
Dyalog
Release Notes

Dyalog version 19.0

The tool of thought for software solutions



Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2024 by Dyalog Limited
All rights reserved.

Dyalog Release Notes

Dyalog version 19.0
Document Revision: 20240319_190

Unless stated otherwise, all examples in this document assume that ⎕IO ⎕ML ← 1

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Array Editor is copyright of davidliebtag.com.
Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle®, JavaScript™ and Java™ are registered trademarks of Oracle and/or its
affiliates.
UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively
through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark of Microsoft Corporation in the U.S. and other
countries.
macOS® and OS X® (operating system software) are registered trademarks of Apple
Inc. in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.



iii

Contents

Chapter 1: Highlights 1
Key Features 1
Extension to Native File Functions 5
Lexical Scope in Scripts 9
Session Gutter 12
Source as Typed 13
Bug Fixes 15
Announcements 16
System Requirements 18
Interoperability 19

Chapter 2: Configuration Parameters 23
DYALOG_GUTTER_ENABLE 23
DYALOG_DISCARD_FN_SOURCE 24
DYALOG_INITSESSION 24
DyalogLink 24
DyalogStartup_X 24
DyalogStartupSE 25
Log_File 26

Chapter 3: Language Reference Changes 27
File Hold 28
Fix Script 29
Allocate Token Range 37
Set aplcore Parameters 38
Memory Manager Statistics 39
Enable Compression of Large Components 43
Discard Source Information 43
Discard Source Code 44
Hash Table Size 44
Lookup Table Size 45

Chapter 4: Object Reference Changes 47
AllowContextMenu 47
ExecuteJavaScript 48
GetZoomLevel 48
IsLoading 48
LoadEnd 49



iv

SetZoomLevel 50

Index 53



Chapter 1: Highlights 1

Chapter 1:

Highlights

Key Features
Upgrading from Version 17.1 to Version 19.0
Please note that if you are upgrading from Version 17.1 to Version 19.0, you should
read the Release Notes for Version 18.0 and the Release Notes for Version 18.2 in
conjunction with this document.

Linux Restriction
There is a new restriction in Version 19.0 for Linux which will also apply in
forthcoming new versions.

Under macOS and Linux, if the configuration parameter ENABLE_CEF is 1,
Auxiliary Processors cannot be used (they hang on error). The default value is 1
unless you are not running under a desktop (for example, you are running Dyalog in
a PuTTY session when the default is 0).

Dyalog APL on macOS
l Dyalog APL Version 19.0 is available as both a native Intel-based macOS
version and a native ARM-based macOS version. Version 19.0 is expected to
be the last version to be compiled for Intel-based Macs.

New Language Features
l Currently, multi-threaded applications rely on hand-picked token types and
require coordination between developers in the choice of these tokens. There
is a new system function designed to remove the need for hard-coded token
numbers. See Allocate Token Range on page 37.

Improved Language Features
l A variant option CharSet is provided to restrict the result of ⎕JSON export
to ASCII characters. Non-ASCII characters are converted to encoded strings.



Chapter 1: Highlights 2

l The memory manager has been extended to give the programmer finer control
over WS FULL errors. See Memory Manager Statistics on page 39.

l ⎕NCOPY and ⎕NMOVE now provide an option for an APL callback function to
be invoked during execution. This allows the programmer to monitor and/or
report progress and/or abort when processing a lot of data. See Extension to
Native File Functions on page 5.

l The Recurse variant option for ⎕NINFO has been extended to allow a limit to
the level of sub-directories that are searched.

l ⎕NINFO has been extended to provide file times as UTC Dyalog Date
Numbers.

l The list of standard characters for the S qualifier of ⎕FMT has been extended
to include the high minus symbol (¯).

l An option is provided to control the implementation of lexical scope in
Namespace and Class scripts. This extension applies only to ⎕FIX; scripts
fixed using the editor are unaffected by this change. See Lexical Scope in
Scripts on page 9 and Fix Script on page 29.

l An option is provided to control whether or not source code is retained in the
workspace exactly as it was typed. This is now the default. See Source as
Typed on page 13, Discard Source Code on page 44 and Discard Source
Information on page 43.

l Support is added for LZ4 frames which allows the LZ4 compression library to
handle data > 2GB in size. Previously, extremely large file components could
not be compressed because the LZ4 library could not process them and they
were written uncompressed. Now, these large components will (in the absence
of any other reason) be compressed as well. However, such components will
be unreadable by previous Versions. 3012⌶ allows the user to specify that
LZ4 frames should not be used for component compression, for when
interoperability is required. See Enable Compression of Large Components on
page 43. 219⌶ has been extended to allow arrays >2GB to be compressed.

l There is a new I-beam function to set the parameters for generating aplcore
files dynamically. See Set aplcore Parameters on page 38.

l ⎕FHOLD now accepts an optional left argument to specify a time-out. See File
Hold on page 28.

l The right argument to ⎕SIGNAL may include 1006 (TIMEOUT error).

GUI Improvements
l The HTMLRenderer provides a number of new Properties and Methods. See
AllowContextMenu on page 47, ExecuteJavaScript on page 48, GetZoomLevel
on page 48, IsLoading on page 48, LoadEnd on page 49, and SetZoomLevel
on page 50.



Chapter 1: Highlights 3

Session Initialisation Improvements
l There is a new Boolean configuration parameter that determines whether or
not the Session is initialised on start-up. See DYALOG_INITSESSION on page
24. By default this is 1 for the development version and 0 for the run-time.
This must be 1 to use Link.

l Nested directory structures are now supported.
l Every top-level directory that is loaded as a namespace in ⎕SE can have a
Run function which will be called after everything has been loaded. See
DyalogStartup_X on page 24 for how to disable this.

l Note that Link is now required for Session initialisation. See DyalogLink on
page 24 for how to use a non-default Link.

l The list of directories from which ⎕SE is populated can now be extended
rather than just replaced. See DyalogStartupSE on page 25.

Session Improvements
l Multi-line input, which was introduced in 18.0, is now enabled by default. On
Windows this can be changed by selecting/unselecting the "Enable Multiline
Input" Checkbox on the Session tab of the Configure dialog, or on all
platforms by setting the configuration parameter DYALOG_LINEEDITOR_
MODE to 0 (disabled) or 1 (enabled).

l The log file used by the Session is now unique to the instance of Dyalog that
is running and is reported by a new LogFile property of ⎕SE. Previously,
multiple instances of the Dyalog program shared the same session log. See
Log_File on page 26.

l Session log files are now saved in JSON format.
l The Session window (optionally) reserves the first column for information.
See DYALOG_GUTTER_ENABLE on page 23. On TTY-versions it is hidden
by default.

l Lines output to the Session which are associated with errors are now syntax
coloured using the error colour for the selected Session colour scheme.

l The Caption property of the Session, which was previously read-only, can
now be set. See below.

l When you edit an object by double-clicking the mouse or pressing the <ED>
key, or executing )ED, and the name of the object is followed by [n], the
Editor will position the cursor on line number n. Note that there must not be a
space between the last character of the name and the "[".



Chapter 1: Highlights 4

Session Caption
The Caption property of the Session may be set dynamically to a character vector
comprising free text and field names. Field names must be enclosed in braces and are
replaced in-situ by corresponding values.

Field Name Description

{TITLE} the window specific text

{WSID} ⎕WSID

{NSID} current namespace

{SNSID} short version of namespace (no #.)

{PRODUCT} e.g. Dyalog APL/W

{VER_A} e.g. 19

{VER_B} e.g. 0

{VER_C} e.g. 47586 (SVN revision)

{PID} process ID (decimal)

{CHARS} "Classic" or "Unicode"

{BITS} "32" or "64"

Table 1: Session Caption Fields

Example:

⎕SE.Caption←'Pete: {WSID} {Product} {VER_A}.{VER_B}'

The Session caption in a CLEAR WS will change to:

Pete: CLEAR WS Dyalog APL/W-64 19.0

Note that Caption returns the codified string used to set it.

⎕SE.Caption
Pete: {WSID} {Product} {VER_A}.{VER_B}



Chapter 1: Highlights 5

Extension to Native File Functions
⎕NMOVE and ⎕NCOPY now provide a feature to run an APL function as a callback
during processing. This is implemented by the ProgressCallback Variant option.

ProgressCallback Option

Overview
If this option is enabled, the system function invokes an APL callback function as the
file operation (move or copy) proceeds. A system object is used to communicate
between the system function and the callback. The file operation has 4 distinct stages:

1. The start of the operation. The callback is invoked before any files are
scanned or processed. This gives the application the opportunity to set
parameters that control the frequency of callbacks during the operation itself.

