
The tool of thought for expert programming

Dyalog for Windows

Spice command bar
Version 1.0

Dyalog Limited

South Barn
Minchens Court
Minchens Lane

Bramley
Hampshire
RG26 5BH

United Kingdom

tel: +44 (0)1256 830030
fax: +44 (0)1256 830031

email: support@dyalog.com
http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited
Copyright  1982-2008

Spice command bar

APL has always made it easy to handle programs as data, and so for programs to
create, read or modify other programs. Programmers commonly use this to extend the
development environment by writing programs to help them manage other programs:
filing, searching, analysing and replacing expressions. SALT (Simple APL Library
Toolkit) is an example.

Spice extends your use of such development tools by providing a separate command
line in the IDE. Now you can keep your development tools separate from your
application environment.

Spice already has tools for SALT, SVN and other tasks plugged in to it. These might
be all you need. Or you can plug your own development tools into Spice and invoke
them from its command line.

Turning Spice on
(To activate Spice, you must first activate SALT.)

In Version 11, edit the Registry to set the AddSPICE flag to 1.

In Version 12, pick Configure from the Options menu. Select the SALT tab and check
the Enable Spice box.

 Spice command bar 2

Using Spice
Click in the Spice command line at the bottom of the Dyalog window, or use F2 to
get there.

In the Spice command bar, type ?. This will list the available commands in the
session.

Typing ? followed by a group name will list the commands in that group. For
example,

 Spice command bar 3

? SALT

A ? followed by a command name displays the help for that command. For example,

? Locate

Writes in the session log:

[S]: ? Locate
Help for command: Locate
Script location: C:\Program Files\Dyalog\Dyalog APL 12.0 …
Arg: regex string; shows where the string is found

So in the command line:

Locate blank

lists in the session log all the scripts in which the string blank occurs, and displays
the script lines in which they are found.

Explore Spice\FnDiff

This opens the Classes\Spice\FnDiff.dyalog script in your preferred text
editor.

Summary Utils\textUtils

This summarises the contents of the textUtils script.

All the SALT functions are available as Spice commands, such as

save myclass file1
compare file1 -ver=4
list mine
settings
load myfile
removeversions filex -v=<9

Customising Spice
You can control the scope of the Spice commands from the SALT panel of the
Configuration dialogue in the Options menu. Just edit the list of filepaths labelled Class
source folders. (Close and restart Dyalog to activate your changes.)

The editor invoked by Explore is Notepad by default. You can specify an alternative
by adding a string EditorCMD to the Registry.

Spice commands are defined in script files in the Classes\Spice\ folder.

 Spice command bar 4

You can add your own scripts to this folder, using the script
Spice\aSample.dyalog as a model. (On the Spice command line, try typing
Explore Spice\aSample.dyalog.)

A Spice class script must contain at least the following public shared methods: List,
Run and Help.

The List method takes no argument. It returns a list of namespaces corresponding to
the commands supported by the class. Each namespace contains four character
vectors, named as:

Name — the name of the command, a single word eg Locate

Group — the group it belongs to, a single word, eg Files

Desc — a sentence, such as Find string in files

Parse — the command syntax, eg 2 -exclude=

Here is the List method from the Spice\aSample script. ∇ r←List
 :Access Shared Public
 r←⎕NS¨2⍴⊂'' ⍝ create 2 commands
 r.Name←'sampleA' 'sampleB' ⍝ their names
 ⍝ descriptions
 r[1].Desc←'A Sample SPICE Command without parsing'
 r[2].Desc←'A Sample SPICE Command with parsing'
 r.Group←⊂'Samples' ⍝ same group
 ⍝ Parsing rules for each:
 ⍝ 'sampleA' takes no rule
 r[1].Parse←''
 ⍝ 'sampleB' takes 1 argument
 ⍝ and a possible switch TZ which accepts a value
 r[2].Parse←'1 -TZ=' ∇

The Help method takes one argument, the name of a supported command. Here is an
example. ∇ r←Help Cmd
 :Access Shared Public
 :Select Cmd
 :Case 'sampleA'
 r←'This SPICE command "',Cmd
 r,←'" is for educational purposes'
 :Case 'sampleB'
 r←'This command is an example.'
 r,←' Its argument may only be "time" or "date".'
 r←↑r'It will display the time or the date'
 :EndSelect ∇

The Run method takes two arguments:

1. the name of the command, eg 'sampleB'

2. a string or namespace, argument to the command

Here is an example.

 Spice command bar 5

∇ r←Run(Cmd Args);timezone;cmdparser
 :Access Shared Public
 :Select Cmd

 :Case 'sampleA'
 r←'This is an example of a command'
 r,←' that could do anything'

 :Case 'sampleB'
 ⍝ If parsing is required
 ⍝ (as per the 'Parse' variable above)
 ⍝ Spice will have performed the parsing
 ⍝ and the argument is a Parser instance.
 ⍝ See the Parser class for details.
 ⍝ Here we accept "time"
 ⍝ possibly followed by -TZ=a number

 :If 'time'≡1⊃Args.Arguments
 ⍝ default TZ to 'EST'
 timezone←'EST'Args.Switch'TZ'
 r←'The time is ',,'G<99:99>'⎕FMT 100⊥⎕TS[4 5]
 r,←', Time Zone=',timezone,' and all is well...'

 :ElseIf 'date'≡1⊃Args.Arguments
 r←'Today is ',⍕3↑⎕TS

 :Else
 ⍝ Here we could have other possibilities
 r←'You have entered an argument to ',Cmd
 r,←' which is not understood'

 :EndIf
 :EndSelect ∇

When Spice is started at the beginning of your Dyalog session, the Setup command
is run.

This sets F2 to switch focus to the Spice command line.

You can modify the Setup command by editing Spice\Pers.dyalog.

