’

—~—

Interface Guide

DYALOC

The tool of thought for expert programming

Version 13.0

Dyalog is a trademark of Dyalog Limited
Copyright ® 1982-2011 by Dyalog Limited.

All rights reserved.

Version 13.0

First Edition April 2011

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or
fitness for any particular purpose. Dyalog Limited reserves the right to revise this
publication without notification.

TRADEMARKS:
SQAPL is copyright of Insight Systems ApS.
UNIX is a registered trademark of The Open Group.

Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.

All other trademarks and copyrights are acknowledged.

Contents

CHAPTER 1 INtroduCtioncccoummnmmmnmnssmmnmssnenssssssssssssssssssssssssssssssssensans 1
O VRIVICW ...ttt ettt et et et et e et e e st e et et e eaeees e e es e e ese e beenseemaesneeeseesseenseenseenseensesneenneennes 1
COMCEPLS ...ttt ettt ettt et e s st a ettt e s 2
ODJECES .ttt ettt ettt ettt et et e et e e et sae e be et e e sbeetbeetb e ta e aeebe e b e enbeereeere e reebeenneas 4
IMPlementation OVEIVIEWcc.eecvieriiiieiieiiesteeteete s etee e e sreesseeaeeseeseeereesseesseesseas 7
CTEAING ODJECES....vtieiitieeiiieitieeiee et eite et e etteette et ee et e ebeeebeeebeeebbeeseeebaeessseensseennneens 8
NAMING ODJECES ...vvevviiiiieiiiieie ettt ettt ettt ste e beeaeeraeeteeeseesseesseesbeessesssessaesseenas 9
SPECITYING PTOPEITIES ...vviviiiiiiieiiieiieetieeieeee ettt ettt be s staesaeesaeeseesseeneees 9
SAVING ODJECS . vveuvieeiieiiiiiieiie ittt ettt ettt et e ste e e eaeeaesaeesseesseesseesseessesssesssesneesnes 10
The Object HICTarchyc.coueiuieiieiieeee et 10
PLOPEITIES ..enentiieitieteei ettt ettt sttt et bt 11
Setting Properties With ASSIZNMENTcc.coiriiiiiiiiiiccneeeeeceeeee e 11
Retrieving property values by reference........c.cveeveieiinienineneneeieieeiene e 12
Setting Properties With OWCcoeuiiiiiiiiiieeeeeee e 13
Changing Property Values wWith (WScoooeiiiiiieiceeeeeee e 14
The EVENnt PTOPETtYcoeiiiiiriiiiiieiietccesse ettt 16
User Interaction & EVENTS........cccveriiiiiieiiiieeiesiesieee et 18
Giving Control t0 the USETcceieiiiieiieeiiiesie ettt esbeeevae e 18
The EVEeNnt QUEUEoooiiiiiiiiiiie e et ee e 19
Assignment and reference to the Event Propertycccoevvevviieniieniiieniieniieeees 20
Callback FUNCHIONS ..ottt 22
Generating Events using [INQ...........cocvovoveviuiiiiiiieceeeeeeeec e 25
1Y (1 1 Vo Yo USSP 27
Calling MEthodscouviiiiiiiiiieiee et 27
Invoking Methods with [INQc.covriiiiiiiieieie e 27
Events as MethodScouiiiiiiiiiiic e 28
GUI ODbjects aS NAMESPACES ...cuveerveeuieiieiiieniietieieeieeteeteesteesseesseeseeaeeneesseesseenseeseensens 29
Attaching GUI Objects t0 NaAMESPACESc.veevreevrreeeriieniienieeieeie e seeeseeenaeeseenseennens 32
Namespace References and GUI ODJeCtSocveeieiierieniienieeie e 33
Modal DiIalog BOXESc.eeeuieiieiieiieie ettt ettt et 36
The MsgBox and FileBoX ODJECLSccveeviiiiiiiiriieiieiieieeie et 37
Multi-Threading With ObBJECESc.eiiiiiiiiiiieieit e 38
The Co-0rdiNate SYSIEIM.eiuieitieiiiieiie ettt ettt ettt e e et e e enneas 39
COLOUL ettt et et ettt e e b et e bt e e et e aee et e sbee bt enneenneas 40
FOMES ...ttt ettt et ettt et 41
Drag and DIOP.....couieiieeieiiei ettt ettt 42
DIEDUGZING ..ottt ettt et ettt ettt b ettt 43
Creating Objects USING OINEWooiiiiiiiiiiieccceee e 44
CHAPTER 2 GUITUtOrAL....ccceeerrrrrrre s ese e sesens 47
TNEPOAUCTION ...ttt et e e be e et ee e baeenbeeebaeenseeensaeenreas 47

SOME COMCEPLS. ...ttt et ettt ettt e e bt e eenbteenaeeens 47

iv Contents
(0] 1571 USSP 47
(0] 1S 3 (<L SS PR 47
EVEIES 1.t 47
Callback FUNCHIONScuuieiieiieiiie ettt ettt 48
Creating @ FOIMoc.oiuiiiiiiiicii ettt e 48
Adding a Fahrenheit Label.........cccooiiiiiiiii e 49
Adding a Fahrenheit Edit Fieldccoooviiiiiiiiiiiiiiieccceceeee e 50
Adding a Centigrade Label & Edit Field.......c.ccccooieviiiiiiiiiicieieeeeee e 51
Adding Calculate BUttONSccuveuieiieiieiiiciiesieecie ettt s sbeeae s 52
Closing the Application WINAOWccueeiirieiieriieieeie ettt eee e 53
Adding @ QUIit BUONooviiiiiiiiiii ettt be s 54
The Calculation FUNCLIONSccueitiiiiiiiiiieiieieiereseee et 55
Testing the APPLICALIONc.eiiiiiiiieiieit ettt 56
Making the Enter Key WoOrkccooiioiiiiiieeee e 57
Introducing @ SCIOIIBATIcciiiiiiiei e 58
AddING @ MEMUL...cuiiiiiiiiitieitet ettt sttt sttt 60
Running from DesSKOPccveiiriiiiiiiiiieiec e 63
Using ONEW instead Of [WCc.ovivivieiieieeiceeeceeeee e 65
Temperature ConVETter ClaSS........eeviiiiiiieiieeiie et erte e esee e aeesaaeeseaeesaee e 67
Dual Class EXamMPIEcc.ooeeiiiiiiiiiiiiiiteietcecee et 70
CHAPTER 3 Graphics.....ossins 75
INErOAUCTION ...ttt 75
DIaWing LANESc.veiuiiiiiiiiieiiietetcte sttt ettt sttt ettt st 76
Drawing in @ BItMapcoccecieiiiiiiiiiiiieic e 77
Multiple Graphical ItEIMSccceoviriiriiniiiiieietererese ettt 78
Unnamed Graphical ODJECTScvviiriiiiiieiiieiieeeite ettt eree e ebeesneeeaeeens 80
Bitmaps and TCOMSeeviieiiieiie ettt ettt e e sbeestbeesabeessseeenseenane 81
IMIETATTIES ..ttt sttt ettt ettt et e 83
Creating a Metafile ObJeCtcoviiiiiiiiiiiiieieeieee e 83
Drawing a Metafile ODJECtcoveiiiiiiiiiiiieieeeeee e 84
PACtUIE BULTONS ...ttt et 85
Using the Picture PrOperty.......c..ccevierieiieiieieeie et 85
Using the BENPiX Property.......coccueoieiieiieiieieeie et 86
USING LCOMS ..ttt ettt ettt et e et e st et e b e enseentesseesseenseenseenseensesneesseennes 88
CHAPTER 4 Composite CONtrols........cccocverenmmrmrrmsesesssssssssssesesesssssssssssnesssaens 89
The ToolControl and TooIButton ObJectS.......ccuerveeriierieiieeieeiieriiereteie e 90
Standard Bitmap RESOUICES......ccueeiuiieiiiiiiiecie et 90
Dyalog Bitmap RESOUICEScoiuiiiiieiiiiiiiieiie st 91
Creating ImageLists for TOOIBULONScc.ceouiiiiriiiieiieieeeee e 92
The Style PrOPertycccueeeeeie ettt 93
The DivIder PrOPEITYcocueiuiiiieiiieitiet ettt 93
The MultiLine PrOPeItYc.eeiieiiieiieiieie ettt 94

The Transparent PrOPEITYc.ccvverieriieriieiieie ettt ettt re e eeneennens 95

Contents v

Radio buttons, Check buttons and Separatorsccceecueeeieierieiieiiereee e 96
Drop-DOowWn DULLONSccueieeiieiieeiieiieie ettt sttt ee 97
A MenuBar as the child of @ ToolControlccceiieiieiieiiie e 99
Providing User CUStOMISATIONeeoutiieriieriieiieiteee ettt et seee e e 100
The CoolBar and CoolBand Objects..........ccceviriiiiieieieiininineeeee et 102
CoolBar: FixedOrder PrOPertycccceviririninieieiinienene ettt 103
CoolBand: GripperMode PrOPEILYcc.eeverieriieiieieeiieciiesieeie et 103
CoolBar: DbICICKTOZEIE PrOPerty......c.cccveeieriierieiieiiesiiesieeie e sieesveeseenneas 104
CoolBar: VariableHeight/BandBorders Propertics..........ccoovvevvevieeieeeeeeeniiereennnns 105
CoolBand: ChildEdZe Propertycccccuevierieriieiieieeieciieeieeie et veennees 107
CoolBand: Caption and ImageIndex Propertiesccccueveerierieeieeveneenieesneennns 108
CoolBand: Size, Posn, NewLine, Index Properticscccovvevvevieeieieeneeniereennnns 109
CoolBands with SUDFOIMScc.oeiuiiiiiiiiieieeeee e 110
The TabControl and TabButton ODJECLSccueeeerieiieriieieeie e 111
Style, FlatSeparators and HotTrack Properties..........cccevveveeniiieiiieienieeeeeee 112
The AlLGN PrOPEItY ..ccvieeiieeieiieeiiee ettt 113
The MUultiLine PrOPertycccvevieriieieiieeiiesiiesieeee ettt 115
The ScrollOpPOSite PrOPEITYc.eecvieieiieeiieiieie ettt 116
The JUSHTY PTOPETLY 1uviieiiiiiieeiie ettt et esebeennne e 117
The TabSize and TabJustify Propertiescccueervieriieiieeiieeeeeesie e 118
The TabFOCUS PrOPEITY ..cuvvieiiieiie ittt ettt et eseveennae e 119
The StatuSBar ODJECEc.vieviieiiieiiieriieeee ettt ettt s e s e e ssaeesnneenans 120
USING StatuSFICLASvieiiieiiieeiieciteeeeete ettt et e e 122
CHAPTER 5 Hints and Tips.....commmmmmmssssssssssssssssssss 125
USING HINES ..ottt sttt ettt saeeaaesse e seenneeseenseennenns 125
Example: Using a StatusField for HIntscccocoeoieiiiiininniiiiiiccncceee 126
Example: Using an Edit Object for Hintscccoeevvevieiienienieeeceeeeeeeeen 127
USINE TIPS cuttetieteete ettt ettt ettt ettt et et e et e st e eaeesaeenseenseesaeesaessaeseesseenseenseennenns 128
Hints and Tips ComMDINEdc.cooviiiiiiiriieiieie ettt 129
CHAPTER 6 Using the Grid OBjJectcccerermrmrenmnsssnreresesese e 131
Defining the Grid Layourl.........ccoooiiiiiiiiieiieieieee e 132
Defining Overall APPEAranCecoveeruieiieiinieniieriieie ettt 133
Row and Column TItIescooueeiiiiiiiiieiee e 135
Displaying and Editing Values in Grid CellSc.ccoooeerieiiiiiiiniieeceeeeeee 136
Using a Floating Edit Field..........ccccooiiiiiiiii e 137
Using a Fixed Edit Field........ccooiiiiiiieiieee e 137
USING LAl ODBJECLS ...uviviiiieiieiieii ettt sttt sneenes 138
USING COMDBO ODBJECLS ..vioviiiiiiiieiiieiieie ettt ettt eee e esteesseenseenseenseas 138
Using Radio and Check Button Objectsccuevverieriieniienieeie e 140
Specifying Individual Cell AHIIDULESc.evvereieriieiieieeie et 142
Drawing Graphics 0n @ GIidcccocverieriieriieiieieeiesieeie ettt seae e nes 146
Controlling UsSer INPULooouiiiiiiiiie ettt 149

Moving from Cell t0 Cellooiiiiiiiiiieiiee e 149

vi Contents
Changing Standard Validation Behaviourcccocceoiiiiinieniiicceeeee, 149
Reacting t0 CRanZESccvevviiiriiiirieiicee ettt 150
Restoring User ChaNZEScccoireririiiieieienenesieeit ettt sttt 150
Updating Cell Data.......c..coevieiiieiiiiiinienieeeeeet ettt 150
Deleting Rows and COIUMNScc.ooiiieiiiiiiieieie e 151
Inserting ROws and COIUMNS.........c.oooiriiiiiiieiee e e 151
TTEEVIEW FRATUTEetitiiiieiieieiett ettt ettt 153
INEEOAUCTION ...ttt ettt ettt 153
ROWTTEEDEPth PrOPETTY .oovvvieniiiiiiieiie ettt ettt e 153
RowSetVisibleDepth Method..........cccieiiiiiiiiiiiiieie e 155
GTIA COMIMEINES ...ttt ettt sttt et e ettt st eb e esten e s ebesbeeeeeneenean 158
INEEOAUCTION ...ttt ettt 158
IMPIEMENEALIONeeiiiiiiie et 158
AddComment Methodcoooieiiiiiii e 159
DelComment Methodcooiiiiiiieiieiecesee e 159
GetComment Methodcoooiiiiiiieiieieeee e 159
ShowComment Event/Methodcocoeiiiiiiiiiiiiceieee e 160
HideComment Event/Method...........cccoeiieiiiieiieiiee e 160
ClickComment EVENTcoiiiiiiiiiiiieiieeiee e 160
CHAPTER 7 Multiple-Document (MDI) Applications..........cccouumerennsresennns 161
To Create an MDI APPliCation........c.ceeouiieiiiiiiieiie e e 162
MDI BERAVIOUL ...ttt ettt e 162
Menus in MDI ApPPLICAIONS......ccouiieiieiiieeiieiiteeieeeteeeteeeeeereeereeeaeeereeeseesseesnneeens 163
Defining @ WindOW MENU........coouiiiiiiiiiieeiie it eite et eieeeiee et eaeeeaeesseesaeesseeennee e 164
Arranging Child Forms and ICONSccccoveviiiininininiiieecececeee e 165
CHAPTER 8 DOCKING ..o ssssssesessssssssssssssesessanas 167
INErOAUCTION ...ttt sttt 167
DOCKING EVENLSiviiiiieiiieeiieit ettt ettt et e sa e beesseenseenseennees 168
DOCKSEArt EVENT.....ccuiiiiiiiiiiiiiieitieiee e 168
DOCKMOVE EVENL ...ttt 168
DOCKREQUESt EVENTovviieiiiiiiieiiteiie ettt sttt veeenaeeennees 169
DOCKACCEPT EVENL....oiiiiiiiiieiieciteceeee ettt st 169
DOCKENA EVENL. ...ttt 169
DockCancel EVENT........coouiiiiiiiiieiieieeeeeee e 169
Docking a Form inside anotherc.cooieiiiiiiiiiiiieeceee e 170
Docking a Form into @ CooIBar...........ccueiiiiiieiiiiie et 174
Undocking a SubForm or a CoolBandcccoecuieiiiiiiieiieeecce e 176
Docking and Undocking a ToolCONIOl..........cceeiiiiirieiieiieieeieceeeeeeee e 176
XP Lo0K @nd FEELouiiiiiiiiieiieieiete e e 180
CHAPTER 9 TCP/IP SUPPOIt.....cccsirrerereissrsssssesesessssssssssssesessssssssssssssssssnens 181

LT 016 1R 1o 5 o) o BRSPS 181

Contents vii

SEEEAM SOCKELS ..eevvieiiieeiiieeiii ettt et e ettt eeae e s b e e sbeesbeesseesabeessseesaseessneennns 181
User Datagram Protocol (UDP)........ccooiiiiiiiiieiee e 182
ClENtS ANA SEIVETS ...cuviieiiieiieeiieeite ettt eeiee et e et e et e et eesteeestbeesaaeestseesseessseenseeens 182
APL @S @ TCP/IP SEIVETeicviieiiieiie ettt ettt ettt ettt e sveeeaae e s beesaseessbeesaneens 183
Serving MUultiple CHENtS.........coeeieieiiriinincieeieeeeece et 183
APL @S @ TCP/IP CHENLveieiiiieiieeiie ettt ettt eaae e sebeesaaeens 185
Host and Service NAMEScc.veeiiieiiieiiieeie ettt ettt e e st e sbeesnbeesseeeane 186
Sending and Receiving Datacceevieiiiiiiiiiiieieeie ettt 187
OULPUL BUFTETING 1ttt 188
User Datagram Protocol (UDP) and APLc..cooiiiiiiiieieieeecceeee e 189
Client/Server OPEIAtIONcc.eevieriereeeiierieeteeteereereesteesteesseesesseesseesseesseesseessesssesseenss 191
The RUN fUNCHON ...ccviiiiiiieiieiieie ettt s sneesbeenseesneas 192
The ACCEPT fUNCHON ..ccuviiiiiieiie ettt ettt ettt et e e v e e saveeseseeeaneeas 193
The RECEIVE fUNCHON.......ccuiiiiiiiiieeiie ettt siveeeane e 194
The EXECUTE fUNCHON ...eooviieiiieiieeiie ettt seveeeane e 195
CHAPTER 10 APL and the Internet.........ccocornnnnnnnnns 197
TNEEOAUCTION ...ttt et e et e e e e sebe e eabeeeabeeeaseeenbeeenneeanns 197
WItIng @ Web CLENEcc.eiiiiiiiiiiiiiiiceicc ettt 199
The QUERY fUNCHIONoiiiiiiiiieiiie et 201
The GOTADDR callback function............cceeccveeriieiiienieenie e 203
The CONNECT callback functionceeeveeeriieiiienieeie e 204
The RECEIVE callback functionccccceeviieniieniienieeie e 205
The CLOSE callback fUnction............ccveerieerieenieeiieeieesie e esiee e seve e 206
The ERROR callback functionccccceeeeieerieeniieenieeieeie e 207
WIIING @ WED SEIVET ...veiiiiiiieiieie ettt et eee st e s ennes 208
The RUN fUNCHION ...eoouviiiiiiiiieeiic ettt ettt e aeeeeaveeenne e 209
The ACCEPT callback fUnction...........ccoecverieriieiieiieieciesieee e 210
The RECEIVE callback functionccooceerieiiieiinieniesieee e 211
CHAPTER 11 OLE Automation Client and OLE Controls............ccovesurenenns 213
TNEOAUCTION ...ttt ettt e e et e e s ae e st e e snseesnbeesnsaesnbeesnseennns 213
USING AN OLE SEIVET ...c.uiiiiiiieiiieiieeiieet ettt s 214
Loading an ActiveX COntrol........ccooiiiiiriiaiieieiiesesiee e 214
Using an OLE CONIOL......coouiiiiiiiiieiieieeeiese et 215
Type INFOrMAtIONcc.eiiiiiiieiiiic e 215
Identifying Properties, Methods and Events..........ccccocevieniiniiiciniiiieieeeee 216
Using the Property SHEetooieriieiiieiieieciieeeie e 218
Using the Workspace EXPLOTer.........ccoeviiiiiieiieiieie e e 219
GetPropertylnfo Methodooveiiiiiiiieieie e 221
GetMethodInfo Method........c.oevviiiiiiiiiecieee e 221
GetEventInfo Method..........coveiieiiiiiiicciccee e 222
Obtaining On-line HElpcccoevieiiiiiiiiiiiiciee e 223
IMEEROMS ..ttt ettt e s e e e e s tbeestbeeetaeestbeesnsaeenbaeeaaeenbeeeaaeanns 224

Calling MEthOdScouieiiiieiiei ettt 224

viii Contents
ATTays and POINLETSoouiiiiiieiieie et 225
Optional Parametersocuevieriieiieiieieeie ettt 225
OULPUL PATAMELETSeeeiieiiiieiieeiiteeet ettt st 226
Named Parameters..........oouieiirierieiieeeie ettt 226
Methods that return ODBJECEScc.eeivieiiieiieiieciiereee et 227
PLOPETEICS ..ttt ettt ettt et r et enneene e e eneene 228
Properties @S ODJECES ...viiiiiiiriieriieiieieei ettt ettt steebe b e essestaesseesseeseennas 229
EVRIES ...ttt 230
Using the Microsoft Jet Database ENginecccoecvvevevieiieneeniieiecie e 231
OLE Objects without Type INformationcccevverierieriieriieiieieeieseese e 233
Late BINAINgooovieiieiiiieciecieeete ettt sttt snaenas 233
SetMethodInfo and SetPropertyInfo.........coccvevvieiieiieiiiieciee e 234
EVEIES ..o 234
COLLECHIONS ...ttt et ettt ettt et et ettt e et e e st e et et e enteenaeeseesseeseesneenseenseennens 235
NUIL VAIUES ...ttt ettt et e st et enseenneas 236
Additional INterfaCEeSeovviiiieiiieiieie e et 237
Writing Classes based on OLECHENLcccveiiiiiiiieiieiieieeeee e 238
CHAPTER 12 OLE Automation Server.........mn 239
INETOAUCTION ..ttt e 239
Namespaces aNd ODJECES ...ccuvieriiiiiieiiieiiieeieeeiee ettt sae e e seae e 240
Writing an APL OLE SEIVETcccuiiiiiiiiieiiieeiieeieeeite ettt 241
Rules for EXported FUNCHONSccoviiiiieiiiiiiieeieeciee ettt s 241
Out-of-Process and In-Process OLE SeIrvers.........ccoocevverienieniieienienieneeneeeee 242
ClassID, TypeLibID and other properties........c.ceevvervierieenieeniieeniieeieesveeeveenenees 242
In-process OLE SETVETSccc.ieiiiriiriiiieiieiece ettt st 243
EXPOTEIIIZ .ottt ettt s 243
EXECULION ...ttt ettt ettt 243
Registering and UNre@isteringccveveeierierienieeieeeeeeeseeseeeseeseenessnessaesseennes 243
OUt-0f-process OLE SEIVETScccueiiiiieiiieieeie ettt esee e e 244
EXPOTTIIE ..ottt ettt 244
EX@CULION ...ttt ettt ettt ettt et be e ees 244
REZISTIY ENMIIES 1...eeuiieiiiiiieiiie ettt 245
The LOAN WOTKSPACEveeeeiiiiiieeiie ettt ettt ettt et e st e et essaesnseesnsaeennee e 247
USING CalCPaAYMENTS.......oouiiiiiiiiiiieiceie et 247
Registering Loan as an OLE SeIrVerccccovciiiiiiiiiiieieeecee e 249
Using Loan from Visual Basic Version 4.0..........cccooveiriienienieniene e 253
Using Loan from EXCelc.ooiiiiiiiiiieie e 256
Using Loan from tWo appliCationscceeeverieriieniieniieieeie e seeseesee e see e 258
Using Loan from Dyalog APLcoooiiiiiiiiieieeeee e 259
Implementing an Object HIerarchyccocveviieeiiiiiiieeieieiceece e 260
The CFILES WOTKSPACEecvieiiieiiieiieitieieeie ettt ene s 261
Registering CFiles as an OLE Servercccccovieiiiiiiiieeeeeeeeee e 261
The OpenFile FUNCHOMNcoiiiiiieiieieeieeee e 262
The FSIZE FUNCHION ..ottt 264

The FREAD FUNCHOMNcviiiiiiiiiiiiec ettt e et e e e e e e ennes 265

Contents ix

The FAPPEND FUNCHOMNcviiiiiiiiieeiie ettt 266
The FREPLACE FUNCHON.......coitiiiiiieiit et 267
Using CFiles from EXCelccooiiiiiiiiiiiiiiiiiicccicccsccsececeecc e 268
Configuring an out-of-process OLEServer for DCOM.......c..cocovireiieiieniininiineneenne 273
TNEPOAUCTION ...ttt ettt e et eesae e e tbeeaaeeseseeenaeeas 273
DCOM Registry Entries for the SETVercoccveeieiiiinininiiieiceeesencsceiene 273
DCOM Registry Entries for the CHentcccocvevvieviieiiiieiieeeie e 274
DCOMREG WOTKSPACEeevieiieiiiiiiiie ettt ettt sre e enneas 275
Calling an OLE Function ASynchronouslyc.ccccoovvevieriiiiiiiiiiecieiceeeeeeee e 276
INEEOAUCTION ...ttt ens 276
The OLEASYNC WOTKSPACE. ... ccviiiiiiiiiiieiieieeieet ettt 276
CHAPTER 13 Writing ActiveX Controls in Dyalog APL...........cccocosunennnrunenns 281
OVETVIEW ..evtvieiiteeiieeeite ettt e stte e ettt e etaeestseeesbeeseseessseessbeeessaessseessseessseessseessseesssaesssessseennns 282
What is an ActiveX Control 7ccciiieiiiiieieieeie et 282
What is a Dyalog APL ActiveX Control 7ccceeiieieiieiieieeseee e 282
The Dyalog APL DLL.....ccooiieiiee et 283
INStANCE CIEATIONiviieeieiietieie ettt ettt ettt et esbe e e e e e neesneenneeseenseeneeas 283
Properties, Methods and EVEntsccocceriiiiiiioiiiiecieeec e 284
GeNerating EVENTSc.uieiuiiiiiieiie ettt et saae et aaeeetaeenane s 284
The Dual Control TUtOrial........c.coouiiiiiiiiiiiieeeeee e 286
Introducing the Dual Control.........ccueeciiiiiieiieiieee e 287
Changing Dual into an ActiveX COntrolccccveevuiiirieeniieeniieeiie e 288
Testing the Dual Controlcccviiiiiieiieiieecie e 291
Defining and EXporting Propertiesccueereeeriieriieiieeie e 291
Setting Properties from Visual Basic..........cccoevuiriiiieiienieiecce e 300
Defining and EXporting EVENLSc.coceiiiiiiriieiieieeeeciesieee e 301
Using Events from Visual BasiC........cccccieiiiiiiieiiiieie e 303
Using Dual in @ Web Page........cccooiieiiiiiiiiiieieeee e 304
Calling Dual from VBSCIIPt.....c.eeoiiiiiiieeieiieiteitee et 304
CHAPTER 14 Shared Variables (DDE).......c.cccounurrerensrsesessssesssssessssesesssseseans 31
Introduction t0 DDE........coiiiiiii s 311
Shared Variable PriNCIPIEsc..cociiiriiiiiieeiie et 312
INETOAUCTION ...ttt 312
Sharing @ Variablec.oooiiiiiiiieee e 313
The State VECTOT ..cueieuiiiiiiiiieitieie ettt 314
ACCESS CONIOL ..ttt e 315
APL and DDE 1N PractiCecccoiririiiieiiiiieie sttt 317
APL @8 the CHENL ..euveeiiiiiiieiiiesteeiec ettt 318
Executing Commands in the SEIVETcoocveviieiiieiieiecieseee e 319
APL @8 the SEIVET ..c..eiuiiiiiiieiiiiesitetee ettt 320
State and Access CONLIOLovuiiuiiiiiiieieeree e e 321
Terminating @ CONVETrSAtIONceuiiieiieriieitiete ettt ettt ee e eeee et eeeeneeas 326

Example: Communication Between APLS........ccccoiiiiiiiiiiiiiieceeeeeeee e 326

Contents

Example : Excel as the SerVer.......c.ooiiiiiiiiiiii e 328
Example : Excel as the CHENtcoooiiiiiiieiiinnenceiceet et 330
Example : APL as Compute Server for EXcel........ooooviiiiiiiiiiiiiiee 332
Example : Using an Excel Command Macrococceceeieieriinininenenieeeieniencnienens 334

Restrictions & Limitations

CHAPTER 1

Introduction

Overview

This manual describes various interfaces between Dyalog APL and Windows.

Chapter 1 introduces the concepts of the Dyalog APL Graphical User Interface (GUI)
and describes, in outline, how the system works. Chapter 2 contains a tutorial which
takes you step-by-step through the implementation of a simple GUI application.
Chapters 3 explains how to draw graphics using primitive graphical objects such as
Poly, Bitmap and Metafile objects. Chapter 4 describes how to use toolbars, tab controls
and status bars. Chapter 6 covers the important Grid object that provides a spreadsheet
interface for displaying and editing tables of data and Chapters 7 and 8 describe the
Multiple Document Interface (MDI) and docking. Further GUI material is provided in
the WTUTOR, WTUTOR95 and WDESIGN workspaces.

Chapter 9 describes the TCP/IP interface which is implemented in the same object-
oriented style. Chapter 10 explores how the TCP/IP interface is used to connect Dyalog
APL to the Internet.

Chapters 11-13 describe the various ways in which Dyalog APL may communicate with
other Windows applications using Component Object Model (COM) interfaces. These
interfaces allow APL to act as an OLE Automation server and client, and allow you to
write ActiveX controls in Dyalog APL.

Chapter 14 describes the DDE interface which is implemented using (traditional) APL
shared variables. However, please note that DDE has all but been replaced by COM,
and is no longer promoted as a major technology by Microsoft.

The final Chapter describes the interface to Microsoft Open Database Connectivity
Drivers (ODBC) which allows you to access ODBC compliant databases from Dyalog
APL.

2 Dyalog APL/W Interface Guide

Concepts

The Dyalog APL GUI is based upon four important concepts; objects, properties,
events and methods.

Objects

Objects are instances of classes that contain information and provide functionality. Most
Dyalog APL objects are GUI objects that may be displayed on the screen and with
which you can interact. An example of an object is a push-button (an instance of class
Button) which you may press to cause the program to take a particular action. Objects
are defined in hierarchies.

Objects are also namespaces and may contain functions, variables, and indeed other
namespaces. This allows you to store the code and data that is required by a given
object within that object. Functions and variables stored in an object are hidden and
protected from conflicts with functions and variables in the outside workspace and with
those in other objects.

Properties

Each object has an associated set of properties which describe how it looks and
behaves. For example, a Button has a property called Caption which defines the
character string to be displayed in it. It also has a property called Type which may be
Push (the button appears to move in and out when it is pressed), Radio (the button has
two states and may be toggled on and off); and so forth.

Events

During interaction with the user, an object is capable of generating events. There are
essentially two types of event, raw events and object events. Raw events are typically
associated with a particular hardware operation. Pressing a mouse button, pressing a key
on the keyboard, or moving the mouse pointer are examples of raw events. An object
event is generated by some action that is specific to the object in question, but which
may typically be achieved by a variety of hardware operations.

An example is the Select event. For a Button object, this event is generated when the
user presses the Button. In MS-Windows, this can be done in several ways. Firstly, the
user may click the left mouse button over the object. Secondly, under certain
circumstances, the Select event can be generated when the user presses the Enter key.
Finally, the event will occur if the user presses a "short-cut”" (mnemonic) key that is
associated with the Button.

Chapter 1: Introduction

Methods

Methods are effectively functions that an object provides; they are things that you may
invoke to make the object do something for you. In Dyalog APL, the distinction
between methods and events is tenuous, because events also make objects perform
actions and you may generate events under program control. For example, a Scroll
event is generated by a scrollbar when the user moves the thumb. Conversely, you can
make a scrollbar scroll by generating a Scroll event. Nevertheless, the concept of a
method is useful to describe functions that can only be invoked by a program and are
not directly accessible to the user.

Dyalog APL/W Interface Guide

Objects

The following objects are supported.

System Objects

Container Objects

Menu

Clipboard
Printer
Root

CoolBand
CoolBar
Form

Group
MDIClient
PropertyPage
PropertySheet
Splitter

Static
StatusBar
SubForm
TabBar
TabControl
ToolBar
ToolControl

MenuBar
Menu
Menultem
Separator

Provides access to Windows clipboard
For hard-copy output
System-level object

Contains a single child object in a CoolBar
Contains resizable bands (CoolBands)
Top-Level Window

A frame for grouping Buttons and other objects
Container for MDI windows

Contains a page of controls

Contains PropertyPages

Manages other objects

A frame for drawing and clipping graphics
Ribbon statusbar

Acts as an MDI window or a constrained Form
Contains TabBtns (tabs)

Windows 95/NT Tab control

Ribbon toolbar

Windows 95/NT toolbar

Pulldown menubar

Popup menu

Selects an option or action
Separator between items

Chapter 1: Introduction

Button
Locator
Scroll
SysTrayltem
TabBtn
TabButton
Timer
TrackBar
ToolButton
UpDown

Information

Animation
Label
MsgBox
ProgressBar
StatusField
TipField

Input and Selection

BrowseBox
Calendar
ColorButton
Combo
ComboEx

DateTimePicker

Edit
FileBox
Grid

List
ListView
RichEdit
Spinner
TreeView

Selects an option or action

Graphical (positional) input device

Scrollbar

An icon in the System Tray

Selects a tabbed SubForm

Selects a tabbed SubForm or performs an action
Generates events at regular intervals

Slider control

Selects an option or action

Spin button control

Displays an AVI clip

Displays static text

Displays a message box

Indicates the progress of a lengthy operation
Displays status information

Displays pop-up context sensitive help

Prompts user to select a directory etc.
Displays a month calendar

Allows user to select a colour

Edit field with selectable list of choices
Extended version of the Combo (with images)
Allows user to enter a date or time

Input field

Prompts user to select a file

Displays a data matrix as a spreadsheet

For selecting an item

Displays a collection of items

Text field with word-processing capabilities
Input field with spin buttons

Displays a hierarchical set of items

Dyalog APL/W Interface Guide

Resource

Bitmap
Cursor
Font

Icon
ImageList
Metafile

Graphical Output

Circle
Ellipse
Image
Marker
Poly
Rect
Text

Miscellaneous

ActiveXControl
OCXClass
OLEClient
OLEServer

SM

TCPSocket

Defines a bitmap

Defines a cursor

Loads a font

Defines an icon

Defines a set of bitmapped images
Loads a Windows Metafile

Draws a circle

Draws an ellipse

Displays Bitmaps, Icons and Metafiles
Draws a series of polymarkers

Draws lines

Draws rectangles

Draws graphical text

Represents an APL ActiveX control

Provides access to OLE (ActiveX) Controls

Provides access to OLE Servers

Represents an APL OLE Server object

Specifies a window for [JSM (character mode interface)
Represents a TCP/IP socket

Chapter 1: Introduction

Implementation Overview

The Dyalog APL GUI is implemented by the following system functions :

System Function

Description

Oawc Creates a new object with specified properties

Ows Sets the value(s) of selected properties for an existing
object

Owe Gets the value(s) of selected properties from an existing
object

OwWN Reports the names of all the children of an object

0doQ Waits for and processes user actions, invoking callback
functions associated with events as they occur

H[\[e] Generates an event under program control, or invokes a

method

GUI Objects are a special type of namespace and have a name class of 9. They may
therefore be managed like any other workspace object. This means that they can be

localised in function headers and erased with [JE X. GUI objects are saved with your
workspace and reappear when it is loaded or copied.

8 Dyalog APL/W Interface Guide

Creating Objects

You create objects using [JWC. Its left argument is a character vector that specifies the
name of the object to be created. Its right argument specifies the object's Type and
various other properties. Its (shy) result is the full pathname of the newly created object.

The following statement creates a Form called ' f1' with the title "A Default Form"
and with default size, position, etc.

"f1' OWC 'Form' 'A Default Form'

A Default Form

Chapter 1: Introduction 9

Naming Objects

Objects are created in a hierarchy. The Form we have just created is a "top-level" object
to which we can attach other child objects, like buttons, scrollbars and so forth. You can
create any number of top-level objects like this, up to a limit imposed by MS-Windows
and your system configuration.

For reasons which will become apparent later, there is a single Root object whose name
is '. "' (dot)or '#". It acts a bit like the root directory in a DOS file structure, and is
the implied parent of all the top-level objects you create.

When you create a top-level object, you don't actually have to specify that it is a child of
the Root; this is implied. For any other object, you specify its position in the hierarchy

non

by including the names of its "parent", "grand-parent", and so forth in its name.
Object names are specified in the form:

'grandparent.parent.child’
where the "." character is used to separate the individual parts of the name. There is no
explicit limit to the depth of the object hierarchy; although in practice it is limited by the
rules governing which objects may be children of which others.

Complete object names must be unique, although you could use the same sub-name for
two objects that have different parents. For example, it would be valid to have
"forml.btnl' and 'form2.btnl".

Apart from the "." separator, names may include any of the characters A-Z, a-z, and 0-9.
They are case-sensitive, so ' Form1' is not the same name as ' form1'.

For graphical objects, it is permissible to omit the last part of the name, although the
parent name must be specified followed by a "." (dot). Further information is given later
in this chapter.

Specifying Properties

The right argument of [JWC is a list of properties for the object being created. Apart
from trivial cases, it is always a nested vector. The first item in the list must specify the
object's Type. Other properties take default values and need not always be defined.
Properties are discussed more fully in the next section.

10 Dyalog APL/W Interface Guide

Saving Objects

Like functions, variables and operators, GUI objects are workspace objects and are

) SAVEd with it. GUI Objects are also namespaces and they have a name-class of 9.
The expression)OBJECTS or ONL 9 may be used to report their names. Like other
namespaces, GUI objects may be copied from a saved workspace using) COPY or [JCY.

The Object Hierarchy

This example illustrates how an object hierarchy is defined. The following statements
create a Form called 'accounts ' which contains a Group called 'type' and some
Buttons called 'PLAN', 'BUDGET ' and 'ACTUAL '. The embedded spaces in these
statements are intended only to improve clarity. The numbers refer to the object's
position within its parent. This will be discussed in detail later.

"accounts’ OWC 'Form' 'Accounts'
"accounts.type'’ OWC 'Group' 'Account Type'
"accounts.type.PLAN' OWC 'Button' 'PLAN' (20 35)
"accounts.type.BUDGET' [OJWC 'Button' 'BUDGET' (45 30)
"accounts.type.ACTUAL' [OWC 'Button' 'ACTUAL' (70 32)

— Account Type
PLAN

BUDGET)
[pcTuaL

ACTUAL |

Schematically, this object structure looks as follows:

__ACTUAL
___accounts___type___BUDGET
__PLAN

Chapter 1: Introduction 11

Properties

Properties may be set using the system functions OWC and (WS and their values may be
retrieved using (OWG.

If the system variable [JWX is set to 1, properties may be set using assignment and
referenced by name as if they were variables. This is generally faster and more
convenient than using QWS and (OWG.

Certain properties, in particular the Type property, can only be set using [JWC. There is
no obvious rule that determines whether or not a property can only be set by OWC; it is a

consequence of the Windows API.

However, any property that can be set by JWS can be set using assignment and the
values of all properties can be retrieved by direct reference or using OWG.

Setting Properties with Assignment

You may set the value of a property using the assignment arrow «. For example:
'F' OWC 'Form'

The following statement sets the Caption property to the string "Hello World":
F.Caption«'Hello World'

Strand assignment may be used to set several properties in a single statement:
F.Size F.Posn«(40 50)(10 10)

However, distributed assignment is even more concise:
F.(Size Posn)«(40 50)(10 10)

Normal namespace path rules apply, so the following are all equivalent:
#.F.Caption«<'Hello World'

)CS F

Caption«'Hello World'

12

Dyalog APL/W Interface Guide

:With 'F'
Caption<«'Hello World'
Posn<«40 50
Size«10 10

:EndWi th

Notice however, that used directly in this way, Property names are case-sensitive. The
following expressions assign values to variables in F and have no effect on the Caption

property.

F.caption<'Hello World'
F.CAPTION«'Hello World'

Retrieving property values by reference

You may obtain the value of a property as if it were a variable, by simply referring to
the property name. For example:

F.Caption«<'Hello World'

F.Caption
Hello World

You can retrieve the values of several properties in one statement using strand notation:

F.Caption F.Posn F.Size
Hello World 40 50 10 10

Although, once again, the use of parentheses is even more concise:

F.(Caption Posn Size)
Hello World 40 50 10 10

Although setting and referencing a Property appears to be no different to setting and
referencing a variable, it is not actually the same thing at all. When you set a Property
(whether by assignment or using [JWC or [JWS) to a particular value you are making a
request to Windows to do so; there is no guarantee that it will be honoured. For
example, having asked for a Font with face name of "Courier New", you cannot change
its Fixed property to 0, because the Courier New font is always fixed pitch.

'"F'OOWC'Font' 'Courier New'

F.Fixed<«0
F.Fixed

Chapter 1: Introduction 13

Setting Properties with JWC

Properties may also be set by the right argument of JWC. In these cases, they may be
specified in one of two ways; either by their position in the argument, or by a keyword
followed by a value. The keyword is a character vector containing the name of the
property. Its value may be any appropriate array. Property names and value keywords
are not case sensitive; thus 'Form' could be spelled ' form', ' FORM', or even
"forM'

The Type property, which specifies the type of the object, applies to all objects and is
mandatory. It is therefore the first to be specified in the right argument to JWC, and is
normally specified without the Type keyword. The value associated with the Type
property is a character vector.

With the exception of Type, all other properties have default values and need only be
specified if you want to override the defaults. For example, the following statements
would give you a default Button in a default Group in a default Form :

"form' OwCc 'Form'
'form.g' OwC 'Group'
'form.g.b1' [OWC 'Button’

Properties are specified in a sequence chosen to put the most commonly used ones first.
In practice, this allows you to specify most properties by position, rather than by
keyword/value pairs. For example, the Caption property is deemed to be the "most
used" property of a Button and is specified second after Type. The following two
statements are therefore equivalent:

'F1.81"' [OWC 'Button' 'OK'
'F1.81"' [OWC 'Button' ('Caption' 'OK')

The third and fourth properties are (usually) Posn, which specifies the position of a
child within its parent, and Size which specifies its size. The following statements all
create a Form with an empty title bar, whose top left corner is 10% down and 20%
across from the top left corner of the screen, and whose height is 60% of the screen
height and whose width is 40% of the screen width.

"form' OWC 'Form' '' (10 20) (60 40)

"form' [OWC 'Form' '' ('Posn' 10 20) ('Size' 60 40)
'"form' OWC 'Form' '' ('Posn' 10 20) (60 40)

"form' OWC 'Form' ('Posn' 10 20) (60 40)

14

Dyalog APL/W Interface Guide

Changing Property Values with WS

Once you have created an object using OWC, you are free to alter most of its properties
using [JWS. However in general, those properties that define the overall structure of an
object's window cannot be altered using [OWS. Such immutable properties include Type
and (for some objects) Style. Note that if you find that you do need to alter one of these
properties dynamically, it is a simple matter to recreate the object with [WC.

The syntax for WS is identical to that of JWC. The following examples illustrate how
the properties of a Button can be altered dynamically. Note that you can use [JWS in a
callback function to change the properties of any object, including the one that
generated the event.
Create "OK" button at (10,10) that calls FOO when pressed

"form.b1' OWC 'Button' 'OK' (10 10)
Some time later, change caption and size

"form.b1' OWS ('Caption' 'Yes') ('Size' 20 15)

Note that if the right argument to WS specifies a single property, it is not necessary to
enclose it.

Chapter 1: Introduction 15

How the Property List is Processed

The system is designed to give you as much flexibility as possible in specifying
property values. You should find that any "reasonable" specification will be accepted.
However, you may find the following explanation of how the right argument of OWC
and [JWS is parsed, useful. The casual reader may wish to skip this page.

Items in the right argument are processed one by one. If the next array in the argument
is a simple array, or a nested array whose first element is not a character vector, the
array is taken to be the value of the next property, taking the properties in the order
defined for that object type.

When the system encounters a nested array whose first element is a character vector, it
is checked against the list of property names. If it is not a property name, the entire
array is taken to define the value of the next property as above.

If the first element is a property name, the remainder of the nested array is taken to be
the value of the corresponding property. For convenience, considerable latitude is
allowed in how the structure of the property value is specified.

After assigning the value, the parser resets its internal pointer to the property following
the one named. Thus in the third and fourth examples on the preceding page, omitting
the Size keyword is acceptable, because Size is the next property after Posn.

In the reference section for each object, you will find the list of properties applicable to
that object, given in the order in which they are to be specified. This information is also
reported by the PropList property, which applies to all objects. The list of properties
may also be obtained by executing the system command) PROPS in an object's
namespace.

16

Dyalog APL/W Interface Guide

The Event Property

Of the many different properties supported, the Event property is rather special. Most of
the other properties determine an object's appearance and general behaviour. The Event
property, however, specifies how the application reacts to the user. Furthermore,
unlike most other properties, it takes not a single value, but a set of values, each of
which determines the action to be taken when a particular event occurs. In simple
terms, an event is something that the user can do. For example, pressing a mouse button,
pressing a key, selecting an item from a menu, are all examples of events.

Like any other property, the Event property may be set by assignment or using OWC and
[WS. Using assignment, you can specify settings for the entire set of events, or you can
set individual events one by one.

Each type of event has a name and a number. Although you may identify an event either
by its name or by its number, the use of its name is generally preferable. The exception
to this is user-defined events which may only be specified by number.

The list of events supported by a particular object is available from its EventList
property, or by executing the system command) EVENTS in an object's namespace.

To specify an individual event, you assign the action to the event name which is
optionally prefixed by the string 'on' . For example, the name for the event that occurs
when a user presses a key is 'KeyPress'. To this you assign an action. Event actions
are described in detail later in this chapter, but most commonly action is a character
vector containing the name of a function. This is termed a callback function, because it
will be automatically called for you when the corresponding event occurs. So if F1 is a
Form, the statement:

F1.onKeyPress«'CHECK_KEY'

specifies that the system is to call the function CHECK_KEY whenever the user presses
a key when F 1 has the input focus.

Using OWC and [IWS, the same effect can be obtained by:

'F1'OWC'Form' ('Event' 'onKeyPress' 'CHECK_KEY')
or
'F1'0OWS 'Event' 'onKeyPress' 'CHECK_KEY'

Chapter 1: Introduction 17

When a callback function is invoked, the system supplies an event message as its right
argument, and (optionally) an array that you specify, as its left argument. The event
message is a nested vector that contains information about the event. The first element
of the event message is always either a namespace reference to the object that generated
the event or a character vector containing its name.

To instruct the system to pass the object name instead of a reference, you must use the
event name on its own (omitting the 'on ' prefix) or the event number. This method is
retained for compatibility with previous versions of Dyalog APL that did not support
namespace references. For example, either of the following statements will associate the
callback function ' CHECK_KEY ' with the KeyPress event. However, when
"CHECK_KEY "' is called, it will be called with the character string 'F1 ' in the first
element of the right argument (the event message) instead of a direct reference to the
object F1.

F1.Event«'KeyPress' 'CHECK_KEY'
'"F1'0OWS 'Event' 'KeyPress' 'CHECK_KEY'
'"F1'0OWS 'Event' 22 'CHECK_KEY'

Note that by default, all events are processed automatically by APL, and may be
ignored by your application unless you want to take a specific action. Thus, for
example, you don't have to handle Configure events when the user resizes your Form;
you can just let APL handle them for you.

Before looking further into events, it is necessary to describe how control is passed to
the user, and to introduce the concept of the event queue.

For further details, see the description of the Event property in the Object Reference.

18

Dyalog APL/W Interface Guide

User Interaction & Events

Giving Control to the User

As we have seen, [JWC and [OWS are used to build up the definition of the user-interface
as a hierarchy of objects with properties. Notice that the interface is defined not only
in terms of its appearance and general behaviour, but also by specification of the Event
property, in terms of how it reacts to user actions.

Once you have defined your interface, you are ready to give control to the user. This is
simply done by calling [IDQ. Alternatively, you may use the Wait method (if
appropriate) which is identical to [JDQ in its operation.

[DQ performs several tasks. Firstly, it displays all objects that have been created but not
yet drawn. When you create objects, Dyalog APL/W automatically buffers the output so
as to avoid unpleasant flashing on the screen. Output is flushed when APL requires
input (at the 6-space prompt) and by DQ. Thus if you write a function that creates a
Form containing a set of controls, nothing is drawn until, later on in the function, you
call [IDQ. At this point the Form and its contents are displayed in a single screen update,
which is visually more pleasing than if they were drawn one by one. A second task for
[DQ is to cause the system to wait for user events. Objects that you create are
immediately active and capable of generating events. During development and testing,
you can immediately use them without an explicit wait. However, unless your
application uses the Session in conjunction with GUT objects you must call (DQ to
cause the application to wait for user input. In a run-time application, JDQ is essential.

The right argument to [IDQ specifies the objects with which the user may interact. If it
specifies ' . ', the user may interact with all active objects owned by the current thread
and with any new objects which are created in callback functions. If not, the right
argument is a simple character vector or a vector of character vectors, containing the
names of one or more Form or PropertySheet objects and the Clipboard object, or the
name of a single modal object of type FileBox, Locator, MsgBox or Menu. All
specified objects must be owned by the current thread.

In general, [0DQ first updates the screen with any pending changes, then hands control to
the user and waits for an event. If its right argument is ' . ' [IDQ processes events for all
active objects, i.e. for those objects and their children whose Active property is 1. If the
right argument contains the name of one or more Form and/or Clipboard objects, [1DQ
processes events for all of these objects and their children, and (if the current thread is
thread 0) for the Root object, but ignores any others, even though they may be currently
active.

Chapter 1: Introduction 19

If the right argument specifies a single modal object, JDQ displays the object on the
screen, handles user-interaction with it, and then hides the object when the user has
finished with it. An event is generated according to the manner in which the user
terminated.

Events are managed by both the Operating System and by [0DQ using a queue. A
detailed understanding of how the queue works is not absolutely necessary, and you
may skip the following explanation. However, if you are planning to develop major
applications using the GUI, please continue.

The Event Queue

There are in fact two separate queues, one maintained by MS-Windows and one internal
to APL. The MS-Windows queue is used to capture all events that APL needs to
process. These include events for your GUI objects as well as other events concerned
with APL's own Session Window, Edit Windows, etc. At various points during
execution, APL reads events from the MS-Windows queue and either processes them
immediately or, if they are events concerned with objects you have defined with OWC,
APL places them on its own internal queue. It is this queue to which [0DQ looks for its
next event.

When [DQ receives an event, it can either ignore it, process it internally, execute a
string, call a callback function, or terminate according to the action you have defined for
that event. The way you define different actions is described in detail later in this
Chapter.

If you have disabled a particular event by setting its action code to ~1, DQ simply
ignores it. For example, if you set the action code of a KeyPress event to 1, keystrokes
in that object will be ignored. If you have told [0DQ to process an event normally (the
default action code of 0) [DQ performs the default processing for the event in question.
For example, the default processing for a KeyPress event in an Edit object is to display
the character and move the input cursor.

If you have associated a string or a callback function with a particular event in a
particular object, [JDQ executes the string or invokes the callback function for you.
During the execution of the string or the callback function, the user may cause other
events. If so, these are added to APL's internal queue but they are not acted upon
immediately. When the execution of the string or the callback function terminates,
control returns to [JDQ which once more looks to the internal queue. If another event has
been added while the callback function was running, this is read and acted upon. If not,
[DQ looks to the MS-Windows queue and waits for the next event to occur.

20

Dyalog APL/W Interface Guide

If you have associated an asynchronous callback function with an event (by appending
the character "&" to the name of the function), JDQ starts the callback function in a new
thread and is then immediately ready to process the next event; [JDQ does not wait for
an asynchronous callback function to complete.

If[IDQ reads an event with an associated action code of 1, it terminates and returns the
event message which was generated by the event, as a result. The normal processing for
the event is not actioned. During the time between [0DQ terminating and you calling it
again, events are discarded. Events are only stored up in the queue if [IDQ is active (i.e.
there is a [IDQ in the state indicator). It is therefore usually better to process events
using callback functions.

Assignment and reference to the Event Property

There are a number of special considerations when using assignment and reference to
the Event property.

You can set the action for a single event by prefixing the Event name by "on". For
example, to set the action of a MouseUp event on a Form F to execute the callback
function FOO:

F.onMouseUp+«'UP'
F.onMouseUp
#.UP

Notice that the value returned (# . UP) is not necessarily exactly the same as you set it
(UP).

If you reference the Event property, you will obtain all the current settings, reported in
order of their internal event number. Notice the use of distributed strand notation to set
more than one event in the same statement.

F.(onMouseUp onMouseDown)<«'UP' ('DOWN' 42)
F.Event
onMouseDown #.DOWN 42 onMouseUp #.UP

If you set the Event property using assignment, all the event actions are redefined, i.e.
previous event settings are lost. For example:

F.(onMouseUp onMouseDown)<«'UP' ('DOWN' 42)
F.Event
onMouseDown #.DOWN 42 onMouseUp #.UP

F.Event«'onMouseMove' 'MOVE'
F.Event
onMouseMove #.MOVE

Chapter 1: Introduction 21

The All event can also be set by assignment, and it too clears previous settings. Notice
too that a subsequent reference to a specific event using the "on" prefix, will report the
"All" setting, unless it is specifically reset.

F.(onMouseUp onMouseDown)<«'UP' ('DOWN' 42)
F.Event
onMouseDown #.DOWN 42 onMouseUp #.UP

F.onAll«'FOO'
F.Event
onAll #.FOO

F.onMouseMove
#.FOO

F.Event«'onMouseMove' 'MOVE'
F.Event
onMouseMove #.MOVE

If no events are set, the result obtained by OWG and the result obtained by referencing
Event directly are different:

"F'OWC'Form'
DISPLAY 'F'(OWG'Event'
[0 o]
DISPLAY F.Event
= R .
| o= |
| | .e. .e. | |
T T T I
| | I_I I_I I I
| 'e-------- "

22 Dyalog APL/W Interface Guide

Callback Functions

By setting the action code to 1 for all the events you are interested in, you could write
the control loop in your application as:

Loop: Event « [IDQ 'system'
test Event[1] (object name)
and Event[2] (event code)
~Label

Label: process event for object
~Loop

However, such code can be error prone and difficult to maintain. Another limitation is
that events that occur between successive calls on JDQ are discarded.

An alternative is to use callback functions. Not only do they encourage an object-
oriented modular approach to programming, but they can also be used to validate the
user's actions and prevent something untoward happening. For example, a callback
function can prevent the user from terminating the application at an inappropriate point.
The use of callback functions will also produce applications that execute faster than
those that process events by exiting [JDQ and looping back again as above.

You associate a callback function with a particular event or set of events in a given
object. There is nothing to prevent you from using the same callback function with
several objects, but it only makes sense to do so if the processing for the event(s) is
common to all of them. The object that caused the event is identified by the first
element of the right argument when the callback is invoked.

When an event occurs that has an action set to a character vector, the system looks for a
function with that name. If none exists [IDQ terminates with a VALUE ERROR. If the
function does exist, it is called. If the callback function was called FOO and it stopped
on line [1], the State Indicator would be:

)SI
FOO[1]x*
[oQ

A callback function may be defined with any syntax, i.e. it may be dyadic, monadic, or
niladic. If it is monadic or dyadic, 0DQ calls it with the event message as its right
argument. If the function is dyadic, its left argument will contain the value of the array
that was associated with the event.

Chapter 1: Introduction 23

A callback function is otherwise no different from any other function that you can
define. Indeed there is nothing to prevent you from calling one explicitly in your code.
For example, a callback function that is invoked automatically could call a second
callback function directly, perhaps to simulate another event.

By default, a callback function is run synchronously. This means that [JDQ waits for it to
return a result before attempting to process any other events. Events that are generated
by Windows while the callback function is running are simply queued.

Alternatively, you may specify that a callback function is to be run asynchronously. In
this case, [IDQ starts the function in a new thread, but instead of waiting for it to
complete, proceeds immediately to the next event in the queue. See Asynchronous
Callbacks for further information.

Modifying or Inhibiting the Default Processing

It is often desirable to inhibit the normal processing of an event, and it is occasionally
useful to substitute some other action for the default. One way of inhibiting an event is
to set its action code to ~ 1. However this mechanism is non-selective and is not always
applicable. You can use it for example to ignore all keystrokes, but not to ignore
particular ones.

Synchronous callback functions provide an additional mechanism which allows you to
selectively inhibit default processing of an event. The mechanism also allows you to
modify the event in order to achieve a different effect.

For example, you can use a callback function to ignore a particular keystroke or set of
keystrokes, or even to replace the original keystroke with a different one. Similarly, you
can use a callback function to selectively ignore a LostFocus event if the data in the
field is invalid. Callback functions therefore give you much finer control over event
processing. The mechanism uses the result returned by the callback function and
operates as follows.

When an event occurs that has a synchronous callback function attached, JDQ invokes
the callback function (passing it the event message as its right argument) before
performing any other action and waits for the callback to complete. When the callback
function terminates (exits) JDQ examines its result.

24

Dyalog APL/W Interface Guide

If the callback function returned no result, or returned a scalar 1 or the identical event
message with which it was invoked, JDQ then carries out the default processing for the
event in question. If the callback function returned a 0, JDQ takes no further action and
the event is effectively ignored. Finally, if the callback returns a different event
message (from the one supplied as its right argument), 0DQ performs the default
processing associated with the new event rather than with the original one.

For example, consider a callback function attached to a KeyPress event in an Edit
object. When the user presses a key, for the sake of example, the unshifted "a" key, [JDQ
invokes the callback function, passing it the corresponding event message as its right
argument. This event message includes information about which key was pressed, in
this case "a". The various possibilities are:

e Ifthe callback function returns a value of 1 or the same event message with which it
was invoked, [IDQ carries out the default processing for the original event. In this
case a lower-case "a" is displayed in the field.

e If the callback function returns a value of 0, JDQ takes no further action and the
keystroke is ignored.

e [f the callback function modifies the event message and changes the key from an "a"
to a "b", DQ carries out the default processing associated with the new event, and
displays a lower-case "b" instead.

Note that asynchronous callback functions may not be used to modify or inhibit the
default processing because their results are ignored.

Chapter 1: Introduction 25

Generating Events using [ONQ

The [ONQ system function is used to generate events under program control and has
several uses.

Firstly, it can be used to do something automatically for the user. For example, the
following expression gives the input focus to the object Form1.ED1.

ONQ 'Forml.ED1' 'GotFocus'

Secondly, ONQ can be used to generate user-defined events which trigger special actions
either by invoking callback functions or by causing [JDQ to terminate. For example, if
you were to define the Event property on ' Form1 ' as:

"Form1' [OWS ('Event' 1001 'FOO')('Event' 1002 1)
The expression:
ONQ 'Formi' 1001 'Hello' 42

would cause [IDQ to invoke the function FOO, passing it the entire event message
('Forml' 1001 'Hello' 42) asits right argument. Similarly, the expression:

ONQ 'Formil' 1002 23.59
would cause [IDQ to terminate with the array ('Form1' 1002 23.59) as its result.

[ONQ can be used to generate events in one of three ways which affect the context in
which the event is processed.

If it is used monadically as in the examples above, or with a left argument of 0, INQ
adds the event specified in its right argument onto the bottom of the event queue. The
event is then processed by [IDQ when it reaches the head of the queue. You can add
events to the queue prior to calling [IDQ, or from within a callback function which is
itself called by DQ. In either case, the context in which the event is finally processed
may be completely different from the context in which the event was placed on the
queue. When used in this way, the result of [JNQ is always an empty character vector.

26

Dyalog APL/W Interface Guide

If you use [ONQ with a left argument of 1, the event is processed there and then by [INQ
itself. If there is a callback function attached to the event, [INQ invokes it directly. Thus
like (0DQ, ONQ can appear in the State Indicator ST or) SI. This use of [INQ is used to
generate an event for an object that is not currently included in a [IDQ, and is the usual
way of generating the special (non-user) events on the Printer and other objects. It is
also used when you want to cause an event to occur immediately without waiting for
any events already in the queue to be processed first. When used in this way, the result
of ONQ is either an empty character vector, or the result of the callback function if one is
attached.

