixed by the string 'on', for
example, 'onSelect', the right argument to the callback function will contain one or
more object references. If not, it will contain the corresponding object names or, if the
object has no name, its display form.

If the character & is appended to the name of a callback function, the callback is
executed asynchronously in a new thread. In this case, default processing of the event
is performed immediately. Such a callback should not return a result; if it does so, it will
be treated as normal output and will therefore be displayed in the Session window.

 Chapter 2 A-Z Reference 225

225

When a callback function is invoked by ⎕DQ, the corresponding event message is
supplied as its right argument. The format of the event message is given under the
description of each event type in this chapter. Note that the first element of the event
message is always a reference to or the name of the object that generated the event. It is
a reference if the event name was prefixed by the string 'on'; otherwise it is a
character vector containing the object's name.

If an array was specified as the 4th element of the value of the Event property, the value
of this array is supplied as its left argument.

Notice that ⎕DQ takes account of the syntax defined for the callback, and supplies these
arguments only if it is appropriate to do so. It is possible therefore to use a niladic
callback function. This is appropriate if the callback can perform its task without
needing to interrogate the event message.

If action code is set to a character vector whose first element is the execute symbol (⍎)
the remaining string will be executed automatically whenever the event occurs. The
default processing for the event is performed first and may not be changed or inhibited
in any way.

Notice that when you specify the action to be taken on the occurrence an event there is a
great difference between 'FOO' and '⍎FOO'. The former causes APL to invoke the
function FOO as a callback function. If the function takes an argument, APL will supply
it with the event message. Secondly, the result (if any) of the function FOO will be used
by APL and may cause the event to be disabled or changed in some way. In the second
case, APL will perform the default processing for the event and then execute FOO
without supplying an argument. If the function returns a result, it will be displayed in
the Session.

When using ⎕WC and ⎕WS to assign different events to different callbacks, it is not
necessary to repeat the 'Event' keyword. Instead, several event settings can be
specified at once. In any given occurrence of the Event property you may use event
number(s) or event name(s); however you may not mix numbers and names together.

If you use event names, your callback functions will receive event names in their right
argument when invoked. That is to say that the second element of the event message
will be a character vector. If you use event numbers, the second element of the event
message will be numeric. If you want to specify several event names at once, you must
enclose them. If you use numbers, ⎕WC and ⎕WS are more tolerant about the structure
of their arguments, and will accept many different expressions.

226 Dyalog APL/W Object Reference

If no events are set, the result obtained by ⎕WG and the result obtained by referencing
Event directly are different:

 'F'⎕WC'Form'
 DISPLAY 'F'⎕WG'Event'
.→--.
|0 0|
'~--'
 DISPLAY F.Event
.⊖------------.
| .→--------. |
	.⊖. .⊖.					
	'-' '-'					
'∊--------'						
'∊------------'

Asynchronous Callback Functions

If you append the character & to the name of the callback function in the Event
specification, the callback function will be executed asynchronously in a new thread
when the event occurs. If not, it is execute synchronously.

For example, the event specification:

 onSelect←'DoIt&'

tells ⎕DQ to execute the callback function DoIt asynchronously as a thread when a
Select event occurs on the object. Note that a callback function executed in this way
should not return a result (because ⎕DQ does not wait for it) and any result will be
displayed in the Session window.

 Chapter 2 A-Z Reference 227

227

Specifying the Event property using Assignment

There are two ways to specify the Event property using assignment; you can specify the
entire set of events, or you can set individual events one by one. To specify the entire
set of events, the array assigned to Event must contain one or more nested vectors, each
containing 2 or 3 elements as described above.

For example, if F1 is a Form:

Invoke callback function FOO on MouseDown, the first element of the right argument to
FOO will contain a namespace reference to F1. All other events perform their default
actions.

 F1.Event ← 'onMouseDown' 'FOO'

Invoke callback function FOO on MouseDown, the first element of the right argument to
FOO will contain the character vector 'F1'. All other events perform their default
actions.

 F1.Event ← 'MouseDown' 'FOO'

Invoke callback function FOO on MouseDown and MouseUp. All other events perform
their default actions.

 F1.Event ← ('onMouseDown' 'FOO')('onMouseUp' 'FOO')

Add callback function FOO with ('THIS' 1) as its left-argument on the MouseMove
event. All other events perform their default actions.

 F1.Event, ← ⊂ 'onMouseMove' 'FOO' ('THIS' 1)

To set individual events one by one, you make the assignment to the event name
prefixed by the string 'on'. In all cases, the first element of the right argument to FOO
will contain a namespace reference to F1. You must use the 'on' prefix; you cannot
assign to the Event name itself.

Invoke callback function FOO on MouseDown.

 F1.onMouseDown ← 'FOO'

Add the same callback for MouseUp.

 F1.onMouseUp ← 'FOO'

228 Dyalog APL/W Object Reference

Add callback function FOO with ('THIS' 1) as its left-argument on the MouseMove
event.

 F1.onMouseMove ← 'FOO' ('THIS' 1)

Specifying the Event property using ⎕WC and ⎕WS

Examples using Event Names (⎕WS)

Ignore MouseDown (1) event (APL will perform the default processing for you)

 'F1' ⎕WS 'Event' 'MouseDown' 0

Terminate ⎕DQ on MouseDown

 'F1' ⎕WS 'Event' 'MouseDown' 1

Invoke callback function FOO on MouseDown, the first element of the right argument to
FOO will contain a namespace reference to F1.

 'F1' ⎕WS 'Event' 'onMouseDown' 'FOO'

Invoke callback function FOO on MouseDown, the first element of the right argument to
FOO will contain the character vector 'F1'.

 'F1' ⎕WS 'Event' 'MouseDown' 'FOO'

Invoke callback function FOO on MouseDown and MouseUp

 'F1' ⎕WS 'Event' ('onMouseDown' 'onMouseUp') 'FOO'

Invoke callback function FOO with ('THIS' 1) as its left-argument on MouseDown

 'F1' ⎕WS 'Event' 'onMouseDown' 'FOO' ('THIS' 1)

Invoke callback function FOO with ('THIS' 1) as its left-argument on MouseDown,
MouseUp and MouseMove

 EV ← 'onMouseDown' 'onMouseUp' 'onMouseMove'
 'F1' ⎕WS 'Event' EV 'FOO' ('THIS' 1)

Execute the expression COUNT +←1 on MouseDown

 'F1' ⎕WS 'Event' 'MouseDown' '⍎COUNT+←1'

 Chapter 2 A-Z Reference 229

229

Execute the expression COUNT +←1 on MouseDown, MouseUp and MouseMove

 EV ← 'MouseDown' 'MouseUp' 'MouseMove'
 'F1' ⎕WS 'Event' EV '⍎COUNT+←1'

Examples using Event Numbers (⎕WS)

Ignore MouseDown (1) event (APL will perform the default processing for you)

 'F1' ⎕WS 'Event' (1 0)
 'F1' ⎕WS 'Event' 1 0 ⍝ Ditto

Terminate ⎕DQ on MouseDown

 'F1' ⎕WS 'Event' (1 1)
 'F1' ⎕WS 'Event' 1 1 ⍝ Ditto

Call function FOO on MouseDown

 'F1' ⎕WS 'Event' (1 'FOO')
 'F1' ⎕WS 'Event' 1 'FOO' ⍝ Ditto

Call function FOO on MouseDown and MouseUp

 'F1' ⎕WS 'Event' ((1 2) 'FOO')
 'F1' ⎕WS 'Event' (1 2) 'FOO' ⍝ Ditto
 'F1' ⎕WS 'Event' 1 2 'FOO' ⍝ Ditto
 'F1' ⎕WS 'Event' (1 'FOO')(2 'FOO') ⍝ Ditto

Call function FOO with ('THIS' 1) as its left-argument on MouseDown

 'F1' ⎕WS 'Event' (1 'FOO' ('THIS' 1))
 'F1' ⎕WS 'Event' 1 'FOO' ('THIS' 1) ⍝ Ditto

Call function FOO with ('THIS' 1) as its left-argument on MouseDown and
MouseUp

 'F1' ⎕WS 'Event' ((1 2) 'FOO' ('THIS' 1))
 'F1' ⎕WS 'Event' (1 2) 'FOO' ('THIS' 1) ⍝ Ditto
 'F1' ⎕WS 'Event' 1 2 'FOO' ('THIS' 1) ⍝ Ditto
 'F1' ⎕WS 'Event' 1 2 'FOO' ('THIS' 1) ⍝ Ditto

Execute the expression COUNT +←1 on MouseDown

 'F1' ⎕WS 'Event' 1 '⍎COUNT+←1'

230 Dyalog APL/W Object Reference

Execute the expression COUNT +←1 on MouseDown, MouseUp and MouseMove

 'F1' ⎕WS 'Event' (1 2 3) '⍎COUNT+←1'
 'F1' ⎕WS 'Event' 1 2 3 '⍎COUNT+←1' ⍝ Ditto

User defined Events

In addition to the standard events supported directly by Dyalog APL, you may specify
your own events. For these, you must use event numbers; user-defined event names are
not allowed. It is therefore not possible to use the "on<EventName>" syntax for a user-
defined event.

You may use any numbers not already defined, but it is strongly recommended that you
choose numbers greater than 1000 to avoid potential conflict with a future release of
Dyalog APL.

You can only generate user-defined events under program control with ⎕NQ.

EventList Property

Applies to ActiveXContainer, ActiveXControl, Animation, Bitmap, BrowseBox,
Button, Calendar, Circle, Clipboard, ColorButton, Combo, ComboEx,
CoolBand, CoolBar, Cursor, DateTimePicker, Edit, Ellipse, FileBox,
Font, Form, Grid, Group, Icon, Image, ImageList, Label, List,
ListView, Locator, Marker, MDIClient, Menu, MenuBar, MenuItem,
Metafile, MsgBox, NetControl, OCXClass, OLEClient, OLEServer,
Poly, Printer, ProgressBar, PropertyPage, PropertySheet, Rect,
RichEdit, Root, Scroll, Separator, SM, Spinner, Splitter, Static,
StatusBar, StatusField, SubForm, SysTrayItem, TabBar, TabBtn,
TabButton, TabControl, TCPSocket, Text, Timer, TipField, ToolBar,
ToolButton, ToolControl, TrackBar, TreeView, UpDown

This is a read-only property that reports the names of all the events supported by an
object.

 Chapter 2 A-Z Reference 231

231

ExitApp Event 132

Applies to Root

If enabled, this event is reported when the user attempts to terminate a Dyalog APL/W
application from the Windows Task List.

The Windows Task list displays the names of all running applications. The name
displayed for a Dyalog APL/W application is defined by the Caption property of the
system object Root. If you fail to define this property, there will be no entry for the
application in the Task List.

If you wish to prevent the user from terminating your application from the Windows
Task List, you may disable this event by setting its action code to ¯1. However, if you
do this, your user may be puzzled as to why the operation does not work as expected.
An alternative is to attach a callback function to the event which displays a message
box. Not only does this allow you to provide user feedback, but you can provide
confirm/cancel options. If your callback function returns a zero, your application will
not be terminated.

Note that this event only provides for termination via the Windows Task List. See also
the ExitWindows event.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'ExitApp' or 132

232 Dyalog APL/W Object Reference

ExitWindows Event 131

Applies to Root

If enabled, this event is reported when the user attempts to terminate the Windows
Operating System. When this is done, Windows gives all running applications the
opportunity to prevent it. Typically, an application that has unsaved changes will
display a dialog box warning the user of this situation and offering the opportunity to
cancel the termination. The default action for this event is to allow Windows to close.
You can prevent this by returning a zero from a callback function. You can also prevent
the user from closing Windows down by disabling the event altogether. This is achieved
by setting its action code to ¯1. In most cases this is less preferable than the callback
method as it does not allow you to inform the user as to why Windows won’t terminate.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object name character vector

[2] Event code 'ExitWindows' or 131

[3] Flag 0 or 1

Expanding Event 302

Applies to Grid, TreeView

If enabled, this event is reported by a Grid or a TreeView object just before it is about to
expand to show additional rows or the children of the current item.

In a Grid, this occurs when the user clicks the picture or tree line in the row title. In a
Treeview, this occurs when the user double-clicks the item label or clicks in the button
or on the tree line to the left of the item label.

The default processing for the event is to expand the tree at the corresponding point.

You may disable the expand operation by setting the action code for the event to ¯1.
You may also prevent the expand from occurring by returning 0 from a callback
function. You may expand a TreeView dynamically under program control by calling
Expanding as a method.

 Chapter 2 A-Z Reference 233

233

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'Expanding' or 302

[3] Item number: Integer. The index of the item.

ExportedFns Property

Applies to OLEServer

ExportedFns has been superseded by the SetFnInfo method which overrides it. Use

SetFnInfo instead.

This property specifies the functions to be exposed as methods by an OLEServer object.

ExportedFns may be set to 0 (none), 1 (all), or a vector of character vectors containing
the names of the functions to be exported.

There are certain important restrictions concerning the type of function that you can
export as a method.

Firstly, only top-level defined functions within the OLEServer may be exported; you
cannot export functions in other namespaces including sub-namespaces.

Furthermore, you may not export defined operators, dynamic functions, external
functions, or functions created by function assignment.

Finally, OLE does not support the concept of a dyadic function, so your exported
functions must be niladic, monadic, or take an optional left argument; they may not be
explicitly dyadic.

If you wish to export a new function from your OLEServer, and ExportedFns is not 1,
you must explicitly reset the value of the ExportedFns property before you re-save the
workspace.

234 Dyalog APL/W Object Reference

ExportedVars Property

Applies to OLEServer

ExportedVars has been superseded by the SetVarInfo method which overrides it.

Use SetVarInfo instead.

This property specifies the variables to be exposed as properties by an OLEServer
object.

ExportedVars may be set to 0 (none), 1 (all), or a vector of character vectors containing
the names of the variables to be exported.

Note that you may not export external variables or shared variables, or variables in other
namespaces.

If you wish to export a new variable from your OLEServer, and ExportedVars is not 1,
you must explicitly reset the value of the ExportedVars property before you re-save the
workspace.

 Chapter 2 A-Z Reference 235

235

Expose Event 32

Applies to ActiveXControl, Animation, Button, Calendar, ColorButton, Combo,
ComboEx, CoolBar, DateTimePicker, Edit, Form, Grid, Group,
Label, List, ListView, MDIClient, ProgressBar, PropertyPage,
RichEdit, Scroll, Spinner, Static, StatusBar, SubForm, TabBar,
ToolBar, ToolControl, TrackBar, TreeView, UpDown

If enabled, this event is reported when part or all of the object's window is exposed to
view. Under normal circumstances, APL repaints the exposed region automatically.
However, if you have drawn unnamed graphical objects (which are not managed by
APL) you should use this event to redraw them when required. Note that APL will itself
repaint any named objects in the region before reporting the event.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'Expose' or 32

[3] Y: y-position of top-left corner of exposed
region

[4] X: x-position of top-left corner of exposed
region

[5] H: height of exposed region

[6] W: width of exposed region

This event cannot be disabled by setting its action code to ¯1. Similarly, setting the
result of a callback function to 0 has no effect on it.

236 Dyalog APL/W Object Reference

FCol Property

Applies to ActiveXContainer, ActiveXControl, Button, Circle, Combo,
ComboEx, CoolBand, CoolBar, Edit, Ellipse, Grid, Group, Label,
List, ListView, Marker, Menu, MenuItem, Poly, Rect, RichEdit,
Separator, Spinner, Static, StatusBar, StatusField, TabBtn, Text,
TipField, ToolBar, TreeView, UpDown

This property defines the foreground colour(s) of an object. A single colour is
represented by a single number which refers to a standard colour, or by a 3-element
vector which defines a colour explicitly in terms of its red, green and blue intensities.

For objects such as graphical objects and the Grid, FCol may specify a vector of
foreground colours. Note that when specifying a single foreground colour for these
objects, a 3-element RGB colour vector must be enclosed.

If FCol is 0 (which is the default) the foreground colour is defined by your current
colour scheme for the object in question. For example, if you select red as your
Windows "Button Text" colour, you will by default get red writing on all your Button
objects, simply by not specifying FCol or by setting it to 0.

A negative value of FCol refers to a standard Windows colour as described below.
Positive values are reserved for a possible future extension.

 FCol Colour Element FCol Colour Element

 0 Default ¯11 Active Border
 ¯1 Scroll Bars ¯12 Inactive Border
 ¯2 Desktop ¯13 Application Workspace
 ¯3 Active Title Bar ¯14 Highlight
 ¯4 Inactive Title Bar ¯15 Highlighted Text
 ¯5 Menu Bar ¯16 Button Face
 ¯6 Window Background ¯17 Button Shadow
 ¯7 Window Frame ¯18 Disabled Text
 ¯8 Menu Text ¯19 Button Text
 ¯9 Window Text ¯20 Inactive Title Bar Text
 ¯10 Active Title Bar Text ¯21 Button Highlight

 Chapter 2 A-Z Reference 237

237

If instead, FCol contains a 3-element vector, it specifies the intensity of the red, green
and blue components of the colour as values in the range 0-255. For example, (255 0 0)
is red and (255 255 0) is yellow.

Note that if the colour specified by FCol would normally be rendered as a dithered
colour, it is instead converted to the nearest pure colour available on the device. The
actual colour realised also depends upon the capabilities of the display adapter and
driver, and the current Windows colour map.

For a Button, Combo, Edit, Label, List, Menu and MenuItem, FCol refers to the colour
of the text in the object. Borders around these objects (where applicable) are drawn
using the standard Windows colour. For a Static object however, FCol specifies the
colour of its border.

For the Ellipse, Poly and Rect objects, FCol specifies the colour of the line drawn
around the perimeter of the object. If a dashed or dotted line is used (LStyle 1-4) the
"gaps" in the line are drawn using the colour specified by BCol, or are not drawn if
BCol is not specified. For the Marker object, FCol specifies the colour in which the
markers are drawn.

For some objects, FCol may be a vector of 3-element vectors specifying a set of colours
for the constituent parts of the object. For example, a Poly object consisting of four
polygons, may have a FCol property of four 3-element vectors. In addition, for graphics
objects, FCol is used in place of FillCol if the latter is not specified.

238 Dyalog APL/W Object Reference

FieldType Property

Applies to DateTimePicker, Edit, Label, Spinner

The FieldType property controls data conversion, formatting and validation . For Edit,
Label and Spinner objects, FieldType controls how the Value property of these objects
is interpreted.

FieldType is a character vector. If it is empty (the default) the Edit or Label object is a
standard text object with no special formatting and, in the case of an Edit, no input
validation. For a DateTimePicker, an empty FieldType implies the default which is
'Date'.

For a DateTimePicker, FieldType may be one of the following:

Date Uses Windows “short date” format

DateCentury Uses Windows “short date” format but with a 4-digit year
regardless of user preference

LongDate Uses Windows “long date” format

Time Uses Windows time format

Custom Uses a special format defined by the CustomFormat property

The value of the date or time is represented by the DateTime property. Note that all
validation is performed by the object itself, and it is impossible to enter an invalid
value.

For an Edit, Label and Spinner, if FieldType is defined, the contents of the object are
defined by its Value property (rather than by its Text property) and special formatting
and validation rules are applied. FieldType may be one of the following :

Char Character data

Numeric Simple numeric formatting and validation

LongNumeric Uses Windows number format

Date Uses Windows “short date” format

LongDate Uses Windows “long date” format

Currency Uses Windows currency format

Time Uses Windows time format

 Chapter 2 A-Z Reference 239

239

FieldType 'Char' only affects an Edit object. When the user enters data into a
standard single-line Edit object , the Value property is set to a number if the contents
are numeric, or to a character vector if the contents do not represent a valid number. If
FieldType is 'Char', the Value property is always set to a character vector, regardless
of the type of the field contents.

If FieldType is 'Numeric', the object displays the number defined by its Value
property rounded to the number of decimal places specified by its Decimals property.
The decimal separator character used will be as specified by the Number format in the
user’s International Control Panel settings. If the object is an Edit object, the user is
prevented from entering anything but a valid number. The number of decimal digits is
also restricted to Decimals. When the user leaves the object, the number is re-formatted.

If FieldType is 'LongNumeric', the object displays the number specified by its
Value property according to the Number format in the user’s International Control

Panel settings. This format specifies the 1000 separator, decimal separator, decimal
digits and whether or not a leading zero is inserted.

If the object is an Edit object, the user is prevented from entering anything but a valid
number. However, the character specified for the 1000 separator is ignored and may be
entered anywhere in the number. When the user leaves the object, the number is re-
formatted correctly.

If the FieldType is 'Currency', the object displays the number specified by its Value
property according to the Currency format in the user’s International Control Panel

settings. This specifies the currency symbol and placement, the way in which a negative
value is displayed, and the number of decimal places. If the object is an Edit object, the
user is restricted to entering a reasonable value. When the user leaves the object, the
number is reformatted correctly.

If the FieldType is 'Date', the Value property represents the number of days since
January 1st 1900 and is displayed using the short date format specified by the user’s

International Control Panel settings. If the object is an Edit object, the user is restricted
to entering a reasonable date. The object will accept any numeric triplet separated by
slash(/), colon (:) or space characters but checks that the day number and month number
lie in the range 1-31 and 1-12 respectively and will not allow the user to enter a digit
that would invalidate this. (Note that the position within the triplet of the day, month
and year are as specified by the Windows short date format). However, the user is not
prevented from entering an invalid date such as 31st September.

240 Dyalog APL/W Object Reference

If the FieldType is 'LongDate', the Value property represents the number of days
since January 1st 1900 and is displayed using the long date format specified by the
user’s International Control Panel settings. If the object is an Edit object, its appearance
and behaviour automatically switches to FieldType 'Date' when it has the input focus
and back again when it loses the focus. This allows the user to edit or input a date in a
more convenient form.

For a discussion about the interpretation of 2-digit years in date fields, see the
description of the YY_WINDOW parameter in User Guide.

If the FieldType is 'Time', the Value property represents the number of seconds since
midnight and is displayed using the time format specified by the user’s International
Control Panel settings.

When the user attempts to move the input focus away from the object, the contents are
validated. If they cannot be converted to a valid number, date, or time, the object
generates a BadValue event, or, if the object is associated with a Grid, the Grid (and not
the Edit object) generates a CellError event. See the descriptions of these events for
further details.

Note that for Edit, Label and Spinner objects, FieldType may only be specified when
you create an object using ⎕WC.

 Chapter 2 A-Z Reference 241

241

File Property

Applies to Animation, Bitmap, Cursor, FileBox, Icon, Metafile, RichEdit

For an Animation, Bitmap, Cursor or Icon object, this property is either a simple
character vector or a 2-element nested vector.

If it is simple, File specifies the name of the associated bitmap (.BMP), icon (.ICO) or
cursor (.CUR) file.

If it is nested, the first element specifies the name of a DLL or EXE (Icon only) and the
second element identifies the particular bitmap, icon or cursor in that file. The identifier
may be its name (a character string), its resource id (a non-zero positive integer) or
(Icon only), its index (0 or negative integer) within the file. As a special case, if the
name of the file is an empty vector, the object is loaded from DYALOG.EXE or
DYARESxx.DLL. In this case, the identifier must be a name or resource id; indices are
not supported.

For a Metafile or RichEdit object, File must be simple and specifies the name of a
metafile (.WMF) or Rich Text Format (RTF) file as appropriate.

When applied to a FileBox object, File contains the name of the selected file or file(s).

242 Dyalog APL/W Object Reference

FileBox Object

Purpose Prompts user to select a file.

Parents ActiveXControl, CoolBand, Form, Grid, OLEServer, PropertyPage,

PropertySheet, Root, StatusBar, SubForm, TCPSocket, ToolBar,
ToolControl

Children Timer

Properties Type, Caption, Directory, Filters, File, FileMode, Style, Event, Index,

Data, EdgeStyle, KeepOnClose, MethodList, ChildList, EventList,
PropList

Events Close, Create, FileBoxCancel, FileBoxOK, Select

Methods Detach, Wait

The FileBox object implements the standard Windows File Selection Dialog Box. This
is a "modal" object. When you create a FileBox with ⎕WC, it is initially invisible and the
user cannot interact with it. To use it, you must execute ⎕DQ with the name of the
FileBox as its right argument. This causes the FileBox to be displayed.

 During the "local" ⎕DQ the user may interact only with the FileBox, or with other
applications. When the user terminates the operation (by pressing the "OK" or "Cancel"
Buttons, or by closing the window) the "local" ⎕DQ terminates, and the FileBox
disappears.

When the "local" ⎕DQ is terminated, the FileBox generates either an FileBoxOK(71) or
FileBoxCancel(72) event. The former is generated when the user presses the "OK"
button or closes the FileBox; the latter when the user presses the "Cancel" button. In
both cases, the full pathname of the currently selected file is returned as the second
element of the event message.

The Caption property determines the text that appears in the title bar of the FileBox
window. If the Caption property is not set or is empty, the text in the title bar defaults to
"Save As" if FileMode is 'Write' or to "Open" if FileMode is 'Read'. The
Directory property contains a simple character vector which specifies the initial
directory from which a list of suitable files is displayed.

 Chapter 2 A-Z Reference 243

243

 'F' ⎕WC 'FileBox' 'The FileBox Object' 'C:\WDYALOG'
 ⎕DQ 'F'

The Filters property is a nested scalar or vector containing a list of filters.

The FileMode property is a character vector which indicates the mode in which the
selected file is going to be opened. FileMode may be 'Read' (the default) or
'Write'. If FileMode is 'Write', files listed in the File Selection Box are "greyed",
although they may still be selected.

The Index property determines which of the filters is initially selected. Its default value
is ⎕IO.

Note that when ⎕DQ terminates with FileBoxOK, the File, Directory, and Index
properties are updated to reflect the contents of the fields within the FileBox.

244 Dyalog APL/W Object Reference

FileBoxCancel Event 72

Applies to BrowseBox, FileBox

If enabled, this event is reported when a FileBox is closed because the user has pressed
the "Cancel" button or closed it.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'FileBoxCancel' or 72

[3] File name: character vector containing the name of
the currently selected file (empty if none)

FileBoxOK Event 71

Applies to BrowseBox, FileBox

If enabled, this event is reported when a FileBox is closed because the user has pressed
the "OK" button.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'FileBoxOK' or 71

[3] File name: character vector containing the name of
the currently selected file (empty if none)

 Chapter 2 A-Z Reference 245

245

FileMode Property

Applies to FileBox

The FileMode property applies only to a FileBox object. It indicates the mode in which
the selected file is going to be opened. It is a character vector containing 'Read' (the
default) or 'Write'. If FileMode is 'Write', files listed in the File Selection Box
are greyed, although they may still be selected.

FileRead Method 90

Applies to Bitmap, Cursor, Icon, Metafile, RichEdit

This method causes the object to be recreated from the file named in its File property.

The FileRead method is niladic.

If you attach a callback function to this event and have it return a value of 0, the object
will not be recreated from file.

FileWrite Method 91

Applies to Bitmap, Cursor, Icon, Metafile, RichEdit

This method causes the object to be written to the file named in its File property.

The FileWrite method is niladic.

If you attach a callback function to this event and have it return a value of 0, the object
will not be written to file. You could use this to avoid overwriting an existing file.

246 Dyalog APL/W Object Reference

FillCol Property

Applies to Circle, Ellipse, Poly, Rect

This property defines the fill colour in a graphics object.

If FStyle is 0 (solid fill) FillCol defines the colour with which the object is filled. If
FStyle is in the range 1-6 (pattern fill) it defines the colour of the lines that make up the
pattern. The areas between the lines are filled using the colour specified by BCol, or are
left undrawn (transparent) if BCol is not specified. If FStyle contains the name of a
Bitmap object, the value of FillCol is ignored.

A single colour is represented by a single number which refers to a standard colour, or
by a 3-element vector which defines a colour explicitly in terms of its red, green and
blue intensities. A negative value of FillCol refers to a standard Windows colour as
described below. Positive values are reserved for a possible future extension.

 FillCol Colour Element FillCol Colour Element

 0 Default ¯11 Active Border
 ¯1 Scroll Bars ¯12 Inactive Border
 ¯2 Desktop ¯13 Application Workspace
 ¯3 Active Title Bar ¯14 Highlight
 ¯4 Inactive Title Bar ¯15 Highlighted Text
 ¯5 Menu Bar ¯16 Button Face
 ¯6 Window Background ¯17 Button Shadow
 ¯7 Window Frame ¯18 Disabled Text
 ¯8 Menu Text ¯19 Button Text
 ¯9 Window Text ¯20 Inactive Title Bar Text
 ¯10 Active Title Bar Text ¯21 Button Highlight

If instead, FillCol contains a 3-element vector, it specifies the intensity of the red, green
and blue components of the colour as values in the range 0-255. For example, (255 0 0)
is red and (255 255 0) is yellow. Note that the colour realised depends upon the
capabilities of the display adapter and driver, and the current Windows colour map.

FillCol may also be a vector of 3-element vectors specifying a set of colours for the
constituent parts of the object. For example, a Poly object consisting of four polygons,
may have a FillCol property of four 3-element vectors.

 Chapter 2 A-Z Reference 247

247

Filters Property

Applies to FileBox

The Filters property is a nested scalar or vector containing a list of filters. Each filter is
a 2-element vector of character vectors which contain a file type mask and a file type
description respectively. The file type descriptions appear in a drop-down combo box
labelled "List Files of Type". When the user selects one of these, the currently selected
directory is searched for files which match the corresponding mask. The default value
of Filters is an empty vector. This gives a file type mask of "*.*" and a file type
description of "All Files (*.*)". Hence an empty vector is equivalent to (⊂'*.*'
'All Files (*.*)').

FirstDay Property

Applies to Calendar

The FirstDay property specifies the day that is considered to be the first day of the week
and which appears first in the Calendar.

FirstDay is an integer whose value is in the range 0-6. The default value for FirstDay
depends upon your International Settings, but in most countries is 0 meaning Monday.

Fixed Property

Applies to Font

This property specifies whether or not a font represented by a Font object is fixed-width
or proportional. It is either 0 (fixed-width) or 1 (proportional). There is no default; the
value of this property reflects the characteristic of the selected font.

248 Dyalog APL/W Object Reference

FixedOrder Property

Applies to CoolBar

The FixedOrder property specifies whether or not the CoolBar displays CoolBands in
the same order.

FixedOrder is a single number with the value 0 (user may re-order bands) or 1 (user
may not re-order bands); the default is 0.

If FixedOrder is 1, the user may move bands to different rows, but the band order is
static.

FlatSeparators Property

Applies to TabControl

The FlatSeparators property specifies whether or not separators are drawn between
buttons in a TabControl object. FlatSeparators only affects a TabControl if Style is
'FlatButtons' and is otherwise ignored.

FlatSeparators is a single number with the value 0 (no separators) or 1 (separators); the
default is 0.

Flush Method 135

Applies to Root

This method forces any objects that have been created but not yet shown to be
displayed. Normally, Dyalog APL/W buffers the display of new objects unless they are
being created by a callback function. This event can be used to override the buffering.

The Flush method is niladic.

 Chapter 2 A-Z Reference 249

249

Font Object

Purpose Loads a font resource

Parents ActiveXControl, Animation, Bitmap, Button, Calendar, Combo,

ComboEx, CoolBand, DateTimePicker, Edit, Form, Grid, Group,
Label, List, ListView, MDIClient, Metafile, OLEServer, Printer,
ProgressBar, PropertyPage, PropertySheet, RichEdit, Root, Scroll,
Spinner, Static, StatusBar, SubForm, TabBar, TCPSocket, TipField,
ToolBar, ToolControl, TrackBar, TreeView, UpDown

Children Timer

Properties Type, PName, Size, Fixed, Italic, Underline, Weight, Rotate, CharSet,

Data, Handle, KeepOnClose, MethodList, ChildList, EventList,
PropList

Events Close, Create, FontCancel, FontOK, Select

Methods ChooseFont, Detach

This object loads a Windows font into memory ready for use by another object. The
characteristics of the font are specified by its properties as follows :

PName: A character vector containing the name of the font face,

e.g.'COURIER'. Note that case is ignored when you specify the name,
although it will be returned correctly by ⎕WG. If you specify an empty
vector, you will get an appropriate default font supplied by Windows.

Size: An integer that specifies the character height of the font in pixels.

Fixed: A Boolean value that specifies whether the font is fixed-width (1) or
proportional (0).

Italic: A Boolean value that specifies whether the font is italicised (1) or not
(0).

Underline: A Boolean value that specifies whether the font is underlined (1) or not
(0).

Weight: An integer in the range 0-1000 that specifies how bold or heavy the font
is (1000 = most bold).

Rotate: A numeric scalar that specifies the angle of rotation of the font in
radians. The angle is measure from the x-axis in a counter-clockwise
direction.

250 Dyalog APL/W Object Reference

When you ask Windows to allocate a font, you may specify as many or as few of these
properties as you wish. Windows actually supplies the font that most closely matches
the attributes you have specified. The matching rules it uses are complex, and may be
found in the appropriate Windows documentation.

The values of the above properties after ⎕WC or ⎕WS reflect the attributes of the font
which has been allocated by Windows, and not necessarily the values you have
specified. Furthermore, it is possible that changing the value of one property will cause
the values of others to be changed.

FontCancel Event 242

Applies to ActiveXControl, Button, Calendar, Combo, ComboEx,
DateTimePicker, Edit, Font, Form, Grid, Group, Label, List,
ListView, PropertyPage, PropertySheet, RichEdit, Root, Spinner,
Static, StatusBar, SubForm, TabBtn, Text, TipField, TreeView

If enabled, this event is reported when the user has pressed the Cancel button or closed
the font selection dialog box that is displayed by the ChooseFont method.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'FontCancel' or 242

 Chapter 2 A-Z Reference 251

251

FontList Property

Applies to Printer, Root

The FontList property is a read-only property (you cannot set its value) that provides a
list of available fonts.

Its value is a vector (1 per font) of 6-element character vectors, each of which is as
follows :

[1] Face name (character vector)
[2] Character height in "points" (integer)
[3] Fixed width or not (Boolean)
[4] Italic or not (Boolean)
[5] Underlined or not (Boolean)
[6] Weight (integer)
[7] Angle of rotation (number)

Example

 ↑'.' ⎕WG 'FontList'
 System 16 0 0 0 700 0
 Fixedsys 15 1 0 0 400 0
 Terminal 12 1 0 0 400 0
 MS Serif 13 0 0 0 400 0
 MS Sans Serif 13 0 0 0 400 0
 Courier 13 1 0 0 400 0
 Symbol 13 0 0 0 400 0
 Small Fonts 3 0 0 0 400 0
 Dyalog Alt 16 1 0 0 400 0
 Dyalog Std 16 1 0 0 400 0

Note that the list of fonts obtained from FontList for a Printer object will include
TrueType fonts and printer fonts but will exclude screen fonts. FontList for Root will
include TrueType fonts and screen fonts, but exclude printer-only fonts. The two lists
will therefore (typically) be different.

252 Dyalog APL/W Object Reference

FontObj Property

Applies to ActiveXContainer, ActiveXControl, Bitmap, Button, Calendar,
Combo, ComboEx, DateTimePicker, Edit, Form, Grid, Group, Label,
List, ListView, Menu, MenuBar, MenuItem, Printer, PropertyPage,
PropertySheet, RichEdit, Root, Spinner, Static, StatusBar, StatusField,
SubForm, TabBar, TabBtn, TabControl, Text, TipField, ToolBar,
ToolControl, TrackBar, TreeView

The FontObj property associates a font with an object. It specifies either the name of, or
a ref to, a Font object, or it specifies the attributes of the font directly. The use of the
FontObj property to specify a font directly is supported only for compatibility with
previous releases of Dyalog APL/W and may be removed in the future. The Font object
provides a more efficient mechanism for managing fonts and allows greater flexibility
for drawing and printing graphical text. It is recommended that all fonts be specified
using Font objects and not loaded directly using the FontObj property.

If FontObj specifies a Font object, it is a ref or a simple character vector.

If unspecified, the default value for FontObj is an empty character vector. For most
objects, this setting implies that the font used in the object is inherited from its parent
object. However, CoolBar, Menu, MenuBar, StatusBar, TipField, ToolBar, and
ToolControl objects do not inherit their font.

Note that the default value of FontObj for Root is also an empty character vector and
that this implies the Windows default GUI font, which is a Windows user preference
setting.

Note however that it is not currently possible to specify the font for Menu and
MenuItem objects which are the direct descendants of a MenuBar. Nor is it possible to
specify the font used for the Caption in a Form.

 Chapter 2 A-Z Reference 253

253

If FontObj specifies a font directly, it may be either an empty character vector (this is its
default value) or as an array containing up to 7 elements as follows :

[1] Face name of requested font (character vector)
[2] Character height in pixels (integer)
[3] Fixed width or not (Boolean)
[4] Italic or not (Boolean)
[5] Underlined or not (Boolean)
[6] Weight (integer)
[7] Angle of rotation (integer)

When you assign a value to the FontObj property of an object, Windows actually
supplies the font that most closely matches the attributes you have specified. The
matching rules it uses are complex, and may be found in the appropriate Windows
documentation. The value of the FontObj property reflects the attributes of the font
which has been allocated by Windows, not the value you originally specified.

A list of available fonts and their attributes may be obtained from the FontList property
of the Root object ".".

The "Face name" is the name assigned to the font by Windows. The face name of the
standard Dyalog APL screen font is 'Dyalog Std'. Note that case is ignored when
you specify the name, although it will be returned correctly by ⎕WG.

The size of the font is specified in terms of its height in pixels. If Windows cannot
supply exactly the size you request, it will supply the nearest below that.

A value of 1 in the third element requests a fixed-width font, as opposed to a
proportional one. This attribute is given the maximum weighting by Windows in
choosing a matching font. A value of 1 in the fourth and fifth elements requests the font
attributes italic and underlined respectively. Windows will add these attributes to an
existing font if they don't physically exist. For example, you can obtain italic and
underlined APL characters from the standard APL font. The weight is a number in the
range 0 to 1000 which specifies how feint or bold the characters appear. The larger the
number, the bolder the font. The angle of rotation is measured in 1/10ths of a degree
from the x-axis in a counter-clockwise direction. Its default value is 0.

254 Dyalog APL/W Object Reference

FontOK Event 241

Applies to ActiveXControl, Button, Calendar, Combo, ComboEx,
DateTimePicker, Edit, Font, Form, Grid, Group, Label, List,
ListView, PropertyPage, PropertySheet, RichEdit, Root, Spinner,
Static, StatusBar, SubForm, TabBtn, Text, TipField, TreeView

If enabled, this event is reported when the user has pressed the OK button in the font
selection dialog box that is displayed by the ChooseFont method.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'FontOK' or 241

[3] Font specification nested vector

[4] Colour RGB triplet

The font specification in the 3rd element of the event message is a 7-element nested
vector that describes the chosen font. See Font Object for further details.

The colour specification in the 4th element of the event message is a 3-element integer
vector of RGB values for the colour chosen by the user.

 Chapter 2 A-Z Reference 255

255

Form Object

Purpose This is a top-level window used to contain other objects (controls).

Parents ActiveXControl, Form, OLEClient, OLEServer, Root, SubForm,

TCPSocket

Children ActiveXControl, Animation, Bitmap, BrowseBox, Button, Calendar,

Circle, Clipboard, ColorButton, Combo, ComboEx, CoolBar, Cursor,
DateTimePicker, Edit, Ellipse, FileBox, Font, Form, Grid, Group,
Icon, Image, ImageList, Label, List, ListView, Locator, Marker,
MDIClient, Menu, MenuBar, Metafile, MsgBox, NetControl,
OCXClass, OLEClient, OLEServer, Poly, Printer, ProgressBar,
PropertySheet, Rect, RichEdit, Scroll, SM, Spinner, Splitter, Static,
StatusBar, SubForm, SysTrayItem, TabBar, TabControl, TCPSocket,
Text, Timer, TipField, ToolBar, ToolControl, TrackBar, TreeView,
UpDown

Properties Type, Caption, Posn, Size, Coord, State, Border, Active, Visible,

Event, Thumb, Range, Step, VScroll, HScroll, Sizeable, Moveable,
SysMenu, MaxButton, MinButton, HelpButton, OKButton, SIPMode,
SIPResize, FontObj, BCol, Picture, OnTop, IconObj, CursorObj,
AutoConf, YRange, XRange, Data, TextSize, EdgeStyle, Handle,
Hint, HintObj, Tip, TipObj, Translate, Accelerator, AcceptFiles,
KeepOnClose, Dockable, Docked, DockShowCaption, DockChildren,
UndocksToRoot, MaskCol, AlphaBlend, Redraw, TabIndex,
MethodList, ChildList, EventList, PropList

Events Close, Configure, ContextMenu, Create, DockAccept, DockCancel,

DockEnd, DockMove, DockRequest, DockStart, DragDrop,
DropFiles, DropObjects, DyalogCustomMessage1, Expose,
FontCancel, FontOK, FrameContextMenu, GotFocus, Help, HScroll,
KeyPress, LostFocus, MouseDblClick, MouseDown, MouseEnter,
MouseLeave, MouseMove, MouseUp, MouseWheel, Select,
StateChange, VScroll

Methods Animate, ChooseFont, Detach, GetFocus, GetTextSize, ShowSIP,

Wait

256 Dyalog APL/W Object Reference

The Posn property specifies the location of the internal top-left corner of the window
relative to the top-left corner of the screen. If the window has a title bar and/or border,
you must allow sufficient space for them. Similarly, the Size property specifies the
internal size of the window excluding the title bar and border. The default for Size is
50% of the screen height and width. The default for Posn places the Form in the middle
of the screen.

Normally, a Form window has a title bar, a system menu box, a border and maximise
and minimise buttons. To disable the System Menu box, set SysMenu to 0. To disable
one or both of the maximise/minimise buttons, set MaxButton and/or MinButton to 0.

The HelpButton property specifies that a Question (?) button appears in the title bar of
the Form. However, this does not apply if the Form has a maximise or minimise button
which both take precedence. The user may obtain help by clicking on the Question (?)
button and then on a control in the Form. It is up to you to provide the help by
responding to the Help event on the control.

By default, a Form may be moved and resized using the mouse. These actions are
achieved by dragging on the title bar and border respectively. It follows that a Form that
is Moveable must have a title bar, and one that is Sizeable must have a border,
regardless of the value of other properties. Also, if you specify any of SysMenu,
MaxButton or MinButton, the window must have a title bar in which to place these
controls. A title bar itself requires a border. To obtain a window without a title bar, you
must therefore set Moveable, SysMenu, MaxButton and MinButton to 0. Note that
setting Caption does not force a title bar on the window.

If Sizeable is 1, the window will have a double-line border, regardless of the values of
other properties. If Sizeable is 0, and any one or more of Moveable, SysMenu,
MaxButton, MinButton or Border is 1, the window will have a 1-pixel border. Only if
all these properties are 0 will the window be without borders.

Note that the default value for Caption is an empty character vector which results in a
blank title.

To obtain a standard dialog box with 3-dimensional appearance, create a Form with
Border set to 2 and EdgeStyle set to 'Dialog', for example:

'F' ⎕WC 'Form' '' ('EdgeStyle' 'Dialog')('Border' 2)

The State property has the value 0 if the window is currently displayed in its "normal"
state, 1 if it is currently displayed as an icon, and 2 if it is currently maximised and
displayed full-screen. This property does not just report the current state, but can be
used to set the state under program control.

 Chapter 2 A-Z Reference 257

257

Under Pocket APL, the appearance, behaviour and the default values of certain
properties of a Form is different.

 A Pocket APL Form cannot be minimised.
 By default, SysMenu, Sizeable and Moveable are 0 and State is 2. This creates

a full-screen Form which the user cannot move or resize. The title bar of the
Form coincides with the Start title bar which has a circular button in the top
right corner. This will be labelled X or OK, depending upon the value of the
OKButton property. Note that the X button merely hides the Form and does not
close it (see OKButton for further details).

 If you create a Form with SysMenu 1, you get an independent window with its
own title bar and its own separate X button that may be used to close it.

 The values of the MinButton, MaxButton and HelpButton properties have no
direct effect, although setting any of these properties to 1 causes SysMenu to
be 1.

The VScroll and HScroll properties determine whether or not a Form has a vertical and
horizontal scrollbar respectively. These properties are set to ¯1 to obtain a scrollbar.
Their default value is 0 (no scrollbar). The Range property is a 2-element vector that
specifies the maximum value for the vertical and horizontal scrollbars respectively. The
Step property is a 4-element vector that specifies the sizes of the small and large
change. Its first two elements refer to the vertical scrollbar, elements 3 and 4 refer to the
horizontal scrollbar. The Thumb property is a 2-element vector that both reports and
sets the position of the thumb in the vertical and horizontal scrollbars respectively.
When the user attempts to move the thumb in one of the scrollbars, the Form generates
a VScroll or HScroll event.

VScroll and HScroll cannot be changed using ⎕WS. However, you can make a scrollbar
disappear by setting the corresponding element of Range to 1, thus allowing you to
dynamically switch the scrollbar off and on. Note however that doing so will change the
size of the Form.

Setting the FontObj property on a Form does not affect the text in its title bar. However,
the value of FontObj will (unless over-ridden) be inherited by all of the objects within
the Form.

The background of the Form may be coloured using BCol. The default value for BCol is
the Windows Button Face colour unless EdgeStyle is set to 'None' or 'Default' in
which case it is the Window Background colour. Alternatively, the background of a
Form can be defined using a Bitmap or Metafile object whose name is defined by the
Picture property. A Metafile is automatically scaled to fit the Form. A Bitmap can be
tiled or scaled. See Picture property for details.

258 Dyalog APL/W Object Reference

The OnTop property is either 0 or 1. If it is 0, the Form assumes its normal position
within the stack of windows on the screen and is only brought to the front when it
receives the input focus. If OnTop is set to 1, the Form is always brought to the front
even when it doesn't have the focus. If more than one Form has OnTop set to 1, the
stacking order of this set of Forms is defined by the order in which they were created.

Examples

A Form can be created as a child of another Form. If so, it has the following
characteristics :

 A child Form always appears on top of its parent Form (although it is not

constrained by it).
 When you minimise a parent Form, its child Forms disappear.
 Making the parent Form invisible or inactive has no effect on a Child Form.

Note that the Posn and Size properties of a child Form are expressed in screen co-
ordinates and are not given relative to its parent.

 Chapter 2 A-Z Reference 259

259

Formats Property

Applies to Clipboard

This is a "read-only" property that identifies the formats in which data is currently
available in the clipboard. It is a vector of character vectors containing the names of the
corresponding Clipboard properties for which data may be obtained using ⎕WG.

In the following example data was copied to the Windows clipboard from Microsoft
Excel.

 'CL' ⎕WC 'Clipboard'

 CL.Formats
Metafile Bits CBits Text RTFText

FormatString Property

Applies to Edit, Grid, Label, Spinner

The FormatString property specifies one or more ⎕FMT format specifications to be used
to format the Value property in an object with FieldType 'Numeric', or the Values
property in a Grid. In the latter case, it is either a simple character vector that specifies
the format specification for the entire Grid, or a vector of character vectors. If it is a
vector, its elements are mapped to individual cells via the CellTypes property. When
applied to any other object, FormatString must be a simple character vector.

The interpreter derives the text to be displayed in a cell by calling ⎕FMT with a left
argument of the corresponding element of FormatString and a right argument of the cell
value. If the format specification is invalid, the text displayed is blank.

When a formatted Edit object receives the focus, it redisplays the contents in its raw
(unformatted) form. When the Edit loses the focus, its contents are reformatted. When
the user moves to a formatted Grid cell, the text remains formatted until the user presses
a non-movement key or enters in-cell mode. The data is then redisplayed in its raw form
for editing. Data in the cell is reformatted when the user moves away.

260 Dyalog APL/W Object Reference

In a Grid, formatted data may be aligned vertically using the AlignChar property as
illustrated in the following example.

 'F'⎕WC'Form'
 'F.G'⎕WC'Grid'(¯50+?10 10⍴100)(0 0)(100 100)
 'F.G'⎕WS'FormatString' 'M<(>N<)>F12.3'
 'F.G'⎕WS'AlignChar' '.'

 Chapter 2 A-Z Reference 261

261

FrameContextMenu Event 411

Applies to Form, SubForm

If enabled, this event is reported when the user clicks and releases the right mouse
button over the non-client area of an object, e.g. the title bar in a Form.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'FrameContextMenu' or 411

[3] Y: y-position of the mouse (number)

[4] Y: x-position of the mouse (number)

For further details, see ContextMenu Event.

262 Dyalog APL/W Object Reference

FStyle Property

Applies to Circle, Ellipse, Poly, Rect

This property determines how a graphics object is filled. It takes one of the following
values, or, if the object has more than one component, a vector of such values.

 FStyle Effect

 ¯1 hollow (no fill). This is the default.
 0 solid fill
 1 hatch fill with horizontal lines
 2 hatch fill with vertical lines
 3 hatch fill with diagonal lines at 135 degrees
 4 hatch fill with diagonal lines at 45 degrees
 5 hatch fill with horizontal and vertical lines
 6 hatch fill with criss-crossing diagonal lines
 str the name of, or a ref to, a Bitmap object which is

used to fill the object.

For example, to fill an object with criss-crossing diagonal lines you would specify
('FStyle' 6). If the object contained two components, you could fill the first one
with criss-crossing diagonal lines, and the second one with a Bitmap called 'YES',
with the specification ('FStyle' 6 'YES')

Note: If the size of the Bitmap is 8x8 APL uses a Windows "brush" to fill the object. If
not, it uses "tiling". Filling with a brush is faster.

 Chapter 2 A-Z Reference 263

263

FullRowSelect Property

Applies to ListView, TreeView

The FullRowSelect property specifies whether or not the entire row is highlighted when
an item in a ListView or a TreeView is selected.

FullRowSelect is a single number with the value 0 (only the item name is highlighted)
or 1 (the whole row is highlighted); the default is 0.

For a ListView, FullRowSelect only applies if its View property is set to 'Report'.

The picture below illustrates the effect on the appearance of a ListView object, of
setting FullRowSelect to 1. Note that, in this example, CheckBoxes is also set to 1.

264 Dyalog APL/W Object Reference

GetBuildID Method 192

Applies to Root

This method is used to obtain the Build ID of a Dyalog APL executable.

The argument to GetBuildID is ⍬ or a single item as follows:

[1] File name: character vector

The (shy) result is an 8-element character vector of hexadecimal digits that represents
the Build ID.

If the argument is ⍬, the build id is that of the current version of Dyalog APL that is
running the expression.

Note that although this method is designed to uniquely identify different versions of
Dyalog APL by its check-sum, it may be used to obtain a check-sum for any arbitrary
file.

Examples

 GetBuildID ⍬
38091b76
 GetBuildID 'E:\DYALOG81\DYALOG.EXE'
cbf0d376
 GetBuildID 'C:\AUTOEXEC.BAT'
4a29334d

Note that if the file does not exist, the result is 00000000.

 Chapter 2 A-Z Reference 265

265

GetCellRect Method 201

Applies to Grid

This method returns the rectangle associated with a particular cell in a Grid.

The argument to GetCellRect is a 2-element vector as follows:

[1] Row: integer

[2] Column: integer

The result is a 2-element nested vector. The first element contains the y and x-
coordinate of the top-left corner of the cell. The second element contains the height and
width of the cell.

The result is reported in terms of the coordinate system of the Grid object.

GetCommandLine Method 145

Applies to Root

The GetCommandLine method returns the command line that was used to start the
current Dyalog APL session or application.

The GetCommandLine method is niladic.

The result is a character vector. For example:

 GetCommandLine
"C:\Dyalog10\dyalog.exe" -Dw YY_WINDOW=-30

 ⎕←2 ⎕NQ '.' 'GetCommandLine'
"C:\Dyalog10\dyalog.exe" -Dw YY_WINDOW=-30

266 Dyalog APL/W Object Reference

GetCommandLineArgs Method 148

Applies to Root

The GetCommandLineArgs method returns the command and the arguments to the
command that was used to start the current Dyalog APL session or application.

The GetCommandLineArgs method is niladic.

The result is a vector of character vectors. For example:

 GetCommandLineArgs
 C:\Dyalog10\dyalog.exe -Dw YY_WINDOW=-30

 DISPLAY 2 ⎕NQ '.' 'GetCommandLineArgs'
.→---.
| .→---------------------. .→--. .→------------. |
| |C:\Dyalog10\dyalog.exe| |-Dw| |YY_WINDOW=-30| |
| '----------------------' '---' '-------------' |
'∊---'

GetComment Method 222

Applies to Grid

This method is used to retrieve the comment associated with a cell.

The argument to GetComment is a 2-element array as follows:

[1] Row: integer

[2] Column: integer

For example, the following expression retrieves the comment associated with the cell at
row 3, column 1.

 F.G.GetComment 3 1
 1 3 Hello 175 100

Note that to retrieve a comment associated with a row or column title, the appropriate
element in the argument should be ¯1.

If there is no comment associated with the specified cell, the result is a scalar 1.

 Chapter 2 A-Z Reference 267

267

GetDayStates Event 266

Applies to Calendar

If enabled, this event is reported when a Calendar object requires the APL program to
provide day state information for the range of dates it is about to display.

The Calendar object displays day numbers using either the normal or the bold font
attribute. However, it does not store this information beyond the month or months
currently displayed.

When the Calendar control scrolls (and potentially at other times), it generates a
GetDayStates event to ask you (the APL program) to tell it which of the dates that are
about to be shown, should be displayed using the bold font attribute.

If you wish any dates to be displayed using the bold font attribute, you must attach a
callback function to this event which returns day state information in its result.

By default, all dates are displayed using the normal font attribute, so you need only do
this if you want any dates highlighted in bold.

You may not disable or nullify the operation that caused GetDayStates to fire by setting
the action code for the event to ¯1 or by returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'GetDayStates' or 266

[3] First Date: an integer (IDN)

[4] Last Date: an integer (IDN)

[5] Bold Dates: an integer vector of IDNs.

When the callback function is invoked, the 3rd and 4th elements of the event message
contain IDNs for the first and last date in the range of dates that the Calendar object is
about to display. The 5th element of the event message contains those IDNs within this
range of dates that the Calendar control already knows are to be displayed using the
bold font attribute. This will typically be empty.

268 Dyalog APL/W Object Reference

The result of your callback function should be the same event message with only the 5th
element modified in any way. This should contain the IDNs of the dates (within the
range specified by the 3rd and 4th elements) that are to be displayed using the bold font
attribute.

Example

Suppose that you keep a variable BOLD_DATES in the Calendar object. This variable is
a vector of IDN values that defines those dates that the user has somehow identified as
special and that you wish to display in bold, The following callback function could be
applied:

 ∇ MSG←DAYSTATES MSG;MASK;⎕IO
[1] ⍝ Callback function for the GetDayStates event
[2] ⍝ Object (⊃MSG) contains a variable BOLD_DATES that
[3] ⍝ defines ALL IDNs that are to be displayed in bold
[4] ⍝ We need to return only those that fall within range
[5] ⍝ of dates that are about to be displayed by Calendar
[6] ⎕CS⊃MSG
[7] ⎕IO←1
[8] MASK←BOLD_DATES≥3⊃MSG
[9] MASK←MASK^BOLD_DATES≤4⊃MSG
[10] MSG[5]←⊂MASK/BOLD_DATES
 ∇

You may also set the font attribute for particular days by calling GetDayStates as a
method.

For example, to set the bold attribute for IDN 36048 (11 September 1998) in a Calendar
object called 'F.CAL1', you could execute the expression:

 F.CAL1.GetDayStates 36048 36048 36048

To clear the bold attribute for the same day:

 F.CAL1.GetDayStates 36048 36048 ⍬

Note that the Calendar object will ignore any IDNs you specify that are outside the
range of dates that it is currently displaying.

 Chapter 2 A-Z Reference 269

269

GetEnvironment Method 510

Applies to Root

This method is used to obtain information about one or more parameters that were
specified in the APL command line, the Windows registry, or defined as environment
variables. These parameters may be official Dyalog APL parameters or ones of your
own invention. If a value is defined in several places (for example, MAXWS in the
command line overriding MAXWS in the registry), GetEnvironment follows exactly the
same logic as is used by Dyalog APL itself and so obtains the same value.

The argument to GetEnvironment is a single item as follows:

[1] Parameter name(s): see below

Parameter names is simple character vector or vector of character vectors specifying
one or more parameters.

The result is a simple character vector or a vector of character vectors.

Examples:

 GetEnvironment 'DYALOG'
C:\Program Files\Dyalog\Dyalog APL 12.1 Unicode\

 GetEnvironment ⊂'DYALOG' 'APLNID'
 C:\Program Files\Dyalog\Dyalog APL 12.1 Unicode\ 0

Note that you may use GetEnvironment to obtain the values of your own arbitrary
parameters given on the APL command line, defined in the registry, or specified as
environment variables.

Values in registry sub-keys can be obtained by specifying the path:

 GetEnvironment 'files\last_ws0'
C:\Program Files\Dyalog\Dyalog APL 12.1 Unicode\ws\Conga.DWS

You may use the GetEnvironment method in an in-process DLL but only to obtain the
values of environment variables. It will not report the values of any Dyalog registry
entries nor any command line parameters that may have been specified for the calling
program. However the latter may be obtained using GetCommandLine or
GetCommandLineArgs.

270 Dyalog APL/W Object Reference

GetEventInfo Method 551

Applies to OCXClass, OLEClient

This method is used to obtain information about a particular event or set of events
supported by a COM object.

For each event supported by a COM object, the author will have registered the data type
of its result (if it has a result), a help message or description of the event (optional) and
the name and data type of each of its parameters. These event parameters make up the
array returned by ⎕DQ or supplied as an argument to your callback function. The
GetEventInfo method returns this information.

The argument to GetEventInfo is a single item as follows:

[1] Event name(s): see below

Event name(s) is a simple character vector or a vector of character vectors specifying
one or more names of events supported by the object.

The result is a nested vector with one element per event name. Each element of this
vector is itself a vector of 2-element character vectors. For each event, the first item
describes the help message or description (if any) registered for the event and the data
type of its result. Each of the remaining elements contains a parameter name and its
corresponding data type.

For example,

 CLNAME←'Microsoft Multimedia Control, Version 6.0'
 'MM' ⎕WC 'OCXClass' CLNAME
 MM.EventList
 Done BackClick PrevClick NextClick PlayClick ...
 DISPLAY ↑MM.GetEventInfo 'Done'
.→---.
↓ .→-----------------------------. .→------. |
| |Occurs when an MCI command ...| |VT_VOID| |
| '------------------------------' '-------' |
| .→---------. .→--------------. |
| |NotifyCode| |VT_PTR to VT_I2| |
| '----------' '---------------' |
'∊---'

Note that if the event does not produce a result, the data
type of the result is reported as 'VT_VOID'.

 Chapter 2 A-Z Reference 271

271

GetFocus Method 511

Applies to ActiveXControl, Animation, Button, Calendar, ColorButton, Combo,
ComboEx, CoolBar, DateTimePicker, Edit, Form, Grid, Group,
Label, List, ListView, MDIClient, ProgressBar, PropertyPage,
PropertySheet, RichEdit, Root, Scroll, SM, Spinner, Static, StatusBar,
SubForm, TabBar, TabControl, ToolBar, ToolControl, TrackBar,
TreeView, UpDown

This method is used to obtain the name of the object that currently has the input focus.

The GetFocus method is niladic.

The result is a simple character vector. An empty result indicates that no Dyalog APL
GUI object has the input focus.

GetItemHandle Method 313

Applies to TreeView

This method is used to obtain the handle of a particular item in a TreeView object.

The argument for GetItemHandle is a single item as follows:

[1] Item number: Integer.

Item number is the index of the item concerned.

The result is an integer containing the handle of the item.

272 Dyalog APL/W Object Reference

GetItemPosition Method 323

Applies to ListView

This method is used to obtain the position of a particular item in a ListView object.

The argument for GetItemPosition is a single item as follows:

[1] Item number: Integer.

Item number is the index of the item concerned.

The result is a 2-element vector containing the position of the item.

GetItemState Method 306

Applies to ListView, TreeView

This method is used to obtain the status of a particular item in a ListView or TreeView
object.

The argument for GetItemState is a single item as follows:

[1] Item number: Integer.

Item number is the index of the item concerned.

The result indicates the state of the item as the sum of one or more of the following
codes:

1 Item has the focus

2 Item is selected

8 Item is highlighted for dropping

16 Item is displayed in bold text

32 Item is expanded

64 Item is or has been expanded

4096 Item is checked (see CheckBoxes)

 Chapter 2 A-Z Reference 273

273

GetMethodInfo Method 552

Applies to OCXClass, OLEClient

This method is used to obtain information about a particular method or set of methods
supported by a COM object.

For each method supported by a COM object the author will have registered a help
message or description of the method (this is in fact optional), the data type of its result
(if it has a result), and the name and data type of each of the parameters that must be
supplied when you invoke it. The GetMethodInfo method returns this information.

