
The tool of thought for expert programming 

Dyalog for Windows 

Guide to the Code 
Libraries 
Version 12.0.1 

Dyalog Limited 

South Barn 
Minchens Court 
Minchens Lane 

Bramley 
Hampshire 
RG26 5BH 

United Kingdom 

tel: +44 (0)1256 830030 
fax: +44 (0)1256 830031 

email: support@dyalog.com 
http://www.dyalog.com 

Dyalog is a trademark of Dyalog Limited 
Copyright  1982-2008 

 



Copyright  1982-2008 by Dyalog Limited. 
All rights reserved. 

Version 12.0.1 

First Edition January 2008 

No part of this publication may be reproduced in any form by any means without the 
prior written permission of Dyalog Limited, South Barn, Minchens Court, Minchens 
Lane, Bramley, Hampshire, RG26 5BH, United Kingdom. 

Dyalog Limited makes no representations or warranties with respect to the contents 
hereof and specifically disclaims any implied warranties of merchantability or fitness for 
any particular purpose. Dyalog Limited reserves the right to revise this publication 
without notification. 

TRADEMARKS: 
Intel, 386 and 486 are registered trademarks of Intel Corporation.  

IBM is a registered trademark of International Business Machines Corporation.  
Microsoft, MS and MS-DOS are registered trademarks of Microsoft Corporation. 
PostScript is a  registered trademark of Adobe Systems, Inc.  
SQAPL is copyright of Insight Systems ApS.  
The Dyalog APL True Type font is the copyright of Adrian Smith.  
TrueType is a registered trademark of Apple Computer, Inc.  

UNIX is a trademark of X/Open Ltd.  
Windows, Windows NT, Visual Basic and Excel are trademarks of Microsoft 
Corporation.  
All other trademarks and copyrights are acknowledged. 



Contents 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1  

COMMUNICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2  
Calls to the Windows API ............................................................................................... 2 

QuadNA workspace ......................................................................................... 2 

Calls to C functions........................................................................................................ 3 
XUtils Auxiliary Processor ............................................................................... 3 

DDE ...............................................................................................................................11 
DDEServerExcel workspace ........................................................................... 11 

OLE ................................................................................................................................12 
Loan workspace ............................................................................................. 12 
CFiles workspace ........................................................................................... 12 
DCOMReg workspace.................................................................................... 12 
OLEAuto workspace ...................................................................................... 12 
OLEAsync workspace .................................................................................... 12 
Shortcut workspace ........................................................................................ 12 

Sockets..........................................................................................................................13 
APLServe folder ............................................................................................ 13 
Chat workspace .............................................................................................. 13 
Conga workspace ........................................................................................... 13 
QFiles workspace ........................................................................................... 13 
RExec workspace ........................................................................................... 14 
WWW workspace .......................................................................................... 14 

DEVELOPMENT TOOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15  
BuildSE workspace ........................................................................................ 15 
Display workspace ......................................................................................... 16 
Math workspace ............................................................................................. 18 
Patch workspace ............................................................................................. 19 
Util workspace ............................................................................................... 20 

DYNAMIC FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22  
DDB workspace ............................................................................................. 22 
DFns workspace ............................................................................................. 22 
Eval workspace .............................................................................................. 22 
Min workspace ............................................................................................... 22 
Max workspace .............................................................................................. 22 
Tube workspace ............................................................................................. 22 

GRAPHICAL USER INTERFACES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23  
Dyalog system classes .................................................................................................23 

Arachnid workspace ....................................................................................... 23 
BMEd workspace ........................................................................................... 23 
CPro workspace ............................................................................................. 23 
Graphs workspace .......................................................................................... 23 
PocketWD workspace .................................................................................... 23 



WDesign workspace ....................................................................................... 23 
WIntro workspace .......................................................................................... 24 
WTutor workspace ......................................................................................... 24 
WTutor95 workspace ..................................................................................... 24 

WinForms ......................................................................................................................25 
GDIForms workspace ..................................................................................... 25 
Tetris workspace ............................................................................................ 25 
WinForms workspace ..................................................................................... 25 

OBJECT ORIENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26  
OO4APL folder .............................................................................................. 26 

PRESENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27  
Newleaf workspace ........................................................................................ 27 
RainPro .......................................................................................................... 28 

STORAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29  
DDB workspace ............................................................................................. 29 
Files workspace .............................................................................................. 30 
SQAPL workspace ......................................................................................... 31 

THREADS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32  
Lift workspace ............................................................................................... 32 

PACKAGING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33  
ActiveX folder ............................................................................................... 33 
APLClasses folder .......................................................................................... 33 
APLScript folder ............................................................................................ 33 
ASP.Net folder ............................................................................................... 33 

APPENDIX: OBSOLETE WORKSPACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34  
 



  

Introduction 

This is a guide to the workspaces and DLLs supplied with Dyalog 12.0. 

At the time of release of Version 12, Dyalog has begun a programme of developing 
new exemplary and tutorial material for programmers. This guide is the result of the 
first step of the programme: to review the existing material, removing or archiving 
what is no longer relevant, and bringing what remains up to date. 

The Classes folder contains exemplary class and namespace scripts. These are 
described in the documents Simple APL Library Toolkit (SALT) and Spice command 
bar. 

For migration tools, see the Workspace Transfer document. 