2. The optional scan phase during which the system function enumerates the files
that will be involved in the copy or move operation. The file count obtained is
used to set the Limit field. The application may use this subsequently to
indicate the degree of progress.

3. The main processing (move or copy) of the files.
4. The end of the operation.

The callback function is invoked once at the start of the operation, during the
(optional) scan and processing stages, and finally once at the end of the operation.
During the scan and processing stages, the Skip and Delay options provide
alternative ways to control the frequency with which the callback is invoked.

If both options are 0, the callback will be invoked after every file is processed.
However, if there are a large number of small files involved, and you simply want to
update a progress bar, this may prove to be unnecessarily frequent, and will increase
the total time required to complete the operation.

If you want to update a progress bar regularly (for example every second), the
Delay option (1000 = 1 second) is the better choice. In other circumstances, you
might choose to use Skip.

If you use both options, the callback will be invoked when both apply, so if you set
Skip to 10 and Delay to 5000, the callback will be invoked after at least 10 files
have been processed and at least 5 seconds have elapsed since the previous
invocation of the callback.

The value of the ProgressCallback variant option may be:

fn The name of the callback function.

fn data
The name of the callback function, and an array or namespace
which is to be passed to the callback in its left argument.



Chapter 1: Highlights 6

The right argument given to the callback function is a 3-element vector:

[1] Function
Character vector which identifies the function that caused
the callback to be executed; either '⎕NCOPY' or
'⎕NMOVE'.

[2] Event Character vector describing the event that lead to the
callback being executed. See below.

[3] Info Reference to a namespace containing information about the
event. See below.

Event

Event is a character vector which indicates the stage of the copy or move operation..

'Start'

Reported by the first invocation of the callback which occurs
before any files are scanned or processed. This may be used
to set the parameters that control the operation. See Options
on page 8.

'Scan'
Indicates that the system function is in the initial phase of
scanning the files in order to calculate Limit. See ScanFirst
on page 8.

'Progress'
Indicates that the system function is at the main stage of the
operation and is moving or copying the files.

'Done' Indicates that all files have been processed.

Note that there will always be at least 2 invocations of the callback, to indicate the
start and end of the operation.



Chapter 1: Highlights 7

Info

Info is a ref to a namespace that contains information about the event. This
namespace persists for the duration of the execution of the system function and
contains the following fields:

Progress

A number between 0 and Limit. When the event code is
'Start', Progress is 0. Every time a file or directory is
processed, Progress is increased by 1. Finally when the event
code is 'Done', Progress will be equal to Limit.

Limit

The maximum value of Progress. This value might change
during the file operation if it doesn't do a full discovery first (the
ScanFirst option is 0), or if the file structure changes
between the scan and the copy/move.

Last

A vector of file names which have been processed since the last
invocation of the callback function. The user can specify the
maximum length of this vector by setting the
LastFileCount option. The names in this list are the source
names, and not the destination names. The Last vector is
always empty when the event is 'Start', and it is cleared
when going from the 'Scan' phase to the 'Progress'
phase, to avoid any confusion.

Data

A field that is reserved for the user to store data which persists
between invocations of the callback. It could for example be
used to keep a sequence number, to count the number of times
the callback had been run.

Options

This is a namespace which contains the information that controls
the future execution of the callback. The options persist between
the calls to the callback, so there is no need to set them again
unless they should be changed. The fields and their default
values are described below.



Chapter 1: Highlights 8

Options

This is a namespace which contains options that control future invocations of the
callback. The options persist between these invocations, so there is no need to set
them again unless they should be changed. The fields and their default values are:

Field Default Description

ScanFirst 1

Specifies if the file operation should do a
"scan pass" before moving/copying the files.
This stage just enumerates the files to
determine how many there are. This will
ensure Limit has a realistic value when the
actual processing of the files happens. The
overhead is small in comparision with the time
it takes to process the files. The ScanFirst
field is only inspected right after the first
invocation of the callback function, with the
event code 'Start'.

Delay 0

Specifies the number of milliseconds to wait,
until the callback will be called again. If all
file operations finish before this time, the
callback function is called anyway, with the
event code 'Done'. If a slow file operation is
happening (such as copying a big file), the
actual delay before the callback is invoked
might be longer than the value of Delay.

Skip 0

Specifies a number of files to skip between
invocations of the callback function. If you are
only interested in getting a callback for each
10th file, you should set this option to 9 for
example.



Chapter 1: Highlights 9

Field Default Description

LastFileCount 1

An integer, specifying the maximum number
of the latest filenames to be stored in the
Last field. The default is to only store the
last file processed, but if Delay or Skip are
non-zero, multiple files could have been
processed between calls to the callback
function. A value of 5 for example, will make
sure that the 5 last files processed before
calling the callback, will have their names in
the Last field. The Last field might have
fewer elements than LastFileCount, if the
number of files processed since the last call is
less than LastFileCount. The special
value ¯1 indicates that the Last field should
contain all the last files since the last call (no
limit).

The result of the callback function must be a Boolean scalar, indicating whether or
not the ⎕NCOPY or ⎕NMOVE should continue or stop.

1: Execution should continue.

0: Execution should stop. In this case, an INTERRUPT (event 1003) is signalled.

Lexical Scope in Scripts
Historical Note
Lexical scope in scripts has been part of Dyalog since the implementation of Object
Oriented Programming in Version 11.0, and is only partially documented. This
section provides additional explanation and extends the discussion to Classes.

Introduction
Objects (Namespaces and Classes) that are defined using scripts, either in the
workspace or in script files, may include nested objects (sub-namespaces and sub-
classes). If so, Dyalog applies a form of lexical scope to all these objects to allow
them to reference one another. Dyalog otherwise uses dynamic scope .

This feature makes it possible to implement a class structure, in which members of
the class tree may access one another, and it provides a way for classes to share data
stored in a namespace.



Chapter 1: Highlights 10

When Dyalog fixes nested classes and namespaces in a script, references between
parent and child objects are inserted to allow them to reference one another,
preventing what would otherwise be VALUE ERROR. For example:

:Class Parent
:Access Public

:Namespace Data
:EndNamespace

∇ new name
:Access Public
:Implements Constructor
Data.Name←name

∇

:Class Child
:Access Public

:Field Public Name

∇ new name
:Access Public
:Implements Constructor
Name←name
Name,' is a child of ',Data.Name

∇
:EndClass

:EndClass

pete←⎕NEW Parent 'Pete'
andy←⎕NEW pete.Child 'Andy'

Andy is a child of Pete

In this example, the namespace Data is accessible from the Parent class, and from
any sub-classes within it and can therefore be used to share information between
them. A more realistic example might be to share the value of the tie number of a
component file.

Note that this is not possible using variables or Fields; data to be shared between
nested classes must be stored in a namespace.



Chapter 1: Highlights 11

Variant Options for ⎕FIX
Despite the essential benefits of lexical scope, there are circumstances in which it is
undesirable and ⎕FIX provides fine control over the insertion of references. See
InjectReferences Option on page 33.

Note that the ability to control lexical scope in this way applies only to ⎕FIX. When
a nested script is fixed by the Editor, the default lexical scope (InClasses) is applied.
If, after fixing a script from the Editor, you wish to apply a different option (All or
None) it is necessary to re-fix the script using ⎕FIX 62 ATX 'name'.



Chapter 1: Highlights 12

Session Gutter
The first column of the Session Window (the Session Gutter) is by default reserved
to display the following information:

l A small red circle. This indicator is used on every line that is modified in the
session, including old ones (e.g. if you move up the session and modify them,
without pressing <ER>) . The indicators show which session lines will be re-
executed when you subsequently press <ER>.

l A left bracket [ to identify groups of default output. Note that other forms of
output are not identified in this way.

The Session Gutter may be enabled and disabled using the DYALOG_GUTTER_
ENABLE parameter. It is disabled by default in the TTY interface.



Chapter 1: Highlights 13

Source as Typed
Historical Introduction
When an object containing executable code such as a function, operator, class, or
namespace is defined in a workspace either by an editor or by the system function
⎕FX, the object is tokenised into an internal form. Historically, this was the only
form of the object, and both the editor and system functions like ⎕CR, ⎕VR, ⎕NR
reconstitute the source code from the internal form. This reconstituted source lacks
extraneous white space and the precise numerical formatting that the user originally
entered, for example.

When classes and scripted namespaces were introduced, the source code was stored
in text form for these objects, as it was typed, in addition to the tokens which were
still used at runtime. The function ⎕SRC was added to return this text, and a new
function ⎕FIX was added to define objects that also have source code.

Subsequently, ⎕FIX was extended to allow the definition of functions and operators
which include source code, as well as the use of source files outside the workspace to
store the source code of an object. However, unless a function or operator was
defined using an external file, the editor continued to only store the tokenised form in
the workspace, in order to save space.

