
Dyalog
Release Notes

Dyalog version 18.2

The tool of thought for software solutions



Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2022 by Dyalog Limited
All rights reserved.

Dyalog Release Notes

Dyalog version 18.2
Document Revision: 20240214_182

Unless stated otherwise, all examples in this document assume that ⎕IO ⎕ML ← 1

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Array Editor is copyright of davidliebtag.com.
Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle®, JavaScript™ and Java™ are registered trademarks of Oracle and/or its
affiliates.
UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively
through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark of Microsoft Corporation in the U.S. and other
countries.
macOS® and OS X® (operating system software) are registered trademarks of Apple
Inc. in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.



iii

Contents

Chapter 1: Highlights 1
Key Features 1
Announcements 3
System Requirements 5
Interoperability 6
Load Parameter 10
File Associations 12
Shell Scripts 13

Chapter 2: Language Reference Changes 17
Extended Attributes 17
JSON Extension 20
Fix Script 24
Set Shell Script Debug Options 28
Read DataTable 28
Verify .NET Interface 32
Sample Probability Distribution 34

Chapter 2: Object Reference Changes 37
CornerTitleBCol 38
FireOnce 39

Index 41





Chapter 1: Highlights 1

Chapter 1:

Highlights

Key Features
Upgrading from Version 17.1 to Version 18.2
Please note that if you are upgrading from Version 17.1 to Version 18.2, you should
read the Release Notes for Version 18.0 in conjunction with this document.

Shell Scripts
It is now possible to run Dyalog APL from a script. See Shell Scripts on page 13.

New Language Features
l ⎕ATX is a new system function that provides information about a name in a
workspace, including its usage, history, restrictions, role and origin. See
Extended Attributes on page 17. Dyalog Ltd recommends using ⎕ATX in
preference to ⎕AT, ⎕NC, ⎕NR, ⎕SIZE and ⎕SRC (and some of the
functionality of 5179⌶).

Improved Language Features
l ⎕JSON has been extended to recognise APL data structures commonly used to
represent datasets. See JSON Extension on page 20.

l ⎕DT now supports the format used by the DateTime property of the
DateTimePicker object.

l ⎕FIX provides 3 new Variant options that control how Classes and
Namespaces are fixed. See Fix Script on page 24.

l ⎕R and ⎕S can now transform characters by case folding (\f) as well as by
case conversion (\l and \u).

l ⎕KL is now supported by the Unicode Edition.
l 2011⌶ has been extended to produce inverted tables and to provide an option
for converting Int64 objects to DECF. See Read DataTable on page 28.



Chapter 1: Highlights 2

New I-Beam Functions
l 1010⌶ provides options for debugging Shell Scripts. See Set Shell Script
Debug Options on page 28.

l 2250⌶ provides information about the Dyalog interface to .NET. See Verify
.NET Interface on page 32.

l 16080⌶ generates random numbers of a given distribution. See Sample
Probability Distribution on page 34. Note that this is not currently
implemented for AIX.

Colour Schemes
Three third-party colour schemes have been added:

l Dracula theme (draculatheme.com) by Zeno Rocha: dark purple
l New Moon theme (taniarascia.github.io/new-moon) by Tania Rascia: dark
grey

l Nord theme (nordtheme.com) by Arctic Ice Studio and Sven Greb: dark blue

GUI Improvements
l The FireOnce property has been added to the Timer object. See FireOnce on
page 39.

l The Align property now applies to single-line Edit objects, specifies the
vertical alignment of the text.

l The new CornerTitleBCol property specifies the background colour of the left
corner rectangle in a Grid. See CornerTitleBCol on page 38.

User Command Framework version: 2.5
l The cache file is now called UserCommand{UcmdMajor}
{UcmdMinor}.{DyalogMajor}{DyalogMinor}{U|C}
{bits}.cache
e.g. UserCommand25.182U64.cache

l When a user command signals an error, ⎕DMX is set to
⎕SE.SALTUtils.dmx

Link Integration
A number of enhancements have been made to further integrate Link into Dyalog.
For more information about Link, see https://dyalog.github.io/link/3.0/.

l The Load parameter has been extended to load and run source code from a
directory at start-up. See Load Parameter on page 10.

l During installation, Dyalog establishes suitable file associations for Dyalog
file types and adds menu items to the Windows Explorer context menu for
directories. See File Associations on page 12.



Chapter 1: Highlights 3

Announcements
Withdrawal of Support for Version 17.0
The supported Versions of Dyalog APL are now Version 18.2, 18.0, and 17.1.
Version 17.0 and earlier versions are no longer supported.

Extended Support for Version 17.1
As previously announced, support for Version 17.1 has been extended; version 17.1
will remain on support along with 18.0 and 18.2 when the next version of Dyalog is
released.

APLScript Examples (documentation)
The APLScript examples provided in Samples/aplscript and
Samples/aplclasses have .apln extensions in line with the new source code
file naming conventions. In this respect the .NET documentation is out of date. Files
with the extension .apl are no longer used.

Forthcoming Removal of 819⌶
The system function ⎕C was introduced in version 18.0, at which point Dyalog
announced that 819⌶ was deprecated. 819⌶ will still be present in the version which
follows 18.2, but Dyalog intends that it will be removed from the version after that.

PCRE2 Upgrade
Dyalog uses the PCRE 8.x library to support regular expression searches in ⎕R, ⎕S
and in the IDE. PCRE 8 is widely used, but future development and maintenance of
PCRE will be based upon the newer PCRE2 (PCRE 10.x) library. Dyalog intends to
switch to the new library in a forthcoming release.

Removal of Syncfusion from Microsoft Windows
installation images
The installation images for Dyalog APL for Microsoft Windows include the
Syncfusion library of WPF controls. Dyalog version 18.2 will be the last version that
includes these libraries in the installation images; in future Dyalog versions they will
be made available using an alternative delivery mechanism. This change is the first
step in supplying smaller installation images (and thus reduced disk requirements) by
not including some of the less-used but large features of Dyalog APL for Windows.



Chapter 1: Highlights 4

Chromium Embedded Framework (CEF)
The CEF is included with Dyalog APL, and therefore not a requirement in the usual
sense. The version of CEF that is included with version 18.2 for Windows and
macOS is #90, while Linux installations include #79. Dyalog is aware that these
versions are already quite old, and aims to include much more up-to-date versions of
the CEF in future releases. Please contact Dyalog support to inquire whether a more
up-to-date version has become available since the first release of Dyalog version
18.2.