For Version 12.0, workspaces remain in the folders in which they have been shipped 
previously. Some earlier versions contained location dependencies, which have now 
been removed. In future releases workspaces may be shipped in different paths, 
reflecting progressive reorganisation of the code libraries. 

The material here comprises workspaces and DLLs, labelled as follows.  

Use This code is offered by Dyalog for common tasks. You 
should find it runs efficiently and reliably. The code is not 
offered as examples for study and in some cases, such as 
the XUtils Auxiliary Processor, the source is not 
provided. 

Study This code is offered for study as examples of how to write 
certain kinds of programs, such as a GUI, or as tutorials. 
Some of it supports descriptions in other manuals, such as 
the Interface Guide. It is not generally optimised for any 
performance characteristics, but written primarily for 
clarity. 

Archive These workspaces contain solutions to problems now 
rarely encountered, or for which different solutions are 
now recommended. They are provided for continuity.  



 Guide to the Code Libraries 2 

Communication 

Calls to the Windows API 

QuadNA workspace 
S T U D Y  This workspace contains functions that illustrate the use of ⎕NA to invoke the 

Windows API. 

Beep Beep N times on the system speaker 

Blink Set the cursor blink time 

cd Change directory 

DllVersion Major and minor version numbers of a DLL 

DumpWindow Copy a form’s window to the Clipboard as a bitmap 

Env Return the environment variables as strings 

GetLocalTime Return local time as a vector 

GetSystemTime Return system time as a vector 

GetVersion Return operating system version 

HTTPDate Current date and time in RFC1123 date format 

MsgBox Pop a Windows message box 

Replace Replace or insert text into an Edit or RichEdit object 

SetSesh Maximise, minimise or restore the session window 

SetTabs Set tab stops in a Windows ListBox object 



 Guide to the Code Libraries 3 

Calls to C functions 

XUtils Auxiliary Processor 
C utility functions 

U S E  The XUtils Auxiliary Processor provides a set of fast utility functions written in C. 
Starting the Auxiliary Processor causes the following external functions to be defined 
in your workspace. Each of these is described fully in the following sections. 

avx Returns the zero-origin index in ⎕AV of a character array 

box Converts matrices to vectors and vice-versa 

dbr Delimited blank removal 

hex Returns the internal hexadecimal representation of an 
array 

ltom Converts a character linelist to a matrix 

ltov Converts a character array to a vector of vectors 

mtol Converts a character array to a linelist 

ss String search and replacement 

vtol Converts an array of character vectors to a line-list 

Using XUtils 
The Auxiliary Processor is invoked by: 

      'XUTILS' ⎕CMD '' 

The left argument is a simple character vector containing the name of the file 
(XUTILS) containing the XUtils auxiliary processor. 

The right argument is relevant only in the UNIX environment and is ignored in 
Dyalog APL/W. 

avx R←avx Y 

Returns the origin zero index of a character array in ⎕AV. 

Y must be a simple character array. The result has the same rank and shape as Y but 
with each character replaced by its zero-origin index in ⎕AV. 



 Guide to the Code Libraries 4 

Example: 

      ⎕←A←3 4⍴'ABCDEFabcdef' 
ABCD 
EFab 
cdef 
      avx A 
65 66 67 68 
69 70 17 18 
19 20 21 22 

box R←{X}box Y 

Converts matrices to vectors and vice versa.  

Y must be a simple matrix, vector or scalar. X, if present, must be a simple scalar or 
1- or 2-element vector, of the same type as Y. 

X defines the delimiter and fill element in Y. If it is a scalar or 1-element vector it 
specifies the delimiter. If it is a 2-element vector the first element specifies the 
delimiter and the second specifies the fill element. The default value for the delimiter 
and fill element is the prototype of Y. 

If Y is a vector it is taken to be a number of subvectors separated by the delimiter. 
The result in this case will be a matrix with one row more than the number of 
delimiters in Y, and with as many columns as Y’s longest subvector. The rows are left 
justified and padded with fill elements as necessary. If Y is a matrix it is taken to 
contain one subvector per row. 

The result is a vector. Each row, from the left to the last non-fill element is moved to 
the result, with all but the last row being terminated by a delimiter. 

Examples: 

      box 1 2 3 0 1 2 3 4 0 1 2 0 1 
1 2 3 0 
1 2 3 4 
1 2 0 0 
1 0 0 0 
 
      ','box'Curtin Adam,Brand Pauline,Scholes John' 
Curtin Adam 
Brand Pauline 
Scholes John 
 
      +A←box 'TEXT   FOR  DESPACING' 
TEXT 
 
 
FOR 
 
DESPACING 
 
      box A 
TEXT FOR DESPACING 



 Guide to the Code Libraries 5 

dbr R←dbr Y 

Delimited blank removal. Removes leading and trailing and excess spaces from a 
character vector.  

Y must be a simple character vector or scalar. The result is the same as Y but with all 
leading and trailing spaces removed, and with multiple blanks replaced by single 
blanks. 

Example: 

      dbr '    The    cat sat on       the mat        ' 
The cat sat on the mat 

hex R←hex Y 

Returns the internal hexadecimal representation of an array.  

Y is an array. The result is a character vector containing the internal hexadecimal 
representation of the array. If Y is nested, the result is a linelist (character vector 
delimited by <NEWLINE> characters). 

