

 The tool of thought for expert programming

An Introduction to

Object Oriented Programming
For APL Programmers

Dyalog Limited

Grove House
Lutyens Close

Chineham Court
Basingstoke

Hampshire, RG24 8AG
United Kingdom

tel: +44 (0)1256 338461
fax: +44 (0)1256 316559

email: support@dyalog.com
http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited
Copyright  1982-2006

mailto:support@dyalog.com
http://www.dyalog.com

2 Contents

 Contents iii

Contents
PREFACE .. 1

C H A P T E R 1 INTRODUCTION .. 3

C H A P T E R 2 ORIGINS.. 9
QUEUE SIMULATION.. 10
ENCAPSULATION ... 12

C H A P T E R 3 WORKING WITH CLASSES ... 15

C H A P T E R 4 SOME USEFUL DEBUGGING TRICKS..................................... 21
THE MOTHER OF ALL WORKAROUNDS ... 22
SUMMARY OF CHAPTERS 1-4.. 24

C H A P T E R 5 PROPERTIES .. 25
:PROPERTY SIMPLE .. 26
:PROPERTY NUMBERED.. 27
:PROPERTY KEYED .. 29

Numeric Keyed Properties... 31
DEFAULT PROPERTIES.. 31
TRIGGERS.. 33

C H A P T E R 6 CONSTRUCTORS AND DESTRUCTORS.................................. 35
DISPLAY FORM .. 38
NILADIC CONSTRUCTORS AND THE CLASS PROTOTYPE ... 39

C H A P T E R 7 SHARED MEMBERS ... 41
SHARED METHODS .. 42

C H A P T E R 8 INHERITANCE... 43
INHERITED MEMBERS .. 46
BENEFITS OF INHERITANCE .. 47
INHERITING FROM SEVERAL CLASSES... 48
CODE REUSE WITH :INCLUDE ... 49
SUMMARY OF CHAPTERS 5-8.. 51

C H A P T E R 9 DERIVING FROM DYALOG GUI CLASSES............................... 53
A STANDARD DIALOG BOX .. 54
A LABELLED EDIT FIELD ... 56

iv Contents

C H A P T E R 10 INTERFACES ..59
AVOIDING NAME CONFLICTS..63
CONCLUSION ...64

C H A P T E R 11 USING THE MICROSOFT .NET FRAMEWORK........................65
SYSTEM.ENVIRONMENT ...66
SYSTEM.GLOBALIZATION.CULTUREINFO & DATETIMEFORMATINFO.......................68
SYSTEM.DATETIME AND SYSTEM.TIMESPAN ..69
SYSTEM.IO.DIRECTORYINFO ..70
SYSTEM.IO.FILEINFO ...71

C H A P T E R 12 USING APL CLASSES FROM .NET ...73

C H A P T E R 13 INHERITING FROM A .NET BASE CLASS79

CONCLUSION ..81

 1

Preface

This guide is intended to be read from one end to another. Our goal has been not only to
explain the details of new functionality in version 11.0 of Dyalog APL, but also be
mildly provocative and entertaining, to convey a flavour of the thinking which is behind
the object oriented extensions to APL, and something about how the development team
imagines that you might make use of the new features – in the belief that this will make
them easier to understand and use.

If you are in a hurry and want to get a quick feel for OO in APL, you might want to start
with “A Quick Introduction to OO for (Impatient) APLers”, which is distributed in PDF
format with version 11.0.

This guide is not a reference manual, although there is a brief reference at the end of
each section. It is recommended that you have version 11.0 of Dyalog APL available for
experiments as you work through the guide, and use it to verify your understanding of
the new features as they are introduced.

If you have an electronic copy of this guide, you should be able to copy and paste code
from the guide into the Dyalog APL editor and session (use the Edit|Paste Unicode
menu item). Alternatively, the folder OO4APL, included with the version 11.0
installation, contains a workspace with the same name as each of the classes and
namespaces used in the guide.

The APL code samples in this document assume migration level 0 (⎕ML←0).

Good luck!

The APL Development Team at Dyalog Ltd.
September, 2006

2 Object Oriented Programming for APL Programmers

 3

C H A P T E R 1

Introduction

Version 11.0 of Dyalog APL introduces Classes to the APL language. A class is a
blueprint from which one or more Instances of the class can be created (instances are
sometimes also referred to as Objects). For example, the following defines a class which
implements a simple timeseries analysis module:

:Class TimeSeries

 :Field Public Obs ⍝ Observed values
 :Field Public Degree←3 ⍝ 3rd degree polys by default

 ∇ r←PolyFit x;coeffs
 :Access Public
 ⍝ Use polyfit of observed points to compute f(x)
 coeffs←Obs⌹(⍳⍴Obs)∘.*0,⍳Degree ⍝ Polynomial coeffs
 r←coeffs+.×⍉x∘.*0,⍳Degree ⍝ Compute fitted f(x)
 ∇

 ∇ make args
 :Access Public
 :Implements Constructor
 Obs←args
 ∇

:EndClass ⍝ Class TimeSeries

The above description declares that instances of TimeSeries will have four
Members: two Public Fields called Obsand Degree (the latter having a default value
of 3), a Public Method called PolyFit (header plus 4 lines of code) and a
Constructor, which is implemented by the function make (header plus 3 lines of code).
Note that methods (or functions) begin and end with a ∇. The term Public means that
the methods are for “public consumption” by all users of the class.

The system function ⎕NEW is used to create new instances using the class definition.
The first element of the right argument to ⎕NEW must be a class, the second element
contains instance parameters, which are passed to the constructor:

4 Object Oriented Programming for APL Programmers

 ts1←⎕NEW TimeSeries (1 2 2.5 3 6)

During instantiation, the constructor function make is called (note that constructors
must be public), and this function initialises the instance by storing its argument in the
public field Obs. We can now use the instance ts1 in much the same way as if it were
a namespace:

 ts1.Obs
1 2 2.5 3 6

 ts1.PolyFit ⍳5
0.9714285714 2.114285714 2.328571429 3.114285714 5.97142857

 1⍕ts1.(Obs-PolyFit ⍳⍴Obs)
 0.0 ¯0.1 0.2 ¯0.1 0.0

 ts1.⎕nl ¯2 ⍝ Roughly equivalent to "PropList"
 Degree Obs
 ts1.⎕nl ¯3 ⍝ NameClass ¯3 is "MethodList"
 PolyFit

In version 11.0, ⎕NL accepts negative arguments, in which case it returns a vector of
names rather than a matrix – and reports names exposed by underlying class definitions
in addition to those in the namespace where it is executed. The Degree field allows us
to decide the degree of the polynomial function used when fitting the curve. The
following example generates a straight line:

 ts1.Degree←1
 ts1.PolyFit ⍳5
0.7 1.8 2.9 4 5.1

Arrays of instances are treated in much the same way as arrays of namespaces:

 Chapter 1: Introduction 5

 ⎕rl←16807 ⍝ So we get the same random numbers
 tss←{⎕NEW TimeSeries ((10×⍳5)+?5⍴5)}¨⍳4

 ↑tss.Obs
11 24 33 43 52
11 24 34 45 52
13 25 31 41 53
14 21 32 41 53

 tss.Degree←2 3 2 1

 1⍕↑tss.PolyFit ⊂⍳10
 11.4 23.0 33.6 43.2 51.8 59.4 66.0 71.6 76.2 79.8
 11.1 23.5 34.8 44.5 52.1 57.2 59.2 57.6 52.0 41.8
 14.0 22.7 32.0 41.9 52.4 63.4 75.0 87.2 99.9 113.2
 12.6 22.4 32.2 42.0 51.8 61.6 71.4 81.2 91.0 100.8

APL developers have often used naming standards, and in recent versions of Dyalog
APL namespaces, to collect related functionality into modules. Users of Dyalog APL
will recognise that an instance is very similar to a namespace. One of the advantages of
classes is that they make it possible to “clone” a namespace and create multiple data
“contexts”, without copying the code. This saves space, but more importantly it means
that you are less likely to lose track of where the source code is.

Imagine that we have prototyped our way through to a “classical” solution to fitting
multiple polynomials. Looking back, we are able to copy the following expressions
from our session:

 data←(4⍴⊂10×⍳5)+?4⍴⊂5⍴5 ⍝ Generate test data
 exp←0,¨⍳¨2 3 2 1 ⍝ Our polynomials vary by degree
 coeffs←data⌹¨(⊂⍳5)∘.*¨exp
 1⍕↑coeffs+.×¨⍉¨(⊂⍳10)∘.*¨exp
 14.2 23.0 32.8 43.6 55.4 …etc…

After thinking a bit more about it, we might identify a couple of potential functions. If
we use D-functions, we can refactor our solution as follows:

 polyfit←{⍵⌹(⍳⍴⍵)∘.*0,⍳⍺}
 polycalc←{⍺+.×⍉⍵∘.*¯1+⍳⍴⍺}
 1⍕↑(2 3 2 1 polyfit¨data) polycalc¨⊂⍳10
 14.2 23.0 32.8 43.6 55.4 …etc…

6 Object Oriented Programming for APL Programmers

In a traditional APL system, we could now create a workspace called POLY with these
functions inside, write some documentation explaining how to call them, and then store
that documentation in a variable in the workspace, or in a separate document. Anyone
wanting to use the functions would have to find the relevant documentation and make
sure that he did not already have any functions with these names in his application (or
variables with the same name as the documentation). A namespace could be used to
isolate the names from our application code.

Classes make it possible for the developer to encapsulate functionality in a way which
keeps related code and data together, avoids name conflicts and provides some degree
of documentation which suggests - and can limit - how the solution is used. This makes
the module easier to learn to use, while the control over how the module can be used
makes it easier to maintain.

On the other hand, it is also clear that the simple functions polyfit and polycalc
are more generally useful than the PolyFit method of the class TimeSeries, which
exposes a specific form of polynomial fitting. The encapsulation of data within
instances can make it harder, slower, and sometimes virtually impossible to go “across
the grain” and use the properties and methods in a way which is different from that
which was intended by the class designer. OO fans will argue that object orientation
will help you think more carefully about how things will be used and this is to your
advantage. However, APL is often used in problem areas where requirements change
very unexpectedly: APL is as often used to explore a design as it is for performing an
implementation from a complete specification. Providing a flexible solution with OO
design is as much of an art, and requires the same insight into where the solution might
be heading, as any other technique.

A key design goal for version 11.0 has been to make it as easy as possible to blend the
array and functional paradigms which already make APL so productive, with the object
oriented view of data, a Tool of Thought in its own right.

This is one of the reasons why, if you have a namespace POLY which contains the two
D-fns we developed above, you can add a line which says:

 :Include #.POLY

… at the beginning of :Class TimeSeries, and subsequently write PolyFit as:

 ∇ r←PolyFit x;coeffs
 :Access Public
 ⍝ Use polyfit on observations to compute values at x

 coeffs←Degree polyfit Obs ⍝ Find polynomial coeffs
 r←coeffs polycalc x ⍝ Compute fitted f(x)
 ∇

 Chapter 1: Introduction 7

This Introduction to Object Oriented Programming for APL Programmers will attempt
to illuminate the issues and put the reader in a better position to decide when and how to
combine array, functional and object thinking. In order to achieve this, we will:

• First, briefly explore the thinking which lead to the emergence of OO, to get an
idea about the type of problems which OO is likely to help us solve.

• Introduce the fundamentals of OO programming using a number of examples

written in Dyalog APL version 11.0.

• Illustrate how the new OO functionality in Dyalog APL makes it easier than
ever before to implement components which can be “consumed” by other
development tools.

• Where possible, try to remember to discuss alternative solutions, and present

some guidelines on how to choose between the various techniques which are
available. Given that the temperament and environment of the developer, the
department and the company will weigh heavily on any choice of technique, it
is clear from the outset that there will be no universal answers.

8 Object Oriented Programming for APL Programmers

 9

C H A P T E R 2

Origins

Although OO feels like a recent invention to many of us, the first OO language saw the
light of day around the same time as the first APL interpreter. SIMULA (SIMUlation
LAnguage) was designed and implemented by Ole-Johan Dahl and Kristen Nygaard at
the Norwegian Computing Centre between 1962 and 1967, based on ideas which
Nygaard had developed during the 1950’s1. At the same time that Ken Iverson was
working on new ways to conceptualise algebra and computation involving large groups
of numbers, Nygaard was searching for ways to think about a different type of systems
using symbolic notation2.

The focus of the NCC work was on the simulation of complex systems. Nygaard
explained the rationale behind SIMULA as follows:

SIMULA represents an effort to meet this need with regard to discrete-event networks,
that is, where the flow may be thought of as being composed of discrete units
demanding service at discrete service elements, and entering and leaving the elements
at definite moments [sic] of time. Examples of such systems are ticket counter systems,
production lines, production in development programs, neuron systems, and concurrent
processing of programs on computers.