Planned Hardware/Operating System Requirements
for the next version
Dyalog Ltd expects that the next version of Dyalog will require the following
minimum platform requirements:

Operating
System Version

Microsoft
Windows Windows 8/Server 2012

AIX AIX 7.2.5 on POWER 9

Linux
Versions of distributions which are in standard support for at least
3 months from when the next version of Dyalog is released. Note
that Linux on POWER is not supported.

macOS macOS Big Sur 11.6.1

Raspberry
Pi Raspbian Buster 32-bit

Further updates to this information will appear on the Forums as and when available.



Chapter 1: Highlights 5

System Requirements
Microsoft Windows
Dyalog APL Version 18.2 is supported on versions of Microsoft Windows from
Windows 8 or Windows Server 2012 upwards.

Microsoft .NET Interface
Dyalog APL Version 18.2 .NET Interface requires Version 4.0 or greater of the
Microsoft .NET Framework. It does not operate with earlier versions of .NET.

For full Data Binding support (including support for the
INotifyCollectionChanged interface1) Version 18.2 requires .NET Version
4.5. The Syncfusion libraries supplied with Version 18.2 require .NET 4.6.

The examples provided in the sub-directory Samples/asp.net require that IIS is
installed. If IIS and ASP.NET are not present, the asp.net sub-directory will not
be installed during the Dyalog installation.

AIX
For AIX, Version 18.2 requires AIX 7.2 or higher, and a POWER9 chip or higher.

Raspberry Pi
On the Raspberry Pi, Dyalog 32-bit Unicode supports 32-bit Raspbian Buster or later
(Bookworm requires Dyalog version 18.2.48479 or later) but is not supported on the
Raspberry Pi Pico. There is no 64-bit version of Dyalog for the Pi, nor will the 32-bit
version run under 64-bit Raspbian.

Non-Pi Linux
For non-Pi Linux, Version 18.2 only exists as 64-bit interpreters - there are no 32-bit
versions. It is built on Ubuntu 18.04; it should run on all recent distributions. For
further information, see the Dyalog UNIX and Linux forum.

macOS
Version 18.2 requires macOS Big Sur 11.6.1 or higher. There is no 32-bit version.

1This interface is used by Dyalog to notify a data consumer when the contents of a variable, that is
data bound as a list of items, changes.

https://forums.dyalog.com/viewforum.php?f=20


Chapter 1: Highlights 6

Interoperability
Introduction
Workspaces and component files are stored on disk in a binary format (illegible to
text editors). This format differs between machine architectures and among versions
of Dyalog. For example, a file component written by a PC may well have an internal
format that is different from one written by a UNIX machine. Similarly, a workspace
saved from Dyalog Version 18.2 will differ internally from one saved by a previous
version of Dyalog APL.

It is convenient for versions of Dyalog APL running on different platforms to be able
to interoperate by sharing workspaces and component files. From Version 11.0,
component files and workspaces can generally be shared between Dyalog interpreters
running on different platforms. However, this is not always possible and the
following sections describe limitations in interoperability:

Code and ⎕ORs
Code that is saved in workspaces, or embedded within ⎕ORs stored in component
files, can only be read by the Dyalog version which saved them and later versions of
the interpreter. In the case of workspaces, a load (or copy) into an older version
would fail with the message:

this WS requires a later version of the interpreter.

Every time a ⎕OR object is read by a version later than that which created it, time
may be spent in converting the internal representation into the latest form. Dyalog
recommends that ⎕ORs should not be used as a mechanism for sharing code or
objects between different versions of APL.

"Ordinary" Arrays
With the exception of the Unicode restrictions described in the following paragraphs,
Dyalog APL provides interoperability for arrays that only contain (nested) character
and numeric data. Such arrays can be stored in component files - or transmitted using
TCPSocket objects and Conga connections, and shared between all versions and
across all platforms.

Full cross-platform interoperability of component files is only available for large-
span component files.



Chapter 1: Highlights 7

Null Items (⎕NULL) and Compressed Components
⎕NULLs and components from compressed component files that were created in
Version 18.0 and later can be brought into Versions 16.0, 17.0 and 17.1 provided that
the interpreters have been patched to revision 38151 or higher. Attempts to bring
⎕NULL or compressed component into earlier versions of Dyalog APL or lower
revisions of the aforementioned versions will fail with:

DOMAIN ERROR: Array is from a later version of APL.

Object Representations (⎕OR)
An attempt to ⎕FREAD a component containing a ⎕OR that was created by a later
version of Dyalog APL will generate DOMAIN ERROR: Array is from a
later version of APL. This also applies to APL objects passed via Conga or
TCPSockets, or objects that have been serialised using 220⌶.

32 vs. 64-bit Component Files
It is no longer possible to create or write to small-span (32-bit) files; however it is
still currently possible to read from small span files. Setting the second item of the
right argument of ⎕FCREATE to anything other than 64 will generate a
DOMAIN ERROR.

Note that small-span (32-bit-addressing) component files cannot contain Unicode
data. Unicode editions of Dyalog APL can only write character data which would be
readable by a Classic edition (consisting of elements of ⎕AV).

External Variables
External variables are subject to the same restrictions as small-span component files
regarding Unicode data. External variables are unlikely to be developed further;
Dyalog recommends that applications which use them should switch to using mapped
files or traditional component files. Please contact Dyalog if you need further advice
on this topic.

32 vs. 64-bit Interpreters
There is complete interoperability between 32- and 64-bit interpreters, except that:

l 32-bit interpreters are unable to work with arrays or workspaces greater than
2GB in size.

l Under Windows a 32-bit version of Dyalog APL may only access 32-bit
DLLs, and a 64-bit version of Dyalog APL may only access 64-bit DLLs.
This is a Windows restriction.



Chapter 1: Highlights 8

l Objects saved in the workspace that are connected to external resources lose
those connections when loaded or copied by an interpreter with different
architecture.

In particular:

If a workspace containing:

l .NET objects or objects created by ⎕WC

or

l variables containing the ⎕OR of or refs to such objects

is loaded by an interpreter with differing architecture (32 vs 64) from the version that
saved it, Dylaog displays:

GUI objects could not be recreated;
the file is from an incompatible architecture

The names of all incompatible objects are instantiated as plain namespaces, with any
compatible contents (such as functions and variables) preserved.

If a component containing the ⎕OR of or refs to such objects is read by an interpreter
with differing architecture (32 vs 64) from the version that wrote it, each
incompatible object is instantiated as a plain namespace, preserving compatible
contents as above.

Unicode vs. Classic Editions
Two editions are available on some platforms. Unicode editions work with the entire
Unicode character set. Classic editions (which are only available to commercial and
enterprise users for legacy applications) are limited to the 256 characters defined in
the atomic vector, ⎕AV. 

