
 1

A Quick Introduction to

Object Oriented Programming For
(Impatient) APL Programmers

Version Dated September 26th, 2006

 2

Introduction
Many readers of An Introduction to Object Oriented Programming for APL
Programmers have commented that it was a bit long winded. Some found it to be a bit
“evangelical” or “lecturing”. APL developers are an impatient bunch, who want quick
results and tend to be convinced by short, powerful code fragments rather than
philosophical arguments about why some newfangled technology is good for you.

This Quick Introduction for Impatient APL Programmers will therefore dive straight in to
the code, with very few explanations.

All of the examples used in this quick introduction are stored as Unicode script files and
loaded using SALT– the Simple APL Library Tool. If you want to read more about
SALT, it is explained in a separate document which can be found in the Manuals folder
below the main Dyalog folder.

If you don’t want to read about SALT but just get going with the examples, set the
registry entry HKEY_CURRENT_USER\Dyalog\Dyalog APL/W 11.0\SALT\AddSALT to “1”
before starting the workspace. This will cause SALT to be loaded into the Dyalog
Session when APL is started.

 3

Example 1: Naming Data

:Class Product
 :Field Public Name
 :Field Public Price

 ∇ New(name price)
 :Access Public
 :Implements Constructor
 Name Price←name price
 ∇
:EndClass ⍝ Product

:Class Sale
 :Field Public Price
 :Field Public Quantity
 :Field Public Product

 ∇ New(product quantity)
 :Access Public
 :Implements Constructor
 Product Quantity←product quantity
 Price←(#.Products.Name⍳⊂Product)
 ⊃#.Products.Price,¯1
 ∇
:EndClass ⍝ Sale

The above classes allow us to work with product sales data using easily recognisable
names to refer to elements of the data, but without losing the array nature of the language.

 ⎕ML←3

 ⎕SE.SALT.List 'Samples\QuickIntro'
 Type Name Version Size Last Update
 Product 570 08-05-2006 08:59:46
 Sale 756 05-05-2006 13:15:22

 ⎕SE.SALT.Explore 'Samples\QuickIntro' ⍝ See the SALT files

 ⎕SE.SALT.Load 'Samples\QuickIntro\Product'
 ⎕SE.SALT.Load 'Samples\QuickIntro\Sale'

 Products←{⎕NEW Product ⍵}¨('Widget' 100)('Thingamabob' 90)
 ('Gadget' 150)
 Products.Name
 Widget Thingamabob Gadget
 ⊃Products.(Name Price)
 Widget 100
 Thingamabob 90
 Gadget 150

 Sales←{⎕NEW Sale ⍵}¨('Widget' 1)('Thingamabob' 5)
 ('Widget' 10)('Gadget' 100)

 ((Sales.Quantity>10)/Sales).(Price←Price×.9) ⍝ Apply Discount
 Sales.(Amount←Price×Quantity) ⍝ Compute Amount for all Sales
 ⊃((Sales.Amount>500)/Sales).(Product Price Quantity Amount)
 Widget 100 10 1000
 Gadget 135 100 13500

Since the introduction of “references”, it has been possible to simulate classes and
delivered similar functionality to the above in Dyalog APL using arrays of references to
namespaces. This requires building a homegrown “object framework” to create new

 4

instances of the sales or products namespaces. The addition of classes to Dyalog APL
provides a single, efficient object framework which everyone can share.

Example 2: Hiding Interface Complexity
We can make APL component files easier to use by implementing a class which makes
the components accessible in the form of an array, using file system functions “under the
covers”. The code for this class, which covers most of the component file functionality
including code for manipulating the access matrix, covers a couple of pages, and can be
found in the file Classes\Dyalog\ComponentFile.dyalog.