The desire to describe and model so-called discrete-event networks led to object-
oriented notation, in which the description of the ways in which the “service elements”
interacted with each other is separated from the details of how each service element (or
object) manages its internal state. As with APL, the language subsequently evolved into
a notation which could be executed by computers.

SIMULA turned out to be a powerful notation for simulating complex systems, and
other OO languages followed. Initially, OO languages were used for planning and
simulation applications (much the same areas as APL has been most successfully
applied to), but with the arrival of graphical user interfaces, which are a form of
discrete-event network, and concurrent or networked computing systems, OO languages
proved that they had more to offer.

1 For more on the fascinating story about SIMULA, see “Compiling Simula” by Jan Rune
Holmevik, http://www.ifi.uio.no/~cim/sim_history.html
2 Ken Iverson was born in Canada in 1920, but Norway also figures prominently in his heritage.
Therefore, we should have reason to hope that the paradigms are not incompatible ☺.

http://www.ifi.uio.no/~cim/sim_history.html

10 Object Oriented Programming for APL Programmers

As systems and teams used to implement them have grown in size and complexity, OO
has grown from a humble start as a specialist modelling technique to become the most
popular paradigm for describing computer systems.

With Dyalog APL version 11.0, Arrays, Functions and Objects are now happily
married. It is possible to have arrays of instances, and instances can contain arrays (of
more instances, if necessary). The challenge is to pick the best architecture for a given
problem!

Queue SIMULAtion
As an illustration, let us take a look at one of the classical examples which the inventors
of SIMULA used the new language to model: The queue. Customers arrive at random
intervals and enter the queue. An algorithm simulates the time required to process each
customer. The goal is to run a number of simulations with different parameters and see
how long the queue gets and how long customers have to wait. With luck, we will
discover how the queue or system of queues can be optimized, and measure the effect of
improving the system without having to perform expensive experiments. In the post-
modern age, these systems are probably being used to see how much longer the queues
will get if the Post Office spends less money. Assuming that the planning department
has not already been “made redundant”.

The following is a simple Queue class, written in Dyalog APL version 11.03.

3 For a typical SIMULA solution, see Example 2 on page
http://staff.um.edu.mt/jskl1/talk.html#Simulation

http://staff.um.edu.mt/jskl1/talk.html#Simulation

 Chapter 2: Origins 11

:Class Queue

 :Field Public Instance History←⍬
 Customers←⍬

 ∇ r←Length
 :Access Public
 r←1⊃⍴Customers
 ∇

 ∇ Join Customer
 :Access Public
 Customers←Customers,⊂Customer,(3⊃⎕AI),1+⍴Customers
 :If 1=⍴Customers ⋄ Serve&0 ⋄ :EndIf
 ∇

 ∇ Serve dummy;t;elapsed
 ⍝ Serve queue in new thread when length increases to 1
 ⍝ Stop when queue is empty.

 :Repeat
 ⎕DL 9+?11 ⍝ Processing takes 10-20 seconds
 elapsed←(3⊃⎕AI)-1 2⊃Customers
 ⍝ Since customer entered queue
 History,←⊂(elapsed,1⊃Customers)[2 1 4]
 ⍝ (Cust#, Total Time, Initial Queue Length)
 Customers←1↓Customers ⍝ Customer has gone
 :Until 0=⍴Customers
 ∇

:EndClass ⍝ Class Queue

The class has two public methods called Join and Length, which are used to add
customers to the end of the queue and report the current length of the queue,
respectively. There is a public field History which contains a record of customers
who passed through the system. Note that members of a class are private unless they are
declared to be public. Private members cannot be referenced from outside the class.

While the TimeSeries class in the previous chapter only had public members,
Queue has a private field called Customers, and a private method called Serve,
which is launched in a background thread when there are customers in the queue
(thread-savvy readers are requested to ignore the potential race condition if Server
drops the last element of Customers at the same time as Join adds one).

12 Object Oriented Programming for APL Programmers

If we have a workspace containing the above class, we can experiment with it from the
session:

 aQueue←⎕NEW Queue
 aQueue.Join¨1 2 3 ⍝ 3 customers stormed in together
 aQueue.Length ⍝ Depends on how quickly you type
2
 ⎕←⎕DL 60
60.022
 aQueue.Length
0

The variable History contains a log of the customers who passed through the queue,
the time they spent in line and the length of the queue when they entered it. Since
History was declared as a public field, we can refer to it from “outside”:

 ↑aQueue.History ⍝ Complete history
1 11032 1
2 26800 2
3 41833 3

 ⌈/aQueue.(¯2↑¨History) ⍝ Longest wait, max length
 41833 3

Encapsulation
In our Queue class, we have decided that the Customer field, which contains the list
of customers in the queue, is private. We do not want users of our class to reference it.
We have provided a public method Length which makes it possible to determine how
long it is.

Why have we not simply made the variable public and allowed the user to inspect
aQueue.Customers using ⍴ or other primitive functions, rather than doing extra
work to implement a method ourselves? We would typically do this if we want to
reserve the right to change this part of the implementation in the future, or if we do not
wish to take responsibility for the potential bugs resulting from the use of these
members (“Warranty void if seal broken”).

If we had exposed Customers directly, users would have the right to expect that we
would continue to have a one-dimensional vector called Customers with similar
characteristics in the future. It would be virtually impossible for us (as class designers)
to estimate the impact of a change to this variable, without reading all the application
code to see exactly how it was being used. And even then, we would probably get it
wrong. The user might also feel tempted to modify the variable, which might cause
bugs to be reported to us, even though there were no errors in our code.

 Chapter 2: Origins 13

If our class evolved into a more general tool where the contents of the queue were not
necessarily customers, we could not rename it – so we would end up with a system
where variable names were misleading4. We cannot Customers into a 2-dimensional
matrix, store it on file, or make any other architectural changes which might be
convenient as requirements evolve and we need to store more or different types of
information about the queue.

We have thought ahead a little bit and decided that it will always be reasonable for users
of the Queue class to ask what the current length of the queue is, and therefore we have
exposed a public method for this purpose.

Information hiding is one of the cornerstones of OO. The ability to decide which
members of a class are visible to the users on the one hand and the developer of the
class on the other is seen as the key to reduced workload, improved reliability and
maintainability of the code on both sides of the divide. Dyalog APL version 11.0 takes a
strict view of encapsulation. It is not possible to reference private members (a VALUE
ERROR will be signalled if you try).

 aQueue.Customers
VALUE ERROR
 aQueue.Customers
 ^

Clearly, if the designer of a class you are using has decided to hide information which
you really need before 9am tomorrow, this can be frustrating. Before you get too
concerned, the good news is that there are a variety of techniques for getting past the
gatekeepers in an emergency, or in a “prototyping session”. We will discuss a couple of
these in the following chapters. However, to enjoy the full benefits of OO, it is
important to have the discipline to use such tricks only when required, and re-factor the
class in question at the first available opportunity.

The variable History is obviously susceptible to the same problems as Customers,
and seasoned OO designers would probably consider it to be bad form to expose it. This
is perfectly true, exposing all the result data in this form in order to make it easy to
analyze is a result of “traditional APL thinking”. We will investigate a number of
alternatives which we could have used to expose this data in subsequent chapters.

4 One-letter names tell no lies, of course ☺.

14 Object Oriented Programming for APL Programmers

 15

C H A P T E R 3

Working with Classes

In order to help you successfully experiment with APL as we explore more OO
functionality, let us take a closer look at the practical details of functionality which has
been introduced in the first two chapters, and get comfortable with actually working
with classes and instances.

The easiest way to create a class is probably to use the editor. Start an)ED session,
prefixing the name of your new class by a circle (ctrl+O on most keyboards). We’re
going to use a class for generating random numbers to illustrate some important issues:

)ed ○Random

This will present you with an empty class, which only contains the :Class and
:EndClass statements. Insert a few lines to create the following simple class:

16 Object Oriented Programming for APL Programmers

:Class Random

 InitialSeed←42
 ⎕←'Default Initial Seed is: ',⍕InitialSeed

 ∇ make args
 :Implements Constructor
 :Access Public
 :If 0≠args ⋄ InitialSeed←args ⋄ :EndIf
 Reset
 ∇

 ∇ Reset
 :Access Public
 ⎕RL←InitialSeed
 'Random Generator Initialised, Seed is ', ⍕⎕RL
 ∇

 ∇ r←Flat x
 :Access Public
 ⍝ Return x random numbers in range [0,1>, flat
distribution
 r←(¯1+?x⍴100)÷100
 ∇

:EndClass ⍝ Class Random

This class can be used to generate sequences of random numbers with a “flat”
distribution between 0 and 1 (with only 2 digits, to allow us to easily recognize them in
the examples). One advantage of encapsulating it in a class is that it can manage its own
seed (⎕RL) completely separately from the rest of the system. We can generate
repeatable or suitably randomized sequences according to the requirements of our
application.

As you exit from the editor, APL evaluates the class definition from top to bottom. Most
of the script consists of function definitions, but in our class there is one APL
expression, which is executed as the script is fixed in the workspace:

 InitialSeed←42
 ⎕←'Default Initial Seed is: ',⍕InitialSeed

As a result, you should see one line written to the session as you leave the editor. If
there are errors in any of the executable lines in your script, you will see one or more
error messages in the status window, and the class will not be fixed in the workspace.

Let’s perform some experiments with our new class:

 Chapter 3: Working with Classes 17

 rand1←⎕NEW Random 0
Random Generator Initialised, Seed is 42

The constructor also has an output statement, which shows us which initial seed was
selected for the instance.

 rand1.Flat 6
0 0.52 0.73 0.26 0.37 0.19

 rand2←⎕NEW Random 0
Random Generator Initialised, Seed is 42

 rand2.Flat 3
0 0.52 0.73

 ?6 6 6
1 5 3

 rand2.Flat 3
0.26 0.37 0.19

As can be seen above, each instance of the generator produces the same sequence of
numbers, if the same initial seed is used. The sequence is unaffected by the use of ? in
the root, or indeed anywhere else in the application.

 rand3←⎕NEW Random 7913
Random Generator Initialised, Seed is 7913

 rand3.Flat 6
0.06 0.85 0.1 0.29 0.78 0.62

 rand3.Reset
Random Generator Initialised, Seed is 7913

 rand3.Flat 6
0.06 0.85 0.1 0.29 0.78 0.62

We can create a generator with a non-default initial seed, and we can reset the sequence.
If you are accustomed to using namespaces, the above behaviour will not come as a
surprise, as you will be accustomed to each namespace having a separate set of system
variables. However, the encapsulation provided by an instance is even stronger, as
illustrated by the following example:

18 Object Oriented Programming for APL Programmers

 rand4←⎕NEW Random 0
Random Generator Initialised, Seed is 42

 rand4.Flat 3
0 0.52 0.73

 rand4.(?6)
4

 rand4.Flat 3
0.26 0.37 0.19

If rand4 had been a namespace rather than an instance, the call to ? inside rand4
would have modified ⎕RL in the namespace, and the subsequent call to Flat would
have continued from a different point in the sequence. However, APL expressions
executed on an instance from outside are executed in an “APL execution space”, which
is separate from the space in which the class members run.

In effect, when an instance of a class is created, APL encapsulates it within a
namespace. This has always been the case for instances of COM or DotNet classes, and
as a result, Dyalog APL also allows the use of APL expressions in parenthesis following
the dot after the name of one of these instances. Such APL expressions have access to
all the public members of the instance, but are (obviously, since Excel cannot run APL
expressions) executed outside the instance itself, as in the following example:

 'XL' ⎕WC 'OLECLIENT' 'Excel.Application'
 XL.(Version,'/',OperatingSystem)
11.0/Windows (32-bit) NT 5.01

In this example (which would work the same way in Dyalog APL versions 9 or 10),
there is an APL expression which references the public properties Version and
OperatingSystem and catenates them together. For consistency, the same approach
is used for instances of APL-based classes, rather than simply running the expressions
as if the instance was a namespace. Thus, the behaviour of an APL class will not change
if it is exported to a DotNet Assembly or a COM DLL and subsequently used from
APL.