Component files have a Unicode property. When this is enabled, all characters will
be written as Unicode data to the file. The Unicode property is always off for small-
span (32-bit addressing) files, as these cannot contain Unicode data. For large-span
(64-bit addressing) component files, the Unicode property is set on by Unicode
Editions and off by Classic Editions, by default. The Unicode property can
subsequently be toggled on and off using ⎕FPROPS.

When a Unicode edition writes to a component file that cannot contain Unicode data,
character data is mapped using ⎕AVU; it can therefore be read without problems by
Classic editions.

A TRANSLATION ERROR will occur if a Unicode edition writes to a non-Unicode
component file (that is either a 32-bit file, or a 64-bit file when the Unicode property
is currently off) if the data being written contains characters that are not in ⎕AVU. 



Chapter 1: Highlights 9

Likewise, a Classic edition will issue a TRANSLATION ERROR if it attempts to read
a component containing Unicode data that is not in ⎕AVU from a component file.

A TRANSLATION ERROR will also be issued when a Classic edition attempts to
)LOAD or )COPY a workspace containing Unicode data that cannot be mapped to
⎕AV using the ⎕AVU in the recipient workspace. Note that the problematic Unicode
data may be in that part of a workspace which holds the information needed to
generate ⎕DM and ⎕DMX, so calling )reset before )save in the Unicode
interpreter may eliminate the TRANSLATION ERRORs.

TCPSocket objects have an APL property that corresponds to the Unicode property
of a file, if this is set to Classic (the default) the data in the socket will be
restricted to ⎕AV, if Unicode it will contain Unicode character data. As a result,
TRANSLATION ERRORs can occur on transmission or reception in the same way as
when updating or reading a file component.

The symbols ⊆, ⍸, ⍤, ⍠, ⌸, ⌺ and ⍥ used for the Nest (Interval Index) and Where
(Partition) functions, the Rank, Variant, Key, Stencil and Over operators respectively
are available only in the Unicode edition. In the Classic edition, these symbols are
replaced by ⎕U2286, ⎕U2378, ⎕U2364, ⎕U2360, ⎕U2338, ⎕U233a and
⎕U2365 respectively. In both Unicode and Classic editions Variant may be
represented by ⎕OPT.

Very large array components
An attempt to read a component greater than 2GB in 32-bit interpreters will result in
a WS FULL.

TCPSockets and Conga
TCPSockets and Conga can be used to communicate between differing versions of
Dyalog APL and are subject to similar limitations to those described above for
component files.

Auxiliary Processors
A Dyalog APL process is restricted to starting an AP of exactly the same architecture
from the same operating system. In other words, the AP must share the same word-
width and byte-ordering as its interpreter process.

Session Files
Session (.dse) files can only be used on the platform on which they were created and
saved. Under Microsoft Windows, Session files may only be used by the architecture
(32-bit-or 64-bit) of the Version of Dyalog that saved them.



Chapter 1: Highlights 10

Load Parameter
This parameter is a character string that specifies the name of a workspace, or a
directory or text file containing APL source code, to be loaded when Dyalog starts.

If Load specifies a text file, 2 ⎕FIX is used to import the file contents and associate
that file with each of the objects that have been fixed in the workspace.

If Load specifies a directory, Link is used to associate the directory with the active
workspace and to import the code. For more information about Link, see
https://dyalog.github.io/link/3.0/.

The Load parameter will normally be specified on the command line or in a
Configuration file.

Having loaded the workspace, or fixed the code from the named file or directory,
Dyalog executes the expression specified by the LX parameter if it is set.

If LX is not set, Dyalog checks whether or not the -x command line option was
specified. If so, no further action is taken.

Otherwise, Dyalog executes an expression which is derived as follows.

If the value of Load is a directory, Dyalog will execute the expression:

Run ,⊂<Load>

where <Load> is the value of the Load parameter.

If the value of Load is the name of a file, Dyalog determines whether or not the file
is a workspace by its internal signature.

If the file is a workspace the expression to be executed is specified by its ⎕LX.

Otherwise, if the file extension is .aplf .aplc or .apln the expression is shown
in the table below, where filename is the file name specified by the Load
parameter without its extension.

File Extension Type Expression

.aplf Function source code filename 0⍴⊂''

.aplc Class source code filename.Run 0⍴⊂''

.apln Namespace source code filename.Run 0⍴⊂''



Chapter 1: Highlights 11

Notes:

l The Load parameter overrides a workspace name specified as the last item on
the command line.

l The option to load APL source code from a text file applies only to the
Unicode version and is not supported by the Classic version.

l The argument 0⍴⊂'' may change in a future version of Dyalog.
l Nothing is executed when code is loaded from source files that define
operators (.aplo) or Interfaces (.apli).



Chapter 1: Highlights 12

File Associations
During installation, Dyalog establishes the following file associations:

Type File Extension Application

Shell Scripts .apls
Dyalog script execution
engine via Windows Power
Shell

Sources .aplc, .aplf, .apli,
.apln, .aplo, .dyalog Dyalog Editor

Configuration .dcfg Dyalog Editor

SALT apps .dyapp Dyalog

Workspaces .dws Dyalog

When you double-click on a file with one of the above extensions, the file is opened
with the corresponding application.

In addition, two items are added to the Windows Explorer context menu for
directories, namely Load with Dyalog and Run with Dyalog. Both these items start
Dyalog and attempt to import code from the corresponding directory using Link. The
Run with Dyalog option also calls the function named Run if it exists. See Load
Parameter on page 10.

For more information about Link, see https://dyalog.github.io/link/3.0/.

The ]fileAssociations user command may be employed to alter these settings.
For details, enter:

]fileassociations -?



Chapter 1: Highlights 13

Shell Scripts
Shell scripts are typically executed from a terminal (or shell).

A script is executed by typing its name. User input is entered from the same terminal
or shell and output is displayed on the terminal or shell.

UNIX
On UNIX (and related) systems a Dyalog APL shell script is a text file with the
following as the first line:

#!/usr/local/bin/dyalogscript

The script file must be executable. There are three execute bits relating to the user,
the group and everyone else.

Windows
On Windows systems a Dyalog APL shell script is a text file with a .apls file
extension. An initial line beginning with #! is only required to include configuration
parameters (see below), but if included it must include a file name even though that
will be ignored. For portability it is recommended that you include the #! line.

Note

Shell scripts are Unicode only and are not supported by the Classic Edition.

Any content that follows the #! line (if present) is used as input into a Dyalog
session (as if the Extended Multiline Input feature has been enabled).