Examples: 

      hex 1 2 3 
00000004 F1200000 00000003 010203FF 
      hex 'ABC' (2 3⍴⍳6) 
00000005 71600000 00000002 0080184C 00801860 
00000004 F1000000 00000003 414243FF 
00000006 F2200000 00000002 00000003 01020304 0506FFFF 

ltom R←{X}ltom Y 

Converts a character linelist to a character matrix.  

Y must be a simple character array. X, if present, must be a character scalar or 
1-element vector. X specifies the delimiter by which Y is to be split. The default is 
<NEWLINE>. 

If any dimension of Y is 0, the result is the array 0 0⍴''. Otherwise Y is first 
ravelled; then if the last character is not equal to X one is appended; and the result is a 
character matrix formed by splitting Y at each occurrence of the delimiter X. The 
number of rows in the result is equal to the number of delimiters. 



 Guide to the Code Libraries 6 

Examples: 

      NAMES←'PETER',⎕TC[3],'JOE' 
      NAMES 
PETER 
JOE 
      ltom NAMES 
PETER 
JOE 
      ⍴⎕←',' ltom 'PETER,JOE,HARRY,MARY' 
PETER 
JOE 
HARRY 
MARY 
4 5 

ltov R←{X}ltov Y 

Converts a character linelist to a vector of character vectors.  

Y must be a simple character array. X, if present, must be a character scalar or 
1-element vector. X specifies the delimiter by which Y is to be split. The default is 
<NEWLINE>. 

If any dimension of Y is 0, the result is the array 0⍴⊂''. Otherwise, Y is first 
ravelled; then if the last character is not equal to X one is appended; and the result is a 
vector of character vectors formed by splitting Y at each occurrence of the delimiter 
X. The shape of the result is equal to the number of delimiters. 

Examples: 

      NAMES←'PETER',⎕TC[3],'JOE' 
      NAMES 
PETER 
JOE 
      ltov NAMES 
 PETER  JOE 
      ⍴⎕←',' ltov 'PETER,JOE,HARRY,MARY' 
 PETER  JOE  HARRY  MARY 
4 

 

mtol R←{X}mtol Y 

Converts a character array into character linelist. Y must be a simple character array. 
X, if present, must be a character scalar or 1-element vector. X specifies the delimiter 
with which each row of the last dimension of Y is to be separated from its 
neighbours. The default is <NEWLINE>. 

The result is formed by taking each row of the last dimension of Y, removing trailing 
blanks, appending a delimiter, and catenating them together into a simple character 
vector. 



 Guide to the Code Libraries 7 

Example: 

      ⎕←A←4 6⍴'ABC   DEFG  HI    JKLMNO' 
ABC 
DEFG 
HI 
JKLMNO 
      ⍴⎕←mtol A 
ABC 
HI 
JKLMNO 
19 
      ⍴⎕←','mtol A 
ABC,DEFG,HI,JKLMNO, 
19 

ss R←{X}ss Y 

ss is a string search and replacement function which matches ⎕AV strings using a 
type of matching known as “regular expressions”. A regular expression provides a 
method of matching strings directly and by using patterns: see below. 

Y must be a 2 or 3 element nested vector of character vectors. X, if present, must be a 
simple boolean scalar or 1 or 2-element vector. 

X defines the mode of search. If it is a scalar or one element vector it specifies 
whether case is significant. If it is a two element vector the first element specifies 
whether case is significant and the second specifies the type of result. These options 
are summarised in the table below: 

 0 (default) 1 
x[[1] Case is significant in searches Case is not significant in 

searches 
x[2] Result is an integer vector of the 

1-origin indices of the start of each 
occurrence of the search string 

Result is a boolean vector 
with 1’s indicating the start of 
each occurrence of the search 
string 

If Y is a 2-element vector, a string search is performed. The result is the instances of 
the regular expression Y[2] in Y[1], represented as specified in X. 

If Y is a 3-element vector, a string replacement is performed. The result is Y[1], with 
all matches of the regular expression Y[2] replaced by Y[3]. 

Regular Expressions: 

The simplest regular expression is any character that is not a special character, which 
matches only itself: 

        ss 'This is a string' 'i' 
3 6 14 

More complex regular expressions can be formed by concatenating several 
expressions: 

        ss 'This is a string' 'is' 
3 6 



 Guide to the Code Libraries 8 

The following characters have special meaning: 

        ^ $ . * ( ) [ ] \ 

and are used to form more complicated patterns. The following is a summary of the 
special characters: 

. Matches any single character 

^ Forces the regular expression following it to match the 
string that starts the vector. Note that this is the APL and 
symbol, not the ASCII caret. 

$ Forces the regular expression preceding the $ to match 
the string that ends the vector. 

[abc] This matches the set of all characters found between the 
“[” and “]”. If there is a “-” in the expression (as in 
[a-z]), then the entire range of characters is matched. If 
the first character after the “[” is “∧”, then any character 
but those in the set are matched. Other than this, regular 
expression characters lose their special significance inside 
square brackets. To match a “∧” in this case, it must 
appear anywhere but as the first character of the class. To 
match a “]”, it should appear as the first character of the 
class. A “-” character loses its special significance if it is 
the first or last character of the class. 

\ Used to escape the meaning of any following special 
character. For example, “\$” is needed to match a literal 
“$”, and “\n” is used to match carriage return. 