The argument to GetMethodInfo is a single item as follows:

[1] Method name(s): see below

Method name(s) is a simple character vector or a vector of character vectors specifying
one or more names of methods supported by the object.

The result is a nested vector with one element per method name. Each element of this
vector is itself a vector of 2-element character vectors. For each method, the first item
describes the help message or description (if any) registered for the method and the data
type of its result. Note that if the event does not produce a result, the data type of the
result is reported as 'VT_VOID'. Each of the remaining elements contains a parameter
name and its corresponding data type.

For example,

 CLNAME←'Microsoft Multimedia Control, Version 6.0'
 'MM' ⎕WC 'OCXClass' CLNAME

 MM.MethodList
 AboutBox Refresh OLEDrag

 DISPLAY ↑ MM.GetMethodInfo 'AboutBox'
.→--------------.
↓ .⊖. .→------. |
| | | |VT_VOID| |
| '-' '-------' |
'∊--------------'

274 Dyalog APL/W Object Reference

GetMinSize Method 275

Applies to Calendar

This method is used to obtain the minimum size that you must specify for a Calendar
object for it to display a complete month.

The GetMinSize method is niladic.

The result is a 2-element numeric vector containing the minimum height and width
required for the object to display a complete month.

GetParentItem Method 312

Applies to TreeView

This method is used to obtain the index of the parent of a particular item in a TreeView
object.

The argument for GetParentItem is a single item as follows:

[1] Item number: Integer.

Item number is the index of the item concerned.

The result is an integer containing the index of the parent item.

 Chapter 2 A-Z Reference 275

275

GetPropertyInfo Method 550

Applies to OCXClass, OLEClient

This method is used to obtain information about a particular property or set of
properties supported by a COM object.

For each property supported by a COM object, the author will have registered the
property name, its data type, and an optional help message or description of the
property. GetPropertyInfo returns this information.

The argument to GetPropertyInfo is a single item as follows:

[1] Property name(s): see below

Property name(s) is a simple character vector or a vector of character vectors specifying
one or more names of properties supported by the object.

The result is a nested vector with one element per property name. Each element of this
vector is itself a 2-element vector of character vectors containing the data type and help
message for the corresponding property.

For example,

 CLNAME←'Microsoft Multimedia Control, Version 6.0'
 'MM' ⎕WC 'OCXClass' CLNAME

 MM.PropList
Type DeviceType AutoEnable PrevVisible ...

 DISPLAY ↑MM.GetPropertyInfo 'PrevVisible'
.→--.
↓ .→--. .→------. |
| |Determines if the Prev button is visible.| |VT_VOID| |
| '---' '-------' |
| .→-. .→------. |
| |⌈P| |VT_BOOL| |
| '--' '-------' |
'∊--'

If the data type of a property is VT_USERDEFINED, it means that the property may
assume one of a set of values defined by a Type List. In this case, the name of the type
list is returned in place of the string “VT_USERDEFINED”. Further information can be
obtained using GetTypeInfo with this name as a parameter.

276 Dyalog APL/W Object Reference

Certain properties (for example, Posn and Size) are not native properties of an OLE
Control, but are added by Dyalog APL. For these properties, the data type is reported as
VT_APLINTERNAL.

GetTextSize Method 92

Applies to ActiveXControl, Animation, Bitmap, Button, Calendar, ColorButton,
Combo, ComboEx, CoolBar, DateTimePicker, Edit, Form, Grid,
Group, Label, List, ListView, MDIClient, Printer, ProgressBar,
PropertyPage, RichEdit, Root, Scroll, SM, Spinner, Static, StatusBar,
SubForm, TabBar, TabControl, ToolBar, ToolControl, TrackBar,
TreeView, UpDown

The GetTextSize method obtains the size of the bounding rectangle of a text item in a
given font. The result is given in the co-ordinate system of the object in question. This
method is useful for positioning Text objects.

GetTextSize duplicates the functionality of the TextSize property. It is recommended
that you use GetTextSize instead of TextSize which may be removed in a future release
of Dyalog APL.

The argument to GetTextSize is a 1 or 2-element array as follows:

[1] Text item: character array

[2] Font name: character vector

When you invoke GetTextSize you give the text item in whose size you are interested
and, optionally, the name of a Font object. The text item may be a simple scalar, a
vector or a matrix. If the Font is omitted, the result is given using the current font for the
object in question.

Examples

 'F'⎕WC'Form'
 F.GetTextSize'Hello World'
3.385416667 10.7421875

 'FNT1' ⎕WC 'Font' 'Arial' 72
 F.GetTextSize'Hello World' '#.FNT1'
18.75 65.4296875

 Chapter 2 A-Z Reference 277

277

 F.Coord←'Pixel'
 F.FontObj←'FNT1'
 F.GetTextSize'Hello World'
16 77

GetTipText Event 325

Applies to ListView, TreeView

If enabled, this event is reported by a TreeView or ListView object just before it
displays a tip for a specific row.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'GetTipText' or 325

[3] Item index Integer (⎕IO dependant)

[4] SubItem index Integer (⎕IO dependant, currently always
equal to ⎕IO)

[5] TipText The text to be displayed.

Modifying and returning the 5th element of the argument to the callback function allows
the application to change the displayed tip.

The text can be set to a character array of rank 2 or less.

The default processing for the event is to display the default tip (if there is one).

278 Dyalog APL/W Object Reference

GetTypeInfo Method 553

Applies to OCXClass, OLEClient

This method is used to obtain information about a Type List supported by a COM
object.

The argument to GetTypeInfo is a single item as follows:

[1] Type List name(s): see below

Type List name(s) is a simple character vector or a vector of character vectors
specifying one or more names of type lists supported by the object.

The result is a nested vector with one element per Type List. Each element of this vector
is itself a 3-element vector of character vectors made up as follows:

[1] Name of Constant: character vector

[2] Value: (usually) numeric

[3] Description: character vector

 Chapter 2 A-Z Reference 279

279

GetVisibleRange Method 262

Applies to Calendar

This method is used to obtain the range of dates that is currently visible in a Calendar
object.

The GetVisibleRange method is niladic.

The result is a 2-element integer vector containing the first and last dates currently
displayed by the object, reported as IDNs.

GotFocus Event 40

Applies to ActiveXControl, Animation, Button, Calendar, ColorButton, Combo,
ComboEx, DateTimePicker, Edit, Form, Grid, Group, List, ListView,
MDIClient, ProgressBar, PropertyPage, RichEdit, Scroll, Spinner,
SubForm, TrackBar, TreeView

If enabled, this event is generated when the user has moved the keyboard focus to a new
object by clicking the left mouse button, pressing TAB, or using a cursor key.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object: ref or character vector (object that has
received the focus)

[2] Event code: 'GotFocus' or 40

[3] Object: ref or character vector (object which
previously had the focus)

The third element (object name) is empty if the focus was obtained from another
application window.

The GotFocus event is generated after the focus has changed. The default processing is
therefore to take no action. However, if you inhibit the event by returning a 0 from
your callback function, the focus is automatically restored to the object (or external
application) that had lost it.

280 Dyalog APL/W Object Reference

GreetBitmap Method 138

Applies to Root

This method is used to display or remove a bitmap, typically during initialisation of a
Dyalog APL runtime application.

The argument to GreetBitmap is 0 or a 2 element vector as follows:

[1] Display: 0 = off, 1 = on.

[2] Bitmap file name: Character vector.

If the argument is ⍬, the bitmap is removed.

The image may also be displayed initially by setting parameter: greet_bitmap on the
command line, e.g.:

c:\myapp\dyalogrt greet_bitmap=mylogo myws

The image is displayed until either an untrapped error occurs, causing the interpreter to
(attempt to) display the session window, or the GreetBitmap method is called.

 Chapter 2 A-Z Reference 281

281

Grid Object

Purpose This object displays data in a spreadsheet format and allows the user
 to change it.

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, SubForm

Children Bitmap, BrowseBox, Button, Circle, ColorButton, Combo, Cursor,

DateTimePicker, Edit, Ellipse, FileBox, Font, Icon, Image, Label,
Marker, Menu, MsgBox, NetControl, OCXClass, Poly, Rect, Spinner,
Text, Timer, TrackBar

Properties Type, Values, Posn, Size, FCol, BCol, Coord, Border, Active, Visible,

Event, VScroll, HScroll, SelItems, Sizeable, Dragable, FontObj,
CursorObj, AutoConf, Index, YRange, XRange, Data, Attach,
TextSize, EdgeStyle, Handle, Hint, HintObj, Tip, TipObj,
FormatString, RowTitles, ColTitles, CurCell, TitleWidth,
CellHeights, CellWidths, TitleHeight, CellFonts, Input, CellTypes,
AutoExpand, CellSelect, ResizeRows, ResizeCols, ResizeRowTitles,
ResizeColTitles, ClipCells, InputModeKey, InputMode, GridFCol,
GridBCol, ShowInput, CellSet, RowTitleFCol, ColTitleFCol,
RowTitleDepth, ColTitleDepth, RowTitleAlign, ColTitleAlign,
OverflowChar, AlignChar, GridLineFCol, GridLineWidth,
RowLineTypes, ColLineTypes, EnterReadOnlyCells, RowTitle3D,
RowTitleBCol, ColTitleBCol, RowTreeDepth, RowTreeStyle,
RowTreeImages, ColSortImages, Translate, Accelerator, AcceptFiles,
KeepOnClose, Redraw, InputProperties, TabIndex,
AlwaysShowSelection, AlwaysShowBorder, MethodList, ChildList,
EventList, PropList

Events AddCol, AddRow, CellChange, CellChanged, CellDblClick,

CellDown, CellError, CellMove, CellOver, CellUp, ClickComment,
Close, Configure, ContextMenu, Create, DragDrop, DropFiles,
DropObjects, Expanded, Expanding, Expose, FontCancel, FontOK,
GotFocus, GridCopy, GridCopyError, GridCut, GridDelete,
GridDropSel, GridKeyPress, GridPaste, GridPasteError, GridSelect,
Help, HideComment, IndexChanged, KeyPress, LostFocus,
MouseEnter, MouseLeave, MouseWheel, Retracted, Retracting,
Select, SetColSize, SetRowSize, ShowComment

282 Dyalog APL/W Object Reference

Methods AddComment, Animate, CellFromPoint, ChooseFont, ColChange,
ColSorted, DelCol, DelComment, DelRow, Detach,
DuplicateColumn, DuplicateRow, GetCellRect, GetComment,
GetFocus, GetTextSize, LockColumns, LockRows, RowChange,
RowSetVisibleDepth, SetCellSet, SetCellType, ShowSIP, Undo

The Values property is a matrix whose elements are displayed in the cells of the Grid.
An element (and therefore a cell) may contain a single number, a single character, a
character vector or a character matrix.

The CellHeights property specifies the height of each of the rows of the spreadsheet. It
may be a single value which applies to all rows, or a vector with one element per row.
The CellWidths property determine the width of each column of the spreadsheet. It too
may be a single value or a vector with one element per column.

The RowTitles property is either an empty character vector (the default) or a vector of
character vectors that specify row titles displayed to the left of the cells in the Grid. If
RowTitles is not specified, the Grid labels each row with its row number. The ColTitles
property is similar and is used to specify column headings. If ColTitles is not specified,
the Grid displays standard spreadsheet column headings A-Z, then AA-AZ and so forth.

The TitleHeight property specifies height of the column headers. If this is set to 0, the
column titles will not be displayed. Similarly, the TitleWidth property specifies the
width of the row titles and again a value of zero disables the row titles.

The FontObj property may be used to specify the font to be used for the Grid as a
whole, including the titles. The CellFonts property may be used to specify fonts for
individual cells.

The FCol and BCol properties may each specify a single colour for the Grid as a whole,
or may specify a vector of colours whose elements are mapped to individual cells
through the CellTypes property.

The CellFonts property is either a character vector or a vector of character vectors that
specifies the name of a single font object to be used for all cells in the Grid, or a vector
of character vectors that specifies a set of font objects that are mapped to individual
cells through the CellTypes property.

The Input property is a character vector that specifies the name of an object which is to
be associated with every cell in the Grid, or a vector of names whose elements are
mapped to individual cells through the CellTypes property. These objects may be of
type Button, ColorButton, Combo, DateTimePicker, Edit, Label, Spinner or TrackBar.
In addition, the Input property may specify instances of OCXClass objects (ActiveX
controls) and NetClient objects (.NET classes).

 Chapter 2 A-Z Reference 283

283

If the Input property is empty (the default) the user may browse the data in the
spreadsheet but may not alter it. Furthermore, no feedback is provided as to which is the
current cell. If the Input property specifies the name of an object that is the child of the
Grid itself, this object floats from cell to cell as the user moves around the spreadsheet,
and the current cell is identified by its presence. If the Input property specifies the name
of an external object (that is, an object that is not a child of the Grid), the contents of the
current cell are copied into that object as the user moves around the spreadsheet. In
addition, the current cell is identified by a thick border. In either case, the associated
object is used to impose formatting and validation.

If the Input property specifies the name of a Label object, that object is used to impose
formatting, but the data is protected and may not be changed. If the Label is a child of
the Grid, it moves from cell to cell, and its characteristics (Border, FCol, BCol and
FontObj) can be used to identify the current cell. If the Label is an external one, no
visual feedback is provided; even though the current cell (reflected by the CurCell
property) changes as the user moves around the Grid.

If the Input property specifies one or more instances of OCXClass objects (ActiveX
controls) and NetClient objects (.NET classes), the InputProperties property is used to
map the Values property of the Grid to specific properties of the external object.

The CellTypes property is either an empty numeric matrix (the default) or an integer
matrix of the same shape as Values. If specified, each element of CellTypes determines
the index into various properties, including the FCol, BCol, CellFonts and Input
properties, to be used for the corresponding cell. For example, if an element in
CellTypes is 3, the 3rd element of FCol is used for the foreground colour of the
corresponding cell, the 3rd element of BCol specifies the background colour, and so
forth.

The CurCell property may be used to set or query the current cell. The current cell is the
cell which the user has picked by clicking the mouse over it or by using the cursor keys.
CurCell is a 2-element vector containing the current cell’s row number and column

number respectively and is ⎕IO dependent. The Index property specifies the row and
column number of the cell in the top-left corner of the Grid. It too is ⎕IO dependent.

The AutoExpand property is a 2-element Boolean vector which specifies whether (1) or
not (0) new rows and columns are added when the user presses the corresponding cursor
key when at the end of the block of cells. Its default value is (0 0).

The Grid object reports a CellDown event when the user depresses a mouse button over
a cell. The event message contains the row and column address of the cell in question
which is ⎕IO dependent. It also reports a similar CellUp event when the mouse button
is released and a CellDblClick event when it is double-clicked. The number of the
mouse button and the state of the shift keys are also reported.

284 Dyalog APL/W Object Reference

When the user moves to another cell, the Grid object reports a CellMove event. This
simply reports the address of the new cell and may be used to take some appropriate
action when a particular cell is picked. If the user alters the data in a cell and then
moves to another, the Grid reports a CellChange event. This can be used to perform
validation or recalculation.

The AddRow event is generated if the current cell is in the last row of the Grid and the
user presses Cursor Down. By default, this operation adds a new row to the Grid, but
you can attach a callback to the AddRow and selectively disable this default action if
required. The AddCol event works in a similar manner for columns. Although the user
has no direct means of inserting a row or column, your application can do this by
calling AddRow or AddCol as a method on the Grid object. Typically this would be
done in response to the user selecting a MenuItem or pressing a Button.

The Grid object maintains a buffer of the most recent 8 changes made by the user since
the Values property was last set by ⎕WC or ⎕WS. Your application can restore these
changes one by one using the Undo method. The Undo method restores the most recent
change made by the user and removes that change from the undo stack. It is therefore
not possible to “undo an undo”.

The Grid supports the selection of one or more blocks of cells using the mouse and/or
the keyboard. The ability to select a range of cells is determined by the CellSelect
property. When the user performs a selection, the Grid generates a GridSelect event.
The range of cells currently selected is given by the SelItems property

If a block of cells has been selected, the user may delete the contents, and cut or copy
the contents of the cells to the clipboard by pressing Delete, Shift+Delete or Ctrl+Insert
respectively. These operations also generate GridDelete, GridCut and GridCopy events
which you can selectively disable using a callback function. You can also perform these
operations under program control by calling them as methods.

Note that if the user selects more than one block of cells, these operations are honoured
only if the blocks begin and end on the same rows or begin and end on the same
columns. If so, the data placed in the clipboard is the result of joining the blocks
horizontally or vertically as appropriate.

The user may paste data from the clipboard into a Grid by pressing Shift+Insert. Data is
pasted into the currently selected block of cells, or, if there is no selection, data is pasted
starting at the current cell (CurCell). The operation also generates a GridPaste event,
and, if the operation cannot proceed, a GridPasteError event.

 Chapter 2 A-Z Reference 285

285

If you move the mouse pointer over any of the four edges of a selected block of cells,
the cursor changes to an arrow. You may now click and drag the border of the selected
cells with the mouse. If you press the Ctrl key at the same time, the contents of the
selected cells are copied to the new location, replacing the values in the block of cells
onto which they are dropped. Otherwise, the operation is treated as a move and the
original block of cells is emptied. This operation also generates a GridDropSel event.
You may only move or copy a single block of cells in this way.

The user may be permitted to resize the rows and/or columns of a Grid. This is
controlled by the ResizeRows and ResizeCols properties whose default values are 0. To
allow the user to resize, set either or both to 1. You can also specify a Boolean vector to
allow specific rows/columns to be resized while others are fixed. Two additional
properties named ResizeRowTitles and ResizeColTitles determine whether or not the
user may alter the width of the row titles and the height of the column titles.

If resizable, the cursor changes to a double-heads arrow when the user moves the mouse
pointer over the lines between the row and/or column titles. The user may click and
drag with the mouse to the desired size. The user may also double-click. This causes the
row or column to be resized to fit the data. Both operations generate a SetColSize, or
SetRowSize event.

When you edit data in a Grid, the editing behaviour and the action of the cursor
movement keys is determined by the InputMode and InputModeKey properties.

The GridFCol property specifies the colour of all the grid lines. Alternatively, the
GridLineFCol, GridLineWidth, RowLineTypes and ColLineTypes properties may
specify the appearance for individual grid lines.

The GridBCol property specifies the colour used to fill the area between the end of the
last column of data and the right edge of the Grid and between the bottom row of data
and the bottom edge of the Grid.

The RowTitleFCol and ColTitleFCol properties specify the colours to be used for the
row and column titles respectively.

The ClipCells property determines whether or not the Grid displays partial cells. The
default is 1. If you set ClipCells to 0, the Grid displays only complete cells and
automatically fills the space between the last visible cell and the edge of the Grid with
the GridBCol colour.

The CellSet property is a Boolean array that marks which cells are set (i.e. have values)
and which are empty. This allows you to edit large numeric matrices which contain
empty cells without a severe workspace penalty.

286 Dyalog APL/W Object Reference

The HScroll and VScroll properties specify whether or not horizontal and vertical
scrollbars are displayed. Either property may be given the value ¯3 which forces the
corresponding scrollbar to appear always.

The Grid object supports comments in a manner that is consistent with the way that
comments are handled by Microsoft Excel. If a comment is associated with a cell, a
small red triangle is displayed in its top right corner. When the user rests the mouse
pointer over a commented cell, the comment is displayed as a pop-up with an arrow
pointing back to the cell to which it refers. The comment disappears when the mouse
pointer is moved away. This is referred to as tip behaviour. Comments may also be
associated with row and column titles.

Grid comments are managed by a set of methods, namely AddComment, DelComment,
GetComment, ShowComment, HideComment and ClickComment.

You may lock individual rows and columns using the LockRows and LockColumns
methods. This facility is however not supported in combination with hierarchical rows
and/or columns which are specified by RowTitleDepth and ColTitleDepth.

The Grid can display a TreeView like interface on the Row titles. In this mode, the Grid
automatically shows and hides row of data as the end user expands and contracts nodes
of the tree.

The RowTreeDepth property is used to specify the depth of rows in the Grid. The
appearance of the tree is determined by the RowTreeStyle property. User defined
bitmaps can be used instead of the default Images by setting the RowTreeImages
property. The Grid generates Expanding and Retracting events when the user interacts
with the tree. The RowSetVisibleDepth method can be used to set the visible depth of
the tree.

GridBCol Property

Applies to Grid

This property specifies the colour used to fill the area between the end of the last
column of data and the right edge of the Grid and between the bottom row of data and
the bottom edge of the Grid.

GridBCol may be a 3-element vector of integer values in the range 0-255 which refer to
the red, green and blue components of the colour respectively, or it may be a scalar that
defines a standard Windows colour element (see BCol for details). Its default value is 0
which obtains the colour defined for Window Background.

 Chapter 2 A-Z Reference 287

287

GridCopy Event 191

Applies to Grid

If enabled, this event is reported when the user presses Ctrl+Insert and there are selected
cells in the Grid. The default action of the event is to copy the contents of the selected
block(s) of cells to the clipboard. You may disable this effect entirely by setting the
action code of the event to ¯1. You may also disable the copy operation by returning 0
from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'GridCopy' or 191

[3] Start: 2-element integer vector or matrix
containing the row, column address(es) of
the top left cell(s) in the selected block(s)

[4] End: 2-element integer vector or matrix
containing the row, column address(es) of
the bottom right cell(s) in the selected
block(s)

[5] Data: 2-element nested vector. The first element
is a matrix containing the values of the
selected block(s) of cells. This is the data
that will be copied to the clipboard. The
second element is a Boolean matrix
containing the values of the CellSet
property for the selected block of cells.

Note that the values of Start and End are sensitive to the index origin, ⎕IO.

If more than one block of cells is selected, Start and End are matrices whose rows
identify the start and end cells of each of the selected blocks, and Data is the contents of
the selected blocks catenated along the appropriate dimension according to their relative
positions in the Grid.

You may copy cells under program control by calling GridCopy as a method.

To copy a specific block of cells to the clipboard whether or not they are selected, you
must specify the Start and End parameters. For example, the following expression will
copy the 3x3 block of cells in the top-left of the Grid (⎕IO is 1) to the clipboard:

 gridname.GridCopy (1 1) (3 3)

288 Dyalog APL/W Object Reference

If you omit these parameters, the currently selected block of cells will be copied to the
clipboard. If no cells are selected, the entire contents of the Grid will be copied. i.e.

 gridname.GridCopy ⍬

The data copied to the clipboard is registered in Dyalog (APL internal),Wk3 (Lotus),
XlTable (Excel) and tab/new-line delimited text formats.

GridCopyError Event 196

Applies to Grid

If enabled, this event is reported when the user presses Ctrl+Insert, but it is impossible
to copy data from the Grid into the clipboard. This will occur if there are no selected
cells in the Grid, or if there are more than one block of cells selected which are not
conformable (i.e. do not share a common dimension) and which cannot therefore be
catenated together for placement in the clipboard. For further information, see
GridCopy.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows:

[1] Object: ref or character vector

[2] Event code: 'GridCopy' or 191

[3] Empty numeric matrix of shape (0 0).

[4] Empty numeric matrix of shape (0 0).

[5] Start: 2-element integer matrix containing the
row, column address(es) of the top left
cell(s) in the selected block(s).

[6] End: 2-element integer matrix containing the
row, column address(es) of the bottom
right cell(s) in the selected block(s).

Note that the values of Start and End are sensitive to the index origin, ⎕IO. If there are
no cells selected, Start and End are both matrices of shape (1 2) and contain the
row/column address of the current cell.

 Chapter 2 A-Z Reference 289

289

GridCut Event 190

Applies to Grid

If enabled, this event is reported when the user presses Shift+Delete and there are
selected cells in the Grid. The default action of the event is to copy the contents of the
selected block(s) of cells to the clipboard and then to empty the selected cells. You may
disable this effect entirely by setting the action code of the event to ¯1. You may also
disable the cut operation by returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'GridCut' or 190

[3] Start: 2-element integer vector or matrix
containing the row, column address(es) of
the top left cell(s) in the selected block(s)

[4] End: 2-element integer vector or matrix
containing the row, column address(es) of
the bottom right cell in the selected
block(s)

[5] Data: 2-element nested vector. The first element
is a matrix containing the values of the
selected block(s) of cells. This is the data
that will be copied to the clipboard. The
second element is a Boolean matrix
containing the values of the CellSet
property for the selected block of cells.

Note that the values of Start and End are sensitive to the index origin, ⎕IO.

If more than one block of cells is selected, Start and End are matrices whose rows
identify the start and end cells of each of the selected blocks, and Data is the contents of
the selected blocks catenated along the appropriate dimension according to their relative
positions in the Grid.

The data copied to the clipboard is registered in Dyalog (APL internal),Wk3 (Lotus),
XlTable (Excel) and tab/new-line delimited text formats.

290 Dyalog APL/W Object Reference

GridDelete Event 193

Applies to Grid

If enabled, this event is reported when the user presses Delete and there are selected
cells in the Grid. The default action of the event is to empty the selected cells. You may
disable this effect entirely by setting the action code of the event to ¯1. You may also
disable the delete operation by returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'GridDelete' or 193

[3] Start: 2-element integer vector or matrix
containing the row, column address(es) of
the top left cell(s) in the selected block(s)

[4] End: 2-element integer vector or matrix
containing the row, column address(es) of
the bottom right cell in the selected
block(s)

Note that the values of Start and End are sensitive to the index origin, ⎕IO.

If more than one block of cells is selected, Start and End are matrices whose rows
identify the start and end cells of each of the selected blocks.

 Chapter 2 A-Z Reference 291

291

GridDropSel Event 195

Applies to Grid

If enabled, this event is reported when the user drag/drops a selected block of cells in
the Grid. The default action is that the contents of the selected cells replace the values in
the block of cells onto which they are dropped and this block now becomes selected.
You may disable the drag/drop facility entirely by setting the action code of the event to
¯1. You may also disable an individual drag/drop operation by returning 0 from a
callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'GridDropSel' or 195

[3] Start: 2-element integer vector containing the
row, column address of the top left cell in
the selected block

[4] Size: 2-element integer vector containing the
number of rows and columns in the
selected block

[5] Target: 2-element integer vector containing the
row/column address of the top left cell
onto which the selected block is being
dropped

[6] Shift State: sum of shift key codes (number)
 1 = Shift key is down
 2 = Ctrl key is down
 4 = Alt key is down

[7] Undo flag : 0 or 1

[8] Values: Matrix containing the values of the
selected block of cells. This is the data that
will replace the values in the target cells.

[9] CellSet flags: Boolean Matrix containing the values of
the CellSet property for the selected block
of cells. This will replace the values of the
CellSet property of the target cells.

292 Dyalog APL/W Object Reference

The shift state in element 6 is intended to allow the APL programmer to implement an
insert operation instead of a copy or move operation if required.

You may copy the contents of one block of cells to another by calling GridDropSel as a
method. If so, you need only specify the Start, Size and Target parameters. Note that the
result block becomes selected.

The Undo flag is always 1 if the event was generated by the user.

GridFCol Property

Applies to Grid

The GridFCol property specifies the colour of the grid lines in a Grid object

GridFCol may be a 3-element vector of integer values in the range 0-255 which refer to
the red, green and blue components of the colour respectively, or it may be a scalar that
defines a standard Windows colour element (see BCol for details). Its default value is 0
which obtains the colour defined for Window text.

The grid lines may be removed by setting GridFCol to the same colour as the
background colour of the cells, which is defined by BCol.

 Chapter 2 A-Z Reference 293

293

GridKeyPress Event 24

Applies to Grid

If enabled, this event is generated when the user presses and releases a key in a Grid
cell.

The GridKeyPress is reported on the Grid, after the KeyPress event, which is reported
on the Input object associated with the current cell.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'GridKeyPress' or 24

[3] Input Code: character scalar or vector

[4] ASCII code: integer scalar

[5] Key Number: integer scalar

[6] Shift State: integer scalar

[7] Input Object character vector

For a full description of elements [3-6], see KeyPress event.

The 7th element of the event message contains the name of the Input object associated
with the current cell and on which the corresponding KeyPress event has been reported.

If a callback function on the KeyPress event returns 0, the GridKeyPress event is not
fired. If a callback function on the KeyPress event returns a modified KeyPress
message, the GridKeyPress event is fired with the modified message and not the
original one.

The default action of the GridKeyPress event is to pass its message back to the
appropriate Input object to be actioned. If a callback on GridKeyPress returns 0, the
keystroke will be ignored.

294 Dyalog APL/W Object Reference

GridLineFCol Property

Applies to Grid

The GridLineFCol property specifies the colours of the grid lines in a Grid object.
GridLineFCol should be used if different coloured grid lines are required. If all the grid
lines are the same colour, use GridFCol.

GridLineFCol may be a scalar or a vector. Each item may be a 3-element vector of
integer values in the range 0-255 which refer to the red, green and blue components of
the colour respectively, or a scalar that defines a standard Windows colour element (see
BCol for details). Note that a single RGB triplet must be enclosed.

The default value of GridLineFCol is an empty numeric vector (⍬). If so, all the grid
lines are drawn using the single colour specified by GridFCol.

Elements of GridLineFCol are allocated to individual grid lines via the RowLineTypes
and ColLineTypes properties.

See also: GridLineWidth.

GridLineWidth Property

Applies to Grid

The GridLineWidth property specifies the widths in pixels of the grid lines in a Grid
object.

GridLineWidth may be an integer scalar or a vector. Its default value is an empty
numeric vector (⍬). If so, grid lines are drawn 1-pixel wide.

Grid lines are always displayed so that 1 pixel is drawn within the cell. If the width is
greater than 1 pixel, the additional pixels are drawn between the cells.

If an element of GridLineWidth is 0, the corresponding grid lines are not drawn.

Elements of GridLineWidth are allocated to individual grid lines via the RowLineTypes
and ColLineTypes properties.

See also: GridLineFCol.

 Chapter 2 A-Z Reference 295

295

GridLines Property

Applies to ListView

The GridLines property specifies whether or not lines are displayed between items in a
ListView object. GridLines applies only if the value of the View property is
'Report'.

GridLines is a single number with the value 0 (no lines are displayed) or 1 (lines are
displayed); the default is 0.

The picture below illustrates the effect on the appearance of a ListView object, of
setting GridLines to 1. Note that, in this example, FullRowSelect and CheckBoxes are
also set to 1.

296 Dyalog APL/W Object Reference

GridPaste Event 192

Applies to Grid

If enabled, this event is reported when the user presses Shift+Insert and there is data in
the clipboard that is in a suitable format for the Grid. The default action of the event is
to copy the contents of the clipboard into the currently selected block of cells, or, if no
cells are selected, into the block of cells starting at the current cell (CurCell). Note that
if there is a selected range of cells and the shape of the data being pasted does not
exactly match the size of the selected range, the system generates a GridPasteError
event in addition to the GridPaste event.

You may disable the paste facility entirely by setting the action code of the event to ¯1.
You may also disable an individual paste operation by returning 0 from a callback
function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'GridPaste' or 192

[3] Values: New values (taken from the clipboard)
which are to replace the existing values of
the block of cells defined by Start and
End.

[4] CellSet flags: Boolean Matrix containing the new values
of the CellSet property for the block of
cells defined by Start and End.

[5] Start: 2-element integer vector containing the
row, column address of the top left cell the
selected block. If there is no selection, this
is the address of the current cell(CurCell).

[6] End: 2-element integer vector containing the
row, column address of the bottom right
cell in the selected block. If there is no
selection, this is the address of the bottom
right cell of the block starting at the
current cell that will be overwritten

 Chapter 2 A-Z Reference 297

297

You can replace the contents of a contiguous block of cells with the data in the
clipboard, or with an arbitrary matrix of values, by calling GridPaste as a method.

If you call GridPaste with an argument of ⍬, the data is taken from the clipboard;
otherwise the data to be pasted is specified by the Values and CellSet flags parameters..
If you omit Start, data is pasted into the currently selected range of cells. If there are no
cells selected, data is pasted starting at the current cell (CurCell). In either case, the
block of replaced cells becomes selected.

298 Dyalog APL/W Object Reference

GridPasteError Event 194

Applies to Grid

If enabled, this event is reported when the user presses Shift+Insert and there is data in
the clipboard, but the system is unable to paste the data into the Grid. This occurs if
there is a currently selected block of cells whose shape does not match the shape of the
data in the clipboard. It also occurs if there is no selected block of cells, and pasting the
data in starting at the current cell (CurCell) would overflow the Grid. Setting the action
code of this event to ¯1, or returning a 0 from a callback function attached to it, has no
effect.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object: ref or character vector.

[2] Event name or code: 'GridPasteError' or 194.

[3] Values: Contents of the clipboard.

[4] CellSet flags: Boolean array indicating which elements
of the clipboard data are empty.

[5] Start: 2-element integer vector containing the
row, column address of the top left cell in
the selected block. If there is no selection,
this is the address of the current cell
(CurCell).

[6] End: 2-element integer vector containing the
row, column address of the bottom right
cell in the selected block. If there is no
selection, this is the address of the bottom
right cell of the block starting at the
current cell that will be overwritten

[7] Error Number: 4 (RANK ERROR) or
5 (LENGTH ERROR)

 Chapter 2 A-Z Reference 299

299

GridSelect Event 165

Applies to Grid

If enabled, this event is reported when the user performs or cancels the selection of a
block of cells in a Grid object. This event is reported after the selection has changed.
Setting its action code to ¯1 has no effect and the result of a callback function cannot be
used to alter the selection that has been made. You may however control the user’s

ability to make selections using the CellSelect property.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object: ref or character vector.

[2] Event name or code: 'GridSelect' or 165.

[3] Start: 2-element integer vector or matrix
containing the row, column address(es) of
the top left cell(s) in the selected block(s)

[4] End: 2-element integer vector or matrix
containing the row, column address(es) of
the bottom right cell(s) in the selected
block(s)

Note that the values of Start and End are sensitive to the index origin, ⎕IO.

If the selection is made with the mouse, the GridSelect event is reported when the left
mouse button is released. If the selection is made using the cursor keys, the GridSelect
event is reported when the Shift key is released.

The GridSelect event is also generated when the current selection is cancelled by
clicking on a cell with the mouse or by pressing a cursor key.

300 Dyalog APL/W Object Reference

GripperMode Property

Applies to CoolBand

The GripperMode property specifies whether or not the CoolBand has a gripper bar
which is used to reposition and resize the CoolBand within its parent CoolBar.

GripperMode is a character vector with the value 'Always' (the default), 'Never'
or 'Auto'.

If GripperMode is 'Always' , the CoolBand displays a gripper bar even if it is the only
CoolBand in the CoolBar.

If GripperMode is 'Never' , the CoolBand does not have a gripper bar and may not be
directly repositioned or resized by the user.

If GripperMode is 'Auto' , the CoolBand displays a gripper bar only if there are other
CoolBands in the same CoolBar.

 Chapter 2 A-Z Reference 301

301

Group Object

Purpose This object is used to group a related set of controls together visually,
 and to impose "radio-button" behaviour.

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, SubForm,

ToolBar, ToolControl

Children Animation, Bitmap, Button, Calendar, Circle, ColorButton, Combo,

ComboEx, Cursor, DateTimePicker, Edit, Ellipse, Font, Grid, Group,
Image, ImageList, Label, List, ListView, Locator, Marker, Metafile,
NetControl, Poly, ProgressBar, Rect, RichEdit, Scroll, SM, Spinner,
Splitter, Static, SubForm, Text, Timer, TipField, TrackBar, TreeView,
UpDown

Properties Type, Caption, Posn, Size, Coord, Border, Active, Visible, Event,

Sizeable, Dragable, FontObj, FCol, BCol, Picture, CursorObj,
AutoConf, YRange, XRange, Data, Attach, EdgeStyle, Handle, Hint,
HintObj, Tip, TipObj, Translate, Accelerator, AcceptFiles,
KeepOnClose, Redraw, TabIndex, MethodList, ChildList, EventList,
PropList

Events Close, Configure, ContextMenu, Create, DragDrop, DropFiles,

DropObjects, Expose, FontCancel, FontOK, GotFocus, Help,
KeyPress, LostFocus, MouseDblClick, MouseDown, MouseEnter,
MouseLeave, MouseMove, MouseUp, MouseWheel, Select

Methods Animate, ChooseFont, Detach, GetFocus, GetTextSize, ShowSIP

A Group is displayed as an empty box with a border around it whose appearance is
defined by the EdgeStyle property. The Caption property defines a string of text that is
displayed in the top left border. The default value is an empty vector.

302 Dyalog APL/W Object Reference

Group examples with different EdgeStyle settings

A Group will be resized if its parent Form or Group is resized. It can also be resized
directly by the user if its Sizeable property is set to 1. By default, when a Group is
resized, it automatically adjusts the size and position of its children to maintain the
same proportions within it as before. The resizing of a Group and its children can be
controlled using the AutoConf property or by enabling the Configure event (31).

HAlign Property

Applies to Text

This property determines the horizontal alignment of text in a Text object. It is either a
single integer value, or, if the Text object contains several components, a corresponding
vector of such values. These may be:

0 left aligned (the left edge of the bounding box of the text is aligned on the x-
 co-ordinate specified by the Points property). This is the default.

1 centre aligned (the centre of the bounding box of the text is aligned on the x-
 co-ordinate specified by the Points property).

2 right aligned (the right edge of the bounding box of the text is aligned on the
 x-coordinate specified by the Points property).

 Chapter 2 A-Z Reference 303

303

Handle Property

Applies to ActiveXControl, Animation, Button, Calendar, ColorButton, Combo,
ComboEx, CoolBar, Cursor, DateTimePicker, Edit, Font, Form, Grid,
Group, Icon, ImageList, Label, List, ListView, MDIClient, Menu,
MenuBar, Metafile, OLEClient, OLEServer, Printer, ProgressBar,
PropertySheet, RichEdit, Scroll, SM, Spinner, Static, StatusBar,
SubForm, TabBar, ToolBar, ToolControl, TrackBar, TreeView,
UpDown

This is a read-only property that reports the handle associated with an object. For a
visual object, such as a Form or a Button, this is the window handle. For a Printer, it is
the printer device context.

This handle allows you to access the corresponding object directly with Windows API
functions via ⎕NA. This facility must be used with care and the responsibility for its
behaviour is entirely yours. Do NOT use it to delete an object; this will cause APL to
terminate abnormally. See also NameFromHandle method.

For an example of the use of the Handle property, see function SET_TAB_STOPS in
WTUTOR95.DWS.

HasApply Property

Applies to PropertySheet

The HasApply property is a Boolean value that specifies whether or not a PropertySheet
has an Apply button. Its default value is 1. Note that an Apply button is only actually
used if Style is 'Standard'.

304 Dyalog APL/W Object Reference

HasButtons Property

Applies to TreeView

The HasButtons property is a Boolean value and specifies whether or not buttons are
shown in a TreeView object. If HasButtons is 1 (the default) a square button is
displayed to the left of each parent item label. If the item is expanded (i.e. is children
are visible) the button contains a minus sign. If the item is not expanded, (i.e. its
children are hidden) the button contains a plus sign. The user can cause a parent item to
expand or collapse by clicking this button.

HasCheckBox Property

Applies to DateTimePicker

Specifies whether or not a checkbox is displayed alongside the value in a
DateTimePicker.

HasCheckBox is a single number with the value 0 (the default) or 1. If HasCheckBox is
1, the user may set or clear the checkbox to indicate whether or not the date/time
displayed in the object is to apply.

If the checkbox is not set, the DateTimePicker is considered to be empty (the contents
will be greyed out) and the value returned by the DateTime property is zilde. Note that
HasCheckBox may only be set when the object is created.

HasEdit Property

Applies to BrowseBox

Specifies whether or not a BrowseBox has an edit field.

HasEdit is a single number with the value 0 (the default) or 1. If HasEdit is 1, the user
may type in the name of a folder or other resource that is the target of the BrowseBox. If
HasEdit is 0, the user must browse to it.

 Chapter 2 A-Z Reference 305

305

HasHelp Property

Applies to PropertyPage, PropertySheet

The HasHelp property is a Boolean value For a PropertySheet, it determines whether
or not the PropertySheet has a Help button. for a PropertyPage, HasHelp determines
whether or not the Help button is active when the PropertyPage is the current page. If
the HasHelp property of a PropertyPage is 0, the Help button on the parent
PropertySheet will be temporarily disabled when that PropertyPage is displayed.

HasLines Property

Applies to TreeView

The HasLines property specifies whether or not tree lines are drawn in a TreeView
object. It is a single integer with the value 0, 1 or 2:

0 No tree lines
1 Tree lines are drawn at all levels except the top level
2 Tree lines are drawn at all levels

The user can cause a parent item to expand or collapse by clicking on its corresponding
tree line.

HasTicks Property

Applies to TrackBar

The HasTicks property specifies whether or not tick marks are drawn in a TrackBar
object. It is Boolean value with a default value of 0.

The position of the tick marks in the TrackBar is determined by the TickAlign property.

306 Dyalog APL/W Object Reference

HasToday Property

Applies to Calendar, DateTimePicker

The HasToday property specifies whether or not the Today date is displayed in the
bottom left corner of a Calendar object or the drop-down calendar in a DateTimePicker..

HasToday is a single number with the value 0 (the date is not shown) or 1 (the date is
shown); the default is 1.

See also CircleToday property.

Header Property

Applies to ListView

The Header property is Boolean and specifies whether or not a ListView object displays
column titles. Its default value is 1. Header applies only if the View property is
'Report'. The column titles are defined by the ColTitles property and their alignment
by the ColTitleAlign property.

Note that Header may only be set by ⎕WC and may not subsequently be changed.

 Chapter 2 A-Z Reference 307

307

Help Event 400

Applies to ActiveXControl, Animation, Button, Calendar, Circle, ColorButton,
Combo, ComboEx, CoolBar, DateTimePicker, Edit, Ellipse, Form,
Grid, Group, Image, Label, List, ListView, Marker, MDIClient, Poly,
ProgressBar, PropertyPage, Rect, RichEdit, Scroll, SM, Spinner,
Static, StatusBar, SubForm, TabBar, Text, ToolBar, ToolButton,
ToolControl, TrackBar, TreeView, UpDown

If enabled, this event is reported when the user clicks on the Question (?) button in the
title bar of a Form and then clicks again over the object. The presence of the Question
(?) button is determined by the value of the HelpButton property. The event is also
reported when the user presses function key 1 (F1).

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'Help' or 400

[3] Y-coordinate: Number

[4] X-coordinate: Number

The y and x-coordinates refer to the position of the mouse pointer relative to the top left
corner of the object and are reported in the coordinate system of that object.

HelpButton Property

Applies to Form, SubForm

This is a Boolean property that specifies whether or not a Question (?) button appears in
the title bar of a Form or SubForm. However, this does not apply if the Form has a
maximise or minimise button which both take precedence. The user may obtain help by
clicking on the Question (?) button and then on a control in the Form. It is up to you to
provide the help by responding to the Help event on the control. The default value of
HelpButton is 0.

308 Dyalog APL/W Object Reference

HelpFile Property

Applies to ActiveXControl, OCXClass, OLEClient

This property is a character vector that specifies the pathname of a Windows help file
associated with a particular object.

For an OCXClass or OLEClient object, the HelpFile property is read-only

HideComment Event 224

Applies to Grid

If enabled, a HideComment event is generated just before a comment window is hidden
as a result of the user moving the mouse-pointer away from a commented cell.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'HideComment' or 224

[3] Row: integer

[4] Column: integer

You may prevent the comment from being hidden by returning 0 as the result of a
callback function.

Note that if the comment window relates to a row or column title, the value reported in
element [3] or [4] of the event message is ¯1.

Invoked as a method, HideComment is used to hide a comment that has previously been
displayed by ShowComment. For example, the following expression hides the comment
associated with the cell at row 2, column 1.

 F.G.HideComment 2 1

If HideComment is called with an argument of ⍬, all comments are hidden.

 Chapter 2 A-Z Reference 309

309

Hint Property

Applies to Animation, Button, Calendar, ColorButton, Combo, ComboEx,
DateTimePicker, Edit, Form, Grid, Group, Label, List, ListView,
MDIClient, MenuItem, ProgressBar, PropertyPage, PropertySheet,
RichEdit, Scroll, SM, Spinner, Static, StatusBar, SubForm, TabBar,
ToolBar, ToolButton, TrackBar, TreeView, UpDown

The Hint property is a character vector that specifies a help message that is to be
displayed when the user positions the mouse pointer over the object. The Hint is
displayed in the object specified by its HintObj property. A StatusField is often used for
this purpose.

HintObj Property

Applies to Animation, Button, Calendar, ColorButton, Combo, ComboEx,
DateTimePicker, Edit, Form, Grid, Group, Label, List, ListView,
MDIClient, MenuItem, ProgressBar, PropertyPage, PropertySheet,
RichEdit, Root, Scroll, SM, Spinner, Static, StatusBar, SubForm,
TabBar, ToolBar, ToolButton, TrackBar, TreeView, UpDown

The HintObj property is a character vector or ref that specifies the name of, or ref to, an
object in which the help message defined by the Hint property is to be displayed. This
message is displayed when the user positions the mouse pointer over the object. The
Hint is displayed by automatically setting the Caption or Text property of the object
named by HintObj. The following types of object can therefore be used to display
Hints: Button, Edit, Label, Combo, Group, Form, Label, Menu, MenuItem, StatusField,
SubForm and Text. For a StatusField that has both Caption and Text properties, the text
property is used for displaying hints.

When the user moves the mouse pointer away from the object, the Caption or Text
property of the object specified by HintObj is reset to an empty vector. Note that if
HintObj is empty, its value is inherited from its parent. Thus setting HintObj on a Form
defines the default location for displaying Hints for all the controls in that Form. Setting
HintObj on Root defines the default location for hints for the entire application.

310 Dyalog APL/W Object Reference

HotSpot Property

Applies to Cursor

This property specifies the point within a Cursor object that registers the cursor's
position over another object. The mouse position, which is reported by various events,
is actually the position of the cursor's HotSpot over the object in question.

HotSpot is a 2-element numeric vector that specifies the y-position and x-position of the
hotspot within the cursor. A value of (0 0) specifies the top-left corner of the cursor; (31
31) specifies the bottom right corner of the cursor. The default value of HotSpot is (15
15).

HotTrack Property

Applies to TabControl

The HotTrack property specifies whether or not the tabs or buttons in a TabControl
object (which are represented by TabButton objects), are automatically highlighted by
the mouse pointer.

HotTrack is a single number with the value 0 (no highlighting) or 1. The default is 0.

If HotTrack is 1 and the Style property of the TabControl is 'Tabs' or 'Buttons',
the text defined by the Caption property of the TabButton is highlighted when the
mouse pointer is placed over the tab or button. If Style is 'FlatButtons', the button
is highlighted by being raised.

The value of HotTrack is effective only when the object is created with ⎕WC.

 Chapter 2 A-Z Reference 311

311

HScroll Property

Applies to Combo, ComboEx, Edit, Form, Grid, ListView, RichEdit, Scroll,
StatusBar, SubForm, TabBar, ToolBar, TrackBar, UpDown

For most objects to which it applies, HScroll specifies whether or not a horizontal
scrollbar is provided.

When applied to a Combo, or to an Edit object with Style 'Single' (i.e. a single-line
edit field), the value 0 inhibits scrolling, and prevents the user from entering more data
when the field is full. If instead it has the value ¯2, the field is scrollable, and the length
of data that may be entered is not limited by the length of the field.

When applied to an Edit object with Style 'Multi' (i.e. a multi-line text box), the
value 0 inhibits scrolling, and causes individual lines to be "word-wrapped". The values
¯2 and ¯1 enable sideways scrolling, and permit individual lines to exceed the width of
the object. The value ¯1 means that a horizontal scrollbar is provided.

For a Scroll object, the scrollbar is horizontal if HScroll is ¯1 and vertical if HScroll is
0. For a Form, a horizontal scrollbar is provided if HScroll is set to ¯1. The default
value is 0 (no scrollbar).

For a StatusBar, TabBar or ToolBar with Align set to Top or Bottom, HScroll
determines whether or not a horizontal scrollbar is provided and how the object
positions its children. If HScroll is 0 (the default) the object organises its children in
multiple rows and does not provide a scrollbar. If HScroll is ¯1 or ¯2, the object
organises its children in a single row and provides a mini scrollbar to allow those
positioned beyond the right edge of the object to be scrolled into view. If HScroll is ¯1,
the scrollbar is always shown. If HScroll is ¯2, it is only shown when needed.

For a Grid, HScroll may be 0 (no horizontal scrollbar), ¯1 (scrollbar is displayed when
required), ¯2 (same as ¯1) or ¯3 (scrollbar is always displayed).

312 Dyalog APL/W Object Reference

HScroll Event 39

Applies to Form, SubForm

If enabled, this event is generated when the user attempts to move the thumb in a
horizontal scrollbar in a Form or SubForm. This event occurs only in a Form whose
HScroll property is set to ¯1 and is distinct from the Scroll event that is generated by a
Scroll object. The event may be generated in one of three ways:

 a) dragging the thumb.

 b) clicking in one of the "arrow" buttons situated at the ends of the
 scrollbar. This is termed a small change, the size of which is defined
 by Step[3].

 c) clicking in the body of the scrollbar. This is termed a large change,
 the size of which is defined by Step[4].

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows:

[1] Object: ref or character vector

[2] Event code: 'HScroll' or 39

[3] Scroll Type: numeric

[4] Position: numeric

The value of Scroll Type is 0 (drag), 1 or ¯1 (small change) or 2 or ¯2 (large change).
The sign indicates the direction.

The value of Position is the new (requested) position of the thumb. Notice however, that
the event is generated before the thumb is actually moved. If your callback function
returns a scalar 0, the position of the thumb will remain unaltered.

 Chapter 2 A-Z Reference 313

313

Icon Object

Purpose This object defines an icon.

Parents ActiveXControl, CoolBand, Form, Grid, ImageList, ListView,

OLEServer, Printer, ProgressBar, PropertyPage, PropertySheet,
RichEdit, Root, StatusBar, SubForm, SysTrayItem, TCPSocket,
ToolBar, ToolControl, TrackBar, TreeView, UpDown

Children Timer

Properties Type, File, Bits, CMap, Mask, Style, KeepBits, Event, Data, Handle,

Accelerator, KeepOnClose, MethodList, ChildList, EventList,
PropList

Events Close, Create, Select

Methods Detach, FileRead, FileWrite

The File property specifies the name of an icon (.ICO) file, or the name of a DLL or
EXE file and the identity of the icon within it.

The Style property identifies the size of the icon and must be 'Large' or 'Small'.
The former specifies a 32x32 icon and is the default; the latter specifies a 16x16 icon.
The size of the icon is not embedded within the icon data, so it is essential to specify
Style correctly. Note that a single file may contain both sizes of an icon. Style is only
relevant when loading an Icon from file.

If the value of the File property is set by ⎕WS, no immediate action is taken, but the
corresponding file may subsequently be read or written using the FileRead or FileWrite
methods.

The Bits, Mask and CMap properties define the appearance of the icon. Bits is an
integer matrix whose elements define the colours of each pixel in the icon in terms of
their (0-origin) indices into CMap. When the icon is displayed on the screen, the way in
which these colours combine with those currently displayed on the screen (the
background) is specified by Mask. This is a Boolean matrix of the same size as Bits.
The following table shows how the colour of each resulting pixel is determined.

Bits Colour 0 Colour
Mask 0 1 1
Pixel Colour Background New Colour

314 Dyalog APL/W Object Reference

If an element of Mask is 0, the corresponding element of Bits defines the colour of the
resulting pixel that is displayed on the screen. If an element of Mask is 1, the resulting
pixel that is displayed on the screen is either the current background colour or is a new
colour chosen by Windows to be visible against the background. A non rectangular icon
is obtained by setting those elements of Bits and Mask that you want to exclude from
the shape to be 0 and 1 respectively. Under Windows 3.1, the size of Bits and Mask
must be 32 x 32.

An Icon is used by setting the IconObj property of another object to its name or ref.

IconObj Property

Applies to Form, MDIClient, Root, SubForm, SysTrayItem, TabBar, ToolBar

This property is used to specify a large and small icon for a Form or SubForm, or for
the Root object which represents your application as a whole. Its value is either a ref or
character scalar or vector containing the name of, or ref to, an Icon object, or a 2-
element vector of character vectors or refs that specifies 2 Icon objects.

If empty (the default value), the standard "Dyalog APL" icon is used.

The large and small icons are supplied to the Operating System which uses them as and
when is appropriate. Normally, the large icon is of size 32x32 and the small icon is
16x16. If you specify an icon of a different size, the Operating System will scale it as
appropriate.

For an MDIClient, the IconObj property has no direct use, but is inherited by all its
child SubForms. Thus if you want all your child SubForms to use the same icons, you
need only define them once for the MDIClient.

 Chapter 2 A-Z Reference 315

315

Idle Event 130

Applies to Root

If enabled, this event is generated whenever APL looks to see if there is an event on the
queue and finds it empty. Its purpose is to allow an application to perform some
background processing when the user is not doing anything. It is unwise to use this
event directly from the Session as it will occur repeatedly and may lock you out.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function is a 2-element vector as follows:

[1] Object: ref or character vector

[2] Event code: 'Idle' or 130

IDNToDate Method 263

Applies to Calendar, DateTimePicker, Root

This method is used to convert a date from an IDN into ⎕TS format (year, month, day).
The corresponding day of the week is also obtained.

The argument to IDNToDate is a single item as follows:

[1] IDN: Integer

The result is a 4-element integer vector containing the year, month, day, and weekday
corresponding to the IDN that was specified.

The value of the 4th element, weekday, is an integer in the range 0-6 that specifies on
which day of the week the specified date falls (0=Monday).

Example:

 F.C.IDNToDate 36048
1998 9 11 4

316 Dyalog APL/W Object Reference

Image Object

Purpose Positions bitmaps and icons within an object.

Parents ActiveXControl, Bitmap, Form, Grid, Group, Metafile, Printer,

PropertyPage, Static, StatusBar, SubForm, ToolBar, ToolControl

Children Timer

Properties Type, Points, Coord, Visible, Event, Dragable, Picture, OnTop,

AutoConf, Data, EdgeStyle, Size, Accelerator, AcceptFiles,
KeepOnClose, MethodList, ChildList, EventList, PropList

Events Close, Create, DragDrop, Help, MouseDblClick, MouseDown,

MouseMove, MouseUp, Select

Methods Detach

The Points property specifies the co-ordinates of one or more points at which the
specified graphical objects are to be drawn.

The Picture property specifies the name(s) of Bitmap, Icon or Metafile object(s) that are
to be drawn. It may be a simple character vector or a vector of vectors.

To draw a single graphic picture, the Picture property is a simple character vector
specifying the name of a Bitmap, Icon or Metafile object. Points is either a 2-element
vector or a 1-row, 2-column matrix whose elements specify the y-coordinate and x-
coordinate respectively at which the object is to be drawn.

To draw the same picture at several different positions, the Picture property is a simple
character vector specifying the name of the Bitmap, Icon or Metafile object. Points is
either a 2-column matrix of y-coordinates and x-coordinates, or a nested vector whose
first element contains the y-coordinates and whose second element contains the x-
coordinates.

To draw several different pictures, the Picture property is a vector of character vectors
specifying the names of several Bitmap, Icon and/or Metafile objects. Points is a 2-
column matrix or 2-element nested vector as described above.

 Chapter 2 A-Z Reference 317

317

Setting the EdgeStyle property causes the picture to be surrounded by the appropriate
border. For example, setting EdgeStyle to 'Plinth' produces a button-like
appearance.

Setting the Size property causes the picture to be scaled to fit within the specified
rectangle. It is only necessary to specify Size when an Image is used to draw a Metafile
object. For a Bitmap or Icon, Size defaults to the size of the object being drawn.

The Dragable property specifies whether or not the Image can be dragged and dropped
using the mouse.

Examples

First make a Form, then make two Bitmaps:

 'F' ⎕WC 'Form'
 'YES' ⎕WC 'Bitmap' 'C:\WDYALOG\WS\YES'
 'NO' ⎕WC 'Bitmap' 'C:\WDYALOG\WS\NO'

Display the YES Bitmap at (20,10)

 'F.I' ⎕WC 'Image' (20 10)('Picture' 'YES')

Display the YES Bitmap at (20,10) and (20,50)

 'F.I' ⎕WC 'Image' (20(10 50))('Picture' 'YES')

Display the YES Bitmap at (20,10) and the NO Bitmap at (20,50)

 'F.I' ⎕WC'Image'(20(10 50))('Picture' 'YES' 'NO')

318 Dyalog APL/W Object Reference

ImageCount Property

Applies to ImageList

The ImageCount property is a read-only property that reports the number of images in
an ImageList object. It is an integer scalar.

ImageIndex Property

Applies to ComboEx, CoolBand, ListView, Menu, MenuItem, TabButton,
ToolButton, TreeView

For a ComboEx, ListView or TreeView, the ImageIndex property maps bitmapped
images in an ImageList to items. ImageIndex is an integer vector whose length is the
same as the number of items in the object. See also SelImageIndex

For a CoolBand, MenuItem, TabButton or ToolButton, ImageIndex specifies the picture
to be displayed in the object. In these cases, ImageIndex is a single integer value.

ImageIndex is ⎕IO dependent.

 Chapter 2 A-Z Reference 319

319

ImageList Object

Purpose The ImageList object represents a set of bitmapped images.

Parents ActiveXControl, CoolBand, CoolBar, Form, Group, ListView,

OLEServer, PropertyPage, Root, SubForm, TabControl, TCPSocket,
ToolBar, ToolControl, TreeView

Children Bitmap, Cursor, Icon, Timer

Properties Type, Size, Event, Data, Handle, Translate, ImageCount, Masked,

MapCols, KeepOnClose, MethodList, ChildList, EventList, PropList

Events Close, Create

Methods Detach

An ImageList object represents an array of bitmapped images which are used to depict
items in a ComboEx, ListView, or TreeView object, or the images for a CoolBand,
MenuItem, TabControl or ToolControl.

Making an ImageList is a 2-step process. First, you create an (empty) ImageList
specifying its Size and Masked properties. The former establishes the size of each of the
bitmapped images in the array. The Masked property specifies whether the ImageList is
to contain masked images (Icons and Cursors) or unmasked images (Bitmaps). The
default is 1 (Icons). Note that these properties must be established when the ImageList
is created by ⎕WC and may not subsequently be changed using ⎕WS.

Next, you create a series of Bitmap or Icon objects as children of the ImageList. As you
make each one, APL adds the corresponding image (or images) to the ImageList object.
If the size of each of the Bitmap or Icon objects is equal to the Size of the ImageList
itself, each child object corresponds to an image in the ImageList. However, if you add
an object whose width is an exact multiple of the width of the ImageList, a
corresponding number of images will be added.

For example, if the Size of the ImageList is 16x16 (the default) and you create a child
Bitmap of size 16x48, three images (each of size 16x16) will be added to the ImageList.
This is more efficient than building the images one-by-one. In other circumstances
(where the size of the Bitmap or Icon is not equal to Size of ImageList), the Bitmap or
Icon will be scaled to fit.

320 Dyalog APL/W Object Reference

Note that you can associate a set of bitmap images contained in a DLL by specifying the
name of the DLL and the resource number of the bitmap. For example:

 'F.IL'⎕WC'ImageList'('Masked' 0)('MapCols' 1)
 'F.IL.'⎕WC'Bitmap'('ComCtl32' 120)⍝ STD_SMALL

 'F.TB.IL'⎕WC'ImageList'('Masked' 0)('Size' 24 24)
 'F.TB.IL.'⎕WC'Bitmap'('ComCtl32' 121)⍝ STD_LARGE

Notice that when making Bitmaps or Icons as children of an ImageList, it is normally
not necessary to name them because they are subsequently referenced only via the
ImageIndex and SelImageIndex properties and not by name. The number of images in
an ImageList is given by the read-only property, ImageCount.

An ImageList is associated with another object via its ImageListObj property.

ImageListObj Property

Applies to ComboEx, CoolBar, ListView, Menu, TabControl, ToolControl,
TreeView

The ImageListObj property is a simple character vector or a ref, or a vector of character
vectors or refs, that specifies the ImageList objects that are associated with an object.

For a ComboEx or TreeView object, the ImageListObj property specifies the name of,
or ref to, a single ImageList object that contains a set of images to be displayed
alongside its Items. The image(s) displayed by a particular item in its normal
(unselected) and selected states are specified by the corresponding element of the
ImageIndex and SelImageIndex properties respectively.

For a CoolBar, Menu, and TabControl objects, the ImageListObj property specifies the
name of, or ref to, a single ImageList object that contains a set of images for its
CoolBand, MenuItem and TabButton children respectively. For a ToolControl,
ImageListObj may specify up to three ImageList objects that correspond to each of the
three different states, normal, highlighted (hot) and inactive, of its ToolButton children.
In all these cases, individual images are mapped to the child objects by their
ImageIndex property.