Input and Output
⎕ and ⍞ input are taken from characters typed by the user into the terminal or shell
(Standard input or stdin for short). Anything assigned to ⎕ and ⍞ will be displayed in
the terminal window using streams Standard output (stdout) and Standard error
(stderr) respectively. Note that default output, that is, output to the session without
assignment to ⎕ or ⍞ is NOT displayed. Redirections of stdin, stdout, and stderr are
supported.



Chapter 1: Highlights 14

Examples

The following then are all valid APL shell scripts:

#!/usr/local/bin/dyalogscript
'this text will not be seen'
⎕←2+2

#!/usr/local/bin/dyalogscript
∇r←l plus r
r←l+r
∇
⎕←2 plus 2

#!/usr/local/bin/dyalogscript
plus←{
⍺+⍵
}
⎕←2 plus 2

Errors
Untrapped errors in a script will cause the termination of the process, further lines in
the script will NOT be processed.

#!/usr/local/bin/dyalogscript
⎕←'this will be seen'
⎕←÷0
⎕←'this will NOT be seen'

However, the multiline input mechanism allows for :Trap statements, so the
following will run to completion:

#!/usr/local/bin/dyalogscript
⎕←'this will be seen'
:Trap 0

⎕←÷0
:EndTrap
⎕←'this will ALSO be seen'

Configuration Parameters:
Configuration parameters may be specified in a Configuration file located in the
same directory as the script, or may be specified on the first line of the script. The
name of the configuration file is derived from the name of the script file by replacing
its file extension (if any) by the extension .dcfg. Configuration parameters
specified in the Windows Registry or by environment variables are not honoured in
Dyalog Shell Scripts.



Chapter 1: Highlights 15

Example (first line of script)

#!/usr/local/bin/dyalogscript MAXWS=3GB
⎕←⎕WA
⎕←2 ⎕nq '#' 'GetEnvironment' ('MAXWS' 'WSPATH')

Example (configuration file)
{ settings: {

/* Maximum workspace size */
MAXWS: "256M",
/* wspath */
WSPATH: ["c:/tmp","f:/devt/tmp"]

}}

Note that the interpreter reads both of these locations, the command line in the script
file overrides any setting in the .dcfg file.

Debugging:
It is not currently possible to use RIDE to debug APL shell scripts. However there is
an I-beam function, which can be used to provide some simple debugging/diagnostic
information. See Set Shell Script Debug Options on page 28.



Chapter 1: Highlights 16



Chapter 2: Language Reference Changes 17

Chapter 2:

Language Reference Changes

The following table summarises the main changes to language features in Version
18.2.

Function/Operator Description Change

⎕ATX Extended Attributes New system function

⎕DT DateTime New timestamp format
¯30

⎕FIX Fix Script New Variant options

⎕JSON JSON export New feature to export
datasets

1010⌶
Set Shell Script Debug
Options New I-Beam function

2011⌶ Read DataTable Enhanced I-Beam function

2250⌶ Verify .NET Interface New I-Beam function

16080⌶
Sample Probability
Distribution New I-Beam function

Extended Attributes R←X ⎕ATX Y

This function provides information about a name in a workspace, including its usage,
history, restrictions, role and origin.

Note: To retrieve this information for an unnamed value, wrap ⎕ATX in a dfn and use
the name ⍵, for example {60⎕ATX'⍵'}

Y can be a simple character scalar, a simple or enclosed character vector, or a vector
of character scalars and vectors (as least one must be a character vector) of the name
(s) for which information is required.

X can be a scalar or a vector indicating the information required:



Chapter 2: Language Reference Changes 18

Group X Meaning Default

Identity 0 Name ''

Syntax

10 Function result (0: none or not a function, 1:
explicit, ¯1: shy) 0

11 Function valence (0: niladic, 1: monadic, 2:
dyadic, ¯2: ambivalent) 0

12 Operator valence: (0: not an operator, 1:
monadic, 2: dyadic) 0

Last edit

20 Author of last edit ''

21
Number of days passed between 1899-12-31 at
00:00 UTC and last edit (includes fractional
days)

0

22 Local timestamp at last edit (format is the 7-
item vector described by ⎕TS.) ⍬

23 Number of bytes required for storage without
sharing 0

Restrictions

30 Source can be displayed ¯1

31 Execution can be suspended mid-execution ¯1

32 Responds to weak interrupt ¯1

Class*

40
Syntactic supra-class (¯1: invalid name, 0:
undefined, 1: label, 2: variable, 3: function, 4:
operator, 8: event, 9: object)

¯1

41

Syntactic sub-class (0: none, 1:
traditional/plain, 2: field/dynamic/instance, 3:
property/derived/primitive, 4: class, 5:
interface, 6: external, 7: external interface)

0

42 Full syntactic class (sum of supra- and sub-
class) ¯1



Chapter 2: Language Reference Changes 19

Group X Meaning Default

Source

50 File name ''

51 File encoding ''

52 File checksum ''

53

File line separators (13: Carriage Return, 10:
Line Feed, 13 10: Carriage Return followed
by Line Feed, 133: New Line, 11: Vertical
Tab, 12: Form Feed, 8232: Line Separator,
8233: Paragraph Separator)

⍬

54 Definition's offset from top 0

55 Number of lines in definition 0

Definition

60 Verbatim source (as typed) 0⍴⊂''

61 Normalised source (with AUTOFORMAT=1
and TABSTOPS=4) 0⍴⊂''

62 Most precise available source (verbatim with
fallback to normalised) 0⍴⊂''

* Names in the Class group that can return ¯1 (meaning "invalid name") might
return a different value in future versions of Dyalog, including values that are not
currently possible and ones that deviate from the current ⎕NC values.

R depends on the combination of X and Y:

X

Scalar Vector

Y

Simple character
scalar/vector

Requested value
(not enclosed) Vector of requested values

Enclosed character
vector

Requested value
(enclosed)

Scalar containing vector of
requested values

Vector of character
scalars/vectors

Vector of
requested values

Outer shape from ⍴⍺,
inner shape from ⍴⍵

Examples:

Att
10 11 12 20 23 30 31 32 40 41 42 50 51 52 53 54 55



Chapter 2: Language Reference Changes 20

foo←{⍵ ⍵}
Att ⎕ATX 'foo'

┌─┬──┬─┬┬───┬──┬──┬──┬─┬─┬───┬┬┬┬┬─┬─┐
│1│¯2│0││616│¯1│¯1│¯1│3│2│3.2│││││0│0│
└─┴──┴─┴┴───┴──┴──┴──┴─┴─┴───┴┴┴┴┴─┴─┘

x←42
Att ⎕ATX 'x'

┌─┬─┬─┬┬──┬──┬──┬──┬─┬─┬───┬┬┬┬┬─┬─┐
│0│0│0││32│¯1│¯1│¯1│2│1│2.1│││││0│0│
└─┴─┴─┴┴──┴──┴──┴──┴─┴─┴───┴┴┴┴┴─┴─┘

