
Dyalog for Microsoft Windows
.NET Interface Guide

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2018 by Dyalog Limited

All rights reserved.

Version: 17.0

Revision: 2987 dated 20230217

Please note that unless otherwise stated, all the examples in this document assume that ⎕IO is 1, and ⎕ML is 1.

Nopart of this publicationmay be reproduced in any form by any means without the prior written
permission of Dyalog Limited.

Dyalog Limitedmakes no representations or warranties with respect to the contents hereof and
specifically disclaims any impliedwarranties of merchantability or fitness for any particular purpose.
Dyalog Limited reserves the right to revise this publicationwithout notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The OpenGroup.

Windows, Windows Vista, Visual Basic andExcel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

macOS®, Mac OS® andOSX® (operating system software) are trademarks of Apple Inc., registered
in the U.S. and other countries.

Array Editor is copyright of davidliebtag.com.

All other trademarks and copyrights are acknowledged.

Contents

Chapter 1:Overview 1
Introduction 1
Prerequisites 3
Files Installed with Dyalog 4

Chapter 2:Accessing .NETClasses 5
Introduction 5
Locating .NET Classes and Assemblies 5
Using .NET Classes 8
Browsing .NET Classes 12
Advanced Techniques 21
More Examples 27
Enumerations 31
Handling Pointers with Dyalog.ByRef 32
DECF Conversion 34

Chapter 3:UsingWindows.Forms 35
Introduction 35
Creating GUI Objects 35
Object Hierarchy 36
Positioning and Sizing Forms and Controls 36
Modal Dialog Boxes 36
Non-Modal Forms 41

Chapter 4:WindowsPresentationFoundation 43
Temperature Converter Tutorial 44
Data Binding 63
Syncfusion Libraries 97

Chapter 5:Writing .NETClasses inDyalogAPL 103
Introduction 103
Assemblies, Namespaces and Classes 104
Getting Started 105
Example 1 107
Example 2 112

iv

Example 2a 117
Example 3 120
Example 4 123
Example 5 127
Interfaces 131

Chapter 6:DyalogAPLand IIS 133
Introduction 133
IIS Installation Dependency 134
IIS Applications, Virtual Directories, Application Pools 134
Internet Services Manager 136

Chapter 7:WritingWebServices 139
Introduction 139
Web Service (.asmx) Scripts 140
Compilation 141
Exporting Methods 142
Web Service Data Types 143
Execution 143
Global.asax, Application and Session Objects 144
Sample Web Service: EG1 145
Sample Web Service: LoanService 147
Sample Web Service: GolfService 151
Sample Web Service: EG2 168

Chapter 8:CallingWebServices 173
Introduction 173
The MakeProxy function 173
Using LoanService fromDyalog APL 174
Using GolfService fromDyalog APL 175
Exploring Web Services 179
Asynchronous Use 181

Chapter 9:WritingASP.NETWebPages 185
Introduction 185
Your first APLWeb Page 187
The Page_Load Event 192
Code Behind 195
Workspace Behind 198

Chapter 10:WritingCustomControls for ASP.NET 215

v

Introduction 215
The SimpleCtl Control 217
The TemperatureConverterCtl1 Control 219
The TemperatureConverterCtl2 Control 224
The TemperatureConverterCtl3 Control 233

Chapter 11:APLScript 239
Introduction 239
The APLScript Compiler 240
Creating an APLScript File 242
Copying code from the Dyalog Session 243
General principles of APLScript 244
Creating Programs (.exe) with APLScript 245
Creating .NET Classes with APLScript 248
Creating ASP.NET Classes with APLScript 255

Chapter 12: ImplementationDetails 259
Introduction 259
Isolation Mode 260
Workspace Size 261
Structure of the Active Workspace 262
Threading 265
Debugging an APL.NET Class 267
The web.config file 270

Index 271

1

Chapter 1:

Overview

Introduction
This manual describes the Dyalog APL interface to the Microsoft .NET Framework.
This document does not attempt to explain the features of the .NET Framework,
except in terms of their APL interfaces. For information concerning the .NET
Framework, see the documentation, articles and help files, which are available from
Microsoft and other sources.

The .NET interface features include:

l The ability to create and use objects that are instances of .NET Classes
l The ability to define new .NET Classes in Dyalog APL that can then be
used from other .NET languages such as C# and VB.NET.

l The ability to write Web Services in Dyalog APL.
l The ability to write ASP.NET web pages in Dyalog APL

2 .NET Interface Guide

.NET Classes
The .NET Framework defines a so-called Common Type System. This provides a set
of data types, permitted values, and permitted operations. All cooperating languages
are supposed to use these types so that operations and values can be checked (by the
Common Language Runtime) at run time. The .NET Framework provides its own
built-in class library that provides all the primitive data types, together with higher-
level classes that perform useful operations.

Dyalog APL allows you to create and use instances of .NET Classes, thereby gaining
access to a huge amount of component technology that is provided by the .NET
Framework.

It is also possible to create Class Libraries (Assemblies) in Dyalog APL. This allows
you to export APL technology packaged as .NET Classes, which can then be used
from other .NET programming languages such as C# and Visual Basic.

The ability to create and use classes in Dyalog APL also provides you with the
possibility to design APL applications built in terms of APL (and non-APL)
components. Such an approach can provide benefits in terms of reliability, software
management and re-usage, and maintenance.

GUI Programming with System.Windows.Forms
One of the most important .NET class libraries is called
System.Windows.Forms, which is designed to support traditional Windows
GUI programming. Visual Studio .NET, which is used to develop GUI applications
in Visual Basic and C#, produces code that uses System.Windows.Forms.
Dyalog APL allows you to use System.Windows.Forms, instead of (and in some
cases, in conjunction with) the built-in Dyalog APL GUI objects such as the Dyalog
APL Grid, to program the Graphical User Interface.

Web Services
Web Services are programmable components that can be called by different
applications. Web Services have the same goal as COM, but are technically platform
independent and use HTTP as the communications protocol with an application. A
Web Service can be used either internally by a single application or exposed
externally over the Internet for use by any number of applications.

Chapter 1: Overview 3

ASP.NET and WebForms
ASP.NET is a new version ofMicrosoft Active Server Page technology that makes it
easier to develop and deploy dynamic Web applications. To supplement ASP.NET,
there are some important new .NET class libraries, including WebForms which allow
you to build browser-based user interfaces using the same object-oriented mechanism
as you use Windows.Forms for the Windows GUI. The use of these component
libraries replaces basic HTML programming.

ASP.NET pages are server-side scripts, that are usually written in C# or Visual Basic.
However, you can also employ Dyalog APL directly as a scripting language
(APLScript) to write ASP.NET web pages. In addition, you can call Dyalog APL
workspaces directly from ASP.NET pages, and write custom server-side controls that
can be incorporated into ASP.NET pages.

These features give you a wide range of possibilities for using Dyalog APL to build
browser-based applications for the Internet, or for your corporate Intranet.

Prerequisites
Dyalog APL Version 17.0 .NET Interface requires Version 4.0 or greater of the
Microsoft .NET Framework. It does not operate with earlier versions of .NET.

For full Data Binding support (including support for the
INotifyCollectionChanged interface1), and Syncfusion, Version 17.0
requires .NET Version 4.5.

The examples provided in the sub-directory Samples/asp.net require that IIS is
installed. If IIS and ASP.NET are not present, the asp.net sub-directory will not be
installed during the Dyalog installation.

1This interface is used by Dyalog to notify a data consumer when the contents of a variable, that is
data bound as a list of items, changes.

4 .NET Interface Guide

Files Installed with Dyalog
NET Interface Components
The components used to support the .NET interface are summarised below. Different
versions of each component are supplied according to the target platform.

l The Bridge DLL. This is the interface library through which all calls
between Dyalog APL and the .NET Framework are processed

l The DyalogProvider DLL. This DLL performs the initial processing of an
APLScript.

l The APLScript Compiler. This is itself written in Dyalog APL and packaged
as an executable.

l The DyalogNet DLL; a subsidiary library
l The Dyalog DLL. This is the engine that executes all APL code that is
hosted by and called from another .NET application.

For a list of the files associated with each of these components, see Installation &
Configuration Guide: Files and Directories.

Code Samples
The samples subdirectory contains several sub-directories relating to the .NET
interface:

l aplclasses; a sub-directory that contains examples of .NET classes
written in APL.

l aplscript; a sub-directory that contains APLScript examples.
l asp.net; a sub-directory that is mapped to the IIS Virtual Directory
dyalog.net, and contains various sample APL Web applications.

l winforms; a sub-directory that contains sample applications that use the
System.Windows.Forms GUI classes.

l web.config: this file specifies Dyalog configuration parameters for
ASP.NET. See The web.config file on page 270.

5

Chapter 2:

Accessing .NET Classes

Introduction
.NET classes are implemented as part of the Common Type System. The Type System
provides the rules by which different languages can interact with one another. Types
include interfaces, value types and classes. The .NET Framework provides built-in
primitive types plus higher-level types that are useful in building applications.

A Class is a kind of Type (as distinct from interfaces and value types) that
encapsulates a particular set of methods, events and properties. The word object is
usually used to refer to an instance of a class. An object is typically created by
calling the system function ⎕NEW, with the class as the first element of the argument.

Classes support inheritance in the sense that every class (but one) is based upon
another so-called Base Class.

An assembly is a file that contains all of the code and metadata for one or more
classes. Assemblies can be dynamic (created in memory on-the-fly) or static (files on
disk). For the purposes of this document, the term Assembly refers to a file (usually
with a .DLL extension) on disk.

Locating .NET Classes and Assemblies
Unlike COM objects, which are referenced via the Windows Registry, .NET
assemblies and the classes they contain, are generally self-contained independent
entities (they can be based upon classes in other assemblies). In simple terms, you can
install a class on your system by copying the assembly file onto your hard disk and
you can de-install it by erasing the file.

Although classes are arranged physically into assemblies, they are also arranged
logically into namespaces. These have nothing to do with Dyalog APL namespaces
and, to avoid confusion, are henceforth referred to in this document as .NET
namespaces.

6 .NET Interface Guide

Often, a single .NET namespace maps onto a single assembly and usually, the name
of the .NET namespace and the name of its assembly file are the same; for example,
the .NET namespace System.Windows.Forms is contained in an assembly
named System.Windows.Forms.dll.

However, it is possible for a .NET Namespace to be implemented by more than one
assembly; there is not a one-to-one-mapping between .NET Namespaces and
assemblies. Indeed, the main top-level .NET Namespace, System, is spread over a
number of different assembly files.

Within a single .NET Namespace there can be any number of classes, but each has its
own unique name. The full name of a class is the name of the class itself, prefixed by
the name of the .NET namespace and a dot. For example, the full name of the
DateTime class in the .NET namespace System is System.DateTime.

There can be any number of different versions of an assembly installed on your
computer, and there can be several .NET namespaces with the same name,
implemented in different sets of assembly files; for example, written by different
authors.

To use a .NET Class, it is necessary to tell the system to load the assembly (dll) in
which it is defined. In many languages (including C#) this is done by supplying the
names of the assemblies or the pathnames of the assembly files as a compiler
directive.

Secondly, to avoid the verbosity of programmers having to always refer to full class
names, the C# and Visual Basic languages allow the .NET namespace prefix to be
elided. In this case, the programmer must declare a list of .NET namespaces with
Using (C#) and Imports (Visual Basic) declaration statements. This list is then
used to resolve unqualified class names referred to in the code.

In either language, when the compiler encounters the unqualified name of a class, it
searches the specified .NET namespaces for that class.

In Dyalog APL, this mechanism is implemented by the ⎕USING system variable.
⎕USING performs the same two tasks that Using/Imports declarations and
compiler directives provide in C# and Visual Basic; namely to give a list of .NET
namespaces to be searched for unqualified class names, and to specify the assemblies
which are to be loaded.

⎕USING is a vector of character vectors each element of which contains 1 or 2
comma-delimited strings. The first string specifies the name of a .NET namespace;
the second specifies the pathname of an assembly file. This may be a full pathname
or a relative one, but must include the file extension (.dll). If just the file name is
specified, it is assumed to be located in the standard .NET Framework directory that
was specified when the .NET Framework was installed (e.g.
C:\windows\Microsoft.NET\Framework\v2.0.50727)

Chapter 2: Accessing .NET Classes 7

It is convenient to treat .NET namespaces and assemblies in pairs. For example:

⎕USING←'System,mscorlib.dll'

⎕USING,←⊂'System.Windows.Forms,System.Windows.Forms.dll'
⎕USING,←⊂'System.Drawing,System.Drawing.dll'

Note that because Dyalog APL automatically loads mscorlib.dll (which
contains the most commonly used classes in the System Namespace), it is not
actually necessary to specify it explicitly in ⎕USING.

⎕USING has Namespace scope, i.e. each Dyalog APL Namespace, Class or Instance
has its own value of ⎕USING that is initially inherited from its parent space but
which may be separately modified. ⎕USINGmay also be localised in a function
header, so that different functions can declare different search paths for .NET
namespaces/assemblies.

If ⎕USING is empty (⎕USING←0⍴⊂''), APL will not search for .NET classes in
order to resolve names which would otherwise give a VALUE ERROR.

Assigning a simple character vector to ⎕USING is equivalent to setting it to the
enclose of that vector. The statement (⎕USING←'') does not empty ⎕USING, it sets
it to a single empty element, which gives access to mscorlib.dll and the Bridge
DLL without a namespace prefix.

Within a Class script, you may instead employ one or more :Using statements to
specify the .NET search path. Each of these statements is equivalent to appending an
enclosed character vector to ⎕USING.

:Using System,mscorlib.dll
:Using System.Windows.Forms,System.Windows.Forms.dll
:Using System.Drawing,System.Drawing.dll

Classes also inherit from the namespace they are contained in. The statement

:Using

Is equivalent to

⎕USING←0⍴⊂''

…and allows a class to clear the inherited value before appending to ⎕USING, or to
state that no .NET assemblies should be loaded.

The equivalent to ⎕USING←'') is a :Using statement followed by a comma
separator but no namespace prefix and no assembly name:

:Using ,

8 .NET Interface Guide

Using .NET Classes
To create a Dyalog APL object as an instance of a .NET class, you use the ⎕NEW
system function. The ⎕NEW system function is monadic. It takes a 1 or 2-element
argument, the first element being a class.

If the argument is a scalar or a 1-element vector, an instance of the class is created
using the constructor that takes NO argument.

If the argument is a 2-element vector, an instance of the class is created using the
constructorwhose argument matches the disclosed second element.

For example, to create a DateTime object whose value is the 30th April 2008:

⎕USING←'System'

mydt←⎕NEW DateTime (2008 4 30)

The result of ⎕NEW is an reference to the newly created instance:

⎕NC ⊂'mydt'
9.2

If you format a reference to a .NET Object, APL calls its ToStringmethod to
obtain a useful description or identification of the object. This topic is discussed in
more detail later in this chapter.

mydt
30/04/2008 00:00:00

If you want to use fully qualified class names instead, one of the elements of
⎕USINGmust be an empty vector. For example:

⎕USING←,⊂''

mydt←⎕NEW System.DateTime (2008 4 30)

When creating an instance of the DateTime class, you are required to provide an
argument with two elements: (the class and the constructor argument, in our case a
3-element vector representing the date). Many classes provide a default constructor
which takes no arguments. FromDyalog APL, the default constructor is called by
calling ⎕NEW with only a reference to the class in the argument. For example, to
obtain a default Button object, we only need to write:

mybtn←⎕NEW Button

Chapter 2: Accessing .NET Classes 9

The above statement assumes that you have defined ⎕USING correctly; there must be
a reference to System.Windows.Forms.dll, and a namespace prefix which
allows the name Button to be recognised as
System.Windows.Forms.Button.

The mechanism by which APL associates the class name with a class in a .NET
namespace is described below.

Constructors and Overloading
Each .NET Class has one or more constructormethods. A constructor is a method
which is called to initialise an instance of the Class. Typically, a Class will support
several constructor methods - each with a different set of parameters. For example,
System.DateTime supports a constructor that takes three Int32 parameters
(year, month, day), another that takes six Int32 parameters (year, month, day, hour,
minute, second), and so forth. These different constructor methods are not
distinguished by having different names but by the different sets of parameters they
accept.

This concept, which is known as overloading, may seem somewhat alien to the APL
programmer. After all, we are used to defining functions that accept a whole range of
different arguments. However, type checking, which is fundamental to the .NET
Framework, requires that a method is called with the correct number of parameters,
and that each parameter is of a predefined type. Overloading solves this issue.

When you create an instance of a class in C#, you do so using the new operator. This
is automatically mapped to the appropriate constructor method by matching the
parameters you supply to the various forms of the constructor. A similar mechanism
is implemented in Dyalog APL using the ⎕NEW system function.

How the ⎕NEW System Function is implemented
When APL executes an expression such as:

mydt←⎕NEW DateTime (2008 4 30)

the following logic is used to resolve the reference to DateTime correctly.

The first time that APL encounters a reference to a non-existent name (i.e. a name that
would otherwise generate a VALUE ERROR), it searches the .NET
namespaces/assemblies specified by ⎕USING for a .NET class of that name. If found,
the name (in this case DateTime) is recorded in the APL symbol table with a name
class of 9.6 and is associated with the corresponding .NET namespace. If not, VALUE
ERROR is reported as usual. Note that this search ONLY takes place if ⎕USING has
been assigned a value.

10 .NET Interface Guide

Subsequent references to that symbol (in this case DateTime) are resolved directly
and do not involve any assembly searching.

If you use ⎕NEW with only a class as argument, APL will attempt to call the version
of its constructor that is defined to take no arguments. If no such version of the
constructor exists, the call will fail with a LENGTH ERROR.

Otherwise, if you use ⎕NEW with a class as argument and a second element, APL will
call the version of the constructor whose parameters match the second element you
have supplied to ⎕NEW. If no such version of the constructor exists, the call will fail
with a LENGTH ERROR.

Notes

l The value of ⎕USING is only used when an object is instantiated.
Changing the value of ⎕USING has no effect on objects that have already
been instantiated in the active workspace.

l When a workspace containing .Net objects is saved, .the names of the Net
objects are saved with it but they are not automatically re-instantiated when
the workspace is loaded or copied. A reference to such an orphaned object
will report (NULL).

Displaying a .NET Object
When you display a reference to a .NET object, APL calls the object's ToString
method and displays the result. All objects provide a ToStringmethod because all
objects ultimately inherit from the .NET class System.Object. Many .NET
classes will provide their own ToString that overrides the one inherited from
System.Object, and return a useful description or identifier for the object in
question. ToString usually supports a range of calling parameters, but APL always
calls the version of ToString that is defined to take no calling parameters.
Monadic format (⍕) and monadic ⎕FMT have been extended to provide the same
result, and provides a quick shorthand method to call ToString in this way. The
default ToString supplied by System.Object returns the name of the object's
Type. This can be changed using the system function ⎕DF. For example,

z←⎕NEW DateTime ⎕TS
z.(⎕DF(⍕DayOfWeek),,'G< 99:99>'⎕FMT 100⊥Hour Minute)
z

Saturday 09:17

Note that if you want to check the type of an object, this can be obtained using the
GetTypemethod, which is supported by all .NET objects.

Chapter 2: Accessing .NET Classes 11

Disposing of .NET Objects
.NET objects are managed by the .NET Common Language Runtime (CLR). The
CLR allocates memory for an object when it is created, and de-allocates this memory
when it is no longer required.

When the (last) reference fromDyalog APL to a .NET object is expunged by ⎕EX or
by localisation, the systemmarks the object as unused, leaving it to the CLR to de-
allocate the memory that it had previously allocated to it, when appropriate. Note
that even though Dyalog has de-referenced the APL name, the object could
potentially still be referenced by another .NET class.

De-allocated memory may not actually be re-used immediately and may indeed
never be re-used, depending upon the algorithms used by the CLR garbage disposal.

Furthermore, a .NET object may allocate unmanaged resources (such as window
handles) which are not automatically released by the CLR.

To allow the programmer to control the freeing of resources associated with .NET
objects in a standard way, objects implement the IDisposable interface which
provides a Dispose()method. The C# language provides a using control
structure that automates the freeing of resources. Crucially, it does so however the
flow of execution exits the control structure, even as a result of error handling. This
obviates the need for the programmer to call Dispose() explicitly wherever it may
be required.

This programming convenience is provide in Dyalog APL by the
:Disposable ... :EndDisposable control structure. For further
information, see Language Reference Guide: Disposable Statement.

12 .NET Interface Guide

Browsing .NET Classes
Microsoft supplies a tool for browsing .NET Class libraries called ILDASM.EXE1.

As a convenience, the Dyalog APLWorkspace Explorer has been extended to
perform a similar task as ILDASM so that you can gain access to the information
within the context of the APL environment.

The information that describes .NET classes, which is known as itsMetadata, is part
of the definition of the class and is stored with it. This Metadata corresponds to Type
Information in COM, which is typically stored in a separate Type Library.

To gain information about one or more .NET Classes, open the Workspace Explorer,
right click theMetadata folder, and choose Load.

1 ILDASM.EXE can be found in the .NET SDK and is distributed with Visual Studio

Chapter 2: Accessing .NET Classes 13

This brings up the Browse .NET Assembly dialog box as shown below. Navigate to
the .NET assembly of your choice, and click Open.

14 .NET Interface Guide

The .NET Classes provided with the .NET Framework are typically located in
C:\WINDOWS\Microsoft.NET\Framework64\V4.0.30319 (on a 64-bit
computer). The last named folder is the Version number.

The most commonly used classes of the .NET Namespace System are stored in this
directory in an Assembly named mscorlib.dll, along with a number of other
fundamental .NET Namespaces.

The result of opening this Assembly is illustrated in the following screen shot. The
somewhat complex tree structure that is shown in the Workspace Explorer merely
reflects the structure of the Metadata itself.

Chapter 2: Accessing .NET Classes 15

Opening the System/ Classes sub-folder causes the Explorer to display the list of
classes contained in the .NET Namespace System as shown in the picture below.

16 .NET Interface Guide

The Constructors folder shows you the list of all of the valid constructors and their
parameter sets with which you may create a new instance of the Class by calling
New. The constructors are those named .ctor; you may ignore the one named .cctor,
(the class constructor) and any labelled as Private.

For example, you can deduce that DateTime.Newmay be called with three
numeric (Int32) parameters, or six numeric (Int32) parameters, and so forth. There
are in fact seven different ways that you can create an instance of a DateTime.

For example, the following statement may be used to create a new instance of
DateTime (09:30 in the morning on 30th April 2001):

mydt←⎕NEW DateTime (2001 4 30 9 30 0)

mydt
30/04/2001 09:30:00

Chapter 2: Accessing .NET Classes 17

The Properties folder provides a list of the properties supported by the Class. It
shows the name of the property followed by its data type. For example, the
DayOfYear property is defined to be of type Int32.

You can query a property by direct reference:

mydt.DayOfWeek
Monday

18 .NET Interface Guide

Notice too that the data types of some properties are not simple data types, but
Classes in their own right. For example, the data type of the Now property is itself
System.DateTime. This means that when you reference the Now property, you
get back an object that represents an instance of the System.DateTime object:

mydt.Now
07/11/2001 11:30:48

⎕TS
2001 11 7 11 30 48 0

TheMethods folder lists the methods supported by the Class. The Explorer shows the
data type of the result of the method, followed by the name of the method and the
types of its arguments. For example, the IsLeapYear method takes an Int32
parameter (year) and returns a Boolean result.

mydt.IsLeapYear 2000
1

Chapter 2: Accessing .NET Classes 19

Many of the reported objects are listed as Private, which means they are inaccessible
to users of the class – you are not able to call them or inspect their value. For more
information about classes, see Language Reference Guide: Object Oriented
Programming.

20 .NET Interface Guide

Value Tips for External Functions
Value Tips can also be used to investigate the syntax of external functions. If you
hover over the name of an external function, the Value Tip displays its Function
Signature.

For example, in the example below, the mouse is hovered over the external function
dt.AddMonths and shows that it requires a single integer as its argument.

Should the external function provide more than one signature, they are all shown in
the Value Tip as illustrated below. Here the function ToString has four different
overloads.

Chapter 2: Accessing .NET Classes 21

Advanced Techniques
Shared Members
Certain .NET Classes provide methods, fields and properties, that can be called
directly without the need to create an instance of the Class first. These members are
known as shared, because they have the same definition for the class and for any
instance of the class.

The methods Now and IsLeapYear exported by System.DateTime fall into this
category. For example:

⎕USING←,⊂'System'

DateTime.Now
07/11/2008 11:30:48

DateTime.IsLeapYear 2000
1

APL language extensions for .NET objects
The .NET Framework provides a set of standard operators (methods) that are
supported by certain classes. These operators include methods to compare two .NET
objects and methods to add and subtract objects.

In the case of the DateTime Class, there are operators to compare two DateTime
objects. For example:

DT1←⎕NEW DateTime (2008 4 30)
DT2←⎕NEW DateTime (2008 1 1)

⍝ Is DT1 equal to DT2 ?
DateTime.op_Equality DT1 DT2

0

The op_Addition and op_Subtraction operators add and subtract
TimeSpan objects to DateTime objects. For example:

DT3←DateTime.Now
DT3

07/11/2008 11:33:45

TS←⎕NEW TimeSpan (1 1 1)
TS

01:01:01

22 .NET Interface Guide

DateTime.op_Addition DT3 TS
07/11/2008 12:34:46

DateTime.op_Subtraction DT3 TS
07/11/2008 10:32:44

The corresponding APL primitive functions have been extended to accept .NET
objects as arguments and simply call these standard .NET methods internally. The
methods and the corresponding APL primitives are shown in the table below.

Note that calculations and comparisons performed by .NET methods are performed
independently from the values of APL system variables (such as ⎕FR and ⎕CT).

.NET Method APL Primitive Function

op_Addition +

op_Subtraction -

op_Multiply ×

op_Division ÷

op_Equality =

op_Inequality ≠

op_LessThan <

op_LessThanOrEqual ≤

op_GreaterThan >

op_GreaterThanOrEqual ≥

So instead of calling the appropriate .NET method to compare two objects, you can
use the familiar APL primitive instead. For example:

DT1=DT2
0

DT1>DT2
1

DT3+TS
07/11/2008 12:34:46

DT3-TS
07/11/2008 10:32:44

Apart from being easier to use, the primitive functions automatically handle arrays
and support scalar extension; for example:

DT1>DT2 DT3
1 0

Chapter 2: Accessing .NET Classes 23

In addition, the monadic form of Grade Up (⍋) and Grade Down (⍒), and the
Minimum (⌊) and Maximum (⌈) primitive functions have been extended to work on
arrays of references to .NET objects. Note that the argument(s) must be a
homogeneous set of references to objects of the same .NET class, and in the case of
Grade Up and Grade Down, the argument must be a vector. For example:

⍋DT1 DT2 DT3
2 1 3

⌊/DT1 DT2 DT3
01/01/2008 00:00:00

Exceptions
When a .NET object generates an error, it does so by throwing an exception. An
exception is in fact a .NET class whose ultimate base class is System.Exception.

The system constant ⎕EXCEPTION returns a reference to the most recently generated
exception object.

For example, if you attempt to create an instance of a DateTime object with a year
that is outside its range, the constructor throws an exception. This causes APL to
report a (trappable) EXCEPTION error (error number 90) and access to the exception
object is provided by ⎕EXCEPTION.

⎕USING←'System'
DT←⎕NEW DateTime (100000 0 0)

EXCEPTION
DT←⎕NEW DateTime (100000 0 0)

⎕EN
90

⎕EXCEPTION.Message
Year, Month, and Day parameters describe an un-
representable DateTime.

⎕EXCEPTION.Source
mscorlib

⎕EXCEPTION.StackTrace
at System.DateTime.DateToTicks(Int32 year,

Int32 month,
Int32 day)

at System.DateTime..ctor(Int32 year,
Int32 month,
Int32 day)

24 .NET Interface Guide

Specifying Overloads and Casts
If a .NET function is overloaded in terms of the types of arguments it accepts, Dyalog
APL chooses which overload to call depending upon the data types of the arguments
passed to it. For example, if a .NET function foo() is declared to take a single
argument either of type int or of type double APL would call the first version if
you called it with an integer value and the second version if you called it with a non-
integer value.

In some circumstances it may be desirable to override this mechanism and explicitly
specify which overload to use.

A second requirement is to be able to specify to what .NET types APL should coerce
arrays before calling a .NET function. For example, if a parameter to a .NET function
is declared as type System.Object, it might be necessary to force the APL
argument to be cast to a particular type of Object before the function is called.

Both these requirements are met by calling the function via the Variant operator ⍠.
There are two options,OverloadTypes (the Principle Option) and CastToTypes.
Each option takes an array of refs to .NET types, the same length as the number of
parameters to the function.

OverloadTypes Examples
To force APL to call the double version of function foo() regardless of the type of
the argument val:

(foo ⍠('OverloadTypes'Double))val

or more simply:

(foo ⍠Double)val

Note that Double is a ref to the .NET type System.Double.

⎕USING←'System'
Double

(System.Double)

Taking this a stage further, suppose that foo() is defined with 5 overloads as
follows:

foo()
foo(int i)
foo(double d)
foo(double d, int i)
foo(double[] d)

The following statements will call the niladic, double, (double, int) and double[]
overloads respectively.

Chapter 2: Accessing .NET Classes 25

(foo ⍠ (⊂⍬)) ⍬ ⍝ niladic
(foo ⍠ Double) 1 ⍝ double
(foo ⍠(⊂Double Int32))1 1 ⍝ double,int
(foo ⍠(Type.GetType ⊂'System.Double[]'))⊂1 1 ⍝ double[]

Note that in the niladic case, an enclosed empty vector is used to represent a null
reference to a .NET type.

CastToTypes Example
The .NET function Array.SetValue() sets the value of a specified element (or
elements) of an array. The first argument, the new value, is declared as
System.Object, but the value supplied must correspond to the type of the Array
in question. APL has no means to know what this is and will therefore pass the value
as is, i.e. in whatever internal format it happens to be at the time. For example:

⎕USING←'System'

⍝ create a Boolean array with 2 elements
BA←Array.CreateInstance Boolean 2
BA.GetValue 0 ⍝ get the 0th element

0

⍝ attempt to set the 0th element to 1 (AKA true)

BA.SetValue 1 0
EXCEPTION: Cannot widen from source type to target type
either because the source type is a not a primitive type
or the conversion cannot be accomplished.
test[5] BA.SetValue 1 0

∧

The above expression failed because APL passed the first argument 1 ,unchanged
from its current internal representation, as a 1-byte integer which does not fit into a
Boolean element.

To rectify the situation, APL must be told to cast the argument to a Boolean as
follows:

(BA.SetValue ⍠ ('CastToTypes'(Boolean Int32)))1 0
BA.GetValue 0 ⍝ get the 0th element

1

26 .NET Interface Guide

Overloaded Constructors
If a class provides constructor overloads, a similar mechanism is used to specify
which of the constructors is to be used when an instance of the class is created using
⎕NEW.