When an instance method such as Flat is referenced in one of these expressions, it
runs in the instance environment. For example, the example on the previous page could
have been written:

 Chapter 3: Working with Classes 19

 rand4←⎕NEW Random 0
Random Generator Initialised, Seed is 42
 rand4.Flat 6
0 0.52 0.73 0.26 0.37 0.19

 rand4.Reset
Random Generator Initialised, Seed is 42
 rand4.(⌽(Flat 3) (?6) (Flat 3))
 0 0.52 0.73 4 0.26 0.37 0.19

The reverse is required because the rightmost call to Flat happens first. The important
point is that the call to (?6) in the middle of the expression executes in and uses the
⎕RL in the APL space and does not modify the value of ⎕RL in the instance space. If
you get a different value for the middle element (4) when you try the above, see the
following comment.

Note: There are a couple of small potential surprises which are worth mentioning:

First, the APL space inherits the values of ⎕IO, ⎕ML and other system variables when
the object is instantiated – not where it is being used. Secondly, if you mistype the
name of a property or field in an assignment, this will create a variable in the APL
space. For example:

 ts1←⎕NEW TimeSeries (1 3 2 4 1)
 ts1
#.[TimeSeries]
 ts1.Obs
1 3 2 4 1

 ts1.obs←1 3 2 4 2 ⍝ Lower “o”, note no error message!
 ts1.⎕nl 2 ⍝ obs is in surrounding namespace
obs
 ts1.⎕nl -2 ⍝ List visible fields & variables
 obs Degree Obs

This is the same behaviour as you would get if you made a spelling error in APL, but
might come as a bit of a surprise in an OO setting. However it is desirable to allow a
user to introduce own names into the APL space and combine them with members of
the class for analytical purposes. For example, if iPlan is an instance of some object
which exposes properties named Actual and Budget, it may be very useful to
introduce a new property:

 iPlan.(Variance←Actual-Budget)

20 Object Oriented Programming for APL Programmers

It is possible that a future version of Dyalog APL will allow the class designer or the
user to place restrictions on the introduction of new names into the APL space.

 21

C H A P T E R 4

 Some Useful Debugging Tricks

The strict encapsulation described in the previous chapter may be a bit disconcerting to
APL developers, who are accustomed to having access to data on a “want to know”
rather than a “need to know” basis. What if we want to know what value ⎕RL or
InitialSeed currently have in the instance, because the instance seems to be
misbehaving?

The first thing which is important to realize is that if you set a stop in a method, or if
you trace into a function call, the internal environment where the method is running is
available to you while the method is on the stack. To experience this first hand, create a
new instance of Random, trace into a call to Reset or Flat and examine the value of
⎕RL while one of these functions is suspended.

It is also important to realize that classes and instances are dynamic in APL (as you
would expect)! If you edit a class and fix it, all existing instances will be updated to
include the new definition. You can inject temporary methods into a class for debugging
purposes. Type)ED Random and add a public method to the class:

 ∇ r←RL x
 :Access Public
 r←⎕RL
 :If x≠0 ⋄ ⎕RL←x ⋄ :EndIf
 ∇

Using our new method RL, we can now query and set ⎕RL in the instance as follows:

 rand1.RL 77
42
 rand1.RL 0
77

The system function ⎕CLASS returns the class of an instance. This can be useful in a
debugging situation where you are faced with a misbehaving instance of unknown
pedigree and need to know which class to edit. You could just display the instance, the
default display will often tell you the class name, but as we will learn a bit later, it is
possible to change this – so it is not a reliable way to determine the class.

22 Object Oriented Programming for APL Programmers

 ⎕←rand1
#.[Random]

 ⎕CLASS rand4
 #.Random

In one of the following chapters, we will show how it is possible to define a derived
class. A derived class extends an existing class by inheriting its definition and adding to
it. For an instance of a derived class, the result of ⎕CLASS will have more than one
element, and document the entire class hierarchy. The first element always starts with a
reference to the class which was used to create the instance.

The Mother of All Workarounds
The ultimate workaround or back door to break encapsulation is of course the
introduction of a public method with a name like Execute, which allows you to
execute any APL expression you like in the instance space. We can use the :Include
keyword to embed a namespace containing suitable development tools in a classe. An
example namespace called OOTools can be found in the workspace of the same name
in the OO4APL folder. Copy it into the active workspace and edit the Random class to
add the following statement:

:Include OOTools

The namespace includes a number of functions which may be useful during
development. Functions with names beginning with i will execute in the instance space,
those beginning with s will run in the shared space (more about the shared space later):

 rand1←⎕NEW Random 0
Random Generator Initialised, Seed is 42

 rand1.xxx←'Bingo' ⍝ New variable in the APL space
 rand1.⎕NL 2 ⍝ Vars in the APL space
xxx
 rand1.iNL 2 ⍝ Vars/Fields/Props in Instance Space
InitialSeed
 rand1.iNC 'Flat' ⍝ Flat is an instance Function
3

 Chapter 4: Some Useful Debugging Tricks 23

And:

 rand1.⎕RL←77
 rand1.⎕RL ⍝ No surprise!
77

 rand1.iExec '⎕RL' ⍝ Unchanged in the instance
42
 rand1.iExec '⎕RL←99' ⍝ But now we can change it!
99

When you release the application for testing, you should remove the :Include
statement, or simply the OOTools namespace to ensure that your application code
does not use any of these “forbidden” methods.

24 Object Oriented Programming for APL Programmers

Summary of Chapters 1-4
In the first four chapters, we have discussed the extensions to Dyalog APL which are
summarized in the following table.

)ED ○MyClass Edits the class MyClass
Instance←⎕NEW MyClass Args Create a new instance of MyClass,

passing Args to the constructor.
:Class MyClass
:EndClass

Statements which begin and end the class
script for MyClass.

:Field MyField
:Field Private MyField

A private field (can only be used by code
defined in the class)

:Field Public MyField A public field (visible from the outside)
:Field … MyField ←expression A field with a default value
∇MyFn
∇

Beginning and end of a function or
“method”

:Access Public Declares the current function to be public
:Access Private Function is private (the default)
:Implements Constructor Identifies a method as the constructor,

which is used to initialize the contents of a
new instance

:Include NameSpace Makes all functions in NameSpace
private members of the current class,
unless this is overridden by :Access
statements in the included code

⎕CLASS Instance Returns the class hierarchy for an
instance.

⎕NL Negative arguments return a vector of
names. Further extensions to ⎕NC and
⎕NL will be introduced shortly.

 25

C H A P T E R 5

Properties

With a bit of luck, we are now able to find our way around simple classes and instances,
and are ready to explore a few more pieces of OO functionality: A Property is a
member which is used in the same way as a field, but implemented as a one or more
functions: There is usually a pair of functions, which are commonly referred to as the
getter and the setter. To explore properties, we are going to modify our TimeSeries
class so that an instance represents a year of monthly data:

:Class Monthly

 :Field Public Obs ⍝ Observed values
 :Field Public X ⍝ X values for known Months

 :Field Public Degree←3 ⍝ 3rd degree polys by default

 ∇ r←PolyFit x;coeffs
 :Access Public
 ⍝ Use cubic fit to compute values at x

 coeffs←Obs⌹X∘.*0,⍳Degree ⍝ Find polynomial coeffs
 r←coeffs+.×⍉x∘.*0,⍳Degree ⍝ Compute fitted f(x)
 ∇

 ∇ make args
 :Implements Constructor
 :Access Public
 ⍝ args: Obs [X]
 args←,(⊂⍣(1=≡args))args ⍝ Enclose if simple5
 Obs X←2↑args,⊂⍳⍴⊃args
 'Invalid Month Numbers' ⎕SIGNAL (∧/X∊⍳12)↓11
 ∇

:EndClass ⍝ Class Monthly

5 ⍣ is the power operator, which takes a function (enclose) on the left, number of applications (1
if simple, else 0) on the right. When right operator argument is boolean, power can be read “if”,
in this case “enclose if simple”.

26 Object Oriented Programming for APL Programmers

Darker shading highlights the changes: We have added a new field called X , which will
contain the X co-ordinates (month numbers) for our observations. The PolyFit
function has been enhanced to use X rather than (⍳⍴Obs) in constructing the right
argument to matrix division. The constructor make has been enhanced so that it
generates X if it was not provided:

 (⎕NEW Monthly (1 4 7 9 10)).X
1 2 3 4 5

 m1←⎕NEW Monthly ((1 4 7 9 10)(1 3 5 7 9))
 m1.X
1 3 5 7 9

Because we think we might extend our class to handle very long timeseries at some
point in the future, and since the matrix division algorithm only uses the actual
observations anyway, we have decided to use a “sparse” data structure: We only store
the points for which we have values.

We will experiment with defining a variety of properties which can present the sparse
data in ways which may be more convenient to the user.

:Property Simple
A reporting application is likely to want to see the data as a 12-element vector, so it can
be tabled with other series and easily summarized. We can support this requirement
using the following property:

 :Property Simple FullYear
 :Access Public
 ∇ r←Get
 r←(Obs,0)[X⍳⍳12]
 ∇
 :EndProperty

Simple is the default type of property, so the keyword Simple is not actually required
above. Although FullYear is implemented using a function, it looks, tastes and feels6
like a field (or a variable) to the user of the class:

6 However, if the access function crashes, it will not smell like one.

 Chapter 5: Properties 27

 ts1←⎕NEW Monthly ((1 4 2 7 3) (1 2 3 7 8))
 ts2←⎕NEW Monthly ((1 3 2 4 1) (1 3 5 7 9))
 ts1.FullYear[2] ⍝ February
4
 ↑(ts1 ts2).FullYear
1 4 2 0 0 0 7 3 0 0 0 0
1 0 3 0 2 0 4 0 1 0 0 0

 ts1.FullYear←⍳12
SYNTAX ERROR…

The last statement above illustrates that FullYear is a read only property, which is
due to our not having written the corresponding Set function – we’ll get to that in a
minute. APL is (of course!) able to perform indexing on the data returned by a property,
as can be seen in the expression where we extracted data for February. However, the
Get function did generate all 12 elements of data, which might have been extremely
inefficient if we had more data.

The :Access Public statement makes the property visible from outside the
instance. Without this, the property could only be used by methods belonging to the
class.

:Property Numbered
Numbered properties are designed to allow APL to perform selections and structural
operations on the property, deferring the call to your get or set function until APL has
worked out which elements actually need to be retrieved or changed:

 :Property Numbered ObsByNum
 :Access Public
 ∇ r←Shape
 r←12
 ∇
 ∇ r←Get args
 r←(Obs,0)[X⍳args.Indexers]
 ∇
 ∇ Set args;i
 :If (⍴X)<i←X⍳args.Indexers ⍝ New X: Add to list
 X←X,args.Indexers ⋄ Obs←Obs,args.NewValue
 :Else
 Obs[i]←args.NewValue ⍝ Simply update
 :EndIf
 ∇
 :EndProperty

In order for APL to perform indexing and other structural operations, it needs to know
the Shape of the property. With this knowledge, APL is able to perform the same

28 Object Oriented Programming for APL Programmers

indexing and structural operations which would be allowed on the left side of the
assignment arrow in a selective specification expression. The getter is called when APL
encounters a function which actually needs the data in order to proceed.

To investigate how this works, edit the Get function for the property ObsByNum in the
class Monthly from the workspace OO4APL\Monthly, so that it outputs the contents
of args.Indexers to the session on each call – and experiment with different
operations on the property – for example:

 ts1←⎕NEW Monthly ((1 4 2 7 3) (1 2 3 7 12))
 ts1.ObsByNum[2]
 Get: 2
4

 ¯2↑ts1.ObsByNum
 Get: 11
 Get: 12
0 3

 1↑⌽ts1.ObsByNum
 Get: 12
3

 ts1.ObsByNum
 Get: 1
 Get: 2
…etc… 3…11
 Get: 12
1 4 2 0 0 0 7 0 0 0 0 3

As can be seen above, the number of function calls is equal to the number of elements
which are accessed. In a future release of Dyalog APL, it may become possible to
declare the rank of the getter and setter, so they can work on several indices in a single
call.

When APL calls a getter or setter for a numbered property, the argument is an instance
of type PropertyArguments, which will contain the following variables:

 Indexers An integer vector of the same length as the rank of the

property (as implied by the result of the Shape function).
 Name The name of the property, which is useful when one function is

handling several properties (we’ll show how to do that later).
 NewValue Within a setter, this is an array containing the new value for

the selected element of the property.

Note that Indexers will always contain indices in the index origin of the class. This
means that the access functions do not need to adapt to the index origin of the calling
environment – APL adjusts the indices as appropriate. Conversely, the user of a class

 Chapter 5: Properties 29

does not need to know the index origin used within the class. This is a good example of
encapsulation or information hiding, important principles of object orientation which
make it easier to share and use code without needing to understand details of the
implementation.