If you use (ONQ with a left argument of 2, APL immediately performs the default
processing (if any) for the event, bypassing any callback function. This case of ONQ is
often used within a callback function to put the object into the state that it would
otherwise be in when the callback terminated. When used in this way, the result of [INQ
is 1. To avoid processing the event twice, the callback function should return 0.

The use of ONQ with a left argument of 2, is the same as calling the event as a method,
and this is discussed in the next section.

A left argument of 4 is a special case that is used by an ActiveXControl or NetType
object to generate an event in its host application. See Chapter 13 for details.

Chapter 1: Introduction 27

Methods

Calling Methods

A method is similar to a function in that it may or may not take an argument, perform
some action, and return a result.

Examples are the Print, NewPage, Setup and Abort methods, all of which cause a
Printer object to take a particular action.

If the system variable [JWX is 1, you may invoke an object's method using exactly the
same syntax as you would use to call a function in that object.

For example, to execute the IDNToDate method of a Calendar object named F . CAL,
you can use the expression:

F.CAL.IDNToDate 36525
2000 1 15

When you call a method in this way, the method name is case-sensitive and if you spell
it incorrectly, you will geta VALUE ERROR.

F.CAL.idntodate 36525
VALUE ERROR
F.C.idntodate 36525

A

Invoking Methods with [INQ

Methods may also be called using (ONQ with a left argument of 2, indeed if WX is 0,
this is the only way to call a method.

The result of the method is returned by [INQ. Note however that the result is shy.

For example, for a TreeView object you can obtain status information about a particular
item in the object using the GetltemState method:

0«2 ONQ 'f.tv' 'GetItemState' 6
96

Or you can call the IDNToDate method of a Calendar object F . C as follows:

0«2 ONQ 'F.CAL' 'IDNToDate' 36525
2000 1 1 5

28

Dyalog APL/W Interface Guide

When you call a method using 2 [INQ , the method name is not case-sensitive.

0«2 ONQ 'F.CAL' 'idntodate' 36525
2000 1 1 5

Events as Methods

Methods and events are closely related and most events can be invoked as methods.

For example, you can reposition and resize a Form in one step by calling its Configure
event as a method. The argument you supply is the same as the event message
associated with the event, but with the first two items (Object and Event code) omitted.

F.Configure 10 10 30 20
Or, using 2 [ONQ
2 ONQ 'F' 'Configure' 10 10 30 20
Notice that when you call an event as a method, you are executing the default

processing associated with the event. The setting for the Event property is ignored and,
in particular, any callback associated with the event is not executed.

Chapter 1: Introduction 29

GUI Objects as Namespaces

GUI objects are a special type of namespace and this has several useful implications.
Firstly, instead of creating the children of an object from outside in the workspace, you
can use) CS to change to an object and create them from within. The only restriction is
that you can only create GUI objects that are valid as children of the current object. A
second benefit is that you can put the callback functions, together with any global
variables they require, into the objects to which they apply. Consider the following
example.

First make a Form F 1

'F1' OWC 'Form' 'GUI Objects as Namespaces'
('Size' 25 50)

Then change to the Form’s namespace

)CS F1
#.F1

Now you can create a Group (or any other child object), but because you are already
inside the Form, the name you give to the Group will be taken as being relative to the
Form. In other words, you must specify the part of the name that applies to the Group
itself, leaving out the 'F1. ' prefix that you would use if you executed the statement
outside in the workspace.

'CH' OWC 'Group' 'Counter' (10 10)(70 60)
You can continue to create other objects

'OK' [OWC 'Button' '&0k' (20 80)(& 15)

'CAN' [OWC 'Button' '&Cancel' (60 80) (& 15)

"FNT' OWC 'Font' 'Arial' 16 ('Weight' 700)

If you ask for a list of objects, you will see only those within the current namespace

JOBJECTS
CAN CH FNT OK

When you are inside an object you can also set (or get) a property directly, so you can
set the FontObj property for the Form with the following statement.

FontObj«'FNT'

30

Dyalog APL/W Interface Guide

You can achieve the same with WS by omitting its left argument:
(WS 'FontObj' 'FNT'
You can create a child of the Group from outside it ...
"CH.UP' [OWC 'Button' '+1' (20 10)(30 20)
or you can change to it and create others from within...

)CS CH
#.F1.CH
'DOWN' [OWC 'Button' '-1' (60 10)(30 20)
"FNT' OWC 'Font' 'Arial' 32
"CTR' OWC 'Label' ('FieldType' 'Numeric')
('FontObj' 'FNT')

Once again, if you request a list of objects you will see only those in the current
namespace.

JOBJECTS
CTR DOWN FNT up

You can create functions and variables in a GUI namespace in exactly the same way as
in any other. So, for example, you could create a variable called COUNT and a function
CHANGE to update it:

COUNT « O

Vv INCR CHANGE MSG
[1] COUNT<«COUNT+INCR
[2] CTR.Value<«COUNT
\4

You can also make CHANGE a callback function for the two Buttons.

UP.onSelect«'CHANGE' 1
DOWN.onSelect«'CHANGE' ~1

Notice that because you were in the F 1. CH namespace when you made this association,
the event will fire the function CHANGE in the F 1. CH namespace and, furthermore, it
will execute it within that namespace. Hence the names referenced by the function are
the local names, i.e. the variable COUNT and the Label CTR, within that namespace.

Chapter 1: Introduction

3

So if you now switch back to the outer workspace

)CS
#

and click on the buttons...

The result will appear approximately as shown below

Aty GUI Objects as Hamespaces

32

Dyalog APL/W Interface Guide

Attaching GUI Objects to Namespaces

Monadic [OWC is used to atfach a GUI component to an existing object. The existing
object must be a pure namespace or an appropriate GUI object (one that can
legitimately be placed at that point in the object hierarchy). The operation may be
performed by changing space to the object or by running (OWC inside the object using
the dot syntax. For example, the following statements are equivalent.

)CS F

#.F
OWC 'Form' @ Attach a Form to this namespace
)CS

#

F.OWC'Form' A Attach a Form to namespace F

Monadic [JWC is often used in conjunction with the KeepOnClose property. This
property specifies whether or not an object remains in existence when its parent Form
(or in the case of a Form, the Form itself) is closed by the user or receives a Close
event.

This facility is particularly useful if you wish to have functions and variables
encapsulated within your Forms. You may want to save these structures in your
workspace, but you do not necessarily want the Forms to be visible when the workspace
is loaded.

An alternative way to achieve this is to prevent the user from closing the Form and
instead make it invisible. This is achieved by intercepting the Close event on the Form
and set its Visible property to 0. Then, when the Form is subsequently required, its
Visible property is set back to 1. However, if the Form needs adjustment because the
workspace was loaded on a PC with different screen resolution or for other reasons, it
may not be easy to achieve the desired result using JWS. Monadic OWC is generally a
better solution.

Chapter 1: Introduction

33

Namespace References and GUI Objects

The use of a GUI name in an expression is a reference to the GUI object, or ref for
short. If you assign a ref or call a function with a ref as an argument, the reference to
the GUI object is copied, not the GUI object itself.

So for example, if you have a Form named F:
‘F'OWC 'Form'

Assigning F to F1, does not create a second Form F1; it simply creates a second
reference (F 1) to the Form F. Subsequently, you can manipulate the Form F using
either F or F1.

F1eF
F1

Fi.Caption«<'Hello World'
F.Caption
Hello World

Similarly, if you call a function with F as the argument, the local argument name
becomes a second reference to the Form, and a new Form is not created:

Here is a simple function which approximately centres a Form in the middle of the
screen:

V R«SHOW_CENTRE FORM;OLD;SCREEN
1 SCREEN<>"', '[]WG'DevCaps'
[2] OLD<«FORM. Coord
[3] FORM.Coord«'Pixel"’
[4] R<FORM.Posn«|0.5xSCREEN-FORM.Size
[5] FORM.Coord<«OLD
v
The function can be called using either F or F1 (or any other Form) as an argument:

SHOW_CENTRE F
287 329

SHOW_CENTRE F1
287 329

34

Dyalog APL/W Interface Guide

A ref'to a GUI object can conveniently be used as the argument to : Wi th; for example,
the SHOW_CENTRE function can instead be written as follows:

V R«<SHOW_CENTRE FORM;OLD;SCREEN
[1] SCREEN<«>"'. l|:|WG'DevCapsl
[2] :With FORM
[3] OLD<«Coord
[4] Coord<«'Pixel'
[5] R<Posn«|0.5xSCREEN-Size
[6] Coord«OLD
[7] :EndWith
\

If instead, you actually want to duplicate (clone) a GUI object, you may do so by calling
[OWC with a ref as the right argument and the new name as the left argument.

For example:

'F' OWC 'Form' 'Cloning Example'

'"F.B' OWC 'Group' 'Background' (10 10)(80 30)

'F.B.R' OWC 'Button' 'Red' (20 10)('Style' 'Radio')
'F.B.B' OWC 'Button' 'Blue' (50 10)('Style' 'Radio')
'F.B.G' OWC 'Button' 'Green' (80 10)('Style' 'Radio')

Then, instead of creating a second Group for selecting Foreground colour line by line as
before, you can clone the "Background" Group as follows:

‘F.F' [OWC F.B

The new Group F . F is an exact copy of F . B and will have the same Posn, Size and
Caption, as well as having identical children. To achieve the desired result, it is
therefore only necessary to change its Posn and Caption properties; for example:

F.F.Caption F.F.Posn « 'ForeGround' (10 60)

Chapter 1: Introduction 35

The result is illustrated below.

= Cloning Example v |~
— Background — Foreground
C' Red ' Red
! Blue) Blue
O Green T Green

Note that when a namespace is cloned in this way, the objects (functions, variables and
other namespaces) within it are not necessarily duplicated. Instead, the objects in cloned
namespaces are in effect just pointers to the original objects. However, if you
subsequently change the clone, or the original object to which it refers, the two are de-
coupled and a second copy ensues. This mechanism makes it possible to create large
numbers of instances of a single class namespace without consuming an excessive
amount of workspace.

36

Dyalog APL/W Interface Guide

Modal Dialog Boxes

Up to now, it has been assumed that your user has constant access to all of the interface
features and controls that you have provided. The user is in charge; your application
merely responds to his requests.

Although this is generally considered desirable, there are times when a particular
operation must be allowed to complete before anything else can be done. For example,
an unexpected error may occur and the user must decide upon the next course of action
(e.g. Continue, Restart, Quit). In these situations, a modal dialog box is required. A
modal dialog box is one to which the user must respond before the application will
continue. While the modal dialog box is in operation, interaction with all other objects
is inhibited.

A modal dialog box is simply achieved by calling 0DQ with just the name of the
corresponding Form in its argument. This can be done from within a callback function
or indeed from any point in an application. To make the local [JDQ terminate, you may
specify an action code of 1 for an event. Alternatively, if you wish to make exclusive
use of callback functions to process events, you can cause the [JDQ to terminate by
erasing the Form from a callback function.

For example, suppose that you want the user to close the dialog box by clicking an
"OK" button. You would specify the Event property for the Button as:

('Event' 'Select' 'EXIT')
... and the function EXIT is simply...

v EXIT Msg;BTN;Form

[1] A Terminate modal [DQ by erasing Form
[2] 0BJ«3>Msg
[3] Form«<(~1+0BJ1'.')10BJ A Get Form name
[4] JEX Form

v

Note that this function is fairly general, as it gets the name of the Form from the name
of the object that generated the event.

Chapter 1: Introduction 37

The MsgBox and FileBox Objects

The MsgBox and FileBox objects are standard MS-Windows dialog boxes and are
strictly modal. The following discussion refers to the way a MsgBox is used, but applies
equally to a FileBox.

The MsgBox is a pop-up modal dialog box with a title bar (defined by the Caption
property), an icon (defined by the Style property), some text (defined by the Text
property) and up to three buttons (defined by the Btns property).

The MsgBox does not appear on the screen when you create it with [JWC. Instead, it
pops up ONLY when you call [JDQ with the name of the MsgBox as its sole right
argument. Furthermore, the MsgBox automatically pops down when the user clicks on
any one of its buttons; you don't actually have to enable any events to achieve this. For
example:

"ERR' [OWC 'MsgBox' 'Input Error' '' 'Error'

creates an invisible MsgBox with the title (Caption) ' Input Error', no text, and a
Style of 'Error'. This gives it a "Stop sign" icon. When you want to issue an error
message to your user, you simply call a function (let's call it ERRMSG) which is
defined as follows:

vV ERRMSG Msg
[1] A Displays 'ERR' message box
[2] ERR.Text«Msg A Put Msg in box
[3] bQ 'ERR'

v

Note that [IDQ will terminate automatically when the user clicks one of the buttons in
the MsgBox object.

In this case we were not interested in the particular button that the user pressed. If you
are interested in this information, you can enable special events associated with these
buttons. For details, see the description of the MsgBox and FileBox objects in the
Object Reference.

38 Dyalog APL/W Interface Guide

Multi-Threading with Objects

The following rules apply when using threads and objects together.

1.

All events generated by an object are reported to the thread that owns the object and
cannot be detected by any other threads. A thread owns an object if it has created it
or inherited it. If a thread terminates without destroying an object, the ownership of
the object and its events passes to the parent thread.

The Root object ' . ' and the Session object [JSE are owned by thread 0. Events on
these objects will be only be detected and processed by ODQ running in thread 0, or
by the implicit (0DQ that runs in the Session during development.

Several threads may invoke [0DQ concurrently. However, each thread may only use
[DQ on objects that it owns. If a thread attempts to invoke [JDQ on an object owned
by another thread, it will fail with DOMAIN ERROR.

Any thread may execute the expression JDQ '. ', however:

4.1. Inthread 0, the expression IDQ '. ' will detect and process events on the
Root object and on any Forms and other top-level objects owned by thread
0 or created by callbacks running in thread 0. The expression will terminate
if there are no active and visible top level objects and there are no
callbacks attached to events on Root.

4.2. In any other thread, the expression [JDQ will detect and process
events on any Forms and other top-level objects owned by that thread or
created by callbacks running in that thread. The expression will terminate if
there are no active and visible top level objects owned by that thread.

A thread may use [INQ to post an event to an object owned by another thread, or to
invoke the default processing for an event, or to execute a method in such an
object. This means that the following uses of [INQ are allowed when the object in
question is owned by another thread:

[ONQ object event...

0 ONQ object event...

2 ONQ object event...

2 ONQ object method...

3 [ONQ ole_object method...

4 [ONQ activexcontrol event...

The only use of [(ONQ that is prohibited in these circumstances is
1 ONQ object event...
which will generate a DOMAIN ERROR.

While a thread is waiting for user response to a strictly modal object such as a
MsgBox, FileBox, Menu or Locator object, any other threads that are running
remain suspended. APL is not able to switch execution to another thread in these
circumstances.

Chapter 1: Introduction 39

The Co-ordinate System

Each object has a Coord property that determines the units in which its Posn and Size
properties are expressed. Coord may be set to one of the following values :

'"Inherit' | this means that the object assumes the same co-ordinate system as
its parent. This is the default for all objects except the Root object.

'Prop' the position and size of the object are expressed as a percentage of
the dimensions of its parent.

'Pixel’ The position and size of the object are expressed in pixels.

'User' the position and size of the object are expressed in units defined by

the YRange and XRange properties of the object's parent.

‘Cell the position and size of the object are expressed in cell coordinates
(applies only to Grid and its graphical children).

By default, the value of Coord for the Root object is 'Prop'. For all other objects, the

defaultis 'Inherit'. This means that the default co-ordinate system is a proportional
one.

You can change Coord from one value to another as you require. It only affects the
units in which Size and Posn are currently expressed. The physical position and size are
unaffected. Note that if you set Posn and/or Size in the same [JWC or [JWS statement as
you set Coord, it is the old value of Coord that is applied.

The co-ordinate system is also independent of the way in which objects are reconfigured
when their parent is resized. This is perhaps not immediately obvious, as it might be
expected that objects which are specified using Pixel co-ordinates will be unaffected
when their parent is resized. This is not necessarily the case as the manner in which
objects respond to their parent being resized is determined independently by the
AutoConf and Attach properties.

The User co-ordinate system is useful not only to automate scaling for graphics, but
also to perform scrolling. This is possible because XRange and YRange define not just
the scale along each axis, but also the position of the origin of the co-ordinate system in
the parent window.

40 Dyalog APL/W Interface Guide

Colour

Colours are specified using the FCol (foreground colour) and BCol (background colour)
properties. Graphical objects have an additional FillCol (fill colour) property.

A single colour may be specified in one of two ways, either as a negative integer that
refers to one of a set of standard Windows colours, or as a 3-element numeric vector.
The latter specifies a colour directly in terms of its red, green and blue intensities which
are measured on the scale of 0 (none) to 255 (full intensity). Standard Windows colours
are:

Colour Element Colour Element
0 Default 11 Active Border
1 Scroll Bars 12 Inactive Border
2 Desktop “13 Application Workspace
-3 Active Title Bar 14 Highlight
4 Inactive Title Bar 15 Highlighted Text
-5 Menu Bar “16 Button Face
) Window Background “17 Button Shadow
-7 Window Frame ~18 Disabled Text
-8 Menu Text ~19 Button Text
-9 Window Text —20 Inactive Title Bar Text
“10 Active Title Bar Text “21 Button Highlight

A colour specification of 0 (which is the default) selects the appropriate background or
foreground colour defined by your current colour scheme for the object in question. For
example, if you select yellow as your MS-Windows Menu Bar colour, you will get a
yellow background in Menu and Menultem objects as the default if BCol is not
specified.

To select a colour explicitly, you specify its RGB components as a 3-clement vector.
For example:

(255 0 0) =red (0 255 0) = green
(255 255 0) =yellow (192 192 192) = grey
(0 0 0) = black (255 255 255) = white

Note that the colour actually realised depends upon the capabilities of the device in
question and the current contents of the Windows colour map.

A colour specification of & (zilde) selects a transparent colour.

Chapter 1: Introduction 41

Fonts

In keeping with the manner in which fonts are managed by Microsoft Windows and
other GUI environments, Dyalog APL treats fonts as objects which you create (load)
using [JWC and erase (unload) using [JEX or localisation.

A Font object is created and assigned a name using [JWC. This name is then referenced
by other objects via their FontObj properties. For example to use an Arial bold italic
font of height 32 pixels in two Labels:

"A32' [OWC 'Font' 'ARIAL' 32 0 1 0 700

'"F.L1' [OWC 'Label' 'Hello' (20 10) ('FontObj' 'A32")
'"F.L2' [OWC 'Label' 'World' (20 10) ('FontObj' 'A32")

If a font is referenced by more than one Form, you should create the Font as a top-level
object, as in the above example. However, if the font is referenced by a single Form,
you may make the Font object a child of that Form. The font will then automatically be
unloaded when you erase the Form with which it is associated.

Compatibility Note:

In the first release of Dyalog APL/W (Version 6.2), fonts were referenced directly by
the FontObj property. The above example would have been achieved by:

'F.L1' [WC 'Label' 'Hello' (10 10)
('FontObj' 'ARIAL' 32 0 1 0 700)

'F.L2' [WC 'Label' 'World' (20 10)
('FontObj' 'ARIAL' 32 0 1 0 700)

Although this original mechanism continues to be supported, it is recommended that
you use the method based on Font objects which supersedes it.

42 Dyalog APL/W Interface Guide

Drag and Drop

Dyalog APL/W provides built-in support for drag/drop operations through the Dragable
property. This applies to all objects for which drag/drop is appropriate.

The default value of Dragable is 0 which means that the object cannot be drag/dropped.
To enable drag/drop, you can set it to 1 or 2. A value of 1 means that the user drags a
box that represents the bounding rectangle of the object. In general, a value of 2 means
that the user drags the outline of the object itself, whether or not it is rectangular.
However, there are two exceptions. For a Text object, ('Dragable’ 2) means that
the user drags the text itself. For an Image object that contains an Icon, ('Dragable’
2) means that the user drags the icon itself, and not just its outline.

If Dragable is 1 or 2, the user may drag/drop the object using the mouse.
When the user drops an object, the default processing for the event is:
a) If'the object is dropped over its parent, it is moved to the new location.

b) Ifthe object is dropped over an object other than its parent, the dragged object
remains where it is.

If you enable the DragDrop event (11) on all eligible objects, you can control what
happens explicitly. If an object is dropped onto a new parent, you can move it by first
deleting it and then recreating it. Note that you must give it a new name to reflect its
new parentage. Note too that the DragDrop event reports co-ordinates relative to the
object being dropped on, so it is easy to rebuild the object in the correct position and
with the correct size.

An alternative to using the built-in drag/drop operation is to do it yourself with the
Locator object. This is no less efficient and has the advantage that you can choose
which mouse button you use. It can also be used to move a group of objects. However,
the Locator only supports a rectangular or elliptical outline.

Chapter 1: Introduction 43

Debugging

Four features are built into the system to assist in developing and debugging GUI
applications.

Firstly, if you execute OWC and/or WS statements from the Session or by tracing a
function, they have an immediate effect on the screen. Thus you can see immediately

Secondly, if you use [JWC with an existing name, the original object is destroyed and
then re-created. This allows you to repeatedly edit and execute a single statement until it
gives the effect you desire.

Thirdly, if you TRACE a [IDQ statement, any callback functions that are invoked will be
traced as they occur. This is invaluable in debugging. However, callbacks invoked by
certain "raw" events, for example MouseMove, can be awkward to trace as the act of
moving the mouse pointer to the Trace window interferes with the operation in the
object concerned.

Finally, ONQ can be used to artificially generate events and sequences of events in a
controlled manner. This can be useful for developing repeatable test data for your
application.

44

Dyalog APL/W Interface Guide

Creating Objects using ONEW

With the introduction of Classes in Version 11.0, you may manipulate Dyalog GUI
objects as Instances of built-in (GUI) Classes. This approach supplements (but does not
replace) the use of JWC, (OWS and so forth.

To create a GUI object using [INEW, the Class is given as the GUI Object name and the
Constructor Argument as a vector of (Property Name / Property Value) pairs. For
example, to create a Form:

F1<[ONEW 'Form' (c'Caption' 'Hello World')

Notice however that only perfectly formed name/value pairs are accepted. The highly
flexible syntax for specifying Properties by position and omitting levels of enclosure,
that is supported by OWC and WS, is not provided with [INEW.

Naturally, you may reference and assign Properties in the same way as for objects
created using WC:

F1.Size
50 50
F1.Size«20 30

Callbacks to regular defined functions in the Root or in another space, work in the same
way too. If function FOO merely displays its argument:

v FOO M
[1] 0«M
v

F1.onMouseUp<«'#.FOO'
#.[Form] MouseUp 78.57142639 u4L4.62540...

Note that the first item in the event message is a ref to the Instance of the Form.

To create a control such as a Button, it is only necessary to run [JNEW inside a ref to the
appropriate parent object. For example:

B1«F1.[ONEW 'Button' (('Caption' '&0K')('Size' (10 10)))

Chapter 1: Introduction 45

As illustrated in this example, it is not necessary to assign the resulting Button Instance
to a name inside the Form (F 1 in this case). However, it is a good idea to do so that refs
to Instances of controls are expunged when the parent object is expunged. In the
example above, expunging F 1 will not remove the Form from the screen because B 1
still exists as a ref to the Button. So, the following is safer:

F1.B1«F1.0ONEW'Button'(('Caption' '&0K')('Size' (10 10)))
Or perhaps better still,

F1.(BL1«<ONEW 'Button'(('Caption' '80K')('Size' (10 10))))

46 Dyalog APL/W Interface Guide

47

CHAPTER 2

GUI Tutorial

Introduction

This tutorial illustrates how to go about developing a GUI application in Dyalog
APL/W. It is necessarily an elementary example, but illustrates what is involved. The
example is a simple Temperature Converter. It lets you enter a temperature value in
either Fahrenheit or Centigrade and have it converted to the other scale.

Some Concepts
Objects

Objects are GUI components such as Forms, Buttons and Scrollbars. You create objects
using the system function OWC. Its left argument is a name for the object; its right
argument specifies the object type and various properties. Objects are created in a
hierarchy.

Properties

Properties specify the appearance and behaviour of an object. For example, the Caption
property specifies the text that appears on a Button or the title that appears in the title
bar on a Form. When you create an object with JWC, its right argument specifies its
properties. You can also set properties using JWS. This lets you dynamically alter the
appearance and behaviour of an object as required.

Events

Events are things that happen in objects as a result (usually) of some action by the user.
For example, when the user clicks a Menultem, it generates a Select event. Similarly,
when the user focuses on an object, it generates a GotFocus event.

48

Dyalog APL/W Interface Guide

Callback Functions

Callback Functions are APL functions that you can associate with a particular event in a
particular object. Interaction with the user is controlled by the system function [JDQ.
This function performs all of the routine tasks involved in driving the GUI interface.
However, its main role is to invoke your callback functions for you as and when events
occur.

That's enough theory for now ... let's see how it all works in practice.

Creating a Form

The first task is to create a Form which is to act as the main window for our application.
We will call the Form ' TEMP ' and give it a title (Caption) of "Temperature
Converter".

We will position the Form 68% down and 50% along the screen. This will avoid it
interfering with the APL Session Window, and make development easier.

The Form will have a height equal to 30% of the height of the screen, and a width of
40% of the screen width.

TITLE«'Temperature Converter'
'"TEMP' [OWC 'Form' TITLE (68 50)(30 40)

Aty Temperature Converter M=l E3

Chapter 2: GUI Tutorial 49

Adding a Fahrenheit Label

We are going to need two edit fields to input and display temperatures and two labels to
identify them.

Let's create the "Fahrenheit" label first. It doesn't really matter what we call it because
we won't need to refer to it later. Nevertheless, it has to have a name. Let's call it LF.
We will place it at (10,10) but we don't need to specify its Size; OWC will make it just
big enough to fit its Caption.

'"TEMP.LF' [OWC'Label' 'Fahrenheit'(10 10)

Aff Temperature Converter =l

Fahrenheit

50 Dyalog APL/W Interface Guide

Adding a Fahrenheit Edit Field

Now let's add the edit field for Fahrenheit. We will call it F and place it alongside the
label, but 40% along. Initially the field will be empty. We will make it 20% wide but let

its height default. OWC will make it just big enough to fit the current font height. As the
field is to handle numbers, we will set its FieldType to ‘Numeric'.

'"TEMP.F' OWC 'Edit' '' (10 40)(®& 20)('FieldType' 'Numeric')

Aff Temperature Converter

Fahrenheit I

IS [=] E3

Chapter 2: GUI Tutorial 51

Adding a Centigrade Label & Edit Field

Now we need to add a corresponding Centigrade label and edit field. We'll call these
objects LC and C respectively, and place them 40% down the Form.

'TEMP.LC' [OWC'Label'

‘Centigrade' (40 10)
'"TEMP.C' OWC 'Edit' '

(40 40)(® 20)('FieldType' 'Numeric')

Aff Temperature Converter

Fahrenheit I
Ii

IS [=] E3

Centigrade

52 Dyalog APL/W Interface Guide

Adding Calculate Buttons

Our Temperature Converter must work both ways; from Fahrenheit to Centigrade and
vice versa. There are a number of different ways of making this happen.

A simple approach is to have two buttons for the user to press; one for Fahrenheit to
Centigrade, and one for Centigrade to Fahrenheit. We will call the first one F2C and
place it alongside the Fahrenheit edit field. The caption on this button will be 'F->C".
When the user presses the button, we want our application to calculate the centigrade
temperature. For this we need a callback function. Let's call it f2c. Notice how you
associate a callback function with a particular event. In this case, the Select event. This
event is generated by a Button when it is pressed.

(The statement below is broken into two only so as to fit on the page)

FB«'Button' 'F->C' (10 70)('Event' 'Select' 'f2c')
'"TEMP.F2C'[OWC FB

Aff Temperature Converter =l

Fahrenheit I F-:C
Centigrade I

Notice that it is not necessary to specify the Size of the button; the default size fits the
Caption nicely. Now let's add the Centigrade to Fahrenheit button. This will be called
C2F and have an associated callback function c2f. We could have chosen to have a
single callback function associated with both buttons, which would save a few lines of
code. Having separate functions is perhaps clearer.

Chapter 2: GUI Tutorial 53

Again, the statement is split into two only to make it fit onto the page.

FC«'Button' 'C->F' (40 70)('Event' 'Select' 'c2f')
"TEMP.C2F'JWC FC

Aff Temperature Converter =l

Centigrade

Fahrenheit I El
| E5

Closing the Application Window

Then we need something to allow our user to terminate our application. He will expect
the application to terminate when he closes the window. We will implement this by
having a callback function called QUIT which will simply call JOFF, i.e.

vV _QUIT
(1] [OFF
v

We can associate this with the Close event on the Form TEMP. This event will be
generated when the user closes the window from its System Menu

TEMP.onClose<«'QUIT'

Although here we have used assignment to set the Event property, we could just as
easily have defined it when we created the Form by adding ('Event' 'Close'
"QUIT") to the right argument of JWC.

54 Dyalog APL/W Interface Guide

Adding a Quit Button

Finally, we will add a "Quit" button, attaching the same QUIT function as a callback,
but this time to the Select event which occurs when the user presses it.

Instead of having a default sized button, we will make it nice and big, and position it
centrally.

To make the statement fit on the page, it is split into three. The Posn and Size properties
are explicitly named for clarity.

QB<«'Button' '&Quit' ('Posn' 70 30)
QB,«('Size' & 40)('Event' 'Select' 'QUIT')
'"TEMP.Q"' [OWC QB

Azt Temperature Converter =l
Fahrenheit I F-:C |
I E&Fl

Centigrade

Cluit

Notice how the ampersand (&) in the Caption is used to specify the mnemonic (short-
cut) key. This can be used to press the button instead of clicking the mouse.

Chapter 2: GUI Tutorial 55

The Calculation Functions

So far we have built the user-interface, and we have written one callback function QUIT
to terminate the application. We now need to write the two functions f2c and c2f
which will actually perform the conversions. First let's tackle f2c.

A callback such as this one performs just one simple action. This does not depend upon
the type of event that called it (there is only one), so the function has no need of
arguments. Neither does it need to do anything fancy, such as preventing the event from
proceeding. It need not therefore return a result. The header line, which includes the

local variables we will need, is then...
[0] f2c;F;C

The first thing the function must do is to obtain the contents of the Fahrenheit edit field
which is called TEMP . F. As we have defined the FieldType as 'Numeric', thisis
easily done by querying its Value property...

[1] F <« TEMP.F.Value

Next, we need to calculate Centigrade from Fahrenheit...
[2] C « (F-32) x 5%9

... and finally, display the value in the Centigrade edit field. As we have also defined

this as a numeric field, we can just set its Value property using assignment.
[3] TEMP.C.Value<C

So our completed f 2c callback function is...
vV f2c;F;C
[1] F <« TEMP.F.Value
[2] C « (F-32) x 5%9
[3] TEMP.C.Value<«C
v

which can be simplified to:
vV f2c
[1] TEMP.C.Value«(TEMP.F.Value-32)x5+9
v

The Centigrade to Fahrenheit callback function c2f looks very similar:
vV c2F
[1] TEMP.F.Value«32+TEMP.F.Valuex9+5
v

56

Dyalog APL/W Interface Guide

Testing the Application

Before we test our application, it would be a good idea to) SAVE the workspace. If you
remember, the QUIT callback calls JOF F, so if we don't want to lose our work...

)SAVE TEMP
TEMP saved

Note that the GUI objects we have created are all saved with the workspace. You don't
have to re-build them every time you) LOAD it again.

If this was a Run-Time application, we would have to use JDQ to run it. However, as it
is not, we can just go ahead and use it from the Session. Click on the Fahrenheit edit
field and enter a number (say 212). Now click on the "F->C" button. The Temperature
Converter window should look like the picture below.

Aff Temperature Converter =l

Fahrenheit I 212

Certigrade 100 C-xF

Quit |

If you have mis-typed any of the functions in this example, you may get an error. If this
happens, don't worry; simply correct the error as you would with any other APL
application, and type ~»[JLC.

If you gota VALUE ERROR error, you have probably mis-spelt the name of the
callback function. If so, you can fix it using [JWS to reset the appropriate Event property.

Don't click the "Quit" button or close the window (yet). If you do so your APL session
will terminate.

Chapter 2: GUI Tutorial 57

If you want to follow what is happening you can use the Tracer. This requires a
statement to trace, so we will use [IDQ just as you would in a real application. To do
this, type DQ '. ' in the Session window, then, instead of pressing Enter (to execute
it), press Ctrl+Enter (to Trace it). Having done this, enter your data into one of the edit
fields and click the "F->C" or "C->F" buttons as before. When you do so, your callback
function will pop-up in a Trace Window. Step it through (if in doubt, see the section on
the Tracer) and watch how it works. When the callback has finished, its Trace window
disappears. Don’t forget, you are running a [JDQ. To terminate it, press Ctrl+Break or
select Interrupt from the Action menu.

Making the Enter Key Work

Ok, so the basic application works. Let's look at what we can do to improve it.

The first thing we can do is to let the user press the Enter key to make the system re-
calculate, rather than having to click on a button. There are a number of alternatives, but
we will do it using the Default property of Buttons.

In any Form, you can allocate a single Button to be the Default Button. In simple terms,
pressing Enter anywhere in the Form has the same effect as clicking the Default Button.
Let's do this for the "F->C" Button :

TEMP.F2C.Default«1

Now type a number into the Fahrenheit field and then press the Enter key. As you will
see, this fires the Default Button labelled "F->C". The only problem with this is that the
user cannot run the calculation the other way round using the Enter key. We need some
mechanism to switch which Button is the Default one depending upon which field the
user typed in.

This is easily achieved by making use of the GotFocus event. This is generated when
the user puts the cursor into the edit field prior to typing. So all we need do is attach a
callback to set the Default Button whenever a GotFocus event occurs in either edit field.
We could use two separate callbacks or we could make use of the fact that you can
make APL supply data of your choice to a callback when it is fired. This is supplied as
its left argument.

58 Dyalog APL/W Interface Guide

The first of the next two statements attaches the callback function ' SET_DEF ' to the
GotFocus event in the Fahrenheit edit field. It also specifies that when APL runs the
callback, it should supply the character vector ' TEMP.F2C' to SET_DEF as its left
argument. ' TEMP . F2C" is of course the name of the Button which we want to make
the Default one. The second statement is identical, except that it instructs APL to supply
the name of the Centigrade to Fahrenheit Button ' TEMP.C2F '

TEMP.F.onGotFocus « 'SET_DEF' 'TEMP.F2C'
TEMP.C.onGotFocus « 'SET_DEF' 'TEMP.C2F'

Where the callback 'SET_DEF ' is defined as...

vV BTN SET_DEF MSG
[1] BTN [OWS'Default' 1
v

Now let's test the application again. Try typing numbers in both fields and pressing
enter each time.

Introducing a ScrollBar

Another way to improve the application would be to allow the user to input using a
slider or scrollbar. Let's create one called ' TEMP.S"' ...

SCR«'Scroll' ('Range' 101)('Event' 'Scroll' 'C2F')
'TEMP.S' [WC SCR

Aff Temperature Converter =]

Fahrenheit I F-=C —

Centigrade I C-:F

Cluit

Chapter 2: GUI Tutorial 59

The range of a scrollbar goes from 1 to the value of the Range property. Setting Range
to 101 will give us a range of 1-101. You will see in a moment why we need to do this.
The Scroll event will be generated whenever the user moves the scrollbar. We have
associated it with the callback function 'C2F ' which we will define as follows:

v C2F MSG
[1] A Callback for Centigrade input via scrollbar
[2] TEMP.C.Value<«101-4>5MSG
[3] TEMP.F.Value<«32+TEMP.C.Value=5+9

\'4

The Event message MSG contains information about the Scroll event. Its 4th element
contains the requested thumb position. As we want to go from 0 at the top, to 100 at the
bottom, we need to subtract this value from 101. This is done in line 2 of the function.
C2F [3] calculates the corresponding Fahrenheit value.

Try moving the scrollbar and see what happens...

Aff Temperature Converter =]

Fahrenheit I 174.2 F--C

_
Certigrade I 73 ﬂl

Quit |

60 Dyalog APL/W Interface Guide

Adding a Menu

It would also be helpful if you could use the scrollbar to calculate in the reverse
direction, from Fahrenheit to Centigrade. Let's add this facility, and give you the ability
to choose to which scale the scrollbar applies through a menu.

To create a menu structure in a bar along the top of a Form (as opposed to a floating or
pop-up menu) we first need to create a MenuBar object. This type of object has very
few properties, and we need only specify its name, ' TEMP .MB".

'TEMP.MB' [OWC 'MenuBar'

Notice that, at this stage, there is no change in the appearance of the Form.
Then we can add a menu with the Caption 'Scale'. The name of the menu is
'TEMP .MB.M'. Adding the first menu causes the MenuBar to become visible.

'"TEMP.MB.M' [OWC 'Menu' '&Scale'

Aff Temperature Converter =]

Scale

Fahrenheit I 81.5

Centigrade 275 C-=F

Quit |

Note that the ampersand (&) allows the user to select the menu quickly by pressing
"Alt+S".

Chapter 2: GUI Tutorial 61

Now we can add the two options to the menu. Note that the MenuBar and Menu objects
do not represent final choices, they merely specify a path to a choice which is
represented by the Menultem object. When either of these is chosen, we want to execute
a callback function that will make the necessary changes to the scrollbar. The
statements to create each of these Menultems are broken into 3 only to fit them onto the

page.
First we create the Centigrade Menultem...

C«'Menultem' '&Centigrade'’
C,«('Checked' 1)('Event' 'Select' 'SET_C')
"TEMP.MB.M.C' [OWC C

Setting the Checked property to 1 will cause a tick mark to appear against this option,
indicating that it is the current one in force.

Then the Fahrenheit Menultem...

F<«'Menultem' '&Fahrenheit'
F,«<('Checked' 0)('Event' 'Select' 'SET_F')
'"TEMP.MB.M.F' [OWC F

Notice that as the default value of Checked is 0, we didn't really have to set it explicitly
for Fahrenheit. Nevertheless, it will do no harm to do so, and improves clarity.

The SET_C callback function is defined as follows:

v SET_C
[1] A Sets the scrollbar to work in Centigrade
[2] TEMP.S.Range'+«101
[3] TEMP.S.onScrol Ll«'C2F'
[4] TEMP.MB.M.C.Checked<«1
[5] TEMP.MB.M.F.Checked<«0
\

Line [2] simply sets the Range property of the scrollbar to be 101, and line [3] makes
C2F the callback function when the scrollbar is moved. Lines [4] and [5] ensure that the
tick mark is set on the chosen option.

62 Dyalog APL/W Interface Guide

The SET_F function is very similar...

vV SET_F
[1] A Sets the scrollbar to work in Fahrenheit
[2] TEMP.S.Range<«213
[3] TEMP.S.onScroll<«'F2C'
[4] TEMP .MB.M.F.Checked « 1
[5] TEMP.MB.M.C.Checked « 0
\

and of course we need F 2C to make the scrollbar work in Fahrenheit.

vV F2C Msg;C;F
[1] A Callback for Fahrenheit input via scrollbar
[2] TEMP.F.Value«213-45Msg
[3] TEMP.C.Value«(TEMP.F.Value-32)x5+9

Chapter 2: GUI Tutorial 63

Running from Desktop

Now that we have a final working application, it would be nice to add it as a shortcut, so
that the user can run it from the Start Menu or from the Desktop, like any other
application.
First we need to define [JL X so that the application starts automatically.

EILX - IDDQII.III

or, to avoid so many confusing quotes...

OLx « 0
DDQ |‘|

Next, it would be a good idea to clear the edit fields and ensure that the scrollbar is in its
default position:

'"TEMP.F' [OWS 'Text' ''
'"TEMP.C' OWS 'Text' ''
'"TEMP.S' OWS 'Thumb' 1

Then we must) SAVE the workspace...

)SAVE TEMP
TEMP saved

... and exit APL
)OFF

The next step is to add the application to the Desktop. This is done in the normal way,
ie.

Right-click on the Desktop and choose "New" followed by "Shortcut".

Type in the appropriate command line.

64 Dyalog APL/W Interface Guide

CosteShortet

Twpe the location and name of the item you want ta create
a ghorbcut to, Or, search for the item by clicking Browse.

LCommand line;

Iu::l'xdyalng'xdyalug.e:-:e ternp. ds

Browse. .. |

< Hack I Mest = I Cancel

Select "Next" and give the application a name, then select "Finish".

The resulting icon is shown below. Note that although by default you will get a standard
Dyalog APL icon, you could of course select another one from elsewhere on your
system.

Ly

Temperature
Corverter

Clicking on this icon will start your application. Notice that the APL Session Window
will NOT appear at any stage unless there is an error in your code. All the user will see
is your "Temperature Converter" dialog box.

Chapter 2: GUI Tutorial 65

Using (ONEW instead of OJWC

From Version 11 onwards, it is possible to use [JNEW to create Instances of the built-in
GUI Classes. The following function illustrates this approach using the Temperature
Converter example described previously.

vV TempConv;TITLE;TEMP

[1] TITLE«'Temperature Converter'
[2] TEMP*DNEW'Form'(('Caption'TITLE)('Posn'(10 10))
('Size'(30 40)))
[3]
[4] TEMP. (MB<[NEWc 'MenuBar ')
[5] TEMP.MB. (M<[NEW'Menu'(,c'Caption' '&Scale'))
[6] TEMP.MB .M. (C«[INEW'MenuItem'
(('Caption' '&Centigrade')('Checked' 1)))
[7] TEMP.MB .M. (F<[JNEW'MenuItem'
(8] (,c('Caption' '&Fahrenheit')))
8
[9] TEMP. (LF<[NEW'Label'(('Caption' 'Fahrenheit')
('Posn'(10 10))))
[10] TEMP.(F<[NEW'Edit'(('Posn'(10 40))('Size'(® 20))
('FieldType' 'Numeric')))
[11]
[12] TEMP. (LC+[NEW'Label ' (('Caption' 'Centigrade')
('Posn'(40 10))))
[13] TEMP. (C<[ONEW'Edit' (('Posn' (40 40))('Size' (& 20))
('FieldType' 'Numeric')))
[14]
[15] TEMP. (F2C<[INEW'Button'(('Caption' 'F->C')
('Posn'(10 70))('Default' 1)))
[16] TEMP. (C2F<[NEW'Button'(('Caption' 'C->F')
('Posn' (40 70))))
[17] TEMP. (Q<[NEW'Button'(('Caption' '&Quit')
('Posn'(70 30))('Size'(® 40))
('Cancel' 1)))
[18]
E19% TEMP. (S<[ONEW'Scroll'(<('Range' 101)))
20
[21] TEMP.MB.M.C.onSelect«'SET_C'
[22] TEMP.MB.M.F.onSelect«'SET_F'
[23] TEMP.F2C.onSelect«'f2c'
[24] TEMP.F.onGotFocus<«'SET_DEF'
[25] TEMP.C2F.onSelect<«'c2f"'
[26] TEMP.C.onGotFocus<«'SET_DEF'
[27] TEMP.onClose<«'QUIT'
[28] TEMP.Q.onSelect«'QUIT'
[29] TEMP.S.onScroll«'c2f_scroll'
[30]
[31] [oQ'TEMP'

66 Dyalog APL/W Interface Guide

For brevity, only a couple of the callback functions are shown here.

v f2c

[1] TEMP.C.Value<«(TEMP.F.Value-32)x59
\

V c2f_scroll MSG

[1] A Callback for Centigrade input via scrollbar
[2] TEMP.C.Value<«101-4>5MSG

[3] c2f
\
Temperature Converter g@
Srale
B
Fahrenheit 212 F>C =

Centigrade 100

Duit |

Chapter 2: GUI Tutorial 67

Temperature Converter Class

You may create user-defined Classes based upon Dyalog GUI objects as illustrated by
the Temperature Converter Class which is listed overleaf.

To base a Class on a Dyalog GUI object, you specify the name of the object as its Base
Class. For example, the Temperature Converter is based upon a Form:

:Class Temp: 'Form'

Being based upon a top-level GUI object, the Temperature Converter may be used as

follows:

T1<[NEW Temp(c'Posn' (68 50))

r Temperature Converter [Z] @ 1

Srale

Fahrenheit 212

Centigrade 100

Qui |

68

Dyalog APL/W Interface Guide

Temperature Converter Example

:Class Temp: 'Form'

v

< < <

Make pv;TITLE
tAccess Public
TITLE«'Temperature Converter'
:Implements Constructor :Base (c'Caption' TITLE),pv,
c('Size' (30 40))
MB«[ONEWc 'MenuBar'
MB. (M<[NEW'Menu' (,<'Caption' '&Scale'))
MB .M. (C<[INEW'Menultem'(('Caption’' '&Centigrade')
('Checked' 1)))

MB.M. (F<[ONEW'Menultem'(,<('Caption' '&Fahrenheit')))
LF<[NEW'Label'(('Caption' 'Fahrenheit')

('"Posn' (10 10)))
F<ONEW'Edit'(('Posn' (10 40))('Size'(& 20))

('FieldType' 'Numeric'))

LC«[INEW'Label'(('Caption' 'Centigrade')

('Posn' (40 10)))

C+[NEW'Edit' (('Posn' (40 40))('Size' (8 20))
('FieldType' 'Numeric'))
F2C<[NEW'Button'(('Caption' 'F->C')('Posn'(10 70))

('Default' 1))
C2F<[DNEW'Button'(('Caption' 'C->F')('Posn'(40 70)))
Q<[NEW'Button'(('Caption' '&Quit')('Posn'(70 30))

('Size'(® 40))('Cancel' 1))
S<[NEW'Scroll'(c('Range' 101))
MB.M.C.onSelect<«'SET_C'
MB.M.F.onSelect«'SET_F'
F2C.onSelect«'f2c'
F.onGotFocus<«'SET_DEF'
C2F.onSelect<«'c2f"'
C.onGotFocus«'SET_DEF'
onClose«'QUIT'
Q.onSelect«'QUIT'
S.onScroll«'c2f_scroll'

f2c
C.Value<«(F.Value-32)x5+9

c2f
F.Value«32+C.Valuex9+5

c2f_scroll MSG

A Callback for Centigrade input via scrollbar
C.Value«101-4>5MSG

c2f

Chapter 2: GUI Tutorial 69

vV f2c_scroll Msg
A Callback for Fahrenheit input via scrollbar
F.Value«213-4>Msg
f2c

V Quit
Close

vV SET_DEF MSG
(oMSG) .Default<«1

vV SET_C
A Sets the scrollbar to work in Centigrade
S.Range<«101
S.onScroll«'c2f_scroll'
MB.M.C.Checked<«1
MB.M.F.Checked<«0

vV SET_F
A Sets the scrollbar to work in Fahrenheit
S.Range<«213
S.onScroll«'f2c_scroll'
MB.M.F.Checked«1
MB.M.C.Checked<«0

v
:EndClass A Temp
Notice that the : Implements Constructor statement of its Constructor Make

:Implements Constructor :Base (c'Caption' TITLE),pv,
c('Size' (30 40))

passes on the application-specific property list (pv) given as its argument, but (in this
case) specifies Caption and Size as well. The order in which the properties are specified
in the : Base call ensures that the former will act as a default (and be overridden by an
application-specific Caption requested in pv), whereas the specified Size of (30 40)
will override whatever value of Size is requested by the host application in pv.

Other Instances can co-exist with the first:

T2<[INEW Temp(('Caption' 'My Application')
('Posn'(10 10))

70 Dyalog APL/W Interface Guide

Dual Class Example

The Dual Class example is based upon the example used to illustrate how you may
build an ActiveX Control in Dyalog APL (see Chapter 13), but re-engineered as a
internal Dyalog APL Class. The full listing of the Dual Class script is provided overleaf.

This version of Dual is based upon a SubForm:
:Class Dual: 'SubForm'

The Dual Control requires a GUI parent but several Instances can co-exist, quite
independently, in the same parent.

For example, function RUN creates a Form and 3 Instances of Dual; one to convert
Centigrade to Fahrenheit, one to convert Fahrenheit to Centigrade, and the third to
convert centimetres to inches.

vV RUN;F;D1PROPS;D2PROPS;D3PROPS

N -

F<[ONEW'Form'(('Caption' 'Dual Instances')
('Coord' 'Pixel')('Size'(320 320)))

D1PROPS«+('Captionl' 'Centigrade')
('Caption2' 'Fahrenheit')
D1PROPS,«('Intercept' 32)('Gradient'(9%5))
('Valuel' 0)('Range'(0 100))
F.D1«<F.[ONEW Dual(('Coord' 'Pixel')('Posn'(10 10))
('Size' (100 300)),D1PROPS)

L T e T e T e T T s T |
(6] F w
— g e

[8] D2PROPS«('Captiont' 'Fahrenheit')
('Caption2' 'Centigrade')
[9] D2PROPS,«('Intercept'(-32x5+9))('Gradient'(5%9))
('Valuel' 0)('Range' (0 212))
[10] F.D2«F.[ONEW Dual(('Coord' 'Pixel')('Posn'(110 10))
[11] ('Size'(100 300)),D2PROPS)
11

[12] D3PROPS«('Captionl' 'Centimetres')
('Caption2' 'Inches')
[13] D3PROPS,«('Intercept' 0)('Gradient'(+2.54))
('Valuel' 0)('Range'(0 100))
[14] F.D3«F.[ONEW Dual(('Coord' 'Pixel')('Posn'(210 10))
[15] ('Size'(100 300)),D3PROPS)
15

[16] [ODQ'F'

Chapter 2: GUI Tutorial 7

Dual Instances g@
Centigrade 26
]
-
Fahrenheit a8
F ahrenheit 113
b |
=
Centigrade 45
_Eentimetres 1
|]
: - E
Irches 27 G52 755

Dual's Constructor Make first splits its constructor arguments into those that apply to
the Dual Class itself, and those that apply to the SubForm. Its : Implements
Constructor statement then passes these on to the Base Constructor, together with
an appropriate setting for EdgeStyle.

:Implements Constructor :Base BaseArgs,
c'EdgeStyle' 'Dialog’

72 Dyalog APL/W Interface Guide

Dual Class Example

:Clas

s Dual: 'SubForm'

:Include GUITools

:Field Private _Captioni«'
:Field Private _Caption2«'

:Field Private _Valuel<«0
:Field Private _Value2<«0
:Field Private _Range<«0
:Field Private _Intercept<«0
:Field Private _Gradient«1l
:Field Private _Height<«40

v

v

Create args;H;W;POS;SH;CH;Y1:Y2;BaseArgs;MyArgs:;
Defaults
tAccess Public
MyArgs BaseArgs<«SplitNV args
:Implements Constructor :Base BaseArgs,
c'EdgeStyle' 'Dialog'’
ExecNV_ MyArgs A Set Flds named _PropertyName MyArgs
Coord<«'Pixel"
H W<Size
POS«21t0.5x0[(H-_Height)
CH«>GetTextSize'W'
'Slider'0WC'TrackBar'POS('Size'_Height W)
Slider.(Limits AutoConf)<«_Range O
Slider.(TickSpacing TickAlign)«10 'Top'
Slider.onThumbDrag<«'ChangeValue'
Slider.onScroll«'ChangeValue'
Y1<POS[1]-CH+1
Y2+<POS[1]+_Height+1
‘Captioni_'[OWC'Text'_Caption1(Y1,0)("'AutoConf' 0)
‘Caption2_'[WC'Text'_Caption2(Y2,0)('AutoConf' 0)
'Valuel_ '0WC'Text'(s_Valuel)(YL1,W)('HAlign' 2)
("AutoConf' 0)
CalcValue2
'Value2_'0WC'Text'(s_Value2)(Y2,W)('HAlign' 2)
("AutoConf' 0)
onConfigure«'Configure'

Property Captionl, Caption2
Access Public
V R<Get arg
R«<(arg.Name,'_')[0WG'Text'
v
vV Set arg
(arg.Name,'_"')0OWS'Text'arg.NewValue

v
EndProperty

Chapter 2: GUI Tutorial 73

:Property Valuel
tAccess Public
V R<Get
R«<_Valuel
v
vV Set arg
ONQ'Slider' 'Scroll' 0 arg.NewValue
v
:EndProperty

:Property Intercept, Gradient, Range, Height, Value2
tAccess Public
V R<«<Get arg
R«2'_',arg.Name

v
:EndProperty

vV CalcValue2
_Value2«_Intercept+_Gradientx_Valuel
v

vV ChangeValue MSG
A Callback for ThumbDrag and Scroll
_Valuel«>71tMSG
CalcValue2
Valuel_.Text«3s_Valuel
Value2_.Text«3s_Value2

v

vV Configure MSG;H;W;POS;CH;Y1;Y2
2 [INQ MSG
H W<Size
POS«21[0.5x(H-_Height)
CH«>GetTextSize'W'
Slider.(Posn Size)«POS(_Height W)
Y1«<POS[1]-CH+1
Y2«<POS[1]+_Height+1
Captioni_.Points«1 2pY1,0
Caption2_.Points«1 2pY2,0
Valuel_.Points«1 2pY1,W
Valuel_.Points«1 2pY2,W

v

:EndClass A Dual

74 Dyalog APL/W Interface Guide

75

CHAPTER 3

Graphics

Introduction

Graphical output is performed using the following objects:

Circle Draws circles, arcs and pie-charts
Ellipse Draws ellipses

Image Displays or prints bitmaps and icons
Marker Draws one or more sets of polymarkers
Poly Draws one or more sets of polylines
Text Displays or prints text

Rect Draws rectangles

These graphical objects can be drawn in (i.e. be the children of) a wide range of other
objects including a Form, Static, Printer and Bitmap.

Additional graphical resources are provided by the following objects. These are unusual
in that they are not visible except when referenced as the property of another object:

Bitmap Provides a Windows bitmap
Cursor Provides a non-standard cursor
Icon Provides a Windows icon
MetaFile Provides a Windows Metafile

Graphical objects are created, like any other object, using OWC and have properties that
can be changed using OWS and queried using OWG. Graphical objects also generate
certain events.

76 Dyalog APL/W Interface Guide

Drawing Lines

To draw a line you use the Poly object. The following example draws a line in a Form
from the point (y=10, x=5) to the point (y=90, x=60) :

'F! OWC 'Form' 'Drawing Lines' ('Size' 25 50)
'"F.Line' OWC 'Poly' ((10 90)(5 60))

= Drawing Lines v |~

In the above example, the points are specified as a 2-element nested vector containing
y-coordinates and x-coordinates respectively. You can also use a 2-column matrix, e.g.

'F.Line'0WC'Poly' (4 2p90 5 5 50 90 95 90 5)

= Drawing Lines v |~

Notice that because the second example replaced the object F . L i ne, the original line
drawn in the first example has been erased.

Chapter 3: Graphics 77

In common with the position and size of other GUI objects, y-coordinates precede x-
coordinates. Graphical software typically uses (x,y) rather than (y,x) but the latter is
consistent with the order in which coordinates are specified and reported for all other
objects and events. The Dyalog APL GUI support allows you to freely mix graphical
objects with other GUI components (for example, you can use the graphical Text object
in place of a Label) and this (y,x) consistency serves to avoid confusion.

When a graphical object in a screen object is erased its parent is restored to the
appearance that it had before that graphical object was created. Thus:

'F.Line' OWC 'Poly' (2 2p10 5 50 10)
OEX 'F.Line'

first draws a line and then removes it. The following expression clears all graphical
objects (and any other non-graphical ones too) from a parent object 'F ':

OEXOWN'F'

Similarly, objects automatically disappear when a function in which they are localised
exits.

Erasing graphical objects that have been drawn on a Printer has no effect. Once drawn
they cannot be undrawn.

Drawing in a Bitmap

A bitmap is an invisible resource (in effect, an area of memory) that is only displayed
on the screen when it is referenced by another object. Any of the seven graphical
objects (Circle, Ellipse, Image, Marker, Poly, Text and Rect) can be drawn in a bitmap
(represented by a Bitmap object), using exactly the same (OWC syntax as if you were
drawing in a Form, Static or Printer. However, drawing in a Bitmap is, like drawing on
a Printer, an operation that cannot be "undone".

This facility allows you to construct a picture using lines, circles, text etc. and then later
display it or save it as a bitmap.

78

Dyalog APL/W Interface Guide

Multiple Graphical ltems

All graphical output objects (Circle, Ellipse, Image, Marker, Poly, Text and Rect)
permit nested arguments so that you can draw several items with a single object. This
feature has several advantages. Firstly, it allows you to treat related graphical items as a
single object with a single name. This reduces the potential number of objects in
existence and reduces the number of program statements needed to draw them. For
example, sets of tick marks or grid lines do not have to be drawn separately, but can be
represented by one object. Furthermore, because a set of lines can be embodied in a
single object, you can erase them, replace them or drag/drop them as a unit. A further
consideration is performance. A set of graphical items represented by a single object
will normally be drawn faster than if each item was represented by separate objects.

For example, the following statements draw two separate rectangles; a red one at (y=10,
x=20) and a blue one at (y=50, x=60). Both rectangles are size (30,30).

RED BLUE « (255 0 0)(0 0 255)

'F.R1"'" OWC 'Rect' (10 20)(30 30) ('FCol' RED)
'"F.R2' OWC 'Rect' (50 60)(30 30) ('FCol' BLUE)

The next statement achieves the same result, but uses only one object:

'"F.R' OWC 'Rect' ((10 50)(20 60)) (30 30)
('FCol' RED BLUE)

The rectangles drawn by both these sets of statements are shown below (blue and red
have been replaced by black for clarity).

= Multiple Graphical tems v |~

Chapter 3: Graphics 79

The capability to specify more than one graphical item as a single object is particularly
useful with the Text object as it allows you to display or print several text items (at
different positions and in different colours if you wish) in a single statement. For
example, the following expressions display a set of "labels" in a Form 'F1":

LAB«'Name' 'Age' 'Address'
POS«3 2p10 10 10 60 30 10
"F1.LABS' [JWC 'Text' LAB POS

= Multiple Text ltems v |~

Name Age
Address

80 Dyalog APL/W Interface Guide

Unnamed Graphical Objects

When using the seven graphical output objects, you can optionally omit the final part of
the name. For example, the following expression is valid:

'"F.'" OWC 'Poly' (2 2p10 5 50 10)

When you create a named object, all of the properties pertaining to that object are
stored internally in your workspace. A polyline consisting of a large number of points
thus takes up a significant amount of memory. However, this is necessary because the
APL interpreter needs the information in order to redraw the object when another
window is placed over it and then moved away again (exposure) or when the user
resizes the Form in which it is displayed.

When you create an unnamed graphical object, the object is drawn, but its properties
are not remembered internally, thus conserving workspace. This has two consequences.
Firstly, you cannot subsequently modify or query the object's properties; you must name
an object if you are ever going to refer to it again. Secondly, the object cannot
automatically be redrawn (by APL) when it is exposed or resized. Instead, you must
control this yourself using the Expose event.

Unnamed graphical objects are useful in the following circumstances:

e For output to a Printer.

e When you are very short of workspace.

e When you are sure that the window you are drawing in will not need to be redrawn,
for example, when you are working "full-screen".

e For drawing in a Bitmap or a Metafile.

e For creating bitmaps in an ImageList

Chapter 3: Graphics 81

Bitmaps and Icons

Bitmaps and icons are implemented as separate objects that you can create and destroy.
Once you have created such an object you can reference it as many times as you wish.
For example, you can use the same bitmap in several Buttons or associate the same icon
with several Forms.

The Bitmap and Icon objects can be created in one of two ways. They are either loaded
from an existing file or they are defined from APL arrays.