For example, if MyClass is a .NET class with an overloaded constructor, and one of
its constructors is defined to take two parameters; a double and an int, the
following statement would create an instance of the class by calling that specific
constructor overload:

(⎕NEW ⍠ (⊂Double Int32)) MyClass (1 1)

Chapter 2: Accessing .NET Classes 27

More Examples
Directory and File Manipulation
The .NET Namespace System.IO (also in the Assembly mscorlib.dll)
provides some useful facilities for manipulating files. For example, you can create a
DirectoryInfo object associated with a particular directory on your computer,
call its GetFilesmethod to obtain a list of files, and then get their Name and
CreationTime properties.

⎕USING←,⊂'System.IO'
d←⎕NEW DirectoryInfo (⊂'C:\Dyalog')

d is an instance of the Directory Class, corresponding to the directory
c:\Dyalog1.

d
C:\Dyalog

The GetFilesmethod returns a list of files; actually, FileInfo objects, that
represent each of the files in the directory: Its optional argument specifies a filter; for
example:

d.GetFiles ⊂'*.exe'
evalstub.exe exestub.exe dyalog.exe dyalogrt.exe

The Name property returns the name of the file associated with the File object:

(d.GetFiles ⊂'*.exe').Name
evalstub.exe exestub.exe dyalog.exe dyalogrt.exe

And the CreationTime property returns its creation time, which is a DateTime
object:

(d.GetFiles ⊂'*.exe').CreationTime

01/04/2004 09:37:01 01/04/2004 09:37:01 08/06/2004 ...

If you call GetFiles without an argument (in APL, with an argument of ⍬), it
returns a complete list of files:

files←d.GetFiles ⍬

1In this document, we will refer to the location where Dyalog APL is installed as C:\Dyalog. Your
installation of Dyalog APL may be in a different folder or even on a different drive but the
examples should work just the same it you replace C:\Dyalog by your folder name

28 .NET Interface Guide

Taking advantage of namespace reference array expansion, an expression to display
file names and their creation times is as follows.

files,[1.5]files.CreationTime
relnotes.hlp 03/02/2004 11:47:02
relnotes.cnt 03/02/2004 11:47:02
def_uk.dse 22/03/2004 12:13:31
DIALOGS.HLP 22/03/2004 12:13:31
dyares32.dll 22/03/2004 12:13:40
...

Sending an email
The .NET Namespace System.Web.Mail provides objects for handing email.

You can create a new email message as an instance of the MailMessage class, set
its various properties, and then send it using the SmtpMail class.

Please note that these examples will only work if your computer is configured to
allow you to send email in this way.

⎕USING←'System.Web.Mail,System.Web.dll'
m←⎕NEW MailMessage
m.From←'tony.blair@uk.gov'
m.To←'sales@dyalog.com'
m.Subject←'order'
m.Body←'Send me 100 copies of Dyalog APL now'

SmtpMail.Send m

However, note that the Sendmethod of the SmtpMail object is overloaded and
may be called with a single parameter of type
System.Web.Mail.MailMessage as above, or four parameters of type
System.String:

So instead, you can just say:

SmtpMail.Send 'tony.blair@uk.gov'
'sales@dyalog.com'
'order'
'Send me the goods'

Chapter 2: Accessing .NET Classes 29

Web Scraping
The .NET Framework provides a whole range of classes for accessing the internet
from a program. The following example illustrates how you can read the contents of
a web page. It is complicated, but realistic, in that it includes code to cater for a
firewall/proxy connection to the internet. It is only 9 lines of APL code, but each line
requires careful explanation.

First we need to define ⎕USING so that it specifies all of the .NET Namespaces and
Assemblies that we require.

⎕USING←'System,System.dll' 'System.Net' 'System.IO'

The WebRequest class in the .NET Namespace System.Net implements the
.NET Framework's request/response model for accessing data from the Internet. In
this example we create a WebRequest object associated with the URI
http://www.cdnow.com. Note that WebRequest is an example of a static
class. You don't make instances of it; you just use its methods.

wrq←WebRequest.Create ⊂'http://www.cdnow.com'

In fact (and somewhat confusingly) if the URI specifies a scheme of "http://" or
"https://", you get back an object of type HttpWebRequest rather than a plain and
simple WebRequest. So, at this stage, wrq is an HttpWebRequest object.

wrq
System.Net.HttpWebRequest

This class has a Proxy property through which you specify the proxy information
for a request made through a firewall. The value assigned to the Proxy property has
to be an object of type System.Net.WebProxy. So first we must create a new
WebProxy object specifying the hostname and port number for the firewall. You
will need to change this statement to suit your own internet configuration (it may
even not be necessary to do this).

PX←⎕NEW WebProxy(⊂'http://dyagate.dyadic.com:8080')
PX

System.Net.WebProxy

Having set up the WebProxy object as required, we then assign it to the Proxy
property of the HttpRequest object wrq.

wrq.Proxy←PX

30 .NET Interface Guide

The HttpRequest class has a GetResponsemethod that returns a response from
an internet resource. No it's not HTML (yet), the result is an object of type
System.Net.HttpWebResponse.

wr←wrq.GetResponse
wr

System.Net.HttpWebResponse

The HttpWebResponse class has a GetResponseStreammethod whose result
is of type System.Net.ConnectStream. This object, whose base class is
System.IO.Stream, provides methods to read and write data both synchronously
and asynchronously from a data source, which in this case is physically connected to
a TCP/IP socket.

str←wr.GetResponseStream
str

System.Net.ConnectStream

However, there is yet another step to consider. The Stream class is designed for
byte input and output; what we need is a class that reads characters in a byte stream
using a particular encoding. This is a job for the System.IO.StreamReader
class. Given a Stream object, you can create a new instance of a StreamReader
by passing it the Stream as a parameter.

rdr←⎕NEW StreamReader str
rdr

System.IO.StreamReader

Finally, we can use the ReadToEndmethod of the StreamReader to get the
contents of the page.

s←rdr.ReadToEnd
⍴s

45242

Note that to avoid running out of connections, it is necessary to close the Stream:

str.Close

Chapter 2: Accessing .NET Classes 31

Enumerations
An enumeration is a set of named constants that may apply to a particular operation.
For example, when you open a file you typically want to specify whether the file is
to be opened for reading, for writing, or for both. A method that opens a file will take
a parameter that allows you to specify this. If this is implemented using an
enumerated constant, the parameter may be one of a specific set of (typically) integer
values; for example, 1=read, 2=write, 3=both read and write. However, to avoid
using meaningless numbers in code, it is conventional to use names to represent
particular values. These are known as enumerated constants or, more simply, as
enums.

In the .NET Framework, enums are implemented as classes that inherit from the base
class System.Enum. The class as a whole represents a set of enumerated constants;
each of the constants themselves is represented by a static field within the class.

The next chapter deals with the use of System.Windows.Forms to create and
manipulate the user interface. The classes in this .NET Namespace use enums
extensively.

For example, there is a class named
System.Windows.Forms.FormBorderStyle that contains a set of static
fields named None, FixedDialog, Sizeable, and so forth. These fields have
specific integer values, but the values themselves are of no interest to the
programmer.

Typically, you use an enumerated constant as a parameter to a method or to specify
the value of a property. For example, to create a Form with a particular border style,
you would set its BorderStyle property to one of the members of the
FormBorderStyle class, viz.

⎕USING←'System'

⎕USING,←⊂'System.Windows.Forms,system.windows.forms.dll'
f1←⎕NEW Form
f1.BorderStyle←FormBorderStyle.FixedDialog
FormBorderStyle.⎕NL ¯2 ⍝ List enum members
Fixed3D FixedDialog FixedSingle FixedToolWindow None
Sizable SizableToolWindow

32 .NET Interface Guide

An enum has a value, which you may use in place of the enum itself when such
usage is unambiguous. For example, the FormBorderStyle.Fixed3D enum has
an underlying value is 2:

Convert.ToInt32 FormBorderStyle.Fixed3D
2

You could set the border style of the Form f1 to FormBorderStyle.Fixed3D
with the expression:

f1.BorderStyle←2

However, this practice is not recommended. Not only does it make your code less
clear, but also if a value for a property or a parameter to a method may be one of
several different enum types, APL cannot tell which is expected and the call will fail.

For example, when the constructor for System.Drawing.Font is called with 3
parameters, the 3rd parameter may be either a FontStyle enum or a
GraphicsUnit enum. If you were to call Font with a 3rd parameter of 1, APL
cannot tell whether this refers to a FontStyle enum, or a GraphicsUnit enum,
and the call will fail.

Handling Pointers with Dyalog.ByRef
Certain .NET methods take parameters that are pointers.

An example is the DivRemmethod that is provided by the System.Math class.
This method performs an integer division, returning the quotient as its result, and the
remainder in an address specified as a pointer by the calling program.

APL does not have a mechanism for dealing with pointers, so Dyalog provides a
.NET class for this purpose. This is the Dyalog.ByRef class, which is a provided
by an Assembly that is loaded automatically by the Dyalog APL program.

Firstly, to gain access to the Dyalog .NET Namespace, it must be specified by
⎕USING. Note that you need not specify the Assembly (DLL) fromwhich it is
obtained (the Bridge DLL), because (like mscorlib.dll) it is automatically
loaded by when APL starts.

⎕USING←'System' 'Dyalog'

The Dyalog.ByRef class represents a pointer to an object of type
System.Object. It has a number of constructors, some of which are used
internally by APL itself. You only need to be concerned about two of them; the one
that takes no parameters, and the one that takes a single parameter of type
System.Object. The former is used to create an empty pointer; the latter to create
a pointer to an object or some data.

Chapter 2: Accessing .NET Classes 33

For example, to create an empty pointer:

ptr1←⎕NEW ByRef

Or, to create pointers to specific values,

ptr2←⎕NEW ByRef 0
ptr3←⎕NEW ByRef (⊂⍳10)
ptr4←⎕NEW ByRef (⎕NEW DateTime (2000 4 30))

Notice that a single parameter is required, so you must enclose it if it is an array with
several elements. Alternatively, the parameter may be a .NET object.

The ByRef class has a single property called Value.

ptr2.Value
0

ptr3.Value
1 2 3 4 5 6 7 8 9 10

ptr4.Value
30/04/2000 00:00:00

Note that if you reference the Value property without first setting it, you get a
VALUE ERROR.

ptr1.Value
VALUE ERROR

ptr1.Value
^

Returning to the example, we recall that the DivRemmethod takes 3 parameters:

1. the numerator
2. the denominator
3. a pointer to an address into which the method will write the remainder after

performing the division.

remptr←⎕NEW ByRef
remptr.Value

VALUE ERROR
remptr.Value
^
Math.DivRem 311 99 remptr

3
remptr.Value

14

34 .NET Interface Guide

In some cases a .NET method may take a parameter that is an Array and the method
expects to fill in the array with appropriate values. In APL there is no syntax to allow
a parameter to a function to be modified in this way. However, we can use the
Dyalog.ByRef class to call this method. For example, the
System.IO.FileStream class contains a Readmethod that populates its first
argument with the bytes in the file.

⎕using←'System.IO' 'Dyalog' 'System'
fs←⎕NEW FileStream ('c:\tmp\jd.txt' FileMode.Open)
fs.Length

25
fs.Read(arg←⎕NEW ByRef,⊂⊂25⍴0)0 25

25
arg.Value

104 101 108 108 111 32 102 114 111 109 32 106 111 104 110
32 100 97 105 110 116 114 101 101 10

DECF Conversion
Incoming .NET data types VT_DECIMAL (96-bit integer) and VT_CY (currency
value represented by a 64-bit two's complement integer, scaled by 10,000) are
converted to 126-bit decimal numbers (DECFs). This conversion is performed
independently of the value of ⎕FR.

If you want to perform arithmetic on values imported in this way, then you should set
⎕FR to 1287, at least for the duration of the calculations.

Note that the .NET interface converts System.Decimal to DECFs but does not
convert System.Int64 to DECFs.

35

Chapter 3:

Using Windows.Forms

Introduction
System.Windows.Forms is a .NET namespace that provides a set of classes for
creating the Graphical User Interface forWindows applications.

As an alternative to the built-in Dyalog GUI, Windows Forms has been superseded
by Windows Presentation Foundation which is described in the next Chapter. This
section is included to support existing Dyalog applications that make use of
Windows Forms.

Unless otherwise specified, all the examples described in this Chapter may be found
in the samples\winforms\winforms.dws workspace.

Creating GUI Objects
GUI objects are represented by .NET classes in the .NET Namespace
System.Windows.Forms. In general, these classes correspond closely to the GUI
objects provided by Dyalog APL, which are themselves based upon the Windows
API.

For example, to create a form containing a button and an edit field, you would create
instances of the Form, Button and TextBox classes.

36 .NET Interface Guide

Object Hierarchy
The most striking difference between the Windows.Forms GUI and the Dyalog
GUI is that in Windows.Forms the container hierarchy represented by forms,
group boxes, and controls is not represented by an object hierarchy. Instead, objects
that represent GUI controls are created stand-alone (i.e. without a parent) and then
associated with a container, such as a Form, by calling the Addmethod of the
parent’s Controls collection. Notice too that Windows.Forms objects are
associated with APL symbols that are namespace references, but Windows.Forms
objects do not have implicit names.

Positioning and Sizing Forms and Controls
The position of a form or a control is specified by its Location property, which is
measured relative to the top left corner of the client area of its container.

Location has a data type of System.Drawing.Point. To set Location, you
must first create an object of type System.Drawing.Point then assign that
object to Location.

Similarly, the size of an object is determined by its Size property, which has a data
type of System.Drawing.Size. This time, you must create a
System.Drawing.Size object before assigning it to the Size property of the
control or form.

Objects also have Top(Y) and Left(X) properties that may be specified or
referenced independently. These accept simple numeric values.

The position of a Formmay instead be determined by its DeskTopLocation
property, which is specified relative to the taskbar. Another alternative is to set the
StartPosition property whose default setting is
WindowsDefaultLocation, which represents a computed best location.

Modal Dialog Boxes
Dialog Boxes are displayed modally to prevent the user from performing tasks
outside of the dialog box.

To create a modal dialog box, you create a Form, set its BorderStyle property to
FixedDialog, set its ControlBox, MinimizeBox and MaximizeBox
properties to false, and display it using ShowDialog.

Chapter 3: Using Windows.Forms 37

A modal dialog box has a DialogResult property that is set when the Form is
closed, or when the user presses OK or Cancel. The value of this property is returned
by the ShowDialogmethod, so the simplest way to handle user actions is to check
the result of ShowDialog and proceed accordingly. Example 1 illustrates a simple
modal dialog box.

Example 1
Function EG1 illustrates how to create and use a simple modal dialog box. Much of
the function is self-explanatory, but the following points are noteworthy.

EG1[1-2] set ⎕USING to include the .NET Namespaces
System.Windows.Forms and System.Drawing.

EG1[6,8,9] create a Form and two Button objects. As yet, they are
unconnected. The constructor for both classes is defined to take no arguments, so the
⎕NEW system function is only called with a class argument.

EG1[14] shows how the Location property is set by first creating a new Point
object with a specific pair of (x and y) values.

EG1[18] computes the values for the Point object for button2.Location,
from the values of the Left, Height and Top properties of button1; thus
positioning button2 relative to button1.

∇ EG1;form1;button1;button2;true;false;⎕USING;Z
[1] ⎕USING←,⊂'System.Windows.Forms,

System.Windows.Forms.dll'
[2] ⎕USING,←⊂'System.Drawing,System.Drawing.dll'
[3] true false←1 0
[4]
[5] ⍝ Create a new instance of the form.
[6] form1←⎕NEW Form
[7] ⍝ Create two buttons to use as the accept and cancel btns
[8] button1←⎕NEW Button
[9] button2←⎕NEW Button
[10]
[11] ⍝ Set the text of button1 to "OK".
[12] button1.Text←'OK'
[13] ⍝ Set the position of the button on the form.
[14] button1.Location←⎕NEW Point,⊂10 10
[15] ⍝ Set the text of button2 to "Cancel".
[16] button2.Text←'Cancel'
[17] ⍝ Set the position of the button relative to button1.
[18] button2.Location←⎕NEW Point,

⊂button1.Left button1.(Height+Top+10)
[19]

38 .NET Interface Guide

EG1[21,23] sets the DialogResult property of button1 and button2 to
DialogResult.OK and DialogResult.Cancel respectively. Note that
DialogResult is an enumeration with a predefined set of member values.

Similarly, EG1[32] defines the BorderStyle property of the form using the
FormBorderStyle enumeration.

EG1[38 40] defines the AcceptButton and CancelButton properties of the
Form to button1 and button2 respectively. These have the same effect as the
Dyalog GUI Default and Cancel properties.

EG1[42] sets the StartPosition of the Form to be centre screen. Once again
this is specified using an enumeration; FormStartPosition.

[20] ⍝ Make button1's dialog result OK.
[21] button1.DialogResult←DialogResult.OK
[22] ⍝ Make button2's dialog result Cancel.
[23] button2.DialogResult←DialogResult.Cancel
[24]
[25]
[26] ⍝ Set the title bar text of the form.
[27] form1.Text←'My Dialog Box'
[28] ⍝ Display a help button on the form.
[29] form1.HelpButton←true
[30]
[31] ⍝ Define the border style of the form to that of a

dialog box.
[32] form1.BorderStyle←FormBorderStyle.FixedDialog
[33] ⍝ Set the MaximizeBox to false to remove the

maximize box.
[34] form1.MaximizeBox←false
[35] ⍝ Set the MinimizeBox to false to remove the

minimize box.
[36] form1.MinimizeBox←false
[37] ⍝ Set the accept button of the form to button1.
[38] form1.AcceptButton←button1
[39] ⍝ Set the cancel button of the form to button2.
[40] form1.CancelButton←button2
[41] ⍝ Set the start position of the form to the centre

of the screen.
[42] form1.StartPosition←FormStartPosition.CenterScreen
[43]

EG1[45 46] associate the buttons with the Form. The Controls property of the
Form returns an object of type Form.ControlCollection. This class has an
Addmethod that is used to add a control to the collection of controls that are owned
by the Form.

Chapter 3: Using Windows.Forms 39

EG1[50] calls the ShowDialogmethod (with no argument; hence the ⍬). The
result is an object of type Form.DialogResult, which is an enumeration.

EG1[52] compares the result returned by ShowDialog with the enumeration
member DialogResult.OK (note that the primitive function = has been extended
to compare objects).

[44] ⍝ Add button1 to the form.
[45] form1.Controls.Add button1
[46] ⍝ Add button2 to the form.
[47] form1.Controls.Add button2
[48]
[49] ⍝ Display the form as a modal dialog box.
[50] Z←form1.ShowDialog ⍬
[51] ⍝ Determine if the OK button was clicked on the

dialog box.
[52] :If Z=DialogResult.OK
[53] ⍝ Display a message box saying that the OK

button was clicked.
[54] Z←MessageBox.Show⊂'The OK button on the form

was clicked.'
[55] :Else
[56] ⍝ Display a message box saying that the Cancel

button was clicked.
[57] Z←MessageBox.Show⊂'The Cancel button on the

form was clicked.'
[58] :EndIf

∇

Warning: The use of modal forms in .NET can lead to problematic situations while
debugging. As the control is passed to .NET the APL interpreter cannot regain
control in the event of an unforeseen error. It is advisable to change the code to
something like the following until the code is fully tested:

[52] form1.Visible←1
[53] :While form1.Visible ⋄ :endwhile

40 .NET Interface Guide

Example 2
Functions EG2 and EG2A illustrate how the Each operator (¨) and the extended
namespace reference syntax in Dyalog APL may be used to produce more succinct,
and no less readable, code.

∇ EG2;form1;label1;textBox1;true;false;⎕USING;Z
[1] ⎕USING←,⊂'System.Windows.Forms,

System.Windows.Forms.dll'
[2] ⎕USING,←⊂'System.Drawing,System.Drawing.dll'
[3] true false←1 0
[4]
[5] ⍝ Create a new instance of the form.
[6] form1←⎕NEW Form
[7]
[8] textBox1←⎕NEW TextBox
[9] label1←⎕NEW Label
[10]
[11] ⍝ Initialize the controls and their bounds.
[12] label1.Text←'First Name'
[13] label1.Location←⎕NEW Point (48 48)
[14] label1.Size←⎕NEW Size (104 16)
[15] textBox1.Text←''
[16] textBox1.Location←⎕NEW Point (48 64)
[17] textBox1.Size←⎕NEW Size (104 16)
[18]
[19] ⍝ Add the TextBox control to the form's control

collection.
[20] form1.Controls.Add textBox1
[21] ⍝ Add the Label control to the form's control

collection.
[22] form1.Controls.Add label1
[23]
[24] ⍝ Display the form as a modal dialog box.
[25] Z←form1.ShowDialog ⍬

∇

EG2A[7] takes advantage of the fact that .NET classes are namespaces, so the
expression Form TextBox Label is a vector of namespace refs, and the
expression ⎕NEW¨Form TextBox Label runs the ⎕NEW system function on
each of them.

Similarly, EG2A[10 11 12] combine the use of extended namespace reference and
the Each operator to set the Text, Location and Size properties in several
objects together.

Chapter 3: Using Windows.Forms 41

∇ EG2A;form1;label1;textBox1;true;false;⎕USING;Z
[1] ⍝ Compact version of EG2 taking advantage of ref

syntax and ¨
[2] ⎕USING←'System.Windows.Forms,System.Windows.Forms.dll'
[3] ⎕USING,←⊂'System.Drawing,System.Drawing.dll'
[4] true false←1 0
[5]
[6] ⍝ Create a new instance of the form, TextBox and Label.
[7] (form1 textBox1 label1)←⎕NEW¨Form TextBox Label
[8]
[9] ⍝ Initialize the controls and their bounds.
[10] (label1 textBox1).Text←'First Name' ''
[11] (label1 textBox1).Location←⎕NEW¨Point,¨⊂¨(48 48)(48 64)
[12] (label1 textBox1).Size←⎕NEW¨Size,¨⊂¨(104 16)(104 16)
[13]
[14] ⍝ Add the Label and TextBox controls to the form's

control collection.
[15] form1.Controls.AddRange⊂label1 textBox1
[16]
[17] ⍝ Display the form as a modal dialog box.
[18] Z←form1.ShowDialog ⍬

∇

Non-Modal Forms
Non-modal Forms are displayed using the Runmethod of the
System.Windows.Forms.Application object. This method is designed to be
called once, and only once, during the life of an application and this poses problems
during APL development. Fortunately, it turns out that, in practice, the restriction is
that Application.Runmay only be run once on a single system thread.
However, it may be run successively on different system threads. During
development, you may therefore test a function that calls Application.Run, by
running it on a new APL thread using Spawn (&). See Chapter 13 for further details.

DataGrid Examples
Three functions in the samples\winforms\winforms.dws workspace provide
examples of non-modal Forms. These examples also illustrate the use of the
WinForms.DataGrid class.

Function Grid1 is an APL translation of the example given in the help file for the
DataGrid class in the .NET SDK Beta1. The original code has been slightly modified
to work with the current version of the SDK.

Function Grid2 is an APL translation of the example given in the help file for the
DataGrid class in the .NET SDK Beta2.

42 .NET Interface Guide

Function Grid is an APL translation of the example given in the file:

C:\Program Files\Microsoft.NET\SDK\v1.1\...
QuickStart\winforms\samples\Data\Grid\vb\Grid.vb

This example uses Microsoft SQL Server 2000 to extract sample data from the sample
NorthWind database. To run this example, you must have SQL Server running and
you must modify function Grid_Load to specify the name of your server.

GDIPLUS Workspace
The samples\winforms\gdiplus.dws workspace contains a sample that
demonstrates the use of non-rectangular Forms. It is a direct translation into APL
from a C# sample (WinForms-Graphics-GDIPlusShape) that was distributed on the
Visual Studio .NET Beta 2 Resource CD.

TETRIS Workspace
The samples\winforms\tetris.dws workspace contains a sample that
demonstrates the use of graphics. It is a direct translation into APL from a C# sample
(WinForms-Graphics-Tetris) that was distributed on the Visual Studio .NET Beta 2
Resource CD.

WEBSERVICES Workspace
An example of a non-modal Form is provided by the WFGOLF function in the
samples\asp.net\webservices\webservices.dws workspace. This
function performs exactly the same task as the GOLF function in the same workspace,
but it uses Windows.Forms instead of the built-in Dyalog GUI.

WFGOLF, and its callback functions WFBOOK and WFSS perform exactly the same
task, with almost identical dialog box appearance, of GOLF and its callbacks BOOK
and SS that are described in Chapter 7.

Note that when you run WFGOLF or GOLF for the first time, you must supply an
argument of 1 to force the creation of the proxy class for the GolfService web
service.

Chapter 4: Windows Presentation Foundation 43

Chapter 4:

Windows Presentation Foundation

Introduction
Windows Presentation Foundation is a graphical system that includes a
programmable Graphical User Interface. It is supplied as a set of Microsoft .NET
assemblies and is supported on all current Windows platforms.

The WPFGUI is in many ways more sophisticated and powerful than either Dyalog
APL's own built-in GUI or the GUI provided by Windows Forms.

Like any other set of .NET classes, WFP can be integrated into Dyalog APL
applications via the .NET interface. Dyalog APL users may therefore develop
GUI applications that are based upon WPF as an alternative to the built-in Dyalog
GUI orWindows Forms.

Quite apart from its advanced GUI capabilities, WPF supports data binding. This is a
complex subject, but putting it very simply, data binding allows a property of a user-
interface object (such as the Text property of a TextBox object) to be bound to
some data. When the data changes, the bound property of the object changes and
vice versa.

Dyalog APL Version 14 includes a data binding function (2015⌶1) which supports
data binding to APL arrays and namespaces.

A WPFGUI can be built dynamically by creating a set of component objects (using
⎕NEW) in a similar way to the Dyalog APL GUI and Windows Forms. However, the
same user-interface can instead be specified statically using XAML, a text markup
system that describes the GUI using XML. Along with data binding, this feature
allows the application logic and the user-interface to be developed and maintained
separately.

The examples described in this section are provided in the workspace
WPFIntro.dws

1This function may remain as an I-beam or be replaced by one or more system functions in a future
Version of Dyalog APL.

44 .NET Interface Guide

Temperature Converter Tutorial
This tutorial illustrates how to go about developing a simple WPF application in
Dyalog APL. It is functionally identical to the GUI tutorial example that illustrates
how to develop a GUI application using the built-in Dyalog APL Graphical User
Interface. See Interface Guide: GUI Tutorial.

Like the GUI Tutorial, this is necessarily an elementary example, but illustrates the
principles that are involved. The example is a simple Temperature Converter.

The user may enter a temperature value in either Fahrenheit or Centigrade and have it
converted to the other scale.

No attempt has been made to update the WPF example, in terms of its user-interface,
from the original version which was developed forWindows 3. This allows a direct
comparison to be made between using the WPF and using the built-in Dyalog GUI.

There are two versions provided. The first uses XAML to describe the user-interface
with code to drive it. The second version is written entirely in APL code. The two
versions of this example may be found in WPFIntro.dws in the namespaces
UsingXAML and UsingCode respectively.

Using XAML
The functions and data for this example are provided in the workspace
WPFIntro.dws in the namespace WPF.UsingXAML. To run the example:

)LOAD wpfintro
WPF.UsingXAML.TempConverter

Arguably the easiest way to create a WPFGUI is to define it using XAML. The
XAML defines the structure, layout and appearance of the user-interface in a very
concise manner. It is still necessary to write code to display the XAML and to
respond to user actions, but the amount of code involved is minimal.

Chapter 4: Windows Presentation Foundation 45

The XAML for the Temperature Converter is shown below.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="WPF Temperature Converter"
SizeToContent="WidthandHeight">
<DockPanel LastChildFill="False">
<Menu DockPanel.Dock="Top">

<MenuItem Header="_Scale">
<MenuItem Name="mnuFahrenheit" Header="_Fahrenheit"
IsCheckable="True" IsChecked="True"/>
<MenuItem Name="mnuCentigrade" Header="_Centigrade"
IsCheckable="True"/>

</MenuItem>
</Menu>
<Grid Width="230" Margin="40,10,10,10">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition Width="80"/>
<ColumnDefinition Width="60"/>

</Grid.ColumnDefinitions>
<Label Grid.Row="0" Grid.Column="0" Content="Fahrenheit"/>
<Label Grid.Row="1" Grid.Column="0" Content="Centigrade"/>
<TextBox Name="txtFahrenheit" Grid.Row="0" Grid.Column="1"
Margin="5"/>
<TextBox Name="txtCentigrade" Grid.Row="1" Grid.Column="1"
Margin="5"/>
<Button Name="btnF2C" Grid.Row="0" Grid.Column="2"
Content="F>C" Margin="5"/>
<Button Name="btnC2F" Grid.Row="1" Grid.Column="2"
Content="C>F" Margin="5"/>
<Button Name="btnQuit" Grid.Row="2" Grid.Column="1"
Content="Quit" Margin="5"/>
</Grid>
<ScrollBar Name="scrTemp" DockPanel.Dock="Right" Width="20"
Orientation="Vertical" Minimum="1" Maximum="213">
</ScrollBar>

</DockPanel>
</Window>

46 .NET Interface Guide

The window defined by this XAML is illustrated in the screen image shown above.
Let us examine the XAML, component by component.

Parent and Child Controls
First, notice how the structure of the GUI is defined by enclosing the child
components inside the opening and closing tags of its parent. So:

<Window
...
<DockPanel>

...
</DockPanel>

</Window>

specifies a Window control that contains a DockPanel control.

Similarly,

<Menu>
<MenuItem ... >

<MenuItem ... />
<MenuItem ... />

</MenuItem>
</Menu>

defines a Menu that contains a MenuItem, that itself contains two other MenuItem
objects.

Named and Un-named Controls
Secondly, notice that certain objects are named whereas others are not. For example:
TextBox Name="mnuFahrenheit defines a TextBox named txtFahenheit;
whereas <DockPanel ...> defines an unnamed DockPanel object.

Chapter 4: Windows Presentation Foundation 47

Objects are given names so that they can be referenced from the code that displays
content in the user-interface or handles the user actions. In this case, the code will
read the content of the txtFahrenheit TextBox but has no need to reference the
DockPanel.

The Main Window
<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="WPF Temperature Converter"
SizeToContent="WidthandHeight">
...
</Window>

This extract of XAML defines a Window control; a top-level window that is
equivalent to a Dyalog APL GUI Form.

The xmlns attributes define the XML namespaces (effectively the vocabulary of the
xml scheme) and are mandatory in an XAML document.

The name of the TextBox is Temp, and its caption isWFP Temperature Converter.
The SizeToContent property is set to "WidthandHeight", which causes the
TextBox to automatically size itself to fit its content in both horizontal and vertical
directions.