Since we’re in a hurry we will not discuss the code, but look at how this class has the
potential to simplify application code:

 ⎕SE.SALT.Load 'Dyalog\ComponentFile'
 Budget←⎕NEW ComponentFile 'c:\temp\budget'
 Budget.Append¨('Q1' 'Q2' 'Q3' 'Q4')
 (11 12 14)(12 15 10)(13 17 18)(19 17 10)
1 2 3 4 5

 Budget[1 2] ⍝ Read 2 components
 Q1 Q2 Q3 Q4 11 12 14
 Budget[3]←⊂13 15 10 ⍝ Replace a component

 ⊃¯4↑⌷Budget ⍝ “Mix” last 4 components
11 12 14
13 15 10
13 17 18
19 17 10
 Budget.⎕nl ¯2 ⍝ List of “Properties” exposed
 Access Components Count Name Version
 Budget.Name
c:\temp\budget

 ⎕fnames ⍝ The file was tied when the instance was created
c:\temp\budget
)erase Budget
 ⎕fnames ⍝ “Destructor” method has run and untied the file

It has always been possible to hide many of the details of working with component files
by writing a set of utility functions. A class-based implementation of component file
utility functions has a number of benefits:

- The variable which is the handle to the file also provides access to all the
functionality exposed by the file, and does not need to be remembered and passed
as an additional argument to all file functions.

- When there are no longer any references to the file handle, the file is untied. If the
file handle is localised, the file will be untied when the appplication ends.

- APL functions for selection or ordering, like ⊃, ↑, ↓, / or ⌽, can be applied to
the collection of components. Expressions like (1↑⌽⌷Budget) or

 5

(0 0 0 0 1/⌷Budget) , which would both return the last element of the
“default property” of the file, only cause one ⎕FREAD to be performed.

- Classes simplify the use of shared code without name conflicts (the
ComponentFile class can easily be renamed, or even defined and used
anonymously).

The source code management system takes advantage of the last point above and
provides a New command, which can be used to create instances without using the name
ComponentFile in the workspace:

 cf←⎕SE.SALT.New 'Dyalog\ComponentFile' 'c:\temp\budget'

Example 3: Sharing Code
Classes can be extended, when they are used as the basis for a derived class. We can use
the ComponentFile class as the basis for several specialized file types, for example:

:Class KeyedFile : ComponentFile
 :Field Private keys←⍬

 ∇ Open filename
 :Implements Constructor :Base filename
 :Access Public Instance

 :If 0=⎕BASE.Count ⍝ Empty: Initialise
 {}Append'Keyed Component File'
 {}Append keys
 {}Append¨3⍴⊂'Reserved'
 :Else ⍝ Not empty: Validate Format
 'Not a KeyedFile'⎕SIGNAL
 ('Keyed Component File'≢1⊃Components)/11
 keys←2⊃Components
 'KeyedFile Damaged'⎕SIGNAL((5+⍴keys)≠⎕BASE.Count)/11
 :EndIf
 ∇

 ⍝ --- Instance Properties ---

 :Property Count
 :Access Public Instance
 ∇ r←Get
 r←⍴keys
 ∇
 :EndProperty ⍝ Count

 :Property Keys
 :Access Public Instance
 ∇ r←Get ⍝ Provide Read Access to Keys
 r←keys
 ∇
 :EndProperty

 (continued on next page)

 6

 :Property Keyed Default Item
 :Access Public Instance
 ∇ r←Get arg
 r←Components[5+keys⍳1⊃arg.Indexers] ⍝ Read components
 ∇
 ∇ Set args;m;ix
 ix←1⊃args.Indexers ⍝ Extract index on 1st dimension
 :If ∨/m←~ix∊keys ⍝ Are any keys unknown?
 keys←keys,m/ix ⍝ Add new keys
 Components[2]←⊂keys ⍝ Rewrite key component
 {}Append¨m/args.NewValue ⍝ Append data
 Components[5+keys⍳(~m)/ix]←(~m)/args.NewValue ⍝ Replace
 :Else ⍝ All keys known
 Components[5+keys⍳ix]←args.NewValue ⍝ Replace all values
 :EndIf
 ∇
 :EndProperty

:EndClass ⍝ KeyedFile

The code above defines a new class called KeyedFile which provides all the
functionality of ComponentFile, but reserves the first 5 components of the file and
uses them to provide “keyed” access to the file:

 ⎕SE.SALT.Load 'Dyalog\ComponentFile' ⍝ If not already loaded
 ⎕SE.SALT.Load 'Samples\Files\KeyedFile'
 k1←⎕new KeyedFile 'c:\temp\keyedfile'
 k1['Jan' 'Feb' 'Mar']←↓3 4⍴⍳12
 k1['Mar' 'Apr']←(12 11 10 9)(0 0 0 0)
 k1[⊂'Mar']
 12 11 10 9