Current Behaviour
From version 19.0 onwards, the default is that the editor stores source code as it was
typed in by the user for all objects, in addition to the tokenised form. When an object
is defined from an external source file using ⎕FIX, a copy of the source is also
retained in the workspace.

In order to maintain backwards compatibility with applications that rely on the
canonical representation returned by ⎕CR, ⎕VR , ⎕NR, these functions continue to
reconstitute the source from tokens; and ⎕FX continues to only store the tokenised
form. If you wish to access the source as typed, you should use ⎕SRC, or 60 ⎕ATX,
and you should use ⎕FIX, to define not only namespaces and classes but functions
and operators as well.

When the user opens an object in the Editor, the saved source code is presented if it
exists. If the object was defined from a file and the source held in the workspace
differs from the contents of the file, the user will be asked to decide whether to use
the file or break the link and use the source in the workspace. If no source code is
available, it is reconstituted from the internal form.



Chapter 1: Highlights 14

Note however, that there is no mechanism to reconstitute a script, as a whole, from
its tokenised form. If there is no source code, the Namespace or Class appears as if it
were created using ⎕NS rather than having originated from a script. It cannot be
opened in the Editor and the result of ⎕SRC is empty. However, the source code for
individual functions and operators within the Namespace or Class will be
reconstituted from their individual tokenised code when required.

The functions ⎕SRC and 62 ⎕ATX (most precise available source) use the same
logic as described above to generate a result.

Source code saved in the workspace is compressed to minimise space usage.

Note that the white space in comment statements is retained in both the compiled
form and compiled form of a function.

The Boolean parameter DYALOG_DISCARD_FN_SOURCE (default 0) and
5172⌶ (Discard Source Information) allow the user to enable or disable this feature
for functions and operators. The AutoFormat Functions option is automatically
disabled if the DYALOG_DISCARD_FN_SOURCE parameter is 1. Note that the
user can format code on demand).

5171⌶ (Discard Source Information) discards source code and file information for
scripted objects, namespaces, classes, functions, and operators that is saved in the
workspace.

Note that, to ensure that they can be used by Classic Edition, the source code has
been discarded from all the workspaces supplied by Dyalog as part of the
distribution.

See also: Discard Source Code on page 44 and Discard Source Information on page
43.



Chapter 1: Highlights 15

Bug Fixes
A number of bug fixes implemented in Version 19.0 may change the way that
existing code operates and are therefore documented in this section.

l When APL_COMPLEX_AS_V12 is set, the circular functions (X○Y) with
(|X)>7, generate DOMAIN ERROR if the result would be complex.

l Previously, if GetTextSize was given an invalid font name it would use the
default for the window that the method was invoked in. Now, invalid font
names correctly generate DOMAIN ERROR.

l ⎕FMT using the E qualifier now behaves as intended.

'E13.6' ⎕FMT ¯4.56789E¯12 ¯4.56789E¯123 ⍝ previous
¯4.56789E¯12
¯4.5678E¯123

'E13.6' ⎕FMT ¯4.56789E¯12 ¯4.56789E¯123 ⍝ new
¯4.56789E¯12
¯4.56789E¯123 ⍝ NEW - note alignment of the 'E's!

⍝ Old behaviour - note ¯1.234 printed as ¯1.23
⍝ despite 4 digits requested

'|',('E12.4' ⎕FMT ¯1.234E¯123),'|'
| ¯1.23E¯123|

⍝ NEW behaviour - honour request for 4 digits
'|',('E12.4' ⎕FMT ¯1.234E¯123),'|'

| ¯1.234E¯123|

⍝ Honouring request can now prevent fitting!

'|',('E10.4' ⎕FMT ¯1.234E¯123),'|' ⍝ Old
|¯1.23E¯123|

'|',('E10.4' ⎕FMT ¯1.234E¯123),'|' ⍝ NEW
|**********|



Chapter 1: Highlights 16

Announcements
Supported Versions
The supported versions of Dyalog are now versions 19.0, 18.2, 18.0, and 17.1.
Version 17.0 and earlier versions are no longer supported.

Dyalog on macOS
Version 19.0 is expected to be the last version that will be available for Intel-based
Macs. Version 19.0 is natively available for both Intel and ARM-based Macs.

Performance Issue with Namespaces
We have identified a namespace performance issue which is especially noticeable
with JSON Import. We have a fixed planned for the next release of Dyalog. In the
meantime, there is an easy workaround. For details, see Language Reference Guide:
JSON Convert.

Hash and Lookup Tables
In the next major version of Dyalog the performance of the set functions will be
improved. The new code will involve increasing the amount of workspace allocated
to the internal tables used by these functions. These tables are described using the
terms hash table and lookup table. The latter refers to internal tables that do not
require hashing.

For more information, see Programming Reference Guide: Search Functions and
Hash Tables and Language Reference Guide: Hash Array.

The proposed size increase may potentially cause WS FULL errors or may change
the frequency of workspace compactions.

To allow the user to evaluate the effect of this future change on their applications,
two new I-beam functions have been provided. These functions increase the space
allocated to the internal tables for the sole purpose of testing these potential effects.
The new I-beams may affect performance either directly or by triggering a change of
algorithm, but should not be used for that sole purpose since performance
degradation in some cases cannot be excluded. See Hash Table Size on page 44 and
Lookup Table Size on page 45.

When the next major release is published, it is anticipated that few, if any users will
notice negative effects from changing the internal table sizes. Rather, they will
benefit from the improved performance that will result.



Chapter 1: Highlights 17

PCRE2 Upgrade
Dyalog uses the PCRE 8.x library to support regular expression searches in ⎕R, ⎕S
and in the IDE. PCRE 8 is widely used, but future development and maintenance of
PCRE will be based upon the newer PCRE2 (PCRE 10.x) library. Dyalog intends to
switch to the new library in a forthcoming release.

Chromium Embedded Framework (CEF)
Version 19.0 is supplied with CEF version 121 on all supported platforms.

Forthcoming Removal of 819⌶
The system function ⎕C was introduced in Dyalog version 18.0, at which point we
announced that 819⌶ was deprecated. 819⌶ is still present in Dyalog version 19.0,
but it will be removed from the next version.

There is a temporary new configuration parameter DYALOG_IBEAM819.

If DYALOG_IBEAM819 is set to 0, use of 819⌶ will signal an error and the
DMX.Message will state that it has been withdrawn; in other words, the behaviour is
what you would get with the next release. This is to help users prepare for its
removal now if they want to.

819⌶ will only operate if either DYALOG_IBEAM819 is not set, or DYALOG_
IBEAM819 is set to 1.

Forthcoming Removal of Array Editor
Version 19.0 is expected to be the last version that will include David Liebtag's
Array Editor.

Forthcoming Removal of Syncfusion from Microsoft
Windows installation images
Version 19.0 is expected to be the last version that will include the Syncfusion library
of WPF controls; Dyalog Ltd will cease to offer support for the Syncfusion controls
from the end of September 2024.

The Syncfusion licence provided with Dyalog 19.0 will continue to be valid for use
with Dyalog 19.0 beyond this date, but later versions of Dyalog will not include this
licence.

Removal of RConnect (R Interface)
RConnect (the R interface) and the R Interface Guide, are no longer included with
Dyalog. Instead, Dyalog Ltd recommends RSconnect - R connection for Dyalog APL
with Rserve, which can be obtained from https://github.com/kimmolinna/rsconnect.



Chapter 1: Highlights 18

System Requirements
Microsoft Windows
Dyalog version 19.0 is supported on versions of Microsoft Windows from Windows
10 or Windows Server 2016 upwards.

The Dyalog version 19.0 .NET Framework interface requires version 4.0 or greater of
Microsoft .NET Framework. It does not operate with earlier versions of the .NET
Framework. In addition:

l .NET Framework version 4.5 is needed for full Data Binding support
(including support for the INotifyCollectionChanged interface, which
is used by Dyalog to notify a data consumer when the contents of a variable,
that is data bound as a list of items, changes).

l .NET Framework version 4.6 is needed to run the Syncfusion libraries
supplied with Dyalog version 19.0.

l IIS needs to be installed before installing Dyalog APL in order to access the
examples in the Samples/asp.net sub-directory – if IIS and ASP.NET
are not present, the asp.net sub-directory will not be installed during the
Dyalog installation.

Note that .NET Framework is specific to Microsoft Windows; the cross-platform
.NET is also supported (see below).

AIX
Dyalog version 19.0 requires AIX 7.2 or higher, and a POWER9 chip or higher.

Raspberry Pi
Dyalog 32-bit Unicode supports 32-bit Raspberry Pi OS Buster or later but is not
supported on the Raspberry Pi Pico. There is no 64-bit version of Dyalog for the Pi,
nor will the 32-bit version run under 64-bit Raspberry Pi OS.