The DockPanel
<DockPanel LastChildFill="False">
..
</DockPanel>

WPF provides a number of layout controls. These are containers whose only purpose
is to arrange child controls in a particular way, and to dictate how they are re-
arranged when the parent window is resized. The DockPanel is one of the simplest
of the WPF layout controls.

In this case, the DockPanel is controlling 3 child windows a Menu, a Grid and a
ScrollBar.

The attachment of a particular child control is specified by setting its
DockPanel.Dock property. By default, the last control added to a DockPanel is
stretched to fill the remaining space when the window is expanded. In this case, the
requirement is for a fixed-width scrollbar attached to the right edge, so the default is
overridden by setting the LastChildFill property to "False".

48 .NET Interface Guide

The Menu
<Menu DockPanel.Dock="Top">

<MenuItem Header="_Scale">
<MenuItem Name="mnuFahrenheit" Header="_Fahrenheit"
IsCheckable="True" IsChecked="True"/>
<MenuItem Name="mnuCentigrade" Header="_Centigrade"
IsCheckable="True"/>

</MenuItem>
</Menu>

The above extract from the XAML defines a Menu. Setting Dock to "Top" causes the
Menu as a whole to be docked, so that it appears like a menubar, along the top of the
DockPanel. The Menu contains a single MenuItem labelled Scale which itself
contains two sub-items labelled Fahrenheit and Centigrade respectively. The
IsCheckable property specifies whether or not the user can check the MenuItem,
and the IsChecked property sets and reports its checked state. The underscore
characters (e.g. as in "_Scale") identify the following character as a keyboard
shortcut.

The Grid
<Grid Width="230" Margin="40,10,10,10">
...
</Grid>

The Grid object is anotherWPF layout control that organises other controls in rows
and columns. Here, the XAML defines a Grid with a width of 230; a left margin if
40, and a top, right and bottommargin of 10. As there is no explicit unit specified,
the system uses the default device-independent unit (px) of 1/96th inch.

Chapter 4: Windows Presentation Foundation 49

The rows and columns of a Grid are defined by collections of RowDefinition
and ColumnDefinition objects.

Here the XAML specifies that the Grid contains 3 rows, each of which has a
Height set to "Auto" which means that its height depends upon the height of its
content.

<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>

</Grid.RowDefinitions>

Similarly, there are 3 columns. The first column (which will contain labels) takes its
width from its content, i.e. it will be just wide enough to display the longest label.
The other columns for the edit boxes and buttons are specified to be 80px and 60px
wide respectively. In this case, the content (TextBox and Button objects) will
take their widths from that of the column.

<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition Width="80"/>
<ColumnDefinition Width="60"/>

</Grid.ColumnDefinitions>

The Label Objects(Column 1)
<Label Grid.Row="0" Grid.Column="0" Content="Fahrenheit"/>
<Label Grid.Row="1" Grid.Column="0" Content="Centigrade"/>

Here the XAML specifies Label objects Fahrenheit and Centigrade. Because they
are defined within the <Grid> ...</Grid> tags, they are child objects of the
Grid. In addition it is necessary to specify in which cells they are displayed using
their Grid.Row and Grid.Column properties. Note that the cell coordinates have
zero origin.

The TextBox Objects(Column 2)
<TextBox Name="txtFahrenheit" Grid.Row="0" Grid.Column="1"
Margin="5"/>
<TextBox Name="txtCentigrade" Grid.Row="1" Grid.Column="1"
Margin="5"/>

The XAML specifies two TextBox objects named txtFahrenheit and txtCentigrade
respectively. Setting Margin to "5" means that a margin of 5px is applied around
each edge; otherwise the text boxes would occupy the entire width of the column
(80px). The effective width of each TextBox will therefore be 70px (80-2×5).

50 .NET Interface Guide

The Button Objects (Column 3)
<Button Name="btnF2C" Grid.Row="0" Grid.Column="2"
Content="F>C" Margin="5"/>
<Button Name="btnC2F" Grid.Row="1" Grid.Column="2"
Content="C>F" Margin="5"/>
<Button Name="btnQuit" Grid.Row="2" Grid.Column="1"
Content="Quit" Margin="5"/>

The XAML specifies three named Button controls. Note that the caption on a
Button is specified by its Content property.

The ScrollBar Object
This example uses a ScrollBar which the user may scroll to input a value, either
in Fahrenheit or Centigrade depending upon which of the two menu items
(Fahrenheit orCentigrade) is checked.1

<ScrollBar Name="scrTemp" DockPanel.Dock="Right" Width="20"
Orientation="Vertical" Minimum="1" Maximum="213">
</ScrollBar>

This XAML snippet defines a ScrollBar named scrTemp.

Setting DockPanel.Dock to "Right" means that it will be docked (aligned) on the
right edge of the DockPanel. It will be a vertical scrollbar, have a fixed width of
20px and a default height. The range of the ScrollBar is defined by its Minimum
and Maximum properties which are set so that the ScrollBar will specify a value
in Fahrenheit.

Note that in order to cause the ScrollBar to be docked (aligned) along the right
edge of the DockPanel it is necessary to set LastChildFill to "False" (for the
DockPanel) and Dock to "Right" (for the ScrollBar), because the value of
LastChildFill (default "True") overrides the Dock value of the last defined
child of the DockPanel.

Note
The XAML that defines this user-interface is at the same time both simple and
complex. It is simple because (in this case) it is readily understood. It is complex
because in order to write it, the user-interface designer must understand precisely
how the various controls and their properties behave and work together. For these
details, you should refer to the appropriate documentation and check out the large
number of examples published on the internet.

1A ScrollBar is not the ideal choice of control for this type of user interation, but this example
is designed to look and behave like the original Dyalog GUI example, which was written for the
original version of Dyalog APL for Windows.

Chapter 4: Windows Presentation Foundation 51

The Code to display the XAML
The function TempConverter shown below contains the code needed to display
and operate the user interface whose layout is defined by the XAML described
above.

∇ TempConverter;str;xml;win;txtFahrenheit;txtCentigrade;
mnuFahrenheit;mnuCentigrade;btnF2C;
btnC2F;btnQuit;scrTemp;sink

[1] ⎕USING←'System'
[2] ⎕USING,←⊂'System.IO'
[3] ⎕USING,←⊂'System.Windows.Markup'
[4] ⎕USING,←⊂'System.Xml,system.xml.dll'
[5] ⎕USING,←⊂'System.Windows.Controls.Primitives,

WPF/PresentationFramework.dll'
[6]
[7] str←⎕NEW StringReader(⊂XAML)
[8] xml←⎕NEW XmlTextReader str
[9] win←XamlReader.Load xml
[10]
[11] txtFahrenheit←win.FindName⊂'txtFahrenheit'
[12] txtCentigrade←win.FindName⊂'txtCentigrade'
[13] mnuFahrenheit←win.FindName⊂'mnuFahrenheit'
[14] mnuFahrenheit.onClick←'SET_F'
[15] mnuCentigrade←win.FindName⊂'mnuCentigrade'
[16] mnuCentigrade.onClick←'SET_C'
[17] (btnF2C←win.FindName⊂'btnF2C').onClick←'f2c'
[18] (btnC2F←win.FindName⊂'btnC2F').onClick←'c2f'
[19] (btnQuit←win.FindName⊂'btnQuit').onClick←'Quit'
[20] (scrTemp←win.FindName⊂'scrTemp').onScroll←'F2C'
[21] sink←win.ShowDialog

∇

The variable XAML (a character vector) contains the XAML described previously.

Note that apart from the names given to the objects by the XAML and used by the
function, the XAML and the code are independent.

TempConverter[7-8] create a XamlReader object from the character vector
via StringReader and XmlTextReader objects.

[7] str←⎕NEW StringReader(⊂XAML)
[8] xml←⎕NEW XmlTextReader str

TempConverter[9] instantiates the XAML content by calling its Loadmethod,
which returns a reference win to the top-level control (in this case a Window)
defined therein. The Window is not yet visible.

[9] win←XamlReader.Load xml

52 .NET Interface Guide

Earlier, it was explained that objects defined by the XAMLmust be named in order
that they can be referenced (used) by the code. The mechanism to achieve this is to
call the FindNamemethod of the Window, which returns a reference to the
specified (named) object. So these statements:

[11] txtFahrenheit←win.FindName⊂'txtFahrenheit'
[12] txtCentigrade←win.FindName⊂'txtCentigrade'

obtain refs (in this case named txtFahrenheit and txtCentigrade) to objects
named txtFahrenheit and txtCentigrade. It is convenient (but not essential) to use the
same name for the ref as is used for the control.

Most of the remaining statements obtain refs to the MenuItem, Button and
ScrollBar objects and attach callback functions to their Click and Scroll
events respectively.

[13] mnuFahrenheit←win.FindName⊂'mnuFahrenheit'
[14] mnuFahrenheit.onClick←'SET_F'
[15] mnuCentigrade←win.FindName⊂'mnuCentigrade'
[16] mnuCentigrade.onClick←'SET_C'
[17] (btnF2C←win.FindName⊂'btnF2C').onClick←'f2c'
[18] (btnC2F←win.FindName⊂'btnC2F').onClick←'c2f'
[19] (btnQuit←win.FindName⊂'btnQuit').onClick←'Quit'
[20] (scrTemp←win.FindName⊂'scrTemp').onScroll←'F2C'

Finally the code displays the Window and hands it over to the user by calling the
ShowDialogmethod of the top-level Window.

[21] sink←win.ShowDialog

ShowDialog displays the Window modally; i.e. until it is closed, the user may
interact only with that Window. It is equivalent to ⎕DQ win or win.Wait in the
Dyalog built-in GUI.

The CallBack Functions
The callback functions are named as they are in the basic Dyalog GUI example and
are remarkably similar. See Interface Guide: GUI Tutorial.

Callback function f2c which is attached to the Click event of the btnF2C button
(labelled F>C) reads the character string in the txtFahrenheit TextBox,
converts it to a number using Text2Num, calculates the equivalent in centigrade
and then displays the result in the txtCentigrade TextBox.

Chapter 4: Windows Presentation Foundation 53

∇ f2c;value
[1] ⍝ Callback to convert Fahrenheit to Centigrade
[2] :If 1=⍴,value←Text2Num txtFahrenheit.Text
[3] txtCentigrade.Text←2⍕(value-32)×5÷9
[4] :Else
[5] txtCentigrade.Text←'invalid'
[6] :EndIf

∇

For completeness, the Text2Num function is shown below. Note that if the user
enters an invalid number, Text2Num returns an empty vector, and the callback
displays the text invalid instead.

∇ num←Text2Num txt;val
[1] val num←⎕VFI txt
[2] num←val/num

∇

The c2f function converts from Centigrade to Fahrenheit when the user presses the
button labelled C>F.

∇ c2f;value
[1] ⍝ Callback to convert Centigrade to Fahrenheit
[2] :If 1=⍴,value←Text2Num txtCentigrade.Text
[3] txtFahrenheit.Text←2⍕32+value÷5÷9
[4] :Else
[5] txtFahrenheit.Text←'invalid'
[6] :EndIf

∇

The callbacks F2C and C2F, one of which at a time is attached to the Scroll event
of the ScrollBar object are shown below. The argument Msg contains two items,
namely:

[1] Object a ref to the ScrollBar object

[2] Object a ref to an object of type
System.Windows.Controls.Primitives.ScrollEventArgs

In this case the code uses the NewValue property of the ScrollEventArgs object. An
alternative would be to refer to the Value property of the ScrollBar object

∇ F2C Msg;C;F;val
[1] ⍝ Callback for Fahrenheit input via scrollbar
[2] txtFahrenheit.Text←2⍕val←213-(2⊃Msg).NewValue
[3] txtCentigrade.Text←2⍕(val-32)×5÷9

∇

54 .NET Interface Guide

∇ C2F Msg;C;F;val
[1] ⍝ Callback for Centigrade input via scrollbar
[2] txtCentigrade.Text←2⍕val←101-(2⊃Msg).NewValue
[3] txtFahrenheit.Text←2⍕32+val÷5÷9

∇

The callbacks SET_F and SET_C which are attached to the Click events of the
two MenuItem objects are shown below.

∇ SET_F
[1] ⍝ Sets the scrollbar to work in Fahrenheit
[2] scrTemp.(Minimum Maximum)←1 213
[3] scrTemp.onScroll←'F2C'
[4] mnuFahrenheit.IsChecked←1
[5] mnuCentigrade.IsChecked←0

∇

∇ SET_C
[1] ⍝ Sets the scrollbar to work in Centigrade
[2] scrTemp.(Minimum Maximum)←1 101
[3] scrTemp.onScroll←'C2F'
[4] mnuCentigrade.IsChecked←1
[5] mnuFahrenheit.IsChecked←0

∇

Finally, the callback function Quit which is attached to the Click event on the
Quit button, simply calls the Closemethod of the Window:

∇ Quit arg
[1] win.Close

∇

Notice that unlike its equivalent in the Dyalog GUI, it is not appropriate to close the
Window using the expression ⎕EX 'win'. This would expunge the ref to the
Window but have no effect on the Window itself.

Using Code
The functions for this example are provided in the workspace WPFIntro.dws in
the namespace WPF.UsingCode. To run the example:

)LOAD wpfintro
WPF.UsingCode.TempConverter

The following function TempConverter performs exactly the same task of
defining and manipulating the user-interface for the Temperature Converter example
using XAML which was discussed previously.

The callback functions it uses are identical.

Chapter 4: Windows Presentation Foundation 55

∇ TempConverter;⎕USING;win;dp;mnu;mnuFahrenheit;
mnuCentigrade;gr;tn;rd1;rd2;rd3;
rc1;rc2;rc3;l1;l2;txtFahrenheit;
txtCentigrade;btnF2C;btnC2F;
btnQuit;sink;mnuScale;scrTemp

[1]
[2] ⎕USING←,⊂'System.Windows.Controls,

WPF/PresentationFramework.dll'
[3] ⎕USING,←⊂'System.Windows.Controls.Primitives,

WPF/PresentationFramework.dll'
[4] ⎕USING,←⊂'System.Windows,

WPF/PresentationFramework.dll'
[5] ⎕USING,←⊂'System.Windows,

WPF/PresentationCore.dll'
[6]
[7] win←⎕NEW Window
[8] win.SizeToContent←SizeToContent.WidthAndHeight
[9] win.Title←'WPF Temperature Converter'
[10]
[11] dp←⎕NEW DockPanel
[12] dp.LastChildFill←0
[13]
[14] mnu←⎕NEW Menu
[15]
[16] mnuScale←⎕NEW MenuItem
[17] mnuScale.Header←'_Scale'
[18] sink←mnu.Items.Add mnuScale
[19]
[20] mnuFahrenheit←⎕NEW MenuItem
[21] mnuFahrenheit.Header←'Fahrenheit'
[22] mnuFahrenheit.IsCheckable←1
[23] mnuFahrenheit.IsChecked←1
[24] mnuFahrenheit.onClick←'SET_F'
[25] sink←mnuScale.Items.Add mnuFahrenheit
[26]
[27] mnuCentigrade←⎕NEW MenuItem
[28] mnuCentigrade.Header←'_Centigrade'
[29] mnuCentigrade.IsCheckable←1
[30] mnuCentigrade.IsChecked←0
[31] mnuCentigrade.onClick←'SET_C'
[32] sink←mnuScale.Items.Add mnuCentigrade
[33]
[34] sink←dp.Children.Add mnu
[35] dp.SetDock mnu Dock.Top
[36]
[37] gr←⎕NEW Grid
[38] gr.Width←230
[39] gr.Margin←⎕NEW Thickness(40 10 10 10)
[40]
[41] rd1←⎕NEW RowDefinition
[42] rd1.Height←GridLength.Auto

56 .NET Interface Guide

[43] rd2←⎕NEW RowDefinition
[44] rd2.Height←GridLength.Auto
[45] rd3←⎕NEW RowDefinition
[46] rd3.Height←GridLength.Auto
[47] gr.RowDefinitions.Add¨rd1 rd2 rd3
[48]
[49] rc1←⎕NEW ColumnDefinition
[50] rc1.Width←GridLength.Auto
[51] rc2←⎕NEW ColumnDefinition
[52] rc2.Width←⎕NEW GridLength 80
[53] rc3←⎕NEW ColumnDefinition
[54] rc3.Width←⎕NEW GridLength 60
[55] gr.ColumnDefinitions.Add¨rc1 rc2 rc3
[56]
[57] l1←⎕NEW Label
[58] l1.Content←'Fahrenheit'
[59] sink←gr.Children.Add l1
[60] gr.SetRow l1 0
[61] gr.SetColumn l1 0
[62]
[63] l2←⎕NEW Label
[64] l2.Content←'Centigrade'
[65] sink←gr.Children.Add l2
[66] gr.SetRow l2 1
[67] gr.SetColumn l2 0
[68]
[69] txtFahrenheit←⎕NEW TextBox
[70] txtFahrenheit.Margin←⎕NEW Thickness 5
[71] sink←gr.Children.Add txtFahrenheit
[72] gr.SetRow txtFahrenheit 0
[73] gr.SetColumn txtFahrenheit 1
[74]
[75] txtCentigrade←⎕NEW TextBox
[76] txtCentigrade.Margin←⎕NEW Thickness 5
[77] sink←gr.Children.Add txtCentigrade
[78] gr.SetRow txtCentigrade 1
[79] gr.SetColumn txtCentigrade 1
[80]
[81] btnF2C←⎕NEW Button
[82] btnF2C.Content←'F>C'
[83] btnF2C.Margin←⎕NEW Thickness 5
[84] btnF2C.onClick←'f2c'
[85] sink←gr.Children.Add btnF2C
[86] gr.SetRow btnF2C 0
[87] gr.SetColumn btnF2C 2
[88]
[89] btnC2F←⎕NEW Button
[90] btnC2F.Content←'C>F'
[91] btnC2F.Margin←⎕NEW Thickness 5
[92] btnC2F.onClick←'c2f'
[93] sink←gr.Children.Add btnC2F

Chapter 4: Windows Presentation Foundation 57

[94] gr.SetRow btnC2F 1
[95] gr.SetColumn btnC2F 2
[96]
[97] btnQuit←⎕NEW Button
[98] btnQuit.Content←'Quit'
[99] btnQuit.Margin←⎕NEW Thickness 5
[100] btnQuit.onClick←'Quit'
[101] sink←gr.Children.Add btnQuit
[102] gr.SetRow btnQuit 2
[103] gr.SetColumn btnQuit 1
[104]
[105] sink←dp.Children.Add gr
[106]
[107] scrTemp←⎕NEW ScrollBar
[108] scrTemp.Width←20
[109] scrTemp.Orientation←Orientation.Vertical
[110] scrTemp.Minimum←1
[111] scrTemp.Maximum←213
[112] scrTemp.onScroll←'F2C'
[113]
[114] sink←dp.Children.Add scrTemp
[115] dp.SetDock scrTemp Dock.Right
[116]
[117] win.Content←dp
[118]
[119] sink←win.ShowDialog

∇

58 .NET Interface Guide

Although this approach appears at first sight to be considerably more verbose than
using XAML (a 120-line function compared with a 21-line function and a 44-line
block of XAML) each line of code performs only one very simple task, and no
attempt has been made to write utility functions to perform the same task for similar
controls, as might be done in a real application.

As before, let us examine the code line-by-line.

TempConverter[2-5] define ⎕USING so that the appropriate .NET assemblies
are on the search-path. Note that the ScrollBar control is in
System.Windows.Controls.Primitives and not
System.Windows.Controls like the others.

[2] ⎕USING←,⊂'System.Windows.Controls,
WPF/PresentationFramework.dll'

[3] ⎕USING,←⊂'System.Windows.Controls.Primitives,
WPF/PresentationFramework.dll'

[4] ⎕USING,←⊂'System.Windows,
WPF/PresentationFramework.dll'

[5] ⎕USING,←⊂'System.Windows,
WPF/PresentationCore.dll

TempConverter[8-9] creates a Window and sets its SizeToContent and
Title properties as in the XAML example. Notice however that whereas using
XAML the string SizeToContent="WidthandHeight" is sufficient, when
using code it is necessary to get the Type right. In this case, the SizeToContent
property must be set to a specific member (in this case WidthAndHeight) of the
System.Windows.SizeToContent enumeration. Other members of this Type
are Width, Height and Manual (the default).

[7] win←⎕NEW Window
[8] win.SizeToContent←SizeToContent.WidthAndHeight
[9] win.Title←'WPF Temperature Converter'

TempConverter[11-12] create a DockPanel control and set its
LastChildFill property to 0. In this case the APL value 0 is used instead of the
string "False" in XAML.

[11] dp←⎕NEW DockPanel
[12] dp.LastChildFill←0

TempConverter[14] creates a Menu control.

[14] mnu←⎕NEW Menu

Chapter 4: Windows Presentation Foundation 59

TempConverter[16-18] create a MenuItem control with the caption Scale,
and then add the control to the Items collection of the main Menu using its Add
method. This illustrates one significant difference between using XAML and code.
In XAML, the parent/child relationships between controls are defined by the
structure and order of the XML. Using code, child controls must be explicitly added
to the appropriate list of child controls managed by the parent.

[16] mnuScale←⎕NEW MenuItem
[17] mnuScale.Header←'_Scale'
[18] sink←mnu.Items.Add mnuScale

TempConverter[20-25] create a MenuItem control labelled Fahrenheit. The
IsCheckable and IsChecked properties are set to 1, which is equivalent to
"True" in XAML. The callback function SET_F is assigned to the Click event
exactly as in the XAML version of this example. The last line in this section makes
the Fahrenheit MenuItem a child of the Scale MenuItem.

[20] mnuFahrenheit←⎕NEW MenuItem
[21] mnuFahrenheit.Header←'Fahrenheit'
[22] mnuFahrenheit.IsCheckable←1
[23] mnuFahrenheit.IsChecked←1
[24] mnuFahrenheit.onClick←'SET_F'
[25] sink←mnuScale.Items.Add mnuFahrenheit

The code used to create the Centigrade MenuItem is more or less the same.

TempConverter[34-35] adds the top-level Menu to the DockPanel. Note that
in the case of a DockPanel, the list of its child controls is represented by its
Children property. Furthermore, to define how it is docked this is done, using
code, by the SetDockmethod of the DockPanel. This contrasts with the way this
is achieved using XAML (DockPanel.Dock="Top"). Note too that the argument
to SetDock is not just a simple string as in XAML, but a member of the
System.Windows.Controls.Dock enumeration.

[34] sink←dp.Children.Add mnu
[35] dp.SetDock mnu Dock.Top

TempConverter[37-39] create the Grid control. Its Width property will
accept a simple numeric value, but its Margin property must be given an instance of
a System.Windows.Thickness structure. In this case, the ThickNess
constructor is given a 4-element numeric vector that specifies its Left, Top,
Right and Bottommembers respectively.

[37] gr←⎕NEW Grid
[38] gr.Width←230
[39] gr.Margin←⎕NEW Thickness(40 10 10 10)

60 .NET Interface Guide

TempConverter[41-47] create instances of 3 RowDefinition classes and
add them to the RowDefinitions collection of the Grid. Note that whereas in
XAML the Height can be specified as a string, using code it is necessary once
again to use the correct Type. In this case, Heightmust be specified by a member of
the System.Windows.GridLength structure.

[41] rd1←⎕NEW RowDefinition
[42] rd1.Height←GridLength.Auto
[43] rd2←⎕NEW RowDefinition
[44] rd2.Height←GridLength.Auto
[45] rd3←⎕NEW RowDefinition
[46] rd3.Height←GridLength.Auto
[47] gr.RowDefinitions.Add¨rd1 rd2 rd3

Similarly, TempConverter[49-55] create instances of 3 ColumnDefinition
classes and add them to the ColumnDefinitions collection of the Grid. Note
that The Width property will not accept a simple numeric value, it must be a
member of the GridLength structure. To set the Width to 80, it is necessary first
to create an instance of a GridLength structure giving this value as the argument
to its constructor.

[49] rc1←⎕NEW ColumnDefinition
[50] rc1.Width←GridLength.Auto
[51] rc2←⎕NEW ColumnDefinition
[52] rc2.Width←⎕NEW GridLength 80
[53] rc3←⎕NEW ColumnDefinition
[54] rc3.Width←⎕NEW GridLength 60
[55] gr.ColumnDefinitions.Add¨rc1 rc2 rc3

TempConverter[57-61] create a Label control with the caption Fahrenheit.
To display the Label in a Grid it is necessary to first add it to the Children
collection of the Grid, and then set its position in the Grid using its SetRow and
SetColumnmethods. Similar code is used to create and position the second
Label.

[57] l1←⎕NEW Label
[58] l1.Content←'Fahrenheit'
[59] sink←gr.Children.Add l1
[60] gr.SetRow l1 0
[61] gr.SetColumn l1 0

Chapter 4: Windows Presentation Foundation 61

TempConverter[69-73] create and position a TextBox control, in the same
way as the Label controls. Notice that in this case, the constructor for the Thickness
structure is given a single value that specifies all four of its Left, Top, Right and
Bottommembers.

[69] txtFahrenheit←⎕NEW TextBox
[70] txtFahrenheit.Margin←⎕NEW Thickness 5
[71] sink←gr.Children.Add txtFahrenheit
[72] gr.SetRow txtFahrenheit 0
[73] gr.SetColumn txtFahrenheit 1

TempConverter[81-87] create and position a Button control. The callback
function f2c is attached to the Click event in the same way as in the XAML
version of this example.

[81] btnF2C←⎕NEW Button
[82] btnF2C.Content←'F>C'
[83] btnF2C.Margin←⎕NEW Thickness 5
[84] btnF2C.onClick←'f2c'
[85] sink←gr.Children.Add btnF2C
[86] gr.SetRow btnF2C 0
[87] gr.SetColumn btnF2C 2

TempConverter[105] adds the Grid to the list of Children to be managed by
the DockControl.

[105] sink←dp.Children.Add gr

TempConverter[107-112] create a ScrollBar control. Its Width, Minimum
and Maximum properties all accept simple numeric values. However, its
Orientation property must be set to a member of the
System.Windows.Controls.Orientation enumeration.

[107] scrTemp←⎕NEW ScrollBar
[108] scrTemp.Width←20
[109] scrTemp.Orientation←Orientation.Vertical
[110] scrTemp.Minimum←1
[111] scrTemp.Maximum←213
[112] scrTemp.onScroll←'F2C'

TempConverter[114-115] add the ScrollBar to the list of Children
managed by the DockPanel, and use its SetDockmethod to cause it to be right-
aligned.

[114] sink←dp.Children.Add scrTemp
[115] dp.SetDock scrTemp Dock.Right

62 .NET Interface Guide

Finally, the DockPanel is assigned to the Content property of the Window, and
the Window displayed as in the XAML version of this example. Note that a Window
may contain just one control.

[117] win.Content←dp
[118]
[119] sink←win.ShowDialog

Chapter 4: Windows Presentation Foundation 63

Data Binding
This section provides some simple examples ofWPF data binding using Dyalog
APL. Each example builds upon the one before, so it is advisable to read them in
order.

Example 1
This example illustrates data binding using XAML to specify the user-interface
coupled with an APL function to drive it and handle the data binding.

The XAML
The XAML shown below, describes a Window containing a TextBox.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="Data Binding (Text)"
SizeToContent="WidthandHeight">

<TextBox Name="txt" Width="300" Margin="5"
Text="{Binding txtSource,Mode=TwoWay,

UpdateSourceTrigger=PropertyChanged}"/>
</Window>

It contains a data binding expression, namely:

Text="{Binding txtSource,Mode=TwoWay,
UpdateSourceTrigger=PropertyChanged}"

This specifies that the Text property of the TextBox is bound to a value in the
Binding Source (which has yet to be defined) whose path is txtSource. The
binding mode is set to TwoWay which means that any change in the TextBox will
be reflected in a new value in the Binding Source, and vice-versa. The value in the
Binding Source will be updated when the property (in this case the Text Property)
changes.

64 .NET Interface Guide

The APL Code

The function Text which generates this example is shown below.

The argument txt is the text to be displayed initially in the TextBox. Note that the
variable XAML_Text contains the XAML that describes the user-interface listed
above.

∇ Text txt;⎕USING;str;xml;win
[1] ⎕USING,←,⊂'System.Windows.Controls,

WPF/PresentationFramework.dll'
[2] win←LoadXAML XAML_Text
[3] win.txtBox←win.FindName⊂'txt'
[4]
[5] ⎕EX'txtSource'
[6] txtSource←txt
[7] win.txtBox.DataContext←2015⌶'txtSource'
[8]
[9] win.Show

∇

The utility function LoadXAML incorporates the 3 lines of code, used to create a
WPFwindow fromXAML, that were coded in-line in previous examples in this
chapter.

∇ win←LoadXAML xaml;⎕USING;str;xml
[1] ⎕USING←'System.IO'
[2] ⎕USING,←⊂'System.Windows.Markup'
[3] ⎕USING,←⊂'System.Xml,system.xml.dll'
[4] ⎕USING,←⊂'System.Windows.Controls,

WPF/PresentationFramework.dll'
[5] str←⎕NEW StringReader(⊂xaml)
[6] xml←⎕NEW XmlTextReader str
[7] win←XamlReader.Load xml

∇

Text[1] defines the .NET search path needed to access the WPF controls.

[1] ⎕USING,←,⊂'System.Windows.Controls,
WPF/PresentationFramework.dll'

Text[2-3] uses the utility function LoadXAML to load a WPF user-interface from
the XAML and then uses the FindNamemethod to obtain a reference to the object
named txt.

[2] win←LoadXAML XAML
[3] win.txtBox←win.FindName⊂'txt'

Chapter 4: Windows Presentation Foundation 65

Text[5-6] initialise a new global variable named txtSource to the value of the
argument. When using a global variable as a data binding source, it is generally
advisable to establish a new variable by first expunging it.1

[5] ⎕EX'txtSource'
[6] txtSource←txt

Text[7]creates a Binding Source object using 2015⌶ and assigns it to the
DataContext property of the TextBox object. Because it is a character vector,
the exported Type for the bound variable txtSource is System.String which
is appropriate for the Text property of a TextBox.

[7] win.txtBox.DataContext←2015⌶'txtSource'

Text[9] displays the Window. Note that although the APL local variable win
goes out of scope when the function terminates, the Window remains visible until
the user has closed it.

[9] win.Show

Testing the Data Binding
The following expressions may be used to explore the effect of data binding.

)LOAD wpfintro
)CS DataBinding.Text

Text 'Hello World'

txtSource←⌽txtSource

1This is because its binding type (the exported type of the data bound variable) is stored in the
workspace along with its value, and the binding type (were it to be incorrect) may not be changed
once it has been established.

66 .NET Interface Guide

Typing into the TextBox changes the value of the bound variable.

txtSource
What is in txtSource now?

Example 2
This example illustrates the use of the optional left argument to 2015⌶ to specify the
data type used to export the value of the bound variable.

