
The tool of thought for expert programming

Release Notes
Version 12.1

Dyalog is a trademark of Dyalog Limited

Copyright 1982-2009 by Dyalog Limited.

All rights reserved.

Version 12.1.0 produced on 2009/11/06

First Edition October 2009

No part of this publication may be reproduced in any form by any means without the

prior written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents

hereof and specifically disclaims any implied warranties of merchantability or
fitness for any particular purpose. Dyalog Limited reserves the right to revise this

publication without notification.

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.
UNIX is a trademark of X/Open Ltd.

Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.

All other trademarks and copyrights are acknowledged.

 iii

Contents

C H A P T E R 1 Introduction .. 1
Summary... 1
New Functions .. 1
Faster Primitive Functions .. 2
Parallel Execution (multi-cpu) .. 4
Component File Journaling and CheckSum ... 4
User Commands ... 5
Standalone Executables .. 6
.Net Controls ... 8
NetControl .. Object .. 10
APLVersion .. Property ... 13
RadiusMode .. Property ... 14
Changes to Keyboard Support .. 15
Enhanced Editor ... 20
APLFormatBias Parameter ... 31
Miscellaneous ... 32
System Requirements ... 33
Interoperability and Compatibility.. 34

C H A P T E R 2 XML Import and Export ... 37
Introduction .. 37
XML Processing ... 38
Conversion from XML ... 42
Conversion to XML .. 44

C H A P T E R 3 Language Enhancements .. 45
New and Revised Primitive & System Functions ... 45

Table: ... R←⍪Y ... 46
I-Beam: .. R←{X}(A⌶)Y 47
Syntax Colouring: R←200⌶Y .. 48
Number of Threads: R←1111⌶Y .. 49
Parallel Execution Threshold: R←1112⌶Y .. 49
Thread Synchronisation Mechanism: R←1113⌶Y .. 49
Memory Manager Statistics: R←2000⌶Y .. 50
Export to Memory: R←2100⌶Y .. 50
Expunge Object: {R}←⎕EX Y ... 51
File Check and Repair: R←{X} ⎕FCHK Y 53
File Properties: R←X ⎕FPROPS Y 54

 Contents

iv

Size of Object: R←⎕SIZE Y ... 58
XML Convert: R←{X} ⎕XML Y 59
Outer Product: {R}←X∘.gY ... 67

Index .. 69

 1

C H A P T E R 1

Introduction

Summary
Dyalog APL Version 12.1 provides the following new features and enhancements:

 New Table function (monadic ⍪)

 New I-Beam function

 New system function ⎕XML.

 Faster primitive functions

 Parallel execution on multi-cpu systems

 User Commands

 The facility to export a workspace as a standalone .exe

 Enhanced Component File Journaling

 Enhanced Editor

 New NetControl object to embed .Net controls in the Dyalog GUI.

 Changes to Keyboard Support

 RadiusMode property to obtain perfectly round circles

New Functions

Table function
The new Table function (monadic ⍪) turns any array into a 2-dimensional matrix.

I-Beam
The I-Beam function (⌶) provides access to certain specialised system services.

XML
The ⎕XML system function converts an XML character vector into an APL array and

vice-versa. As a built-in system function it is naturally much faster than an equivalent

defined function written in APL.

 Dyalog APL/W Version 12.1 Release Notes 2

File Check and Repair
The ⎕FCHK system function validates and repairs a component file.

Faster Primitive Functions
A number of primitive functions have been modified to deliver significantly improved

performance in Version 12.1.

Boolean Scan and Reduce
Many scans and reductions on Boolean arrays perform a lot faster in Version 12.1.

These include the following derived functions:

 ∧/ ∨/ =/ ≠/ +/ ∧\ ∨\ =\ ≠\ <\

Many inner products where one of the above functions is used as the left function

operand are also significantly faster, as they use Boolean reduction.

Grade up and down
The performance of Grade Up and Grade Down has been improved, especially for

small-range vectors. A small-range array is a simple integer or character array where

the difference between its minimum and maximum value is less than twice its number

of items.

In addition, the following expressions have been implemented as idioms for small-

range vectors and narrow small-range matrices (less than 8 bytes per row):

 {⍵[⍋⍵]} {⍵[⍒⍵]} {⍵[⍋⍵;]} {⍵[⍒⍵;]}

Note that it is only these precise expressions that have been optimized by idiom

recognition; expressions such as X[⍋X;] are not recognized as idioms.

Compress
Compress on the leading axis has been tuned

Matrix Multiplication
Matrix multiplication (+.×) has been rewritten and is substantially faster in Version

12.1.

 Introduction 3

Basic Arithmetic Functions
The basic arithmetic dyadic functions (+ - ×) have been rewritten in assembler (x86

platforms) using SSE2 operations where possible.

The new code is implemented in Dyalog APL Version 12.1 for Windows (32 and 64-

bit) and for Linux (32 and 64-bit).

On all other platforms and on x86 processors that do not support SSE2, e.g. Intel

processors predating Pentium 4 (2001) and AMD processors predating K8 (2003), the

previous (Version 12.0) code applies.

Indexing
Simple indexing and indexed assignment have been completely rewritten. They

consume much less memory and many special-cases are optimized.

Set Functions
The set functions (index of, membership, union, intersect, without, unique) now use

improved algorithms for certain data types:

 Small-range arrays, including all single-byte data types, use a table look-up

algorithm that is considerably faster than the old hashing algorithm.

 In cases where one argument has a small number of elements, the functions

now use an optimised linear search mechanism.

 Outer products (e.g. ∘.∩) use retained hash or index tables where relevant.

Transpose
Transpose has been optimized.

 Dyalog APL/W Version 12.1 Release Notes 4

Parallel Execution (multi-cpu)
If your computer has more than one cpu or is a multi-core processor, many scalar

dyadic functions (÷ ≥ = ≤ ⍟ | ! ○ ∨ ∧) now execute in parallel in separate

system threads each running on a separate cpu or core, when the argument size exceeds

a configurable limit, the parallel execution threshold.

For example, by default if you have a 4-cpu computer and execute an expression such

as (A÷B) where A and/or B contain more than 32768 elements, Dyalog will start 4

separate threads running on the 4 separate cpus each performing the division on ¼ of

the elements of the array(s) and simultaneously creating the corresponding ¼ of the

result array. The threads are only started once, and reused for subsequent multi-

threaded operations.

The maximum number of cpus to use can be controlled using 1111 ⌶, and the parallel

execution threshold) is changed using 1112 ⌶. These “tuning” I-beams should be

considered experimental, and may be changed or replaced by automated tuning in a

future release.

Note that the functions (+ - ×) are NOT executed using multiple cpus. This is

because a single cpu is able to perform these operations so fast that memory is barely

able to keep up. Tests show that multi-threading on separate cpus does not increase the

speed of these operations.

Component File Journaling and CheckSum
Version 12.1 provides enhanced Journaling for Dyalog APL component files and

includes the facility to check sum components.

The latter is highly recommended as it enables component files to be repaired using the

new system function ⎕FCHK. However, component files written with Checksum

enabled cannot be read by versions of Dyalog APL prior to Version 12.1.

In addition to the level of Journaling provided in Version 12.0 (now called Level 1

Journaling), two further levels are introduced.

Level 2 journaling provides protection not just against the possibility that the APL

process terminates abnormally, but that the Operating System itself fails. However, a

damaged component file must be explicitly repaired using the new system function

⎕FCHK which will repair any damaged components by rolling them back to their

previous states.

Level 3 provides the same level of protection as Level 2, but following the abnormal

termination of either APL or the Operating System, the rollback of an incomplete

update will be automatic and no explicit repair will be needed.

 Introduction 5

Higher levels of Journaling inevitably reduce the performance of component file

updates.

For further information, see ⎕FPROPS and ⎕FCHK.

User Commands
Version 12.1 provides an easy mechanism to define User Commands.

User commands are developer tools, written in APL, which can be executed without

having to explicitly copy code into your workspace and/or save it in every workspace

in which you want to use it.

A User Command is a name prefixed by a closing square bracket, which may be

niladic or take an argument. A User Command executes APL code that is typically

stored somewhere outside the current active workspace.

By default, the existing SPICE command processor is hooked up to the user command

mechanism, and a number of new SPICE commands have been added. For example:

]display 'hello' (⍪'world')
┌→────────────┐
│ ┌→────┐ ┌→┐ │
│ │hello│ ↓w│ │
│ └─────┘ │o│ │
│ │r│ │
│ │l│ │
│ │d│ │
│ │w│ │
│ └─┘ │
└∊────────────┘

The implementation of User Commands is very simple: If a line of input begins with a

closing square bracket (]), and there exists a function by the name ⎕SE.UCMD, then

the interpreter will call that function, passing the input line (without the bracket) as the

right argument.

To add a user command, drop a new Spice command file in the folder SALT\Spice.

 Dyalog APL/W Version 12.1 Release Notes 6

Standalone Executables
In Version 12.1 it is possible to export a workspace as a single .exe file that includes

a copy of the Dyalog APL interpreter. This allows you to implement and deploy a

stand-alone Dyalog APL application as a single .exe file.

 Introduction 7

Note however, that if your application requires.Net support you must to deploy 2

Dyalog dynamic link libraries, namely dyalognet.dll and the appropriate Bridge

dll according to the following table.

 32-bit 64-bit

Unicode Edition bridge121_unicode.dll bridge121-64_unicode

Classic Edition bridge121.dll bridge121-64.dll

This facility has been added to the Save as type drop-down menu on the Create bound

file dialog box, accessed via File->Export from the Session menu bar. The operation to

export the current active workspace as a stand-alone executable may also be actioned

programmatically using 2110 ⌶.