Non-Pi Linux
Dyalog version 19.0 only exists as 64-bit interpreters – there are no 32-bit versions. It
is built on Ubuntu 20.04; it should run on all recent distributions. For further
information, see the Dyalog UNIX and Linux forum.

macOS
Dyalog version 19.0 (64-bit version; there is no 32-bit version) is supported on both
Intel and ARM processors. The macOS version required for Dyalog version 19.0 on
each is:

https://forums.dyalog.com/viewforum.php?f=20


Chapter 1: Highlights 19

l on Intel: macOS 11.6.1 (Big Sur) onwards
l on ARM: macOS 13.4.1 (Ventura) onwards

Dyalog for ARM is only supported on Macs with an ARM processor. Dyalog for
Intel is supported on Macs with an Intel chip or Macs with an ARM chip and Rosetta
enabled. Each has its own shared libraries. These, and any other customisations, must
match the Dyalog installation.

Cross-platform Microsoft .NET Interface
The Dyalog version 19.0 .NET interface requires version 8.0 of Microsoft .NET or
higher.

HTMLRenderer and Chromium Embedded
Framework (CEF)
The HTMLRenderer is supported on the following platforms:

l Windows
l macOS (both Intel and ARM-based)
l Linux

It is not supported on the Raspberry Pi

To see which version of CEF was used when the HTMLRenderer was built, query
the CEFVersion property of an instance of the HTMLRenderer:

'hr' ⎕WC 'HTMLRenderer'
hr.CEFVersion[2 3]⍝ CEF Maj Version and Commit No

121 3

Interoperability
Introduction
Workspaces and component files are stored on disk in a binary format. This format
differs between machine architectures and among versions of Dyalog. For example, a
file component written from Windows will have an internal format that is different
from one written from AIX. Similarly, a workspace saved from Dyalog Version 19.0
will differ internally from one saved by a previous version of Dyalog APL.

It is convenient for versions of Dyalog APL running on different platforms to be able
to interoperate by sharing workspaces and component files. Component files and
workspaces can generally be shared between Dyalog interpreters running on different
platforms. However, this is not always possible and the following sections describe
limitations in interoperability:



Chapter 1: Highlights 20

Code and ⎕ORs
Code that is saved in workspaces, or embedded within ⎕ORs stored in component
files, can only be read by the Dyalog version which saved them and later versions of
the interpreter. In the case of workspaces, a load (or copy) into an older version
would fail with the message:

this WS requires a later version of the interpreter.

Every time a ⎕OR object is read by a version later than that which created it, time
may be spent in converting the internal representation into the latest form. Dyalog
recommends that ⎕ORs should not be used as a mechanism for sharing code or
objects between different versions of APL.

"Ordinary" Arrays
With the exception of the Unicode restrictions described in the following paragraphs,
Dyalog APL provides interoperability for arrays that only contain (nested) character
and numeric data. Such arrays can be stored in component files, or transmitted using
TCPSocket objects and Conga connections, and shared between all versions and
across all platforms.

Full cross-platform interoperability of component files is only available for large-
span component files.

Object Representations (⎕OR)
An attempt to ⎕FREAD a component containing a ⎕OR that was created by a later
version of Dyalog APL will generate DOMAIN ERROR: Array is from a
later version of APL. This also applies to APL objects passed via Conga or
TCPSockets, or objects that have been serialised using 220⌶.

32 vs. 64-bit Interpreters
There is complete interoperability between 32- and 64-bit interpreters, except that:

l 32-bit interpreters are unable to work with arrays or workspaces greater than
2GB in size.

l Under Windows, a 32-bit version of Dyalog APL can only access 32-bit
DLLs, and a 64-bit version of Dyalog APL can only access 64-bit DLLs. This
is a Windows restriction.

l Objects saved in the workspace that are connected to external resources lose
those connections when loaded or copied by an interpreter with different
architecture.



Chapter 1: Highlights 21

In particular:

If a workspace containing:

l .NET objects, objects created by ⎕WC , or instances of built-in objects
(excluding instances of user-defined classes) created by ⎕NEW.

or

l variables containing the ⎕OR of or refs to such objects

is loaded by an interpreter with differing architecture (32 vs 64) from the version that
saved it, Dyalog displays:

GUI objects could not be recreated;
the file is from an incompatible architecture

The names of all incompatible objects are instantiated as plain namespaces, with any
compatible contents (such as functions and variables) preserved.

If a component containing the ⎕OR of or refs to such objects is read by an interpreter
with differing architecture (32 vs 64) from the version that wrote it, each
incompatible object is instantiated as a plain namespace, preserving compatible
contents as above.

Unicode vs. Classic Editions
Two editions are available on some platforms. Unicode editions work with the entire
Unicode character set. Classic editions (which are only available to commercial and
enterprise users for legacy applications) are limited to the 256 characters defined in
the atomic vector, ⎕AV. 

Component files have a Unicode property. When this is enabled, all characters will
be written as Unicode data to the file. The Unicode property is set on by Unicode
Editions and off by Classic Editions, by default. The Unicode property can
subsequently be toggled on and off using ⎕FPROPS.

When a Unicode edition writes to a component file that cannot contain Unicode data,
character data is mapped using ⎕AVU; it can therefore be read without problems by
Classic editions.

A TRANSLATION ERROR will occur if a Unicode edition writes to a non-Unicode
component file (that is either a 32-bit file, or a 64-bit file when the Unicode property
is currently off) if the data being written contains characters that are not in ⎕AVU. 

Likewise, a Classic edition will issue a TRANSLATION ERROR if it attempts to read
a component containing Unicode data that is not in ⎕AVU from a component file.



Chapter 1: Highlights 22

A TRANSLATION ERROR will also be issued when a Classic edition attempts to
)LOAD or )COPY a workspace containing Unicode data that cannot be mapped to
⎕AV using the ⎕AVU in the recipient workspace. Note that the problematic Unicode
data may be in that part of a workspace which holds the information needed to
generate ⎕DM and ⎕DMX, so calling )reset before )save in the Unicode
interpreter may eliminate the TRANSLATION ERRORs.

TCPSocket objects have an APL property that corresponds to the Unicode property
of a file, if this is set to Classic (the default) the data in the socket will be
restricted to ⎕AV, if Unicode it will contain Unicode character data. As a result,
TRANSLATION ERRORs can occur on transmission or reception in the same way as
when updating or reading a file component.

The symbols ⊆, ⍸, ⍤, ⍠, ⌸, ⌺ and ⍥ used for the Nest/Partition and Where/Interval
Index functions and the Rank/Atop, Variant, Key, Stencil and Over operators
respectively are available only in the Unicode edition. In the Classic edition, these
symbols are replaced by ⎕U2286, ⎕U2378, ⎕U2364, ⎕U2360, ⎕U2338, ⎕U233a
and ⎕U2365 respectively. In both Unicode and Classic editions Variant may be
represented by ⎕OPT.

Very large array components
An attempt to read a component greater than 2GB in 32-bit interpreters will result in
a WS FULL.

TCPSocket Objects and Conga
TCPSocket objects and Conga can be used to communicate between differing
versions of Dyalog APL and are subject to similar limitations to those described
above for component files.

Auxiliary Processors
A Dyalog APL process is restricted to starting an AP of exactly the same architecture
from the same operating system. In other words, the AP must share the same word-
width and byte-ordering as its interpreter process.

Session Files
Session (.dse) files can only be used on the platform on which they were created and
saved. Under Microsoft Windows, Session files may only be used by the architecture
(32-bit-or 64-bit) of the Version of Dyalog that saved them.

Log Files
Log (.dlf) files can only be used by the version and edition with which they were
created and saved.



Chapter 2: Configuration Parameters 23

Chapter 2:

Configuration Parameters

The following table summarises changes to configuration parameters in Version 19.0.

Parameter Description Change

DYALOG_GUTTER_
ENABLE

Enable or disable Session Gutter New

DYALOG_DISCARD_
FN_SOURCE

Specifies whether source code is
retained in the workspace New

DYALOG_
INITSESSION

Specifies whether or not the
Session is initialised on start-up New

DyalogLink Specifies the directory for Link New

DyalogStartupSE Extended Enhancement

DyalogStartup_X
Specifies whether the Run
function is executed during
Session startup

New

Log_File
Enhanced to support multiple
Session log files Enhancement

DYALOG_GUTTER_ENABLE
This Boolean parameter specifies whether (1) or not (0) a Gutter is displayed in the
left-most column of the Session window. This gutter is used to display:

l A small red circle. This indicator is used on every line that is modified in the
session, including old ones (e.g. if you move up the session and modify them,
without pressing <ER>) . The indicators show which session lines will be re-
executed when you subsequently press <ER>.

l A left bracket [ to identify groups of default output. Note that other forms of
output are not identified in this way.