For a ListView object, either one or two ImageList objects may be specified. The first
ImageList contains the large icon set of images. the second contains the small icon set.
The set that is used is determined by the value of the View property. The mapping
between the set of images in the ImageList and items in the object is determined by the
ImageIndex property.

 Chapter 2 A-Z Reference 321

321

Indents Property

Applies to ComboEx

Specifies the amount by which items in a ComboEx object are indented.

Indents may be an integer scalar or a vector with the same number of elements as there
are items in the ComboEx. Its default value is 0.

The unit of indenting is 10 pixels. For example, if there are 3 items and Indents is (0 1
2), the items will be indented by 0, 10 and 20 pixels respectively.

Index Property

Applies to Combo, ComboEx, CoolBand, FileBox, Grid, List, TreeView

For a List and a Combo with Style 'Simple', this property specifies the position of
the data in the list box as a positive integer value. If Index has the value "n", it means
that the "nth" item in Items is displayed on the top line in the list box. Note that Index
for a Combo or List cannot be set using ⎕WC. The value of Index in a Combo with a
drop-down list box (Style 'Drop' or 'DropEdit') is always equal to ⎕IO.

For a Grid, Index is a 2-element vector that specifies the row and column number of the
cell that is currently in the top left corner of the Grid.

For a TreeView, Index is a positive integer value that specifies which item appears at
the top of the TreeView window.

For a FileBox, the Index property determines which of the Filters is initially selected.

For a CoolBand, the Index property specifies the position of the CoolBand within its
parent CoolBar, relative to the other CoolBands in the CoolBar.

The value of Index is dependent on ⎕IO, and its default value is equal to ⎕IO.

322 Dyalog APL/W Object Reference

IndexChanged Event 210

Applies to Grid

If enabled, this event is reported when the value of the Index property of a Grid has
changed as a result of user interaction. The event is reported after the Grid has been
scrolled. You may not modify or nullify the operation with a 0-return callback and you
may not call IndexChanged as a method or generate this event using ⎕NQ. To cause a
Grid to scroll, use ⎕WS to set its Index property.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'IndexChanged' or 210

[3] Row: Integer.

[4] Column: Integer.

The Row and Column reported by the event refer to the new value of the Index
property.

 Chapter 2 A-Z Reference 323

323

Input Property

Applies to Grid

This property specifies objects to be associated with cells in a Grid. These objects may
be of type Button, ColorButton, Combo, Edit, Label, Spinner or TrackBar. In addition,
the Input property my specify instances of OCXClass objects (ActiveX controls) and
NetClient objects (.NET classes).

The Input property is either a single ref or a simple character scalar or vector, or a
vector of character vectors or refs. If it specifies a single object, this will be associated
with all of the cells in the Grid. If it specifies a set of objects, these are mapped to
individual cells through the CellTypes property.

When a cell becomes the current cell, its value (defined by the appropriate element of
the Values property) defines the value of a corresponding property of the associated
object The property that corresponds to the value in the cell, depends upon the Type of
the associated object as shown in the following table:

Associate Object Type Corresponding Property

Label Text
Edit Value
Combo Text
Button (Style Push) Caption
Button (Style Radio or Check) State
ColorButton CurrentColor
DateTimePicker DateTime
Spinner Value
TrackBar Thumb
OCXClass (specified by InputProperties)
NetClient (specified by InputProperties)

In effect, the user inputs a new value into the current cell by changing the corresponding
property of its associated object. An associated object may be a fixed object that is
external to the Grid or a floating object that moves automatically from cell to cell. The
latter is achieved by creating the associated object as a child of the Grid.

If the associated object is an Edit or Combo, the user may change the Text property of
the object by typing, or, in the case of a Combo, by selecting an item from a list. The
new value of the Text property is then used to update the value in the cell (defined by
the Values property of the Grid) when the user moves on.

324 Dyalog APL/W Object Reference

If the associated object is a radio button, the value in the cell (0 or 1) is reflected by the
State property of the Button. The user may click the Button on and off, changing its
State and thereby the corresponding value in the cell.

If the associated object is a ColorButton, the corresponding elements of the Values
property contain 3-element integer vectors which specify the RGB colour values.

If the associated object is a DateTimePicker, the corresponding elements of the Values
property contain 4-element integer vectors which specify the DateTime values.

If the associated object is an instance of an OCXClass object (ActiveX control) or a
NetClient object (.NET class), the Grid uses the default property of the external object if
it has one. Alternatively, the InputProperties property is used to specify which property
(or properties) of the external object are to be mapped to elements of Values. If more
than one property is specified, elements of Values are vectors.

If there is no object associated with a cell, or if its associated object is a Label or a
Button with Style Push, the cell is protected and may not be changed by the user. When
the current cell is thus protected, the corresponding row and column titles are not
indented as they are when the cell may be edited.

If the associated object is a numeric Edit or Label (FieldType Numeric, LongNumeric,
Currency, Date, LongDate or Time) the contents of the cell are formatted accordingly,
even when it is not the current cell. Thus a cell associated with a Label with FieldType
Date, always displays as a date.

If the associated object is a Combo or Button, the appearance of a non-current cell is
defined by the corresponding element of the ShowInput property.

The following example illustrates the use of different types of object specified by the
Input and ShowInput properties.

 Chapter 2 A-Z Reference 325

325

InputMode Property

Applies to Grid

This property determines editing behaviour and the action of the cursor movement keys
when the user changes the contents of a Grid using a floating Edit or DropEdit Combo
control.

InputMode is a character vector with one of the following values:

'Scroll' The cursor keys move around the Grid; the user may

switch to InCell mode.

'InCell' The cursor keys move within the Input object; the mode
reverts to Scroll when the user selects a new cell.

'AlwaysScroll' The cursor keys move around the Grid; the user may not
switch to InCell mode.

'AlwaysInCell' The cursor keys move within the Input object, even when
the user moves to a new cell

'AutoEdit' See below

By default, the input mode is Scroll. In this mode, cursor movement keys are actioned
by the Grid itself and used to move from cell to cell. The user may switch to InCell
mode by double-clicking or by pressing the key defined by InputModeKey (the default
is "F2").

In InCell mode, all cursor movement keys are actioned by the Input object and typically
move the cursor around within the Input object and do not switch between cells. When
the user switches to a different cell, InputMode reverts to Scroll mode

If InputMode is AlwaysScroll or AlwaysInCell, the user remains permanently in either
Scroll or InCell mode respectively.

326 Dyalog APL/W Object Reference

If InputMode is 'AutoEdit', the behaviour of a cell that contains a floating Edit field
is as follows:

When the user enters the cell, the contents are selected (and highlighted).At this stage,
the cursor movement keys move to an adjacent cell
If the user presses a (valid) data key, that character replaces the current contents of the
cell.

If the user presses F2 (or the key defined by the InputModeKey property), the data is
de-selected and unhighlighted and the cursor is placed at the rightmost end of the data.

In either case, the left and right cursor keys now move the cursor within the current data
string, but skip to the adjacent cell from the beginning or end of the data. This
behaviour differs from InCell mode in which the cursor movement keys stick at the end
of the data.

InputModeKey Property

Applies to Grid

This property defines the keystroke used to switch from Scroll mode to InCell mode in
a Grid. It applies only where the Grid has a floating Edit control. See the description of
the InputMode property for further details.

The InputModeKey property is specified (in the same way as the Accelerator property)
as a 2-element vector of integer values containing the key number and shift state
respectively. Its default is (113 0) which is F2.

As an example, if you wanted to use Ctrl+Shift+a to switch modes, you would set
InputModeKey to (65 3). 65 is the key number for ‘a’ and 3 means Shift (1) + Ctrl

(2).

 Chapter 2 A-Z Reference 327

327

InputProperties Property

Applies to Grid

The InputProperties property is a vector of character vectors that specifies the names of
properties of an OCXClass (ActiveX Control) or .NET Class that are to be mapped to
the Values property in a Grid.

When an ActiveX Control or .NET Class is used as a child of the Grid, InputProperties
is used to specify how the value in each Grid cell corresponds to the value of one or
more properties of the child object.

For example, suppose there is a third-party ActiveX Control that displays a playing
card. The Control has two properties named Suit and Value that specify the suit
(1=clubs, 2=diamonds, 3=hearts, 4=spades) and card value (1="Ace", 2="2",
→11="Jack",→) respectively. To display these cards in a Grid, the InputProperties

property may be set to ('Suit' 'Value') and each element of the Values property
must be a 2-element integer vector specifying the suit and value of the corresponding
card.

 'CARDS'⎕WC'OCXClass' '...'
 'F'⎕WC'Form'
 'F.G'⎕WC'Grid'
 'F.G.card'⎕WC'CARDS'
 F.G.Input←'F.G.card'
 F.G.InputProperties←'Suit' 'Value'
 F.G.Values←⍳4 13

If InputProperties is not specified, the default property of the ActiveX Control or .NET
Class is used.

328 Dyalog APL/W Object Reference

InstanceMode Property

Applies to OLEClient

The InstanceMode property specifies how APL attempts to connect the OLEClient to an
OLE Server.

InstanceMode is a character vector that may be 'ExistingFirst' (the default),
'ExistingOnly' or 'New'. Its value is effective only when the object is created
with ⎕WC. Changing InstanceMode with ⎕WS has no effect.

If InstanceMode is 'ExistingFirst', APL attempts first to connect to a running
instance of the OLE Server. If there is no running instance, it starts the OLE server to
obtain a new object.

If InstanceMode is 'ExistingOnly', APL attempts to connect to a running instance
of the object. If there is no running instance, it fails with a DOMAIN ERROR.

Note that in either case, if there is more than one instance running, there is no way to
predict to which instance APL will be connected.

If InstanceMode is 'New', APL attempts to start the OLE Server to obtain a new
object, whether or not the OLE Server is already running. However, if the OLE Server
has registered itself as a single instance object and is already running, APL will be
connected to it, and a second instance of the Server will not in fact be started.

Interval Property

Applies to ProgressBar, Timer

The Interval property specifies the frequency with which a Timer object generates
Timer events. It is an integer value specified in milliseconds and has a default of 1000.

Setting Interval to 0 effectively de-activates the Timer.

 Chapter 2 A-Z Reference 329

329

Italic Property

Applies to Font

This property specifies whether or not a font represented by a Font object is italicised or
not. It is either 0 (normal) or 1 (italic). There is no default; the value of this property
reflects the characteristic of the selected font.

ItemDblClick Event 342

Applies to ListView, TreeView

If enabled, this event is reported when the user double-clicks a mouse button when the
mouse pointer is over an item in a ListView or TreeView object. This event is reported
for information only and may not be controlled in any way using a callback function.
Generating the event with ⎕NQ, or calling it as a method, has no effect.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'ItemDblClick' or 342

[3] Item number: Integer. The index of the item.

[4] Mouse button: Integer.

[5] Shift state: Integer. Sum of 1=Shift key, 2=Ctrl key,
4=Alt key

[6] Position: Integer. Indicates the position of the
mouse-pointer within the item. It is either
2 (over the icon), 4 (over the label), 8
(over the line) or 16 (over the symbol).

330 Dyalog APL/W Object Reference

ItemDown Event 340

Applies to ListView, TreeView

If enabled, this event is reported when the user depresses a mouse button when the
mouse pointer is over an item in a ListView or TreeView object. This event is reported
for information only and may not be controlled in any way using a callback function.
Generating the event with ⎕NQ, or calling it as a method, has no effect.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'ItemDown' or 340

[3] Item number: Integer. The index of the item.

[4] Mouse button: Integer.

[5] Shift state: Integer. Sum of 1=Shift key, 2=Ctrl key,
4=Alt key

[6] Position: Integer. Indicates the position of the
mouse-pointer within the item. It is either
2 (over the icon), 4 (over the label), 8
(over the line) or 16 (over the symbol)

 Chapter 2 A-Z Reference 331

331

ItemGroupMetrics Property

Applies to ListView

This property is used to specify colours and spacing elements for a ListView that is
displaying its Items in groupings (see ItemGroups).

Note that setting this property will only have an effect if Native Look and Feel is

enabled.

ItemGroupMetrics is a 3-item nested vector as follows:

[1] Text Colours: 2-element vector of 3 element RGB values
that specifies the colour of the group
caption and group footer respectively.

[2] Spacing 4-element integer vector that specifies the
top, left, bottom and right spacing around
each grouping in pixels

[3] Border Colours 4-element vector of 3 element RGB values
that specifies the colours for the top, left,
bottom and right borders (not yet
implemented).

For example:

 F.L.ItemGroupMetrics[1 2]←(2⍴⊂255 0 0)(10 100 0 10)

332 Dyalog APL/W Object Reference

ItemGroups Property

Applies to ListView

This property specifies item groupings for a ListView object.

Note that setting this property will only have an effect if Native Look and Feel is

enabled.

ItemGroups is a nested scalar or nested vector each of whose elements specifies a
grouping. Each grouping is a 5-element vector as follows:

[1] Group caption: character vector

[2] Item index Vector of indices to the Items property that
specifies which Items are in this grouping.

[3] Caption alignment an integer:
 1 = left aligned caption (the default)
 2 = centre aligned caption
 4 = right-aligned caption

[4] State Integer (not yet implemented)

[5] Footer text character vector (not yet implemented)

Note that State and Footer text are not yet implemented by Windows.

Items Property

Applies to Combo, ComboEx, List, ListView, Spinner, TreeView

This property specifies the list of items for a Combo, ComboEx or List object from
which the user may choose. Each item is represented by a row in the listbox.

The value of Items is a text array. It is normally specified as a vector of character
vectors each of which represents an item. For a Combo, List or Spinner, Items may also
be a matrix whose rows specify items. If a character scalar or simple vector is specified,
it is treated as a single item.

An empty character vector (which is the default) is treated the same as a vector of
blanks, and represents one item. A zero-length vector of vectors or an empty matrix
represents 0 items. The Items property returns an array of the same structure as was
assigned by ⎕WC or ⎕WS.

 Chapter 2 A-Z Reference 333

333

ItemUp Event 341

Applies to ListView, TreeView

If enabled, this event is reported when the user releases a mouse button when the mouse
pointer is over an item in a ListView or TreeView object. This event is reported for
information only and may not be controlled in any way using a callback function.
Generating the event with ⎕NQ, or calling it as a method, has no effect.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'ItemUp' or 341

[3] Item number: Integer. The index of the item.

[4] Mouse button: Integer.

[5] Shift state: Integer. Sum of 1=shift key, 2=Ctrl key,
4=Alt key

[6] Position: Integer. Indicates the position of the
mouse-pointer within the item. It is either
2 (over the icon), 4 (over the label), 8
(over the line) or 16 (over the symbol)

Justify Property

Applies to Button, Edit, Label, Spinner, TabControl

For a Button, Edit, Label and Spinner, this property determines the manner in which
text is justified within the object. It is a character vector that may take the value
'Left' (the default), 'Centre' or 'Right'. The keyword 'Centre' may also
be spelled 'Center'.

When applied to an Edit object with Style 'Multi', a value of 'Centre' or
'Right' forces word-wrapping and disables horizontal scrolling. Note that Justify
only applies to a multi-line edit field. If you specify a value for Justify in a 1-line edit
field (Style 'Single'), it will be ignored.

334 Dyalog APL/W Object Reference

For a TabControl, Justify may be 'Right' (which is the default) or 'None' or
empty.
If Justify is 'Right', the TabControl increases the width of each tab, if necessary, so
that each row of tabs fills the entire width of the tab control. Otherwise, if Justify is
empty or 'None', the rows are ragged.

With the exception of Label and TabControl objects, Justify may only be specified
when the object is created using ⎕WC.

KeepBits Property

Applies to Bitmap, Cursor, Icon

This property is be used to control the way that a Bitmap, Cursor and Icon objects are
stored in the workspace.

When you create a Bitmap, Icon or Cursor using ⎕WC, APL asks Windows to allocate a
corresponding bitmap, icon or cursor resource. This resource is allocated in Windows
memory. If APL were to hold the values of the image properties (CBits, Bits and CMap
for a Bitmap; Bits, CMap and Mask for Cursor and Icon objects) internally in the
workspace, this data would be duplicated. For large bitmaps this would have a serious
impact on memory utilisation and may affect performance. The KeepBits property is
provided to allow you to control whether or not APL retains the values of the image

properties in the workspace, so that you can choose a strategy to suit your configuration
and requirements. KeepBits may take the value 0 or 1.

If KeepBits is 0 the values of the image properties are not stored internally in your
workspace. If you save a workspace containing a Bitmap, Cursor or Icon object, the
corresponding Windows resource is automatically re-allocated when the workspace is
loaded by referring to the associated file. This is the file whose full pathname is defined
by the value of the object's File property. It follows that if you adopt this strategy, you
must ensure that the File property is set correctly. If APL cannot find the file when the
workspace is)LOADed, it cannot re-create the object, and you will get a VALUE
ERROR when you subsequently refer to it. A further consideration is the effect on ⎕WG.
If KeepBits is 0, and you execute ⎕WG 'CBits' or 'Bits' or 'CMap' or 'Mask',
APL obtains these values by requesting the data from Windows.

If KeepBits is set to 1, the contents of the image properties are stored in the workspace,
thus duplicating the information which is held by Windows itself. If you save a
workspace containing a Bitmap, Cursor or Icon the corresponding Windows resource is
automatically re-allocated from the image properties when the workspace is loaded.
The value of the File property is ignored. When you execute ⎕WG 'CBits' or
'Bits' or 'CMap' or 'Mask', APL generates the result directly from the stored
values held (internally) in the workspace.

 Chapter 2 A-Z Reference 335

335

KeepOnClose Property

Applies to ActiveXContainer, ActiveXControl, Animation, Bitmap, BrowseBox,
Button, Calendar, Circle, Clipboard, ColorButton, Combo, ComboEx,
CoolBand, CoolBar, Cursor, DateTimePicker, Edit, Ellipse, FileBox,
Font, Form, Grid, Group, Icon, Image, ImageList, Label, List,
ListView, Locator, Marker, MDIClient, Menu, MenuBar, MenuItem,
Metafile, MsgBox, OCXClass, OLEClient, OLEServer, Poly, Printer,
ProgressBar, PropertyPage, PropertySheet, Rect, RichEdit, Root,
Scroll, Separator, SM, Spinner, Splitter, Static, StatusBar, StatusField,
SubForm, SysTrayItem, TabBar, TabBtn, TabButton, TabControl,
TCPSocket, Text, Timer, TipField, ToolBar, ToolButton,
ToolControl, TrackBar, TreeView, UpDown

This property is either 0 or 1 and determines how the object is treated when its parent
Form (or, in the case of a Form, the Form itself) is closed by the user, receives a Close
event from ⎕NQ, or when Close is called as a method.

If KeepOnClose is 1 (for the object itself and for all its parents) when its parent Form is
closed, the object changes from being a GUI object to a pure namespace. For example,
the Type of a Button will change from 'Button' to 'Namespace'. Effectively, the
GUI component of the object is discarded but its Namespace component (and any
variables, functions, operators and other namespaces that it contains) remains intact.
Monadic ⎕WC may subsequently be used to re-attach the GUI component to the object.

Note that the default value of KeepOnClose depends upon the way in which a GUI
object was created with ⎕WC. If a GUI object is created by dyadic ⎕WC, KeepOnClose
defaults to 0. If a GUI object is attached by monadic ⎕WC, its KeepOnClose property
defaults to 1.

336 Dyalog APL/W Object Reference

KeyError Event 23

Applies to Edit, Spinner

If enabled, this event is generated when the user presses a key that is invalid according
to the FieldType of the object. This event is reported for information only. You may not
disable or modify it using the result of a callback function. If the KeyPress event is
enabled too, KeyPress is reported before KeyError.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'KeyError' or 23

[3] Character: character scalar

[4] ASCII code: integer scalar

[5] Key Number: integer scalar

[6] Shift State: integer scalar

In the Classic Edition, the resolution of the keystroke to a character (in ⎕AV), is
performed using the Input Translate Table. In the Unicode Edition, the resolution is
performed by the Operating System.

In the Unicode Edition, the Character Code is the Unicode code point of the character
that the user entered. In the Classic Edition, it is a number in the range 0-255 which
specifies the ASCII character that would normally be generated by the keystroke, and is
independent of the Input Translate Table. If there is no corresponding ASCII character,
the ASCII code reported is 0.

The key number is the physical key number reported by Windows when the key is
pressed.

The Shift State indicates which (if any) of the Shift, Ctrl and Alt keys are down at the
same time as the key is pressed. It is the sum of the following numbers :

 Shift key down : 1
 Ctrl key down : 2
 Alt key down : 4

Thus a Shift State of 3 indicates that the user has pressed the key in conjunction with
both the Shift and Ctrl keys. A Shift State of 0 indicates that the user pressed the key on
its own.

 Chapter 2 A-Z Reference 337

337

KeyPress Event 22

Applies to ActiveXControl, Animation, Button, Calendar, ColorButton, Combo,
ComboEx, DateTimePicker, Edit, Form, Grid, Group, List, ListView,
MDIClient, ProgressBar, PropertyPage, RichEdit, Scroll, Spinner,
SubForm, TrackBar, TreeView

If enabled, this event is generated when the user presses and releases a key on the
keyboard. It is reported for whichever object has the keyboard focus at the time.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'KeyPress' or 22

[3] Input Code: character scalar or vector

[4] ASCII code: integer scalar

[5] Key Number: integer scalar

[6] Shift State: integer scalar

The input code contains the ⎕AV character or command to which the keystroke maps
through the Input Translate Table.

The ASCII code is a number in the range 0-255 which specifies the ASCII character
that would normally be generated by the keystroke, and is independent of the Input
Translate Table. If there is no corresponding ASCII character, the ASCII code reported
is 0.

The key number is the physical key number reported by Windows when the key is
pressed.

338 Dyalog APL/W Object Reference

The Shift State indicates which (if any) of the Shift, Ctrl and Alt keys are down at the
same time as the key is pressed. It is the sum of the following numbers :

 Shift key down : 1
 Ctrl key down : 2
 Alt key down : 4

Thus a Shift State of 3 indicates that the user has pressed the key in conjunction with
both the Shift and Ctrl keys. A Shift State of 0 indicates that the user pressed the key on
its own.

For example, pressing keys in Form 'Form1' would generate the following event
messages :

 Form1 22 a 97 65 0 ⍝ user pressed "a"

 Form1 22 A 65 65 1 ⍝ user pressed "Shift-a"

 Form1 22 UC 0 38 0 ⍝ user pressed "Up Cursor"

 Chapter 2 A-Z Reference 339

339

Label Object

Purpose Displays static text.

Parents ActiveXControl, CoolBand, Form, Grid, Group, PropertyPage,

SubForm, ToolBar, ToolControl

Children Circle, Cursor, Ellipse, Font, Marker, Poly, Rect, Text, Timer

Properties Type, Caption, Posn, Size, Coord, Border, Justify, Active, Visible,

Event, Sizeable, Dragable, FontObj, FCol, BCol, CursorObj,
AutoConf, Data, Attach, EdgeStyle, Handle, Hint, HintObj, Tip,
TipObj, FieldType, Decimals, FormatString, Value, Translate,
Accelerator, AcceptFiles, KeepOnClose, Redraw, TabIndex,
MethodList, ChildList, EventList, PropList

Events Close, Configure, ContextMenu, Create, DragDrop, DropFiles,

DropObjects, Expose, FontCancel, FontOK, Help, MouseDblClick,
MouseDown, MouseEnter, MouseLeave, MouseMove, MouseUp,
MouseWheel, Select

Methods Animate, ChooseFont, Detach, GetFocus, GetTextSize, ShowSIP

This object displays a text label, a number, a date or a time value.

If FieldType is empty, the Label displays the text defined by its Caption property. If
FieldType is 'Numeric', 'LongNumeric', 'Currency', 'Date',
'LongDate', or 'Time' the Label converts and formats the number defined by its
Value property and displays this instead. See FieldType property for details.

The Border property determines whether or not the label has a border. A value of 0
means no border (the default). A value of 1 means that a 1-pixel border is drawn around
the label.

By default, the value of the EdgeStyle property for a Label is 'None' and the value of
BCol is 0 which implies Button Face colour. You can change its appearance by setting
EdgeStyle and/or BCol to different values.

The following illustration shows a "default" Label, a Label with a border, and a Label
that uses a Courier New font. The examples are drawn on Form which has a EdgeStyle
property of 'Default'. The code to produce this example is as follows :

340 Dyalog APL/W Object Reference

 'T'⎕WC'Form' 'Labels'(40 10)(30 50)
 L←'Chateau Baleau'
 'T.L1'⎕WC'Label'L(15 8)
 'T.L2'⎕WC'Label'L(15 62)('Border' 1)
 'T.F' ⎕WC'Font' 'Courier New' 32 1 0 0 700
 'T.L3'⎕WC'Label'L(60 8)('FontObj' 'T.F')

The second illustration shows some 3-Dimensional Label objects drawn on a default
Form. The APL code to produce this example is as follows.

 L←'Chateau Baleau'
 'T'⎕WC'Form' '3-Dimensional Labels' (40 10)(30 50)
 'T.L1'⎕WC'Label'L(15 8)('EdgeStyle' 'Plinth')
 'T.L2'⎕WC'Label'L(15 62)('Border' 1)
 ('EdgeStyle' 'Recess')
 'T.F' ⎕WC'Font' 'Courier New' 37 0 0 0 700
 'T.L3'⎕WC'Label'L(60 8)('FontObj' 'T.F')
 ('EdgeStyle' 'Groove')('Justify' 'Centre')

 Chapter 2 A-Z Reference 341

341

LastError Property

Applies to ActiveXControl, OLEClient, OLEServer, Root

The LastError property provides information about the most recent error reported by
OLE. You may use this property to report an error from an OLEServer or
ActiveXControl to a host application.

LicenseKey Property

Applies to OCXClass

The LicenseKey property is a character string that contains the license key for an
ActiveX control.

If an ActiveX control requires a license key, it must be specified by an application when
it creates an instance of the control. Typically, the license key is required only by the
run-time version of an ActiveX control, and is made available to an application by the
development version of the control.

Limits Property

Applies to ProgressBar, Scroll, Spinner, TrackBar, UpDown

This property is a 2-element vector that specifies the minimum and maximum values of
an object.

342 Dyalog APL/W Object Reference

List Object

Purpose Allows the user to select one or more items from a list.

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, SubForm,

ToolBar, ToolControl

Children Circle, Cursor, Ellipse, Font, Marker, Poly, Rect, Text, Timer

Properties Type, Items, Posn, Size, Style, Coord, Border, Active, Visible, Event,

VScroll, SelItems, Sizeable, Dragable, FontObj, FCol, BCol,
CursorObj, AutoConf, Index, Data, Attach, EdgeStyle, Handle, Hint,
HintObj, Tip, TipObj, Translate, Accelerator, AcceptFiles,
MultiColumn, ColumnWidth, KeepOnClose, Redraw, SortItems,
TabIndex, MethodList, ChildList, EventList, PropList

Events Close, Configure, ContextMenu, Create, DragDrop, DropFiles,

DropObjects, Expose, FontCancel, FontOK, GotFocus, Help,
KeyPress, LostFocus, MouseDblClick, MouseDown, MouseEnter,
MouseLeave, MouseMove, MouseUp, MouseWheel, Select

Methods Animate, ChooseFont, Detach, GetFocus, GetTextSize, ShowSIP

The Items property is either a vector of character vectors or a character matrix, and
determines the items in the List.

The size and position of the area used to display the list is defined by Size and Posn. If
Size is not chosen to represent an exact number of lines of text, the bottom line of text
may be clipped.

The Index property specifies or reports the position of Items in the list box as a positive
integer value. If Index has the value "n", it means that the "nth" item in Items is
displayed on the top line in the list box. However, it is ignored if all the Items fit within
the List object. Note that Index can only be set using ⎕WS and not by ⎕WC. The default
value for Index is ⎕IO.

The Style property may be 'Single' (the default) or 'Multi'. 'Single' allows
only a single item to be selected. 'Multi' allows several items to be chosen. In either
case, if the Select event is enabled, it is generated whenever the selection changes. If
Style is 'Multi' the List will generate a Select event every time an item is added to
the selected list.

 Chapter 2 A-Z Reference 343

343

Under Windows, you may select or de-select multiple items in a List object by pressing
the Ctrl key at the same time as pressing the left mouse button.

The SelItems property is a Boolean vector with one element per element or row in Items
and indicates which (if any) of the items is currently selected (and highlighted).

The VScroll property determines whether or not the list has a scrollbar. Its possible
values are :

 ¯2 scrollbar if required
 ¯1 scrollbar if required
 0 no scrollbar

Note that data in a List is always scrollable if there are more items than will fit in the
box. VScroll determines ONLY whether or not a scrollbar is provided.

The MultiColumn property is a Boolean value that specifies whether or not the List
object displays its items in columns. The default is 0 which produces a single-column
display. If MultiColumn is 1, the List object displays its items in columns whose width
is defined by the ColumnWidth property.

344 Dyalog APL/W Object Reference

ListTypeLibs Method 520

Applies to Root

The ListTypeLibs method reports the names and CLSIDs of all the loaded Type
Libraries.

The ListTypeLibs method is niladic.

The result is a nested vector with one element per loaded Type Library.

Each element is a vector of 2-element character vectors. The first is the name of the
Type Library; the second is its class identifier or CLSID.

Example:

 'EX'⎕WC'OLEClient' 'Excel.Application'
 ⍴ListTypeLibs
3
 ↑⊃ListTypeLibs
Microsoft Excel 9.0 Object Library
{00020813-0000-0000-C000-000000000046}

 ↑⊃¨ListTypeLibs
Microsoft Excel 9.0 Object Library
Microsoft Visual Basic for Applications Extensibility 5.3
Microsoft Office 9.0 Object Library

 Chapter 2 A-Z Reference 345

345

ListView Object

Purpose The ListView object displays a collection of items.

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, SubForm,

ToolBar, ToolControl

Children Bitmap, Circle, Cursor, Ellipse, Font, Icon, ImageList, Marker, Poly,

Rect, Text, Timer

Properties Type, Items, Posn, Size, Style, Coord, Align, Border, Active, Visible,

Event, DragItems, View, AutoArrange, Header, Wrap, EditLabels,
ImageListObj, ReportInfo, ColTitles, ImageIndex, VScroll, HScroll,
SelItems, Sizeable, Dragable, FontObj, FCol, BCol, CursorObj,
AutoConf, Data, Attach, EdgeStyle, Handle, Hint, HintObj, Tip,
TipObj, ColTitleAlign, ColTitle3D, Translate, Accelerator,
AcceptFiles, KeepOnClose, CheckBoxes, FullRowSelect, GridLines,
Redraw, TabIndex, AlwaysShowSelection, ItemGroups,
ItemGroupMetrics, MethodList, ChildList, EventList, PropList

Events BeginEditLabel, Close, ColumnClick, Configure, ContextMenu,

Create, DragDrop, DropFiles, DropObjects, EndEditLabel, Expose,
FontCancel, FontOK, GotFocus, Help, ItemDblClick, ItemDown,
ItemUp, KeyPress, LostFocus, MouseDblClick, MouseDown,
MouseEnter, MouseLeave, MouseMove, MouseUp, MouseWheel,
Select, SetColSize, SetItemPosition

Methods Animate, ChooseFont, Detach, GetFocus, GetItemPosition,

GetItemState, GetTextSize, SetItemState, ShowSIP

The ListView object is a window that displays a collection of items, each item
consisting of an icon and a label. The ListView provides several ways of arranging
items and displaying individual items. For example, additional information about each
item can be displayed in columns to the right of the icon and label. An example of the
use of a ListView object is the “My Computer” Windows utility.

The Items property is a vector of character vectors that specifies the labels for the items
displayed by the ListView. The ImageListObj property specifies the names of two
ImageList objects that define two sets of icons; a large icon (32x32 pixel) set and a
small icon (16x16 pixel) set. Alternatively, ImageListObj may be empty (no icons
displayed) or contain just the name of a single large icon ImageList. Finally, the
ReportInfo property may contain a matrix of information each row of which is
associated with an item.

346 Dyalog APL/W Object Reference

The View property contains a character vector that determines how the items are
displayed. It may have one of the following values; 'Icon' (the default),
'SmallIcon', 'List' or 'Report'. When View is 'Icon' or 'SmallIcon',
the items are arranged row-wise with large or small icons as appropriate. When View is
set to 'List', the items are arranged column-wise using small icons. Examples of
'Icon' and 'List' views are illustrated below.

 Chapter 2 A-Z Reference 347

347

When View is set to 'Report', the items are displayed in a single column using small
icons but with the matrix specified by ReportInfo displayed alongside. In this format,
the Boolean Header property determines whether or not the object also provides column
headings. Its default value is 1. The column headings themselves are specified by the
ColTitles property. Their alignment (and the alignment of the data in the columns
beneath them) is defined by the ColTitleAlign property. The appearance of the column
titles is further controlled by the ColTitle3D property. This is a Boolean value (default
1) which specifies whether or not the column titles have a 3-dimensional (plinth)
appearance. Header and ColTitle3D may only be set when the object is created using
⎕WC and may not subsequently be changed by ⎕WS.

In 'Report' View, columns may be resized by the user dragging the bars between the
titles, or under program control using the SetColSize event. A 'Report' view
example is illustrated below.

The DragItems property is Boolean and specifies whether or not the user may drag an
item from one position to another. Its default value is 1 (dragging is enabled).

The AutoArrange property is Boolean and specifies whether or not the items are
automatically re-arranged whenever an item is repositioned by the user or moved under
program control. Its default value is 0.

The EditLabels is a Boolean property (default 0) that determines whether or not the user
may edit the labels which are specified by the Items property.

The Style property may be 'Single', which specifies that only one item may be
selected at a time, or 'Multi' which permits multiple selections to be made. The
default is 'Multi'.

348 Dyalog APL/W Object Reference

The CheckBoxes property is Boolean and specifies whether or not check boxes are
drawn to the left of items. Its default value is 0.

The GridLines property is Boolean and specifies whether or not grid lines are drawn
between items. This applies only when View is 'Report'. Its default value is 0.

The FullRowSelect property is Boolean and specifies whether or not the entire row is
highlighted to indicate selected items. This applies only when View is 'Report'. Its
default value is 0.

The ItemGroups and ItemGroupMetrics properties allow you to display items in groups
as illustrated below. This feature only applies if Native Look and Feel is enabled.

 Chapter 2 A-Z Reference 349

349

350 Dyalog APL/W Object Reference

LocalAddr Property

Applies to TCPSocket

The LocalAddr property is a character vector that specifies the IP address of the
computer. The default value of LocalAddr is an empty character vector which implies
the default IP address of the computer.

Unless your computer has more than one network adapter each identified by a different
IP address, you do not need to specify LocalAddr. However, in this case you may use
either LocalAddr or LocalAddrName to identify the adapter. If you specify both
properties, the value of LocalAddrName will be ignored.

LocalAddr may only be specified in the ⎕WC statement that creates the TCPSocket and
may not subsequently be changed using ⎕WS.

LocalAddrName Property

Applies to TCPSocket

The LocalAddrName property is a character vector that specifies the host name of your
computer. It may be useful when you have more than one network adapter and you wish
to avoid hard-coding the IP address.

Note that you may use either LocalAddr or LocalAddrName to identify the local
computer. If you specify both properties, the value of LocalAddrName will be ignored.

LocalAddrName may only be specified by a server TCPSocket. Furthermore, it must be
specified in the ⎕WC statement that creates the TCPSocket object and it may not
subsequently be changed using ⎕WS.

When the specified host name has been resolved to an IP address, the TCPSocket will
generate a TCPGotAddr event and update the value of LocalAddr accordingly.

For a client TCPSocket, you may not specify LocalAddrName and ⎕WG returns an
empty character vector.

 Chapter 2 A-Z Reference 351

351

Locale Property

Applies to OLEClient

The Locale property specifies the language in which the OLE server, attached to an
OLEClient, exposes its methods (functions) and properties (variables).

When you create an OLEClient object, Dyalog APL/W requests the default Type
Library associated with the OLE server that you specify. Many OLE servers, such as
Excel.Application, provide different names for the methods and properties they expose
for different languages. Without Locale, it would be difficult to write an OLE client
application that could run in different countries, as the names of the functions and
variables may be unpredictable.

Locale is an integer; for example, the value 9 specifies English and the value 12
specifies French.

Locale may only be specified by the ⎕WC statement that is used to create the
OLEClient; it may not subsequently be changed using ⎕WS. A table of commonly used
Locale values is given below.

Note that Dyadic cannot guarantee that you will actually be given the Locale you
specify. This is a function of your specific installation and the OLE server in question.
However, Dyadic believes that for Microsoft products, it is a fairly safe bet that the
US/English interface will be available in most countries.

Language Locale

Neutral 0
Danish 6
Dutch 19
English 9
Finnish 11
French 12
German 7
Italian 16
Norwegian 20
Portugese 22
Russian 25
Spanish 10
Swedish 29

352 Dyalog APL/W Object Reference

LocalPort Property

Applies to TCPSocket

The LocalPort property is a scalar integer in the range 0-65535 that identifies the port
number associated with a TCPSocket object.

Note that you may use either LocalPort or LocalPortName to identify the service. The
use of LocalPortName is slightly slower but it avoids hard-coding the port number in
your program and is generally more flexible. If you specify both properties, the value of
LocalPortName will be ignored.

LocalPort may be specified only by the process that is initiating the connection (the
server) and must be set by the ⎕WC statement that creates the TCPSocket. LocalPort
may not subsequently be changed using ⎕WS.

If you specify a value of 0, the system will assign an available port number. For
example:

 'S1' ⎕wc'TCPSocket' ('LocalPort' 0)
 S1.LocalPort
4047

For a process that is completing a connection, LocalPort is allocated by the system and
is effectively read-only.

LocalPortName Property

Applies to TCPSocket

The LocalPortName property is a character vector that specifies the port name of the
local service that you wish to offer as a server.

Note that you may use either LocalPort or LocalPortName to identify the service. The
use of LocalPortName is slightly slower but it avoids hard-coding the port number in
your program and is generally more flexible. If you specify both properties, the value of
LocalPortName will be ignored.

LocalPortName may be specified only by the process that is initiating the connection
(the server) and must be set by the ⎕WC statement that creates the TCPSocket.
LocalPortName may not subsequently be changed using ⎕WS

 Chapter 2 A-Z Reference 353

353

When the specified port name has been resolved to a port number, the TCPSocket will
generate a TCPGotPort event and update the value of LocalPort accordingly.

For a client TCPSocket, you may not specify LocalPortName and ⎕WG returns an empty
character vector.

Locator Object

Purpose Allows the user to input a point, line or rectangle.

Parents ActiveXControl, Form, Group, PropertyPage, PropertySheet, Root,

Static, SubForm, TCPSocket, ToolBar, ToolControl

Children Timer

Properties Type, Posn, Size, LStyle, Style, Coord, Event, Step, Sizeable,

CursorObj, Data, Accelerator, KeepOnClose, MethodList, ChildList,
EventList, PropList

Events Close, Create, Locator, Select

Methods Detach, Wait

This object is used to obtain graphical input from the user. Like a pop-up menu or a
MsgBox, the Locator is a modal object whose interaction with the user is initiated by a
"local" ⎕DQ. This is terminated when the user releases a mouse button or presses any
key other than a cursor movement key, Shift, Ctrl or Alt. It is usual to initiate the ⎕DQ
for the Locator from within a callback function attached to a MouseDown (1) Event.

When the "local" ⎕DQ is terminated, a Locator (80) Event is generated. The associated
event message contains the new position and size of the Locator, together with how the
event was generated (keystroke or mouse button). To obtain the Locator's new position
or size, you must enable the event by setting its "action" code to 1, or to the name of a
suitable callback function.

The value of the Style property determines the type of locator displayed. It may be
'Point', 'Line', 'Rect', or 'Ellipse'. The default value is 'Rect'. The
value of the Sizeable property is 0 or 1 and determines whether or not "rubberbanding"
is enabled. Its default value is 1 which turns "rubberbanding" on. The Size property
determines the initial size of the Locator when displayed by ⎕DQ. Its default value is
(0,0).

354 Dyalog APL/W Object Reference

If Style is 'Rect' the Locator displays a rectangle. One corner of the rectangle is
positioned at Posn. The diagonally opposite corner is positioned at (Posn+Size). If
Sizeable is 0, the entire rectangle is dragged as the mouse is moved. If Sizeable is 1, the
corner initially defined by (Posn+Size) is dragged (rubberbanding the rectangle) as the
mouse is moved. The rectangle disappears when the operation is terminated. The new
position or size of the rectangle is reported in the Locator event message.

If Style is 'Ellipse' the Locator displays an ellipse. One corner of the bounding
rectangle of the ellipse is positioned at Posn. The diagonally opposite corner is
positioned at (Posn+Size). If Sizeable is 0, the entire ellipse is dragged as the mouse is
moved. If Sizeable is 1, the corner of the bounding rectangle initially defined by
(Posn+Size) is dragged (rubberbanding the ellipse) as the mouse is moved. The ellipse
disappears when the operation is terminated. The new position or size of the bounding
rectangle of the ellipse is reported in the Locator event message.

If Style is 'Line' the Locator displays a line drawn between the points defined by
Posn and Posn+Size. If Sizeable is 0, the line is dragged with the cursor as the mouse is
moved. If Sizeable is 1, the end of the line initially defined by Posn+Size is dragged
(rubberbanding the line) as the mouse is moved. The line disappears when the operation
is terminated. The new position or size of the line is reported in the Locator event
message.

If 'Style' is 'Point', the values of Sizeable and Size are ignored. During the ⎕DQ
no visible feedback (other than the cursor) is provided as the user moves the mouse.
When the ⎕DQ terminates, the new position of the Locator is reported in the Locator
event message.

The Step property is a 2-element integer vector (default value 1 1) that specifies the
increments (in pixels) by which the size or position of the Locator changes in the Y and
X directions respectively as the user moves the Locator.

The Locator is normally initiated from a MouseDown (1) event, and it is natural to
place it at the current cursor position. However, if you are using rubberbanding, you
will normally want to have the cursor appear at the end or corner of the Locator that
moves. If you start with a non-zero sized Locator, you must set Posn (which defines the
fixed end or corner) to the current cursor position minus Size to achieve this effect.

 Chapter 2 A-Z Reference 355

355

Locator Event 80

Applies to Locator

If enabled, this event is generated when the user releases a mouse button, or presses any
key (other than a cursor movement key) during a ⎕DQ on a Locator object.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 9-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'Locator' or 80

[3] Y: y-position of Locator after ⎕DQ

[4] X: x-position of Locator after ⎕DQ

[5] H: height of Locator after ⎕DQ

[6] W: width of Locator after ⎕DQ

[7] Mouse Button: number of the button which was released
(0 if keystroke)

[8] Keystroke: character scalar or vector containing the
"Input Code" for the key that terminated
the operation

[9] Shift state: integer scalar

356 Dyalog APL/W Object Reference

LockColumns Method 227

Applies to Grid

This method is used to lock one or more columns of a Grid object. However,
LockColumns is not supported in combination with hierarchical column titles as
specified by the ColTitleDepth property.

The argument to LockColumns is a 1 or 2-element vector as follows.

[1] Column(s): integer scalar, vector or matrix

[2] Lock flag: 0 or 1

Column(s) may be a scalar or a vector specifying the column or columns to be locked or
unlocked. Alternatively, it may be a matrix whose first row specifies the columns to be
locked and whose second row specifies where they are to be locked.

If the Lock flag is 1, the corresponding columns are locked. This is the default and may
be omitted. If the Lock flag is 0, the corresponding columns are unlocked

Examples:

 F.G.LockColumns 3 ⍝Lock 3rd column
 F.G.LockColumns 3 0 ⍝Unlock 3rd column
 F.G.LockColumns (4 5) ⍝Lock 4th & 5th cols
 F.G.LockColumns (2 1⍴8 4) ⍝Lock 8 at 4

In all cases, the result is an integer matrix containing the indices of all locked columns
and the positions at which they are currently locked.

The expression:

 F.G.LockColumns ⊂⍬

may therefore be used to obtain the indices of the locked columns, and:

 F.G.LockColumns (F.G.LockColumns ⊂⍬) 0

unlocks all currently locked columns.

 Chapter 2 A-Z Reference 357

357

Locks are additive. If column 4 is locked, locking column 5 results in both columns 4
and 5 being locked.

A locked column remains fixed in position and does not scroll sideways. The user may
enter and edit cells in a locked column in the normal way, but the behaviour of the
various cell movement keys (Tab, left and right cursor, and so forth) differs when a
locked column is encountered. As a general rule, if a keystroke attempts to move the
cursor into a locked column from an adjacent column, and the adjacent column has been
scrolled, it is unscrolled and the cursor remains in the (new) column adjacent to the
fixed column. If not, the cursor moves into the locked column.

When you lock a column, the position you specify for it to be locked at is a position in
the data and not the physical position of the column as displayed in the Grid. The
physical column in the Grid depends upon the value of the Index property at the time it
was locked.

If C is the value specified for where a given column is to be locked, the value of the
physical column P at which it will be displayed in the Grid named GRID is:

 P←C-(2⊃GRID ⎕WG 'Index')-⎕IO

Furthermore, the position of a locked column given by the result of the LockColumns
method changes (with the Index property) as the Grid is scrolled.

LockRows Method 226

Applies to Grid

This method is used to lock one or more Rows of a Grid object. However, LockRows is
not supported in combination with hierarchical row titles as specified by the
RowTitleDepth property.

The argument to LockRows is a 1 or 2-element vector as follows.

[1] Row(s): integer scalar, vector or matrix

[2] Lock flag: 0 or 1

Row(s) may be a scalar or a vector specifying the row or rows to be locked or unlocked.
Alternatively, it may be a matrix whose first row specifies the data rows to be locked
and whose second row specifies where in the Grid they are to be locked.

If the Lock flag is 1, the corresponding rows are locked. This is the default and may be
omitted. If the Lock flag is 0, the corresponding rows are unlocked

358 Dyalog APL/W Object Reference

Examples:

 F.G.LockRows 3 ⍝Lock 3rd row
 F.G.LockRows 3 0 ⍝Unlock 3rd row
 F.G.LockRows (4 5) ⍝Lock 4th and 5th rows
 F.G.LockRows (2 1⍴8 4) ⍝Lock row 8 at 4

In all cases, the result is an integer matrix containing the indices of all locked rows and
the positions at which they are currently locked.

The expression:

 F.G.LockRows ⊂⍬

may therefore be used to obtain the indices of the locked rows, and

 F.G.LockRows (F.G.LockRows ⊂⍬) 0

unlocks all currently locked rows.

Locks are additive. If row 4 is locked, locking row 5 results in both rows 4 and 5 being
locked.

A locked row remains fixed in position and does not scroll vertically. The user may
enter and edit cells in a locked row in the normal way, but the behaviour of the various
cell movement keys (Tab, up and down cursor, and so forth) differs when a locked row
is encountered. As a general rule, if a keystroke attempts to move the cursor into a
locked row from an adjacent row, and the adjacent row has been scrolled, it is
unscrolled and the cursor remains in the (new) row adjacent to the fixed row. If not, the
cursor moves into the locked row.

When you lock a row, the position you specify for it to be locked at is a position in the
data and not the physical position of the column as displayed in the Grid. The physical
column in the Grid depends upon the value of the Index property at the time it was
locked.

If R is the value specified for where a given row is to be locked, the value of the
physical row P at which it will be displayed in the Grid named GRID is given by the
expression:

 P←R-(⊃GRID ⎕WG 'Index')-⎕IO

Furthermore, the position of a locked row given by the result of the LockRows method
changes (with the Index property) as the Grid is scrolled.

 Chapter 2 A-Z Reference 359

359

LostFocus Event 41

Applies to ActiveXControl, Animation, Button, Calendar, ColorButton, Combo,
ComboEx, DateTimePicker, Edit, Form, Grid, Group, List, ListView,
MDIClient, ProgressBar, PropertyPage, RichEdit, Scroll, Spinner,
SubForm, TrackBar, TreeView

If enabled, this event is generated when the user transfers the keyboard focus away from
the object in question.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows:

[1] Object: ref or character vector (object that has lost
the focus)

[2] Event code: 'LostFocus' or 41

[3] Object: ref or character vector (object that has
received the focus)

If the focus is transferred to a window that is not part of the Dyalog APL GUI Interface,
the third element is an empty vector.

The LostFocus event is generated after the focus has changed. The default processing is
therefore to take no action. However, if you inhibit the event by returning a 0 from your
callback function, the focus is automatically restored to the object that had lost it.

360 Dyalog APL/W Object Reference

LStyle Property

Applies to Circle, Ellipse, Locator, Poly, Rect

This property determines the type of line used to draw a graphics object. It takes one of
the following integer values, or, if the object contains more than one component, a
vector of such values.

 0 : solid line
 1 : dashed line
 2 : dotted line
 3 : dash dotted line
 4 : dash dot dotted line
 5 : null line (invisible)

If LStyle is in the range 1-4, the gaps between the dashes and dots are drawn using the
colour specified by BCol, or are left undrawn (i.e. transparent) if BCol is not defined.

If LWidth specifies a line width greater than 1 pixel, the value of LStyle is ignored and
a solid (thick) line is drawn regardless.

LWidth Property

Applies to Circle, Ellipse, Poly, Rect

This property determines the width of line used to draw a graphics object. A positive
value specifies the line width in pixels. A negative value specifies line width in units of
the co-ordinate system defined for the object in the x direction. If the object contains
more than one component, LWidth may be a vector.

If LWidth specifies a line width greater than 1 pixel, a solid (thick) line is drawn
regardless of the value of LStyle.

 Chapter 2 A-Z Reference 361

361

MakeGIF Method 261

Applies to Bitmap

This method is used to generate an uncompressed GIF representation of a picture from a
Bitmap object suitable for display by a Web browser.

The MakeGIF method is niladic.

 The result is an integer vector containing the encoded GIF image.

Example

 ⍴GIF←BM.MakeGIF
19620

Note: Dyadic has chosen to support uncompressed GIF to avoid the legal complexity

of dealing with the licensing issues surrounding the compression algorithm
which is patented. If the target Web browser supports PNG (Portable Network
Graphics) format, use that instead.

MakePNG Method 260

Applies to Bitmap

This method is used to generate a PNG (Portable Network Graphics) representation of a
picture from a Bitmap object suitable for display by a Web browser.

The MakePNG is niladic.

 The result of the method is an integer vector containing the encoded PNG image.

Example

 ⍴PNG←BM.MakePNG
4930

Note: Although PNG is recognised as the latest graphics standard for displaying

pictures, not all Web browsers support it.

362 Dyalog APL/W Object Reference

MapCols Property

Applies to ImageList

The MapCols property specifies whether or not the button colours in bitmaps and icons
in an ImageList are re-mapped to reflect the users colour preferences. If your bitmaps
and icons represent buttons using the standard windows button colours, this property
causes those colours to be changed to suit the user’s own colour scheme.

MapCols is a single number with the value 0 (no colour mapping) or 1 (colours are
automatically re-mapped. The default is 0.

If MapCols is 1, the following colour mappings are performed:

Colour Description Mapped to

 0 0 0 Black Button Text

128 128 128 Dark grey Button Shadow

191 191 191 Light grey Button Face

192 192 192 Light grey Button Face

255 255 255 White Button Highlight

 Chapter 2 A-Z Reference 363

363

Marker Object

Purpose A graphical object used to draw polymarkers.

Parents ActiveXControl, Animation, Bitmap, Button, Combo, ComboEx,

Edit, Form, Grid, Group, Label, List, ListView, MDIClient, Metafile,
Printer, ProgressBar, PropertyPage, PropertySheet, RichEdit, Scroll,
Spinner, Static, StatusBar, SubForm, TabBar, TipField, ToolBar,
TrackBar, TreeView, UpDown

Children Timer

Properties Type, Points, Style, Size, FCol, Coord, Visible, Event, Dragable,

OnTop, AutoConf, Data, Accelerator, KeepOnClose, DrawMode,
MethodList, ChildList, EventList, PropList

Events Close, Create, DragDrop, Help, MouseDblClick, MouseDown,

MouseMove, MouseUp, Select

Methods Detach

The Points property specifies one or more sets of points at which one or more sets of
polymarkers are to be drawn.

The Style property determines the symbol that is drawn at each of a set of points.
Marker styles are specified either by numbers which represent the following symbol
shapes or by character vectors containing the names of Bitmap or Icon objects.

 0 : . (the default)
 1 : +
 2 : *
 3 : ⎕
 4 : ×
 5 : ⋄
 6 : ∘

The height of each symbol is specified by the value of the Size property. However this
applies only to Styles 1-6 and is ignored if Style is 0 or the name of a Bitmap or Icon.
The colour of each symbol is specified by the FCol property. The default is black.

The value of Dragable determines whether or not the object can be dragged. The value
of AutoConf determines whether or not the Marker object is resized when its parent is
resized.

364 Dyalog APL/W Object Reference

Single Set of Polymarkers

For a single set of polymarkers, Points is either a 2-column matrix of (y,x) co-ordinates,
or a 2-element vector of y and x co-ordinates respectively.

Style and Size are both simple scalar numbers.

FCol is either a single number representing a standard colour, or a 3-element vector
which specifies the marker colour explicitly in terms of RGB values.

First make a Form :

 'F' ⎕WC 'Form'

Draw a point at (y=20, x=10)

 'F.M1' ⎕WC 'Marker' (20 10)

Draw a row of points at (y=20, x=10, 20, ... 90) : (Note scalar extension of y-
coordinate)

 'F.M1' ⎕WC 'Marker' (20(10×⍳9))

Draw "+" symbols at each corner of a box :

 Y ← 10 10 50 50
 X ← 10 50 50 10

 'F.M1' ⎕WC 'Marker' (Y X) 1

Ditto, but draw them 10% high :

 'F.M1' ⎕WC 'Marker' (Y X) 1 10

Ditto, but use "*" symbols in green :

 'F.M1' ⎕WC 'Marker' (Y X) 2 10 (0 255 0)

 Chapter 2 A-Z Reference 365

365

Multiple Sets of Polymarkers

To draw multiple sets of polymarkers with a single name, Points is a nested vector
whose items are themselves 2-column matrices or 2-element nested vectors.

Style and Size may be simple scalars specifying a single type and/or size of symbol to
be used for all the sets of polymarkers, or vectors specifying different symbols and/or
sizes for each set.

FCol may be a single number or a single (enclosed) 3-element vector applying to all the
sets of polymarkers. Alternatively, FCol may be a vector whose elements refer to each
of the sets of polymarkers in turn. If so, the elements may be single numbers or nested
RGB triplets, or a combination of the two.

First make a Form :

 'F' ⎕WC 'Form'

Draw a "⎕" at (10,20) and a "⋄" at (20,20) :

 'F.M1' ⎕WC 'Marker'((1 2⍴10 20)(1 2⍴20 20)) (3 5)

Draw "+" symbols at each corner of one box and "∘" symbols at each corner of another

 Y1 X1 ← (10 10 50 50) (10 50 50 10)
 Y2 X2 ← (20 20 40 40) (20 40 40 20)

 'F.M1' ⎕WC 'Marker' ((Y1 X1)(Y2 X2)) (1 6)

Ditto, but draw the "+" symbols with height 2% and the "∘" symbols 5% :

 'F.M1' ⎕WC 'Marker' ((Y1 X1)(Y2 X2)) (1 6) (2 5)

Ditto, but draw the "+" symbols in red and the "∘" symbols in blue :

 'F.M1' ⎕WC 'Marker' ((Y1 X1)(Y2 X2)) (1 6) (2 5)
 ('FCol' (255 0 0)(0 0 255))

366 Dyalog APL/W Object Reference

Mask Property

Applies to Cursor, Icon

This property is used to specify how the bitmap for a Cursor or Icon interacts with the
pixels of the screen when it is displayed.

When a Cursor or Icon is displayed, the colour of each pixel occupied by the object on
the screen is determined by :

 a) The colour specified by Bits via CMap
 b) The value of Mask
 c) The existing colour of the screen pixel

Mask is a Boolean matrix with the same shape as the Bits property. See Cursor and Icon
objects for further details.

MaskCol Property

Applies to Bitmap, Form

Specifies the transparent colour for a Bitmap or Form.

MaskCol may be an integer scalar or a 3-element integer vector. If MaskCol is 0 (the
default), no transparent colour is defined. If MaskCol is a negative scalar, it specifies a
standard Windows colour. See BCol for details.

Otherwise, MaskCol is a 3-element vector of integers in the range 0-255 that specifies
the transparent colour in terms of RGB values (the intensity of the red, green and blue
components of colour).

For a Bitmap, if MaskCol is non-zero, any pixels specified with the same colour will
instead be displayed in whatever colour is underneath the Bitmap. This achieves similar
behaviour to that of an Icon.

For a Form, if MaskCol is non-zero, any of the contents of the Form that are specified
to be the same colour as MaskCol will be transparent. For example, if MaskCol is 255 0
0 (red), any red items contained in the Form will instead be transparent areas, displaying
whatever is behind them on the screen. Mouse events generated over such transparent
areas will be passed to any other windows behind them, and will not be reported on the
Form itself.

 Chapter 2 A-Z Reference 367

367

Masked Property

Applies to ImageList

The Masked property specifies whether or not the ImageList will contain masked
images, i.e. icons. Its default value is 1 which means that the ImageList expects Icons. If
you want to use Bitmap objects in an ImageList, you must set Masked to 0. An
inappropriate value of Masked will cause the images to be drawn incorrectly.

Masked must be established when the ImageList is created by ⎕WC and may not
subsequently be altered.

MaxButton Property

Applies to Form, SubForm

This property determines whether or not a Form or a SubForm has a "maximise" button.
Pressing this button will cause a Form to be resized to occupy the entire screen, or a
SubForm to occupy the entire area of its parent. Pressing it again will restore the Form
or SubForm to its original size. MaxButton is a single number with the value 0 (no
maximise button) or 1 (maximise button is provided). The default is 1.

Note that MaxButton is independent of Sizeable, i.e. you can define a Form that can be
maximised but not resized. If any of the properties MaxButton, MinButton, SysMenu
and Sizeable are set to 1, the Form or SubForm will have a title bar.

MaxDate Property

Applies to Calendar, DateTimePicker

The MaxDate property specifies the largest date that the user may select in a Calendar
object or in the calendar drop-down of a DateTimePicker.

MaxDate is an IDN value. Its default value is 11249470 which is the maximum date
that the Calendar can display.

368 Dyalog APL/W Object Reference

MaxLength Property

Applies to Edit, Spinner

This property specifies the maximum number of characters that the user may enter in a
single-line Edit object (Style 'Single') or Spinner object. Its default value is 0
which implies no limit.

It does not apply to a multi-line Edit object (Style 'Multi'). MaxLength does not
limit the length of the vector that you may assign to the Text property using ⎕WC or
⎕WS. However, if you overfill the field in this way, the user must delete excess
characters before the object will accept further input.

MaxSelCount Property

Applies to Calendar

The MaxSelCount property specifies the maximum number of contiguous days that the
user may select in a Calendar object.

MaxSelCount is an integer whose default value is 7.

MaxSelCount is ignored unless the Style property of the Calendar object is set to
'Multi'.

MDIActive Property

Applies to MDIClient

This property contains the name of the SubForm owned by the MDIClient that is
currently active. Only one SubForm may be active at a time. You can switch between
SubForms in an MDI application under program control by setting MDIActive or
MDIActiveObject or by generating an MDIActivate event.

 Chapter 2 A-Z Reference 369

369

MDIActiveObject Property

Applies to MDIClient

This property contains a ref to the SubForm owned by the MDIClient that is currently
active. Only one SubForm may be active at a time. You can switch between SubForms
in an MDI application under program control by setting MDIActive or
MDIActiveObject or by generating an MDIActivate event.

MDIActivate Event 42

Applies to SubForm

This event is generated when the user activates a particular SubForm that is the child of
an MDIClient. This occurs when the user clicks the left mouse button in the SubForm or
selects it from the menu nominated for this purpose (see MDIMenu property). You may
also call MDIActivate as a method.

Note that this event is reported after the action has taken place and cannot be disabled
by returning 0 from a callback function or by setting its action code to ¯1.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'MDIActivate' or 42

[3] Object: ref or character vector

Note that the 3rd element of the event message is either an empty vector or the ref or
name of the SubForm that was previously the active one in the same MDIClient.

370 Dyalog APL/W Object Reference

MDIArrange Method 112

Applies to MDIClient

This method causes the MDIClient object to organise the icons associated with any
minimised child Forms into regimented rows and columns. To permit the user to carry
out this action, it is recommended that a suitable callback function or expression is
attached to a MenuItem or Button. The callback function or expression should then call
MDIArrange.

The MDIArrange method is niladic.