 Dyalog APL/W Version 12.1 Release Notes 8

.Net Controls
Whereas previously it was possible to use Microsoft .Net GUI by creating a .Net Form

and populating it with .Net controls, it was not possible to mix .Net GUI components

with the Dyalog APL GUI.

In Version 12.1, the new NetControl object allows you to include any control that

derives from System.Windows.Forms.Control as a child of a Dyalog APL GUI

container such as a Form, SubForm, or Group.

 ⎕using←'System.Windows.Forms,system.windows.forms.dll'
 'f'⎕wc'Form' ('Coord' 'Pixel')
 'f.wb'⎕WC'NetControl' 'WebBrowser' ('Size' f.Size)
 f.wb.GoHome ⍝ Display user's home page

 Introduction 9

Many .Net controls can also be used as input objects for the Dyalog Grid.

In addition classes defined within the workspace that derive from

System.Windows.Forms.Control can also be embedded into the Dyalog GUI.

 Dyalog APL/W Version 12.1 Release Notes 10

NetControl Object

Purpose This object allows you to embed .Net Controls in the Dyalog GUI.

Parents Form, Grid, Group, PropertyPage, SubForm

Children NetClient, OLEClient, Timer

Properties Type, Posn, Size, Coord, ClassName, Attach, MethodList, ChildList,

EventList, PropList

Events (None)

Methods (None)

In principle, you may use the NetControl to embed any class that derives from

System.Windows.Forms.Control (from system.windows.forms.dll), including derived

classes written in Dyalog APL.

To load a particular .Net control, the appropriate .Net Assembly must be specified in

⎕USING; otherwise the expression will cause a LIMIT ERROR. For example, to load

one of the standard .Net controls:

 ⎕USING,←⊂'System.Windows.Forms,system.windows.forms.dll'

The ClassName property specifies the name of the .Net control to be instantiated and to

which the new object named by the left argument of ⎕WC is to be connected.

ClassName may only be specified by ⎕WC.

Once you have created an instance of a particular NetControl, the properties, events

and methods it supports may be obtained using ⎕NL. These are the properties, events

and methods defined for the control by its author. The “Dyalog” properties listed

above, are not reported by ⎕NL, but take precedence over (i.e. mask) any members of

the same name that may be exposed by the class itself.

The following example illustrates the use of the Button class. In this case, the FlatStyle

property of the button is set to “Popup”. This gives the button a flat appearance until

the mouse is hovered over it, when its appearance it changes to 3-dimensional.

 ⎕USING←'System'
 ⎕USING,←⊂'System.Windows.Forms,system.windows.forms.dll'
 ⎕USING,←⊂'System.Drawing,system.drawing.dll'

 Introduction 11

 an←⎕NEW FontFamily(⊂'Arial')
 myfont←⎕NEW Font(an 24 FontStyle.Bold GraphicsUnit.Point)

 'f'⎕WC'Form'('Coord' 'Pixel')('Size' 120 200)
 f.Caption←'NetControl'
 'f.l'⎕WC'Label' 'Button with FlatStyle=Popup'(2 2)

'f.b'⎕WC'NetControl' 'Button'('Size' 60 160)

 f.b.⎕nl -2
AutoSizeMode DialogResult AutoEllipsis AutoSize
BackColor FlatStyle FlatAppearance ...

 f.b.⎕nl -3
BeginInvoke BringToFront Contains CreateControl
CreateGraphics CreateObjRef Dispose DoDragDrop ...

 f.b.⎕nl -8
DoubleClick MouseDoubleClick AutoSizeChanged
ImeModeChanged BackColorChanged ...

 f.b.Text←'Popup'
 f.b.Font←myfont

 f.b.(FlatStyle←FlatStyle.Popup)

Normal appearance (Flat) Appearance when mouse over

In most cases, you may use a NetControl in the cells of a Grid object. Unless you

specify otherwise, using the InputProperties property of the Grid, the default property

of the NetControl will be associated with the corresponding element of Values. The

following example illustrates the use of a TextBox control. In this example, the

CharacterCasing property of the TextBox is set to Upper, causing all text to be

converted to upper-case.

 Dyalog APL/W Version 12.1 Release Notes 12

 ⎕USING←'System'
 ⎕USING,←⊂'System.Windows.Forms,system.windows.forms.dll'
 ⎕USING,←⊂'System.Drawing,system.drawing.dll'

 an←⎕NEW FontFamily(⊂'Arial Narrow')
 myfont←⎕NEW Font(an 11 FontStyle.Bold GraphicsUnit.Point)

 'f'⎕WC'Form' ('Coord' 'Pixel')('Size' 130 500)
 f.Caption←'Grid using .Net TextBox Control'

 'f.g'⎕WC'Grid'('Posn' 0 0)f.Size
 f.(ShowInput TitleWidth)) ← 1 0

 'f.g.tb'⎕WC'NetControl' 'TextBox'
 f.g.tb.Font←myfont
 f.g.tb.(CharacterCasing←CharacterCasing.Upper)

 f.g.Input←'f.g.tb'

 wds←'All' 'TeXt' 'Is' 'Changed' 'to' 'Upper' 'casE'
 wds,← 'ακομα' 'kai' 'τα' 'Ελληνικα'

 f.g.Values←5 5⍴wds

Implementation note: The instance of the .Net control is actually placed inside an

instance of the .Net class System.Windows.Forms.ContainerControl.This

ContainerControl is then embedded in the Dyalog parent, such as a Form. This

"extra level" should have no affect on how the control is used or on how it behaves.

 Introduction 13

APLVersion Property

Applies to Root

Description

This is a read-only property that provides information about the Version of Dyalog

APL that you are using. It is a 4-element vector of character vectors as described in the

table below.

Note: In future releases these values may change, be removed, or new ones added.

Index Description Possible Values

[1] Target Environment Windows
Windows-64
Windows Mobile
Linux
Linux-64
AIX
AIX-64
Solaris
Solaris-64

[2] Version Number

[3] Version Type W : Windows

S : Server (terminal) version

Wine : GUI version running under WINE

M : Motif

P : PocketAPL

[4] Program Type Development
Runtime
DLL

Example:

]display '.' ⎕WG'APLVersion'
┌→──┐
│ ┌→──────┐ ┌→──────────┐ ┌→┐ ┌→──────────┐ │
│ │Windows│ │12.1.0.3300│ │W│ │Development│ │
│ └───────┘ └───────────┘ └─┘ └───────────┘ │
└∊──┘

 Dyalog APL/W Version 12.1 Release Notes 14

RadiusMode Property

Applies to Circle, Root

A perfectly round circle can only be drawn if the diameter is an odd number of pixels.

The RadiusMode property specifies whether or not a circle is adjusted by a single

pixel, if necessary, so as to appear perfectly round.

If RadiusMode is 1 or ¯1, and the diameter is an even number of pixels, the circle is

actually drawn with a diameter of 1 pixel more or less than specified. If RadiusMode is

0 (the default), no such adjustment is made.

RadiusMode may be set on the Root object to be inherited by all Circle objects.

 Introduction 15

Changes to Keyboard Support
Version 12.1 Unicode Edition ships with three sets of keyboard layouts. By default,

one keyboard from each of these sets (corresponding to your language or locale) will

be installed:

Ctrl: Keyboards named locale – Dyalog Ctrl (e.g. UK – Dyalog Ctrl). These

keyboards use what has become the "classic" Dyalog keyboard, using the Ctrl

key to enter APL symbols.

The "Ctrl" keyboards shipped with Version 12.1 are slightly different from

earlier versions (with the exception of the Italian keyboard, which was ahead

of its time) in that the APL symbols ⊂⊃∩∪ can also be generated using

Ctrl+Shift in combination with Z,X,C,V. This is useful in applications which

use Ctrl+Z,X,C,V for Undo, Cut, Copy and Paste. By default, the APL session

will now use Ctrl X,C,V for Cut, Copy and Paste.

AltGr: Keyboards named locale – Dyalog AltGr (e.g. UK – Dyalog AltGr), which are

very similar to the above, except that the AltGr key (available on some

keyboards) is used to select APL symbols. Note that Alt+Ctrl can be used as

an alternative to the AltGr key.

IME: An Input Mode Editor (which is a special kind of keyboard handler) named

Dyalog IME supports configurable keyboards which are defined using the

same Dyalog Input (.DIN) files as the Classic Editions. By default, the IME

will be configured with a Ctrl layout. The new IME does not have the APL

On/Off button that previous versions had – the intention is that it will be

activated using standard Windows mechanisms.

I-Beam (⌶) has been added to all keyboards as Ctrl+Shift+I or AltGr+Shift+I.

Which Keyboard Should I Use?
The three families of keyboards have the following advantages and disadvantages,

depending on which application you use them with:

Ctrl keyboards are familiar and likely to be the first choice for anyone with experience

in using Dyalog APL. The keyboards work well in the APL session, but if you use

them with other common Windows applications, many of the APL symbols cannot be

entered because applications use key combinations like Ctrl+A to select all text or

Ctrl+S to save the current document.

 Dyalog APL/W Version 12.1 Release Notes 16

AltGr keyboards move the APL symbols onto keys which are less frequently used as

shortcuts. However, there is generally only one AltGr key on a keyboard, so typing is a

little less convenient. Also, some applications are starting to use AltGr-based shortcuts.

For example, Google Desktop uses AltGr+G as a global hotkey.

The IME, which had been introduced with the version known as Dyalog.Net (between

versions 10.0 and 10.1) as a tool for editing APL Script files, was retired in version

12.0 because it was believed that the Ctrl and AltGr keyboards would now be

sufficient. However, the IME is different from "normal" keyboards in that any

keystroke which is defined as producing a symbol becomes invisible to the underlying

application, which only sees the character which is generated. Thus, if you use the

Dyalog IME with Microsoft Word, Ctrl+A will not select all the text in your document,

but always produce the symbol ⍺. Of course, this means that you can no longer use

hotkeys based on Ctrl in Word when the IME is active.