The default value is 0 for the TTY interface, and 1 otherwise.



Chapter 2: Configuration Parameters 24

DYALOG_DISCARD_FN_SOURCE
This Boolean parameter specifies whether (1) or not (0) source code is discarded
from the workspace when an object is fixed. The default value is 0 which means that
source code is retained in the workspace and will subsequently be presented for
editing as it had been saved previously.

For further information, see Language Reference Guide: Discard Source Information
and UI Guide: Source As Typed.

DYALOG_INITSESSION
This Boolean parameter governs whether (1) or not (0) Dyalog performs Session
Initialisation on start-up.

The default is 1 for development and shell script versions, and 0 for run-time
versions.

Session initialisation makes Link, SALT and other things available. These features
depend on DYALOG_INITSESSION being 1 (explicitly or by default).

DyalogLink
This parameter specifies the name of the directory containing the code for Link. The
default is [DYALOG]/StartupSession/Link.

Note that Link is required for Session initialisation.

For further information, see https://dyalog.github.io/link/4.0/Usage/Installation.

DyalogStartup_X
During Session initialisation, code is loaded from the directories specified by the
DyalogStartupSE parameter into a corresponding namespace tree in the Session
namespace ⎕SE. Optionally, the code is then executed.

If DyalogStartup_X is 0 (the default if not defined), the Run function (if it exists) in
each top-level namespace loaded during Session start-up is executed. The
namespaces are processed in alphabetical order.

If DyalogStartup_X is 1, the Run function is not executed.

Other values are reserved for future extension.

See also: DyalogStartupSE on page 25.

https://dyalog.github.io/link/4.0/Usage/Installation


Chapter 2: Configuration Parameters 25

DyalogStartupSE
This parameter specifies one or more Session initialisation directories that contain
APL code to be installed in ⎕SE. If this parameter is not specified, the default is a
directory named StartupSession located in three standard locations.

Under Windows these might be:

1. C:\Program Files\Dyalog\Dyalog APL-64 19.0 Unicode
2. C:\Users\Pete\Documents\Dyalog APL Files
3. C:\Users\Pete\Documents\Dyalog APL-64 19.0 Unicode

Files

The version-specific name is :

Dyalog APL{bit} {version} {edition}

where:

l {bit} is "-64" if 64-bit version, otherwise nothing
l {version} is the main and secondary version numbers of dyalog.exe separated
by ".".

l {edition} is "Unicode" for the Unicode Edition, otherwise nothing

The parameter is a string containing the list of directory names separated by ";" on
Windows, ":" elsewhere.

If DyalogStartupSE begins with the specified separator, the default list is extended
rather than replaced.

Note that the effective sequence of directories specified by this parameter is
converted to a vector of character vectors and stored in
⎕SE.Dyalog.StartupSession.AllPaths.

If unset or extended (that is, starts with a : separator):

l the effective StartupSession directory in [DYALOG] is available as
⎕SE.Dyalog.StartupSession.Dyalog.

l the StartupSession directory in the version-agnostic directory is available as
⎕SE.Dyalog.StartupSession.VerAgno.

l the StartupSession directory in the version-specific directory is available as
⎕SE.Dyalog.StartupSession.VerSpec.



Chapter 2: Configuration Parameters 26

Log_File
This parameter specifies the pathname to the Session log file; it can be absolute or
relative to the working directory.

The Session log file is not interchangeable between different versions/editions/widths
of Dyalog – this means that opening a new instance of Dyalog will overwrite any
contents of the Session log file populated by an already-running instance. However,
if the LOG_FILE parameter contains a '*' (e.g. JD.*.dlf ) then at start-up Dyalog
will attempt to open, and then lock, a file where the '*' has been replaced with an
increasing integer value (starting with 000, so JD.000.dlf, JD.001.dlf etc). If
said file cannot be opened and locked, the value will be incremented. The process
will fail, and no log will be used if the extension number would exceed 999.

The default is Users\<username>\Documents\Dyalog APL-<bits>
<DyalogMajor>.<DyalogMinor> <Unicode|Classic>
Files\default_*.dlf, for example, Users\Bob\Documents\Dyalog
APL-64 19.0 Unicode Files\default_*.dlf

Note that the LogFile property of ⎕SE reports the name of the log file that is being
used.



Chapter 3: Language Reference Changes 27

Chapter 3:

Language Reference Changes

The following table summarises the main changes to language features in Version
19.0.

Function/Operator Description Change

⎕TALLOC Allocate Token Range New system function

2000⌶
Memory Management
Statistics Extended I-beam function

219⌶
Compress Vector of Short
Integers Extended I-beam function

1302⌶ Set aplcore Parameters New I-beam function

3012⌶
Enable Compression of
Large Components New I-beam function

5171⌶ Discard Source Information New I-beam function

5172⌶ Discard Source Code New I-beam function

9468⌶ Hash Table Size New I-beam function

9469⌶ Lookup Table Size New I-beam function

⎕NCOPY Native File Copy New ProgressCallback
variant

⎕NMOVE Native File Move New ProgressCallback
variant

⎕FHOLD File Hold New left argument to
specify a time-out

⎕SIGNAL Signal event Now accepts 1006
(TIMEOUT error)



Chapter 3: Language Reference Changes 28

File Hold {R}←{X} ⎕FHOLD Y

Access code 2048

This function holds component file(s) and/or external variable(s). It is used to
synchronise access to resources shared between multiple cooperating Dyalog
processes. It is not intended to synchronise access between Dyalog threads; for this
purpose you should use :Hold.

For a multi-threaded and multi-process application, a single ⎕FHOLD is used to
synchronise inter-process access, while :Hold is used in multiple threads to
synchronise access between threads in the same process. See also Programming
Reference Guide: Hold Statement.

If applied to component files, then Y is an integer scalar, vector, or one-row matrix of
file tie numbers, or a two-row matrix whose first row contains file tie numbers and
whose second row contains passnumbers.

If applied to external variables, then Y is a simple scalar character, a character vector,
a non-simple scalar character vector, or a vector of character vectors that specifies
one or more names of external variable(s) (NOT the file names associated with those
variables). Note that when Y is simple, each character in Y is interpreted as a variable
name. If applied to component files and external variables, Y is a vector whose
elements are either integer scalars representing tie numbers, or character scalars or
vectors containing names of external variables.

The effect is as follows:

1. All of the user's preceding holds (if any) are released, whether referenced in
Y or not.

2. Execution is suspended until the designated files are free of holds by any other
task.

3. When all the designated files are free, execution proceeds.  Until the hold is
released, other tasks using ⎕FHOLD on any of the designated files will wait.

The optional left argument X is a non-negative integer that specifies a time-out in
milliseconds. If step 2 (see above) does not complete before the time-out value
specified by X, ⎕FHOLD times out and signals a TIMEOUT error (1006) after
releasing any holds that have succeeded.

A time-out value of 0 indicates that the ⎕FHOLD should time out at once without
waiting if it cannot immediately acquire all holds. If X is ¯1, ⎕FHOLD behaves as the
monadic case, and does not time out.



Chapter 3: Language Reference Changes 29

If Y is empty, all of the user's preceding holds (if any) are released, and execution
continues.

A hold is released by any of the following:

l Another ⎕FHOLD
l Untying or retying all the designated files.  If some but not all are untied or
retied, they become free for another task but the hold persists for those that
remain tied.

l Termination of APL.
l Any untrapped error or interrupt.
l A return to immediate execution mode.

Note that a hold is not released by a request for input through ⎕ or ⍞.

⎕FHOLD is generally useful only when called from a defined function, as holds set in
immediate execution (desk calculator) mode are released immediately.

If Y is a matrix, the shy result R is Y[1;]. Otherwise, the shy result R is Y.

Examples:

⎕FHOLD 1

⎕FHOLD ⍬

⎕FHOLD ⊂'XTVAR'

⎕FHOLD 1 2,[0.5]0 16385

⎕FHOLD 1 'XTVAR'

3000 ⎕FHOLD 1
TIMEOUT

3000 ⎕FHOLD 1
∧

Fix Script {R}←{X}⎕FIX Y

⎕FIX establishes Namespaces, Classes, Interfaces and functions from the script
specified by Y in the workspace.

In this section, the term namespace covers scripted Namespaces, Classes and
Interfaces.

Y may be a simple character vector, or a vector of character vectors or character
scalars. The value of X determines what Y may contain.



Chapter 3: Language Reference Changes 30

If Y is a simple character vector, it must start with file://, followed by the name
of a file which must exist. The contents of the file must follow the same rules that
apply to Y when Y is a vector of character vectors or scalars. The file name can be
relative or absolute; when considering cross-platform portability, using "/" as the
directory delimiter is recommended, although "\" is also valid under Windows.