10 11 12 30 31 32 40 41 42 ⎕ATX 'x' 'foo'
┌───┬────┬───┬─────┬─────┬─────┬───┬───┬───────┐
│0 1│0 ¯2│0 0│¯1 ¯1│¯1 ¯1│¯1 ¯1│2 3│1 2│2.1 3.2│
└───┴────┴───┴─────┴─────┴─────┴───┴───┴───────┘

2 ⎕FIX'foo ← {' '⍵ ⍵ }'
60 61 ⎕ATX 'foo'

┌───────────────┬──────────────────┐
│┌───────┬─────┐│┌──────┬─────────┐│
││foo ← {│⍵ ⍵ }│││ foo←{│ ⍵ ⍵}││
│└───────┴─────┘│└──────┴─────────┘│
└───────────────┴──────────────────┘

src←':namespace c' ':endnamespace' '' 'range←
{⍺↓⍳⍵}'

2 ⎕FIX src
55 54 ⎕ATX'c' 'range'

┌───┬───┐
│2 1│0 3│
└───┴───┘

2 1↑¨0 3↓¨⊂src
┌────────────────────────────┬──────────────┐
│┌────────────┬─────────────┐│┌────────────┐│
││:namespace c│:endnamespace│││range←{⍺↓⍳⍵}││
│└────────────┴─────────────┘│└────────────┘│
└────────────────────────────┴──────────────┘

JSON Extension

Version 18.2 includes an extension to ⎕JSON that provides the ability to export APL
arrays which have a specific data structure that would not otherwise be recognised.
The structures that have been selected for this special treatment are ones that are
often used to represent tables or datasets. The extension allows ⎕JSON to render
APL table representations in a format that would be expected by many other
programming languages including JavaScript.



Chapter 2: Language Reference Changes 21

Datasets
The term dataset is used here to mean a collection of data, usually presented in
tabular form. Each named column represents a particular variable. Each row
corresponds to a given member of the dataset in question. It lists values for each of
the variables, such as height and weight of an object.

Datasets are often represented in APL as a collection of variables.

Fields←'Item' 'Price' 'Qty'
Items←'Knife' 'Fork'
Price←3 4
Qty←23 45

As an aside, note that using this scheme each variable represents an inverted index
into the dataset and enables rapid searches.

(Price<4)/Items
┌─────┐
│Knife│
└─────┘

A conventional way to represent this dataset is as a matrix:

Fields⍪⍉↑ Items Price Qty
┌─────┬─────┬───┐
│Item │Price│Qty│
├─────┼─────┼───┤
│Knife│3 │23 │
├─────┼─────┼───┤
│Fork │4 │45 │
└─────┴─────┴───┘

Another is as a 2-item vector containing the names of the fields and a matrix of their
values:

(Fields (⍉↑Items Price Qty))
┌────────────────┬────────────┐
│┌────┬─────┬───┐│┌─────┬─┬──┐│
││Item│Price│Qty│││Knife│3│23││
│└────┴─────┴───┘│├─────┼─┼──┤│
│ ││Fork │4│45││
│ │└─────┴─┴──┘│
└────────────────┴────────────┘



Chapter 2: Language Reference Changes 22

A third way retains the inverted nature of the data structure, storing the values as a
vector. The advantage of this structure is that it consumes significantly less memory
compared to the matrix forms, because numeric columns are stored as simple
numeric vectors.

(Fields (Items Price Qty))
┌────────────────┬────────────────────────┐
│┌────┬─────┬───┐│┌────────────┬───┬─────┐│
││Item│Price│Qty│││┌─────┬────┐│3 4│23 45││
│└────┴─────┴───┘│││Knife│Fork││ │ ││
│ ││└─────┴────┘│ │ ││
│ │└────────────┴───┴─────┘│
└────────────────┴────────────────────────┘

In JSON, these three data structures are all expressed as follows:

[
{

"Item": "Knife",
"Price": 3,
"Qty": 23

},
{

"Item": "Fork",
"Price": 4,
"Qty": 45

}
]

The extension to ⎕JSON has been implemented by introducing a wrapper.

Wrappers
A wrapper is an enclosed vector of the form:

⊂(code special)

The nature of the special data structure is identified within the wrapper by a
leading numeric code. Code 1 is used to identify JSON values such as null, true
and false. Codes 2, 3 and 4 are used to identify different forms of datasets.

This wrapper mechanism has been chosen to identify special treatment because a
scalar enclosure cannot be represented in JSON/JavaScript.

A wrapper may be specified directly in the right argument to ⎕JSON and/or as part
of the array structure specified by the right argument, as a sub-array or in a
namespace. This allows a special array to be processed appropriately as part of a
general data structure that is to be rendered in JSON notation.



Chapter 2: Language Reference Changes 23

Examples

Fields,[1]↑[1]Items Price Qty
┌─────┬─────┬───┐
│Item │Price│Qty│
├─────┼─────┼───┤
│Knife│3 │23 │
├─────┼─────┼───┤
│Fork │4 │45 │
└─────┴─────┴───┘

⎕JSON ⊂ 2 (Fields,[1]↑[1]Items Price Qty)
[{"Item":"Knife","Price":3,"Qty":23},
{"Item":"Fork","Price":4,"Qty":45}]

Note that if you omit the wrapper the operation fails:

⎕JSON Fields,[1]↑[1]Items Price Qty)
DOMAIN ERROR: JSON export: the right argument cannot be
converted (⎕IO=1)

⎕JSON Fields,[1]↑[1]Items Price Qty)
∧

Further Examples

⎕JSON ⊂ 3 ((↑[1]Items Price Qty)Fields)
[{"Item":"Knife","Price":3,"Qty":23},
{"Item":"Fork","Price":4,"Qty":45}]

⎕JSON ⊂ 4 ((Items Price Qty)Fields)
[{"Item":"Knife","Price":3,"Qty":23},
{"Item":"Fork","Price":4,"Qty":45}]

Note that if you omit the wrapper, the operation generates a different result.

⎕JSON ((Items Price Qty)Fields)
[[["Knife","Fork"],[3,4],[23,45]],["Item","Price","Qty"]]

Selection
For codes 2, 3 and 4 the extension also provides the facility to optionally select
elements of the dataset, so the array may contain 2, 3 or 4 items:

⊂(code dataset {records} {fields})

where records and fields are integer indices that select which fields and which
records are to be exported. The following example selects the first record and the first
and third fields (Items and Qty)

⎕JSON⊂4 ((Items Price Qty)Fields)1(1 3)
[{"Item":"Knife","Qty":23}]



Chapter 2: Language Reference Changes 24

Namespaces and Sub-Arrays
Wrappers in namespaces and sub-arrays are recognised for special treatment.