(re) Parentheses are used to group regular expressions. 

re* Match any number (including zero) of occurrences of the 
regular expression. 



 Guide to the Code Libraries 9 

Errors: 

In addition to the standard APL error messages, ss also returns error codes for an ill-
formed regular expression, as follows: 

ERROR 240 Bad number 

ERROR 241 \ digit out of range 

ERROR 242 Illegal or missing delimiter 

ERROR 243 No remembered search string 

ERROR 244 \( \) imbalance. 

ERROR 245 More than 2 numbers given between \{ \} 

ERROR 246 } expected after \ 

ERROR 247 First number exceeds second in \{\} 

ERROR 248 [ ] imbalance 

Examples: 

      A←'HERE IS A VECTOR to be searched' 
 
⍝ Find start position of VECTOR 
 
      ss A 'VECTOR' 
11 

⍝ Replace VECTOR with STRING 
 
      ,A←ss A 'VECTOR' 'STRING' 
HERE IS A STRING to be searched 
 
⍝ Match E or e, followed by space 
 
      ss A '[Ee] ' 
4 22 

⍝ Find all occurrences the characters AEIOU, not 
⍝ followed by a character from the same set ... 
 
⍝ ... Case sensitive, return positions of matches 
 
      ss A'[AEIOU][^AEIOU]' 
2 4 6 9 14 

⍝ ... Not case sensitive, return positions of matches 
 
      1 ss A'[AEIOU][^AEIOU]' 
2 4 6 9 14 19 22 26 30 

⍝ Extract all characters from the set AEIOU, 
⍝ disregarding case 
 
      (1 1 ss A'[AEIOU]')/A 
EEIAIoeeae 



 Guide to the Code Libraries 10 

⍝ Replace all characters AEIOU with null 
 
      ss A'[AEIOU]' '' 
HR S  STRNG to be searched 

vtol R←{X}vtol Y 

Converts an array of character vectors into a character linelist. 

Y must be an array of character vectors. X, if present, must be a character scalar or 
1-element vector. X specifies the delimiter with which each element of Y is to be 
separated from its neighbours. The default is <NEWLINE>. 

The result is a simple character vector formed by appending the delimiter to each 
element of Y, and catenating them to form a vector. 

Example: 

      A←2 2⍴'ABC' 'DEFG' 'HI' 'JKLMNO' 
      A 
 ABC  DEFG 
 HI   JKLMNO 
 
      ⍴⎕←',' vtol A 
ABC,DEFG,HI,JKLMNO, 
19 



 Guide to the Code Libraries 11 

DDE 
Dynamic Data Exchange 

DDEServerExcel workspace 
S T U D Y  This workspace contains some functions to explore the use of the DDE interface 

(shared variables) to communicate with Microsoft Excel. Instructions for using the 
workspace are provided in the Interface Guide. A small spreadsheet and command 
macro, which are also required, are supplied in the EXCEL sub-directory in 
DYALOG74. 



 Guide to the Code Libraries 12 

OLE 
Object Linking and Embedding 

Loan workspace 
S T U D Y  This workspace illustrates an OLE Server using a loan sheet example. Visual Basic 

and Excel client samples are included. 

CFiles workspace 
S T U D Y  This workspace illustrates an OLE Server that allows you to read Dyalog component 

files into Excel. 

DCOMReg workspace  
U S E  This workspace contains functions that may be used to register an OLE Server, 

written in Dyalog APL, for DCOM. 

OLEAuto workspace  
S T U D Y  This workspace illustrates how you can access OLE Servers such as Microsoft 

Access and Microsoft Excel. 

OLEAsync workspace 
S T U D Y  This workspace illustrates how an OLE Server written in Dyalog may be called so 

that it executes in parallel (asynchronously), possibly on a different computer. 

Shortcut workspace 
S T U D Y  This workspace illustrates how you may call OLE objects via non-standard 

interfaces. This example creates a shortcut on your desktop. 



 Guide to the Code Libraries 13 

Sockets 
Communicating through TCP/IP sockets 

APLServe folder 
A simple webserver 

A R C H I V E  The SERVER workspace provides the framework for a multi-threaded APL webserver 
that may be used to deliver Dyalog applications via the Web or an intranet. See 
WebServer in the CONGA workspace for this function.  

As supplied, the SERVER workspace contains a number of example applications 
designed to illustrate the principles involved. When you load the workspace, its ⎕LX 
starts the SERVER running on your computer. You may then access the webserver 
using a browser such as Internet Explorer or Firefox. 

The SERVER workspace and the files it uses are supplied in the APLSERVE folder. 

Chat workspace 
S T U D Y  This workspace illustrates how the TCP/IP interface can be used to chat between two 

or more APL workspaces. 

Conga workspace 
U S E  This workspace contains classes and namespaces for communicating through TCP/IP 

sockets. 

DRC Tools for socket communications 

FTPClient Implement a simple, passive-mode FTP client 

HTTPUtils Tools for HTTP communications 

Parser Parse a string and set switches values accordingly 

RPCServer Server for Remote Procedure Calls 

TelnetClient Simple Telnet client 

TelnetServer Telnet server 

TODServer Time-of-day server 

WebServer Minimal web server 

The Samples namespace contains examples of using the Conga classes. 