KeyedFile passes much of the functionality of ComponentFile straight through:

 k1.Name
c:\temp\keyedfile
 k1.Components[2]
 Jan Feb Mar Apr

… but KeyedFile has redefined the Count property to return the number of keys
rather than the number of components in the file:

 k1.Keys
 Jan Feb Mar Apr
 k1.Count
4

Note that the code which implements the extensions in KeyedFile can use properties
provided by ComponentFile. So it reads the keys from the file with a simple:

 keys←2⊃Components

 7

In the KeyedFile code, ⎕BASE is used to refer to base class functionality in the event
of a name conflict. Users of the class can access ComponentFile functionality which
has been overridden by “casting” the instance:

 (ComponentFile ⎕CLASS k1).Count
9

Inheritance provides a single mechanism which makes it easy to build upon work done
by others, without having to understand all the details of the implementation of
underlying classes – and in particular without having to compromise due to potential
name conflicts between the base and the extended functionality.

Example 4: Extending the Platform
In addition to extending classes written in APL, it is possible to derive from classes
written in other languages, or those provided by the Microsoft.Net framework, and the
GUI classes provided by Dyalog APL. Building upon or combining GUI classes to create
“custom controls” can help simplify GUI development:

 ⎕SE.SALT.Load 'Samples\GUI\Othello' ⍝ SALT can also load Namespaces
 Game←Othello.New 4 4

 Game.Cells

 . ⍟ ○ .
 . ○ ⍟ .

 Game.Cells.State
0 0 0 0
0 1 2 0
0 2 1 0
0 0 0 0
 Game.Cells[2;1 2].State←2 ⍝ White moves
 (2↑1 1⍉Game.Cells).State←1 ⍝ Black moves

 8

Game is an instance of the built-in class Form, which contains a 4 by 4 array of instances
of a class called OthelloSquare, which derives from the Dyalog GUI class called
Static. A Static is a container which can have a border and contain graphical
objects. We “extend” the Static by drawing a circle in it and colouring the circle black or
white depending on value of the property State. The so-called setter function for the
State property catches assignments to the property causes the circle to be redrawn
when the value changes. The definition of class OthelloSquare is:

:Class OthelloSquare : 'Static'
 ⍝ Implements one Square on an Othello Board

 _State←0 ⍝ Contains value of State property: 0=Empty, 1=Black, 2=White
 :Field Public onClick←'' ⍝ "Event": Put name of Callback fn Here

 :Property Default State
 :Access Public
 ∇ r←Get
 r←_State
 ∇
 ∇ Set args;i
 ⎕SIGNAL(args.NewValue∊0 1 2)↓11 ⍝ Is State Valid?
 i←1+_State←args.NewValue
 Circle.FillCol←(¯16(0 0 0)(255 255 255))[i] ⍝ Button Face, Blk, White
 Circle.FCol←i⊃¯16 0 0 ⍝ Black outline if not Empty
 ⎕DF i⊃'.⍟○' ⍝ Set Display Form
 ∇
 :EndProperty

 ∇ Create args
 :Access Public
 :Implements Constructor :Base args,⊂'BCol' ¯16
 Circle←⎕NEW'Circle'(('Points'(0.5×Size))('Radius'(0.4×⊃Size))
 ('FStyle' 0))
 onMouseUp←Circle.onMouseUp←'Select'
 State←0 ⍝ Initially Empty (Calls 'Set' function above)
 ∇

 ∇ r←Select msg
 :If 3=⎕NC onClick ⍝ If Callback function defined
 (⍎onClick)⎕THIS _State ⍝ Call it passing Ref and Current State
 :EndIf
 ∇

:EndClass ⍝ Square

With this class, the function which sets up the Othello game is quite simple (it is
displayed at the top of the next page). Once the array of OthelloSquares has been set
up, updating the screen only requires setting State of selected cells to 0, 1 or 2 – and
clicks on squares can be redirected to the callback function of your choice.