If specified, X must be a numeric scalar. It may currently take the value 0, 1 or 2. If
not specified, the value is assumed to be 1.

If X is 0, Y must specify a single valid namespace which may or may not be named,
or a file containing such a definition. If so, the shy result R contains a reference to
the namespace. Even if the namespace is named, it is not established per se, although
it will exist for as long as at least one reference to it exists.

If X is 1, Y must specify a single valid namespace which may or may not be named,
or a file containing such a definition. If so, the shy result R contains a reference to
the namespace. If Y contains the definition of a named namespace, the namespace is
established in the workspace.

If X is 2, Y is either a character vector containing the name of a script file, or a vector
of character vectors that represents a script.

Y may specify a series of named namespaces or function definitions, or a
combination of functions and namespaces.

l If the script contains more than one item, tradfn definitions must be delimited
by ∇symbols.

l Derived and assigned functions may be specified only within namespaces.

In this case, the shy result R is a vector of character vectors, containing the names of
all of the objects that have been established in the workspace; the order of the names
in R is not defined. Currently 2 ⎕FIX is not certain to be an atomic operation,
although this might change in future versions.

Example 1

In the first example, the Class specified by Y is named (MyClass) but the result of
⎕FIX is discarded. The end-result is that MyClass is established in the workspace
as a Class.

⎕←⎕FIX ':Class MyClass' ':EndClass'
#.MyClass



Chapter 3: Language Reference Changes 31

Example 2

In the second example, the Class specified by Y is named (MyClass) and the result
of ⎕FIX is assigned to a different name (MYREF). The end-result is that a Class
named MyClass is established in the workspace, and MYREF is a reference to it.

MYREF←⎕FIX ':Class MyClass' ':EndClass'
)CLASSES

MyClass MYREF
⎕NC'MyClass' 'MYREF'

9.4 9.4
MYREF

#.MyClass
MYREF≡MyClass

1

Example 3

In the third example, the left-argument of 0 causes the named Class MyClass to be
visible only via the reference to it (MYREF). It is there, but hidden.

MYREF←0 ⎕FIX ':Class MyClass' ':EndClass'
)CLASSES

MYREF
MYREF

#.MyClass

Example 4

The fourth example illustrates the use of un-named Classes.

src←':Class' '∇Make n'
src,←'Access Public' 'Implements Constructor'
src,←'⎕DF n' '∇' ':EndClass'
MYREF←⎕FIX src
)CLASSES

MYREF
MYINST←⎕NEW MYREF'Pete'
MYINST

Pete



Chapter 3: Language Reference Changes 32

Example 5

In the final example, the left argument of 2 allows a script containing multiple
objects to be fixed:

src←':Namespace andys' '∇foo' '2' '∇'
src,←':EndNamespace' 'dfn←{⍺ ⍵}' '∇r←tfn'
src,←'r←33' '∇' ':Class c1' '∇goo' '1'
src,←'∇' ':EndClass'
≢⎕←2⎕fix src

c1 tfn dfn andys
4

Restriction

⎕FIX is unable to fix a namespace from Y when Y specifies a multi-line dfn which is
preceded by a ⋄ (diamond separator).

⎕FIX':Namespace iaK' 'a←1 ⋄ adfn←{' '⍵' ' }'
':EndNamespace'
DOMAIN ERROR: There were errors processing the script

⎕FIX':Namespace iaK' 'a←1 ⋄ adfn←{' '⍵' ' }'
':EndNamespace'

∧

Variant Options
⎕FIX may be applied using the Variant operator with the options Quiet,
FixWithErrors, AllowLateBinding and InjectReferences. These options apply only
to namespaces and classes specified by the script. There is no principal option.

Quiet Option

0 If the script contains errors, these are displayed in the Status
Window.

1
If the script contains errors, the errors are not shown in the Status
Window.

FixWithErrors Option
0 If the script contains errors, ⎕FIX fails with DOMAIN ERROR.

1
⎕FIX fixes all the namespaces and classes in the script
regardless of any errors they may contain.

2
If the script contains errors, ⎕FIX displays a message box
prompting the user to choose whether or not to fix all the
offending namespaces and classes in the script.



Chapter 3: Language Reference Changes 33

AllowLateBinding Option

0 ⎕FIX will only fix a Class whose Base class (if specified) is
defined in the script or is present in the workspace.

1
⎕FIX will fixes a Class whose Base class is neither defined in
the script nor present in the workspace.

InjectReferences Option

'All'
In order to implement lexical scope, ⎕FIX will insert
internal references into all objects in the script.

'InClasses'
In order to implement lexical scope, ⎕FIX will insert
internal references ONLY into Classes and sub-classes in
the script, but not into namespaces.

'None'
No internal references are inserted and lexical scope does
not apply.

See Lexical Scope in Scripts on page 9.

The following examples illustrate how different values of the InjectReferences
option affect the scope of objects in scripts. The examples are based on the following
family tree:

Two scripts are defined to map this tree onto a structure of Classes and Namespaces.
In this scheme, female family members are represented by Classes and male family
members by Namespaces.



Chapter 3: Language Reference Changes 34

So the scripted tree for Pete has a parent Namespace:

:Namespace Pete
:Namespace Andy

:Class Aisha
:Access Public
:Endclass

:EndNamespace

:Class Katherine
:Access Public

:Namespace Woody
:EndNamespace
:Namespace George
:EndNamespace

:EndClass
:EndNamespace

While the scripted tree for Jill has a parent Class:

:Class Jill
:Access Public

:Namespace Andy
:Class Aisha
:Access Public
:Endclass

:EndNamespace

:Class Katherine
:Access Public

:Namespace Woody
:EndNamespace
:Namespace George
:EndNamespace

:EndClass
:EndClass

Using the Pete Namespace, after executing the expression:

2(⎕FIX⍠'InjectReferences' 'All')⎕SRC Pete

l Code in Pete may refer to Aisha , Andy , George , Katherine, and
Woody

l Code in Andy may refer to Aisha and Katherine
l ... and so forth.

But after executing:

2(⎕FIX⍠'InjectReferences' 'InClasses')⎕SRC Pete

l Code in Pete may refer only to Andy and Katherine
l Code in Andy may refer only to Aisha
l ... and so forth.



Chapter 3: Language Reference Changes 35

The following tables show which objects in Namespace Pete can see (i.e. refer to)
which other objects representing members of the family, in each case; All,
InClasses and None.

'All' Pete Andy Aisha Katherine Woody George

Pete ✔ ✔ ✔ ✔ ✔

Andy ✔ ✔

Aisha ✔ ✔ ✔

Katherine ✔ ✔ ✔ ✔ ✔

Woody ✔

George ✔

'InClasses' Pete Andy Aisha Katherine Woody George

Pete ✔ ✔

Andy ✔

Aisha ✔ ✔ ✔

Katherine ✔ ✔ ✔ ✔ ✔

Woody

George

'None' Pete Andy Aisha Katherine Woody George

Pete ✔ ✔

Andy ✔

Aisha

Katherine

Woody

George



Chapter 3: Language Reference Changes 36

Whilst the next set of tables show the same for Class Jill.

'All' Jill Andy Aisha Katherine Woody George

Jill ✔ ✔ ✔ ✔ ✔ ✔

Andy ✔ ✔

Aisha ✔ ✔ ✔

Katherine ✔ ✔ ✔ ✔ ✔

Woody ✔

George ✔

'InClasses' Jill Andy Aisha Katherine Woody George

Jill ✔ ✔ ✔ ✔ ✔ ✔

Andy ✔

Aisha ✔ ✔ ✔

Katherine ✔ ✔ ✔ ✔ ✔

Woody

George

'None' Jill Andy Aisha Katherine Woody George

Jill

Andy ✔

Aisha

Katherine

Woody

George



Chapter 3: Language Reference Changes 37

Allocate Token Range {R}←{X} ⎕TALLOC Y

Y is either a single integer or a 2-element vector. The first (or only) item in Y is 0, 1,
2 or ¯1 and indicates the type of operation to perform. If it is 1, then the optional
second item is a character vector.

The optional left argument X identifies an existing allocated range of token numbers
n. X must be a scalar greater than or equal to n, but must be less than n+1.

Allocation (First element of Y is 1)
If the first element of Y is 1, the result R is a positive integer that identifies a range of
numbers that may be used as token types for ⎕TPUT and ⎕TGET. That range is
defined as the set of floating-point numbers between R and R+1 (but not the integer
end-points). Negated values of these number may also be used.

In this case, the optional Y[2] is an arbitrary character vector that serves as a
description for the allocated range of tokens.