The XAML
The XAML shown below, describes the same Window containing a TextBox as
before.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="Data Binding (FontSize)"
SizeToContent="WidthandHeight">

<TextBox Name="txt" Text="Hello World" Width="300"
Margin="5"
FontSize="{Binding sizeSource,Mode=OneWay}"/>

</Window>

This time, the data binding expression is:

FontSize="{Binding sizeSource,Mode=OneWay}"/>

This specifies that the FontSize property of the TextBox is bound to a value in
the Binding Source (which has yet to be defined) whose path is sizeSource. The
binding mode is set to OneWay which means that the FontSize property depends
on the data value but not vice versa. Were the FontSize to change for any external
reason (which is admittedly unlikely in the case of FontSize), it would not alter
the value in sizeSource to which it is bound.

Chapter 4: Windows Presentation Foundation 67

The APL Code
The function FontSize is almost identical to the function Text which is described
in Example 1.

∇ FontSize size;⎕USING;win
[1] ⎕USING←'System'
[2] ⎕USING,←⊂'System.Windows.Controls,

WPF/PresentationFramework.dll'
[3] win←LoadXAML XAML
[4] win.txtBox←win.FindName⊂'txt'
[5]
[6] ⎕EX'sizeSource'
[7] sizeSource←size
[8] win.txtBox.DataContext←Int32(2015⌶)'sizeSource'
[9]
[10] win.Show

∇

The key difference is in FontSize[8]. Here the left argument of (2015⌶) is
Int32. This means that the exported Type of the variable sizeSource will be
Int32. This Type (a 32-bit integer) is required by the FontSize property of a
TextBox; no other Type will do. If this were omitted, APL would export the value
of the variable using a Type dependent on its internal format (most likely Int16)
and the binding would fail.

[8] win.txtBox.DataContext←Int32(2015⌶)'sizeSource'

Testing the Data Binding
)LOAD wpfintro
)CS DataBinding.FontSize

FontSize 12

sizeSource
12

sizeSource←30

68 .NET Interface Guide

Example 3
This example uses APL code to both build the user-interface (instead of using
XAML) and handle the data binding. In this case both the Text and the FontSize
properties are bound to APL variables. The function is shown below:

∇ TextFontSize(txt size);⎕USING;win;sink
[1] ⎕USING←'System'
[2] ⎕USING,←,⊂'System.Windows.Controls,

WPF/PresentationFramework.dll'
[3] ⎕USING,←⊂'System.Windows.Controls.Primitives,

WPF/PresentationFramework.dll'
[4] ⎕USING,←⊂'System.Windows,

WPF/PresentationFramework.dll'
[5] ⎕USING,←⊂'System.Windows,

WPF/PresentationCore.dll'
[6]
[7] ⍝ Create a Window, DockPanel and TextBox
[8] win←⎕NEW Window
[9] win.SizeToContent←SizeToContent.WidthAndHeight
[10] win.Title←'Data Binding (Text and FontSize)'
[11] win.txtBox←⎕NEW TextBox
[12] win.txtBox.Width←350
[13] win.Content←win.txtBox
[14]
[15] ⍝ Define data binding from variable "txtSource"
[16] ⍝ to the Text property of TextBox win.txtBox
[17] ⎕EX'txtSource'
[18] txtSource←txt
[19] win.txtbinding←⎕NEW Data.Binding(⊂'txtSource')
[20] win.txtbinding.Source←2015⌶'txtSource'
[21] win.txtbinding.Mode←Data.BindingMode.TwoWay
[22] win.txtbinding.UpdateSourceTrigger←

Data.UpdateSourceTrigger.PropertyChanged
[23] sink←win.txtBox.SetBinding

TextBox.TextProperty win.txtbinding
[24]
[25] ⍝ Define data binding from variable "sizeSource"
[26] ⍝ to the FontSize property of TextBox win.txtBox
[27] ⎕EX'sizeSource'
[28] sizeSource←size
[29] win.fntbinding←⎕NEW Data.Binding(⊂'sizeSource')
[30] win.fntbinding.Source←Int32(2015⌶)'sizeSource'
[31] win.fntbinding.Mode←Data.BindingMode.OneWay
[32] sink←win.txtBox.SetBinding

TextBox.FontSizeProperty win.fntbinding
[33]
[34] win.Show

∇

Chapter 4: Windows Presentation Foundation 69

Apart from the code that creates the controls, the only material difference between
this and the previous examples is the way that the bindings are handled.

In code (as opposed to using XAML) this is done using explicit Binding objects1
The code for binding the Text property to the txtSource variable is as follows:

[19] win.txtbinding←⎕NEW Data.Binding(⊂'txtSource')
[20] win.txtbinding.Source←2015⌶'txtSource'
[21] win.txtbinding.Mode←Data.BindingMode.TwoWay
[22] win.txtbinding.UpdateSourceTrigger←

Data.UpdateSourceTrigger.PropertyChanged
[23] sink←win.txtBox.SetBinding

TextBox.TextProperty win.txtbinding

Line [19] creates a Binding object, passing the constructor the name of the APL
variable txtSource as the Path to the binding value.

[19] win.txtbinding←⎕NEW Data.Binding(⊂'txtSource')

Line [20] creates a Binding Source object using 2015⌶ as before, but this time
assigns it to the Source property of the Binding object.

[20] win.txtbinding.Source←2015⌶'txtSource'

Line [21] sets the Mode property of the Binding object to TwoWay (a field of the
BindingMode Type). As in Example 1, this specifies two-way binding.

[21] win.txtbinding.Mode←Data.BindingMode.TwoWay

Line [22] sets the UpdateSourceTrigger property of the Binding object to
PropertyChanged (a field of the UpdateSourceTrigger Type). This causes
the value in the Binding Source (in this case txtSource) to be changed whenever
the property (in this case the Text property) of the TextBox changes. This will
occur on every keystroke.

[22] win.txtbinding.UpdateSourceTrigger←
Data.UpdateSourceTrigger.PropertyChanged

(Note that the three types Binding, BindingMode and
UpdateSourceTrigger are located in System.Windows.Data)

The code that establishes the binding between the sizeSource variable and the
FontSize property is very similar.

1Binding objects are implicit in all binding operations, but are created declaratively when using
XAML.

70 .NET Interface Guide

[29] win.fntbinding←⎕NEW Data.Binding(⊂'sizeSource')
[30] win.fntbinding.Source←Int32(2015⌶)'sizeSource'
[31] win.fntbinding.Mode←Data.BindingMode.OneWay
[32] sink←win.txtBox.SetBinding

TextBox.FontSizeProperty win.fntbinding

Note however that (as in Example 2) the left-argument to (2015⌶) specifies that the
exported data type of the sizeSource variable is to be Int32.

Testing the Data Binding
)LOAD wpfintro
)CS DataBinding.TextFontSizeCode

TextFontSize 'Hello World' 30

txtSource sizeSource←(⌽txtSource) 18

As in previous examples, when the user changes the text, the new text appears in
txtSource.

txtSource
Learn to play the bouzouki!

Note
It is perhaps worth mentioning that if you want to bind two properties of the same
object to two APL variables, it has to be done by writing code as shown in this
example, using two separate Binding Source objects. This is because using XAML
you may only associate a single Binding Source to an object.

However, this minor restriction is easily surmounted by using an APL namespace as
a Binding Source as illustrated in the next Example.

Chapter 4: Windows Presentation Foundation 71

Example 4
This example uses XAML to specify the user-interface and the main components of
the data binding.

The XAML
The XAML is much the same as in Example 1 and 2 except that it connects two
properties Text and FontSize of the same TextBox to two Paths txtSource and
sizeSource.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="Data Binding (Text and FontSize)"
SizeToContent="WidthandHeight">

<TextBox Name="txt" Width="350" Margin="5"
Text="{Binding txtSource,Mode=TwoWay,

UpdateSourceTrigger=PropertyChanged}"
FontSize="{Binding sizeSource,Mode=OneWay}"/>

</Window>

72 .NET Interface Guide

The APL Code

The function TextFontSize is shown below.

∇ TextFontSize(txt size);⎕USING;win;options
[1] ⎕USING←'System'
[2] ⎕USING,←⊂'System.Windows,

WPF/PresentationFramework.dll'
[3]
[4] win←LoadXAML XAML
[5]
[6] src←⎕NS''
[7] src.(txtSource sizeSource)←txt size
[8] options←2 2⍴'txtSource'String'sizeSource'Int32
[9]
[10] win.DataContext←options(2015⌶)'src'
[11]
[12] win.Show

∇

Lines [6-7] create a new namespace src containg two variables txtSource and
sizeSource which are initialised to the arguments of the function.

[6] src←⎕NS''
[7] src.(txtSource sizeSource)←txt size

Line [8] creates a local variable named options which will be used as the left
argument of 2015⌶). It is a 2-column matrix. The first column is a list of the names
of the variables which are to be exported by the namespace when used as a Binding
Source. The second column specifies their data types.

[8] options←2 2⍴'txtSource'String'sizeSource'Int32

Line [10] creates a Binding Source object from the namespace src and a left
argument options and assigns it to the DataContext property of the Window
win.

[10] win.DataContext←options(2015⌶)'src'

An alternative would be to assign it to the DataContext property of the TextBox
object, but this would require one further line of code to identify it. The reason this
works is that the DataContext property of a TextBox (and many other controls) is
inherited from its parent Window. This feature allows a single Binding Source
namespace to be used to specify data bindings between its component variables and
any number of properties of any number of controls in the same Window.

Chapter 4: Windows Presentation Foundation 73

As shown before, the left argument of 2015⌶) is optional. Without it, the
namespace would export all its variables using default binding types. In this case,
because the binding type of sizeSourcemust be specified as Int32, it is
necessary to use a left argument, which means specifying all the variables involved.

Testing the Data Binding
)LOAD wpfintro
)CS DataBinding.TextFontSizeXAML

DB_Text_FontSize_XAML'Hello World' 30

src.(txtSource sizeSource←(⌽txtSource) 18)

As in previous examples, when the user changes the text, the new text appears in
txtSource.

src.txtSource
Learn to play the bouzouki!

Example 5
WPF data binding provides the means to bind controls that display lists of items,
such as the ListBox, ListView, and TreeView controls, to collections of data.
These controls are all based upon the ItemsControl class. To bind an
ItemsControl to a collection object, you use its ItemsSource property.

If the right argument of 2015⌶ names a variable, or a namespace containing a
variable, that is a vector other than a simple character vector, it returns a Binding
Source object that provides the necessary interfaces to bind the variable as a
collection to the ItemSource property of an ItemsControl.

74 .NET Interface Guide

The APL variable will normally contain a vector of character vectors, because most
ItemsControl objects deal with collections of strings. However, any APL vector
other than a simple character vector will be treated in this way.

This example illustrates binding between a variable containing a vector of character
vectors, to the items of a ListBox.

Incidentally, the ItemsSource property overrides the Items collection as a
means to specify the content of the ItemsControl. When the ItemsSource
property is set, the Items collection becomes read-only and of fixed-size. Note that
the ItemsSource property supports OneWay binding by default.

The XAML

The variable XAML_FilteredList, shown below, contains XAML to specify a
Window containing a StackPanel. The StackPanel control is a WPF layout
control that organises child controls in a single line, by default vertically. In this
example, the StackPanel contains a TextBox and, below it, a WrapPanel, and
below that a TextBlock. The WrapPanel is also a layout control that organises
its child controls sequentially from left to right. The WrapPanel contains two
ListBox controls.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Filtered List Example"
SizeToContent="WidthAndHeight"
Topmost="true">
<StackPanel>

<TextBox Name="filter" Margin="5"
Text="{Binding Filter,Mode=TwoWay,

UpdateSourceTrigger=PropertyChanged}"/>
<WrapPanel>

<ListBox Name="all" Width="135" Height="440"
Margin="5" ItemsSource="{Binding DyalogNames}"/>
<ListBox Name="filtered" Width="135" Height="440"
Margin="5" ItemsSource="{Binding FilteredList}"/>

</WrapPanel>
<TextBlock Text="Dyalog WPF Demo" Margin="5"/>

</StackPanel>
</Window>

Chapter 4: Windows Presentation Foundation 75

The Code
∇ FilteredList;MySource;win;sink

[1]
[2] MySource←⎕NS''
[3] MySource.Filter←''
[4] MySource.FilteredList←0⍴⊂''
[5] MySource.DyalogNames←DyalogNames
[6]
[7] win←LoadXAML XAML_FilteredList
[8] win.DataContext←2015⌶'MySource'
[9] (win.FindName⊂'filter').onTextChanged←

'FilteredList_TextChanged'
[10] sink←win.ShowDialog

∇

Like the previous example, this example uses a namespace MySource containing
the bound variables Filter, FilteredList and DyalogNames.

FilteredList[8] creates a Binding Source object and assigns it to the
DataContext property of the Window win.

[8] win.DataContext←2015⌶'MySource'

The DataContext property is inherited by all child controls, so they all share the
same Binding Source. Their different Paths to different values in the Binding
Source are specified in the XAML as follows.

The Text property of the TextBox named filter is bound to the variable Filter
by the expression Text="{Binding Filter,...

<TextBox Name="filter" Margin="5"
Text="{Binding Filter,Mode=TwoWay,

The ItemsSource property of the ListBox named all is bound to the variable
DyalogNames by the expression ItemsSource="{Binding
DyalogNames}"

<ListBox Name="all" Width="135" Height="440"
Margin="5" ItemsSource="{Binding DyalogNames}"/>

Thirdly, the ItemsSource property of the ListBox named filtered is bound to
the variable FilteredList by the expression ItemsSource="{Binding
FilteredList}"

<ListBox Name="filtered" Width="135" Height="440"
Margin="5" ItemsSource="{Binding FilteredList}"/>

76 .NET Interface Guide

Testing the Data Binding
FilteredList

If the user types a single character, in this case "e", into the TextBox, this fires a
TextChanged event which in turn fires the callback function shown below:

∇ FilteredList_TextChanged a;hits
[1] hits←(⊂MySource.Filter){∨/⍺⍷⍵}¨DyalogNames
[2] MySource.FilteredList←hits/DyalogNames

∇

Chapter 4: Windows Presentation Foundation 77

When the callback runs, the variable MySource.Filter, which is bound to the
Text property of the TextBox, will contain "e". The function calculates a mask
hits which identifies which members of the variable DyalogNames contain this
string. It then assigns that subset to the variable MySource.FilteredList. This
is bound to the ItemsSource property of the right-hand ListBox, so the result is
as follows:

78 .NET Interface Guide

Similarly, typing "er" into the TextBox reduces the number of hits as shown below:

Chapter 4: Windows Presentation Foundation 79

Example 6
This example illustrates data binding using a vector of .NET objects, in this case
DateTime objects.

The XAML
The XAML shown below, describes a Window containing a StackPanel, inside
which is a ListBox.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="NetObjects (DateTime) Example"
SizeToContent="WidthAndHeight" >
<StackPanel>

<TextBlock Text="Dates of forthcoming Orthodox Easters"
FontSize="18" Margin="5"/>
<ListBox Name="EasterDates" Height="100"
Margin="5" />

</StackPanel>
</Window>

The APL Code

The function NetObjects is shown below.

∇ NetObjects;⎕USING;win;dt
[1] ⎕USING←'System'
[2] win←LoadXAML XAML
[3] win.dates←win.FindName⊂'EasterDates'
[4] dt←{⎕NEW DateTime ⍵}¨Easter
[5] win.dates.ItemsSource←2015⌶'dt'
[6] sink←win.ShowDialog

∇

80 .NET Interface Guide

NetObjects[3] uses FindName to obtain a ref to the ListBox (defined in the
XAML) named EasterDates:

[3] win.dates←win.FindName⊂'EasterDates'

The global variable Easter contains a vector of 3-element numeric vectors
representing the dates of forthcoming Orthodox Easter Sundays.

↑Easter
2015 4 12
2016 5 1
2017 4 16
2018 4 8
2019 4 28
2020 4 19
2021 5 2
2022 4 24
2023 4 16
2024 5 5

NetObjects[4] creates a vector of DateTime objects from the global variable
Easter.

[4] dt←{⎕NEW DateTime ⍵}¨Easter

Then, NetObjects[5] creates a binding source object from this array and assigns it to
the ItemsSource property of the ListBox.

[5] win.dates.ItemsSource←2015⌶'dt'

Testing the Data Binding
)LOAD wpfintro
DataBinding.NETObjects.NETObjects

Chapter 4: Windows Presentation Foundation 81

Example 6a (Casting to DateTime)
This example is similar to Example 6 but illustrates how numeric data in ⎕TS format
can be converted to DateTime type.

The XAML
The XAML shown below describes a Window containing a StackPanel, inside
which is a ListBox.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="DateTimes using TS data"
SizeToContent="WidthAndHeight" >
<StackPanel>

<TextBlock Text="Some High Tides at Portsmouth, England"
FontSize="18" Margin="5"/>
<ListBox Name="TideTimes" Height="200"
Margin="5" />

</StackPanel>
</Window>

The APL Code

The function Tides is shown below.

∇ Tides;⎕USING;win;dt;Highs
[1] ⎕USING←'System'
[2] win←LoadXAML XAML_Tides
[3] win.times←win.FindName⊂'TideTimes'
[4] Highs←(⊂2016 2 18),¨(7 9)(8 44)(19 47)(21 47)
[5] Highs,←(⊂2016 2 19),¨(8 17)(10 12)(20 51)(22 51)
[6] dt←7↑¨Highs
[7] win.times.ItemsSource←DateTime(2015⌶)'dt'
[8] sink←win.ShowDialog

∇

82 .NET Interface Guide

Tides[3] uses FindName to obtain a ref to the ListBox (defined in the XAML)
named TideTimes:

[3] win.times←win.FindName⊂'TideTimes'

Tides[4-5] creates a vector of integer vectors each of which species the time and
date of a high tide at Portsmouth. Tides[6] extends each to 7-elements, which is
required to represent a DateTime object.

Then, Tides[7] creates a binding source object from this array and assigns it to the
ItemsSource property of the ListBox. Note that the left argument DateTime
specifies that the data be cast to that type.

[7] win.times.ItemsSource←DateTime(2015⌶)'dt'

Testing the Data Binding
)LOAD wpfintro
DataBinding.NetObjects.Tides

Tides[3] uses FindName to obtain a ref to the ListBox (defined in the XAML)
named TideTimes:

[3] win.times←win.FindName⊂'TideTimes'

Tides[4-5] creates a vector of integer vectors each of which species the time and
date of a high tide at Portsmouth. Tides[6] extends each to 7-elements, which is
required to represent a DateTime object.

Chapter 4: Windows Presentation Foundation 83

Then, Tides[7] creates a binding source object from this array and assigns it to the
ItemsSource property of the ListBox. Note that the left argument DateTime
specifies that the data be cast to that type.

[7] win.times.ItemsSource←DateTime(2015⌶)'dt'

Testing the Data Binding
)LOAD wpfintro
DataBinding.NetObjects.Tides

84 .NET Interface Guide

Example 7
This example illustrates data binding using a vector of namespaces.

Each row in the WPF DataGrid control is represented by an object, and each
column as a property of that object. Each row in the DataGrid is bound to an
object in the data source, and each column in the data grid is bound to a property of
the data object.

Chapter 4: Windows Presentation Foundation 85

The XAML
The XAML shown below, describes a Window containing a DockPanel, inside
which is a DataGrid.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="DataGrid Example" Height="500"
SizeToContent="Width"
Topmost="true">
<DockPanel>

<DataGrid Name="DG1" ItemsSource="{Binding}"
AutoGenerateColumns="False" >

<DataGrid.Columns>
<DataGridTextColumn Header="Wine"
Binding="{Binding Name}"/>
<DataGridTextColumn Header="Price"
Binding="{Binding Price, StringFormat=C}" />

</DataGrid.Columns>
</DataGrid>

</DockPanel>
</Window>

The phrase ItemsSource="{Binding}" states that the content of the
DataGrid is bound to a data source, which in this case will be inherited from the
DataContext property of the parent Window.

Binding="{Binding Name}" specifies that the contents of the first column are
bound to a Path named Name in the data source.

Similarly, Binding="{Binding Price, StringFormat=C}" specifies that
the Path for the second column is Price (StringFormat=Cmerely specifies the
default currency format).

The APL Code

The function Grid is shown below.

∇ Grid;⎕USING;MySource;win
[1] ⎕USING←'System'
[2] winelist←⎕NS¨(⍴Wines)⍴⊂''
[3] winelist.Name←Wines
[4] winelist.Price←0.01×10000+?(⍴Wines)⍴10000
[5]
[6] win←LoadXAML XAML
[7] win.DataContext←2015⌶'winelist'
[8] win.Show

∇

86 .NET Interface Guide

The global variable Wines contains a vector of character vectors, each of which is
the name of a wine. Grid[2-4] creates winelist, a vector of namespaces, of the
same length, each of which contains two variables c Name and Price.

Testing the Data Binding
)LOAD wpfintro
)CS DataBinding.DataGrid
Grid

Chapter 4: Windows Presentation Foundation 87

Let's round the prices to the nearest $5.

winelist.Price←5×⌊0.5+winelist.Price÷5

88 .NET Interface Guide

Example 8
This example illustrates data binding using a matrix and is practically identical to
Example 7 except that it uses a matrix instead of a vector of namespaces.

Each row in the WPF DataGrid control is represented by an object, and each
column as a property of that object. Each row in the DataGrid is bound to an
object in the data source, and each column in the data grid is bound to a property of
the data object.

Chapter 4: Windows Presentation Foundation 89

The XAML
The XAML shown below, describes a Window containing a DockPanel, inside
which is a DataGrid. The XAML is identical to the XAML in Example 7, except
for the window caption.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="DataGrid Matrix Example" Height="500"
SizeToContent="Width"
Topmost="true">
<DockPanel>

<DataGrid Name="DG1" ItemsSource="{Binding}"
AutoGenerateColumns="False" >

<DataGrid.Columns>
<DataGridTextColumn Header="Wine"
Binding="{Binding Name}"/>
<DataGridTextColumn Header="Price"
Binding="{Binding Price, StringFormat=C}" />

</DataGrid.Columns>
</DataGrid>

</DockPanel>
</Window>

The phrase ItemsSource="{Binding}" states that the content of the
DataGrid is bound to a data source, which in this case will be inherited from the
DataContext property of the parent Window.

Binding="{Binding Name}" specifies that the contents of the first column are
bound to a Path named Name in the data source.

Similarly, Binding="{Binding Price, StringFormat=C}" specifies that
the Path for the second column is Price (the phrase StringFormat=Cmerely
specifies the default currency format).

The APL Code

The function Grid is shown below.

∇ Grid;⎕USING;MySource;win;info
[1] ⎕USING←'System'
[2] ⎕EX'winelist'
[3] winelist←Wines,[1.5]0.01×10000+?(⍴Wines)⍴10000
[4] win←LoadXAML XAML
[5] info←(⍪'Name' 'Price'),⊂Object
[6] win.DataContext←info(2015⌶)'winelist'
[7] win.Show

∇

90 .NET Interface Guide

As in Example 7, the global variable Wines contains a vector of character vectors,
each of which is the name of a wine.

Grid[2-4] creates a matrix winelist, whose first column contains the names of
the wines, and whose second column their (randomly generated) prices. As this is a
global variable, the variable is expunged before being used in order to remove any
previous data binding information that was associated with it.

Grid[5]creates the left argument for (2015⌶) which defines the names and data
types of the properties which the columns of the matrix winelist will be exposed
as. In this case, the names of the paths are Name and Price, and their data types are
both System.Object. So the first column will be exposed as Name and the
second as Price, matching the path names specified in the XAML:

<DataGridTextColumn Header="Wine"
Binding="{Binding Name}"/>
<DataGridTextColumn Header="Price"
Binding="{Binding Price, StringFormat=C}" />

Testing the Data Binding
)LOAD wpfintro
)CS DataBinding.DataGridMatrix
Grid

Chapter 4: Windows Presentation Foundation 91

92 .NET Interface Guide

Let's round the prices to the nearest $5.

winelist[;2]←5×⌊0.5+winelist[;2]÷5

Chapter 4: Windows Presentation Foundation 93

Using Code
The same result can be achieved using code instead of XAML as illustrated by the
function GridCodeNoFmt. The function is so-named because this code is
insufficient to display the second column in currency format.

∇ GridCodeNoFmt;⎕USING;MySource;win;info;fmt
[1] ⎕USING←'System'
[2]
⎕USING,←,⊂'System.Windows.Controls,WPF/PresentationFramework.dll'
[3]
⎕USING,←⊂'System.Windows.Controls.Primitives,WPF/PresentationFram
ework.dll'
[4] ⎕USING,←⊂'System.Windows,WPF/PresentationFramework.dll'
[5] ⎕USING,←⊂'System.Windows,WPF/PresentationCore.dll'
[6]
[7] ⎕EX'winelist'
[8] winelist←Wines,[1.5]0.01×10000+?(⍴Wines)⍴10000
[9] win←⎕NEW Window
[10] win.Title←'DataGrid Matrix (Code)'
[11] win.grid←⎕NEW DataGrid
[12] info←(⍪'Name' 'Price'),⊂Object
[13] win.grid.ItemsSource←info(2015⌶)'winelist'
[14] win.grid.Height←500
[15] win.Content←win.grid
[16] win.SizeToContent←SizeToContent.WidthAndHeight
[17] win.Show

∇

This is because by default the DataGrid generates its columns automatically with
default formatting.

94 .NET Interface Guide

In order to apply special formatting to one or more columns, it is necessary to set the
AutoGenerateColumns property to 0, and to generate the columns
programmatically as is shown in the second version of the function, GridCode.

Chapter 4: Windows Presentation Foundation 95

∇ GridCode;⎕USING;MySource;win;info;fmt
[1] ⎕USING←'System'
[2]
⎕USING,←,⊂'System.Windows.Controls,WPF/PresentationFramew
ork.dll'
[3]
⎕USING,←⊂'System.Windows.Controls.Primitives,WPF/Presenta
tionFramework.dll'
[4]
⎕USING,←⊂'System.Windows,WPF/PresentationFramework.dll'
[5] ⎕USING,←⊂'System.Windows,WPF/PresentationCore.dll'
[6]
[7] ⎕EX'winelist'
[8] winelist←Wines,[1.5]0.01×10000+?(⍴Wines)⍴10000
[9] win←⎕NEW Window
[10] win.Title←'DataGrid Matrix (Code with Formatting)'
[11] win.grid←⎕NEW DataGrid
[12] info←(⍪'Name' 'Price'),⊂Object
[13] win.grid.ItemsSource←info(2015⌶)'winelist'
[14] win.grid.Height←500
[15] win.grid.AutoGenerateColumns←0
[16] win.Content←win.grid
[17] win.SizeToContent←SizeToContent.WidthAndHeight
[18] ⍝ Add columns and set format
[19] win.grid.Columns.Add¨'' 'C'{
[20] col←⎕NEW DataGridTextColumn
[21] col.Header←⍵
[22] col.Binding←⎕NEW Data.Binding(⊂⍵)
[23] col.Binding.StringFormat←,⍺
[24] col
[25] }¨'Name' 'Price'
[26]
[27] win.Show

∇

In this version of the function, lines [19-25] create the two columns Name and
Price, applying currency format to the Price column.

96 .NET Interface Guide

Chapter 4: Windows Presentation Foundation 97

Syncfusion Libraries
Under a licensing agreement with Syncfusion, Dyalog includes the Syncfusion
library ofWPF controls. These may be used by Dyalog APL users to develop
applications, and may be distributed with Dyalog APL run-time applications.

The Syncfusion libraries comprise a set of .NET assemblies which are supplied in the
Syncfusion/4.5 sub-directory of the main Dyalog APL installation directory (for
example: c:\Program Files\Dyalog\Dyalog APL-64 14.0 Unicode\Syncfusion\4.5.

Requirements
To use the Syncfusion libraries you must be using Microsoft .NET Version 4.5. See
UI Guide: Configuration Dialog:.NET Framework Tab.

In addition, to use the controls contained in these assemblies it is necessary to
perform one or both of the following steps.

Using XAML
If using XAML, the XAML must include the appropriate xmlns statements that
specify where the Syncfusion controls are to be found. For example:

xmlns:syncfusion="clr-namespace:Syncfusion.Windows.Gauge;
assembly=Syncfusion.Gauge.WPF"

The above statement defines the prefix syncfusion to mean the specified
Syncfusion namespace and assembly that contains the various Gauge controls. When
the prefix syncfusion is subsequently used in front of a control in the XAML, the
system knows where to find it. For example:

<syncfusion:CircularGauge Name="fahrenheit" Margin="10">

⎕USING
In common with all .NET types, when a Syncfusion control is loaded using XAML
or using ⎕NEW it is essential that the current value of ⎕USING identifies the .NET
namespace and assembly in which the control will be found. For example:

⎕USING,←⊂'Syncfusion.Windows.Gauge,
Syncfusion/4.5/Syncfusion.Gauge.WPF.dll'

This statement tells APL to search the .NET namespace named
Syncfusion.Windows.Gauge, which is located in the assembly file whose path
(relative to the Dyalog installation directory) is
Syncfusion/4.5/Syncfusion.Gauge.WPF.dll.

98 .NET Interface Guide

Syncfusion Circular Gauge Example

Chapter 4: Windows Presentation Foundation 99

The XAML
Like most Syncfusion controls, the CircularGauge is made up of a complex
structure of objects, and the XAML (see variable XAML_SF) is too extensive to
describe in detail herein. It was created from the sample XAML from the Syncfusion
documentation for this control entitled Essential Gauge for WPF, which may be
downloaded from http://help.syncfusion.com/wpf/gauge.

The key statements in the XAML are as follows:

xmlns:syncfusion="clr-namespace:Syncfusion.Windows.Gauge;
assembly=Syncfusion.Gauge.WPF"

The above statement defines the prefix syncfusion to mean the specified
Syncfusion namespace and assembly. When the prefix syncfusion is
subsequently used in front of a control in the XAML, the system knows where to
find it.

The next two statements define CircularPointer controls (the needles on the
gauges); one for the Fahrenheit gauge (named f_pointer) and one for the Centigrade
gauge (named c_pointer).

<syncfusion:CircularPointer Name="f_pointer" BorderWidth="0.3"
PointerLength="100" PointerPlacement="Inside" PointerWidth="20"
Value="32"/>

<syncfusion:CircularPointer Name="c_pointer" BorderWidth="0.3"
PointerLength="100" PointerPlacement="Inside" PointerWidth="20"
Value="0"/

The APL Code
The following functions were used to produce the example illustrated above. The
main function is SF_TC_XAML.