Example

ns.Items←'Fork' 'Knife'
ns.Price←3 4
ns.Qty←23 45
ns.(ds←⊂4(⌽('Item' 'Price' 'Qty')(Items Price

Qty)))
⎕JSON ns

{"Items":["Knife","Fork"],"Price":[3,4],"Qty":[23,45],
"ds":[{"Item":"Knife","Price":3,"Qty":23},

{"Item":"Fork","Price":4,"Qty":45}]}

a←'the' 'answer' 'is' 42
a[3]←⊂ns.ds
⎕JSON a

["the","answer",[{"Item":"Knife","Price":3,"Qty":23},
{"Item":"Fork","Price":4,"Qty":45}],42]

Wrappers for special JSON values
Previously, the enclosed character vectors 'null', 'false' and 'true' were
used to represent the JSON values null, false and true respectively. This is still
supported, and indeed remains the only way to represent these value on import, but
for export the wrapper mechanism may be used instead.

Example

⎕JSON⊂¨(1 'null')(1 'true')(1 'false')
[null,true,false]

Fix Script {R}←{X}⎕FIX Y

⎕FIX establishes Namespaces, Classes, Interfaces and functions from the script
specified by Y in the workspace.

In this section, the term namespace covers scripted Namespaces, Classes and
Interfaces.

Y may be a simple character vector, or a vector of character vectors or character
scalars. The value of X determines what Y may contain.



Chapter 2: Language Reference Changes 25

If Y is a simple character vector, it must start with file://, followed by the name
of a file which must exist. The contents of the file must follow the same rules that
apply to Y when Y is a vector of character vectors or scalars. The file name can be
relative or absolute; when considering cross-platform portability, using "/" as the
directory delimiter is recommended, although "\" is also valid under Windows.

If specified, X must be a numeric scalar. It may currently take the value 0, 1 or 2. If
not specified, the value is assumed to be 1.

If X is 0, Y must specify a single valid namespace which may or may not be named,
or a file containing such a definition. If so, the shy result R contains a reference to
the namespace. Even if the namespace is named, it is not established per se, although
it will exist for as long as at least one reference to it exists.

If X is 1, Y must specify a single valid namespace which may or may not be named,
or a file containing such a definition. If so, the shy result R contains a reference to
the namespace. If Y contains the definition of a named namespace, the namespace is
established in the workspace.

If X is 2, Y is either a character vector containing the name of a script file, or a vector
of character vectors that represents a script.

Y may specify a series of named namespaces or function definitions, or a
combination of functions and namespaces.

l If the script contains more than one item, tradfn definitions must be delimited
by ∇symbols.

l Derived and assigned functions may be specified only within namespaces.

In this case, the shy result R is a vector of character vectors, containing the names of
all of the objects that have been established in the workspace; the order of the names
in R is not defined. Currently 2 ⎕FIX is not certain to be an atomic operation,
although this might change in future versions.

Example 1

In the first example, the Class specified by Y is named (MyClass) but the result of
⎕FIX is discarded. The end-result is that MyClass is established in the workspace
as a Class.

⎕←⎕FIX ':Class MyClass' ':EndClass'
#.MyClass



Chapter 2: Language Reference Changes 26

Example 2

In the second example, the Class specified by Y is named (MyClass) and the result
of ⎕FIX is assigned to a different name (MYREF). The end-result is that a Class
named MyClass is established in the workspace, and MYREF is a reference to it.

MYREF←⎕FIX ':Class MyClass' ':EndClass'
)CLASSES

MyClass MYREF
⎕NC'MyClass' 'MYREF'

9.4 9.4
MYREF

#.MyClass
MYREF≡MyClass

1

Example 3

In the third example, the left-argument of 0 causes the named Class MyClass to be
visible only via the reference to it (MYREF). It is there, but hidden.

MYREF←0 ⎕FIX ':Class MyClass' ':EndClass'
)CLASSES

MYREF
MYREF

#.MyClass

Example 4

The fourth example illustrates the use of un-named Classes.

src←':Class' '∇Make n'
src,←'Access Public' 'Implements Constructor'
src,←'⎕DF n' '∇' ':EndClass'
MYREF←⎕FIX src
)CLASSES

MYREF
MYINST←⎕NEW MYREF'Pete'
MYINST

Pete



Chapter 2: Language Reference Changes 27

Example 5

In the final example, the left argument of 2 allows a script containing multiple
objects to be fixed:

src←':Namespace andys' '∇foo' '2' '∇'
src,←':EndNamespace' 'dfn←{⍺ ⍵}' '∇r←tfn'
src,←'r←33' '∇' ':Class c1' '∇goo' '1'
src,←'∇' ':EndClass'
≢⎕←2⎕fix src

c1 tfn dfn andys
4

Restriction

⎕FIX is unable to fix a namespace from Y when Y specifies a multi-line dfn which is
preceded by a ⋄ (diamond separator).

⎕FIX':Namespace iaK' 'a←1 ⋄ adfn←{' '⍵' ' }'
':EndNamespace'
DOMAIN ERROR: There were errors processing the script

⎕FIX':Namespace iaK' 'a←1 ⋄ adfn←{' '⍵' ' }'
':EndNamespace'

∧

Variant Options
⎕FIX may be applied using the Variant operator with the options Quiet,
FixWithErrors and AllowLateBinding. These options apply only to namespaces
and classes specified by the script. There is no principal option.

Quiet Option

0 If the script contains errors, these are displayed in the Status
Window.

1
If the script contains errors, the errors are not shown in the Status
Window.

FixWithErrors Option
0 If the script contains errors, ⎕FIX fails with DOMAIN ERROR.

1
⎕FIX fixes all the namespaces and classes in the script
regardless of any errors they may contain.

2
If the script contains errors, ⎕FIX displays a message box
prompting the user to choose whether or not to fix all the
offending namespaces and classes in the script.



Chapter 2: Language Reference Changes 28

AllowLateBinding Option

0 ⎕FIX will only fix a Class whose Base class (if specified) is
defined in the script or is present in the workspace.

1
⎕FIX will fixes a Class whose Base class is neither defined in
the script nor present in the workspace.

Set Shell Script Debug Options R←{X}(1010⌶)Y

This function sets options for debugging Shell Scripts.

Y is an integer that selects options as follows.

If Y is 1, the lines in the script to be echoed to stderr before they are executed.. The
optional left argument X specifies a character scalar of vector that prefixes each line
of output. If X is omitted, the default is '+'.