The files concerned must be in the appropriate Windows format for the object ((BMP or
ICO files) which can be edited by a standard Windows utility such as Paintbrush. The
following example creates a Bitmap object from the CARS.BMP bitmap file which is
supplied in the WS sub-directory:

ROOT«'C:\Program Files\Dyalog\Dyalog APL 12.1 Unicode\'
"CARS' [OWC 'Bitmap' (ROOT, '\WS\CARS"')

Then you can use the Bitmap to fill the background of a Form by:

'"F1' OWC 'Form' ('Picture' 'CARS' 1)('Size' 25 50)

PPPPPPPPDPPDPD

PPPPPPPPPP PP
PPPPPPPPPPP P
PPPPPPPPPP PP

B (P i B P B B P P P P

The "1" in the expression specifies that the Bitmap is to be used to "tile" the background
of the Form. The result is shown in the illustration below. You can also position the
Bitmap in the top-left (0) or centre (3) of the Form, or even have the Bitmap scaled
automatically (2) to fit exactly in the Form. These settings are useful for displaying
pictures. You can explore these facilities using the BMVIEW function in the UTIL
workspace.

82

Dyalog APL/W Interface Guide

Instead of creating Bitmap and Icon objects from file, you can define them using APL
arrays. These arrays specify the individual pixels that make up the picture or shape of
the object in question.

There are two ways to define a Bitmap object from APL arrays. The first method, which
is limited to colour palettes of 16 or 256 colours is to supply two arrays; one containing
the colour indices for every pixel in the bitmap, and one containing the colour map. The
colour map specifies the colours (in terms of their red, green and blue components)
corresponding to the indices in the first array. For example, the following expressions
create a 32 x 32 Bitmap from the arrays PIX and CM:

pPIX A colour index (in CM) of each pixel
32 32

pCM A 16-row matrix of RGB values
16 3

'BM' [OWC 'Bitmap' ('Bits' PIX)('CMap' CM)

The reason that this method is restricted to 256 colours is that the CMap array
containing the colour map is, of necessity, the same size as the colour palette. Even for a
relatively modest 16-bit colour palette, the size of the array would be 65536 x 3.

The second method, which applies to all sizes of colour palette, is to use a single array
that represents each pixel by a number that is an encoding of the red, green and blue
components. The formula used to calculate each pixel value is:

2561RED GREEN BLUE
where RED, GREEN and BLUE are integers in the range 0-255.
Thus the example above can be achieved using a single array CBITS as follows:
CBITS«(256LQCMAP)[IO+PIX]
'BM' [OWC 'Bitmap' ('CBits' CBITS)
You can build APL arrays representing bitmaps using the BMED function in the BMED
workspace. You can also load them from file, e.g.

'BM' [OWC 'Bitmap' 'C:\WINDOWS\CARS'
PIX CM « 'BM' [OWG 'Bits' 'CMap'

Chapter 3: Graphics 83

Metafiles

A Windows metafile is a mechanism for representing a picture as a collection of
graphics commands. Once a metafile has been created, the picture that it represents can
be drawn repeatedly from it. Metafiles are device-independent, so the picture can be
reproduced on different devices. Unlike bitmaps, metafiles can be scaled accurately and
are therefore particularly useful for passing graphical information between different
applications. Note that some other applications only support placeable metafiles. See
RealSize property for details.

Creating a Metafile Object

In Dyalog APL, a Windows metafile is represented by the Metafile object. This is
created in much the same way as a Bitmap object. That is, you can either make a
Metafile object from an existing . WMF file, or you can create an empty one and then
draw onto it using Poly, Text and other graphical objects. For example, to create a
Metafile object called BFLY from the BUTTRFLY.WMF metafile that comes with
Microsoft Office, you can execute the following:

'BFLY' [OWC 'Metafile' 'c:\msofficelclipart\buttrfly'

If instead you wanted to create a metafile drawing from scratch, you could do so as
follows. Notice that there is no need to assign names to the graphical objects drawn onto
the Metafile.

'METADUCK' [OWC 'Metafile’ "'
'"METADUCK.' [OWC 'Poly' DUCK
'"METADUCK.' OWC 'Text' 'Quack' (25 86)

84 Dyalog APL/W Interface Guide

Drawing a Metafile Object

A Metafile object is drawn by specifying its name as the Picture property of another
object. This causes the Metafile to be drawn in that object and scaled to fit exactly
within its boundaries. The following statement causes the Metafile object called

METADUCK to be drawn in the Form F 1.
"F1'OWC'Form' ('Size' 25 50) ('Picture' 'METADUCK')

Quack !

Chapter 3: Graphics 85

Picture Buttons

Picture buttons in foolbars are most conveniently represented by ToolButtons in
ToolControls (see Chapter 4). Pictures on stand-alone buttons or buttons used in the
(superseded) ToolBar object, may be created using Bitmap, Icon and Metafile objects
and there are two different methods provided. The first (and the simplest) is to use the
Picture property which applies to all 3 types of image,(Bitmap, Icon or Metafile). The
second method is to use the BtnPix property. This requires rather more effort, and only
draws Bitmaps, and not Icons or Metafiles. However, the BtnPix property gives you
total control over the appearance of a Button which the Picture property does not.

Using the Picture Property

The Picture property overlays a Bitmap, Icon or Metafile on top of a standard
pushbutton. The following examples use icon files distributed with Visual Basic. If you
don't have this product, you can use any other suitable icons, bitmaps or metafiles that
you have on your PC. Alternatively, you can create bitmaps using the BMED function in
the BMED workspace.

Load a Visual Basic icon:
"ARROW' [WC 'Icon' 'C:\VB\IconS\ARROWS\ARWO2DN'
'F' OWC 'Form' 'Using the Picture Property'
'F.B' OWC 'Button' ('Coord' 'Pixel')

('Size' 40 40)
('Picture' 'ARROW' 3)

= Using the Picture Property v |~

b

86

Dyalog APL/W Interface Guide

Notice that (by definition) an icon is 32 x 32 pixels in size. To allow space for the
pushbutton borders you have to make the Button at least 40 x 40 pixels. The "3" means
put the ' ARROW' in the centre of the button.

When you press a Button which has its Picture property set like this, APL/W
automatically shifts the overlaid image down and to the right by 1 pixel. This
complements the change in appearance of the button borders and achieves a "pressed-
in" look. When you release the button, APL shifts the image back again.

The Picture property therefore provides a very simple mechanism for implementing a
"tool-button", especially if you already have a bitmap or icon file that you want to use.

However, the Picture property has certain limitations. Firstly, you cannot alter the
"pressed-in" look of the Button which is determined automatically for you. You might
want the Button to change colour when you press it, and you cannot achieve this with
the Picture property. Secondly, the appearance of the Button is unchanged when you
make it inactive (by setting its Active property to 0).

Note that if you use the Picture property on Radio or Check buttons, the buttons assume
pushbutton appearance although their radio/check behaviour is unaffected.

Using the BtnPix Property

You can obtain complete control over the appearance of a Button by using the BtnPix
property; however this entails more work on your part.

BtnPix allows you to associate three bitmaps with a Button, i.e.

one for when the Button is in its normal state
one for when it is pressed/selected
one for when it is inactive

For example, if you have created three Bitmap objects called 'UP ', 'DOWN"' and
'DEAD', you define the Button as follows:

'F.B' OWC 'Button' ('BtnPix' 'UP' 'DOWN' 'DEAD')

APL subsequently displays one of the three Bitmap objects according to the state of the
Button; i.e. 'UP ' for its normal state (State 0), ' DOWN ' for its pressed/selected state
(State 1) or 'DEAD' when it is inactive (Active 0).

Chapter 3: Graphics 87

The BtnPix property requires that you use Bitmap objects; it doesn't work for Icons.
This is because icons are normally at least partly transparent. However, it is very easy
to convert an icon file to a Bitmap object. First you create an Icon object from the icon
(.ICO) file. Next you read the icon's pattern definition (Bits property) and colour map
(CMap property) into the workspace. Then finally, you create a Bitmap from these two
arrays.

The following example illustrates how you can make a Button from three Visual Basic
icon files. You can also make your own trio of bitmaps using the BTNED function in the
BMED workspace.
Load a Visual Basic icon:
'T1' OWC 'Icon' 'C:\VB\IconS\TRAFFIC\TRFFC10A'
Read its Bits (pattern) and CMap (colour map):
Bits CMap « 'T1' [DWG 'Bits' 'CMap'
Now define a Bitmap from these variables, (replacing the T1 object):
'T1' OWC 'Bitmap' '' Bits CMap
Now make a second Bitmap:

'T2' OWC 'Icon' 'C:\VB\IconS\TRAFFIC\TRFFC10B'
'T2' OWC 'Bitmap' '' , 'T2' [OWG 'Bits' 'CMap'

and a third:

'T3' OWC 'Icon' 'C:\VB\IconS\TRAFFIC\TRFFC10C'
‘T3' OWC 'Bitmap' '' , 'T3' OWG 'Bits' 'CMap'

Now define the Button:
'F.B' OWC 'Button' ('BtnPix' 'T1' 'T2' 'T3')
What does it look like when inactive?

"F.B' OWS 'Active' O

88

Dyalog APL/W Interface Guide

Using Icons

You have seen how icons can be displayed using the Picture property. Other uses of
icons are described below.

Firstly, you can associate an icon with a Form or so that the icon is displayed (by
Windows) when the Form is minimised. This is done using the IconObj property. For
example, the following expressions would associate the UK Flag icon distributed with
Visual Basic with the Form ' F1'. This icon would then be displayed when 'F1' is
minimised.

'"FLGUK' OWC 'Icon' 'C:\VB\ICONS\FLAGS\FLGUK'
'F1' OWC 'Form' ('IconObj' 'FLGUK'")

The IconObj property also applies to the Root object ' . . This defines the icon to be
displayed for your application as a whole when the user toggles between applications
using Alt+Tab. It is used in conjunction with the Caption property which determines the
description of your application that is shown alongside the icon, e.g.

'MYIcon' OWC 'Icon' ...
"." OWS ('IconObj' 'MYIcon') ('Caption' 'My System')

An icon can be displayed using the Image object. This object is used to position one or
more Icon objects (or Bitmap objects) in a Form or Static. It can also be used to draw an
icon on a Printer. If you make the Image dragable, you will be able to drag/drop the
icon. The following example displays a dragable Icon at (10,10) in a Form. It also
associates the callback function 'Drop ' with the DragDrop event so that this function
is called when the user drag/drops the icon.

'F1' OWC 'Form' ('Event' 'DragDrop' 'Drop')

'"FLGUK' OWC 'Icon' 'C:\VB\ICONS\FLAGS\FLGUK'

'F1.I' OWC 'Image' (10 10) ('Picture' 'FLGUK')
('Dragable' 2)

Displaying an Icon using an Image

Notice that ('Dragable’ 2) specifies that an object is fully displayed while it is
being dragged. The setting ('Dragable’ 1) causes only the bounding rectangle
around the object to be dragged.

89

CHAPTER 4

Composite Controls

This chapter describes how to use the ToolControl, CoolBar, TabControl and StatusBar
objects.

Several of these objects require the Windows Custom Control Library
COMCTL32.DLL, Version 4.72 or higher.

90 Dyalog APL/W Interface Guide

The ToolControl and ToolButton Objects

The ToolControl object is normally used in conjunction with ToolButtons, although it
may also act as a parent for other objects, including a MenuBar.

A ToolButton may display a Caption and an Image, although both are optional. Images
for individual ToolButtons are not defined one-by-one, but instead are defined by an
ImageList which contains a set of bitmaps or icons.

The ImageListObj property of the ToolControl specifies the name of one or more
ImageList objects to be used. The Imagelndex properties of each of the ToolButtons
specifies which of the images in each ImageList object apply to which of the
ToolButtons.

Standard Bitmap Resources

Typically, you will want your ToolControls to provide standard Windows buttons and
the easiest way to achieve this is to utilise the standard Windows bitmaps that are
contained in COMCTL32.DLL. There are three main sets of bitmaps, each of which is
provided in two sizes, small (16x16) and large (24 x 24).

Resource number 120 (IDB_STD SMALL COLOR) and 121
(IDB_STD_LARGE_COLOR) contain the following set of assorted bitmap images.

§ o o XS ARIQS

Resource number 124 (IDB_VIEW _SMALL COLOR) and 125
(IDB_VIEW_ LARGE COLOR) contain a set of bitmaps relating to different views of
information. These are used, for example in the Windows Explorer tool bar

i = s

Resource number 130 (IDB_HIST SMALL COLOR) and 131
(IDB_HIST LARGE COLOR) contain another useful set of bitmaps

) GG

COMCTL32.DLL also contains individual bitmaps in resources 132-134.

Chapter 4: Composite Controls 91

Dyalog Bitmap Resources

Another three sets of useful bitmaps are to be found in the DYARES32.DLL file. These
bitmaps are used in the Dyalog APL/W Session tool buttons. Note that if you include
these bitmaps in a run-time application, you will have to ship DYARES32.DLL with it.

The normal set of bitmaps associated with the Session buttons may be created using the
statement:

"bm'Owc'Bitmap' ('DYARES32' 'tb_normal')
DENEEREEE sV B o O 0%

The bitmaps used when the buttons are highlighted may be created using the statement
(note that the file name may be elided)

"bm'Owc'Bitmap' ('' 'tb_hot')
DETHSRREESs VB S o QK

The bitmaps used when the buttons are inactive may be created using the statement

"bm'Owc'Bitmap' ('' 'tb_inactive')

S SR e e T = [v i

92 Dyalog APL/W Interface Guide

Creating ImageLists for ToolButtons

You may use up to three ImageList objects to represent ToolButton images. These will
be used to specify the pictures of the ToolButton objects in their normal, highlighted
(sometimes termed hot) and inactive states respectively.

The set of images in each ImageList is then defined by creating unnamed Bitmap or
Icon objects as children.

When creating an ImageList, it is a good idea to set its MapCols property to 1. This
means that standard button colours used in the bitmaps will automatically be adjusted to
take the user’s colour preferences into account.

When you create each ToolButton you specify its Imagelndex property, selecting up to
three pictures (normal, highlighted and inactive) to be displayed on the button.

If you specify only a single ImageList, the picture on the ToolButton will be the same in
all three cases. However, the appearance of the buttons themselves change when the
button is highlighted or pressed, and in many situations this may be sufficient
behaviour.

The following example illustrates how a simple ToolControl can be constructed using
standard Windows bitmaps. Notice that the Masked property of the ImageList is set to
0; this is necessary if the ImageList is to contain bitmaps, as opposed to icons.
Secondly, because the bitmaps are in this case size 16 x 16, it is unnecessary to specify
the Size property of the ImageList which is, by default, also 16 x 16.

'"F'OWC'Form' 'ToolControl'('Size' 10 40)
.TB'OWC'ToolControl'
.TB.IL'0OWC'ImageList'('Masked' 0) ('MapCols' 1)
.TB.IL.'OWC'Bitmap'('ComCtl32' 120)m STD_SMALL
.TB'[OWS 'ImagelListObj' 'F.TB.IL'
.TB.B1'0WC'ToolButton' 'New'('ImageIndex' 7)
.TB.B2'[WC'ToolButton' 'Open'('ImageIndex' 8)
.TB.B3'[0WC'ToolButton' 'Save'('ImageIndex' 9)

Ay ToolControl M=l
O = E

Mew Open Save

MMM

Chapter 4: Composite Controls 93

The Style Property

The overall appearance of the ToolButton objects displayed by the ToolControl is
defined by the Style property of the ToolControl itself, rather than by properties of
individual ToolButtons.

Note that the Style property may only be set when the ToolControl is created using [JWC
and may not subsequently be changed using OWS.

Style may be 'FlatButtons', 'Buttons', 'List' or 'FlatList'. The
default Style is of a ToolControl is 'F latButtons ', as is the first example above.
The following examples illustrate the other three styles:

A¢ ToolControl: Buttons Style

]

=
Open

1

M e

Save

A¢ ToolControl: List Style

[Mew | @Dpenl ESavel

Aty ToolControl: FlatList Style

[Mew [=Open HSave

The Divider Property

You will notice that, in the above examples, there is a thin groove drawn above the
ToolControl. The presence or absence of this groove is controlled by the Divider
property whose default is 1. The following picture illustrates the effect of setting
Divider to 0.

A¢ ToolControl: Ho divider
O = E

Mew Open Save

94 Dyalog APL/W Interface Guide

The MultiLine Property

The MultiLine property specifies whether or not ToolButtons (and other child controls)
are arranged in several rows (or columns) when there are more than would otherwise fit.

If MultiLine is 0 (the default), the ToolControl object c/ips its children and the user
must resize the Form to bring more objects into view.

Note that you may change MultiLine dynamically, using OWS.

'"F'OWC'Form' 'ToolControl: MultiLine 0
'F.TB'OWC'ToolControl'('Style' 'List')

'"F.TB.IL'0OWC'ImagelList'('Masked' 0)('Size' 24 24)
'"F.TB.IL.'OWC'Bitmap'('ComCtl32"' 121)a STD_LARGE
'"F.TB'OWS'ImagelListObj' 'F.TB.IL'
'F.TB.B1'(OWC'ToolButton' 'Cut'('ImageIndex' 1)
'"F.TB.B2'WC'ToolButton' 'Copy'('ImageIndex' 2)
'F.TB.B3'0WC'ToolButton' 'Paste'('ImageIndex' 3)
'"F.TB.B4'(OWC'ToolButton' 'Undo'('ImageIndex' 4)
'F.TB.B5'0WC'ToolButton' 'Redo'('ImageIndex' 5)
'"F.TB.B6'0WC'ToolButton' 'Delete’'('Imagelndex' 6)

A0¢ ToolControl: MultiLine 0

En:-p_l,l F'aste K Undo | Cu

EXJ Cut

If we set MultiLine to 1, the ToolButtons are instead displayed in several rows:

Aty ToolControl: MultiLine 1

K Unda

EXJ Cut Copy Pazte

Cu Redo | X Delete

Chapter 4: Composite Controls 95

The Transparent Property

The

Transparent property (default 0) specifies whether or not the ToolControl is

transparent. Note that Transparent must be set when the object is created using OWC and
may not subsequently be changed using [JWS.

If a ToolControl is created with Transparent set to 1, the visual effect is as if the
ToolButtons (and other controls) were drawn directly on the parent Form as shown

below.

'"F'OWC'Form' 'ToolControl: Transparent 1)'
'"F.BM'OWC'Bitmap' 'C:\WINDOWS\WINLOGO'
'"F'OWS'Picture' 'F.BM' 1
'"F.TB'OWC'ToolControl'('Style' 'FlatList')('Transparent' 1)
'"F.TB.IL'0OWC'ImagelList'('Masked' 0)('Size' 24 24)
'F.TB.IL.'OWC'Bitmap'('ComCtl32"' 121)a STD_LARGE
"F.TB'OWS'ImagelListObj' 'F.TB.IL'
'F.TB.B1'(WC'ToolButton' 'New'('ImageIndex' 7)
'"F.TB.B2'[JWC'ToolButton' 'Open'('Imagelndex' 8)
'F.TB.B3'0WC'ToolButton' 'Save'('ImageIndex' 9)

96

Dyalog APL/W Interface Guide

Radio buttons, Check buttons and Separators

The Style property of a ToolButton may be 'Push’, 'Check', 'Radio’,
'Separator' or 'DropDown'.

Push buttons (the default) are used to generate actions and pop in and out when clicked.

Radio and Check buttons are used to select options and have two states, normal (out)
and selected (in). Their State property is 0 when the button is in its normal (unselected
state) or 1 when it is selected.

A group of adjacent ToolButtons with Style 'Radio' defines a set in which only one
of the ToolButtons may be selected at any one time. The act of selecting one will

automatically deselect any other. Note that a group of Radio buttons must be separated
from Check buttons or other groups of Radio buttons by ToolButtons of another Style.

Separator buttons are a special case as they have no Caption or picture, but appear as a
thin vertical grooves that are used only to separate groups of buttons.

The following example illustrates how two groups of radio buttons are established by
inserting a ToolButton with Style ' Separator ' between them. This ToolControl
could be used to control the appearance of a ListView object. The first group is used to
select the view (Large Icon, Small Icon, List or Report), and the second is used to sort
the items by Name, Size or Date. In the picture, the user has selected Small Icon View
and Sort by Date.

A0¢ ToolControl: Radio buttons

I

el ol | 8]

Hame Size | Date

Lizt Details

Large | Small

Notice that the appearance of the Separator ToolButton is less obvious when the
ToolControl Style is Buttons or List, but the radio grouping effect is the same:

A ToolControl: List Style with Hadio buttons

By Large | - Small IEE List E Details| 2 | Name I 9lSize E[Date |

Chapter 4: Composite Controls 97

'"F'OWC'Form' 'ToolControl: ToolButton Styles'('Size' 10 40)
'"F.TB'OWC'ToolControl'

.TB.IL'0OWC'ImageList'('Masked' 0)
.TB.IL.'OWC'Bitmap'('ComCtl32"' 124)a VIEW_SMALL
.TB'[OWS'ImagelListObj' 'F.TB.IL'

M m ™

'F.TB.B1'(0WC'ToolButton' 'Large' ('ImageIndex' 1)
('Style' 'Radio')
'"F.TB.B2'0OWC'ToolButton' 'Small' ('ImageIndex' 2)
('Style' 'Radio')

'F.TB.B3'0WC'ToolButton' 'List' ('ImageIndex' 3)
('Style' 'Radio')

('ImageIndex' 4)

('Style' 'Radio')

'"F.TB.B4'[JWC'ToolButton' 'Details'

'"F.TB.S1'(0WC'ToolButton'('Style' 'Separator')
'F.TB.B5'0WC'ToolButton' 'Name' ImageIndex' 5)
‘Style' 'Radio')
ImageIndex' 6)
‘Style' 'Radio')
'Imagelndex' 7)
‘Style' 'Radio')

E
'"F.TB.B6'[JWC'ToolButton' 'Size' (
(
'"F.TB.B7'[JWC'ToolButton' 'Date' (

(

Drop-Down buttons

It is possible to define ToolButtons that display a drop-down menu from which the user
may choose an option. This is done by creating a ToolButton with Style 'DropDown'.

A ToolButton with Style 'DropDown ' has an associated popup Menu object which is
named by its Popup property. There are two cases to consider.

If the ShowDropDown property of the parent ToolControl is 0, clicking the ToolButton
causes the popup menu to appear. In this case, the ToolButton itself does not itself
generate a Select event; you must rely on the user selecting a Menultem to specify a
particular action.

If the ShowDropDown property of the parent ToolControl is 1, clicking the dropdown
button causes the popup menu to appear; clicking the ToolButton itself generates a
Select event, but does not display the popup menu.

98 Dyalog APL/W Interface Guide

'"F'OWC'Form' 'ToolControl: Dropdown Buttons'

'"F.TB'OWC'ToolControl'('ShowDropDown' 1)

:With 'F.FMENU'[0WC'Menu' A Popup File menu
"NEW'0WC'Menultem' '&New'
"OPEN'[WC'Menultem' '&Open’
"CLOSE'JWC'Menultem' '&Close’

:EndWith

:With 'F.EMENU'[0WC'Menu' A Popup Edit menu
'CUT'OWC'Menultem' 'Cu&t'
'COPY'WC'Menultem' '&Copy'
'PASTE'(WC'Menultem' '&Paste’

:EndWith

'F.TB.B1'0OWC'ToolButton' 'File' ('Style'
('Popup'’

'F.TB.B2'0WC'ToolButton' 'Edit' ('Style'
('Popup'’

A¢ ToolControl: Dropdown Buttons

File| = Edit =
Hew
Open
Close

('Size'

'DropDown ')
"F.FMENU")
'DropDown')
"F.EMENU")

20 40)

Chapter 4: Composite Controls 99

A MenuBar as the child of a ToolControl

As a special case, the ToolControl may contain a MenuBar as its only child. In this
case, Dyalog APL/W causes the menu items to be drawn as buttons, even under
Windows 95.

Although nothing is done to prevent it, the use of other objects in a ToolControl
containing a MenuBar, is not supported.

'"F'OWC'Form' 'ToolControl with MenuBar'('Size' 20 40)
'F.TB'0OWC'ToolControl'

:With 'F.TB.MB'[OWC'MenuBar'

:With 'File'[JWC'Menu' 'File'
'New'[JWC'MenulItem' 'New'
'Open'[OWC'Menultem' 'Open’
'Close'[IWC'Menultem' 'Close’

:EndWith

:With 'Edit'(OWC'Menu' 'Edit'
'Cut'0WC'Menultem' 'Cut'
"Copy 'WC'Menultem' 'Copy'
'Paste'[JWC'Menultem' 'Paste'

:EndWith

:EndWith

Aty ToolControl with MenuB ar

File | Edit

Cut

Pazte

100

Dyalog APL/W Interface Guide

Providing User Customisation

It is common to allow the user to switch the appearance of a ToolControl dynamically.
This may be done using a pop-up menu. In addition to providing a choice of styles, the
user may switch the text captions on and off.

The ShowCaptions property specifies whether or not the captions of ToolButton objects
are drawn. Its default value is 1 (draw captions).

ToolButtons drawn without captions occupy much less space and ShowCaptions
provides a quick way to turn captions on/off for user customisation.

A0¢ ToolControl: User Options

EXI' Ky g _Elat Buttons

Cut Copy Paste Undo FRec Buttons
Lizt
Flat List

v Show Text
MulbLine

The following functions illustrate how this was achieved.

vV Example
[1] '"F'OWC'Form' 'ToolControl: User Options'
[2] '"F.TB'OWC'ToolControl'
%3% '"F.TB'OWS'Event' 'MouseDown' 'TC_POPUP'
L
[5] '"F.TB.IL'0OWC'ImageList'('Masked' 0)('Size' 24 2L4)
[6] '"F.TB.IL.'0OWC'Bitmap'('ComCtl32"' 121)a STD_LARGE
E7% "F.TB'OWS'ImagelListObj' 'F.TB.IL'
8
[9] 'F.TB.B1'0WC'ToolButton' 'Cut'('ImageIndex' 1)
[10] '"F.TB.B2'[JWC'ToolButton' 'Copy'('Imagelndex' 2)
[11] 'F.TB.B3'[DWC'ToolButton' 'Paste'('ImageIndex' 3)
[12] '"F.TB.B4'[JWC'ToolButton' 'Undo'('Imagelndex' U4)
[13] '"F.TB.B5'[JWC'ToolButton' 'Redo'('ImageIndex' 5)
[14] '"F.TB.B6'IWC'ToolButton' 'Delete’'('ImageIndex' 6)

Chapter 4: Composite Controls

101

- - - - = \O 00 NOOIF WN -
~ o\, F [Ot e
— [S S TS [Y SN Y SN Y S | W | — —— —— — —

NNNDNPDNDNN - -

Lo Lo Vs Vo Vs Vo T e Vo Vs T Vo Ve Vs P Vs T s TR e T Vs T e Vs B e B e U L DY e Vs T Vo Vo T Yo |
OO FWNEF, OV

WWWNNN
N—O\WVO0

vV TC_POPUP MSG;popup;TC;STYLE; SHOW;MULTI;OPTION
A Popup menu on ToolControl
:If (2#55MSG) A Right mouse button ?
:Return
:EndIf

TC«'#."',oMSG
STYLE SHOW MULTI<«TC [OWG'Style' 'ShowCaptions'
‘MultilLine'

:With 'popup'0WC'Menu’
'FlatButtons'[JWC'Menultem' '&Flat Buttons'
('Style' 'Radio')
'Buttons '[JWC'Menultem' '&Buttons'

('Style' 'Radio')
'List'OWC'Menultem' '&List'('Style' 'Radio')
'FlatList'0OWC'Menultem' 'Fla&t List'

('Style' 'Radio')

STYLE [WS'Checked' 1

'sep'WC'Separator’

'ShowCaptions'[JWC'Menultem' '&Show Text'
('Checked'SHOW)

'MultiLine'OWC'Menultem' '&MultilLine’
('Checked'MULTI)

('MenuItem'0OWN'')OWS c'Event' 'Select' 1

:If 0=pMSG<[IDQ""'
:Return
tEndIf

:Select OPTION«>MSG
:Caselist 'FlatButtons' 'Buttons' 'List'
'"FlatList'
TC OWS'Style'OPTION
:Else
TC OWS OPTION(~TC [OWG OPTION)
:EndSelect

:EndWith
v

102 Dyalog APL/W Interface Guide

The CoolBar and CoolBand Objects

A CoolBar contains one or more bands (CoolBands). Each band can have any
combination of a gripper bar, a bitmap, a text label, and a single child object.

Using the gripper bars, the user may drag bands from one row to another, resize bands
in the same row, and maximise or minimise bands in a row. The CoolBar therefore
gives the user a degree of control over the layout of the controls that it contains.

A CoolBand may not contain more than one child object, but that child object may itself
be a container such as a ToolControl or a SubForm.

The following example illustrates a CoolBar containing two CoolBands, each of which
itself contains a ToolControl.

'"F'OWC'Form' 'CoolBar Object with ToolControls'
"F.IL'OWC'ImageList'('Masked' 0)('MapCols' 1)
'"F.IL.'OWC'Bitmap'('ComCtl32' 120)a STD_SMALL

'F.CB'DWC'CoolBar'

:With 'F.CB.C1'OWC'CoolBand'
'TB'OWC'ToolControl'('ImageListObj"' '#.F.IL")
'TB.B1'[JWC'ToolButton' 'New'('ImageIndex' 7)
'TB.B2'(JWC'ToolButton' 'Open'('ImageIndex' 8)
'TB.B3'0WC'ToolButton' 'Save'('ImageIndex' 9)

:EndWith

:With 'F.CB.C2'[OWC'CoolBand'
'TB'0OWC'ToolControl'('ImageListObj"' "#.F.IL"')
'TB.B1'(OWC'ToolButton' 'Cut'('ImageIndex' 1)
'TB.B2'[JWC'ToolButton' 'Copy'('ImageIndex' 2)
'TB.B3'WC'ToolButton' 'Paste'('ImageIndex' 3)
'TB.B4'[JWC'ToolButton' 'Undo'('ImageIndex' 4)
'TB.B5'[JWC'ToolButton' 'Redo'('ImageIndex' 5)

:EndWith

Chapter 4: Composite Controls 103

Aty CoolBar Object with ToolControls

O = E
Mew Dpen Save
j % B o o

Cut Copp Paste Undo Fedo

The user may move band 2 into row 1 by dragging the gripper bar:

Aty CoolBar Object with ToolControls

O = E o B @B o« o

Mew Dpen Save Cut Copy Paste Undo Redo

CoolBar: FixedOrder Property

FixedOrder is a property of the CoolBar and specifies whether or not the CoolBar
displays CoolBands in the same order. If FixedOrder is 1, the user may move bands
which have gripper bars to different rows, but the band order is static. The default is 0.

CoolBand: GripperMode Property

GripperMode is a property of a CoolBand and specifies whether or not the CoolBand
has a gripper bar which is used to reposition and resize the CoolBand within its parent
CoolBar. GripperMode is a character vector with the value 'Always ' (the default),
"Never' or "Auto’. If GripperMode is 'Always ' , the CoolBand displays a gripper
bar even if it is the only CoolBand in the CoolBar. If GripperMode is 'Never ' , the
CoolBand does not have a gripper bar and may not be directly repositioned or resized
by the user. If GripperMode is 'Auto ' , the CoolBand displays a gripper bar only if
there are other CoolBands in the same CoolBar.

104

Dyalog APL/W Interface Guide

CoolBar: DbIClickToggle Property

If it has a gripper bar, the user may maximise one of the bands in a row, causing the
other bands to be minimised. The action required to do this is defined by the
DblClickToggle property which is a property of the CoolBar.

If DbIClickToggle is 0 (the default), the user must single-click the gripper bar. If
DblClickToggle is 1, the user must double-click the gripper bar. These actions toggle a
child CoolBand between its maximised and minimised state. The following picture
shows the first CoolBand maximised.

Aty CoolBar Object with ToolControls
1 [=

The next picture shows the second CoolBand maximised.

Aty CoolBar Object with ToolControls

& &

Chapter 4: Composite Controls 105

CoolBar: VariableHeight/BandBorders Properties

These two properties affect the appearance of the CoolBar.

The VariableHeight property specifies whether or not the CoolBar displays bands in
different rows at the minimum required height (the default), or all the same height.

The BandBorders property specifies whether or not narrow lines are drawn to separate
adjacent bands. The default is 0 (no lines).

The following example uses simple controls (as opposed to container controls) as
children of the CoolBands and illustrate the effect of these properties on the appearance
of the CoolBar.

'F'OWC'Form' 'CoolBar Object with simple controls'
'F.CB'0WC'CoolBar'

:With F.CB.C1'[JWC'CoolBand'
'"E1'OWC'Edit' 'Editt'
:EndWith

:With 'F.CB.C2'[JWC'CoolBand'
'C1'0OWC'Combo'('One' 'Two' 'Three')('SelItems' 0 1 0)
:EndWith

:With 'F.CB.C3'[WC'CoolBand’
"E2'OWC'Edit' (3 5p'Edit2')('Style' 'Multi')
:EndWith

106 Dyalog APL/W Interface Guide

If the CoolBands are arranged in the same row, the height of the row expands to
accommodate the largest one as shown below.

Aty CoolB ar Object with zimple controls =] E3

The picture below illustrates the effect of setting VariableHeight to 0.

Aty CoolB ar: WanableHeight 0

|Edit1

ITWI:I

Edit2
Edit2
Edit2

Chapter 4: Composite Controls 107

The picture below shows the affect on appearance of setting BandBorders to 1.

CoolBand: ChildEdge Property

ChildEdge is a property of a CoolBand and specifies whether or not the CoolBand
leaves space above and below the object that it contains.

If the ChildEdge property of each CoolBand had been set to 1 in the above example,
then the result would show wider borders between each band.

Aty CoolBand Object: ChildEdge 1
|Edit1

JITWI:I j

Edit2
Edit2
Edit2

108 Dyalog APL/W Interface Guide

CoolBand: Caption and Imagelndex Properties

The Caption and ImageIndex properties of a CoolBand are used to display an optional
text string and picture in the CoolBand.

The picture is defined by an image in an ImageList object whose name is referenced by
the ImageListObj property of the parent CoolBar. The following example illustrates
how this is done.

"F'OWC'Form' 'CoolBand Caption and ImageIndex'
'"F.IL'OWC'ImagelList'('Masked' 0)('MapCols"' 1)
'"F.IL.'OWC'Bitmap'('ComCtl32"' 120)Aa STD_SMALL
.CB'WC'CoolBar'('ImagelListObj' 'F.CB.IL")
.CB.IL'0OWC'ImageList'('Masked' 1)('MapCols' 1)
.CB.IL.'OWC'Icon'('" 'aplicon'")
.CB.IL.'OWC'Icon'('"' 'editicon')

MM m ™

:With 'F.CB.C1'0WC'CoolBand' 'File'('ImageIndex' 1)
'TB'0WC'ToolControl'('ImageListObj"' "#.F.IL')('Divider' 0)
'TB.B1'(OWC'ToolButton' 'New'('ImageIndex' 7)
'TB.B2'OWC'ToolButton' 'Open'('ImageIndex' 8)
'TB.B3'[IWC'ToolButton' 'Save'('ImageIndex' 9)

:EndWith

:With 'F.CB.C2'0WC'CoolBand' 'Edit'('ImageIndex' 2)
'TB'OWC'ToolControl'('ImageListObj' '#.F.IL')('Divider' 0)
'TB.B1'0WC'ToolButton' 'Cut'('ImageIndex' 1)
'TB.B2'[JWC'ToolButton' 'Copy'('Imagelndex' 2)
'TB.B3'(WC'ToolButton' 'Paste'('ImageIndex' 3)
'TB.B4'(OWC'ToolButton' 'Undo'('ImageIndex' 4)
'TB.B5'0WC'ToolButton' 'Redo'('ImageIndex' 5)

:EndWith

Aty CoolBand Caption and Imagelndex

Pr. B & W gy & BB o0 o

Hew Open Sawve Cut Copy Paste Undo Redo

Chapter 4: Composite Controls 109

Not that the Caption and image are displayed when the CoolBand is minimised as
shown below:

Aty CoolBand Caption and Imagelndex

[File O = H ¥ E dit

Mew Open Save

CoolBand: Size, Posn, NewLine, Index Properties

The Size property of a CoolBand is partially read-only and may only be used to specify
its width; because the height of a CoolBand is determined by its contents. Furthermore,
the Size property may only be specified when the CoolBand is created using [JWC.

The position of a Cool Band within a CoolBar is determined by its Index and NewLine
properties, and by the position and size of preceding CoolBand objects in the same
CoolBar. The Posn property is read-only.

The Index property specifies the position of a CoolBand within its parent CoolBar,
relative to other CoolBands and is IO dependant. Initially, the value of Index is
determined by the order in which the CoolBands are created. You may re-order the
CoolBands within a CoolBar by changing its Index property with (OWS.

The NewLine property specifies whether or not the CoolBand occupies the same row as
an existing CoolBand, or is displayed on a new line within its CoolBar parent.

The value of NewLine in the first CoolBand in a CoolBar is always JI0, even if you
specify it to be 0. You may move a CoolBand to the previous or next row by changing
its NewLine property (using WS)from 1 to 0, or from 0 to 1 respectively.

If you wish to remember the user’s chosen layout when your application terminates, you
must store the values of Index, Size and NewLine for each of the CoolBands. When
your application is next started, you must re-create the CoolBands with the same values
of these properties.

110

Dyalog APL/W Interface Guide

CoolBands with SubForms

The CoolBand object itself may contain only a single child object. However, if that
child is a SubForm containing other objects, the CoolBand can appear to manage a
group of objects. A similar effect can be obtained using a ToolBar or ToolControl.

The following example illustrates this technique. Note that the SubForms are disguised
by setting their EdgeStyle and BCol properties. In addition, their AutoConf properties
are set to 0 to prevent resizing of the child controls when the CoolBands are resized.

'"F'OWC'Form' 'CoolBar with SubForms'('Size' 25 50)
'"F'OWS'Coord' 'Pixel'

'F.CB'0WC'CoolBar'

:With 'F.CB.C1'OWC'CoolBand'
'S'OWC'SubForm' ('Size' 30 8)('EdgeStyle' 'Default')
('BCol' T16)('AutoConf' 0)
'S.E1'0OWC'Edit' 'Edit 1'(2 2)(& 60)
'S.C1'[DWC'Combo'('One' 'Two')''(2 70)(®& 60)
:EndWith

:With 'F.CB.C2'[JWC'CoolBand’
'S'OWC'SubForm' ('Size' 30 €)('EdgeStyle' 'Default')
('BCol' T16)('AutoConf' 0)
'S.E1'[WC'Edit' 'Edit 2'(2 2)(®& 60)
'S.C1'OWC'Combo'('One' 'Two')''(2 70)(®& 60)
:EndWith

Aty CoolBar wath SubForms

JlEdiH [ore =] J|Edit2 [Twe =]

Chapter 4: Composite Controls 11

The TabControl and TabButton Objects

The TabControl object provides access to the standard Windows NT tab control.

The standard tab control is analogous to a set of dividers in a notebook and allows you
to define a set of pages that occupy the same area of a window or dialog box. Each page
consists of a set of information or a group of controls that the application displays when
the user selects the corresponding tab.

A special type of tab control displays tabs that look like buttons. For example, the
Windows 98 taskbar is such a tab control.

To implement a multiple page tabbed dialog, illustrated below, you should create a
Form, then a TabControl with Style ' Tabs ' (which is the default) as a child of the
Form.

'"F'OWC'Form' 'TabControl: Default'('Size' 25 50)
'F.TC'0OWC'TabControl"'

Individual tabs or buttons are represented by TabButton objects which should be created
as children of the TabControl object. Optional captions and pictures are specified by the
Caption and Imagelndex properties of the individual TabButton objects themselves.

'F.TC.IL'OWC'ImagelList’
'"F.TC.IL.'0OWC'Icon'("'"'" 'APLIcon')
'"F.TC.IL.'OWC'Icon'("'"'" 'FUNIcon')
'"F.TC.IL.'0OWC'Icon'('" "EDITIcon')
'"F.TC'OWS'ImagelListObj"' 'F.TC.IL'

Next, create one or more pairs of TabButton and SubForm objects as children of the
TabControl. You associate each SubForm with a particular tab by setting its TabObj
property to the name of the associated TabButton object. Making the SubForms
children of the TabControl ensures that, by default, they will automatically be resized
correctly. (You may alternatively create your SubForms as children of the main Form
and establish appropriate resize behaviour using their Attach property.)

'"F.TC.T1'0WC'TabButton' 'One'('ImageIndex' 1)
'"F.TC.T2'0WC'TabButton' 'Two'('ImageIndex' 2)
'"F.TC.T3'0WC'TabButton' 'Three'('ImageIndex' 3)
'"F.TC.S1'0WC'SubForm'('TabObj"' 'F.TC.T1")
'F.TC.S2'0WC'SubForm'('TabObj' 'F.TC.T2")
'"F.TC.S3'0WC'SubForm'('TabObj' 'F.TC.T3')

112 Dyalog APL/W Interface Guide

A0 TabControl: Default

Style, FlatSeparators and HotTrack Properties

The Style property determines the overall appearance of the tabs or buttons in a
TabControl and may be ' Tabs ' (the default), 'Buttons' or 'FlatButtons'.

A TabControl object with Style 'Buttons' or 'FlatButtons' maybe usedina
similar way (i.e. to display a set of alternative pages), although buttons in this type of
TabControl are more normally used to execute commands. For this reason, these styles
of TabControl are borderless.

¢ TabControl: Buttonz Style

¢ TabControl: FlatButtons Style

Chapter 4: Composite Controls 113

If Style is 'F latButtons', the FlatSeparators property specifies whether or not
separators are drawn between the buttons. The following example illustrates the effect
of setting FlatSeparators to 1.

Aty TabControl: FlatButtons with FlatSeparators

Iﬁ's[lne| HTWD | MThree|

The HotTrack property specifies whether or not the tabs or buttons in a TabControl
object (which are represented by TabButton objects), are automatically highlighted by
the mouse pointer.

The Align Property

The Align property specifies along which of the 4 edges of the TabControl the tabs or
buttons are arranged. Align also controls the relative positioning of the picture and
Caption within each TabButton. Align may be Top (the default), Bottom, Left or Right.

If Alignis 'Top' or 'Bottom’, the tabs or buttons are arranged along the top or
bottom edge of the TabControl and the picture is drawn to the left of the Caption.

'"F'OWC'Form' 'TabControl: Align Bottom'('Size' 25 50)
'F.TC'OWC'TabControl'('Align' 'Bottom')

'F.TC.IL'DWC'ImageList'

'"F.TC.IL.'0OWC'Icon'("'"'" 'APLIcon')
'"F.TC.IL.'OWC'Icon'('" 'FUNIcon')
'"F.TC.IL.'OWC'Icon'("'"'" 'EDITIcon')

"F.TC'OWS'ImagelistObj' 'F.TC.IL'

'"F.TC.T1'0WC'TabButton' 'One'('ImageIndex' 1)
'"F.TC.T2'0WC'TabButton' 'Two'('ImageIndex' 2)
'"F.TC.T3'0OWC'TabButton' 'Three'('ImageIndex' 3)
'"F.S1'0WC'SubForm'('TabObj' 'F.TC.T1")
'F.S2'00WC'SubForm'('TabObj"' 'F.TC.T2")
'"F.S3'0WC'SubForm'('TabObj' 'F.TC.T3"')

114 Dyalog APL/W Interface Guide

Aty TabControl: Align Bottom

If Alignis 'Left' or 'Right’, the tabs or buttons are arranged top-to-bottom along
the left or right edge of the TabControl as shown below.

Aty TabControl: Align Left =] E3

Chapter 4: Composite Controls 115

The MultiLine Property

The MultiLine property of a TabControl determines whether or not your tabs or buttons
will be arranged in multiple flights or multiple rows/columns.

The default value of MultiLine is 0, in which case, if you have more tabs or buttons
than will fit in the space provided, the TabControl displays an UpDown control to
permit the user to scroll them.

A0 TabControl: Default

=) i B ra

If MultiLine is set to 1, the tabs are displayed in multiple flights.

Aty TabControl: MultiLine Tabs

=

116 Dyalog APL/W Interface Guide

If the TabControl has Style 'Buttons' and MultiLine is set to 1, the buttons are
displayed in multiple rows.

Aty TabControl: MultiLine Buttons

IW B Second Tab
¥z Thid Tab | 5 FouthTab |

The ScrollOpposite Property

The ScrollOpposite property specifies that unneeded tabs scroll to the opposite side of a
TabControl, when a tab is selected. Setting ScrollOpposite to 1 forces MultiLine to 1
too.

The following example illustrates a TabControl with ScrollOpposite set to 1, after the
user has clicked Third Tab. Notice that, in this example, the SubForms have been
created as children of the TabControl. This is necessary to ensure that they are managed
correctly in this case.

'"F'OWC'Form' 'TabControl: ScrollOpposite'('Size' 25 40)
'"F.TC'OWC'TabControl'('ScrollOpposite' 1)

'F.TC.IL'DWC'ImageList'
'"F.TC.IL.'OWC'Icon'('"'" 'APLIcon')
'"F.TC.IL.'0OWC'Icon'("'" 'FUNIcon')
'"F.TC.IL.'OWC'Icon'("'"'" 'EDITIcon')
'F.TC'DWS'ImageListObj' 'F.TC.IL'

.TC.T1'0WC'TabButton' 'First Tab'('ImageIndex' 1)
.TC.T2'0WC'TabButton' 'Second Tab'('ImageIndex' 2)
.TC.T3'0WC'TabButton' 'Third Tab'('ImageIndex' 3)
.TC.T4'0WC'TabButton' 'Fourth Tab'('ImageIndex' 1)

e e |

Chapter 4: Composite Controls

117

A0y TabControl: Scroll0pposzite
K] Thid Tah | B routhtas |
ﬁ First Tab | n}?k] Second Tab

If MultiLine is 1, the way that multiple flights of tabs or rows/columns of buttons are
displayed is further defined by the Justify property which may be 'Right "' (the
default) or 'None'.

The Justify Property

If Justify is 'Right ' (which is the default), the TabControl increases the width of each

tab, if necessary, so that each row of tabs fills the entire width of the tab control.
Otherwise, if Justify is empty or 'None ', the rows are ragged as shown below.

'F'OWC'Form' 'TabControl: MultilLine Tabs, Justify None'
.TC'OWC'TabControl'('MultiLine' 1)('Justify ' 'None')
.TC.IL'0OWC'ImagelList'

L.TC.IL.'OWC'Icon'('"' "APLIcon')

LTC.IL.'OWC'Icon'(""'" 'FUNIcon')

.TC.IL.'OWC'Icon'('"' 'EDITIcon')
.TC'0OWS'ImagelListObj' 'F.TC.IL'

.TC.T1'0WC'TabButton' 'First Tab'('ImageIndex' 1)
.TC.T2'0WC'TabButton' 'Second Tab'('ImageIndex' 2)
.TC.T3'0WC'TabButton' 'Third Tab'('ImageIndex' 3)
.TC.T4'0WC'TabButton' 'Fourth Tab'('ImageIndex' 1)

'F
'F
'F
'F
'F
'F
'F
'F
'F
'F

25 TabControl: MultiLine Tabs, Justify Hone [H[=] E3

,ﬁ Fourth Tal:uI

S5 First Tab |) Second Tah | B8 Thid Tab |

118 Dyalog APL/W Interface Guide

The next picture illustrates the effect of Justify 'None ' on a TabControl with Style
'Buttons'.

a5 TabControl: MultiLine Buttons, Justify No._. [l[=] E3

| 5 Fist Tab & Second Tab | ¥ Thid Tab |
.ﬁ Forth Tal:ul

The TabhSize and TabJustify Properties

By default, the size of the tabs may vary from one row to another. Fixed size tabs may
be obtained by setting the TabSize property.

If fixed size tabs are in effect, the positions at which the picture and Caption are drawn
within each TabButton is controlled by the TabJustify property which may be
'Centre ' (the default), 'Edge ', or 'IconEdge'.

'F'OWC'Form' 'TabControl: TabJustify Centre'('Size' 10 40)
'"F.TC'OWC'TabControl'('Style' 'Buttons')('TabSize'® 30)

.TC.IL'0OWC'ImagelList'
.TC.IL.'OWC'Icon'("'' 'APLIcon')
.TC.IL.'OWC'Icon'('' 'FUNIcon')
.TC.IL.'OWC'Icon'('" 'EDITIcon')
.TC'DWS'ImageListObj' 'F.TC.IL'

MMM

.TC.T1'0OWC'TabButton' 'One'('ImageIndex' 1)
.TC.T2'0WC'TabButton' 'Two'('ImageIndex' 2)
.TC.T3'0WC'TabButton' 'Three'('ImageIndex'

F
F
F

Aty TabControl: TabJustify Centre

3)

Chapter 4: Composite Controls 119

If TabJustify is set to 'Edge ' then the picture and text on the TabButton are justified
along the side defined by the Align property (default ' Top').

'F'OWC'Form' 'TabControl: TabJustify Edge'('Size' 10 40)
'"F.TC'OWC'TabControl'('Style' 'Buttons')

('TabJustify' 'Edge')('TabSize'® 30)
etc.

Aty TabControl: TabJustify Edge

Iﬁ One H T | w Thres |

If, instead, the TabJustify property is setto ' IconEdge ' then the text is centred and
only the icons are justified.

Aty TabControl: TabJustify lconEdge

Iﬁ One H T |w Three |

The TabFocus Property

The TabFocus property specifies the focus behaviour for the TabControl object.

TabFocus is a character vector that may be 'Normal ' (the default), 'Never' or
'ButtonDown'.

If TabFocus is 'Normal ', the tabs or buttons in a TabControl do not immediately
receive the input focus when clicked, but only when clicked a second time. This means
that, normally, when the user circulates through the tabs, the input focus will be given to
the appropriate control in the associated SubForm. However, if the user clicks twice in
succession on the same tab or button, the TabControl itself will receive the input focus.

If TabFocus is ' ButtonDown ', the tabs or buttons in a TabControl receive the input
focus when clicked.

If TabFocus is 'Never ', the tabs or buttons in a TabControl never receive the input
focus. This allows the user to circulate through a set of tabbed SubForms without ever
losing the input focus to the TabControl itself.

120 Dyalog APL/W Interface Guide

The StatusBar Object

Like the Toolbar, the StatusBar object is also a container that manages its children.
However, the StatusBar may contain only one type of object, namely StatusFields. By
default, the StatusBar is a flat grey object, positioned along the bottom edge of a Form,
upon which the StatusFields are drawn as sunken rectangles. StatusFields display
textual information and are typically used for help messages and for monitoring the
status of an application. They can also be used to automatically report the status of the
Caps Lock, Num Lock, Scroll Lock, and Insert keys

The following example illustrates a default StatusBar containing three StatusFields.
Notice how the StatusFields are positioned automatically.

'"TEST'OWC'Form' 'Simple StatusBar' ('EdgeStyle' 'Default')
'TEST.SB'0WC'StatusBar'

'TEST.SB.S1'00WC'StatusField' 'Fieldl:' 'textl'
'"TEST.SB.S2'0WC'StatusField' 'Field2:' 'text2'
'TEST.SB.S3'0WC'StatusField' 'Field3:' 'text3'

| Field1:text1 FieldZ2:text? Field3:text3

Figure 4.11 A Default StatusBar

Chapter 4: Composite Controls 121

The following example illustrates a scrolling StatusBar. The fourth StatusField extends
beyond the right edge of the StatusBar and, because HScroll is ~2, a mini scrollbar
appears. The result is shown in Figure 6.11.

"TEST'OWC'Form' 'Scrolling StatusBar'
('EdgeStyle' 'Default')
('Coord' 'Pixel') ('Size' 150 330)

'"TEST.SB'OWC'StatusBar'('HScroll' ~2)
'"TEST.SB.S1'[JWC'StatusField' 'Fieldl:' 'texti'
'TEST.SB.S2'OWC'StatusField' 'Field2:' 'text2'
'TEST.SB.S3'OWC'StatusField' 'Field3:' 'text3'
'TEST.SB.S4'[JWC'StatusField' 'Field4:' 'texth'
= 1 1 d B A |
(K11 N|| Field1:textl Field?:text? Field3:tex|

Figure 4.12 A Scrolling StatusBar

122

Dyalog APL/W Interface Guide

As an alternative to single-row scrolling StatusBar, you can have a multi-line one.
Indeed, this is the default if you omit to specify HScroll. However, you do have to
explicitly set the height of the StatusBar to accommodate the second row.

'"TEST'0OWC'Form' 'Multi Line StatusBar'
('EdgeStyle' 'Default')
('Coord' 'Pixel') ('Size' 150 330)

'TEST.SB'0WC'StatusBar'('Size' 48 &)

'TEST.SB.S1'0WC'StatusField' 'Fieldl:' 'textl'
'TEST.SB.S2'[JWC'StatusField' 'Field2:' 'text2'
'TEST.SB.S3'0WC'StatusField' 'Field3:' 'text3'
'TEST.SB.S4'(OWC'StatusField' 'Fieldi:' 'textl'

Fieldl:text! |Field2:text2 |Field3:text3
| Field4:texta

Figure 4.13 A Multi-line StatusBar

Using StatusFields

There are basically three ways of using StatusFields. Firstly, you can display
information in them directly from your program by setting their Caption and/or Text
properties. For example, if you are executing a lengthy calculation, you may wish to
display the word "Calculating ..." as the Caption of a StatusField and, as the calculations
proceed, display (say) "Phase 1" followed in due course by "Phase 2", and so forth. You
can also use StatusFields to display application messages, including warning and error
messages, where the use of a MsgBox is inappropriate.

The second major use of a StatusField is to display hints which you do by setting the
HintObj property of an object to the name of the StatusField. Used in this way, a
StatusField automatically displays context sensitive help when the user places the
mouse pointer over an object. This topic is described in Chapter 5.

Chapter 4: Composite Controls 123

The third use of a Status Field is to monitor the status of the keyboard. This is achieved
by setting its Style property to one of the following keywords:

Keyword Meaning

CapsLock Monitors state of Caps Lock key

ScrollLock Monitors state of Scroll Lock key

NumLock Monitors state of Num Lock key

KeyMode Monitors the keyboard mode (APL/ASCII
(Classic Edition only)

InsRep Monitors the state of the Insert/Replace toggle key

The following example illustrates different uses of the StatusField object. The first
StatusField F.SB.S1 is used for context-sensitive help by making it the HintObj for
the Form F. The second StatusField F . SB. S2 is simply used to display application
status; in this case "Ready ...". The third and fourth StatusField objects monitor the
status of the Insert and Caps Lock keys respectively. Note that whilst the Caps Lock,
Num Lock and Scroll Lock keys have a recognised state, the Insert key does not.
Initially, APL sets the key to "Ins" and then toggles to and from "Rep" whenever the
key is pressed. To discover which mode the keyboard is in, you should use OWG to read
the value of the Text property of the StatusField.

'"F'OWC'Form' 'Using StatusFields' (60 40) (25 50)
'F.SB'OWC'StatusBar'('Coord' 'Pixel')

'F.SB.S1'0WC'StatusField'('Size'® 150)
'"F'OWS'HintObj"' 'F.SB.S1'

'"F.SB.S2'0WC'StatusField' 'Ready ...'
'"F.SB.S3'(WC'StatusField'('Style' 'InsRep')('Size'® 50)
'"F.SB.S4'[(JWC'StatusField'('Style' 'CapsLock')('Size'® 50)

'"F.L'OWC'List'WINES(O 0)(80 100)('Hint"' 'Choose a Wine')

Using StatusFields

licios de I'Angelus
Chateau Baleau
Chateau Balestard-La-Tonnelle

‘Chateau Beau-Mazerat
Chateau Belair

Chateau Bellevue
Chataas Pornal +

|/Choose a Wine Ready ... |In5 |CAF"S

124 Dyalog APL/W Interface Guide

125

CHAPTER 5

Hints and Tips

In many applications it is often a good idea to provide short context-sensitive help
messages that tell the user what action each control (menuitem, button and so forth)
performs. It is conventional to do this by displaying a message when the user points to a
control with the mouse. The provision of this facility is particularly helpful for users
who are not familiar with your application or who use it only occasionally. Constant
prompting can however become irritating for an experienced user, so it is a good idea to
provide a means to disable it.

Dyalog APL/W provides two mechanisms, Zints and tips, that make the provision of
context-sensitive help very easy and efficient to implement. Hints are help messages
displayed in a fixed region, typically a field in a status bar, that is reserved for the
purpose. For example, when the user browses through a menu, a message describing
each of the options may be displayed in the status bar. The user has only to glance at the
status bar to obtain guidance. Tips are similar, but instead of being displayed in a fixed
location, they are displayed as pop-up messages over the control to which they refer.
The choice of using hints or tips is a matter of taste and indeed many applications
feature both.

Using Hints

All of the GUI objects supported by Dyalog APL that have a visible presence on the
screen have a Hint property and a HintObj property. Quite simply, when the user moves
the mouse pointer over the object the contents of its Hint property are displayed in the
object referenced by its HintObj property. When the user moves the mouse pointer
away from the object, its Hint disappears. If an object has a Hint, but its HintObj
property is empty, the system uses the HintObj defined for its parent, or for its parent’s
parent, and so forth up the tree. If there is no HintObj defined, the Hint is simply not
displayed. This mechanism has two useful attributes:

126

Dyalog APL/W Interface Guide

e it allows you to easily define a single region for help messages for all of the controls
in a Form, but still provides the flexibility for using different message locations for
different controls if appropriate.

e to enable or disable the display of hints all you typically have to do is to set or clear
the HintObj property on the parent Form

The object named by HintObj may be any object with either a Caption property or a
Text property. Thus you can use the Caption on a Label, Form, or Button or the text in
an Edit object. If you use a StatusField object which has both Caption and Text
properties, the Text property is employed. If you set HintObj to the name of an object
which possesses neither of these properties, the hints will simply not be displayed. The
following example illustrates the use of a StatusField for displaying hints.

Example: Using a StatusField for Hints

This example illustrates the use of a StatusField object to display hints. The result of the
code shown below is illustrated in Figure 5.1.

'Test'OWC 'Form' 'Using Hints'('HintObj' 'Test.SB.H')

'Test.MB' [OWC 'MenuBar'

'Test .MB.F' [OWC 'Menu' '&File'

HINT <« 'Creates a new empty document'

'Test .MB.F.New' [OWC 'MenuItem' '&New' ('Hint' HINT)

'Test.SB' [OWC 'StatusBar'
'Test.SB.H' [OWC 'StatusField' ('Size' & 98)

||Creates a new emphty document

Figure 5.1 Using a StatusBar to display Hints

Chapter 5: Hints and Tips 127

Example: Using an Edit Object for Hints

You can display a much larger amount of information using a multi-line Edit object as
shown in this example.

'Test'0WC 'Form' 'Using Hints' ('HintObj'
‘Test.ED")

'Test.MB' [OWC 'MenuBar'

'Test .MB.F' OWC 'Menu' '&File'

HINT <« 100p'Creates a new empty document

'Test .MB.F.New' [OWC 'MenuItem' '&New' ('Hint' HINT)

'Test.ED' [OWC 'Edit' ('Style' 'Multi')

The result of this example is illustrated in Figure 5.2.