MDICascade Method 110

Applies to MDIClient

This event causes the MDIClient object to organise its child Forms in an overlapping
fashion. To permit the user to carry out this action, it is recommended that a suitable
callback function or expression is attached to a MenuItem or Button. The callback
function or expression should then invoke the MDICascade method using ⎕NQ.

The MDICascade method is niladic.

 Chapter 2 A-Z Reference 371

371

MDIClient Object

Purpose Implements Multiple Document Interface (MDI) behaviour.

Parents ActiveXControl, Form, SubForm

Children Circle, Ellipse, Font, Marker, Poly, Rect, SubForm, Text, Timer

Properties Type, Posn, Size, Coord, Border, Event, BCol, Picture, IconObj,

CursorObj, YRange, XRange, Data, Attach, EdgeStyle, Handle,
MDIActive, MDIActiveObject, Hint, HintObj, Tip, TipObj, Translate,
Accelerator, KeepOnClose, Redraw, TabIndex, MethodList,
ChildList, EventList, PropList

Events Close, Configure, ContextMenu, Create, DragDrop, DropFiles,

DropObjects, Expose, GotFocus, Help, KeyPress, LostFocus,
MouseDblClick, MouseDown, MouseEnter, MouseLeave,
MouseMove, MouseUp, MouseWheel, Select

Methods Animate, Detach, GetFocus, GetTextSize, MDIArrange,

MDICascade, MDITile, ShowSIP

The multiple-document interface (MDI) is a document-oriented interface that is
commonly used by word-processors, spreadsheets and other applications that deal with
documents. An MDI application allows the user to display multiple documents at the
same time, with each document displayed in its own window.

The MDIClient object is a container object that effectively specifies the client area
within the parent Form in which the SubForms are displayed. The MDIClient object
also imposes special MDI behaviour which is quite different from that where a
SubForm is simply the child of another Form.

By default, the MDIClient occupies the entire client area within its parent Form. This is
the area within the Form that is not occupied by CoolBars, MenuBars, ToolBars,
ToolControls, TabBars, TabControls and StatusBars. In most applications it is therefore
not necessary to specify the position and size of the MDIClient object, although you
may do so if you want to reserve additional space in the parent Form for other objects.
Each of the four sides of an MDIClient object is automatically attached to the
corresponding side of its parent Form and maintains its position when the parent Form
is resized. This means that a default MDIClient always occupies the entire client area of
its parent Form, regardless of how the parent is resized.

372 Dyalog APL/W Object Reference

The appearance of the MDIClient may be changed using its Border, BCol and Picture
properties. The EdgeStyle property has no direct effect and is provided only to pass on a
value to its child Forms.

The MDIActive and MDIActiveObject properties contain the name of and a ref to the
SubForm that currently has the focus. You may set these properties as well as query
them.

You can call methods which cause the MDIClient to organise its child Forms in some
way. These methods are:

MDICascade Causes the MDIClient to organise its child Forms in an
 overlapping manner.

MDITile Causes the MDIClient to arrange its child Forms as a row or
 column.

MDIArrange Causes the MDIClient to arrange the icons
 associated with any minimised child Forms in an orderly
 fashion.

 Chapter 2 A-Z Reference 373

373

MDIDeactivate Event 43

Applies to SubForm

This event is generated when the user activates a different SubForm that is the child of
an MDIClient, thereby de-activating the current one which causes this event. This
occurs when the user clicks the left mouse button in another SubForm or selects it from
the menu nominated for this purpose (see MDIMenu property). You may also call
MDIDeactivate as a method.

Note that this event is reported after the action has taken place and cannot be disabled
by returning 0 from a callback function or by setting its action code to ¯1.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'MDIDeactivate' or 43

[3] Object: ref or character vector

Note that the 3rd element of the event message is the ref or name of the SubForm that
has now been made the active one in the same MDIClient.

MDIMenu Property

Applies to MenuBar

This property specifies the name of, or a ref to, the Menu object that is nominated as the
Window menu in an MDI application. If such a menu is defined, the Captions of all the
child Forms are automatically added to it below any other Menu or MenuItem objects
that the application has created directly. This list is separated from the preceding items
by a separator. The entry for the currently active SubForm is checked and the user may
switch between SubForms by selecting from this list.

Note that the additional separator and the items representing the list of child forms are
not Dyalog APL/W objects and may not be accessed by the application. If you prefer to
maintain your own window list you should not use this property.

374 Dyalog APL/W Object Reference

MDITile Method 111

Applies to MDIClient

This method causes the MDIClient object to organise its child Forms as a row or
column. To permit the user to carry out this action, it is recommended that a suitable
callback function or expression is attached to a MenuItem or Button. The callback
function or expression should then call the MDITile method.

Note that because there are restrictions concerning the minimum height and width of a
window, Windows does not necessarily respond as requested. If the MDIClient is itself
of insufficient size, or if it contains a large number of child Forms, Windows may
choose to tile the Forms in a row when a column was specified or vice versa. It may
also choose to ignore the event entirely.

The argument to MDITile is ⍬,or a single item as follows:

[1] Tile Mode: 0 (vertical)

 1 (horizontal)

If the argument is ⍬, the Tile Mode defaults to 0.

Menu Object

Purpose This is a pop-up object which allows the user to initiate an action or
to select an option using a "menu".

Parents ActiveXControl, Calendar, CoolBand, CoolBar, DateTimePicker,

Form, Grid, Menu, MenuBar, OLEServer, Root, StatusField,
SubForm, SysTrayItem, TCPSocket, ToolBar, ToolControl

Children Bitmap, Menu, MenuItem, Separator, Timer

Properties Type, Caption, Posn, Coord, Align, Active, Event, FontObj, FCol,

BCol, BtnPix, Data, EdgeStyle, Handle, Translate, Accelerator,
KeepOnClose, ImageListObj, ImageIndex, MethodList, ChildList,
EventList, PropList

Events Close, Create, DropDown, Select

Methods Detach, Wait

 Chapter 2 A-Z Reference 375

375

For a Menu that is owned by a MenuBar or another Menu, the Caption property
determines the text string that is displayed as the "choice". The Menu is then popped up
by the user clicking on this text. It is automatically popped down when the user chooses
an option (by selecting a MenuItem) or cancels the operation (by clicking elsewhere).

If a Menu belongs to a Form, SubForm or is a top-level object, it must be popped up by
the application. This is commonly done in response to a MouseDown event. A Menu is
popped-up by calling ⎕DQ with only the name of the Menu as its argument. The user
may therefore not interact with any other object until a selection is made or until the
operation is cancelled. When either occurs, the Menu is automatically popped down and
de-activated, and its ⎕DQ terminates.

The Menu object does not have a Size property. Instead, its size is determined
automatically by its contents.

If a Menu is owned by a MenuBar or by another Menu, its position within its parent is
also calculated automatically, dependent on the order in which other related objects are
established. The Posn property may however be used to insert a new Menu into an
existing structure. For example, having defined three Menu objects as children of a
MenuBar, you can insert a fourth one between the first and the second by specifying its
Posn to be 2. Note that the value of Posn for the Menus that were previously second and
third will then be reset to 3 and 4 respectively.

If a Menu is a child of a MenuBar which is itself a child of a Form or SubForm, the
Align property can be set to 'Right'. This is used to position a single Menu (or
MenuItem) at the rightmost end of a MenuBar. This does not apply if the MenuBar is
owned by a ToolControl.

The BtnPix property is used to display a picture in a Menu. BtnPix specifies the names
of, ore refs to, three Bitmap objects. The first Bitmap is displayed when the Menu does
not have the focus (normal), the second when it does have the focus (highlighted). The
third Bitmap is displayed when the Menu is made inactive (Active property is 0). If
Caption is also defined, it is displayed on top of the bitmaps.

If the Menu is a submenu (owned by a Menu), you may set its EdgeStyle property to
'Plinth'. This causes the Menu to take on an appearance that is similar to a
pushbutton and be raised when not selected and recessed when selected. Note that to
enable 3-dimensional appearance, you must set EdgeStyle to something other than
'None' for all the objects above the Menu in the tree.

EdgeStyle, BtnPix, FontObj, FCol and BCol do not affect the appearance of a Menu if it
is the direct child of a MenuBar. However, the EdgeStyle property must be set to
something other than 'None' if you want its children Menu and MenuItem objects to
have a 3-dimensional appearance.

376 Dyalog APL/W Object Reference

MenuBar Object

Purpose Specifies a horizontal menu bar displayed at the top of a Form.

Parents ActiveXControl, Form, SubForm, ToolControl

Children Bitmap, Menu, MenuItem, Separator, Timer

Properties Type, Visible, Event, FontObj, Data, EdgeStyle, MDIMenu, Handle,

Translate, KeepOnClose, MethodList, ChildList, EventList, PropList

Events Close, Create

Methods Detach

Unless it is made invisible the MenuBar is always available to the user to initiate
actions or to select options. A MenuBar has a fixed position and size.

It is possible to have more than one MenuBar associated with the same Form or
SubForm, but only one of them should be Visible at any one time.

The following example illustrates how a menu structure can be built up from a
MenuBar. For clarity, the example is indented, and the definition of the Event property
is omitted.

'F' ⎕WC 'Form' 'Menu Example'

 'F.M'⎕WC'MenuBar'

 'F.M.FILE'⎕WC'Menu' '&File'
 'F.M.MAT' ⎕WC'Menu' '&Materials'

 'F.M.MAT.B' ⎕WC 'MenuItem' '&Brick'
 'F.M.MAT.C' ⎕WC 'MenuItem' '&Concrete'
 'F.M.MAT.S' ⎕WC 'MenuItem' '&Stone'
 'F.M.MAT.SEP' ⎕WC 'Separator'
 'F.M.MAT.W' ⎕WC 'Menu' '&Wood'

 'F.M.MAT.W.O' ⎕WC 'MenuItem' '&Oak'
 'F.M.MAT.W.T' ⎕WC 'MenuItem' '&Teak'
 'F.M.MAT.W.M' ⎕WC 'MenuItem' '&Mahogany'

 Chapter 2 A-Z Reference 377

377

Note that putting a Separator (either Style) in a MenuBar has the effect of breaking the
bar vertically, i.e. the next Menu or MenuItem you add will appear on the left-hand side
on the line below.

The EdgeStyle property has no effect on the appearance of a MenuBar or of a direct
child of a MenuBar. However, if you want the sub-menus to have a 3-dimensional
appearance, you must set the EdgeStyle property of the MenuBar to something other
than 'None'.

If the MenuBar is owned by a Form that is the parent of an MDIClient, you can set the
MDIMenu property to the name of the Menu you wish to nominate as the window
menu. This menu will automatically be updated with the Captions of the child
SubForms and may be used to select the currently active one.

If a MenuBar is created as the only child of a ToolControl object, its menu items are
drawn as buttons. Although nothing is done to prevent it, the use of other objects in a
ToolControl containing a MenuBar, is not supported.

Under Pocket APL, a MenuBar that is created as a child of a Form, is automatically
displayed in the Pocket PC 2002 menu area at the bottom of the screen, rather than
along the top edge of the Form.

378 Dyalog APL/W Object Reference

MenuItem Object

Purpose This object allows the user to initiate an action or to select an option
 from a menu.

Parents Menu, MenuBar

Children Bitmap, Timer

Properties Type, Caption, Posn, Style, Align, Active, Event, Checked, FontObj,

FCol, BCol, BtnPix, Data, EdgeStyle, Hint, HintObj, Tip, TipObj,
Translate, Accelerator, KeepOnClose, ImageIndex, MethodList,
ChildList, EventList, PropList

Events Close, Create, Select

Methods Detach

The Caption property determines the text string that is displayed in its parent as the
menu option. The size of a MenuItem is determined by the size of its Caption, or by the
size of the largest object (Menu, MenuItem or Separator) with the same parent. The
position of the MenuItem is normally determined by the order in which it is created in
relation to other objects with the same parent. However, you can use the Posn property
to insert a new MenuItem into an existing structure. For example, having defined three
MenuItem objects as children of a Menu, you can insert a fourth one between the first
and the second by specifying its Posn to be 2. Note that the value of Posn for the
MenuItems that were previously second and third will then be reset to 3 and 4
respectively.

The Style property is either 'Check' (the default) or 'Radio' and determines the
type of graphic displayed alongside the Caption if the MenuItem is checked.

The Checked property is a single number with the value 0 or 1. 0 means not checked
(the default). If you set Checked to 1, a tick mark (Style 'Check') or dot (Style
'Radio') is placed alongside its Caption. This property is frequently used to indicate
which of a choice of options is currently set.

If a MenuItem is a child of a MenuBar which is itself a child of a Form or SubForm, the
Align property can be set to 'Right'. This is used to position a single MenuItem (or
Menu) at the rightmost end of a MenuBar. This does not apply if the MenuBar is owned
by a ToolControl.

 Chapter 2 A-Z Reference 379

379

If you set the EdgeStyle property to 'Plinth', the MenuItem will take on an
appearance that is similar to a pushbutton and be raised when not selected and recessed
when selected. Note that to enable 3-dimensional appearance, you must set EdgeStyle to
something other than 'None' for all the objects above the MenuItem in the tree.

The BtnPix property is used to display a picture in a MenuItem. BtnPix specifies the
names of, or refs to, three Bitmap objects. The first Bitmap is displayed when the
MenuItem does not have the focus (normal), the second when it does have the focus
(highlighted). The third Bitmap is displayed when the MenuItem is made inactive
(Active property is 0). If Caption is also defined, it is displayed on top of the bitmaps.

Alternatively, you may display an image alongside the Caption using the ImageIndex
property. This selects a picture from the ImageList associated with the ImageListObj
property of the parent Menu.

EdgeStyle, BtnPix, FontObj, FCol and BCol are not effective if the MenuItem is the
direct child of a MenuBar.

A MenuItem generates a Select event (if enabled) when the user chooses it.

Metafile Object

Purpose This object represents a picture in Windows Metafile format.

Parents ActiveXControl, Bitmap, CoolBand, Form, Group, OLEServer,

Printer, PropertyPage, PropertySheet, Root, Static, SubForm,
TCPSocket, ToolBar, ToolControl

Children Circle, Ellipse, Font, Image, Marker, Poly, Rect, Text, Timer

Properties Type, File, Size, Coord, RealSize, Event, YRange, XRange, Data,

Handle, Translate, Accelerator, KeepOnClose, MethodList, ChildList,
EventList, PropList

Events Close, Create, Select

Methods Detach, FileRead, FileWrite

The Windows Metafile is a mechanism for representing a picture in terms of a
collection of graphical components. Windows Metafiles are distributed in special files
(.WMF) from which they are loaded into memory for use by an application. Once
loaded a Metafile is a Windows resource that can be used in a variety of ways. The
Metafile object represents this resource.

380 Dyalog APL/W Object Reference

The File property specifies the name of a .WMF file from which the Metafile is to be
loaded or to which it is to be saved. If you specify File with ⎕WC the Metafile object is
loaded from it. If you specify File with ⎕WS no action takes place until you instruct the
Metafile object to re-initialise itself from the file or to save itself to the file. These
operations are performed using the FileRead and FileWrite methods. If you omit the
File property in the argument to ⎕WC or if you specify a null vector, the Metafile object
is initially empty. The following example loads the picture defined by the GOLF.WMF
Metafile that is distributed with Microsoft Office.

 'GOLF' ⎕WC 'Metafile' 'C:\MSOFFICE\CLIPART\GOLF'

Whether or not the Metafile object is initialised from a file, you can add graphical
components to it by creating child objects. However the Metafile behaves like a Bitmap
object in that its children cannot be modified using ⎕WS nor can they be removed using
⎕EX. The components of a Metafile that has been initialised from a .WMF file also
cannot be referenced in any way. It is therefore recommended that you use unnamed
objects when you create the graphical components of a Metafile. The following
statements create an empty Metafile called MF and then draw a line and circle in it.

 'MF' ⎕WC 'Metafile'
 'MF.' ⎕WC 'Poly' (50(10 90))
 'MF.' ⎕WC 'Circle' (50 50) 30

Like the Bitmap, Icon, Font and Cursor objects, the Metafile is a resource that is not
visible until it is used. This is done by setting the Picture property of another object
(Button, Form, Image, Static or SubForm) to the name of, or ref to, the Metafile object.
For example, to display the Metafile MF in a Form, you could type :

 'TEST' ⎕WC 'FORM' ('Picture' 'MF')

You can also copy a Metafile object to the Windows Clipboard from where it can be
pasted into another application. This is done by creating a Clipboard object and then
setting its MetafileObj property to the name of the Metafile object to be exported. For
example :

 'CL' ⎕WC 'Clipboard'
 CL.MetafileObj ← 'MF'

To save a Metafile object in a file, you call the FileWrite method. The following
statements save the Metafile MF in a file called TEST.WMF.

 MF.File ← 'TEST'
 MF.FileWrite

 Chapter 2 A-Z Reference 381

381

The Size property determines the granularity of the Metafile. Its default value is the
size of its parent. If you intend to replay the Metafile at higher resolution, you should
set Size accordingly.

RealSize property specifies the suggested size of a Metafile in units of 0.01mm. Setting
RealSize has the effect of making the Metafile placeable. Certain programs (such as
Word for Windows) only support placeable metafiles.

MetafileObj Property

Applies to Clipboard

This property is used to copy graphical data to and from the Windows clipboard using
the Windows Metafile format.

When you set the MetafileObj property of a Clipboard object to the name of the
Metafile object using ⎕WS its contents are copied to the Windows clipboard in
Windows Metafile format.

To import a picture that has been stored in the Windows clipboard in Metafile format
you use ⎕WG. This returns a nested array whose elements correspond to the graphical
components of the picture. Each of the elements of the array may be used as the
arguments of ⎕WC to draw the corresponding component of the picture. For example, if
the picture stored in C:\MSOFFICE\CLIPART\BIRD.WMF is copied to the Windows
clipboard, it may be imported into Dyalog APL/W as follows :

 BIRD ← CL.MetafileObj
 ⍴BIRD
4

Each of the items in BIRD is a 2-element vector. The first element is a dummy object
name which you may use or ignore as you wish. The second element is an array that
defines a graphical object and is suitable as the right argument of ⎕WC.

382 Dyalog APL/W Object Reference

For example :

 2⊃4⊃BIRD
POLY 191 397 FSTYLE 0 FILLCOL 0 0 0 ...
 190 402
 187 406
 182 409
 176 410
 172 409
 168 406
 165 402
 164 397
 165 391
 168 387
 172 384
 176 383
 182 384
 187 387
 190 391
 191 397
 189 395
 191 397

From this array, you can rebuild the imported picture component by component, either
as a Metafile object or directly onto a Form, Static or another object. The following
example draws the picture in a Form using the dummy names supplied.

 'TEST' ⎕WC 'FORM' ('Coord' 'User')
 'TEST' ⎕WS ('YRange' 0 1024)('XRange' 0 2048)
 TEST.⎕WC/¨BIRD

Notice that the co-ordinates of each of the graphical components are typically integers
in a co-ordinate system that extends from 0 to 1024 in the y-direction and 0 to 2048 in
the x-direction. The simplest way to draw the picture is therefore to set up the same co-
ordinate system on a Form as in the example above.

 Chapter 2 A-Z Reference 383

383

MethodList Property

Applies to ActiveXContainer, ActiveXControl, Animation, Bitmap, BrowseBox,
Button, Calendar, Circle, Clipboard, ColorButton, Combo, ComboEx,
CoolBand, CoolBar, Cursor, DateTimePicker, Edit, Ellipse, FileBox,
Font, Form, Grid, Group, Icon, Image, ImageList, Label, List,
ListView, Locator, Marker, MDIClient, Menu, MenuBar, MenuItem,
Metafile, MsgBox, NetControl, OCXClass, OLEClient, OLEServer,
Poly, Printer, ProgressBar, PropertyPage, PropertySheet, Rect,
RichEdit, Root, Scroll, Separator, SM, Spinner, Splitter, Static,
StatusBar, StatusField, SubForm, SysTrayItem, TabBar, TabBtn,
TabButton, TabControl, TCPSocket, Text, Timer, TipField, ToolBar,
ToolButton, ToolControl, TrackBar, TreeView, UpDown

This property reports the names of all the methods supported by a particular COM
object or instance of an OLE control. It is a vector of character vectors returned by ⎕WG.
It may not be set using ⎕WC or ⎕WS.

MinButton Property

Applies to Form, SubForm

This property determines whether or not a Form or SubForm has a "minimise" button.
Pressing this button will cause the Form or SubForm to be iconified. Pressing it again
will restore the Form to its original size. MinButton is a single number with the value 0
(no minimise button) or 1 (minimise button is provided). The default is 1.

Note that MinButton is independent of Sizeable, i.e. you can define a Form that can be
minimised but not resized.

If any of the properties MinButton, MaxButton, SysMenu, and Moveable are set to 1,
the Form or SubForm will have a title bar.

384 Dyalog APL/W Object Reference

MinDate Property

Applies to Calendar, DateTimePicker

The MinDate property specifies the smallest date that the user may select in a Calendar
or DateTimePicker object.

MinDate is an IDN value. Its default value is -109206 which is the minimum date that
the Calendar can display.

MonthDelta Property

Applies to Calendar, DateTimePicker

The MonthDelta property specifies the number of months by which a Calendar object
scrolls when the user clicks its scroll buttons.

MonthDelta is an integer or an empty vector (zilde). The latter means that the Calendar
object scrolls by the number of months that are currently displayed in its window. This
is the default.

 Chapter 2 A-Z Reference 385

385

MouseDblClick Event 5

Applies to ActiveXControl, Animation, Button, Calendar, Circle, ColorButton,
Combo, ComboEx, DateTimePicker, Edit, Ellipse, Form, Group,
Image, Label, List, ListView, Marker, MDIClient, Poly, ProgressBar,
PropertyPage, Rect, RichEdit, Scroll, SM, Spinner, Static, StatusBar,
StatusField, SubForm, SysTrayItem, TabBar, TabBtn, Text, ToolBar,
ToolButton, ToolControl, TreeView

If enabled, this event is reported when the user presses and then releases a mouse button
twice within a short space of time. The duration of this time is set through the Windows
Control Panel.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'MouseDblClick' or 5

[3] Y: y-position of mouse (number)

[4] X: x-position of mouse (number)

[5] Button: button double clicked (number)
 1 = left button
 2 = right button
 4 = middle button

[6] Shift State: sum of shift key codes (number)
 1 = Shift key is down
 2 = Ctrl key is down

In a graphical object (Circle, Ellipse, Image, Marker, Poly, Rect and Text), the position
of the mouse is reported relative to the top-left corner of its bounding rectangle.

Note that double-clicking a mouse button will generate the following sequence of
events:

 MouseDown
 MouseUp
 MouseDblClick
 MouseUp

386 Dyalog APL/W Object Reference

MouseDown Event 1

Applies to ActiveXControl, Animation, Button, Calendar, Circle, ColorButton,
Combo, ComboEx, DateTimePicker, Edit, Ellipse, Form, Group,
Image, Label, List, ListView, Marker, MDIClient, Poly, ProgressBar,
PropertyPage, Rect, RichEdit, Scroll, SM, Spinner, Static, StatusBar,
StatusField, SubForm, SysTrayItem, TabBar, TabBtn, Text, ToolBar,
ToolButton, ToolControl, TrackBar, TreeView, UpDown

If enabled, this event is reported when the user presses one of the mouse buttons. The
event message reported as the result of ⎕DQ, or supplied as the right argument to your
callback function, is a 6-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'MouseDown' or 1

[3] Y: y-position of mouse (number)

[4] X: x-position of mouse (number)

[5] Button: button pressed (number)
 1 = left button
 2 = right button
 4 = middle button

[6] Shift State: sum of shift key codes (number)
 1 = Shift key is down
 2 = Ctrl key is down

If you enable this event it is advisable that you ALSO enable MouseUp events.
Otherwise, the slight delay in running your callback function will cause the down and
up sequence to be reversed.

In a graphical object (Circle, Ellipse, Image, Marker, Poly, Rect and Text), the position
of the mouse is reported relative to the top-left corner of its bounding rectangle.

 Chapter 2 A-Z Reference 387

387

MouseEnter Event 6

Applies to ActiveXControl, Animation, Button, Calendar, ColorButton, Combo,
ComboEx, DateTimePicker, Edit, Form, Grid, Group, Label, List,
ListView, MDIClient, ProgressBar, PropertyPage, RichEdit, Scroll,
SM, Spinner, Static, StatusBar, SubForm, TabBar, ToolBar,
ToolControl, TreeView, UpDown

If enabled, this event is reported when the user moves the mouse pointer into (over) an
object. The event message reported as the result of ⎕DQ, or supplied as the right
argument to your callback function, is a 3-element vector as follows :

[1] Object: ref or character vector

[2] Event code : 'MouseEnter' or 6

[3] Object: ref or character vector (previous object)

This event is generated when the user moves the mouse pointer across the boundary and
into an object. The first element of the event message is the name of the object over
which the mouse pointer now resides. The 3rd element of the event message contains
the name of the object that was previously under the mouse pointer, or is an empty
vector if the mouse pointer was not previously over a Dyalog APL/W object.

388 Dyalog APL/W Object Reference

MouseLeave Event 7

Applies to ActiveXControl, Animation, Button, Calendar, ColorButton, Combo,
ComboEx, DateTimePicker, Edit, Form, Grid, Group, Label, List,
ListView, MDIClient, ProgressBar, PropertyPage, RichEdit, Scroll,
SM, Spinner, Static, StatusBar, SubForm, TabBar, ToolBar,
ToolControl, TreeView, UpDown

If enabled, this event is reported when the user moves the mouse pointer out of an
object. The event message reported as the result of ⎕DQ, or supplied as the right
argument to your callback function, is a 3-element vector as follows :

[1] Object: ref or character vector

[2] Event code : 'MouseLeave' or 7

[3] Object: ref or character vector (new object)

This event is generated when the user moves the mouse pointer across the boundary and
away from an object. The first element of the event message contains the name of the
object that previously contained the mouse pointer and which generated the event when
it crossed its boundary. The third element contains the name of the object which now
contains the mouse pointer or is an empty vector if the mouse pointer is not now over a
Dyalog APL/W object.

 Chapter 2 A-Z Reference 389

389

MouseMove Event 3

Applies to ActiveXControl, Animation, Button, Calendar, Circle, ColorButton,
Combo, ComboEx, DateTimePicker, Edit, Ellipse, Form, Group,
Image, Label, List, ListView, Marker, MDIClient, Poly, ProgressBar,
PropertyPage, Rect, RichEdit, Scroll, Spinner, Static, StatusBar,
StatusField, SubForm, SysTrayItem, TabBar, TabBtn, Text, ToolBar,
ToolButton, ToolControl, TrackBar, TreeView, UpDown

If enabled, this event is reported when the user moves the mouse. The event message
reported as the result of ⎕DQ, or supplied as the right argument to your callback
function, is a 6-element vector as follows :

[1] Object: ref or character vector

[2] Event code : 'MouseMove' or 3

[3] Y: y-position of mouse (number)

[4] X: x-position of mouse (number)

[5] Button: button released (number)
 1 = left button
 2 = right button
 4 = middle button

[6] Shift State: sum of shift key codes (number)
 1 = Shift key is down
 2 = Ctrl key is down

In a graphical object (Circle, Ellipse, Image, Marker, Poly, Rect and Text), the position
of the mouse is reported relative to the top-left corner of its bounding rectangle.

Note that rapid movement of the mouse will not necessarily cause an overwhelming
number of MouseMove events to be reported, as several small movements are
automatically combined into one large one.

390 Dyalog APL/W Object Reference

MouseUp Event 2

Applies to ActiveXControl, Animation, Button, Calendar, Circle, ColorButton,
Combo, ComboEx, DateTimePicker, Edit, Ellipse, Form, Group,
Image, Label, List, ListView, Marker, MDIClient, Poly, ProgressBar,
PropertyPage, Rect, RichEdit, Scroll, SM, Spinner, Static, StatusBar,
StatusField, SubForm, SysTrayItem, TabBar, TabBtn, Text, ToolBar,
ToolButton, ToolControl, TrackBar, TreeView, UpDown

If enabled, this event is reported when the user releases one of the mouse buttons. The
event message reported as the result of ⎕DQ, or supplied as the right argument to your
callback function, is a 6-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'MouseUp' or 2

[3] Y: y-position of mouse (number)

[4] X: x-position of mouse (number)

[5] Button: button released (number)
 1 = left button
 2 = right button
 4 = middle button

[6] Shift State: sum of shift key codes (number)
 1 = Shift key is down
 2 = Ctrl key is down

In a graphical object (Circle, Ellipse, Image, Marker, Poly, Rect and Text), the position
of the mouse is reported relative to the top-left corner of its bounding rectangle.

 Chapter 2 A-Z Reference 391

391

MouseWheel Event 8

Applies to ActiveXControl, Animation, Button, Calendar, ColorButton, Combo,
ComboEx, DateTimePicker, Edit, Form, Grid, Group, Label, List,
ListView, MDIClient, ProgressBar, PropertyPage, RichEdit, Scroll,
Spinner, Static, StatusBar, SubForm, TabBar, ToolBar, ToolControl,
TreeView

If enabled, this event is reported when the user rotates the mouse wheel.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 9-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'MouseWheel' or 8

[3] Y: y-position of mouse (number)

[4] X: x-position of mouse (number)

[5] Button: button pressed
 1 = left button
 2 = right button
 4 = middle button

[6] Shift State: sum of shift key codes (number)
 1 = Shift key is down
 2 = Ctrl key is down

[7] Delta: integer

[8] Lines: integer

[9] Wheel Delta: integer

The value of Delta indicates the distance that the wheel is rotated, expressed in
multiples or divisions of Wheel Delta. A positive value indicates that the wheel was
rotated forward, away from the user; a negative value indicates that the wheel was
rotated backward, toward the user.

Lines specifies the number of lines to scroll when the wheel is rotated by I Mouse Delta
unit. A value of ¯1 indicates that that a whole screen is to be scrolled. These values are
defined by the user's preferences (Control Panel/Mouse)

392 Dyalog APL/W Object Reference

Moveable Property

Applies to Form, SubForm

This property determines whether or not a Form or SubForm can be moved by the user.
It is a single number with the value 0 (Form cannot be moved) or 1 (Form is moveable).
If any of the properties MinButton, MaxButton, SysMenu, and Moveable are set to 1,
the Form or SubForm will have a title bar. However, a Form or SubForm with a title bar
is not necessarily moveable.

 Chapter 2 A-Z Reference 393

393

MsgBox Object

Purpose Provides a "modal" dialog box for displaying messages, errors,
 warnings and other information. The dialog box has a title, one or
 more lines of text, and up to three buttons.

Parents ActiveXControl, Calendar, CoolBand, DateTimePicker, Form, Grid,

OLEServer, PropertyPage, PropertySheet, Root, SubForm,
TCPSocket, ToolBar, ToolControl

Children Timer

Properties Type, Caption, Text, Style, Btns, Default, Event, Data, EdgeStyle,

KeepOnClose, MethodList, ChildList, EventList, PropList

Events Close, Create, MsgBtn1, MsgBtn2, MsgBtn3

Methods Detach, Wait

The Caption property determines the text displayed in the object's title bar.

The Text property determines the text to be displayed as the message.

The Style property determines the type of icon which is displayed. This is a character
vector with one of the following values :

 'Msg' : no icon (the default)
 'Info' : information message icon
 'Query' : query (question) icon
 'Warn' : warning icon
 'Error' : critical error icon

The Btns property determines the set of buttons to be displayed. It is a simple vector
(one button) or a matrix with up to 3 rows, or a vector of up to 3 character vectors
specifying the captions for up to 3 buttons. Windows restricts you to a fixed set of
button captions which are described below. However, the property has been designed
more generally to be useful under different GUIs and perhaps later revisions of
Windows. The buttons are arranged along the bottom of the dialog box in the order
specified.

394 Dyalog APL/W Object Reference

The Btns property may specify one of six sets of buttons as follows.

 'OK'
 'OK' 'CANCEL'
 'RETRY' 'CANCEL'
 'YES' 'NO'
 'YES' 'NO' 'CANCEL'
 'ABORT 'RETRY' 'IGNORE'

If any other combination is specified, ⎕WC and ⎕WS will report a DOMAIN ERROR. The
names of the buttons are however case-insensitive, so the system will accept 'ok',
'Ok', 'oK' or 'OK'. If Btns is not specified, it assumes a default according to Style
as follows :

 Style Btns

 'Msg' or 'Info' 'OK'
 'Warn' or 'Error' 'OK' 'CANCEL'
 'Query' 'YES' 'NO'

The Default property may be used to determine which of the buttons is the "default"
button, i.e. the one which initially has the focus and is "selected" when the user presses
the Enter key. It has the value 1, 2 or 3. If Default is not specified, the first button is the
"default" button. Note that if the user switches focus to another button and presses
Enter, this action selects the button with the focus.

Like a pop-up (floating) Menu, the MsgBox object is unusual in that it is strictly modal.
It is created by ⎕WC in the normal way, but at that stage is invisible and inactive. It is
activated ONLY when ⎕DQ is called with the name of the MsgBox as the argument.
When this is done, the MsgBox object pops up and is activated. Because there is no
other object specified in the argument to ⎕DQ, all other objects are de-activated. The
only thing that the user can do (within the APL application) is to press one of the
buttons in the MsgBox. When this happens, the MsgBox automatically pops down, the
callback function (if any) is fired, and then ⎕DQ terminates.

Notice that the position and size of the MsgBox are determined by Windows and are
fixed, although the MsgBox may be moved by the user after it has been displayed.

The MsgBox object generates one of three events; MsgBtn1 (61), MsgBtn2 (62), or
MsgBtn3 (63) depending upon which button is pressed.

 Chapter 2 A-Z Reference 395

395

 Caption←'Default MsgBox' ⋄ Text←'Hello World'
 'Msg' ⎕WC 'MsgBox' Caption Text ⋄ ⎕DQ 'Msg'

 Caption←'Information MsgBox' ⋄ Text←'Update Completed'
 'Msg' ⎕WC 'MsgBox' Caption Text 'Info' ⋄ ⎕DQ 'Msg'

 Caption←'Query MsgBox' ⋄ Text←'Save Changes'
 'Msg' ⎕WC 'MsgBox' Caption Text 'Query' ⋄ ⎕DQ 'Msg'

396 Dyalog APL/W Object Reference

 Caption←'Warning MsgBox'
 Text←'Calculations will take 10 minutes'
 'Msg' ⎕WC 'MsgBox' Caption Text 'Warn' ⋄ ⎕DQ 'Msg'

 Caption←'Error MsgBox'
 Text←'Data out of range'
 'Msg' ⎕WC 'MsgBox' Caption Text 'Error' ⋄ ⎕DQ 'Msg'

 Caption←'Custom MsgBox'
 Text←⊂'You can have a multi-line'
 Text,←⊂'message if you want one'
 B←'ABORT' 'RETRY' 'IGNORE'
 'Msg' ⎕WC 'MsgBox' Caption Text 'Info' B ⋄ ⎕DQ 'Msg'

 Chapter 2 A-Z Reference 397

397

MsgBtn1 Event 61

Applies to MsgBox

If enabled, this event is reported when the user responds to a MsgBox object by clicking
its first (leftmost) button. The event message reported as the result of ⎕DQ, or supplied
as the right argument to your callback function, is a 2-element vector as follows:

[1] Object: ref or character vector

[2] Event code: 'MsgBtn1' or 61

MsgBtn2 Event 62

Applies to MsgBox

If enabled, this event is reported when the user responds to a MsgBox object by clicking
its second (from the left) button. The event message reported as the result of ⎕DQ, or
supplied as the right argument to your callback function, is a 2-element vector as
follows:

[1] Object: ref or character vector

[2] Event code: 'MsgBtn2' or 62

MsgBtn3 Event 63

Applies to MsgBox

If enabled, this event is reported when the user responds to a MsgBox object by clicking
its third (from the left) button. The event message reported as the result of ⎕DQ, or
supplied as the right argument to your callback function, is a 2-element vector as
follows:

[1] Object: ref or character vector

[2] Event code: 'MsgBtn3' or 63

398 Dyalog APL/W Object Reference

MultiColumn Property

Applies to List

MultiColumn is Boolean and specifies whether or not a List object displays its items in
a single column (0, the default) or in multiple columns (1). MultiColumn may only be
set by ⎕WC and cannot be changed using ⎕WS after the object has been created. Note
that a MultiColumn List will use the minimum number of columns that are required to
make the items fit within it and will reconfigure itself automatically when resized. The
following example illustrates its use.

'F'⎕WC'Form' 'MultiColumn List'('Size' 23 32)
'F.L'⎕WC'LIST' AIRPORTS (0 0)(100 100)('MultiColumn' 1)

See also: ColumnWidth

MultiLine Property

Applies to TabControl, ToolControl

The MultiLine property determines whether or not the tabs or buttons will be arranged
in multiple flights or multiple rows/columns in a TabControl or ToolControl object.

MultiLine is a single number with the value 0 (single flight of tabs, or single
row/column of buttons) or 1 (multiple flights of tabs or multiple rows/columns of
buttons); the default is 0.

If MultiLine is 0 and there are more tabs or buttons than will fit in the space provided,
the TabControl displays an UpDown which allows the user to scroll.

 Chapter 2 A-Z Reference 399

399

However, If MultiLine is 0 in a ToolControl, the buttons are clipped, and the user may
have to resize the object to see them all.

See also: Justify, TabSize.

MultiSelect Property

Applies to TabControl

The MultiSelect property specifies whether or not the user can select more than one
button in a TabControl at the same time, by holding down the Ctrl key when clicking.

MultiSelect is a single number with the value 0 (only 1 button may be selected) or 1
(more than one button may be selected); the default is 0.

MultiSelect apples only if the Style of the TabControl is 'Buttons' or
'FlatButtons', and is ignored if Style is 'Tabs'.

Note that the State property of the associated TabButton object reports whether or not
the button is selected.

NameFromHandle Method 136

Applies to Root

This method is used to obtain the name of a particular object from the value of its
Handle property.

The argument to NameFromHandle is a single item as follows:

[1] Handle: The value of the Handle property from an
existing object.

The result is a character vector containing the name of the object. If the Handle does not
belong to an object, the result is an empty vector.

400 Dyalog APL/W Object Reference

NetClient Object

Purpose The NetClient object represents an instance of a Microsoft .Net class.

Parents NetClient, NetControl, NetType, Root

Children NetClient, Timer

Properties (None)

Events (None)

Methods (None)

The NetClient object represents an instance of a .Net class.

Normally, you create a NetClient object using the New method. For example:

 ⎕USING ←'System'
 DT1←DateTime.New 2002 4 30
 DT1.Type
NetClient

If, for any reason, you are unable to use the New method, you may create a NetClient
object using ⎕WC. In this case, the ClassName property specifies the full name of the
.Net class, and the ConstructorArgs property specifies the arguments for the constructor
function if required.

 ⎕USING ←'System'
 'DT2'⎕WC'NETCLIENT' 'System.DateTime'(1949 4 30)
 DT2.(Type ClassName ConstructorArgs)
 NetClient System.DateTime 1949 4 30

 Chapter 2 A-Z Reference 401

401

NetControl Object

Purpose This object allows you to embed .Net Controls in the Dyalog GUI.

Parents Form, Grid, Group, PropertyPage, SubForm

Children NetClient, OLEClient, Timer

Properties Type, Posn, Size, Coord, ClassName, Attach, MethodList, ChildList,

EventList, PropList

Events (None)

Methods (None)

In principle, you may use the NetControl to embed any class that derives from
System.Windows.Forms.Control (from system.windows.forms.dll), including derived
classes written in Dyalog APL.

To load a particular .Net control, the appropriate .Net Assembly must be specified in
⎕USING; otherwise the expression will cause a LIMIT ERROR. For example, to load
one of the standard .Net controls:

 ⎕USING,←⊂'System.Windows.Forms,system.windows.forms.dll'

The ClassName property specifies the name of the .Net control to be instantiated
(relative to the name of the .Net Assembly specified by ⎕USING) to which the new
object named by the left argument of ⎕WC is to be connected. ClassName may only be
specified by ⎕WC.

Once you have created an instance of a particular NetControl, the properties, events and
methods it supports may be obtained using ⎕NL. These are the properties, events and
methods defined for the control by its author. The “Dyalog” properties listed above, are

not reported by ⎕NL, but take precedence over (i.e. mask) any members of the same
name that may be exposed by the class itself.

The following example illustrates the use of the Button class. In this case, the FlatStyle
property of the button is set to “Popup”. This gives the button a flat appearance until the

mouse is hovered over it, when its appearance it changes to 3-dimensional.

 ⎕USING←'System'
 ⎕USING,←⊂'System.Windows.Forms,system.windows.forms.dll'
 ⎕USING,←⊂'System.Drawing,system.drawing.dll'

402 Dyalog APL/W Object Reference

an←⎕NEW FontFamily(⊂'Arial')
 myfont←⎕NEW Font(an 24 FontStyle.Bold GraphicsUnit.Point)

 'f'⎕WC'Form'('Coord' 'Pixel')('Size' 120 200)
 f.Caption←'NetControl'
 'f.l'⎕WC'Label' 'Button with FlatStyle=Popup'(2 2)

'f.b'⎕WC'NetControl' 'Button'('Size' 60 160)

 f.b.⎕nl -2
AutoSizeMode DialogResult AutoEllipsis AutoSize
BackColor FlatStyle FlatAppearance ...

 f.b.⎕nl -3
BeginInvoke BringToFront Contains CreateControl
CreateGraphics CreateObjRef Dispose DoDragDrop ...

 f.b.⎕nl -8
DoubleClick MouseDoubleClick AutoSizeChanged
ImeModeChanged BackColorChanged ...

 f.b.Text←'Popup'
 f.b.Font←myfont

 f.b.(FlatStyle←FlatStyle.Popup)

Normal appearance (Flat) Appearance when mouse over

 Chapter 2 A-Z Reference 403

403

In most cases, you may use a NetControl in the cells of a Grid object. Unless you
specify otherwise, using the InputProperties property of the Grid, the default property of
the NetControl will be associated with the corresponding element of Values.

The following example illustrates the use of a TextBox control. In this example, the
CharacterCasing property of the TextBox is set to Upper, causing all text to be
converted to upper-case.

 ⎕USING←'System'
 ⎕USING,←⊂'System.Windows.Forms,system.windows.forms.dll'
 ⎕USING,←⊂'System.Drawing,system.drawing.dll'

 an←⎕NEW FontFamily(⊂'Arial Narrow')
 myfont←⎕NEW Font(an 11 FontStyle.Bold GraphicsUnit.Point)

 'f'⎕WC'Form' ('Coord' 'Pixel')('Size' 130 500)
 f.Caption←'Grid using .Net TextBox Control'

 'f.g'⎕WC'Grid'('Posn' 0 0)f.Size
 f.(ShowInput TitleWidth) ← 1 0

 'f.g.tb'⎕WC'NetControl' 'TextBox'
 f.g.tb.Font←myfont
 f.g.tb.(CharacterCasing←CharacterCasing.Upper)

 f.g.Input←'f.g.tb'

 wds←'All' 'TeXt' 'Is' 'Changed' 'to' 'Upper' 'casE'
 wds,← 'ακομα' 'kai' 'τα' 'Ελληνικα'

 f.g.Values←5 5⍴wds

Implementation note: The instance of the .Net control is actually placed inside an
instance of the .Net class System.Windows.Forms.ContainerControl.This
ContainerControl is then embedded in the Dyalog parent, such as a Form. This
"extra level" should have no affect on how the control is used or on how it behaves.

404 Dyalog APL/W Object Reference

NetType Object

Purpose The NetType object is used to export a namespace as a Microsoft.Net
class.

Parents NetType, Root

Children Bitmap, NetClient, NetType, TCPSocket, Timer

Properties BaseClass

Events Close, Create

Methods (None)

The NetType object allows you to export an APL namespace as a .Net class that can be
accessed by any conforming .Net client application.

The BaseClass property specifies the name of the .Net class from which the specified
NetType object inherits. The default is System.Object.

When you create a NetType object, the name of its parent namespace specifies the name
of the corresponding Microsoft .Net Namespace to which the NetType class belongs. If
the NetType is created as a child of root, the corresponding Microsoft .Net Namespace
is unnamed.

 Chapter 2 A-Z Reference 405

405

NewLine Property

Applies to CoolBand

The NewLine property specifies whether or not a CoolBand occupies the same row as
an existing CoolBand, or is displayed on a new line within its CoolBar parent.

NewLine is a single number with the value 0 (same row) or 1 (new row); the default is
1.

The value of NewLine in the first CoolBand in a CoolBar is always 1, even if you
specify it to be 0.

When the user drags a CoolBand to another row, the value of its NewLine property, and
that of any other CoolBand affected by the move, will change.

You may move a CoolBand to the previous or next row by changing its NewLine
property (using ⎕WS)from 1 to 0, or from 0 to 1 respectively.

NewPage Method 102

Applies to Printer

This method causes a Printer to start a new page.

The NewPage method is niladic.

 If you attach a callback function to this event and have it return a value of 0, the page
throw will not occur.

406 Dyalog APL/W Object Reference

OCXClass Object

Purpose This object provides access to OLE (ActiveX) Controls.

Parents ActiveXControl, CoolBand, Form, Grid, OLEServer, PropertyPage,

Root, SubForm, TCPSocket, ToolBar, ToolControl

Children (None)

Properties Type, ClassName, Event, Data, Translate, ClassID, KeepOnClose,

TypeList, HelpFile, ToolboxBitmap, LicenseKey, QueueEvents,
MethodList, ChildList, EventList, PropList

Events (None)

Methods Browse, Detach, GetEventInfo, GetMethodInfo, GetPropertyInfo,

GetTypeInfo, OLEAddEventSink, OLEDeleteEventSink,
OLEListEventSinks, SetMethodInfo, SetPropertyInfo, ShowHelp,
ShowProperties

Once you have defined a new OCXClass, the properties, events and methods it supports
may be obtained from its PropList, EventList and MethodList properties. These are the
properties, events and methods defined for the ActiveX control by its author.

To find out how to use the ActiveX control, you must consult the appropriate
documentation. However, a great deal of information about it can be obtained using the
GetPropertyInfo, GetEventInfo, and GetMethodInfo methods.

 Chapter 2 A-Z Reference 407

407

OKButton Property

Applies to Form

OKButton applies only to Pocket APL. In versions of Dyalog APL for other

platforms, it has no effect.

This is a Boolean property that specifies whether or not an [OK] button appears in the
title bar of a Form. Its default value is 0.

OKButton may only be specified when the Form is created using ⎕WC; you cannot
subsequently change its value.

If OKButton is 1, the Form displays an [OK] button in its title bar in place of the
standard [X] button.

When the user clicks the [OK] button, the system will press the default button, which is
specified by the Default property of a Button on the Form.

If there is no default button, the Form will generate a Close event.

OLEAddEventSink Method 540

Applies to OCXClass, OLEClient

This method connects a named event sink to a COM object and adds the events defined
by that event sink to the EventList property of the associated namespace.

The argument to OLEAddEventSink is a single item as follows:

[1] Event sink name: character vector

The result is a number that represents the handle of the event sink. This may be
subsequently required.

408 Dyalog APL/W Object Reference

OLEClient Object

Purpose The OLEClient object provides access to an OLE Automation Server

Parents ActiveXControl, CoolBand, Form, NetControl, OLEClient,
OLEServer, Root, TCPSocket

Children Form, OLEClient, TCPSocket, Timer

Properties Type, ClassName, Event, Data, Handle, ClassID, KeepOnClose,

TypeList, HelpFile, LastError, Locale, AutoBrowse, QueueEvents,
InstanceMode, MethodList, ChildList, EventList, PropList

Events (None)

Methods Browse, Detach, GetEventInfo, GetMethodInfo, GetPropertyInfo,

GetTypeInfo, OLEAddEventSink, OLEDeleteEventSink,
OLEListEventSinks, OLEQueryInterface, SetMethodInfo,
SetPropertyInfo, ShowHelp

The OLEClient object allows you to control OLE Servers, which may be written in a
variety of different programming languages, including Dyalog APL itself.

The ClassName property specifies the name of the OLE object to which the new object
named by the left argument of ⎕WC is to be connected. A list of all the OLE Server
objects installed on your system may be obtained from the OLEServers property of
Root. ClassName may only be specified by ⎕WC.

Alternatively, the OLE object may be identified by the ClassID property.

The AutoBrowse property and Browse method are no longer relevant and are ignored.
They are retained only for backwards compatibility with previous versions of Dyalog
APL.

Note that the PropList and MethodList properties of an OLEClient instance contain the
names of the properties and methods exposed by the corresponding OLE Object in
addition to the generic properties and methods of the OLEClient class.

If you call an OLE method with an invalid parameter, set a read-only property, or assign
it an invalid value, the LastError property of the OLEClient and Root objects will
contain error information generated by OLE.

 Chapter 2 A-Z Reference 409

409

OLEControls Property

Applies to Root

The OLEControls property reports a list of the OLE Controls installed on your
computer. This information is obtained from the Windows registry. Its value is a nested
vector with one element per OLE Control. Each element is a vector of 2-element
character vectors. The first is the name of the OLE Control; the second is its class
identifier. The latter is a string of hexadecimal characters that uniquely identifies the
Control.

OLEDeleteEventSink Method 541

Applies to OCXClass, OLEClient

This method disconnects a named event sink from a COM object and removes the
events defined by that event sink from the EventList property of the associated
namespace.

This method may be used to remove an event sink that was established automatically
when the OLE object was created.

The argument to OLEDeleteEventSink is a single item as follows:

[1] Event sink name: character vector

OLEListEventSinks Method 542

Applies to OCXClass, OLEClient

This method returns the names of event sinks that are currently connected to a COM
object.

The list contains the names of all the event sinks that were connected automatically
when the object was created, together with any that you have added subsequently using
OLEAddEventSink.

410 Dyalog APL/W Object Reference

The OLEListEventSinks method is niladic.

The result is a vector of character vectors containing the names of the event sinks
connected to the object.

OLEQueryInterface Method 543

Applies to ActiveXContainer, OLEClient

This method is used to obtain the methods and properties associated with a particular
interface that is provided by a COM object. An interface is simply a pointer to a table of
methods (not properties) that are exported by an object.

Note that methods and properties exported using the standard IDispatch interface are
established automatically when the object is created. OLEQueryInterface is required
only to support alternative or additional interfaces that the object may implement.

The argument to OLEQueryInterface is a single item as follows:

[1] Interface name: character vector

The result is a namespace.

It is normal, although not strictly required, that the new namespace be a child of the one
for which the method is run.

Note that if the object does not support a type library, the new namespace will be empty
and you will have to establish functions corresponding to the methods exported by the
interface using SetMethodInfo.

OLERegister Method 530

Applies to OLEServer

This method is used to register an OLEServer object. This method may be used to
install Dyalog APL OLE Servers as part of a run-time installation.

The OLERegister method is niladic.

 Chapter 2 A-Z Reference 411

411

OLEServer Object

Purpose The OLEServer object is used to establish a namespace as an OLE
Server object that can be used by an OLE Automation client.

Parents ActiveXControl, Form, OLEServer, Root

Children Bitmap, BrowseBox, Clipboard, Cursor, FileBox, Font, Form, Icon,

ImageList, Menu, Metafile, MsgBox, OCXClass, OLEClient,
OLEServer, Printer, PropertySheet, TCPSocket, Timer, TipField

Properties Type, ClassName, Event, Data, Handle, ExportedFns, ExportedVars,

ClassID, KeepOnClose, TypeLibID, TypeLibFile, ServerVersion,
LastError, RunMode, ShowSession, MethodList, ChildList,
EventList, PropList

Events Close, Create

Methods Detach, OLERegister, OLEUnregister, SetEventInfo, SetFnInfo,

SetVarInfo

The OLEServer object allows you to export an APL namespace so that its functions and
variables become directly accessible to an OLE Automation client application such as
Microsoft Visual Basic or Microsoft Excel.

An OLEServer may be saved as an out-of-process OLE server (in a workspace) or as an
in-process OLE server (in a DLL). See Interface Guide for details.

412 Dyalog APL/W Object Reference

When you create an OLEServer object, APL allocates various OLE attributes to it. For
example, the CLSID, which uniquely identifies the object, is assigned at this stage.
However, the object is not actually registered until you execute)SAVE or run the
OLERegister method.

Registration involves updating the Windows registry with information about the object
itself, such as its name, the command line required to start it, and so forth. Registration
also records information about all of the functions and variables that your object
exposes. Registration is therefore a non-trivial operation and should be delayed until the
point when you are ready to test your OLEServer.

You may create an empty OLEServer object and then define functions and variables
within it. Alternatively, you may convert an existing namespace which is already
populated with functions and variables. The latter method is recommended as it implies
less registry activity during the development of the object.

The ExportedFns and ExportedVars properties specify the names of the functions and
variables that will be exposed by the object to OLE clients.

The RunMode property is a character vector that specifies how the object serves
multiple clients. It may be 'MultiUse' (the default), 'SingleUse', or
'RunningObject'.

The ShowSession property is either 0 (the default) or 1 and specifies whether or not the
APL Session window is displayed when the first instance of the OLEServer is created.

RunMode and ShowSession apply only to out-of-process OLEServers.

OLEServers Property

Applies to Root

The OLEServers property is a read-only property that reports the names and CLSIDs of
all the OLE Automation servers installed on your computer. This information comes
from the Windows registry.

Its value is a nested vector with one element per OLE Server.

Each element is a vector of 2-element character vectors. The first is the name of the
OLE Server; the second is its class identifier or CLSID.

 Chapter 2 A-Z Reference 413

413

OLEUnregister Method 531

Applies to OLEServer

This method is used to unregister an OLEServer object that has previously been saved
by Dyalog APL.

The OLEUnregister method is niladic.

This method removes all traces of the object from the Windows registry and erases its
Type Library file.

Note that the name of the object removed from the registry is the name of the
OLEServer object prefixed by the string “dyalog.”

414 Dyalog APL/W Object Reference

OnTop Property

Applies to Circle, Ellipse, Form, Image, Marker, Poly, PropertySheet, Rect,
SubForm, TabBar, Text, ToolBar

This property may be used to cause a Form or SubForm to be displayed on top of all
other windows, even those owned by other applications. It is also used to specify how
graphical objects are drawn in a Grid.

Normally, Forms are brought to the front when they receive the input focus. Forms that
do not have the input focus may be partially obscured by the one that does. If OnTop is
set to 1, the Form or SubForm remains at the front even if it doesn't have the input
focus. Indeed, it may partially obscure the Form that does have the focus. The default
value is 0 (normal).

More than one Form may have OnTop set to 1. If so, these Forms appear on top of all
others, but may overlap one another. Other applications may also have windows with
this attribute.

For a graphical object, the OnTop property controls how it is drawn in a Grid relative to
the grid lines and cell text. OnTop is applicable only if the graphic is the child of a Grid
and is otherwise ignored.

0 Graphical object is drawn behind grid lines and cell text

1 Graphical object is drawn on top of grid lines but behind cell text

2 Graphical object is drawn on top of grid lines and cell text

 Chapter 2 A-Z Reference 415

415

Orientation Property

Applies to Printer

The Orientation property specifies the orientation of the paper on a Printer object. It is a
simple character vector which is either 'Portrait' or 'Landscape'. When you
create a Printer object, the default value of the Orientation property is determined by the
current setting for the corresponding printer device.

The effect of changing Orientation using ⎕WS is to spool the current page (effectively
the same as sending a NewPage event) and then to change the orientation of the paper.
Note that the values of the first 2 elements of the DevCaps property change accordingly.

You may also set Orientation when you create the Printer object with ⎕WC.

In neither case does the global setting for the printer device change.

OtherButton Property

Applies to ColorButton

The OtherButton property is a Boolean value that specifies whether or not the colour
selection drop-down on a ColorButton object has a button that allows the user to bring
up the Windows colour selection dialog box from which any available colour may be
selected.

If OtherButton is 1 (the default), the final row of the colour selection drop-down
contains a button labelled "Other→". If the user clicks this button, the standard

Windows colour selection dialog box is displayed, allowing the user to select any colour
that the computer can render.

If OtherButton is 0, the button labelled "Other→" is not present and the user is

restricted to the choice of colours provided by the DefaultColors property.

Note that the Pocket PC 2002 colour selection dialog box does not provide the facility
to select custom colours, so this functionality is not available in Pocket APL.

416 Dyalog APL/W Object Reference

OverflowChar Property

Applies to Grid

The OverflowChar property specifies the character to be displayed in place of the digits
when a numeric value cannot be displayed in its entirety in a Grid cell. If the value of
OverflowChar is an empty vector (the default) the data in a numeric cell is simply
clipped if it is too wide to fit in the cell. For example:

 'F'⎕WC'Form'('Coord' 'Pixel')('Size' 101 296)
 F.Caption' ← 'OverflowChar Property'
 DATA←3 3⍴12 123456789 13 9876543 99 456 10 99 1236.893
 'F.G'⎕WC'Grid'DATA(0 0)(101 296)
 F.G.CellWidths ← 65
 F.G.OverflowChar ← '#'

The same Grid without OverflowChar being defined appears as follows. Notice how the
numbers have been truncated

 Chapter 2 A-Z Reference 417

417

PageActivate Event 360

Applies to PropertyPage

If enabled, this event is reported when the user switches from one PropertyPage to
another in a PropertySheet object. This event is reported by the new page after the page
change has occurred and the page change may not be disabled by a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'PageActivate' or 360

You may select a particular page by calling PageActivate as a method, or by setting
either the PageActive or the PageActiveObject property of the PropertySheet.

PageActive Property

Applies to PropertySheet

The PageActive property specifies the name of the current PropertyPage in a
PropertySheet. You may select a particular page by setting PageActive or
PageActiveObject or by generating a PageActivate event.

PageActiveObject Property

Applies to PropertySheet

The PageActiveObject property specifies a ref to the current PropertyPage in a
PropertySheet. You may select a particular page by setting PageActive or
PageActiveObject or by generating a PageActivate event.

418 Dyalog APL/W Object Reference

PageApply Event 350

Applies to PropertyPage

If enabled, this event is reported when the user clicks the Apply button in a
PropertySheet. Note however, that the event is actually reported by each of its
PropertyPage objects whose Changed property is currently 1, i.e. the event is reported
by each of the pages that the user has changed.

The default processing for this event is to set the Changed property of the PropertyPage
to 0. If you disable the event or return a 0 from a callback function, the Changed
property is not reset. Note that the Apply button in a PropertySheet is active if the value
of the Changed property of any of the PropertyPage objects is 1.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'PageApply' or 350

PageBack Event 353

Applies to PropertyPage

If enabled, this event is reported when the user switches from one PropertyPage to
another in a Wizard PropertySheet object by clicking its Back button. This event is
reported by the old page after the page change has occurred and the page change may
not be disabled by a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'PageBack' or 353

 Chapter 2 A-Z Reference 419

419

PageCancel Event 351

Applies to PropertyPage

If enabled, this event is reported when the user presses the Cancel button in a
PropertySheet object and is reported by the current PropertyPage. This event is reported
for information only and may not be disabled by a callback function. However, the
operation will also generate a Close event reported by the PropertySheet itself that may
be disabled by a callback.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'PageCancel' or 351

PageChanged Event 356

Applies to PropertyPage

If enabled, this event is reported when the Changed property of a PropertyPage is
altered by user action. It is not reported if you reset the Changed property using ⎕WS.

The Changed property is reset by two separate user actions. It is set to 1 when the user
alters any of the controls on the PropertyPage. It is reset to 0 when the user clicks the
Apply button, although this action may be disabled by a callback function on the
PageApply event.

The PageChanged event is reported for information only and may not itself be disabled
or affected by a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'PageChanged' or 356

[3] Changed value: New value for Changed property (0 or 1).

420 Dyalog APL/W Object Reference

PageDeactivate Event 361

Applies to PropertyPage

If enabled, this event is reported when the user switches from one PropertyPage to
another in a PropertySheet object. This event is reported by the old page after the page
change has occurred and the page change may not be disabled by a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'PageDeactivate' or 361

PageFinish Event 355

Applies to PropertyPage

If enabled, this event is reported when the user clicks the Finish button in a Wizard
PropertySheet. This event is reported by current (last) PropertyPage. The event is
reported for information only and cannot be affected by a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'PageFinish' or 355

 Chapter 2 A-Z Reference 421

421

PageHelp Event 352

Applies to PropertyPage

If enabled, this event is reported when the user clicks the Help button in a Wizard
PropertySheet. This event is reported by current PropertyPage. The event is reported for
information only and cannot be affected by a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'PageHelp' or 352

PageNext Event 354

Applies to PropertyPage

If enabled, this event is reported when the user switches from one PropertyPage to
another in a Wizard PropertySheet object by clicking its Next button. This event is
reported by the old page after the page change has occurred and the page change may
not be disabled by a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'PageNext' or 354

422 Dyalog APL/W Object Reference

PageWidth Property

Applies to RichEdit

The PageWidth property specifies the width of the page in a RichEdit object and is the
dimension that is used to apply text wrapping and paragraph formatting to the text in the
object. PageWidth is a single integer value specified in Twips. The default value of
PageWidth is that defined for the default printer. If there are no printers installed, the
default value is 0 which disables text wrapping. You may find it convenient to set
PageWidth to the width of the RichEdit window or to a value that is appropriate for
your printer.