:Property Keyed
It is common for object oriented languages to allow indexing using names or other keys,
which are not necessarily numeric indices into an array. For example, the collection of
sheets in an Excel workbook can be indexed by sheet name using expressions like:

 XL.ActiveWorkbook.Sheets[⊂'Sheet2'].Index

See the chapter titled External Classes for more information about indexing OLEClient
and DotNet objects in version 11. In version 11.0, keyed properties make it possible to
support indexing of properties using arbitrary keys. We create vector of month names to
use as keys:

 Months←'Jan' 'Feb' 'Mar' 'Apr' 'May' … 'Nov' 'Dec'

… or alternatively, if we have the Microsoft.Net framework available on our machine,
we can extract the names from the environment:

 ⎕using←'System.Globalization' ⍝ DotNet “Globalization
Namespace”
 Months←12↑(DateTimeFormatInfo.New
⍬).AbbreviatedMonthNames

This will define a 12-element vector7 of 3-letter month names in the local language. We
can now define a property to do indexing using local month names:

7 DateTimeInfo.AbbreviatedMonthNames has 13 elements, according to a source on the
Microsoft CLR team this is in order to “discourage developers from making assumptions about
the length of calendars”.

30 Object Oriented Programming for APL Programmers

:Property Keyed ObsByName
:Access Public
 ∇ r←get args;i
 ⎕SIGNAL((⍴Months)∨.<i←Months⍳1⊃args.Indexers)/3
 r←(Obs,0)[X⍳i]
 ∇
 ∇ Set args;i;m
 ⎕SIGNAL((⍴Months)∨.<i←Months⍳1⊃args.Indexers)/3
 m←~i∊X ⍝ New months?
 X←X,m/i ⋄ Obs←Obs,m/args.NewValue ⍝ Add new months
 Obs[X⍳i]←args.NewValue
 ∇
:EndProperty

The ObsByName property can be used as follows:

 ts1.ObsByName[⊂'Jan']
1
 ts1.ObsByName['Oct' 'Nov' 'Dec']←4 5 6

The entire index and array of new values (when provided) is passed in a single call to a
keyed getter or setter. APL will verify that the shape of the sub-array identified by the
Indexers conforms to the shape of the result of get, and in the case of set, the new
values. This is why 'Jan' must be enclosed in the first example above.

Unlike a field, a property does not map directly to an underlying array. The property
provides a “virtual” array, the elements of which can be generated on demand – and
created when updated. As an extreme example of this, the following class presents the
APL interpreter as an infinitely large keyed property, with all possible APL expressions
as keys, and the results of the expressions as the corresponding values:

:Class APL
 :Property Keyed ValueOf
 :Access Public
 ∇ r←Get args
 r←⍎¨1⊃args.Indexers
 ∇
 :EndProperty
:EndClass ⍝ APL

Allowing:

 iAPL←⎕NEW APL
 iAPL.ValueOf['2+2' '+/⍳5']
 4 15

 Chapter 5: Properties 31

Numeric Keyed Properties
Note that you can use keyed properties with integer indices, and use them in the same
way as in a numbered property. You might do this if you were worried that a numbered
property would be inefficient due to the number of calls to your access functions, or if a
simple property would cause too much data to be generated, The drawback of this
approach is that the only direct selection operation which is possible on a keyed
property is indexing, and – since APL will be passing the indices unchanged - the
indices will have to be provided in the index origin of the class.

For readers familiar with the concept of function rank, it may be helpful to think of a
numbered access function as having rank zero, while a keyed access function has
infinite rank. Future versions of Dyalog APL may allow you to control the rank of your
access functions.

Default Properties
The Default option identifies a property as the default property for a class. If a class
has a default property, square bracket indexing can be applied directly to a reference to
the instance. If we edit the definition of the ObsByNum property and identify it as
:Property Default Numbered ObsByNum, we can apply indexing as follows:

 ts1←⎕NEW Monthly ((1 4 2 7 3) (1 2 3 7 8))

 ts1[2] ⍝ Shorthand for the following
4
 ts1.ObsByNum[2] ⍝ Equivalent to the above
4

 ⍴ts1 ⍝ But: ts1 is a scalar

 2↑ts1
LENGTH ERROR

The last two expressions expose a problem with indexing default properties: An
instance (or rather: a reference to an instance) is a scalar. The APL standard allows
square bracket indexing on instance as a conforming extension, since indexing the
instance would give a RANK ERROR. If you feel uncomfortable about indexing a
scalar, reference the default property explicitly.

 ts1.ObsByNum[2]

Although indexing can be applied directly to an instance, all other selection or structural
operations must view the instance as a scalar. For example, the expression (2↑ts1)
should return ts1 followed by a prototypical instance of the Monthly class, but fails
because none has been defined (we’ll look at how to define class prototypes when we
take a closer look at constructors).

32 Object Oriented Programming for APL Programmers

Version 11.0 adds support for APL2’s “squad indexing” primitive, a dyadic primitive
function which provides a functional alternative to square bracket indexing:

 4⌷'ABCD' ⍝ 'ABCD'[4]
D
 2 (1 2)⌷2 2⍴'ABCD' ⍝ (2 2⍴'ABCD')[2;1 2]
CD

In version 11.0, monadic ⌷ returns the entire right argument, as if the elided left
argument had selected everything along all dimensions. If the right argument is an
instance, monadic ⌷ returns the entire contents of the default property.

 ⍴⌷ts1
12
 2↑⌷ts1
1 4
 ⌷ts1
1 4 2 0 0 0 7 3 0 0 0 0

Note that the 2nd expression above only called the numbered getter twice, once for each
element of the complete selection operation 2↑⌷. If we had picked ObsByName as the
default property, we would be able to index the instance using month names:

 ts1←⎕NEW Monthly ((1 4 2 7 3) (1 2 3 7 8))
 ts1['Jan' 'Jul']
1 7

(Obviously), there can only be one default property.

Note: The workspace MonthlyAfter5 in the OO4APL folder contains a version of
the Monthly class using all of the enhancements discussed in this chapter.

 Chapter 5: Properties 33

Triggers
If you want the “lightweight” characteristics of a field, where APL handles data access
directly without your having to write access functions, but you would like to be able to
react to changes to the field, you can use a trigger. A trigger is a function which is
called when one or more fields (or other variables) are modified. For example, we could
update our Monthly class so that it calculates the coefficients when one of the
variables involved in the calculations change, rather than doing it on every call to
PolyFit. PolyFit can be modified to use the pre-calculated coefficients:

 ∇ PreCalc args
 :Implements Trigger X,Obs,Degree
 ⎕←'PreCalc: ',args.Name
 :If OK←((⍴Obs)=⍴X)∧Degree<⍴Obs
 Coeffs←Obs⌹X∘.*0,⍳Degree ⍝ Find polynomial coeffs
 :EndIf
 ∇

 ∇ r←PolyFit x;coeffs
 :Access Public
 ⍝ Use polynomial to compute values at x

 'Unable to Fit Polynomial' ⎕SIGNAL OK↓5
 r←Coeffs+.×⍉x∘.*0,⍳Degree ⍝ Compute fitted f(x)
 ∇

PreCalc writes to the session when it is called, so we can keep an eye on things:

 ts1←⎕NEW Monthly ((1 4 2 7 3) (1 2 3 7 8))
PreCalc: Obs
PreCalc: X
 1⍕ts1.PolyFit 1 2 3 4
 1.7 2.0 3.5 5.3

 ts1.Degree←2
PreCalc: Degree
 1⍕ts1.PolyFit 1 2 3 4
 1.0 2.7 4.0 4.8

 ts1.X←1 2 3 7
Precalc: X
 1⍕ts1.PolyFit 1 2 3 4
Unable to Fit Polynomial

The trigger mechanism in version 11.0 is not a purely object oriented feature. It can be
used to track any variable in a workspace. For example:

34 Object Oriented Programming for APL Programmers

 ∇ foo args
 :Implements Trigger A
 'A ←'A'at',1↓⎕SI{⍺,'[',(⍕⍵),']'}¨⎕LC
 ∇
 ∇ goo
 A←2
 A←'Hello'
 ∇

If we now run goo, we will see the following output:

 A ← 2 at goo[2]
 A ← Hello at

Warning: Applications should not depend on the exact timing of, or the number or calls
to, a trigger, beyond relying on each trigger function to be called at least once following
the completion of the primitive function (usually assignment) which set the trigger
variable. As can be seen in the above example, the trigger functions were called after
the completion of the entire line of code containing the trigger event. In the second case,
goo was no longer on the stack at the time when foo was called.

 35

C H A P T E R 6

Constructors and Destructors

As we have seen, a constructor is a function which is called to initialize the contents of
an instance, immediately after the instance has been created – but before it can be used.
In the examples we have seen so far, we have used it to:

Set an initial seed in our Random number generator class
Initialise data for a new instances of Monthly and TimeSeries

A constructor is used when it makes sense to provide initial values for fields, or allocate
external resources associated with the object. For example, a constructor might open a
component file, or connect to a database and execute a query.

A destructor is called when the instance is about to disappear. In a destructor, you can
close files and database connections, or free up any other resources which will no longer
be required.

The following is a simple class which provides access to Excel Workbooks, using Excel
as an OLE Server:

36 Object Oriented Programming for APL Programmers

:Class ExcelWorkBook

 :Field Public Application
 :Field Public Workbook
 :Field Public Sheets
 :Field Private Opened←1 ⍝ Did we open it?

 ∇ make book;i;books
 :Implements Constructor
 Application←⎕NEW
 'OleClient' (⊂'ClassName' 'Excel.Application')

 :If 0≠Application.Workbooks.Count ⍝ Open books
 books←⌷Application.Workbooks
 :AndIf (⍴books)≥i←books.FullName⍳⊂book ⍝ Open?
 Workbook←i⊃books
 Opened←0 ⍝ No we did not
 :Else
 :If book∧.=' ' ⍝ No book named => Create one
 Workbook←Application.Workbooks.Add ⍬
 :Else ⍝ Open the requested book
 Workbook←Application.Workbooks.Open ⊂book
 :EndIf
 :EndIf

 Sheets←⌷Workbook.Sheets
 ∇

 ∇ close
 :Implements Destructor
 :If Opened ⍝ Close it if we opened it
 :Trap 0 ⍝ If workbook somehow damaged
 ⎕←'Closed workbook ',Workbook.FullName
 Workbook.Saved←1
 Workbook.Close ⍬
 :EndTrap
 :EndIf
 ∇
:EndClass ⍝ Class ExcelWorkBook

The constructor takes the name of a workbook as its argument, and ensures that the
book is open. If the name is blank, a new workbook is created. The three public fields of
this class are:

 Chapter 6: Constructors and Destructors 37

 Application A handle to Excel.Application, so we can do things like

make Excel visible and tell it not to issue prompts.
 Workbook Handle to the Excel workbook instance corresponding

to our workbook.
 Sheets A vector containing all the sheets in the book, so we

don’t have to repeat ⌷Workbook.Sheets

The following illustrates the use of the first two fields.

 wb1←⎕NEW ExcelWorkBook 'c:\temp\book1.xls'
 wb1.Application.Visible←1
 wb1.Workbook.FullName
C:\temp\Book1.xls

The following examples show how we can read data from the sheets, make a change,
save the workbook, and close the object:

 wb1.Sheets.Name
Sheet1 Sheet2 Sheet3

 wb1.Sheets[1].(Name UsedRange.Value2)
 Sheet1 1 2 3 4 5 6 7 8
 9 10 11 12 13 14 15 16

 wb1.Sheets[1].Range[⊂'A1:B2'].Value2←2 2⍴'Kilroy'
'was' 'here' '!'

 wb1.Workbook.SaveAs⊂'c:\temp\book2'

 ⎕ex 'wb1'
Closed workbook: C:\temp\Book1.xls

Note that the destructor is called when the last reference to an instance disappears. If
you expunge a name and the destructor is not called as you expected, look for a leaked
local variable or a temporary global created by hand, containing a reference that you
had forgotten about. The system function ⎕INSTANCES will return a list of refs to
existing instances:

38 Object Oriented Programming for APL Programmers

 wb1←⎕NEW ExcelWorkBook 'c:\temp\book1.xls'
 wb2←⎕NEW ExcelWorkBook 'c:\temp\book2.xls'
 books←wb1 wb2

 ⎕instances ExcelWorkBook
 #.[ExcelWorkBook] #.[ExcelWorkBook]
 (⎕instances ExcelWorkBook).Workbook.Name
 Book1.xls Book2.xls

)erase wb1 wb2
 ⍴⎕instances ExcelWorkBook
2

There are still 2 instances.