∇ SF_TC_XAML;⎕USING;win;f_pointer;c_pointer;sink
[1]
[2] win←LoadXAML XAML_SF
[3]
[4] f_pointer←win.FindName⊂'f_pointer'
[5] c_pointer←win.FindName⊂'c_pointer'
[6]
[7] f_pointer.onMouseEnter←'MouseEnter'
[8] c_pointer.onMouseEnter←'MouseEnter'
[9]
[10] sink←win.ShowDialog

∇

After creating the Window from the text in XAML_SF, the function SF_TC_XAML
obtains refs to the two CircularPointer controls named f_pointer (in the
Fahrenheit gauge) and c_pointer (in the Centigrade gauge). It then attaches the
MouseEnter callback to each of these objects.

http://help.syncfusion.com/wpf/gauge

100 .NET Interface Guide

∇ MouseEnter(this ev);ptrs
[1] ptrs←f_pointer c_pointer
[2] ptrs.onValueChanged←(ptrs⍳this)⌽0 'TempChanged'

∇

In this example, the user grabs one of the gauge needles and moves it around the face
of the gauge. When the user moves the mouse into one of these needles, the
MouseEnter callback fires. The function MouseEnter receives the
CircularPointer object that generated the event this as the first item in its
argument.

The code simply attaches the callback function TempChanged to this, and
disables any callback on the other CircularPointer object.

Note that if both CircularPointer objects had callbacks on TempChanged at
the same time, the system would enter a callback loop.

∇ TempChanged(obj ev)
[1] :Select obj
[2] :Case f_pointer
[3] c_pointer.Value←(obj.Value-32)×5÷9
[4] :Case c_pointer
[5] f_pointer.Value←32+obj.Value÷5÷9
[6] :EndSelect

∇

The LoadXAML function used in this example is subtly different from previous
examples.

∇ win←LoadXAML xaml;⎕USING;str;xml
[1] ⎕USING←'System.IO'
[2] ⎕USING,←⊂'System.Windows.Markup'
[3] ⎕USING,←⊂'System.Xml,system.xml.dll'
[4] ⎕USING,←⊂'System.Windows.Controls,

WPF/PresentationFramework.dll'
[5] ⎕USING,←⊂'Syncfusion.Windows.Gauge,

Syncfusion/4.5/Syncfusion.Gauge.WPF.dll'
[6] str←⎕NEW StringReader(⊂xaml)
[7] xml←⎕NEW XmlTextReader str
[8] win←XamlReader.Load xml

∇

Chapter 4: Windows Presentation Foundation 101

In particular, it contains the all-important statement:

[5] ⎕USING,←⊂'Syncfusion.Windows.Gauge,
Syncfusion/4.5/Syncfusion.Gauge.WPF.dll'

This statement tells APL to search the .NET namespace named
Syncfusion.Windows.Gauge, which is located in the assembly file whose path
(relative to the Dyalog installation directory) is
Syncfusion/4.5/Syncfusion.Gauge.WPF.dll.

102 .NET Interface Guide

103

Chapter 5:

Writing .NET Classes in Dyalog APL

Introduction
Dyalog APL allows you to build new .NET Classes, components and controls.
.NET classes created by Dyalog may be hosted by any application or programming
language that supports .NET.

A component is a class with emphasis on cleanup and containment and implements
specific interfaces.

A control is a component with user interface capabilities.

With one exception, every .NET Class inherits from exactly one base class. This
means that it begins with all of the behaviour of the base class, in terms of the base
class properties, methods and events. You add functionality by defining new
properties, methods and events on top of those inherited from the base class or by
overriding base class methods with those of your own.

104 .NET Interface Guide

Assemblies, Namespaces and Classes
To create a .NET class in Dyalog APL, you simply create a standard APL Class and
export the workspace as aMicrosoft .NET Assembly (*.dll).

.NET Classes are organised in .NET Namespaces. If you wrap your Class (or Classes)
within an APL namespace, the name of that namespace will be used to identify the
name of the corresponding .NET Namespace in your Assembly.

If a Class is to be based upon a specific .NET Class, the name of that .NET Class must
be specified as the Base Class in the :Class statement, and the :Using statement
(s) must correctly locate the base class. If not, the Class is assumed to be based upon
System.Object. If you use any .NET Types within your Class, you must ensure
that these too are located by :Using.

Once you have defined the functionality of your .NET classes, you are ready to save
them in an assembly. This is simply achieved by selecting Export from the Session
Filemenu.

You will be prompted to specify the directory and name of the assembly (DLL) and it
will then be created and saved. Your .NET class is now ready for use by any .NET
development environment, including APL itself.

When a Dyalog .NET class is invoked by a host application, it automatically loads
the Dyalog DLL, the developer/debug or run-time dynamic link library version of
Dyalog APL. You decide which of these DLLs is to be used according to the setting
of the Runtime application checkbox in the Create bound file dialog box. Note
however that the Dyalog .NET class, and all the Dyalog DLLs on which it depends,
reside in the same directory as the host program.

Note that if you wish to include a Dyalog .NET class in a Visual Studio application
it is recommended that you add the Bridge DLL as a reference in a Visual Studio
.NET project.

If you want to repeat the most recent export after making changes to the class, you
can click on the icon to the right of the save icon on the WS button bar at the top of
the session. Note that the workspace itself is not saved when you do an export, so if
you want the export options to be remembered you must)SAVE the workspace after
you have exported it.

Chapter 5: Writing .NET Classes in Dyalog APL 105

Getting Started
The tutorial described in this Chapter was originally designed (for Dyalog Version
10) to be exercised in a console window, with the user invoking the C# compiler
directly using a command-line interface. It was originally envisaged to be run in-situ
in the samples\aplclasses sub-directory.

Today, the samples\aplclasses sub-directory is read-only, and direct access to
the C# compiler via a command-line interface is problematical. Another
consideration is the change in requirement for dependent Dyalog DLLs, which must
now reside in the same directory as the host program.

The tutorial has therefore been re-factored to use Microsoft Visual Studio, using the
material unchanged from the original version.

All the examples are to be executed as simple console applications written in C# in
the framework ofMicrosoft Visual Studio Community 2015 (hereafter referred to as
VS). To run the examples as described herein, you should install VS.

Initialisation
The first step is to start VS and create a new C# Console application. You may name
and store it as you like, but this tutorial chooses the name DyApp and the folder c:\,
so VS creates a directory named c:\DyApp containing several other files and
directories.

When the application is executed (in debug mode) by VS it will be run in the
application's sub-directory bin\Debug.

It is mandatory that the Dyalog .NET class, and all the Dyalog DLLs on which it
depends, reside in the same directory as the host program.

So the first step is to copy the requisite Dyalog DLLs to the bin\Debug sub-
directory. These DLLs are:

l Development DLL or Run-Time DLL (this tutorial uses the Development
DLL)

l Bridge DLL
l DyalogNet DLL

For the names of these files corresponding to the version of Dyalog that you are
using, see Installation & Configuration Guide: Files and Directories.

106 .NET Interface Guide

Following these steps, the contents of the bin\Debug sub-directory should be
similar to those shown below:

Directory of c:\DyApp\bin\Debug

23/09/2016 15:17 <DIR> .
23/09/2016 15:17 <DIR> ..
28/07/2016 18:05 532,480 bridge150_unicode.dll
26/08/2016 13:39 7,123,968 dyalog150_unicode.dll
28/07/2016 18:05 18,944 dyalognet.dll
23/09/2016 15:17 189 DyApp.exe.config
23/09/2016 15:17 22,696 DyApp.vshost.exe
23/09/2016 15:17 189 DyApp.vshost.exe.config
30/10/2015 10:19 490 DyApp.vshost.exe.manifest

Running the Tutorial
All of the examples are provided in the Dyalog sub-directory
samples\aplclasses. The source code for the Dyalog classes are workspaces
named aplclasses1.dws, aplclasses2.dws etc. whilst the corresponding
C# source code for hosting them is named aplfns1.cs, aplfns2.cs etc.

In order to execute each example, we will export the workspace
(aplclasses1.dws, aplclasses2.dws and so forth) as a Microsoft .NET
Assembly named (in all cases) aplclasses.dll to the bin\Debug sub-
directory.

To start with we will replace the main program in the VS application with C# code
imported from the first example aplfns1.cs, and execute it with the results
displayed in a simple console window. Subsequent examples will be developed by
editing this code directly or by copy/pasting code from the other C# source code files
that are supplied.

Each workspace contains a .NET Namespace called APLClasses which itself
contains a single .NET Class called Primitives that exports a single method
called IndexGen.

Chapter 5: Writing .NET Classes in Dyalog APL 107

Example 1
Load the workspace aplclasses1.dws from samples\aplclasses, then
view the Primitives class:

)ed ○APLClasses.Primitives1

:Class Primitives
:Using System

∇ r←IndexGen n
:Access public
:Signature Int32[]←IndexGen Int32 n
r←⍳n

∇
:EndClass

Primitives contains one public method/function named IndexGen.

The public characteristics for the exported method are included in the definition of
the class and its functions. Those are specified in the :Signature statement.

Its syntax is:

:Signature [return type←] fnname [arg1type [arg1name]
[,argNtype [argNname]]*]

that is: The type of the result returned by the function - followed by arrow - if any,
the exported name (it can be different from the APL function name but it must be
provided), and, if any arguments are to be supplied, their types and optional names,
each type-name pair separated from the next by a comma. In the example above the
function returns an array of 32-bit integers and takes a single integer as its argument.
For further details, see Language Reference Guide: Signature Statement.

Note that, when the class is fixed, APL will try to find the .NET data types you have
specified for the result and for the parameters. If one or more of the data types are not
recognised as available .NET Types, you will be informed in the status window and
APL will refuse to fix the class. If you see such a warning you have either entered an
incorrect data type name, or you have not set :Using correctly, or some other
syntax problem has been detected (for example the function is missing a terminating
∇. In the previous example, the only data type used is System.Int32. Since we
have set :Using System, the name Int32 is found in the right place and all is
well.

1The character before the name APLClasses.Primitives, ○, is typically obtained with Ctrl-O.
It is used to tell the editor to edit a class

108 .NET Interface Guide

It should be noted that in the previous release of Dyalog APL the statements
:Returns and :ParameterList were used instead of :Signature. They are
still accepted for backwards compatibility but are considered deprecated. Their
syntax will not be documented here but a list can be found in Appendix A.

Now you are ready to create the assembly. This is done by selecting Export… from
the Session Filemenu. This displays the following dialog box.

This gives you the opportunity to change the name or path of the assembly. The
Runtime application checkbox allows you to choose to which if the two versions of
the Dyalog APL dynamic link library the assembly will be bound. In this tutorial we
will use the Development version. The Isolation Mode Combo box allows you to
choose which Isolation Mode you require.

l Change the File name to aplclasses.
l Clear the Runtime application checkbox

Chapter 5: Writing .NET Classes in Dyalog APL 109

Finally, click Save. APL now makes the assembly and, as it does so, displays
information in the Status window as shown below. If any errors occur during this
process, the Status window will inform you.

aplfns1.cs
The following C# source, called samples\APLClasses\aplfns1.cs, will be
used to call our Dyalog.NET Class.

The using statements specify the names of .NET namespaces to be searched for
unqualified class names.

The program creates an object named apl of type Primitives by calling the new
operator on that class. Then it calls the IndexGenmethod with a parameter of 10.

using System;
using APLClasses;
public class MainClass

{
public static void Main()

{
Primitives apl = new Primitives();
int[] rslt = apl.IndexGen(10);
for (int i=0;i<rslt.Length;i++)
Console.WriteLine(rslt[i]);

}
}

110 .NET Interface Guide

In VS, click Project/Add Existing Item and navigate to add aplfns1.cs from
samples\aplclasses.

Next, using the Solution Explorer, rename aplfns1.cs to aplfns.cs and delete
the dummy program program.cs. This is necessary otherwise there would be two
Main() entry-points in the application.

Open aplfns.cs in the VS code editor (double -click its name in Solution
Explorer) and add the following two lines of code:

Console.Write("Press <Enter> to exit... ");
while (Console.ReadKey().Key != ConsoleKey.Enter) { }

These allow you, the user, to view the contents of the console window before it
disappears when the program ends.

Notice that APLClasses and Primitives are marked as being in error. This is
because as yet, VS does not know what these are.

To resolve this issue, select Project/Add Reference... click Browse, navigate to
c:\DyApp\bin\Debug and add aplclasses.dll.

The final code is shown below:

Note that it may be necessary to add the bridge dll and other dyalog dlls as references
too.

Chapter 5: Writing .NET Classes in Dyalog APL 111

Now click Start to run the program. The results are shown in a console window.

112 .NET Interface Guide

Example 2
In Example 1, we said nothing about a constructor used to create an instance of the
Primitives class. In Example 2, we will show how this is done.

In fact, in Example 1, APL supplied a default constructor, which is inherited from the
base class (System.Object) and is called without arguments.

Example 2 will extend Example 1 by adding a constructor that specifies the value of
⎕IO.

Load the workspace aplclasses2.dws from samples\aplclasses, then
display the Primitives class:

↑⎕SRC APLClasses.Primitives
:Class Primitives
:Using System

∇ CTOR IO
:Implements constructor
:Access public
:Signature CTOR Int32 IO
⎕IO←IO

∇

∇ R←IndexGen N
:Access public
:Signature Int32[]←IndexGen Int32
R←⍳N

∇

:EndClass ⍝ Primitives

This version of Primitives contains a constructor function called CTOR that
simply sets ⎕IO to the value of its argument. The name of this function is purely
arbitrary.

Using this version, build a new .NET Assembly using File/Export… as before.

Chapter 5: Writing .NET Classes in Dyalog APL 113

Please note that as before it is essential that the Build runtime assembly checkbox is
unchecked.

114 .NET Interface Guide

Chapter 5: Writing .NET Classes in Dyalog APL 115

aplfns2.cs
The following C# source, called samples\APLClasses\aplfns2.cs, can be
used to call the new version of our APL .NET Class.

using System;
using APLClasses;
public class MainClass

{
public static void Main()

{
Primitives apl = new Primitives(0);
int[] rslt = apl.IndexGen(10);

for (int i=0;i<rslt.Length;i++)
Console.WriteLine(rslt[i]);
}

}

The program is the same as in the previous example, except that the code that creates
an instance of the Primitives class is simply changed to specify an argument; in
this case 0.

Primitives apl = new Primitives(0);

Rather than load aplfns2.cs into VS, it is simpler to just make this change in-situ
as shown below.

116 .NET Interface Guide

Then click Start to build and run the modified application:

Chapter 5: Writing .NET Classes in Dyalog APL 117

Example 2a
In Example 2, the argument to CTOR, the constructor for the Primitives class,
was defined to be Int32. This means that the .NET Framework will allow a client to
specify any integer when it creates an instance of the Primitives class. What
happens if the client uses a parameter of 2? Clearly this is going to cause an APL
DOMAIN ERROR when used to set ⎕IO.

aplfns2a.cs
The following C# source, called samples\APLClasses\aplfns2a.cs, can be
used to demonstrate what happens.

using System;
using APLClasses;
public class MainClass

{
public static void Main()

{
Primitives apl = new Primitives(2);
int[] rslt = apl.IndexGen(10);

for (int i=0;i<rslt.Length;i++)
Console.WriteLine(rslt[i]);
}

}

The code is the same as in the previous example, except that the line that creates an
instance of the Primitives class specifies an inappropriate argument 2.

Primitives apl = new Primitives(2);

Rather than load aplfns2.cs into VS, it is simpler to just make this change in-situ
as shown below.

118 .NET Interface Guide

Then click Start to build and run the modified application:

… as we have built the Dyalog .NET class to use the Development DLL, the APL
Session appears, and the Tracer can be used to debug the problem. You can see that
the constructor CTOR has stopped with a DOMAIN ERROR. Meanwhile, the C#
program is still waiting for the call (to create an instance of Primitives) to finish.

Notice that in Dyalog APL, the)SI System Command provides information about
the entire calling stack, including the .NET function calls that are involved. Notice
too that the CTOR function, the constructor for this APL .NET class, is running here
in APL thread 1, which is associated with the system thread 9572.

In this case, debugging is simple, and you can simply type:

IO←1
→⎕LC

Now, the CTOR function completes, the aplfns program continues and the output
is displayed.

Chapter 5: Writing .NET Classes in Dyalog APL 119

120 .NET Interface Guide

Example 3
The correct .NET behaviour when an APL function fails with an error is to throw an
exception, and this example shows how to do it.

In the .NET Framework, exceptions are implemented as .NET Classes. The base
exception is implemented by the System.Exception class, but there are a
number of super classes, such as System.ArgumentException and
System.ArithmeticException that inherit from it.

⎕SIGNALmay be used to throw an exception. To do so, its right argument should be
90 and its left argument should be an object of type System.Exception or an
object that inherits from System.Exception.

When you create the instance of the Exception class, you may specify a string
(which will turn up in its Message property) containing information about the error.

aplclasses3.dws contains an improved version of the CTOR constructor
function.

∇ CTOR IO;EX
[1] :Access public
[2] :Signature CTOR Int32 IO
[3] :Implements constructor
[4] :If IO∊0 1
[5] ⎕IO←IO
[6] :Else
[7] EX←⎕NEW ArgumentException,⊂⊂'IndexOrigin must be

0 or 1'
[8] EX ⎕SIGNAL 90
[9] :EndIf

∇

Load aplclasses3.dws and export a new version of aplclasses.dll as
before. The Create bound dialog box should appear exactly as in Example 2 (see
page 113).

Chapter 5: Writing .NET Classes in Dyalog APL 121

aplfns3.cs
The following C# source, called samples\APLClasses\aplfns3.cs, contains
code to catch the exception and to display the exception message.

using System;
using APLClasses;
public class MainClass

{
public static void Main()

{
try

{
Primitives apl = new Primitives(2);
int[] rslt = apl.IndexGen(10);

for (int i=0;i<rslt.Length;i++)
Console.WriteLine(rslt[i]);

}
catch (Exception e)

{
Console.WriteLine(e.Message);
}

}

}

Using copy/paste, merge the new code into aplfns.cs in VS, to produce the
following:

122 .NET Interface Guide

Click Start to run the new version:

Chapter 5: Writing .NET Classes in Dyalog APL 123

Example 4
This example builds on Example 3 and illustrates how you can implement
constructor overloading, by establishing several different constructor functions.

By way of an example, when a client application creates an instance of the
Primitives class, we want to allow it to specify the value of ⎕IO or the values of
both ⎕IO and ⎕ML.

The simplest way to implement this is to have two public constructor functions
CTOR1 and CTOR2, which call a private constructor function CTOR.

aplclasses4.dws contains a new version of the Primitives class with these
additions:

∇ CTOR1 IO
[1] :Implements constructor
[2] :Access public
[3] :Signature CTOR1 Int32 IO
[4] CTOR IO 0

∇

∇ CTOR2 IOML
[1] :Implements constructor
[2] :Access public
[3] :Signature CTOR2 Int32 IO,Int32 ML
[4] CTOR IOML

∇

∇ CTOR IOML;EX
[1] IO ML←IOML
[2] :If ~IO∊0 1
[3] EX←⎕NEW ArgumentException,⊂⊂'IndexOrigin must

be 0 or 1'
[4] EX ⎕SIGNAL 90
[5] :EndIf
[6] :If ~ML∊0 1 2 3
[7] EX←⎕NEW ArgumentException,⊂⊂'MigrationLevel

must be 0, 1, 2 or 3'
[8] EX ⎕SIGNAL 90
[9] :EndIf
[10] ⎕IO ⎕ML←IO ML

∇

124 .NET Interface Guide

The :Signature statements for these three functions show that CTOR1 is defined
as a constructor that takes a single Int32 parameter, CTOR2 is defined as a
constructor that takes two Int32 parameters, and CTOR has no .NET Properties
defined at all. Note that in .NET terms, CTOR is not a Private Constructor; it is
simply an internal function that is invisible to the outside world.

Next, a function called GetIOML is defined and exported as a Public Method. It
simply returns the current values of ⎕IO and ⎕ML.

∇ R←GetIOML
[1] :Access public
[2] :Signature Int32[]←GetIOML
[3] R←⎕IO ⎕ML

∇

Load aplclasses4.dws and export a new version of aplclasses.dll as
before. The Create bound dialog box should appear exactly as in Example 2 (see
page 113).

Chapter 5: Writing .NET Classes in Dyalog APL 125

aplfns4.cs
samples\APLClasses\aplfns4.cscontains code to invoke the two different
constructor functions CTOR1 and CTOR2 :

using System;
using APLClasses;
public class MainClass

{
public static void Main()

{
Primitives apl10 = new Primitives(1);
int[] rslt10 = apl10.GetIOML();
for (int i=0;i<rslt10.Length;i++)

Console.WriteLine(rslt10[i]);

Primitives apl03 = new Primitives(0,3);
int[] rslt03 = apl03.GetIOML();
for (int i=0;i<rslt03.Length;i++)

Console.WriteLine(rslt03[i]);
}

}

Here the code creates two instances of the Primitives class named apl10 and
apl03. The first is created with a constructor parameter of (1); the second with a
constructor parameter of (0,3).

The C# compiler matches the first call with CTOR1, because CTOR1 is defined to
accept a single Int32 parameter. The second call is matched to CTOR2 because
CTOR2 is defined to accept two Int32 parameters.

126 .NET Interface Guide

Using copy/paste, merge the new code from aplfns4.cs into aplfns.cs in VS to
produce the following:

Click Start to run the new version:

Chapter 5: Writing .NET Classes in Dyalog APL 127

Example 5
This example takes things a stage further and illustrates how you can implement
method overloading.

In this example, the requirement is to export three different versions of the
IndexGenmethod; one that takes a single number as an argument, one that takes
two numbers, and a third that takes any number of numbers. These are represented by
three functions named IndexGen1, IndexGen2 and IndexGen3 respectively.
Because monadic ⍳ performs all of these operations, the three APL functions are in
fact identical. However, their public interfaces, as defined in their :Signature
statement, are all different.

The overloading is achieved by entering the same name for the exported method
(IndexGen) in the box provided, for each of the three APL functions.

aplclasses5.dws contains a new version of the Primitives class with three
different versions of IndexGen as shown below:

∇ R←IndexGen1 N
[1] :Access public
[2] :Signature Int32[]←IndexGen Int32 N
[3] R←⍳N

∇

This is the version we have seen before. The method is defined to take a single
argument of type Int32, and to return a 1-dimensional array (vector) of type
Int32.

∇ R←IndexGen2 N
[1] :Access public
[2] :Signature Int32[][,]←IndexGen Int32 N1, Int32 N2
[3] R←⍳N

∇

This version is defined to take two arguments of type Int32, and to return a 2-
dimensional array, each of whose elements is a 1-dimensional array (vector) of type
Int32.

∇ R←IndexGen3 N
[1] :Access public
[2] :Signature Array←IndexGen Int32[] N
[3] R←⍳N

∇

128 .NET Interface Guide

In principle, we could define 7 more different versions of the method, taking 3, 4, 5
etc. numeric parameters. Instead, this method is defined more generally, to take a
single parameter that is a 1-dimemsional array (vector) of numbers, and to return a
result of type Array. In practice we might use this version alone, but for a C#
programmer, this is harder to use than the two other specific cases.

Notice also that all function use the same descriptive name, <IndexGen>.

Load aplclasses5.dws and export a new version of aplclasses.dll as
before. The Create bound dialog box should appear exactly as in Example 2 (see
page 113).

Chapter 5: Writing .NET Classes in Dyalog APL 129

aplfns5.cs
samples\APLClasses\aplfns5.cscontains code to invoke the three
different variants of IndexGen, in the new aplclasses.dll. Notice that it uses
a local sub-routine PrintArray().

using System;
using APLClasses;
public class MainClass

{
static void PrintArray(int[] arr)
{

for (int i=0;i<arr.Length;i++)
{
Console.Write(arr[i]);
if (i!=arr.Length-1)

Console.Write(",");
}

}

public static void Main()
{
Primitives apl = new Primitives(0);
int[] rslt = apl.IndexGen(10);
PrintArray(rslt);
Console.WriteLine("");

int[,][] rslt2 = apl.IndexGen(2,3);
for (int i=0;i<2;i++)

{
for (int j=0;j<3;j++)

{
int[] row = rslt2[i,j];
Console.Write("(");
PrintArray(row);
Console.Write(")");
}

Console.WriteLine("");
}

int[] args = new int[3];
args[0]=2;
args[1]=3;
args[2]=4;
Array rslt3 = apl.IndexGen(args);
Console.WriteLine(rslt3);

}

Using copy/paste, merge the new code from aplfns5.cs into aplfns.cs in VS to
produce the following:

130 .NET Interface Guide

Chapter 5: Writing .NET Classes in Dyalog APL 131

Click Start to run the new version:

It is possible for a function to have several :Signature statements. Given that our
three functions perform exactly the same operation, it might have made more sense to
use a single function:

∇ R←IndexGen1 N
[1] :Access public
[2] :Signature Int32[]←IndexGen Int32 N
[3] :Signature Int32[][,]←IndexGen Int32 N1, Int32 N2
[4] :Signature Array←IndexGen Int32[] N
[5] R←⍳N

∇

Interfaces
Interfaces define additional sets of functionality that classes can implement;
however, interfaces contain no implementation, except for static methods and static
fields. An interface specifies a contract that a class implementing the interface must
follow. Interfaces can contain shared (known as "static" in many compiled
languages) or instance methods, shared fields, properties, and events. All interface
members must be public. Interfaces cannot define constructors. The .NET runtime
allows an interface to require that any class that implements it must also implement
one or more other interfaces.

When you define a class, you list the interfaces which it supports following a colon
after the class name. The value of ⎕USING (possibly set by :Using) is used to
locate Interface names.

If you specify that your class implements a certain Interface, you must provide
all of the members (methods, properties, and so forth) defined for that Interface.
However, some Interfaces are only marker Interfaces and do not actually specify any
members.

An example is the TemperatureControlCtl2 custom control described in
Chapter 10, which derives from System.Web.UI.Control. The first line of this
class definition reads:

132 .NET Interface Guide

:Class TemperatureConverterCtl2: System.Web.UI.Control,
System.Web.UI.IPostBackDataHandler,
System.Web.UI.IPostBackEventHandler

Following the colon, the first name is the base class. Following the (optional) base
class name is the list of interfaces which are implemented. The
TemperatureControlCtl2 custom control implements two interfaces named
IPostBackDataHandler and IPostBackEventHandler. These interfaces
are required for a custom control that intends to render the HTML for its own form
elements in a Web page. These interfaces define certain methods that get called at the
appropriate time by the page framework when a Web page is constructed for the
browser. It is therefore essential that the class implements all the methods specified
by the interface, even if they do nothing.

The base class, System.Web.UI.Control, defines an optional Interface called
INamingContainer. A class based on Control that implements
INamingContainer specifies that its child controls are to be assigned unique ID
attributes within an entire application. This is a marker interface with no methods or
properties defined for it.

See these examples in Chapter 10 for further details.

133

Chapter 6:

Dyalog APL and IIS

Introduction
Microsoft Internet Information Services (IIS) is a comprehensive Web Server software
package that allows you to publish information on your Intranet, or on the World
Wide Web. IIS is included with Professional and Server versions of all recent
Windows operating systems; all you need add is a network connection to run your
own Web site.

IIS includes Active Server Page (ASP) technology. The basic idea of ASP is to permit
web pages to be created dynamically by the web server. An ASP file is a character
file that contains a mixture of HTML and scripts. When IIS receives a request for an
ASP file, it executes the server-side scripts contained in the file to build the Web
page that is to be sent to the browser. In addition to server-side scripts, ASP files can
contain HTML (including related client-side scripts) as well as calls to components
that can perform a variety of tasks such as database lookup, calculations, and
business logic.

Basically, each script inside an ASP page generates a stream of HTML. The server
runs the scripts and assembles the resulting HTML into a single stream (Web page)
that is sent to the browser.

ASP.NET is a new version of ASP and is based upon the Microsoft .NET Framework
technology. It offers significantly better performance and a host of new features
including support forWeb Services.

134 .NET Interface Guide

IIS Installation Dependency
During installation, Dyalog registers itself with ASP.NET as an
ASP.NET programming language. Among other things, this allows ASP.NET web
pages to be written in Dyalog. The Dyalog installation program also registers the
Dyalog asp.net sample applications as IIS Virtual Directories.

It is not practical for the Dyalog setup.exe to perform these tasks unless IIS and
ASP.NET are already installed. Furthermore, unless IIS and ASP.NET are already
installed and activated on the system, the Dyalog sub-directory
Samples/asp.net will not even be copied onto the system, because the samples
it contains would be inoperable.

If IIS is installed after Dyalog, it is necessary to de-install and then re-install Dyalog
to enable the registration of Dyalog as an ASP.NET Programming language to occur,
and for the Samples/asp.net sub-directory to be copied onto the system and the
samples registered as IIS Virtual Directories.

IIS Applications, Virtual Directories, Application
Pools

IIS supports the concept of an Application. An application is a logically separate
service or web site. IIS can run any number of Applications concurrently. The files
associated with an application are stored in a physical directory on disk, which is
linked to an IIS Virtual Directory. The name of the Virtual Directory is the name of
the Application orWeb Site.

The Dyalog APL distribution contains a directory named
Dyalog\Samples\asp.net and a set of sub-directories each of which contains a
sample application.

During the installation of Dyalog APL, these are automatically registered as IIS
Virtual Directories, under a common root. The name of the root begins
dyalog.net followed by the Dyalog Version number, the edition (Unicode or
classic), and the architecture (32-bit or 64-bit). For example,
dyalog.net.15.0.unicode.64 1. The name of the root application is referred
to henceforth as dyalog.net.

1Versions of Dyalog APL prior to Version 11.0 created Virtual Directories under apl.net.

Chapter 6: Dyalog APL and IIS 135

IIS applications run in application pools. An application pool is a group of one or
more URLs that are served by the same worker process or set of worker processes
which are separate from the worker process that services another application pool.
This mechanism isolates applications from one another, providing resilience should
any one application fail.

Each dyalog.net application is associated with an application pool named
Dyalog APL xx (.NET v4.0 Classic1), where xx is 32 or 64) which is created if
required during installation.

When you want to run the Web Services and Web Page examples, you do so by
specifying the URL http://localhost/dyalog.net.xxxx/

These samples can be easily found by selecting the Documentation Centremenu
item from the Help menu on the Dyalog session, and scrolling down to the Tutorials
section.

1The term NET v4.0 Classic refers to the name of a standard application pool on which it is based,
and has nothing to do with the Classic variant of Dyalog.

136 .NET Interface Guide

Internet Services Manager
As its name suggests, Internet Services Manager is a tool for managing IIS. If you are
developing Web Pages and/orWeb Services, you will be using this tool a lot, and it
makes sense to add it as a shortcut on your desktop.

To do this, open Control Panel, then open Administrative Tools, right-click Internet
Information Services (IIS) Manager, and select Send To Desktop (create shortcut).

The dyalog.net Application
Following a successful installation of Dyalog APL, the dyalog.net Application
should appear in Internet Services Manager as shown below.

Note that the golf, temp and webservices sub-directories in the dyalog.net
application represent separate IIS applications.

Chapter 6: Dyalog APL and IIS 137

The dyalog Application Pool will appear in the list of Applications Pools as shown
below.

The Advanced Settings of the dyalog.net Application are shown below.

138 .NET Interface Guide

139

Chapter 7:

Writing Web Services

Introduction
A Web Service can be thought of as a Remote Procedure Call. However, it is a
remote procedure call that can be made over the Internet using character-based
messages.