Creates a new empty
document Creates a new
empty document Creates a
new emply document Creates

Figure 5.2 Displaying Hints in an Edit object

128 Dyalog APL/W Interface Guide

Using Tips

Tips work in a very similar way to Hints. Most of the GUI objects that have a visible
presence on the screen have a Tip property and a TipObj property. Exceptions are
Menus, Menultems and other pop-up objects. The TipObj property contains the name of
a TipField object. This is a special kind of pop-up object whose sole purpose is to
display tips. When the user moves the mouse pointer over the object the corresponding
TipField appears displaying the object’s Tip. When the mouse pointer moves away
from the object, the TipField disappears. If an object has a Tip, but its TipObj property
is empty, the system uses the TipObj defined for its parent, or for its parent’s parent,
and so forth up the tree. If there is no TipObj defined, the Tip is simply not displayed.
Normally, you need only define one TipField for your application, but if you want to
use different colours or fonts for individual tips, you may define as many different
TipFields as you require. Again, it is very simple to turn tips on and off.

Example

This example shows how easy it is to associate a tip with
an object, in this case a Button.

'Test'OWC 'Form' 'Using Tips'('TipObj' 'Test.Tip')
‘Test.Tip' OWC 'TipField'
'Test.B' OWC 'Button' '&0k' ('Tip' 'Press Me')

Figure 5.3 Using Tips

Chapter 5: Hints and Tips 129

Hints and Tips Combined

There is no reason why you cannot provide Hints and Tips. Example 4 shows how an
object, in this case a Combo, can have both defined.

Example
'Test'0WC 'Form' 'Using Hints and Tips'

'Test.SB' [OWC 'StatusBar'
'Test.SB.H' [OWC 'StatusField' ('Size' & 98)
'Test' [OWS 'HintObj' 'Test.SB.H'

'Test.Tip' OWC 'TipField'
'Test' OWS 'TipObj' 'Test.Tip'

'Test.C' [OWC 'Combo' WINES

'Test.C' [OWS 'Hint' 'Select your wine from this
list'

'Test.C' OWS 'Tip' 'Wine Cellar'

= Using Hints and Tips v |~

Chateau Canon *

| \Wine Cellar]|

|| Select your wine from this list

Figure 5.4 Hints and Tips Combined

130 Dyalog APL/W Interface Guide

131

CHAPTER 6

Using the Grid Object

A Grid object

The Grid object allows you to display information in a series of rows and columns and
lets the user input and change the data. The Grid has four main components; a matrix of
cells that represents the data, a set of row titles, a set of column titles, and a pair of
scroll bars. Figure 7.1 illustrates these components. The scroll bars scroll the data cells
and either the row or column titles. The row titles remain fixed in place when the data
cells scroll horizontally and the column titles stay fixed when the data is scrolled

Column Titles

Data Cells

— Vertical Scroll Bar

Horizontal Scroll Bar

vertically.

= Wine Sales by Month ! o

File Edit

| Chateau Baleau:Feb |Qﬂ| xJI 92 [
o8| S| B = |

Jan Feb Mar —

Chateau Ausone 132 756 459 533E
Clos de I'Angelus 35 54 530 672
Chateau Baleau LY4) 92 654 ﬂ'_
Chateau Balestard-La-| 757 992 366 248)
Chateau Beau-Mazeral 437 767 478 238
Chateau Belair 505 517 320 987
Chateau Bellevue 914 530 465 941
Chateau Bergat 630 737 726 100
Chateau Berliquet 642 270 116 538
Chateau Bragard 499 956 749 555

-~ nIC L1 FEN n‘-:-' hd !
Ready ... |In3 |Cap3 |Num

Figure 7.1 The components of the Grid object

132

Dyalog APL/W Interface Guide

Defining the Grid Layout

The data in the Grid is specified by its Values property. This is a matrix whose elements
are displayed in the corresponding cells in the Grid. An element (and therefore a cell)
may contain a single number, a single character, a character vector or a character
matrix.

The row and column titles are specified by the RowTitles and ColTitles properties
respectively. Each of these is a vector whose elements may be character vectors,
character matrices, or vectors of character vectors. Matrices and vectors of vectors
specify multi-line titles. The specification of RowTitles and ColTitles is optional. If
they are omitted, the system will display standard spreadsheet defaults; 1,2,3... for the
rows and A,B,C...AA,AB...for the columns. By default, RowTitles are left-justified;
ColTitles are centred, although this can be changed using the RowTitleAlign and
ColTitleAlign properties. Multi-level titles may be defined using the RowTitleDepth
and ColTitleDepth properties.

The height of the column headers and the width of the row titles are defined by the
TitleHeight and TitleWidth properties. To disable the display of column and/or row
titles, you simply set TitleHeight and/or TitleWidth to 0.

The dimensions of the cells of the Grid are defined by the CellHeights and CellWidths
properties. Each of these may be a scalar which applies to all rows and columns, or a
vector which specifies the heights and widths of each row and column individually. You
may also allow the user to resize rows and columns with the mouse.

The Grid shown in Figure 7.1 was created using the following few lines of APL code.
Note that by default a Grid is positioned in the centre of a Form and occupies a quarter
of its area. In this example, the Grid is positioned at (0 0) and made to occupy the entire
client area of the Form. Note that SALES is a simple numeric matrix, WINES is a vector
of character vectors containing the names of different wines, and MONTHS is a similar
vector of month names.

'Test' [OWC 'Form' ('Coord' 'Pixel')
'Test.G' OWC 'Grid' SALES (0 0) ('Test' [OWG 'Size')
'Test.G' [OWS 'RowTitles' WINES

'Test.G' [OWS 'ColTitles' MONTHS
'Test.G' [OWS 'TitleWidth' 150

Chapter 6: Using the Grid Object 133

Defining Overall Appearance

By default, the Grid inherits its font from the parent Form, or ultimately, from the Root
object. This defaults to your Windows System font.

You can change the font for the Grid as a whole using its FontObj property. This font
will be used for the row titles, column titles and for the data. You can separately define
the font for the data using the CellFonts property. Thus, for example, if you wanted to
use Helvetica 12 for the titles and Arial 10 for the data, you could do so as follows:

'Test.G' [WS 'FontObj' 'Helvetica' 12

'Test.CF' OWC 'Font' 'Arial' 10
'Test.G' [OWS 'CellFonts' 'Test.CF'

The FCol and BCol properties specify the foreground and background colours for the
text in the data cells. The default colour scheme is black on white. FCol and BCol may
define single colours which refer to all the cells, or a set of colours to be applied to
different cells

The colour of the gridlines is specified by GridFCol. To draw a Grid with no gridlines,
set GridFCol to the same colour as is defined by BCol.

If the Grid is larger than the space occupied by the data cells, GridBCol specifies the
colour used to fill the area between the end of the last column of data and the right edge
of the Grid, and between the bottom row of data and the bottom edge of the Grid.

134

Dyalog APL/W Interface Guide

The ClipCells property determines whether or not the Grid displays partial cells. The
default is 1. If you set ClipCells to 0, the Grid displays only complete cells and
automatically fills the space between the last visible cell and the edge of the Grid with
the GridBCol colour.

The following example shows a default Grid (ClipCells is 1) in which the third column
of data is in fact incomplete (clipped), although this is by no means apparent to the user.

= ClipCells is 1 [the defaulf] [+ | «]
A B C

1 13 75 4
2 51 83

3 68 58 q
1 76 26

5 98 72 7
(=] [+]]

This second picture shows the effect on the Grid of setting ClipCells to 0 which
prevents such potential confusion.

= ClipCells is 0 [+ | «]

A B
13 7h
b 83
iTi] hi
76 26
98 72

I*mnwr\:—l
L

Chapter 6: Using the Grid Object 135

Row and Column Titles

Row and column titles are defined by the RowTitles and ColTitles properties, each of
which is a vector of character arrays. An element of RowTitles and ColTitles may be a
character vector specifying a 1-row title, or a matrix or vector of vectors which specify
multi-row titles.

The height of the area used to display column titles is specified by the TitleHeight
property. The width of the area used to display row titles is defined by the TitleWidth
property. The alignment of text within the title cells is defined by RowTitleAlign and
ColTitleAlign and the colour of the text is specified by RowTitleFCol and
ColTitleFCol.

Multi-level titles are also possible and are defined by the RowTitleDepth and
ColTitleDepth properties. An example of what can be achieved is shown below.

Aty Hierarchical Titles _ | O]

Wine Champaagne Bear

: : and
Red ['white | Red | 'White | Rose | Cider

Jan 60 32 16 4 e 52
oy Feb 4 E 2 7 E 12
GE 3s 33 25 2 ar 42
Apr 83 35 a2 55 M 90
B2 | May B5 54 F 23 16 32
Jun 5 23 E1 23 57 15
Jul 42 15 B4 73 70 4
(3 | Aug 25 54 24 47 65 97
Sep 73 | 34 58 97 97
Ot 60 B5 3 50 56 A
G4 | Mov ad a3 50 45 A 93
Dec 1 3d 7B 33 43 10

1395

136 Dyalog APL/W Interface Guide

Displaying and Editing Values in Grid Cells

The Grid can display the value in a cell directly (as in Fig 7.1) or indirectly via an
associated object. You do not (as you might first expect) define input and validation
characteristics for the cells directly, instead you do so indirectly through associated
objects. Objects are associated with Grid cells by the Input property. If a cell has an
associated object, its value is displayed and edited using that object. Several types of
object may be associated with Grid cells, including Edit, Label, Button (Push, Radio
and Check), and Combo objects. You can use a single associated object for the entire
Grid, or you can associate different objects with individual cells.

Edit and Label objects impose formatting on the cells with which they are associated
according to the values of their FieldType and Decimal properties (for numbers, dates
and time) and their Justify property (for text). In addition, Label objects protect cells
(because a Label has no input mechanism), while Edit objects impose input validation.
If you use an Edit object with a FieldType of Numeric, the user may only enter numbers
into the corresponding cells of the Grid. For both Edit and Label objects, the FieldType
and Decimals properties of the object are used to format the data displayed in the
corresponding cells of the Grid. For example, if the FieldType property of the
associated object is Date, the numeric elements in Values will be displayed as dates.

Numeric cells may also be formatted using the FormatString property which applies
OFMT format specifications to the data. The AlignChar property permits formatted data
to be aligned in a column. For example, you can specify that numbers in a column are
aligned on their decimal points.

Combo objects can be used to allow the user to select a cell value from a set of
alternatives. Radio and Check Buttons may be used to display and edit Boolean values.

Associated Edit, Label and Combo objects may be external to the Grid (for example,
you can have the user type values into a companion edit field) or they may be internal.
Internal objects (which are implemented as children of the Grid) float from cell to cell
and allow the data to be changed in-situ. Button, Spinner and TrackBar objects may
only be internal.

Chapter 6: Using the Grid Object 137

Using a Floating Edit Field

If the Edit object specified by Input is owned by (i.e. is a child of) the Grid itself, the
Edit object floats from cell to cell as the user moves around the Grid. For example, if
the user clicks on the cell addressed by row 4, column 3, the Edit object is automatically
moved to that location and the data in that cell is copied into it ready for editing. When
the user moves the focus away from this cell, the data in the Edit object is copied back
into it (and into the corresponding element of the Values property) before the Edit
object is moved away to the new cell location. This mechanism provides in-sifu editing.
Continuing the example illustrated in Figure 7.1, in-situ editing could be achieved as
follows:

'Test.G.ED' OWC 'Edit' ('FieldType' 'Numeric')
‘Test.G' OWS 'Input' 'Test.G.ED'

In-situ editing provides two input modes; Scroll and InCell. In Scroll mode the cursor
keys move from one cell to another. In InCell mode, the cursor keys move the cursor a
character at a time within the cell; to switch to a new cell, the user must press the Tab
key or use the mouse. The InputMode property allows you to control the input mode
directly or to allow the user to switch from one to another. In the latter case, the user
does so by pressing a key defined by the InputModeKey property or by double-clicking
the left mouse button.

Using a Fixed Edit Field

A different style of editing may be provided by specifying the name of an external Edit
object that you have created. This can be any Edit object you wish to use; it need not
even be owned by the same Form as the Grid. In this case, the Edit object remains
stationary (wherever you have positioned it), but as the user moves the focus from cell
to cell, the cell contents are copied into it and made available for editing. The current
cell is identified by a thick border. When the user shifts the focus , the data is copied out
from the Edit object into the corresponding cell before data in the newly selected one is
copied in. Continuing the example illustrated in Figure 7.1, external editing could be
achieved as follows:

'Test.ED' OWC 'Edit' ('FieldType' 'Numeric')
'Test.G' OWS 'Input' 'Test.ED'

138

Dyalog APL/W Interface Guide

Using Label Objects

If Input specifies a Label object, it too may either be a child of the Grid or an external
Label. A Label is useful to format cell data (through its FieldType property) and to
protect cells from being changed

If the Label is a child of the Grid, it floats from cell to cell in the same way as a floating
Edit object. However, unlike the situation with other objects, the row and column titles
are not indented to help identify the current cell. If the Label is borderless (which is the
default) and has the same font and colour characteristics of the cells themselves, the
user will receive no visual feedback when a corresponding cell is addressed, even
though the current cell (reflected by the CurCell property) does in fact change.
Therefore, if you want to protect the data by using a Label and you want the user to be
able to identify the current cell, you should give the Label a border, a special colour
scheme or a special font.

Using Combo Objects

A Combo object is used to present a list of choices for a cell. Although you may use an
external Combo, internal Combos are more suitable for most applications. If different
cells have different sets of choices, you can create several Combo objects, each with its
own set of Items and associate different cells with different Combos through the
CellTypes property. Alternatively, you can use a single Combo and change Items
dynamically from a callback on the CellMove event. In all cases, the value in the cell
corresponds to the Text property of the Combo.

If you use a floating Combo, the appearance of the non-current cells depends upon the
value of the ShowlInput property. If ShowInput is 0 (the default), the non-current cells
are drawn in the standard way as if there were no associated input object. If ShowInput
is 1, the non-current cells are given the appearance of a Combo, although the system
does not actually use Combos to do so. Furthermore, there is a subtle difference in
behaviour. If ShowInput is 0, the user must click twice to change a value; once to
position the Combo on the new cell and again to drop its list box. If ShowInput is 1, the
user may drop the list box with a single click on the cell.

Note that ShowInput may be a scalar that applies to the whole Grid, or a vector whose
elements applies to different cells through the CellType property.

Chapter 6: Using the Grid Object 139

The following Grid uses two internal Combo objects for the Job Title and Region
columns, but with ShowlInput set to 0. Only the current cell has Combo appearance.

Surname Job Title Region Salary
Brown Manager South £64000.00
Jones Project Leader| South £43250.00
Green Consultant Jid| B £45000.00
Black Programmer |East £30000.00
White Assistant Central £40000.00
af | 3

The same Grid with ShowInput set to 1 is illustrated below. In this case, all of the cells
associated with Combo objects have Combo appearance.

Surname Job Title Region Salary
Brown Manager = | South - £64000.00
Jones Project Lead = | South - £43250.00
Green Consultant i ERIITY ~| £45000.00
Black Programmen > | East - £30000.00
White Assistant |~ | Central - £40000.00
| | 3

140 Dyalog APL/W Interface Guide

Using Radio and Check Button Objects

Radio and Check Buttons behave in a similar way to Combo objects except that they
may only be used internally. The value in the cell associated with the Button must be 0
or 1 and corresponds to the Button’s State property. The value is toggled by clicking the
Button.

If Showlnput is 0, the user must click twice to change a value; once to position the
(floating) Button on the cell, and a second time to toggle its state. If ShowInput is 1, the
user may change cell values directly with a single click. Note that this may be
undesirable in certain applications because the user cannot click on a cell without
changing its value.

By default, the value of the EdgeStyle property for a Radio or Check Button which is
created as the child of a Grid is 'None ', so you must set EdgeStyle explicitly to
'"Plinth' if a 3-dimensional appearance is required.

You can refine the appearance of the Radio or Check Button using its Align property.
This may be setto 'Left', 'Right' or 'Centre' (and 'Center'). The latter
causes the symbol part of the Button (the circle or checkbox) to be centred within the
corresponding Grid cell(s) but should only be used if the Caption property is empty.

The following illustrates different values for the Align property using Check Buttons.

Chapter 6: Using the Grid Object 141

'"F'OWC'Form' 'Aligned Check Boxes in a Grid'
'"F.G'OWC'Grid' (T1+?710 3p2)(0 0)(100 100)('ShowInput' 1)

'F.G.C1'0OWC'Button' 'Left' ('Style' 'Check')
('EdgeStyle' 'Plinth') ('Align' 'Left')

'F.G.C2'0OWC'Button' '' ('Style' 'Check')
('EdgeStyle' 'Plinth') ('Align' 'Centre')

'F.G.C3'0OWC'Button' 'Right' ('Style' 'Check')
('EdgeStyle’ 'Plinth') ('Align' 'Right')

'"F.G'OWS'Input' ('F.G.C1' 'F.G.C2' 'F.G.C3")
'"F.G'OWS'Cel lTypes' (10 3p1 2 3)

= Aligned Check Boxes in a Grid nn
A B C

1 Left r 3 [Right fl
2 Left [* [[Right
3 Left [[[* Right
4 Left [[* [* Right
h Left " r % Right
b Left [* [[Right

iz Left C C X Right ___[+]

142 Dyalog APL/W Interface Guide

Specifying Individual Cell Attributes

The FCol, BCol, CellFonts and Input properties can be used to specify attributes of
individual cells. One possible design would be for these properties to be matrices like
the Values property, each of whose elements corresponded to a cell in the Grid.
However, although conceptually simple, this design was considered to be wasteful in
terms of workspace, especially as it is unlikely that every cell will require a totally
individual set of attributes. Instead, FCol, BCol, CellFonts and Input either specify a
single attribute to be applied to all cells, or they specify a vector of attributes which are
indexed through the CellTypes property. This design is slightly more complex to use,
but minimises the workspace needed to represent cell information.

CellTypes is an integer matrix of the same size as Values. Each number in CellTypes
defines the #ype of the corresponding cell, where fype means a particular set of cell
attributes defined by the BCol, FCol, CellFonts and Input properties.

If an element of CellTypes is 0 or 1, the corresponding cell is displayed using the
normal value of each of the FCol, BCol, CellFonts and Input properties. The normal
value is either the value defined by its first element or, if the property has not been
specified, its default value.

If an element of CellTypes is greater than 1, the corresponding element of each of the
FCol, BCol, CellFonts and Input properties is used. However, if a particular property
applies to all cells, you need only specify one value; there is no need to repeat it. This
mechanism is perhaps best explained by using examples.

Chapter 6: Using the Grid Object 143

Example 1

Suppose that you want to use a Grid to display a numeric matrix DATA and you want to
show elements whose value exceeds 150 with a dark grey background. Effectively,
there are 2 different types of cell; normal white ones and dark grey ones. This can be
achieved as follows:

DATA « 212 3p300

'Test' OWC 'Form' 'Example 1'
'Test.G' OWC 'Grid' DATA (0 0) (100 100)

'Test.G' OWS 'CellTypes' (1+DATA>150)
'Test.G' OWS 'BCol' (255 255 255)(128 128 128)

S
A B C CellTypes[3;3] =1, so cell uses
1 109 + first element of Bcol which is
B 106 = 255 255 255 (white)
3 48 68 L]
4 [iti] 122
5 103
6 132
7 85 CellTypes[6;3] =2, so cell uses
8 80 51 second element of Bcol which is
a 99 128 128 128 (dark grey)
10 37 50 128
11 65 13 B

144

Dyalog APL/W Interface Guide

Example 2

Continuing on from the first example, suppose that in addition, you want to show values
that exceed 200 with a white background, but using a bold font. Now you have 3 types
of cell; white background with normal font, dark grey background with normal font,
and white background with bold font. This can be done as follows:

CT «(DATA > 200) + 1+DATA > 100
'Test.G' [OWS 'CellTypes' CT

COL <« (255 255 255) (128 128 128) (255 255 255)
'Test.G' [OWS 'BCol' cCOL

‘Normal' [(OWC 'Font' 'Helvetica' 16
'Bold' (wC 'Font' 'Helvetica' 16 ('Weight' 1000)

'Test.G' [OWS 'CellFonts' 'Normal' 'Normal' 'Bold'

E Eomez D —
ypes[2;3]=1,

a [8 [cf 50 cell uses BCol[1] which
1 109 234 216 Al is 255255 255 (white) and
2 106 B CellFonts[1] which is
3 48 88 51 'Normal'.
1 Ba 202 122
B 1% 210 ad CellTypes[5;2]=2, so cell
7 238 255 85 o

uses BCol[2] which is

8 0 il - 128 128 128 (dark grey)
9 e 300\ 226 and CellFonts[2] which
10 7 50\ 128 is 'Normal'
11 232 85\ 131 5]

CellTypes[9;2]=3, so cell
uses Bceol[3] which is
255 255 255 (white) and
CellFonts[3] which is
'Bold'

Chapter 6: Using the Grid Object 145

Example 3

This is a more complex example that introduces different uses of the Input property to
handle numeric and date cells. Suppose that you wish to display the names, date of
birth, and salaries of some people. The user may edit the salary and date of birth, but not
the name. Salaries in excess of $19,999 are to be shown in bold

This means that we need 4 types of cell; the "names" cells, the "date of birth" cells, the
cells containing salaries below $20,000 and those cells containing $20,000 or more. The
Input property must specify 3 different objects; a Label for the protected "names" cells,
an Edit object for the "date" cells, and a different Edit object for the salaries. The
CellFonts property must specify the two different fonts required; normal and bold.

'Test.G' OWS 'Values' ([0.5] NAMES BIRTHDATES SALARIES)

CT «1,2,[1.5]3+SALARIES > 19999
'Test.G' [OWS 'CellTypes' CT

'Test.G.Name' [OWC 'Label'

'Test.G.Date' [OWC 'Edit' ('FieldType' 'Date')
'Test.G.Sal' [OWC 'Edit' ('FieldType' 'Currency')
INPUTS « 'Test.G.Name' 'Test.G.Date', 2pc'Test.G.Sal'
'Test.G' OWS 'Input' INPUTS

'"Normal' [OWC 'Font' 'Arijal' 12
'Bold' OWC 'Font' 'Arial' 12 ('Weight' 1000)
FONTS <« (3pc'Normal'), <'Bold'
'Test.G' [OWS 'CellFonts' FONTS

Name Date of Birth Salary
1 Janes 08411 $10303.00 im Celltypes[2;1]=1
2 Smith — | 05/03/84 $28263.00
3 “White 27407482 $10866.00
4 Baker 06/04/5 THISE2-00 CellTypeS[4;2]:2
5 O'Dannel 29/10/82 $2420.00
6 Elack 25/10/83 $17157.00 CellTypes[6;3]=3
7 Redman 230644 $283292.00
8 Green 1412482 $25327.00
9 Andersan 21410483 $14799.00
10 Andrews 25,/06/82 $24526-00 CellTypes[10:3]=4
11 Eatchelar 28/02/83 §19283.00 [+

146

Dyalog APL/W Interface Guide

Drawing Graphics on a Grid

You may draw graphics on a Grid by creating graphical objects (Circle, Ellipse, Image,
Marker, Poly, Rect and text) as children of the Grid.

For the Grid (but only for the Grid) the Coord property may be setto 'Cel l ' asan
alternative to 'Prop', 'Pixel ' or 'User'. This allows you to easily position
graphical objects relative to individual cells or ranges of cells. The origin of the Grid
(0,0) is deemed to be the top left corner of the data (i.e. the area inside the row and
column titles). In Cell co-ordinates, the value (1,1) is therefore the bottom right corner
of the first cell. Regardless of the coordinate system, graphical objects scroll with the
data.

The following example illustrates how to draw a box around the cells in rows 2 to 4 and
columns 3 to 6.

'F'OWC'Form' 'Graphics on a Grid'
'"F.G'OWC'Grid"' (710 10p100)(0 0)(100 100) ('CellWidths' 10)
'F.G.L'OWC'Rect' (1 3)(3 4)('LWidth"' 4)('Coord' 'Cell")
A B C D E F G K
1 fo| 67| 64 G| 60| 23| 32
2 h3| 56| 5HI] 33| A1 15| 17
3 b6 | 74| 32] 14| 53| 32| 59
4 36| 40(45] 48| 39| 28 8
h G| 52| 73| 3| 95| 47| 9%
b 67| 41 61 99| 16| 63| 35
7 2| 28| 65| 55(92| 27| 98
8 46| 82 3| 1F) 1N 71 44
9 0| 28| 76| 18 1 ho L
10 7| 44 1 h| &2 7| 55
1| | 3

Chapter 6: Using the Grid Object 147

The OnTop property of the graphical object controls how it is drawn relative to the grid

lines and cell text. For graphical objects created as a child of a Grid, OnTop may be 0, 1
or 2.

0 Graphical object is drawn behind grid lines and cell text
1 Graphical object is drawn on top of grid lines but behind cell text
2 Graphical object is drawn on top of grid lines and cell text

The following example shows the effect of the OnTop property on how an Image is
drawn on a Grid.

'"F'OWC'Form' 'Graphics on a Grid' ('Size' 45 50)
'"F.G'OWC'Grid' (710 10p100)(0 0)(100 100) ('CellWidths' 10)
'F.M'OWC'MetaFile’ 'C:\WDYALOG\WS\DOLLAR'
'F.G.I'0WC'Image'(0 0)('Size' 10 10)('Coord' 'Cell")

'"F.G.I'OWS('Picture' 'F.M")('Ontop' 0)

Aff Graphics on a Grid

_,—

AR wﬂ

=T == I R = I g) S T B o T ()

148 Dyalog APL/W Interface Guide

'"F.G.I'0WS 'OnTop' 1

Aff Graphics on a Grid

=T == I R = I g) S T B o T ()

'"F.G.I'OWS 'OnTop' 2

Aff Graphics on a Grid

=T == I R = I g) S T B o T ()

Chapter 6: Using the Grid Object 149

Controlling User Input

The Grid object is designed to allow you to implement simple applications with very
little programming effort. You merely present the data to be edited by setting the Values
property and then get it back again once the user has signalled completion. The
validation imposed by the associated Edit object(s) will prevent the user from entering
invalid data and your program can leave the user interaction to be managed entirely by
APL. However, for more sophisticated applications, the Grid triggers events which
allow your program to respond dynamically to user actions.

Moving from Cell to Cell

When the user moves from one cell to another, the Grid generates a CellMove event.
This reports the co-ordinates (row and column) of the newly selected cell. The
CellMove event serves two purposes. Firstly, it allows you to take some special action
when the user selects a particular cell. For example, you could display a Combo or List
object to let the user choose a new value from a pre-defined set, then copy the selected
value into the cell. Secondly, the CellMove event provides the means for you to position
the user in a particular cell under program control, using [JNQ.

Changing Standard Validation Behaviour

Input validation is provided by the Edit object associated with a cell. By default, the
built-in validation will prevent the user from leaving the cell should the data in that cell
be invalid. For example, if the FieldType is 'Date ' and the user enters 29th February
and a non-leap year, APL will beep and not allow the user to leave the cell until a valid
date has been entered If you wish instead to take some other action, for example
display a message box, you should use the CellError event. This event is generated
immediately the user attempts to move to another cell when the data in the current cell
is invalid. The event is also generated if the user selects a Menultem, presses a Button
or otherwise changes the focus away from the current cell.

The CellError event reports the row and column number of the current cell, the (invalid)
text string in that cell, the name of the object to which the user has transferred attention
or the co-ordinates of the new cell selected. The default action of the event is to beep, so
to disable the beep your callback function should return a 0. If you wish to allow the
user to move to a different cell, you must do so explicitly by generating a CellMove
event using [INQ or by returning a CellMove event as the result of the callback.

150

Dyalog APL/W Interface Guide

Reacting to Changes

If enabled, the Grid object generates a CellChange event whenever the user alters data
in a cell and then attempts to move to another cell or otherwise shifts the focus away
from the current cell. This allows you to perform additional validation or to trigger
calculations when the user changes a value. The CellChange event reports the co-
ordinates of the current cell and the new value, together with information about the
newly selected cell or the external object to which the focus has changed.

The default action of the CellChange event is to replace the current value of the cell
with the new one. If you wish to prevent this happening, your callback function must
return a 0. If in addition you wish the focus to remain on the current cell, you must do
this explicitly by using the CellMove event to reposition the current cell back to the one
the user has attempted to leave.

Restoring User Changes

The Grid object supports an Undo method which causes the last change made by the
user to be reversed. This method can only be invoked under program control using ONQ
and cannot be directly generated by the user. If you want to provide an undo facility, it
is recommended that you attach a suitable callback function to a Menultem or a Button.
To perform an undo operation, the callback function should then generate an Undo
event for the Grid object.

Updating Cell Data

You can change the entire contents of the Grid by resetting its Values property with
[OWS. However, this will causes the entire Grid to be redrawn and is not to be
recommended if you only want to change one cell or just a few cells.

You can change the value in a particular cell by using (ONQ to send a CellChange event
to the Grid. For example, if you want to alter the value in row 2 column 3 of the Grid
object called Test .G to 42, you simply execute the following statement :

ONQ 'Test.G' 'CellChange' 2 3 42

To update an entire row or column of data you can use the RowChange and ColChange
events. For example, to change all 12 columns of row 500 to the 12-element vector
TOTAL, you could execute :

ONQ 'Test.G' 'RowChange' 500 TOTAL

Chapter 6: Using the Grid Object 151

Deleting Rows and Columns

You can delete a row or column by using [INQ to send a DelRow or DelCol message to
the Grid object. For example, the following statement deletes the 123rd row from the
Grid object Test . G. Note that if you have specified it, the corresponding element of
RowTitles is removed too.

ONQ 'Test.G' 'DelRow' 123

Inserting Rows and Columns

You can insert or add a row or column using the AddRow or AddCol method. You must
specify the following information.

row or column number
title (optional)

height or width (optional)
undo flag (optional)
resize flag (optional)

title colour (optional)
gridline type (optional)

The event message must specify the number of the row or column you wish to insert.
This is index-origin dependent and indicates the number that the row or column will
have after it has been inserted. For example, if JI0 is I and you wish to insert a row
between the 10th and 11th rows, you specify the number of the row to be inserted as 11.
If you wish to insert a new column before the first one, you specify a column number of
1. To append a row or column to the end of the Grid, you should specify 1 + the current
number of rows or columns.

If you have specified RowTitles or ColTitles, the message may include a title for the
new row or column and this will be inserted in RowTitles or ColTitles as appropriate. If
you fail to supply a new title, an empty vector will be inserted in RowTitles or ColTitles
for you. If you are using default row and column headers and you have not specified
RowTitles or ColTitles, any title you supply will be ignored. In this case the rows and
columns will be re-labelled automatically.

152

Dyalog APL/W Interface Guide

If you have set CellHeights or CellWidths to a vector, the AddRow or AddCol event
message may include the height or width of the new row or column being inserted. If
you fail to supply one or you specify a value of ~1 the default value will apply. Note
that setting the height or width to 0 is allowed and will cause the new row or column to
be invisible. If CellHeights or CellWidths has not been specified or is a scalar, the new
row or column will be given the same height or width as the others and any value that
you specify is ignored.

The undo flag indicates whether or not the insertion will be added to the undo stack and
may therefore be subsequently undone. Its default value is 1.

If the data in the Grid is entirely numeric, the new row or column will be filled with
zeros. If not, it will be filled with empty character vectors. If you want to set the row or
column data explicitly, you should invoke the ChangeRow or ChangeCol immediately
after the AddRow or AddCol event. The ChangeRow and ChangeCol event require just
the row or column number followed by the new data.

The following example adds a new row entitled "Chateau Latour" to a Grid object
called Test .G. The first statement adds a new row between rows 122 and 123 (it
becomes row 123) of the Grid. It will be of default height (or the same as all the other
rows) and the change may not be undone (the undo flag is 0). The second statement sets
the data in the new row to the values defined by the vector LATOUR_SALES.

[ONQ 'Test.G' 'AddRow' 123 'Chateau Latour' ~1 0
ONQ 'Test.G' 'ChangeRow' 123 LATOUR_SALES

Chapter 6: Using the Grid Object 153

TreeView Feature
Introduction

The Grid can display a TreeView like interface in the row titles and automatically shows
and hides row of data as the user expands and contracts nodes of the tree.

RowTreeDepth property

The tree structure is specified by the RowTreeDepth property This is either a scalar 0
or an integer vector of the same length as the number of rows in the grid.
RowTreeDepth is similar to the Depth property of the TreeView object.

Each element of RowTreeDepth specifies the depth of the corresponding row of the
Grid. A value of 0 indicates that the row is a top-level row. A value of 1 indicates that
the corresponding row is a child of the most recent row whose RowTreeDepth is 0; a
value of 2 indicates that the corresponding row is a child of the most recent row whose
RowTreeDepth is 1, and so forth.

The picture below illustrates the initial appearance of a Grid with TreeView behaviour.
Notice that at first only the top-level rows are displayed.

Grid: TreeView Feature g@
Wi
A B C D E

2000 1278 1278 1278 1278 1278
2001 14058 140653 14058 14058 140653
2002 15336 15336 15336 16336 15336
2003 1661.4 16614 1661.4 16614 1661.4
2004 1789.2 1783.2 1783.2 1789.2 1783.2

The TreeGrid function that was used to generate this Grid is shown overleaf. The tree
structure is defined on TreeGrid[26].

In this example, the Grid has top-level rows (RowTreeDepth of 0) that contain annual
totals. The second-tier rows (RowTreeDepth of 1), contain quarterly totals, while the
third-tier rows (RowTreeDepth of 2) contain monthly figures.

154 Dyalog APL/W Interface Guide

V TreeGrid;SIZE;YR;YRS;DATA;MDATA;QDATA;YDATA;IX
SIZE«380 400
'"F'OWC'Form' 'Grid: TreeView Feature'
('Coord' 'Pixel')

N =

F.MB'WC'MenuBar'

F.MB.View'OWC'Menu' 'View'

F.MB.View.Expandl'[JWC'Menultem' 'Expand Years'

F.MB.View.Expandl'[IWS'Event' 'Select'
'¢F.G.RowSetVisibleDepth 1'

.MB.View.Expand2'(OWC'Menultem' 'Expand ALL'

.MB.View.Expand2'0WS'Event' 'Select’
"¢F.G.RowSetVisibleDepth 2'

.MB.View.Col lapse'JWC'Menultem' 'Collapse AlL'

.MB.View.Collapse'[JWS'Event' 'Select'
"¢F.G.RowSetVisibleDepth 0

[12] '"F.G'OWC'Grid'('Posn' 0 0)SIZE

[13] F.G.(TitleWidth CellWidths«80 60)

[14] YR«'QLl' 'Jan' 'Feb' 'Mar' 'Q2' 'Apr' 'May' 'Jun'

[15] YR,«'Q3"' 'Jul' 'Aug' 'Sep' 'Q4' 'Oct' 'Nov' 'Dec'

[16] YRS«'2000' '2001' '2002' '2003' '2004'

[17] F.G.RowTitles«>,/(c"YRS), "cYR

[18] MDATA«12 5p5/100+112

[19] YDATA«<+#MDATA

[20] QDATA<(3+/[1IMDATA)[1 4 7 10;]

[21] MDATA<((pYR)pO 1 1 1)XMDATA

[22] MDATA[1 5 9 13;]«QDATA

[23] YDATA<YDATA,[1]IMDATA

[24] DATA«>,[1]/1 1.1 1.2 1.3 1.4xcYDATA

[25] F.G.Values<DATA

[26] F.G.RowTreeDepth«(pF.G.RowTitles)pO,(pYR)pl 2 2 2

v

F.Size«SIZE

~No o Fw

\O 0o
=) —_t [S Y) - —_

mrm mrm L | e | g | e | | mrm

[y

When the user clicks on one of the nodes indicated by a "+" symbol, the Grid
automatically expands to display the rows at the next level below that node. At the same
time, an Expanding event is generated. In the next picture, the user has clicked on the
2001 node and, below that, the O3 node.

Chapter 6: Using the Grid Object 155

Grid: TreeView Feature g@
Wiy
A B C D E
2000 1278 1273 1278 1278 1273
B 200 14058 1405.3 14053 14058 14058
~[H 01 3366 3366 JIEE JIEE 3366
- (2 MBS B 5 JEBHR B4R HME5A
~E 13 356.4 3564 3564 3564 356.4
--------- Jull 177 1177 1177 177 177
--------- Aug 1188 118.8 1188 1138 1188
--------- Sep 11314 1134 11314 1134 11314
~E (14 3663 36E.3 3E6E.3 3663 3663
2002 15336 15336 15336 15336 15336
2003 16614 16614 16614 16E1.4 16614
2004 1783.2 1783.2 1783.2 1783.2 1783.2

RowSetVisibleDepth Method

The Grid provides a RowSetVisibleDepth method that provides tier-level control over
which rows are displayed.

The value of its argument is an integer that specifies the depth of rows to be displayed.
The Grid displays all rows whose RowTreeDepth values are less than or equal to this
value. In the example, this method is called by items on the View menu.

156 Dyalog APL/W Interface Guide

The next picture shows how the Grid is displayed after choosing Expand Years from the
View menu. Notice that, as specified by TreeGrid[6] this menu item simply
executes the RowSetVisibleDepth method with an argument of 1.

Grid: TreeYiew Feature g@
Vi
Expand Years B B C] E fad
Expand Al 1278 1278 1278 1278 1278
Colapse Al 306 306 306 306 306
- Q2 315 315 315 315 315
- 13 324 324 324 324 324 ||
- 14 333 333 333 333 333
= 2001 1405.8| 14058| 14058 | 14058| 14058
-~ Q1 3366 3366 3366 3366 3366
- Q2 3465 3E.5 G5 365 3E.5
- 13 356.4 356.4 356.4 356.4 356.4
- 14 366.3 366.3 366.3 366.3 366.3 |+

Chapter 6: Using the Grid Object

157

Similarly, the Expand All item executes RowSetVisibleDepth 2, as specified by
TreeGrid[7] and this causes the Grid to display all rows up to and including

RowTreeDepth of 2 as shown below.

" -
Grid: TreeView Feature g@
Wign
& B C D E_|I#
B 2000 1278 1278 1278 1278 1278
= o 06 306 306 306 306
......... Dt 101 101 101 1 1m
--------- Feh 102 102 102 102 102
......... b ar 103 103 103 103 103
= 02 A5 5 35 A5 35
--------- A 104 104 104 104 104
......... b 105 105 105 105 105
--------- Jun 108 106 106 106 106
B a3 324 324 324 324 324
......... Jul 107 107 107 107 107
......... Aug 108 108 108 108 103
......... e 109 109 109 109 109
= 04 333 333 233 233 ek
......... Ot 110 110 110 110 110
......... Mo 111 111 111 11 111
--------- Dec 112 112 112 112 112 |+

Note that the Collapse All item executes RowSetVisibleDepth 0, which causes only the

top-level rows to be displayed.
You may open specific nodes by invoking the Expanding event as a method.

Fine control over the appearance of the tree is provided through the RowTreelmages

and RowTreeStyle properties. See Object Reference for further details.

158

Dyalog APL/W Interface Guide

Grid Comments

Introduction

Grid comments are implemented in a manner that is consistent with the way comments
are handled in Microsoft Excel.

If a comment is associated with a cell, a small red triangle is displayed in its top right
corner. When the user rests the mouse pointer over a commented cell, the comment is
displayed as a pop-up with an arrow pointing back to the cell to which it refers. The
comment disappears when the mouse pointer is moved away. This is referred to as tip
behaviour.

It is also possible to display and hide comments under program control. A comment
window displayed under program control does not (normally) disappear automatically
when the user moves the mouse, but instead must be hidden explicitly. It is therefore
possible to have several comments visible.

Implementation

Because comments are typically sparse, this facility is implemented by a small set of
methods rather than as a property, and comments are stored internally in data structures
that minimise storage space. The following methods and events are provided.

Event/Method | Number | Description

AddComment 220 Associates a comment with a cell

DelComment 221 Deletes the comment associated with a particular
cell

GetComment 222 Retrieves the comment associated with a given cell

ShowComment 223 Displays a comment either as a pop-up or on-top
window

HideComment 224 Hides a comment

ClickComment 225 Reported when user clicks the mouse on a comment
window

A comment is described by its text content and the size of the window in which it
appears. The text may optionally be Rich Text (RTF) such as that produced by the value
of the RTFText property of a RichEdit object. The size of the window is specified in
pixels.

Chapter 6: Using the Grid Object 159

AddComment Method

This method is used to add a new comment. For example, the following statement
associates a comment with the cell at row 2, column 1; the text of the comment is
"Hello", and the size of the comment window is 50 pixels (high) by 60 pixels (wide).

2 ONQ'F.G' 'AddComment' 2 1 'Hello' 50 60

The height and width of the comment window, specified by the last 2 elements of the
right argument to [INQ are both optional. If the cell already has an associated comment,
the new comment replaces it.

Note that just before the comment is displayed, the Grid generates a ShowComment

event which gives you the opportunity to (temporarily) change the text and/or window
size of a comment dynamically.

DelComment Method

This method is used to delete a comment. For example, the following expression
removes the comment associated with the cell at row 2, column 1.

2 ONQ'F.G' 'DelComment' 2 1

If the row and column number are omitted, all comments are deleted.

GetComment Method

This method is used to retrieve the comment associated with a cell. For example, the
following expression retrieves the comment associated with the cell at row 3, column 1.

0«2 ONQ 'F.G' 'GetComment' 3 1
1 3 Hello 175 100

If there is no comment associated with the specified cell, the result is a scalar 1.

160

Dyalog APL/W Interface Guide

ShowComment Event/Method

If enabled, a Grid will generate a ShowComment event when the user rests the mouse
pointer over a commented cell. You may use this event to modify the appearance of the
comment dynamically.

You may display the comment associated with a particular cell under program control
by generating a ShowComment event using [INQ. By default, a comment displayed
under program control does not exhibit tip behaviour but remains visible until it is
explicitly removed using the HideComment method.

Note that a comment will only be displayed if the specified cell is marked as a
commented cell.

HideComment Event/Method

If enabled, a HideComment event is generated just before a comment window is hidden
as a result of the user moving the mouse-pointer away from a commented cell.

Invoked as a method, HideComment is used to hide a comment that has previously been
displayed by ShowComment. For example, the following expression hides the comment
associated with the cell at row 2, column 1.

2 ONQ'F.G' 'HideComment' 2 1

ClickComment Event

If enabled, a ClickComment event is generated when the user clicks the mouse in a
comment widow. The event message reports the co-ordinates of the cell. The result of a
callback function (if any) is ignored.

161

CHAPTER 7

Multiple-Document (MDI) Applications

The multiple-document interface (MDI) is a document-oriented interface that is
commonly used by word-processors, spreadsheets and other applications that deal with
documents. An MDI application allows the user to display multiple documents at the
same time, with each document displayed in its own window. Document windows are
implemented as child forms that are contained within a parent form. When a child form
is minimised, its icon appears on the parent form instead of on the desktop. An example
MDI application is illustrated in Figure 8.1.

= MDI Application v |~
File Edit Window

=]l =1=]

=] Child 1 [~

= Child 2 [+~

Child 4 Child 3

Readu ... Ins |Caps |Mum

Figure 8.1 Child forms displayed within an MDIClient

162 Dyalog APL/W Interface Guide

In general, the parent form in an MDI application may also contain tool bars and status
bars and potentially other objects. This means that not all of the internal area of the
parent form is available. To allow for this and to distinguish MDI behaviour from that
of simple child forms, Dyalog APL/W uses an MDIClient object.

The MDIClient object is a container object that effectively specifies the client area
within the parent Form in which the SubForms are displayed. The MDIClient object
also imposes special MDI behaviour which is quite different from that where a
SubForm is simply the child of another Form.

By default, the MDIClient occupies the entire client area within its parent Form. This is
the area within the Form that is not occupied by ToolBars and StatusBars. In most
applications it is therefore not necessary to specify its Posn and Size properties,

although you may do so if you want to reserve additional space in the parent Form for
other objects.

To Create an MDI Application

1. Create a Form (this will be the parent form for the application).

2. Add MenuBar, ToolBar and StatusBar objects as appropriate as children of the
parent Form.

3. Create an MDIClient object as a child of the parent Form.

4. Create the application's SubForms as children of the MDIClient, not as children of
the parent Form.

MDI Behaviour

e All child forms are displayed within the MDIClient. Forms may be moved and
resized but they are restricted to the MDIClient and will be clipped if they extend
beyond it.

e When a child form is minimised, its icon appears on the MDIClient rather than on
the desktop.

Chapter 7: Multiple-Document (MDI) Applications 163

e When a SubForm is maximised, its Caption is combined with the Caption of the
parent Form, i.e. the parent of the MDIClient object and is displayed in the parent
Form's title bar. In addition, the SubForm's system menu and restore button are
displayed in the parent Form's MenuBar.

e You cannot hide a SubForm. Setting its Visible property to 0 has no effect.

e A SubForm does not display its MenuBar. Instead, it is displayed in place of the
parent Form's MenuBar when the SubForm has the focus.

= MDI Application |~ MDI Application - [Child 1] -
File Edit Window =| File Edit Window

3|24 | % | B[k
[=] Child 1 -1~

L 13

|'||Heady |Ins |Caps |Hum |Heady Ins Caps |Mum

Figure 8.2 The effect of maximising a SubForm

Menus in MDI Applications

A feature of MDI behaviour is that SubForms do not display menu bars. However, if
you create a MenuBar object for a SubForm, that object will be displayed as the menu
bar of the parent Form whenever the SubForm has the focus. If there are no SubForms
or if the SubForm with the focus does not own a MenuBar, the MenuBar of the parent
Form is displayed. This mechanism provides one way of achieving the desired effect,
namely that the menu bar displayed is appropriate for the type of document represented
by the SubForm that has the focus. However, if you have a large number of SubForms
of the same type (i.e. which share the same menu bar) you must defined identical
MenuBar objects for all of them.

An alternative approach is to define separate MenuBar objects as children of the parent
Form, only one of which is visible. Then you simply attach a callback function to the
GotFocus event for each SubForm that makes the appropriate MenuBar visible. This
approach means that you need only define MenuBar objects for each different #ype of
SubForm, rather than for every one.

164 Dyalog APL/W Interface Guide

It is possible to mix these techniques, so that the MenuBar displayed is either the result
of your callback function making it visible, or because a SubForm has its own MenuBar
object defined and received the focus.

Note that when the user maximises a SubForm, its system menu button and restore
button are displayed in the parent Form's menu bar. It is therefore essential that you
ensure that your application provides such a menu bar at all times. Otherwise, when
your user maximises a SubForm there is no way to reverse it.

Defining a Window Menu

Most MDI applications incorporate a Window menu. This is a special menu that
displays the captions of all open SubForms as shown in Figure 8.3. The caption of the
SubForm which currently has the focus is checked and the user can switch focus to
another SubForm by selecting it from the Window menu.

MDI Application
Edit BSLITT

File

| LCascade
ﬁl%l&l Tile Horizonatlly
Tile ¥Yertically
Arrange lcons
/1 child 1 -]
2 Child 2
|'||Heady .. |Ins |Caps |Hum

Figure 8.3 The Window menu

The task of updating the Window menu with the names of the SubForms is performed
for you by Dyalog APL/W. You nominate the menu to be used for this purpose by
setting the MDIMenu property of the appropriate MenuBar object. For example, if your
MenuBar is called F 1 .MB and the menu you want to use as the Window menu is called
F1.MB.WM, you would type the following:

'F1.MB' [OWS 'MDIMenu' 'WM'

Notice that the name you specify is just the name of the menu itself, not its full
pathname. If you have several MenuBars in your application, you must specify the
MDIMenu property separately for each one.

Chapter 7: Multiple-Document (MDI) Applications 165

Arranging Child Forms and Icons

Another common feature of MDI applications is that the user can ask for the SubForms
to be displayed in a particular way, or that any SubForm icons are arranged in an
orderly fashion. This is implemented in Dyalog APL/W by your application invoking an
method using [DNQ. The MDIClient recognises three different methods, namely
MDICascade (110), MDITile (111) and MDIArrange (112).

The MDICascade method causes the child forms to be arranged in an overlapping
manner. The MDITile method causes them to be tiled, either horizontally or vertically .
Finally, the MDIArrange method arranges any child form icons in an orderly fashion.
The most convenient way to provide these actions is to attach a Callback function to
appropriate Menultems. The callback function is called with different left arguments
according to the Menultem selected. The following code snippet illustrates this
technique.

The following lines define callbacks for each of the Menultem objects in the Menu
F1.MB.WM. Each one uses the callback function MDI_ARRANGE, but with a left
argument corresponding to the message that must be sent to the MDIClient to cause the
desired action. For example, clicking the Menultem named F1 .MB.WM.Vert runs
MDI_ARRANGE with a left argument of (111 1)

'"F1.MB.WM.CASCADE' [OWS 'Event' 30 'MDI_ARRANGE' 110
"F1.MB.WM.HORZ' OWS 'Event' 30 'MDI_ARRANGE' (111 0)
"F1.MB.WM.VERT' OWS 'Event' 30 'MDI_ARRANGE' (111 1)
'"F1.MB.WM.ARRANGE' [OWS 'Event' 30 'MDI_ARRANGE' 112

The MDI_ARRANGE function uses its left argument to construct a message for the
MDIClient object, in this case F1.MDI, and returns it as a result. This causes the
desired action.

VvV MSG+<M MDI_ARRANGE MSG

[1] MSG«(<c'F1.MDI') ,M
v

An alternative approach which does not require a callback function is to use [INQ

'"F1.MB.WM.CASCADE' [OWS 'Event' 30 'e¢[INQ ''F1.MDI 110'"'
'"F1.MB.WM.HORZ' OWS 'Event' 30 'e¢[INQ ''F1.MDI 111 O0'"'
"F1.MB.WM.VERT' OwWS 'Event' 30 'e¢(NQ ''F1.MDI 111 1'"'
'"F1.MB.WM.ARRANGE' WS 'Event' 30 'e¢[INQ ''F1.MDI 112'"'

166 Dyalog APL/W Interface Guide

167

CHAPTER 8

Docking

Introduction

Dyalog APL supports dockable Forms, SubForms, CoolBands and ToolControls.

If an object is dockable, the user may drag it to a different position within the same
container, drag it out of its current container and drop it onto a different container, or
drop it onto the desktop as a free-floating window. An undocked object can
subsequently be redocked in its original container or in another.

For example, a SubForm can be dragged from one Form and docked into another. Or a
CoolBand can be dragged out of its CoolBar and turned into a top-level Form on the
desktop.

With the exception of ToolControls, when a dockable object is docked or undocked, the
full Name and Type of the object change according to the following table.

Parent Object
Dockable Form SubForm CoolBar Root
Object Fi1 F1.51 F1.CB1 ()
Form SubForm SubForm CoolBand Form
F2 F1.F2 F1.S1.F2 F1.CB1.F2 F2
Form SubForm SubForm CoolBand Form
F1.F2 F1.F2 F1.S1.F2 F1.CB1.F2 F1.F2
SubForm SubForm SubForm CoolBand Form
F2.52 F1.S2 F1.51.52 F1.CB1.S2 S2
CoolBand SubForm SubForm CoolBand Form
F2.CB2.C2 F1.C2 F1.51.C2 F1.CB1.C2 C2

168

Dyalog APL/W Interface Guide

For example, a top-level Form F2 when docked in another top-level Form F1, becomes
a SubForm named F2.F1.

Similarly, a CoolBand named F2.CB2.C2 when dragged from its CoolBar F2.CB2
and dropped over the desktop, becomes a top-level Form named C2.

Notice how the node name of the object remains the same, but its full pathname changes
as it is moved from one parent object to another.

When an object changes Type in this way, the values of all its properties for its original
Type are remembered, and these are automatically restored when the object reverts back
to its original Type. Since an object can change Type between Form, SubForm, and
CoolBand, it follows that there are effectively 3 different sets of properties associated
with the object. However, only one set of properties (the set associated with the object's
current Type) is visible and accessible (to the programmer) at any one time.

Docking Events

An object (the client) may be docked in another object (the host) if the Dockable
property of the client is setto 'Always ' and the name of the client is included in the
host object's DockChildren property. This property defines the list of names that the
host will accept. Docking a Form or re-docking an already docked object behave in
essentially the same way.

DockStart Event

The user picks up a client object by depressing the left mouse button over its title bar or
client area and dragging. As soon as the mouse is moved, the object generates a
DockStart event At this stage, the entire operation may be cancelled by a callback
function on DockStart that returns 0.

Once a docking operation has begun, the outline of the object is displayed as a rectangle
that moves with the mouse.

DockMove Event

When the client object is dragged over a suitable host object (one that will accept it as a
child), the host object generates a series of DockMove events. Each DockMove event
reports the edge along which the client object will be docked, namely Top, Bottom,
Left, Right or None, and a corresponding rectangle.

When the mouse pointer approaches an edge of the host, the rectangle changes to
describe a docking zone indicating where the object will be docked in the host.

A callback function on DockMove that returns 0 will prevent the outline rectangle
changing to indicating a docking zone and will prevent the client from being docked.

Chapter 8: Docking 169

A callback function on DockMove can also return a result that modifies the position and
size of the rectangle that is actually displayed for the user. This in turn will affect the
zone occupied by the client when it becomes docked. For example, you can use this to
control its size.

DockRequest Event

When the user releases the mouse pointer, the client object generates a DockRequest
event. A callback function on DockRequest may return 0 to abort the operation, or may
modify the requested docking zone in the host. In the case of a ToolControl, the
callback is used to action the docking operation.

DockAccept Event

In response to a successful DockRequest event, the host object generates a DockAccept
event. A callback on DockAccept may also be used to abort the operation or to modify
the docking zone. The DockAccept event reports the new name for the client object
which it will assume as a child of the host.

Furthermore, if the DockAccept callback actions the event before completing, the
docking operation will take place immediately, rather than being deferred until the
callback has completed. This allows you to set properties on the newly docked object.

DockEnd Event

Finally, the docked client object (whose name has now changed) will generate a
DockEnd event. This is reported for information only and a DockEnd callback function
cannot cancel or modify the docking operation. The DockEnd event may however be
used to set properties for the newly docked client.

If the user releases the mouse elsewhere than over an accepting host object, the
DockEnd event is reported by the client object itself. If appropriate, this will be
followed by a Configure event and the client will simply move to a new location
without changing its docking status.

DockCancel Event

If at any stage the user presses the Esc key, the operation is aborted and the client object
generates a DockCancel event.

170 Dyalog APL/W Interface Guide

Docking a Form inside another

The following example illustrates the effect of docking one Form in another.

'Host' [OWC 'Form' 'Host' ('Size' 30 40)
Host.DockChildren<«'Client'

'Client' OWC 'Form' 'Client' ('Size' 20 20)
Client.Dockable<«'Always'

Aty Chent

Notice that a dockable Form is indistinguishable in appearance between any other top-
level Form except that it has additional items in its pop-up context (right mouse button)
menu as shown.

Chapter 8: Docking 17

The following picture shows the effect of dragging the Cl i ent Form to the top edge of
the Hos t, just before the mouse button is released.

The next picture shows the result after docking. The CLlient Form has become a
SubForm (white is the default background colour for a SubForm) called
Host.Client.

172 Dyalog APL/W Interface Guide

The third picture illustrates the effect of docking the Client on the left-hand edge.

Aff Host =]
x|

i

Client

The following picture shows the Cl ient Form docked as a SubForm along the right
edge of the Host Form.

Aff Host =]

x|
3

Client

Chapter 8: Docking 173

'Client2' OWC 'Form' 'Second Client' ('Size' 20 20)
Client2.Dockable<'Always'

Aff Second Client _ O]

which we can make dockable in both the Host Form and the Host.Client
SubForm:

Host.DockChildren Host.Client.DockChildren«'Client2’
The next picture shows Cl ient2 about to be docked in the Client SubForm:

Aff Host =]

Client

174 Dyalog APL/W Interface Guide

And finally, after it has been docked.

ﬂH“St !E
2| Sacond Client =13
[n]

Client

Docking a Form into a CoolBar

The following example illustrates the effect of docking a Form into a CoolBar.

V FormToCoolBand
"il'0OWC'ImagelList'('Masked' 0)('MapCols' 1)
"il.'OwWC'Bitmap' ('ComCtl32"' 120)a STD_SMALL

'host '[JWC'Form' 'Host'
host.Coord<«'Pixel'

host.Size<«140 350
'host.cb'OWC'CoolBar'
host.cb.DockChildren«<'file' 'edit'

] :With 'host.cb.file'JWC'CoolBand'

] Caption<«'File'

] Dockable«'Always'

] "tb'0WC'ToolControl'('ImageListObj"' '#.il")

] "tb.b1'[JWC'ToolButton' 'New'('ImageIndex' 7)
] "tb.b2'[JWC'ToolButton' 'Open'('ImageIndex' 8)
] "tb.b3'0OWC'ToolButton' 'Save'('ImageIndex' 9)
] :EndWith

]

L | s s ¥ e s s s N e s s s ¥ s | s s | e | s | s | e |
PR R R R R R R R OONOOIFWN -
O~NOOIFWN P O e I

Chapter 8: Docking 175

[19] :With 'edit'0WC'Form' 'Edit'

[20] Size«100 200
[21] Dockable«'Always'
[22] Coord<«'Pixel'
[23] "tb'0OWC'ToolControl'('ImagelListObj"' '#.il")
[24] "tb.b1'[OWC'ToolButton' 'Cut'('Imagelndex' 1)
[25] "tb.b2'0OWC'ToolButton' 'Copy'('ImageIndex' 2)
[26] "tb.b3'OWC'ToolButton' 'Paste'('ImageIndex' 3)
[27] "tb.b4'[JWC'ToolButton' 'Undo'('Imagelndex' 4)
[28] "tb.b5'(OWC'ToolButton' 'Redo'('Imagelndex' 5)
[29] :EndWith
\%
Aff Host [_ (O] x|
e O 2 E

Mew Open Sawve

4 Edit = E3
& B « o~

Cut Copy Paste Undo Redo

The following picture shows the effect of dragging the client Form to the CoolBar in the
host, just before the mouse button is released.

Host I [=]
File

Mew Open Save

176 Dyalog APL/W Interface Guide

The next picture shows the result after docking. The client Form has become a
CoolBand called host.cb.edit.

Aff Host =] E3
e O = [

Mew Open Save
jEdit & B v o

Cut Copy Paste Undo Fedo

Undocking a SubForm or a CoolBand

When a SubForm or a CoolBand is undocked, it becomes a Form.

The object may either become a Form that is a child of Root, or a Form that remains the
child of the Form from where it was undocked. Such an object will always appear on
top of its parent, even when undocked.

This behaviour is controlled by the UndocksToRoot Property

Note that a Form or a CoolBand object may be undocked if its Dockable property is set
to 'Always'; the DockChildren property does not apply to the Root object.

The Root object does not provide DockMove events, but the docked object will
generate a DockRequest event when the user releases the mouse button over the
desktop. This may be used to disable or modify the operation.

Docking and Undocking a ToolControl

Docking and undocking a ToolControl is handled rather differently from docking and
undocking a Form or CoolBand.

When you undock a ToolControl from a Form or SubForm, it cannot remain a
ToolControl object, because a ToolControl cannot be a child of Root. Furthermore, its
Type cannot simply change to Form because a Form cannot be a parent of a
ToolButton. In fact, a ToolButton may only be the child of a ToolControl.

Therefore, when a dockable ToolControl is undocked, no action is taken; you have to
perform the various operations yourself.

Typically, you would create a new Form to contain the ToolControl and only the
ToolControl), and then delete the original.

Chapter 8: Docking 177

The new Form should be dockable in the original parent (of the ToolControl), but a
callback should intercept this operation and re-instate the ToolControl as a direct child
of the host.

Effectively, when you undock a ToolControl, you need to insert a new (floating) Form
between the Host Form and the ToolControl. Then when you re-dock it, you need to
remove the (floating) Form from the hierarchy.