Display Form
The function ⎕DF (Display Form) can be used to set the “display form”, of an instance
(or namespace) – which defines the result returned by monadic format (⍕) of the
instance. By default, the display form shows the parent space and the name of the class,
as in:

#.[Monthly]

This tells us that we have an instance of Monthly which was created in the root (#).
⎕DF is often used in a constructor to set the display form to something which helps to
identify the particular instance. For example, if we added the following line to the
constructor of Monthly:

 ⎕DF ⍕,[1.5]'[Timeseries]' (Months[X],'=',[1.5]Obs)

Then the display form would be something like:

 ⎕←ts1←⎕NEW Monthly ((1 4 2 7 3) (1 2 3 7 8))
 [Timeseries]
 Jan = 1
 Feb = 4
 Mar = 2
 Jul = 7
 Aug = 3

We could also update the trigger function to keep the display form up-to-date.

 Chapter 6: Constructors and Destructors 39

Niladic Constructors and the Class Prototype
All the constructor methods we have written so far have taken an argument which has
been used to initialise each new instance. If the constructor is a niladic function, this
means that the class does not need any instantiation parameters. It is possible for a
Dyalog APL class to have several constructors: One or more which take a right
argument, and one (or zero) which does not. A constructor with no argument is known
as the default constructor. If ⎕NEW is called with no parameters following the class, the
default constructor will be called. For example, we could have defined a niladic
constructor for the Random class, as an alternative to testing whether the argument is
zero in the monadic constructor:

 ∇ make args
 :Implements Constructor
 :Access Public
 InitialSeed←args
 Reset
 ∇

 ∇ make0
 :Implements Constructor
 :Access Public
 Reset
 ∇

With the above constructors and the RL function from the beginning of Chapter 4, the
Random class could be used as follows:

40 Object Oriented Programming for APL Programmers

 r1←⎕NEW Random ⍝ Nothing strange about this…
Random Generator Initialised, Seed is 42

 r1.RL 1234 ⍝ Change ⎕RL to 1234 (returns old value)
42
 (3↑r1).RL 0 ⍝ Two default instances created
Random Generator Initialised, Seed is 42
Random Generator Initialised, Seed is 42
1234 42 42

 r0←0/r1 ⍝ APL remembers the Class

 (1↑r0).RL 0 ⍝ 1↑ causes creation of a new prototype
Random Generator Initialised, Seed is 42
42

 1↑r0.RL 0
Random Generator Initialised, Seed is 42
0

In the last example, APL determines the type of the result by creating a prototype,
calling the function RL in it, and doing a 0⍴ of that result (42). 1↑ on this gives the
result.

 41

C H A P T E R 7

Shared Members

Almost all the members we have used up to this point have been instance members. An
instance field has a distinct value for each instance. The code in instance methods, or
associated with instance properties, generally refer to instance data. Shared fields have
the same value in all instances. Shared methods and property accessor functions access
shared data.

The meaning of the terms public and private is the same for shared members as it is for
instance members. Public members are visible from outside, private members can only
be seen by code which is defined and running inside the class.

The Months field, which contains abbreviated month names within the Monthly
class, is an example of a field which might as well be shared – it is going to be the same
in all instances. We can add:

:Field Shared Public Months

… to the beginning of our Monthly class, and subsequently verify that the property is
in fact shared:

 ts1←⎕NEW Monthly ((1 2 3 4)(5 6 7 8))
 ts2←⎕NEW Monthly ((3 4 5 6)(5 6 7 8))
 ts1.Months[3]←⊂'Mch'

 ts2.Months
 Jan Feb Mch Apr May Jun Jul Aug Sep Oct Nov Dec

)erase ts1 ts2
 Monthly.Months
 Jan Feb Mch Apr May Jun Jul Aug Sep Oct Nov Dec

As the last expression illustrates, public shared properties can be referenced through the
class itself, without using an instance. In this case, it is probably a good idea to declare
the field as “read only”:

 :Field Public Shared ReadOnly Months←12↑
 (DateTimeFormatInfo.New ⍬).AbbreviatedMonthNames

42 Object Oriented Programming for APL Programmers

Most of the time, shared fields are likely to be either read only or private - or hidden
behind some kind of property with careful validation in the setter.

Shared members are available to code which defines instance methods and properties.
As we have seen above, they can be used as if they were members of all instances. On
the other hand, instance data is not visible to shared code, since this would presume the
selection of a particular instance. Note that code which is executed when the a class
script is fixed, is shared code, executing within the class. Thus, it will not be able to see
the value of instance fields, except to define default values for instance fields in :Field
statements.

Shared Methods
Shared methods will either be access methods which are used to manipulated shared
data, or methods which provide a service which is related to the class but does not
require or apply to an instance. For example, if we extend our ExcelWorkBook class
with a method which lists the workbooks in a folder, we could provide this as a shared
method:

 ∇ r←List folder;⎕USING
 :Access Public Shared

 ⎕USING←'' ⍝ DotNet Search Path
 :Trap 0
 r←((System.IO.DirectoryInfo.New⊂folder).
 GetFiles⊂'*.xls').Name
 :Else ⋄ r←⍬
 :EndTrap
 ∇

This would allow us to find out which workbooks there are, which is information we
might need before we open one:

 ExcelWorkBook.List 'c:\temp'
 Book1.xls Book2.xls Book3.xls

 43

C H A P T E R 8

Inheritance

It is possible to define a class which extends – or inherits the features of – an existing
class. Inheritance is considered to be one of the most important features of Object
Orientation, because inheritance provides a well-defined mechanism for sharing code.

Imagine that we would like to create a simple budgeting and forecasting application
which uses Excel spreadsheets like the above for data entry.

Departmental managers will initially enter budget and subsequently actual data and send
their workbooks to us at regular intervals for reporting and consolidation. Our plan is to
read data from workbooks in the above format, and use code written in APL to calculate
the variance to budget for those months where both actual and budget data is available
and finally produce a Forecast. Something along the lines of:

44 Object Oriented Programming for APL Programmers

 ∇ Calculate;real;ts
 :Access Public
 real←+/∨\⌽Actual≠0 ⍝ # of months of real data
 Variance←12↑real↑Actual-Budget ⍝ Where data exists

 :If real>0
 ts←⎕NEW #.Monthly(real↑Actual)
 ts.Degree←1 ⍝ 3rd degree is a bit too exciting
 Forecast←(real↑Actual),real↓ts.PolyFit⍳12
 :EndIf
 ∇

We will call this special type of workbook a “PlanBook” (there is an example file called
widgets.xls in the OO4APL folder). The PlanBook class will extend
ExcelWorkBook, providing additional properties called Actual, Budget,
Variance and Forecast, which access data via the Sheets field which
ExcelWorkBook makes available.

The constructor in our new PlanBook class will examine the contents of the
workbook which has been opened and look for signs that it is a well-formed PlanBook.
We might start with a class definition like the following:

:Class PlanBook : ExcelWorkBook

 :Field Private RowNames←'Actual' 'Budget'
 'Variance' 'Forecast'
 :Field Private Instance DataRange
 ⍝ Will point to Excel Data Range

 ∇ make book;z
 :Access Public Instance
 :Implements Constructor :Base book

 :If Sheets.Name≡,⊂'Plan'
 :AndIf 6 14∧.≤⍴z←Sheets[1].UsedRange.Value2
 :AndIf ((⍴RowNames)↑2↓z[;1])≡RowNames
 DataRange←Sheets[1].Range[⊂'B3:M6']
 :Else
 (book,' is not a valid Plan Workbook')⎕SIGNAL 11
 :EndIf
 ∇

:EndClass ⍝ Class Plan

 Chapter 8: Inheritance 45

A derived class is declared by following the class name with a colon and the name of
the class which we wish to extend. The :Base keyword in the :Implements
Constructor causes a call to the base constructor, using the result of the expression
following :Base as the argument. In this case, the argument to the PlanBook
constructor, which will contain the name of the workbook, is passed unmodified to the
ExcelWorkBook constructor.

Once the workbook is open, make takes a look at the Sheets member, which we have
inherited from ExcelWorkBook, to verify that the workbook has a single sheet
named “Plan”, that this sheet has at least 6 rows and 14 columns, and that the second
column contains the four names which we expect. If all is well, we create a private field
called DataRange, which gives us easy access to the 4x12 range of cells containing
the data.

If the workbook does not look right, we signal an error, which will be reported by ⎕NEW
and prevent the instance from being completely created. In this case, the base destructor
is called as the instance disappears and the workbook is closed again.

 w←⎕NEW PlanBook'c:\temp\book1.xls'
c:\temp\book1.xls is not a valid Plan Workbook
 w←⎕NEW PlanBook'c:\temp\book1.xls'
 ∧
Closed workbook C:\temp\Book1.xls

 w←⎕NEW PlanBook'c:\temp\widgets.xls'
 w.Sheets.Name
 Plan

All that remains to make it possible for us to write Calculate in the way we
envisaged, is to provide the four “timeseries” as simple properties:

 :Property Actual,Budget,Variance,Forecast
 :Access Public
 ∇ r←get args
 r←DataRange.Value2[RowNames⍳⊂args.Name;]
 ∇
 ∇ set args
 DataRange.Value2[RowNames⍳⊂args.Name;]←
 args.NewValue
 ∇
 :EndProperty

If we add the Calculate method and)COPY the Monthly class we can now open
the PlanBook and work with it:

46 Object Oriented Programming for APL Programmers

 w←⎕NEW PlanBook'c:\temp\widgets.xls'
 w.(↑Actual Budget)
10 10 11 14 0 0 0 0 0 0 0 0
10 11 12 13 14 15 16 17 18 19 20 21

 w.Calculate
 ↑w.(Variance Forecast)
 0 ¯1 ¯1 1 0 0 0 0 0 0 0 0
10 10 11 14 14.5 15.8 17.1 18.4 19.7 21 22.3 23.6

And the spreadsheet has been updated. We can now:

 w.Workbook.Save
)erase w
Closed workbook C:\docs\sales\Widgets.xls

And our work is done.

Inherited Members
We have seen that the Sheets member, inherited from ExcelWorkBook, is
available as a public field of instances of PlanBook. Public methods are (of course)
also inherited by the derived class:

 w.List 'c:\docs\sales'
 Book1.xls Book2.xls Widgets.xls

However – it might be more useful to have a more specific version of List, which only
lists valid PlanBooks. We can use the base method to get the list of workbooks, and
then validate them by opening each one as a PlanBook:

 ∇ r←List folder;m;i;z
 :Access Shared Public
 ⍝ Extend ExcelWorkBook.List to list only PlanBooks

 r←⎕BASE.List folder
 m←(⍴r)⍴1
 :For i :In ⍳⍴r
 :Trap 0 ⋄ z←⎕NEW PlanBook(folder,'\',i⊃r)
 :Else ⋄ (i⊃m)←0 ⋄ :EndTrap
 :EndFor
 r←m/r
 ∇

 Chapter 8: Inheritance 47

Which allows:

 ExcelWorkBook.List 'c:\temp'
 Book1.xls Book2.xls Widgets.xls

 PlanBook.List 'c:\temp'
Closed workbook C:\temp\Book1.xls
Closed workbook C:\temp\Book2.xls
Closed workbook C:\temp\Widgets.xls
 Widgets.xls

It is possible to access the ExcelWorkBook version of a method via an instance of
PlanBook, by using a technique called casting. Dyadic ⎕CLASS allows us to access
members of the base class by providing a view of the instance as if it were an instance
of that class. You can only cast to a class which is in the class hierarchy for the
instance:

 (ExcelWorkBook ⎕CLASS w).List 'c:\temp'
 Book1.xls Book2.xls Widgets.xls

Public members of the base class become public members of the derived class, and are
(of course) also accessible to the code in the derived class. We have to refer to the base
class version of List as ⎕BASE.List because the derived class has defined its own
version of List. Note that ⎕BASE is “special syntax” which searches the class
hierarchy for a particular member, and can only be used if it is followed by a dot and a
base member name. ⎕BASE is not a function which can be used to return a reference to
a base class.

Private members of the base class remain hidden from the outside. As any other user of
ExcelWorkBook, the implementor of PlanBook is insulated from private changes
to the implementation of the base class – which helps make it possible for both
implementors to get a good nights’ sleep. Which is even more important if you are the
implementor of both.

Version 11.0 does not implement protected members, which are a kind of halfway
house; visible to code in derived classes, but invisible from the outside.

Benefits of Inheritance
If we needed to process a new type of workbook, we could create a second (third and
fourth) class deriving from ExcelWorkBook. The benefits of working this way are:

Easy reuse of the work done in writing the base class, without duplicating code.
Classes are easier to learn to use, due to shared features. For example, the List method
is available in all classes which derive from ExcelWorkBook (unless they redefine
it).