If Y is 2, the effect is as if ⎕TRACE was set for every line of every function in the
script. In this case the left argument (if any) is ignored.

If Y is 3, it specifies a combination of the above.

The result R is the previous value of the debug options.

Read DataTable R←{X}2011⌶Y

.NET Framework only

This function performs a block read from an instance of the ADO.NET object
System.Data.DataTable. This object may only be read using an explicit row-
wise loop, which is slow at the APL level. 2011⌶ implements an internal row-wise
loop which is much faster on large arrays. Furthermore, the function handles NULL
values and the conversion of .NET datatypes to the appropriate internal APL form in
a more efficient manner than can otherwise be achieved. These 3 factors together
mean that the function provides a significant improvement in performance compared
to calling the row-wise programming interface directly at the APL level.

Y is a scalar or a 1 or 2-item array containing:

1. A reference to an instance of System.Data.DataTable.
2. An optional vector which specifies the values to which a System.DBNull

should be mapped in the corresponding columns of the result

The result R depends upon the value of the Variant option Invert. This the primary
option with a default value of 0.



Chapter 2: Language Reference Changes 29

Invert Option (Boolean)

0 The result R is a matrix with the same shape as the DataTable
referenced by ⊃Y.

1
The result R is vector whose length is the same as the number of
columns in the DataTable referenced by ⊃Y.

The optional left argument X is a numeric vector with the same length as the number
of columns in the result in the DataTable referenced by ⊃Y:

1
Specifies that the corresponding column of the result should be converted
to a string using the ToString method of the data type of column in
question.

2
Specifies that numbers of type System.Int64 in the corresponding
column of the result should be converted to DECFs (NOT into .NET
objects, which is the default)

4

Specifies that if the type of the corresponding column is
System.String the entire column should be returned as a character
matrix rather than a vector of character vectors. Any nulls will be replaced
with a row of spaces. This applies only when Invert is 1.

5 Combines 1 and 4.

Examples

⎕USING←'' 'System.Data,system.data.dll'

dt←⎕NEW DataTable

add_col←{col←⍺.Columns.Add ⍬ ⋄ col.DataType←⍵}
dt add_col System.String
dt add_col System.Int32
dt add_col System.Int64

in←⍉↑('One' 'Two')(1 2)(6401 6402)
2010⌶ dt in

⎕←out←2011⌶ dt
┌───┬─┬──────┐
│One│1│ 6401 │
├───┼─┼──────┤
│Two│2│ 6402 │
└───┴─┴──────┘

out[;3].GetType
System.Int64 System.Int64



Chapter 2: Language Reference Changes 30

0 0 2(2011⌶) dt ⍝ Convert 3rd col to DECF
┌───┬─┬────┐
│One│1│6401│
├───┼─┼────┤
│Two│2│6402│
└───┴─┴────┘

1 1 1(2011⌶)dt ⍝ Convert all values to text
┌───┬─┬────┐
│One│1│6401│
├───┼─┼────┤
│Two│2│6402│
└───┴─┴────┘

((2011⌶)⍠('Invert' 1)) dt
┌─────────┬───┬────────────┐
│┌───┬───┐│1 2│ 6401 6402 │
││One│Two││ │ │
│└───┴───┘│ │ │
└─────────┴───┴────────────┘

4 0 0((2011⌶)⍠('Invert' 1))dt
┌───┬───┬────────────┐
│One│1 2│ 6401 6402 │
│Two│ │ │
└───┴───┴────────────┘

5 5 5((2011⌶)⍠('Invert' 1))dt ⍝ Convert to cmats
┌───┬─┬────┐
│One│1│6401│
│Two│2│6402│
└───┴─┴────┘

Handling Nulls

2010⌶dt(1 3⍴⎕NULL) ⍝ Add a row of nulls
⎕←out←2011⌶ dt

┌───┬──┬──────┐
│One│1 │ 6401 │
├───┼──┼──────┤
│Two│2 │ 6402 │
├───┼──┼──────┤
│ │ │ │
└───┴──┴──────┘

out[3;].GetType
System.DBNull System.DBNull System.DBNull



Chapter 2: Language Reference Changes 31

2011⌶ dt ('this is null' 'this too' 'and this')
┌────────────┬────────┬────────┐
│One │1 │ 6401 │
├────────────┼────────┼────────┤
│Two │2 │ 6402 │
├────────────┼────────┼────────┤
│this is null│this too│and this│
└────────────┴────────┴────────┘

Performance Considerations

First for comparison is shown the type of code that is required to read a DataTable
by looping:

t←3⊃⎕AI ⋄ data1←↑(⌷dt.Rows).ItemArray ⋄ (3⊃⎕AI)-t
191

The above expression turns the dt.Rows collection into an array using ⌷, and mixes
the ItemArray properties to produce the result. Although here there is no explicit
loop, involved, there is an implicit loop required to reference each item of the
collection in succession. This operation performs at about 200 rows/sec.

2011⌶ does the looping entirely in compiled code and is significantly faster:

GetDT←2011⌶
t←3⊃⎕AI ⋄ data2←GetDT dt ⋄ (3⊃⎕AI)-t

25

In the first case, 2011⌶ created 365 instances of System.DateTime objects in
the workspace. If we are willing to receive the timestamps in the form of strings, we
can read the data almost an order of magnitude faster:

t←3⊃⎕AI ⋄ data3←0 0 0 1 GetDT dt ⋄ (3⊃⎕AI)-t
3

The left argument to 2011⌶ allows you to flag columns which should be returned as
the ToString() value of each object in the flagged columns. Although the
resulting array looks identical to the original, it is not: The fourth column contains
character vectors:

¯2 4↑data3
364 even 4 18-01-2011 14:03:29
365 odd 5 19-01-2011 14:03:29



Chapter 2: Language Reference Changes 32

Depending on your application, you may need to process the text in the fourth
column in some way – but the overall performance will probably still be very much
better than it would be if DateTime objects were used.

Verify .NET Interface R←2250⌶Y

This function provides information about the Dyalog interface to .NET. The system
attempts to load the Bridge DLL and reports the status of the .NET interface. It can
be used to determine whether your .NET-related code can run, and also what sort of
.NET support you have. It also means that you can suppress all messages that
⎕USING would otherwise generate

The right argument Y is zero:

The result R is a 3-element nested array:

Item Description

R[1]

Numeric.
¯1: .NET interface is not supported
0: .NET interface is not configured
1: the .NET interface is configured to use .NET Core
2: the .NET interface is configured to use the .NET Framework

R[2]
Boolean 0 or 1.
1 : the Bridge DLL was successfully loaded.
0 : the Bridge DLL failed to load, or was not attempted.