Recommended Strategies
Dyalog recommends one of the following two strategies:

AltGr: If you are comfortable with the AltGr keyboard and you don‟t have many

situations where you need to type APL characters into an application in which AltGr is

used for hotkeys, set your locale - Dyalog AltGr keyboard up as the default keyboard

on your machine, and it should work well in all applications. You can activate the IME

using the Windows Language Bar if you occasionally have a problem with application

hotkeys making it hard to enter APL symbols.

Ctrl+IME: If you find that the Ctrl layout is more attractive, you can use the Ctrl

keyboard most of the time, and switch to the IME if you need to enter APL symbols

into an application which uses Ctrl for hotkeys. If you need to switch frequently, we

recommend that you use Control Panel to set up a hotkey to toggle between keyboards

(and possibly remove the AltGr keyboard to reduce the number of keyboards that you

will be toggling between).

 Introduction 17

Configuring keyboards
Keyboards can be configured using:

Control Panel/Regional and Language Settings/Keyboards and Languages,

then press the Change Keyboards button.

This displays the following dialog box:

 Dyalog APL/W Version 12.1 Release Notes 18

You can also bring this dialog box up by right clicking on the language bar and

selecting Settings. You can use this dialog box to remove unwanted keyboards (and

add them back again). Use the Advanced Key Settings tab to define shortcuts to switch

between keyboards.

If you are going to be switching between keyboards frequently (for example, when

writing documentation), you can "restore" the Language Bar so that it is easier to see

which keyboard is selected (when minimized, the Language Bar only shows a small

picture of a keyboard on the taskbar). When restored, it looks like this:

Configuration Options
A few configuration options are worth mentioning.

In APL, on the Keyboard Shortcuts tab of the Options/Configure dialog, a new

checkbox labeled Use Ctrl X,C,V for Clipboard allows you to decide whether APL will

always use these shortcuts, regardless of what other shortcuts are defined.

The IME has a couple of registry entries which can be used to configure it – in the

registry section HKEY_CURRENT_USER\Software\Dyalog\IME:

Translate Table Names the .din file to be used to define the input translate

table. This is the same as the aplk parameter used by Classic

APL systems. By default, the DIN file corresponding to your

locale should have been automatically selected.

WantsSpecialKeys Lists applications for which the IME will generate the

characters defined in the "special functions" section of the

DIN file. The IME will always do this when the application is

dyalog.exe or dyalogrt.exe. By default, this key is initialized

to "putty", so that special keys are processed when using the

PuTTY terminal emulator. The default translate tables

provided with Unix when this is used to run a terminal session

which is connected to and APL system which is using a

translate table which recognizes the symbols.

 Introduction 19

Troubleshooting
Problem: No Dyalog keyboards installed, or keyboards were installed for the

wrong language

Solution: Report the problem to support@dyalog.com, providing the value of the

registry key "1" in HKEY_CURRENT_USER\Keyboard Layout\Preload

(this should be an 8-digit number, for example "00000406" for Denmark).

Problem: Keyboard layout changes unexpectedly while typing

Solution: Check whether a keyboard shortcut is defined to switch between keyboard

layouts: Right click on the Windows Language Bar, select Settings, and

select the Advanced Key Settings tab.

mailto:support@dyalog.com

 Dyalog APL/W Version 12.1 Release Notes 20

Enhanced Editor
The Editor has been enhanced to improve the ease with which individual functions and

classes can be edited.

Functions
For single functions, the most obvious improvement is the outlining feature. Outlining

identifies the blocks of code within control structures, and allows you to collapse and

expand these blocks so that you can focus your attention on particular parts of the code

The picture below shows the result of opening the function ⎕SE.cbtop.TB_POPUP.

)ed ⎕SE.cbtop.TB_POPUP

Notice that the various control structure blocks are delineated by a treeview diagram.

 Introduction 21

 When you hover the mouse pointer over one of the boxes that mark the start

of a block , the line marking the extent of that block becomes highlighted, as

shown above.

 If you click on a box, the corresponding section collapses, so that only the

first line of the block is displayed, as shown below.

 If you click on a box, the corresponding section is expanded.

 Dyalog APL/W Version 12.1 Release Notes 22

Editing Classes
The picture below shows the result of opening the ComponentFile class. Notice how

each function is delineated separately and that each function is individually line-

numbered.

)ed ComponentFile

 Introduction 23

The outlining feature really comes into its own when editing classes because you can

collapse and expand whole functions. The picture below shows the effect of collapsing

all but the Append method.

 Dyalog APL/W Version 12.1 Release Notes 24

When you edit a class, a separate treeview is optionally displayed in the left pane to

make it easy to navigate within the class. When you click on a name in the treeview,

the editor automatically scrolls the appropriate section into view (if necessary) and

positions the edit cursor at its start. The picture below illustrates the result of opening

the [Methods] section and then clicking on Rename.

 Introduction 25

Editing from the Workspace Explorer
If you double-click on the name of a Class in the Workspace Explorer, the same

treeview is displayed to assist in navigation, as shown below.

 Dyalog APL/W Version 12.1 Release Notes 26

The View Menu

The View menu, illustrated above, has been extended to allow you to control the new

editor features, and now provides the following actions.

Trace Displays a column to the left of the function that

displays ⎕TRACE settings

Stop Displays a column to the left of the function that

displays ⎕STOP settings

Monitor Displays a column to the left of the function that

displays ⎕MONITOR settings

Line Numbers Toggles the display of line numbers on/off.

Function Line Numbers Toggles the display of line numbers on individual

functions on/off. This option is only enabled when

editing a Class, Namespace script or Interface.

Tree View Toggles the display of the treeview in the left-hand

pane.

Outlining Turns outlining on and off.

Expand All Outlines Expands all outlines.

Collapse All Outlines Collapses all outlines

Expand all Outlines below

here

Expands all outlines below the level of the current

line.

 Introduction 27

Line-numbering
The manner in which the line numbering option works has changed.

In Version 12.1.the user‟s line-numbering preferences are stored in the Registry (in the

Editor\Columns section) on a per object type basis. In other words, the system

remembers the last line-numbering setting separately for a Class, function/operator,

and each type of array; character vector, character matrix, vector of character vectors,

and so forth.

The Line Numbers (Num-) menu item on the pop-up menu, and the button on the

Session toolbar (both of which are associated with the system action [LineNumbers])

toggle line-numbering on/off on the current edit window as before. However, line

numbering is not changed globally but only for the type of object in that window.

So, for example, if you have two Edit windows open, one on a function and the other

on a character matrix, toggling the line numbers on and off in one window will have no

effect on the line-numbering in the other window. However, if you opened a third

window on a defined operator, toggling the line-numbering in that window would

affect the line-numbering in the function window.

Whenever you change line-numbering, the corresponding value in the Registry for the

type of object in the currently active edit window is immediately updated.

The lines_on_functions parameter, which used to control line-numbering on a

global basis, has been removed.

Function Line Numbers
The Function Line Numbers option in the pop-up Editor menu provides an additional

level of line-numbering. If selected, line numbers are displayed independently on each

individual function (or operator) in the Class. This option is only enabled when you are

editing a Class, Namespace script or Interface, and is disabled for all other types of

object.

Note that function line-numbering and general line-numbering are independent options

and it is possible to have the entire Class numbered (from [0] to the number of lines in

the Class) in addition to having line-numbering on each individual function.

 Dyalog APL/W Version 12.1 Release Notes 28

Refactoring1
Version 12.1 provides some simple refactoring tools.

If the input cursor is positioned on a word somewhere in the body of a script, and you

select one of the options from the Refactoring menu:

 Add text as Field

 Add text as Property

 Add text as Method

the Editor inserts the appropriate template for a Field, Property or Method of the same

name. The template is inserted immediately above the line containing the word. So, for

example, if you position the input cursor on the word xvar, and then choose Add text

as Property, the Editor will insert the following lines above the line in the script

containing that xvar:

:Property xvar

 ⍷r←get
 r←0
 ⍷

 ⍷set args
 ⍷
:EndProperty

1 "Refactoring is the process of changing a software system in such a way that it does not alter the external behavior
of the code yet improves its internal structure." -- MartinFowler inRefactoringImprovingTheDesignOfExistingCode.

http://c2.com/cgi/wiki?MartinFowler
http://c2.com/cgi/wiki?RefactoringImprovingTheDesignOfExistingCode

 Introduction 29

Miscellaneous
The following additional improvements have been made to the Editor:

 The speed with which the Editor displays and refreshes its contents has been

very substantially improved. The effect is immediate, even for very large

classes, functions and variables.

 The limit on the number of lines that the Editor could effectively and correctly

number, has been removed. This was previously 9999.

 If you are editing a script and you press Shift+Enter or double-click on the

name of a function that is defined within the same script, the Editor will move

the input cursor to that function.

 If you open the Editor on a specific name in a script, the Editor will open on

the script as a whole but position the input cursor on the chosen name. For

example if you enter the command:

)ed myclass.myfn

The Editor will open a window on myclass and position the input cursor on

myfn, creating a new function if it doesn‟t already exist.

 When you use the Editor to view a nested array character data is displayed in

the colours associated with Character Constant and numeric data in the

colours associated with Numeric Constant. The same syntax colours are used

to display data in the Value Tip window; the pop-up window that appears

when you hover the mouse-pointer over a name.

 Dyalog APL/W Version 12.1 Release Notes 30

The Tracer and Syntax Colouring
The Tracer may now optionally be coloured in the same way as the Editor. If you

choose this option, the appearance of a function inside the Tracer window is almost

identical to that of the Editor. The only difference is that the current line is identified

by a bright red rectangle. For example:

If, while tracing, you decide to edit the function, the colours don‟t change, but the Edit

toolbar replaces the Trace Tools, as shown below.