PaperSize Property

Applies to Printer

The PaperSize property specifies the size of paper to be used for printing

PaperSize may be a character vector containing the name of the paper size (e.g.
'Legal 8 1/2 x 14 in' or 'A4 210 x 297 mm') or a 2-element integer
vector that specifies the desired height and width of the paper in tenths of a millimetre
(e.g. 3556 2159 or 2970 2099).

The default value of PaperSize is the name of the paper size associated with the current
printer settings.

You can obtain a list of supported paper sizes from the PaperSizes property.

 Chapter 2 A-Z Reference 423

423

PaperSizes Property

Applies to Printer

The PaperSizes property is a read-only property that provides the names and dimensions
of the various different paper sizes supported by the printer associated with the Printer
object.

PaperSizes is a nested vector of 2-element vectors which contain the name, and height
and width of each paper size respectively. Dimensions are reported in tenths of a
millimetre.

You may set or query the current paper size using the PaperSize property.

PaperSource Property

Applies to Printer

The PaperSource property is a character vector that specifies the name of the paper bin
to be used as the paper source for printing.

An empty character vector (the default) means the default bin, Otherwise, PaperSource
must be a member of the PaperSources property.

PaperSources Property

Applies to Printer

The PaperSources property is a read-only property that provides the names of the paper
bins installed on the printer associated with the Printer object. It is a vector of character
vectors.

You may select which of the bins is to be used by specifying the PaperSource property.

424 Dyalog APL/W Object Reference

ParaFormat Property

Applies to RichEdit

The ParaFormat property describes the current paragraph format or the paragraph
format of the currently selected text in a RichEdit object. It is a 6-element nested array
structured as follows:

[1] A character vector that specifies the text alignment. This may be 'Left' (the
default), 'Right' or 'Centre'.

[2] The size of the indentation of the first line in the paragraph measured from the
left margin in Twips.

[3] The size of the horizontal offset of the start of the second and subsequent lines.
This is measured in Twips relative to the first line indentation specified in
element [2].

[4] The size of the right indentation measured in Twips from the right margin.

[5] An integer value specifying the bullet/numbering option. 0 means no
numbering, 1 means bullets.

[6] An integer vector specifying the size of any tab stops measured in Twips from
the left margin and specified in ascending order.

If there is no text selected, ParaFormat specifies the current paragraph formatting
format, i.e. that which will be used to format the current (and subsequent) lines of
characters that the user enters. If there is text selected ParaFormat specifies the
paragraph formatting of the selected block of text. If the format is not strictly
homogeneous, ⎕WG will report the format of the first paragraph in the selected block

Setting ParaFormat will set the format of the currently selected block of text. To set the
format of an arbitrary block of text you must select it first using SelText.

 Chapter 2 A-Z Reference 425

425

Password Property

Applies to Edit, Spinner

This property specifies the character that is echoed when a user enters data into a single-
line Edit object (Style 'Single') or a Spinner. It does not apply to a multi-line object
(Style 'Multi'. If Password is empty (the default) the character echoed is the same as
the character the user entered. If Password is set to (say) the asterisk character (*), the
object will display asterisks as the user types into it.

PathWordBreak Property

Applies to ComboEx

If set, the edit control portion of the ComboEx will use the forward slash (/), back slash
(\), and period (.) characters as word delimiters. This makes keyboard shortcuts for
word-by-word cursor movement (Ctrl + arrow keys) effective in path names and URLs.

This property is ignored under Windows 95/98.

Picture Property

Applies to ActiveXControl, Button, Clipboard, CoolBand, Form, Group, Image,
MDIClient, SM, Static, StatusBar, StatusField, SubForm, TabBar,
ToolBar

For ActiveXControl, Button, Form, Group, MDIClient, Static, StatusBar, StatusField,
SubForm, SM, TabBar or ToolBar, this property specifies the name of, or ref to, a
Bitmap, Icon, or Metafile which is drawn as a background on the object. Other controls
and graphical objects are drawn on top of this background.

When it refers to a Metafile, the Picture property specifies the name of, or ref to, the
Metafile to be drawn in the object. When it refers to a Bitmap or Icon, the value of the
Picture property is a 2-element vector whose elements specify the name of, or ref to,
the Bitmap, or Icon, and the manner in which it is displayed. This is specified as an
integer as follows:

426 Dyalog APL/W Object Reference

 0 the Bitmap or Icon is drawn in the top left corner of the object.

1 the Bitmap or Icon is tiled (replicated) to fill the object.

2 the Bitmap is scaled (up or down) to fit exactly in the object. This setting
 does not apply to an Icon whose size is fixed.

3 the Bitmap or Icon is drawn in the centre of the object. This is the default.
 Note that the centre of the Bitmap is positioned over the centre of the object,
 so that you see the middle portion of a Bitmap that is larger than the object in
 which it is displayed.

For example, the following statements produce a Form filled with the CARS bitmap.

 'CARS' ⎕WC 'Bitmap' 'C:\WINDOWS\CARS'
 'f1' ⎕WC 'Form' ('Picture' 'CARS' 1)

An easy way to provide a customised tool button is to create a Button whose Picture
property specifies the name of, or ref to, a Bitmap or Icon, using display manner 3 (the
default). This causes the corresponding bitmap or icon to be drawn in the centre of the
Button. So long as the Button is larger than the bitmap or icon, its borders (which give it
its 3-dimensional appearance and pushbutton behaviour) will be unaffected. Note that if
Picture is set on a Button whose Style is 'Radio' or 'Check', the Button assumes
pushbutton appearance, although its radio/check behaviour is preserved.

For an Image object, the Picture property specifies the name of , or ref to, a Bitmap,
Icon or Metafile object to be drawn, or a vector of names or refs. The Image is a
graphical object and is drawn on top of the background.

For the Clipboard object, Picture is a "set-only" property that allows you to place a
specified Bitmap object into the Windows clipboard. To place a Metafile object into the
clipboard, use its Metafile property.

 Chapter 2 A-Z Reference 427

427

PName Property

Applies to Font, Printer

This property is a character vector that specifies the face name for a Font object, or the
printing device associated with a Printer. It is case-independent.

For a Printer, PName contains the description of the printer followed by a comma (,)
and then the device to which it is attached. The device ends with a colon (:).

Example

 'PR1' ⎕WC 'Printer'

 PR1.PName
IBM 4039 LaserPrinter PS,LPT2:

Points Property

Applies to Circle, Ellipse, Image, Marker, Poly, Rect, Text

This property specifies the co-ordinates for a graphics object. It may define a single set
of co-ordinates, or be a nested vector containing several sets of co-ordinates.

Each set of co-ordinates may be:

a) a 2-column numeric matrix containing y-values in column 1 and x-values in
column 2, or

b) a 2-element numeric vector whose first element specifies y-values and whose
second element specifies x-values. The two elements must be of equal length
unless one or both is a scalar in which case scalar extension applies.

For further details, see the specifications for the relevant objects.

428 Dyalog APL/W Object Reference

Poly Object

Purpose A graphical object used to draw lines, polygons, and filled areas.

Parents ActiveXControl, Animation, Bitmap, Button, Combo, ComboEx,

Edit, Form, Grid, Group, Label, List, ListView, MDIClient, Metafile,
Printer, ProgressBar, PropertyPage, PropertySheet, RichEdit, Scroll,
Spinner, Static, StatusBar, SubForm, TabBar, TipField, ToolBar,
TrackBar, TreeView, UpDown

Children Timer

Properties Type, Points, FCol, BCol, LStyle, LWidth, FStyle, FillCol, Coord,

Visible, Event, Dragable, OnTop, CursorObj, AutoConf, Data,
Accelerator, KeepOnClose, DrawMode, MethodList, ChildList,
EventList, PropList

Events Close, Create, DragDrop, Help, MouseDblClick, MouseDown,

MouseMove, MouseUp, Select

Methods Detach

The Points property specifies one or more sets of co-ordinates through which one or
more lines are drawn. The resulting polygon(s) may also be filled.

LStyle and LWidth define the style and width of the lines. FCol and BCol determine the
colour of the lines.

FStyle specifies whether or not the polygon(s) are filled, and if so, how. For a solid fill
(FStyle 0), FillCol defines the fill colour used. For a pattern fill (FStyle 1-6) FillCol
defines the colour of the hatch lines and BCol the colour of the areas between them.

Note that if you specify filling, you do not have to define a closed polygon. The first
and last points will automatically be joined for you if necessary.

The value of Dragable determines whether or not the object can be dragged. The value
of AutoConf determines whether or not the Poly object is resized when its parent is
resized.

The structure of the property values is best considered separately for single and multiple
polylines or polygons.

 Chapter 2 A-Z Reference 429

429

Single Polyline or Polygon

For a single polyline or polygon, Points is either a 2-column matrix of (y,x) co-
ordinates, or a 2-element vector of y and x co-ordinates respectively.

LStyle and LWidth are both simple scalar numbers.

FStyle is either a single number specifying a standard fill pattern, or the name of a
Bitmap object which is to be used as a "brush" to fill the polygon.

FCol, BCol and FillCol are each either single numbers representing standard colours, or
3-element vectors which specify colours explicitly in terms of their RGB values.

First make a Form :

 'F' ⎕WC 'Form'

Draw a single line from (y=20, x=10) to (y=30, x=50)

 'F.L1' ⎕WC 'Poly' ((20 30)(10 50))

or

 L ← 2 2⍴20 10 30 50
 'F.L1' ⎕WC 'Poly' L

Draw a horizontal line from (y=20, x=10) to (y=20, x=50). Note scalar extension of y-
coordinate.

 'F.L1' ⎕WC 'Poly' (20(10 50))

Draw an empty box in green :

 Y ← 10 10 50 50 10
 X ← 10 50 50 10 10
 'F.L1' ⎕WC 'Poly' (Y X) (0 255 0)

Ditto, using a green/blue dashed line (LStyle 1) :

 'F.L1' ⎕WC 'Poly' (Y X) (0 255 0)(0 0 255) 1

Draw a red filled rectangle with a black border 5 pixels wide :

 'F.L1' ⎕WC 'Poly' (Y X) (0 0 0) ('LWidth' 5)
 ('FStyle' 0) ('FillCol' 255 0 0)

430 Dyalog APL/W Object Reference

Multiple Polylines/Polygons

To draw a set of polylines or polygons with a single name, Points is a nested vector
whose items are themselves 2-column matrices or 2-element nested vectors.

LStyle and LWidth may each be simple scalar values (applying to all the polylines) or
simple vectors whose elements refer to each of the corresponding polylines in turn.

FStyle may be a simple scalar numeric or a simple character vector (Bitmap name)
applying to all polylines, or a vector whose elements refer to each of the corresponding
polylines in turn.

Similarly, FCol, BCol and FillCol may each be single numbers or a single (enclosed) 3-
element vector applying to all the polylines. Alternatively, these properties may contain
vectors whose elements refer to each of the polylines in turn. If so, their elements may
be single numbers or nested RGB triplets, or a combination of the two.

First make a Form :

 'F' ⎕WC 'Form'

Draw two concentric triangles :

 BY ← 10 10 50 10
 BX ← 15 65 40 15

 RY ← 15 15 40 15
 RX ← 25 55 40 25

 'F.L1' ⎕WC 'Poly' ((BY BX)(RY RX))

Or, using matrices :

 BT ← BY,[1.5]BX
 RT ← RY,[1.5]RX

 'F.L1' ⎕WC 'Poly' (BT RT)

 Chapter 2 A-Z Reference 431

431

Ditto, but draw the first blue, the second red :

 'F.L1' ⎕WC 'Poly' (BT RT) ((0 0 255)(255 0 0))

Ditto, but make the lines 3 pixels wide :

 'F.L1' ⎕WC 'Poly' (BT RT) ((0 0 255)(255 0 0))
 ('LWidth' 3)

Ditto, but make the line widths 3 and 6 pixels respectively :

 'F.L1' ⎕WC 'Poly' (BT RT) ((0 0 255)(255 0 0))
 ('LWidth' 3 6)

Draw the first hollow, but fill the second in green :

 'F.L1' ⎕WC 'Poly' (BT RT) ('FStyle' ¯1 0)
 ('FillCol' (⊂0 255 0))

Popup Property

Applies to SysTrayItem, ToolButton

The Popup property specifies the name of, or ref to, a (popup) Menu object that is
associated with a SysTrayItem or ToolButton.

Note that Popup is ignored unless Style is set to 'DropDown'.

432 Dyalog APL/W Object Reference

Posn Property

Applies to ActiveXControl, Animation, Button, Calendar, ColorButton, Combo,
ComboEx, CoolBand, CoolBar, DateTimePicker, Edit, Form, Grid,
Group, Label, List, ListView, Locator, MDIClient, Menu, MenuItem,
NetControl, ProgressBar, PropertyPage, PropertySheet, RichEdit,
Root, Scroll, Separator, SM, Spinner, Splitter, Static, StatusBar,
StatusField, SubForm, TabBar, TabBtn, TabButton, TabControl,
ToolBar, ToolButton, ToolControl, TrackBar, TreeView, UpDown

For most objects to which it applies, Posn is a 2-element numeric vector specifying the
y-position and x-position respectively of the top-left corner of the object relative to its
parent. For a Form, Posn specifies its position on the screen. The units are defined by
the Coord property.

When specifying Posn for ⎕WC, you can allow the y-position or x-position to assume a
default value by giving the corresponding element a value of ⍬.

Using ⎕WS, if you want to set the y-position, but not the x-position, or vice-versa, you
should specify ⍬ for the item you don't want to change.

For Menu, MenuItem and Separator objects, Posn is a single integer that specifies the
position at which the object is to be inserted in its parent. For example, to add a new
MenuItem between the third and fourth items in an existing Menu, you would specify
its Posn as 4. For these objects, the value of Posn returned by ⎕WG is the current index
of the object within its parent.

 Chapter 2 A-Z Reference 433

433

PreCreate Event 534

Applies to ActiveXControl

If enabled, this event is reported when an instance of an ActiveXControl is created. The
PreCreate event is generated at the point the instance is made.

An ActiveXControl also generates a Create event, which occurs after the PreCreate
event at the point when the host application requires the instance to appear visually.

Note that at the time that PreCreate is generated, the ActiveXControl does not have a
window.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1 or by returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'PreCreate' or 534

Print Method 100

Applies to Printer

This method causes any spooled output to be printed.

The Print method is niladic.

If you attach a callback function to this event and have it return a value of 0, the printout
will not be spooled.

434 Dyalog APL/W Object Reference

Printer Object

Purpose To provide printer output.

Parents ActiveXControl, CoolBand, Form, OLEServer, PropertyPage,

PropertySheet, Root, TCPSocket

Children Bitmap, Circle, Ellipse, Font, Icon, Image, Marker, Metafile, Poly,

Rect, Text, Timer

Properties Type, PName, DevCaps, Coord, Event, FontObj, FontList, YRange,

XRange, Data, TextSize, EdgeStyle, Handle, Orientation, Copies,
PrintRange, Collate, PaperSize, PaperSizes, PaperSource,
PaperSources, ColorMode, Resolution, Resolutions, Duplex,
Translate, Accelerator, KeepOnClose, MethodList, ChildList,
EventList, PropList

Events Close, Create, Select

Methods Abort, Detach, GetTextSize, NewPage, Print, RTFPrintSetup, Setup

The PName property is a character vector which specifies the name of an installed
printer and the device to which it is attached. The name and device are separated by a
comma (,). All valid values of PName can be obtained from the PrintList property of
the Root object.

If not specified, the default value of PName is (⊃'.' ⎕WG 'PrintList').

The DevCaps property reports the size of the printable area of the page in pixels (dots)
and in millimetres. It also reports the number of colours available. This is 2 on a
monochrome printer (black and white), although grey scales may be available.

The FontList property provides a list of fonts that are applicable and includes TrueType
and printer fonts. This list is typically different from that obtained from the FontList
property on the Root object which lists those fonts that apply to the screen.

 Chapter 2 A-Z Reference 435

435

The graphics objects listed above may be printed in much the same way as they may be
displayed on a Form or Static. The differences are :

a) Once an object has been created, it will be printed, even if its name is subsequently

expunged.

b) An object does not replace an existing one which has the same name.

c) The act of changing one or more properties of a named object causes the object to be

printed a second time. For example, changing the Posn of an object will print it
again at a different place.

In general it is recommended that you use unnamed objects for printing.

The Printer object supports five special methods :

Method Number Description

Print 100 Sends output to print spooler

Setup 101 Displays Printer Set-up dialog box

NewPage 102 Throws a new page

Abort 103 Aborts the print job

RTFPrintSetup 460 Displays Printer Set-up dialog box
for RichEdit

Examples

Start a print job on the default printer

 'PR1' ⎕WC 'Printer'

Write a centred heading at the top of the page using a proportional font

 'PR1.' ⎕WC 'Text' 'Report Title' (0 50)
 ('HAlign' 1) ('FontObj' 'Roman' 64)

436 Dyalog APL/W Object Reference

Draw a line across the page, 2 pixels wide

 'PR1.' ⎕WC 'Poly' (2(0 100)) ('LWidth' 2)

Print a character matrix. Note that a fixed width font is used.

 REPORT ← 'I6' ⎕FMT ?20 6⍴1000
 'PR1.' ⎕WC 'Text' REPORT (10 0)
 ('FontObj' 'Dyalog Std TT')

Throw a new page

 PR1.NewPage

Spool output

 ⎕EX 'PR1'

PrintList Property

Applies to Root

This property provides a list of the printers that are installed on your computer system,
i.e. those listed when you select "printers" from the Windows Control Panel. It is a
"read-only" property of the Root object '.'.

PrintList is a vector of character vectors. Each item in PrintList contains the name of an
installed printer followed by a comma (,) and then the name of the device to which it is
attached. The first item in PrintList is the default system printer.

Example

 DISPLAY '.' ⎕WG 'PrintList'
.→--.
| .→--------------------------------------. |
| |Lexmark Optra S 2455 PS2,\\Pce20\biglex| |
| '---------------------------------------' |
'∊--'

 Chapter 2 A-Z Reference 437

437

PrintRange Property

Applies to Printer

The PrintRange property specifies the range of pages to be printed.

PrintRange may be an empty character vector (the default), or 'All', either of which
will cause all pages to be printed.

Alternatively, PrintRange may be a 3 or 4-element nested array whose items are:

[1] 'Pages'

[2] Start page (integer)

[3] End page (integer)

[4] Maximum number of pages (integer)

In this case, printing starts at the page specified to be the Start page, and ends at the
page specified by End page or after the Maximum number of pages has been reached,
whichever is sooner.

438 Dyalog APL/W Object Reference

ProgressBar Object

Purpose The ProgressBar object is used to indicate the progress of a lengthy
operation.

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, StatusBar,

SubForm, ToolBar, ToolControl

Children Bitmap, Circle, Cursor, Ellipse, Font, Icon, Marker, Poly, Rect, Text,

Timer

Properties Type, Posn, Size, Style, Coord, Active, Visible, Event, Thumb, Step,

Wrap, Limits, Sizeable, Dragable, BCol, CursorObj, AutoConf, Data,
Attach, EdgeStyle, Handle, Hint, HintObj, Tip, TipObj, Translate,
Accelerator, AcceptFiles, KeepOnClose, ProgressStyle, Redraw,
TabIndex, Interval, MethodList, ChildList, EventList, PropList

Events Close, Configure, ContextMenu, Create, DragDrop, DropFiles,

DropObjects, Expose, GotFocus, Help, KeyPress, LostFocus,
MouseDblClick, MouseDown, MouseEnter, MouseLeave,
MouseMove, MouseUp, MouseWheel, Select

Methods Animate, Detach, GetFocus, GetTextSize, ProgressStep, ShowSIP

The ProgressBar object is a window that an application can use to indicate the progress
of a lengthy operation.

It consists of a rectangle that is gradually filled, from left to right, with the system
highlight colour as an operation progresses. The appearance of the rectangle is specified
by the ProgressStyle property that may be 'Normal'(the default) or 'Smooth'.

The range of a ProgressBar is specified by the Limits property. This is a 2-element
integer vector defining its minimum and maximum values. The position of the filled
rectangle is specified by the Thumb property. You can update the ProgressBar by using
⎕WS to set the value of the Thumb directly, or by generating a ProgressStep event. The
latter causes the Thumb to be updated by the value of the Step property.

 Chapter 2 A-Z Reference 439

439

If you attempt to set the Thumb to a value greater than its maximum value (using either
method) the behaviour depends upon the value of the Wrap property which is Boolean
and has a default value of 1. If Wrap is 1, the value obtained when you set the Thumb
property is given by the expression:

 LIMITS[1]+(1+LIMITS[2]-LIMITS[1])|THUMB-LIMITS[1]

where THUMB is the value to which you set the Thumb property and LIMITS is the
value of the Limits property. This causes the highlighted rectangle to begin filling again
from the left.

There are two basic ways that you can use a ProgressBar. One is to fill the bar just once,
doing so as evenly as possible and ensuring that the completion of the process coincides
with the complete filling of the bar. This gives the user useful (and hopefully accurate)
information as to the progress of the operation. However, some processes have an
indeterminate duration (for example, an iterative one) and you may choose to use the
ProgressBar simply to indicate that the operation is continuing.

Here is a code fragment illustrating how you can update a ProgressBar evenly.
(DO_SOMETHING represents some processing that is performed N times in a loop):

 'F.P'⎕WC'ProgressBar' ('Limits' 0 N)
 I←0
 Loop:→(N<I←I+1)/End
 DO_SOMETHING I
 'F.P' ⎕WS 'Thumb' I
 →Loop
 End:

and the same thing using the ProgressStep method:

 'F.P'⎕WC'ProgressBar' ('Limits' 0 N) ('Step' 1)
 I←0
 Loop:→(N<I←I+1)/End
 DO_SOMETHING I
 F.P.ProgressStep
 →Loop
 End:

Alternatively, you can update a ProgressBar via a Timer.

440 Dyalog APL/W Object Reference

ProgressStep Method 250

Applies to ProgressBar

This method is used to increment the thumb in a ProgressBar object.

The ProgressStep is niladic.

The ProgressStep method causes the ProgressBar to attempt to increment its thumb by
the value of its Step property, taking into account the setting of its Wrap property. If the
values of the Thumb, Step and Limits properties are THUMB, STEP and LIMITS
respectively, the new value of Thumb (and the corresponding position of the
highlighted bar) is:

if Wrap is 0:

 LIMITS[2]⌊THUMB+STEP

if Wrap is 1:

 LIMITS[1]+(1+LIMITS[2]-LIMITS[1])|THUMB+STEP-LIMITS[1]

 Chapter 2 A-Z Reference 441

441

ProgressStyle Property

Applies to ProgressBar

The ProgressStyle property specifies the appearance of a ProgressBar control.

ProgressStyle is a character vector that may be 'Normal' or 'Smooth'. Its value is
effective only when the object is created with ⎕WC. Changing ProgressStyle with ⎕WS
has no effect on the appearance or behaviour of the ProgressBar.

If ProgressStyle is 'Normal', the highlight in the centre of the ProgressBar is
displayed as a broken bar. This is the default.

If ProgressStyle is 'Smooth', the highlight in the centre of the ProgressBar is
displayed as a solid block of colour.

If ProgressStyle is 'Marquee', the the highlight in the centre of the ProgressBar is
displayed as a broken bar that moves continuously from left to right. The speed is
controlled by the Interval Property which deternines the frequency in milliseconds with
which the highlight is redrawn, each time further along the ProgressBar. The special
value of ¯1 causes the animation to stop.

Note that 'Marquee' will only be honoured if Native Look and Feel is enabled.

The picture below illustrates the appearance of the different values of ProgressStyle.

442 Dyalog APL/W Object Reference

PropertyPage Object

Purpose The PropertyPage object represents a single page in a PropertySheet.

Parents PropertySheet

Children Animation, Bitmap, BrowseBox, Button, Calendar, Circle, Clipboard,

ColorButton, Combo, ComboEx, Cursor, DateTimePicker, Edit,
Ellipse, FileBox, Font, Grid, Group, Icon, Image, ImageList, Label,
List, ListView, Locator, Marker, Metafile, MsgBox, NetControl,
OCXClass, Poly, Printer, ProgressBar, Rect, RichEdit, Scroll, SM,
Spinner, Splitter, Static, SubForm, TCPSocket, Text, Timer, TipField,
TrackBar, TreeView, UpDown

Properties Type, Caption, Posn, Size, Coord, Active, Event, HasHelp, FontObj,

Data, EdgeStyle, Hint, HintObj, Tip, TipObj, Changed, Translate,
AcceptFiles, KeepOnClose, MethodList, ChildList, EventList,
PropList

Events Close, Configure, ContextMenu, Create, DragDrop, DropFiles,

DropObjects, Expose, FontCancel, FontOK, GotFocus, Help,
KeyPress, LostFocus, MouseDblClick, MouseDown, MouseEnter,
MouseLeave, MouseMove, MouseUp, MouseWheel, PageActivate,
PageApply, PageBack, PageCancel, PageChanged, PageDeactivate,
PageFinish, PageHelp, PageNext, SetWizard

Methods Animate, ChooseFont, Detach, GetFocus, GetTextSize, ShowSIP

The PropertyPage object represents a single page within a PropertySheet.

The Posn and Size properties are read-only properties determined by the parent
PropertySheet and may not be changed using ⎕WC or ⎕WS.

The HasHelp property is either 1 (the default) or 0. If the parent PropertySheet has a
Help button (determined by its own HasHelp property) this property determines
whether or not the Help button is active when the PropertyPage is the current page. If
the HasHelp property of a PropertyPage is 0, the Help button on the parent
PropertySheet will be temporarily disabled when that PropertyPage is displayed.

The PropertyPage object generates a PageActivate event when it becomes the current
page and a PageDeactivate event when another page is selected. These events may not
be disabled by a callback function.

 Chapter 2 A-Z Reference 443

443

If the user presses the Cancel button, the current PropertyPage generates a PageCancel
event. This is followed by a Close event which is reported by the parent PropertySheet.

Other properties and behaviour depend upon the Style of the parent PropertySheet
which may be 'Standard' or 'Wizard'

Standard Behaviour

In a Standard PropertySheet, the Caption property of each PropertyPage specifies the
text that is written in its tab.

PropertyPage objects owned by a Standard PropertySheet generate PageCancel,
PageApply and PageHelp events. These events are all caused by the user pressing the
corresponding button in the parent PropertySheet.

Conventionally, the Apply button is initially inactive. When the user changes an item on
any of the PropertyPages, the Apply button immediately becomes active. When the user
clicks the Apply button, the application responds (normally by changing the appropriate
properties) and then the Apply button becomes inactive once again. This process is
controlled as follows.

444 Dyalog APL/W Object Reference

The Changed property is a Boolean value that determines whether or not a
PropertyPage is marked as having been in any way altered. The Apply button is active if
the value of the Changed property for any of the PropertyPages is 1, and is inactive
otherwise

Initially, the value of the Changed property for all of the PropertyPages is 0 and the
Apply button is therefore inactive. If the user alters a control on a PropertyPage, by, for
example typing into an Edit object or changing the State of a Radio Button, the
PropertyPage immediately generates a PageChanged event with the parameter 1. The
default processing for this event is to set the Changed property of the PropertySheet (to
1). This in turn activates the “Apply ” button. If you return 0 from a callback on the

PageChanged event, the Changed property remains 0 and the Apply button remains
inactive.

When the user clicks the Apply button, each of the PropertyPages whose Changed flag
is currently set to 1 generates a PageApply event. The default processing for this event
is to generate a PageChanged event with the parameter 0. This is turn resets the
Changed property of the PropertyPage to 0. Once all of the Changed flags have been
reset, the Apply button becomes inactive. If you return 0 from a callback on any of the
PageChanged events, the Changed property for the corresponding PropertyPage remains
1 and the Apply button remains active.

You may control the value of the Changed property using ⎕WS or by calling
PageChanged as a method. In all cases, the Apply button is active if the value of
Changed on any PropertyPage is 1, and inactive otherwise.

 Chapter 2 A-Z Reference 445

445

Wizard Behaviour

If the PropertyPage is owned by a Wizard PropertySheet, its Caption property specifies
the text that appears in the title bar of the PropertySheet window when the PropertyPage
is the current page. Note that a Wizard PropertySheet ignores its own Caption property.

There are effectively 3 page changing buttons on a Wizard PropertySheet, named Back,
Next and Finish. The Next and Finish buttons actually occupy the same position and are
mutually exclusive. The captions on the buttons are language-dependent.

Conventionally, the buttons change according to which of the PropertyPages is
currently displayed. If the first one is displayed, the Next button is active but the Back
button is inactive. When a middle page is displayed, both the Next and Back buttons are
active. When the last page is displayed, the caption on the Next button changes to
Finish. However, in some applications, the Back button may be disabled to prevent the
user returning to a previous page.

When the user clicks the Back or Next button, the PropertyPage generates a PageBack
or PageNext event followed by a PageDeactivate event. The new PropertyPage then
generates a PageActivate event. These are followed by a SetWizard event which is
generated by the parent PropertySheet and actually controls the state of the buttons.
When the user clicks the Finish button, the PropertyPage generates a PageFinish event
alone. All of these events reported by the PropertyPage are reported for information
only. Returning 0 from a callback function has no effect. You may however control the
buttons using the SetWizard event.

446 Dyalog APL/W Object Reference

PropertySheet Object

Purpose The PropertySheet object represents a standard multi-page dialog box.

Parents ActiveXControl, Form, OLEServer, Root, SubForm, TCPSocket

Children Bitmap, BrowseBox, Circle, Clipboard, Cursor, Ellipse, FileBox,

Font, Icon, Locator, Marker, Metafile, MsgBox, Poly, Printer,
PropertyPage, Rect, Text, Timer, TipField

Properties Type, Caption, Posn, Size, Style, Coord, Active, Visible, Event,

HasApply, HasHelp, PageActive, PageActiveObject, FontObj,
OnTop, Data, EdgeStyle, Handle, Hint, HintObj, Tip, TipObj,
Translate, KeepOnClose, MethodList, ChildList, EventList, PropList

Events Close, Create, FontCancel, FontOK

Methods CancelToClose, ChooseFont, Detach, GetFocus, SetFinishText, Wait

There are two different kinds of PropertySheet which you select using the Style
property. This may only be set when the PropertySheet is created using ⎕WC and Style
may not subsequently be changed using ⎕WS.

If Style is Standard (the default), the PropertySheet displays a set of pages (each
represented by a PropertyPage) as a set of tabbed forms. The user selects the current
page by clicking on the appropriate tab. This Style allows the user to select any page at
any time and does not oblige the user to visit any but the first page you choose to
display. This Style is useful for displaying groups of options or settings that the user
may change.

If Style is Wizard, the PropertySheet displays its pages in succession starting with the
first. The user steps from one to another using the Next and Back buttons and may be
forced to visit all the pages in a prescribed order. This Style is useful for data entry or
for asking the user to make a series of choices.

The Caption property specifies the text written in the window title bar, but only applies
if the Style is Standard. The title bar text of a Wizard PropertySheet is specified by the
Caption of the current PropertyPage. The FontObj and EdgeStyle properties have no
effect on the appearance of the PropertySheet itself, but may be used to define the
default appearance of its children.

 Chapter 2 A-Z Reference 447

447

The HasApply and HasHelp properties are Boolean and specify whether or not the
PropertySheet has “Apply” and “Help” buttons respectively. These properties may only

be set when the object is created using ⎕WC. They both have default values of 1.

PropList Property

Applies to ActiveXContainer, ActiveXControl, Animation, Bitmap, BrowseBox,
Button, Calendar, Circle, Clipboard, ColorButton, Combo, ComboEx,
CoolBand, CoolBar, Cursor, DateTimePicker, Edit, Ellipse, FileBox,
Font, Form, Grid, Group, Icon, Image, ImageList, Label, List,
ListView, Locator, Marker, MDIClient, Menu, MenuBar, MenuItem,
Metafile, MsgBox, NetControl, OCXClass, OLEClient, OLEServer,
Poly, Printer, ProgressBar, PropertyPage, PropertySheet, Rect,
RichEdit, Root, Scroll, Separator, SM, Spinner, Splitter, Static,
StatusBar, StatusField, SubForm, SysTrayItem, TabBar, TabBtn,
TabButton, TabControl, TCPSocket, Text, Timer, TipField, ToolBar,
ToolButton, ToolControl, TrackBar, TreeView, UpDown

This is a "read-only" property that supplies a list of all other properties which are
applicable to the object in question. The list is returned as a vector of character vectors
in the order in which the corresponding properties are expected by ⎕WC and ⎕WS.

Protected Event 470

Applies to RichEdit

If enabled, this event is reported when the user attempts to alter protected text in a
RichEdit. See CharFormat property.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'Protected' or 470

448 Dyalog APL/W Object Reference

QueueEvents Property

Applies to OCXClass, OLEClient

The QueueEvents property specifies whether or not incoming events generated by a
COM object are queued.

QueueEvents is a single number with the value 1 (queue events) or 0 (process events
immediately). The default value is 1.

If QueueEvents is 1, the result (if any) of your callback function is not passed back to
the COM object but is discarded. Thus you cannot, for example, inhibit or modify the
default processing of the event by the COM object.

If QueueEvents is 0, the following applies.

The callback function attached to the event is executed immediately, even if there are
other APL events before it in the internal event queue. This immediate execution means
that your callback can fire during the execution of any other function, including a
callback function on an APL event. You must therefore take care that the callback
makes no references to objects that may be shadowed.

The result of your callback function is then passed back to the COM object. In this
situation, it is essential that the callback is not interrupted by other events from the
same, or another instance, of an COM object.

To prevent APL itself from yielding to Windows, the Yield property is temporarily and
automatically set to 0 while the callback is run. For the same reason, the tracing of a
callback function, that is run immediately in this way, is disabled.

However, you must yourself also ensure that your own code does not yield. This means
that you may not perform any operation in your callback that would yield to Windows;
these include:

 ⎕DL
 certain uses of ⎕NA
 external function calls to Auxiliary Processors

If your callback does yield to Windows, thereby allowing another COM object event to
arrive, this second event and any subsequent events that arrive during the execution of
the callback are queued and will be processed later. These events may therefore not be
modified by their callback functions.

 Chapter 2 A-Z Reference 449

449

Radius Property

Applies to Circle, Rect

For a Circle object, this property is a single number that specifies the radius of the
circle/arc or a numeric vector that specifies the radii of a set of circles/arcs.

For a Rect object, Radius is a 2-element vector that specifies the curvature of the
corners of the rectangle or set of rectangles to be drawn. The curvature is defined in
terms of the vertical and horizontal axes of an ellipse. The first element of Radius
defines the axis vertically, the second horizontally. If more than one rectangle is
involved, either or both of the elements of Radius may be vectors. The default value is
(0,0) which gives square corners.

RadiusMode Property

Applies to Circle, Root

A perfectly round circle can only be drawn if the diameter is an odd number of pixels.
The RadiusMode property specifies whether or not a circle is adjusted by a single pixel,
if necessary, so as to appear perfectly round.

If RadiusMode is 1 or ¯1, and the diameter is an even number of pixels, the circle is
actually drawn with a diameter of 1 pixel more or less than specified. If RadiusMode is
0 (the default), no such adjustment is made.

RadiusMode may be set on the Root object to be inherited by all Circle objects.

Range Property

Applies to Form, Scroll, SubForm

This property determines the maximum value of the thumb in a scrollbar (the minimum
value is always 1). This may be any positive integer value that is greater than 1.

For a Scroll object Range is a single number. For a Form or SubForm object, Range is a
2-element vector which specifies the maxima for the Form's vertical and horizontal
scrollbars respectively.

450 Dyalog APL/W Object Reference

ReadOnly Property

Applies to Button, Edit, Spinner

This property specifies whether or not the user may alter the text in an Edit or Spinner
object or the state of a radio button or checkbox. The default value of ReadOnly is 0
which allows the user to alter text.

For an Edit or Spinner, if you set ReadOnly to 1, a cursor is displayed in the object, the
user may navigate around the text in the usual manner with the mouse and/or the
keyboard and select text and copy it to the clipboard. However, all input that would
otherwise change the data is ignored.

For a Button object with Style 'Radio' or 'Check', setting ReadOnly to 1 prevents
the user from changing the state of the Button, although mouse and other events will
still be reported.

RealSize Property

Applies to Metafile

There are several distinct types of Windows metafiles. A placeable metafile is one that
carries with it its suggested size. Certain programs (such as Word for Windows) only
support placeable metafiles.

The RealSize property specifies the suggested size of a Metafile in units of 0.01mm.
Thus to make a placeable Metafile with a suggested size of 20 x 10 cm, you would set
RealSize to (20000 10000).

The RealSize property is not used or required by Dyalog APL/W and is provided only
to enable you to make and save a new metafile that is placeable. If you create a Metafile
object from a file, the value of RealSize will be obtained from the value recorded in the
file (if it is placeable). Otherwise, RealSize will be (0 0). If so, you must set RealSize
to make it placeable. Each element of RealSize must be an integer in the range 0-
144745.

 Chapter 2 A-Z Reference 451

451

Rect Object

Purpose A graphical object used to draw boxes

Parents ActiveXControl, Animation, Bitmap, Button, Combo, ComboEx,
Edit, Form, Grid, Group, Label, List, ListView, MDIClient, Metafile,
Printer, ProgressBar, PropertyPage, PropertySheet, RichEdit, Scroll,
Spinner, Static, StatusBar, SubForm, TabBar, TipField, ToolBar,
TrackBar, TreeView, UpDown

Children Timer

Properties Type, Points, Size, Radius, FCol, BCol, LStyle, LWidth, FStyle,

FillCol, Coord, Visible, Event, Dragable, OnTop, CursorObj,
AutoConf, Data, EdgeStyle, Accelerator, KeepOnClose, DrawMode,
MethodList, ChildList, EventList, PropList

Events Close, Create, DragDrop, Help, MouseDblClick, MouseDown,

MouseMove, MouseUp, Select

Methods Detach

The Points property specifies one or more sets of co-ordinates which define the
position(s) of one or more rectangles. The position of a rectangle is defined to be the
position of the corner that is nearest to the origin of its parent. The default is therefore
its top-left corner. The Size property specifies the height and width of each rectangle,
measuring away from the origin.

The Radius property specifies the curvature of the corners of the rectangle.

LStyle and LWidth define the style and width of the lines used to draw the boundaries
of the rectangle(s). FCol and BCol determine the colour of the lines.

FStyle specifies whether or not the rectangle(s) are filled, and if so, how. For a solid fill
(FStyle 0), FillCol defines the fill colour used. For a pattern fill (FStyle 1-6) FillCol
defines the colour of the hatch lines and BCol the colour of the spaces between them.

The EdgeStyle property may specify a 3-dimensional effect. If so, the boundary line
around the rectangle is replaced by a border designed to achieve the desired effect.

The value of Dragable determines whether or not the object can be dragged. The value
of AutoConf determines whether or not the Rect object is resized when its parent is
resized.

452 Dyalog APL/W Object Reference

Single Rectangle

For a single rectangle, Points is either a 2-column matrix of (y,x) co-ordinates, or a 2-
element vector of y and x co-ordinates respectively.

Size is a simple 2-element vector whose elements specify the height and width of the
rectangle respectively.

Radius is a 2-element vector which specifies the major (y-axis) and minor (x-axis) radii
of an ellipse used to draw the corners of the rectangle. Its default value is (0 0) which
yields right-angled corners.

LStyle and LWidth are both simple scalar numbers.

FStyle is either a single number specifying a standard fill pattern, or the name of a
Bitmap object which is to be used as a "brush" to fill the rectangle.

FCol, BCol and FillCol are each either single numbers representing standard colours, or
3-element vectors which specify colours explicitly in terms of their RGB values.

First make a Form :

 'F' ⎕WC 'Form'

Draw a single rectangle at (y=10, x=5) with height=30, width=50 :

 'F.R1' ⎕WC 'Rect' (10 5)(30 50)

Ditto with rounded corners (radii 10) :

 'F.R1' ⎕WC 'Rect' (10 5)(30 50)(10 10)

Ditto, but use a red line :

 'F.R1' ⎕WC 'Rect' (10 5)(30 50)(10 10)
 (255 0 0)

Ditto, but fill in green

 'F.R1' ⎕WC 'Rect' (10 5)(30 50)(10 10)
 (255 0 0) ('FStyle' 0)(0 255 0)

 Chapter 2 A-Z Reference 453

453

Multiple Rectangles

To draw a set of rectangles with a single name, Points may be a simple 2-element vector
(specifying the location of all the rectangles), or a 2-column matrix whose first column
specifies their y-coordinates and whose second column specifies their x-coordinates, or
a 2-element nested vector whose first element specifies their y-coordinate(s) and whose
second element specifies their x-coordinate(s).

Likewise, Size may be a simple 2-element vector (applying to all the rectangles), or a 2-
column matrix whose first column specifies their heights and whose second column
specifies their widths, or a 2-element nested vector whose first element specifies their
height(s) and whose second element specifies their width(s).

Radius may be a simple 2-element vector (applying to all the rectangles), or a 2-column
matrix whose first column specifies major radii and whose second column specifies
minor radii, or a 2-element nested vector whose first element specifies major radii and
whose second element specifies minor radii.

LStyle and LWidth may each be simple scalar values (applying to all the rectangles) or
simple vectors whose elements refer to each of the corresponding rectangles in turn.

FStyle may be a simple scalar numeric or a simple character vector (Bitmap name)
applying to all rectangles, or a vector whose elements refer to each of the corresponding
rectangles in turn.

Similarly, FCol, BCol and FillCol may each be single numbers or a single (enclosed) 3-
element vector applying to all the rectangles. Alternatively, these properties may
contain vectors whose elements refer to each of the rectangles in turn. If so, their
elements may be single numbers or nested RGB triplets, or a combination of the two.

First make a Form :

 'F' ⎕WC 'Form'

Draw two rectangles at (y=5, x=10) and (y=5, x=60) each of (height=40, width=10)

 'F.R1' ⎕WC 'Rect' ((5 5)(10 60)) (40 10)

Ditto, using scalar extension for (y=5) :

 'F.R1' ⎕WC 'Rect' (5(10 60)) (40 10)

454 Dyalog APL/W Object Reference

Ditto, but draw the first with (height=40, width=30) and the second with (height=20,
width=10) :

 'F.R1' ⎕WC 'Rect' (5(10 60)) ((40 20)(30 10))

Draw two rectangles at (y=5, x=10) and (y=5, x=60) each of (height=40, width=10) and
with rounded corners of radii (10,10) :

 'F.R1' ⎕WC 'Rect' (5(10 60)) (40 10) (10 10)

Ditto, using a green line for both :

 'F.R1' ⎕WC 'Rect' (5(10 60)) (40 10) (10 10)
 (⊂0 255 0)

Ditto, but using red and blue lines respectively :

 'F.R1' ⎕WC 'Rect' (5(10 60)) (40 10) (10 10)
 ((255 0 0)(0 0 255))

Redraw Property

Applies to ActiveXControl, Button, Calendar, ColorButton, Combo, ComboEx,
CoolBar, DateTimePicker, Edit, Form, Grid, Group, Label, List,
ListView, MDIClient, ProgressBar, RichEdit, Scroll, SM, Spinner,
Static, StatusBar, SubForm, TabBar, ToolBar, ToolControl, TrackBar,
TreeView, UpDown

The Redraw property specifies whether or not APL automatically redraws an object
when it is exposed or when any of its properties change in a way that would affect its
appearance.

The value reported by the Redraw property is a Boolean value; 1 means that APL
automatically redraws the object when necessary (the default); 0 means that APL does
not redraw the object.

Setting Redraw to 0 or 1 affects only whether or not APL will redraw the object from
then on.

In addition to the values 0 and 1, you may set Redraw to 2. This has the same effect as
setting it to 1, but object is also redrawn immediately.

 Chapter 2 A-Z Reference 455

455

RemoteAddr Property

Applies to TCPSocket

The RemoteAddr property is a character vector that specifies the IP address of the
remote computer.

RemoteAddr may only be specified by a client TCPSocket that is intended to make a
connection with a server. Furthermore, it must be specified in the ⎕WC statement that
creates the TCPSocket object and it may not subsequently be changed using ⎕WS.

Note that you may use either RemoteAddr or RemoteAddrName to identify the remote
computer. If you know its IP address, it is normally quicker to specify RemoteAddr. If
you specify both properties, the value of RemoteAddrName will be ignored.

For a server TCPSocket, RemoteAddr is determined by the IP address of the connecting
process and is a read-only property and is available reliably only after connection.

RemoteAddrName Property

Applies to TCPSocket

The RemoteAddrName property is a character vector that specifies the host name of the
remote computer to which you wish to make a connection.

RemoteAddrName may only be specified by a client TCPSocket that is intended to
make a connection with a server. Furthermore, it must be specified in the ⎕WC statement
that creates the TCPSocket object and it may not subsequently be changed using ⎕WS.

When the specified host name has been resolved to an IP address, the TCPSocket will
generate a TCPGotAddr event and update the value of RemoteAddr accordingly.

Note that you may use either RemoteAddr or RemoteAddrName to identify the remote
computer. If you know its IP address, it is normally quicker to specify RemoteAddr. If
you specify both properties, the value of RemoteAddrName will be ignored.

For a server TCPSocket, you may not specify RemoteAddrName and ⎕WG returns an
empty character vector.

456 Dyalog APL/W Object Reference

RemotePort Property

Applies to TCPSocket

The RemotePort property is a scalar integer in the range 1-65535 that identifies the port
number associated with a service on a remote computer.

RemotePort may only be specified by a client TCPSocket that is intended to make a
connection with a server. Furthermore, it must be specified in the ⎕WC statement that
creates the TCPSocket object and it may not subsequently be changed using ⎕WS.

Note that you may use either RemotePort or RemotePortName to identify the remote
service. If you know the port number, it is normally quicker to specify RemotePort.
However unless it is a well known port number, the use of a port name is generally more
flexible. If you specify both properties, the value of RemotePortName will be ignored.

For a server TCPSocket, RemotePort is determined by the port number of the
connecting process and is a read-only property.

RemotePortName Property

Applies to TCPSocket

The RemotePortName property is a character vector that specifies the port name of the
remote service to which you wish to make a connection.

RemotePortName may only be specified by a client TCPSocket that is intended to make
a connection with a server. Furthermore, it must be specified in the ⎕WC statement that
creates the TCPSocket object and it may not subsequently be changed using ⎕WS.

When the specified port name has been resolved to a port number, the TCPSocket will
generate a TCPGotPort event and update the value of RemotePort accordingly.

Note that you may use either RemotePort or RemotePortName to identify the remote
service. If you know the port number, it is normally quicker to specify RemotePort.
However unless it is a well known port number, the use of a port name is generally more
flexible. If you specify both properties, the value of RemotePortName will be ignored.

For a server TCPSocket, you may not specify RemotePortName and ⎕WG returns an
empty character vector.

 Chapter 2 A-Z Reference 457

457

ReportInfo Property

Applies to ListView

The ReportInfo property is a matrix that is displayed alongside each item in a ListView
object when its View property is 'Report'. Each element of the matrix may be a
character vector or a number.

The information is displayed in a grid format, the first column of which contains the
item labels and their icons. Subsequent columns of the grid are defined by the
corresponding columns of ReportInfo. The alignment of the columns is specified by the
ColTitleAlign property.

ResizeCols Property

Applies to Grid

This property determines whether or not the user may resize columns in the Grid. It is a
Boolean scalar or vector with one element per column. A value of 1 indicates that the
corresponding column is resizable by the user. A value of 0 means that the
corresponding column may not be resized by the user.

If a column is resizable, the cursor changes to a double headed arrow when the mouse
pointer is placed over the right-hand border of the column title. The user may resize the
column by dragging this border. The user may also resize a column by double-clicking
over its right-hand border. This causes the column to be resized to fit the data and the
width of the column is automatically adjusted to display the widest value in any of its
cells. Either operation generates a SetColSize event.

Note that the user may cause the column to disappear altogether by dragging it to a zero
width. Once this has been done, this column may only be restored if the column to its
left is itself not resizable.

458 Dyalog APL/W Object Reference

ResizeColTitles Property

Applies to Grid

This property determines whether or not the user may alter the height of the column
titles in the Grid. It is either 1, which indicates that the height of the column titles is
adjustable by the user, or 0 which means that it is not.

If the height of the column titles is adjustable, the cursor changes to a double headed
arrow when the mouse pointer is placed over the top border of the first row title The
user may resize the column titles by dragging this border. The user may also resize the
column titles by double-clicking over this border. This causes the column titles to be
resized to fit the data and the height of the column titles is automatically adjusted to
display the tallest heading in any of its columns. Either operation generates a
SetRowSize event. The value of the row number reported by the event is ¯1.

Note that the user may cause the column titles to disappear altogether by dragging them
to a zero height. Once this has been done, the row titles cannot be restored.

ResizeRows Property

Applies to Grid

This property determines whether or not the user may resize rows in the Grid. It is a
Boolean scalar or vector with one element per column. A value of 1 indicates that the
corresponding row is resizable by the user. A value of 0 means that the corresponding
row may not be resized by the user.

If a row is resizable, the cursor changes to a double headed arrow when the mouse
pointer is placed over the lower border of the row title. The user may change the height
of the row by dragging this border up and down. The user may also resize a row by
double-clicking over its bottom border. This causes the row to be resized to fit the data
and the height of the row is automatically adjusted to display the tallest value in any of
its cells. Either operation generates a SetRowSize event.

Note that the user may cause the row to disappear altogether by dragging it to a zero
height. Once this has been done, this row may only be restored if the row above it is
itself not resizable.

 Chapter 2 A-Z Reference 459

459

ResizeRowTitles Property

Applies to Grid

This property determines whether or not the user may alter the width of the row titles in
the Grid. It is either 1, which indicates that the width of the row titles is adjustable by
the user, or 0 which means that it is not.

If the width of the row titles is adjustable, the cursor changes to a double headed arrow
when the mouse pointer is placed over the left-hand border of the first column title. The
user may resize the row titles by dragging this border. The user may also resize the row
titles by double-clicking over this border. This causes the row titles to be resized to fit
the data and the width of the row titles is automatically adjusted to display the longest
string in any of its rows. Either operation generates a SetColSize event. The value of the
column number reported by the event is ¯1.

Note that the user may cause the row titles to disappear altogether by dragging them to a
zero width. Once this has been done, the row titles cannot be restored.

Resolution Property

Applies to Printer

The Resolution property determines the print resolution.

You may set Resolution to 'Draft', 'Low', 'Medium' or 'High'.

Alternatively, you can set Resolution to a 2-element integer vector that specifies the
desired number of dots per inch in the x (horizontal) and y (vertical) direction
respectively.

The initial value reported by Resolution may be reported in either form (character
vector or 2-element numeric vector) according to the current printer settings.

460 Dyalog APL/W Object Reference

Resolutions Property

Applies to Printer

The Resolutions property is a read-only property that reports the available printer
resolutions.

Resolutions is a vector of 2-element integer vectors each of which specifies the number
of dots per inch in the x (horizontal) and y (vertical) directions respectively.

Retracting Event 304

Applies to Grid, TreeView

If enabled, this event is reported by a Grid or a TreeView object just before it is about to
retract to hide the children of the current item.

In a Grid, this occurs when the user clicks the picture or tree line in the row title.

In a TreeView, this occurs when the user double-clicks the item label or clicks in the
button or on the tree line to the left of the item label, when the item is in its expanded
state.

The default processing for the event is to retract the tree at the corresponding point.

You may disable the retract operation by setting the action code for the event to ¯1.
You may also prevent the retraction from occurring by returning 0 from a callback
function. You may retract a Grid or TreeView dynamically under program control by
calling Retracting as a method.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'Retracting' or 304

[3] Item number: Integer. The index of the item.

 Chapter 2 A-Z Reference 461

461

RichEdit Object

Purpose The RichEdit object is a multi-line text editor that provides a wide
range of word-processing capabilities.

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, SubForm,

ToolBar, ToolControl

Children Bitmap, Circle, Cursor, Ellipse, Font, Icon, Marker, Poly, Rect, Text,

Timer

Properties Type, Text, Posn, Size, File, Coord, Border, Active, Visible, Event,

VScroll, HScroll, SelText, Sizeable, Dragable, FontObj, FCol, BCol,
CursorObj, AutoConf, Data, Attach, EdgeStyle, Handle, Hint,
HintObj, Tip, TipObj, Changed, RTFText, Translate, Accelerator,
CharFormat, WordFormat, ParaFormat, PageWidth, AcceptFiles,
WantsReturn, KeepOnClose, Redraw, TabIndex, MethodList,
ChildList, EventList, PropList

Events Change, Close, Configure, ContextMenu, Create, DragDrop,

DropFiles, DropObjects, Expose, FontCancel, FontOK, GotFocus,
Help, KeyPress, LostFocus, MouseDblClick, MouseDown,
MouseEnter, MouseLeave, MouseMove, MouseUp, MouseWheel,
Protected, Select

Methods Animate, ChooseFont, Detach, FileRead, FileWrite, GetFocus,

GetTextSize, RTFPrint, RTFPrintSetup, ShowSIP

A RichEdit object is a window in which the user can enter and edit text. The text can be
assigned character and paragraph formatting.

The RichEdit object provides a programming interface for formatting text. However,
your application must implement any user interface components necessary to make
formatting operations available to the user. For example, your program can set the
colour and font of a particular block of text, but the RichEdit itself provides no facilities
for the user to do this directly. It is up to you to provide these.

The File property specifies the name of a file associated with the object. Data in the file
is assumed to be in rich text format, and the default extension for the file is .RTF. You
can read the file into the object by calling FileRead and you can write the contents to the
file by calling FileWrite. You can also print the contents of the object by calling
RTFPrint.

462 Dyalog APL/W Object Reference

The Text property may be used to set or retrieve the text of the RichEdit, but ignores
formatting information.

The RTFText property may be used to set or retrieve the contents of the RichEdit,
including text and formatting.

The PageWidth property defines the width of the text within the object. Text entered
into the object is automatically wrapped according to PageWidth. This property also
defines the width when the text is printed.

You can set the default character format or the format of a particular block of text using
the CharFormat property. If there is no selection, setting CharFormat defines the default
character format that applies at the current insertion position and establishes the
appearance of all of the text (font, colour, size etc.) that the user subsequently enters
here. If there is a selection, setting CharFormat sets the character format for the selected
block of text.

The WordFormat property is similar to CharFormat except that is sets the format for the
selected word(s) or, if there is no selection, for the word containing the insertion point.

The ParaFormat property defines the paragraph formatting which includes alignment,
indentation and the location of tab stops. When you set ParaFormat with ⎕WS, the
formatting is applied to the current selection. If there is no selection, it defines the
default paragraph formatting at the insertion point.

All of the dimensions used for text and paragraph formatting are specified in Twips.
You can convert from pixels to Twips and vice versa using the DevCaps property of
either Root or the Printer object as appropriate.

The behaviour of the Enter key is defined by the WantsReturn property. If WantsReturn
is 1 (the default), the Enter key inputs a new line into the RichEdit object. If
WantsReturn is 0 the Enter key is ignored by the RichEdit object and may instead
generate a Select event on a Button. In this case the user must press Ctrl+Enter to input
a new line.

The user may copy and paste information (in RTF format) between a RichEdit object
and the Windows clipboard. The Clipboard object also has an RTFText property that
supports RTF format

If the user attempts to alter text that is protected (see CharFormat) the RichEdit object
reports a Protected event.

You may print the contents of a RichEdit object using the RTFPrint method. You may
display a print set-up dialog box using the RTFPrintSetup method.

 Chapter 2 A-Z Reference 463

463

Root Object

Purpose This is an invisible "system" object that acts as the parent of all other
 objects.

Parents (None)

Children Bitmap, BrowseBox, Clipboard, Cursor, FileBox, Font, Form, Icon,

ImageList, Locator, Menu, Metafile, MsgBox, NetClient, NetType,
OCXClass, OLEClient, OLEServer, Printer, PropertySheet,
SysTrayItem, TCPSocket, Timer, TipField

Properties Type, Caption, Posn, Size, DevCaps, Coord, Event, FontObj,

FontList, PrintList, IconObj, CursorObj, YRange, XRange, Data,
TextSize, Yield, EdgeStyle, HintObj, TipObj, Translate, UpperCase,
APLVersion, EvaluationDays, KeepOnClose, OLEControls,
OLEServers, LastError, RadiusMode, MethodList, ChildList,
EventList, PropList

Events ActivateApp, DDE, DisplayChange, ExitApp, ExitWindows,

FontCancel, FontOK, Idle, SysColorChange, WinIniChange

Methods ChooseFont, DateToIDN, DeleteTypeLib, Flush, GetBuildID,

GetCommandLine, GetCommandLineArgs, GetEnvironment,
GetFocus, GetTextSize, GreetBitmap, IDNToDate, ListTypeLibs,
NameFromHandle, ShowSIP, TCPGetHostID, Wait

There is a single Root object called '.' which is always present. It cannot be created
using ⎕WC nor can it be destroyed.

The Caption and IconObj properties of '.' are used to identify a Dyalog APL/W
application as distinct from the APL Session. The Caption property specifies the
application name that is displayed when you cycle through running applications using
Alt+Tab and by the Windows Task List. The IconObj property specifies the name of an
Icon object that is displayed alongside the application name in the box displayed by
Alt+Tab. For these to take effect, your application must have at least one visible and
active Form.

For the Root object, the value of Posn is (0,0). The value of Size is either (100,100) if
Coord is 'Prop', or the size of the screen in pixels if Coord is 'Pixel'. XRange and
YRange both have the value (0,100). The DevCaps property reports the physical size of
the screen in terms of both pixels and millimetres. It also reports the number of colours
available. The FontList property provides a list of all the character fonts that are
available. The PrintList property provides a list of all the installed printers. These
properties are read-only and may not be changed.

464 Dyalog APL/W Object Reference

As the default value of Coord is 'Inherit' for all other objects, the value of Coord
for '.' defines the default co-ordinate system. It may be either 'Prop' (the default)
or 'Pixel'. 'Inherit' and 'User' are not allowed.

The CursorObj property is used to define a cursor for the application as a whole. Its
default value is an empty character vector. If it is set to any value other than '' or 0, the
selected cursor overrides the CursorObj values for all other objects. If you want to
indicate that the application is "busy", you can therefore set the CursorObj property on
'.' to an hourglass for the duration of the operation, e.g.

 '.' ⎕WS 'CursorObj' 1 ⍝ Set cursor to an hourglass

 [lengthy process]

 '.' ⎕WS 'CursorObj' 0 ⍝ Reset cursor

The Yield property specifies how frequently APL yields to Windows during the
execution of code. Its default value is 200 milliseconds.

The EdgeStyle property is used to determine whether or not objects may have 3-
dimensional effects. Setting EdgeStyle to 'None' disables 3-dimensional effects on all
Forms and controls. Setting EdgeStyle to any other value enables 3-dimensional effects
for these objects.

The ExitApp and ExitWindows events can be used to prevent the user closing your
application from the Windows Task List or by terminating Windows.

The expression ⎕EX '.' deletes all objects owned by the current thread except the
Root object itself. In addition, if this expression is executed by thread 0, it resets all the
properties of '.' to their default values.

Rotate Property

Applies to Font

This property specifies the angle of rotation of the font measured in radians (0 → ○2)
from the x-axis in a counter-clockwise direction. Note that only TrueType fonts can be
rotated. Rotated fonts are supported only for use with the Text object.

 Chapter 2 A-Z Reference 465

465

RowChange Method 158

Applies to Grid

This method is used to change the data in a row of a Grid object.

The argument to RowChange is a 2-element array as follows.

[1] Row number: integer

[2] Row data: array

Row data must be a scalar or a vector whose length is equal to the number of columns
in the Grid. Its elements may be scalar numbers, character vectors or matrices.

RowLineTypes Property

Applies to Grid

This property specifies the appearance of the horizontal grid lines in a Grid object.

RowLineTypes is an integer vector, whose length is normally equal to the number of
rows in the Grid. Each element in RowLineTypes specifies an index into the
GridLineFCol and GridLineWidth properties, thus selecting the colour and width of the
horizontal grid lines.

For example, if RowLineTypes[1] is 3, the first horizontal grid line in the Grid is
displayed using the colour specified by the 3rd element of GridLineFCol, and the width
specified by the 3rd element of GridLineWidth. Note that RowLineTypes is not ⎕IO
dependant, and the value 0 is treated the same as the value 1; both selecting the first
colour and line width specified by GridLineFCol and GridLineWidth respectively.