QFiles workspace 
S T U D Y  This workspace illustrates how the TCP/IP interface may be used to implement a 

client/server component file system. 



 Guide to the Code Libraries 14 

RExec workspace 
S T U D Y  This workspace illustrates how the TCP/IP interface may be used to implement 

client/server (remote execution) operations. 

WWW workspace 
A R C H I V E  This workspace contains basic functions to illustrate the principles of internet access 

using Dyalog. See WebServer in the CONGA workspace for this function. 



 Guide to the Code Libraries 15 

Development tools 

BuildSE workspace 
U S E  This workspace is used to build the default APL session. To configure the session 

differently, you may edit the functions and rebuild and save the session. 



 Guide to the Code Libraries 16 

Display workspace 
Exhibiting array structure 

U S E  The DISPLAY workspace contains a single function called DISPLAY. It produces a 
pictorial representation of an array, and is compatible with the function of the same 
name which is supplied with IBM’s APL2. The DISPLAY function in the UTILS 
workspace is very similar, but employs line-drawing characters. A third form of 
presentation is provided by the DISP function which is also in the UTILS workspace. 

As there is nothing else in the DISPLAY workspace (the description is stored in its 
⎕LX rather than in a variable) the function can conveniently be obtained by typing: 

      )COPY DISPLAY 

DISPLAY is monadic. Its result is a character matrix showing the array with a series 
of boxes bordering each sub-array. Characters embedded in the border indicate rank 
and type information. The top and left borders contain symbols that indicate rank. A 
symbol in the lower border indicates type. The symbols are defined as follows:- 

→ Vector 

↓ Matrix or higher rank array 

⊖ Empty along last axis 

⌽ Empty along other than last axis 

∊ Nested array 

~ Numeric data 

- Character data 

+ Mixed character and numeric data 

∇ ⎕OR object 

Example: 

      DISPLAY 'ABC' (1 4⍴1 2 3 4) 
┌→────────────────┐ 
│ ┌→──┐ ┌→──────┐ │ 
│ │ABC│ ↓1 2 3 4│ │ 
│ └───┘ └~──────┘ │ 
└∊────────────────┘ 



 Guide to the Code Libraries 17 

Example: 

      AREAS←'West' 'Central' 'East' 
 
      PRODUCTS←'Biscuits' 'Cakes' 'Rolls' 'Buns' 
 
      SALES←?4 3⍴100 ⋄ SALES[3;2]←⊂'No Sales' 
 
      DISPLAY ' ' PRODUCTS⍪.,AREAS SALES 
┌─────────────────────────────────────────┐ 
│ ┌→────────────────────────────────────┐ │ 
│ ↓            ┌→───┐ ┌→──────┐  ┌→───┐ │ │ 
│ │            │West│ │Central│  │East│ │ │ 
│ │ -          └────┘ └───────┘  └────┘ │ │ 
│ │ ┌→───────┐                          │ │ 
│ │ │Biscuits│ 14     76         46     │ │ 
│ │ └────────┘                          │ │ 
│ │ ┌→────┐                             │ │ 
│ │ │Cakes│    54     22         5      │ │ 
│ │ └─────┘                             │ │ 
│ │ ┌→────┐           ┌→───────┐        │ │ 
│ │ │Rolls│    68     │No Sales│ 94     │ │ 
│ │ └─────┘           └────────┘        │ │ 
│ │ ┌→───┐                              │ │ 
│ │ │Buns│     39     52         84     │ │ 
│ │ └────┘                              │ │ 
│ └∊────────────────────────────────────┘ │ 
└∊────────────────────────────────────────┘ 

Example: 

      ⎕SM←↑('PAULINE' 10 10)(21 10 20)('FARNHAM' 10 25) 
 
      DISPLAY ⎕SM 
┌→────────────────┐ 
↓ ┌→──────┐       │ 
│ │PAULINE│ 10 10 │ 
│ └───────┘       │ 
│                 │ 
│ 21        10 20 │ 
│                 │ 
│ ┌→──────┐       │ 
│ │FARNHAM│ 10 25 │ 
│ └───────┘       │ 
└∊────────────────┘ 



 Guide to the Code Libraries 18 

Math workspace 
Extended mathematical functions 

U S E  The functions in this workspace perform complex arithmetic. Complex arrays are 
represented by depth-2 arrays of real-imaginary pairs.  

The code consists entirely of dynamic functions, and illustrates encapsulation 
through dfns. 

The workspace requires dynamic link libraries LAPACK.DLL and FFTW.DLL. 

There are six functions: 

Eigen takes an n×n real or complex matrix and returns an 
(n+1)×n result of Eigen: Values⍪⍉↑Vectors 

    ┌───┬───┬───┬───┐ 
    │  v a l u e s  │  ── Eigen values 
    ├───┼───┼───┼───┤ 
    │ v │ v │ v │ v │  ┐ 
    ├ e ┼ e ┼ e ┼ e ┤  │ 
    │ c │ c │ c │ c │  │ 
    ├ t ┼ t ┼ t ┼ t ┤  ├─ Eigen vectors. 
    │ o │ o │ o │ o │  │ 
    ├ r ┼ r ┼ r ┼ r ┤  │ 
    │   │   │   │   │  ┘ 
    └───┴───┴───┴───┘ 

Domino is a complex generalisation of APL’s primitive ⌹ 
function. 