48 Object Oriented Programming for APL Programmers

The rules of class inheritance guarantee that, so long as the behaviour of public
members is not changed, future enhancements to the base class will be immediately
available to the derived classes, unless they decide to implement different behaviour.

The rules of class inheritance minimize the burden of maintenance, training and
documentation – so long as we adhere to some simple rules. Of course, there are a few
rocks on the road. For one thing, the very attraction of the above benefits can quickly
lead to unnecessarily general base classes with a huge collection of members, which can
end up being both inefficient and difficult to learn. Huge quantities of documentation
are not necessarily a good thing if only 5% of it is relevant to the job at hand.

As requirements change, deciding where in the hierarchy to add new functionality may
require much thought. The bad news is that the design of complex systems is always
going to require insight into the problems which need to be solved, today and in the
future – regardless of the technology or paradigm used. The good news is that OO
provides excellent tools both for the redesign and reimplementation of, and easy
migration to, a new set of classes. Given that the public interface to a class is so well
defined, it is possible to rewrite the implementation at any level in the hierarchy, but
keep the old interfaces available as an alternative for those application components
which cannot easily be rewritten.

Inheriting from Several Classes
In our PlanBook example, although we focused on extending the ExcelWorkBook
class, we also used functionality from the TimeSeries class. In this case, the choice
to make PlanBook an extension of ExcelWorkBook was fairly easy – but in many
other situations, it can be difficult to decide which class to extend. Dyalog APL has
followed C# in only allowing you to derive from one other class. Some OO platforms
allow multiple inheritance, with rules for how name conflicts are resolved and
constructors and destructors cascade. Unfortunately, while all the OO features we have
discussed so far in this guide, including single inheritance, are supported in much the
same manner in all OO systems, there is less agreement on the details of multiple
inheritance. This is one of the main reasons why C# has avoided it, and we have
followed suit.

Given the way classes work, it may be easier to work around not having multiple
inheritance than it would be to understand any particular flavour of it. We had no great
difficulty in using the TimeSeries class from within PlanBook. Even if inheritance
was not available at all, we would have been able to provide the important functionality
of PlanBook quite easily:

We would need to have additional field declarations in PlanBook:
 :Field Public WorkBook
 :Field Public Sheets

 Chapter 8: Inheritance 49

The statement:
 :Implements Constructor :Base book

Would have to be replaced with:
 :Implements Constructor
 WorkBook←⎕NEW #.ExcelWorkBook book
 Sheets←WorkBook.Sheets

In the List method, we would have to replace:
 r←⎕BASE.List folder

By:
 r←ExcelWorkBook.List folder

The big difference between the result of doing this and the original PlanBook is that
the other public members of ExcelWorkBook would not be exposed. Future
extensions to ExcelWorkBook would not be immediately available to users of
PlanBook. Whether this is a drawback or a simplification depends on your
requirements. In the long term, you might be better off with a class which only exposed
the specific PlanBook functionality. If you subsequently did decide to expose
ExcelWorkBook functionality, all you really need to do is to expose the new
WorkBook variable as a public field, which would allow:

 w←⎕NEW PlanBook2 'c:\temp\widgets.xls'

 w.WorkBook.List 'c:\temp'
 Book1.xls book2.xls widgets.xls

 w.WorkBook.Application.Version ⍝ Excel Version Number
11.0

If we add the List method from PlanBook to PlanBook2, then w.List would
call the PlanBook version of List, and w.WorkBook.List would allow access to
the ExcelWorkBook version, so both would be available.

Code Reuse with :Include
If you have a set of utility functions or methods which you wish to include in a number
of classes, but some of these classes are already derived classes, :Include provides
another alternative to multiple inheritance. For example, if we decide that the List and
Delete methods of our ExcelWorkBook are generally useful, we can create a
namespace called ExcelTools and define the functions in it:

50 Object Oriented Programming for APL Programmers

)cs ExcelTools
 ⎕using←''

 ∇ Delete file
[1] :Access Public Shared
[2] (System.IO.FileInfo.New file).Delete
 ∇

 ∇ r←List folder
[1] :Access Public Shared
[2]
[3] :Trap 0
[4] r←((System.IO.DirectoryInfo.New folder).
 GetFiles'*.xls').Name
[5] :Else ⋄ r←⍬
[6] :EndTrap
 ∇

If we remove List from PlanBook2 and add the line:

:Include ExcelTools

This will import the functions in ExcelTools, without using inheritance. The difference
between this and using inheritance is that the :Included functions actually become
methods of the class they are imported to, so they can reference members of this class if
required – which would not be the case if they were inherited methods of a base class.

Whether you use “real” inheritance or :Include, the source code is not copied, so if you
trace into and modify a method, the change will be made in the original namespace or
class, and any instance or class which currently contains it will immediately see the new
version.

 Chapter 8: Inheritance 51

Summary of Chapters 5-8
New features of Dyalog APL version 11.0 which we have introduced while discussing
Properties, Constructors, Destructors, Shared members – and Inheritance.

:Implements Trigger field The function will be called shortly after field

is modifiied.
:Implements Constructor The function is used to initialize a new

instance of the class.
:Implements Destructor Function used to clean up or de-allocate

resources an instant before the instance
disappears.

⎕INSTANCES Return instances of [or derived from] class
⎕DF Set Display Form
index⌷array Squad indexing
⌷instance Return all of the default property
:Property [Simple]
:EndProperty

A property where getters and setters pass the
entire array at once.

:Property Numbered
:EndProperty

Getter and setter work on a single item of the
property at a time, identified by numeric
indices along each dimension. Requires
Shape function.

:Property Keyed
:EndProperty

Entire Indexer is passed in a single call to
getter and setter. Only square bracket indexing
is permitted.

:Property Default
:EndProperty

A property which is referenced if square
bracket indexing is performed directly on the
instance.

:Field … Shared …
:Property … Shared …
:Access … Shared …

Fields, Properties and Methods which are
shared by all instances, and accessible through
the class.

:Field … ReadOnly A read only field.
:Base … Following :Implements Constructor,

specifies a call to the base constructor.
⎕BASE.member A reference to a public member in the closest

class in the hierarchy which exposes it
:Class name : baseclass Class name which derives from or extends

baseclass.

52 Object Oriented Programming for APL Programmers

 53

C H A P T E R 9

Deriving from Dyalog GUI Classes

In addition to the classes which you can write in APL, version 11.0 allows you to work
with:

- Dyalog GUI classes, including …
- OLE Servers and and OLE Controls (ActiveX components)
- Microsoft.Net classes

In version 11.0, these classes can be used in exactly the same way as instances of
classes which have been implemented in APL. You create instances of them with ⎕NEW,
and you can manipulate the public properties, methods and events which they expose
(but unlike APL classes, you cannot see or modify the implementation). For example:

 MyForm←⎕NEW 'Form' (('Caption' 'Hello World')
 ('Size'(10 10)))

 XL←⎕NEW 'OleClient' (⊂'ClassName' 'Excel.Application')
 XL.ActiveWorkbook.Sheets[⊂'Sheet2'].Index
2

 ⎕using←'' ⍝ Set the .Net search path
 now←System.DateTime.Parse ⊂'2006-06-06 06:06:06.666'8
 ∪now.(Year Month Day Hour Minute Second Millisecond)
2006 6 666

Note that the class name for built-in GUI classes is provided as a string rather than as a
reference to a name in the workspace. The above objects were already accessible in
version 10.1 of Dyalog APL, using slightly different mechanisms (which are still
available in 11.0, in order to allow existing applications to continue working). The big
difference is that:

- Indexing of default properties is supported (see the Sheets example above)
- Most importantly: You can write APL classes which derive from built-in and

external classes, which is what this chapter is about.

8 If you are reading this, the world apparently did not come to an end as the clock ticked past
6/6/6.

54 Object Oriented Programming for APL Programmers

In version 11.0, it is not possible to create instances of OLEControl objects using ⎕NEW.
(or classes which derive from OLEControls). This limitation will be lifted in a
subsequent release.

A Standard Dialog Box
Dyalog GUI classes provide basic building blocks for GUI applications. Each class, be
it a Form, Button, List- or Combo-box, Edit, Grid, Treeview (etc), is a very general
component with a large number of properties which can be used to provide a variety of
different behaviours depending on your application requirements. In any given
application, you are likely to use certain behavioural patterns frequently. If you write an
APL class which uses a GUI class as its base class, you can create “custom controls”
which are easier to use in your particular application context, than the original Dyalog
classes.

Imagine that your company has a corporate standard for the appearance of dialog boxes:

- The form will have standard dialog box appearance (EdgeStyle Dialog, Border 2)
- Each form will have a “Quit” and a “Save” button in the bottom left corner

(“attached” to corner if the form is resized)
- The form cannot be closed except by clicking on one of these buttons
- The form Caption and its Size must always be provided when an instance is

created.

We can create a suitable class which derives from 'Form': (you can find this class in
the workspace DerivedGui in the OO4APL folder):

 Chapter 9: Deriving from Dyalog GUI Classes 55

:Class Dialog : 'Form'
⍝ Implement Company Standard Dialog Form
⍝ Has 'Save' and 'Quit' buttons at bottom left
⍝ Coord Pixel, Cannot be Closed except thru Quit or Save
⍝ Usage: ⎕NEW Dialog (Caption Size FormProps)
⍝ Set Save.onSelect to control Save button behaviour

 :Field Public Save
 :Field Public Quit

 ∇ Create(cap size formprops);z
 :Access Public
 z←('Coord' 'Pixel')('EdgeStyle' 'Dialog')('Border' 2)
 z←z,('Caption'cap)('Size'size),formprops
 :Implements Constructor :Base z

 onClose←¯1 ⍝ Disable Close event
 z←('Size'(22 100))('Attach'(4⍴'Bottom' 'Left'))
 Save←⎕NEW'Button'(('Caption' 'Save')
 ('Posn'((Size[1]-30),10)),z)
 Quit←⎕NEW'Button'(('Caption' 'Quit')
 ('Posn'((Size[1]-30),120)),z)
 Quit.onSelect←'doQuit'
 ∇

 ∇ doQuit args
 :Access Public
 Close
 ∇

:EndClass ⍝ Dialog

Which allows:

 f1←⎕NEW Dialog ('Hello World' (50 250) ⍬)
 f1.BCol←192 192 255 ⍝ Pale Blue

56 Object Oriented Programming for APL Programmers

Note that the name of the GUI class is quoted when it is used as a base class, in the
same way as it would be in the argument to ⎕NEW. Apart from that, all the principles we
have discussed so far about the use of the public members of the base class apply in the
same way as if the base class had been written in APL. For example, we can set the
BCol property to change the background colour.

In the class code, note that we can refer to the onClose property of the form directly
in our constructor: It is a public property exposed by our base class and thus
immediately available to derived class code – and to any user of the derived class. Our
doQuit function can call the Close method of the form directly to close the form.

With the above class in our arsenal, we can start each dialog from a slightly higher level
than a raw Dyalog Form object.

A Labelled Edit Field
One pattern which is often repeated in applications is an edit field with an attached
label. It would be nice for application code to be able to treat such a pair as a unit, rather
than have to position, size and track them separately. We can achieve this with a class
which derives from the built-in Edit class and adds some right-justified text just to the
left of the edit box:

:Class EditField : 'Edit'
⍝ An Edit field with an associated Label on the left
⍝ Usage example: ⎕NEW EditField
 ('Price:' '10.5' (10 30) (⍬ 50) (⊂'FieldType' 'Numeric'))

 :Field Private Label ⍝ Ref to a Text object

 ∇ Make(label text posn size editprops)
 :Access Public
 :Implements Constructor :Base ('Text' text)
 ('Posn' posn)('Size' size),editprops
 Label←##.⎕NEW'Text'(('Text' label)
 ('Points'(posn+3 ¯3)) ('Halign' 2))
 ⍝ Created in container (##)
 ∇
:EndClass ⍝ EditField

A more sophisticated implementation might have options for the positioning and
aligment of the label, but this class illustrates the principle. Creating “company
standard” dialog boxes for data entry is now a bit easier than before:

 Chapter 9: Deriving from Dyalog GUI Classes 57

 f1←⎕NEW Dialog ('Edit Contact' (200 300) ⍬)
 f1.First←f1.⎕NEW EditField
 ('First name:' '' (10 60) (⍬ 100) ⍬)
 f1.Last←f1.⎕NEW EditField
 ('Last name:' '' (38 60) (⍬ 100) ⍬)
 f1.Address←f1.⎕NEW EditField
 ('Address:' '' (66 60) (90 230) (⊂'Style' 'Multi'))
 f1.(First Last Address).Text←'Donald' 'Duck'
 ('Box 555' 'Duckburg')

Our Dialog class exposes the Save button as a public field, so we can collect the data
by defining a function and assigning it to the Select event:

 ∇ Update(button event);form
[1] form←button.## ⍝ Find the form
[2] ContactInfo←form.(First Last Address).Text
[3] form.Close
 ∇

 f1.Save.onSelect←'Update'

Finally, we could collect our notes, tidy up and put the whole thing up into a little
Contact class with an Edit method:

58 Object Oriented Programming for APL Programmers

:Class Contact
 :Field Public FirstName←''
 :Field Public LastName←''
 :Field Public Address←0⍴⊂''

 ∇ Edit;f1
 ⍝ Uses #.Dialog and #.EditField
 :Access Public
 f1←⎕NEW #.Dialog('Edit Contact'(200 300)⍬)
 f1.First←f1.⎕NEW #.EditField
 ('First name:' ''(10 60)(⍬ 100)⍬)
 f1.Last←f1.⎕NEW #.EditField
 ('Last name:' ''(38 60)(⍬ 100)⍬)
 f1.Address←f1.⎕NEW #.EditField
 ('Address:' ''(66 60) (90 230)(⊂'Style' 'Multi'))
 f1.(First Last Address).Text←
 FirstName LastName Address
 f1.Save.onSelect←'Update'
 ⎕DQ'f1'
 ∇

 ∇ Update(button event);form
 ⍝ Private method used by Edit as callback on Save
 form←button.##
 FirstName LastName Address←
 form.(First Last Address).Text
 form.Close
 ∇
:EndClass ⍝ Contact

We have not created a constructor for this class, so new instances will have the values
declared at the start of the class definition. Register your first three friends as follows:

 Friends←3↑⎕NEW Contact
 Friends.Edit

This pops us three modal dialog boxes in a row, one after the other – which is hardly
ideal. We’ll improve on that in the next chapter.