Web Services are implemented using Simple Object Access Protocol (SOAP),
Extensible Mark-up Language (XML) and Hypertext Transfer Protocol (HTTP). Web
Services do not require proprietary network protocols or software. Web Service calls
and responses can successfully be transmitted over the Internet without the need to
specially configure firewalls.

A Web Service is a class that may be called by any program running on the
computer, any program running on a computer on the same LAN, or any program
running on any computer on the internet.

Web Services are hosted (i.e. executed) by ASP.NET running underMicrosoft IIS.
Any one Web Service sits on a single server computer and runs there under
ASP.NET/IIS. The messages that invoke the Web Service, pass its arguments, and
return its results, utilise standard HTTP/SOAP/XML protocols.

A Web Service consists of a single text script file, with the extension .asmx, in an
IIS Virtual Directory on the server computer.

A Web Service may expose a number ofMethods and Properties. Methods may be
called synchronously (the calling process waits for the result) or asynchronously (the
calling process invokes the method, continues for a bit, and then subsequently
checks for the result of the previous call).

140 .NET Interface Guide

Web Service (.asmx) Scripts
Web Services may be written in a variety of languages, including APLScript, the
scripting version of Dyalog APL. See APLScript on page 239.

The first statement in the script file declares the language and the name of the service.
For example, the following statement declares a Dyalog APLWeb Service named
GolfService.

<%@ WebService Language="Dyalog" Class="GolfService" %>

Note that Language="Dyalog" is specifically connected to the Dyalog APL
script compiler through the application's web.config file or through the global
ASP.NET system file Machine.config. Note that versions of Dyalog prior to
11.0 used Language="APL".

The syntax of this first line is common to all Web Services, regardless of the
language in which they are written.

A Dyalog APLWeb Service script starts with a :Class statement and ends with an
:EndClass statement. These statements are directives used by the Dyalog APL
script compiler and are specific to Dyalog APL.

The :Class statement declares the name of the Class (which must be the same as
the name declared in the WebService statement) and the Base Class from which it
inherits, which is normally System.Web.Services.WebService.

:Class GolfService: System.Web.Services.WebService

Following the :Class statement, there may appear any number of APL expressions
and function bodies. Following these there must be a :EndClass statement.
Internal sub-classes (nested classes) may also be defined within the main :Class
... :EndClass block.

Because the functions usually take arguments and return results whose types must be
known, the statement

:Using System

must almost always appear immediately after the :Class statement to locate them.

Chapter 7: Writing Web Services 141

Compilation
When the Web Service, specified by the .asmx file, is called for the first time,
ASP.NET invokes the appropriate language compiler (in this case, the Dyalog APL
Script compiler) whose job is to produce an Assembly that defines and describes a
class. When the Web Service is used subsequently, the request is satisfied by creating
and using an instance of the class. However, ASP.NET detects if the .asmx script
has been modified, and recompiles it in this case.

The Dyalog APL Script compiler creates a DLL containing a workspace, which itself
contains the Web Service class. The class contains all the functions, which are
defined within the script, together with any variables that were established by
expressions in the script. A single function comprises all the statements enclosed
within a pair of del (∇) symbols.

For example, the following script would define a class, instances of which would run
using ⎕ML←2, containing a single function FOO and a variable X.

:Class MyClass
⎕ML←2
X←10
∇ Z←FOO Y

Z←Y+X
∇

:EndClass

Note that all expressions in the class script are executed by the script compiler when
it creates the assembly. They are not executed when the Web Service is invoked.

If your script contains a ⎕CY statement, it will be executed by the compiler when
establishing the class. This may be used to import functions from other workspaces
and obviate the need to include them in the .asmx file.

142 .NET Interface Guide

Exporting Methods
YourWeb Service will be of no use unless it exports at least one method. To export a
function as a method, you must include declaration statements. Such declarations
may be supplied anywhere within the function body, but it is recommended that they
appear together as the first block of statements in your code. All declaration
statements begin with the colon (:) character and the following declaration
statements are supported:

:Access WebMethod

This statement causes the function to be exported as a method and must be present.

:Signature type ← fnname type name1, type name2, ...

This statement declares the data type of the result and the arguments of the method
where typemay specify any valid .NET type that is supported by Web Services.
Note that the assignment arrow (←) is necessary if the function returns a result.

The declaration of each parameter of the method is separated from the next by a
comma. Each namemay be any ASCII character string. Note that names are optional.

Add1
∇ R←Add1 args
:Access WebMethod
:Signature Int32←Add Int32 arg1,Int32 arg2
R←+/args

∇

The Add1 function defined above is exported as a method named Add, that takes
exactly (and only) two parameters of type Int32 and returns a result of type Int32.
Armed with this definition, which is recorded in the metadata associated with the
class, the .NET Framework guarantees that the method will only be called in this
way.

Add2
∇ R←Add2 arg
:Access WebMethod
:Signature Double←Add Double[] arg1
R←+/arg

∇

The Add2 function defined above is exported as a method that takes an array of
Double and returns a result of type Double. Depending on the type of the
arguments provided when the method is invoked, .NET and Dyalog APL will call
Add1 or Add2 - or generate an exception if the argument does not match any of the
signatures.

Chapter 7: Writing Web Services 143

Web Service Data Types
In principle, Web Services are designed to support most, if not all, of the data types
supported by the .NET Framework, and to support any new .NET classes that you
choose to define.

In practice, the current set of data types supported by Web Services is somewhat
restricted; in particular:

l Multi-dimensional arrays are not supported; only vectors.
l Arbitrary nested arrays are not supported.

However, despite these restrictions, it is possible to build effective Web Services, as
you will see in the following examples.

Execution
When yourWeb Service (or Page) is invoked, ASP.NET requests an instance of the
corresponding Class from the Assembly (DLL) that was created when it was
compiled. The first time this happens for any Dyalog APLWeb Service orWeb Page,
the Dyalog APL dynamic link library is loaded into the ASP.NET host process and
the namespace corresponding to yourWeb Service class is)COPYed from the
Assembly. The Dyalog APL dynamic link library then delivers an instance of this
namespace to the client (calling) process. See Introduction on page 259 for further
details.

In general, every call on a method in a Web Service causes a new instance of the
Web Server class to be created. If you need to maintain/update variables between
calls, you need to write them to permanent storage.

If a client invokes a different Dyalog APLWeb Service orWeb Page, its class is
)COPYed from its Assembly into the workspace managed by the Dyalog APL
dynamic link library. When you export a class, you can select one of three Isolation
Modes:

1. Each host process has a single workspace
2. Each AppDomain has its own workspace
3. Each Assembly has its own workspace

In this context, "workspace" is synonymous with "Dyalog APL process": Each
workspace is managed by a separate process running dyalog.dll. Under option 1, all
Dyalog APLWeb Services (and Web Pages) hosted by the IIS host process share the
same workspace when they are invoked.

The isolation mode selected has implications for the way that you access and manage
global resources such as component files. Finer isolation modes may be implemented
in future versions of Dyalog APL.

144 .NET Interface Guide

Global.asax, Application and Session Objects
When a Web Service runs, it has access to the Application and Session objects.
These are objects provided by ASP.NET through which you can manage the
execution of the Web Service. ASP.NET creates an Application object when it first
starts the Application, i.e. when any client requests any Web Service orWeb Page
stored in the same IIS Virtual Directory. It also creates a Session object for each client
process.

When the first request comes in for an ASP.NET application, ASP.NET checks for an
optional file named global.asax, and if it is there it compiles it. The application's
global.asax instance is then used to apply application events.

global.asax typically defines callback functions to be executed on the various
Application and Session events, such as Application_Start,
Application_End, Session_Start, Session_End and so forth.

Dyalog APL allows you to use APL functions in the global.asax script. This
allows you to initialise your APL application when it is first invoked, and to close it
down cleanly when it is terminated.

For example, you can use global.asax to tie a component file on start-up, and
untie it on termination.

Chapter 7: Writing Web Services 145

Sample Web Service: EG1
The first APLExample sample is supplied in
samples\asp.net\webservices\eg1.asmx which is mapped via an IIS
Virtual Directory to the URL:

http://localhost/dyalog.net.15.0.unicode.32/webservices/eg1.asmx

<%@ WebService Language="Dyalog" Class="APLExample" %>

:Class APLEXample: System.Web.Services.WebService
:Using System

∇ R←Add args
:Access WebMethod
:Signature Int32←Add Int32 arg1,Int32 arg2
R←+/args

∇

:EndClass

The Add function defined above is exported as a method that takes exactly (and
only) two parameters of type Int32 and returns a result of type Int32.

Line [3] could in fact be coded as:

R←args[1]+args[2]

because .NET guarantees that a client can only call the method by providing two 32-
bit integers as parameters.

Testing APLExample from a Browser
If you connect to a URL that represents a Web Service, the browser displays a page
that provides information about the service and the methods that it contains. In
certain cases, but by no means all, the page also contains form fields that let you
invoke a method from the browser.

The screen shot below shows the page displayed by Google Chrome when it is
pointed at eg1.asmx. It shows that the Web Service is called APLExample, and
that it exports a single method called Add. Furthermore, the Addmethod takes two
parameters of type int, named arg1 and arg2.

146 .NET Interface Guide

The following screen shot shows the result of entering the values 23 and 19 into the
form fields and then pressing the Invoke button.

In this case, the method returns an int value 42.

It is important to understand what is happening here.

Accessed in this way from a browser, a Web Service appears to be behaving like a
Web Server; this is not the case.

It is simply that the browser detects that the target URL is a Web Service, and
invokes an ASP+ page named DefaultSdlHelpGenerator.aspx that inspects
the compiled class and returns an HTML view of the Web service.

Chapter 7: Writing Web Services 147

Sample Web Service: LoanService
The LoanService sample is supplied in
Dyalog\Samples\asp.net\Loan\Loan.asmx, which is mapped via an IIS
Virtual Directory to the URL:

http://localhost/dyalog.net.15.0.unicode.32/Loan/Loan.asmx

This APLScript sample defines a class named LoanService that is based upon
System.Web.Services.WebService. The LoanService class defines a
sub-class called LoanResult and a method called CalcPayments.

<%@ WebService Language="Dyalog" Class="LoanService" %>
:Class LoanService: System.Web.Services.WebService
:Using System

:Class LoanResult
:Access public

:Field Public Int32[] Periods
:Field Public Double[] InterestRates
:Field Public Double[] Payments

:EndClass

∇ R←CalcPayments X;LoanAmt;LenMax;LenMin;IntrMax;
IntrMin;PERIODS;INTEREST;NI;NM

[1] :Access WebMethod
[2] :Signature LoanResult←CalcPayments Int32 LoanAmt,

Int32 LenMax,Int32 LenMin,
Int32 IntrMax,Int32 IntrMin

[3]
[4] ⍝ Calculates loan repayments
[5] ⍝ Argument X specifies:
[6] ⍝ LoanAmt Loan amount
[7] ⍝ LenMax Maximum loan period
[8] ⍝ LenMin Minimum loan period
[9] ⍝ IntrMax Maximum interest rate
[10] ⍝ IntrMin Minimum interest rate
[11]
[12] LoanAmt LenMax LenMin IntrMax IntrMin←X
[13] R←⎕NEW LoanResult
[14] R.Periods←¯1+LenMin+⍳1+LenMax-LenMin
[15] R.InterestRates←0.5×¯1+(2×IntrMin)+⍳1+2×

IntrMax-IntrMin
[16] NI←⍴INTEREST←R.InterestRates÷100×12
[17] NM←⍴PERIODS←R.Periods×12
[18] R.Payments←,(LoanAmt)×((NI,NM)⍴NM/INTEREST)÷

1-1÷(1+INTEREST)∘.*PERIODS
∇

:EndClass

148 .NET Interface Guide

CalcPayments takes five integer parameters (see comments for their descriptions)
and returns an object of type LoanResult.

Note that the block of APLScript that defines the sub-class LoanResultmust
reside between the :Class and :EndClass statements of the main class,
LoanService. You may define any number of internal classes in this way.

The LoanResult class is made up only of Fields and it does not export any
methods or properties. Furthermore, there are no constructor methods defined and it
relies solely on its default constructor that is inherited from its base class,
System.Object. The default constructor is called without any parameters and in
fact does nothing except to create an instance of the class. In particular, the fields it
contains initialised to zero. In this case, that is sufficient, as all the fields will be
filled in explicitly later.

:Class LoanResult
:Access public

:Field Public Int32[] Periods
:Field Public Double[] InterestRates
:Field Public Double[] Payments

:EndClass

The :Class statement starts the definition of a new class and specifies its name. The
:EndClass statement terminates it definition.

The three :Field declaration statements specify the names and data types of three
public fields. The Public attributes are necessary to make the fields visible to
methods within the LoanService class as a whole, as well as to external clients.

The Periods field is defined to be an array of integers; the InterestRates field
an array of Double. Both these arrays are 1-dimensional, i.e. vectors. These will
contain the numbers of years, and the different interest rates, to which the repayments
matrix applies.

Notice however that Payments is also defined to be 1-dimensional when in fact it
is, more naturally, a 2-dimesional matrix. The reason for this is that, currently, Web
Services do not support multi-dimensional arrays. This is a .NET restriction and not a
Dyalog restriction.

CalcPayments[13] gets a new instance of the LoanResult class by doing
⎕New LoanResult. It then assigns values to each of the three fields in lines [14],
[15] and [18].

Chapter 7: Writing Web Services 149

Testing LoanService from a Browser
Like the methods exported by the APLEXampleWeb Services described above, the
CalcPaymentsmethod exported by LoanService is callable from a browser
and the page that is displayed when you point a browser at it is shown below.

To test the CalcPaymentsmethod, you can enter numbers into the form fields in
this page, as shown in the screen shot above, and then press the Invoke button. The
result of the method is then displayed in a separate window as illustrated below.

Notice that the result is described using XML, which is in fact the very language
used to invoke a Web Service and return its result.

You can see that the result is of type LoanResult, and it contains 3 fields named
Payments, InterestRates and Periods. This information was derived by our
definition of the LoanResult class in the APLScript file.

As you can see, the InterestRates field shows that it contains a vector of
floating-point values (double) from the minimum rate to the maximum rate that we
specified on the input form. This time, the increment is 0.5.

Similarly, the Payments field contains the calculated repayment values.

Finally the Periods field, contains a vector of integers from the minimum period to
the maximum period that we specified on the input form, in increments of 1.

150 .NET Interface Guide

Chapter 7: Writing Web Services 151

Sample Web Service: GolfService
GolfService is an example Web Service that resides in the directory
samples\asp.net\Golf and is associated with the IIS Virtual Directory
dyalog.net/Golf. This example makes extensive use of internal classes to
define data structures that are appropriate for a client application, such as C# or VB.

The directory contains a global.asax script, which is used to initialise the
application.

The GolfWeb Service example manages the reservation of tee-times at golf courses.
All the data is held in a component file called GolfData.dcf. This file may be
initialised using the function Golf.INITFILE in the workspace
samples\asp.net\webservices\webservices.dws. You may need to
alter the file path first.

Each golf course managed by the application has a unique code (integer) and a name
(string). This is handled by defining a class (structure) called GolfCourse with two
fields, Code and Name.

GolfService provides 3 methods:

GetCourses()

Returns a list of Golf Courses (CourseCode and CourseName). The
result of this method is an array of GolfCourse objects.

GetStartingSheet(CourseCode,Date)

Returns the starting sheet for a specified golf course on a given day. A
starting sheet is a list of starting times with a list of the golfers booked
to start their round at that time. The result of this method is a
StartingSheet object.

MakeBooking(CourseCode,TeeTime,GimmeNearest,
Name1,Name2,Name3,Name4))

Requests a tee reservation at the course specified by CourseCode.
TeeTime is a DateTime object that specifies the requested date and
time. GimmeNearest is Boolean. If 1, requests the nearest tee-time
to that specified; if 0, requests only the specified tee-time. Name1-4
are strings specifying up to 4 players. Note that all parameters are
required. The result of this method is a Booking object.

152 .NET Interface Guide

GolfService: Global.asax
<script language="Dyalog" runat=server>

∇ Application_Start;GOLFID
:Access Public
GOLFID←'c:\Dyalog\samples\asp.net\golf\GolfData' ⎕FTIE 01
Application[⊂'GOLFID']←GOLFID

∇

∇ Application_End;GOLFID
:Access Public
:Trap 6

GOLFID←Application[⊂'GOLFID']
⎕FUNTIE GOLFID

:EndTrap
∇
</script>

The Application_Start function is called when the GolfServiceWeb
Service is invoked for the first time. It ties the GolfData component file then stores
the tie number in a new Item called GOLFID in the Application object. This item is
then subsequently available to methods in the GolfService for the duration of the
application.

The Application_End function is invoked when the GolfServiceWeb
Service terminates. It unties the GolfData component file.

This example may be considered slightly weak in that the location of the data file is
hard-coded in the application's Global.asax file. An alternative is to store this
information in the <appsettings> section of the appropriate web.config file
or in the global machine.config file. This is preferable if the resource (in this
case a file name) is to be accessed frommore than one script. For further information
on ASP.NET config files, see the documentation for the .NET Framework SDK.

Note that the GolfData file may be initialised using the function
Golf.INITFILE in the
samples\asp.net\webservices\webservices.dws workspace. The
function will prompt you for the path of the file, initialize it and update the
Global.asax file accordingly.

1This file needs to be located where it can be modified.

Chapter 7: Writing Web Services 153

GolfService: GolfCourse class
The GolfCourse class is effectively a structure with two fields named Code and
Name. Code is an integer code that provides a shorthand way to refer to a specific
golf course; Name is a String containing its full name.

:Class GolfCourse
:Access Public
:Field Public Int32 Code
:Field Public String Name

∇ ctor args
:Implements Constructor
:Access public
:Signature fn Int32, String
Code Name←args

∇
∇ ctor_def
:Implements Constructor
:Access public
ctor ¯1 ''

∇
:EndClass

The GolfCourse class provides two constructors. The first, named ctor_def,
takes no arguments and therefore overrides the default constructor that is inherited
from System.Object. ctor_def calls ctor to initialise the instance with a
Code of ¯1 and an empty Name.

The constructor named ctor accepts two parameters named CourseCode (an
integer) and CourseName (a string), and simply assigns these values into the
corresponding fields.

Therefore, valid ways to create an instance of a GolfCourse are:

GC←⎕NEW GolfCourse
GC.(Code Name)←1 'St Andrews'

Or, more simply

GC←⎕NEW GolfCourse (1 'St Andrews')

Note that the names of the constructor functions are not visible outside the class.
Constructors are identified by their signatures (basically, the :Implements
Constructor statement) and not by their names.

154 .NET Interface Guide

GolfService: Slot class
The Slot class is effectively a structure with two fields named Time and Players.
Time is a DateTime object that represents a time that can be reserved on the first
tee. Players is an array of (up to 4) strings that contains the names of the golfers
who have reserved to start their round of golf at that time.

:Class Slot
:Access Public
:Field Public DateTime Time
:Field Public String[] Players

∇ ctor1 arg
:Implements Constructor
:Access public
:Signature fn DateTime
Time←arg
Players← 0⍴⊂''

∇
∇ ctor2 args
:Implements Constructor
:Access public
:Signature fn DateTime, String[]
Time Players←args

∇
∇ ctor_def
:Implements Constructor
:Access public

∇
:EndClass

This class provides two constructor functions named ctor1 and ctor2. However,
for internal reasons, if a class defines any constructor functions, it is currently
necessary to provide a dummy default constructor (the form of the constructor that
takes no parameters); hence ctor_def.

The constructor ctor1 accepts a single DateTime parameter, which it assigns to
the Time, field, and initialises the Players field to an empty array.

The constructor ctor2 accepts two arguments, a specified tee time, and an array of
strings that contains golfers' names. It assigns these parameters to Time and
Players respectively.

Chapter 7: Writing Web Services 155

GolfService: Booking class
The Booking class represents the result of the MakeBookingmethod. It contains 4
fields named OK, Course, TeeTime and Message.

OK is Boolean and indicates whether or not the attempt to make a reservation was
successful. If OK is false (0), the Message field (a string) indicates the reason for
failure.

If OK is true (1) the Course field contains an instance of a GolfCourse object,
and the TeeTime field contains an instance of a Slot object. Together, these
objects identify the reserved golf course and starting slot. The latter specifies both
the starting time, and the names of all the golfers who have been allocated that
starting time and who will therefore play together.

:Class Booking
:Access Public
:Field Public Boolean OK
:Field Public GolfCourse Course
:Field Public Slot TeeTime
:Field Public String Message

∇ ctor args
:Implements Constructor
:Access public
:Signature fn Boolean, GolfCourse, Slot, String
OK Course TeeTime Message←args

∇
∇ ctor_def
:Access public
:Implements Constructor

∇
:EndClass

This class provides a single constructor method, which must be called with values for
all four fields.

156 .NET Interface Guide

GolfService: StartingSheet class
The StartingSheet class represents the result of the GetStartingSheet
method. It contains 5 fields named OK, Course, Date, Slots and Message. OK is
Boolean and indicates whether or not a starting sheet is available for the specified
course and date.

If OK is false (0), the Message field (a string) indicates the reason for failure.

If OK is true (1) the Course field contains an instance of a GolfCourse object, the
Date field contains the date in question, and the Slots field contains an array of
Slot objects. Each Slot object specifies a starting time and the names of golfers
who are booked to play at that time.

:Class StartingSheet
:Access Public
:Field Public Boolean OK
:Field Public GolfCourse Course
:Field Public DateTime Date
:Field Public Slot[] Slots
:Field Public String Message

∇ ctor args
:Implements Constructor
:Access public
:Signature fn Boolean, GolfCourse, DateTime
OK Course Date←args

∇

∇ ctor_def
:Implements Constructor
:Access public

∇
:EndClass

Like the Booking class, the StartingSheet class provides a single constructor
method. In this case, the constructor is called with values for just 3 of the fields; the
values of the other fields are expected to be assigned later.

Chapter 7: Writing Web Services 157

GolfService: GetCourses function
∇ R←GetCourses;COURSECODES;COURSES;INDEX;GOLFID

[1] ⍝
[2] :Access WebMethod
[3] :Signature GolfCourse[]←fn
[4]
[5] GOLFID←Application[⊂'GOLFID']
[6] COURSECODES COURSES INDEX←⎕FREAD GOLFID 1
[7] R←⎕NEW¨GolfCourse,¨⊂¨↓⍉↑COURSECODES COURSES

∇

The GetCourses function retrieves the tie number of the GolfData component
file from the Application object and reads its first component.

The function then creates a GolfCourse object for each of the courses recorded on
the file, and returns the array of GolfCourse objects as its result.

GolfService: GetStartingSheet function
The GetStartingSheet function retrieves the tie number of the GolfData
component file from the Application object and reads its first component. Line
[10] creates an instance of a StartingSheet object and uses it to initialise the
result R. The value of the OK field is set to zero to indicate failure.

It then validates the requested CourseCode. If invalid, it simply sets the Message
field in the result and returns it. Similarly, it checks to see if there is a starting sheet
on file for the requested date. If not, it sets the Message field to indicate this, and
returns.

Note that line [15] extracts the Year, Month and Day properties from the requested
tee time, a DateTime object, and converts them to an IDN. This is used to index the
component containing the starting sheet for that day.

158 .NET Interface Guide

∇ R←GetStartingSheet ARGS;CODE;COURSE;DATE;GOLFID;
COURSECODES;COURSES;INDEX;COURSEI;IDN;DATES;COMPS;
IDATE;TEETIMES;GOLFERS;I;T

[1] ⍝
[2] :Access WebMethod
[3] :Signature StartingSheet←fn Int32 CCode,

DateTime Date
[4]
[5] CODE DATE←ARGS
[6] GOLFID←Application[⊂'GOLFID']
[7] COURSECODES COURSES INDEX←⎕FREAD GOLFID 1
[8] COURSEI←COURSECODES⍳CODE
[9] COURSE←⎕NEW GolfCourse (CODE(COURSEI⊃COURSES,⊂''))
[10] R←⎕NEW StartingSheet (0 COURSE DATE)
[11] :If COURSEI>⍴COURSECODES
[12] R.Message←'Invalid course code'
[13] :Return
[14] :EndIf
[15] IDN←2 ⎕NQ'.' 'DateToIDN',DATE.(Year Month Day)
[16] DATES COMPS←⎕FREAD GOLFID,COURSEI⊃INDEX
[17] IDATE←DATES⍳IDN
[18] :If IDATE>⍴DATES
[19] R.Message←'No Starting Sheet available'
[20] :Return
[21] :EndIf
[22] TEETIMES GOLFERS←⎕FREAD GOLFID,IDATE⊃COMPS
[23] R.OK←1
[24] T←⎕NEW¨DateTime,¨⊂¨(⊂DATE.(Year Month Day)),¨

3↑¨↓[1]24 60⊤TEETIMES
[25] R.Slots←⎕NEW¨Slot,¨⊂¨T,∘⊂¨↓GOLFERS

∇

Line[23] sets the OK field of the result to 1 (success).

Line[24] converts the stored tee times (in minutes) to DateTime objects.

Line[25] combines the tee times and golfers into a vector of 2-element arrays, and
creates a Slot object for each of them. The result is assigned to the Slots field of
the result R.

Chapter 7: Writing Web Services 159

GolfService: MakeBooking function
The MakeBooking function checks that the requested tee-time is available, for the
specified number of players and updates the starting sheet accordingly. The result of
the function is a Booking object.

MakeBooking first retrieves the tie number of the GolfData component file from
the Application object and reads its first component.

Lines[13 14] create instances of GolfCourse and Slot objects, which at this stage
are not validated. Line[15] then initialises the result R, a Booking object, which
includes these instances. At this stage, R.OK is 0 indicating failure.

Line[16] validates the requested CourseCode, and, if invalid, simply sets
R.Message and returns.

Similarly, lines [20 23] check that the requested tee time is within the next 30 days
from now. If not, the function assigns the appropriate error message to R.Message
and returns. Note that these two statements employ the APL primitive function >
(rather that the op_GreaterThanmethod) to compare the requested tee time (a
DateTime object) with a new DateTime object that represents now and now+30
days respectively.

Notice that line[24] uses the AddDaysmethod to create a new DateTime object
that represents now + 30 days. An alternative expression, to get now+30 days is:

TEETIME.Now+⎕NEW TimeSpan (30 0 0 0)

Lines[28-47] are concerned with retrieving the appropriate component from the file,
initialising it or re-using an old one, if it is not present. Each component represents
the starting sheet for a particular course on a particular day.

Lines[48-63] check whether or not the requested slot is available (for the specified
number of golfers). If not it returns an error message as before or, if GimmeNearest
is 1 (true), it attempts to allocate the slot closest to the requested time.

If an appropriate slot is found, Lines[72 73] update the Slot object with the
assigned time and names of the golfers. Line[74] then inserts the modified Slot
object into the result, and sets the OK field to 1 (true) to indicate success.

160 .NET Interface Guide

∇ R←MakeBooking ARGS;CODE;COURSE;SLOT;TEETIME;GOLFID;
COURSECODES;COURSES;INDEX;COURSEI;IDN;
DATES;COMPS;IDATE;TEETIMES;GOLFERS;
OLD;COMP;HOURS;MINUTES;NEAREST;TIME;
NAMES;FREE;FREETIMES;I;J;DIFF

[1] ⍝
[2] :Access WebMethod
[3] :Signature Booking←Int32 CourseCode,

DateTime TeeTime,
Boolean GimmeNearest,
String Name1,
String Name2,
String Name3,
String Name4

[4]
[5]
[6] ⍝ If GimmeNearest=0, books (or fails) for specified time
[7] ⍝ If GimmeNearest=1, books (or fails) for nearest to

specified time
[8]
[9] CODE TEETIME NEAREST←3↑ARGS
[10] GOLFID←Application[⊂'GOLFID']
[11] COURSECODES COURSES INDEX←⎕FREAD GOLFID 1
[12] COURSEI←COURSECODES⍳CODE
[13] COURSE←⎕NEW GolfCourse,⊂CODE(COURSEI⊃COURSES,⊂'')
[14] SLOT←⎕NEW Slot TEETIME
[15] R←⎕NEW Booking (0 COURSE SLOT '')
[16] :If COURSEI>⍴COURSECODES
[17] R.Message←'Invalid course code'
[18] :Return
[19] :EndIf
[20] :If TEETIME.Now>TEETIME
[21] R.Message←'Requested tee-time is in the past'
[22] :Return
[23] :EndIf
[24] :If TEETIME>TEETIME.Now.AddDays 30
[25] R.Message←'Requested tee-time is more than

30 days from now'
[26] :Return
[27] :EndIf
[28] IDN←2 ⎕NQ'.' 'DateToIDN',TEETIME.(Year Month Day)
[29] DATES COMPS←⎕FREAD GOLFID,COURSEI⊃INDEX
[30] IDATE←DATES⍳IDN
[31] :If IDATE>⍴DATES
[32] TEETIMES←(60×7)+10×¯1+⍳1+8×6

⍝ 10 minute intervals, 07:00 to 15:00
[33] GOLFERS←((⍴TEETIMES),4)⍴⊂''

⍝ up to 4 golfers allowed per tee time
[34] :If 0=OLD←⊃(DATES<

2 ⎕NQ'.' 'DateToIDN',3↑⎕TS)/⍳⍴DATES
[35] COMP←(TEETIMES GOLFERS)⎕FAPPEND GOLFID
[36] DATES,←IDN
[37] COMPS,←COMP
[38] (DATES COMPS)⎕FREPLACE GOLFID,COURSEI⊃INDEX
[39]

Chapter 7: Writing Web Services 161

:Else
[40] DATES[OLD]←IDN
[41] (TEETIMES GOLFERS)⎕FREPLACE

GOLFID,COMP←OLD⊃COMPS
[42] DATES COMPS ⎕FREPLACE GOLFID,COURSEI⊃INDEX
[43] :EndIf
[44] :Else
[45] COMP←IDATE⊃COMPS
[46] TEETIMES GOLFERS←⎕FREAD GOLFID COMP
[47] :EndIf
[48] HOURS MINUTES←TEETIME.(Hour Minute)
[49] NAMES←(3↓ARGS)~⍬''
[50] TIME←60⊥HOURS MINUTES
[51] TIME←10×⌊0.5+TIME÷10 ⍝ Round to nearest

10-minute interval
[52] :If ~NEAREST
[53] I←TEETIMES⍳TIME
[54] :If I>⍴TEETIMES
[55] :OrIf (⍴NAMES)>⊃,/+/0=⍴¨GOLFERS[I;]
[56] R.Message←'Not available'
[57] :Return
[58] :EndIf
[59] :Else
[60] :If ~∨/FREE←(⍴NAMES)≤⊃,/+/0=⍴¨GOLFERS
[61] R.Message←'Not available'
[62] :Return
[63] :EndIf
[64] FREETIMES←(FREE×TEETIMES)+32767×~FREE
[65] DIFF←|FREETIMES-TIME
[66] I←DIFF⍳⌊/DIFF
[67] :EndIf
[68] J←(⊃,/0=⍴¨GOLFERS[I;])/⍳4
[69] GOLFERS[I;(⍴NAMES)↑J]←NAMES
[70] (TEETIMES GOLFERS)⎕FREPLACE GOLFID COMP
[71] TEETIME←⎕NEW DateTime,⊂TEETIME.(Year Month Day),

3↑24 60⊤I⊃TEETIMES
[72] SLOT.Time←TEETIME
[73] SLOT.Players←(⊃,/0<⍴¨GOLFERS[I;])/GOLFERS[I;]
[74] R.(OK TeeTime)←1 SLOT
∇

162 .NET Interface Guide

Testing GolfService from a Browser
If you point your browser at the URL:

http://localhost/dyalog.net.15.0.unicode.32/Golf/Golf.asmx

GolfService will be compiled and ASP.NET will fabricate a page about it for the
browser to display as shown below.