The option to apply syntax colouring to the Tracer is set by checking the Function

Tracer button on the Syntax tab of the Colour Selection dialog box. If you check this

option, the Tracer colour scheme defined from the Session/Trace tab is overridden.

 Introduction 31

APLFormatBias Parameter

In Version 11.0, ⎕FMT and dyadic ⍕ were changed to improve the accuracy of the

display of floating-point numbers. The gain in accuracy has necessarily been achieved

at the cost of a reduction in performance. The difference in performance is significant,

but may only be noticeable in an application that does a lot of numeric formatting.

In versions prior to Version 11.0, there was a significant performance optimisation

whereby numbers which would display in fewer than 10 digits were scaled and then

treated as integers.

A second consequence of the optimisation was that numbers smaller than but

indistinguishable (in terms of the accuracy of internal representation) from n.5 were

rounded up. In other words, any number whose decimal part (the part of the number

after the decimal point) is in the range (0.49999999999999987 to

0.49999999999999999 will be rounded as if it were 0.5 (i.e., rounded up). This effect,

although potentially desirable, may be regarded as being not strictly correct.

 For example, consider the number 0.015 which is internally represented as the value

1.4999999...

 2 ⍕0.015 ⍝ Versions prior to 11.0
 0.02

 2 ⍕0.015 ⍝ Version 11.0 onwards
 0.01

A new parameter APLFormatBias has been introduced (in Version 12.0 Release 4)

to allow you to select the old, pre-Version 11.0 behaviour.

If you wish to get the old pre-Version 11.0 behaviour, which includes significantly

better performance, you should set APLFormatBias to 1. The default is 0 (slower

but mathematically more “correct”). As with any other parameter, you may set

APLFormatBias in the Windows Registry, on the command line, or as an

environment variable.

 Dyalog APL/W Version 12.1 Release Notes 32

Miscellaneous

Change to Outer-Product
In Version 12.1, the way that outer-product produces a null result has changed.

Outer-product now applies its operand function once between the first items of its

arguments to determine the prototype of the result. In previous versions, the function

was not applied, and the prototype of the result was the same as that of the right

argument. This lead to anomalies such as ∘.≡ producing a (null) character result.

Change to ⎕EX and ⎕SIZE
⎕EX and ⎕SIZE now accept a vector of character vectors as their argument..

Change to ⎕AVU

In version 12.1, there is a small change to the default ⎕AVU as follows:

 ⎕AVU[⎕IO+219 237]←180 96

Previously, these two elements had the value 8217 8218.

The Unicode code points involved are:

0096: U+0060 GRAVE ACCENT

0180: U+00B4 ACUTE ACCENT

8216: U+2018 LEFT SINGLE QUOTATION MARK

8217: U+2019 RIGHT SINGLE QUOTATION MARK

Change to SALT
The default target space for the SALT “Load” command has changed. Previously, the

default was always to load objects into the root namespace (#). The version of SALT

distributed with Version 12.1 will load into the space from which the call to SALT was

made. You can achieve the old behaviour by adding the the switch „-target=#‟ to

explicitly set the target to #.

 Introduction 33

System Requirements

Microsoft Windows
Dyalog APL Version 12.1 supports the following Versions of Windows:

 Windows Vista

 Windows XP

 Windows 2000

 Windows Server 2003

Note that Dyalog APL Version 12.1 is not supported under Windows 95, Windows 98,

Windows ME or Windows NT4.

Microsoft .Net Interface
Dyalog APL Version 12.1 .Net Interface requires Version 2.x or greater of the

Microsoft .Net Framework. It does not operate with .Net Version 1.0.

 Dyalog APL/W Version 12.1 Release Notes 34

Interoperability and Compatibility

Introduction
Workspaces and component files are stored on disk in a binary format (illegible to text

editors). This format differs between machine architectures and among versions of

Dyalog. For example a file component written by a PC will almost certainly have an

internal format that is different from one written by a UNIX machine. Similarly, a

workspace saved from Dyalog Version 12.1 will differ internally from one saved by a

previous version of Dyalog APL.

It is convenient for versions of Dyalog APL running on different platforms to be able

to interoperate by sharing workspaces and component files. From Version 11.0,

component files and workspaces can generally be shared between Dyalog interpreters

running on different platforms. However, this is not always possible. For example,

component files created by Version 10.1 can often not be shared across platforms, even

when used by later versions (the system function ⎕FCOPY can be used to make a

logically identical copy of an old file, which is fully inter-operable).

The following sections describe other limitations in inter-operability:

Code
Code which is saved in workspaces, or embedded within ⎕ORs stored in component

files, can generally only be read by the version which saved them and later versions of

the interpreter. In the case of workspaces, a load (or copy) from an older version would

fail with the message:

 this WS requires a later version of the interpreter.

In the case of ⎕OR, unpredictable behaviour may result if an older version reads a ⎕OR

saved by a later version of the system. Thus, ⎕OR is not recommended as a mechanism

for sharing code or objects between different versions of APL.

“Ordinary” Arrays
With the exception of the Unicode restrictions described in the following paragraphs,

Dyalog APL provides complete inter-operability for arrays which only contain (nested)

character and numeric data. Such arrays can be stored in component files - or

transmitted using TCPSocket objects and Conga connections, and shared between all

versions and across all platforms.

As mentioned in the introduction, full cross-platform interoperability of component

files is only available for large component files (see the following section), and for

small component files created by Version 11.0 or later.

 Introduction 35

32 vs 64-bit Component Files
Large (64-bit-addressing) component files are inaccessible to versions of the

interpreter that pre-dated their introduction (versions earlier than 10.1).

The second item in the right argument of ⎕FCREATE determines the addressing type

of the file.

 'small'⎕fcreate 1 32 ⍝ create small file.
 'large'⎕fcreate 1 64 ⍝ create large file.

If the second item is missing, the file type defaults to 64-bit-addressing. In versions

prior to 12.0, the default was 32-bit addressing.

Note that small (32-bit-addressing) cannot contain Unicode data. Unicode editions of

Dyalog APL can only write character data which would be readable by a Classic

edition (consisting of elements of ⎕AV).

External Variables
External variables are implemented as small (32-bit -adressing) component files, and

subject to the same restrictions as these files. External variables are unlikely to be

developed further; Dyalog recommends that applications which use them should switch

to using mapped files or traditional component files. Please contact Dyalog if you need

further advice on this topic.

32 vs. 64-bit Interpreters
From Dyalog APL Version 11.0 onwards, there are two separate versions of programs

for 32-bit and 64-bit machine architectures (in general, the 32-bit versions will also run

on 64-bit machines running 64-bit operating systems). There is complete inter-

operability between 32- and 64-bit interpreters.

Unicode vs. Classic Editions
From Version 12.0 onwards, a Unicode edition is available, which is able to work with

the entire Unicode character set. Classic editions (a term which includes versions prior

to 12.0) are limited to the 256 characters defined in the atomic vector, ⎕AV). Large (64-

bit-addressing) component files have a Unicode property; when this is enabled,

Unicode data may be stored in the file. The Unicode property is always off for small

(32-bit addressing) files, which may not contain Unicode data. When a Unicode edition

writes to a component file which may not contain Unicode data, character data is

mapped to ⎕AV, and can therefore be read without problems by Classic editions.

 Dyalog APL/W Version 12.1 Release Notes 36

A TRANSLATION ERROR will occur if a Unicode edition writes to a non-Unicode

component file, if the data being written contains characters which are not in ⎕AV (see

⎕AVU for more details). Likewise, a Classic edition (Version 12.0 or later) will issue a

TRANSLATION ERROR if it reads Unicode data from a component file, and is unable

to map it to ⎕AV. Version 10.1 cannot read components containing Unicode data.

A TRANSLATION ERROR will also issued when a Classic edition)LOADs or

)COPYs a workspace containing Unicode data which cannot be mapped to ⎕AV.

TCPSocket objects have an APL property which corresponds to the Unicode property

of a file, if this is set to Classic (the default) the data in the socket will be restricted

to ⎕AV, if Unicode it will contain Unicode character data. As a result,

TRANSLATION ERRORs can occur on transmission or reception in the same way as

when updating or reading a file component.

File Journaling
Version 12.0 introduces File Journaling (level 1), and 12.1 adds levels 2 and 3.

Versions earlier than 12.0 cannot tie files which have any form of journaling enabled.

Version 12.0 cannot tie files with journaling levels other than 1. Files can be shared

with earlier versions by using ⎕FPROPS to switch journaling off.

Auxiliary Processors
A Dyalog APL process is restricted to starting an AP of exactly the same architecture.

In other words, the AP must share the same word-width and byte-ordering as its

interpreter process.

Session Files
Session (.dse) files may only be used on the platform on which they were created and

saved.

 37

C H A P T E R 2

XML Import and Export

Introduction
The ⎕XML system function allows XML (eXtensible Markup Language) format data to

be efficiently converted to and from arrays which have a structure designed to be easy

for APL programmers to generate and manipulate. This allows APL applications to

easily import and export data in XML format, to exchange data with other applications

written in APL (including other dialects of APL), or other languages.