 59

C H A P T E R 10

Interfaces

As we have seen, a base class provides core functionality which other classes can build
upon. The core functionality is available from each derived class, unless the derived
class intentionally overrides all or part of it. This makes it possible for programs which
“know about” the base class behaviour to use most, if not all, classes derived from the
same base. If necessary, a user of a derived class can cast the instance to the base class
using dyadic ⎕CLASS. The following expressions calls the List method of
ExcelWorkBook via an instance of PlanBook.

 w←⎕NEW PlanBook 'c:\temp\widgets.xls'
 (ExcelWorkBook ⎕CLASS w).List 'c:\temp'

There are situations where it is also useful for classes which do not derive from a
common base class to expose common behaviour – which is referred to as an interface.
In the same way as with a classes which derive from a common base class, a program
written to use a particular interface should be able to use any class which implements
the interface.

For example, we can define an interface called iEditable which requires an object to
be able to:

- Paint itself inside a subform at a given location on a GUI Form and return a

reference to the subform which it created for itself
- Pick up new values for its properties when asked to do so

We can then write an editor which was able to edit any instance of any class which
supported this interface. By convention, the names of interfaces begin with a lowercase
i. Our iEditable interface definition might look like this:

60 Object Oriented Programming for APL Programmers

:Interface iEditable

 ∇ SubForm←Paint(Container Position)
 ⍝ Paint instance in Container at Position, return ref to
SubForm used
 ∇

 ∇ Update
 ⍝ Update properties of instance from Painted controls
 ∇

 ∇ UnPaint
 ⍝ Remove any references to resources created by Paint
 ∇

:EndInterface ⍝ iEditable

The interface definition contains no executable code, which will leave many APL
programmers wondering what it is for! In most other languages, an interface definition
would contain a little more: Declarations of the types of all the arguments and results.
APL interface definitions can also include type information, if we want to export them
for other languages to use – see the final sections on Microsoft.Net for more about this.
There are other reasons why an interface definition is useful, which we will investigate
in a moment.

Let us modify the Contacts class we created in the previous chapter, and replace the
existing Edit and Update methods with an implementation of iEditable:

 Chapter 10: Interfaces 61

:Class EditableContact : iEditable
 :Field Public FirstName←''
 :Field Public LastName←''
 :Field Public Address←0⍴⊂''

⍝ --- iEditable implementation

 :Field Private idSubForm ⍝ ref to subform is stored

 ∇ {SubForm}←Paint(container position)
 :Signature SubForm←iEditable.Paint Container,Position

 SubForm←idSubForm←container.⎕NEW 'SubForm'
 (('Posn'position) ('Size'(120 200))
 ('BCol'container.BCol))
 SubForm.First←SubForm.⎕NEW #.EditField
 ('First name:'FirstName(10 60)(⍬ 100)⍬)
 SubForm.Last←SubForm.⎕NEW #.EditField
 ('Last name:'LastName(38 60)(⍬ 100)⍬)
 SubForm.Address←SubForm.⎕NEW #.EditField
 ('Address:'Address(66 60)(48 130)(⊂'Style' 'Multi'))
 ∇

 ∇ Update
 :Signature iEditable.Update
 FirstName LastName Address←
 idSubForm.(First Last Address).Text
 ∇

 ∇ UnPaint
 :Signature iEditable.UnPaint
 idSubForm←⍬
 ∇

:EndClass ⍝ Contact

With this class defined, we can create a form and arrange our contacts on it. Note that,
in order to access the interface, we have to cast each instance of EditableContact
to iEditable, in the same way that we might cast to a base clase if we wanted to
access that. This is in order to make it possible for a class to add an interface without the
risk of name conflicts between interface member names and members of the class itself:

62 Object Oriented Programming for APL Programmers

 contacts←3↑⎕NEW EditableContact
 e_contacts←iEditable ⎕CLASS¨contacts ⍝ Cast each to
iEditable
 e_contacts[1].⎕nl -3 ⍝ Each one exposes 3 methods
 Paint UnPaint Update

 f1←⎕NEW Dialog ('My Contacts' (480 300) ⍬)
 e_contacts[1].Paint f1 (0 0)
 e_contacts[2].Paint f1 (150 0)
 e_contacts[3].Paint f1 (300 0)
 ⍝ or: e_contacts {⍺.Paint f1 ⍵}¨(0 0)(150
0)(300 0)

At this point, pause to fill in the form:

When we are ready, we run the update functions:

 Chapter 10: Interfaces 63

 e_contacts.Update ⍝ Runs iEditable.Update on each
instance
 contacts.(FirstName LastName)
 Donald Duck Dolly Duck Scrooge McDuck

We could also have defined a function to do the update and connected it to the Save
button:

 upd←{e_contacts.Update}
 f1.Save.onSelect←'upd'

The reason we need an UnPaint method can be illustrated by the following sequence.
Note that the form does not disappear when expunged. This is due to the references (in
the private fields called idSubForm) inside each contact:

 ⎕ex 'f1'
 e_contacts.UnPaint

Of course, if contacts and e_contacts were local to the function doing the above
work, or if we expunged these, this would also cause the references to disappear.

Avoiding Name Conflicts
Through the ages, many APL developers have “independently discovered” the need for
interfaces, and written code which (for example) checks the class of a name like
'Paint', and if the function is present deduces that “the interface is available”.
However, this is dangerous: A class might have a method called Paint which has
nothing to do with “being iEditable”. Even if we are rigorous and check all the
names in the interface, there is a risk of confusion with similar interfaces. In addition to
this: What it if our class already has a method called Paint and we want to add the
interface to it?

The important reason for having an interface definition is the avoidance of these name
conflicts between interfaces, or between an interface and names used by the class. In the
EditableContact class, each of the interface functions has a :Signature
statement, for example:

 ∇ {SubForm}←Paint(container position)
… stuff snipped …
 :Signature SubForm←iEditable.Paint Container,Position

It is the name iEditable.Paint in the :Signature statement which declares
that the function implements the Paint method of the iEditable interface. The
name of the actual function is not actually used. It makes sense to use the same name as
the interface function, but if we needed to avoid name conflicts we could call it
ie_Paint or foo – anything we like.

64 Object Oriented Programming for APL Programmers

Conclusion
The chapter on interfaces concludes the introduction to object oriented concepts as
implemented in Dyalog APL version 11.0. The following chapters show how object
orientation can be used to integrate APL with other tools which inhabit the
Microsoft.Net Framework.

 65

C H A P T E R 11

Using The Microsoft .Net Framework

Operating systems are designed to hide the details of the machine hardware from
developers, making it possible to write applications without understanding the details of
how the chips which manage memory, disk, keyboard, screen and other peripherals are
controlled. As operating systems have evolved, they have tended to provided ever
higher levels of abstraction. Environments like Microsoft.Net provide object-oriented
encapsulations of everything from low level hardware interfaces to high level GUI and
Databases.

If you are running Dyalog APL on a machine where the Microsoft.Net Framework is
installed, you have access to a vast collection of tools for application building, which
are supplied by Microsoft. All of these classes, any classes you have acquired from third
parties, plus the classes you write yourself in a language which supports .Net (Visual
C#, Dyalog APL, and dozens of other languages), can be used in the same way as you
would use the APL classes described in the preceding chapters.

All of the “.Net classes” mentioned above, whether they are something you have written
yourself or they were provided by Microsoft, reside in files called Assemblies.
Microsoft has decided to reuse the extension “.DLL” for these files, so they have the
same extension as traditional Dynamic Link Libraries. There can be dozens, or
hundreds of assemblies on your machine, so a mechanism is required to name the
assemblies that an application would like to use. In Dyalog APL, the system variable
⎕USING provides this.

⎕USING contains a list of assembly names (see the Dyalog APL documentation for
details). If one of the elements is an empty vector, this is taken to mean the
Microsoft.Net Framework classes contained in the assembly called mscorlib.dll.
This core library contains the most commonly used classes. To give an impression of
the types of services provided by .Net, the remainder of this chapter will explore a
(very) small selection.

66 Object Oriented Programming for APL Programmers

System.Environment
System.Environment is a class which contains a number of useful shared
properties and methods which provide information about the platform on which the
application is running:

 ⎕USING←'' ⍝ This is interpreted as ⎕USING←,⊂''

 System.Environment.⎕nl -2
 CommandLine CurrentDirectory ExitCode
 HasShutdownStarted MachineName NewLine OSVersion
 ProcessorCount StackTrace SystemDirectory TickCount
 UserDomainName UserInteractive UserName Version
 WorkingSet

 se←System.Environment
 se.(Version OSVersion)
 2.0.50727.42 Microsoft Windows NT 5.1.2600 Service Pack 2

 se.SpecialFolder.⎕NL-2
 ApplicationData CommonApplicationData CommonProgramFiles
 Cookies
 …etc…

 se.(GetFolderPath SpecialFolder.ProgramFiles)
C:\Program Files

 folders←se.SpecialFolder.⎕NL-2
 ↑se.{⍵ (GetFolderPath SpecialFolder⍎⍵)}¨folders
ApplicationData C:\Documents and Settings\mkrom\...
CommonApplicationData C:\Documents and Settings\All Users\
…etc…

 ⎕av⍳se.NewLine
4 3

We could have named the System namespace in ⎕USING. This would have allowed us
to leave the System prefix out of our references to classes:

 ⎕USING←'System' ⍝ Equivalent to ⎕USING←,⊂'System'
 Environment.Version
 2.0.50727.42

 Chapter 11: Using the Microsoft .Net Framework 67

The author’s personal preference is still to use fully qualified names – I suspect this may
change as I (and the rest of the APL community) start using these classes more
frequently, and start to recognize Environment as meaning System.Environment.
However: Note that APL will only search for .Net classes if the name which is used
would give a VALUE ERROR in the APL workspace. The use of so-called “namespace
prefixes” in ⎕USING increases the likelihood of a name conflict between your own
names and those in an assembly which you are trying to use (for example, Version is
more likely to conflict with a name in the workspace than is System.Version). We’ll
return to this topic in the next chapter.