The following example illustrates the procedure.

The following function creates a Form containing a dockable ToolControl. The
ToolControl can be undocked, becoming a floating toolbar, and then docked back into
the original Form.

vV DockableToolControl
"IL'0OWC'ImagelList'('Masked' 0)
"IL.'0OWC'Bitmap'('ComCtl32"' 120)a STD_SMALL
:With 'Host'[JWC'Form' 'Host'
Coord<«'Pixel'
Size«50 300
DockChildren<«'Floater'
onDockAccept«'#.DOCK'
onDockMove<«'#.DOCKMOVE"
:With 'TC'0OWC'ToolControl'
] Dockable«'Always'
] onDockRequest<«'#.UNDOCK'
] ImagelListObj«'#.IL"
] 'B1'OWC'ToolButton' 'New'('ImageIndex' 7)
] 'B2'0WC'ToolButton' 'Open'('Imagelndex' 8)
] 'B3'WC'ToolButton' 'Save'('Imagelndex' 9)
] :EndWith
] :EndWith

PR PP PRPEPEPPP,POONO0ITFWN -

[L L T T T Ve T Ve T T Ve T T P T T |
NOOIFWN P Ol

v

The picture below shows the initial appearance of the Hos t Form and its ToolControl.

Afy Host Mi=] E3
O = E

Hew Open Save

Because the ToolControl is dockable, the user may pick it up and drag it out of its
parent Form as shown below.

Afy Host Mi=]

178 Dyalog APL/W Interface Guide

When the user drops the ToolControl outside the Hos t Form, it (the ToolControl)
generates a DockRequest event which is attached to the UNDOCK callback function.
This function, creates a new Form called F lLoater, makes a copy of the ToolControl
as a child of F lLoater, and then expunges the original ToolControl from the Hos t
Form. The function, and the results of the operation, are shown below. The following
points should be noted.

e The UNDOCK callback returns 0 to prevent APL from taking any further action
(the default action after a successful DockRequest is to generate a DockAccept
event, which in this case is undesirable).

e The Floater Form is created as a child of the Host Form so that it always
floats above it in the window stacking order.

e The Floater Form is made dockable so that it can be re-docked back into
Host.

e The (new) ToolControl is made non-dockable, so that the user cannot drag it
outof Floater.

V R<«UNDOCK MSG

] R<0

2] :With 'Host.Floater'OWC'Form'

3] Caption«'Floating ToolControl'

4] Dockable«'Always'

5] Coord<«'Pixel'

6] 'TC'[OWC>MSG

7] TC.Dockable«'Never'

8] Size«TC.Size

9] Posn<«#.Host.Posn+217>MSG

10] :EndWith

111] JEX'#.Host.TC'

\%

Agf Floating T oolControl M=l
O = E

Mew Open Save

Afy Host [_ O]

The user may dock the ToolControl back into Host by dragging the F Loater Form
into it.

Chapter 8: Docking 179

The DOCKMOVE callback function, shown below, prevents the ToolControl (represented
by its parent F Loater) from being docked anywhere except along the top edge.

vV R<DOCKMOVE MSG
[1] A Only allow docking along Top edge
[2] R«MSG[4]e'Top' 'None'
v
The picture below illustrates the moment just before the user releases the mouse button
to dock Floater back into Host.

H

At this point, the Hos t Form generates a DockAccept event and the callback function
DOCK is invoked. This function recreates the ToolControl as a child of Hos t (making it
dockable once more), and then expunges the F loater Form.

vV R«<DOCK MSG

[1] R<0
[2] :With oMSG
[3] 'TC'OWC OOR(3>MSG).TC
(4] TC.Dockable«'Always'
[5] :EndWith
[6] JEX'#.Host.Floater'

\%

Once again, the result of the callback function is 0 to tell APL that you have dealt with
the situation and it is to take no further action.

Afy Host Mi=] E3
O = &

Hew Open Save

180 Dyalog APL/W Interface Guide

XP Look and Feel

Windows XP Look and Feel is an optional feature of Windows XP and other advanced
versions of Windows.

Under XP, it may be enabled from the Appearance tab of the Display Properties dialog
box, by choosing Windows XP style.

If XP Look and Feel is enabled, APL will optionally display the title bars of docked
windows using the appropriate XP style. You can control this behaviour using the
XPLookAndFeelDocker parameter (see User Guide, Chapter 2).

If XPLookAndFeelDocker is 1, APL will display docked window title bars using the
appropriate XP style. If XPLookAndFeelDocker is O (the default), it will not.

The picture below illustrates how the first example in this chapter appears when XP
Look and Feel is enabled, XPLookAndFeelDocker is 1, and a special Windows XP
Theme is in use.

P © <
XY . ox)

=3

181

CHAPTER 9

TCP/IP Support

Introduction

The TCPSocket object provides an event-driven interface to the WinSock network API,
which itself is an implementation of TCP/IP for Microsoft Windows.

The TCPSocket object allows you to communicate with other TCP/IP applications
running on any computer in your network, including the World Wide Web.

It also provides the mechanism for client/server operation between two Dyalog APL
workspaces.

From Version 12.0, a new tool called Conga is the recommended mechanism for
connecting to the internet. The code samples in this chapter have not been ported to the
Unicode Edition, but continue to work in Classic Editions. For information on accessing
the internet and other TCP services in the Unicode Edition, see the Conga User Guide.

Two types of TCP/IP connections are possible; Stream and UDP. Stream connections
are by far the most commonly used, but both types are supported by Dyalog APL.

Stream Sockets

A Stream socket is a connection-based transport that is analogous to a telephone
service. A Stream socket handles error correction, guarantees delivery, and preserves
data sequence. This means that if you send two messages to a recipient, the messages
are sure to arrive and in the sequence that you sent them. However, individual messages
may be broken up into several packets (or accumulated into one), and there is no
predetermined protocol to identify message boundaries. This means that Stream-based
applications must implement some kind of message protocol that both ends of a
connection understand and adhere to.

182

Dyalog APL/W Interface Guide

User Datagram Protocol (UDP)

User Datagram Protocol (UDP) is a connection-less transport mechanism that is
somewhat similar to a postal service. It permits a sending application to transmit a
message or messages to a recipient. It neither guarantees delivery nor
acknowledgement, nor does it preserve the sequence of messages. Messages are also
limited to fit into a single packet which is typically no more than 1500 bytes in size.
However, a UDP message will be delivered in its entirety.

You may wonder why anybody would use a service that does not guarantee delivery.
The answer is that although UDP is technically an unreliable service, it is perfectly
possible to implement reliable applications on top of it by building in
acknowledgements, time-outs and re-transmissions.

Clients and Servers

A Stream based TCP/IP connection has two endpoints one of which is called the server
and the other the client. However, this distinction is only relevant in describing how the
connection is made.

The server initiates a connection by creating a socket which is identified by its (local) IP
address and port number. The server is effectively making its service available to any
client that wishes to connect. Notice that the server does not, at this stage, specify in any
way which client or clients it will accept.

A client connects to a server by creating its own socket, specifying the IP address and
port number of the service to which it wishes to connect.

Once the connection is established, both ends are capable of sending and receiving data
and the original client/server relationship need no longer apply. Nevertheless, certain
protocols, such as HTTP, do maintain the client/server model for the duration of the
connection.

Chapter 9: TCP/IP Support 183

APL as a TCPI/IP Server

A Stream based APL server initiates a connection by creating a TCPSocket object
whose SocketType is ' Stream' (the default).

The service is uniquely identified on the network by the server’s IP Address and port
number which are specified by the LocalAddr and LocalPort properties respectively.
Note that unless you have more than one network adapter in your computer, LocalAddr
is normally allowed to default.

This TCPSocket object effectively defines the availability of a particular service and at
this stage is known as a listening socket which is simply waiting for a client to connect.
This is reflected by the value of its CurrentState property whichis 'Listening’.

For example:

'SO'OWC'TCPSocket' ('LocalPort' 2001)
'SO'JWG'CurrentState’
Listening

When a client connects to the APL server, the state of the TCPSocket object (which is
reported by the CurrentState property) changes from 'Listening' to
'Connected’ and it generates a TCPAccept event. Note that the connection cannot
be nullified by the return value of a callback function attached to this event.

At this point, you can identify the client by the value of the RemoteAddr property of the
TCPSocket object. If you wish to reject a particular client, you must immediately
expunge the (connected) TCPSocket and then create a new one ready for another client.

Serving Multiple Clients

Dyalog APL provides a special mechanism to enable a single server to connect to
multiple clients. This mechanism is designed to accommodate the underlying operation
of the Windows socket interface in the most convenient manner for the APL
programmer.

‘What actually happens when a client connects to your server, is that Windows
automatically creates a new socket, leaving the original server socket intact, and still
listening. At this stage, APL has a single name (the name of your TCPSocket object)
but two sockets to deal with.

184

Dyalog APL/W Interface Guide

As it would be inappropriate for APL itself to assign a new name to the new socket, it
disassociates the TCPSocket object from its original socket handle, and re-associates it
with the new socket handle. This is reflected by a corresponding change in its
SocketNumber property. The original listening socket is left, temporarily, in a state
where it is not associated with the name of any APL object.

Having performed these operations, APL checks to see if you have attached a callback
function to the TCPAccept event. If not, APL simply closes the original listening
socket. This then satisfies the simple case where the server is intended to connect with
only a single client and your socket has simply changed its state from 'Listening’
to 'Connected’.

If there is a callback function attached to the TCPAccept event, APL invokes it and
passes it the window handle of the listening socket. What the callback must do is to
create a new TCPSocket object associated with this handle. If the callback exits without
doing this, APL closes the original listening socket thereby preventing further clients
from connecting.

If you wish to serve multiple clients, you must continually allocate new TCPSocket
objects to the listening socket in this way so that there is always one available for
connection.

The following example illustrates how this is done. Note that when the callback creates
the new TCPSocket object, you must not specify any other property except
SocketNumber, Event and Data in the JWC statement that you use to create it. This is
important as the objective is to associate your new TCPSocket object with the original
listening socket whose IP address and port number must remain unaltered.

Example

The original listening socket is created with the name SO and with a callback function
ACCEPT attached to the TCPAccept event. The COUNT variable is initialised to 0. This
variable will be incremented and used to generate new names for new TCPSocket
objects as each client connects.

COUNT<«0
'SO'[0WC'TCPSocket' ('LocalPort' 2001)
('Event' 'TCPAccept' 'ACCEPT')

Then, each time a client connects, the ACCEPT function clones the original listening
socket with a sequence of new TCPSocket objects using the name S1, S2, and so forth.

Vv ACCEPT MSG

[1] COUNT++«1

[2] ('S',sCOUNT)OWC 'TCPSocket'('SocketNumber' (3>MSG))
\

Chapter 9: TCP/IP Support 185

APL as a TCP/IP Client

A Stream based APL client makes contact with a server by creating a TCPSocket object
whose SocketType is ' Stream' (the default), specifying the RemoteAddr and
RemotePort properties which identify the server’s IP Address and port number
respectively. Note that the client must know the identity of the server in advance.

For example:

IP«<'193.32.236.43"'
"CO'OWC'TCPSocket' ('RemoteAddr 'IP)
('RemotePort' 2001)

If the values of the RemoteAddr and RemotePort properties match the IP address and
port number of any listening socket on the network, the association is made and the
client and server sockets are connected.

When the connection succeeds, the state of the client TCPSocket object (which is
reported by the CurrentState property) changes from 'Open' to 'Connected' and it
generates a TCPConnect event. Note that the connection cannot be nullified by the
return value of a callback function.

186

Dyalog APL/W Interface Guide

Host and Service Names

Although basic TCP/IP sockets must be identified by IP addresses and port numbers,
these things are more commonly referred to by host and service names.

For example, the AltaVista web search engine is more easily identified and remembered
by its name www.altavista.com than by any one of its IP addresses.

Port numbers are also often referred to by service names which are more convenient to
remember. Furthermore, port numbers, even the so-called well-known port numbers,
sometimes change, and your application will be more robust and flexible if you use
names rather than hard-coded port numbers.

The WinSock API provides functions to resolve host names to IP addresses and service
names to port numbers and these facilities are included in the Dyalog APL TCP/IP
support.

Name resolution, in particular the resolution of host names, is performed
asynchronously. This means that an application requests that a name be resolved, and
then receives a message some time later reporting the answer. The asynchronous nature
of name resolution is reflected in the way it is handled by Dyalog APL. Note that in
certain cases, the resolution of a host name may take several seconds.

Each of the properties LocalPort, RemotePort, LocalAddr and RemoteAddr has a
corresponding name property, i.e. LocalPortName, RemotePortName, Local AddrName
and RemoteAddrName. When you create a TCPSocket object, you may specify one or
the other, but not both. For example, wherever you would use RemoteAddr, you may
use RemoteAddrName instead.

If you use a name property, when you create a TCPSocket object, the TCPSocket will
raise a TCPGotAddr or TCPGotPort event when the name is resolved to an IP address
or a port number respectively. There is no need to take any action when these events are
raised, so there is no specific need to attach callback functions. However, it may be
useful to do so in order to track the progress of the requested connection.

The use of RemoteAddrName and TCPGotAddr is illustrated by the BROWSER .QUERY
function that is described in the next Chapter.

Chapter 9: TCP/IP Support 187

Sending and Receiving Data

Once your TCPSocket object is connected, you can send and receive data. It makes no
difference whether it was originally a server or a client; the mechanisms for data
transfer are the same.

The type of data that you can send and receive is defined by the Style property which
was established when you created the TCPSocket object. The default Style is ' Char'
which allows you to send and receive character vectors. Conversion to and from your
[AV is performed automatically.

If you choose to set Style to 'Raw ', you can send and receive data as integer vectors
whose values are in the range -127 to 255. This allows you to avoid any character
translation.

If you set Style to ' APL ', you may transmit and receive arbitrary arrays, including
arrays that contain JOR’s of namespaces. Furthermore, however the data is actually
fragmented by TCP/IP, an array transmitted in this way will appear to be sent and
received in single atomic operation. Data buffering is handled automatically by APL
itself. Style ' APL "' is normally only appropriate for communicating between two
Dyalog APL sessions. Note however, that there is no mechanism to ensure that both
ends of the connection use the same Style.

To send data, you execute the TCPSend method. For example, the following expression
will transmit the string "Hello World" to the remote task connected to the TCPSocket
object SO:

2 ONQ'SO"' 'TCPSend' 'Hello World'

To receive data, you must attach a callback function to the TCPRecv event. Note that
for a Stream connection you are not guaranteed to receive a complete message as
transmitted by the sender. Instead, the original message may be received as separate
packets or several messages may be received as a single packet. This means that you
must perform your own buffering and you must implement a specific protocol to
recognise message boundaries.

188

Dyalog APL/W Interface Guide

Output Buffering

When you use TCPSend to transmit a block of data, APL copies the data into a buffer
that it allocates outside your workspace from Windows memory. APL then asks TCP/IP
to send it.

However, the amount of data that can be transmitted in one go is limited by the size of
various TCP/IP buffers and the speed of the network. Unless the block is very small, the
data must be split up and transmitted bit by bit in pieces. This process, which is handled
by APL in the background, continues until the entire data block has been transmitted. It
could be several seconds or even minutes after you execute TCPSend before the entire
block of data has been sent from your PC.

If in the meantime you call TCPSend again, APL will allocate a second buffer in
Windows memory and will only try to send the second block of data when all of the
first block has been transmitted.

If you call TCPSend repeatedly, APL will allocate as many buffers as are required.
However, if you attempt to send too much data too quickly, this mechanism will fail if
there is insufficient Windows memory or disk space to hold them.

If you need to transmit a very large amount of data, you should break it up into chunks
and send them one by one. Having sent the first chunk, you can tell when the system is
ready for the next one using the TCPReady event. This event is reported when the
TCP/IP buffers are free and when there is no data waiting to be sent in the internal APL
buffers. You should therefore attach a callback, whose job is to send the next chunk of
data, to this event.

Note that a further level of buffering occurs in the client if the Style property of the
TCPSocket is set to ' APL '. This is done to prevent the partial reception of an APL
array which would represent an invalid data object.

Chapter 9: TCP/IP Support 189

User Datagram Protocol (UDP) and APL

You may communicate with another application with User Datagram Protocol (UDP)
by creating a TCPSocket object whose SocketType is ' UDP '. For two APL
applications to exchange data in this way, each one must have a UDP TCPSocket.

You make a UDP socket by creating a TCPSocket object, specifying the LocalAddr and
LocalPort properties, and setting the SocketType to ' UDP '. Unless your computer has
more than one network card (and therefore more than one IP address), it is sufficient to
allow LocalAddr to assume its default value, so in practice, only the port number is
required. For example:

'S0' [OWC 'TCPSocket' ('LocalAddr' '') 2001
('SocketType' 'UDP')
'SO'0OWG'CurrentState’
Bound

Once you have created a UDP TCPSocket, it is ready to send and receive data.

To send data to a recipient, you use the TCPSend method, specifying its Remote Addr
and RemotePort. The data will only be received if the recipient has a UDP socket open
with the corresponding IP address and port number. However, note that there is no
absolute guarantee that the recipient will ever get the message, nor, if you send several
messages, that they will arrive in the order you sent them.

For example, the following statement might be used to send the character string
"Hel lo' to a UDP recipient whose IP address is 123.456.789.1 and whose port
number is 2002:

2 ONQ 'SO' 'TCPSend' 'Hello' '123.456.789.1' 2002

Note that the maximum length of a UDP data packet depends upon the type of your
computer, but is typically about 1500 bytes.

To receive data from a UDP sender, you must attach a callback to the TCPRecv event.
Then, when the data is received, your callback function will be invoked. The event
message passed as the argument to your callback will contain not only the data, but also
the IP address and port number of the sender.

190 Dyalog APL/W Interface Guide

For example, if you created a TCPSocket called S1 as follows:

'S1' [OWC 'TCPSocket' ('LocalAddr' '') 2002
('SocketType' 'UDP')
('Event' 'TCPRecv' 'RECEIVE')

Where the callback function RECEIVE is as follows:

V RECEIVE MSG
[1] DISPLAY MSG
v

the following message would be displayed in your Session when the message
"Hel lo' was received from a sender whose IP address is 193.32.236.43 and whose
port number is 2001.

->— e ————— ———— G
. .

i |
| ist] ITCPRecv| [Hello] 193.32.236.43] 2001 |
| 1 1 1 1 1 1 |

Chapter 9: TCP/IP Support 191

Client/Server Operation

We have seen how Dyalog APL may act as a TCP/IP server and as a TCP/IP client. It
follows that full client/server operation is possible whereby an APL client workspace
can execute code in an APL server workspace on the same or on a different computer.

A deliberately simple example of client/server operation is provided by the workspace
samples\tcpip\rexec.dws whose operation is described below.

A more complex example, which implements a client/server APL component file
system, is illustrated by the samples\tcpip\gfiles.dws workspace. See
DESCRIBE in this workspace for details.

REXEC contains a small namespace called SERVER.

To start a server session, start Dyalog APL, and type:

JLOAD REXEC
SERVER.RUN

To use the server from an APL client, start Dyalog APL (on the same computer or on a
different computer), and type:

JLOAD REXEC
IP SERVER.EXECUTE expr

where IP is the IP Address of the server computer and expr is a character vector
containing an expression to be executed.

If you are testing this workspace using two APL sessions on the same computer, you
can use either '127.0.0.1" or the result of the expression (2 [ONQ '.'
'"TCPGetHostID') for IP. This expression simply obtains the IP Address of your
computer. Note however, that you do have to have an IP Address for this to work.

192

Dyalog APL/W Interface Guide

The RUN function

V RUN;CALLBACKS

e T L Vs Vo |
GFWN -~
—

v

RUN[1]

RUN[2-3]

RUN[4]

RUN[5]

JEXt'TCPSocket 'DWN""

CALLBACKS<«c('Event' 'TCPAccept' 'ACCEPT')
CALLBACKS,«c('Event' 'TCPRecv' 'RECEIVE')

COUNT<0

'SO'(WC'TCPSocket' ''PORT('Style' 'APL'),CALLBACKS

expunges all TCPSocket objects that may be already defined. This is
intended only to clear up after a potential error.

set up a variable CALLBACKS which associates various functions
with various events.

initialises a variable COUNT which will be incremented and used to
name new TCPSocket objects as each client connects. COUNT is
global within the SERVER namespace.

creates the first TCPSocket server using your default IP address and
the port number specified by the PORT variable (5001). Note that the
Sty le property is setto 'APL ' so that data is transmitted and
received in internal APL format. Furthermore, however each message
gets fragmented by TCP/IP, it will always appear to be sent and
received in an atomic operation. There is no need for the client to do
any buffering.

Once the server has been initiated, the next stage of the process is that a client makes a
connection. This is handled by the ACCEPT callback function.

Chapter 9: TCP/IP Support 193

The ACCEPT function

VvV ACCEPT MSG;SOCK;EV
COUNT<«COUNT+1
SOCK<«'SocketNumber ' (3>MSG)
EV<«'Event' ((oMSG)[OWG'Event')
('S',sCOUNT)OWC'TCPSocket 'SOCK EV
\

L o | e | §

FWN —~
— e e

The ACCEPT function is invoked when the TCPAccept event occurs. This happens
when a client connects to the server.

Its argument MSG, supplied by APL, is a 3-element vector containing:

MSG[1] The name of the TCPSocket object
MSG[2]The name of the event ('TCPAccept')
MSG[3]The socket handle for the original listening socket

ACCEPT([1] increments the COUNT variable. This variable is global to the
SERVER namespace and was initialised by the RUN function.

ACCEPT[4] makes a new TCPSocket object called Sxx, where xx is the new value
of COUNT. By specifying the socket handle of the original listening
socket as the value of the SocketNumber property for the new object,
this effectively clones the listening socket. Note that the cloned socket
inherits 'Style' 'APL'. For further discussion of this topic, see
Serving Multiple Clients.

194

Dyalog APL/W Interface Guide

The RECEIVE function

V RECEIVE MSG;RSLT

[1] :Trap 0

[2] RSLT«0('#'#(35MSG))

[3] :Else

[4] RSLT<OEN

[5] :EndTrap

[6] 2 ONQ(>MSG) 'TCPSend'RSLT
A%

The RECEIVE function is invoked when the TCPRecv event occurs. This happens
whenever an APL array is received from a client. Note that it is guaranteed to receive an
entire APL array in one shot because the Style property of the TCPSocket object is set
to "APL".

Its argument MSG , supplied by APL, is a 5-element vector containing:

MSG[1] The name of the TCPSocket object
MSG[2]The name of the event ('TCPRecv')
MSG[3]The data

MSG[4]IP address of the client
MSG[5]Port number of the client

RECEIVE[1-5]executes the expression (3°2MSG) received from the client.
Assuming it succeeds, RSLT is a 2-element vector containing a zero
followed by the result of the expression. If the execute operation fails
for any reason, RSLT is set to the value of [JEN (the error number).

RECEIVE[6] transmits the result back to the client.

Chapter 9: TCP/IP Support

195

The EXECUTE function

COTFWNPF O
—it

L Y e | s ¥ s s ¥ s s s ¥ s N s s e e s { s ¥ e | |
PR R RPEPEPEPPRPP,POONOC0OFWNE-

This function is executed by a client APL session. Its right argument is a character

v

v

RSLT«SERVER_IP EXECUTE EXPR;P;SOCK
A Execute expression in server

P«c'TCPSocket'
P,«c'RemoteAddr'SERVER_IP @ IP Address
P,«c'RemotePort'PORT A Port Number
P,«c'Style' 'APL'

P,«c'Event' ('TCPRecv' 1)('TCPClose' 1)('TCPError'

'sock'0Owc P
2 [NQ'SOCK' 'TCPSend'EXPR ¢ RSLT<«[IDQ'SOCK'

:Select 2>5RSLT
:Case 'TCPRecv'
RSLT<«3>RSLT
:If 0=>RSLT
RSLT«2>RSLT
:Else
('Server: ',[JEM RSLT)[OSIGNAL RSLT
:EndIf
:Case 'TCPError'
('Server Error: ',,00FMT 24RSLT)OSIGNAL 201
:Else
'Unknown Server Error'[JSIGNAL 201
:EndSelect

1)

vector containing an expression to be executed. Its left argument is the I[P Address of a

server APL session in which the expression is to be run. The server session may be

running on the same computer or on a different computer on the network.

EXECUTE[3-8]makes a client TCPSocket object called SOCK for connection to the

specified server IP address and port number PORT. Note that the
Sty le property issetto ' APL "' so that data is transmitted and

received in internal APL format. Furthermore, however each message

gets fragmented by TCP/IP, it will always appear to be sent and

received in an atomic operation. There is no need for the client to do

any buffering.

The Event property is set so that events TCPRecv, TCPClose and

TCPError will terminate the [JDQ. In this case, this is easier than using

callback functions.

196

Dyalog APL/W Interface Guide

EXECUTE[10] transmits the expression to the server for execution and then JDQs the

socket. As the only events enabled on the socket are TCPRecv,
TCPClose and TCPError it effectively waits for one of these to occur.
When one of these events does happen, the JDQ terminates, returning
the corresponding event message as its result.

The reason for using a diamond expression is to ensure that the
TCPRecv, TCPClose or TCPError event will not be fired before the
0DQ was called.

A second point worth noting is that the TCPSend request is
automatically queued until the socket gets connected. In this case,
there is no need to trigger the TCPSend from a callback on the
TCPConnect event.

EXECUTE[12-]process the TCPRecv, TCPClose or TCPError event that was

generated by the socket. If the operation was successful, RSLT[2]
contains ' TCPRecv' and RSLT[3] contains a zero followed by the
result of the expression.

197

CHAPTER 10

APL and the Internet

Introduction

This chapter describes the use of TCPSocket objects to access the internet. From
Version 12.0, a new tool called Conga is the recommended mechanism for connecting
to the internet. The code samples in this chapter have not been ported to the Unicode
Edition, but continue to work in Classic Editions. For information on accessing the
internet and other TCP services in the Unicode Edition, see the Conga User Guide.

A complete description of how Web browsers and servers work is beyond the scope of
this document. Nevertheless, the following basic introduction should prove a useful
introduction before trying to write a server or client application in Dyalog APL.

A Web server is simply a TCP/IP server that adheres to a particular protocol known as
Hypertext Transfer Protocol (HTTP). Every request for a document from a Web
browser to a Web server is a new connection. When a Web browser requests an HTML
document from a Web server, the connection is opened, the document transferred, and
the connection closed.

The Web server advertises its availability by opening a Stream socket. Conventionally,
it uses Port Number 80 although other port numbers may be used if and when required.

A client (normally referred to as a browser) connects to a server and immediately sends
it a command. A command is a text string containing sub-strings separated by CR,LF
pairs and terminated by CR,LF (an empty line). This terminator is an essential part of
the protocol as it notifies the server that the entire command has been received. An
example of a command sent by Netscape Navigator 3.0 Gold is:

GET / HTTP/1.0<CR,LF>

Proxy-Connection: Keep-Alive<CR,LF>

User—-Agent: Mozilla/3.0Gold (Win95; I) <CR,LF>

Host: pete.dyalog.com<CR, LE>

Accept: image/gif, image/x-xbitmap, image/]jpegqg,
image/pjpeg, */*<CR,LF>

<CR, LF>

198

Dyalog APL/W Interface Guide

The first line of the command is a statement that tells the server what the client wants.
The simplest statement is of the form GET <url>, which instructs the server to retrieve a
particular document. In the example, <url> is "/" which is a relative Universal Resource
Locator (URL) that identifies the home page of the current server. The client may also
specify the level of http protocol that it understands as a second parameter. In the above
example, the client is requesting HTTP version 1.0. Subsequent statements provide
other information that may be useful to the server.

The server receives the command, actions it, and then sends back the result; in this case,
the content of the Web page associated with the given URL. Using the original HTTP
version 1.0 protocol, the server then closes the TCP/IP socket. This act informs the
client that all of the data has been received and that the entire transaction is complete.

Today's web servers commonly use HTTP 1.1 which supports persistent connections.
This means that the socket may not be closed, but is instead left open (for a time) for
potential re-use. This behaviour is specified by Connection: Keep-Alive HTTP headers
which are beyond the scope of this discussion. However, to support persistent
connections, even the simplest client must be able to detect that the transaction is
complete in some other way. A simple solution, as implemented in the
BROWSER.QUERY function, is to look for the HTML end-tag.

The protocol can therefore be summarised as:

a) Client connects to server

b) Client sends command (terminated by CR,LF)
¢) Server sends requested data to client

d) Server disconnects from client (HTTP 1.0 only)

A Web page normally contains text and embedded hyperlinks which connect it to other
WWW pages. When the user activates a hyperlink, the browser connects to the
corresponding server and requests the relative URL.

However, if you are using a secure proxy server, as most corporate users do, the
browser connects repeatedly to your proxy (rather than to specific servers) and requests
the absolute URL (which contains the name of the server) instead.

Chapter 10: APL and the Internet 199

Writing a Web Client

A sample Web client is provided in the BROWSER namespace in the workspace
samples\tcpip\www.dws.

Before you can use BROWSER .QUERY you must be connected to the Internet. See 4APL
and the Internet for details.

The main function is BROWSER .QUERY. This function is intended to be used in one of
two ways:

Using a Proxy Server

If you are connected to the Internet through a secure proxy server or firewall (as is
common in many commercial organisations), you may only connect to your firewall;
you cannot connect directly to any other server. Effectively, the only external IP
address to which you may connect a TCPSocket as a client is the IP address of your
firewall.

In this case, you should set the values of the variables BROWSER . IP_ADDRESS and
BROWSER.PORT_NUMBER to the IP address and port number of your firewall.

The right argument to BROWSER . QUERY is a character string that includes the name of
the web site or server as part of the query. For example, the following statement will
retrieve the Microsoft home page:

BROWSER.QUERY'GET http://www.microsoft.com/'
Using a Direct Connection

If you are directly connected to the Internet or you use dial-up networking to connect to
an Internet provider, you may create TCPSocket objects that are directly connected to
any server on the Internet.

In this case, the /eft argument to the function is the address and port number of the
server to which you wish to connect (the port number is optional and defaults to 80).
The right argument is the command that you wish the server to execute. Furthermore,
the address may be expressed as the IP address of the server or as the name of the
server.

For example, to obtain the Microsoft home page :

'207.46.192.254 'BROWSER.QUERY'GET /'
or
'www.microsoft.com'BROWSER.QUERY'GET /'

200

Dyalog APL/W Interface Guide

The result of the query is not returned by the BROWSER . QUERY function, but is instead
obtained from the server asynchronously by callback functions and then deposited in the
variable BROWSER . HTML. In this example, the call-backs report the progress of the
transaction as shown below. This approach is perhaps unusual in APL, but it perfectly
illustrates the event-driven nature of the process.

Using a Firewall

BROWSER.QUERY 'GET http://www.microsoft.com'
Connected to 193.32.236.22
.. Done
Received 39726 Bytes
Response is in:
#.BROWSER.HTML

Using a Direct Connection

'www.microsoft.com' BROWSER.QUERY 'GET /'
wwWww.microsoft.com resolved to IP Address 207.46.192.254
Connected to 207.46.192.254
... Done
Received 39726 Bytes
Response is in:

#.BROWSER.HTML

There are two points to note. In the first case (using a firewall) the IP address reported is
the TP address of your firewall. In the second case, there is an additional first step
involved as the name of the server is resolved to its IP address (note too that this web
site provides a number of IP addresses).

To keep the examples simple, BROWSER . QUERY has been written to handle only a
single query at a time. Strictly speaking, it could initiate a second or third query before
the result of the first had been received. This would merely entail creating multiple
sockets instead of a single one.

The various functions in the BROWSER namespace are as follows:

QUERY User function to initiate a Web query

GOTADDR callback: reports name resolution (server name to IP address)
CONNECT callback: handles the connection to the server

RECEIVE callback: collects the data packets as they arrive from the server
CLOSE callback: stores the result of the query and expunges TCPSocket
ERROR callback: handles errors

Chapter 10: APL and the Internet 201

The QUERY function

v {LARG}QUERY QRY;IP;PN;CALLBACKS;NS;P;SERVER

[1] A Perform world wide web query

[2] :If O0=[INC'LARG'

[3] IP<IP_ADDRESS

[4] PN<PORT_NUMBER

[5] QRY,«"' HTTP/1.0',0AV[4 3 4 3]
[6] :Else

[7] :If (72==LARG)*(,2)=pLARG

[8] IP PN«LARG

[9] :Else

[10] IP PN«LARG 80

[11] tEndIf

[12] QRY,«' HTTP/1.1"',0AV[4 3], 'Host:',IP,4p0dAV[4 3]
[13] :EndIf

[14]

[15] @ Server specified by name or IP address ?
[16] :If A/IPe'. ',0OD

[17] SERVER<«('RemoteAddr'IP)

[18] :Else

[19] SERVER<«('RemoteAddrName'IP)
[20] tEndIf

[21]

[22] NS<(''ONS"'),"."

[23] CALLBACKS<«c('TCPGotAddr' (NS, 'GOTADDR'))
[24] CALLBACKS,«c('TCPConnect' (NS, 'CONNECT"))
[25] CALLBACKS,«c('TCPRecv' (NS, 'RECEIVE'))
[26] CALLBACKS,«c('TCPClose' (NS, 'CLOSE"))
[27] CALLBACKS ,«<('TCPError' (NS, 'ERROR"))

[29] =n Expunge TCPSocket in case of previous error
[30] Jex'so’

[32] @A Make new SO namespace containing QRY
[33] 'SO'[ONS'QRY"
[34] A Then make SO a TCPSocket object
[35] P<SERVER('RemotePort'PN)('Event'CALLBACKS)
[36] SO0.[OWC(<c'TCPSocket'),P o [IDQ'SO"’
\

The first 13 lines of the function process the optional left argument and are largely
unremarkable.

However, note that if you are using a firewall or proxy (no left argument), QUERY[5]
adds a header to request HTTP/1.0 protocol. If you are using a direct connection,
QUERY[12] instead adds a request for HTTP/1.1 protocol and a Host header (which in
this case it knows). A Host header is mandatory for HTTP/1.1 and your firewall may
add one for you.

202

Dyalog APL/W Interface Guide

QUERY[16-201] sets the variable SERVER to specify either RemoteAddr or
RemoteAddrName according to whether the user specified the IP
address or the name of the server.

QUERY[22-27]set up a variable CALLBACKS which associates various functions
with various events. Full path-names are used for the callback
functions because they will be associated by a JWC statement that is
executed within the SO namespace.

QUERY[30] expunges the object SO. This is done only in case an error occurred
previously and the object has been left around.

QUERY[33] makes a new namespace called SO and copies the variable QRY into
it. This is done because the query cannot be submitted to the server
until after a connection has been made. Thus the query is
encapsulated within the TCPSocket object to make it available to the
callback function CONNECT that will handle this event. A less elegant
solution would be to use a global variable.

QUERY[36] creates a new client TCPSocket object associated with the namespace
S0.

A more obvious solution would be..

[33] 'S0' [OwWC(<'TCPSocket'),P
[34] SO0.QRY<«QRY

However, this is inadvisable because TCP events can occur as soon as the object has
been created. If the TCPConnect event fired before QUERY [34] could be executed, the
CONNECT callback function would fail witha VALUE ERROR because SO.QRY would
not yet be defined. This is also a reason for attaching the callback functions in the OWC
statement and not in a subsequent JWS. You do not want the TCPConnect event to fire
when there is no callback attached.

Note that these timing issues are only relevant because BROWSER . QUERY is a user-
called function and not a callback. If it were a callback, APL would automatically queue
the incoming TCP events until it (the callback) had terminated.

Depending upon how the function was called, the next part of the process is handled by
the GOTADDR or the CONNECT callback.

Chapter 10: APL and the Internet 203

The GOTADDR callback function

v GOTADDR MSG;NAME;IP
[1] NAME IP<«(>MSG)[(WG'RemoteAddrName' 'RemoteAddr'
[2] NAME,' resolved to IP Address ',IP

\

The GOTADDR callback function is invoked when the TCPGotAddr event occurs. This
happens if the Remote AddrName was specified when the TCPSocket was created.

The function merely obtains the name and newly resolved IP address of the server from
the RemoteAddrName and RemoteAddr properties of the TCPSocket object and reports
them in the session.

204

Dyalog APL/W Interface Guide

The CONNECT callback function

Vv CONNECT MSG
[1] [Jcs-MSG
[2] 'Connected to ',[JWG'RemoteAddr'
[3] BUFFER<«"'
(4] 2 ONQ'"' 'TCPSend' QRY
\

The CONNECT function is invoked when the TCPConnect event occurs. This happens
when the server accepts the client.

Its argument MSG , supplied by APL, is a 2-clement vector containing:

MSG[1] The name ofthe TCPSocket object
MSG[2]The name of the event ('TCPConnect')

CONNECT[1] changes to the namespace of the TCPSocket object.

CONNECT[2] displays the IP address of the server to which the client has
successfully connected. This is obtained from the RemoteAddr
property of the TCPSocket object.

CONNECT[3] initialises a variable BUF F ER which will be used to collect incoming
data from the server. Notice that as the function has changed to the
TCPSocket namespace, this variable is encapsulated within it rather
than being global.

CONNECT[3] uses the TCPSend method to send the query (the QRY variable was
encapsulated within the TCPSocket object when it was created by the
QUERY function) to the server.

The next part of the process is handled by the RECEIVE callback.

Chapter 10: APL and the Internet 205

The RECEIVE callback function

V RECEIVE M
0cs-M
BUFFER,«3=M
:If v/'</html>"e##.lcase 3°M
(oM)##.0WS'TargetState' 'Closed'
tEndIf
v

s T L Vs Vo |
GFWN -~
—e

The RECEIVE function is invoked when the TCPRecv event occurs. This happens
whenever a packet of data is received. As the response from the server can be of
arbitrary length, the job of the RECEIVE function is simply to collect each packet of
data into the BUF F ER variable.

Its argument MSG , supplied by APL, is a 3-element vector containing:

MSG[1] The name of the TCPSocket object
MSG[2]The name of the event ('TCPRecv')
MSG[3] The data

MSG[4]IP address of the client
MSG[5]Port number of the client

RECEIVE[1] changes to the namespace of the TCPSocket object.

RECEIVE[2] catenates the data onto the variable BUF FER, which is encapsulated
within the TCPSocket object.

RECEIVE[3] checks for the presence of an end-of document HTML tag, which
indicates that the entire page has arrived, and if so

RECEIVE[4] sets the TargetState property of the TCPSocket to 'Closed'. This
initiates the closure of the socket. Although a client can close a socket
by expunging the associated TCPSocket namespace, our data
(BUFFER) is in this namespace and we do not want to lose it.

Note that it is necessary for RECEIVE to detect the end-of-document in this way, so as
to support HTTP/1.1 protocol.

206 Dyalog APL/W Interface Guide

The CLOSE callback function

v CLOSE MSG
[1] HTML<«(>MSG) ¢ 'BUFFER'
[2] JEX>MSG
[3] '... Done'
[4] 'Received ', (spHTML),"' Bytes'
[5] 'Response is in:'
[6] ("'ONS" "), " .HTML'

v

The CLOSE function is invoked when the TCPClose event occurs. This happens when
the server closes the socket. If the protocol is HTTP/1.0, this will be done immediately
after the server has sent the data in response to the query. If the protocol is HTTP/1.1,
the closure may be performed at the request of the client.

Note that the data has been buffered by the RECEIVE function as it arrived.

Its argument MSG , supplied by APL, is a 2-element vector containing:

MSG[1] The name of the TCPSocket object
MSG[2] The name of the event (' TCPClose ')

CLOSE[1] copies the contents of the BUF F ER variable (that is local to the
TCPSocket object) into the HTML variable that is global within the
current (BROWSER) namespace. (Clearly this design would be
inadequate if BROWSER was extended to support multiple concurrent
queries.)

CLOSE[2] expunges the TCPSocket object

CLOSE[3-6] reports a successful end to the query and displays the size of the
result.

Chapter 10: APL and the Internet

207

The ERROR callback function

V R<ERROR MSG
] DISPLAY MSG
] OEX>MSG
] R<0

mreerm
WN —

v
The ERROR function is invoked if and when a TCP/IP error occurs.

Its argument MSG , supplied by APL, is a 4-element vector containing:

MSG[1] The name of the TCPSocket object
MSG[2] The name of the event (' TCPError ")
MSG[3] An error number

MSG[4] An error message

ERROR[1] displays the contents of MSG using the DISPLAY function.
ERROR[2] expunges the TCPSocket object (it is no longer usable)

ERROR[3] returns a 0. This tells APL not to perform the normal default
processing for this event, which is to display a message box.

208

Dyalog APL/W Interface Guide

Writing a Web Server

A sample Web server is provided in the SERVER namespace in the workspace
samples\tcpip\www.dws. This is a deliberately over-simplified example to
illustrate the principles involved. It is capable of handling concurrent connections from
several clients, but (for simplicity) does not use multi-threading. A more comprehensive
web server workspace, aplserve\server.dws, is also provided. This workspace is
intended to be the basis of a production web server, and does use multithreading.
Documentation is provided in the workspace itself.

The main function is SERVER . RUN which is niladic and initialises the APL Web server
using your default IP Address and port number 81.

To use the server, you must start a Web browser such as Firefox or Microsoft Internet
Explorer. You may do this on another PC on your network or on your own PC. If so,
you will probably find it most convenient to position your Dyalog APL Session
Window and your browser window alongside one another.

To connect to the server, simply enter your user name (or your IP address, or
"127.0.0.1" or “localhost”) followed by 81 in the appropriate field in your browser, and
then press Enter. For example:

http://localhost:81

When you press Enter, your browser will try to connect with a server whose IP address
is your IP address and whose port number is 81; in short, the APL server. Upon
connection, the following messages (but with different IP addresses) will appear in
your Session window:

SERVER.RUN
Connected to 193.32.236.22
URL Requested:
Connected to 193.32.236.22
URL Requested: images/dyalog.gif

and the Dyalog APL home page will appear in your browser. This has in fact been
supplied by your APL server.

The functions in the SERVER namespace are as follows:

RUN user function to initiate an APL Web server
ACCEPT callback which handles client connections
RECEIVE callback which handles client commands
ERROR callback which handles errors

Chapter 10: APL and the Internet 209

The RUN function

V RUN;CALLBACKS

M

A FWN B~
—

v

RUN[1]

RUN[2-4]

RUN[5]

RUN[6]

OEXt'TCPSocket 'OWN""'

CALLBACKS<«c('Event' 'TCPAccept' 'ACCEPT')
CALLBACKS,«c('Event' 'TCPRecv' 'RECEIVE')
CALLBACKS,«c('Event' 'TCPError' 'ERROR')
COUNT<0

'SO'(WC'TCPSocket' '' 81,CALLBACKS

expunges all TCPSocket objects that may be already defined. This is
intended only to clear up after a potential error.

set up a variable CALLBACKS which associates various functions
with various events.

initialises a variable COUNT which will be incremented and used to
name new TCPSocket objects as each client connects. COUNT is
global within the SERVER namespace.

creates the first TCPSocket server using your default IP address and
port number 81.

Once the server has been initiated, the next stage of the process is that a client makes a
connection. This is handled by the ACCEPT callback function.

210 Dyalog APL/W Interface Guide

The ACCEPT callback function

vV ACCEPT MSG;EV

Lo T Lo T T T |
O FWN —~
—

v

COUNT<«COUNT+1

EV<«'Event' ((oMSG)[OWG'Event')
('S',sCOUNT)OWC'TCPSocket'('SocketNumber' (3>MSG))EV
0cs-MSG

"Connected to ', ([OWG'RemoteAddr')

BUFFER<[JAV[4 3]

The ACCEPT function is invoked when the TCPAccept event occurs. This happens
when a client connects to the server.

Its argument MSG , supplied by APL, is a 3-element vector containing:

MSG[1]
MSG[2]
MSG[3]

ACCEPT[1]

ACCEPT[3]

ACCEPT[4]

ACCEPT[5]

ACCEPT[6]

The name of the TCPSocket object
The name of the event (' TCPAccept ')
The socket handle for the original listening socket

increments the COUNT variable. This variable is global to the
SERVER namespace and was initialised by the RUN function.

makes a new TCPSocket object called Sxx, where xx is the new value
of COUNT. By specifying the socket handle of the original listening
socket as the value of the SocketNumber property for the new object,
this effectively clones the listening socket. For further discussion of
this topic, see Serving Multiple Clients.

changes to the namespace of the TCPSocket object, that is now
connected to a client.

displays the message Connected to xxX.xxX.XxX.XxX,the
IP address of the client, which is obtained from the value of the
RemoteAddr property.

initialises a variable BUFFER to JAV[4 3] (CR,LF). This variable
is global to the SERVER namespace and is used by the RECEIVE
callback function to accumulate the command that is transmitted by
the client. This happens next.

Chapter 10: APL and the Internet 211

The RECEIVE callback function

vV RECEIVE MSG;CMD;OLD;URL;FILE;DATA

[1] OLD<[JCS>MSG

[2] BUFFER,<«3>MSG

[3] :If JAVI4 3 4 3]Z7414BUFFER A Have we all?
[4] :Return

[5] tEndIf

[6]

[7] CMD<«24 " ([JAV[4 3]eBUFFER)<BUFFER

[8] CMD«>CMD ma Ignore everything except client request
[9] jcs oLD

[10] :If 'GET /'=51CMD

[11] URL<«5{¢CMD

[12] URL<(~1+URL1" ')tURL

[13] 0«'URL Requested: ',URL

[14] :If 0=pURL ¢ URL«'index.htm' ¢ :EndIf
[15] URL<(-"'.html'="51URL)+URL

[16] FILE«<(2 ONQ'.' 'GetEnvironment') 'Dyalog'
[17] FILE,«HOME,URL

[18] DATA«GETFILE FILE

[19] DATA,<(0<pDATA)/’File not found’

[20] 2 [INQ(>MSG) 'TCPSend'DATA

[21] :tEndIf

[22]

[23] :If 9=[INCoMSG ¢ (=oMSG)[WS'TargetState' 'Closed' o

[24] :If 9=[JNC>MSG ¢ [DQ>MSG ¢ :EndIf
v

The RECEIVE function is invoked whenever a TCPRecv event occurs. This happens
when a data packet is received from a client

Its argument MSG , supplied by APL, is a 3-element vector containing:

MSG[1] The name of the TCPSocket object

MSG[2] The name of the event (' TCPReceive')

MSG[3] The data

RECEIVE[1] changes to the namespace of the TCPSocket object. The name of

the current namespace is stored in the local variable OLD.

RECEIVE[2] catenates the newly received data packet to the BUF F ER variable
that is encapsulated in the TCPSocket object and was initialised by
the ACCEPT function.

RECEIVE[3-5] tests whether or not all of the command sent by the client has been
received. This is true only if the last 4 characters of BUF FER are
CR,LF,CR,LF. If there is more data to come, RECEIVE exits;
otherwise it goes on to process the command.

212

Dyalog APL/W Interface Guide

RECEIVE[7-8]

RECEIVE[9]

splits the command into sub-strings and then discards all but the
first one.

changes back into the SERVER namespace

RECEIVE[10-11]parses the client request for a URL. For the sake of simplicity, the

RECEIVE[12]

RECEIVE[14]

RECEIVE[15]
RECEIVE[16]

RECEIVE[17]

RECEIVE[18]

RECEIVE[19]

RECEIVE[20]

request is assumed to begin with the string 'GET /'. If not, the
request is ignored.

removes all trailing information that might be supplied by the
browser after the URL.

checks for a request for an empty URL (which equates to the home
page). If so, it substitutes index . htm which is the name of the
file containing the home page.

drops the file extension of the URL if . html to . htm if required.

sets the value of local variable FILE to the name of the directory
in which Dyalog APL is installed.

appends the path-name of the sub-directory \he L p and the name
of the URL. FILE now contains the full path-name of the
requested web page file.

uses the utility function GETF ILE to read the contents of the file
into the local variable DATA.

checks that the result of GETF ILE was not empty and if so,
appends an appropriate message. This would be the case if the file
did not exist.

uses TCPSend to transmit the contents of the file to the browser.

RECEIVE[23-24]closes the TCPSocket object. This is a fundamental part of the

HTTP protocol because when the client socket subsequently gets
closed, it knows that all of the data transmitted by the server has
been received. Notice that the function does not simply expunge
the socket which could result in loss of yet untransmitted data.
Instead, it closes the socket by setting its TargetState property to
‘Closed’, and then (if necessary) waiting. Once all the buffered
data has been transmitted, the socket will be closed and the
TCPSocket object will disappear. This causes the [0DQ to
terminate.

For further information on WWW protocol, see the Introduction to this chapter.

213

CHAPTER 11

OLE Automation Client and OLE Controls

Introduction

OLE Automation allows you to drive one application from another and to mix code
written in different programming languages. In practical terms, this means that you
may write a subroutine to perform calculations in (say) C++ and use the subroutine
directly in Visual Basic 4 or Excel. Equally, you could write the code in Visual Basic
and call it from C++. Dyalog APL/W is a fully subscribed member of this code-sharing
club.

OLE Automation is, however, much more than just a mechanism to facilitate cross-
application macros because it deals not just with subroutine calls but with objects. An
object is a combination of code and data that can be treated as a unit. Without getting
too deeply into the terminology, an object defines a class; when you work with an
object you create one or more instances of that class.

This chapter describes how Dyalog APL can drive other applications using OLE
Automation. In these circumstances, Dyalog APL is acting as an OLE client.

There are two types of OLE object involved; OLE Servers and ActiveX controls. An
ActiveX control can be instantiated as a GUI object within a Dyalog APL Form,
whereas an OLE Server either has no GUI component, or is a separate object.
Otherwise, the two are very similar.

You can obtain lists of the OLE Servers and ActiveX Controls installed on your
computer from the OLEServers and OLEControls properties of the system object ' . '.
These lists are obtained from your Windows Registry and therefore contains only those
OLE objects that are correctly installed. Each OLE Server and OLE Control is
identified by its name and class identifier. Either may be used to access it.

214

Dyalog APL/W Interface Guide

Using an OLE Server

You can access an OLE Automation or COM Server using the OLEClient object. When
you create an OLEClient, you specify the name of the Server as the ClassName property
for the object.

For example:

XL<ONEW 'OleClient' (c'ClassName' 'Excel.Application')
or, using OWC

"EX'OWC'OLECLlient"' 'Excel.Application'

The effect of both statements is to create an object E X, which is connected to an
instance of the of the Excel. Application Class, an OLE Server. The OLE Server
instance may be in-process or out-of-process. If it is in-process, the code and data
associated with the instance are loaded into the same address space as the Dyalog APL
process. In the latter case, the instance represents a separate Windows process on your
computer or, on an entirely different computer in the network.

When APL connects to an out-of-process OLE Server in this way, you can specify
whether you wish to connect to an existing (running) instance of the Server, or start a
new copy of the Server. This is done using the InstanceMode property.

Loading an ActiveX Control

An ActiveX or OLE Control is in fact a type of Dynamic Link Library (DLL) which
must be loaded before it can be used. This is done by creating an OCXClass object
using [OWC or [NEW.

For example, if you have an OLE Control named "Microsoft Office Chart 9.0 ", you
can load it with the following statements (which are split here only to prevent text wrap)

NAME<«' Microsoft Office Chart 9.0 '
MOC<[INEW 'OCXClass' (c'ClassName' NAME)

or, using [JWC
‘MOC' [OWC 'OCXClass' NAME

The right argument is a character string containing the name or class identifier of the
ActiveX Control. The left argument is an arbitrary name of your own choosing by
which you will subsequently refer to the Control class.

Chapter 11: OLE Automation Client and OLE Controls 215

Using an OLE Control

Having created an OCXClass object, you may use an OLE Control by creating an
instance of it from its class. The instance must be created as the child of a Form. For
example:

'F' OWC 'Form'

'F.MM' [OWC 'MOC' A Instance of MOC
Although you can obtain general information about an OLE Control from both the class

(represented by the OCXClass object) and any instance, you may only query and
manipulate a control through an instance.

Type Information

In general, it is a requirement that all COM objects provide Type Information. This is
commonly provided in a type library file (extension .TLB) or is included in the object's
.EXE or .DLL file. Type Information includes the names of the methods, events and
properties exported by the object, together with descriptions of the arguments to each
method and descriptions of the data types of each property. Type Information is
necessary for the COM object to be properly recognised by object browsers and by
application development systems.

When you load a COM object, APL reads all of the Type Information associated with
the top-level object into the workspace. In addition, it reads the Type Information for all
other objects in the same object hierarchy, and the Type Information for any other COM
objects that are used or referenced by it. This Type Information is retained in the
workspace when you) SAVE it. When you reattach an OLEClient or OCXClass to the
same object, there is no need for the Type Information to be re-read. Because the
operation to read the Type Information may take several seconds, possibly minutes, this
design optimises run-time performance. Note however, that the Type Information does
occupy a considerable amount of workspace.

Dyalog APL uses the Type Information to expose the names, data types and arguments
of all the methods, events and properties provided by the object, and those of all the
other sub-objects in the object hierarchy. Dyalog APL also uses the Type Information to
validate the arguments you supply to methods (both the number and the data types) and
the values you assign to properties. For example, if a method is defined to take an
argument VT 14, Dyalog APL will issue a DOMAIN ERROR if you invoke the method
with a character argument. Internally, Dyalog APL uses the Type Information to
convert between APL arrays and OLE data types.

216 Dyalog APL/W Interface Guide

Warning: not all COM objects provide Type Information, or do so in non-standard
ways. Perhaps the reason for this omission is that is that Microsoft Visual Basic for
Applications (VBA) does not itself require Type Information. OLE data types are
for the most part identical to VBA data types. Furthermore, VBA syntax does not
distinguish between calling a function and referencing a variable. Therefore, all you
need to drive a COM object from VBA is the documentation. Finally, as most other
Microsoft products use VBA as their programming interface, authors of COM objects
can satisfy most of their potential users without Type Information and so take the easy
way out. Nevertheless, OLE Servers which fail to provide Type Information can be
successfully used from Dyalog APL; for details, see the section entitled OLE Objects
without Type Information later in this Chapter.

Identifying Properties, Methods and Events

You can obtain the names of all the properties, methods, and events exposed by a COM
object by executing the system function [INL, with the appropriate argument, inside the
namespace that is associated with an instance of the object. Note that the result of (ONL
is a vector of character vectors. If Type Information is unobtainable, the list of items
reported by [NLwill be empty. See the section entitled OLE Objects without Type
Information later in this Chapter.

For example:
DB«[INEW'OleClient' (c'ClassName' 'DAO.DBEngine.36"')

DB.ONL ~3 A Methods
BeginTrans CommitTrans CompactDatabase CreateDatabase
CreateWorkspace 1Idle ISAMStats OpenConnection
OpenDatabase RegisterDatabase RepairDatabase Ro
Llback SetOption

DB.ONL 2 m Properties

AutoBrowse ChildList ClassID ClassName Data Default
Password DefaultType DefaultUser Errors Event
Handle HelpFile 1IniPath InstanceMode KeepOnClos
e LastError Locale LoginTimeout Properties Que
ueEvents SystemDB Type Typelist Version Worksp
aces

Chapter 11: OLE Automation Client and OLE Controls

217

Pre-Version 11 Behaviour

In previous versions of Dyalog APL, you could obtain this information from the
PropList, MethodList and EventList properties of the object. Note that these 3
properties are internally generated by Dyalog APL and are not exported by the object
itself. You could also obtain this information by executing the system commands
)JPROPS,)METHODS and) EVENTS inside the namespace that is associated with an
instance of the object.

For backwards compatibility, these capabilities are retained when OWX is 0 or 1.

For example:

OwWX«1

‘DB'[OWC'OleClient' 'DAO.DBEngine.36'

)CS DB
#.DB

JMETHODS
BeginTrans CommitTrans CompactDatabase
CreateDatabase CreateWorkspace Idle ISAMStats
OpenConnection OpenDatabase RegisterDatabase
RepairDatabase Rollback SetOption

JPROPS
AutoBrowse ChildList ClassID ClassName
Data DefaultPassword DefaultType DefaultUser
Errors Event EventlList Handle HelpFile
IniPath InstanceMode KeepOnClose LastError
Locale LoginTimeout MethodList Properties
ProplList QueueEvents SystemDB Type
TypelList Version Workspaces

Or, for example, using an ActiveX Control:

NAME<«'Microsoft Office Chart 9.0'
"MOC'[JWC'OCXClass 'NAME

'F' OWC'Form'

'"F.MOC' OWC 'MOC' @ Instance of MOC

)CS F.MOC
#.F.MOC

JPROPS
Attach AutoConf Border BuildNumber CanUndo
Charts ChartDataSources ChartLayout
ChartSpacelegend ChartSpaceTitle ChartWrapCount

ChildList ClassID ClassName Constants...

218 Dyalog APL/W Interface Guide

Using the Property Sheet

The simplest way to obtain further information about an OLE property, method or event
is to display its Property Sheet.

To do this, change space to the namespace that represents the object, type the name (or
place the cursor over the name) of the property, method or event in question, press the
right mouse button and select Properties from the context menu.

The information displayed for the OpenDatabase method that is provided by the
DAO.DBEngine OLE object is shown below.

#.0B.0penDatab > — Properties

Properties | Calling Infarmation I

OpenDatabaze: Opens a specified databaze.

M ame Openl atabaze

Help Sting Openz a specified databaze.

HelplD 001 ebad0

Rezult Databasze

Arguments;

Mame WT_BSTR [in]

Options WT _WARIAMT [Optional].fin]

ReadOnly WT_WARIAMT [Optional].fin]

Connect WT WMARIANT [Dptianal).fin]

1] |]

Show Function Help |

] I Cancel |

Chapter 11: OLE Automation Client and OLE Controls 219

Using the Workspace Explorer

You can also obtain information using the Workspace Explorer.

If you have created an instance of an object, you can navigate to it using the Explorer
and then browse its Events, Methods and Properties. The picture below illustrates the
effect of browsing the object DB that is connected to DAO.DBEngine.35.

Bl Exploring CLEAR HS [#]
File Edit “iew Toolz

(BB XAF o EEEE L6

Horkspace Tree Contents of #.0B.[Hethods]
EZg # Mame | A ezult
{ &2 DB BeginTrans YT _WOID
-aﬂl [Hethods] CommitTrans WT _WOID
" EIERES : CompactD atabaze WT _WOID
: -8 [Properties] |CreateDatabase Database
O=E Createl ok space Workspace
S = . 54k Stats VT_14
3 Typel ibs Idie YT_V0ID
DpenConnection Connection
Openl atabaze Databasze
ReqisterD atabaze YT WOID
FRepairD atabaze YT WOID
Rollback, WT_WOID
Setption YT _WOID
‘] | o]
|1 object(z). 14.95Mb [1567247E bytes] free. |E|EI¢124 bytes used [0 bytes selected) it 4

To obtain detailed information about a specific property, event, or method, just open the
appropriate folder and select the name you want. The details will be displayed in the list
view pane.

220

Dyalog APL/W Interface Guide

The same information can be obtained by browsing the Loaded Libraries folder. This
folder will be displayed if the View/Type Libraries menu item is checked and the
appropriate library has been loaded. The library will be loaded if you have ever created
an instance of the object in this workspace. Alternatively, you may navigate to the
information using the Registered Library folder.