De-allocation (Y is ¯1)
If Y is ¯1, ⎕TALLOC releases a previously allocated range of tokens identified by the
left-argument X. The result R is a shy ⍬.

To succeed, this range must have previously been allocated, not freed by de-
allocation, and must be inactive, i.e. its tokens must not currently be in the token pool
or in use by a ⎕TGET. If not, ⎕TALLOC will signal a DOMAIN ERROR.

A de-allocated range becomes free for subsequent re-allocation by ⎕TALLOC.

Querying a description (Y is 0)
Y is 0, ⎕TALLOC returns a non-shy result R containing the description for a currently
allocated range of tokens identified by the left-argument X.

If X does not represent a currently allocated range, ⎕TALLOC will signal a DOMAIN
ERROR.

If X is omitted, the result R is a vector of 2-element vectors identifying the range and
description of all currently allocated ranges.

Descriptions that were not defined are returned as empty character vectors.

Querying the Token Pool (Y is 2)
Y is 2, ⎕TALLOC returns a non-shy result R containing the list of tokens in the token
pool that fall in the range specified by the left-argument X.



Chapter 3: Language Reference Changes 38

Examples

⎕←trg←⎕TALLOC 1 'cats'
1

⎕TALLOC 0
┌────────┐
│┌─┬────┐│
││1│cats││
│└─┴────┘│
└────────┘

⎕TPUT trg+.1 .2 .3
⎕TPUT -trg+.9
⎕TPOOL

1.1 1.2 1.3 ¯1.9

⎕TGET trg+.1 .2 .3 .9

1 ⎕TALLOC ¯1 ⍝ Try to de-allocate the range
DOMAIN ERROR

1 ⎕TALLOC ¯1
∧

1 ⎕TALLOC 2 ⍝ Failed due to ¯1.9 token
¯1.9

⎕TGET ¯1.9 ⍝ Remove the inexhaustible ¯1.9 token
1 ⎕TALLOC 2

1 ⎕TALLOC ¯1 ⍝ De-allocation now works

Set aplcore Parameters R←1302⌶Y

Sets the aplcore parameters AplCoreName and/orMaxAplCores for the current
process.

Y may be:

l a simple character vector that specifies AplCoreName
l a simple integer that specifies MaxAplCores
l a 2-element nested vector containing new values for AplCoreName and
MaxAplCores in that order

l an empty vector

R is a 2-element nested vector containing the old values.

If Y is empty, the function simply returns the values of these parameters without
changing them.

See also: Installation & Configuration Guide: APLCoreName and MaxAplCores
parameters.



Chapter 3: Language Reference Changes 39

Memory Manager Statistics R←{X}(2000⌶)Y

This function returns information about the state of the workspace and provides a
means to reset certain statistics and to control workspace allocation. This I-Beam is
provided for performance tuning and is VERY LIKELY to change in the next
release. See also Installation & Configuration Guide: Workspace Management.

Y is a simple integer scalar or vector containing values listed in the table below.

If X is omitted, the result R is an array with the same structure as Y, but with values
in Y replaced by the following statistics. For any value in Y outside those listed
below, the result is undefined.

Value Description

0 Workspace available (a "quick" ⎕WA).

1 Workspace used.

2 Number of compactions since the workspace was loaded.

3 Number of garbage collections that found garbage.

4 Current number of garbage pockets in the workspace.

9 Current number of free pockets in the workspace.

10 Current number of used pockets in the workspace.

12 Sediment size.

13 Current workspace allocation, i.e. the amount of memory that is
actually being used.

14
Workspace allocation high-water mark, i.e. the maximum amount of
memory that has been allocated since the workspace was loaded or
since this count was reset.

15 Limit on minimum workspace allocation.

16 Limit on maximum workspace allocation.

19 The number of calls to ⎕WA or 2002⌶ since the last time 2000⌶
was called, or when the process started.

20 The requested size of the WS Full Buffer, i.e. the amount of
workspace requested for handling WS FULL errors.

21 The actual size of the WS Full Buffer.

22 The number of WS FULL handlers that are currently running.



Chapter 3: Language Reference Changes 40

Value Description

23 The total number of WS FULL errors that have occurred.

24 The total number of WS FULL errors that have been trapped.

Note: While all other operations are relatively fast, the operation to count the number
of garbage pockets (4) may take a noticeable amount of time, depending upon the
size and state of the workspace.

Examples

2000⌶0
55414796

2000⌶0,⍳16 ⍝ with MAXWS=95G
1.02004292E11 1181312 1 1 0 ¯1 ¯1 ¯1 ¯1 78 13280 ¯1
1180800 1595016496 1595042464 0 1.020054733E11

If X is specified, it must be either a simple integer scalar, or a vector of the same
length as Y, and the result R is ⍬. In this case, the value in Y specifies the item to be
set and X specifies its new value according to the table below.

Value Description

2 0 resets the compaction count; no other values allowed.

3 0 resets the count of garbage collections that found garbage; no other
values allowed.

14

0 resets the workspace allocation high-water mark; no other values
allowed. This should be called following a call to ⎕WA (which
compacts the workspace and returns unused memory to the operating
system).

15 Sets the minimum workspace allocation to the corresponding value in
X; must be between 0 and the current workspace allocation.

16
Sets the maximum workspace allocation to the corresponding value
in X; 0 impliesMAXWS otherwise must be between the current
workspace allocation andMAXWS.

19 0 resets the compaction count; no other values allowed.

20
Sets the requested size of the WS Full Buffer to the value
specified by X. The actual space allocated may be less than that
requested.



Chapter 3: Language Reference Changes 41

Notes:
l The workspace allocation high-water mark indicates a minimum value for
MAXWS.

l Limiting the maximum workspace allocation can be used to prevent code that
reserves as much workspace as it can from skewing the peak usage result.

l Limiting the minimum workspace allocation can avoid repeatedly committing
and releasing memory to the Operating System when memory usage is
fluctuating.

Examples

2000⌶2 3
6 0 33216252

0 (2000⌶)2 3 14 ⍝ Reset compaction count

2000⌶2 3
0 0

30000000 40000000(2000⌶)15 16 ⍝ Restrict min/max ws

(2000⌶)15 16
30000000 40000000

0 (2000⌶)15 16 ⍝ Reset min/max ws

(2000⌶)15 16
0 65536000

(2000⌶)13 14 ⍝ Current, peak WS allocation
4072532 4072532

a←10e6⍴'x' ⍝ Increase WS allocation

(2000⌶)13 14 ⍝ Current, peak WS allocation
15108580 15108580

⎕ex 'a' ⋄ {}⎕wa ⍝ Decrease current WS allocation

(2000⌶)13 14 ⍝ Current, peak WS allocation
1962856 15108580

0 (2000⌶) 14 ⍝ Reset High-water mark

(2000⌶)13 14 ⍝ Current, peak WS allocation
1962856 1962856



Chapter 3: Language Reference Changes 42

WS Full Handling
Potentially, a WS FULL error represents a terminal condition that would prevent a
program from continuing because the process has, quite literally, run out of memory.

To alleviate the problem,. Dyalog reserves a special WS Full Buffer for handling WS
FULL errors. The default size of this buffer is (1MB)⌊(0.01×⎕WA).

In simple terms, when a WS FULL error occurs that triggers a handler, i.e. an
expression executed via ⎕TRAP or :Trap, the reserved workspace in the WS Full
Buffer is released to provide additional memory space for that expression to execute.
When the expression terminates, the system removes the memory that it had
previously released, reserving it once more for another potential WS FULL.

Note that until a WS FULL handler starts, the memory allocated to the WS Full
Buffer is unavailable and inaccessible for any other purpose, thereby reducing the
amount of active workspace available (⎕WA).

Further considerations are:

l Multiple WS FULL handlers can run concurrently as a result of muti-
threading or nesting (when a WS FULL handler itself generates a WS FULL
error).

l When the WS Full Buffer is restored when the handler (more accurately,
the last handler) terminates, or when a saved workspace is re-loaded, there
may be insufficient memory available. In these circumstances, the system
allocates a reduced amount, without reporting an error. However, the system
will later try to reclaim more (up to the desired amount), if more workspace
has become free. The desired and actual sizes of the WS Full Buffer are
reported by (2000⌶)20 and (2000⌶)21 respectively.

l When a WS FULL handler is activated and the WS Full Buffer is freed,
(2000⌶)21 will return 0 until the handler terminates.



Chapter 3: Language Reference Changes 43

Enable Compression of Large
Components {R}←3012⌶Y

Specifies whether large components (>2GB) may be compressed.

Y is an integer defined as follows:

Value Description

0 Large components will not be compressed

1
Large components will be compressed if Z property is 1 , but
versions of Dyalog prior to 19.0 will not be able to read them.

The shy result R is the previous value of this setting.