 9

 ∇ Game←New GridSize;Size;CellIDs;Centre
[1] ⍝ Initialize Controlling Variables
[2] ⎕SE.SALT.Load'Samples\GUI\OthelloSquare'
[3]
[4] Size←50 50 ⍝ Cell Size
[5] CellIDs←⍳GridSize ⍝ Identity of each cell
[6]
[7] ⍝ Build the Board
[8] 'Game'⎕WC'Form' 'Othello'('Size'(11+Size×GridSize))
 ('Coord' 'Pixel')
[9] Game.Cells←{Game.⎕NEW OthelloSquare (('Size'(1+Size))
 ('Posn'(5+Size×⍵-1))('Data'⍵))}¨CellIDs
[10] Game.Cells.onClick←⊂'#.Othello.Click' ⍝ Set up Callback
[11]
[12] ⍝ Set up the game:
[13] Centre←0 1+⌊0.5×GridSize
[14] Game.Cells[Centre;Centre].State←2 2⍴1 2 2 1
[15] Game.⎕DF'[Othello Game]'
 ∇

The callback function in the Othello namespace just flips the state of the cell, and the
OthelloSquare setter for the State property takes care of the rest:

 ∇ Click msg;Cell
[1] Cell←↑msg
[2] Cell.(State←1+1=State) ⍝ Flip State
 ∇

Implementing the algorithm which actually plays Othello is left as an exercise for the
reader – but updating the screen should now be the easy part!

To illustrate an alternative way to organize the code, the script file OthelloGame.dyalog
contains the same example implemented as a class called OthelloGame, with a nested
class called Square inside it. To examine this alternative:

)CLEAR
CLEAR WS
 ⎕SE.SALT.Load 'Samples\GUI\OthelloGame'
 Game←⎕NEW OthelloGame (4 4)
 Game.Cells

 . ⍟ ○ .
 . ○ ⍟ .

Or simply:

)CLEAR
 Game←⎕SE.SALT.New 'Samples\GUI\OthelloGame' (4 4)

… Which creates an instance of the game without naming the class in the workspace.

 10

The final example, in a namespace called Samples\GUI\FilterListDemo, shows
how we can combine two Dyalog GUI objects – a DropEdit Combo, and ListBox, to
create an simple object which provides filtering.

 ⎕SE.SALT.Load 'Samples\GUI\FilterListDemo'
 f←FilterListDemo.New

The code for the FilterList class is also about a page of APL. The above example
(the code for the FilterListDemo.New function is listed below) shows a form
containing two instances of FilterList side by side.

 ∇ FLForm←New
[1] ⎕SE.SALT.Load 'Samples\GUI\GUITools'
[2] ⎕SE.SALT.Load 'Samples\GUI\FilterList'
[3]
[4] FLForm←⎕NEW'Form'(('Caption' 'FIlter List Test')
 ('Size'(220 320))('Coord' 'Pixel'))
[5]
[6] :With FLForm
[7] TO←⎕NEW'TipField'⍬
[8] FL1←⎕NEW #.FilterList(('Size'(200 150))('Posn'(10 10))
 ('Caption' 'Properties')('Items'(⎕NL-2))('Filter' 'C'))
[9] FL2←⎕NEW #.FilterList(('Size'(200 150))('Posn'(10 160))
 ('Caption' 'Volvos')('Items'
 ('S40' 'V40' 'V50' 'S60' 'V70' 'XC70'))('Filter' 'V'))
[10] FL2.TipObj←'TO' ⋄ FL2.Tip←'Volvos'
[11] :EndWith
 ∇

The above examples have hopefully whetted your appetite for learning more about object
oriented programming in APL. If they haven’t, it may well be because the type of APL
applications you write would not really benefit from the use of classes. Many APL
applications have data in a form which is very well suited to its use. As when enclosed
arrays were introduced, classes provide new ways to “encapsulate” data and you can
easily get seduced into splitting your data up into a large number of very small objects,
which may not only slow your system down – it may make actually your data harder to
work with and your data structures LESS flexible. With a bad object design, you will not
be able to see the forest for all the objects.

 11

However, we believe that there are a number of applications which can be simplified
through the use of classes – where objects are a valuable tool of thought for APL
porgrammers. In addition to this, being able to implement classes in APL makes it much
easier to interface to systems written in other languages, which are almost always
provided as “class libraries”. And last, but definitely not least: An understanding of
objects will help us talk to people using other tools and languages – and perhaps interest
some of them in what we are doing!

If any of this sounds interesting, please read the Introduction to OO for APL
Programmers or head straight for the Dyalog APL Version 11.0 documentation.