Fourier takes a real or complex array right argument and performs 
a Fourier Transform, or its inverse. 

Hermite Hermite polynomials 

Laguerre Laguerre polynomials 

Legendre Legendre polynomials 



 Guide to the Code Libraries 19 

Patch workspace 
Updates to the interpreter 

U S E  The PATCH workspace allows you to update the interpreter from the Dyalog website. 
(Software patches contain fixes for errors.) 

There are eight files that can be patched. You need patch only the file/s you use; you 
might consider it wise to patch all four so no doubt arises.  

The Dyalog folder has the interpreter as an executable and as a Dynamic Link 
Library. It also has Runtime versions of the same files. The names vary slightly 
between the Classic and Unicode editions. 

Classic Edition: 

dyalog.exe bin\dyalog120_classic.dll 

dyalogrt.exe bin\dyalog120rt_classic.dll 

Unicode Edition: 

dyalog.exe bin\dyalog120_unicode.dll 

dyalogrt.exe bin\dyalog120rt_unicode.dll 

The DLLs are used by Dyalog applications exported as OCX controls, etc. If you run 
all your applications using the Dyalog executable file, you can neglect patching the 
DLLs. 

Patches are applied only to the original version, as shipped. You cannot patch a file 
that has itself been produced by patching. Copies of the original executables are 
already saved in the Base folder.  

When you load the PATCH workspace, its wizard starts. The wizard allows you to 
patch files straight from the Dyalog webserver, or from patch files you have 
downloaded.  

In patching the executables, the wizard is already set to apply patches to the originals 
in the Base folder, and overwrite the current executables with your latest patched 
versions. 

If you are also patching the DLLs, you need to  

• change their extensions from .dll to .original if this is the first time you are 
patching them; or, if you have patched before,  

• in the wizard, when prompted for the name of the file to patch, use the Browse 
button to navigate to the bin folder, change the browse box filter from 
Program Files to All Files, and select a .original file to patch; 

• when the wizard has finished, delete the previous DLL/s (if you had patched 
before) and rename the new file/s from .patched.exe to .dll. 

 



 Guide to the Code Libraries 20 

Util workspace  
APL utility functions 

U S E  The UTIL workspace contains the APL utility functions which are briefly described 
below. For further details, load UTIL and type SHOW HELP. 

APLVERSION Identifies the version of Dyalog APL you are running. 
The result is a 3-element vector of character vectors. The 
first element identifies the system type. The second 
contains the version number. The third element is either 
empty or is the character 'X' (X Window System) or 'W' 
(Microsoft Windows). 

BMVIEW Bitmap viewer 

CENTRE Centres text within a field. 

CODES This displays the decimal, ASCII and hex codes for every 
key pressed. This is very useful if you need to set up your 
own keyboard files. 

DETRAIL Removes trailing blanks 

DISP Puts boxes around nested arrays to show structure and 
depth. DISP produces a more compact result than 
DISPLAY. 

      DISP 'ABC' (1 2 3) 
┌───┬─────┐ 
│ABC│1 2 3│ 
└───┴─────┘ 

DISPLAY Puts boxes around nested arrays to show structure and 
depth. The result is similar to that produced by the IBM 
APL2 DISPLAY function. 

      DISPLAY 'ABC' (1 2 3) 
┌→──────────────┐ 
│ ┌→──┐ ┌→────┐ │ 
│ │ABC│ │1 2 3│ │ 
│ └───┘ └~────┘ │ 
└∊──────────────┘ 

ECHO Returns the value of a given environment variable 

FNGREP Searches the functions named on the left (or the complete 
workspace if the left argument is omitted) for matches of 
the regular expression on the right. Useful for locating in 
which functions certain variables are used and set. 

FNREPL Similar to FNGREP, but provides string replacement 

LJUST Left-justifies text within a field 

MAKEMAT Convert delimited vector to a matrix 

MATRIX Make 1-row matrix from scalar or vector 



 Guide to the Code Libraries 21 

PROP Display given property value for each node in a tree of 
GUI objects 

PROPS Display all property values for a given GUI object 

RJUST Right-justify text within field 

SET Equivalent to DOS SET command, e.g. 

      ↑SET 
COMSPEC     C:\COMMAND.COM 
PATH        c:\dos;c:\dyalog 
PROMPT      $p$g 

SETMON VIEWMON These functions help to analyse performance. SETMON 
sets ⎕MONITOR on all functions in the workspace, or on 
all functions used by that named in its argument. After 
running the system, VIEWMON is used to browse a report 
showing CPU usage. 

SM_TS TS_SM Converts dates between ⎕SM and ⎕TS formats 

TREE Displays a tree of GUI objects 

WSPACK Conserves workspace by sharing identical arrays 



 Guide to the Code Libraries 22 

Dynamic functions 
Dyalog’s lambda 

Dynamic functions (or Dfns) are a simplified form for defining functions and 
operators. While they sacrifice certain features of traditionally-defined functions (or 
tradfns) such as control structures, they give programmers a compact form for simple 
functions and clear way to: 

• write functions that define and localise their own tools 

• use anonymous functions, eg {⍵/⍳⍴⍵} to minimise repetition or avoid assigning 
names to functions or arrays that will have no further use 

DDB workspace 
U S E  This workspace contains a lightweight database system that can replace a SQL 

database for many simple applications. See the section on Storage for details. 