The three methods exposed by GolfService are listed.

Invoking the GetCoursesmethod generates the following output.

Notice that the data type of the result is ArrayOfGolfCourse, and the data type
of each element of the result is GolfCourse. Furthermore, the public fields defined
for the GolfCourse object are clearly named.

All this information is derived from the declarations in the Golf.asmx script.

As supplied, the GolfData component file contains only 3 golf courses as shown
below.

Chapter 7: Writing Web Services 163

ASP.NET generates a Form containing fields that allow the user to invoke the
MakeBookingsmethod as shown below.

Notice the way a DateTime value is specified. Note too that the GimmeNearest
parameter is Boolean, so you must enter "True"" or "False". If you enter 0 or 1,
it will cause an error and the application will refuse to try to call MakeBookings
because you have specified the wrong type for a parameter.

When you try this yourself, remember to enter a date that is within the next 30 days,
and a time between 07:00 and 15:00. Alternatively, you may wish to experiment
with invalid data to check the error handling.

164 .NET Interface Guide

The result of invoking MakeBooking with this data is shown below.

Notice how all the information about the Booking object structure, including the
structure of the sub-objects, is provided.

Chapter 7: Writing Web Services 165

The following picture shows data suitable for invoking the GetStartingSheet
method.

If you try this for yourself, choose a course and date on which you have made at least
one successful booking.

166 .NET Interface Guide

Finally, the result of the GetStartingSheet function is illustrated below.

The output clearly shows that the result, a StartingSheet object, contains an
array of Slot objects, each of which contains a Time field and a Players field.

Chapter 7: Writing Web Services 167

Using GolfService from C#
The csharp sub-directory in samples\asp.net\golf contains sample files for
accessing the GolfServiceWeb Service from C#. The C# source code in
Golf.cs is shown below.

using System;

class MainClass {

static void Main(String[] args)
{
GolfService golf = new GolfService();
int nArgs = args.Length;
Booking booking;

booking=golf.MakeBooking(
/* Course Code */ 1,
/* Desired Tee Time */ DateTime.Parse(args[0]),
/* nearest is OK */ true,
/* player 1 */ (nArgs > 1) ? args[1] : "",
/* player 2 */ (nArgs > 2) ? args[2] : "",
/* player 3 */ (nArgs > 3) ? args[3] : "",
/* player 4 */ (nArgs > 4) ? args[4] : ""

);

Console.WriteLine(booking.OK);
Console.WriteLine(booking.TeeTime.Time.ToString());
foreach (String player in booking.TeeTime.Players)

Console.WriteLine(player);
}

}

The following example shows how you may run the C# program golf.exe from a
Command Prompt window. Please remember to specify a reasonable date and time
rather than the one used in this example.

csharp>golf 2006-08-07T08:00:00 T.Woods A.Palmer P.Donnelly
True
25/08/2008 08:00:00
T.Woods
A.Palmer
P.Donnelly

csharp>

168 .NET Interface Guide

Sample Web Service: EG2
In all the previous examples, we have relied upon ASP.NET to compile the
APLScript into a .NET class prior to running it. This sample illustrates how you
can make a .NET class yourself.

For this example, the Web Service script, which is supplied in the file
samples\asp.net\webservices\eg2.asmx (mapped via an IIS Virtual
Directory to the URL
http://localhost/dyalog.net/webservices/eg2.asmx)is reduced to
a single statement that merely invokes the pre-defined class called
APLServices.Example.

The entire file, viewed in Notepad, is shown below.

Given this instruction, ASP.NET will locate the APLServices.ExampleWeb
Service by searching the bin sub-directory for assemblies. Therefore, to make this
work, we have only to create a .NET assembly in
samples\asp.net\aplservices\bin. The assembly should contain a .NET
Namespace named APLServices, which in turn defines a class named Example.

The procedure for creating .NET classes and assemblies in Dyalog APL was
discussed in Writing .NET Classes in Dyalog APL on page 103. Making a
WebService class is done in exactly the same way.

Note that the sub-directory samples\asp.net\aplservices\bin already
contains copies of the dependant Dyalog DLLs that are required to execute the code.

Chapter 7: Writing Web Services 169

Start Dyalog as Administrator. This is essential both to allow you to create an
assembly.

Starting with a CLEAR WS, create a namespace called APLServices. This will act
as the container corresponding to a .NET Namespace in the assembly.

)NS APLServices
#.APLServices

Within APLServices, create a class called Example that inherits from
System.Web.Services.WebService. This is the Web Service class.

)CS APLServices
#.APLServices

)ED ○Example

:Class Example: WebService
:Using System
:Using System.Web.Services,System.Web.Services.dll

∇ R←Add arg
:Access webmethod
:Signature Int32←Add Int32 arg1, Int32 arg2
R←+/arg

∇
:EndClass

Within APLServices.Example, we have a function called Add that will
represent the single method to be exported by this Web Service.

Fix the class, then click File/Save As ... in the Session menubar and save the
workspace in samples\asp.net\aplwebservices\bin.

C:\Program Files\Dyalog\Dyalog APL 15.0
Unicode\Samples\asp.net\webservices\bin\eg2.dws saved Mon
Sep 26 15:31:56 2016

Select the Export… item from the Session Filemenu, and save the assembly as
eg2.dll in the same directory, i.e. samples\asp.net\webservices\bin.

170 .NET Interface Guide

When you click Save, the Status Window displays the following information to
confirm that the assembly has been created correctly.

Chapter 7: Writing Web Services 171

Testing EG2 from a Browser
If you point your browser at the URL:

http://localhost/dyalog.net.15.0.unicode.32/webservices/eg2.asmx

ASP.NET will fabricate a page about it for the browser to display as shown below.

The Addmethod exposed by APLServices.Example is shown, together with a
Form fromwhich you can invoke it.

If you enter the numbers 123 and 456 in the fields provided, then press Invoke, the
method will be called and the result displayed as shown below.

172 .NET Interface Guide

173

Chapter 8:

Calling Web Services

Introduction
In order to call a Web Service, you need a "proxy class" on the client, which exposes
the same methods and properties as the web service. The proxy creates the illusion
that the web service is present on the client. Client applications create instances of
the proxy class, which in turn communicate with the Web Service via IIS, using
TCP/IP and HTTP/XML protocols.

Microsoft provides a utility called WSDL.EXE that queries the metadata (Web
Service Definition Language) of a Web Service and generate C# source code for a
matching proxy class.

The MakeProxy function
The MakeProxy function is provided in the supplied workspace
samples\asp.net\webservices\webservices.dws.

MakeProxy is monadic and its argument specifies the URL of the Web Service to
which you want to connect. For example, the following expressions uses
MakeProxy to connect to the LoanService sample Web Service provided with
Dyalog .NET:

 MakeProxy'http://localhost/dyalog.net/Loan/Loan.asmx'

MakeProxy runs the Microsoft utility WSDL.EXE passing the name of your URL to
it as an argument. The utility then creates a C# source code file in your current
directory that contains the code necessary to create a proxy class. The name of the C#
file is the name of the Web Service (as declared in its header line) followed by the
extension .cs.

MakeProxy then calls the C# compiler to compile this file, creating an assembly
with the same name, but with a .dll extension, in your current directory. This
assembly contains a .NET class of the same name.

174 .NET Interface Guide

MakeProxy attempts to determine the correct path for WSDL.EXE and CSC.EXE,
but future versions ofMicrosoft.NET or Visual Studio require changes, in which case
you will have to modify this function to locate these tools.

Using LoanService from Dyalog APL
For example, the above call to MakeProxy will create a C# source code file called
LoanService.cs, and an assembly called LoanService.dll in your current
directory. The name of the proxy class in LoanService.dll is LoanService.

You use this proxy class in exactly the same way that you use any .NET class. For
example:

⎕USING ←,⊂',.\LoanService.dll'
LN←⎕NEW LoanService
LN.CalcPayments 100000 20 10 15 2

LoanResult

Notice that, as expected, the result of CalcPayments is an object of type
LoanResult. For convenience, we will assign this to LR and then reference its
fields:

LR←LN.CalcPayments 100000 20 10 15 2
LR.Periods

10 11 12 13 14 15 16 17 18 19 20
LR.InterestRates

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5
...

LR.(((⍴InterestRates),⍴Periods)⍴Payments)
920.1345384 844.5907851 781.6836919 728.4970675 682.947
...

The Payments field is, of course, a vector because it was defined that way.
However, as can be seen above, it is easy to give it the "right" shape.

When you execute the CalcPaymentsmethod in the proxy class, the class
transforms and packages up your arguments into an appropriate SOAP/XML stream
and sends them, using TCP/IP, to the URL that represents the Web Service wherever
that URL is on the internet or your Intranet. It then decodes the SOAP/XML that
comes back, and returns the response as the result of the method.

Note that, depending upon the speed of your connection, and the logical distance
away of the Web Service itself, calling a Web Service method can take a significant
amount of time; regardless of how much time it actually takes to execute on its
server.

Chapter 8: Calling Web Services 175

Using GolfService from Dyalog APL
The workspace samples\asp.net\webservices\webservices contains
functions that present a GUI interface to the GolfService web service.

The GOLF function accesses GolfService through a proxy class. GOLF is called
with an argument of 0 or 1. Use 1 to force GOLF to create or rebuild the proxy class,
which it does by calling MakeProxy. You must use an argument of 1 the first time
you call GOLF, or if you ever change the GolfService APL code.

Note that you cannot make the proxy for GolfService unless the Web Server
class has been compiled on the server. At present, the only way to trigger the
compilation of golf.asmx into a Web Service is to visit the page once using Internet
Explorer as described in the previous chapter.

The first few lines of the function are listed below. If the argument is 1, line[2] makes
the proxy class GolfService.DLL in the current directory; if not it is assumed to
be there already. Line[6] defines ⎕USING to use it, and Line[7] creates a new
instance which is assigned to GS. Line[8] calls the GetCoursesmethod, which
returns a vector of GolfCourse objects. Notice how namespace reference array
expansion is used to extract the course codes and names from the Code and Name
fields respectively.

∇ GOLF FORCE;F;DLL;COURSES;COURSECODES;N;GS;⎕USING
[1] :If FORCE≢0
[2] DLL←MakeProxy

'http://localhost/dyalog.net/golf/golf.asmx'
[3] :Else
[4] DLL←'.\GolfService.dll'
[5] :EndIf
[6] ⎕USING←'System'(',',DLL)
[7] GS←⎕NEW GolfService
[8] COURSECODES COURSES←↓⍉↑GS.GetCourses.(Code Name)

The following screen shot illustrates the user interface provided by GOLF. In this
example, the user has typed the names of two golfers (one rather more famous than
the other - at least in APL circles) and then presses the Book it! button.

176 .NET Interface Guide

This action fires the BOOK callback function which is shown below.

∇ BOOK;CCODE;YMD;HOUR;MINUTES;FLAG;NAMES;BOOKING;M
[1] CCODE←⊃F.COURSE.SelItems/COURSECODES
[2] YMD←3↑F.DATE.(IDNToDate⊃DateTime)
[3] HOUR MINUTES←2↑1↓F.TIME.DateTime
[4] FLAG←1=F.Nearest.State
[5] NAMES←F.(Name1 Name2 Name3 Name4).Text
[6] BOOKING←GS.MakeBooking CCODE

(⎕NEW DateTime (YMD,HOUR MINUTES 0)),FLAG,NAMES
[7] 'M'⎕WC'MsgBox'
[8] :If BOOKING.OK
[9] M.Text←'Tee reserved for

',¯2↓⊃,/BOOKING.TeeTime.Players,¨⊂', '
[10] M.Text,←' at ',BOOKING.Course.Name
[11] M.Text,←' on ',BOOKING.TeeTime.Time.

(ToLongDateString,' at ',ToShortTimeString)
[12] :Else
[13] M.Text←BOOKING.(Course.Name,'',

TeeTime.Time.(ToLongDateString,
' at ',ToShortTimeString),' ',Message)

[14] :EndIf
[15] ⎕DQ'M'

∇

Chapter 8: Calling Web Services 177

Line[6] calls the MakeBookingmethod of the GS object, passing it the data entered
by the user. The result, a Booking object, is assigned to BOOKING. Line[8] checks
its OK field to tell whether or not the reservation was successful. If so, lines[9-11]
display the message box illustrated below.

Notice how the various fields are extracted and notice how the
ToLongDateString and ToShortTime Stringmethods are employed.

Pressing the Starting Sheet button runs the SS callback listed below.

∇ SS;CCODE;YMD;M;SHEET;OK;COURSE;TEETIME;S;DATA;N
;TIMES

[1] CCODE←⊃F.COURSE.SelItems/COURSECODES
[2] YMD←3↑F.DATE.(IDNToDate⊃DateTime)
[3] SHEET←GS.GetStartingSheet CCODE(⎕NEW DateTime YMD)
[4] :If SHEET.OK
[5] DATA←↑(SHEET.Slots).Players
[6] TIMES←(SHEET.Slots).Time
[7] 'S'⎕WC'Form'('Starting Sheet for ',

SHEET.Course.Name,' ',
SHEET.Date.ToLongDateString)
('Coord' 'Pixel')('Size' 400 480)

[8] 'S.G'⎕WC'Grid'DATA(0 0)(S.Size)
[9] S.G.RowTitles←TIMES.ToShortTimeString
[10] S.G.ColTitles←'Player 1' 'Player 2'

'Player 3' 'Player 4'
[11] S.G.TitleWidth←60
[12] ⎕DQ'S'
[13] :Else
[14] 'M'⎕WC'MsgBox'('Starting Sheet for ',

SHEET.Course.Name,' ',
SHEET.Date.ToLongDateString)

('Style' 'Error')
[15] M.Text←SHEET.Message
[16] ⎕DQ'M'
[17] :EndIf

∇

178 .NET Interface Guide

Line[3] calls the GetStartingSheetmethod of the GS object. The result, a
StartingSheet object, is assigned to SHEET. Line[4] checks its OK field to see if
the call succeeded. If so, lines[5-12] display the result in a Grid, which is illustrated
below.

Chapter 8: Calling Web Services 179

Exploring Web Services
You can use the Workspace Explorer to browse the proxy class associated with a
Web Service, in exactly the same way that you can browse any other .NET
Assembly. The following screen shots show theMetadata for LoanService,
loaded from the LoanService.dll proxy.

Remember, LoanService was written in APLScript, but it appears and behaves
just like any other .NET class.

The first picture displays the structure of the LoanResult class.

The second picture shows the methods exposed by LoanService. In addition to
CalcPayments, which was written in APLScript, there are a large number of
other methods, which have been inherited from the base class.

180 .NET Interface Guide

Chapter 8: Calling Web Services 181

Asynchronous Use
Web Services provide both synchronous (client calls the function and waits for a
result) and asynchronous operation.

Each method is exposed as a function with the same name (the synchronous version)
together with a pair of functions with that name prefixed with Begin and End
respectively.

The Beginxxx functions take two additional parameters; a delegate class that
represents a callback function and a state parameter.

To initiate the call, you execute the Beginxxxmethod using the standard
parameters followed by two objects. The first is an object of type
System.AsyncCallback that represents an asynchronous callback, i.e. a
callback to be invoked when the asynchronous call is complete. The second is an
object which is used to supply extra information. We will see how callbacks are used
later in this section. If you are not using a callback, these items should be null object
references. You can specify a reference to a null object using the expression
(⎕NS''). For example, using the LoanService sample as above:

A←LN.BeginCalcPayments 10000 16 10 12
9(⎕NS'')(⎕NS'')

The result is an object of type WebClientAsynchResult.

A
System.IAsyncResult ⎕CLASS
System.Web.Services.Protocols.WebClientAsyncResult

Then, some time later, you call the Endxxxmethod with this object as a parameter.
For example:

LN.EndCalcPayments A
LoanResult

You can execute several asynchronous calls in parallel:

A1←LN.BeginCalcPayments 20000 20 10 15
7(⎕NS'')(⎕NS'')

A2←LN.BeginCalcPayments 30000 10 8 12
3(⎕NS'')(⎕NS'')

LN.EndCalcPayments A1
LoanResult

LN.EndCalcPayments A2
LoanResult

182 .NET Interface Guide

Using a callback
The simple approach described above is not always practical. If it can take a
significant amount of time for the web service to respond, you may prefer to have the
system notify you, via a callback function, when the result from the method is
available.

The example function TestAsyncLoan in the workspace
samples\asp.net\webservices\webservices.dws illustrates how you
can do this. It is somewhat artificial, but hopefully explains the mechanism that is
involved.

TestAsyncLoan itself is just a convenience function that calls AsyncLoan with
suitable arguments. TestAsyncLoan takes an argument of 1 or 0 that determines
whether or not a Proxy class for LoanService is to be built.

∇ TestAsyncLoan MAKEPROXY
[1] (⍕MAKEPROXY),' AsyncLoan 10000 10 8 5 3'
[2] MAKEPROXY AsyncLoan 10000 10 8 5 3

∇

The AsyncLoan function and its callback function GetLoanResult are more
interesting.

∇ {MAKEPROXY}AsyncLoan ARGS;DLL;SINK;LN;AS;AR
[1] :If 2≠⎕NC'MAKEPROXY' ⋄ MAKEPROXY←0 ⋄ :EndIf
[2] :If MAKEPROXY
[3] DLL←MakeProxy'http://localhost/dyalog.net/loan/

loan.asmx'
[4] :Else
[5] DLL←'.\LoanService.dll'
[6] :EndIf
[7] ⎕USING←'System'(',',DLL)
[8] LN←⎕NEW LoanService
[9] AS←⎕NEW System.AsyncCallback,⊂⎕OR'GetLoanResult'
[10] AR←LN.BeginCalcPayments ARGS,AS,LN
[11] 'AsyncLoan waits for async call to complete'
[12] :While 0=AR.IsCompleted
[13] ⍞←'.'
[14] :EndWhile

∇
∇ GetLoanResult arg;OBJ;LR;RSLT

[1] 'GetLoanResult callback fires ...'
[2] OBJ←arg.AsyncState
[3] LR←OBJ.EndCalcPayments arg
[4] RSLT←LR.(((⍴Periods),(⍴InterestRates))⍴Payments)
[5] RSLT←((⊂''),LR.Periods),(LR.InterestRates),[1]RSLT
[6] 'Result is'
[7] ⎕←RSLT

∇

Chapter 8: Calling Web Services 183

The effect of running TestAsyncLoan is as follows:

TestAsyncLoan 0
0 AsyncLoan 10000 10 8 4 3

...AsyncLoan waits for async call to complete...

...GetLoanResult callback fires ...

...Result is
3 3.5 4

8 117.2957193 105.7694035 96.5607447
9 119.5805173 108.0741442 98.88586746

121.892753 110.409689 101.2451382

AsyncLoan[8] creates a new instance of the LoanService class called LN. The
next line creates an object of type System.AsyncCallback named AS. This
object, which is termed a delegate, identifies the callback function that is to be
invoked when the asynchronous call to CalcPayments is complete. In this case,
the name of the callback function is GetLoanResult. Note that ⎕OR is necessary
because the AsyncCallback constructor must be called with a parameter of type
System.Object. The line AsyncLoan[10] calls BeginCalcPayments with
the parameters for CalcPayments, followed by references to AS (which identifies
the callback) and LN, which identifies the object in question. The latter will turn up
in the argument supplied to the GetLoanResult callback. Lines[12-14] loop,
displaying dots, until the asynchronous call is complete. GetLoanResult will be
invoked during or immediately after this loop, and will be executed in a different
APL thread.

When the GetLoanResult callback is invoked, its argument arg is an object of
type System.Web.Services.Protocols.WebClientAsyncResult. It is
in fact a reference to the same object AR that was the result returned by
BeginCalcPayments.

This object has an AsyncState property that references the LoanService object
LN that we passed as the final parameter to BeginCalcPayments.
GetLoanResult[2] retrieves this object and assigns it to OBJ.
GetLoanResult[3] calls the EndCalcPaymentsmethod, passing it arg as
the AsyncResult parameter as before. The resulting LoanResult object is then
formatted and displayed.

184 .NET Interface Guide

185

Chapter 9:

Writing ASP.NET Web Pages

Introduction
UnderMicrosoft IIS, a static web page is defined by a simple text file with the
extension .htm or .html that contains simple HTML.When a browser requests such a
page, IIS simply reads it and sends its content back to the client. The contents of a
static web page are constant and, until somebody changes it, the page appears the
same to all users at all times.

A dynamic web page is represented by a simple text file with the extension .aspx.
Such a file may contain a mixture of (static) HTML, ASP.NET objects and a server-
side script. ASP.NET objects are built-in .NET classes that generate HTML when the
page is processed. Scripts contain functions and subroutines that are invoked by
events (such as the Page_Load event) or by user interaction.

Typically, a script will generate HTML dynamically, when the page is loaded. For
example, a script could perform a database operation and return an HTML table
containing a list of products and prices. A script may also contain code to process
user interaction, for example to process the contents of a Form that is filled in and
then submitted by the user. These scripts are referred to as server-side scripts because
they are executed on the server. The browser sees only the results produced by the
scripts and not the scripts themselves. Code in a server-side script always involves
the generation of a new page by the server for display in the browser.

The first time ASP.NET processes a .NET web page, it compiles the entire page into a
.NET Assembly. Subsequently, it calls the code in the assembly directly. The
language used to compile the page is defined in the <script> section, which is
typically defined at the top of the page. If the <script> section is omitted, or if it fails
to explicitly specify the language attribute, the page is compiled using the default
scripting language. This is configurable, but is typically VB or C#.

186 .NET Interface Guide

This Chapter is made up almost entirely of examples, the source code of which is
supplied in the samples\asp.net directory and the sub-directories it contains. This
directory is mapped as an IIS Virtual Directory named dyalog.net, so you may
execute the examples by specifying the URL
http://localhost/dyalog.net/ followed by the name of the sub-directory
and page. You can get an overview of the samples by starting on the page
http://localhost/dyalog.net/index.htm and follow links from there.

To use APLScript effectively in Web Pages, you need to have a thorough
understanding of how ASP.NET works.

In the first example, an outline description ASP.NET technology is provided. For
further information, see the Microsoft .NET Framework documentation and
Beginning ASP.NET using VB.NET, Wrox Press Ltd, ISBN 1861005040.

Chapter 9: Writing ASP.NET Web Pages 187

Your first APL Web Page
The first web page example is tutorial/intro1.aspx, which is listed below.
This page displays a button whose text is reversed each time you press it.

Note that the example is intended to be run in the framework of the tutorial and
contains two lines of code (shown in italic) that refer to this framework and should
be ignored.

<%@Register TagPrefix="tutorial" Namespace="Tutorial"
Assembly="tutorial" %>
<script language="Dyalog" runat="server">

∇Reverse args
:Access public
:Signature Reverse Object,EventArgs
(⊃args).Text←⌽(⊃args).Text
∇

</script>

<html>
<body>
<Form runat=server>

<asp:Button id="Pressme"
Text="Press Me"
runat="server"
OnClick="Reverse"
/>

</form>
<tutorial:index runat="server"/>
</body>
</html>

In this example, the page language is defined in the <script> section to be
"Dyalog". This in turn is mapped to the APLScript compiler via information in
the application's web.config file or the global IIS configuration file,
machine.config.

188 .NET Interface Guide

The page layout is described in the section between the <html> and </html> tags.
This page contains a Form in which there is a Button labelled (initially) "Press Me"

The Form and Button page elements may appear to be simple HTML, but in fact
there is more to them than meets the eye and they are actually both types of
ASP.NET intrinsic controls.

Firstly, the runat="server" attribute indicates that an HTML element should be
parsed and treated as an HTML server control. Instead of being handled as pure text
that is to be transmitted to the browser "as is", an HTML server control is effectively
compiled into statements that then generate HTML when executed. Furthermore, an
HTML server control can be accessed programmatically by code in the Script,
whereas a pure HTML element cannot. On its own, runat="server" identifies
the HTML element as a so-called basic intrinsic control.

When you add runat="server" to a Form, ASP.NET automatically adds other
attributes that cause the values of its controls to be POSTed back to the same page. In
addition, ASP.NET adds a HIDDEN control to the form and stores state information
in it. This means that when the page is reloaded into the browser the state and
contents of some or all of its controls can be maintained, without the need for you to
write additional code.

The asp: prefix for the Button, identifies the control as a special ASP.NET intrinsic
control. These are fully-fledged .NET Classes in the .NET Namespace
System.Web.UI.WebControls that expose properties corresponding to the
standard attributes that are available for the equivalent HTML element. You
manipulate the control as an object, while it, at runtime, emits HTML that is inserted
into the page.

At this point, it is instructive to study what happens when the page is first loaded
and the appearance of the page is illustrated below.

Chapter 9: Writing ASP.NET Web Pages 189

The HTML that is transmitted to the browser is:

<html>
<body>

<form name="ctrl1" method="post" action="intro1.aspx"
id="ctrl1">
<input type="hidden" name="__VIEWSTATE"
value="YTB6NTQ3ODg0MjcyX19feA==5725bd57" />

<input type="submit" name="Pressme" value="Press Me"
id="Pressme" />

</form>
</body>
</html>

Firstly, notice that, as expected, the contents of the <script> section are not
present. Secondly, because the Form and Button are intrinsic controls, ASP.NET has
added certain attributes to the HTML that were not specified in the source code.

The Button now has the added attribute input type="submit", which means
that pressing the Button causes the contents of the Form to be transmitted back to the
sever.

The Form now has method="post" and action="intro1.aspx" attributes,
which means that, when the Form is submitted, the data is POSTed back to
intro1.aspx, the page that generated the HTML in the first place.

So when the user presses the button, the browser sends back a POST statement, with
the contents of the Form, including the value of the HIDDEN field, requesting the
browser to load intro1.aspx.

In the server, ASP.NET reloads the page and processes it again. In fact, because of the
stateless nature of HTTP, the server does not know that it is reprocessing the same
page, except that it is being executed by a POST command with the hidden data
embedded in the Form that it put there the first time around. This is the mechanism
by which ASP.NET remembers the state of a page from one invocation to another.

This time, because a POST back is loading the page, and because the Pressme
button caused the POST, ASP.NET executes the function associated with its
onClick attribute, namely the APLScript function Reverse.

When it is called, the argument supplied to Reverse contains two items. The first of
these is an object that represents the control that generated the onClick event; the
second is an object that represents the event itself. In fact, Reverse and its
argument are very similar to a standard Dyalog APL callback function.

190 .NET Interface Guide

∇Reverse args
:Access public
:Signature Reverse Object,EventArgs
(⊃args).Text←⌽(⊃args).Text
∇

The code in the Reverse function is simple. The expression (⊃args) is a
namespace reference (ref) to the Button, and (⊃args).Text refers to its Text property
whose value is reversed. Note that Reverse could just as easily refer to the Button
by name, and use Pressme.Text instead.

After pressing the button, the page is redisplayed as shown below:

This time, the HTML generated by intro1.aspx is:

<html>
<body>

<form name="ctrl1" method="post" action="intro1.aspx"
id="ctrl1">
<input type="hidden" name="__VIEWSTATE"
value="YTB6NTQ3ODg0MjcyX2Ewel9oejV6MXhfYTB6X2h6NXoxeF9hMHph
MHpoelRlXHh0X2VNIHNzZXJQeF9feF9feHhfeHhfeF9feA==45acf576"
/>

<input type="submit" name="Pressme" value="eM sserP"
id="Pressme" />

</form>
</body>
</html>

Returning to the Reverse function, note that the declaration statements at the top
of the function are essential to make it callable in this context.

Chapter 9: Writing ASP.NET Web Pages 191

∇Reverse args
:Access public
:Signature Reverse Object,EventArgs
(⊃args).Text←⌽(⊃args).Text
∇

Firstly the Reverse function must be declared as a public member of the script. This
is achieved with the statement.

:Access Public

Secondly, the .NET runtime will only call the function if it possesses the correct
signature, which is derived from its parameters and their types.

The required signature for a method connected to an event, such as the OnClick
event of a Button, is that it takes two parameters; the first of which is of type
System.Object and the second is of type System.EventArgs. The Reverse
function declares its parameters with the statements:

:Signature Reverse Object,EventArgs

Note that the parameter declarations do not include the System prefix. This is
because when the script is compiled the names are resolved using the current value of
⎕USING. When the APLScript is compiled, the default value for ⎕USING is
automatically defined to contain System along with most of the other namespaces
that will be used when writing web pages

(Strictly speaking, the first argument is expected to be of type
System.Web.UI.WebControls.Button, but as this type inherits ultimately
from System.Object the function signature is satisfied.)

Note that if the Reverse function is defined with a signature that does not match
that expected signature for the OnClick callback, the function will not be run.

Furthermore, if the function associated with the OnClick statement is not defined as a
public method in the APLScript the page will appear to compile but the
Reverse function will not get executed.

Note that unlike Web Services, there is no requirement for a :Class or
:EndClass statement in the script. This is because a file with an .aspx extension
implicitly generates a class that inherits from System.Web.UI.Page.

192 .NET Interface Guide

The Page_Load Event
Intro3.aspx illustrates how you can dynamically initialise the contents of a Web
Page using the Page_Load event. This example also introduces another type ofWeb
Control, the DropDownList object.

<%@Register TagPrefix="tutorial" Namespace="Tutorial"
Assembly="tutorial" %>
<script language="Dyalog" runat="server">

∇Page_Load
:Access Public
list.Items.Add ⊂'Apples'
list.Items.Add ⊂'Oranges'
list.Items.Add ⊂'Bananas'
∇

∇Select (obj ev)
:Access Public
:Signature Select Object obj, EventArgs ev
out.Text←'You selected ',list.SelectedItem.Text
∇
</script>

<html>
<head>
<title>Initialising the contents of the Page using the
Page_Load method</title>
<link rel="stylesheet" type="text/css" href="apl.css">
</head>

<body>
<h1>intro3: The Page_Load method</h1>
<form runat="server">
<asp:DropDownList id="list" runat="server"/>
<p>
<asp:Label id="out" runat="server" />
</p>
<asp:Button id="btn"

Text="Submit"
runat="server"
OnClick="Select"/>

</form>
<tutorial:index runat="server"/>
</body>
</html>

Chapter 9: Writing ASP.NET Web Pages 193

When an ASP.NET web page is loaded, it generates a Page_Load event. You can
use this event to perform initialisation simply by defining a public function called
Page_Load in your APLScript. This function will automatically be called every
time the page is loaded. The Page_Load function should be niladic.