Example 1 - converting XML text to a matrix:

 x←'<xml><document id=\001\>An introduction to XML'
 x,←'</document></xml>'
 x
<xml><document id="001">An introduction to XML</document>
</xml>

 v←⎕xml x

]display ⎕XML x
┌→───┐
↓ ┌→──┐ ┌⊖┐ ┌→────────┐ │
│ 1 │xml│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 3 │
│ └───┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→───────┐ ┌→─────────────────────┐ ┌→───────────┐ │
│ 2 │document│ │An introduction to XML│ ↓ ┌→─┐ ┌→──┐ │ 1 │
│ └────────┘ └──────────────────────┘ │ │id│ │001│ │ │
│ │ └──┘ └───┘ │ │
│ └∊───────────┘ │
└∊───┘

Example 2 – converting a matrix to XML text

 ⎕XML v
<xml>
 <document id="001">An introduction to XML
 </document>
</xml>

 Dyalog APL/W Version 12.1 Release Notes 38

Principle features:
 All well-formed XML is accepted by ⎕XML and converted into an APL array

for use in an APL application.

 XML is generated by ⎕XML from a matrix in the correct format,

 Data and data format described by XML is stored in the APL array in a format

which is designed to be easy to generate and manipulate from an APL

program.

 XML grammar such as processing instructions, document type declarations

etc may optionally be stored in the APL array, but will not be processed or

validated. This is principally to allow regeneration of XML from XML input

which contains such structures, but an APL application could process the data

if it chose to do so.

 XML is an open standard, designed to allow exchange of data between

applications. The full specification (http://www.w3.org/TR/2008/REC-xml-

20081126/) describes functionality, including processing directives and other

directives, which can transform XML data as it is read, and which a full XML

processor would be expected to handle. The ⎕XML function is designed to

handle XML to the extent required to import and export APL data. It favours

speed over complexity - some markup is tolerated but largely ignored, and

there are no XML query or validation features. APL applications which

require processing, querying or validation will need to call external tools for

this, and finally call ⎕XML on the resulting XML to perform the

transformation into APL arrays.

XML Processing
The XML definition uses specific terminology to describe its component parts. This is

a summary of the terms used in this chapter:

Character Data

Character data consists of free-form text. The free-form text should not include the

characters „>‟ (when it follows „]]‟), „<‟ or „&‟, so these must be represented by their

entity references („>‟, „<‟ and „&‟ respectively), or numeric character

references.

Entity References and Character References

Entity references are named representations of single characters which cannot normally

be used in character data because they are used to delimit markup, such as > for „>‟.

Character references are numeric representations of any character, such as for

space. Note that character references always take values in the Unicode code space,

regardless of the encoding of the XML text itself.

http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/

 Chapter 2: XML Import and Export 39

⎕XML converts entity references and all character references which the APL character

set is able to represent into their character equivalent when generating APL array data;

when generating XML it converts any or all characters to entity references as needed.

There is a predefined set of entity references, and the XML specification allows others

to be defined within the XML using the <!ENTITY > markup. ⎕XML does not

process these additional declarations and therefore will only convert the predefined

types.

Whitespace

Whitespace sequences consist of one or more spaces, tabs or line-endings. Within

character data, sequences of one or more whitespace characters are replaced with a

single space when this is enabled by the whitespace option. Line endings are

represented differently on different systems (0x0D 0x0A, 0x0A and 0x0D are all used)

but are normalized by converting them all to 0x0A before the XML is parsed,

regardless of the setting of the whitespace option.

Elements

An element consists of a balanced pair of tags or a single empty element tag. Tags are

given names, and start and end tag names must match.

An example pair of tags, named TagName is

<TagName></TagName>

This pair is shown with no content between the tags; this may be abbreviated as an

empty element tag as

<TagName/>

Tags may be given zero or more attributes, which are specified as name/value pairs; for

example

<TagName AttName=”AttValue”>

Attribute values may be delimited by either double quotes as shown or single quotes

(apostrophes); they may not contain certain characters (the delimiting quote, „&‟ or

„<‟) and these must be represented by entity or character references.

The content of elements may be zero or more mixed occurrences of character data and

nested elements. Tags and attribute names describe data, attribute values and the

content within tags contain the data itself. Nesting of elements allows structure to be

defined.

 Dyalog APL/W Version 12.1 Release Notes 40

Because certain markup which describes the format of allowable data (such as element

type declarations and attribute-list declarations) is not processed, no error will be

reported if element contents and attributes do not conform to their restricted

declarations, nor are attributes automatically added to tags if not explicitly given.

Attributes with names beginning „xml:‟ are reserved. Only xml:space is treated

specially by ⎕XML. When converting both from and to XML, the value for this

attribute has the following effects on space normalization for the character data within

this element and child elements within it (unless subsequently overridden):

 default – space normalization is as determined by the whitespace option.

 preserve - space normalization is disabled – all whitespace is preserved as

given.

 any other value – rejected.

Regardless of whether the attribute name and value have a recognised meaning, the

attribute will be included in the APL array / generated XML. Note that when the names

and values of attributes are examined, the comparisons are case-sensitive and take

place after entity references and character references have been expanded.

Comments

Comments are fully supported markup. They are delimited by „<!--„ and „-->‟ and all

text between these delimiters is ignored. This text is included in the APL array if

markup is being preserved, or discarded otherwise.

CDATA Sections

CDATA Sections are fully supported markup. They are used to delimit text within

character data which has, or may have, markup text in it which is not to be processed

as such. They and are delimited by „<![CDATA[„ and „]]>‟. CDATA sections are never

recorded in the APL array as markup when XML is processed – instead, that data

appears as character data. Note that this means that if you convert XML to an APL

array and then convert this back to XML, CDATA sections will not be regenerated. It

is, however, possible to generate CDATA sections in XML by presenting them as

markup.

Processing Instructions

Processing Instructions are delimited by „<&‟ and „&>‟ but are otherwise treated as

other markup, below.

 Chapter 2: XML Import and Export 41

Other markup

The remainder of XML markup, including document type declarations, XML

declarations and text declarations are all delimited by „<!‟ and „>‟, and may contain

nested markup. If markup is being preserved the text, including nested markup, will

appear as a single row in the APL array. ⎕XML does not process the contents of such

markup. This has varying effects, including but not limited to the following:

 No validation is performed.

 Constraints specified in markup such element type declarations will be

ignored and therefore syntactically correct elements which fall outside their

constraint will not be rejected.

 Default attributes in attribute-list declarations will not be automatically added

to elements.

 Conditional sections will always be ignored.

 Only standard, predefined, entity references will be recognized; entity

declarations which define others entity references will have no effect.

 External entities are not processed.

 Dyalog APL/W Version 12.1 Release Notes 42

Conversion from XML
When the right argument to ⎕XML is a character vector it is assumed to contain XML

text. This is processed to generate a five column array with the following information

in the columns:

1. Numeric value which indicates the nesting depth.

2. Element name, other markup text, or empty character vector when empty.

3. Character data, or empty character vector when empty.

4. Attribute name and value pairs, 0 2⍴⊂'' when empty.
5. A numeric value which indicates what the row contains.

Notes:
 The level number in the first column is 0 for the outermost level and

subsequent levels are represented by an increase of 1 for each level. Thus, for

<xml><document id="001">An introduction to XML
</document></xml>

The xml element is at level 0 and the document id element is at level 1.

The text within the document id element is at level 2.

 Each tag in the XML contains an element name and zero or more attribute

name and value pairs, delimited by „<‟ and „>‟ characters. The delimiters are

not included in the result matrix. The element name of a tag is stored in

column 2 and the attribute(s) in column 4.

 All XML markup other than tags are delimited by either „<!‟ and „>‟, or „<?‟

and „>‟ characters. By default these are not stored in the result matrix but the

markup option may be used to specify that they are. The elements are stored

in their entirety, except for the leading and trailing „<‟ and „>‟ characters, in

column 2. Nested constructs are treated as a single block. Because the leading

and trailing „<‟ and „>‟ characters are stripped, such entries will always have

either „!‟ or „&‟ as the first character.

 Character data itself has no tag name or attributes. As an optimization, when

character data is the sole content of an element, it is included with its parent

rather than as a separate row in the result. Note that when this happens, the

level number stored is that of the parent; the data itself implicitly has a level

number one greater.

 Attribute name and value pairs associated with the element name are stored in

the fourth column, in an (n x 2) matrix of character values, for the n (including

zero) pairs.

 Chapter 2: XML Import and Export 43

 Each row is further described in the fifth column as a convenience to simplify

processing of the array (although this information could be deduced). The

following values are defined:

1 Element

2 Child element

4. Character data

8. Markup not otherwise defined

16. Comment markup

32. Processing instruction markup

 Any given row may contain an entry for an element, character data, markup

not otherwise defined, a comment or a processing instruction. Furthermore, an

element will have zero or more of these as children. For all types except

elements, the value in the fifth column is as shown above. For elements, the

value is computed by adding together the value of the row itself (1) and those

of its children. For example, the value for a row for an element which contains

one or more sub-elements and character data is 7 – that is 1 (element) + 2

(child element) + 4 (character data). It should be noted that:

1. Odd values always represent elements. Odd values other than 1

indicate that there are children.

2. Elements which contain just character data (5) are combined into a

single row as noted previously.

3. Only immediate children are considered when computing the value.

For example, an element which contains a sub-element which in turn

contains character data does not itself contain character data.

4. The computed value is derived from what is actually preserved in the

array. For example, if the source XML contains an element which

contains a comment, but comments are being discarded, there will be

no entry for the comment in the array and the fifth column for the

element will not indicate that it has a child comment.

 Dyalog APL/W Version 12.1 Release Notes 44

Conversion to XML
Conversion to XML takes an array with the format described above and generates

XML text from it. There are some simplifications to the array which are accepted:

 The fifth column is not needed for XML generation and is effectively ignored.

Any numeric values are accepted, or the column may be omitted altogether.

 If there are no attributes in a particular row then the 0 2⍴⊂'' may be

abbreviated as zilde. If the fifth column is omitted then the fourth column may

also be omitted altogether.

 Data in the third column and attribute values in the fourth column (if present)

may be provided as either character vectors or numeric values. Numeric

values are implicitly formatted as if ⎕PP was set to 17.