The default value of RowLineTypes is an empty numeric vector (⍬). If so, all horizontal
grid lines are drawn using the first element of GridLineFCol and GridLineWidth.

A horizontal grid line is drawn along the bottom edge of its associated row. One pixel is
drawn inside the row of cells; additional pixels (if any) are drawn between that row of
cells and the next one below.

466 Dyalog APL/W Object Reference

Rows Property

Applies to Combo, ComboEx

For Combo objects with Style 'Drop' or 'DropEdit' this property determines the
number of rows displayed in the drop-down listbox when it is displayed. Note that the
height of the edit field of a Combo of this type is dependent only upon the size of the
font in use, and cannot otherwise be changed.

Rows is a "read-only" property for a Combo with Style 'Simple' and an attempt to
set it in a Combo of this type with ⎕WC or ⎕WS will generate a NONCE ERROR.
Instead, the overall height of a Simple Combo is determined by the first element of the
Size property.

RowSetVisibleDepth Method 173

Applies to Grid

This method is used to set the maximum visible depth of data in rows of a Grid.

The argument to RowSetVisibleDepth is a numeric scalar as follows

 [1] Depth : integer

All rows in the grid that have a value of RowTreeDepth less that or equal to Depth are
expanded. Rows with a value of RowTreeDepth greater than Depth are collapsed.

Note: Expanding and Retracting events are not generated when this method is called.

 Chapter 2 A-Z Reference 467

467

 'F'⎕WC'Form' 'Grid: TreeView Feature'
 'F.G'⎕WC'Grid'(30 2⍴2/⍳30)
 F.G.RowTreeDepth←30⍴0 1 2 2

 F.G.RowSetVisibleDepth 1

468 Dyalog APL/W Object Reference

RowTitleAlign Property

Applies to Grid

The RowTitleAlign property specifies the alignment of row titles in a Grid. It is either a
simple character vector, or a vector of character vectors with one element per row.

An element of RowTitleAlign may be: 'Top','Bottom', 'Left', 'Right',
'Centre', 'TopLeft', 'TopRight', 'BottomLeft', or 'BottomRight'.
Note that both spellings 'Centre' and 'Center' are accepted.

RowTitleBCol Property

Applies to Grid

The RowTitleBCol property specifies the background colour of the row titles in a Grid
object

RowTitleBCol may be a scalar that specifies a single background colour to be used for
all of the row titles, or a vector that specifies the background colour of each of the row
titles individually.

 An element of RowTitleBCol may be an enclosed 3-element vector of integer values in
the range 0-255 which refer to the red, green and blue components of the colour
respectively, or it may be a scalar that defines a standard Windows colour element (see
BCol for details). Its default value is 0 which obtains the colour defined for Button
Face.

 Chapter 2 A-Z Reference 469

469

RowTitleDepth Property

Applies to Grid

RowTitleDepth specifies the structure of a set of hierarchical row titles. It is an integer
vector with the same length as the RowTitles property. A value of 0 indicates that the
corresponding element of RowTitles is a top-level title. A value of 1 indicates that the
corresponding title is a sub-title of the most recent title whose RowTitleDepth is 0; a
value of 2 indicates that the corresponding title is a sub-title of the most recent title
whose RowTitleDepth is 1, and so forth. For example:

 'F'⎕WC'Form'('Coord' 'Pixel')('Size' 318 310)
 F.Caption ← 'Hierarchical Column Titles'
 'F.G'⎕WC'Grid'(?12 4⍴100)(0 0)(318 310)
 F.G.TitleWidth ← 150
 F.G.TitleHeight ← 0
 F.G.CellWidths ← 40

 Q1←'Q1' 'Jan' 'Feb' 'Mar'
 Q2←'Q2' 'Apr' 'May' 'Jun'
 Q3←'Q3' 'Jul' 'Aug' 'Sep'
 Q4←'Q4' 'Oct' 'Nov' 'Dec'
 RT←(⊂'1995'),Q1,Q2,Q3,Q4
 RD←0,16⍴1 2 2 2

 F.G.RowTitles F.G. RowTitleDepth ← RT RD
 F.G.RowTitleAlign ← 'Centre'

470 Dyalog APL/W Object Reference

Note that the LockRows method is not supported in combination with hierarchical row
titles.

RowTitleFCol Property

Applies to Grid

The RowTitleFCol property specifies the colour of the row titles in a Grid object

RowTitleFCol may be a scalar that specifies a single colour to be used for all of the row
titles, or a vector that specifies the colour of each of the row titles individually. An
element of RowTitleFCol may be an enclosed 3-element vector of integer values in the
range 0-255 which refer to the red, green and blue components of the colour
respectively, or it may be a scalar that defines a standard Windows colour element (see
BCol for details). Its default value is 0 which obtains the colour defined for Button text.

 Chapter 2 A-Z Reference 471

471

RowTitles Property

Applies to Grid

This property specifies the headings that are displayed to the left of the rows in a Grid
object. If specified, it must be a vector of character vectors or matrices whose length is
the same as the number of rows implied by the Values property. The default value of
RowTitles is an empty character vector. In this case, the system displays the row
numbers.

To disable the display of row titles in a Grid, you should set the TitleWidth property to
0.

RowTreeDepth Property

Applies to Grid

The RowTreeDepth property specifies the structure of the rows in a Grid object. It is
either a scalar 0 or an integer vector of the same length as the number of rows in the
grid. RowTreeDepth is similar to the Depth property of the TreeView object.

A value of 0 indicates that the corresponding row is a top-level row. A value of 1
indicates that the corresponding row is a child of the most recent row whose
RowTreeDepth is 0; a value of 2 indicates that the corresponding row is a child of the
most recent row whose RowTreeDepth is 1, and so forth.

When you set RowTreeDepth, the Grid is redrawn so that only rows with a
RowTreeDepth of 0 are visible.

The RowSetVisibleDepth method can be used to make data visible to a specific depth.

472 Dyalog APL/W Object Reference

For example:

 'F'⎕WC'Form' 'Grid: TreeView Feature'
 'F.G'⎕WC'Grid'(30 2⍴2/⍳30)
 F.G.RowTreeDepth←30⍴0 1 2 2

The user can interact with the tree images to expand and contract rows of the grid.

 Chapter 2 A-Z Reference 473

473

RowTreeImages Property

Applies to Grid

The RowTreeImages property is a simple character vector or ref, or a vector of
character vectors or refs, that specifies the name(s) of, or ref(s) to, Bitmap objects that
are used to display the tree nodes for a Grid object.

Note that images in tree nodes are only displayed if RowTreeStyle is set to
'ImagesOnly', 'ImagesAndLines', or 'AllImagesAndLines'.

If RowTreeImages is not specified default images are used.

The Bitmap specified by the 1st element of RowTreeImages is used to display
unopened nodes.

The Bitmap specified by the 2nd element of RowTreeImages is used to display opened
nodes.

The Bitmap specified by the 3rd element of RowTreeImages is used to display nodes
without children.

RowTreeStyle Property

Applies to Grid

RowTreeStyle specifies the visible attributes of the tree displayed in the Row titles of a
Grid.

The value of the RowTreeStyle property is a character vector chosen from the following

'LinesOnly' Only the lines of the tree structure are drawn.

'ImagesOnly' Only the images of nodes with children are
drawn.

'ImagesAndLines' Both lines and images for nodes with children
are drawn.

'AllImagesOnly' Images for all nodes are drawn.

'AllImagesAndLines' Both lines and images for all nodes are drawn.

474 Dyalog APL/W Object Reference

RTFPrint Method 461

Applies to RichEdit

This method is used to print the contents (RTFText) of a RichEdit object.

The argument to RTFPrint is ⍬, or a 1 to 4-element array as follows:

[1] Printer name: Optional - character vector (see below)

[2] Print range: Optional - (see below)

[3] Number of copies: Optional - Integer.

[4] Collate: Optional - 0 or 1

Printer name may be the name of an existing Printer object, or the (Windows) name of
an installed printer. If you use the latter, the document will be spooled immediately. An
empty vector implies the default printer.

Print range may be a simple character vector containing 'All', 'Pages', or
'Selection'. Alternatively, it may be a 3 or 4-element nested vector containing:

[1] 'All', 'Pages', or 'Selection'
[2] Start page (integer)
[3] End page (integer)
[4] Maximum pages (ignored)

 Chapter 2 A-Z Reference 475

475

RTFPrintSetup Method 460

Applies to Printer, RichEdit

This method is used to display a print set-up dialog box. The dialog box allows the user
to select a particular printer, the pages to be printed and other information. The user’s

choices are returned in the result.

The argument to RTFPrintSetup is ⍬, or a 1 to 3-element array as follows:

[1] Print range: Optional - (see below)

[2] Number of copies: Optional - Integer.

[3] Collate: Optional - 0 or 1

476 Dyalog APL/W Object Reference

Print range may be a simple character vector containing 'All', 'Pages', or
'Selection'. Alternatively, it may be a 3 or 4-element nested vector containing:

[1] 'All', 'Pages', or 'Selection'
[2] Start page (integer)
[3] End page (integer)
[4] Maximum pages

Maximum pages (4th element of Print range) may be an integer number, or the name of
a reference object. The latter allows the system to calculate the total number of pages
required. If the object to which the RTFPrintSetup event is sent is a RichEdit, this is the
name of a printer object. If the object to which the RTFPrintSetup event is sent is a
Printer, this is the name of a RichEdit object. Both are required because the number of
pages of a printed document is dependent upon both the content of the document and
the characteristics of the device upon which it will be printed.

If the user presses OK, the result is a 4-element vector containing the user’s choices as

follows, otherwise the result is empty.

[1] Printer name: character vector

[2] Print range: (see above)

[3] Number of copies: Integer.

[4] Collate: 0 or 1

Example

 F.T.RTFPrintSetup ('All' 1 1 'PR')
 IBM 4039 LaserPrinter PS Pages 2 3 3 1 0

RTFText Property

Applies to Clipboard, RichEdit

The RTFText property is used to set or retrieve the contents of a Clipboard or a
RichEdit object in rich text format (RTF). It is always a character vector.

 Chapter 2 A-Z Reference 477

477

RunMode Property

Applies to OLEServer

This property specifies the way in which an OLEServer object serves multiple clients.
RunMode is a character vector and may be 'MultiUse' (the default),
'SingleUse' or 'RunningObject'.

If RunMode is 'MultiUse', OLE will load a single copy of Dyalog APL and the
appropriate workspace into memory. All OLE client processes will communicate with
the same Dyalog APL session.

Note that in this case, each OLE client is actually connected to a separate instance of the
corresponding APL namespace. That is to say, each client will appear to have its own
private copy of the namespace. However, the individual functions and variables in the
namespace are not physically copied until they are changed. This means that, in general,
OLE clients will share APL functions but have private copies of the namespace
variables. However, please remember that global objects in the workspace or in other
namespaces are not instanced and will effectively be shared by all clients although they
are not directly accessible to them.

If RunMode is 'SingleUse', OLE will load a separate copy of Dyalog APL and a
separate copy of the appropriate workspace into memory for each OLE client. Each
OLE client operates directly on the namespace associated with the object and not an
instance of it.

If RunMode is 'RunningObject', OLE will load a single copy of Dyalog APL and
the appropriate workspace into memory. All OLE client processes will communicate
with the same Dyalog APL session and indeed with the same namespace. The
namespace is not instanced and all objects, including exported variables, are shared by
all clients.

478 Dyalog APL/W Object Reference

Scroll Object

Purpose Provides a vertical or horizontal scrollbar

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, SubForm,
ToolBar, ToolControl

Children Circle, Cursor, Ellipse, Font, Marker, Poly, Rect, Text, Timer

Properties Type, Posn, Size, Coord, Align, Border, Active, Visible, Event,

Thumb, Range, Step, VScroll, HScroll, Limits, Sizeable, Dragable,
BCol, CursorObj, AutoConf, Data, Attach, EdgeStyle, Handle, Hint,
HintObj, Tip, TipObj, Translate, Accelerator, AcceptFiles,
KeepOnClose, Redraw, TabIndex, MethodList, ChildList, EventList,
PropList

Events Close, Configure, ContextMenu, Create, DragDrop, DropFiles,

DropObjects, Expose, GotFocus, Help, KeyPress, LostFocus,
MouseDblClick, MouseDown, MouseEnter, MouseLeave,
MouseMove, MouseUp, MouseWheel, Scroll, Select

Methods Animate, Detach, GetFocus, GetTextSize, ShowSIP

The Scroll object provides a vertical or horizontal scrollbar that can be used as a "free-
standing" object or can be "attached" to the side of its parent.

An "attached" scrollbar is one that extends along one edge of a Form, SubForm or
Group and has a standard width or height. When the Form or Group is resized, a vertical
attached scrollbar is resized vertically but remains the same width and stays fixed to the
side of its parent. Similarly, a horizontal attached scrollbar is resized horizontally but
remains the same height.

For most purposes, the use of the Scroll object to provide attached scrollbars in a Form
has been superseded by the provision of scrollbars as a property of a Form. This
facility was not available in the first release of Dyalog APL/W (Version 6.2).

A "free-standing" scrollbar is typically used as a "scale" for selecting a numeric value
from a range and may appear and behave rather differently from a standard attached
scrollbar. Firstly, a free-standing scrollbar will normally be positioned at an arbitrary
position within its parent Form or Group and be associated with other objects such as
Labels and Edit fields. Secondly, when its parent Form or Group is resized, it is
probably desirable that the scrollbar reacts in the same way as the other child objects, so
that the overall appearance of the layout is maintained.

 Chapter 2 A-Z Reference 479

479

The Align property determines whether or not a scrollbar is attached, and if so, to which
side of the parent Group or Form it is fixed. The direction of the scrollbar is determined
by the VScroll and HScroll properties, which are mutually exclusive. The position and
size of the scrollbar are determined by Posn and Size.

To obtain an "attached" scrollbar, it is sufficient for most purposes to specify only the
Align property. If so, the direction of the scrollbar and its position and size (which are
otherwise defined by VScroll, HScroll, Posn and Size) are determined automatically for
you.

To obtain a "free-standing" scrollbar, it is recommended for most purposes that you set
Align to 'None' and define the orientation, position and size of the scrollbar explicitly
using VScroll or HScroll, Posn and Size.

If you do attach a "free-standing" scrollbar to a particular side of its parent using Align,
it will maintain its physical position (in pixels) relative to the side to which it is
attached, and its dimension in that direction will remain fixed.

The Align property is a character vector containing 'Top', 'Bottom', 'Right',
'Left' or 'None'. If you specify Align 'Right' you get a vertical scrollbar
attached to the right-hand edge of the parent Form or Group. Align 'Left' also
produces a vertical scrollbar, but one that is attached to the left-hand edge. Align
'Top' and 'Bottom' each produce horizontal scrollbars, attached respectively to the
top and bottom edges of the Form or Group.

Note that the default value of Align is 'Right' unless HScroll is set to ¯1 in which
case it is 'Bottom'. It must therefore be explicitly set to 'None' if you want a non-
attached "free-standing" scrollbar.

VScroll and HScroll are used to specify the orientation of the scrollbar explicitly,
usually in conjunction with Align set to 'None'. VScroll or HScroll may be specified
when the object is created by ⎕WC, but cannot be changed using ⎕WS. The two
properties are mutually exclusive. Each of them may be set to 0 or ¯1, where ¯1 means
"true" and 0 means "false". Thus (VScroll ¯1) defines a vertical scrollbar, while
(HScroll ¯1) specifies a horizontal one. Setting either property to ¯1 automatically
causes the other to be set to 0. If you try to set both to ¯1, VScroll takes precedence and
HScroll is reset to 0.

480 Dyalog APL/W Object Reference

Scrolling is controlled by the Thumb, Range and Step properties.

Thumb sets and reports the current position of the "thumb" as an integer in the range 1
to the value of the Range property.

Step determines the size of changes reported when the user clicks a scroll arrow (small
change) or clicks on the body of the scrollbar (large change). Step is a 2-element
numeric vector whose first element specifies the value of the "small change" and whose
second element specifies the value of the "large change".

Examples of attached scrollbars

 'F' ⎕WC 'Form' 'Default ScrollBar'

 'F.SCR' ⎕WC 'Scroll'

 'F' ⎕WC 'Form' 'Default Horizontal ScrollBar'

 'F.SCR' ⎕WC 'Scroll' ('HScroll' ¯1)

 Chapter 2 A-Z Reference 481

481

Examples of Free-Standing Scrollbars

 'F' ⎕WC 'Form' 'Non-Default ScrollBar'

 'F.SCR' ⎕WC 'Scroll' (5 45)(90 10)
 ('Align' 'None')('VScroll' ¯1)

 'F' ⎕WC 'Form' 'Horizontal ScrollBars'

 'F.SC1' ⎕WC 'Scroll' (15 15)(15 70)
 ('Align' 'None')('HScroll' ¯1)

 'F.SC2' ⎕WC 'Scroll' (40 40)(20 20)
 ('Align' 'None')('HScroll' ¯1)

 'F.SC3' ⎕WC 'Scroll' (85 5)(10 90)
 ('Align' 'None')('HScroll' ¯1)

482 Dyalog APL/W Object Reference

Scroll Event 37

Applies to Scroll, TrackBar

If enabled, this event is generated when the user attempts to move the thumb in a Scroll
or TrackBar object. This can be done in one of three ways :

 a) dragging the thumb.

 b) clicking in one of the "arrow" buttons situated at the ends of the
 scrollbar. This is termed a small change, the size of which is defined
 by Step[1].

 c) clicking in the body of the scrollbar. This is termed a large change,
 the size of which is defined by Step[2].

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'Scroll' or 37

[3] Scroll Type: numeric

[4] Position: numeric

The value of Scroll Type is 0 (drag), 1 or ¯1 (small change) or 2 or ¯2 (large change).
The sign indicates the direction.

The value of Position is the new (requested) position of the thumb. Notice however, that
the event is generated before the thumb is actually moved. If your callback function
returns a scalar 0, the position of the thumb will remain unaltered.

 Chapter 2 A-Z Reference 483

483

ScrollOpposite Property

Applies to TabControl

The ScrollOpposite property specifies that unneeded tabs scroll to the opposite side of a
TabControl, when a tab is selected.

ScrollOpposite is a single number with the value 0 (normal scrolling) or 1 (scrolling to
the opposite side); the default is 0.

The picture below illustrates a TabControl with ScrollOpposite set to 1, after the user
has clicked Third Tab.

Setting ScrollOpposite to 1 implies that MultiLine is also 1.

If you set ScrollOpposite to 1 in a ⎕WC statement, the MultiLine property will
automatically be set to 1, even if you try to set MultiLine to 0 in the same statement.

If you subsequently change MultiLine back to 0 using ⎕WS , this will work, but the
effect is not useful and it is not supported.

484 Dyalog APL/W Object Reference

SelDate Property

Applies to Calendar

The SelDate property identifies the range of dates that is currently selected in a
Calendar object.

SelDate is a 2-element integer vector of IDN values that identifies the first and last dates
that are currently selected.

SelDateChange Event 265

Applies to Calendar

If enabled, this event is reported when the user changes the date, or range of dates, that
is selected in a Calendar object. This event is also reported when the Calendar object is
scrolled and the selection changes automatically to another month.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1 or by returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'SelDateChange' or 265

[3] First Date: an integer (IDN)

[4] Last Date: an integer (IDN)

 Chapter 2 A-Z Reference 485

485

Select Event 30

Applies to ActiveXControl, Bitmap, Button, Calendar, Circle, Clipboard,
Combo, ComboEx, Cursor, DateTimePicker, Edit, Ellipse, FileBox,
Font, Form, Grid, Group, Icon, Image, Label, List, ListView, Locator,
Marker, MDIClient, Menu, MenuItem, Metafile, Poly, Printer,
ProgressBar, Rect, RichEdit, Scroll, Spinner, Static, StatusBar,
StatusField, SubForm, TabBar, TabBtn, TabButton, Text, ToolBar,
ToolButton, TrackBar, TreeView, UpDown

For a Button with Style 'Push' this event is generated when the user "pushes" the
button. This can be done by clicking the left mouse button, or by pressing the Enter key
or the space bar when the Button has the focus. The Select event can also be generated
when the Button does not have the focus, by pressing the Enter key when its Default
property is 1 or by pressing the ESC key when its Cancel property is 1.

For a Button with Style 'Radio' or 'Check' this event is generated when the user
toggles the button from one state to another. This can be achieved by clicking the left
mouse button or by pressing the space bar when the Button has the focus.

For a Combo or List object, a Select event is generated when the user selects an item
from the list, whether by pressing the arrow keys or by clicking the left mouse button.

For a MenuItem, a Select event is generated when the user chooses the item.

For all other objects, this event is generated when the user presses the keys associated
with the object’s Accelerator property.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'Select' or 30

486 Dyalog APL/W Object Reference

SelImageIndex Property

Applies to ComboEx, TreeView

The SelImageIndex property determines which bitmapped images in an ImageList
correspond to items in a ComboEx or TreeView object when the item is selected. It is
an integer vector whose length is the same as the number of items in the object and is
⎕IO dependent.

See also ImageIndex

SelItems Property

Applies to Combo, ComboEx, Grid, List, ListView, TreeView

This property determines which (if any) of the items in an object are currently selected
and highlighted. Except for a Grid, it is a Boolean vector with one element per item in
the list. A value of 1 means "selected"; 0 means "not selected".

This property is used after a Select event to identify which item has been chosen. In a
Combo or a List with Style 'Single' only one element will have the value 1.

SelItems should also be used to pre-set the contents of the edit field in a Combo box
with Style 'Drop'. In Combo boxes with Style 'Simple' or 'DropEdit', the
contents of the edit field may also be specified by the Text property. If you specify both,
the value of Text takes precedence.

In a Grid SelItems is a 2-element vector of 2-element integer vectors that identifies the
row and column co-ordinates of the first and last cells in the currently selected block of
cells. If multiple selection is enabled, SelItems may be a vector of such arrays,
specifying the coordinates of a number of non-contiguous blocks of selected cells.

SelRange Property

Applies to TrackBar

The SelRange property specifies the selected range in a TrackBar which has Style
'Selection'. It is a 2-element numeric vector.

 Chapter 2 A-Z Reference 487

487

SelText Property

Applies to Combo, ComboEx, Edit, RichEdit

This property determines or identifies the portion of text in an object that is currently
selected and highlighted. It can be used to pre-select all or part of the text to be replaced
or deleted when the user starts typing. It can also be used to query the area of text that
the user has highlighted. This can be useful if you want to implement your own
cut/paste/replace features.

SelText is always a 2-element integer vector. If the field contents (defined by the Text
property) is a vector, SelText is simple. Its first element is the index of the first selected
character and its second element is 1 + the index of the last selected character. The
length of the selected string is therefore obtained by subtracting the first element from
the second.

If there are no characters selected, the two elements are equal and specify the current
position of the input cursor.

If the contents is a vector of vectors or a matrix, each element of SelText is a 2-element
vector. The first item in each of the elements indexes the vector (in a vector of vectors)
or row (in a matrix). The second item in each element indexes the position of the
character in the vector or along the row. Again, the value reported for the last character
in the selected string is 1 + its index.

488 Dyalog APL/W Object Reference

Separator Object

Purpose A horizontal or vertical line used to separate items in a menu.

Parents Menu, MenuBar

Children Timer

Properties Type, Posn, Style, Event, FCol, BCol, Data, EdgeStyle, Translate,

KeepOnClose, MethodList, ChildList, EventList, PropList

Events Close, Create

Methods Detach

This object provides a vertical or horizontal line to separate items in a Menu. It may
also be used to split a MenuBar over more than one line.

The orientation of the Separator is determined by its Style property, which may be
'Horz' (horizontal) or 'Vert' (vertical). The default is 'Horz'.

If you want to provide a menu with a 3-Dimensional (pushbutton) appearance, you
should also set the EdgeStyle property on any Separator objects in it. Alternatively, you
can achieve the same effect by setting the background colour (BCol) for the Separators
to grey (192 192 192).

The Posn property is a single integer number which specifies the positional index of the
Separator relative to the other objects in the Menu. A Separator does not generate any
events.

Like other components of a menu, the position of a Separator is normally determined by
the order in which it is created in relation to other objects with the same parent.
However, you can use the Posn property to insert a Separator into an existing structure.
For example, having defined three MenuItem objects as children of a Menu, you can
insert a Separator between the first and the second by specifying its Posn to be 2. Note
that the value of Posn for the MenuItems that were previously second and third will
then be reset to 3 and 4 respectively.

If you put a Separator (either Style) into a MenuBar, it has the effect of adding another
line to it. Any items added after the Separator will appear in the new line.

 Chapter 2 A-Z Reference 489

489

ServerVersion Property

Applies to OLEServer

This property specifies the version number of an OLEServer object.

It is a 2-element integer vector that specifies the major and minor version numbers
respectively.

The default value of ServerVersion is (1 0).

SetCellSet Method 171

Applies to Grid

The SetCellSet method sets the value of the CellSet property of a Grid for a particular
cell.

The argument to SetCellSet is a 3-element array as follows:

[1] Row: integer

[2] Column: integer

[3] Value: 0 or 1

490 Dyalog APL/W Object Reference

SetCellType Method 156

Applies to Grid

This method is used to change the type of a particular cell in a Grid.

The argument to SetCellType is a 3-element vector as follows :

[1] Cell row: integer

[2] Cell column: integer

[3] Cell type: integer

SetColSize Event 176

Applies to Grid, ListView

If enabled, this event is reported when the user changes the width of a column in a Grid
or ListView object, or changes the width of the row titles in a Grid. This may be done
by dragging a border with the mouse or (in a Grid) by double-clicking over a border. In
the former case, the default action is to adjust the width of the appropriate column or the
width of the row title area to the size selected by the user. In the latter case, the default
action is to adjust the width to the maximum required to display all the data and column
title.

In either case, you can disable the default action by setting the event action code to ¯1
or you can selectively prevent a particular resize operation from taking place by
returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'SetColSize' or 176

[3] Column number: Integer. This is sensitive to the index
origin, ⎕IO, but is ¯1 if the user has
resized the row titles in a Grid.

 Chapter 2 A-Z Reference 491

491

[4] Width: Integer containing the value of the (new)
column width. This is ¯3 if the user has
double-clicked to request automatic width
adjustment.

[5] Undo flag : 0 or 1

You can resize a column or resize the row titles under program control by calling
SetColSize as a method. If for a Grid, you specify ¯1 as the Width parameter the
column will be resized to its default width. If you specify a value of ¯2 the column will
be resized to fit the data, but the width of the column title is ignored. A value of ¯3
resizes the column to fit the data and the column title (whichever is the greater). The
Undo flag is applicable only to a Grid object and is always 1 if the event was generated
by the user.

The following expression will size the first NCOLS columns of a Grid called F.G to fit
the data and the column titles:

 {F.G.SetColSize ⍵ ¯3}¨⍳NCOLS

492 Dyalog APL/W Object Reference

SetEventInfo Method 547

Applies to ActiveXControl, OLEServer

This method is used to register an event that may be generated by an ActiveXControl or
OLEServer object.

A host application that wishes to attach a callback function to an event in a Dyalog APL
ActiveXControl or OLEServer, needs to know the name of the event and the number
and data types of any parameters that the event may supply. It also needs to know the
data type (if any) of the result that the callback function may be expected to pass back to
the control.

An ActiveXControl or OLEServer generates an event in the host application using 4
⎕NQ. The right argument is a vector whose first 2 elements are character vectors
containing the names of the ActiveXControl or OLEServer and the event respectively.
The parameters for the event are passed as additional elements in the argument.

Another way to think about it is that when you generate an event using 4 ⎕NQ, you are
effectively calling a function, of your specification, in the host application. To enable
the host application to accept the function call, it needs to know the number of
parameters that you will supply and their data types.

A further consideration is that if you specify that the data type of a parameter is a
pointer (e.g. 'VT_PTR TO I4') this will allow a callback function to modify the
parameter in-situ. If so, the result returned by 4 ⎕NQ will be the modified values of any
such parameters; this is a similar mechanism to ⎕NA.

The argument to SetEventInfo is a 1, 2 or 3-element array as follows:

[1] Event name: character vector

[2] Event info: nested array (see below)

[3] Help ID: integer

 Chapter 2 A-Z Reference 493

493

Event Info

Event info, specifies an optional help string which describes what the event does, the
data type of the result (if any) and the names and data types of its arguments.

If the event is fully described, each element of Event Info is a 2-element vector of
character vectors. The first element contains the help string and the COM data type of
the result that the callback function in the host application is expected to supply.
Subsequent elements contain the name and COM data type of each of the parameters
supplied by the event.

However, both the help string and the names of the parameters are optional and may be
omitted. If so, one or more elements of Event Info may be a simple character vector.

Help ID

This is an integer value that identifies the help context id for the event within the help
file associated with the HelpFile property of the ActiveXControl object. The value ¯1
means that no help is provided. APL stores this information in the registry from where it
may be retrieved by the host application.

Example

The example Dual ActiveXControl, that is fully described elsewhere, generates a
ChangeValue1 event. This event occurs when the user moves the thumb in a TrackBar
that is internal to an instance of the ActiveXControl.

The external ChangeValue1 event is fired by an internal APL callback function (called
ChangeValue) that is attached to ThumbDrag and Scroll events on the TrackBar
object. The internal callback function is :

[0] ChangeValue MSG
[1] ⍝ Callback for ThumbDrag and Scroll
[2] Value1←⊃4 ⎕NQ'' 'ChangeValue1'(⊃¯1↑MSG)
[3] CalcValue2
[4] 'V1'⎕WS'Text'(⍕Value1)
[5] 'V2'⎕WS'Text'(⍕Value2)

Note that ChangeValue[2] generates the external ChangeValue1 event by invoking
4 ⎕NQ, passing it the new value provided by the TrackBar. However, the host
application is permitted to modify that value, returning it in the result of 4 ⎕NQ. This
result, rather than the TrackBar value itself, is then used to update other (Label) controls
in the object.

494 Dyalog APL/W Object Reference

The following statements were used to declare the ChangeValue1 event The event
provides a single parameter named Value1 that may be modified in-situ by a callback
function in the host application. The callback is not, otherwise, expected to return a
result.

INFO←⊂'Occurs when value of control is changed' 'VT_VOID'
INFO,←⊂'Value1' 'VT_PTR TO VT_I4'
F.Dual.SetEventInfo 'ChangeValue' INFO

If the host application was Visual Basic, a suitable callback function might be:

Private Sub Dual1_ChangeValue1(Value1 As Long)
Value1=2*(Value1\2)
End Sub

This callback function receives the proposed new value of the control as the parameter
Value1, and modifies it, forcing it to be an even number.

SetFinishText Method 366

Applies to PropertySheet

The SetFinishText method sets the caption of the Finish button in a Wizard-style
PropertySheet.

The argument to SetFinishText is a single item as follows:

[1] Finish button text: character vector

 Chapter 2 A-Z Reference 495

495

SetFnInfo Method 545

Applies to ActiveXControl, OLEServer

This method is used to describe an APL function that is to be exported as a method, or
as a property get or property put function, of an ActiveXControl or OLEServer object.

An exported function must be a niladic or monadic defined function (dynamic functions
and derived functions are not allowed) and may optionally return a result. Ambivalent
functions (functions with optional left argument) are allowed, but will be called
monadically by the host application.

COM syntax differs from APL syntax in many ways and the SetFnInfo method is
required to declare an APL function to COM in terms that COM understands. In
particular, although monadic APL functions take just one argument, COM functions
may take several parameters, and some may be optional.

A function exported by SetFnInfo will be called by a host application with the number
of parameters that SetFnInfo has described. The argument received when the function is
called by a host application, will be a nested vector of this length.

The argument to SetFnInfo is a 2, 3 or 4-element array as follows:

[1] Function name: character vector

[2] Function info: nested array (see below)

[3] Help ID: integer

[4] Function type: integer

[5] Property name: character vector

496 Dyalog APL/W Object Reference

Function Info

Function Info, specifies an optional help string which describes what the function does,
the data type of the result (if any) and the names and data types of its arguments.

If the function syntax is fully described, each element of Function Info is a 2-element
vector of character vectors. The first element contains the help string and the COM data
type of the function’s result. Subsequent elements contain the name and COM data type

of each parameter.

However, both the help string and the names of the parameters are optional and may be
omitted. If so, one or more elements of Function Info may be a simple character vector.

Consider a very basic function ADD in an ActiveXControl called F.dbase, that is
designed to add a record to a personnel database. The database consists only of a list of
names, ages and addresses.

Function ADD expects to be called with a name (character string), age (number) and
address (character string), and returns a result 0 or 1 (Boolean) according to whether the
record was successfully added. This function could be declared as follows:

HELP←'Adds a new record to the personnel database'
SPEC←⊂(HELP 'VT_BOOL') ⍝ Result is Boolean
SPEC,←⊂('Name' 'VT_BSTR') ⍝ 1st param 'Name' is string
SPEC,←⊂('Age' 'VT_I4') ⍝ 2nd param 'Age' is integer
SPEC,←⊂('Address' 'VT_BSTR')⍝ 3rd param 'Address' is string

F.dbase.SetFnInfo 'ADD' SPEC

Alternatively, but much less helpfully, the function could be declared to take a single
unnamed nested argument, leaving it to the host application programmer to guess at its
structure :

SPEC←⊂('' 'VT_BOOL') ⍝ No help string, result is Boolean
SPEC,←⊂('' 'VT_ARRAY OF VT_VARIANT') ⍝ Param is nested

F.dbase.SetFnInfo 'ADD' SPEC

 Chapter 2 A-Z Reference 497

497

Help ID

This is an integer value that identifies the help context id within the help file associated
with the HelpFile property of the ActiveXControl object. The value ¯1 means that no
help is provided. APL stores this information in the registry from where it may be
retrieved by the host application.

Function Type

This specifies the type of function being exported. This is an integer with one of the
following values:

1 Function is a method
2 Function is a property get function
4 Function is a property put function

In both these last two cases, the name of the property, which is totally independent of
the name of the APL function, is given as the Property name Parameter.

If omitted, the function type is method.

Definitions

A method is function that may be called directly by a host application.

A property get function is a function that is invoked by OLE when a host application
references a specific property.

Property get and property put functions provide an alternative to representing a property
as a variable.

A property get function allows your ActiveXControl to derive the current value of a
property dynamically, rather than having to continually keep it updated in a variable.
For example, a property such as the current contents of an Edit box within an
ActiveXControl is better represented by a property get function than by a variable.

498 Dyalog APL/W Object Reference

A property put function is a function that is invoked by OLE when a host application
assigns a value to a specific property.

Property get and property put functions provide an alternative to representing a property
as a variable.

A property put function allows your ActiveXControl to validate before accepting a new
value assigned by the host application It also allows it to action side effects, such as
updating the user interface, to reflect the new value.

Note that you can specify an optional argument by giving its name in square brackets.

SetItemImage Method 315

Applies to TreeView

This method is used to allocate a picture icon to a particular item in a TreeView object.

The argument to SetItemImage is a 2-element array as follows:

[1] Item number: Integer.

[2] Picture index: Integer.

Item number is the index of the item concerned.

Picture index is an index into the array of bitmapped images in the corresponding
ImageList object which is referenced via the ImageListObj property.

 Chapter 2 A-Z Reference 499

499

SetItemPosition Event 322

Applies to ListView

If enabled, this event is reported when the user drag-drops an item within a ListView
object. This operation may be disabled by returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 7-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'SetItemPosition' or 322

[3] Item number: Integer. The index of the item.

[4] Y-position: Integer. New y-position of the item.

[5] X-position: Integer. New x-position of the item.

[6] Button number: Integer. The mouse button used to perform
the drag.

[7] Shift State: Integer: Sum of shift key codes (number)
 1 = Shift key is down
 2 = Ctrl key is down
 4 = Alt key is down

500 Dyalog APL/W Object Reference

SetItemState Method 307

Applies to ListView, TreeView

This method is used to set the status of a particular item in a ListView or TreeView
object.

The argument to SetItemState is a 2-element array as follows:

[1] Item number: Integer. The index of the item concerned.

[2] Status: Integer

The status of an item is calculated as the sum of one or more of the following state
codes:

1 Item has the focus

2 Item is selected

8 Item is highlighted for dropping

16 Item is displayed in bold text

32 Item is expanded

64 Item is or has been expanded

4096 Item is checked (see CheckBoxes)

 Chapter 2 A-Z Reference 501

501

SetMethodInfo Method 546

Applies to OCXClass, OLEClient

This method is used to redefine the arguments or data types associated with a method
that is exported by a COM object. SetMethodInfo is used to override the information
provided by the object's Type Library.

The argument to SetMethodInfo is a 2 or 3-element array as follows:

[1] Method name: character vector

[2] Method info: nested vector (see below)

[3] Method index: integer

If you wish to describe the method completely, the structure of Method info should be
identical to the structure returned by GetMethodInfo, although abbreviated formats are
also allowed.

If the object exports the method directly, and not through the standard IDispatch
interface, you must also specify Method Index, which is the index of the method in the
object's virtual table (vtable). This information may be available in printed
documentation or in a C-language header file.

For example, the InchesToPoint method exported by Excel.Application takes a single
argument whose name is Arg1 and whose data type is VT_R8. The function returns a
result of the same data type. The details provided in the Excel.Application Type Library
are in fact correct, but if you wanted to redefine them, the following statements could be
used to describe the InchesToPoints method.

 methodinfo← ('' 'VT_R8')('Arg1' 'VT_R8')
 EX.SetMethodInfo 'InchesToPoints' methodinfo

502 Dyalog APL/W Object Reference

Note that the structure of variable methodinfo is identical to the result of the
GetMethodInfo method.

 DISPLAY methodinfo
.→-----------------------------------.
| .→------------. .→---------------. |
	.⊖. .→----.		.→---. .→----.									
				VT_R8				Arg1		VT_R8		
	'-' '-----'		'----' '-----'									
'∊------------' '∊---------------'												
'∊-----------------------------------'

 DISPLAY EX.GetMethodInfo 'InchesToPoints'
.→-----------------------------------.
| .→------------. .→---------------. |
	.⊖. .→----.		.→---. .→----.									
				VT_R8				Arg1		VT_R8		
	'-' '-----'		'----' '-----'									
'∊------------' '∊---------------'												
'∊-----------------------------------'

Unless you are going to call the method using the names of its arguments, these names
are clearly superfluous and may be omitted, for example:

 methodinfo← 'VT_R8' 'VT_R8'
 EX.SetMethodInfo 'InchesToPoints' methodinfo

 Chapter 2 A-Z Reference 503

503

SetPropertyInfo Method 554

Applies to OCXClass, OLEClient

This method is used to redefine a property that is exported by a COM object.
SetPropertyInfo is used to override the information provided by the object's Type
Library.

The argument to SetPropertyInfo is a 2 or 3-element array as follows:

[1] Property name: character vector

[2] Property info: nested vector

[3] Property function: integer

For example, the Visible property exported by Excel.Application has the data type
VT_BOOL and may be declared as follows:

 'EX' ⎕WC 'OLEClient' 'Excel.Application'
 EX.SetPropertyInfo 'Visible' 'VT_BOOL'

Property function may be required if the property value is retrieved or set via a function.
This typically applies if the property takes parameters and will result in the property
being fixed as a function rather than as a variable. Such properties may have a
PropertyGet function, a PropertyPut function and/or a PropertyPutByReference
function. If so, it is necessary to say to which of these three functions the details apply.
The value of Property function is an integer 2 (PropertyGet), 4 (PropertyPut), or 8
(PropertyPutByReference).

For example, the following statement declares the PropertyGet function for the Item
property of the Fields collection of the OLE object DAO.DBEngine. This property takes
an index (into the collection) and returns an object.

 Fields.SetPropertyInfo 'Item'('VT_DISPATCH' 'VT_I4')2

504 Dyalog APL/W Object Reference

SetRowSize Event 175

Applies to Grid

If enabled, this event is reported when the user changes the height of a row or changes
the height of the column titles. This may be done by dragging a border with the mouse
or by double-clicking over a border. In the former case, the default action is to adjust
the height of the appropriate row or the height of the column title area to the size
selected by the user. In the latter case, the default action is to adjust the height to the
maximum required to display all the data.

In either case, you can disable the default action by setting the event action code to ¯1
or you can selectively prevent a particular resize operation from taking place by
returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'SetRowSize' or 175

[3] Row number: Integer. This is sensitive to the index
origin, ⎕IO, but is ¯1 if the user has
resized the column titles.

[4] Height: Integer containing the value of the (new)
row height. This is ¯3 if the user has
double-clicked to request automatic height
adjustment.

[5] Undo flag : 0 or 1

You can resize a row or resize the column titles under program control by calling
SetRowSize as a method. If you specify ¯1 as the Height parameter, the row will be
resized to its default height .. If you specify a value of ¯2 the row will be resized to fit
the data. The following expression will set the heights of first NROWS rows of a Grid
called F.G to fit the data and the row titles.

 {F.G.SetRowSize ⍵ ¯3}¨⍳NROWS

The Undo flag is always 1 if the event was generated by the user.

 Chapter 2 A-Z Reference 505

505

SetSpinnerText Event 421

Applies to Spinner

If enabled, this event is generated when the user clicks one of the spin buttons in a
Spinner object. The event is reported after the value of the Thumb property has been
updated but before the Text property has been changed. You may use this event to set
the text in the Spinner dynamically instead of relying on it being updated automatically.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'SetSpinnerText' or 421

[3] Thumb value: Integer. The new value of the Thumb
property resulting from the user pressing
one of the spin buttons.

[4] Text: The text that is about to be put into the edit
field.

The SetSpinnerText event is designed to allow you to dynamically set the text in the
Spinner in response to a spin button. It might be used in circumstances where the set of
items you wish to present to your user is not predictable in advance.

Setup Method 101

Applies to Printer

This method causes the system to display a standard Printer Setup dialog box to be
displayed to allow the user to alter the printer settings. This is a "modal" dialog box that
must be closed before the APL application can continue.

The Setup method is niladic.

 If you attach a callback function to this event and have it return a value of 0, the dialog
box will not appear.

506 Dyalog APL/W Object Reference

SetVarInfo Method 546

Applies to ActiveXControl, OLEServer

This method is used to describe an APL variable that is to be exported as a property of
an ActiveXControl or OLEServer object.

The argument to SetVarInfo is a 2 or 3-element array as follows:

[1] Variable name: character vector

[2] Variable info: see below

[3] Help ID: integer

Variable info is either a simple character vector that specifies the COM data type of the
variable, or a 2-element vector of character vectors whose first element specifies a help
string and whose second element specifies the COM data type.

Help ID is an optional integer value that identifies the help context id within the help
file associated with the HelpFile property of the ActiveXControl object. The value ¯1
means that no help is provided. APL stores this information in the registry from where it
may be retrieved by the host application.

 Chapter 2 A-Z Reference 507

507

COM data type

The table below shows the correspondence between COM data types and APL arrays.

OLE DataType APL array

VT_BOOL numeric scalar

VT_I1 numeric scalar

VT_I2 numeric scalar

VT_I4 numeric scalar

VT_R4 numeric scalar

VT_R8 numeric scalar

VT_BSTR character vector

VT_CY 2-element numeric vector

VT_DATE 6 element numeric vector

VT_VARIANT any array

VT_SAFEARRAY any array (VT_ARRAY OF VT_VARIANT)

VT_DISPATCH ⎕OR of a namespace

VT_COLOR 3-element RGB

APL vectors may be described by pre-fixing the data type string with
'VT_ARRAY OF '. For example 'VT_ARRAY OF BSTR' specifies a vector of
character vectors.

If the APL array is the ⎕OR of a namespace, its data type should be specified as
'VT_DISPATCH'.

508 Dyalog APL/W Object Reference

SetWizard Event 365

Applies to PropertyPage

If enabled, this event is reported when the user has clicked the Next or Back button in a
PropertySheet with Style 'Wizard'. This action also generates PageNext (or
PageBack) and PageDeactivate and PageActivate events. The SetWizard event is the
final event to be reported as a result of this action, and is the only one that is affected by
the result of a callback function. The event message reports the active/inactive state of
the 3 page changing buttons (Back, Next and Finish) that should result from the action.
Note that the Next and Finish buttons occupy the same position and are mutually
exclusive.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'SetWizard' or 365

[3] Active state Back: 0 or 1

[4] Active state Next: 0 or 1

[5] Active state Finish: 0 or 1

[6] Finish caption: character vector

You may alter the state of the buttons by changing elements [3-5] of the event message
and returning it as a result of your callback. You may also set the state of the buttons at
any time by calling SetWizard as a method.

When the event is reported by ⎕DQ, element 6 is an empty vector. If you modify it and
return it in the result of a callback, the caption of the Finish button changes accordingly
and the Back and Next buttons disappear. This happens regardless of the states you
specified in elements [3-5].

 Chapter 2 A-Z Reference 509

509

ShowCaptions Property

Applies to ToolControl

The ShowCaptions property specifies whether or not the captions of individual
ToolButton objects are drawn. ShowCaptions is a property of the parent ToolControl
object.

ShowCaptions is a single number with the value 0 (ToolButton captions are not shown)
or 1 (ToolButton captions are shown); the default is 1

ShowCaptions allows you to toggle end-user preferences for the display of ToolButton
captions, without having to set/clear individual captions one by one.

510 Dyalog APL/W Object Reference

ShowComment Event 223

Applies to Grid

If enabled, a Grid will generate a ShowComment event when the user rests the mouse
pointer over a commented cell. You may use this event to modify the appearance of the
comment dynamically.

The event message reported as the result of ⎕DQ or supplied as the right argument to
your callback function is an 8-element vector containing the following:

[1] Object: ref or character vector

[2] Event name or code: 'ShowComment' or 223

[3] Cell row: integer

[4] Cell column: integer

[5] Comment text: character vector

[6] Window height: integer, pixels

[7] Window width: integer, pixels

[8] Tip behaviour flag: (1 = yes; 0 = no)

A callback function may modify the standard behaviour. You may prevent the comment
from being displayed by returning 0 as the result of the callback. Alternatively, you may
modify the comment text, its window size, or its pop-up behaviour by changing the
appropriate element(s) of the event message and returning the new event message as the
result.

Note that if the comment window relates to a row or column title, the value reported in
element [3] or [4] of the event message is ¯1.

You may display the comment associated with a particular cell under program control
by calling ShowComment as a method. In this case, only the Cell row and Cell column
parameters need be specified. If however, you wish to override the comment text and/or
its window size, you may do so (temporarily) by specifying the corresponding
parameters. By default, a comment displayed under program control does not exhibit tip
behaviour but remains visible until it is explicitly removed using the HideComment
method.

Note that a comment will only be displayed if the specified cell is marked as a
commented cell.

 Chapter 2 A-Z Reference 511

511

ShowDropDown Property

Applies to ColorButton, ToolControl

The ShowDropDown property specifies whether or not a drop-down menu symbol is
drawn in a ColorButton or alongside ToolButton objects which have Style
'DropDown'.

ShowDropDown is a single number with the value 0 (drop-downs are not shown) or 1
(drop-downs are shown); the default is 1.

ShowDropDown also affects the behaviour of ToolButton objects which have Style
'DropDown'.

If the ShowDropDown property of the parent ToolControl is 0, clicking the ToolButton
causes the popup menu to appear. In this case, the ToolButton itself does not itself
generate a Select event; you must rely on the user selecting a MenuItem to specify a
particular action.

If the ShowDropDown property of the parent ToolControl is 1, clicking the dropdown
button causes the popup menu to appear; clicking the ToolButton itself generates a
Select event, but does not display the popup menu.

The following picture illustrates a ToolControl with ShowDropDown set to 1.

512 Dyalog APL/W Object Reference

ShowHelp Method 580

Applies to OCXClass, OLEClient

This method is used to display the Windows help file for a COM object or the help
topic associated with one of its properties, events or methods.

The argument to ShowHelp is ⍬, or a single item as follows :

[1] Topic: character vector.

Topic specifies the name of a property, event or method.

In the case of an OLE Control, the object name may be the name of an OCXClass or an
instance of an OCXClass.

 Chapter 2 A-Z Reference 513

513

ShowInput Property

Applies to Grid

This property specifies whether or not the cells in a Grid are displayed using their
associated input objects.

The ShowInput property is either a single Boolean value that applies to all the cells in a
Grid, or it is a vector whose elements are mapped to individual cells via the CellTypes
property. A value of 0 means that the corresponding cell is displayed normally. A value
of 1 indicates that the cell is displayed using its associated input object, as it is when it
is the current cell. ShowInput is relevant to cells displayed using Combo and Button
objects.

The example below illustrates the appearance of a Grid in which ShowInput is set to 0
for the Job Title column and 1 for the Region and Permanent columns.

The appearance of the same Grid but with ShowInput set to 0 throughout is illustrated
below:

514 Dyalog APL/W Object Reference

ShowItem Method 316

Applies to TreeView

This method is used to display a particular item in a TreeView object.

The argument to ShowItem is a single item as follows:

[1] Item number: Integer.

Item number specifies the index of the item concerned.

In order to display the requested item, the parent item (if any) will be opened and the
object will be scrolled if necessary.

ShowProperties Method 560

Applies to OCXClass

This method is used to display the PropertySheet for an instance of an OLE Control.
The user may then modify some or all of the properties of the control by changing
values in the property sheet. This facility is intended to be used in the context of a GUI
design tool but may also be useful in certain end-user applications.

The ShowProperties method is niladic.

 Chapter 2 A-Z Reference 515

515

ShowSession Property

Applies to OLEServer

This property specifies whether or not the APL Session window is displayed when an
OLEServer object is started by an OLE client.

Its default value is 0 (do not display the Session).

Note that if RunMode is 'MultiUse', you may not in any way access the instances
of the object that are being controlled by the client applications, even if only a single
client is connected.

ShowSIP Method 25

Applies to ActiveXControl, Animation, Button, Calendar, ColorButton, Combo,
ComboEx, CoolBar, DateTimePicker, Edit, Form, Grid, Group, Label, List, ListView,
MDIClient, ProgressBar, PropertyPage, RichEdit, Root, Scroll, SM, Spinner, Static,
StatusBar, SubForm, TabBar, TabControl, ToolBar, ToolControl, TrackBar, TreeView,
UpDown

ShowSIP applies only to Pocket APL. In versions of Dyalog APL for other

platforms, it has no effect.

This method displays and hides the Input Panel.

The argument to ShowSIP is 1 (display the Input Panel) or 0 (hide the Input Panel).

The argument to ShowSIP is 0 or 1 as follows :

[1] Mode: Boolean
0 = hide the Input Panel.
1 = display the Input Panel

The result of ShowSIP is 1 if the Input Panel was previously displayed, or 0 if it was
previously hidden.

516 Dyalog APL/W Object Reference

ShowThumb Property

Applies to TrackBar

The ShowThumb property specifies whether or not the thumb in a TrackBar object is
visible. It is Boolean with a default value of 1 and it may be toggled on and off using
⎕WS.

SingleClickExpand Property

Applies to TreeView

The SingleClickExpand property specifies whether or not an item in a TreeView control
is expanded when the user selects the item.

SingleClickExpand is a single number with the value 0 (the user must select the expand

icon to cause the item to expand) or 1 (the item is expanded when the text of the item is
selected); the default is 0.

 Chapter 2 A-Z Reference 517

517

SIPMode Property

Applies to Form

SIPMode applies only to Pocket APL. In versions of Dyalog APL for other

platforms, it has no effect.

This is a Boolean property that specifies the behaviour of the Input Panel with respect to
the Pocket APL GUI.

If SIPMode is 1, the Input Panel is automatically displayed when a GUI control that
may receive character input (e.g. an Edit object) receives the input focus. The Input
Panel is automatically hidden when the input focus moves to a control that does not
receive character input.

If SIPMode is 0 (the default), the display of the Input Panel is not handled
automatically, but may be controlled using the ShowSIP method.

Note that the user may display and hide the Input Panel manually, regardless of the
value of SIPMode.

SIPResize Property

Applies to Form

SIPResize applies only to Pocket APL. In versions of Dyalog APL for other

platforms, it has no effect.

This is a Boolean property that specifies the behaviour of a Form when the Input Panel
is raised or lowered.

If SIPResize is 1 (the default), the Form generates a Configure event when the Input
Panel is raised or lowered. Unless disabled or modified by a callback function, the Form
is automatically resized to occupy the entire space above the Input Panel.

If SIPResize is 0, the Form does not generate a Configure event when the Input Panel is
raised or lowered. This means that, at times, the lower part of the Form may be
obscured by the Input Panel.

518 Dyalog APL/W Object Reference

Size Property

Applies to ActiveXControl, Animation, Bitmap, Button, Calendar, ColorButton,
Combo, ComboEx, CoolBand, CoolBar, DateTimePicker, Edit,
Ellipse, Font, Form, Grid, Group, Image, ImageList, Label, List,
ListView, Locator, Marker, MDIClient, Metafile, NetControl,
ProgressBar, PropertyPage, PropertySheet, Rect, RichEdit, Root,
Scroll, SM, Spinner, Splitter, Static, StatusBar, StatusField, SubForm,
TabBar, TabBtn, TabButton, TabControl, ToolBar, ToolButton,
ToolControl, TrackBar, TreeView, UpDown

This is a 2-element numeric vector specifying the height and width of the object.

For the Bitmap object, Size is set and reported in pixels. Setting the Size of a Bitmap
causes it to be scaled (up or down).

For all other objects, Size is reported and set in units defined by the Coord property and,
if Coord is 'User', the XRange and YRange properties of the object's parent.

For the Root object, if Coord is 'Prop' the value of Size is (100,100). If Coord is
'Pixel' the value of Size reports the number of pixels on the screen.

For a Form or SubForm, the Size property defines the area within the object, and
excludes its title bar, menu bar and border if these are present.

For a Combo object with a "drop-down" list, the first element of Size (height) is
ignored. The height of the edit field is determined by the height of the font, while the
size of the list box is determined by the Rows property.

For a Metafile object, Size specifies the granularity of the Metafile and defaults to the
size of its parent.

When specifying Size, you can set the height or width to a default value (⎕WC) or leave
it unchanged (⎕WS) by giving the corresponding element a value of ⍬.

 Chapter 2 A-Z Reference 519

519

Sizeable Property

Applies to Animation, Button, Calendar, ColorButton, Combo, ComboEx,
DateTimePicker, Edit, Form, Grid, Group, Label, List, ListView,
Locator, ProgressBar, RichEdit, Scroll, SM, Spinner, Static,
StatusBar, StatusField, SubForm, TabBar, ToolBar, TrackBar,
TreeView, UpDown

This property determines whether or not an object can be directly resized by the user
once it has been created by ⎕WC.

It is a single number with the value 0 (the object cannot be resized by the user) or 1 (the
object may be resized by the user). The default is 1.

For a Form or SubForm, the Sizeable property may only be set by ⎕WC and cannot
subsequently be altered using ⎕WS. An attempt to do so generates a NONCE ERROR.
For a Form, the default value is 1 and the Form is a standard resizable window with a
border. Note that the value of Sizeable is independent of the values of the MaxButton
and MinButton properties, so that a Form with MaxButton 1 can be maximised even
though its Sizeable property is 0.

For other objects, the default value of the Sizeable property is 0. However, setting it to 1
(which may be done dynamically using ⎕WS) allows the user to resize it with the mouse.

In all these cases, when the user resizes an object, the object will generate a Configure
(31) event.

Sizeable also applies to the Locator object. In this case, a value of 1 implies
"rubberbanding" and a value of 0 means "no rubberbanding". See Locator object for
further details.

520 Dyalog APL/W Object Reference

SM Object

Purpose Defines a window for ⎕SM/⎕SR.

Parents Form, Group, PropertyPage, SubForm, ToolBar, ToolControl

Children Cursor, Timer

Properties Type, Posn, Size, Coord, Border, Visible, Event, Sizeable, Dragable,

BCol, Picture, CursorObj, AutoConf, Data, Attach, EdgeStyle,
Handle, Hint, HintObj, Tip, TipObj, AcceptFiles, KeepOnClose,
Redraw, TabIndex, MethodList, ChildList, EventList, PropList

Events Close, Configure, Create, DragDrop, Help, MouseDblClick,

MouseDown, MouseEnter, MouseLeave, MouseUp

Methods Animate, Detach, GetFocus, GetTextSize, ShowSIP

This object defines a window for ⎕SM/⎕SR and allows you to combine the functionality
of ⎕SM/⎕SR with the "windows" GUI. For example, you can define a Form with a
MenuBar at the top and a ⎕SM window beneath it, with perhaps some Buttons
alongside.

To allow the user to interact with both ⎕SM and other top-level objects, you must
specify the names of these objects in the right argument of ⎕SR. Thus the statement :

 CTX ← KEYS CTX ⎕SR 1 2 3 'Form1'

allows the user to interact with fields (rows) 1-3 of ⎕SM and with the object 'Form1'
and its children. Callback functions associated with events in 'Form1' will be
executed automatically by ⎕SR. If an enabled event without a callback occurs, the event
will be placed on ⎕DQ's internal queue and ⎕SR will terminate. The nature of the
termination (i.e. that it was caused by an event in an object) is reported by the value
131072 (2*17) in the fourth element of ⎕SR's result. The specific event (Configure,
MouseUp, etc.) is however not reported. It is therefore generally preferable to use
callbacks.

The Posn, Size and Coord properties allow you to specify the position and size of the
window occupied by ⎕SM within its parent Form. Note however that the ⎕SM window
will automatically be sized to be an exact number of characters in height and width
which will be reported in ⎕SD.

 Chapter 2 A-Z Reference 521

521

The Border property may be used to specify a border around the outside of the ⎕SM
window. It is a number with the value 0 (no border) or 1 (1 pixel border). The default is
0. The EdgeStyle property may be used to give the object a 3-dimensional appearance.
Its default value is 'Recess'. The area within the SM object that is defined by ⎕SM is
necessarily a multiple of the character size. The region between this area and the outer
edges of the object is coloured by the background colour specified by BCol, or may be
filled with a bitmap specified by Picture.

If the user resizes the Form which contains the SM object, the SM object will generate a
Configure event if enabled. If the Configure event is not enabled, ⎕SR will terminate
with a RESIZE error which can be trapped using ⎕TRAP. Either method can be used to
reformat ⎕SM as appropriate.

The MouseDown event can be used to bring up a pop-up menu. Note however that
mouse events are not reported over ⎕SM fields because ⎕SR uses these to position the
cursor.

The illustration shown below was produced as follows :

'TEST' ⎕WC 'Form' 'SM Object' (60 10)(40 50)
'TEST.MB' ⎕WC 'MenuBar'
'TEST.MB.F' ⎕WC 'Menu' '&File'
'TEST.MB.O' ⎕WC 'Menu' '&Options'
'TEST.B1' ⎕WC 'Button' '&OK' (84 2)
'TEST.B2' ⎕WC 'Button' '&Cancel' (84 78)

'TEST.S' ⎕WC 'SM' (2 2)(80 96)('BCol' 192 192 192)

⎕SM←↑('The answer is' 5 10)(42 5 30)

522 Dyalog APL/W Object Reference

SocketNumber Property

Applies to TCPSocket

The SocketNumber property is an integer whose value is the handle of the socket
attached to the TCPSocket object and is generally a read-only property.

The only time that SocketNumber may be specified is when a server replicates (clones)
a listening socket to which a client has just connected

SocketType Property

Applies to TCPSocket

The SocketType property is a character vector that specifies the type of the TCP/IP
socket. This is either Stream (which is the default), or UDP.

SocketType must be defined when the object is created and may not be set or changed
using ⎕WS.

For two Dyalog APL applications to communicate, their TCPSocket objects must have
the same SocketType.

SortItems Property

Applies to List

The SortItems property specifies whether or not the items in a List object are sorted. It
is Boolean with a default value of 0. If SortItems is 1, the items are automatically sorted
in alphabetical order and the object provides word recognition capabilities for selecting
an item from the keyboard.

Note that the value of the Items property reflects the order of the items displayed in the
List object rather than the order in the array that was used to assign it.

This property may only be initialised when the object is created and cannot
subsequently be changed.

 Chapter 2 A-Z Reference 523

523

Spin Event 420

Applies to Spinner, UpDown

If enabled, this event is generated when the user clicks one of the spin buttons in a
Spinner object. The event is reported before the value of the Thumb property has been
updated. You may disable the operation of the spin buttons by disabling this event. You
may selectively prevent the user selecting a particular value by returning 0 from a
callback function. You may also return a modified event message as a result in order to
set the Thumb property to a different value.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'Spin' or 420

[3] Thumb value: Integer. The new value of the Thumb
property resulting from the user pressing
one of the spin buttons.

[4] Adjustment: Integer. The amount by which the new
value of the Thumb differs from its
previous value.

524 Dyalog APL/W Object Reference

Spinner Object

Purpose The Spinner object allows the user to enter a value, using an UpDown
object to adjust it as required.