DFns workspace 
S T U D Y  This workspace, kept up to date on the Web, is an encyclopaedia of examples of 

programming with dynamic functions and operators. 

Eval workspace 
S T U D Y  This workspace contains tools for studying the evaluation of expressions using 

syntax rules that include but are not limited to Dyalog’s. It is not optimised for 
performance, but could be used in applications for processing custom domain-
specific languages. 

Min workspace 
S T U D Y  Implements a minimal programming language using only dynamic functions 

Max workspace 
S T U D Y  Implements an extended version of the MIN language 

Tube workspace 
S T U D Y  Demonstrates graph searching, applied to the underground rail networks of London, 

Paris, New York and other cities 

 



 Guide to the Code Libraries 23 

Graphical User Interfaces  

Dyalog system classes 

Arachnid workspace 
S T U D Y  This is a card game that demonstrates various Dyalog GUI features, including the use 

of the BitMap and Image objects.  

BMEd workspace 
U S E  This workspace contains functions for editing bitmaps and for creating picture 

buttons.  

CPro workspace 
Causeway Pro framework for GUI 

U S E  Causeway Pro is a framework for designing and building GUIs (graphical user 
interfaces) for applications.  

The workspace includes samples from the tutorial in Getting Started With Causeway.  

Note that the workspace predates user-defined classes in Dyalog and includes its own 
implementation in the Class namespace.  

Graphs workspace 
S T U D Y  This contains some business graphics utility functions and a graphics demonstration.  

PocketWD workspace 
A R C H I V E  This is a version of the WDESIGN workspace for the PocketPC platform. See the notes 

on WDESIGN below. 

WDesign workspace 
A R C H I V E  This workspace contains a graphical tool for designing GUI forms and populating 

them with controls. It resembles tools widely used for this purposes in other 
languages. The developer defines a form by gesturing with the mouse; the tool 
provides immediate visual feedback, and finally writes a function that recreates the 
form.  

WDESIGN is invitingly easy to use and automates work that in other languages is 
laborious. Its use is now deprecated for a combination of reasons. 



 Guide to the Code Libraries 24 

The ability to lay out forms without mastering the corresponding APL expressions is 
deceptive. Getting a GUI working requires understanding the code behind it. A 
beginner is better served by studying and trying examples than using WDESIGN. 

The Dyalog expressions required to generate a form are very simple. For someone 
who has learned them, WDESIGN does not save much work. And a human can write 
clearer GUI code than WDESIGN does. 

The chief value of WDESIGN is in graphically positioning elements on a form. But 
Dyalog developers rarely invest heavily in interface design; clear and simple is the 
common standard. For this standard of presentation, it is hardly more difficult to 
guess the desired control coordinates and then tweak them.  

WDESIGN does not allow you to develop GUIs without understanding the code behind 
them. The extra value of precise visual positioning is outweighed by clearer code and 
writing without a development tool. A beginner’s time is better invested mastering 
GUI code than learning WDESIGN.  

WIntro workspace  
S T U D Y  The WINTRO workspace contains a tutorial introduction to the GUI features in 

Dyalog. It is intended to convey the general principles of how the system works, 
rather than providing specific information. A more detailed set of tutorials are 
provided in the WTUTOR workspace. 

The tutorial consists of an executable sequence of lessons with instructions and 
commentary. 

WTutor workspace  
S T U D Y  The WTUTOR workspace contains a more elaborate set of tutorials to help you explore 

further aspects of Dyalog’s GUI support. 

WTutor95 workspace  
S T U D Y  The WTUTOR95 workspace contains an additional set of tutorials. 



 Guide to the Code Libraries 25 

WinForms 

GDIForms workspace 
S T U D Y  This example is converted from the GDIPlusShape sample provided on the Visual 

Studio.NET Beta 2 Resource CD. It illustrates non-rectangular forms. See the DotNet 
Interface Guide. 

Tetris workspace 
S T U D Y  This example is converted from the TETRIS sample that is provided on the Visual 

Studio.NET Beta 2 Resource CD. See the DotNet Interface Guide. 

It illustrates how to use some of the graphical objects and methods provided by the 
.NET Framework. The original C# code that handles the GUI and drawing functions 
has been translated directly into APL. The code that handles the application logic has 
been completely re-written to take advantage of APL’s array-handling capabilities. 

WinForms workspace  
S T U D Y  This workspace contains functions that demonstrate how you can use the 

System.Windows.Forms .Net class library to drive the Windows GUI. See the 
DotNet Interface Guide. 



 Guide to the Code Libraries 26 

Object orientation 
User-defined classes  

The guides OO for APLers and OO for Impatient APLers introduce the use of native 
Dyalog support for user-defined classes. 

OO4APL folder 
S T U D Y  This folder contains workspaces supporting the examples in OO for APLers.  



 Guide to the Code Libraries 27 

Presentation 

Newleaf workspace 
Composing paged output 

U S E  Newleaf is a toolkit for composing document pages. These can be presented in a 
choice of formats, including HTML, PDF, PostScript and RTF. 

Newleaf supports flowed text columns, tables, frames and graphics and includes a 
viewer for proofing results. 

The workspace includes an extensive set of examples.  