3'!_ Ewploring CLEAR W= [#1

File Edit View Tools

[EEXqd | o REEE 0

Work zpace Tree

Contents of TypelibztLoaded Librariezs\Microzaft DAD

=T
(g OSE
=4 Typel ibs

<

=-#% Loaded Libraries

24" Hicrosoft DAD 3.6 Obje

L—_Hfil Object CoClasses

Elsﬂl DBEngine

w4 Event Sets

=4 Interfaces
=41 _DBEngine

=3 Methods

-4 Properties

@-44 Field
-2 Group

e

M arne | Result
BeginTrans WT_W0ID
CommitTrans YT _WOID
CompactD atabase YT_WOID
CreateDatabase Database
Create'W ork zpace Workzpace
154MStats WT_l4

ldle YT _WOID
OpenConnection Connection
OpenD atabaze Databaze
ReqizterD atabaze WT_WOID
Repailatabase YT _WOID
Rollback YT _WOID
Setption WT_W0ID

|'| object(s]. 14.95kb [15672604 bytes] free.

H
/

Chapter 11: OLE Automation Client and OLE Controls 221

GetPropertylnfo Method

You can also obtain information about the properties exposed by a COM object, using
the GetPropertylnfo method. Note that this is a Dyalog APL method, added to the
object, and not a native method provided by the object itself.

For example, the DAO.DBEngine OLE object exposes a property called Version. You
can discover the meaning of the Version property as follows:

GetPropertyInfo 'Version'
Returns the version of the database engine. VT_BSTR

Or, using [INQ

+2 [INQ '' 'GetPropertyInfo' 'Version'
Returns the version of the database engine. VT_BSTR

This tells you that the property value is a character string (VT BSTR) that contains the
version number of the database engine.

Version
3.51

GetMethodInfo Method

You can also obtain information about the methods exposed by an OLE object, using
the GetMethodInfo method. Note that this is a Dyalog APL method, added to the object,
and not a native method provided by the object itself.

For example, the DAO.DBEngine OLE object exposes a method called OpenDatabase.
You can obtain information about the OpenDatabase method as follows:

tGetMethodInfo 'OpenDatabase’
Opens a specified database VT_DISPATCH

Name VT_BSTR

[Exclusive] VT_VARIANT
[ReadOnly] VT_VARIANT
[Connect] VT_VARIANT

This tells you that the method opens a specified database and that the result is of type
VT DISPATCH. Furthermore, the function takes up to four arguments, the first of
which (called Name) is a character string (VT _BSTR). The remaining 3 arguments
(called Exclusive, ReadOnly and Connect) are optional (their names are
surrounded by []) and of type VT _VARIANT.

222

Dyalog APL/W Interface Guide

GetEventinfo Method

Let’s use the Windows Media Player as an example. First we must load the Control by
creating an OCXClass object using (ONEW.

wmp«<[DNEW'OCXClass'(c'ClassName' 'Windows Media Player')
"f'OWC'Form’
"f.wmp'0OWC'wmp'

Next we can find out what events it supports using JNL ~8.

wmp . 0ONL ~8
Buffering Click DblClick Disconnect DisplayModeChange
DVDNotify EndOfStream Error KeyDown KeyPress
KeyUp MarkerHit MouseDown MouseMove MouseUp New
Stream OpenStateChange PlayStateChange PositionCh
ange ReadyStateChange ScriptCommand Warning

Then, we can obtain information about a particular event (or events) by invoking a
GetEventInfo method. Note that in the case of the Windows Media Control it is
necessary to query the instance of the control (f . wmp) as opposed to the instance of the
OCXClass (wmp). For example, you can ask it about its MouseDown event. The result
is a vector, each element of which is a 2-element vector of character vectors.

pINFO«cf.wmp.GetEventInfo'MouseDown'
5

The first element contains a description of the event and the data type of its result (few
events generate results, so this is usually VT_VOID), i.e.

S>INFO
Sent when a mouse button is pressed VT_VOID

Subsequent elements describe the name and data type of each of the parameters to the
event. These are the items that will appear as the third and subsequent elements of the
event message that is passed as the right argument to a callback function or returned as
the result of JDQ. In this case:

+14INFO
Button VT_I2
ShiftState VT_I2
X VT_COORD
y VT_COORD

This information tells us that the first parameter Butfon is a 2-byte integer value which
(presumably) is the number of the mouse button that the user has pressed. The second
parameter Shif is also a 2-byte integer and (presumably) reports the keyboard shift
state. The third and fourth parameters X and Y are of data type VT _COORD.

Chapter 11: OLE Automation Client and OLE Controls 223

Obtaining On-line Help

You can display the help topic associated with a property, method, or event by
selecting Help from its context menu or using the help button in its property sheet.

Note that the name of the object’s help file is provided by its HelpFile property.
For example, in the case of the DAO.DBEngine OLE object:

OWG'HelpFile'
C:\PROGRAM FILES\COMMON FILES\MICROSOFT SHARED\DAO\dao.hlp

For Office 2000 applications, you will need to install the MSDN to obtain the
appropriate help files.

224 Dyalog APL/W Interface Guide

Methods

When you create an instance of a COM object, the methods and the properties are
directly accessible from the corresponding namespace.

Calling Methods

You invoke a method in an OLE object as if it were an APL function in your
workspace.

If a method takes no parameters, you must invoke it as if it were niladic.

If a method takes parameters, you must call it as if it were monadic. Each element of its
argument corresponds to each of the method’s parameters.

If a method takes a parameter declared as a string (VT _BSTR) you must call it with an
enclosed character vector.

Note: In previous versions of Dyalog APL, a character vector was automatically
enclosed if required. For backwards compatibility you may select old or new behaviour
using OWX. IfOWX is 3 (the default) you must enclose a single string argument. IF QWX
is 0 or 1, you may supply a simple character vector.

For example, the OpenDatabase method in the DAO.DBEngine OLE server may be
called with a single parameter that specifies the name of the database to be opened. You
may call it from APL with either of the following two expressions:

OpenDatabase 'c:\example.mdb' monly if [OWX is 0 or 1
OpenDatabase c'c:\example.mdb'many value of [WX

Chapter 11: OLE Automation Client and OLE Controls 225

Arrays and Pointers

Many parameters to OLE methods are specified by pointers. If, for example, the
parameter type is VT _BSTR, it means that the calling routine must supply a pointer to
(i.e. the address of) a character string.

Similarly, if the parameter type is defined to be VT VARIANT, it means that the
parameter is the address of an arbitrary array (the VT VARIANT data type actually
maps nicely onto a Dyalog APL nested array).

The rule is that if a pointer is required, APL will provide it automatically; you do not
have to do so. Instead, all you do is supply the value.

Optional Parameters

Methods are often defined to have optional parameters. For example the parameters
defined for the OpenDatabase method provided by the DAO.DBEngine OLE object are:

Name VT_BSTR

[Exclusive] VT_VARIANT
[ReadOnly] VT_VARIANT
[Connect] VT_VARIANT

To call the corresponding APL function, you may supply a nested array that contains
1,2, 3or 4 elements corresponding to these parameters.

The parameters to some methods are all optional. This means that the method may be
called with or without any parameters. As APL does not support this type of syntax, the
special value € (zilde) is used to mean "0 parameters".

For example, the parameters for the Idle method provided by DAO.DBEngine are
defined to be:

[Action] VT_VARIANT

This means that the method takes either no arguments or one argument. To call it with
no argument, you must use & (zilde), for example:

Idle &

Note that you cannot therefore call a function in an APL server with a single argument
that is an empty numeric vector.

226

Dyalog APL/W Interface Guide

Output Parameters

You may encounter parameters whose data type is defined explicitly as a pointer to
something else, for example VT PTR to VT Ul4 specifies a pointer to an unsigned 4-
byte integer.

In these cases, it usually means that the calling routine is expected to pass an address
into which the OLE method will place a value.

When you invoke the method you must use data of the type pointed to.

The result of the method is then a vector containing the result defined for the method,
followed by the (new) values of the output parameters. This is similar to the mechanism
used by [INA.

Named Parameters

Visual Basic syntax allows you to specify parameters by position or by name; rather
like OWC and OWS. For example the parameters defined for the OpenDatabase method
provided by the DAO.DBEngine OLE object are:

Name VT_BSTR

[Exclusive] VT_VARIANT
[ReadOnly] VT_VARIANT
[Connect] VT_VARIANT

You could call this method from Visual Basic using the syntax:

Set Db = OpenDatabase (Name:="c:\example.mdb", _
ReadOnly:=True)

You may do the same thing from Dyalog APL, using (WS syntax. For example, the
equivalent call from APL would be:

OpenDatabase('Name' 'c:\example.mdb')('ReadOnly"' 1)

Note that you may only use named parameters if they are supported by the method.
Many methods do not allow them.

Chapter 11: OLE Automation Client and OLE Controls 227

Methods that return Objects

Object hierarchies in OLE are not static, but are created dynamically by calling methods
that return objects as their result.

If the data type of the result of a method is a pre-defined object type, or

VT DISPATCH or VT _COCLASS, or VT _PTR to VT _DISPATCH or VT PTR to

VT COCLASS, the result returned to APL is a namespace. If the result is assigned to a
name, the value associated with that name becomes a namespace reference. For
example, GetMethodInfo tells us that the syntax for the OpenDatabase method provided
by the OLE object DAO.DBEngine is as follows:

t+ DB.GetMethodInfo 'OpenDatabase’
Opens a specified database VT_DISPATCH

Name VT_BSTR

[Exclusivel VT_VARIANT
[ReadOnly] VT_VARIANT
[Connect] VT_VARIANT

The data-type of the result is VT _DISPATCH, so it returns an object; indeed the help
for the method tells us that it returns a Database object. The function could be called
from APL as follows:

DB«OpenDatabase c'example.mdb'

Alternatively, you may simply use the result as an argument to a defined function or as
the argument to [JCS or : Wi th, thereby switching into the namespace returned by the
method. For example:

:With OpenDatabase c'example.mdb'
:EndWi th
Notice that in both these cases, the namespace associated with the result of the

OpenDatabase method is unnamed. Assigning the result of OpenDatabase to DB does
not set the namespace name to DB, it merely assigns a namespace reference to DB.

To preserve compatibility with previous versions of Dyalog APL that did not support
namespace references, a method that returns an object may be called with the name of
the (new) namespace as its left argument. Note that OLE methods do not themselves
accept left arguments, so this extension does not conflict with OLE conventions.

'DB' OpenDatabase c'example.mdb'

This expression creates a new namespace called DB associated with a new object in the
OLE Server. Note that if you invoke the OpenDat aBase method in this way, its result
is a number that represents the Dispatch Interface of the new object. This is done to
preserve compatibility with previous versions of Dyalog APL.

228

Dyalog APL/W Interface Guide

Properties

By default, Properties exposed by a COM object behave in the same way as Properties
exposed by Dyalog APL Classes.

To query the value of a property, you simply reference it. To set the value of the
property, you assign a new value to it. If the Property is an Indexed Property, you may
use indexing to set or retrieve the value of a particular element.

Note that in previous versions of Dyalog APL, indexed Properties of COM objects
were exposed as Methods and for backwards compatibility this behaviour may be
retained by setting JWX to 0 or 1 (the default value is 3). See Language Reference.

If the old (pre-Version 11.0) behaviour is selected., indexed properties are exposed as
methods and you treat the property as if it were an APL function. To obtain the value of
the property, you must call it monadically, specifying the required index (or other
information) as the argument. To set the value of the property, you must call it
dyadically, specifying the required index (or other information) as the right argument
and the new value as the left argument.

The data type of the variable is reported by the GetPropertyInfo method.
Conversion between APL data types and OLE data types is performed automatically.

If you attempt to set the value of a property to an something with an inappropriate data
type, APL will generate a DOMAIN ERROR.

If you set the value to something of the correct data type, APL will pass it through the
OLE interface. However, the OLE object may itself reject the new value. In this case,
APL will also generate a DOMAIN ERROR. However, the OLE error information may
be obtained from the Las tError property of the object or Root. The error is also
displayed in the Status Window.

Note that if JWX is 0 or 1,)PROPS and PropList report the names of all of the
properties of an object, regardless of whether the property is implemented as a variable
or as a function. You can tell whether or not the property takes an argument (and
therefore behaves as a function) from its property sheet, using GetPropertylnfo, or from
the documentation for the object in question.

Chapter 11: OLE Automation Client and OLE Controls 229

Properties as Objects

Dyalog APL permits an object hierarchy to be represented by a namespace hierarchy. In
other words, the relationship between one object and another is a parent-child
relationship whereby one object owns and contains another.

Visual Basic has no such mechanism and the relationship between objects has to be
specified in another way. This is commonly done using properties. For example, an
object view of a bicycle could be a hierarchy consisting of a bicycle object that contains
a Frame object, a FrontWheel object and a RearWheel object. In Visual Basic, you
could represent this hierarchy as a Bicycle object having Frame, FrontWheel and
RearWheel properties which are (in effect) pointers to the sub-objects. The properties
are effectively used to tie the objects together.

An extension of this idea is the Visual Basic Collection object. This is a special type of
object, that is somewhat similar to an array. It is used where one object may contain
several objects of the same type. For example, a Wheel object could contain a Spokes
collection object which itself contains a number of individual Spoke objects. Collection
objects are usually implemented as properties.

When you reference the value of an object property, you will get a namespace.

Using the bicycle analogy, you could recreate the object hierarchy in the APL
workspace as follows:

'BIKE' [WC'OLEClient' 'EG.Bicycle'
FRONT « BIKE.FrontWheel
REAR <« BIKE.RearWheel

The result would be three namespaces, one named BIKE, and two unnamed namespaces
referenced by FRONT and REAR. Each contains the specific properties, methods and
events exposed by the three corresponding objects.

Note however, that in this example BIKE, FRONT and REAR are all top-level
namespaces; a proper parent/child representation can be achieved by making FRONT
and REAR child namespaces of BIKE, for example:

BIKE.FRONT <« BIKE.FrontWheel
BIKE.REAR <« BIKE.RearWheel

or
:With BIKE
FRONT « FrontWheel
REAR <« RearWheel
:EndWith

This example illustrates that when you work with an OLE object, you have a choice
whether to represent an object hierarchy as a namespace tree or just as a collection of
otherwise unrelated namespaces.

230 Dyalog APL/W Interface Guide

Events

Events generated by OLE objects are provided via an event sink which is simply an
interface that defines a collection of events that may be generated by the object. Objects
may support more than one event sink and may or may not define them in a type library.
By default, events generated by COM objects are processed like all other events in
Dyalog APL.

This means that if you attach a callback function to an event in an instance of an
OCXClass object, the events are queued up when they are received and then processed
one-by-one, by [IDQ, from the internal queue. This is the mechanism used to process all
events in Dyalog APL and it has many advantages:

e Events are handled in an orderly manner
e An event cannot interrupt a callback that is processing a previous event
e Incoming events are held up so that you can trace a callback function

The disadvantage of this approach is that, for internal reasons, your APL callback
function is unable to return a result to the ActiveX control, or to modify any of the
arguments supplied by the event. This is a severe problem if the COM object relies on
callbacks to control certain aspects of its functionality.

The QueueEvents property allows you to change the normal behaviour so that it is
possible for a callback function to return a result to a COM object.

If QueueEvents is 1, which is the default, the result (if any) of your callback function is
not passed back to the COM object but is discarded. Thus you cannot, for example,
inhibit or modify the default processing of the event by the COM object.

If instead you set QueueEvents to 0, the callback function attached to the event is
executed immediately, even if there are other APL events before it in the internal event
queue. The result of your callback function is then passed back to the COM object
which may use it to inhibit or modify its normal event processing.

See QueucEvents for further details.

Chapter 11: OLE Automation Client and OLE Controls 23

Using the Microsoft Jet Database Engine

The SQL function in workspace samples\ole\oleauto.dws is a simple example
showing how you can call the Microsoft Jet database engine using OLE.

SQL is dyadic. The left argument is the path-name of an Access database; the right
argument is a query in the form of an SQL statement.

The result is a matrix containing the records that match the query.
For example:

FILE« 'c:\Program Files\Microsoft
Office\Office\Samples\Northwind'
QUERY<«'Select * From Suppliers'
pFILE SQL QUERY
29 11

The SQL Function

Vv DATA<DATABASE SQL QUERY;DB;DBS;RCS
[1] A Uses the OLE Server DAO.DBEngine to perform a

EZ: A query on an MS Access database
3]
[4] 'DB'OWC'OleClient' 'DAO.DBEngine.35'
[5]
[6] :Trap 11 ERROR
[7] DBS<«DB.OpenDatabasecDATABASE
[8] RCS«DBS.OpenRecordsetcQUERY
[9] DATA<QRCS.GetRows 999
[10] :Else
[11] DATA«<'DB'0WG'LastError'
[12] :EndTrap

\

Let us examine how the function works.
[4] 'DB'OWC'OleClient' 'DAO.DBEngine.35'

This statement creates a new namespace called DB that is connected to the
DAO.DBEngine OLE Server. After the statement has executed, DB is essentially an
instance of the object and exposes the methods and properties provided by the object.

[7] DBS<«DB.OpenDatabasecDATABASE

The OpenDatabase method is called with the name of the database file as its single
argument (other parameters are optional and omitted here). The result of
OpenDatabase is a (new) Database object whose namespace reference is assigned to
DBS.

232

Dyalog APL/W Interface Guide

[8] RCS«DBS.OpenRecordset QUERY

The OpenRecordset method is called with a character vector containing an SQL
statement as its argument. The result of OpenRecordset is a (new) Recordset object
whose namespace reference is assigned to RCS.

[9] DATA<RRCS.GetRows 999

The GetRows method takes a single parameter which is the number of rows to be
fetched. This simple example ignores the possibility that there may be more than 999
records to be fetched and ignores the possibility of WS FULL. The result is a nested
matrix containing the data. In this case, the data is transposed.

It is not actually necessary to assign the results of the expressions in lines [7] and [8].
These expressions, which return namespaces, can simply be parenthesised and the entire
query can be executed in a single statement as illustrated by function SQL 1.

Vv DATA<DATABASE SQL1 QUERY ;DB
A Shorter version of SQL

'DB'OWC'OleClient' 'DAO.DBEngine.35'

DATA«<®((DB.OpenDatabasecDATABASE).
OpenRecordset<QUERY).GetRows 999
:Else
DATA«DB.LastError

]
]
]
]
] :Trap 11
]
]
]
] :EndTrap

Lopm] o | e | L | e | e | s | s | §

v

Chapter 11: OLE Automation Client and OLE Controls 233

OLE Objects without Type Information

If you create an instance of a COM object that does not provide Type Information, the
resulting namespace be empty and will appear to provide no methods and properties.

Nevertheless, in most cases, you will still be able to access its methods and properties
using Late Binding or SetMethodInfo and SetPropertylnfo as follows.

Late Binding

Late Binding in this context means that the association between an APL name and a
method or property exported by the COM object is deferred until the name is used.

If you refer to a name inside the OLEClient namespace that would otherwise generate a
VALUE ERROR, APL asks the COM object if it has a member (method or property) of
that name.

The mechanism permits APL to determine only that the member is exported; it says
nothing about its type (method or property) nor its syntax. If the response from the
COM object is positive, APL therefore makes the most general assumption possible,

namely:
e That the member is a method
e That it may take up to 16 optional arguments
e That each argument is input/output (i.e. specified via a pointer)
e That the method returns a result.

This means that if you know, from its documentation or another source, that a COM
object provides a certain Method or Property, you may therefore access that member by
simply calling a function of that name in the OLEClient namespace. Note that any
parameters you pass will be returned in the result, because APL assumes that all
parameters are input/output. Furthermore, APL will be unable to check the validity of
the parameters you specify because it does not know what data types are expected.

234

Dyalog APL/W Interface Guide

SetMethodinfo and SetPropertylnfo

The SetMethodInfo and SetPropertylnfo methods provide a mechanism for you to
precisely specify the missing Type Information for the methods and properties that you
wish to use. See Object Reference for further details.

Note that whether you use late binding or SetMethodInfo/SetPropertylnfo, any sub-
object namespaces that you create by invoking the methods and properties in the top-
level object, will also have no visible methods and properties. Therefore, if the Type
Information is missing, Late Binding or SetMethodInfo and SetPropertylnfo must be
used to access all the methods and properties that you wish to use, wherever they occur
in the object hierarchy.

Events

When type library information is available, Dyalog APL automatically connects the
appropriate event sinks and establishes the EventList property for the object when it is
created. However, if the COM object does not declare its event sinks in a type library, it
is necessary to connect to them manually. To support these cases, the following
methods are used. These apply to top-level COM objects and to the namespaces
associated with any other COM objects exposed by them.

Method Description

OLEListEventSinks Returns the names of any event sinks currently attached to
an object. An event sink is a set of events grouped (for
convenience) by a COM object.

OLEAddEventSink Attaches the namespace associated with an object to a
specific event sink that it supports. If successful, new event
names will appear in the EventList property of the
namespace. This is the only way to access events from an
event sink that is not described in the object's Type
Information.

OLEDeleteEventSink | Removes the events associated with a particular event sink
from the EventList property of the namespace associated
with an object.

Chapter 11: OLE Automation Client and OLE Controls 235

Collections

A collection is a special type of object that represents a set of other objects. Collections
are typically implemented as properties. For example, the Excel Sheet object has a
property named Sheets whose value is a collection object that represents a set of
worksheets. Collections typically have a property called Count, which tells you how
many objects there are, and a Default Property named Item that provides access to each
member of the set. Item typically accepts a number or a name as an index and returns a
reference to an object.

For example, if a workbook contains two worksheets named "P&L" and "2002 Sales"
respectively, they might be accessed as follows:

S1<Sheets.Item[1]

S1.Name

P&L
S2<Sheets.Item ['2002 Sales']
S2.Index

2

Note that in old versions of Dyalog APL (pre-Version 11.0) the Item property was
exposed as a method. This old behaviour may be select by setting [JWX to 0 or 1 when
you create the object. In which case:

S1<«Sheets.Item 1

S1.Name

P&L
S2«Sheets.Item '2002 Sales'
S2.Index

2

Note that some collections work in origin 0 and some in origin 1; there is no way to tell
which applies except from the documentation. Furthermore, collections are used for all
sorts of purposes, and may not necessarily permit the instantiation of more than one
member of the set at the same time. Collections are not the same as arrays.

As mentioned above, the Item property is typically the Default Property (see Language
reference) of a Collection, so indexing may be applied directly to the Collection object.

Sheets[1 2].Name
P&L 2002 Sales

236 Dyalog APL/W Interface Guide

The :For - :EndFor control structure provides a convenient way to enumerate
through the members of a collection without using the Item property. For example, the
following code snippet accumulates the values in an Excel worksheet collection.

DATA<OpcO 0pO

:For S :In Sheets A Enumerate SHEETS collection
DATA,«cS.UsedRange.Value2

:EndfFor

Null Values

COM methods and properties frequently return null values for which there is no direct
equivalent in the APL language. Instead, the system constant JNULL is used to
represent a null value.

The following spreadsheet contains a number of empty cells.

Microsoft Excel - simple.xls g@
File Edit Wiew Insert Format Tools Data indow Help Acrobat — & ﬂ
Dl &V z 2} b Bl 00 -3 2
Arial -0 - B I EEEHE O -D-A-2
pilE
H10 | =
A, B C O E F =

1 1
2 Year

3 19595 2000 2001 2002

4

o Sales 100 7h 120

5]

7 Cogts a0 G0 100

a8

d Margin 20 16 20

10

M| 4[> M} Sheet1 / 4]

Ready LR

Chapter 11: OLE Automation Client and OLE Controls 237

Using the Excel. Application COM object, the contents of the spreadsheet can be
obtained as follows:

"EX'OWC'OLECLlient' 'Excel.Application'
WB<EX.Workbooks.Open 'simple.xls'

WB.Sheets[1].UsedRange.Value?2
[Null] [Null] [Null] C[Null] C[Null]
[Null] Year [Null] [Null]l [Null]
[Null] 1999 2000 2001 2002
[Null] [Null] [Null] C[Null] C[Null]

Sales 100 76 120 150
[Null]l [Null] [Null] [Null]l [Null]
Costs 80 60 100 110
[Null] [Null] [Null] C[Null] C[Null]
Margin 20 16 20 40

To determine which of the cells are filled, you can compare the array with JNULL.

ONULL# WB.Sheets[1].UsedRange.Value2

POFRPROFRLROO0OO0OO
POFRPROFROFR,EFL,O
POFRPROFR,ROFR,LOO
POFRPROFRLROFR,LOO
POFRPROFRLROFR,LOO

[ONULL should also set the values of COM properties to null.

Additional Interfaces

Most COM objects and their sub-objects provide information about their methods and
properties through the IDispatch interface which is the normal interface used for OLE
Automation. When you create an instance of an OLEClient object or an OCXClass
object, Dyalog APL uses this interface to gain the information it requires.

If an object does not provide an IDispatch interface, or if an object provides additional
functionality through other interfaces, it is possible to access the object’s functionality
using the OLEQuerylInterface method.

In addition, if an object exposes sub-objects using an interface other than IDispatch, you
may access these sub-objects using the OLEQuerylInterface method..

See OLEQuerylInterface for further details.

238 Dyalog APL/W Interface Guide

Writing Classes based on OLEClient

You may define APL Classes (See Language Reference) based upon the OLEClient
object. For example:

:Class Excel: 'OLEClient'
V ctor wkbk
:Access Public
:Implements Constructor :Base ,c<('ClassName’
'"Excel.Application')
Workbooks.Open cwkbk

\%
tEndClass A Excel

XL<[ONEW Excel 'f:\help11.0\days.xls'
XL .Workbooks[1].Sheets[1].UsedRange.Value2
From To Days Hours

38790 38791 0 3.25
38792 38792 [Null] 2.25
38793 38793 [Null] 2.5
38799 38799 [Null] 5
38800 38800 [Null] 3
[Null]l [Null]l ([Null]l 16

239

CHAPTER 12

OLE Automation Server

Introduction

OLE Automation allows you to drive one application from another and to mix code
written in different programming languages. In practical terms, this means that you
may write a subroutine to perform calculations in (say) C++ and use the subroutine
directly in Visual Basic or Excel. Equally, you could write the code in Visual Basic and
call it from C++. Dyalog APL/W is a fully subscribed member of this code-sharing
club.

OLE Automation is, however, much more than just a mechanism to facilitate cross-
application macros because it deals not just with subroutine calls but with objects. An
object is a combination of code and data that can be treated as a unit. Without getting
too deeply into the terminology, an object defines a class; when you work with an
object you create one or more instances of that class.

OLE objects are represented in Dyalog APL by namespaces.

This chapter describes how you can write an OLE Automation Server in Dyalog APL.

240

Dyalog APL/W Interface Guide

Namespaces and Objects

There is a direct correspondence between the object model and Dyalog APL namespace
technology, a correspondence that is thoroughly exploited in the implementation of
OLE Automation.

An OLE object is simply a collection of methods (code that performs tasks) and
properties (data that affects behaviour). An object corresponds directly to a Dyalog APL
namespace which contains functions that do things and variables that affect things.
Furthermore, OLE objects are hierarchical in nature; objects may contain sub-objects
just as namespaces may contain sub-namespaces. To complete the picture, an OLE
Server is an application that provides (exposes) one or more OLE objects. Thus an OLE
Server corresponds directly to a workspace that contains one or more namespaces.

However, when you access an OLE object, you do so by creating an instance of its class
and you may work with several instances at the same time. Furthermore, several
applications may access the same OLE object at the same time, each with its own set of
instances. Each instance inherits its methods (functions) and the initial values of its
properties from the class. However, different property values will soon be established in
different instances so they must be maintained separately.

Dyalog APL/W includes the capability for a namespace to spawn instances of itself.
Initially, a new instance is simply a pointer to the original namespace (not a copy), but
as soon as anything in it is changed, the new value is recorded separately. Thus instance
namespaces will typically share functions but maintain separate sets of data.

Chapter 12: OLE Automation Server 24

Writing an APL OLE Server

The following steps are required to create an OLE Automation Server in Dyalog
APL/W:

1. Create a workspace containing an OLEServer namespace. This namespace
represents an OLE Object and may contain as many functions and variables as
you want to provide the functionality you require. It may also contain other
OLEServer namespaces to represent sub-objects in an object hierarchy.

2. For each of the functions and variables that you wish to expose as methods and
properties of your object, you must declare the data types of their parameters
and results. You can do this manually, using the COM Properties tab of the
Object Properties dialog box, or by invoking the SetFnInfo and SetVarInfo
methods. Note that non-exported functions and variables, sub-namespaces and
defined operators may be used internally, but are not available directly to an
OLE Automation client. It is also possible to generate events from an
OLEServer. The mechanism is the same as for an ActiveXControl and is
described in the next chapter.

3. Select Export from the Session File menu and choose in-process or out-of-
process COM Server as you prefer.

Rules for Exported Functions

There are certain fundamental differences between OLE syntax and APL syntax.

For example, OLE methods may take any number of arguments whereas APL is
confined to two; a left and a right.

Secondly, some of the arguments or even al/l of the arguments to an OLE method may
be optional. You cannot however call a monadic APL function with no arguments; in
APL there is a clear distinction between niladic functions and functions that take an
argument.

Furthermore, the number and type of the arguments for each OLE method must be
registered in advance so that OLE knows how to call it.

These factors mean that certain rules must be adopted so that APL can register your
APL functions as OLE methods.

Rule 1: Exported APL functions must be niladic or monadic defined functions; dyadic
functions, dynamic functions, derived functions and operators are not allowed.
However, ambivalent functions may be called (monadically) by OLE.

Rule 2: Character arrays whose rank is greater than 1 are passed as 1-byte integer
arrays. This means that 1-byte integer matrices and higher-order arrays will
always be converted to character arrays.

242

Dyalog APL/W Interface Guide

Rule 3: An exported APL function may not be called with an empty numeric vector
(zilde) as its single argument. Zilde is used by an APL client to call a non-
niladic OLE method with no arguments.

Rule 4: If an exported APL function is called with more than one parameter, its
argument will be a nested vector. If it is called with a single parameter that is a
character vector or an array whose rank is greater than 1, the argument
supplied to the APL function will be a simple array. Effectively, a 1-element
nested array received from an OLE Client is disclosed.

Out-of-Process and In-Process OLE Servers

Dyalog APL allows you to create both out-of-process OLE Servers and in-process OLE
Servers. An out-of-process OLE Server runs as a completely separate Windows
program that communicates with one or more client programs. An in-process OLE
Server is implemented as a Dynamic Link Library (DLL) that is loaded into the client
process and becomes part of its address space.

The main advantage of an in-process OLE Server is that communication between the
client application and the OLE Server is fast. Communication between clients and out-
of-process OLE Servers has to go through a separate OLE layer in Windows that incurs
a certain overhead. Another advantage is that in-process OLE Servers are simpler to
administer and simpler to install.

The main disadvantages of in-process OLE Servers is that there can only be one client
per server and they do not support DCOM directly.

ClassID, TypeLibID and other properties

Windows COM objects are identified using a system of Globally Unique Identifiers
(GUIDs). When you create an OLEServer object using OWC, APL creates a number of
GUIDs and allocates them to the OLE Server. One of these is a Class Identifier (often
abbreviated to CLSID) that will uniquely identify your OLE object. This is stored in the
ClassID property of the OLEServer. Another GUID identifies the Dispatch interface of
the object but is not available via a property.

An out-of-process COM server requires a separate Type Library file. This is a binary
file that describes the methods (functions) and properties (variables) exposed by the
OLEServer namespace(s) in the workspace. The Type Library is identified by a GUID
and by its file name. The file name (which is constructed from the workspace name with
a .TLB extension) is stored in the TypeLibFile property of the OLEServer namespace.
The GUID is generated when it is first needed and is stored in the TypeLibFileID
property of the OLEServer namespace. Note that if the workspace contains several
OLEServer objects, their TypeLibFile and TypelLibID properties all have the same
values.

Note that the equivalent information for an in-process OLE Server is bound into the
DLL and not stored in a separate file.

Chapter 12: OLE Automation Server 243

In-process OLE Servers

Exporting

When you use File/Export to create an in-process OLE Server, the following steps are
performed.

APL first saves your workspace to a femporary file. Then it creates a temporary Type
Library File that describes each of the OLEServer objects in the workspace. Next, it
creates a Dynamic Link Library (DLL) file (whose name defaults to the name of your
workspace but with a .DLL extension) by merging the workspace saved in the
temporary file with the file OCXSTUB.DLL. Finally, it registers your OLE Server by
updating the Windows Registry. Your OLE Server DLL is self-contained and is
independent of your workspace. The temporary files are then deleted.

Execution

In-process OLEServers are hosted (executed) by the Dyalog APL DLL. If you export
your OLE Server with Runtime application checked, it will be bound with the run-time
version, If this checkbox is cleared, your OLE Server will be bound by the development
version.

If an in-process OLE Server, that is bound with the run-time Dyalog APL DLL
generates an untrapped error, an OLE Automation error will be reported.

If an in-process OLE Server, that is bound with the development Dyalog APL DLL
generates an untrapped error, the APL Session will appear and you can use it to debug
the problem and continue. Note that at this point, the development DLL will load your
Session file so that all of your session tools are available during debugging. If your
Session file runs any initialisation code that references external files, remember that this
code will be executed in the current working directory of the host process.

For further details, see User Guide, Chapter 2.

Registering and Unregistering
During development, an in-process OLE Server is automatically registered when you

create it using File/Export.

The Windows utility REGSVR32.EXE should be used to register an in-process OLE
Server independently, or to install a runtime in-process OLE Server on a target
computer. For example:

C:\DyaloglOl>regsvr32 mysvr.dll

244

Dyalog APL/W Interface Guide

REGSVR32 should also be used (with the /u« flag) to un-register an in-process OLE
Server. For example:

C:\DyaloglOl>regsvr32 /u mysvr.dll

Note that in both cases, REGSVR32 actually starts the OLE Server. This in turn loads
the appropriate Dyalog APL DLL. If you are using the development DLL, note that if
your session start-up code fails for any reason, the REGSVR32 process will hang and
have to be terminated using the Task Manager.

Out-of-process OLE Servers

Exporting

When you use File/Export to create an out-of-process OLE Server, the following steps
are performed.

APL first creates a single Type Library File that describes all of the OLEServer objects
in the workspace. It then registers your OLE Server by updating the Windows Registry
with, among other things, the names and ClassIDs of your workspace and Type Library
file.

Note that the type information is taken from your active workspace and not the
saved workspace. It is up to you to ensure that your saved workspace (which will
actually be used when the OLE Server is invoked) is kept in step.

For example, if you were subsequently to remove the OLEServer objects from your
workspace and re-save it, or save a completely different workspace with the same
pathname, your OLE Server would fail to start because the Type Library and Registry
and no longer synchronised with your workspace.

Execution

An out-of-process OLE Server is implemented by a separate Dyalog APL process
(DYALOG.EXE or DYALOGRT.EXE) that loads your workspace when it starts.

If an out-of-process OLE Server, that is bound with the run-time Dyalog APL program,
generates an untrapped error, an OLE Automation error will be reported.

If an out-of-process OLE Server, that is bound with the development Dyalog APL
program, generates an untrapped error, the APL Session will appear and you can use it
to debug the problem and continue. In previous versions of Dyalog APL, the visibility
of the APL Session for debugging was controlled by the ShowSession property. Setting
ShowSession to 1 will cause the Session to be displayed immediately, when the OLE
Server is started. However, setting ShowSession to 0 will not prevent the Session from
appearing if an untrapped APL error occurs.

Chapter 12: OLE Automation Server 245

Registering and Unregistering

During development, an out-of-process OLE Server is automatically registered when
you create it using File/Export.

An out-of-process OLEServer may also be registered by calling its OLERegister
method. This performs the same tasks as File/Export, but without any user-interaction.

OLERegister is the recommended way to install an out-of-process OLEServer on a
target computer as a run-time application.

An out-of-process OLEServer may be unregistered by calling its OLEUnRegister
method.

Registry Entries

This section describes the entries that are written into the Windows Registry when APL
registers an out-of-process OLEServer.

All registry entries are written as sub-keys of the primary key

HKEY LOCAL MACHINE\SOFTWARE\Classes of which HKEY CLASSES ROOT
is an alias. Four separate entries are created, although only the first of these applies to
top-level OLEServers.

1. A sub-key named dyalog.xxxx where xxxx is the name of the OLEServer. This has
a sub-key named CLSID whose Default value is a GUID corresponding to the
ClassID property of the OLEServer.

2. A sub-key named CLSID\xxxx where xxxx is the GUID corresponding to the value
of the ClassID property of the OLEServer. The Default value of this sub-key is the
name of the OLEServer, and the sub-key itself contains sub-keys, namely
DyalogDispInterface, DyalogEventInterface, InProcHandler32,
LocalServer32, ProgID, TypeLib, and VersionIndependentProgID.

2.1. DyalogDispInterface and DyalogEventInterface have their Default values
set to the GUID for the Interface entry (see Paragraph 4). This GUID is
generated internally by the registration of the Type Library.

2.2. InProcHandler32 has the Default value "OLE32.DLL".

2.3. LocalServer32 has its Default value set to the command line that is required
to start the OLEServer. This is the full path-name of the appropriate
DYALOG.EXE or DYALOGRT.EXE followed by the full path-name of the
corresponding workspace plus any options that were specified in the Create
bound file dialog box.

246

Dyalog APL/W Interface Guide

2.4. ProglID has its Default value set to "dyalog.xxxx" where "xxxx" is the name
of the OLEServer.

2.5. TypeLib has its Default value set to the GUID corresponding to the
TypeLibID property of the OLEServer.

2.6. VersionIndependentProgID has its Default value set to "dyalog.xxxx"
where "xxxx" is the name of the OLEServer (same as ProgID).

2.7. Note that for a sub-object (an OLEServer that is a child of another
OLEServer) only the InProcHandler32 key is required, although the other
entries are created and are in fact redundant.

A sub-key named TypeLib\xxxx where xxxx is the GUID corresponding to the
value of the TypeLib property of the OLEServer. This contains a sub-key named
1.0 (which refers to its version number). The Default value of 1.0 is "Type Library
for xxxx" where "xxxx" is the name of the OLEServer. 1.0 contains three further
sub-keys named 0, FLAGS and HELPDIR.

3.1. 0 (this identifies the language id; O refers to a/l languages) contains a sub-
key named win32 whose Default value is the full path-name of the Type
Library file associated with the OLE object; i.e. the value of the TypeLibFile
property of the OLEServer.

3.2. FLAGS has a Default value of "0".

3.3. HELPDIR has its Default value set to the full path-name of the directory in
which the corresponding workspace is saved.

Sub-keys named Interface\xxxx where xxxx is the GUID referenced by the value
of DyalogDispInterface and DyalogEventInterface described in paragraph 2. The
Default values of these sub-keys is "xxxxdisp" where "xxxx" is the name of the
OLEServer. You may identify the correct Interface sub-key by searching the
registry for this string. It has three sub-keys named ProxyStubClsid,
ProxyStubClsid32, and TypeLib.

4.1. ProxyStubClsid has a Default value of a GUID that references an interface
of type PSDispatch.)

4.2. ProxyStubClsid32 (same as ProxyStubClsid).

4.3. TypeLib has two values. Its Default value is the GUID identified by the
TypeLib property of the OLEServer object, or, for a child OLEServer, the
TypeLib property if its parent OLEServer. Its Version value is "1.0".

Chapter 12: OLE Automation Server 247

The LOAN Workspace

LOAN.DWS contains a single namespace called Loan which is used to calculate
monthly repayments on a loan. As supplied, LOAN is a pure APL workspace. You will
have to turn it into an OLE Server, and declare a method and a property, before you can
use it.

The Loan namespace contains a single function CalcPayments and a variable
PeriodType.

The CalcPayments function takes a 5-element numeric vector as an argument whose
elements specify:

1. loan amount

2. maximum number of periods for repayment
3. minimum number of periods for repayment
4. maximum annual interest rate

5. minimum annual interest rate

CalcPayments also uses the "global" variable PeriodType which specifies
whether the periods (above) are years or months. This is done solely to illustrate how
another application can manipulate an APL object via its variables (properties) as well
as by calling its functions (methods).

CalcPayments returns a matrix. The first row contains the period numbers (from
min to max). The first column contains the interest rates (from min to max in steps of
0.5%). Other elements contain the monthly repayments for the corresponding number of
periods and interest rates.

Using CalcPayments

The following session transcript illustrates how the CalcPayments function is used.

JLOAD LOAN
C:\Dyalog101\samples\ole\LOAN saved

)OBS
Loan

)CS Loan
#.Loan

JENS
CalcPayments

)JVARS
PeriodType

248 Dyalog APL/W Interface Guide

CalcPayments 10000 5 3 6 3

3 L 5
290.8120963 221.3432699 179.6869066
.5 293.0207973 223.5600105 181.9174497
295.2398501 225.7905464 184.1652206
.5 297.4692448 228.0348608 186.4301924
299.708971 230.2929357 188.7123364
.5 301.959018 232.5647523 191.0116217
304.2193745 234.8502905 193.3280153

OO F FWWO

The CalcPayments Function

[0] PAYMENTS<«CalcPayments X;LoanAmt;LenMin;LenMax;IntrMin
sIntrMax;PERIODS; INTEREST;NI;NM;PER;INT
[1] A Calculates loan repayments
[2] A Argument X specifies:
[3] A LoanAmt Loan amount
[4] A LenMax Maximum loan period
A LenMin Minimum loan period
A IntrMax Maximum interest rate
A IntrMin Minimum interest rate
A Also uses the following global variable
A PeriodType Type of period;l = years, 2 = months

LoanAmt LenMax LenMin IntrMax IntrMin<«X

]

]

]

]

0

1

2

3] PER<«PERIODS« 1+LenMin+itl+LenMax-LenMin

4] PERIODS<+PERIODSx12 1[PeriodType]

5] INT<«INTEREST«0.5x71+(2xIntrMin)+11+2xIntrMax-IntrMin
6] INTEREST«INTEREST+100x12 1[PeriodType]

7
8
9
0
1

NI<pINTEREST
NM<pPERIODS

PAYMENTS<«(LoanAmt)x((NI,NM)pNM/INTEREST)+
1-1+(1+INTEREST)o.*xPERIODS

PAYMENTS<«PER,[1]PAYMENTS

PAYMENTS<«(0,INT),PAYMENTS

Chapter 12: OLE Automation Server 249

Registering Loan as an OLE Server

To use this example, you must first
1. Convert the Loan namespace into an OLEServer object.
2. Declare the COM properties for CalcPayments and PeriodType.

3. Create an in-process or out-of-process server and register the Loan object on
your system.

Please perform the following steps:

) LOAD the LOAN workspace from the samples\ole sub-directory

JLOAD SAMPLES\OLE\LOAN
samples\ole\loan saved

JOBS
Loan

Execute the following statement to make Loan an OLEServer object:
Loan.[OWC 'OLEServer'

Now, using the COM Properties tab of the Properties dialog box, define the syntax and
data types for the CalcPayments function and the PeriodType variable so that
they are exported as a method and property respectively.

250

Dyalog APL/W Interface Guide

vl #.Loan.CalcPayments - Properties

Properties | Yalue Mu:unitu:ur| COM Properties |

Param Mame | Tupe I Madifier I Optianal I
Result YT_RA [| WT_aRRay| v |
Loandmt | WT_|4 v >~ O
LenMax WT_I4 v v O
LenMin WT_14 v v O
It 2 WT_14 v v O
It YT 14] i~ O

Help I}

(%) Method) Prop Get) Prop Set

Exported

Ok

l [Cancel

The picture above shows the COM properties that are required to export function
CalcPayments as a method. The function is declared to require 5 parameters of type
VT 14 (integers) and return a result of type VT_ARRAY of VT R8 (an array of
floating-point numbers).

The names you choose for the parameters will be visible in an object browser and
certain other programming environments.

Chapter 12: OLE Automation Server 251

#.Loan.PeriodType - Properties ﬁ

| Properties | Walue | COM Properties |

Pararn M arne Tupe | Modifier I I:Iptin:nnall

Result WT_I4 M M

Exported

[Ok] [Cancel

The picture above shows the COM properties to export variable PeriodType as a
property. The property is declared to be of type VT 14 (integer).

252 Dyalog APL/W Interface Guide

Rename and save the workspace to avoid overwriting the original:

JWSID MYLOAN
was SAMPLES\OLE\LOAN
)SAVE
MYLOAN saved

Finally, to create your OLE Server, choose Export from the Session File menu and
complete the Create bound file dialog box as shown below. In this case, the OLE Server
is created as an in-process server, bound to the development version of the Dyalog APL
DLL (because the Runtime application checkbox is cleared)

Create bound file
Saven | [Dyalog APL 12.0 Unicode Files] © 2 @
iy Recent
Diocumetts

@

Desktop

®

by Documents

@

ku Compuiter

..|]

File name: MYLOAN I | [save |

by Wetwork Save as lype: | I Process Server [*.dll) M [Cancel]

Wersion

Note that appropriate information will be displayed in the Status window to inform you
of the success (or failure) of the operation.

Chapter 12: OLE Automation Server 253

Using Loan from Visual Basic Version 4.0

Start Visual Basic Version 4.0 and open the project "aplLoan.vbp" that is provided in
the Dyalog APL sub-directory samples\ole\.

This project is based upon an example that is distributed with Visual Basic
(vb\samples\grid\loan.vbp) and is described in the Visual Basic
Programmer’s Guide Chapter 13.

To run the project, select Run/Start from the Visual Basic menu bar. Then enter data
into the Visual Basic application as shown below. When you click Show Payments,
Visual Basic actually calculates the repayments matrix by calling the CalcPayments
method in the dyalog.Loan object; i.e. it runs the CalcPayments function in the
Loan namespace.

B LoanSheet !IEI E
Optionz Down Payment Loan Length
Purchaze [1s0000 N
Amount 20 21 22 (.
Years Years Years
Percent 20
Down 7.0% 930,36 £910.17 £892.11
—YYears in Loan 75% | £966.71 £947.00 £929.41
_ 80% | £1.002.73 £984.51 F967.41
Maximum 35 85% | £1.041.39 £1.022.69 £1.006.09
.. 90% | £1.079.67 £1.061.50 £1.045 41
Minimum - - -
[20 95% | £1.11856 £1.100.92 £1.085.35
10.0% | £1.158.03 £1.14094 £1.125.90
~ Interest Rates 105% | £1.198.06 £1.181.52 £1.167.01
Maximum % Iﬁl 11.0% | £1.23863 £1.22265 £1.208.67
11.5% | £1.279.72 £1.264.29 £1.250.85
Minimum % |70 = 120% | £1.321.30 £1.306.44 £1.293.53
125% | £1.363.37 £1.349.06 £1.336.67
13.0% | £1.40589 £1.392.14 £1.380.27
.............. Show Payments | a'ee(71 44885 £1.43564 £1.424.29
— 140% | £1.49222 £1.47956 £146872 =
Show Amortrzation | P | »

254

Dyalog APL/W Interface Guide

How it Works

The original Visual Basic code has been modified so that instead of calculating loan
repayments itself, it uses the Dyalog APL Loan object to perform this task. The
changes required to the original Visual Basic code were as follows.

Firstly, the declarations section specifies a variable called APLLoan to be of type
Object:

Dim APLLoan As Object

Secondly, the Load procedure for the Form (this module gets executed when the
application starts) contains the statement:

Set APLLoan = CreateObject("dyalog.Loan")

The effect of these two statements is that when the application is run, VB asks OLE to
provide the external object called dyalog.Loan. This name will have been recorded in
the registry by Dyalog APL when you exported the Loan object. If you exported Loan
as an out-of-process OLE Server, OLE starts the appropriate version (development or
run-time) of Dyalog APL with your workspace MYLOAN. If you exported Loan as an
in-process OLE Server, OLE loads MYLOAN.DLL into your Visual Basic application
which in turn loads the appropriate Dyalog APL DLL. When it starts, Dyalog APL
recognises that the request has come from OLE and responds by creating an instance of
the Loan namespace which is connected to the Visual Basic process that has requested
it.

The final change was to rewrite the VB subroutine that performed the calculations to
call instead the Dyalog APL Loan object

Chapter 12: OLE Automation Server 255

The Revised CalcPmnts() Procedure

Private Sub CalcPmnts ()
Dim PeriodType
' Calculate number of periods and interest rates
Periods = (LenMax - LenMin) + 1
Rates = ((IntrMax - IntrMin) * 2) + 1
If mnuOptLen(0).Checked = True Then
PeriodType =1
Else
PeriodType = 2
End If
' Set PeriodType property of APLLoan object
APLLoan.PeriodType = PeriodType
' Call Calc method of APLLoan object
Payments = APLLoan.Calc(LoanAmt, LenMax, LenMin,
IntrMax, IntrMin)
End Sub

The first statement to note is:
APLLoan.PeriodType = 1

In Visual Basic terms, this statement sets the PeriodType property of the APLLoan
object to the value of a local variable, also called PeriodType. What actually happens,
is that the APL variable PeriodType in the corresponding running instance of the
Loan namespace is set to the requested value.

The next statement:

Payments = APLLoan.CalcPayments (LoanAmt, LenMax, LenMin,
IntrMax, IntrMin)

calls the APL function CalcPayments and receives the result.

In Visual Basic terms, this statement invokes the CalcPayments method of the
APLLoan object. In practice, it calls the CalcPayments APL function with the
specified argument and puts the result in the local variable Payments. Note that the
conversion between the result of the function (a Dyalog APL floating-point matrix) and
the corresponding Visual Basic data type is performed automatically for you.

Notice that the APLLoan variable is "global". This means that the dyalog.Loan object is
loaded only once, when the Visual basic application is started and remains loaded until
it is closed.

256 Dyalog APL/W Interface Guide

Using Loan from Excel

Start Excel and load the spreadsheet Loan.xls from the Dyalog APL sub-directory
samples\ole.

The Payments button fires a simple macro that uses the APL dyalog.Loan object to
perform repayment calculations.

This example is slightly simpler than the Visual Basic one in that the user does not
specify a down payment, nor can the user change the period type, which is years.

To run the example enter data into the cells as shown below, then click Payments.
When you do so, Excel runs the Calc macro and this causes OLE to initialise the
dyalog.Loan OLE Server

The Calc macro actually calculates the repayments matrix by calling the CalcPayments
method in the dyalog.Loan object; i.e. it runs the CalcPayments function in the
Loan namespace.

loan. xls g@
A B C D E F g
1 |Loan Amount 120000 1] 20 —|
2 Max Years in Loan 30 7 930.3587
3 |Min Years in Loan 20 A5 9667118
4 Max Interest Rate 15 g 1003.728
S |Min Interest Rate F. 8.5 1041388
6 | 9 1079671
7 9.5 1118657
: Payments 10 1158026
g
14 4| » | M} Sheetl { Sheetz f Sheet3 / Shee| < |

Chapter 12: OLE Automation Server 257

How it Works

The Excel macro code is shown below.

Sub Calc()
Dim APLLoan As Object
Dim Payments As Variant
Set APLLoan = CreateObject ("dyalog.Loan")
LoanAmt = Cells (1, 3).Value
LenMax = Cells (2, 3).Value
LenMin = Cells (3, 3).Value
IntrMax Cells (4, 3).Value
IntrMin = Cells (5, 3).Value
APLLoan.PeriodType = 1
Payments = APLLoan.CalcPayments (LoanAmt, LenMax,
LenMin, IntrMax, IntrMin)
For r = 0 To UBound(Payments, 1)
For ¢ = 0 To UBound (Payments, 2)
Cells(r + 1, ¢ + 5).Value = Payments(r, c)
Next c
Next r
End Sub

The statement:

Dim APLLoan As Object

declares a (local) variable called APLLoan to be of type Object
The next statement:

Set APLLoan = CreateObiject("dyalog.Loan")
creates an instance of dyalog.Loan associated with this variable.

Effectively, when the macro is run, Excel asks OLE to provide the external object called
dyalog.Loan.

If you exported Loan as an out-of-process OLE Server, OLE starts the appropriate
version (development or run-time) of Dyalog APL with your workspace MYLOAN. If
you exported Loan as an in-process OLE Server, OLE loads MYLOAN.DLL into your
Visual Basic application which in turn loads the appropriate Dyalog APL DLL. In either
case, an instance of the Loan namespace is connected to the Excel macro as an Object.

The next statement to notice is:

APLLoan.PeriodType = 1

258

Dyalog APL/W Interface Guide

In Excel terms, this statement sets the PeriodType property of the APLLoan object to
the value 1. What actually happens, is that the APL variable PeriodType in the
corresponding running instance of the Loan namespace is set to 1.

Finally, the following statement:

Payments = APLLoan.CalcPayments (LoanAmt, LenMax, LenMin,
IntrMax, IntrMin)

calls the APL function CalcPayments and receives the result.

In Excel terms, this statement invokes the CalcPayments method of the APLLoan
object. In practice, it calls the CalcPayments APL function with the specified
argument and puts the result in the local variable Payments. Note that the conversion
between the result of the function (a Dyalog APL floating-point matrix) and the
corresponding Excel data type is performed automatically for you.

Notice that the APLLoan variable is local to the Calc macro. This means that the
dyalog.Loan object is loaded every time that Calc is run and is unloaded when it
terminates.

Using Loan from two applications

If you have exported Loan as an out-of-process OLE Server, you may use it
concurrently from two or more client applications. To test this, follow the instructions
for:

1) Using Loan from Visual Basic Version 4.0
2) Using Loan from Microsoft Excel

At this stage, you have two applications (Visual Basic and Excel) connected to a single
Dyalog APL process with a single workspace MYLOAN.

Each application is actually connected to a separate running instance of the Loan
namespace, although there is only one copy of the CalcPayments function in
memory.

Only the variable PeriodType is duplicated in the two instances of Loan.

Note that the synchronisation of OLE requests from the different applications is entirely
handled for you by Dyalog APL.

Notice too that this time there is no delay each time you run the Calc macro in Excel.
When you are using Loan from Microsoft Excel on its own, there is a delay because
OLE loads Dyalog APL and the MYLOAN workspace every time you run Calc This is
because the APLLoan variable is local to Calc.

However, the corresponding Visual Basic variable is global and therefore forces OLE to
keep dyalog.Loan loaded.

Chapter 12: OLE Automation Server 259

Using Loan from Dyalog APL

It is of course possible to use Dyalog APL as both an OLE Automation client and an
OLE Automation Server.

To use the dyalog.Loan object, start Dyalog APL and then enter the following
expressions in the Session window.

"LN'OWC'OLEClient' 'dyalog.Loan'

)OBS
LN

)CS LN
#.LN

JMETHODS
CalcPayments

)PROPS
PeriodType

CalcPayments 10000 5 3 6 3
0 3 4 5
3 290.8120963 221.3432699 179.6869066
3.5 293.0207973 223.5600105 181.9174497
4 295.2398501 225.7905464 184.1652206
4.5 297.4692448 228.0348608 186.4301924
5 299.708971 230.2929357 188.7123364
5.5 301.959018 232.5647523 191.0116217
6 304.2193745 234.8502905 193.3280153

The statement:
"LN'OWC'OLEClient' 'dyalog.Loan'

causes APL to ask OLE to provide the external object called dyalog.Loan. This name
will have been recorded in the registry by Dyalog APL when you saved the MYLOAN
workspace.

If you exported Loan as an out-of-process OLE Server, OLE starts a second Dyalog
APL process (development or run-time) with your workspace MYLOAN. There are now
two separate copies of Dyalog APL running; one is the client, the other the server.

If you exported Loan as an in-process OLE Server, OLE loads MYLOAN.DLL into
the Dyalog APL program which in turn loads the appropriate Dyalog APL DLL. These
DLLs are both are loaded into the same address space as the original APL process. In
effect, you have two copies of APL (and two workspaces) running as a single program.

Note that in both cases, the mapping between the corresponding functions and variables
is direct. Effectively, the client namespace LN is an instance of the server namespace
Loan.

260 Dyalog APL/W Interface Guide

Implementing an Object Hierarchy

Despite the close correspondence between the object model and Dyalog APL
namespace technology, there is one significant difference. OLE does not support object
hierarchies in the sense that one object contains or owns another.

Instead you must implement object hierarchies using properties that refer to other
objects and/or methods that return objects as results.

It is not possible to pass Dyalog APL namespace hierarchies through OLE because OLE
does not support them. If you want to write an OLE Automation Server in APL that
implements an object hierarchy, you must follow the OLE conventions for doing so.

You can pass an instance of a Dyalog APL OLEServer namespace to an OLE client as a
[JOR, which can be the result of a function or the value of a variable. In order to be
recognised as an OLE object, the namespace must be of type OLEServer.

In fact, when you export a workspace containing one or more OLEServer objects, any
child OLEServer objects that they contain are registered too.

The CFILES Workspace (samples\ole\cfiles.dws) illustrates the use of an
object hierarchy.

Chapter 12: OLE Automation Server 261

The CFILES Workspace

CFILES.DWS contains a single OLEServer namespace called CF i Les which
implements a basic object-oriented interface to Dyalog APL component files.

This example allows an OLE Client, such as Excel, to read and write APL component
files. It is deliberately over-simplified but illustrates how an object hierarchy may be
implemented.

Unlike the previous example, the CFILES workspace is supplied as a complete
OLEServer with all of the COM properties for its methods already defined. All you
have to do is to export it as a COM Server.

The CF i Ll es namespace contains a single function OpenF i L e and a sub-namespace
called F i Le which is also an OLEServer. This namespace contains functions FREAD,
FREPLACE, FAPPEND and FSIZE.

To use this Server, an OLE Client requests an instance of the dyalog.CF i Les object.

To open a component file, an OLE Client calls OpenFile with the name of the file as its
argument. This function opens the file and returns, not a file tie number as you might
expect, but an instance of the File namespace which is associated with the file. As far as
the client is concerned, this is a subsidiary OLE object of type dyalog.Fi le.

To perform file operations, the client invokes the FREAD, FREPLACE, FAPPEND and
FSIZE methods (functions) of the File object.

A more sophisticated example might expose each component as a subsidiary object too.

Registering CFiles as an OLE Server

In order to explore the use of an APL OLE Server using the CFILES workspace as an
example, you must register the CFiles object on your system.

)LOAD the CFILES workspace from the samples\ole sub-directory

JLOAD SAMPLES\OLE\CFILES
samples\ole\cfiles saved

)OBS
CFiles

Then select Export from the Session File menu and create either an in-process or out-of
process OLE Server.

262 Dyalog APL/W Interface Guide

The OpenFile Function

V FILE<«OpenFile NAME;F;TIE
] A Makes a new File object
] TIE«1+[/0,0FNUMS
] NAME [OFTIE TIE
] File.TieNumber<TIE
] File.Name<NAME
] FILE<[OR'File'

Lo T Lo T T T |
A FWN B~

v

OpenF i le takes the name of an existing component file and opens it exclusively using
OFTIE.

It returns an instance of the F i Ll e namespace that is associated with the file through the
variable TieNumber. This is global to the F i L e namespace.

OpenFile[4] sets the variable TieNumber in the Fi L e namespace to the tie
number of the requested file.

OpenFile[5] setsthe variable Name in the F i L e namespace to the name of the
requested file. This is not actually used.

OpenFile[6] creates an instance of the F i l e namespace using [JOR and returns it
as the result.

Note that there is a separate instance of F i L e for every file opened by every OLE
Client that is connected. Each knows its own TieNumber and Name.

Chapter 12: OLE Automation Server 263

The COM Properties dialog box for OpenF i Le is shown below. The function is
declared to take a single parameter called FileName whose data type is VT _BSTR (a
string). The result of the function is of data type VT DISPATCH. This data type is used

to represent an object.

S| #.CFiles.OpenFile - Properties

| Properties | Walue | Manitor | Lk F'TDDETHESH

Param Mame | Type I Modifier I Optional I
Result YT_DISPATCH = | |
FileMame | WT_BSTR ~| ~ T
Help 10l
(#) Method () Prop Get () Prop Set
Exported

]] [Cancel

264 Dyalog APL/W Interface Guide

The FSIZE Function

V R«FSIZE
[1] R<(FSIZE TieNumber

\
FSIZE returns the result of JFSIZE for the file associated with the current instance of
the File namespace.