The following validations are performed on the data in the array:

 All elements within the array are checked for type.

 Values in column 1 must be non-negative and start from level 0, and the

increment from one row to the next must be ≤ +1.

 Tag names in column 2 and attribute names in column 4 (if present) must

conform to the XML name definition.

Then, character references and entity references are emitted in place of characters

where necessary, to ensure that valid XML is generated. However, markup, if present,

is not validated and it is possible to generate invalid XML if care in not taken with

markup constructs.

 45

C H A P T E R 3

Language Enhancements

New and Revised Primitive & System Functions
New Primitive Operators, Functions, System Functions & Variables

⍪ Table

⌶ I-Beam

⎕FCHK File Check and Repair

⎕XML XML Convert

Revised Primitive Functions, System Functions & Variables

∘. Outer Product

⎕EX Expunge Object(s)

⎕FPROPS File Properties

⎕SIZE Size of Object(s)

 Dyalog APL/W Version 12.1 Release Notes 46

Table: R←⍪Y

Y may be any array. R is a 2-dimensional matrix of the elements of Y taken in row-

major order, preserving the shape of the first dimension of Y if it exists

Table has been implemented according to the Extended APL Standard (ISO/IEC

13751:2001).

Examples

]display {⍵ (⍴⍵)} ⍪'a'
┌→──────────┐
│ ┌→┐ ┌→──┐ │
│ ↓a│ │1 1│ │
│ └─┘ └~──┘ │
└∊──────────┘

]display {⍵ (⍴⍵)} ⍪'hello'
┌→──────────┐
│ ┌→┐ ┌→──┐ │
│ ↓h│ │5 1│ │
│ │e│ └~──┘ │
│ │l│ │
│ │l│ │
│ │o│ │
│ └─┘ │
└∊──────────┘

]display {⍵ (⍴⍵)} ⍪2 3 4⍴⍳24
┌→───┐
│ ┌→──────────────────────────────────┐ ┌→───┐ │
│ ↓ 1 2 3 4 5 6 7 8 9 10 11 12│ │2 12│ │
│ │13 14 15 16 17 18 19 20 21 22 23 24│ └~───┘ │
│ └~──────────────────────────────────┘ │
└∊───┘

 Chapter 3: Language Enhancements 47

I-Beam: R←{X}(A⌶)Y

I-Beam is a monadic operator that provides a range of system related services.

WARNING: Although documentation is provided for I-Beam functions, any service

provided using I-Beam should be considered as “experimental” and subject to change –

without notice - from one release to the next. Any use of I-Beams in applications

should therefore be carefully isolated in cover-functions that can be adjusted if

necessary.

A is an integer that specifies the type of operation to be performed as shown in the

table below. Y is an array that supplies further information about what is to be done.

X is currently unused.

R is the result of the derived function.

A Derived Function

200 Syntax Colouring

1111 Number of Threads

1112 Parallel Execution Threshold

1113 Thread Synchronisation Mechanism

2000 Memory Manager Statistics

2110 Export to Memory

 Dyalog APL/W Version 12.1 Release Notes 48

Syntax Colouring: R←200⌶Y

This function obtains syntax colouring information for a function.

Y is a vector of character vectors containing the ⎕NR representation of a function or

operator.

R is a vector of integer vectors with the same shape and structure of Y in which each

number identifies the syntax colour element associated with the corresponding

character in Y.

 {(↑⍵),↑ 200⌶⍵} 'foo; local' 'global'
'local←⍴⍴''hello'''

foo; local 21 21 21 19 3 31 31 31 31 31 0 0 0 0 0
global 7 7 7 7 7 7 0 0 0 0 0 0 0 0 0
local←⍴⍴'hello' 31 31 31 31 31 19 23 23 4 4 4 4 4 4 4

In this example:

21 is the syntax identifier for “function name”

19 is the syntax identifier for “primitive”

3 is the syntax identifier for “white space”

31 is the syntax identifier for “local name”

7 is the syntax identifier for “global name”

23 is the syntax identifier for “idiom”

 Chapter 3: Language Enhancements 49

Number of Threads: R←1111⌶Y

Specifies how many threads are to be used for parallel execution.

Y is an integer that specifies the number of threads that are to be used henceforth for

parallel execution. Prior to this call, the default number of threads is specified by an

environment variable named APL_MAX_THREADS. If this variable is not set, the

default is the number of CPUs that the machine is configured to have.

R is the previous value

Note that (unless APL_MAX_THREADS is set), the number of CPUs for which the

machine is configured is returned by the first execution of 1111⌶. The following

expression obtains and resets the number of threads back to this value.

 {}1111⌶ ncpu←1111⌶1

Parallel Execution Threshold: R←1112⌶Y

Y is an integer that specifies the array size threshold at which parallel execution takes

place. If a parallel-enabled function is invoked on an array whose number of elements

is equal to or greater than this threshold, execution takes place in parallel. If not, it

doesn‟t.

Prior to this call, the default value of the threshold is specified by an environment

variable named APL_MIN_PARALLEL. If this variable is not set, the default is 32768.

R is the previous value

Thread Synchronisation Mechanism: R←1113⌶Y

Y is Boolean and specifies whether or not the main thread does a busy wait for the

others to complete or uses a semaphore when a function is executed in parallel.

The default and recommended value is 0 (use a semaphore). This function is provided

only for Operating Systems that do not support semaphores.

A value of 1 must be set if you are running AIX Version 5.2 which does not support

Posix semaphores. Later versions of AIX do not have this restriction.

R is the previous value

 Dyalog APL/W Version 12.1 Release Notes 50

Memory Manager Statistics: R←2000⌶Y

This function returns information about the state of the workspace. This I-Beam is

provided for performance tuning and is VERY LIKELY to change in the next release.

Y is a simple scalar or vector containing up to 5 elements.

The result R is an array with the same structure as Y, but any elements of Y that contain

values other than ¯1, are replaced by the following values according to their position.

Index Description

1 Workspace available (a "quick" ⎕WA)

2 Workspace used

3 Number of compactions since the workspace was loaded

4 Number of garbage collections that found garbage

5 Current number of garbage pockets in the workspace

Note that while the first 4 operations are relatively fast, the fifth operation may take a

noticeable amount of time, depending upon the size and state of the workspace.

Examples

 2000⌶0
65374272

 2000⌶5⍴0
65374272 184256 2 1 0

 2000⌶¯1 ¯1 0 0
¯1 ¯1 2 1

Export to Memory: R←2100⌶Y

This function exports the current active workspace as an in-memory .NET.Assembly.

Y may be any array and is ignored.

The result R is 1 if the operation succeeded or 0 if it failed.

 Chapter 3: Language Enhancements 51

Expunge Object: {R}←⎕EX Y

Y must be a simple character scalar, vector or matrix, or a vector of character vectors

containing a list of names. R is a simple Boolean vector with one element per name in

Y.

Each name in Y is disassociated from its value if the active referent for the name is a

defined function, operator, variable or namespace.

The value of an element of R is 1 if the corresponding name in Y is now available for

use. This does not necessarily mean that the existing value was erased for that name.

A value of 0 is returned for an ill-formed name or for a distinguished name in Y. The

result is suppressed if not used or assigned.

Examples

 ⎕EX'VAR'
 +⎕EX'FOO' '⎕IO' 'X' '123'
1 0 1 0

If a named object is being executed the existing value will continue to be used until its

execution is completed. However, the name becomes available immediately for other

use.

Examples

)SI
FOO[1]*

 ⎕VR'FOO'
 ⍷ R←FOO
[1] R←10
 ⍷
 +⎕EX'FOO'
1
)SI
FOO[1]*

 ⍷FOO[⎕]
defn error

 FOO←1 2 3
 →⎕LC
10
 FOO
1 2 3

 Dyalog APL/W Version 12.1 Release Notes 52

If a named object is an external variable, the external array is disassociated from the

name:

 ⎕XT'F'
FILES/COSTS
 ⎕EX'F' ⋄ ⎕XT'F'

If the named object is a GUI object, the object and all its children are deleted and

removed from the screen. The expression ⎕EX'.' deletes all objects owned by the

current thread except for the Root object itself. In addition, if this expression is

executed by thread 0, it resets all the properties of '.' to their default values.

Furthermore, any unprocessed events in the event queue are discarded.

If the named object is a shared variable, the variable is retracted.

If the named object is the last remaining external function of an auxiliary process, the

AP is terminated.

If the named object is the last reference into a dynamic link library, the DLL is freed.

 Chapter 3: Language Enhancements 53

File Check and Repair: R←{X} ⎕FCHK Y

⎕FCHK validates and repairs component files following an abnormal termination of the

APL process or operating system.

Y must be a simple character scalar or vector which specifies the name of the file to be

exclusively checked or repaired. The file must be named in accordance with the

operating system's conventions, and may be a relative or absolute pathname. The file

must exist and must not already be tied.

The optional left-argument X must be a vector of zero or more character vectors from

among 'force', 'repair' and 'rebuild', which determine the detailed

operation of the function. Note that these options are case-sensitive.

 If X contains 'force' ⎕FCHK will validate the file even if it appears to have

been cleanly untied.

 If X contains 'repair' ⎕FCHK will repair the file, following validation, if it

appears to be damaged. This option may be used in conjunction with

'force'.

 If X contains 'rebuild' ⎕FCHK will repair the file unconditionally.

If X is omitted, the default behaviour is as follows:

1. If the file appears to have been cleanly untied previously, return ⍬, i.e. report

that the file is OK.

2. Otherwise, validate the file and return the appropriate result. If the file is

corrupt, no attempt is made to repair it.

The result R is a vector of the numbers of missing or damaged components. R may

include non-positive numbers of "pseudo components" that indicate damage to parts of

the file other than in specific components:

0 ACCESS MATRIX.

¯1 Free-block tree.