Help Displays expressions that compose and display a simple 
document, then several other examples 

Seatrial 0 Exercises all the examples 

Describe A short tutorial, analysing an example document 



 Guide to the Code Libraries 28 

RainPro 
Scalable vector graphics 

U S E  RainPro is a toolkit for producing scalable vector graphics to a very high standard. 
The workspace includes extensive examples, of which the following is a sample. 

Colours Shows chart colours and line styles  

Patterns Show all fill patterns, markers, etc.  

Sample Assorted charts to show some options  

Sambars Test barchart options … see Praxis (trend chart)  

Rain 02 Compute rainfall graph to date (see Rain 90 etc)  

Temp 02 ditto for temperatures (see Temp 89, Temp 90 etc)  

Scatter Sample scatter plot … see also Surface  

Barchart ¯8+?13⍴15 with hanging bars  

Bench APL benchmarks from long ago  

Pie 30+?7⍴120 Pie chart  … see also Twopies  

Step Step chart … note irregular X-ticks and labels  

Dupax Independent Y axes … see Intercepts for axes             

Frequency Frequency distributions, with annotations 

Timeseries Simple timeseries, showing use of date labels  

Notes Testbed for assorted notes and headings  

View PG to show it on screen  

'test.ps' ToPDF PG Save on file for Acrobat distiller  

PostScrp.Print PG Standard Windows print  

'C:\tmp\RAIN.PS' PostScrp.Write PG Write direct to PS device  

'C:\data\doc\RAIN.EPS' PostScrp.WriteEPS PG Write out as .EPS file  

Perspectives 3D charts now available!  

Experiments Other interesting stuff  

Seatrial 1 Complete test for all the above charts and more 



 Guide to the Code Libraries 29 

Storage 

DDB workspace 
A lightweight database system 

U S E  The functions in the ddb namespace are used to maintain simple data arrays in a 
single mapped file. They provide a robust alternative to an ‘inverted’ component file, 
as long as the maximum size of the data in each field may be fixed at creation time. 

create Create table 

remove Remove table 

append Append row/s to table 

retain Retain only selected rows 

open Open table (read/write) 

defs Field definitions 

get Get field/s from table 

put Replace values in field(s) 



 Guide to the Code Libraries 30 

Files workspace 
Handling files and directories 

U S E  This workspace provides cover functions for common operations in the file system, 
encapsulating both native file-system primitives such as ⎕NTIE and Windows API 
calls. 

See the source for function syntax. 

AppendText Appends single-byte text to a named file 

Copy Copy one file to another; protected mode optional 

Delete Delete a named file 

Dir Directory information for a filepath 

DirX Extended directory information for a filepath 

GetCurrentDirectory Get current directory 

GetText Read a text file as single-byte text 

MkDir Make a directory 

Move Named file to another location 

Put Write single-byte text to a file 

RmDir Remove a directory 

SetCurrentDirectory Set current directory 



 Guide to the Code Libraries 31 

SQAPL workspace 
U S E  The ODBC interface is provided by SQAPL for ODBC which is included with 

Dyalog APL/W and distributed under licence from Insight Systems ApS.  

SQAPL for ODBC is an interface between APL and database drivers which conform 
to the Microsoft ODBC specification.  

ODBC drivers exist for a wide variety of databases, from simple drivers which give 
limited access to ‘flat’ DOS files, through more sophisticated local database 
managers such as Access, dBase and Paradox, to multi-user DBMS systems such as 
Oracle, Ingres, Sybase or DB2 running on remote hosts. 

See the chapter on the ODBC Interface in the Interface Guide. 



 Guide to the Code Libraries 32 

Threads 
Dividing a process between multiple threads 

Lift workspace 
S T U D Y  This workspace simulates a lift taking people to the floor of their choice. Two lifts 

are used, but the example could easily be extended to more.  

People arrive at the lift entrance pseudo-randomly. People get into the lift one at a 
time, in orderly fashion. When the lift is full, if there is nobody waiting, the lift door 
closes and the lift rises. The lift stops only at floors where people want to get out. 
People get out of the lift in a disorderly fashion.  

Each lift and each person in the simulation is implemented as a separate thread. 



 Guide to the Code Libraries 33 

Packaging 
Using Dyalog programs in other contexts 

Programs written in Dyalog may be components of other systems. (See also the 
section on Communications.) 

ActiveX folder 
S T U D Y  These three workspaces, DUAL, DUALBASE and DUALFNS, support the ActiveX 

control example described in the Interface Guide. 

APLClasses folder 
S T U D Y  These workspaces and DLLs, from APLCLASSES1 to APLCLASSES5, contain 

examples to support the chapter on writing.Net classes in the DotNet Interface Guide. 

APLScript folder 
S T U D Y  This folder contains scripts and executables supporting the examples in the DotNet 

Interface Guide of creating executable applications from script files. 

ASP.Net folder 
S T U D Y  This folder contains materials to support the chapters in the DotNet Interface Guide 

on working with ASP.Net.  



 Guide to the Code Libraries 34 

Appendix: Obsolete workspaces 

The following workspaces from earlier versions of Dyalog are no longer thought 
applicable, and have been retired. 

ATFIN 
DOSUTILS 
FASTFNS 
FONTS 
FTP 
GROUPS 
KIBITZER 
NTUTILS 
OCXBROWS 
OPS 
POSTSCRI 
PREDEMO 
PREFECT 
SMDEMO 
SMTUTOR 
TUTOR 
XLATE 