The COM Properties dialog box for FSIZE is shown below. The function is declared to
take no parameters. The result of the function is of data type VT _VARIANT. This data
type is used to represent an arbitrary APL array.

) #.CFiles. File. FSIZE - Properties

Froperties | Yalue | Monitor |

Param Mame | Tupe I Madifier I Optianal I
Resut |[VT_VARISNT | |

Help I}

{(*) Method) Prop Get () Prop Set

Exported

k. l [Cancel

Chapter 12: OLE Automation Server 265

The FREAD Function

V R«<FREAD N
[1] R«(FREAD TieNumber,N
v

FREAD returns the value in the specified component read from the file associated with
the current instance of the File namespace.

The COM Properties dialog box for FREAD is shown below. The function is declared to
take a single parameter called Component whose data type is VT 14 (an integer). The
result of the function is of data type VT VARIANT. This data type is used to represent
an arbitrary APL array.

) #.CFiles.File.FREAD - Properties

Froperties | Yalue | Monitor |5"ﬁfifl'H"F""f5iiE'r't'ié"":|

Param Mame | Type I Modifier I Optional I
Result YT_VARISNT =]
Component | WT_14 j

=

I
KN KN

Help 10

(#) Method () Prop Get () Prop Set

Exported

]] [Cancel

266

Dyalog APL/W Interface Guide

The FAPPEND Function

V R<FAPPEND DATA
[1] R+<DATA [JFAPPEND TieNumber

v

FAPPEND appends a component onto of the file associated with the current instance of
the File namespace.

The COM Properties dialog box for FAPPEND is shown below. The function is
declared to take a single parameter called Data whose data type is VT VARIANT. This
data type is used to represent an arbitrary APL array. The result of the function is of
data type VT I4 (an integer).

@ #.CFiles.File.FAPPEND - Properties

A[x]

Param Mame | Type I Modifier I Optional I
Result WT_l4 | |
Data WT_VARISNT =] ~ T
Help 10l
(#) Method () Prop Get () Prop Set
Exported

Ok

] [Canhicel

Chapter 12: OLE Automation Server 267

The FREPLACE Function

vV FREPLACE ID;I;DATA
[1] I DATA<ID
[2] DATA [FREPLACE TieNumber,I

v

FREPLACE replaces the specified component of the file associated with the current
instance of the File namespace.

The COM Properties dialog box for FREPLACE is shown below. The function is
declared to take two parameter. The first is called Component and is of data type VT 14
(integer). The second parameter is called Data and is of data type VT _VARIANT. This
data type is used to represent an arbitrary APL array. The result of the function is of
data type VT _VOID, which means that the function does not return a result.

) #.CFiles.File. FREPLACE - Properties
Properties | % alue |
Param Mame | Type I Modifier I Optional I
Result WT_VOID | |
Component | WT_I4 - - u
Data WT_VARISNT =] ~|
Help 1D
(#) Method () Prop Get () Prop Set
Exported

]] [Cancel

268 Dyalog APL/W Interface Guide

Using CFiles from Excel

Start Excel and load the spreadsheet CFiles.xls from the Dyalog APL sub-directory
samples\ole.

Please note that to simplify the Excel code, only components containing matrices (such
as those contained in samples\ole\test.dcf) are handled. Components containing scalars,

vectors, higher-order arrays and complex nested arrays are not supported.
-

& cfiles.xs M=
A, B C D =

1 |File Mame C:\Program Files\Dyalog\Dyalc Open Close Lamplea‘unl

2 |Components 3 Append

3 |Size B0O0

4 |Component 1| Read Replace|

]

B |%alue 1 2

7 5 B

g H 10

a9

10

11

4 4 » | M} Sheetl { Sheet2 f Sheet3 / Sheetd |4 |

To open a file, type the name of the file and click the Open button. This runs the FOpen
procedure. A test file named test.dcf is provided in the samples\ole sub-
directory.

To read a component, enter the component number and click Read. This runs the FRead
procedure.

To replace a component, first enter the component number. Then type some data
elsewhere on the spreadsheet and select it. Now click Replace. This runs the FReplace
procedure.

To append a component, enter some data elsewhere on the spreadsheet and select it.
Now click Append. This runs the FAppend procedure.

Chapter 12: OLE Automation Server 269

The FOpen Procedure

Public CF As Object
Public File As Object

Dim Data As Variant

Sub FOpen ()
Set CF = CreateObject("dyalog.CFILES")
f = Cells(1l, 2).Value
Set File = CF.OpenFile (f)
Call FSize
End Sub

In the declaration section, the first statement declares a global variable CF to be of data
type Object. This variable will be connected to the dyalog.CFiles OLE Server object.
The second statement declares a global variable File to be of data type Object. This
variable will be connected to the dyalog.File OLE Server object. The third statement
declares a global variable Data to be of data type Variant. This is equivalent to a nested
array. This variable will be used for the component data.

The statement:
Set CF = CreateObject("dyalog.CFILES")

causes OLE to start Dyalog APL and obtain an instance of the dyalog.CFiles OLE
Server object which is then associated with the variable CF. Because this variable is
global, the OLE Server remains in memory and available for use.

The statement

f = Cells (1, 2).Value
gets the name of the file to be opened and puts it into the (local) variable f.
Finally, the statement:

Set File = CF.OpenFile (f)

calls the OpenFile function and stores the result (which is an object) in the global
variable File.

270

Dyalog APL/W Interface Guide

The FRead Procedure

Sub FRead()
c = Cells (4, 2).Value
Data = File.FREAD (c)
For r = 0 To UBound(Data, 1)
For ¢ = 0 To UBound(Data, 2)
Cells(r + 6, ¢ + 2).Value = Data(r, c)
Next c
Next r
End Sub

The statement:

c = Cells (4, 2).Value
gets the number of the component to be read and stores it in the (local) variable c.
The statement:

Data = File.FREAD (c)

This statement calls the FREAD function in the instance of the F i L e namespace that is
connected to the (global) Excel variable File. The result is stored in the variable Data.

The remaining statements copy the data from Data into the spreadsheet.

Chapter 12: OLE Automation Server 271

The FReplace Procedure

Sub FReplace ()
c = Cells (4, 2).Value
Data = Selection.Value
Call File.FReplace(c, Data)
Call Fsize()

End Sub

The statement:

c = Cells (4, 2).Value
gets the number of the component to be replaced and stores it in the (local) variable c.
The statement:

Data = Selection.Value

gets the contents of the selected range of cells and stores it in the variable Data. This
will be a 2-dimensional matrix.

The statement:
Call File.FReplace(c, Data)

calls the FREPLACE function in the instance of the F i l e namespace that is connected
to the (global) Excel variable File.

272 Dyalog APL/W Interface Guide

The FAppend Procedure

Sub FAppend ()
Dim Rslt As Variant
Data = Selection.Value
Rslt = File.FAppend(Data)
Call Fsize()

End Sub

The statement:
Data = Selection.Value

gets the contents of the selected range of cells and stores it in the variable Data. This
will be a 2-dimensional matrix.

The statement:
Rslt = File.FAppend (Data)

calls the FAPPEND function in the instance of the F i L e namespace that is connected to
the (global) Excel variable File. The result of this function is ignored.

Chapter 12: OLE Automation Server 273

Configuring an out-of-process OLEServer for DCOM

Introduction

When you register an out-of-process OLEServer using File/Export or OLERegister,
Dyalog APL automatically updates the Windows registry so that your OLEServer is
immediately accessible to an OLE client application running on the same computer.

If you wish to make the same object accessible to client applications running on
different computers (using distributed COM, or DCOM) you have to install additional
registry entries on the server and on each of the clients.

Once you have established these registries entries, you should be able to access the
OLEServer from Windows 95 or NT client computers in exactly the same way as if it
were local; the client applications need not know where the server is located. In most
cases, these additional registry entries are sufficient. However, the NT and DCOM
security considerations may require the use of dcomcnfg. exe (a Microsoft utility) to
set additional values. For example, if you get E_ ACCESSDENIED errors when
connecting from the client you may need to run dcomcnfg. exe on the server
computer to assign the appropriate launch and access permissions for the OLEServer
object.

The additional registry entries are described below. You may add these to the registry
directly (using regedit.exe) or by running the functions provided in the
DCOMREG . DWS workspace.

DCOM Registry Entries for the Server

On the computer upon which you want the OLEServer to be run, you must add the
following registry entries.

1. Akey under HKEY CLASSES ROOT\AppID whose name corresponds to the
CLSID of your OLEServer object as reported by the value of its ClassID
property. The (Default) value of this key should be the name of the server object. In
addition, you must define a RunAs entry which specifies the manner in which a
client application runs your server. The simplest choice is Interactive User which
specifies that the client application is treated like a normal user.

For example, if you had saved an OLEServer namespace called Loan (c.f.
samples\loan.dws), whose ClassID property had the value {BSOE9D40-
2090-11D1-8F93-0020AFABD95D} the entries would be:

HKEY_ CLASSES_ROOT\AppID\{B80E9D40-2090-11D1-8F93-
0020AFABDY95D}

(Default)=dyalog.Loan

RunAs=Interactive User

274

Dyalog APL/W Interface Guide

An ApplD entry to the HKEY CLASSES ROOT\CLSID key. (Note that this key
will itself have been created by Dyalog APL/W when you saved the workspace)
Once again, CLSID refers to the value of your OLEServer’s ClassID property.
The value of the AppID entry is the (same) CLSID.

Using the same example as above, the entry would be:
HKEY CLASSES ROOT\{B80E9D40-2090-11D1-8F93-

0020AFABD95D}
AppID={B80E9D40-2090-11D1-8F93-0020AFABD95D}

DCOM Registry Entries for the Client

On each of the computers from which you wish to call the OLEServer object as a client,
you must add the following entries.

1.

Two keys under HKEY CLASSES ROOT that identify the object (locally) and
associate it with your OLEServer Note that the local name of the object is arbitrary
and may be different on each client.

HKEY CLASSES ROOT\dyalog.ServerName
HKEY CLASSES ROOT\dyalog.ServerName\CLSID

CLSID is again the CLSID of the OLEServer object (this must be the same as that
of the server machine). dyalog.ServerName can be replaced with whatever name
you want clients to use to refer to this object

Under HKEY CLASSES ROOT\ApplID, a key whose name corresponds to the
CLSID of your server object. The (Default) value of this key should be the name of
the OLE server object (its name on the server computer). In addition, the key
should contain a RemoteServerName entry whose value is the name of the server
computer. For example:

HKEY CLASSES ROOT\AppID\{B80ES9D40-2090-11D1-8F93-
0020AFABDY95D}

(Default)=dyalog.Loan

RemoteServerName=ntsvr

Chapter 12: OLE Automation Server 275

DCOMREG Workspace

The workspace DCOMREG.DWS contains a single namespace called reg that contains
three functions to help register an out-of-process OLE Server for DCOM.

RegDCOMServer

This function should be run on the server computer and is called as follows:
RegDCOMServer ServerName CLSID

Where ServerName is a character string containing the (full) name of the OLEServer
(e.g. dyalog.Loan)and CLSID is a character string containing the CLSID of the
server (the value of it Class ID property). For example:

)LOAD LOAN
.\LOAN saved ...

)COPY DCOMREG
DCOMREG saved

CLSID «('Loan' [OWG 'ClassID')
reg.RegDCOMServer ‘'dyalog.Loan' CLSID

RegDCOM(Client

This function should be run on each of the client computers and is called as follows:
machine RegDCOMClient ServerName CLSID

Where machine is a character vector specifying the name of the (NT) server
computer, ServerName is a character vector containing the (full) name of the
OLEServer (e.g. dyalog.Loan) and CLSID is a character string containing the
CLSID of the server (the value of it Clas s ID property). For example:

CLSID<«'{B80E9D40-2090-11D1-8F93-0020AFABD95D}"
"NTSVR' reg.RegDCOMClient 'dyalog.Loan' CLSID

Config

This niladic function simply invokes the dcomcnfg. exe utility using JCMD.

276 Dyalog APL/W Interface Guide

Calling an OLE Function Asynchronously

Introduction

Functions exported by an OLEServer are executed (by the underlying OLE technology)
in a synchronous manner. This means that the OLE client must wait for the function to
complete before it can continue processing.

In certain cases the client may not be interested in a result from a function and it may be
desirable for client not to have to wait. For example, if a function updates files or

performs a printing task, it would be nice for the client application to continue while the
server performs this task in background, or indeed (using DCOM) on another computer.

For an out-of-process OLE Server, this can be achieved by having the function that is
called directly by the client post an event (using ONQ) onto the event queue and then
return. When the function terminates, APL will take the next event from the queue and
take the appropriate action. If the event has an associated callback function, APL will
invoke it. Note that this happens immediately affer the original function has terminated
and a result (if any) has been returned to the client. This means that the APL OLEServer
continues processing at the same time as the client application.

Note however that while the OLEServer is processing, further OLE requests will be
queued. For example, if the client were to call the same function again immediately, the
function would not be invoked until the original processing has finished and the client
would therefore wait (note that OLE itself will actually time-out after a certain period).
Nevertheless, this technique is an effective way to offload batch processing tasks to a
second (background) APL process or to one running on a different computer.

The OLEASYNC Workspace

The OLEASYNC workspace illustrates this technique. It contains a single namespace
called Async which exports 2 functions (methods), PRINT and ASYNC and two
variables (properties) ERRCODE and COPIES.

The first function, PRINT, prints a specified number of test pages in the background.
PRINT does not actually do any printing. All it does is to associate a second function
PRINT_CB as a callback on a user-defined event 3001 (the choice of 3001 is purely
arbitrary). It then posts an event 3001 onto the queue and returns 0 as its result.

Chapter 12: OLE Automation Server 277

The function also illustrates the use of : Trap. Should either of the statements on lines
[3] and [4] fail, the function terminates cleanly and returns [JDM instead.

V R<PRINT N
[1] A Prints N test pages "in background"
[2] :Trap O
[3] '.'OWS'Event' 3001 'PRINT_CB'N
[4] ONQ'."' 3001
[5] (R ERRCODE)<«0
[6] :Else
[7] (R ERRCODE)<«[IOM [EN
[8] :EndTrap
v

The actual printing is performed by PRINT_CB affer PRINT has returned to the client
and while the client itself continues processing. It too uses : Trap to terminate cleanly
should an error occur.

vV N PRINT_CB MSG;PR;I;M
A Callback function : prints N test pages
:Trap O
'PR'OWC'Printer'
:For I :In N
'PR.'0OWC'Text' (20 60p'Testing') (0 0)
1 ONQ'PR' 'NewPage'
:EndFor
ERRCODE«0O
:Else
] ERRCODE«JEN
] :EndTrap

FTRE TR

Lo U Vs Vo Vo Vo Vo T Vo Vo T |
P, OONOUOITFWN -
[TRETEET

= O

v

Note that the client can (later) query ERRCODE to find out whether or not the operation
succeeded. Indeed, referencing ERRCODE will synchronise the client and server
because the server will have to wait until PRINT_CB completes before it can service
the request for the value of ERRCODE.

The ASYNC function illustrates a slightly different approach and may be used to execute
any expression asynchronously. It simply associates its argument (a character vector) as
an expression to be executed when (user-defined) event 3001 occurs. It then posts this
event onto the queue as before.

vV R«<ASYNC CMD

[1] A Executes expression CMD "asynchronously"
[2] :Trap O

[3] "#.Async'[JWS'Event' 3001 'DO'CMD

[4] ONQ'#.Async' 3001

[5] (R ERRCODE)<«0

[6] :Else

[7] (R ERRCODE)«[IDM [EN

[8] :EndTrap

278

Dyalog APL/W Interface Guide

The callback function DO is invoked (later) when the event 3001 is processed from the
event queue. This happens immediately after the function ASYNC has returned its result
to the client workspace. DO simply executes its left argument, which is the string that
was supplied as the right argument to ASYNC.

v CMD DO MSG
[1] :Trap O
[2] ¢CMD
[3] ERRCODE<«O
[4] :Else
[5] ERRCODE<[EN
[6] :EndTrap
v

You may wonder why it is necessary to use a callback function as opposed to an
execute expression. In particular, why not have ASYNC[3] as follows?

[3] "#.Async'[OWS'Event' 3001 '&CMD'

The reason is that whilst a callback will execute in the instance of the OLEServer
namespace connected to this client (which is what we want), an execute expression will
be executed in the master OLEServer namespace itself.

The namespace contains a fourth function called LPR which is designed to be called via
ASYNC using an expression such as ASYNC 'LPR'.

V LPR;PR;I
[1] :Trap O
[2] '"PR'OWC'Printer'
[3] :For I :In 1COPIES
[4] '"PR.'OWC'Text' (20 60p'Testing')(0 0)
[5] 1 ONQ'PR' 'NewPage'
[6] :EndFor
[7] ERRCODE<«O
[8] :Else
[9] ERRCODE<[]JEN
[10] :EndTrap

v

Note that the number of copies to be printed is defined by the (global) variable COPIES
whose default value is 1. This is done only to illustrate that LPR called via DO runs in
the correct instance of the OLEServer (using your value of COPIES) as opposed to in
the master OLEServer namespace itself.

Chapter 12: OLE Automation Server 279

Testing dyalog.Async
Load OLEASYNC and then register dyalog.Async as an OLE object by doing the
following:

Async.OWC 'OLEServer'
"Async'OWS'ExportedfFns' ('PRINT' 'ASYNC')
"Async'[OWS'ExportedVars' ('ERRCODE' 'COPIES')

Rename the workspace to avoid overwriting the original and)SAVE it.

JWSID MYASYNC
)SAVE

Finally, register the OLE Server using File/Export. Note that dyalog.Async will only
work as an out-of-process OLE Server.

Now clear the workspace and test dyalog. Async using Dyalog APL as an OLE client
application. You could also try calling it from Excel. Note that the results from the
functions PRINT and ASYNC are returned immediately.

JCLEAR
clear ws
'"TEST' [OWC 'OLEClient' 'dyalog.Async'

TEST.PRINT 3

° TEST.ERRCODE

° TEST.COPIES«2
TEST.COPIES

? TEST.ASYNC 'LPR'

Z TEST.ASYNC 99 A Wrong !

TEST.ERRCODE
11

280 Dyalog APL/W Interface Guide

281

CHAPTER 13

Writing ActiveX Controls in Dyalog APL

An ActiveX Control is basically a user-defined control that may be included in GUI
applications and Web Browsers.

This chapter describes how you write ActiveX Controls in Dyalog APL/W.

A Dyalog APL ActiveX Control can be used by any other application that supports
ActiveX. Such applications include Microsoft Visual Basic, Microsoft Excel, Microsoft
Internet Explorer, Netscape Navigator with the NCompass ScriptActive Plug-In and of
course Dyalog APL itself.

This chapter also includes a tutorial which teaches you how to:

Create an ActiveX control in Dyalog APL

Define and Export Properties, Methods and Events
Include your ActiveX control in a Visual basic application
Run your ActiveX control from a Web Browser.

Please note that the Visual Basic examples described in this Chapter were developed
and tested with Visual Basic Version 5 and may require some modification to work with
other versions of Visual basic.

282

Dyalog APL/W Interface Guide

Overview

What is an ActiveX Control ?

An ActiveX Control is a dynamic link library that represents a particular type of COM
object. When an ActiveX Control is loaded by a host application, it runs in-process, i.e.
it is part of the host application’s address space. Furthermore, an ActiveX Control
typically has a window associated with it, which normally appears on the screen and has
a user interface.

An ActiveX Control is usually stored in file with the extension .OCX. The functionality
provided by the control can be supplied entirely by functions in that file alone, or can be
provided by other dynamic link libraries that it loads and calls, i.e. an ActiveX Control
can be stand-alone or can rely on one or more other dynamic link libraries.

What is a Dyalog APL ActiveX Control ?

An ActiveX Control written using Dyalog APL is also a file with a .OCX extension.
The file combines a small dynamic link library stub and a workspace. The functionality
of the control is provided by the functions and variables in the workspace combined
with a dynamic link library version of Dyalog APL named DYALOG120.DLL or
DYALOGI120RT.DLL that is normally installed in the Windows System directory.

Note that an ActiveX Control written in Dyalog APL is a GUI object that has a visible
appearance and a user interface.

To write an ActiveX Control in Dyalog APL, you use [JWC to create an ActiveXControl
object, as a child of a Form. An ActiveXControl is a container object, akin to a Group
or a SubForm, that may contain a whole range of other controls such as Edit, Combo,
Button and Grid objects. You may populate your ActiveXControl with other objects at
this stage and save them in the workspace. However, you may prefer to create these
sub-objects when an instance of the ActiveXControl is created. This happens when your
control is loaded by a host application.

All the functions and variables that represent methods and properties through which the
ActiveXControl object exports its functionality, reside within the ActiveXControl
namespace.

You may turn a workspace containing one or more ActiveXControl objects into an
installable OCX file by selecting the Export menu item from the Session File menu.

Note that a single OCX file can therefore contain a number of ActiveX Controls.

Chapter 13: Writing ActiveX Controls 283

When a Dyalog APL ActiveX Control is loaded by a host application, functions in the
stub load the appropriate Dyalog APL dynamic link library into the host application.
This in turn copies the appropriate parts of the workspace from the .OCX. If the same
host application starts a second (different) ActiveX Control written in Dyalog APL, the
appropriate parts of the second workspace are merged with the first. For further details,
see the section entitled Workspace Management.

The Dyalog APL DLL

ActiveXControls are hosted (executed) by the Dyalog APL DLL. For further details, see
User Guide, Chapter 2.

Instance Creation

When a host application creates an instance of an ActiveXControl object, the new
instance generates a Create event. It is recommended that you make any GUI objects
that you need within the ActiveXControl at this stage, rather than making them in
advance and saving them in the workspace.

The reason for this is that until an instance of an ActiveXControl is created, its Size and
ambient properties are not known. Ambient properties include the font (which may
affect the size and position of the internal controls) and background and foreground
colours. These are specified by the host application and should normally be honoured
by the ActiveXControl. Although when you are developing an ActiveXControl it will
have a specific size, the size of an instance of the object cannot be predicted in advance
because it is determined by the host application. This alone is sufficient reason to delay
the creation of sub-objects inside the ActiveXControl until the Create event occurs.

In addition to the Create event, ActiveXControl objects support a PreCreate event. This
event is always generated before a Create event and signals the creation of a newly
cloned namespace. However, it is reported before the host application has assigned it a
window. You may therefore not use the PreCreate event to create sub-objects, but you
may use it for other initialisation tasks if applicable. Many host applications distinguish
between design mode, when the user may just place controls in a GUI framework, and
run mode when the controls become fully active. Some applications, such as Microsoft
Access, do not require the control to appear fully in design mode, but instead represent
the control by a simple rectangle or bitmap. In these cases, the ActiveXControl will
generate a PreCreate event in design mode and not generate a Create event until run-
time. Others, like Visual Basic, require that the control appears in design mode as it
would appear in the final application. In these cases, the Create event follows
immediately after PreCreate.

284

Dyalog APL/W Interface Guide

Properties, Methods and Events

Typically, an ActiveX Control provides Properties, Methods and Events that allow the
control to be configured and controlled by a host application.

The information about the properties, methods and events exported by an ActiveX
Control is normally stored in its .OCX file. The information includes the name of each
property and its data type, and the name and data type of each method and each of its
arguments. The information for an event is similar to that for a method. In addition to
these obligatory items, it is possible to include help strings and help ids which provide
on-line documentation for the host application programmer

Dyalog APL provides facilities for you to specify all this information in one of two
ways; using dialog boxes or by calling methods.

Firstly, the Properties dialog box for an ActiveXControl object includes three additional
tabs named COM Properties, COM Functions and COM Events. These dialog boxes
allow you to export variables as properties, to export functions as either properties or
methods, and to export events. In addition, the individual Properties dialog boxes for all
the functions and variables in an ActiveXControl namespace have an additional COM
Properties tab which performs the same function. Examples of these dialog boxes are
provided in the tutorial section of this chapter.

Secondly, the ActiveXControl object provides three (internal) methods that allow you to
specify this information by executing APL statements. These methods are named
SetVarlnfo, SetFnInfo and SetEventInfo and examples of their use is given in the
tutorial.

Generating Events

Events that are generated by Dyalog APL GUI objects inside an ActiveXControl are
purely internal events and are not detectable by a host application. However, an
ActiveXControl object may generate an arbitrary event for a host application using (ONQ
with a left argument of 4.

An external event must have a name (numbers are not allowed) and may include one or
more parameters that supply additional information. The name of the event and the
name and data types of each of its parameters must be defined in advance using the
COM Events tab of the Properties dialog box of the ActiveXControl object, or by
calling its SetEventInfo method.

For example, the Dual control described in the tutorial has an event called
ChangeValuel. This event supplies a parameter named Valuel that has a data type of
VT PTR to VT 14 (pointer to an integer). The Dual control generates the event for the
host application by executing the statement:

4 [ONQ '' 'ChangeValuel' Valuel

where Valuel is the new value of its internal Slider control.

Chapter 13: Writing ActiveX Controls 285

A host application may choose to ignore an event generated by an ActiveXControl, or it
may attach a callback function that performs some action in response to the event. A
callback function in the host application receives the parameters supplied by the event
as parameters to the function. If the host application is Dyalog APL itself, the callback
function receives the parameters as part of the event message.

A host application callback function may not return a result. However, it may modify
any of the parameters that were supplied as part of the event message if those
parameters are defined as pointers (VT _PTR to xxx).

The result of 4 [INQ is therefore a vector whose elements correspond to the pointer
parameters in the order they were specified. The result does not contain elements for
parameters that were not exported as pointers and may therefore be empty. In the above
example, the result of 4 [ONQ is a 1-element vector containing the, possibly modified,
value of Valuel.

286

Dyalog APL/W Interface Guide

The Dual Control Tutorial

The ActiveX control we will use in this example is deliberately an extremely simple
one; so that the intricacies of the control itself do not get in the way of the principles
involved. In practice, there are actually very few restrictions concerning the complexity
of the ActiveX control, and it is perfectly possible to package complete multiple-
window Dyalog APL applications in this way.

Your ActiveX control will be called a Dyalog Dual Control and is based on the Dyalog
APL TrackBar object.

The Dual control allows the user to enter a number using a slider, whilst displaying its
value in two different units. For example, you could use it to enter a temperature value
which is displayed in both Centigrade and Fahrenheit units. Equally, the same control
could be used to enter a measurement of length which is concurrently displayed in
centimetres and inches.

Chapter 13: Writing ActiveX Controls 287

Methods

None. (The Dual control provides no methods.)

Properties

The Dual control provides the following properties:

Property Description

Captionl A text string that describes the primary units. This is displayed in
the top left corner of the object.

Caption 2 A text string that describes the secondary or derived units. This is
displayed in the bottom left corner of the object.

Valuel The current value of the control measured in primary units
Value2 The current value of the control measured in secondary units.
Intercept Used to derive Value2 from Valuel

Gradient Used to derive Value2 from Valuel

Min The minimum value of Valuel

Max The maximum value of Valuel

Value2 is derived from Value 1 using the expression:
Value2«Intercept+GradientxValuel
Events

Your Dual control will generate a ChangeValuel event whenever the user alters Valuel
using the slider.

The event message will contain a single parameter (the new value) which may be
modified by the host application.

In other words, every time the value in the control changes, the host application may
detect this as an event and has the opportunity to override the user.

Your Dual control will also generate a ChangeValue2 event whenever the derived value
in the control (Value2) changes. This event is reported for information only.

Introducing the Dual Control

To save time, the basic APL code for the Dual control has already been written.
However, you will have to turn it into an ActiveX control yourself.

1. Load the DUALBASE workspace:
JLOAD SAMPLES\ACTIVEX\DUALBASE

2. Run the function TEST and observe how the 2 Dual controls behave.

288 Dyalog APL/W Interface Guide

3. View the function TEST and observe how 2 separate instances of the Dua
namespace F .D1 and F .D2 have been created using [JOR and [INS.

4. Using the Dyalog APL Workspace Explorer, open up the various namespaces. See
how F.D1 and F.D2 are clones of Duall.

5. Open the function Dual .Create and see how the individual components of the
control are defined.

6. Close the Form F.

Changing Dual into an ActiveX Control

1. Change the name of the workspace to DUAL:
JWSID DUAL

2. Make a new namespace called F
NS F

3. Using the Workspace Explorer, move the Dua l namespace into F, so that Dual is
a child namespace of F.

4. Now edit the function F .Dual . Create and make the following changes:

5. Remove all references to the local variable POSITION. This change is required
because an ActiveX control has no say in its position within its parent. (Hint: use
the Search/Replace dialog to remove all occurrences of POSITION+)

6. Remove the right argument, SIZE and change Create[1] from:

H W<SIZE
to

H W<Size
This change allows the control to fit itself within the space allocated by the host
application.

7. Change Create[4] from:

CHeo##.GetTextSize 'W'
to
CH<>GetTextSize 'W'

The original code was designed to pick up the character height from the parent
Form. The ActiveXControl object does this automatically via its own GetTextSize
method.

After making these changes, the Create function should be as follows:

V Create;H;W;POS;SH;CH;Y1;:Y2
H W<Size
SH«40 A Default Trackbar height
POS«2+[0.5x0[(H-SH)
CH«>GetTextSize'W'

mrersrmsrm
FWN -
| W N) -

Chapter 13: Writing ActiveX Controls 289

= =\ O 00N OO

me ~mersrrrrrrrsrm
o ;m FWNFE O

[y

mreem [L |
OF w N =
—_—t e —_—t

10.

11.
12.

'Slider'0WC'TrackBar'(POS)('Size'SH W)
Slider.(Limits AutoConf)«(Min,Max)0
Slider.(TickSpacing TickAlign)«10 'Top'
Slider.onThumbDrag<«'ChangeValue'
Slider.onScroll«'ChangeValue'
] Y1«<POS[1]-CH+1
] Y2+<POS[1]+SH+1
] 'Capl'[OWC'Text'Caption1(Y1,0)('AutoConf' 0)
] "Cap2'[WC'Text 'Caption2(Y2,0)("'AutoConf' 0)
] 'VI1'0OWC'Text ' (sValuel)(Y1,W)
('"HAlign' 2)('AutoConf' 0)
] CalcValue2
] 'V2'0WC'Text ' (sValue2)(Y2,W)
('"HAlign' 2)('AutoConf' 0)
v
Open the function F.Dual.Build. This function turns the Dual’s parent namespace

into a Form (an ActiveXControl currently requires a parent Form) and turns Dual
itself into an ActiveXControl. It then attaches functions Create and Configure as
callbacks on the Create and Configure events of the ActiveXControl object itself.

vV Build
##.0OWC'Form' ('Coord' 'Pixel')('KeepOnClose' 1)
OWC'ActiveXControl'('Size' 80 200)

('KeepOnClose' 1)

OWS'Event' 'Create' 'Create’
OWS'Event' 'Configure' 'Configure'
ONQ'' 'Create’

v

Run function F.Dual.Bui ld. Youshould see a Form containing a single
instance of the Dual control. Please resist any temptation to play with it at this
stage; we want it to be in its default state for when we save it.

Type the following expression; note that the ClassID, which uniquely identifies
your control, is allocated when you create the ActiveXControl object.

F.Dual.ClassID
Save the workspace (DUAL.DWS).

From the Session File menu, select Export, choose where you want to save your
OCX, and then click Save. It is a good idea to clear the Runtime application
checkbox so that you can debug the control if anything goes wrong.

290

Dyalog APL/W Interface Guide

My Recent
Diocuments

o 2
Yoo =
]
=

My Documents

-

y Computer

Gﬁf

My Metwork.

Sa\j-'iefjn; | | Dwalog1

] G & &

[aplfmt
(Chaplkeys
(Chaplserve
(Chapltrans
(hexcel
[ifonts
(houtprods
[Cisamples
(Ctools
()t _help
(yws
xflib

() xfsre

File name:

Save as type:

DUAL

[Save]

|Au:tive>< Coantrol [*.acx]

| Cancel |

Chapter 13: Writing ActiveX Controls 291

Testing the Dual Control

I.
2.
3.

10.

11.

Close Dyalog APL
Start Visual Basic and click Standard EXE.

Click the right mouse button in the leftmost toolbox and select Components from
the pop-up menu.

Locate the control named Dyalog DUAL Objects, set its check box on and click
OK. This adds a tool for the Dual control to the Visual Basic designer toolbox.

Click on the new tool and drag out an outline on your Form. An instance of the
Dual control will appear.

Repeat step 5 to position a second instance of the Dual control on your Visual
Basic Form.

Select Run/Start from the Visual Basic menubar.
Exercise the 2 Dual controls.
Select Run/End from the Visual Basic menubar.

Click on one of the Dual controls and scroll through its Property list. Notice that all
the properties listed are standard Visual Basic ones; there are no properties (or
indeed methods and events) exported. We will learn how to do this next.

Close Visual Basic; do net save the project.

Defining and Exporting Properties

1.

2.

3.

Start Dyalog APL and load the DUAL workspace (Hint: use the File menu; it will

be the most recently saved file).

Change space into the F . Dua l namespace.
)CS F.Dual

The properties we wish to export are:

Captionl | Description of the primary set of units

Caption2 | Description of the secondary set of units

Valuel The primary value in the control
Min Minimum for Valuel
Max Maximum for Valuel

Intercept | Used to derive the secondary value (Value2)

Gradient Used to derive the secondary value (Value2)

292

Dyalog APL/W Interface Guide

Although we could export all these properties as variables, it is generally more
useful to employ Get and Put functions. The reason for this is that there is no
mechanism to detect when the host application changes a property/variable; nor is
there any mechanism to prevent it assigning an inappropriate value. The Get and
Put functions you need are listed below. To save you time, you can copy them in
from the workspace DUALFNS.

JCOPY SAMPLES\ACTIVEX\DUALFNS

V R«GetCaptioni
[1] R«Captioni

vV SetCaptionl C
[1] Capl.Text«Captioni«C

V R«<GetCaption2
[1] R«Caption2

vV SetCaption2 C
[1] Cap2.Text«Caption2+«C

V R«<GetlIntercept
[1] R«Intercept

V SetlIntercept I
[1] Intercept<«Il
[2] CalcValue2
[3] V2.Text<«sValue2

V R«GetGradient
[1] R<Gradient

V SetGradient G
[1] Gradient<«G
[2] CalcValue2
[3] V2.Text«sValue2

V R«GetValuel
[1] R«<Valuel

vV SetValuel V
[1] 1 ONQ'' 'ChangeValue'V

The Get functions need no explanation; they simply return the value of the
corresponding variable. The Ser functions assign a new value to the corresponding
variable and update the control accordingly. SetValuel does this by enqueuing a
Scroll event to the Slider, which in turn invokes the ChangeVa lue callback.

Chapter 13: Writing ActiveX Controls 293

Display the Object Properties dialog box for the function GetCaptionl. (Hint:
use the Workspace Explorer).

Select the COM Properties tab. As you have not yet defined any OLE attributes,
the default display is as follows:

2]x]|
Faramlame)| e I tmdifier I Dptiu:unall
Resut w1 veRienT =] =]
ezl 1D
= ethodl ¢ Froplket £ Frap Set I
[Exported
Ok I Cancel

Check the Exported option button.
Change the data type for the Result to VT BSTR (a text string).

Check the Prop Get radio button to indicate that this is a Property Get function and
enter the name of the property (Caption1) to which it applies.

294 Dyalog APL/W Interface Guide

Note that it is not necessary for the property name referenced by the Gef and Put
functions to correspond to a variable name, although in this case it does.

The final COM Properties dialog box for GetCapt ion1 should appear as
follows. Click OK to save your changes.

& #.F.Dual.GetCaptionl - Properties 7| x|

F'r-:upertiesl Walue COM Properties |

Pararn Marne Type | Modifier I Optional I

Result WT_BSTR = =l

Help [n]

" Method & PropGet ¢ Prop Set I':E'll:'ti':'ﬂ'I

v Exparted

k. I Cancel

Chapter 13: Writing ActiveX Controls 295

Now do the same for the SetCaption1 function. This function takes an

argument which it expects to be a character vector. It
having a single parameter of data type V7T BSTR; the

must therefore be defined as
parameter name is

unimportant. However, you must ensure that the Optional button is unchecked.

In APL terms, the function does not return a result. H

owever, in OLE terms the

result is defined to be of type V7' VOID. Alternatively, you may just leave this field

empty.

The OLE properties for SetCaption1 should appear as follows:

& #.F.Dual.SetCaptionl - Properties ﬂﬂ
F'r-:upertiesl Walue COM Properties |

Param Mame | Type | Modifier I Optional I
Result YT_vOID = =l
Caption] | ¥T_BSTR = =T

Help 1D |

" Method ¢ PropGet ¢ Prop Set I':al:'ti':'ﬂﬂ

v Exparted

ak. I Canicel

296 Dyalog APL/W Interface Guide

6. An alternative way to define the syntax for exported functions is to use the COM
Functions tab in the Properties dialog box for the ActiveXControl object itself.
(Hint: using the Workspace Explorer, open F so that its contents, Dua L, are
displayed in the right-hand list, select Dua , then click Props). The COM
Functions tab should appear as follows:

B 48.F.0ual - Properties

Froperties | Events | System W ariablesz I
COMEvents | COMFuRglians™™| COM Variables
Fararn Name| Tupe I Modifier I Dptiu:unall

Result |vT_BSTR = =

Help | ID |

ﬂamel j Add-> IGetEaptiDn'l j

¢-Delete Apply

" Method " Prop Get ¢ Prop Set IEaptiu:-n'I

(] I Cancel |

7. The right-hand Combo box allows you to view and edit their syntax for the
exported functions you have already defined. The left-hand Combo box displays
the list of other non-exported functions that are defined in the ActiveXControl.

Chapter 13: Writing ActiveX Controls 297

Select GetCaption2 from the left-hand Combo box, and then click Add. The
dialog box will change to display the default syntax for GetCaption2. Alter the
Result data type to VT_BSTR, select Prop Get, and enter the name of the property,
Caption2, so that the dialog box appears as follows:

B1#.F.0ual - Properties HE
Froperties | Events | System W ariablesz I
COM Events COM Functions | COM Variables
Fararn M arne Tupe | Modifier I Dptiu:unall

Result WT_BSTR = =l

Help | ID |

ﬂamel j Add-> IGetEaptiDnE j

¢-Delete

" Method & Prop Get Prop Set IEaptiDnE

k. I Cancel

298

Dyalog APL/W Interface Guide

The third way to define the syntax for exported functions is to use the SetFnlnfo
method of the ActiveXControl object. This allows you to export functions using
APL code, which in some circumstances may be more convenient than filling in

dialog boxes.

The SetFnInfo method requires the name of the function, its syntax, a help id, a
code which specifies its type (0 = method, 2 = property get, 4 = property put) and,
if appropriate, the name of the property to which it applies, i.e.

SetFnInfo fn syntax helpid type property

The function syntax is a nested array whose first element defines the function’s

result and whose subsequent elements define each of its parameters. Each syntax
specifier is a single character string that defines a data type, or a pair of character
strings. If so, the first string for the result defines a help string, and the first string
for each parameter defines its name.

The following table describes the information we must specify for each of the
functions to be exported:

Exported Functions

Function Result Parameter Get/ Property
Name Type Put

GetCaptionl | VT _BSTR Get (2) | Captionl
GetCaption2 | VT_BSTR Get(2) | Caption2
GetGradient | VT RS Get(2) | Gradient
Getlntercept | VT RS Get(2) | Intercept
GetValuel VT 14 Get(2) | Valuel
SetCaptionl | VT _VOID Captionl VT BSTR | Put(4) Captionl
SetCaption2 | VT _VOID Caption2 VT BSTR | Put(4) Caption2
SetGradient | VT _VOID Gradient VT RS Put(4) | Gradient
SetIntercept | VT _VOID Intercept VT R8 Put(4) Intercept
SetValuel VT VOID Valuel VT 14 Put(4) | Valuel

Chapter 13: Writing ActiveX Controls 299

From this table we can easily construct the corresponding SetFnInfo statements.
For example, the statement for GetCaptionli is:

SetFnInfo 'GetCaptioni' 'VT_BSTR' ~1 2 'Captiont'
Note that ~1 in the 3™ element of the right argument specifies that there is no help
id.

Open the function F .Dual . EXPORT,; this contains statements to export all of the
Get and Put functions we need.

Run the function and save the workspace.

)CS

#
F.Dual.EXPORT
)SAVE

Then, re-export the workspace, updating your .OCX file with all the new
information.

300

Dyalog APL/W Interface Guide

Setting Properties from Visual Basic

I.
2.
3.

Close Dyalog APL
Start Visual Basic and click Standard EXE.

Click the right mouse button in the leftmost toolbox and select Components from
the pop-up menu.

Locate the control named Dyalog DUAL Objects, set its check box on and click
OK. This adds a tool for the Dual control to the Visual Basic designer toolbox.

Click on the new tool and drag out an outline on your Form. An instance of the
Dual control (called Duall) will appear.

In the Properties dialog box, set the Duall properties as follows:

Captionl | Centimetres

Caption2 | Inches
Gradient 0.3937

Intercept 0

Repeat step 5 to position a second instance of the Dual control (Dual2) on your
Visual Basic Form.

Double-click the left mouse button over your Form (Form1). This will bring up the
code editor dialog box. Edit the Form Load() subroutine, entering the following
program statements. This code will be run when Visual Basic starts your
application and loads the Form Form1. It illustrates how you can change the
properties of your Dyalog APL ActiveX control dynamically.

Private Sub Form Load()
Dual2.Captionl = "Inches"
Dual2.Caption2 = "Centimetres"
Dual2.Intercept = 0
Dual2.Gradient = 2.54

End Sub

Now test your application by selecting Run/Start from the menubar. When you
have finished, select Run/End.

10. Exit Visual Basic; do not save the Project or the Form.

Chapter 13: Writing ActiveX Controls 301

Defining and Exporting Events

1.

Start Dyalog APL and load the DUAL workspace (Hint: use the File menu; it will
be the most recently saved file)

Using the Workspace Explorer, open the callback function F .Dual
ChangeValue and alter ChangeValue[2] from:

Valuel«>71tMSG
to
Valuel<o4 ONQ '' 'ChangeValuel' (271tMSG)

Then close the function. Previously, the ChangeVa lue function simply accepted
the new value (of the TrackBar thumb) that it received as the last element of the
event message. Now it generates an external ChangeValuel event for the host
application using 4 [INQ. The host may in turn modify the new value which is
returned as the result of the expression. Thus not only can Dyalog APL generate
events which are detectable by the host application, it can also accept
modifications.

Again using the Workspace Explorer, open the Properties dialog box for the Dual
object itself and select the COM Events tab.

3.1. Enter the name of the event ChangeValuel into the edit box labelled
Name.

3.2. Click Add
3.3. Click the right mouse button over the Result row and select Insert

3.4. Change the name Paraml to Valuel, the Type to VT 14 and the Modifier to
VT PTR. This defines the event to supply a pointer to an integer. The fact that
it is a pointer means that the (integer) parameter may be modified by the host
application.

302 Dyalog APL/W Interface Guide

The final appearance of this dialog box should be as follows:

= 4.F.0ual - Properties

Froperties | Eventz I System Y ariablez I
COM Events COM Functions | COM Variables
Faram Name| Type I Modifier I Dptiu:unall
Result WT_VOID
Walugl WT_I4 vt PR =]
Help | D
MHame IEhange"JaIueﬂ Add-> Chatgel alue j
<-Delete Apply
ak. I Canicel |

4. Click OK, change back to the root space, and save the workspace
)CS #
)SAVE

5.

Select File/Export and rebuild your OCX file.

Chapter 13: Writing ActiveX Controls 303

Using Events from Visual Basic

I.
2.
3.

10.
11.
12.

13.

14.
15.
16.
17.
18.

19.

Close Dyalog APL
Start Visual Basic and click Standard EXE.

Click the right mouse button in the leftmost toolbox and select Components from
the pop-up menu.

Locate the control named Dyalog DUAL Objects, set its check box on and click
OK. This adds a tool for the Dual control to the Visual Basic designer toolbox.

Click on the new tool and drag out an outline on your Form. An instance of the
Dual control (called Duall) will appear.

Select the label tool and add a label object to the Form. Select its Font property and
change it to 14-point bold.

Double-click over Duall to bring up the code window. Notice how Visual Basic
presents you with a skeleton subroutine for the (only) event ChangeValuel which
we have just defined and exported. Notice too that Visual Basic knows that the
single parameter is named Valuel and that its data type is Long (VT 14).

Enter the following code, and then close the code window.
Private Sub Duall ChangeValuel(Valuel As Long)
Labell.Caption=Str(Valuel)

End Sub

Start the application using Run/Start. Exercise the Dual control and observe that
Visual Basic updates the Labell control in response to the ChangeValuel events.
When you have finished, select Run/End.

Double-click over Duall to bring up the code window. Alter the
Duall ChangeValue subroutine to the following, and then close the code window.

Private Sub Duall ChangeValuel(Valuel As Long)
Valuel=2*(Valuel\2)

Labell.Caption=Str(Valuel)

End Sub

Start the application using Run/Start. Exercise the Dual control and observe that
now the slider moves in increments of 2. When you have finished, select Run/End.

Close Visual Basic; do not save anything.

304

Dyalog APL/W Interface Guide

Using Dual in a Web Page

This part of the tutorial can be run using any Web Browser that supports ActiveX.
These include Microsoft Internet Explorer and Netscape Navigator with the NCompass
ScriptActive Plug-In.

1. Start Dyalog APL and load the DUAL workspace again.

)LOAD DUAL
)CS F.Dual

2. Look at the function WRITE_HTML. This function writes a very simple page of
HTML that loads your Dyalog APL ActiveX control. The left argument to the
function is a title for the page; the right argument is the full pathname for the file.
The function references the control by embedding its ClassID in the HTML
document.

3. Now run it:
'Dyalog Dual Control' WRITE HTML 'dual.htm'

4. Close Dyalog APL
5. Start your Web Browser and point it at the file you have just saved by
typing the URL:
file://c:\...dyalog...\dual.htm

6. Close your browser

Calling Dual from VBScript

In the last part of this tutorial, you will learn how you can manipulate the Dual control
from VBScript in a web page.

For this example, we first need to export the Value2 property. This property is only
required to be read (not set) by the VBScript program. Therefore there is no need for it
to be accessed via Get and Put functions and it can be exported (more simply) as a
variable.

1. Start Dyalog APL and load the DUAL workspace again.
)JLOAD DUAL

2. Using the Workspace Explorer, display the Object Properties dialog box for the
variable Value2.

3. Select the COM Properties tab. As you have not yet defined any OLE attributes, the
default display is as follows:

Chapter 13: Writing ActiveX Controls 305

& #.F.Dual .Ualue: 2]x]|

Froperties I Yalue

Faram Kame|| TiEe I Flmdlifier I Dptiu:unall

Resut |vT_voD = =

[Exported

Ok I Cancel

306 Dyalog APL/W Interface Guide

4. Check the Exported option button, and change the data type to VT_RS. This is
important because unlike Valuel, which is an integer, Value2 may be floating-point
and it must be declared as such. The resulting dialog box should appear as below;
click OK to save these settings.

&|#.F.Dual . Ualue? - Properties HE

Froperties I Valug ||

Param Mame | b adifier I O ptional I

Resut |vT_Ra =] =

¥ Exported

Ok I Cancel

Chapter 13: Writing ActiveX Controls 307

The VBScript program is going to need to know whenever the derived value,
Value2, changes, Therefore, the next step is to define the code to generate a
ChangeValue2 event and export it. ChangeValue2 is to be generated whenever
Value2 has changed, so the place to put it is immediately after Value?2 is
recalculated in CalcValue2.

Edit F.Dual.CalcValue2 so that it reads as follows:

vV CalcValue2;SINK
Value2«Intercept+GradientxValuel
:If ~(c'Create')el]SI
SINK«<4 [NQ'' 'ChangeValue2'Value2
:EndIf
v

Note that the function deliberately avoids generating the ChangeValue2 event when
the instance is created. It can tell when this happens because during creation it will
have been called by the Create function. (We could have instead have called
CalcValue2 with an argument, but this will suffice.) This is necessary only because
the simple VBScript example is unable to handle events during object creation

You can export the CalcValue2 event using the COM Events tab on the Properties
dialog box for F.Dual. However, you can also export the event using the
SetEventInfo method.

Type the following:

INFO«'VT_VOID'('Value2' 'VT_R8')
2 ONQ'#.F.Dual' 'SetEventInfo' 'ChangeValue2' INFO

(You may wish to confirm that the event is registered correctly using the dialog
box)

Save the workspace:

)CS #

)SAVE
Finally, you need to rebuild the OCX file to reflect these changes, so select
File/Export and rebuild your OCX file.

308

Dyalog APL/W Interface Guide

10.

L | s | s ¥ s s s s ¥ s ¥ s ¥ e W s W s | s | s | s ¥y |

PR PP EPEPPRPP,POONOC0OITFWN -
OO FWNF O
i i I

The HTML page containing the example VBScript program is supplied in the file
samples\activex\dualvb.htm. However, the Dual object to which the HTML refers
(via its ClassID) is not the same object as your Dual object which has its own
unique ClassID. We must update the file, changing the existing ClassID to the
ClassID of your own Dual object. You can do this using the UPDATE_CLASSID

Look at the function F .Dual .UPDATE_CLASSID. This function simply updates
an HTML file with the ClassID of the current (ActiveXControl) namespace.

v {NEW}UPDATE_CLASSID FILE;NID;HTML;CLASSID;I
Updates HTML file, replacing all object
references with the ClassID of the current
(ActiveXControl) namespace.

Optional left argument is the name of the
new HTML file. If omitted, it updates the
file in-situ.

o)

DDO®DOD>DO®DD

NID«<FILE [NTIE O

HTML<[ONREAD NID,82, ([ONSIZE NID),O
:If 2=[ONC'NEW'

] ONUNTIE NID

] :Trap 22

] NID<NEW [ONCREATE O

] :Else

] NID«<NEW [NTIE O

] :EndTrap

:EndIf

[18] I<'clsid:'ef

OAVI (OAViw)-48xwe[A]
}JHTML

[21] I«I/wpl
[22] :If xpI

[23] I+<5

[24] CLASSID«14~14[WG'ClassID’

[25] HTML[,Io.+1pCLASSID]«((pI)xpCLASSID)pCLASSID
[26] HTML [INREPLACE NID 0

[27] :EndIf
[28] [ONUNTIE NID

12.
13.

v

. Now run the function, making a new dualvb.htm file in your current directory.

)CS #.F.Dual
"dualvb.htm' UPDATE_CLASSID 'samples\activex\dualvb.htm'

Close Dyalog APL.

Start your Web Browser and point it at the file you have just saved by typing the
URL: file://c:\...dyalog...\dualvb.htm

Chapter 13: Writing ActiveX Controls 309

14.

15.

The Web page displays two instances of your Dual control, one called plank _length
labelled Length (Metres to Centimetres) and the other named plank width and
labelled Width (Inches to Centimetres). The initialisation of these controls is
performed by the window onload () which is run when the page is loaded into
the Web Browser.

Sub window_onload ()

plank length.Captionl = "Metres"
plank length.Caption2 = "Centimetres"
plank length.Gradient = 100

plank length.Intercept = 0

plank width.Captionl = "Inches"

plank width.Caption2 = "Centimetres"
plank width.Gradient = 2.54

plank width.Intercept = 0

end sub

Whenever you change one of these dimensions, the corresponding Dual control
generates a ChangeValue2 event after the derived value (Value2) in centimetres is
recalculated. Each of the Dual controls has a VBScript callback function attached
which calculates the new area. These are as follows:

Sub plank length ChangeValue2 (Value2)
Result.Plank Area.value = Value2 *
plank width.Value2

end sub

Sub plank width ChangeValue2 (Value2)
Result.Plank Area.value=Value2 * plank length.Value2
end sub

16. When you have finished exercising the two Dual controls, close your Web

Browser.

310 Dyalog APL/W Interface Guide

311

CHAPTER 14

Shared Variables (DDE)

Introduction to DDE

Dynamic Data Exchange (DDE) is a protocol supported by Microsoft Windows that
enables two applications to communicate with one another and to exchange data.

DDE has largely been superseded by COM, but continues to be supported by
Dyalog APL for backwards compatibility. For new applications, use COM.

Two applications exchange information by having a conversation. In any conversation,
there is a client, which is the application that initiates the conversation, and a server;
the application that is responding to the client. An application may partake in several
conversations at the same time, and may play the server role in some and the client role
in others. Indeed, it is perfectly reasonable for two applications to have two
conversations in which each acts as the server in one and the client in another.

Most conversations are effectively one-way in that data flows from the server to the
client. However, conversations are potentially bi-directional and it is possible for the
client to send data to the server. This is often described as poking data.

To initiate a DDE conversation, the client application must specify the name of the
server and the subject of the conversation, called the topic. The combination of
application and topic uniquely identifies the conversation. In most applications that
support DDE, the topic is the "document name". For example, Microsoft Excel
recognises the name of a spreadsheet file (.XLS or .XLC) as a topic.

During a conversation, the client and server exchange information concerning one or
more items. An item identifies a particular piece of data. For example, Microsoft Excel
recognises cell references (such as R1C1) as data items in a conversation. Throughout a
conversation, the client may specify how it wishes to be updated when the data in the
server changes. There are three alternatives. Firstly, the client can explicitly request the
value of an item as and when it needs it. This is described as a cold link. Alternatively,
a client may ask the server to supply it with the value of a particular item whenever its
value changes. This is called a hot link.

312

Dyalog APL/W Interface Guide

Finally, it may ask the server to notify it whenever the value of an item changes, to
which the client may respond by asking for the new value or not. This is termed a warm
link.

In addition to providing a means for exchanging data, DDE provides a mechanism for
one application to instruct another application to execute a command. This is
implemented by sending a DDE_ EXECUTE message. It is important to understand that
the effect of the command is local to the application in which it is executed, and that the
recipient of the message does not return a result to the originating application. It does
not work like the APL execute function.

Shared Variable Principles

Shared Variables are part of the APL standard, although strictly speaking as an optional
facility. They provide a comprehensive mechanism for communicating between two
APL workspaces, or between APL and a co-operating non-APL application. Despite
some conflicts between Shared Variable concepts and DDE, this standard APL
mechanism has overriding advantages as the basis for a DDE interface. The main
benefit is that Shared Variables provide a general basis for developing communications
using a variety of protocols, of which DDE is but a single example. Dyalog APL
communications are not therefore designed for and limited to DDE, but can be extended
to other protocols which are appropriate in different environments.

Most mainframe APL users will already be familiar with Shared Variables and will
need no introduction to their concepts. New APL users, or those whose experience has
been only of PC-based interpreters, may find the following introduction helpful.

Introduction

It is easiest to consider Shared Variables between two APL workspaces. A Shared
Variable is simply a variable that is common to and visible in two workspaces. Once a
variable is shared, its value is the same in both workspaces. Communication is achieved
by one workspace assigning a new value to the variable and then the other workspace
referencing it. Although there is no explicit send or receive, it is perhaps easier to think
of things in this way. When you assign a value to a shared variable, you are in effect
transmitting it to your partner. When you reference a shared variable, you are in fact
receiving it from your partner.

This discussion of shared variables will refer to the terms set and use. The term set
means to assign a (new) value to a variable, i.e. its name appears to the left of an
assignment arrow. The term use means to refer to the value of a variable, i.e. its name
appears to the right of an assignment arrow.

Chapter 14: Shared Variables (DDE) 313

Sharing a Variable

Variables are shared using the system function [JSVO. This is a dyadic function whose
right argument specifies the name (or a matrix of names) of the variable, and whose left
argument identifies the partner with whom the variable is to be shared. In mainframe
APL, you identify the partner by its processor id. For example, the following statement
means that you offer to share the variable X with processor 123.

123 dsvo 'X'

A single JSVO by one workspace is not however sufficient to make a connection. It is
necessary that both partners make an offer to share the variable. Thus if you are process
345, your partner must complete the coupling by making an equivalent shared variable
offer, e.g.

345 [svo 'X'

The coupling process is symmetrical and there is no specific order in which offers must
be made. However, there is a concept known as the degree of coupling which is
returned as the result of JSVO. The degree of coupling is simply a count of the number
of processes which currently have the variable "on offer". When the first process offers
to share the variable, its JSVO will return 1. When the second follows suit, its JSVO
returns 2. The first process can tell when coupling is complete by calling JSVO
monadically at a later point, as illustrated below.

Process 345 Process 123
123 [JSvo 'Xx'
1
345 [Jsvo 'Xx!'
2
gsvo 'x'
2

In this example, both partners specified exactly whom they wished to share with. These
are termed specific offers. It is also possible to make a general offer, which means that
you offer to share a particular variable with anyone. Coupling can be established by any
other processor that offers to share the same variable with you, but notice that the other
processor must make a specific offer to couple with your general one. The rule is in
fact, that sharing may be established by matching a specific offer with another specific
offer, or by matching a specific offer with a general offer. Two general offers cannot
establish a connection.

314

Dyalog APL/W Interface Guide

The State Vector

One of the interesting things about Shared Variables, is that both APL workspaces are
equal partners. Either of them is allowed to change the value of a shared variable, thus
communication is two way. In any communication of this sort, it is essential to have a
mechanism to keep things in step. If not, it is possible for one partner to miss something
or to receive the same message twice. In some applications this doesn't matter. For
example, if one APL workspace is simply monitoring the current value of a particular
currency, it does not matter that a second workspace doesn't see all of the fluctuations as
they occur. It is important only that the latest value can be referenced when it is needed.
Contrast this with a trading application in which the trading workspace registers each
transaction with a second workspace which monitors and stores the transactions on a
database. Clearly in this case it is essential that each and every transaction is properly
communicated and recorded.

Synchronisation is provided by two system functions, JSVS and [JSVC. JSVS reports
the current value of a shared variable's State Vector. This provides information
concerning the state of the variable from each partner's point of view. The second
function, JSVC, allows you and your partner to specify interlocking that enforces the
level of synchronisation required by your application.

Each shared variable has a state vector which indicates which partner has set a value of
which the other is still ignorant, and which partner is aware of the current value. The
current state of a shared variable is reported by the monadic system function OSVS. Its
argument is the name of the shared variable. Its result is a 4-element Boolean vector
which specifies the current state vector, i.e.

state <« [JSVS name

The state vector will have one of the following values:

00O00O The variable is not shared

0011 Both partners know the current value

1010 You have set the value, but your partner has yet to use (read) it.

0101 Your partner has set the variable but you have not yet used (read) it.

Chapter 14: Shared Variables (DDE) 315

It may not be immediately apparent as to how the information provided by SVS can be
used. The answer, as we will see later, is that communications generates events. That is
to say, when your partner sets a shared variable to a new value or references a value that
you have set, an event is generated telling you that something has happened. (JSVS is
then used to determine what has happened (set or use) and, if you have several variables
shared, which one of the variables has in some way changed state. A shared variable
state change is thus the trigger that forces some kind of action out of the other process.

Access Control

[SVS is not sufficient on its own to synchronise data transfer. For example, what if the
two partners both set the shared variable to a different value at exactly the same point in
time ? This is the role of JSVC which actually assures data integrity (if required) by
imposing access controls. Its purpose is to synchronise the order in which two
applications set and use the value of a shared variable.

In simple terms, [JSVC allows an application to inhibit its partner from setting a new
value before it has read the current one, and/or to inhibit its partner from using a
variable again before it has been reset.

[SVC is a dyadic system function. Its right argument specifies the name of the shared
variable; its left argument the access control vector, i.e.

access [ISVC name

The access control vector is a 4-element Boolean vector whose elements specify access
control as follows:

[1] 1 means that you cannot set the variable until your partner has used it.