Parents ActiveXControl, CoolBand, Form, Grid, Group, PropertyPage,

SubForm, ToolBar, ToolControl

Children Circle, Ellipse, Font, Marker, Poly, Rect, Text, Timer

Properties Type, Items, Text, Posn, Size, Coord, Align, Border, Justify, Active,

Visible, Event, Thumb, Step, Wrap, Limits, Sizeable, Dragable,
FontObj, FCol, BCol, CursorObj, AutoConf, Data, Attach, EdgeStyle,
Handle, Hint, HintObj, Tip, TipObj, FieldType, MaxLength,
Decimals, Password, ValidIfEmpty, ReadOnly, FormatString,
Changed, Value, Translate, Accelerator, AcceptFiles, KeepOnClose,
Redraw, TabIndex, MethodList, ChildList, EventList, PropList

Events BadValue, Change, Close, Configure, ContextMenu, Create,

DragDrop, DropFiles, DropObjects, Expose, FontCancel, FontOK,
GotFocus, Help, KeyError, KeyPress, LostFocus, MouseDblClick,
MouseDown, MouseEnter, MouseLeave, MouseMove, MouseUp,
MouseWheel, Select, SetSpinnerText, Spin

Methods Animate, ChooseFont, Detach, GetFocus, GetTextSize, ShowSIP

The Spinner object is a composite object that consists of an edit field and a pair of spin
buttons. The user may enter a value by typing in the edit field and may adjust the value
with the spin buttons. The Spinner may cycle through a pre-defined set of values
specified by the Items property or through a range of values specified by the Limits
property. The FieldType property supports all of the standard data types, i.e. Char,
Numeric, LongNumeric, Currency, Date, LongDate and Time.

The Limits property is a 2-element numeric vector that specifies the minimum and
maximum value of the object. The Step property specifies the amount by which the
value is incremented or decremented by the spin buttons. The current value in the object
is defined by the Thumb and Value properties, which are usually identical. If ReadOnly
is 0, the user may type a value into the edit field which will be validated and converted
according to the FieldType. In this case, the Value and the Thumb properties may be
different.

 Chapter 2 A-Z Reference 525

525

An alternative way to use the Spinner object is to specify the Items property. This
defines a discrete set of values through which the user may cycle, and the object
behaves rather like a Combo without a drop-down list. In this case, the Limits property
is automatically set to (1,⊃⍴Items), Thumb refers to the index into the list of Items,
and Step specifies the amount by which this index is updated by the spin buttons. For
example, if you set Step to 3, the spin buttons would display every third item.

The Items property may be a character matrix, a vector of character vectors, or a
numeric vector and will be formatted according to the FieldType. For example, if you
wanted the user to select one of a set of specific dates, you would set the FieldType to
Date or LongDate and the Items property to the day numbers (since 1 January 1900)
corresponding to the dates you require. The ReadOnly property specifies whether or not
the user may enter data into the edit field. A value typed in by the user will be converted
and formatted according to the FieldType but need not correspond to a value in Items.

In operation, the value in the Spinner is adjusted by the Step each time one of the spin
buttons is clicked. If the user holds a spin button down, the value is adjusted at the rate
defined for the keyboard repeat rate. Furthermore, the size of each adjustment is
increased according to the length of time the button stays depressed. After 1 second, the
amount is increased to (2 × Step) after 2 seconds, to (4 × Step), after 3
seconds to (8 × Step) and so forth until the amount of adjustment exceeds one
quarter of the range (Limits[2]-Limits[1]).

When the value in the spinner reaches its top or bottom limit, it will wrap around to the
opposite limit if the value of the Wrap property is 1 (the default). Otherwise it will stick.

The MaxLength property defines the maximum number of characters that the user may
type into the edit field. The Decimals property specifies the number of decimal places to
which a numeric value is displayed and applies only if the FieldType is Numeric or
LongNumeric.

The Spinner generates two special events, Spin and SetSpinnerText. The Spin event is
generated each time the value of the Thumb is about to be updated and reports the new
value and the difference between it and the current value. You may prevent the Thumb
from being updated by returning 0 from a callback function, or you may alter the new
value of the Thumb by returning a modified message. The SetSpinnerText event is
generated after the Thumb has been reset but before the edit field has been updated. It
reports the new value of the Thumb and the text that is about to be written into the edit
field. By returning a modified event message from a callback, this event allows your
application to respond dynamically to the spin buttons and to control the text in the edit
field directly.

526 Dyalog APL/W Object Reference

Like an Edit object, the Spinner has a Changed property and generates a Change event
when loses the focus after the value of its Text and/or Thumb property has been altered.

If FieldType is Numeric, LongNumeric, Currency, Date, LongDate or Time, the
Spinner will generate a BadValue event when it loses the focus if the text in the edit
field (i.e. the Text property) is in conflict with the FieldType property and cannot be
converted to an appropriate number. If the edit field is empty, a BadValue event will be
generated if ValidIfEmpty is 0, but not if it is set to 1.

SplitObj1 Property

Applies to Splitter

The SplitObj1 property specifies the name of, or ref to, one of up to two objects
managed by a Splitter object. The object must be one of the following types:

Animation Button Calendar Combo

ComboEx DateTimePicker Edit Grid

Group Label List ListView

MDIClient ProgressBar RichEdit Scroll

Spinner Static StatusBar SubForm

TabBar TabControl ToolBar TrackBar

TreeView UpDown

If the Style property of the Splitter is 'Vert', the object specified by SplitObj1 is
positioned at (0 0) and sized to occupy the space in its parent to the left of the Splitter,
with the Splitter itself attached to its right edge.

If the Style property of the Splitter is 'Horz', the object specified by SplitObj1 is
positioned at (0 0) and sized to occupy the space in its parent above the Splitter, with
the Splitter itself attached to its bottom edge.

If SplitObj1 is empty, the Splitter manages the single object specified by SplitObj2 and
the space to the left or above the Splitter is empty or controlled by another Splitter.

 Chapter 2 A-Z Reference 527

527

SplitObj2 Property

Applies to Splitter

The SplitObj2 property specifies the name of, or ref to, one of up to two objects
managed by a Splitter object. The object must be one of the following types:

Animation Button Calendar Combo

ComboEx DateTimePicker Edit Grid

Group Label List ListView

MDIClient ProgressBar RichEdit Scroll

Spinner Static StatusBar SubForm

TabBar TabControl ToolBar TrackBar

TreeView UpDown

If the Style property of the Splitter is 'Vert', the object specified by SplitObj2 is
initially positioned at (0 x), where x is half the width of the parent plus the Size of the
Splitter, and sized to occupy the space in its parent to the right of the Splitter, with the
Splitter itself attached to its left edge.

If the Style property of the Splitter is 'Horz', the object specified by SplitObj2 is
initially positioned at (y 0), where y is half the height of the parent plus half the Size of
the Splitter, and sized to occupy the space in its parent below the Splitter, with the
Splitter itself attached to its top edge.

If SplitObj2 is empty, the Splitter manages the single object specified by SplitObj1 and
the space to the right or below the Splitter is empty or controlled by a second Splitter.

528 Dyalog APL/W Object Reference

Splitter Object

Purpose The Splitter object divides a container into resizable panes.

Parents ActiveXControl, Form, Group, PropertyPage, SubForm

Children Timer

Properties Type, SplitObj1, SplitObj2, Posn, Size, Style, Coord, Align, Active,

Visible, Event, BCol, CursorObj, Data, KeepOnClose, MethodList,
ChildList, EventList, PropList

Events Close, Create, EndSplit, Splitting, StartSplit

Methods Detach

The Splitter divides the client area of a Form or SubForm into resizable panes. Each
pane created this way may be empty or be occupied by a single object. If the object in a
pane is itself a container object, such as a SubForm, it may have a number of other
controls within it.

A single Splitter may manage the geometry of 0, 1 or 2 other objects, which, together
with the Splitter itself, share the same parent. The two objects are named by the
SplitObj1 and SplitObj2 properties respectively.

A Splitter may manage objects of the following types:

Animation Button Calendar Combo

ComboEx DateTimePicker Edit Grid

Group Label List ListView

MDIClient ProgressBar RichEdit Scroll

Spinner Static StatusBar SubForm

TabBar TabControl ToolBar TrackBar

TreeView UpDown

 Chapter 2 A-Z Reference 529

529

If Style is 'Vert' (the default), the Splitter is drawn vertically in its parent with the
first object (SplitObj1) positioned to its left, and the second object (SplitObj2) to its
right as illustrated by the following example.

'F'⎕WC'Form' 'Vertical Splitter'('Size' 25 25)
'F.E1'⎕WC'Edit'(10 6⍴'Edit 1')('Style' 'Multi')
'F.E2'⎕WC'Edit'(10 6⍴'Edit 2')('Style' 'Multi')
'F.S'⎕WC'Splitter' 'F.E1' 'F.E2'

If Style is 'Horz', the Splitter is drawn horizontally in its parent with the first object
(SplitObj1) positioned above, and the second object (SplitObj2) below.

The Style property must be set when the object is created with ⎕WC and may not
subsequently be changed using ⎕WS.

530 Dyalog APL/W Object Reference

The Posn and Size properties are partially read-only, in that only one dimension of the
value may be specified. If Style is 'Vert', you may specify the x-coordinate and the
width of the Splitter, but you may not specify its y-coordinate nor its height. If Style is
'Horz', you may specify the y-coordinate and the width of the Splitter, but you may
not specify its x-coordinate nor its length.

When the user positions the mouse pointer directly over the Splitter object, the cursor
changes (by default) to a double-headed arrow (direction in accordance with Style). The
user may now depress the left mouse button and drag the Splitter to a new position,
resizing the objects named by SplitObj1 and SplitObj2 in the process.

You can select a different cursor using the CursorObj property. Note that setting the
CursorObj property to 0 selects the default cursor, which is the appropriate double-
headed arrow.

When the user depresses the mouse button, the Splitter generates a StartSplit event.
When the user releases the mouse button, the Splitter generates an EndSplit event. If
full-drag is in effect, the Splitter also reports Splitting events as it is dragged. All these
events report the new or current position of the Splitter object and are provided for
information only.

Note that the objects named by SplitObj1 and SplitObj2 and any sub-objects they
contain will generate Configure events when they are resized by the Splitter.

Alignment

The Align property specifies how a Splitter behaves when its parent is resized and may
be 'None', 'Left', 'Right', 'Top' or 'Bottom'.

If Align is 'None', the Splitter moves as its parent is resized, so that it divides its
parent in the same proportions as before. This is the default.

Any other value of Align attaches the Splitter to the corresponding edge of its parent.
For example, if Align is 'Left', the width of the object to the left of the Splitter
remains fixed when its parent is resized horizontally by the user.

Like the Style property, Align may be set only when the object is created with ⎕WC and
may not subsequently be changed using ⎕WS.

 Chapter 2 A-Z Reference 531

531

Using Multiple Splitters

If you want to divide a Form into more than 2 resizable panes, there are two possible
approaches, each with its own different characteristics.

The first approach, illustrated below, is a hierarchical one using SubForms. This
example shows how you can create a Form containing three resizable Edit objects.

TITLE← 'Multiple Splitters: hierarchical using SubForms'
'F'⎕WC'Form' TITLE ('Size' 25 50)
'F.E1'⎕WC'Edit'(10 6⍴'Edit 1')('Style' 'Multi')
'F.SF1'⎕WC'SubForm'('EdgeStyle' 'Default')
'F.S1'⎕WC'Splitter' 'F.E1' 'F.SF1'
'F.SF1.E1'⎕WC'Edit'(10 6⍴'Edit 2')('Style' 'Multi')
'F.SF1.E2'⎕WC'Edit'(10 6⍴'Edit 3')('Style' 'Multi')
'F.SF1.S1'⎕WC'Splitter' 'F.SF1.E1' 'F.SF1.E2'

First, you create an Edit, a SubForm, and a Splitter as children of the Form, using the
Splitter to divide the Form into two panes, one for the Edit and the other for the
SubForm. Next, you create two Edit objects and a Splitter as children of the SubForm,
using the second Splitter to divide the SubForm into two. You can continue with this
approach to any reasonable depth.

532 Dyalog APL/W Object Reference

Notice that when the first Splitter is shifted to the left, both panes in the SubForm
expand equally (because Align is 'None') as shown below.

The second approach, illustrated by the following example, is to create multiple
Splitters at the same level, i.e. owned by the same parent. In this case, the third Edit
object F.E3 is unaffected by movement of the leftmost Splitter F.S1.

'F'⎕WC'Form' 'Multiple Splitters: non-hierarchical'
 ('Size' 25 50)
'F.E1'⎕WC'Edit'(10 6⍴'Edit 1')('Style' 'Multi')
'F.E2'⎕WC'Edit'(10 6⍴'Edit 2')('Style' 'Multi')
'F.E3'⎕WC'Edit'(10 6⍴'Edit 3')('Style' 'Multi')
'F.S1'⎕WC'Splitter' 'F.E1'
'F.S2'⎕WC'Splitter' 'F.E2' 'F.E3'

 Chapter 2 A-Z Reference 533

533

Using the non-hierarchical approach, horizontal and vertical Splitters may be combined
in interesting ways as illustrated below. This can also be achieved using nested
SubForms, but at the expense of a complex object hierarchy.

Notice that in this example, with the exception of the last Splitter F.S4, it is necessary
only to specify the SplitObj1 property for each of the Splitters. The reason is that the
first four Splitters only manage one object directly. For example, the object to the right
of F.S1 is in fact a horizontal Splitter F.S2. Dragging F.S1 changes the length of
F.S2 which in turn changes the width of F.E2. and F.E3.

'F'⎕WC'Form' 'Combining Horizontal and Vertical Splitters'
'F.E1'⎕WC'Edit'(20 6⍴'Edit 1')('Style' 'Multi')
'F.E2'⎕WC'Edit'(10 6⍴'Edit 2')('Style' 'Multi')
'F.E3'⎕WC'Edit'(10 6⍴'Edit 3')('Style' 'Multi')
'F.E4'⎕WC'Edit'(5 6⍴'Edit 4')('Style' 'Multi')
'F.E5'⎕WC'Edit'(5 6⍴'Edit 5')('Style' 'Multi')

'F.S1'⎕WC'Splitter' 'F.E1'('Style' 'Vert')
'F.S2'⎕WC'Splitter' 'F.E2'('Style' 'Horz')
'F.S3'⎕WC'Splitter' 'F.E3'('Style' 'Vert')
'F.S4'⎕WC'Splitter' 'F.E4' 'F.E5'('Style' 'Horz')

534 Dyalog APL/W Object Reference

Colliding Splitters

If you have two or more vertical Splitters or two or more horizontal Splitters in the
same parent object, it is possible for the user to make the Splitters collide. This can
occur by dragging one of the Splitters into the other, or, unless both Splitters have Align
set to 'None', by shrinking the parent.

When Splitters collide, the object being dragged by the user (a Splitter or a border of the
parent) takes precedence over the setting of Align, and temporarily pushes other
Splitters along in its direction of travel. If and when the operation is reversed, the other
Splitters are pulled back to their original positions.

Splitting Event 281

Applies to Splitter

If enabled, this event is reported while a Splitter object is being dragged, between a
StartSplit and an EndSplit. This event is only reported if full-drag is enabled.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1 or by returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 6-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'Splitting' or 281

[3] Y: y-position of top left corner

[4] X: x-position of top left corner

[5] H: height of the Splitter

[6] W: width of the Splitter

See also StartSplit, EndSplit.

 Chapter 2 A-Z Reference 535

535

Start Property

Applies to Circle, Ellipse

This property specifies one or more start-angles for an arc, pie-slice, or chord of a circle
or ellipse. It may be used in conjunction with End which specifies end angles. Angles
are measured counter-clockwise from the x-axis at the centre of the object.

If a single arc is being drawn, Start is a single number that specifies the start angle of
the arc in radians (0 -> ○2). If multiple arcs are being drawn, Start is either a single
number as before (the start angle for several concentric arcs) or a numeric vector with
one element per arc.

If End is not specified, the default value of Start is 0. Otherwise, the default value of
Start is (0,¯1↓+\End).

StartIn Property

Applies to BrowseBox

The StartIn property is a character string that specifies the start point and root for a
BrowseBox object.

Only the specified folder and its subfolders appear in the dialog box. The user cannot
browse higher in the folder architecture than this folder.

The default value for StartIn is an empty vector which means that the root of the browse
dialog is the desktop.

536 Dyalog APL/W Object Reference

StartSplit Event 280

Applies to Splitter

If enabled, this event is reported when the user depresses the left mouse button over a
Splitter object to signify the beginning of a drag operation.

This event is reported for information alone. You may not disable or nullify the event
by setting the action code for the event to ¯1 or by returning 0 from a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'StartSplit' or 280

See also EndSplit, Splitting.

State Property

Applies to Button, Form, SubForm, TabButton, ToolButton

This property determines the state of a Button, TabButton, ToolButton, Form, or
SubForm. It is a single number with the value 0 (the default), 1, or 2 (Form and
SubForm).

If the Style property is 'Push', a State of 0 means that the pushbutton is displayed
normally (out). If its State is 1, the pushbutton is displayed depressed (in).

If the Style property is 'Radio' or 'Check', 0 means "not selected" and 1 means
"selected". Note that only one of a group of buttons with Style 'Radio' that share the
same parent may have State 1. Setting State to 1 automatically deselects all the others in
the group.

For a Form or SubForm, a value of State of 0 means that the Form is currently displayed
in its "normal" state. 1 means that the Form is currently minimised (displayed as an
icon). The value 2 indicates that the Form is maximised and displayed full-screen. The
State of a Form can be changed using ⎕WS.

 Chapter 2 A-Z Reference 537

537

StateChange Event 35

Applies to Form, SubForm

This event is generated by a Form or SubForm when the user attempts to change the
State of a Form, by minimising it, maximising it, or restoring it from a minimised or
maximised state. The event is reported before the window changes state. You may
prevent the state change by disabling the event (action code ¯1) or by returning a 0
result from an attached callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'StateChange' or 35

[3] Window state: 0 (about to be restored)

 1 (about to be minimised)

 2 (about to be maximised)

538 Dyalog APL/W Object Reference

Static Object

Purpose This object is primarily used to display graphics in a sub-window.

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, SubForm,

ToolBar, ToolControl

Children Circle, Cursor, Ellipse, Font, Image, Locator, Marker, Metafile, Poly,

Rect, Text, Timer

Properties Type, Posn, Size, Style, Coord, Border, Active, Visible, Event,

Sizeable, Dragable, FontObj, FCol, BCol, Picture, CursorObj,
AutoConf, YRange, XRange, Data, Attach, TextSize, EdgeStyle,
Handle, Hint, HintObj, Tip, TipObj, Translate, Accelerator,
AcceptFiles, KeepOnClose, Redraw, TabIndex, MethodList,
ChildList, EventList, PropList

Events Close, Configure, ContextMenu, Create, DragDrop, DropFiles,

DropObjects, Expose, FontCancel, FontOK, Help, MouseDblClick,
MouseDown, MouseEnter, MouseLeave, MouseMove, MouseUp,
MouseWheel, Select

Methods Animate, ChooseFont, Detach, GetFocus, GetTextSize, ShowSIP

The overall appearance of an empty Static object is controlled by the value of its Style
property which may be one of the following character vectors :

 'BlackFrame' 'BlackBox'
 'GreyFrame' 'GreyBox'
 'GrayFrame' 'GrayBox'
 'WhiteFrame' 'WhiteBox'

Note that the colours implied by the Style are not "hard-coded" but are actually defined
by the current Windows colour scheme as follows :

 Black Window Border Colour
 Grey/Gray Desktop Colour
 White Window Background Colour

If the background colour of the Form is also set to the Window Background Colour, it
follows that the Styles 'WhiteFrame' and 'WhiteBox' make the Static itself
invisible (against the background), although the contents of the Static will show. This
makes the Static appear like an invisible clipping window.

 Chapter 2 A-Z Reference 539

539

StatusBar Object

Purpose This object is used to manage StatusField objects which display
 information for the user.

Parents ActiveXControl, CoolBand, Form, SubForm

Children Bitmap, BrowseBox, Circle, Cursor, Ellipse, FileBox, Font, Icon,

Image, Marker, Poly, ProgressBar, Rect, StatusField, Text, Timer

Properties Type, Posn, Size, Coord, Align, Border, Active, Visible, Event,

VScroll, HScroll, Sizeable, FontObj, FCol, BCol, Picture, CursorObj,
AutoConf, YRange, XRange, Data, Attach, TextSize, EdgeStyle,
Handle, Hint, HintObj, Tip, TipObj, Translate, Accelerator,
AcceptFiles, KeepOnClose, Redraw, TabIndex, MethodList,
ChildList, EventList, PropList

Events Close, Configure, ContextMenu, Create, DragDrop, DropFiles,

DropObjects, Expose, FontCancel, FontOK, Help, MouseDblClick,
MouseDown, MouseEnter, MouseLeave, MouseMove, MouseUp,
MouseWheel, Select

Methods Animate, ChooseFont, Detach, GetFocus, GetTextSize, ShowSIP

The StatusBar is a container object that manages StatusFields. StatusField objects
display textual information and are typically used for help messages and for monitoring
the status of an application. They can also be used to automatically report the status of
the Caps Lock, Num Lock , Scroll Lock, and Insert keys. The picture below illustrates a
StatusBar containing 3 StatusFields which was produced by the following statements:.

'TEST'⎕WC'Form' 'The StatusBar Object'
 ('EdgeStyle' 'Default')
'TEST.SB'⎕WC'StatusBar'
'TEST.SB.S1'⎕WC'StatusField' 'Field1:' 'text1'
'TEST.SB.S2'⎕WC'StatusField' 'Field2:' 'text2'
'TEST.SB.S3'⎕WC'StatusField' 'Field3:' 'text3'

540 Dyalog APL/W Object Reference

The Align property determines to which side of the parent Form or SubForm the
StatusBar is attached. By default, a StatusBar is positioned along the lower edge of the
Form (Align 'Bottom') and is 24 pixels high. Using the Align, Posn and Size
properties you may create StatusBars in different positions and with differing sizes if
you wish. Notice that the Align property controls how the StatusBar reacts to its parent
Form being resized. If Align is 'Top' or Bottom, the StatusBar remains fixed in
height but stretches and shrinks sideways with the Form. If Align is 'Left' or
'Right', the StatusBar remains fixed in width and stretches and shrinks vertically
with the Form.

By default a StatusBar has a Button Face colour background and the value of its
EdgeStyle property is 'Default'. This gives it the appearance shown above.

Unless you specify the position and size of its children, a StatusBar automatically
manages their geometry. The first StatusField is positioned just inside its top left corner.
If Align is 'Top' or 'Bottom', the next StatusField is positioned alongside the first
but with a small gap between them. Subsequent StatusFields are added in a similar
fashion. If Align is 'Left' or 'Right', the second and subsequent StatusFields are
added below the first with a similar gap between them. In either case you can position
and size the StatusFields explicitly if you wish.

If you attempt to add a StatusField that would extend beyond the right edge (Align
'Top' or 'Bottom') or bottom edge (Align 'Left' or 'Right') the behaviour
depends upon the value of HScroll or VScroll. If HScroll is 0 (the default) and Align is
'Top' or 'Bottom', the StatusField is added below the first one, thereby starting a
new row. If VScroll is 0 (the default) and Align is 'Left' or 'Right', it is added to
the right of the first one thereby starting a new column. If HScroll or VScroll is ¯1 or
¯2, the new StatusField is simply positioned in the same row or column and may be
scrolled into view using a mini scrollbar. A value for HScroll or VScroll of ¯1 causes
the mini scrollbar to be permanently present in the ScrollBar. A value of ¯2 causes it to
appear only when required.

 Chapter 2 A-Z Reference 541

541

StatusField Object

Purpose This object is used to display information for the user.

Parents StatusBar

Children Menu, Timer

Properties Type, Caption, Text, Posn, Size, Style, Coord, Align, Border, Visible,

Event, Sizeable, Dragable, FontObj, FCol, BCol, Picture, AutoConf,
Data, Attach, EdgeStyle, Translate, Accelerator, KeepOnClose,
MethodList, ChildList, EventList, PropList

Events Close, Create, DropObjects, MouseDblClick, MouseDown,

MouseMove, MouseUp, Select

Methods Detach

The StatusField object provides an area for displaying context sensitive help messages,
keyboard status, and other application dependant information.

By default a StatusField is a recessed rectangle in which information is displayed. It has
a Caption and a Text property, which by default are empty, but either or both of which
can be used to present information. The Caption is left justified in the field and the Text
is displayed immediately to its right. Typically, you would use the Caption property as a
title to describe the information that the StatusField displays, and the Text property to
show its current value. However, you are not obliged to use both of them and you can
achieve most effects with just one.

Note that when the StatusField is used to display hints, it is its Text property that is
used.

A StatusField may be used to monitor the status of the keyboard and this is controlled
by its Style property. The default value for Style is an empty vector. However, you can
set it to monitor various keyboard states as follows :

Style Description

CapsLock Monitors state of Caps Lock key
ScrollLock Monitors state of Scroll Lock key
NumLock Monitors state of Num Lock key
KeyMode Monitors the keyboard mode (APL/ASCII)
InsRep Monitors the state of the Insert key

542 Dyalog APL/W Object Reference

In each case, the Text property of the StatusField is used to display the keyboard status.
If Style is CapsLock, ScrollLock or NumLock, the field displays Caps, Num or
Scroll if the corresponding mode is selected and is blank if not.

If Style is InsRep, the StatusField displays either Ins or Rep. Initially it always
displays Ins and then toggles between Rep and Ins each time the Insert key is
pressed.

If Style is KeyMode, the StatusField displays the name for the current keyboard mode
which is defined in the input table being used. For the 2-mode tables APL_US.DIN,
APL_UK.DIN etc., the mode name displayed is either Apl or Asc. The unified tables
have no modes so a StatusField with this Style does nothing.

If Style is set to one of the above, you may still use the Caption property to give the
StatusField a title. You may even set the value of the Text property, but be aware that
this value will be reset when the user next presses the key the StatusField is monitoring.

Step Property

Applies to Form, Locator, ProgressBar, Scroll, Spinner, SubForm, TrackBar,
UpDown

For a Form, Scroll and SubForm, this property determines the size of changes reported
when the user clicks a scroll arrow (small change) or clicks on the body of the scrollbar
(large change). The object's Thumb property increases or decreases by this amount.

For a Scroll object, Step is a 2-element numeric vector whose first element specifies the
value of the "small change" and whose second element specifies the value of the "large
change".

For a Form or SubForm, Step is a 4-element numeric vector. The first two elements
refer to the Form's vertical scrollbar and the second two elements refer to the Form's
horizontal scrollbar.

For these objects, values of Step must be between 1 and the value of the Range
property.

For a Locator, the Step property is a 2-element integer vector (default value 1 1) that
specifies the increments (in pixels) by which the size or position of the Locator changes
in the Y and X directions respectively as the user moves the Locator.

 Chapter 2 A-Z Reference 543

543

Style Property

Applies to Button, Calendar, Combo, ComboEx, DateTimePicker, Edit, FileBox,
Icon, List, ListView, Locator, Marker, MenuItem, MsgBox,
ProgressBar, PropertySheet, Separator, Splitter, Static, StatusField,
TabControl, TCPSocket, ToolButton, ToolControl, TrackBar

This property determines a particular style of object within the general category of
Type. It is a character vector whose value depends upon the type of object.

For a Button, Style may be 'Push', 'Radio' or 'Check'.

'Push' specifies that the button appears and behaves like a pushbutton (sometimes
also called a command button).

'Radio' means that the button is displayed as a small circle accompanied by a
description. When the button is selected, the circle is filled in. In a group of buttons
with Style 'Radio' that share the same parent, only one of them may be selected. This
style of button is generally known as a "radio-button" or an "option button".

'Check' means that the button is displayed as a small box accompanied by a
description. When the button is selected a cross appears in the box. This style of button
is known as a "check-box".

For a Calendar object, The Style property may be either 'Single' (the default) or
'Multi'. If Style is 'Single', the user may select a single date. If Style is
'Multi', the user may select a contiguous range of dates.

For a Combo or ComboEx object, Style may be 'Simple' 'DropEdit' or 'Drop'
(the default). 'Simple' specifies a simple combo box in which the associated list box
is displayed at all times. The other two styles provide list boxes which "drop down"
when the user clicks on a symbol displayed to the right of the Combo's edit field. A
'DropEdit' Style allows the user to type (anything) in the edit field. A 'Drop'
Style does not and forces the contents of the edit field to be either empty or one of the
choices specified by Items.

For a DateTimePicker, Style may be either 'Combo' (the default) or 'UpDown'.

For an Edit object, Style may be 'Single' or 'Multi'. If Style is 'Single' the
object displays only a single line of text and the user may not enter any more lines. If
the Style is 'Multi' the number of lines displayed is governed by the Rows or Size
property and the user may insert, add or delete lines as desired.

544 Dyalog APL/W Object Reference

For FileBox, List and ListView objects, Style may be 'Single' or 'Multi'. If the
Style is 'Single' only one file or item can be selected. If Style is 'Multi', several
files or items can be selected.

For an Icon, Style may be 'Large' (the default) or 'Small' and specifies the size of
the icon (32x32 or 16x16) to be loaded from a file.

For a Locator, Style may be 'Point', 'Rect' (the default), 'Line' or
'Ellipse'. It specifies the shape that is drawn as the user moves the mouse.

For a MsgBox, the Style property determines the type of icon which is displayed in it.
This is a character vector with one of the following values :

 'Msg' : no icon (the default)
 'Info' : information message icon
 'Query' : query (question) icon
 'Warn' : warning icon
 'Error' : critical error icon

For a Splitter, the Style property specifies the orientation of the Splitter and may be
'Vert' (the default) or 'Horz'.

For a Static object, Style defines its appearance, and may be one of :

 'BlackFrame' 'BlackBox'
 'GreyFrame' 'GreyBox'
 'GrayFrame' 'GrayBox'
 'WhiteFrame' 'WhiteBox'

A StatusField may be used to monitor the state of a key on the keyboard. If so, its Style
property determines the key it monitors and may be one of the following:

 'CapsLock' Monitors state of Caps Lock key
 'ScrollLock' Monitors state of Scroll Lock key
 'NumLock' Monitors state of Num Lock key
 'KeyMode' Monitors the keyboard mode (APL/ASCII)
 'InsRep' Monitors the state of the Insert key

For a TabControl, the Style property determines the appearance of its TabButton
children, and may be 'Tabs' (the default), 'Buttons' or 'FlatButtons'.

For a TCPSocket, the Style property is a character vector that specifies the type of data
transmitted or received by the socket; it may be 'Char', 'Raw', or 'APL'.

 Chapter 2 A-Z Reference 545

545

For a ToolButton, the Style property specifies the behaviour of the button and may be
'Push' (the default), 'Check', 'Radio', 'DropDown' or 'Separator'.

For a ToolControl, the Style property determines the appearance of its ToolButton
children and may be 'Buttons', 'FlatButtons' (the default), 'List' or
'FlatList'.

For a TrackBar, the Style property determines the appearance and behaviour of the
TrackBar and may be 'Standard' (the default) or 'Selection'.

SubForm Object

Purpose This object represents a window that is owned by and constrained
 within another Form or an MDIClient.

Parents ActiveXControl, CoolBand, Form, Group, MDIClient, PropertyPage,

SubForm, TabControl, ToolBar, ToolControl

Children Animation, Bitmap, BrowseBox, Button, Calendar, Circle,

ColorButton, Combo, ComboEx, Cursor, DateTimePicker, Edit,
Ellipse, FileBox, Font, Form, Grid, Group, Icon, Image, ImageList,
Label, List, ListView, Locator, Marker, MDIClient, Menu, MenuBar,
Metafile, MsgBox, NetControl, OCXClass, Poly, ProgressBar,
PropertySheet, Rect, RichEdit, Scroll, SM, Spinner, Splitter, Static,
StatusBar, SubForm, TabBar, TabControl, TCPSocket, Text, Timer,
TipField, ToolBar, ToolControl, TrackBar, TreeView, UpDown

Properties Type, Caption, Posn, Size, Coord, State, Border, Active, Visible,

Event, Thumb, Range, Step, VScroll, HScroll, Sizeable, Moveable,
SysMenu, MaxButton, MinButton, HelpButton, FontObj, BCol,
Picture, OnTop, IconObj, CursorObj, AutoConf, YRange, XRange,
Data, Attach, TextSize, EdgeStyle, Handle, Hint, HintObj, Tip,
TipObj, TabObj, Translate, Accelerator, AcceptFiles, KeepOnClose,
Dockable, Docked, DockShowCaption, DockChildren,
UndocksToRoot, Redraw, TabIndex, MethodList, ChildList,
EventList, PropList

546 Dyalog APL/W Object Reference

Events Close, Configure, ContextMenu, Create, DockAccept, DockCancel,
DockEnd, DockMove, DockRequest, DockStart, DragDrop,
DropFiles, DropObjects, Expose, FontCancel, FontOK,
FrameContextMenu, GotFocus, Help, HScroll, KeyPress, LostFocus,
MDIActivate, MDIDeactivate, MouseDblClick, MouseDown,
MouseEnter, MouseLeave, MouseMove, MouseUp, MouseWheel,
Select, StateChange, VScroll

Methods Animate, ChooseFont, Detach, GetFocus, GetTextSize, ShowSIP

If the SubForm is the child of a Form, it is by default a simple featureless window that
occupies the entire client area (excluding standard ToolBars, StatusBars and TabBars)
of its parent. The properties that control its appearance, including Sizeable, Moveable,
SysMenu, Border, MaxButton and MinButton, all default to 0. The EdgeStyle property
also defaults to 'None', so the background of the SubForm defaults to the Window
Background colour.

If the SubForm is the child of an MDIClient, its default appearance is the same as for a
top-level Form. By default its size is 25% of its parent client area and it is positioned in
the centre of its parent object.

The Posn property specifies the location of the internal top-left corner of the SubForm
relative to its parent. If the SubForm has a title bar, border, or a 3-dimensional shadow,
you must allow sufficient space for these components. Similarly, the Size property
specifies the internal size of the SubForm excluding the title bar and border.

A SubForm is constrained so that it cannot be moved outside its parent. In all other
respects it behaves in a similar manner to a Form object. See Form object and the
descriptions of its properties for further details.

 Chapter 2 A-Z Reference 547

547

SysColorChange Event 134

Applies to Root

If enabled, this event is reported when the user or another application updates the
system colour palette. The event is reported after the change has taken place and cannot
be disabled or inhibited in any way. If you want your application to respond to colour
palette changes, this event gives you the opportunity of doing so.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'SysColorChange' or 134

SysMenu Property

Applies to Form, SubForm

This property determines whether or not a Form or SubForm has a "System Menu" box
in the top-left corner of its border. Pressing the left mouse button in this box brings up
the standard window control menu for the Form. Double clicking the box closes the
Form.

SysMenu is a single number with the value 0 (no System menu box) or 1 (System Menu
box is provided). The default is 1.

If any of the SysMenu, MaxButton, MinButton and Moveable properties are set to 1,
the Form or SubForm has a title bar.

548 Dyalog APL/W Object Reference

SysTrayItem Object

Purpose The SysTrayItem object represents an item that you can create in the
Windows System Tray.

Parents Form, Root

Children Icon, Menu, Timer

Properties Type, Event, IconObj, Data, Tip, Translate, Popup, KeepOnClose,

MethodList, ChildList, EventList, PropList

Events Close, Create, MouseDblClick, MouseDown, MouseMove, MouseUp

Methods Detach, Wait

The SysTrayItem object appears as an icon in the Windows System Tray and allows the
user to interact with your application even if it is minimised or has no other visible
presence.

Interaction is provided through a pop-up menu that is displayed when the user clicks on
the SysTrayItem. The SysTrayItem does not support mouse or keyboard events directly.

The IconObj property specifies the name of an Icon object used to display the
SysTrayItem. If not specified, the default is the standard Dyalog APL icon.

The Popup property specifies the name of a Menu object (which may be a child of the
SysTrayItem). The Menu object is displayed automatically when the user clicks on the
SysTrayItem icon. The Menu should contain one or more MenuItem objects with
suitable callback functions attached.

Unlike other popup menus, the SysTrayItem menu is not activated by an explicit
(modal) ⎕DQ but is posted automatically for you. The MenuItem callbacks will be
executed by the current ⎕DQ, with the exception of modal ⎕DQs on MsgBox, FileBox,
Locator and other popup Menu objects. For example, if your application is in a modal
⎕DQ on a Form, that ⎕DQ will react to and action events on the SysTrayItem menu,
even though it is not explicitly included in the list of objects being ⎕DQ'ed.

The Tip property specifies a character string to be displayed when the user hovers the
mouse over the SysTrayItem. This is displayed using the user's current setting for Tip
text and it is not possible to change this appearance.

 Chapter 2 A-Z Reference 549

549

TabBar Object

Purpose To manage a set of TabBtn objects.

Parents ActiveXControl, Form, SubForm

Children Circle, Ellipse, Font, Marker, Poly, Rect, TabBtn, Text, Timer

Properties Type, Posn, Size, Coord, Align, Active, Visible, Event, VScroll,

HScroll, Sizeable, FontObj, BCol, Picture, OnTop, IconObj,
CursorObj, AutoConf, YRange, XRange, Data, Attach, TextSize,
Handle, Hint, HintObj, Tip, TipObj, TabObj, Translate, Accelerator,
AcceptFiles, KeepOnClose, Redraw, TabIndex, MethodList,
ChildList, EventList, PropList

Events Close, Configure, ContextMenu, Create, DragDrop, DropFiles,

DropObjects, Expose, Help, MouseDblClick, MouseDown,
MouseEnter, MouseLeave, MouseMove, MouseUp, MouseWheel,
Select

Methods Animate, Detach, GetFocus, GetTextSize, ShowSIP

The TabBar object manages a group of TabBtn objects. These are associated with a set
of SubForm objects which are positioned on top of one another. When the user clicks on
a TabBtn, the corresponding SubForm is brought to the top and given the focus.

TabBar and TabBtn objects were implemented before Windows provided direct

support for tabbed dialogs, and have been superceded by TabControl and

TabButton objects. Please use these instead.

By default, a TabBar is a flat bar stretched across the bottom of its parent form. You can
alter its appearance using its EdgeStyle property and you can control its alignment with
its Align property. Align can be set to Top (the default) , Bottom, Left or Right and
causes the TabBar to be attached to the corresponding edge of the Form. A TabBar
aligned Top or Bottom will automatically stretch or shrink horizontally when its parent
Form is resized, but it will remain fixed vertically. A TabBar aligned Left or Right will
stretch vertically but will remain fixed horizontally. By default a TabBar occupies the
entire width or length of the side of the Form to which it is attached and is 17 pixels
high or wide. You can change these defaults using the Posn and Size properties.

550 Dyalog APL/W Object Reference

The alignment of a TabBar also determines the orientation of its TabBtns. TabBars
aligned Top or Bottom cause their TabBtns to be drawn left to right with the free edge
of the TabBtns facing upwards or downwards respectively. TabBars aligned Left or
Right draw their TabBtns downwards with their free edges facing left or right
respectively.

By default, TabBtn objects are positioned along the inner edge of the TabBar. This is
the edge closest to the SubForms they will tab. They are also positioned so that they
overlap one another horizontally or vertically according to the Align property.

The HScroll and VScroll properties determine what happens when the end of the
TabBar is reached. If HScroll or VScroll is 0 (the default) a TabBtn that would
otherwise extend beyond the TabBar is instead positioned immediately above, below or
alongside the first TabBtn in the TabBar, thereby starting a new row or column. Note
however that the TabBar is not automatically resized vertically to accommodate a
second row or column. If you want a multi-flight TabBar you have to set its height or
width explicitly. If HScroll or VScroll is ¯1 or ¯2, TabBtns continue to be added along
the TabBar even though they extend beyond its boundary and may be scrolled into view
using a mini scrollbar. If HScroll is ¯1, the scrollbar is shown whether or not any
controls extend beyond the TabBar. If HScroll is ¯2, the scrollbar appears only if
required and may appear or disappear when the user resizes the parent Form.

If you specify a value for its Posn property, a TabBtn will be placed at the requested
position regardless of the value of Style, HScroll or VScroll. However, the next control
added will take its default position from the previous one according to the value of these
properties. Thus if you wish to group your controls together with spaces between the
groups, you need only specify the position of the first one in each group.

If you specify a value for its Posn property, a TabBtn will be placed at the requested
position regardless of the value of Align. However, the next TabBtn added will take its
default position from the previous one. Thus if you wish to group your TabBtns
together with spaces between the groups, you need only specify the position of the first
one in each group.

 Chapter 2 A-Z Reference 551

551

TabBtn Object

Purpose To tab a SubForm.

Parents TabBar

Children Timer

Properties Type, Caption, Posn, Size, Align, Border, Active, Visible, Event,

FontObj, FCol, BCol, AutoConf, Data, Attach, EdgeStyle, TabObj,
Translate, Accelerator, KeepOnClose, MethodList, ChildList,
EventList, PropList

Events Close, Create, DropObjects, FontCancel, FontOK, MouseDblClick,

MouseDown, MouseMove, MouseUp, Select

Methods ChooseFont, Detach

TabBtn objects are associated with SubForms which are positioned on top of one
another. When the user clicks on a TabBtn, the corresponding SubForm is brought to
the top and given the focus.

TabBar and TabBtn objects were implemented before Windows provided direct

support for tabbed dialogs, and have been superceded by TabControl and

TabButton objects. Please use these instead.

The appearance of a TabBtn is determined by its EdgeStyle, Border and Caption
properties. These take their defaults from the SubForm with which the TabBtn is
associated. Thus there is generally no need to specify them. BCol also defaults to that of
its associated SubForm.

The position of a TabBtn is normally determined by its parent TabBar and its default
size is fixed (22 x 80 pixels), and not related to the size of its Caption. These defaults
can be overridden using the Posn and Size properties.

A SubForm is associated with a TabBtn by setting the TabObj property of the SubForm
to the name of, or ref to, the TabBtn. The TabObj property of the TabBtn is a read-only
property that contains the name of, or ref to, the associated SubForm.

552 Dyalog APL/W Object Reference

TabButton Object

Purpose The TabButton object represents an individual tab or button in a
TabControl.

Parents TabControl

Children Timer

Properties Type, Caption, Posn, Size, State, Event, ImageIndex, Data, Tip,

TabObj, KeepOnClose, MethodList, ChildList, EventList, PropList

Events Close, Create, Select

Methods Detach

The TabButton object represents an individual tab or button in a TabControl.

The position and size of a TabButton object are entirely determined by its parent
TabControl and may not be altered. For this reason, the Posn and Size properties are
read-only.

The Caption property specifies the text that appears on the button or tab.

A picture is specified by setting the ImageIndex property of the TabButton. This is a
number that points to a particular icon or bitmap defined in an ImageList object whose
name is specified by the ImageListObj property of the parent TabControl.

Note that all TabButton objects share the same font which is defined by the FontObj
property of the TabControl.

The foreground and background colours of the TabButton object are fixed.

When used as a tab, a TabButton is normally attached to a SubForm by the TabObj
property of the SubForm. The TabObj property of the TabButton itself is a read-only
property that reports the name of, or ref to, the SubForm to which the TabButton is
attached.

The State property reports the (selected) state of a TabButton and applies only when its
parent TabControl has Style set to 'Buttons' or 'FlatButtons' and MultiSelect
set to 1.

 Chapter 2 A-Z Reference 553

553

TabControl Object

Purpose The TabControl object provides access to the native Windows tab
control.

Parents ActiveXControl, CoolBand, Form, SubForm

Children ImageList, SubForm, TabButton, Timer

Properties Type, Posn, Size, Style, Event, ImageListObj, FontObj, Data, Attach,

TabObj, KeepOnClose, MultiLine, TabSize, Justify, TabJustify,
Align, MultiSelect, TabFocus, HotTrack, ScrollOpposite,
FlatSeparators, MethodList, ChildList, EventList, PropList

Events Close, Create

Methods Animate, Detach, GetFocus, GetTextSize, ShowSIP

The standard tab control is analogous to a set of dividers in a notebook and allows you
to define a set of pages that occupy the same area of a window or dialog box. Each page
consists of a set of information or a group of controls that the application displays when
the user selects the corresponding tab.

A special type of tab control displays tabs that look like buttons. For example, the
Windows TaskBar is such a tab control.

The overall appearance of the TabControl is determined by the Style property which
may be 'Tabs' (the default), 'Buttons' or 'FlatButtons'.

Individual tabs or buttons are represented by TabButton objects which should be created
as children of the TabControl object. Optional captions and pictures are specified by the
Caption and ImageIndex properties of the individual TabButton objects themselves.
Otherwise, the appearance of the tabs or buttons is determined by properties of the
TabControl itself.

554 Dyalog APL/W Object Reference

To implement a multiple page tabbed dialog, illustrated below, you should create a
Form, then a TabControl with Style 'Tabs' as a child of the Form. Next, create one or
more pairs of TabButton and SubForm objects as children of the TabControl. You
associate each SubForm with a particular tab by setting its TabObj property to the name
of, or ref to, the associated TabButton object. Making the SubForms children of the
TabControl ensures that, by default, they will automatically be resized correctly. You
may alternatively create your SubForms as children of the main Form and establish
appropriate resize behaviour using their Attach property.

Example

'F'⎕WC'Form' 'TabControl: Default'('Size' 25 50)
'F.TC'⎕WC'TabControl'

'F.TC.IL'⎕WC'ImageList'
'F.TC.IL.'⎕WC'Icon'('' 'APLIcon')
'F.TC.IL.'⎕WC'Icon'('' 'FUNIcon')
'F.TC.IL.'⎕WC'Icon'('' 'EDITIcon')

'F.TC'⎕WS'ImageListObj' 'F.TC.IL'

'F.TC.T1'⎕WC'TabButton' 'One'('ImageIndex' 1)
'F.TC.T2'⎕WC'TabButton' 'Two'('ImageIndex' 2)
'F.TC.T3'⎕WC'TabButton' 'Three'('ImageIndex' 3)

'F.TC.S1'⎕WC'SubForm'('TabObj' 'F.TC.T1')
'F.TC.S2'⎕WC'SubForm'('TabObj' 'F.TC.T2')
'F.TC.S3'⎕WC'SubForm'('TabObj' 'F.TC.T3')

 Chapter 2 A-Z Reference 555

555

A TabControl object with Style 'Buttons' or 'FlatButtons' may be used in a
similar way (i.e. to display a set of alternative pages), although buttons in this type of
TabControl are more normally used to execute commands. For this reason, these styles
of TabControl are borderless.

If Style is 'FlatButtons', the FlatSeparators property specifies whether or not
separators are drawn between the buttons. The default value of FlatSeparators is 0 (no
separators).

The Align property specifies along which of the 4 edges of the TabControl the tabs or
buttons are arranged. Align also controls the relative positioning of the picture and
Caption within each TabButton. Align may be Top (the default) , Bottom, Left or Right.

If Align is 'Top' or 'Bottom', the tabs or buttons are arranged along the top or
bottom edge of the TabControl and picture is drawn to the left of the Caption.

If Align is 'Left', the tabs or buttons are arranged top-to-bottom along the left edge
of the TabControl, and the pictures are drawn below the Captions.

If Align is 'Right', the tabs are arranged top-to-bottom along the right edge of the
TabControl, and the pictures are drawn above the Captions.

The MultiLine property determines whether or not your tabs or buttons will be arranged
in multiple flights or multiple rows/columns.

The default value of MultiLine is 0, in which case, if you have more tabs or buttons
than will fit in the space provided, the TabControl displays an UpDown control to
permit the user to scroll them. If MultiLine is set to 1, the tabs are displayed in multiple
flights or the buttons are displayed in multiple rows.

The ScrollOpposite property specifies that unneeded tabs scroll to the opposite side of a
TabControl, when a tab is selected. Setting ScrollOpposite to 1 forces MultiLine to 1
also.

If MultiLine is 1, the way that multiple flights of tabs or rows/columns of buttons are
displayed is further defined by the Justify property which may be 'Right' (the
default) or None.

If Justify is 'Right' (which is the default), the TabControl increases the width of each
tab, if necessary, so that each row of tabs fills the entire width of the tab control.
Otherwise, if Justify is empty or 'None', the rows are ragged.

556 Dyalog APL/W Object Reference

By default, the size of the tabs may vary from one to another. Fixed size tabs may be
obtained by setting the TabSize property.

To obtain fixed sized tabs with MultiLine set to 1, you must however also set Justify to
'None'.

If fixed size tabs are in effect, the positions at which the picture and Caption are drawn
within each TabButton is controlled by the TabJustify property which may be
'Centre', 'Edge', or 'IconEdge'.

The font used to draw the captions in the TabButton objects is determined by the
FontObj property of the TabControl.

You cannot specify the foreground or background colours of the tabs/buttons, nor can
you use different fonts in different tabs/buttons. The orientation of the Caption text is
always determined by the value of the Align property of the TabControl.

The TabObj property is read-only and reports the name of, or ref to, the TabButton that
is currently selected.

The MultiSelect property specifies whether or not the user can select more than one
button in a TabControl at the same time, by holding down the Ctrl key when clicking.
The default is 0 (only one button may be selected). MultiSelect is ignored if Style is
'Tabs'.

The TabFocus property specifies the focus behaviour for the TabControl object and may
be 'Normal'(the default), 'Never' or 'ButtonDown'.

The HotTrack property specifies whether or not the tabs or buttons are automatically
highlighted by the mouse pointer. The default is 0 (no highlighting).

The Attach property determines how the TabControl responds to its parent being resized
and the default value is 'None' 'None' 'None' 'None'. This causes the
TabControl to maintain its original proportions when its parent is resized.

 Chapter 2 A-Z Reference 557

557

TabFocus Property

Applies to TabControl

The TabFocus property specifies the focus behaviour for the TabControl object.

TabFocus is a character vector that may be 'Normal' (the default), 'Never' or
'ButtonDown'.

If TabFocus is 'Normal', the tabs or buttons in a TabControl do not immediately
receive the input focus when clicked, but only when clicked a second time. This means
that, normally, when the user circulates through the tabs, the input focus will be given to
the appropriate control in the associated SubForm. However, if the user clicks twice in
succession on the same tab or button, the TabControl itself will receive the input focus.

If TabFocus is 'ButtonDown', the tabs or buttons in a TabControl receive the input
focus when clicked.

If TabFocus is 'Never', the tabs or buttons in a TabControl never receive the input
focus. This allows the user to circulate through a set of tabbed SubForms without ever
losing the input focus to the TabControl itself.

TabIndex Property

Applies to ActiveXControl, Button, Calendar, ColorButton, Combo, ComboEx,
DateTimePicker, Edit, Form, Grid, Group, Label, List, ListView, MDIClient,
ProgressBar, RichEdit, Scroll, SM, Spinner, Static, StatusBar, SubForm, TabBar,
ToolBar, TrackBar, TreeView, UpDown

The TabIndex property reports the ⎕IO-dependant relative position of a child object
within the list of child objects owned by its parent. If N is the number of children owned
by an object, TabIndex is an integer between ⎕IO and (N-~⎕IO). The sequence of
objects in this list is also used as the tabbing sequence, i.e. if the input focus is on the
first child in the list, pressing Tab moves the input focus to the next child in the list.

When you create a child object, it is inserted in the list at the position specified by its
TabIndex property. If TabIndex is omitted, it is appended to the end of the list.

If you subsequently change TabIndex, the object is moved to the corresponding position
in the list.

558 Dyalog APL/W Object Reference

Naturally, if you specify a value of TabIndex that is greater than the number of existing
children, the object is inserted at or moved to the end of the list.

TabJustify Property

Applies to TabControl

The TabJustify property specifies, the positions at which the picture and caption are
drawn within each tab or button implemented by a TabButton in a TabControl object.

TabJustify is a character vector that may be 'Centre', 'Edge', or 'IconEdge'.
Its default value is 'Centre'.

If TabJustify is 'Centre', the picture and caption are arranged in the centre of the
TabButton.

If TabJustify is 'Edge', the picture and caption are together aligned to the appropriate
edge of the TabButton according to the value of Align.

If TabJustify is set to 'IconEdge', the caption is drawn centrally and only picture is
aligned to the edge.

TabJustify is only honoured if fixed size tabs are in effect.

 Chapter 2 A-Z Reference 559

559

TabObj Property

Applies to SubForm, TabBar, TabBtn, TabButton, TabControl

TabObj is a character vector. For a SubForm, it specifies the name of, or ref to, a
TabBtn or TabButton object that is associated with the SubForm. Selecting the TabBtn
or TabButton causes the SubForm to be given the input focus.

For TabBtn and TabButton objects, TabObj is a read-only property that contains the
name of, or ref to, the associated SubForm.

For a TabBar or TabControl, TabObj is a read-only property that contains the name of,
or ref to, the currently selected TabBtn or TabButton.

TabSize Property

Applies to TabControl

The TabSize property specifies the size of fixed size tabs or buttons in a TabControl
object.

By default, the size of the tabs may vary from one to another. Fixed size tabs may be
obtained by setting the TabSize property.

TabSize is a 2-element numeric vector that specifies the height and width of the tab.
Either or both elements of TabSize may be set to ⍬ which means ‘default’.

To obtain fixed sized tabs with MultiLine set to 1, you must however also set the Justify
property to 'None'.

If MultiLine is 1 and Justify is 'Right', TabSize is ignored.

560 Dyalog APL/W Object Reference

Target Property

Applies to BrowseBox

The Target property is a read-only character string that specifies the chosen folder or
other resource selected by the user in a BrowseBox object.

If the BrowseFor is 'Directory', Target will contain a directory name followed by
the character "\". Otherwise, Target just contains the name.

TargetState Property

Applies to TCPSocket

The TargetState property reflects the intended final state of a TCPSocket object. Its
possible values are as follows:

Stream UDP

Client Open

Server Bound

Closed Closed

Setting TargetState to Closed is the recommended way to close a socket. It informs
APL that you want the socket to be closed, but only when it is safe to do so. When all
the data has been sent, the TCPSocket will generate a TCPClose event which, unless a
callback function decides otherwise, will cause the TCPSocket object to disappear.

To control socket closure, you may execute the following steps:

1. Set TargetState to Closed
2. either:

 a) continue processing
or: b) wait (using ⎕DQ) for the TCPSocket to disappear
or: c) wait (using ⎕DQ) for the TCPClose event

 Chapter 2 A-Z Reference 561

561

TCPAccept Event 371

Applies to TCPSocket

If enabled, this event is reported when a client connects to a server TCPSocket object.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'TCPAccept' or 371

[3] Socket handle: an integer

The socket handle reported by this event is the socket handle for the original listening
socket that was associated with the TCPSocket before the client connected.

If you want your server to remain available for other clients, you must create a new
TCPSocket object in a callback function attached to this event. The new TCPSocket
object must be created by cloning the original listening socket. This is done by
specifying the socket handle as the value of its SocketNumber property. You may not
specify any other properties (except Event and Data) in the ⎕WC statement that creates
the new clone object.

The default processing for this event is to close the socket handle reported by the 3rd
element of the event message unless it has been associated with a new TCPSocket
object by the callback function as described above. You may prevent this from
occurring by returning 0 from a callback function. This may be necessary in a
multithreaded application.

You may not call TCPAccept as a method or generate this event artificially using ⎕NQ.

562 Dyalog APL/W Object Reference

TCPClose Event 374

Applies to TCPSocket

If enabled, this event is reported when the remote end of a TCP/IP connection breaks
the connection.

You may not disable or nullify the operation by setting the action code for the event to
¯1 or by returning 0 from a callback function. You may also not call TCPClose as a
method or generate this event artificially using ⎕NQ.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'TCPClose' or 374

TCPConnect Event 372

Applies to TCPSocket

If enabled, this event is reported when a server accepts the connection of a client
TCPSocket object and is reported by the client.

You may not disable or nullify the operation by setting the action code for the event to
¯1 or by returning 0 from a callback function. You may also not call TCPConnect as a
method or generate this event artificially using ⎕NQ.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'TCPConnect' or 372

 Chapter 2 A-Z Reference 563

563

TCPError Event 370

Applies to TCPSocket

This event is generated when a fatal TCP/IP error occurs and is reported by a
TCPSocket object.

You cannot disable this event by setting its action code to ¯1 or by returning 0 from a
callback function attached to it.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'TCPError' or 370

[3] Error code: a number

[4] Error text: a character vector

TCPGetHostID Method 376

Applies to Root, TCPSocket

This method is used to obtain the IP Address of your PC.

The TCPGetHostID method is niladic.

The result is a character string containing your IP address. If you have more than one, it
will return the first.

Example

 TCPGetHostID
193.32.236.43

564 Dyalog APL/W Object Reference

TCPGotAddr Event 377

Applies to TCPSocket

If enabled, this event is reported when a host name (specified by the RemoteAddrName
or LocalAddrName property) is resolved to an IP address.

You may not disable or nullify the operation by setting the action code for the event to
¯1 or by returning 0 from a callback function. You may also not call TCPGotAddr as a
method or generate this event artificially using ⎕NQ.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'TCPGotAddr' or 377

Note that the IP address is not reported in the event message but may be obtained from
RemoteAddr or LocalAddr as appropriate.

TCPGotPort Event 378

Applies to TCPSocket

If enabled, this event is reported when a port name (specified by the RemotePortName
or LocalPortName property) is resolved to a port number.

You may not disable or nullify the operation by setting the action code for the event to
¯1 or by returning 0 from a callback function. You may also not call TCPGotPort as a
method or generate this event artificially using ⎕NQ.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'TCPGotPort' or 378

Note that the port number is not reported in the event message but may be obtained
from RemotePort or LocalPort as appropriate.

 Chapter 2 A-Z Reference 565

565

TCPReady Event 379

Applies to TCPSocket

If enabled, this event is reported when the TCP/IP buffers are free and there is no data
waiting to be sent in the internal APL queue.

This event is provided to enable you to control the transmission of a large amount of
data that cannot be handled in a single call to TCPSend.

The amount of data that the system can handle in one go is limited by TCP/IP buffers,
the speed of the network, and the amount of Windows memory and disk space available
for buffering.

You may not disable or nullify the operation by setting the action code for the event to
¯1 or by returning 0 from a callback function. However, you may call TCPReady as a
method or generate this event artificially using ⎕NQ.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'TCPReady' or 379

566 Dyalog APL/W Object Reference

TCPRecv Event 373

Applies to TCPSocket

If enabled, this event is reported when data is received by a TCPSocket object.

You may not disable or nullify the operation by setting the action code for the event to
¯1 or by returning 0 from a callback function. You may also not call TCPRecv as a
method or generate this event artificially using ⎕NQ.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'TCPRecv' or 373

[3] Data: the data received

[4] IP address: character vector

[5] Port number: integer

Elements [4-5] refer to the IP address and port number of the remote process that sent
the data.

If the SocketType is 'Stream', elements [4-5] will be identical to the values of the
RemoteAddr and RemotePort respectively.

If the SocketType is 'UDP' and there is potentially more than one partner sending you
data, the IP address and port number information provided by the TCPRecv event is
more reliable than the current values of RemoteAddr and RemotePort as these may
already have changed.

 Chapter 2 A-Z Reference 567

567

TCPSend Method 375

Applies to TCPSocket

This method is used to send data to a remote process connected to a TCPSocket object.

The argument to TCPSend is a 1 or 3-element array as follows:

[1] Data: the data to be sent

[2] IP address: character vector

[3] Port number: integer

If Style is 'Char', the data to be sent must be a character vector. If Style is 'Raw',
the data to be sent must be an integer vector whose elements are in the range -128 to
255. If Style is 'APL', any array may be transmitted.

The optional IP address and Port number parameters specify the intended recipient of
the message and apply only if the SocketType is 'UDP', in which case they are
mandatory. If the SocketType is 'Stream', these parameters will be ignored and
should be omitted.

568 Dyalog APL/W Object Reference

TCPSendPicture Method 380

Applies to TCPSocket

This method is used to transmit a picture represented by a Bitmap object to a TCP/IP
socket. The picture may be transmitted in uncompressed GIF or in PNG format.

The argument to TCPSendPicture is a 1 or 2-element array as follows:

[1] Bitmap name: character vector

[2] Picture format: character vector, 'GIF' or 'PNG'

If Picture format is omitted, the default is GIF format.

Note that the Style of the TCPSocket object must be set to 'Raw' before you execute
the TCPSendPicture method.

The result of the method is an integer that reports the number of bytes that were
transmitted.

Example

 S1.TCPSendPicture 'BM' 'PNG'
4930

Note: Although PNG is recognised as the latest graphics standard for displaying

pictures, not all Web browsers support it.

See also: MakeGIF, MakePNG

 Chapter 2 A-Z Reference 569

569

TCPSocket Object

Purpose Provides an interface to Windows sockets (TCP/IP).