68 Object Oriented Programming for APL Programmers

System.Globalization.CultureInfo &
DateTimeFormatInfo

The DateTimeFormatInfo class contains information about the date and time formats for
a given culture. You can get hold of an instance of DateTimeFormatInfo for the current
culture, or for a specific one:

 current←System.Globalization.CultureInfo.CurrentCulture
 current.(Name EnglishName)
 da-DK Danish (Denmark)

 dtf←current.DateTimeFormat
 dtf.⎕nl -2
 AbbreviatedDayNames AbbreviatedMonthGenitiveNames
 AbreviatedMonthNames AMDesignator Calendar
 CalendarWeekRule CurrentInfo DateSeparator DayNames
 FirstDayOfWeek …etc…

 dtf.MonthNames
 januar februar marts april maj juni juli ...

 dtf.FullDateTimePattern
dddd, dd MMMM yyyy HH:mm:ss

 dtf.GetShortestDayName¨0 1 2 3 4 5 6
 sø ma ti on to fr lø

 dtf.NativeCalendarName
Den gregorianske kalender

 de←(⎕NEW System.Globalization.CultureInfo(⊂'de-DE')).
 DateTimeFormat
 de.DayNames
 Sonntag Montag Dienstag Mittwoch Donnerstag ...

de-DE means German as spoken (or rather, written…) in Germany,

 Chapter 11: Using the Microsoft .Net Framework 69

System.DateTime and System.TimeSpan
DateTime and TimeSpan provide tools for working with timestamps, including doing
arithmetic on them:

 ⎕←may29←⎕NEW System.DateTime (2006 5 29)
29-05-2006 00:00:00
 ⎕←aday←⎕new System.TimeSpan (24 0 0) ⍝ 24 hours
1.00:00:00
 ⎕←may28←may29-aday
28-05-2006 00:00:00
 +\5⍴aday
 1.00:00:00 2.00:00:00 3.00:00:00 4.00:00:00 5.00:00:00
 (+\5⍴aday).Days
1 2 3 4 5

 nextweek←may28++\5⍴aday
 ,[1.5]nextweek
 29-05-2006 00:00:00
 30-05-2006 00:00:00
 31-05-2006 00:00:00
 01-06-2006 00:00:00
 02-06-2006 00:00:00
 nextweek.(Month Day)
 5 29 5 30 5 31 6 1 6 2

 nextweek>may29+aday
0 0 1 1 1
 (nextweek-System.DateTime.MinValue).Days
732459 732460 732461 732462 732463

70 Object Oriented Programming for APL Programmers

System.IO.DirectoryInfo
The DirectoryInfo class contains methods for inspecting the contents of file system
folders:

 temp←⎕NEW System.IO.DirectoryInfo (⊂'c:\temp')
 temp.CreateSubdirectory ⊂'subdir'
c:\temp\subdir
 ↑(temp.GetDirectories ⊂'*.*').(Name CreationTime)
 DyalogWebSite 30-05-2006 15:35:40
 js 24-02-2006 22:30:06
 subdir 12-06-2006 14:17:14
 (temp.GetDirectories ⊂'subdir').Delete 1

 files←temp.GetFiles ⊂'a*.dws'
 ↑files.(FullName CreationTime LastAccessTime)
 c:\temp\a.DWS 18-01-2006 17:17:01 05-06-2006 21:57:06
 c:\temp\ab.DWS 12-04-2006 15:54:36 05-06-2006 21:57:06
 c:\temp\ado.DWS 17-06-2005 13:22:08 05-06-2006 21:57:06

 ,[1.5] ⎕CLASS files[1]
 System.IO.FileInfo
 System.IO.FileSystemInfo System.Runtime.Serialization.
 ISerializable
 System.MarshalByRefObject
 System.Object

The final result above shows that each element of the result is an instance of
System.IO.FileInfo, which derives from System.IO.FileSystemInfo (which implements
the interface System.Runtime.Serialization.Iserializable), which derives from
System.MarshalByRefObject. At the end of the day, everything derives from
System.Object.

 Chapter 11: Using the Microsoft .Net Framework 71

System.IO.FileInfo
As we have seen above, the GetFiles method of DirectoryInfo returns instances of
System.IO.FileInfo, which is a companion class for DirectoryInfo:

 (a←files[1]).⎕nl -2
 Attributes CreationTime CreationTimeUtc Directory
 DirectoryName Exists Extension FullName
 IsReadOnly LastAccessTime LastAccessTimeUtc
 LastWriteTime LastWriteTimeUtc Length Name

 a.(Name Exists IsReadOnly)
 a.DWS 1 0

 z←a.(CopyTo⊂'c:\temp\z.dws')
 z.(FullName CreationTime)
 c:\temp\z.dws 14-06-2006 16:28:30
 z.Delete

72 Object Oriented Programming for APL Programmers

Summary
The above examples represent a very small subset of the classes provided by the
Microsoft.net framework. There are classes for handling web requests in HTTP and
FTP format, for compressing files, sending and receiving e-mail, GUI, database access,
graphics and printing, the list is almost endless. It is our intention that, following the
release of version 11.0, Dyalog will produce sample code for many of the most useful
classes, to demonstrate how applications written in version 11.0 can tap into this vast
resource.

In addition to providing the framework itself, the .Net environment specifies calling
conventions which mean that classes implemented in all .Net languages – including
Dyalog APL version 11.0 - are fully interoperable. A class written in any language can
use, derive from, be called, and be used as a base class by any other .Net language. This
allows us to integrate APL with other languages and tools more easily than ever before.

 73

C H A P T E R 12

Using APL Classes from .Net

In the workspace called DotNet in the OO4APL folder, there is a class with two
“mathematical” methods in it:

)copy DotNet
Dotnet saved … etc …
 Maths.Round (○1) 2
3.14
 Maths.Fib 10
55

The definition of the class is:

:Class Maths

 ∇ r←Round(n decimals);base
 :Access Public Shared
 base←10*decimals
 r←(⌊0.5+n×base)÷base
 ∇

 fibonacci←{ ⍝ Tail-recursive Fibonacci from ws "dfns"
 ⍺←0 1
 ⍵=0:⍬⍴⍺
 (1↓⍺,+/⍺)∇ ⍵-1
 }

 ∇ r←Fib n
 :Access Public Shared
 r←fibonacci n
 ∇

:EndClass ⍝ Math

We can make this class available to all Microsoft.Net applications if we copy it into a
workspace and subsequently export the workspace as as .Net assembly. As a service to
users of typed languages like C#, we probably want to add type declarations of the .Net
types of the parameters and results of the public methods before we do the export. This
is not strictly necessary, but without it all types will default to System.Object.

74 Object Oriented Programming for APL Programmers

The result of this will be that most C# users will have to cast data to or from
System.Object in order to use our class. Our assembly will be more pleasant to use if we
can declare everything using the simplest or closest .Net type.

To make the declarations, we must first add a :Using statement which allows us to find
.Net data types (this is usually done at the top of the class script):

:Using System

Next, we must add one line to each of our methods (a class containing these
declarations exists in the workspace DotNet under the name MathsX). Note that D-
functions can not be used as public methods in a class, but must be “covered” by a
traditional function which can contain declarative statements.

 ∇ r←Round(n decimals);base
 :Signature Double←Round Double N, Int32 Decimals

 ∇ r←Fib n
 :Signature Double←Fib Int32 N

The first :Signature declares that Round returns a result of type Double (which
means a double-precision floating-point number), and takes two parameters. The first is
a Double which is called N (most .Net development tools will make this name visible
to a developer using our class), and the second parameter is a 32-bit integer called
Decimals.

After adding the signatures, we are ready to export our class:

)clear
clear ws
)NS MyCorp
#.MyCorp
)CS MyCorp
#.MyCorp
)copy dotnet Maths
…dotnet saved Mon Jun 19 14:01:18 2006

In the above example, we created a namespace MyCorp and copied Maths into it. This
will export our class inside a .Net namespace called MyCorp, so that the class can be
referred to as MyCorp.Maths. It is customary to embed classes within at least one
level of namespaces – often two levels, typically a company name followed by a
product name - in order to organize classes in applications which use classes from a
number of different sources.

Select File|Export from the session menu, select “Microsoft .Net Assembly” as the file
type and probably uncheck “Runtime Application”:

 Chapter 12: Using APL Classes from .Net 75

When you press Save, the following text should appear in the Status window:

76 Object Oriented Programming for APL Programmers

The output allows us to check that the two methods Fib & Round were exported, with
the expected parameter and result types. We can now write a C# program which uses
our class, for example:

public class Test
{
 static void Main()
 {
 System.Console.Write("Round(2/3,2) = ");

System.Console.WriteLine(MyCorp.Maths.Round(0.6666,2));
 System.Console.Write("Fib(10) = ");
 System.Console.WriteLine(MyCorp.Maths.Fib(10));
 }
}

The workspace DotNet in the OO4APL folder contains a function called CSC (for C
Sharp Compiler), which can be used to call the C# compiler. If we save the above
program in a file called c:\apl_assys\testmaths.cs (or copy the file by this
name from the OO4APL folder), we can compile it by calling:

 'winexe' CSC 'c:\apl_assys\testmaths'
 'c:\apl_assys\mycorpmaths.dll'
0 Microsoft (R) Visual C# .NET Compiler version 7.10…
 for Microsoft (R) .NET Framework version 1.1.4322
 Copyright (C) Microsoft Corporation 2001-2002…

The left argument of 'winexe' instructs the C# compiler to build a Windows
Executable (the default would be to make an assembly). The right argument contains
the name of the source file (without the .cs extension), optionally followed by any
assemblies which it needs. The result is a file with the same name as the source file, but
with an extension of .exe. We call it from APL using ⎕CMD:

 ⎕CMD 'c:\apl_assys\testmaths.exe'
Round(2/3,2) = 0,67
Fib(10) = 55

It is important to note that our assembly (mycorpmaths.dll) can be used from ANY
language which can use Microsoft.Net. The list includes APL – see the web page
http://www.gotdotnet.com/team/lang/. In fact, we can use the assembly from APL, in
the same way that we would use any other .Net assembly:

http://www.gotdotnet.com/team/lang/

 Chapter 12: Using APL Classes from .Net 77

)clear
clear ws
 ⎕using←',c:\apl_assys\mycorpmaths.dll'
 MyCorp.Maths.Round (○1) 3
3.142

78 Object Oriented Programming for APL Programmers

 79

C H A P T E R 13

Inheriting from a .Net Base Class

In the same way that you can inherit from one of the built-in Dyalog GUI classes, you
can write a class which derives from a .Net base class. You can derive from classes
which you write yourself in a .Net language (including Dyalog APL), classes purchased
from a 3rd party tool vendor, or from Microsoft.Net Framework classes. Very many of
the Framework classes are sealed for security and performance reasons, which means
that they can not be used as base classes, but quite a few are intended for use as base
classes.

We will now look at writing our own class in C#, as an optimization of our fibonacci
function. The Fibonacci series is generated using a recursive algorithm which does a
VERY small amount of processing for each level of recursion. Even though tail-
recursive D-functions are highly efficient, a compiled, strongly typed language like C#
is goint to be able to execute this particular type of algorithm significantly faster than
APL can do it.

If we build our Maths class on a base class written in C#, we can easily substitute some
of the methods by methods written in C#. For example, we can write the following
(ugly but fast) C# class:

using System;

namespace OO4APL
{ public class Maths
 { public static double Fib(int n)
 { double n1 = 0, n2 = 1, r = 0;
 int i=1;
 while (i<n)
 { i++; r = n1 + n2;
 n1 = n2; n2 = r; }
 return n2;
 }
 }
}

If we save this code in a file called fibonacci.cs (which can be copied from the
OO4APL folder), and compile this class using our CSC function:

80 Object Oriented Programming for APL Programmers

 CSC 'c:\apl_assys\fibonacci'
0 Microsoft (R) Visual C# .NET Compiler version…
 …etc…

We can now write a new class FastMaths, which derives from OO4APL.Maths. It
contains the Round method which are still written in APL, while Fib will be inherited
from the base class:

:Class FastMaths : OO4APL.Maths
:Using ,c:\apl_assys\fibonacci.dll

 ∇ r←Round(n decimals);base
 :Access Public Shared
 base←10*decimals
 r←(⌊0.5+n×base)÷base
 ∇

:EndClass ⍝ Math

In version 11.0, a class which derives from a .Net class must be exported as a .Net class
before it can be used. This restriction may be relaxed in a future release. If you want to
test the class quickly, without creating a .Net assembly as a .dll, it is sufficient to export
the class to memory using the menu item File|Export to memory, after which it can be
called:

 FastMaths.Round(○1)3
3.142
 FastMaths.Fib 10
55

The first method runs in APL, and the second in C#. From the users point of view, there
is no discernible difference between this class and the one which was written entirely in
APL (apart from the speed).

 Chapter 13: Inheriting from a .Net Base Class 81

Conclusion
This concludes the Introduction to Object Oriented Programming for APL
Programmers. If you want to learn more, it is time to read the Release Notes and the
Language Reference for Version 11.0, both of which contain a number of additional
examples.

In version 11.0, the collection of samples of Object Oriented code is fairly small. Check
our web site http://www.dyalog.com for object oriented libraries, which will start to
appear soon after version 11.0 is released, or write to the Dyalog User Forum, which
can be accessed at http://tech.groups.yahoo.com/group/dyalogusers.

http://www.dyalog.com
http://tech.groups.yahoo.com/group/dyalogusers

82 Object Oriented Programming for APL Programmers