[2] 1 means that your partner cannot set the variable until you have used it.

[3] 1 means that you cannot use the variable until your partner has set it.

[4] 1 means that your partner cannot use the variable until you have set it.

In principle, each of the two partners maintains its own copy of the access control
vector using JSVC. Control is actually imposed by the effective access control vector
which is the result of "ORing" the two individual ones. From your own point of view,
the effective access control vector is:

(your 0OSVC) v (your partner's [OSVC)[3 4 1 2]

316

Dyalog APL/W Interface Guide

Whenever either of the partners attempts an operation (set or use) on a shared variable,
the system consults its effective access control vector. If the vector indicates that the
operation is currently permitted, it goes ahead. If however the vector indicates that the
operation is currently inhibited, the operation is delayed until the situation changes.

For example, suppose that the effective access control vector is (1 0 0 1). This prevents
either partner from setting the shared variable twice in a row, without an intervening use
by the other. The purpose of this is to prevent loss of data. Suppose now that one
workspace assigns the value 10 to the shared variable (which is called DATA), i.e.

DATA « 10

Then, before the partner has referenced the new value it attempts to execute the
statement:

DATA <« 20

APL will not execute the statement. Instead it will wait (indefinitely if required) until
the partner has received the first value (10). Only then will the second assignment be
executed and processing continued. Effectively one workspace stops and waits for the
other to catch up.

Similarly, suppose that the effective access control vector is (0 0 1 1). This means that
neither partner can use the variable twice in succession without an intervening set by
the other. This type of control is appropriate where each set corresponds to an
individual transaction, and you want to prevent transactions from inadvertently being
duplicated.

Suppose now that one workspace references the shared variable (which is called DATA),
ie.

TRANSACTION <« DATA

Then, soon after, it executes the statement again, but without an intervening set by its
partner, i.e.

TRANSACTION <« DATA

This time, the reference to DATA is inhibited, and the workspace waits (indefinitely if
necessary) until the partner has assigned a new value. Only then will the second
reference be executed and processing continued. Again, one workspace stops and waits
for the other.

The purpose of JSVC is to synchronise data transfer. It is particularly useful where
timing considerations would otherwise cause data loss. However, an incorrect
application which makes inappropriate use of [JSVC may hang.

Chapter 14: Shared Variables (DDE) 317

APL and

A second type of problem can occur during the development of an application that uses
shared variables. If the program is interrupted by an error, an attempt to display the
value of a shared variable counts as a "use" and, if inhibited, will hang. In applications
that use interlocking, it is recommended that a shared variable is explicitly "used" by
making an assignment to a temporary variable which can then be referenced freely.

This is the theory; we will now see how DDE, by its very nature, imposes certain
limitations in practice.

DDE in Practice

The interface between Dyalog APL/W and DDE is provided by Shared Variables which
are implemented as closely as possible in accordance with the APL Standard. There are
however some conflicts between Shared Variables and the way in which DDE works.
These impose certain restrictions.

The APL Shared Variable concept is based upon the peer-fo-peer communications
model where each partner has equal rights and equal control. DDE however is based
upon the client-server model whereby data (normally) flows from server to the client at
the client's request. This in turn has two major implications. Firstly, a client must
initiate a DDE conversation. A server may only respond to a request from a client for a
connection; it may not itself start a conversation. Secondly a server cannot specify to
which client it wishes to communicate. In terms of the APL standard, this means that if
a shared variable is to act as a server it must be made the subject of a general offer. A
shared variable that is to act as a client must be the subject of a specific offer
Furthermore, as in any DDE conversation there must be one server and one client, it
means that two APL workspaces can share variables only if one makes a general offer
and one makes a specific offer.

An APL application registers itself as a potential server, or initiates a DDE conversation
as a client, by making a Shared Variable offer using [JSVO. The offer is either a general
offer, which corresponds to a DDE server, or a specific offer which is a client.

Note that, as mentioned in the introduction, DDE does not preclude two-way data
transfer, despite its insistence on a client-server relationship. Thus the establishment of
a shared variable as a server or as a client does not force the data transfer to be one-way.
The choice of whether APL is to act as a server or as client may in practice be
determined by convenience.

318

Dyalog APL/W Interface Guide

APL as the Client

To initiate a DDE conversation with a server, you use [JSVO as follows:
'DDE:appln|topic' OSVO 'var item'

where:
appln s the name of the server application.

topic is the server topic (usually the name of a document).

var is the name of the APL variable.
item is the name of the item with which the variable is to be associated
(shared).

For example, the following statement would associate the variable SALES with the
block of cells R1C1 to R10C10 in an Excel spreadsheet called "Budget".

'DDE:EXCEL |BUDGET' [ISVO 'SALES R1C1:R10C10'
2

Note that the result of SVO is the degree of coupling. This has the value 2 if the
connection is complete (the server has responded) and 1 if it has not. In practice it is a
little more complicated than this, because the result actually depends upon the type of
DDE link that has been established.

In principle, the type of link is determined by the client. However, because the server
may refuse to accept a particular type of link, it can actually be a result of negotiation
between the two applications.

When the shared variable is offered as a client, APL always requests a warm link from
the server. If the server refuses a warm link, APL instead requests the current value of
the data item (a cold link), and, if the server responds, APL stores the value in the
variable. In either case, the degree of coupling is set to 2 if the connection was
successful.

Chapter 14: Shared Variables (DDE) 319

Executing Commands in the Server

As mentioned in the Introduction, it is possible for a client to instruct a server to execute
a command by sending it a DDE _EXECUTE message. This is intended to allow the
client to condition the environment in which the server is operating and not (as one
might first expect) to execute a command which directly returns a result. In fact the only
response from a server to a DDE EXECUTE message is a positive or negative
acknowledgement, the meaning of which is application dependent.

You can establish a shared variable as a channel for sending DDE EXECUTE
messages by assigning it a surrogate name of ' ¢ ', the APL execute symbol. After
sharing, you send commands to the server as DDE_EXECUTE messages by assigning
them, as character vectors, to the shared variable. Following each such assignment, the
value of the shared variable is reset to 1 if the server responded with a positive
acknowledgement, or 0 if it responded with a negative acknowledgement. This should
be interpreted with reference to the server application documentation. Note that most
applications require that commands are surrounded by square brackets but several
commands may be sent at a time. The following examples use Microsoft Excel Version
2.0 as the server :

Establish a link to Excel's SYSTEM topic :

'DDE:EXCEL|SYSTEM' [OSVO 'X &'
2

Instruct EXCEL to open a spreadsheet file :

X<'[OPEN(c:\mydir\mysheet.xls)]'
X
1

Instruct EXCEL to select a range of cells :
X<'[SELECT("R1C1:R5C10")]"
X

1
Carry out two commands in one call :

CMD1+«'[OPEN(c:\mydir\mysheet.xls)]"'
CMD2+«'[SELECT("R1C1:R5C10")]"
X<CMD1,CMD2

X

320

Dyalog APL/W Interface Guide

APL as the Server

A DDE conversation is initiated by a client, and not by a server. If you wish to act as a
server, it is therefore necessary to register this fact with the APL interpreter so that it
will subsequently respond to a client on your behalf. This is done by making a general
offer using SVO as follows:

'DDE:"' [OSVO 'var item'

where:

var is the name of the APL variable.

item is the name of the item with which the variable is to be associated
(shared).

Notice that in this case, the left argument to JSVO specifies only the protocol, ' DDE .
APL automatically defines the application name and topic to be 'DYALOG' and
[OWSID respectively. The DDE ifem is specified in the right argument as either the name
of the variable, or, optionally, as its external name or surrogate.

To allow another application to act as a client, you must have previously published the
name(s) of the items which are supported. For example, if your APL application
provides SALES information, the following statement could be used to establish it as a
server for this item:

'DDE:"' [OSVO 'X1 SALES'
1

In the case of a single general offer, the result of JSVO will always be 1. When
subsequently a client application attempts to initiate a conversation with a server with
the application name 'DYALOG' and topic OWSID, the APL interpreter will respond
and complete the connection.

At this point, if and when the client has requested a hot or warm link to the item SALES,
the degree of coupling (which is reported by using [JSVO monadically) becomes 2, i.e.

gsvo 'x1'

Chapter 14: Shared Variables (DDE) 321

State and Access Control

Earlier, we have seen how shared variable state and access controls are used to ensure
effective communication between two APL tasks. How do these concepts apply in the
DDE environment when APL is using shared variables to communicate via DDE with
both other APL workspaces, and with non-APL applications?

The initial state of a shared variable on the completion of sharing depends upon whether
your variable is a server or a client. If it is a server, the initial state vector is (1 0 1 0)
which means that you have set (and know) the value, but your partner has yet to use it.
If the variable is acting as a client, the initial state vector is (0 1 0 1). This implies that
your partner has set the value but you have yet to use it.

As your partner can be a non-APL application which does not share the concepts of set
and use, it is necessary to define a rule or set of rules from which APL can reasonably
infer such actions.

During a DDE conversation, the physical transfer of data from one application to
another is achieved using DDE DATA messages. When a DATA message is sent, the
receiving task normally returns an ACK (acknowledgement) message. APL uses the
DATA and ACK messages to control Shared Variable access.

When an assignment is made to a shared variable, APL sends a DATA message to the
second process. When it receives back an ACK message, APL infers that this means
that the partner has used the variable. When APL receives a DATA message from the
other process it infers that the partner has set the variable. However, it only responds
with an ACK message when the new value of the variable is referenced by the
workspace.

Let's see what this means if two APL workspaces are involved.

Dyalog APL/W Interface Guide

Server Workspace

Client Workspace

Make general offer
X<42
'DDE:"' [SvO 'X'
gsvs 'x'

0 000 A No partner

gsvc 'x'
0 0 0 0 A No access control

ack --->
ack --->
gsvs 'x'

1 01 0a I know, he doesn't

Make specific offer
'DDE:DYALOG|SERVER' [OSVO 'X'

<--- Initiate ---

<--- please advise on change

2 @ Offer accepted

gsvs 'x!
01 0 1A He knows, I don't

-—- data (42) --->

gsvs 'x'
0 01 1a We both know

Client requests data

Y « X
<---req ---
<--- ack ---

gsvs ‘X'

0 01 1a We both know

Server changes data
X « 20
--- data has changed --->

gsvs 'x'
1 01 0a I know, he doesn't

<--- ack ---

gsvs 'x!
01 0 1A He knows, I don't

--- data (20) --->

gsvs 'x'
0 01 1a We both know

Client requests data

Y « X
<---req ---
<--- ack ---

gsvs 'x!

0 01 1a We both know

Chapter 14: Shared Variables (DDE) 323

As you can see, this has the desired effect, namely that an APL workspace sets the value
of a shared variable by assignment to it and uses it by reference to it. The mechanism of
using the DATA and ACK messages to imply set and use also works with non-APL
applications which do not (in general) support these concepts.

Access control between two APL workspaces is imposed by each workspace acting
independently. Whenever either workspace changes its JSVC, the information is
transmitted to the other. Thus both workspaces maintain their own copy of the effective
access control vector upons which to base decisions.

Server Workspace

Client Workspace

No access control
gsvc 'Xx'
0 0 00 A No access control

No access control
gsvc 'Xx'
0 0 0 0 A No access control

Client makes multiple requests for data

Y<X
Y<X
Server can set several times
X<30
X<40
Set access control
1 00 1 0svc 'Xx'
--- change in SVC -->
gsvc 'x' gsvc 'Xx'

1 00 1a I cannot set until
he has used; he
cannot use until I
have set

0 1 1 0na He cannot set until
I have used; I
cannot use until he
has set

Client requests data

Y « X
<---req ---
(hangs waiting for data)

Server changes data

X « 30
--- data (30)

-——

<--- ack ---

YA data received
30

324 Dyalog APL/W Interface Guide

Server Workspace Client Workspace

Server changes data

X « 40
--- data has changed --->
<--- ack ---

Server tries to change data again
X « 50
--- data has changed --->

(assignment hangs waiting for ack)
Y « XA use data

<---r18q ---
--- data (40) --->
<--- ack ---
XA assignment done YA data received
50 40

Where the second process is a non-APL application, the effective access control vector
is maintained only by the APL task and access control can only be imposed by APL. At
first sight, it may seem impossible for APL to affect another application in this way, and
indeed there are severe limitations in what APL can achieve. Nevertheless, effective
access control is possible in the case when it is desirable to inhibit the partner from
setting the value twice without an intervening use by the APL task.

This is simply achieved by withholding the ACK message. Thus if APL receives a
DATA message from its partner at a time when a set by the partner is inhibited, APL
registers the new value but withholds the acknowledgement. Only when the inhibitor is
removed will APL respond with an ACK. (Users with DDESPY will observe that this is
actually implemented by APL re-transmitting the DATA message to itself when the
inhibitor is removed).

Assuming that the second application waits for the acknowledgement before
proceeding, this will cause the desired synchronisation. Naturally, this cannot be
entirely guaranteed because APL has no direct control over a non-APL program.
Indeed, when an application transmits a DATA message, it can include a flag to indicate
that an acknowledgement is neither expected nor required. In these circumstances, APL
is powerless to impose any access control.

Note that APL does not (and cannot) have any control over successive internal
references to the data by a non-APL application.

Chapter 14: Shared Variables (DDE) 325

The rule for establishing your partner's initial JSVC is as follows :
e Ifthe DDE link is a warm link, your partner's [JSVC is initially (0 0 0 0).
e Ifthe DDE link is instead a hot link, your partner's [JSVC is initially (1 0 0 1).

This works in practice as follows :

Server = APL, Client = APL

You made a general offer which has been accepted by another APL workspace, e.g.
'DDE:"' [OSVO 'DATA'

Two APL tasks always use a warm DDE link. Therefore, initially, both JSVCs are (0 0
0 0). Control is (optionally) imposed by both partners subsequently setting [JSVC.

Server = APL, Client = another application

You made a general offer which has been accepted by another application, e.g.
'DDE:' [SVO 'DATA'

The client application establishes the strength of the link (warm or hot). If it is a warm
link, the initial value of the client's JSVC is (0 0 0 0) and, as the client has no means to
change it itself, control may only be imposed by the server APL task. If the client
establishes a hot link, its initial JSVC is (1 0 0 1). As it has no means to change it, and
as the APL server task cannot (by definition) change it, the client's JSVC retains this
setting for the duration of the conversation. (1 0 0 1) means that both partners are
inhibited from setting the value of the shared variable twice in a row without an
intervening use (or set) by the other. Given that the other application has requested a hot
link (give me the value every time it changes) it is reasonable to assume that the
application does not want to miss any values and will happily accept new data every
time it is changed.

Server = another application, Client = APL

You made a specific offer to another application, e.g.
'DDE:EXCEL|SHEET1' [OSVO 'DATA R1C1:R3Ch'

In this case, APL as the client will request a warm DDE link. If the server fails to agree
to this request, APL will ask for the current data value and, whether or not the server
responds, will not establish a permanent link. Thus the only possibility for a permanent
connection is a warm link. This in turn means that the server's JSVC will be (0 0 0 0).
Furthermore, as the server has no means to change it, it's JSVC will remain (0 0 0 0) for
the duration of the conversation. Control is therefore imposed solely by APL.

326

Dyalog APL/W Interface Guide

Terminating a Conversation

A DDE conversation is terminated by "un-sharing" the variable. This can be done
explicitly using [JEX or JSVR. It is also done automatically when you exit a function in
which a shared variable is localised.

Example: Communication Between APLs

The following instructions will allow you to explore how the DDE interface can be used
to communicate between two Dyalog APL/W workspaces.

1. Start two separate APL sessions and arrange their windows one above the
other so that they do not overlap.

2. Select the top window and type :

)WSID SERVER

A<?5 5p100 o A

"DDE:' [SVO 'A EXTNAME'
1

The result of JSVO is 1, indicating that no client has yet joined in the
conversation.

3. Select the lower window and type :

JWSID CLIENT
'DDE:DYALOG|SERVER' [0SVO 'B EXTNAME'
B

The result of SVO is 2 indicating that the connection with the SERVER
workspace has been successfully made. Now type B. It will have the same value as A in
the upper window.

4. Select the top window (SERVER) again and type :
A<EA
gsvs A’
1010

Note that the result of JSVS indicates that the SERVER has set A, but the
CLIENT has not yet referenced the value.

Chapter 14: Shared Variables (DDE) 327

5. Select the lower window (CLIENT) and type :
gsvs 's'
0101
B
gsvs '’
0011
Note how, after referencing the shared variable, its state has changed.
6. Still in the CLIENT workspace, write the following function called FOO:
vV FOO

[1] A This function gets called on event 50 (DDE)
[2] -(0 0 1 1=[SVS'B')/0 m Exit if no change
[3] B

\4

Then, to attach FOO as a callback and to "wait"...
"." OWS 'Event' 50 'FOO'
DDQ 1 . 1
7. Now switch to the upper window (SERVER) and type :
A<BA

Type this expression repeatedly, or experiment with others. Note how
changing A generates a DDE event (event number 50) on the system object ' . ' in
CLIENT, which in turn fires the callback.

10. To interrupt (0DQ in the CLIENT, type Ctrl+Break or select "Interrupt" from
the Action menu in the Session Window.

328

Dyalog APL/W Interface Guide

Example : Excel as the Server

The following instructions will allow you to explore the DDE interface with another
application (in this case Microsoft Excel) acting as the server.

1. Start Excel and enter some data into (say) the cells R1C1 to R4C3 of the
spreadsheet "SHEET1". The data can be character strings and/or numbers. Note that if
the spreadsheet is NOT called "SHEET1", the function RUN below should be
changed accordingly.

2. Start Dyalog APL/W (clear ws).

3. Size your windows so that both the Excel window and the APL Session
window can be viewed comfortably at the same time.

4. Type the following statement in the APL Session :
'DDE:EXCEL|SHEET1"' [OSVO 'X R1C1:R4C3'
2

The result should be 2. If not, please check that you have typed the expression
correctly, and that the name of the topic (SHEET1) corresponds to the spreadsheet
name displayed by Excel.

Note that the character between "EXCEL" and "SHEET 1" may be the ASCII
pipe symbol or the APL stile. Also note that in some countries, you use Lnn instead of
Rnn to refer to rows in Excel. You may therefore need to use the following expression
instead:

'DDE:EXCEL|SHEET1' [OSVO 'X L1C1:L4C3'
2

5. Remaining in the APL Session, type X. It is a matrix containing as many cells
as you have requested in the JSVO statement. If you entered any character strings, X
will be nested.

6. Switch to your Excel window and change the data in one or more of the cells.

7. Switch back to the APL Session and look at X again. It will contain the new
data.

Chapter 14: Shared Variables (DDE) 329

8. Look at the state of the shared variable X using JSVS. It indicates that both
partners are aware of the current value of X.
gsvs 'x'
0011
9. Now switch to Excel and change the data again. Repeat step 8. Note the result
indicates that Excel has changed X, but you have not yet referenced it.
gsvs 'x'
0101
10. Type the expressions :
‘.'" OWS 'EVENT' 50 1
DDQ] .]
11. Now switch to Excel and change the data again. Note that the JDQ terminates
and returns a result.
50
12. Switch back to APL and create the following function :
vV FOO MSG

[1] 'MSG IS ' MSG
[2] 'X IS' X

v
Then type :
‘." OWS 'EVENT' 50 'FOO'
goQ'.'
13. Now switch back to Excel and change the data. Note that every time you

change a cell, the DDE event fires your callback function FOO. In fact the function is
fired twice because it itself alters the STATE of X by referencing it. This causes a
second DDE event.

14. Switch back to APL, and type Ctrl+Break or select "Interrupt" from the Action
menu to interrupt [1DQ.

330 Dyalog APL/W Interface Guide

Example : Excel as the Client

The following instructions will allow you to explore the DDE interface with APL acting
as the server to another application; in this case Microsoft Excel.

1. Start APL (clear ws) and type the expressions :

JWSID MYWS
X<12
'DDE:"' [SVO 'X SALES'

The workspace MUST have a name as this is broadcast as the DDE topic. Note
that it is currently essential that X contains a value before you make the offer.
The result of JSVO is 1, indicating that no client has yet joined in the

conversation.

2. Start Excel (empty spreadsheet).

3 Size your windows so that both the Excel window and the APL Session
window can be viewed comfortably at the same time. Do NOT iconify either
one.

4. Select the Excel window and type the following formula into the first cell :

=dyalogjmyws!sales

the value of X (12) will now appear in the cell.

5. Switch to the APL Session and type :
gsvo'Xx'
2
Notice that now that Excel has made the connection, the degree of coupling is
2.
6. Now type :

X<3k4

You will immediately see the new value appear in your spreadsheet.

Chapter 14: Shared Variables (DDE) 33

Create the following function in your workspace :

VFOO MSG
[1] MSG
[2] X<OAI[2]
v
Then type the expressions :
'.'" OWS 'EVENT' 50 'FOO'
DDQ] . 1
The link between Excel and APL is a warm link (the type of link is determined
by the client, so other applications may behave differently). This means that
APL will send the new value of X (SALES) to Excel every time it changes. If
you have DDESPY.EXE, you can verify what is happening.

To interrupt [0DQ, type Ctrl+Break or select "Interrupt" from the Action menu
in the Session Window.

332 Dyalog APL/W Interface Guide

Example : APL as Compute Server for Excel

The following instructions illustrate how APL can act as a "compute server" for
Microsoft Excel, using two shared variables. One variable is used to read the data from
Excel; the other is used to pass back the result.

1. Start Excel and enter some NUMBERS into the cells R1C1 to R3C3 of the
spreadsheet "SHEET1".

2. Start Dyalog APL/W and size your windows so that both the Excel window
and the APL Session window can be viewed comfortably at the same time.

3.) LOAD the EXCEL workspace. This contains the following functions :
vV RUN;Z;0OWSID

[1] Z«<'DDE:EXCEL|SHEET1'JSVO 'DATA R1C1:R3C3'
[2] -(2=2)/L1
[3] 'No Excel out there ?' ¢ -0
[4] L1:
[5] CALC
[6] OWSID<«'EXCEL'
[7] 7<'DDE:'[JSVO 'RESULT ANSWER'
[8] "Now type "=dyaloglexcellanswer" into'
[9] ‘cell A4 in your spreadsheet'
[10] L2:0DL 1
[11] >(2#[0SVO 'RESULT')/L2 aWait for Excel to connect
[12] 'Connected ...'
[13] '".'OWS "EVENT' 50 'CALLB'
[14] 0OpQ '.'
\'
v CALLB MSG

[1] A Callback to recalculate when Excel changes DATA
[2] -(0 0 1 1=[dSVS 'DATA')/0
[3] CALC

\'

v CALC;0TRAP
[1] OTRAP«0O 'C' '-ERR'
[2] RESULT«+/,DATA
[3] -0
[4] ERR:RESULT«<[EM [OEN
v

Chapter 14: Shared Variables (DDE) 333

Type the following statement in the APL Session :
RUN
Now type "=dyalog|excellanswer" into cell A4 in your spreadsheet

Follow the above instructions to establish a link from APL to cell A4 in your
Excel spreadsheet. The result of the computation will be displayed.

Try changing some of the numbers in the spreadsheet and watch as APL re-
calculates the sum.

Try entering a character string in cell Al. Note that APL sends back a
character string containing DOMAIN ERROR.

Use Ctrl+Break or select "Interrupt” from the Action menu in the Session
window to stop [0DQ.

334 Dyalog APL/W Interface Guide

Example : Using an Excel Command Macro

1.

Start Excel, and open the sample worksheet called "EXCEL\APLCOMP.XLS"

Quarter 1 Quarter 2 Quarter 3 Quarter 4
123 345 234 245
213 324 345 345
123 453 678 567

and the sample macro "WDYALOG\EXCEL\APLCOMP.XLM":

A B
1 APL Total
2 total channel =INITIATE("dyalog", "excel")
3 total type =1
4 =POKE(total channel,'CTL',total type)
5 =TERMINATE(total channel)
6 =RETURN()
7
8 APL Mean
9 mean_channel =INITTIATE("dyalog","excel")
10 | mean_type =2
11 =POKE(mean_channel,'CTL',mean_type)
12 =TERMINATE(mean_channel)
13 =RETURN()
14
15 APL Quit
16 | quit channel =INITIATE("dyalog","excel")
17 =3
18 =POKE(total channel,'CTL'total type)
19 =TERMINATE(total channel)
20 =RETURN()
21

These macros may be run from the main Macro Menu, or by using these short-

cut keys from within the spreadsheet:

Ctrl+a Total

Ctrl+b Mean
Quit

Ctrl+c

Chapter 14: Shared Variables (DDE)

335

P, OONOOITFWN -
PO

Lo | | e ¥ s e ¥ s | s ¥ s | s ¥ ey |

J
]

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

Invoke APL and load the sample workspace EXCEL. This contains the
following functions:

vV LX;CTL;SVO

A Compute server for Excel
A Ensure workspace name is EXACTLY correct
OWSID«'EXCEL'
A Set control variable
CTL<«0
A Make a general offer to anyone
SVO<«'DDE: 'SVO'CTL'
A On a DDE event, call function COMPUTE
'.'OWS'EVENT' 50 'COMPUTE'
A Enter the DQ
DDQI .l
v

Vv COMPUTE;SVO;TYPE;DATA;RESULT
A Perform required calculation when user
A POKES a new value for CTL from Excel
A CTL is a matrix; ravel and assign to TYPE, so
that a DDE message isn't generated
+0x10=TYPE<«,CTL ¢ -»L3x13=TYPE
A Setup shared variables
SVO<'DDE:EXCEL|APLCOMP.XLS'[JSVO'DATA R2C1:Ru4CH'’
SVO<'DDE:EXCEL |APLCOMP.XLS'[JSVO'RESULT R1C5:R4C5"'
A Which calculation?
>(L1,L2)[TYPE]
A Total
L1:RESULT«(4 1)p(c'Total'),+/DATA ¢ -L4
A Mean
L2:RESULT«(4 1)p(<c'Mean'),(+/DATA)+>pDATA ¢ -L4
A Stop the engine
L3:[OFF
A Reset control variable
L4:CTL<0

336

Dyalog APL/W Interface Guide

In the APL window, trace L X until you are in the [JDQ. Switch to the
spreadsheet window, and from the main menu, select Macro, Run, APL_Total,
Step, then Evaluate each step.

Check that the channel is open, and that the POKE is successful. If the POKE
is successful, you will see the trace window for COMPUTE pop-up. Complete
the macro steps, then switch to the COMPUTE trace window. Trace through
each line, and you should see the calculated totals appear in Excel.

Continue tracing (COMPUTE will be called again in response to the change in
the control variable CTL) until you are again in the (JDQ.

Try invoking the APL. Mean macro now by typing the short-cut key Ctrl+b in
the spreadsheet window. Again, use the Tracer to see what’s going on in APL.

NOTE: Control is not passed to APL until you take your fingers off both keys
after invoking a macro with a short-cut key.

When you are comfortable with the workings of the system, interrupt the [JDQ
by typing Ctrl+Break or by selecting "Interrupt" from the Action menu in the
Session Window.

Execute LX (don't trace this time) and try invoking each macro by typing
Ctrl+a (for Total) and Ctrl+b (for Mean) in the spreadsheet window. Use
Ctrl+c to quit the application and APL.

Invoke APL again, and save the workspace EXCEL with a Latent Expression
of LX i.e.

JLOAD EXCEL
OLX«<'Lx'
)SAVE

then exit from APL.

In Excel, type Ctrl+a to calculate the Total. Excel tells you that Dyalog APL is
NOT running, and asks if you want to start it. Reply YES. APL will start and
load the EXCEL workspace. Since this now starts automatically, no Session
Window will appear, although the functions are running. APL calculates the
totals and sends them to Excel. Try successively typing Ctrl+a and Ctrl+b to
calculate the totals and means.

We now have a hidden compute server for Excel. Type Ctrl+c to exit the application
and APL.

Chapter 14: Shared Variables (DDE) 337

Restrictions & Limitations

Although shared variables have been implemented as closely to the APL standard as is
possible, certain restrictions are imposed by the nature of DDE itself.

1

The server cannot make an offer to a specific client. Instead, it must broadcast
a "general" offer, which could be accepted by any client. Indeed neither the
client nor the server can specifically identify the other task.

Dyalog APL supports Excel "Fast Table Format" for communications with
Excel (and with any other application that supports this format). This imposes
the following restrictions :

The maximum number of numbers that you can send to Excel is §191. Any
attempt to send more will result in a LENGTH ERROR. This is because APL
currently tries to send all the data in a single block. Larger amounts of data can
be received from Excel, because Excel will send several blocks if required.
The restriction may be lifted in due course.

The maximum length of a character vector (which represents a string within a
cell) is 255.

A client APL program can only use indexed assignment to change the value of
a shared variable if it already knows the up-to-date value of the variable, i.e. if
itsdSVSis001 1or1010.An attempt to use indexed assignment on a
variable whose JSVS is 0 1 0 1 will cause a NONCE error.

Consider Excel as a server and APL as client with several warm links to an
Excel spreadsheet e.g.:
"DDE:EXCEL|SHEET1"' [OJSVO 'X Ri1C1'

'DDE:EXCEL|SHEET1' [OSVO 'Y R2C2'
'DDE:EXCEL|SHEET1' [OSVO 'Z R3C3'

IfRICl is changed in Excel, APL expects to be told only of that change.
Instead, Excel tells APL that ALL the linked cells have changed.

If APL pokes a value back to R1C1, Excel again tells APL that ALL the linked
cells have changed.

You must take care to avoid this problem when dealing with DDE between
Excel and APL.

338 Dyalog APL/W Interface Guide

339

Index
O
ONEW oo 44, 65, 67, 70
ONL oo 216
OWX oo 11,217
A
access control Vectorccvveevievveeeiienineenee. 315
ActiveX Control
calling methods inccocoveveeiieince 224
ActiveX controls
10ading.....ceevvieiieiieeeee e 214
obtaining event information 222
writing in Dyalog APL........c.ccccceeviiennnn. 282
ActiveXControl object See Chapter 13
creating an instanceooceeveveerveenveennne. 283
EXPOTHING EVENLS ..vvevrreririeeiieerireeniieeeveeees 301
EXPOTHING PrOPETHICS...eeverreereeririerireeriveennne 293
ENerating eVentS.......coovvveeveerveenveenveenes 284
OVEIVICW ..ttt eieeeiee et iee et 282
SetEventInfo method...........cccoeevreiniennen. 284
AddCol methodccovvienieiiieiee e 151
AddComment methodcccceevieieniennnnne. 159
AddRow methodc.coevenininininiiiene. 151
Align propertycooceeeeeveeneenenieneene 113,140
AlignChar propertyccceeceeveeveerenreeneenne 136
ampersand (in a caption)cccceeeevveennen. 54, 60
APL client (TCP/IP)..c..coceveviniiiaiiieenne 185
APL client/servercccceveeneeneerenienee 191
APL server (TCP/IP)....ccoevveeeieeieeciieeiieene 183
aynchronous processing (OLE).........c..c....... 276
B
BandBorders propertyccoceeeveeieeieennenne. 105
BCol property......ccceeveveeeeeveninennenn 40, 133, 142
Bitmap objectceeeveeeieieiieiece e 81
bitmaps
Dyalog APL ...ccooiiiieieieeeeeee 91
Windows standard..........c.ccccceevvieniiennneenen. 90
Bits Property......ccceevereeneenieeieiie e 87
BMP fil€....ooeiiiiiiiesiiceceeeeee e 81

BnPixX propertyccccoeeereeneereiieiieneeeeene 86

Button object........ccoevieiieniiiie e 52,128

NaGrid.......oooeeeeeiiiceeeeee 136, 140
C
callback function...........ccccooevvvuvvvveeeeennnnn. 22,48
Caption Propertycceeeeeeeereereereeereeeeenne 52, 88

CoolBand objectccuveveeiieieniieiieiiennens 108
Cell co-ordinates........ccceveeeeeneeienieninceeeneane 146
CellChange event.........ceecveevereereerieeieeeenne 150
CellEITor Ventccoceeeeeereeienencneeieeneane 149
CellFonts propertycceeeveenee.. 133, 142, 145
CellHeights property........cccceeeveennvenne. 132,152
CellMOVE VeNL......eecureieeeieeiieeiieeieeie e 149
CellTypes Propertycceeeeeevereereereeeeeeneenne 142
CellWidths property.........ccoeeveveevennnnne 132, 152
CFILES workspace.........cccoevvereeneenieeieene 261

registering as an OLE server..................... 261

using from Excel.........coovvvieiiiienienne. 268
ChangeCol methodc.cooeveevvieniieniienne 152
ChangeRow method..........cccceevvienieeniiennnnne 152
Checked property......cccecceeeceeeeiieniieeniieeieennns 61
ChildEdge property.......ccceevveervvenveenveennenns 107
Classic Edition........ccccecevienieniencinciciee 123
ClassID Property.....cccceeceveeecveerveerveenveenneens 242
ClickComment eventccccecuevererenennnens 160
client (DDE) ...ccoooveiiinininiiiciccnccee 311
client/server operation (TCP/IP)................... 191
ClipCells property........cceeeveevereeneereeseeeeenne 134
CMap PIOPEILY ..ceverienieeiiiienieesiieesieeeree e 87
cold link (DDE)ccoeoeiiiiiiieieeeen 311,318
COLOUL .ttt 40
ColTitleAlign propertycccceeceeeuee 132,135
ColTitleDepth property..........cccceeveeee 132,135
ColTitleFCol propertyccceeevveeveerveennnenns 135
ColTitles property.......cccceeeveenee. 132,135, 151
COM Events tab (Properties dialog) 301
COM objects

SYNtAX TUICS ...vvevieiieiieiecie e 224
COM Properties tab (Properties dialog) 293
Combo object

NaGrid ..o 136, 138
COMCTL32.DLL ..ottt 89

340 Index

CONGA .o 181, 197
conversation (DDE).........ccccccooveviiiiiiieene, 311
CoolBand object........cccveveerieieiieiieseeee, 102
Caption Property......ccccoeeereeeeeereenrennenne 108
ChildEdge propertyccccoceeveevevenuenncnne. 107
GripperMode property.........coceecveevevennenne. 103
Imagelndex propertyccoevveeveeveevennnnns 108
Index Propertyccceeeeeveeeverieerieeieeienenens 109
NewLine propertyccceeeveeeeeeeereerreenenn. 109
Co0lBar 0bjectcceeevervieriieieiie e 102
BandBorders propertyccoeeeveevennnns 105
DblClickToggle propertyccceevvenees 104
FixedOrder propertyccceeveveeeeeeeenennns 103
ImageList propertyccoocvevveveeienieninnns 108
VariableHeight property..........ccceeeeeenee. 105
Co0rd ProPertyc.eeveeeeeeeeeieeiiesieeeieeee e 39
coordinate system...........cceevveerueennennen. See Coord
CurCell property......cccecveeveereeeveeeeeseeneeneenns 138
CurrentState propertycceeevveerveennne. 183, 185
D
DbIClickToggle propertyccceeveereveennenn 104
DCOM ..ottt 273
DCOMREG workspace..........ccceerveerveennnnnn 275
DDE ..o See Chapter 14
DDE conversationceccveeuveeeeieneennnnns 321
DDE EXECUTE message................... 312,319
debugging GUI applications..............ccoeenenee.. 43
Decimal property.......c.occeevevvereeciiecienieenenns 136
DelCol methodccevveviinininiiiiiiiccne 151
DelComment methodccccooveiiieniencen. 159
DelRow methodcoooeevieniiiiiiiiiiee 151
dEqUEUE ..o 18
Divider propertyccceeeeeeeeveeieenieneenieeenn 93
Dockable Property.......ccccceeeveevieenieenveennen. 170
DockAccept Event........cccceevvenen. 169, 178,179
DockCancel Event.........ccccoceveniiiiicncncnncns 169
DockChildren Propertyccccceeneen. 170, 173
DockEnd Eventcccccccoenininiiiiiinincns 169
Docking.....c.cccvvevevveiieiieieeeee, See Chapter 8
a Form into a CoolBar.........ccccceeveennne. 174
a ToolControlccoevevininiiicieee, 176
changing Typeccocevveiienienieieeeees 168
one Form in anotherccoccoooeniins 170

sequence Of eVeNts........ccceevvereereeneenennn 168

DockMove Event.......ccooovvvvieeiiiiiinnnnes 168, 179
DockRequest Event..........ccoccoeviiiiiieiienne 169
DockStart Event.........cccceeeiieiiieiiieieeenne 168
Dragable propertyccceeeeeeeeeerienieniieeenene 42
DragDrop event..........cooceevieeniiiinieenieeieeee. 42
Dyalog APL DLL 243,254,257, 259, 283
E
Edit object

N aGrid ..o 136, 137
CIQUEUELveeiieeireeeereeeeteesireesereesereesnseesnneennneas 25
EVENE TNESSALE .oevvveeereeeerieenieeereeeieeereeeereenenes 24
Event propertyocccvevveevieenieeie e, 16, 53
EVENE QUEUE ..ot 17,19
EventList propertyccocceeevevvervenerennnnn 16,217
(01017 1101 1< o] USRS 230
CVEILS ..eeieiieeiiiiieiee e et eere e e e 2,18
Events

generating using NQcocceveerienieninennnne 25
Expanding eventccceevvevvienineenen. 154, 157
EXPOTT et 282
EXPOSe €Vent......cccoevvieveieiiieieecieeie e 80
F
FCOL it 133
FCol property.....ccceeveeecveenieenieenieeeneene 40, 142
FieldType propertyccecceeeveeeveneeeeeennnnn 50, 136
FileBOX ODJeCt....ccvveiieiieiieieeiecieeeeeeeea 37
FillCol property.....c.cccceeeeeeeeveeeieeieniiesiieieenenn 40
FixedOrder propertyccocevevvevveeveeeiennnenne 103
FlatSeparators property........cceeveeveeveereernnenne 113
FONES Lo 41
Form object......c.coouevienieniiiicecce 48, 60
FormatString property........cocceeeeveiveioeneenne 136
G
eNerating EVentscceecvereeneeneenieenieeeenne 25
GetComment method...........cccoeiiinenne. 159
GetEventInfo method...........ccccoooiiinenne. 222
GetMethodInfo method.........ccccocooenininnnee. 221
GetPropertylnfo methodcccccveveennenen. 221
GetPropertylnfo Method............cccccvevueennnnnee. 228
GotFocus eventccevevirienienicnieencicniee 57
GLAPNICS .o 75

Index k7Y

N8 Grid .o 146
Grid COMMENtSccvereeriieiieie e 158
Grid object....c.coenininieiiieicnn See Chapter 6

AddCols method..........cccevirieiieieie 151

AddComment methodccccoevieiininne 159

AddRows method.........ccccceviiiienieiee 151

AlignChar propertyccceveeeveeeveevenenenne. 136

BCol property......ccecveeeeeveneeneereeieeeenes 142

cell co-ordinatescccevvevevenercnieiennn 146

CellChange eventcceeverveeveevenenenne. 150

CellErTor eventcceveverenenceieeeenn 149

CellFonts property...........c.oou..... 133, 142, 145

CellHeights propertyc.cccccecveueenee. 132,152

CellMOVE eVent.......ceeeeeveenieeieeeeie e 149

CellTypes Property.......coceeeveeerereeeennenn 142

CellWidths propertyccccceeeveeneenne. 132,152

ChangeCol method.........cccoveiieiieiinne. 152

ChangeRow methodcccoevieiininnnnnne. 152

ClickComment event..........cceceeeveruennenne. 160

ClipCells propertycccveevveeeveenveenveennne. 134

ColTitleAlign property........ccccveeuee. 132, 135

ColTitleDepth propertycceeee.e... 132, 135

ColTitleFCol property.......cccceeveeeveerveennen. 135

ColTitles propertyccceeue.n. 132,135, 151

CurCell property.......ccceevervenveneniennene. 138

DelCol methodccooevvevieiieiiieieee 151

DelComment methodccoeoveiiriennenne. 159

deleting rows and columns........................ 151

DelRow methodccoevveveninencniiiene 151

Expanding event........c.ccocceeveeiennenne. 154, 157

FCOl propertyceeeeveeeveeeieeiieeeiee e 142

FormatString propertyccceeeeevennenne. 136

GetComment method ..o 159

GridBCol propertyccoeeeveeveveenveenveennne. 133

GridFCol property.......cccecveveeneeeenennenne. 133

HideComment event..........ccoceeeverereeennen 160

InCell mode.....ccoooveviiiniinininiiceicen 137

Input property......cccecveevveenceerieenneenn 136, 142

InputMode propertyccoeevevveevveevenennne. 137

inserting rows and columns.............c......... 151

RowSetVisibleDepth method.................... 155

RowTitleAlign property 132,135

RowTitleDepth property 132,135

RowTitleFCol propertycccceeeeueneenne. 135

RowTitles property........c.cccc...... 132,135, 151

RowTreeDepth property........ccceeeeeeneennne. 153

RowTreelmages propertycccceeveveennee. 157
RowTreeStyle property........cccceeeeeeeeneeenee. 157
Scroll mode........cocvveiieiiiiieiieieeeeee 137
ShowComment event...........cccecveveeeennnne 160
ShowlInput propertycccecveeenneee 139, 140
Titleheight propertyccoccoeeevvenvenrennene 135
TitleHeight propertycccoevvevvenvveneennnne 132
TitleWidth propertyccccoveeveennnnen. 132,135
Undo methodccccoeeviieieiiiiiee 150
using @ CombOocceveriieerieeiieeiee e, 138
using a Label.......cccccvvviieniiniiciieee, 138
using an Edit........ccocceeviieniiiniiciiceee, 137
using Check buttons...........cccceceverenencen. 140
USING COMMENLSovvveneieniieiieeiieeieeeeee e 158
using graphical objects.........ccceveeriernenne. 146
using Radio buttonsccccccevveriennnnne. 140
Values property.......cccccveeverveeceeeeeneeneenne. 132
GridBCol propertyccceeeeeeeeeenieniieieennens 133
GridFCol propertycccoeeveeveeeenveeceeeieeenee. 133
GripperMode property.......cccceeevveecreeerveeenen. 103
GIoUpP ODJECT .eveueireniieeiieeiieeie e 29
GUI systems functions..........ccceceveeeeveenreenieennns 7
GUI tutorial.......ccooovvveneeeniienieens See Chapter 2
H
HelpFile property.......ccoccveeeeeeeeienieniieieennens 223
HideComment eventccceceevvevvencrcneennee 160
Hint property......cccoceeeeeeveeeennnenne. See Chapter 5
HintObj property.......ccceeeeeeveeeeneererennnns 122,125
hOSt NAMESeeveniiiiieniiecccieccc e 186
hot link (DDE) ...ccoouiiiiiiiiieieeeceee 311
HotTrack propertyccceeeveevieniencenieenene 113
hypertext transfer protocol (HTTP).............. 197
I
ICO file i 81, 87
Icon ObJECt .o 81
Tcon property......ccoeceeeeeeenieenieiiiceeeeeene 88
Imagelndex property
CoolBand objectcceeveeeeeieriieiieiienens 108
ToolButton objectcccvevvverieeriiiiiereenins 92
ImageList ObjeCt ...vevvieeeriiiieiieieee e 92
MapColS PropPertyccueeveevereerreerieereeneenns 92
Masked Propertyccceeeeeeeneeneeneneeeenne 92
ImageList property

342 Index

CoolBar object........cooueiienienieieeeieins 108
ToolControl objectccccveeeveeeeienicnnn 92
InCell mode (Grid)ccoveveereeieieiieieinns 137
Index property
CoolBand object......c..ccceverieerieieienenne. 109
inhibiting an event...........ccoeceeeeereeneereeeene. 23
INput Property.....ccceeveeeeveeeneeeieeerieeene 136, 142
InputMode Property.......cceevveeeveeeereerreenneenn. 137
Invoking Methods
WIth NQ oo 27
J
Justify property.....cccecveerieenieenieeieeeieeeen 117
K
KeyPress event.......oceevveeviieeiieniieeeenns 19, 24
L
Label object in a Grid.........ccceevvveniennnnne 136, 138
LOAN WOrkspace........ccceevevevereieieeieniennnans 247
registering as an OLE server 249
using from Dyalog APLcccoevieennen. 259
using from Excelccooovevieiiiiniiieniieen, 256
using from two applications 256
using from Visual Basiccccceceevveenneen. 253
LocalAddr propertyccceeeveevveenveenveennnn. 183
LocalPort property.......ccceeeveerveenveenveennnenn 183
M
MapCols Property......ccceeveeeeereereereenieeneenns 92
Masked property......ccceeeeeeveeceeeeeiieneenieeenns 92
MDI ..ot See Chapter 7
MDIArrange method..........cccoevveiieieniennnns 165
MDICascade method........c..ccceveriiieniincnnne 165
MDICIlient 0bject........cvvereeniieniaiinieniienieans 162
MDIMenu propertyoccveeeeveerveesveerveenenees 164
MDITile method.........cccevieniiniiiiiiiniees 165
Menu 0bJECt.....ccueeiiieiiiiiicie e 61
MenuBar object.......ccceeveiviiieiieiieieee 60
in a ToolControl object.........ccccceeveeniennnene. 99
in MDI applications............ccceevveeveenrennnens 163
Menultem objectcceevvveeveicieiiecierieeiei, 61
Metafile ObJectoovvervieiieieiieiieeie e, 83
MethodList property.........ccoecveevieeveeveeeennnnns 217

MELhOAS...ceviiiiieiiecie e 3
Microsoft Jet Database Engine 231
modal dialog boXccccvevvriiiiiiieeeeeee 36
modal ObJeCt.....eevvieiieieiee e 18
multi-threading.........ccooceeverieiieneieeee 38
MouseMove event.........cccveeeeiiieeeiiieeesiieeenns 43
MSEBOX 0DJECt...ccviiiiiiieiieieciecieceieee e 37
multi-threading.........ccoooveevieviiicienieieieene 38
MultiLine property......cccceeeveevcveenveennnenns 94,115
multi-threading with objectscccvvevenene 38
N
Name resOIUtiON......cceevverienieriiiiciiceieeieene 186
named parameters (OLE)............ccoccevennne. 226
NAMESPACE ..eeeveeenrreenreeeireaieenns 2,7,10,29, 240
Namespace Referencescccoeevvveeneennennne. 33
NewLine propertyccceeeeeveereereereeneeenenns 109
NULL ValUES ..o 236
0
ODJECE NAME ...t 9
ODJECES ettt 2
OCXCIlass ODJECL...ccuvrererierrienirieeirerieeeieeeens 214
CVEIES .ttt 230
OLEAddEventSink method 234
OLEDeleteEventSink method................... 234
OLEListEventSink method....................... 234
OLEQuerylInterface method...................... 237
QueueEvents Propertyccoceevveennenne. 230
OCXSTUB.DLL ...coeoiiiiiiieiencncnceceeee 243
OLE Client......ccccevvevvereeirannnns See Chapter 11
null values ..o 236
OLEAUTO workspace..........cccceervveenneennne. 231
on-1ine help .ooovvevceeriiieiecieceece e 223
type information..........cceeoeeveeviinciienee 215
writing a clientoocoooevienieniiiecene 214
OLE methodscccovienieiieiieiceiccieceee 224
arrays and poiNtersccveveeveeereereennenns 225
calling with no parameters...........c..c.cc...... 225
optional parameters...........cocceevveeeereennnenns 225
OULPUL PATAMELETS ..eovvveeireeiiieriieeriieeeieeans 226
returning objectsocvvvveeierveriieiieieennens 227
using named parameters..............coeeenneen. 226
OLE properties

AS ODJECTS ittt 229

Index 343
USIIE 1 neeeeeeieeteeie ettt es 228 P
OLE Servercccccovvivevninnn. See Chapter 12)
aynchronous processingoo.oo.... 276 Picture property .. 84, 88
configuring an OLE server for DCOM273 Poly Object .o 76
101670 OO 273 POSD PIOPEILY covvvveeviiii 54
GENETAtNG EVENLS........oreereeeereeeeeeseeeeseenne 241 propertiqs e 2
implementing an object hierarchy 260 changing with WS............ 14
IN-PrOCESS SEIVETSo.eeeeeveeeereerean 242,243 retrieving by reference..........c.ccoceveeveeiennne 12
LOAN Workspace...........ccceuvveueieiicnnennnn. 247 setting with assignment........neen 11
namespaces and 0bjects.........o.wvvverrrenn... 240 Settiqg Wi.th WC 13
OUt-0f-Process registry entries 245 Proper.tles dialog ..o 284
OUL-Of-PrOCESS SEIVETS .v.vvoreerrreeneen. 242,244 PropList property 15,217
rules for exported functions....................... 241 Proxy Server (USINg)ccceceecveruenuennenn 198, 199
WIIHING @ SCIVET ...eeueieiiieiieeiieeieesieeie e 241
OLEAddEventSink method...........cccceeueenee. 234 Q
OLEAUTO workspace............cccoovvvnrinnnnns. 231 QFILES workspace..........ccccovvevveieuinicnennnne 191
OLECIlient objectc.ccecveeevevieneniercnienennes 214 QueueEvents Propertycoooeeeeveeeeenenn. 230
calling methods inccoooveveeiieiiie 224
EVENLS .eoveveevieieeceee ettt 230 R
GetMethodInfo method..........c.cccceeiene 221
GetPropertylnfo method...............ooooooo.... 271 Range propertycccoeveveveerciienceeeniiennens 59, 61
HEIPFILE PrOPEILY oo, 223 TEE et 33
missing type information......................... 233 REGSVR32.EXE....ccociiiiiiiieieeeie e 243
OLEAddEventSink method..................... 234 Remote Addr propertyccceeeeveeenennee. 185, 189
OLEDeleteEventSink method 234 RemoteAddrName property.................. 186, 203
OLEListEventSink method ... 234 RemotePort property........c.ccceeeveenennne. 185, 189
OLEQuerylnterface method...................... 237 REXEC_Workspace 191
QueueEvents Property........cccocceeevevieeenenne. 230 Root object.....: .. 9, 88
OLECONIOIS PrOPETLY .vvvvvrrereeeeeeeereeo 213 multl—tl}r@dlﬂg ... 38
OLEDeleteEventSink method 234 RowSetVisibleDepth methodc....oo..... 155
OLEListEventSink method 234 RowTitleAlign property.........ccvvve.. 132,135
OLEQuerylnterface method............cccceueenee. 237 RowT%tleDepth PIOPEITY oo 132,135
OLERegister method........c..ccceevirieniennennen. 245 RowT¥tleFCol PIOPCITY oo 135
OLEServer object........ccoceveenieienienienieenens 260 RowTitles property 132,135, 151
ClassID propertycceeevveeveercveenveenveenne. 242 RowTreeDepth propertyc.cocoooooeeee 153
OLERegister method...........ccccveevvenennnnnee. 245 RowTreelmages propertyccccccooceeee 157
OLEUnNRegister method..............ooooorovo.. 245 RowTreeStyle property.........cceecveevereeeeeennnne 157
TypeLibFile propertycccoeveeveevenenenne. 242 S
TypeLibID propertycccccvevvvevveevenennne. 242
OLEServers propertyccceeveeeeeeeeeveneenens 213 Scroll event........occeevvevieriiicieiieeieeeee 59
OLESYNC workspacecccceeeverereenennen 276 Scroll mode (Grid).......coceveeveniencnininieeeee 137
OLEUnRegister method............cccoceviennnnen. 245 ScrollOpposite Property.......cccceevveeverveeveenenne. 116
ONnTop Property.......ccceveveverevcninciciiiciiienne, 147 Select EVeNt.....cvviieeiriiieieeeiee e 54
optional parameters SErVer (DDE)......coiiiieeeeeeceeeeeeeeeeeeena 311
OLE methodscooovviiiiiiiiiiicccee, 225 Server object

344 Index

ShowSession propertyccccceeeeereennnne 244
SERVER workspaceccccoeeveerieneennene. 208
SCIVICE NAMES ...eeveeeeieiienieenieenie e eeee e neeens 186
SetEventInfo method..........ccccoviiienienee 284
SetMethodInfo method...........cccceerieeennnnne 234
SetPropertylnfo methodcooeeieneeee 234
shared variablescocevereeiiieniencnc 312
ShowCaptions propertyccceevverveerreenneene. 100
ShowComment eventcccceceevvereenuennenne. 160
ShowDropDown Propertyecveeveeeereenns 97
ShowlInput property...........cccvee... 138,139, 140
ShowSession propertyccccceeecvereerreenennn. 244
S1ZE PIOPEILY wovveeeeeeiieeiie et 54

CoolBand object.........ccceeerieerieieicnenne. 109
SocketNumber propertycoccevvereeeeene. 184
SocketType propertycceeeeevververeeneeenennne 189
Spinner object ina Gridcceccvevienirennnnne 136
StatusBar object.......cccvevveeviiiieiienieriee, 120
StatusField object........cccccevveeunennne 120, 122, 126
Stream SOCKEtcuevverieiieiicieiic e 181
Style Property ..ccc.eeeveerieerieeieeeie e 192

TabControl object........cccvvveeireeiieiiieeiens 112

TCPSocket 0bject.....c.veevuveiiieeiieiiieeienns 188

ToolButton object.......c..coceverereeieienennenn 96

ToolControl objectccceveeerveieienienenn 93
SubForm object

ina CoolBand.........cccceeovrvienieiieieiens 110

in a TabControl.........ccccceevieniieiieiieienns 111

inan MDIClientcccocoevevivvenencnene. 162
T
TabButton object........cccceveevienieiiiieiieens 111
TabControl object.......ccceveerienieiieieiieens 111

Buttons style.......cccceveenienincnennn, 112,116

FlatButtons style.........cccoeveeeveeiieiiiieeieenns 112

FlatSeparators propertyc.ccceeeeveneeens 113

HotTrack propertycccecvevevevieeeeeieninnns 113

MultiLine propertyccoeevevvereeerveeeenen. 115

ScrollOpposite propertyccceveeenneene. 116

Style propertycceeeeeeereerieeieeie e 112

TabFocus property........ccoecvevveeeeeveeeeenenns 119

TabJustify propertycccoceevvveeeiecieeieninns 118

Tabs (default) style.......ccoooeevieiiiiiiinnns 111

TabSize Propertyccceeeeeveeneeneeenieneens 118
TabFocus property........ccoeeeeveereereeienieneans 119

TabJustify propertyccceecveveeeerienieneene. 118
TabSize Property.....cccoceeeveveeceeeieeienieneeenee 118
TargetState propertycoeceevveevieenveenieeennne 212
TCP/IP SUPPOTTt ..o 181-212
APL and the internetcccceevevveernen. 197
APL arrayscoovveevieeiiieeiececeeeeeee 187
APL client...ccoooiriiniiniinicccicccece 185
APL client/servercoceeeeveerciniciiennenne 191
APL SEIVET ..uviiiiiiiiiieiienieeccic e 183
clients and SErVerscccevveverenenenennns 182
hypertext transfer protocol (HTTP) 197
multiple clients........cccoevvevieveeniieiieieeies 183
output bufferingccccovvevieviiiiiies 188
receiving data.......ccoeveveeriereeieee e 187
sending dataccooceevieiieiieee e 187
Stream SOCKELSo.evuerueeeeieiinienienieeieeen 181
UDP SOCKEtS.....ccvveeeeireeeceeeeeeeene 182,189
writing a web client...........ccocevieiiennnnnn. 199
WrIting @ Web SeTVeT.......cccveevveerveenireennenns 208
TCPAccept event................... 183, 184,193, 210
TCPClose eVentccceevueevueevenienienieneene 206
TCPConnect eventccccoeeennen. 185, 202, 204
TCPGotAddr eventcccoevuvvenerennn. 186, 203
TCPGotPort event........cccoecueeiveiinieniennenne. 186
TCPReady eventccoceeveveieeeeeieeieenne. 188
TCPRecv event.............. 187,189, 194, 205, 211
TCPSend method........... 187, 188, 189, 204, 212
TCPSocket object . 181, 183, 184, 185, 187, 189
Remote Addr propertyocceeevevveeerennnne. 189
RemotePort property.........coeceeeeevieieencene 189
SocketType property.......coceveeevveneenueennene 189
Style property......cccceveeveereeienienieneeene 188
TCPAccept eVent........cccueevveeeieerrienieens 210
TCPReady eventc.cceeeeveenenieieeneene 188
TCPReCV @Ventccvevueenieeniieieiicieeene 211
TCPSend methodccceevveienininincnnne 212
Tip Property ..cccveeveveveeeeeeeeieereenne. See Chapter 5
TipField object.......ccceveerievieiieiecieeeeeee, 128
TipObj PrOPErtyoovevveeeeevieieeieeiecie e 128
TitleHeight propertyc.ccccevvervenennee. 132,135
TitleWidth propertyccccccevvervenennee. 132,135
ToolButton objectcccuveeerienierieieeeeee 90
DropDown style.......cccoceeveriicienieieieene 97
Imagelndex property.........cccceeeevveneenieannene 92
Radio styleccoeevienieiice e 96

Separator Style........ccoooeereenieniiiieceeee 96

Index 345

ShowDropDown propertyccceceeveeeneenne 97
Style Propertycceeceeeeeeeeiieiieseeseeeeeene 96
ToolControl 0bjectcccvevverierierieieeeae 90
bitmaps forcceveerieieeee e 90
containing a MenuBar.............ccccooveenen. 99
Divider propertycceeveeeeeceeeieeienieneenns 93
ImageList propertycc.ocvveeveeveeeesreerieennenn 92
MultiLine propertycceevveeveeeesreesveennns 94
ShowCaptions propertyccoceerveerveennee. 100
Style PrOPEILY .oeevveeeeeieeiieeieeiie e 93
Transparent Propertycoceeceeeeeeeereennns 95
tOPIC (DDE) .cuiiiiiiieiieeiieeieeee e 311
TrackBar object in a Grid.........c.ccocevervennnee. 136
Transparent Propertycceeceeveveerieeenveenneen. 95
type information (OLE)........ccccooovviinnnennne. 215
type library file........ccoovvieieniiiiieeee 242
TYPE PrOPEILY oot 13
TypeLibFile propertyccceevevvveienienirennen. 242
TypeLibFileID propertyccccceveevveerveennee. 242
U
Undo method........cooeviiniiniiiiiicce 150
Undocking a SUbFormcccceevveviiieeninnnne 176
UndocksToRoot Property........cccccceeeevveeninenne 176
user datagram protocol (UDP) 182, 189
USINg ClasSesoevveueeeeieeeieieeieeee e 44, 67

vV
VALUE ERRORcoooiiiiieieiecee 22
Value propertyccceeeeeeereeneenieeeeeeeeee 55
Values Property......ccccvereereeeveeeeeseeseerreenens 132
VariableHeight propertycccoevvevverveenenn 105
w
Wait methodccooveviiiiiiiiieec 18
warm link (DDE)ccccooveviiiiiiicieieeieeee 312
web Client, WIitingcccveeveeveeeerieenreennnns 199
Web Server, WIitingcccveceveeerveneenenene. 208
window menu (MDI)c.ccccvveviiencnienieen, 164
Windows bitmapscccceceveeverieriencnenennnn 90
WMF € .o 83
workspaces, sample
CFILES ..ottt 261
LOAN oot 247
OLEAUTO .ot 231
QFILES ..ot 191
REXEC ..t 191
WWW e 199, 208
WWW workspace........ccceoevervenieerannnne 199, 208
X
XP Look and Feel
effect on docked windowsc..cccceueeeee 180

XPLookAndFeelDocker parameter 180

DYALOC

Dyalog Ltd
Minchens Court
Minchens Lane
Bramley
Hampshire

RG26 5BH
United Kingdom
www.dyalog.com