Discard Source Information R←5171⌶Y

This function discards source code and file information for scripted objects,
namespaces, classes, functions, and operators that is saved in the workspace. See also
Discard Source Code on page 44.

Y is a vector or scalar containing zero or more references to # or ⎕SE, and specifies
from which namespaces the information is removed.

R is an integer. A non-zero value indicates that some information was removed. 0
means nothing was discarded.

l The expression 5171⌶ # discards source code and file information from the
workspace, but not from ⎕SE.

l 5171⌶⎕SE discards source code and file information from ⎕SE but not from
the workspace.

l 5171⌶ # ⎕SE discards source code and file information from the workspace
and from ⎕SE.

For further information, see Source as Typed on page 13.



Chapter 3: Language Reference Changes 44

Discard Source Code R←5172⌶Y

This specifies whether source code is discarded for functions and operators when
they are created by the editor or by ⎕FIX. See also Discard Source Information on
page 43.

Y is 0 or 1.

If Y is 0 (the default), source code is retained in the workspace when an object is
fixed.

If Y is 1, source code is not retained in the workspace when an object is fixed (source
code already retained in the workspace is not discarded).

In all case the result R is the previous setting (0 or 1).

For further information, see Source as Typed on page 13.

Hash Table Size {R}←8468⌶Y

Increases the amount of workspace allocated to internal hash tables. These tables are
created when a set primitive is executed or by the Hash Array function (1500⌶).

Note:

The purpose of this function is to allow the user to evaluate potential side-effects
of the proposed increase in table size in the next major version of Dyalog.

Y may be ⍬, or an integer 0, 1, 2, or 3.

If Y is 1, 2 or 3 the hash table size is increased by the factor 2*Y. If Y is 0, the hash
table size is reset to its default value. In these cases, the shy result R is the previous
value of the scale factor.

If Y is ⍬ the size is unaffected and the (non-shy) result is the current value of the
scale factor.

It is recommended that users test their code using the maximum value 3.

For more information, see Programming Reference Guide: Search Functions and
Hash Tables and Language Reference Guide: Hash Array.



Chapter 3: Language Reference Changes 45

Lookup Table Size R←8469⌶Y

Increases the maximum amount of workspace allocated to internal lookup tables.
These tables are created when a set primitive is executed. Lookup tables are faster
than hash tables, and are used when hashing is not required.

Note:

The purpose of this function is to allow the user to evaluate potential side-effects
of the proposed increase in table size in the next major version of Dyalog.

Y may be ⍬, or an integer from 0 to 16777216.

If Y is between 1 and 16777216 the function sets the lookup table size in bytes to that
value. If Y is 0, the lookup table size is reset to its default value. In both cases, the
shy result R is the previous value of the table size.

If Y is ⍬ the size is unaffected and the (non-shy) result is the current value of the
scale factor.

It is recommended that users test their code using the maximum value.

For more information, see Programming Reference Guide: Search Functions and
Hash Tables and Language Reference Guide: Hash Array.



Chapter 3: Language Reference Changes 46



Chapter 4: Object Reference Changes 47

Chapter 4:

Object Reference Changes

AllowContextMenu Property

Applies To: HTMLRenderer  

Description

This is a Boolean property that controls whether (1) or not (0)the context menu. is
displayed when the user requests it. The default is 1



Chapter 4: Object Reference Changes 48

ExecuteJavaScript Method 839

Applies To: HTMLRenderer  

Description

This method is used to execute JavaScript in an HTMLRenderer object.

The argument to ExecuteJavaScript is a single item as follows:

[1] Code character vector containing JavaScript code

The shy result of ExecuteJavaScript is currently 1; this may change.

Example

hr.ExecuteJavaScript 'alert("Hello")'

GetZoomLevel Method 838

Applies To: HTMLRenderer  

Description

This method is used to retrieve the current CEF ZoomLevel of the HTMLRenderer.

See SetZoomLevel on page 50.

IsLoading Property

Applies To: HTMLRenderer  

Description

IsLoading is a Boolean property whose value is 1 if the browser is currently loading,
or 0 when the frame content is completely loaded.



Chapter 4: Object Reference Changes 49

LoadEnd Event 836

Applies To: HTMLRenderer  

Description

A LoadEnd event is raised when a particular frame has finished loading. Multiple
frames may be loading at the same time. Sub-frames may start or continue to load
even after the main frame has finished loading.

A common technique is to wait for the main frame to finish loading before further
interaction with the HTMLRenderer instance. In this case, you should set up an event
handler on the LoadEnd event and check the 4th element which indicates if the
loaded frame is the main frame.

You may use the IsLoading property to check if the HTMLRenderer is still loading.

The event message reported as the result of ⎕DQ, or supplied as the right argument to
your callback function, is a 5-element vector as follows :

[1] Object ref or character vector

[2] Event 'LoadEnd' or 836

[3] url The URL of the loaded frame

[4] Flag 1 if the loaded frame is the "main" frame, 0 otherwise

[5] Code The HTTP status code as a result of loading the frame



Chapter 4: Object Reference Changes 50

SetZoomLevel Method

Description

Sets the CEF ZoomLevel. The default (unzoomed) level is 0. Setting a positive value
will increase the zoom, whereas setting a negative will decrease the zoom. The zoom
scale is not linear; rather the effective scaling is approximately 1.2*level, so, setting
the ZoomLevel to 1 will result in an approximate 20% size increase. ZoomLevel
affects all instances of HTMLRenderer windows; it is not possible to have different
ZoomLevels for individual windows.

The argument to SetZoomLevel is a single numeric value:

[1] ZoomLevel Numeric

Examples
∇ hr Zoom level;lb;in

[1] hr.SetZoomLevel level
[2] level←⍕hr.GetZoomLevel
[3] ((level='¯')/level)←'-'
[4] lb←'<label>Zoom Level is </label>'
[5] in←'<input type="number" value="',level,'"></input>'
[6] hr.HTML←lb,in

∇

hr.⎕WC'HTMLRenderer' ('Caption' 'ZoomLevel Method')
hr Zoom 0



Chapter 4: Object Reference Changes 51

hr Zoom 1

hr Zoom 2

hr Zoom ¯1



Chapter 4: Object Reference Changes 52



Index 53

Index

A

AllowContextMenu 47
AllowLateBinding option 33

B

Bug Fixes 15

C

CEF 17
classes

fix script 29

D

dyadic primitive operators
variant 32

DYALOG_DISCARD_FN_SOURCE
parameter 24
DYALOG_GUTTER_ENABLE parameter 23
DYALOG_INITSESSION parameter 24
DyalogLink parameter 24
DyalogStartup_X parameter 24
DyalogStartupSE parameter 25

E

Events
LoadEnd 49

ExecuteJavaScript 48

F

file
hold 28

fix script 29
FixWithErrors option 32

G

GetZoomLevel 48

H

hash 16
holding component files 28

I

i-beam
memory manager statistics 39

InjectReferences option 33
Interoperability 19
IsLoading 48

K

Key Features 1
key operator glyph 22

L

LoadEnd 49
Log_File parameter 26

M

MAXWS parameter 40
memory manager statistics 39
Methods

ExecuteJavaScript 48
GetZoomLevel 48
SetZoomLevel 50

N

nest/partition function glyph 22



Index 54

O

over operator glyph 22

P

PCRE2 17
Principal option 32
ProgressCallback option 5
Properties

AllowContextMenu 47
IsLoading 48

Q

Quiet option 32

R

rank operator glyph 22
RConnect 17
releasing component files 28

S

session ghutter 12
SetZoomLevel 50
source as typed 13
stencil operator glyph 22
Syncfusion 17
System Requirements 18

T

tokens
allocate token numbers 37

V

variant operator 32
variant operator glyph 22

W

where/interval index function glyph 22


	Chapter 1: Highlights
	Key Features
	Extension to Native File Functions
	Lexical Scope in Scripts
	Session Gutter
	Source as Typed
	Bug Fixes
	Announcements
	System Requirements
	Interoperability

	Chapter 2: Configuration Parameters
	DYALOG_GUTTER_ENABLE
	DYALOG_DISCARD_FN_SOURCE
	DYALOG_INITSESSION
	DyalogLink
	DyalogStartup_X
	DyalogStartupSE
	Log_File

	Chapter 3: Language Reference Changes
	File Hold
	Fix Script
	Allocate Token Range
	Set aplcore Parameters
	Memory Manager Statistics
	Enable Compression of Large Components
	Discard Source Information
	Discard Source Code
	Hash Table Size
	Lookup Table Size

	Chapter 4: Object Reference Changes
	AllowContextMenu
	ExecuteJavaScript
	GetZoomLevel
	IsLoading
	LoadEnd
	SetZoomLevel

	Index