R[3] A character vector containing error messages generated during load.

Examples (Windows)

⎕←2 ⎕NQ '.' 'GetEnvironment' 'Dyalog_NETCore'

⎕←2250⌶0
┌─┬─┬┐
│2│1││
└─┴─┴┘

⎕←2 ⎕NQ '.' 'GetEnvironment' 'Dyalog_NETCore'
1

⎕←2250⌶0
┌─┬─┬┐
│1│1││
└─┴─┴┘



Chapter 2: Language Reference Changes 33

Implementation Note

The underlying code is run once only and the results cached, so all subsequent calls
to 2250⌶ will return the same result as the first time.



Chapter 2: Language Reference Changes 34

Sample Probability Distribution R←X(16808⌶)Y

This function generates an array of random numbers from a named probability
distribution. Note that this is not currently implemented for AIX and macOS.

Y is a 2-item vector containing the name of the probability distribution from those
listed in the table below, and the shape of the result.

X is a scalar or 1 or 2 element numeric vector that specifies parameters.

For example to get an array with shape (3 5 7) of uniform random numbers for the
interval from ¯17.3 to 12.7, you’d enter

¯17.3 12.7 (16808 ⌶) 'Uniform' (3 5 7)

If you wanted a vector of 100,000 uniform random numbers for that interval, you’d
enter

¯17.3 12.7 (16808 ⌶) 'Uniform' 100000

The domain rules for the distributions currently implemented are as follows:

Distribution X[1] X[2] Domain Rules

'Uniform' a b a < b ; A numeric interval.
Example: 1.0 7.6

'Beta' a b a > 0  AND b > 0

'Bernoulli' probability probability ≥ 0 AND
probability ≤ 1

'Binomial' trials probability
trials is an integer ≥ 0; 
probability ≥ 0 AND
probability ≤ 1

'Cauchy' location scale location unrestricted;
scale > 0

'Chi Squared'
degree of
freedom degree of freedom ≥ 0

'Exponential' rate rate  ≥ 0

'F' a b
a ≥  eps AND b ≥ eps;
where eps is smallest non-
zero positive float number



Chapter 2: Language Reference Changes 35

Distribution X[1] X[2] Domain Rules

'Gamma' a b
a ≥ 0 AND b ≥eps;
where eps is smallest non-
zero positive float number

'Inverse
Gamma'

a b a ≥ 0 AND b ≥ 0

'Laplace' location scale location unrestricted;
scale ≥ 0

'Logistic' location scale location unrestricted; scale ≥
0

'Log Normal' location scale location unrestricted; scale ≥
0

'Normal' location scale location unrestricted; scale ≥
0

'Poisson' rate rate ≥ 0

'Student T'
degree of
freedom

degree of freedom ≥eps
where eps is smallest non-
zero positive float number

'Weibull' a b
a ≥  eps AND b ≥ eps ; eps is
smallest non-zero positive
float number

Each of those distributions has a corresponding Wikipedia entry with a description of
its theoretical foundation and usually graphs of the probability density functions and
cumulative distribution functions for interesting sets of parameter values.

Example

The probability density function for the Beta distribution (see
https://en.wikipedia.org/wiki/Beta_distribution) with the parameter vector (2 5) has
an interesting shape.

BucketCount counts random numbers that fall into a sequence of evenly
distributed bucket intervals:

BucketCounts←{
[1] ir←⌊⍵÷÷⍺
[2] kir←{⍺(≢⍵)}⌸ir
[3] kir[;⎕IO]÷←⍺
[4] kir[⍋kir[;⎕IO];]
[5] }

https://en.wikipedia.org/wiki/Beta_distribution


Chapter 2: Language Reference Changes 36

So then we can create 100,000 samples and calculate values for a density graph with
1,000 evenly spaced buckets by:

rv←2 5 (16808⌶)'Beta' 100000
bc←1000 BucketCounts rv

Using the Chart Wizard we can plot (⊂2)⌷⍉bc against (⊂1)⌷⍉bc to get the
graph:



Chapter 2: Object Reference Changes 37

Chapter 2:

Object Reference Changes



Chapter 2: Object Reference Changes 38

CornerTitleBCol Property

Applies To: Grid  

Description

This property specifies the colour used to fill the area in the left corner a Grid . This
is the rectangle above the row titles and to the left of the column titles.

CornerTitleBCol may be a 3-element vector of integer values in the range 0-255
which refer to the red, green and blue components of the colour respectively, or it
may be a scalar that defines a standard Windows colour element (see BCol for
details). Its default value is 0 which means that the colour derives from your current
Windows colour scheme.

Example

f.g.CornerTitleBCol←⊂255 0 0



Chapter 2: Object Reference Changes 39

FireOnce Property

Applies To: Timer  

Description

This property specifies one-off behaviour for a Timer object. It has the value 0, 1 or
2.

Setting FireOnce to 1, will cause the Timer to generate a single event and no more
unless it is reset. After generating the single event, FireOnce is automatically set to 2
and this change occurs prior to the invocation of a callback function.

Setting FireOnce to 2 will cause the Timer to behave as if it has already raised its
single event.

FireOnce honours the value of the Active property but does not change it. So setting
FireOnce to 1 when Active is 0 will not immediately cause an event. If Active is
subsequently set to 1, the single Timer event will then occur.



Chapter 2: Object Reference Changes 40



Index 41

Index

A

AllowLateBinding option 28

C

CEF 4
classes

fix script 24
CornerTitleBCol 38

D

dyadic primitive operators
variant 27-28

E

Extended Attributes of operations 17

F

file associations 12
FireOnce 39
fix script 24
FixWithErrors option 27

I

i-beam
read dataTable 28
verify.NET Interface 32

Interoperability 6
Invert option 29

J

JSON Extension 20

K

Key Features 1
key operator 9

L

load parameter 10

N

nest 9

O

over operator 9

P

PCRE2 3
Principal option 27-28
Properties

CornerTitleBCol 38
FireOnce 39

Q

Quiet option 27

R

rank operator 9
read DataTable 28

S

shell scripts 13
stencil operator 9
Syncfusion 3



Index 42

System Requirements 5

V

variant operator 9, 27-28
verify .NET Interface 32

W

where 9


	Chapter 1: Highlights
	Key Features
	Announcements
	System Requirements
	Interoperability
	Load Parameter
	File Associations
	Shell Scripts

	Chapter 2: Language Reference Changes
	Extended Attributes
	JSON Extension
	Fix Script
	Set Shell Script Debug Options
	Read DataTable
	Verify .NET Interface
	Sample Probability Distribution

	Chapter 2: Object Reference Changes
	CornerTitleBCol
	FireOnce

	Index