¯2 Component index tree.

Other negative numbers represent damage to the file metadata; this set may be

extended in the future.

Following a check of the file, a non-null result indicates that the file is damaged.

Following a repair of the file, the result indicates those components that could not be

recovered. Un-recovered components will give a FILE COMPONENT DAMAGED

error if read but may be replaced without error.

 Dyalog APL/W Version 12.1 Release Notes 54

Repair can recover only check-summed components from the file, i.e. only those

components that were written with the checksum option enabled (see ⎕FPROPS).

Following an operating system crash, repair may result in one or more individual

components being rolled back to a previous version or not recovered at all, unless

Journaling levels 2 or 3 were also set when these components were written.

File Properties: R←X ⎕FPROPS Y

Access Code 1 (to read) or 8192 (to change properties)

⎕FPROPS reports and sets the properties of a component file.

Y must be a simple integer scalar or vector containing the file tie number.

X must be a simple character scalar or vector containing one or more valid Identifiers

listed in the table below, or a vector of 2-element vectors, each of which contains an

Identifier and a (new) value for that property.

If the left argument is a simple character array, the result R contains the current values

for the properties identified by X. If the left argument is nested, the result R contains

the previous values for the properties identified by X.

Identifier Property Description / Legal Values

S File Size

(read only)

32 = Small Component Files (<4Gb)

64 = Large Component Files

E Endian-ness

(read only)

0 = Little-endian

1 = Big-endian

U Unicode 0 = Characters must be written as type 82 arrays

1 = Characters must be written as Unicode arrays

J Journaling 0 = Disable Journaling

1 = Enable APL crash proof Journaling

2 = Enable System crash proof Journaling; repair

needed on recovery

3 = Enable full System crash proof Journaling

C Checksum 0 = Disable checksum

1 = Enable checksum

The default properties for a newly created file are as follows:

 S = 64

 U = 1 (Unicode Edition and 64-bit file) or 0 (otherwise)

 Chapter 3: Language Enhancements 55

 J = 0

 C = 0

 E depends upon the computer architecture.

 Dyalog APL/W Version 12.1 Release Notes 56

Journaling Levels

Level 1 journaling (APL crash-proof) automatically protects a component file from

damage in the event of abnormal termination of the APL process. The file state will be

implicitly committed between updates and an incomplete update will automatically be

rolled forward or back when the file is re-tied. In the event of an operating system

crash the file may be more seriously damaged. If checksum was also enabled it may be

repaired using ⎕FCHK but some components may be restored to a previous state or not

restored at all.

Level 2 journaling (system crash-proof – repair needed on recovery) extends level 1 by

ensuring that a component file is fully repairable using ⎕FCHK with no component loss

in the event of an operating system failure. If an update was in progress when the

system crashed the affected component will be rolled back to the previous state. Tying

and modifying such a file without first running ⎕FCHK may however render it un-

repairable.

Level 3 journaling (system crash-proof) extends level 1 further by protecting a

component file from damage in the event of abnormal termination of the APL process

and also the operating system. Rollback of an incomplete update will be automatic and

no explicit repair will be needed.

Enabling journaling on a component file will reduce performance of file updates;

higher journaling levels have a greater impact.

Journaling levels 2 and 3 cannot be set unless the checksum option is also enabled.

Checksum Option

Enabling the checksum option for a component file will enable a damaged file to be

repaired using ⎕FCHK. It will however will reduce the performance of file updates

slightly and result in larger component files. The use of Check Sums is highly

recommended, but in order to provide compatibility with earlier versions of Dyalog, it

is not enabled by default. When version 12.1 becomes the oldest supported version,

Check Sums will probably be enabled by default.

Enabling the checksum option on an existing non-empty component file, will mean

that all components that had previously been written without a checksum, will be

check-summed and converted. This operation which will take place when ⎕FPROPS is

changed, may not, therefore, be instantaneous.

Journaling and checksum settings may be changed at any time a file is exclusively tied.

Component files written with Checksum enabled cannot be read by versions of

Dyalog APL prior to Version 12.1.

 Chapter 3: Language Enhancements 57

Example

 tn←'myfile64' ⎕FCREATE 0
 'SEUJ' ⎕FPROPS tn
64 0 1 0

 tn←'myfile32' ⎕FCREATE 0 32
 'SEUJ' ⎕FPROPS tn
32 0 0 0

The following expression disables Unicode and switches Journaling on. The function

returns the previous settings:

 ('U' 0)('J' 1) ⎕FPROPS tn
1 0

The Unicode property applies only to 64-bit component files. 32-bit component files

may not contain Unicode character data and the value of the Unicode property is

always 0. To convert a 32-bit component file to a 64-bit component file, use ⎕FCOPY.

Properties may be read by a task with ⎕FREAD permission (access code 1), and set by

a task with ⎕FSTAC access (8192). To set the value of the Journaling property, the file

must be exclusively tied.

If Journaling or Unicode properties are set, the file cannot be tied by Versions prior to

Version 12.0. If journaling is set to a value higher than 1, or checksums are enabled,

the file cannot be tied by versions prior to 12.1.

 Dyalog APL/W Version 12.1 Release Notes 58

Size of Object: R←⎕SIZE Y

Y must be a simple character scalar, vector or matrix, or a vector of character vectors

containing a list of names. R is a simple integer vector of non-negative elements with

the same length as the number of names in Y.

If the name in Y identifies an object with an active referent, the workspace required in

bytes by that object is returned in the corresponding element of R. Otherwise, 0 is

returned in that element of R.

The result returned for an external variable is the space required to store the external

array. The result for a system constant, variable or function is 0. The result returned

for a GUI object gives the amount of workspace needed to store it, but excludes the

space required for its children.

Note: Wherever possible, Dyalog APL shares the whole or part of a workspace object

rather than generates a separate copy.

Examples

 ⎕VR 'FOO'
 ⍷ R←FOO
[1] R←10
 ⍷

 A←⍳10

 'EXT/ARRAY' ⎕XT'E' ⋄ E←⍳20

 ⎕SIZE 'A' 'FOO' 'E' 'UND'
28 76 120 0

 Chapter 3: Language Enhancements 59

XML Convert: R←{X} ⎕XML Y

⎕XML converts a string containing XML into an APL array, and “exports” an APL

array as an XML string.

For conversion from XML, Y is a character vector containing an XML string. The

result R is a 5 column matrix.

For conversion to XML, Y is a 3, 4 or 5 column matrix and the result R is a character

vector.

The optional left argument X specifies a set of option/value pairs, each of which is a

character vector. X may be a 2-element vector, or a vector of 2-element character

vectors.

There are 3 option names; whitespace , markup, and unknown-entity whose

possible values are summarised below. Note that the default value is shown in bold

text, and that the option names and values are case-sensitive.

Errors detected in the input arrays or options will all cause DOMAIN ERROR.

 Dyalog APL/W Version 12.1 Release Notes 60

whitespace

When converting from XML whitespace specifies the default handling of white

space surrounding and within character data. When converting to XML whitespace

specifies the default formatting of the XML. Note that attribute values are not

comprised of character data so whitespace in attribute values is always preserved.

Converting from XML

strip All leading and trailing whitespace sequences are

removed; remaining whitespace sequences are replaced by

a single space character.

trim All leading and trailing whitespace sequences are

removed; all remaining whitespace sequences are handled

as preserve.

preserve Whitespace is preserved as given except that line endings

are represented by Linefeed (⎕UCS 10).

Converting to XML

strip All leading and trailing whitespace sequences are

removed; remaining whitespace sequences within the data

are replaced by a single space character. XML is generated

with formatting and indentation to show the data structure.

trim Synonymous with strip.

preserve Whitespace in the data is preserved as given, except that

line endings are represented by Linefeed (⎕UCS 10).

XML is generated with no formatting and indentation

other than that which is contained within the data.

]display eg
┌→───────────────────┐
│<xml> │
│ <a> │
│ Data1 │
│ <[-- Comment -->│
│ Data2 │
│ Data3 │
│ Data4 │
│ <c att=\val\/> │
│ │
│</xml> │
└────────────────────┘

 Chapter 3: Language Enhancements 61

]display 'whitespace' 'strip' ⎕XML eg
┌→──┐
↓ ┌→──┐ ┌⊖┐ ┌→────────┐ │
│ 1 │xml│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 3 │
│ └───┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌→────┐ ┌→────────┐ │
│ 2 │a│ │Data1│ ⌽ ┌⊖┐ ┌⊖┐ │ 2 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→─────────────┐ ┌⊖┐ ┌→────────┐ │
│ 3 │[-- Comment --│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 91 │
│ └──────────────┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────┐ ┌→────────┐ │
│ 3 │ │ │Data2│ ⌽ ┌⊖┐ ┌⊖┐ │ 0 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌→────┐ ┌→────────┐ │
│ 3 │b│ │Data3│ ⌽ ┌⊖┐ ┌⊖┐ │ 1 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────┐ ┌→────────┐ │
│ 3 │ │ │Data4│ ⌽ ┌⊖┐ ┌⊖┐ │ 0 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────────┐ │
│ 3 │c│ │ │ ↓ ┌→──┐ ┌→──┐ │ 5 │
│ └─┘ └─┘ │ │att│ │val│ │ │
│ │ └───┘ └───┘ │ │
│ └∊────────────┘ │
└∊──┘