Parents ActiveXControl, Calendar, CoolBand, DateTimePicker, Form,

NetType, OLEClient, OLEServer, PropertyPage, Root, SubForm,
TCPSocket

Children Bitmap, BrowseBox, Clipboard, Cursor, FileBox, Font, Form, Icon,

ImageList, Locator, Menu, Metafile, MsgBox, OCXClass,
OLEClient, Printer, PropertySheet, TCPSocket, Timer, TipField

Properties Type, LocalAddr, LocalPort, RemoteAddr, RemotePort, Style, Event,

LocalAddrName, LocalPortName, RemoteAddrName,
RemotePortName, Data, SocketType, SocketNumber, CurrentState,
TargetState, Encoding, KeepOnClose, MethodList, ChildList,
EventList, PropList

Events Close, Create, TCPAccept, TCPClose, TCPConnect, TCPError,

TCPGotAddr, TCPGotPort, TCPReady, TCPRecv

Methods Detach, TCPGetHostID, TCPSend, TCPSendPicture, Wait

The TCPSocket object provides an event-driven mechanism to communicate with other
programs (including Dyalog APL) running on other computers, and with the Internet.

The SocketType property is a character vector that specifies the type of the TCP/IP
socket. This is either 'Stream'(the default), or 'UDP'. SocketType must be defined
when the object is created and may not be set or changed using ⎕WS.

The Style property is a character vector that specifies the type of data transmitted or
received by the socket; it may be 'Char', 'Raw', or 'APL'. The value 'APL' is
valid only if the SocketType is 'Stream'.

The Encoding property is a character vector that specifies how character data are
encoded or translated. The possible values are 'None', 'UTF-8', 'Classic', or 'Unicode',
depending upon the value of the Style property.

LocalAddr and LocalPort properties identify your end of the connection; RemoteAddr
and RemotePort identify the other end of the connection. The values of the two sets of
properties are clearly symmetrical; your LocalAddr is your partner’s RemoteAddr, and

there are strict rules concerning which of them you and your partner may set. See the
individual descriptions of these properties for details.

570 Dyalog APL/W Object Reference

The SocketNumber property is the handle of the socket attached to the TCPSocket
object and is generally a read-only property. The only time that SocketNumber may be
specified is when a server replicates (clones) a listening socket to which a client has just
connected.

Text Object

Purpose Displays text.

Parents ActiveXControl, Animation, Bitmap, Button, Combo, ComboEx,

Edit, Form, Grid, Group, Label, List, ListView, MDIClient, Metafile,
Printer, ProgressBar, PropertyPage, PropertySheet, RichEdit, Scroll,
Spinner, Static, StatusBar, SubForm, TabBar, TipField, ToolBar,
TrackBar, TreeView, UpDown

Children Timer

Properties Type, Text, Points, FCol, BCol, VAlign, HAlign, Coord, Active,

Visible, Event, Dragable, FontObj, OnTop, CursorObj, AutoConf,
Data, Translate, Accelerator, KeepOnClose, DrawMode, MethodList,
ChildList, EventList, PropList

Events Close, Create, DragDrop, FontCancel, FontOK, Help,

MouseDblClick, MouseDown, MouseMove, MouseUp, Select

Methods ChooseFont, Detach

The Text object is used to write arbitrary text. It can be used in a Form, SubForm or
Group instead of a Label. The main difference is that a Label is implemented as a true
window object (thus consuming Windows resources). A Text object is not a window
and consumes fewer Windows resources. However, a Label supports DragDrop events
and has various useful properties that are not shared by the Text object.

The contents of the Text object are defined by its Text property. This is a character
array containing one of the following :

 a simple scalar
 an enclosed vector or matrix (also a scalar)
 a simple vector
 a simple matrix
 a vector of enclosed vectors or matrices

Points is either a simple 2-column matrix of (y,x) co-ordinates, or a 2-element vector of
y-coordinates and x-coordinates respectively.

 Chapter 2 A-Z Reference 571

571

There are two distinct cases :

1) Points specifies a single point. In this case, Text may be a single scalar
 character, a simple vector, or a matrix containing a block of text. The result is
 that the character, string, or matrix is written at the specified point.

2) Points specifies more than one point. There are three possibilities :

 a) If Text is a scalar, its contents are written at each of the points in
 Points. This means that by enclosing a vector or matrix, you can draw
 a string or block of text at several locations.

 b) If Text is a vector, each element of Text is written at the
 corresponding position in Points.

 c) If Text is a matrix, each row of Text is written at the corresponding
 position in Points.

FontObj specifies a single font to be used to write the Text. See a description of the
FontObj property for details.

FCol specifies the colour of the Text. For a single text item, FCol may be a single
number which specifies one of the standard Windows colours, or a simple 3-element
numeric vector of RGB colour intensities. If more than one text item is involved, FCol
may be a vector which specifies the colour for each item separately. If so, its length
must be the same as the number of points specified by Points.

BCol specifies the background colour of the text, i.e. the colour for the part of the
character cell that is blank. It is defined in the same way as FCol. HAlign and VAlign
specify the horizontal and vertical alignment of the text respectively. They may each be
numeric scalars or vectors with the same length as the number of points specified in
Points. See HAlign and VAlign for details.

When one or more of FCol, BCol, HAlign and VAlign are vectors, the different
components of Text are drawn using the corresponding colours and alignments.

The value of the Dragable property specifies whether or not the Text object can be
dragged by the user. The value of the AutoConf property determines whether or not the
Text object is repositioned when its parent is resized.

572 Dyalog APL/W Object Reference

Examples

Write 'A' at (10,20)

 'g.t1' ⎕WC 'Text' 'A' (10 20)

Write 'h' at (10,20) in red

 'g.t1' ⎕WC 'Text' 'h' (10 20) ('FCol' 255 0 0)

Write 'Hello' at (10,20)

 'g.t1' ⎕WC 'Text' 'Hello' (10 20)

Write 'THIS IS A
 BLOCK OF
 TEXT ' at (20,30)

 BLK←3 9⍴'THIS IS A BLOCK OF TEXT '
 'g.t1' ⎕WC 'Text' BLK (10 20)

Write 'A' at (10,20) and at (30,40)

 'g.t1' ⎕WC 'Text' 'A' ((10 30)(20 40))

Write a red '+' at (10,20) and a green '+' at (20 40)

 'g.t1' ⎕WC 'Text' '+' ((10 30)(20 40))
 ('FCol' (255 0 0)(0 255 0))

Write 'Hello' at (10,20) and at (30,40)

 'g.t1' ⎕WC 'Text' (⊂'Hello') ((10 30)(20 40))

Write 'A' at (10,20) and 'B' at (30,40)

 'g.t1' ⎕WC 'Text' 'AB' ((10 30)(20 40))

Write 'Hello' at (10,20) and 'World' at (30,40)

 'g.t1' ⎕WC 'Text' ('Hello' 'World')
 ((10 30)(20 40))

 Chapter 2 A-Z Reference 573

573

Text Property

Applies to Clipboard, Combo, ComboEx, Edit, MsgBox, RichEdit, Spinner,
StatusField, Text

This property is associated with the text contents of the Clipboard, Edit, MsgBox and
StatusField objects, or with the edit field in a Combo, or with the contents of a Text
object.

The value of Text is a character array.

In a Combo, StatusField, or a single-line Edit object, Text may be a simple scalar or a
simple vector.

In a multi-line Edit field or in a MsgBox, the value of Text may also be a simple matrix,
or a vector of vectors. If so, "new-line" characters are appended to each row of the
matrix, or to each vector in a vector of vectors, before being displayed. The user may
insert or add a "new-line" character in a multi-line Edit by pressing Ctrl+Enter (Enter
itself is used to press Buttons).

Note that if word-wrapping is in effect in a multi-line Edit object, the structure of Text
does not correspond to the lines displayed.

In a Text object, the value of the Text property may be a simple scalar, an enclosed
vector or matrix, a simple vector, a simple matrix, or a vector of enclosed vectors or
matrices.

In general, the value of Text returned by ⎕WG has the same structure that was assigned
to it by ⎕WC or by the most recent call to ⎕WS. New-Line characters are removed.

You can copy text into the Windows Clipboard by using ⎕WS to set Text for a
Clipboard object. In this case you may specify a simple character scalar, vector or
matrix, or a vector of character vectors. If you are retrieving data from the clipboard that
has been stored by another application, Text will be either a character vector or a vector
of character vectors.

The Text property of a StatusField is updated automatically if its Style property is set to
monitor the status of a key.

574 Dyalog APL/W Object Reference

TextSize Property

Applies to ActiveXControl, Bitmap, Edit, Form, Grid, Printer, Root, Static,
StatusBar, SubForm, TabBar, ToolBar

This property has been replaced by the GetTextSize method, which should be used
instead. TextSize is retained only for compatibility with previous versions of Dyalog
APL.

TextSize is a "read-only" property that reports the size of the bounding rectangle of a
text item in a given font. The result is given in the co-ordinate system of the object in
question. This property is useful for positioning Text objects.

When you query TextSize you give the text item in whose size you are interested and,
optionally, the name of a Font object. The text item may be a simple scalar, a vector or a
matrix. If the Font is omitted, the result is given using the current font for the object in
question. When you query TextSize on its own, you must enclose the argument to ⎕WG.
This is because APL would otherwise not be able to distinguish between the text string
and font name associated with 'TextSize' and other properties with the same name
as these items.

Examples

 '.' ⎕WG ⊂'TextSize' 'Hello World'
2.666666746 9.625

 'FNT1' ⎕WC 'Font' 'Arial' 72
 '.' ⎕WG ⊂'TextSize' 'Hello World' 'FNT1'
12 41.875

 '.' ⎕WS 'Coord' 'Pixel'
 '.' ⎕WG ('TextSize' (3 11⍴'Hello World')) 'Coord'
 39 55 Pixel

 Chapter 2 A-Z Reference 575

575

Thumb Property

Applies to Form, ProgressBar, Scroll, Spinner, SubForm, TrackBar, UpDown

This property determines and reports the position of the thumb in certain objects.

For a Scroll object, the value of Thumb is a single number whose minimum value is 1
and whose maximum value is defined by the Range property.

For a Form or SubForm object, Thumb is a 2-element vector whose elements refer to
the position of the thumb in the object’s own built-in vertical and horizontal scrollbars
respectively.

For other objects, Thumb is a single numeric value in the range defined by the Limits
property.

ThumbDrag Event 440

Applies to TrackBar

If enabled, this event is generated when the user drags the thumb in a TrackBar object.
The event is reported after the value of the Thumb property has been updated and is
reported continuously as the thumb is dragged. You may not disable this event or alter
its effect with a callback function.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 3-element vector as follows :

[1] Object: ref or character vector

[2] Event name or code: 'ThumbDrag' or 440

[3] Thumb value: Integer. The new value of the Thumb
property resulting from the user dragging
the thumb.

576 Dyalog APL/W Object Reference

ThumbRect Property

Applies to TrackBar

ThumbRect is a read-only property that reports the position and size of the bounding
rectangle of the thumb in a TrackBar object. It is a 4-element integer vector containing:

[1] Vertical position of the top-left corner of the bounding rectangle

[2] Horizontal position of the top-left corner of the bounding rectangle

[3] Height of the bounding rectangle

[4] Width of the bounding rectangle

TickAlign Property

Applies to TrackBar

TickAlign determines the position of the tick marks in a TrackBar object. For a
horizontal TrackBar, TickAlign may be either 'Bottom' (the default), 'Top' or
'Both'. If TickAlign is 'Bottom', the ticks are drawn below the slider. If TickAlign
is 'Top', the ticks are drawn above it. If TickAlign is 'Both', the ticks are drawn
above and below.

For a vertical TrackBar, TickAlign may be either 'Right' (the default), 'Left', or
'Both' and similarly specifies to which side of the slider bar the ticks are drawn. Note
that TickAlign may only be set when the TrackBar is created with ⎕WC and may not
subsequently be altered using ⎕WS.

Note that ticks are not drawn if the value of HasTicks is 0

 Chapter 2 A-Z Reference 577

577

TickSpacing Property

Applies to TrackBar

The TickSpacing property specifies the spacing between each tick mark in a TrackBar
object. It is an integer between 1 and the maximum value of the TrackBar which is
defined by the 2nd element of the Limits property.

For example, if you set ('Limits' 10 50) and you specify ('TickSpacing'
10) you will obtain 5 ticks corresponding to the values 10, 20, 30, 40 and 50 along the
slider bar.

Timer Object

Purpose To generate an action at regular intervals.

Parents ActiveXControl, Animation, Bitmap, BrowseBox, Button, Calendar,

Circle, Clipboard, Combo, ComboEx, CoolBand, CoolBar, Cursor,
DateTimePicker, Edit, Ellipse, FileBox, Font, Form, Grid, Group,
Icon, Image, ImageList, Label, List, ListView, Locator, Marker,
MDIClient, Menu, MenuBar, MenuItem, Metafile, MsgBox,
NetClient, NetControl, NetType, OLEClient, OLEServer, Poly,
Printer, ProgressBar, PropertyPage, PropertySheet, Rect, RichEdit,
Root, Scroll, Separator, SM, Spinner, Splitter, Static, StatusBar,
StatusField, SubForm, SysTrayItem, TabBar, TabBtn, TabButton,
TabControl, TCPSocket, Text, Timer, TipField, ToolBar, ToolButton,
ToolControl, TrackBar, TreeView, UpDown

Children Timer

Properties Type, Interval, Active, Event, Data, KeepOnClose, MethodList,

ChildList, EventList, PropList

Events Close, Create, Timer

Methods Detach, Wait

The Timer object is used to generate an event at regular intervals. It can be used to
produce animation and to implement ‘repeaters’ such as spin buttons.

The Interval property specifies how often the Timer generates events and is defined in
milliseconds. Its default value is 1000.

578 Dyalog APL/W Object Reference

The Active property determines whether or not the Timer generates events and can be
used to switch the Timer off and on as required.

Note that if you create a Timer object whose Timer event generates an error (for
example by attaching it to a non-existent callback) it may be very difficult or even
impossible to type into the Session, because the error will be displayed over and over
again. Care is therefore recommended.

Timer Event 140

Applies to Timer

This event is generated at regular intervals by a Timer object and is typically used to
fire a callback function to perform a task repeatedly. Returning a 0 from a callback
function attached to a Timer event has no effect. The event message reported as the
result of ⎕DQ, or supplied as the right argument to your callback function, is a 2 element
vector as follows :

[1] Object: ref or character vector

[2] Event code: 'Timer' or 140

Tip Property

Applies to Animation, Button, Calendar, ColorButton, Combo, ComboEx,
DateTimePicker, Edit, Form, Grid, Group, Label, List, ListView,
MDIClient, MenuItem, ProgressBar, PropertyPage, PropertySheet,
RichEdit, Scroll, SM, Spinner, Static, StatusBar, SubForm,
SysTrayItem, TabBar, TabButton, ToolBar, ToolButton, TrackBar,
TreeView, UpDown

The Tip property is a character vector or character matrix that specifies a help message
which is to be displayed when the user positions the mouse pointer over the object. The
Tip is displayed in a pop-up TipField object specified by the TipObj property.

 Chapter 2 A-Z Reference 579

579

TipField Object

Purpose To display pop-up help.

Parents ActiveXControl, CoolBand, Form, Group, OLEServer, PropertyPage,

PropertySheet, Root, SubForm, TCPSocket

Children Circle, Ellipse, Font, Marker, Poly, Rect, Text, Timer

Properties Type, Event, FontObj, FCol, BCol, Data, Translate, KeepOnClose,

MethodList, ChildList, EventList, PropList

Events Close, Create, FontCancel, FontOK

Methods ChooseFont, Detach

The TipField is used to display pop-up help when the user moves the mouse pointer
over an object.

Most of the GUI objects supported by Dyalog APL/W have Tip and a TipObj
properties. TipObj specifies the name of, or ref to, a TipField object, and Tip specifies a
help message. The TipField automatically pops-up to display the Tip when the user
moves the mouse pointer over the object. It disappears when the user moves the mouse
pointer away.

The TipField is a simple box with a 1-pixel border in which the text specified by Tip is
displayed. FCol, BCol and FontObj can be used to customise the appearance of the text
within the box. FCol specifies the colour of the text; BCol specifies the background
colour with which the box is filled.

If you wish to display Tips for particular objects in different fonts and colours, you must
create a separate TipField for each combination of colour and font you need.

580 Dyalog APL/W Object Reference

TipObj Property

Applies to Animation, Button, Calendar, ColorButton, Combo, ComboEx,
DateTimePicker, Edit, Form, Grid, Group, Label, List, ListView,
MDIClient, MenuItem, ProgressBar, PropertyPage, PropertySheet,
RichEdit, Root, Scroll, SM, Spinner, Static, StatusBar, SubForm,
TabBar, ToolBar, TrackBar, TreeView, UpDown

The TipObj property is a character vector or ref that specifies the name of, or ref to, a
TipField object in which the help message defined by the Tip property is to be
displayed. This message is displayed when the user positions the mouse pointer over the
object.

Note that if TipObj is empty, its value is inherited from its parent. Thus setting TipObj
on a Form defines the default TipField (and thus the default appearance of all Tips) for
all the controls in that Form. Setting TipObj on Root defines the default TipField for the
entire application.

TitleHeight Property

Applies to Grid

This property is a single number that specifies the height of the column titles displayed
in a Grid object. It is expressed in the units specified by the Coord property of the Grid.

To disable the display of column titles, set TitleHeight to 0.

 Chapter 2 A-Z Reference 581

581

TitleWidth Property

Applies to Grid

This property is a single number that specifies the width of the row titles displayed in a
Grid object. It is expressed in the units specified by the Coord property of the Grid.

To disable the display of row titles, set TitleWidth to 0.

Today Property

Applies to Calendar, DateTimePicker, NetClient, NetType

The Today property is an IDN that specifies today’s date in a Calendar or

DateTimePicker object. Its default value is the current date that is set on your computer.

See also CircleToday and HasToday properties.

582 Dyalog APL/W Object Reference

ToolBar Object

Purpose To manage a group of controls such as Buttons.

Parents ActiveXControl, CoolBand, Form, SubForm

Children Bitmap, BrowseBox, Button, Calendar, Circle, Combo, ComboEx,

Cursor, DateTimePicker, Edit, Ellipse, FileBox, Font, Group, Icon,
Image, ImageList, Label, List, ListView, Locator, Marker, Menu,
Metafile, MsgBox, OCXClass, Poly, ProgressBar, Rect, RichEdit,
Scroll, SM, Spinner, Static, SubForm, Text, Timer, TrackBar,
TreeView, UpDown

Properties Type, Posn, Size, Coord, Align, Border, Active, Visible, Event,

VScroll, HScroll, Sizeable, FontObj, FCol, BCol, Picture, OnTop,
IconObj, CursorObj, AutoConf, YRange, XRange, Data, Attach,
TextSize, EdgeStyle, Handle, Hint, HintObj, Tip, TipObj, Translate,
Accelerator, AcceptFiles, KeepOnClose, Redraw, TabIndex,
MethodList, ChildList, EventList, PropList

Events Close, Configure, ContextMenu, Create, DragDrop, DropFiles,

DropObjects, Expose, Help, MouseDblClick, MouseDown,
MouseEnter, MouseLeave, MouseMove, MouseUp, MouseWheel,
Select

Methods Animate, Detach, GetFocus, GetTextSize, ShowSIP

The ToolBar object is used to display and manage a set of controls. It is typically used
to present a set of Buttons which the user can press to perform various actions.
However, the ToolBar has the ability to manage other controls too.

By default, the ToolBar is a raised bar stretched across the top of its parent form. You
can alter its appearance using its EdgeStyle property and you can control its alignment
with its Align property. Align can be set to Top (the default), Bottom, Left or Right and
causes the ToolBar to be attached to the corresponding edge of the Form. A ToolBar
aligned Top or Bottom will automatically stretch or shrink horizontally when its parent
Form is resized, but it will remain fixed vertically. A ToolBar aligned Left or Right will
stretch vertically but will remain fixed horizontally. By default a ToolBar occupies the
entire width or length of the side of the Form to which it is attached and is 30 pixels
high or wide. You can change these defaults using the Posn and Size properties.

 Chapter 2 A-Z Reference 583

583

A ToolBar organises its child controls in the order they are created. The way this is
done is governed by the value of the Align property. If Align is Top or Bottom, the
ToolBar arranges its controls in rows across the screen. If Align is Left or Right, the
ToolBar arranges controls in columns.

The first control added to a ToolBar is automatically positioned 2 pixels down and 2
pixels across from its top left corner. The rule for positioning subsequent controls
depends upon the value of the Align property.

If Align is 'Top' or 'Bottom', controls are positioned so as to be horizontally
adjacent to one another. Whenever a control is added it is positioned relative to the one
that immediately preceded it so that its top left corner meets the top right corner of the
previous one. The HScroll property determines what happens when the end of the
ToolBar is reached. If HScroll is 0 (the default) a control that would otherwise extend
beyond the width of the ToolBar is instead positioned immediately below the first
control in the ToolBar, thereby starting a new row. Note however that the ToolBar is
not automatically resized vertically to accommodate a second row. If you want a multi-
row ToolBar you have to set its height explicitly. If HScroll is ¯1 or ¯2, controls
continue to be added along the ToolBar even though they extend beyond its right edge
and may be scrolled into view using a mini scrollbar. If HScroll is ¯1, the scrollbar is
shown whether or not any controls extend beyond the width of the ToolBar. If HScroll
is ¯2, the scrollbar appears only if required and may appear or disappear when the user
resizes the parent Form.

If Align is 'Left' or 'Right', controls are positioned so as to be vertically adjacent
to one another. Whenever a control is added, its top left corner is positioned against the
bottom left corner of the previous control. The VScroll property determines what
happens when the bottom of the ToolBar is reached. If VScroll is 0 (the default) a
control that would otherwise extend beyond the bottom of the ToolBar is instead
positioned immediately to the right of the first one; thereby starting a new column. Note
however that the ToolBar is not automatically resized horizontally to accommodate a
second column. You must set the width of the ToolBar explicitly. If VScroll is ¯1 or
¯2, controls continue to be added down the ToolBar even though they extend beyond
its bottom edge and may be scrolled into view using a mini scrollbar. If VScroll is ¯1,
the scrollbar is shown whether or not any controls extend beyond the bottom of the
ToolBar. If VScroll is ¯2, the scrollbar appears only if required and may appear or
disappear when the user resizes the parent Form.

If you specify a value for its Posn property, a control will be placed at the requested
position regardless of the value of Style, HScroll or VScroll. However, the next control
added will take its default position from the previous one according to the value of these
properties. Thus if you wish to group your controls together with spaces between the
groups, you need only specify the position of the first one in each group.

584 Dyalog APL/W Object Reference

ToolboxBitmap Property

Applies to ActiveXControl, OCXClass

For an ActiveXControl, the ToolboxBitmap property is a character vector or ref that
specifies the name of , or ref to, a Bitmap object that may be used by a host application
to represent the ActiveXControl when its complete visual appearance is not required.
For example, if you add an ActiveX control to the Microsoft Visual Basic development
environment, its bitmap is added to the toolbox. The Bitmap should therefore be of an
appropriate size, usually 24 x 24 pixels.

For an OCXClass object, the ToolboxBitmap is a read-only property that reports a
bitmap image associated with an OLE Control. This is intended for use by a GUI design
tool. Its value is a 2-element vector. The first element is an integer matrix of pixel
colours corresponding to the Bits property of a Bitmap object. The second element is a
3-column integer matrix specifying the colour map and corresponds to the CMap
property of a Bitmap object.

Thus you can construct a Bitmap object directly from this property with an expression
such as:

 'BM'⎕WC'Bitmap' '','GAUGE' ⎕WG'ToolboxBitmap'

where GAUGE is the name of an OCXClass.

 Chapter 2 A-Z Reference 585

585

ToolButton Object

Purpose The ToolButton object represents a button in a ToolControl.

Parents ToolControl

Children Bitmap, Timer

Properties Type, Caption, Posn, Size, Style, State, Active, Visible, Event,

ImageIndex, Data, Hint, HintObj, Tip, Accelerator, Popup,
KeepOnClose, MethodList, ChildList, EventList, PropList

Events Close, Create, Help, MouseDblClick, MouseDown, MouseMove,

MouseUp, Select

Methods Detach

The ToolButton object represents a selectable button in a ToolControl object.

A ToolButton displays a text string, defined by its Caption property, and an image
defined by its ImageIndex property. Apart from these characteristics, the appearance of
a ToolButton is controlled by its parent ToolControl object.

ImageIndex is an index into an ImageList which contains a set of icons or bitmaps. The
ImageList itself is named by the ImageListObj property of the parent ToolControl.

Typically, you will create up to three ImageLists as children of the ToolControl. These
will be used to specify the pictures of the ToolButton objects in their normal,
highlighted (sometimes termed hot) and inactive states respectively. The set of images
in each ImageList is then defined by creating unnamed Bitmap or Icon objects as
children. Finally, when you create each ToolButton you specify ImageIndex, selecting
the three pictures which represent the three possible states of the button.

If you specify only a single ImageList, the picture on the ToolButton will be the same
in all three states.

The behaviour and appearance of a ToolButton is further defined by its Style property,
which may be 'Push', 'Check', 'Radio', 'Separator' or 'DropDown'.

586 Dyalog APL/W Object Reference

Push buttons are used to generate actions and pop in and out when clicked.

Radio and Check buttons are used to select options and have two states, normal (out)
and selected (in). Their State property is 0 when the button is in its normal (unselected
state) or 1 when it is selected.

Separator buttons are a special case as they have no Caption or picture, but appear as
thin vertical grooves used to separate groups of buttons.

A group of adjacent ToolButtons with Style 'Radio' defines a set in which only one
of the ToolButtons may be selected at any one time. The act of selecting one will
automatically deselect any other. Note that a group of Radio buttons must be separated
from Check buttons or other groups of Radio buttons by ToolButtons of another Style.

A ToolButton with Style 'DropDown' has an associated popup Menu object which is
named by its Popup property. There are two cases to consider.

1. If the ShowDropDown property of the parent ToolControl is 0, clicking the
ToolButton causes the popup menu to appear. In this case, the ToolButton
itself does not itself generate a Select event; you must rely on the user
selecting a MenuItem to specify a particular action.

2. If the ShowDropDown property of the parent ToolControl is 1, clicking the
dropdown button causes the popup menu to appear; clicking the ToolButton
itself generates a Select event, but does not display the popup menu.

 Chapter 2 A-Z Reference 587

587

ToolControl Object

Purpose The ToolControl object provides a native Windows ToolBar control.

Parents ActiveXControl, CoolBand, Form, SubForm

Children Bitmap, BrowseBox, Button, Combo, ComboEx, Cursor, Edit,

FileBox, Font, Group, Icon, Image, ImageList, Label, List, ListView,
Locator, Menu, MenuBar, Metafile, MsgBox, OCXClass,
ProgressBar, RichEdit, Scroll, SM, Spinner, Static, SubForm, Timer,
ToolButton, TrackBar, TreeView, UpDown

Properties Type, Posn, Size, Style, Align, Visible, Event, ImageListObj,

FontObj, Data, Attach, Handle, KeepOnClose, MultiLine,
Transparent, Divider, ShowCaptions, ShowDropDown, Dockable,
UndocksToRoot, Redraw, MethodList, ChildList, EventList, PropList

Events Close, Configure, ContextMenu, Create, DockAccept, DockCancel,

DockEnd, DockMove, DockRequest, DockStart, DragDrop,
DropFiles, DropObjects, Expose, Help, MouseDblClick,
MouseDown, MouseEnter, MouseLeave, MouseMove, MouseUp,
MouseWheel

Methods Animate, Detach, GetFocus, GetTextSize, ShowSIP

The ToolControl object provides an interface to the native Windows ToolBar control
and supersedes the Dyalog APL ToolBar object.

The tools on a ToolControl are normally represented by ToolButton objects, but the
ToolControl may also act as a parent for other objects, including a MenuBar (see
below).

Unlike the ToolBar, the ToolControl fully determines the positioning of its children
automatically and this is governed by their order of creation. The Posn property of any
child of a ToolControl is therefore read-only. Furthermore, the height of objects in a
ToolControl may be no greater than that of a ToolButton in the same ToolControl. This
in turn is governed by the sizes of the Font and ImageList in use in that ToolControl.

588 Dyalog APL/W Object Reference

If a ToolControl is the child of a Form, its position and orientation is defined by its
Align property. This property is ignored if the ToolControl is the child of a CoolBand.

The overall appearance of the ToolButton objects displayed by the ToolControl is
defined by the Style property of the ToolControl itself, rather than by individual
ToolButtons. This may be 'Buttons', 'FlatButtons', 'List' or
'FlatList'. The default is 'FlatButtons'.

The presence or absence of a recessed line drawn above, below, to the left of, or to the
right of the ToolControl is controlled by the Divider property whose default is 1 (show
divider).

The MultiLine property specifies whether or not ToolButtons (and other controls) are
arranged in several rows (or columns) when there are more than will otherwise fit. If
MultiLine is 0 (the default), the ToolControl object clips its children and the user must
resize it to bring more objects into view.

The Transparent property specifies whether or not the ToolControl is transparent. If so,
the visual effect is as if the ToolButtons (and other controls) were drawn directly on the
parent Form.

The ShowCaptions property specifies whether or not the captions of ToolButton objects
are drawn. Its default value is 1 (draw captions). ToolButtons drawn without captions
occupy much less space and ShowCaptions provides a quick way to turn captions on/off
for user customisation.

The ShowDropDown property specifies whether or not a drop-down menu symbol is
drawn alongside ToolButtons which have Style 'DropDown'. ShowDropDown also
affects the behaviour of such ToolButton objects when clicked.

As a special case, the ToolControl may contain a MenuBar as its only child. In this
case, Dyalog APL causes the menu items to be drawn as buttons. Although nothing is
done to prevent it, the use of other objects in a ToolControl containing a MenuBar, is
not supported.

 Chapter 2 A-Z Reference 589

589

TrackBar Object

Purpose The TrackBar object is a slider control that allows the user to enter a
value by positioning a pointer (thumb) on a scale.

Parents ActiveXControl, CoolBand, Form, Grid, Group, PropertyPage,

SubForm, ToolBar, ToolControl

Children Bitmap, Circle, Cursor, Ellipse, Font, Icon, Marker, Poly, Rect, Text,

Timer

Properties Type, Posn, Size, Style, Coord, Border, Active, Visible, Event,

Thumb, Step, VScroll, HScroll, Limits, SelRange, Sizeable, Dragable,
FontObj, BCol, CursorObj, AutoConf, Data, Attach, EdgeStyle,
Handle, Hint, HintObj, Tip, TipObj, Translate, Accelerator,
TickAlign, TickSpacing, HasTicks, ShowThumb, TrackRect,
ThumbRect, AcceptFiles, KeepOnClose, Redraw, TabIndex,
MethodList, ChildList, EventList, PropList

Events Close, Configure, ContextMenu, Create, DragDrop, DropFiles,

DropObjects, Expose, GotFocus, Help, KeyPress, LostFocus,
MouseDown, MouseMove, MouseUp, Scroll, Select, ThumbDrag

Methods Animate, Detach, GetFocus, GetTextSize, ShowSIP

The TrackBar object consists of a window which contains a slider bar, a thumb, and a
set of tick marks. The slider in a TrackBar moves in increments that you specify when
you create it. For example, if you specify that the TrackBar should have a range of five,
the slider can only occupy six positions: a position at the left side of the TrackBar and
one position for each increment in the range. Typically, each of these positions is
identified by a tick mark. TrackBars can have either a vertical or horizontal orientation.
They can have tick marks on either side, both sides, or neither. A selection of different
TrackBars is illustrated below.

590 Dyalog APL/W Object Reference

The position and size of the container window are defined by the Posn and Size
properties. Its appearance is defined by the EdgeStyle, Border and BCol properties. The
defaults are ('EdgeStyle' 'None'), ('Border' 0) and ('BCol' 0). The
default background colour ('BCol' 0) obtains either the standard Window
Background colour, or grey to match the colour of the parent object if it has a 3-
dimensional appearance.

The orientation of a TrackBar is determined by the HScroll and VScroll properties. A
horizontal TrackBar is obtained by setting HScroll to ¯1 and VScroll to 0. This is the
default. A vertical TrackBar is obtained by setting VScroll to ¯1 and HScroll to 0.

The ShowThumb property determines whether or not the thumb is visible. Its default
value is 1. You may toggle this property dynamically using ⎕WS.

The TrackBar optionally displays tick marks at the two ends of the slider bar and spaced
out along it. This behaviour is determined by the HasTicks property which may be 1
(the default) or 0 and may be set only when the object is created by ⎕WC.

 Chapter 2 A-Z Reference 591

591

If HasTicks is 1, the position and frequency of the tick marks is determined by the
TickAlign and TickSpacing properties. Note that TickAlign may only be set when the
TrackBar is created with ⎕WC and may not be altered using ⎕WS.

The slider and tick marks in a horizontal TrackBar are drawn along the top of the
enclosing window. The slider and tick marks in a vertical TrackBar are drawn along the
left edge of the window. The position and size of the slider and the thumb may be
obtained from the TrackRect and ThumbRect properties which report these values in
pixels. These are read-only properties and cannot not be set with ⎕WC or ⎕WS.

The value of the TrackBar is determined by its Thumb property which is an integer that
may be set with ⎕WS or retrieved with ⎕WG. The Limits property specifies the minimum
and maximum values of Thumb corresponding to its position at the two ends of the
slider bar. The Step property is a 2-element integer vector defining the small and large
increments by which the Thumb moves. A small step is obtained by pressing a cursor
movement key; a large step is achieved by clicking the left mouse button either side of
the thumb or by pressing Page Up and Page Down. The user may also drag the thumb to
a new position or move it directly to either end of the slider by pressing Home or End.

An alternative form of the TrackBar is obtained by setting the Style property to
'Selection'. This may only be done when the object is created using ⎕WC. This
style of TrackBar has a slider that is represented by a recessed thick rectangle instead of
a solid line. Furthermore, you can select a range of values within the TrackBar by
setting the SelRange property. This causes the TrackBar to display a solid bar within the
slider and to show the corresponding tick marks as small triangles. Note that there is no
way for the user to change SelRange directly; you can only do this using ⎕WS.

In addition to the normal mouse events, the TrackBar generates a Scroll and
ThumbDrag event. The Scroll event is the same event that is generated by a Scroll
object and is reported when the user repositions the thumb. If enabled, the ThumbDrag
event is reported continuously as the user drags the Thumb with the mouse and may be
used to synchronise the display of a corresponding value in another object.

592 Dyalog APL/W Object Reference

TrackRect Property

Applies to TrackBar

TrackRect is a read-only property that reports the position and size of the bounding
rectangle of the slider in a TrackBar object. It is a 4-element integer vector containing:

[1] Vertical position of the top-left corner of the bounding rectangle

[2] Horizontal position of the top-left corner of the bounding rectangle

[3] Height of the bounding rectangle

[4] Width of the bounding rectangle

Translate Property

Applies to ActiveXControl, Animation, Bitmap, BrowseBox, Button, Clipboard,
ColorButton, Combo, ComboEx, DateTimePicker, Edit, Form, Grid,
Group, ImageList, Label, List, ListView, MDIClient, Menu,
MenuBar, MenuItem, Metafile, OCXClass, Printer, ProgressBar,
PropertyPage, PropertySheet, RichEdit, Root, Scroll, Separator,
Spinner, Static, StatusBar, StatusField, SubForm, SysTrayItem,
TabBar, TabBtn, Text, TipField, ToolBar, TrackBar, TreeView,
UpDown

This property applies to the Classic Edition only. In the Unicode Edition, its value

is ignored.

The Translate property specifies whether or not character data is to be translated.
Translate is a character vector whose values may be 'Inherit', 'Translate',
'None', or 'ANSI'

A value of 'Translate' means that all character property values and event
parameters are translated to and from ⎕AV using the current output translation table
(normally WIN.DOT).

A value of 'ANSI' means that all character property values and event parameters are
translated to and from ⎕AV using the default translation scheme as represented by the
standard, unmodified, output translation table (WIN.DOT). This is the default value for
a run-time application. Unless you require a non-standard translation, it is therefore
unnecessary to include input and output tables with a run-time application.

 Chapter 2 A-Z Reference 593

593

A value of 'None' means that character data is passed between APL and the object
with no translation.

A value of 'Inherit' means that the object inherits its translation from its parent.

Using the development version of Dyalog APL, the default value for the Root and
Printer objects is 'Translate'. Using the run-time version of Dyalog APL, the
default value for the Root and Printer objects is 'ANSI'. For other objects, the default
is 'Inherit'.

Note that changing Translate does not affect existing property values and it can be used
temporarily. For example, if you wish to set a particular property of an object without
translation, but require other properties to be translated, you can set Translate to
'None', set the particular property, and then set Translate back to 'Translate' or
'Inherit'.

Transparent Property

Applies to Animation, ToolControl

The Transparent property specifies whether or not a ToolControl or an Animation has a
transparent background.

Transparent is a single number with the value 0 (the default) or 1.

If Transparent is 1, the visual effect is as if the ToolButtons (and other controls owned
by the ToolControl) were drawn directly on the parent Form as illustrated below.

594 Dyalog APL/W Object Reference

TreeView Object

Purpose The TreeView object displays a hierarchical list of items.

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, SubForm,

ToolBar, ToolControl

Children Bitmap, Circle, Cursor, Ellipse, Font, Icon, ImageList, Marker, Poly,

Rect, Text, Timer

Properties Type, Items, Posn, Size, Coord, Border, Active, Visible, Event,

Depth, HasLines, HasButtons, EditLabels, ImageListObj,
ImageIndex, SelImageIndex, SelItems, Sizeable, Dragable, FontObj,
FCol, BCol, CursorObj, AutoConf, Index, Data, Attach, EdgeStyle,
Handle, Hint, HintObj, Tip, TipObj, Translate, Accelerator,
AcceptFiles, KeepOnClose, CheckBoxes, FullRowSelect,
SingleClickExpand, Redraw, TabIndex, AlwaysShowSelection,
MethodList, ChildList, EventList, PropList

Events BeginEditLabel, Close, Configure, ContextMenu, Create, DragDrop,

DropFiles, DropObjects, EndEditLabel, Expanding, Expose,
FontCancel, FontOK, GotFocus, Help, ItemDblClick, ItemDown,
ItemUp, KeyPress, LostFocus, MouseDblClick, MouseDown,
MouseEnter, MouseLeave, MouseMove, MouseUp, MouseWheel,
Retracting, Select

Methods AddChildren, AddItems, Animate, ChooseFont, DeleteChildren,

DeleteItems, Detach, GetFocus, GetItemHandle, GetItemState,
GetParentItem, GetTextSize, SetItemImage, SetItemState, ShowItem,
ShowSIP

A TreeView object displays a hierarchical list of items, such as the headings in a
document, the entries in an index, or the files and directories on a disk. Each item
consists of a label and an optional bitmapped image, and each item can have a list of
sub-items associated with it. By clicking an item, the user can expand and collapse the
associated list of sub-items.

The contents of a TreeView object are defined by the Items property; a vector of
character vectors that specifies the item labels.

The ImageListObj, ImageIndex and SelImageIndex properties define bitmapped images
corresponding to each item. The bitmapped images are drawn to the left of the item
labels.

 Chapter 2 A-Z Reference 595

595

ImageListObj specifies the name of a single ImageList object that contains one or more
bitmaps.

ImageIndex and SelImageIndex are ⎕IO sensitive scalars, or vectors with the same
length as the number of items in the object. The value in the i’th element specifies the

image for the i’th item and is an index into the corresponding ImageList object.

ImageIndex specifies the image displayed when an item is not selected, SelImageIndex
specifies the image displayed when an item is selected.

If ImageListObj is specified, but ImageIndex is empty or omitted, the first bitmap in the
ImageList is drawn alongside every item. If an element of ImageIndex or
SelImageIndex specifies a value that does not correspond to a bitmap in the ImageList,
no corresponding picture is drawn.

The structure of the items (i.e. the parent/child relationships of the items) is defined by
the Depth property. This is either a scalar 0 (the default) which means that all items are
root items, or it is a numeric vector of the same length as Items. Non-zero values in
Depth indicate child items.

The HasLines property is 0, 1 or 2 and determines whether or not lines are drawn that
link child items to their corresponding parent item. If HasLines is 0, no lines are drawn.
If HasLines is 1, lines are drawn at all except the top level, i.e. the object does not link
items at the root of the hierarchy. The default value for HasLines is 2 which provides
lines at all levels including the root.

The HasButtons property determines whether or not the TreeView object has a button to
the left side of each parent item. It is Boolean with a default value of 1. The user can
click the button to expand or collapse the child items as an alternative to double-
clicking the parent item. Note that by itself, setting HasButtons to 1 does not add
buttons to items at the root of the hierarchy. To achieve this you must also set HasLines
to 2.

The CheckBoxes property specifies whether or not check boxes are displayed alongside
items in a TreeView.

The FullRowSelect property specifies whether just the item itself, or the entire row of
the TreeView, is highlighted when an item is selected. FullRowSelect should not be
used if HasLines is 1 or 2

When the user presses the left mouse button over an item, the object generates an
ItemDown event. This is followed by an ItemUp event when the mouse button is
released. The object also generates an ItemDblClick event when the left mouse is
double-clicked over an item. If all three events are enabled, they are reported in the
order ItemDown, ItemDblClick, ItemUp.

596 Dyalog APL/W Object Reference

When a parent item is in its retracted state (its children are not visible) it can be
expanded to show its children by the user double-clicking its label or by clicking over
its button or tree lines. An Expanding event is reported immediately before the children
are shown. Similarly, when a parent item is in its expanded state, it can be retracted to
hide its children when a Retracting event is reported.

You can use the Expanding event to define new children for the object just before they
are shown. You can also control the actions of these events using callback functions.

The EditLabels is a Boolean property (default 0) that determines whether or not the user
may edit the labels which are specified by the Items property.

The SelItems property is a Boolean vector that indicates which item is currently
selected. If more items are visible than can fit within the object, a scrollbar is
automatically provided. The Index property is a ⎕IO sensitive integer that reports the
index number of the first item displayed in the object and changes as the items are
scrolled.

Type Property

Applies to ActiveXContainer, ActiveXControl, Animation, Bitmap, BrowseBox,
Button, Calendar, Circle, Clipboard, ColorButton, Combo, ComboEx,
CoolBand, CoolBar, Cursor, DateTimePicker, Edit, Ellipse, FileBox,
Font, Form, Grid, Group, Icon, Image, ImageList, Label, List,
ListView, Locator, Marker, MDIClient, Menu, MenuBar, MenuItem,
Metafile, MsgBox, NetClient, NetControl, NetType, OCXClass,
OLEClient, OLEServer, Poly, Printer, ProgressBar, PropertyPage,
PropertySheet, Rect, RichEdit, Root, Scroll, Separator, SM, Spinner,
Splitter, Static, StatusBar, StatusField, SubForm, SysTrayItem,
TabBar, TabBtn, TabButton, TabControl, TCPSocket, Text, Timer,
TipField, ToolBar, ToolButton, ToolControl, TrackBar, TreeView,
UpDown

This property determines the type of an object. Its value is a character vector containing
a valid object type. The Type property is set by ⎕WC and reported by ⎕WG, but may not
be altered using ⎕WS.

 Chapter 2 A-Z Reference 597

597

TypeLibID Property

Applies to ActiveXControl, OLEServer

The TypeLibID property is a read-only property that reports the value of the globally
unique identifier (GUID) of the Type Library associated with a COM object.

TypeLibFile Property

Applies to ActiveXControl, OLEServer

The TypeLibFile property is a read-only property that reports the name of the file in
which the Type Library for an COM object is stored.

TypeList Property

Applies to OCXClass, OLEClient

This property reports the names of all the special data types defined for a COM object.
It is a vector of character vectors returned by ⎕WG. It may not be set using ⎕WC or ⎕WS.
Further information about each data type may be obtained using GetTypeInfo.

Note that TypeList reports all of the data type names recorded in the Type Library
associated with the COM object. If several COM objects are provided within a single
.OCX file, the entire set of data types reported may not necessarily be applicable to the
Control in question.

Underline Property

Applies to Font

This property specifies whether or not the characters in the font associated with a Font
object are underlined or not. It is either 0 (normal) or 1 (underlined). There is no
default; the value of this property reflects the underline characteristic of the font
allocated by Windows.

598 Dyalog APL/W Object Reference

Undo Method 170

Applies to Grid

This method is used to undo the previous change in a Grid object.

The Grid object maintains a buffer of the most recent 8 changes made by the user since
the Values property was last set by ⎕WC or ⎕WS.

Your application can restore these changes using the Undo method. This restores the
specified number of changes made by the user and removes them from the undo stack.

It is therefore not possible to “redo an undo”.

The argument to Undo is ⍬,or a single item as follows :

[1] Number of changes integer

If called with an argument of ⍬, the default value for the Number of changes is 1. This
restores the most recent change.

 Chapter 2 A-Z Reference 599

599

UndocksToRoot Property

Applies to CoolBand, Form, SubForm, ToolControl

Specifies the parent adopted by an object when its Type changes to a Form as a result of
an undocking operation.

UndocksToRoot is a single number with the value 0 or 1.

If UndocksToRoot is 1, the object becomes a Form that is a child of Root and therefore
becomes completely independent of the Form in which it was previously docked.

If UndocksToRoot is 0, the object becomes a Form that is a child of the Form in which
it was previously docked and is therefore always displayed on top of it. This setting is
appropriate for a dockable ToolControl.

The default value of UndocksToRoot is 1 if the object was originally created as a child
of Root; otherwise it is 0.

600 Dyalog APL/W Object Reference

UpDown Object

Purpose The UpDown object is a pair of arrow buttons used to increment or
decrement a value.

Parents ActiveXControl, CoolBand, Form, Group, PropertyPage, SubForm,

ToolBar, ToolControl

Children Bitmap, Circle, Cursor, Ellipse, Font, Icon, Marker, Poly, Rect, Text,

Timer

Properties Type, Posn, Size, Coord, Border, Active, Visible, Event, Thumb,

Step, VScroll, HScroll, Wrap, Limits, Sizeable, Dragable, FCol,
BCol, CursorObj, AutoConf, Data, Attach, EdgeStyle, Handle, Hint,
HintObj, Tip, TipObj, Translate, Accelerator, AcceptFiles,
KeepOnClose, Redraw, TabIndex, MethodList, ChildList, EventList,
PropList

Events Close, Configure, ContextMenu, Create, DragDrop, DropFiles,

DropObjects, Expose, Help, MouseDown, MouseEnter, MouseLeave,
MouseMove, MouseUp, Select, Spin

Methods Animate, Detach, GetFocus, GetTextSize, ShowSIP

An UpDown object is a pair of arrow buttons that the user can click to increment or
decrement a value, such as a scroll position or a number displayed in a companion
control. The Spinner object is actually a composite object consisting of an UpDown and
a companion Edit.

 Chapter 2 A-Z Reference 601

601

UpperCase Property

Applies to Root

This property specifies whether or not property names returned by ⎕WG and event
names supplied by ⎕DQ and ⎕NQ are converted to uppercase or not. It is a Boolean
property where 1 means convert to upper case and 0 means not. The default is 0. For
example :

 '.' ⎕WG 'Type'
Root

 '.' ⎕WS 'UpperCase' 1
 '.' ⎕WG 'Type'
ROOT

In Dyalog APL Version 6, property names were always reported in upper case. This
was changed in Version 7. The UpperCase property is provided to enable applications
developed prior to Dyalog APL/W Version 7 to function with minimal alteration.

ValidIfEmpty Property

Applies to Edit, Spinner

This property applies to an Edit object with Style Single and specifies whether or not an
empty field is considered to be valid. It also applies to a Spinner. Its value is either 0 (an
empty field is not valid) or 1 (an empty field is valid. If the FieldType is Numeric,
LongNumeric, Currency, Date or Time, the default value for ValidIfEmpty is 0.
Otherwise, its default value is 1.

If ValidIfEmpty is 0 and the user attempts to leave the Edit object by shifting the input
focus to another control, or by selecting a Button or MenuItem, the Edit object will
generate a BadValue event. The Text property will reflect the appearance of the field
and be empty, but the Value property will not be changed.

If ValidIfEmpty is 1 and the FieldType is Numeric, LongNumeric, Currency, date or
Time, the Value property will be set to ⍬ when the user clears the field and leaves it.

602 Dyalog APL/W Object Reference

VAlign Property

Applies to Text

This property determines the vertical alignment of text in the Text object. It is either a
single integer value, or, if the Text object has several components, a corresponding
vector of such values. These may be :

 0 : base aligned (the base line of the character is aligned on the y-
 co-ordinate specified by the Points property).

1 : half aligned (the centre of the character is aligned on the y-coordinate
 specified by the Points property).

2 : cap aligned (the top of the character is aligned on the y-coordinate
 specified by the Points property).

3 : bottom aligned (the bottom of the character cell is aligned on the y-
 co-ordinate specified by the Points property).

4 : top aligned (the top of the character cell is aligned on the y-
coordinate specified by the Points property). This is the
default.

Value Property

Applies to Edit, Label, Spinner

This property specifies or reports the numeric value associated with an Edit, Label or
Spinner object whose FieldType property is set to Numeric, LongNumeric, Date,
LongDate or Time.

If the FieldType is Numeric or LongNumeric, the Value property contains a scalar
number. If the FieldType is Date or LongDate, the Value property is an integer
representing the date as the number of days since 1st January 1900. If the FieldType is
Time, the Value property is an integer that contains the number of seconds since
midnight.

 Chapter 2 A-Z Reference 603

603

Values Property

Applies to Grid

This property specifies the data values for the cells in a Grid object. Values must be a
matrix whose elements are either single numbers, character scalars, character vectors or
character matrices. This property is updated as the user moves around the Grid changing
data.

VariableHeight Property

Applies to CoolBar

The VariableHeight property specifies whether or not a CoolBar displays bands at the
minimum required height, or all the same height (that of the largest).

VariableHeight is a single number with the value 0 (same height) or 1 (variable height).
The default is 1.

View Property

Applies to ListView

The View property specifies how the items in a ListView object are displayed. It is a
character vector which may have one of the following values; 'Icon' (the default),
'SmallIcon', 'List' or 'Report'.

When View is 'Icon' or 'SmallIcon', the items are arranged row-wise with large
or small icons as appropriate. When View is set to 'List', the items are arranged
column-wise using small icons. When View is set to 'Report', the items are
displayed in a single column using small icons but with the matrix specified by
ReportInfo displayed alongside. In this format, the ListView also provides column
headings which are specified by the ColTitles property. The alignment of these titles
(and of the data in the columns beneath them) is defined by the ColTitleAlign property.
Examples of different views are illustrated below.

604 Dyalog APL/W Object Reference

 Chapter 2 A-Z Reference 605

605

Visible Property

Applies to ActiveXControl, Animation, Button, Calendar, Circle, ColorButton,
Combo, ComboEx, CoolBand, DateTimePicker, Edit, Ellipse, Form,
Grid, Group, Image, Label, List, ListView, Marker, MenuBar, Poly,
ProgressBar, PropertySheet, Rect, RichEdit, Scroll, SM, Spinner,
Splitter, Static, StatusBar, StatusField, SubForm, TabBar, TabBtn,
Text, ToolBar, ToolButton, ToolControl, TrackBar, TreeView,
UpDown

This property specifies whether or not an object is currently visible. It is a single
number with the value 0 (object is invisible) or 1 (object is visible). The default is 1.
Setting Visible on and off is a way to pop a dialog box up and down as required.

Note that an invisible object is not necessarily inactive, and is capable of generating
events. For example, a Button with a Cancel property of 1 will generate a Select (30)
event (if enabled) whether or not it is visible. An invisible object will also respond to
methods and events sent to it by ⎕NQ.

606 Dyalog APL/W Object Reference

VScroll Property

Applies to Combo, ComboEx, Edit, Form, Grid, List, ListView, RichEdit, Scroll,
StatusBar, SubForm, TabBar, ToolBar, TrackBar, UpDown

This property typically determines whether or not an object has a vertical scrollbar. It is
a single integer with the value ¯3, ¯2, ¯1, or 0.

For a Form object, the value ¯1 specifies that the Form has a vertical scrollbar. A value
of 0 (which is the default) means that it does not.

When applied to an Edit object, the value ¯2 specifies that the data is scrollable
vertically, but only by using the cursor keys; a scrollbar is not provided. A value of ¯1
causes a scrollbar to be displayed (whether or not one is needed).

When applied to a List object, a value of ¯1 or ¯2 causes a scrollbar to be displayed if
required (when the list of items exceeds the height of the object).

When applied to a Combo or ComboEx object, a value of ¯1 or ¯2 causes a scrollbar to
be displayed, whether or not one is required..

For all three object, a value of 0 inhibits scrolling altogether.

For a Scroll object, VScroll may be ¯1 or 0. If it is ¯1, the direction of the scrollbar is
vertical. If both HScroll and VScroll are set to ¯1, HScroll takes precedence and forces
VScroll back to 0.

For a StatusBar, TabBar or ToolBar with Align set to Left or Right, VScroll determines
whether or not a vertical scrollbar is provided and how the object positions its children.
If VScroll is 0 (the default) the object organises its children in multiple columns and
does not provide a scrollbar. If VScroll is ¯1 or ¯2, the object organises its children in
a single column and provides a mini scrollbar to allow those positioned beyond the
bottom edge of the object to be scrolled into view. If VScroll is ¯1, the scrollbar is
always shown. If VScroll is ¯2, it is only shown when needed.

For a Grid, VScroll may be 0 (no vertical scrollbar), ¯1 (scrollbar is displayed when
required), ¯2 (same as ¯1) or ¯3 (scrollbar is always displayed).

 Chapter 2 A-Z Reference 607

607

VScroll Event 38

Applies to Form, SubForm

If enabled, this event is generated when the user attempts to move the thumb in a
vertical scrollbar in a Form or SubForm. This event occurs only in a Form whose
VScroll property is set to ¯1 and is distinct from the Scroll event which is generated by
a Scroll object. The event may be generated in one of three ways :

 a) dragging the thumb

 b) clicking in one of the "arrow" buttons situated at the ends of the
 scrollbar. This is termed a small change, the size of which is defined
 by Step[1].

 c) clicking in the body of the scrollbar. This is termed a large change,
 the size of which is defined by Step[2].

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 4-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'VScroll' or 38

[3] Scroll Type: numeric

[4] Position: numeric

The value of Scroll Type is 0 (drag), 1 or ¯1 (small change) or 2 or ¯2 (large change).
The sign indicates the direction. The value of Position is the new (requested) position of
the thumb. Notice however that the event is generated before the thumb is actually
moved. If your callback function returns a scalar 0, the position of the thumb will
remain unaltered.

608 Dyalog APL/W Object Reference

Wait Method 147

Applies to BrowseBox, Clipboard, FileBox, Form, Locator, Menu, MsgBox,
PropertySheet, Root, SysTrayItem, TCPSocket, Timer

The Wait method is the same as executing ⎕DQ on the object.

The Wait method is niladic.

 'F'⎕WC'Form'
...
 Z←F.Wait

WantsReturn Property

Applies to Edit, RichEdit

This Boolean property specifies the behaviour of the Enter key for a multi-line Edit
(Style 'Multi') and a RichEdit object.

A value of 0 means that the Enter key is ignored by the Edit or RichEdit. Instead, the
Enter key will (if appropriate) cause a Select event on a Button in the same Form. The
user must press Ctrl+Enter to input a new line. A value of 1 means that pressing the
Enter key will introduce a new line into the object.

WantsReturn must be established when the object is created by ⎕WC and may not
subsequently be altered using ⎕WS. Its default value is 0 in an Edit and 1 in a RichEdit.

WeekNumbers Property

Applies to Calendar, DateTimePicker

The WeekNumbers property specifies whether or not a Calendar object displays week
numbers.

WeekNumbers is a single number with the value 0 (week numbers are not shown) or 1
(week numbers are shown); the default is 0.

 Chapter 2 A-Z Reference 609

609

Weight Property

Applies to Font

This property specifies the degree of boldness of a font associated with a Font object. It
is a number in the range 0 to 1000, where 0 represents very feint and 1000 represents
very bold. There is no default; the value of this property reflects the degree of boldness
of the font allocated by Windows. In general, 400 means normal and 700 means bold.

WinIniChange Event 133

Applies to Root

If enabled, this event is reported when another application updates WIN.INI (Version 7)
or changes relevant registry settings (Version 8) using the standard API calls. The event
is reported after the change has taken place and cannot be disabled or inhibited in any
way. If your application depends upon WIN.INI or registry settings, this event gives
you the opportunity of refreshing these parameters if they are changed.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'WinIniChange' or 133

WordFormat Property

Applies to RichEdit

The WordFormat property is identical to the CharFormat property except that it is used
to apply formatting to the selected word or words in a RichEdit object. If the selection is
empty but the insertion point is inside a word, the formatting is applied to the word. See
CharFormat for further details.

610 Dyalog APL/W Object Reference

WorkspaceLoaded Event 525

Applies to Session (⎕SE)

If enabled, this event is reported when a workspace is loaded or on a clear ws. You
may not nullify or modify the event with a 0-returning callback, nor may you generate
the event using ⎕NQ, or call it as a method.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 2-element vector as follows :

 [1] Object name : character vector ('⎕SE')
 [2] Event name or code: 'WorkspaceLoaded' or 525

This event is fired immediately after a workspace has been loaded and before the
execution of ⎕LX.

The callback function you attach should be defined in ⎕SE.

Wrap Property

Applies to ListView, ProgressBar, Spinner, UpDown

The Wrap property is Boolean and has a default value of 1.

For a ListView it specifies whether or not long labels (specified by the Items property)
may be wrapped or not.

For a ProgressBar object it determines whether or not the object starts over again when
it reaches its upper limit.

For Spinner and UpDown objects, Wrap determines what happens when the value in the
Spinner reaches its upper or lower limit. If Wrap is 1 the Spinner will wrap around to its
opposite limit. Otherwise it will stick.

 Chapter 2 A-Z Reference 611

611

XRange Property

Applies to ActiveXControl, Bitmap, Form, Grid, Group, MDIClient, Metafile,
Printer, Root, Static, StatusBar, SubForm, TabBar, ToolBar

XRange and YRange together determine a user-defined co-ordinate system. These
properties are effective on the object's children which have Coord set to 'User'.

XRange is a 2-element numeric vector containing the x-coordinate of the top left and
bottom right interior corners of the object respectively. See Coord for further details.

.

Yield Property

Applies to Root

This property specifies the frequency with which APL yields to Windows and applies
mainly to Version 7. Multi-tasking in Windows 3.x is implemented by task switching
between applications whenever any application requests a message from the queue. An
application that is purely performing computational or file-handling tasks will therefore
prevent all other applications from running. Well-behaved Windows applications should
yield control by requesting a message periodically even though no user interaction is
currently taking place. However, this operation takes a perceptible length of time, even
if no other applications are running.

By default, Dyalog APL/W yields control to Windows approximately every 1/5th of a
second. This is implemented by checking the time at the beginning of each line of
executable APL code and yielding if 1/5th of a second or more has elapsed since the last
yield. This mechanism also allows APL to detect user interrupts (which are simply
Windows messages) during the execution of code.

In most circumstances yielding every 1/5th of a second produces "good" Windows
behaviour with little impact on APL throughput. However, in some cases it may be
beneficial to use the Yield property to explicitly control the yield frequency. An
example is in an application that takes an appreciable time to redraw an existing
graphical picture. If APL yields before the entire picture has been redrawn, some
objects will be erased before others are redrawn, causing a flickering effect.

612 Dyalog APL/W Object Reference

The value of Yield is an integer expressed in 1/1000's of a second. Its default value is
200. Yield defines the period of time allowed to elapse between the execution of
successive lines of APL code before APL yields to Windows by requesting a message
from the Windows queue. If Yield is set to zero APL does not explicitly yield.

Note that the value of this property only controls the yield frequency when APL is
executing user-defined code. APL may also yield implicitly during ⎕DL, ⎕DQ, ⎕NQ,
⎕WC, ⎕SR, ⎕WS and ⎕WG and in communicating with Auxiliary processors. Note that
setting Yield to 0 (or to a very high value) during the execution of code that does not
implicitly yield will effectively de-activate all other applications (including Program
manager) and disable APL interrupts (Ctrl+Break). It should therefore be used with
extreme caution.

YRange Property

Applies to ActiveXControl, Bitmap, Form, Grid, Group, MDIClient, Metafile,
Printer, Root, Static, StatusBar, SubForm, TabBar, ToolBar

XRange and YRange together determine a user-defined co-ordinate system. These
properties are effective on the object's children which have Coord set to 'User'.

YRange is a 2-element numeric vector containing the y-coordinate of the top left and
bottom right interior corners of the object respectively. See Coord for further details.

Dyalog Ltd

Minchens Court

Minchens Lane

Bramley

Hampshire

RG26 5BH

United Kingdom

www.dyalog.com