 Dyalog APL/W Version 12.1 Release Notes 62

]display 'whitespace' 'preserve' ⎕XML eg
┌→───┐
↓ ┌→──┐ ┌→─┐ ┌→────────┐ │
│ 1 │xml│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 2 │
│ └───┘ │ │ │ │ │ │ │ │ │
│ └──┘ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌→─────────────┐ ┌→────────┐ │
│ 2 │a│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 2 │
│ └─┘ │ Data1 │ │ │ │ │ │ │ │
│ │ │ │ └─┘ └─┘ │ │
│ └──────────────┘ └∊────────┘ │
│ ┌→─────────────┐ ┌⊖┐ ┌→────────┐ │
│ 3 │[-- Comment --│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 91 │
│ └──────────────┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────────────┐ ┌→────────┐ │
│ 3 │ │ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 0 │
│ └─┘ │ Data2 │ │ │ │ │ │ │ │
│ │ │ │ └─┘ └─┘ │ │
│ └─────────────┘ └∊────────┘ │
│ ┌→┐ ┌→──────┐ ┌→────────┐ │
│ 3 │b│ │ Data3 │ ⌽ ┌⊖┐ ┌⊖┐ │ 1 │
│ └─┘ └───────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────────────┐ ┌→────────┐ │
│ 3 │ │ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 0 │
│ └─┘ │ Data4 │ │ │ │ │ │ │ │
│ │ │ │ └─┘ └─┘ │ │
│ └─────────────┘ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────────┐ │
│ 3 │c│ │ │ ↓ ┌→──┐ ┌→──┐ │ 5 │
│ └─┘ └─┘ │ │att│ │val│ │ │
│ │ └───┘ └───┘ │ │
│ └∊────────────┘ │
│ ┌⊖┐ ┌→─┐ ┌→────────┐ │
│ 3 │ │ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 0 │
│ └─┘ │ │ │ │ │ │ │ │ │
│ └──┘ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→┐ ┌→────────┐ │
│ 2 │ │ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 0 │
│ └─┘ │ │ │ │ │ │ │ │ │
│ └─┘ │ └─┘ └─┘ │ │
│ └∊────────┘ │
└∊───┘

 Chapter 3: Language Enhancements 63

markup

When converting from XML, markup determines whether markup (other than entity

tags) appears in the output array or not. When converting to XML markup has no

effect.

Converting from XML

strip Markup data is not included in the output array.

preserve Markup text appears in the output array, without the

leading „<‟ and trailing „>‟ in the tag (2
nd

) column.

]display eg
┌→───────────────────┐
│<xml> │
│ <a> │
│ Data1 │
│ <[-- Comment -->│
│ Data2 │
│ Data3 │
│ Data4 │
│ <c att=\val\/> │
│ │
│</xml> │
└────────────────────┘

 Dyalog APL/W Version 12.1 Release Notes 64

]display 'markup' 'strip'⎕XML eg
┌→──┐
↓ ┌→──┐ ┌⊖┐ ┌→────────┐ │
│ 1 │xml│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 3 │
│ └───┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌→──────────┐ ┌→────────┐ │
│ 2 │a│ │Data1 Data2│ ⌽ ┌⊖┐ ┌⊖┐ │ 2 │
│ └─┘ └───────────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌→────┐ ┌→────────┐ │
│ 3 │b│ │Data3│ ⌽ ┌⊖┐ ┌⊖┐ │ 1 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────┐ ┌→────────┐ │
│ 3 │ │ │Data4│ ⌽ ┌⊖┐ ┌⊖┐ │ 0 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────────┐ │
│ 3 │c│ │ │ ↓ ┌→──┐ ┌→──┐ │ 5 │
│ └─┘ └─┘ │ │att│ │val│ │ │
│ │ └───┘ └───┘ │ │
│ └∊────────────┘ │
└∊──┘

 Chapter 3: Language Enhancements 65

]display 'markup' 'preserve' ⎕XML eg
┌→──┐
↓ ┌→──┐ ┌⊖┐ ┌→────────┐ │
│ 1 │xml│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 3 │
│ └───┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌→────┐ ┌→────────┐ │
│ 2 │a│ │Data1│ ⌽ ┌⊖┐ ┌⊖┐ │ 2 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→─────────────┐ ┌⊖┐ ┌→────────┐ │
│ 3 │[-- Comment --│ │ │ ⌽ ┌⊖┐ ┌⊖┐ │ 91 │
│ └──────────────┘ └─┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────┐ ┌→────────┐ │
│ 3 │ │ │Data2│ ⌽ ┌⊖┐ ┌⊖┐ │ 0 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌→────┐ ┌→────────┐ │
│ 3 │b│ │Data3│ ⌽ ┌⊖┐ ┌⊖┐ │ 1 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌⊖┐ ┌→────┐ ┌→────────┐ │
│ 3 │ │ │Data4│ ⌽ ┌⊖┐ ┌⊖┐ │ 0 │
│ └─┘ └─────┘ │ │ │ │ │ │ │
│ │ └─┘ └─┘ │ │
│ └∊────────┘ │
│ ┌→┐ ┌⊖┐ ┌→────────────┐ │
│ 3 │c│ │ │ ↓ ┌→──┐ ┌→──┐ │ 5 │
│ └─┘ └─┘ │ │att│ │val│ │ │
│ │ └───┘ └───┘ │ │
│ └∊────────────┘ │
└∊──┘

 Dyalog APL/W Version 12.1 Release Notes 66

Unknown-entity

When converting from XML, this option determines what happens when an unknown

entity reference, or a character reference for a Unicode character which cannot be

represented as an APL character, is encountered. When converting to XML, this option

determines what happens to Esc characters (⎕AV[8+⎕IO]) in data.

Converting from XML

replace The reference is replaced a single „?‟ character.

preserve The reference is included in the output data as given, but

with the leading „&‟ replaced by ⎕AV[8+⎕IO].

Converting to XML

replace ⎕AV[8+⎕IO] is preserved

preserve ⎕AV[8+⎕IO] is replaced by „&‟

 Chapter 3: Language Enhancements 67

Outer Product: {R}←X∘.gY

g may be any dyadic function. The left operand of the operator is the symbol ∘. X and

Y may be any arrays whose elements are appropriate to the function g.

Function g is applied to all combinations of the elements of X and Y. If function g

returns a result, the shape of R is (⍴X),⍴Y. Each element of R is the item returned by

function g when applied to the particular combination of elements of X and Y.

Examples

 1 2 3∘.⍶10 20 30 40
10 20 30 40
20 40 60 80
30 60 90 120

 1 2 3∘.⍴'AB'
 A B
 AA BB
 AAA BBB

 1 2∘.,1 2 3
 1 1 1 2 1 3
 2 1 2 2 2 3

 (⍳3)∘.=⍳3
1 0 0
0 1 0
0 0 1

If X or Y is empty, the result R is a conformable empty array, and the operand function

is applied once between the first items of X and Y to determine the prototype of R.

 Dyalog APL/W Version 12.1 Release Notes 68

 69

Index
A
add text as field .. 28

add text as method ... 28

add text as property .. 28

AltGr

keyboard .. 15, 16

APLFormatBias parameter 31

APLVersion property 13

C
checksum ... 54, 56

ClassName property 10

collapsing outlines 21, 23, 26

Compatibility ... 34

component files

checksum ... 54, 56

compatibility .. 34

file properties ... 54

journaling ... 4, 56

unicode ... 54, 57

compress .. 2

create bound file .. 6

Ctrl

keyboard .. 15, 16

D
dyadic primitive operators

outer product .. 67

E
editing classes

classes .. 22

editor enhancements 20

class treeview 24, 25, 26

classes .. 22

collapsing outlines 21, 23, 26

expanding outlines 21, 23, 26

function line numbers 26, 27

line numbers... 27, 29

outlining ... 20, 26

refactoring .. 28

speed .. 29

syntax colouring ... 29

view menu .. 26

workspace explorer 25

erasing objects from workspaces 51

expanding outlines 21, 23, 26

export to memory 7, 50

export workspace ... 6

expunge objects .. 51

F
fchk system function .. 4

file properties ... 54

function line numbers 26, 27

Function Tracer option 30

G
grade down ... 2

grade up.. 2

I
i-beam .. 47

export to memory 7, 50

memory manager statistics 50

number of threads 49

parallel execution threshold 4, 49

syntax colouring ... 48

thread synchrnisation mechanism 49

IME

keyboard ... 15, 16, 18

index .. 3

Interoperability ... 34

J
journaling ... 4, 54, 56

K
keyboard layouts

AltGr .. 15, 16

Ctrl ... 15, 16

IME .. 15, 16, 18

70 Alphabetic Index

L
line numbers 26, 27, 29

lines_on_functions parameter 27

M
markup ... 63

matrix multiplication .. 2

memory manager statistics 50

monadic primitive functions

table .. 46

multi-core ... 4

multiple cpus .. 4

multi-threading ... 4

N
netcontrol object ... 8, 10

number of threads ... 49

O
outer-product operator 32, 67

outlining ... 20, 26

P
parallel execution ... 4

number of threads 49

parallel execution threshold 49

thread synchronisation mechanism 49

parallel execution threshold........................ 4, 49

primitive operators

outer product .. 67

product

outer.. 67

prototype .. 67

R
RadiusMode property 14

refactoring .. 28

S
SALT

Load command ...32

set functions ... 3

size of objects ...58

small-range array ... 2

sort ... 2

SPICE .. 5

standalone executable 6

syntax colouring 29, 30, 48

T
table function ..46

thread synchronisation mechanism49

tracer enhancement

syntax colouring ...30

TranslateTable parameter18

transpose .. 3

treeview .. 24, 25, 26

U
unicode ... 54, 57

unkown-entity ...63

user commands .. 5

V
value tip window ..29

view menu ..26

W
WantsSpecialKeys parameter18

whitespace ..60

X
xml convert ...59

markup ..63

unkown-entity ...63

whitespace ..60

Dyalog Ltd
South Barn
Minchens Court
Minchens Lane
Bramley
Hampshire
RG26 5BH
United Kingdom
www.dyalog.com