Note that, if the page employs the technique illustrated in Intro1.aspx, whereby
the page is continually POSTed back to itself by user interaction, your Page_Load
function will be run every time the page is loaded and you may not wish to repeat
the initialisation every time. Fortunately, you can distinguish between the initial
load, and a subsequent load caused by the post back, using the IsPostBack
property. This property is inherited from the System.Web.UI.Page class, which
is the base class for any .aspx page.

The Page_Load function in this example checks the value of IsPostBack. If 0
(the page is being loaded for the first time) it initialises the contents of the list
object, adding 3 items "Apples", "Oranges" and "Bananas". The explanation for the
statement:

list.Items.Add ⊂'...'

is that the DropDownListWebControl has an Items property that is a collection
of ListItem objects. The collection implements an Add function that takes a
String Argument that can be used to add an item to the list.

Notice that the name of the object list is defined by the id="list" attribute of
the DropDownList control that is defined in the page layout section of the page.

In this example, the page is processed by a POST back caused by pressing the
Submit button. As it stands, changing the selection in the list object does not
cause the text in the out object to be changed; you have to press the Submit
button first.

194 .NET Interface Guide

However, you can make this happen automatically by adding the following
attributes to the list object (see intro4.aspx):

AutoPostback="true"

OnSelectedIndexChanged="Select"/>

AutoPostback causes the object to generate HTML that will provoke a post back
whenever the selection is changed. When it does so, the
OnSelectedIndexChanged event will be generated in the server-side script
which in turn will call Select, which in turn will cause the text in the out object to
change.

Note that this technique, which can be used with most of the ASP.NET controls
including CheckBox, RadioButton and TextBox controls, relies on a round trip to
the server every time the value of the control changes. It will not perform well except
on a fast connection to a lightly loaded server.

Chapter 9: Writing ASP.NET Web Pages 195

Code Behind
It is often desirable to separate the code content of a page completely from the
HTML and other text, layout or graphical information by placing it in a separate file.
In ASP.NET parlance, this technique is known as code behind.

The intro5.aspx example illustrates this technique.

<%@Page Language="Dyalog"
Inherits="FruitSelection"
src="fruit.apl" %>

<%@Register TagPrefix="tutorial" Namespace="Tutorial"
Assembly="tutorial" %>
<html>
<head>
<title>Code behind: separating your code from the page
layout</title>
<link rel="stylesheet" type="text/css" href="apl.css">
</head>
<body>
<h1>intro5: Code Behind</h1>
<p>This example illustrates how you can separate your code from
the page layout.</p>
<form runat="server" >
<asp:DropDownList id="list"

runat="server"
autopostback="true"
OnSelectedIndexChanged="Select"/>

<p>
<asp:Label id="out" runat="server" /></p>
</form>
</body>
<tutorial:index runat="server"/>
</html>

The statement

%@Page Language="Dyalog" Inherits="FruitSelection"
src="fruit.apl" %>

says that this page, when compiled, should inherit from a class called
FruitSelection. Furthermore, the FruitSelection class is written in the
"Dyalog" language, and its source code resides in a file called fruit.apl.
FruitSelection is effectively the base class for the .aspx page.

In this case, fruit.apl is simply another text file containing the APLScript
code and is shown below.

196 .NET Interface Guide

:Class FruitSelection: System.Web.UI.Page
:Using System

∇Page_Load
:Access Public
:if 0=IsPostBack

list.Items.Add ⊂'Pears'
list.Items.Add ⊂'Nectarines'
list.Items.Add ⊂'Strawberries'

:endif
∇

∇Select args
:Access public
:Signature Select Object,EventArgs
out.Text←'You selected ',list.SelectedItem.Text
∇
:EndClass

The first thing to notice is that the file requires :Class and :EndClass
statements. These are required to tell the APLScript compiler the name of the class
being defined, and the name of its base class. When the source code is in a .aspx
file, this information is provided automatically by the APLScript compiler.

The name of the class, in this case FruitSelection, must be the same name as is
referenced in the .aspx web page file itself (intro5.aspx). The base class must
be System.Web.UI.Page

The body of the script is just the same as the script section from the previous
example. Only the names of the fruit have been changed so that it is clear which
example is being executed.

Chapter 9: Writing ASP.NET Web Pages 197

198 .NET Interface Guide

Workspace Behind
The previous section discussed how APL logic can be separated from page layout, by
placing it in a separate APLScript file which is referred to from the .aspx web page.
It is also possible to have the code reside in a separate workspace. This allows you to
develop web pages using a traditional workspace approach, and it is probably the
quickest way to give an HTML front-end to an existing Dyalog APL application.

In the previous example, you saw that the fruit.apl file defined a new class
called FruitSelection that inherits from System.Web.UI.Page. This class
contains a Page_Load function that (by virtue of its name) overrides the Page_
Loadmethod of the underlying base class and will be called every time the web
page is loaded or posted back. The Page_Load function takes whatever action is
required; for example, initialisation. The class also contained a callback function to
perform some action when the user pressed a button.

A similar technique is employed when the code behind the web page is implemented
in a separate workspace. The workspace should contain a class that inherits from
System.Web.UI.Page. This class may contain a Page_Load function that will
be invoked every time the corresponding web page is loaded, and as many callback
functions as are required to provide the application logic. The workspace is hooked
up to one or more web pages by the Inherits="<classname>" and
src="<workspace>" declarations in the Page directive statement that appears at
the beginning of the web page script.

The ACTFNS sub-directory in samples\asp.net contains some examples of
Dyalog APL systems that have been converted to run as Web applications using this
technique.

Dyalog is grateful to David Hughes who provided the original workspaces and
advised on their conversion.

The two workspaces are named ACTFNS.DWS and PROJ.DWS. The original code
used the Dyalog APL GUI to display an input Form, collect and validate the user's
input, and calculate and display the results. The original logic supported field level
validation and results were immediately recalculated whenever any field was
changed. With some exceptions, this has been changed so that the user must press a
button to tell the system to recalculate the results. This approach is more appropriate
in an Internet application, especially when connection speed is low. Apart from this
change, the applications run more-or-less as originally designed.

Chapter 9: Writing ASP.NET Web Pages 199

The diagram above illustrates the structure of the web application and the various
files involved. The starting page, actfns.htm, simply provides a menu of choices
which link to various .aspx web pages. These pages in turn are linked to one of the
two workspaces via the src="" declaration

200 .NET Interface Guide

The actfns.htm start page offers 3 application choices

Chapter 9: Writing ASP.NET Web Pages 201

The result of choosing Tabulate single life insurance and annuity values

When you choose the first option, the system loads sla_tab.aspx. This defines
the screen layout in terms of ASP.NET controls, including the DataGrid control for
tabulating the results. The sla_tab.aspx script contains the declarations
Inherits="actuarial" src="actfns.dws", so ASP.NET loads the
actuarial class from this workspace (via a call to Dyalog APL). When the page is
loaded, it generates a Page_Load event, which in turn calls its Page_Load
method. This populates the ASP controls with data, and the resulting web page is
displayed. The mechanism is described below.

For further details, see the sla_tab.aspx script and ACTFNS.DWS workspace.

202 .NET Interface Guide

Converting an Existing Workspace
The steps involved in converting the workspaces were as follows:

1. Replace the Dyalog APL GUI with the equivalent HTML Forms, which are
defined in one or more separate .aspx web pages. To retain consistency, it
is helpful to give the ASP controls the same names as the original GUI
controls, which they are replacing.

2. Attach the names of APL callback functions to the appropriate ASP
controls; essentially, any controls that will be involved in a postback
operation, such as the Submit button.

3. Starting with a CLEAR WS, create a Class that represents a .NET class
based upon System.Web.UI.Page. For example, in converting the
ACTFNS workspace, we started by creating the class:

)edit ○actuarial

4. then defining ⎕USING as follows:

:Using System
:Using System.Web.UI,system.web.dll
:Using System.Web.UI.WebControls
:Using System.Web.UI.HtmlControls
:Using System.Data,system.data.dll

The name you choose for this class will replace classname in the
Inherits="classname" declaration in the .aspx web page(s) that call
it.

5. Create a namespace, change into it, and copy the workspace to be
converted; in this case, the starting point was a workspace named DH_
ACTFNS:

)NS actuarial_utils
)CS actuarial_utils

#.actuarial_utils
)COPY DH_ACTFNS

DH_ACTFNS saved ...

6. Modify the code as appropriate, inserting a Page_Load function and
whatever callback functions that are required.

7. Make sure the class 'actuarial' has an :Include actuarial_utils statement

Chapter 9: Writing ASP.NET Web Pages 203

The Page_Load function
The Page_Load function must be declared as :Access Public. Page_Loadmust be
spelled correctly as it is this name that causes the function to supersede the base class
Page_Loadmethod of the same name.

For example, the Page_Load function of the actuarial class in ACTFNS.DWS is
shown below:

∇ Page_Load;INT;AGE;DUR;TERM;TAB_DURS;MPC1;INT1;INT2;
INTY;RUN_OPTION;OPT

:Access public
:Signature Page_Load
⍝ Overrides Page_Load method of Page class
⍝ Called when Page is loaded or re-loaded after postback
⍝ Initialise fields and calculate on initial load only
:If 0=IsPostBack

RUN_OPTION←GET_RUN_OPTION
:Select RUN_OPTION
:Case 1

EINT.Text←⍕INT←3.25
EAGE.Text←⍕AGE←30
EDUR.Text←⍕DUR←0
ETRM.Text←⍕TERM←10
TA.Checked←TAB_DURS←1
CHANGE_TABLES ⍬

:Case 2
CPLAN.Items.Clear
:For OPT :In ↓⊃OPTSPLAN
CPLAN.Items.Add{82∊⎕DR 1⍴⍵:⊂⍵ ⋄ ⍵}DETRAIL OPT
:EndFor
EMPC1.Text←⍕MPC1←100
EINT1.Text←⍕INT1←3.25
EINT2.Text←⍕INT2←3.25
EINTY.Text←⍕INTY←99
EAGE.Text←⍕AGE←30
EDUR.Text←⍕DUR←0
ETRM.Text←'N/A'
CHANGE_TABLES ⍬

:EndSelect
:EndIf

∇

If exported correctly, Page_Load will be called every time the calling web page is
loaded. This occurs when the page is loaded for the first time, and whenever the page
is submitted back to the web server by the browser (postback). A postback will occur
whenever a callback function is involved, and potentially at other times.

204 .NET Interface Guide

The Page_Load function may determine whether it is being invoked by a first time
load, or by a postback, from the value of the IsPostBack property. This is a
property that it inherits from its base class System.Web.UI.Page.

The Page_Load example shown above uses this property to control the
initialisation of the controls in the calling web page. The names EINT, EAGE, EDUR
and so forth refer to names of controls in the calling web page. When Page_Load is
executed, the actuarial object is associated with the web page itself, and so the
names of all its controls are visible as sub-objects within it.

Note that the actuarial class is used by two different web pages, and the function
GET_RUN_OPTION function determines which of these are involved. (It does so by
detecting the presence or otherwise of a particular control on the page).

Callback functions
The actuarial class in ACTFNS.DWS provides four callback functions named CALC_
FSLTAB_RESULTS, CALC_FSL_RESULTS, CHANGE_TABLES and CHANGE_
TABLE_FORMAT. The first two of these functions are attached as callbacks to the
Calculate button in each of two separate web pages sla_tab.aspx and sla_
disp.aspx. For example, the statement that defines the button in sla_tab.aspx
is:

<asp:Button id=Button1 runat="server" Text="Calculate"
onClick="CALC_FSLTAB_RESULTS"></asp:Button>

The third callback, CHANGE_TABLES, is called by sla_tab.aspx when the user
selects a different set of Mortality Tables from the three provided. CHANGE_TABLE_
FORMAT is called when the user clicks either of the two radio buttons that select how
the output is to be displayed.

Like the Page_Load function, callback functions must be declared as being Public
methods. This is done using the :Access statement.

In addition, and this is essential, APL callback functions must be declared to have
the correct signature expected of .NET callback functions. This means that they must
be monadic, and their argument must be declared to be a 2-element nested array
containing two .NET objects; the object that generated the event, and an object that
represents the arguments to the event.

Specifically, these parameters must be of type System.Object and
System.EventArgs respectively. However, as our ⎕USING contains System, it
is not necessary to include the System prefix.

Chapter 9: Writing ASP.NET Web Pages 205

For example, the statements for the function CALC_FSLTAB_RESULTS is shown
below:

:Access Public
:Signature CALC_FSLTAB_RESULTS Object obj, EventArgs ev

Validation functions
In a Dyalog APL web page application, there are basically two approaches to
validation. You can handle it entirely yourself or you can exploit the various
validation controls that come with ASP.NET. The sample application uses the latter
approach by way of illustration. For example:

<asp:TextBox id=EINT runat="server"></asp:TextBox>
<asp:RequiredFieldValidator id="RFVINT"

ControlToValidate="EINT"
ErrorMessage="Interest Rate must be a number

between 0 and 20"
Text="*"
runat="server"/></td>

These ASP.NET statements associate a RequiredFieldValidator named
RFVINTwith the EINT field, the field used to enter Interest Rate. If the user leaves
this field blank, the system will automatically generate the specified error message.
The page defines a separate ValidationSummary control as follows:

<asp:ValidationSummary id="Summary1"
HeaderText="Please enter a value in the following

fields"
Font-Size="smaller"
ShowSummary="false"
ShowMessageBox="true"
EnableClientScript="true"
runat="server"/>

The ValidationSummary control collects error messages from all the other
validation controls on the page, and displays them together. In this case, a pop-up
message box is used. One advantage of this approach is that this type of validation
can be carried out client-side by local JavaScript that is generated automatically on
the server and incorporated in the HTML that is sent to the browser.

Logical field validation for this page is carried out on the server by APL functions
that are attached to CustomValidator controls. For example:

206 .NET Interface Guide

<asp:CustomValidator id="CustomValidator_INT"
OnServerValidate="VALIDATE_INT"
ControlToValidate="EINT"
Display="Dynamic"
ErrorMessage="Interest Rate must be a number between

0 and 20"
runat="server"/>

These ASP.NET statements associate a CustomValidator control named
CustomValidator_INTwith the Interest Rate field EINT. The statement
OnServerValidate="VALIDATE_INT" specifies that VALIDATE_INT is the
validation function for the CustomValidator_INT object.

The VALIDATE_INT function and its .NET Properties page are shown below.

∇ VALIDATE_INT MSG;source;args
[1] ⍝ Validates Interest Rate
[2] :Access Public
[3] :Signature VALIDATE_INT Object source,

ServerValidateEventArgs args
[4] source args←MSG
[5] :Trap 0
[6] INT←Convert.ToDouble args.Value
[7] :Else
[8] args.IsValid←0
[9] :Return
[10] :EndTrap
[11] args.IsValid←(0≤INT)^20≥INT

∇

To make the VALIDATE_INT function available to the calling web page, it is
exported as a method. Its calling signature, namely that it takes two parameters of
type System.Object and
System.Web.UI.WebControls.ServerValidateEventArgs
respectively, identifies it as a validation function. All these factors are essential in
making it recognizable and callable.

VALIDATE_INT[4] assigns its (2-element) argument to source and args
respectively. Both are namespace references to .NET objects. source is the object
that fired the event (CustomValidator_INT). args is an object that represents the
event. Its Value property returns the text in the control being validated, in this case
the control named EINT1.

VALIDATE_INT[6] converts the text in the EINT control to a number, using the
ToDoublemethod of the System.Convert class. You could of course use ⎕VFI,
but the Convertmethods automatically cater for National Language numerical
formats. This statement is executed within a :Trap control structure because the
method will generate a .NET exception if the data in the field is not a valid number.

Chapter 9: Writing ASP.NET Web Pages 207

VALIDATE_INT[8 11] set the IsValid property of the
ServerValidateEventArgs object args to 0 or 1 accordingly. This also sets
the IsValid property of the validation control represented by source. The system
will automatically display the error message associated with any validation control
whose IsValid property is 0. Furthermore, the page itself has an IsValid
property, which is the logical-and of all the IsValid properties of all the validation
controls on the page. This is used later by the calculation function CALC_FSLTAB_
VALUES.

In this case, the validation function stores the numeric value of the control in a
variable INT, which will subsequently be used by the calculation functions.

When the page is posted back to the server, ASP.NET executes its own built-in
validation controls and then calls the functions associated with the
CustomValidator controls, in the order they are defined on the page. In addition
to the VALIDATE_INT function, there are eight other custom validation functions.
Three of these, which validate the Initial Age, Endowment Term and Initial Duration
fields, are listed below. Note that all of the VALIDATE_xxx functions have the
same .NET signature as VALIDATE_INT.

∇ VALIDATE_AGE MSG;source;args
[1] ⍝ Validates Age
[2] :Access Public
[3] :Signature VALIDATE_AGE Object source,

ServerValidateEventArgs args
[4] source args←MSG
[5] :Trap 0
[6] AGE←Convert.ToInt32 args.Value
[7] :Else
[8] args.IsValid←0
[9] :Return
[10] :EndTrap
[11] args.IsValid←(10≤AGE)^80≥AGE

∇

VALIDATE_AGE is similar to VALIDATE_INT, except that, because it expects an
integer value, it uses the ToInt32method instead of the ToDoublemethod.

VALIDATE_TERM, which validates the Endowment Term field, is slightly more
interesting because there are two levels of checking involved. The first check that the
user has entered an integer number, is performed by lines [10-15] in the same way as
in the previous examples, using the ToInt32method of the System.Convert
class within a :Trap control structure. However, validation of the Endowment Term
field depends upon the value of another field, namely Initial Age.

208 .NET Interface Guide

Not only must the user enter an integer, but also its value must be between 10 and
(90-AGE) where AGE is the value in the Initial Age field. However, if the user has
entered an incorrect value in the Initial Age field, this, the second level of validation
cannot be performed.

∇ VALIDATE_TERM MSG;source;args
[1] ⍝ Validates Endowment Term
[2] :Access Public
[3] :Signature VALIDATE_TERM Object source,

ServerValidateEventArgs args
[4] source args←MSG
[5] :If ^/(RFVAGE CustomValidator_AGE).IsValid
[6] source.ErrorMessage←'Endowment Term must

be an integer between 10 and ',(⍕90-AGE),
' (90-Age)'

[7] :Else
[8] source.ErrorMessage←'Endowment Term must

be an integer between 10 and (90-Age)'
[9] :EndIf
[10] :Trap 0
[11] TERM←Convert.ToInt32 args.Value
[12] :Else
[13] args.IsValid←0
[14] :Return
[15] :EndTrap
[16] :If ^/(RFVAGE CustomValidator_AGE).IsValid
[17] args.IsValid←(TERM≥10)^TERM≤90-AGE
[18] :EndIf

∇

Chapter 9: Writing ASP.NET Web Pages 209

At this stage it is worth reviewing the sequence of events that occurs when a user
action in the browser causes a postback to the server.

1. The page, including all the contents of its fields, is sent back to the
ASP.NET server using an http POST command.

2. The postback causes the creation of a new instance of the page; which is
represented by a new clone of the actuarial namespace.

3. The creation of a new page instance raises the Page_Load event which in
turn invokes the Page_Load method associated with the Page class, or an
override method is one is specified. In this case, it calls our Page_Load
function in the newly cloned instance of the actuarial namespace. The
Page_Load function typically deals with initialisation, such as opening a
component file or establishing a connection to a data source. In this case, it
does nothing on a postback.

4. Because the Calculate button was pressed (see Forcing Validation), each of
the CustomValidator controls on the page raises an
OnServerValidate event, which in turn calls the associated function in
the current instance of the page. These events occur in the order the controls
are defined within the page. Note that built-in validation controls,
including any RequiredFieldValidator controls, are invoked first,
potentially in the browser prior to the postback.

5. Because the Calculate button was pressed (see Forcing Validation), each
of the CustomValidator controls on the page raises an
OnServerValidate event, which in turn calls the associated function in
the current instance of the page. These events occur in the order the controls
are defined within the page. Note that built-in validation controls,
including any RequiredFieldValidator controls, are invoked first,
potentially in the browser prior to the postback.

6. The control that caused the postback raises an appropriate event, which in
turn fires the associated callback function.

7. After all the control events have been raised and processed the Page_
UnLoad event is raised and the associated function (if any) is invoked. This
function is a good place to implement termination code, such as closing a
component file or data source.

8. The instance of the page is destroyed. Any global variables in the
namespace that were defined by the Page_Load function, the validation
functions and the callback function are lost because the clone of the
actuarial namespace disappears.

210 .NET Interface Guide

This means that within the life of the cloned instance of the actuarial namespace, the
system runs our Page_Load function followed by VALIDATE_INT, followed by
VALIDATE_AGE, VALIDATE_TERM, VALIDATE_DUR etc. and finally by CALC_
FSLTAB_RESULTS. These functions take their input from the values passed in their
arguments (as in the case of the VALIDATE_xxx functions) or from the properties of
any of the controls on the Page. They perform output by modifying these properties,
or by invoking standard methods on the Page.

Notice that, if successful, the VALIDATE_INT function set up a global variable
(strictly speaking, only global within the current instance of the actuarial namespace)
called INT that contains the value in the Interest Rate field. Similarly, VALIDATE_
AGE defines a variable called AGE. These variables are subsequently available for use
by the calculation function.

This technique, of having each validation function define a variable for its associated
field, saves repeating the conversion work in the calculation routine CALC_
FSLTAB_RESULTS that will be called when the validation is complete. It also saves
repeating the conversion work in a validation routine that needs to know the value
of a previously validated field.

Returning to the explanation of VALIDATE_TERM, line [16] checks to see that both
the RequiredFieldValidator and CustomValidator controls for the
Initial Age field register that the value in the field is valid, before attempting to
perform the second stage of the validation which depends upon AGE. Note that AGE
must exist (and be a reasonable value) if CustomValidator_AGE.IsValid is
true. Notice too that it is insufficient just to check the CustomValidator control,
because its validation function will not be invoked (and the control will register that
the field is valid) if the field is empty.

Line [5] uses similar logic to set up an appropriate error message, which is assigned
to the ErrorMessage property of the corresponding CustomValidator
control, represented by source.

VALIDATE_DUR, which validates the Initial Duration field, uses similar logic to
check that the value in the Endowment Term field is correct and that TERM, on which
it depends, is therefore defined. In addition, in line [8] it refers to the Checked
property of the RadioButton controls named TA and TB respectively.

Chapter 9: Writing ASP.NET Web Pages 211

∇ VALIDATE_DUR MSG;source;args;DT
[1] ⍝ Validates Initial Duration
[2] :Access Public
[3] :Signature VALIDATE_DUR Object source,

ServerValidateEventArgs args
[4] source args←MSG
[5] :If 2=GET_RUN_OPTION
[6] DT←1
[7] :Else
[8] DT←+/10 1×(TA TB).Checked
[9] :EndIf
[10] :If ^/(RFVTRM CustomValidator_TERM).IsValid

[11] source.ErrorMessage←'Initial Duration must be an
integer between 0 and ',(⍕TERM-DT),
' (TERM-',(⍕DT),')'

[12] :Else
[13] source.ErrorMessage←'Initial Duration must be an

integer between 0 and (Term-',(⍕DT),')'
[14] :EndIf
[15] :Trap 0
[16] DUR←Convert.ToInt32 args.Value
[17] :Else
[18] args.IsValid←0
[19] :Return
[20] :EndTrap
[21] :If ^/(RFVTRM CustomValidator_TERM).IsValid
[22] args.IsValid←(0≤DUR)^DUR≤TERM-DT
[23] :EndIf

∇

Forcing Validation
Validation controls are automatically invoked when the user activates a Button
control, but not when other postbacks occur. For example, when the user selects a
different Mortality Table (represented by a RadioButtonList control), the page
calls the CHANGE_TABLES function.

<asp:RadioButtonList id=MT runat="server"
RepeatDirection="Vertical" RepeatRows="3" tabIndex=1
onSelectedIndexChanged="CHANGE_TABLES"
AutoPostBack="true">

<asp:ListItem Value="UK Assured Lives">
Selected="True">UK Assured Lives</asp:ListItem>

<asp:ListItem Value="UK Immediate Annuitant">
UK Immediate Annuitant</asp:ListItem>

<asp:ListItem Value="UK Pension Annuitant">
UK Pension Annuitant</asp:ListItem>

</asp:RadioButtonList>

212 .NET Interface Guide

A RadioButtonList control does not cause validation to occur, so this must be
done explicitly. This is easily achieved by calling the Validatemethod of the
Page itself as shown in CHANGE_TABLES[11] below.

∇ CHANGE_TABLES ARGS;TableNames;TableName;OPTSMORT;
MORT_OPTION;RUN_OPTION

[1] :Access public
[2] :Signature CHANGE_TABLES Object obj, EventArgs ev
[3] RUN_OPTION←GET_RUN_OPTION
[4] MORT_OPTION←1+MT.SelectedIndex
[5] OPTSMORT←MORT_OPTION⊃OPTSMORT_ASS OPTSMORT_ANNI

OPTSMORT_ANNP
[6] TableNames←⊃OPTSMORT ⍝ Assured lives/term

assurance tables
[7] TableNames←↓(2=⎕NC 0 1↓3⊃OPTSMORT)⌿TableNames
[8] TableNames←TableNames~¨' '
[9] CMTAB.Items.Clear
[10] :For TableName :In TableNames
[11] CMTAB.Items.Add TableName
[12] :EndFor
[13] Page.Validate ⍝ Force page validation
[14] :Select RUN_OPTION
[15] :Case 1
[16] CALC_FSLTAB_RESULTS ⍬
[17] :Case 2
[18] CALC_FSL_RESULTS ⍬
[19] :EndSelect

∇

Chapter 9: Writing ASP.NET Web Pages 213

Calculating and Displaying Results
The function CALC_FSLTAB_RESULTS, which for brevity is only partially shown
below, is used by the sla_tab.aspx page to calculate and display results.

∇ CALC_FSLTAB_RESULTS ARGS;X;ULT;MORTOPT;QTAB;TABLE;
TAB_DURS;RUN_OPTION;MORT_OPTION;UNIX;DOS;
CURRENTDATE;CURRENTTIME;OPTSMORT;TABLES;MSG;data

[1] :If IsValid ⍝ Is page valid ?
...
[6] MORT_OPTION←1+MT.SelectedIndex
[7] OPTSMORT←MORT_OPTION⊃OPTSMORT_ASS

OPTSMORT_ANNI
OPTSMORT_ANNP

[8]
[9] TABLES←↓3⊃OPTSMORT
[10] MORTOPT←(⍴TABLES)⍴0
[11] MORTOPT[1+CMTAB.SelectedIndex]←1
[12] TABLE←⊃MORTOPT/TABLES
...
[15] TAB_DURS←TA.Checked
...
[41] FSLT←((⍴X)⍴(3 0)(3 0)(3 0)(11 4)(11 6)(12 4)

(11 6)(8 0))⍕¨X
[42] FSLT←FSLT~¨' '
[43] :With data←⎕NEW DataTable
[44] cols←Columns.Add¨⊂¨##.FSL_HEADER
[45] {
[46] row←NewRow ⍬
[47] row.ItemArray←⍵
[48] Rows.Add row
[49] }¨↓##.FSLT
[50] :EndWith
[51] fsl.DataSource←⎕NEW DataView data
[52] fsl.DataBind
[53] fsl.Visible←1
[54] :Else
[55] fsl.Visible←0
[56] :EndIf

∇

214 .NET Interface Guide

The results of the calculation are displayed in a DataGrid object named fsl. This is
defined within the sla_tab.aspx page as follows:

<asp:DataGrid id="fsl" runat="server" Width="700"
AllowPaging="false" BorderColor="black" CellPadding="3"
CellSpacing="0" Font-Size="9pt" PageSize="10">
<ItemStyle HorizontalAlign="right" Width="100">
</ItemStyle>
<HeaderStyle HorizontalAlign="center"
Font-Size="12pt" Font-Bold="true" BackColor="#17748A"
ForeColor="#FFFFFF"></HeaderStyle>
</asp:DataGrid>

CALC_FSLTAB_RESULTS[1] checks to see if the user input is valid. If not, [55]
hides the DataGrid object fsl so that no results are displayed in the page. The
display of error messages is handled separately, and automatically, by the
ValidationSummary control on the page.

CALC_FSLTAB[11 15] obtain the values of the CMTAB (DropDownList) and
TA (RadioButton) controls on the page.

CALC_FSLTAB[43-53] store the calculated data table FSLT in the DataGrid
fsl.

215

Chapter 10:

Writing Custom Controls for ASP.NET

Introduction
The previous chapter showed how you can build ASP.NETWeb Pages by
combining APL code with the Web Controls provided in the .NET Namespace
System.Web.UI.WebControls. These controls are in fact just ordinary .NET
classes. In particular, they are extensible components that can be used to develop
more complex controls that encapsulate additional functionality.

This chapter describes how you can go about building custom server-side controls,
for deployment in ASP.NETWeb Pages.

A custom control is simply a .NET class that inherits from the Control class in the
.NET Namespace System.Web.UI, or inherits from a higher class that is itself
based upon the Control class. Like any other .NET class, a custom control is
implemented in an assembly, physically as a DLL file. This chapter explores three
different ways to implement a custom control.

The Control class provides a Rendermethod whose job is to generate the HTML
that defines appearance of the control. The first example, the SimpleCtl control,
overrides the Rendermethod to display a simple string "Hello World" in the
browser.

The TemperatureConverterCtl1 control is an example of a compositional
control, i.e. one that is composed of other standard controls packaged with special
functionality. The TemperatureConverterCtl2 control, uses the basic
approach of the SimpleCtl control, but provides the same functionality as
TemperatureConverterCtl1. The TemperatureConverterCtl3 control
illustrates how to generate events for the hosting page to catch and process.

216 .NET Interface Guide

These examples, which are based upon a series of articles called Advanced ASP.NET
Server-Side Controls by George Shepherd that appeared in the msdn magazine
(October 2000, January 2001 and March 2001 issues), are implemented as Dyalog
classes in a namespace called DyalogSamples in the workspace
samples\asp.net\temp\bin\temp.dws. The corresponding .NET
Assembly samples\asp.net\temp\bin\temp.dll was generated from this
workspace.

)LOAD "C:\Program Files (x86)\Dyalog\Dyalog APL
15.0 Unicode\Samples\asp.net\temp\bin\temp.dws"

C:\Program Files (x86)\Dyalog\Dyalog APL 15.0
Unicode\Samples\asp.net\temp\bin\temp.dws saved Tue Nov
22 15:04:11 2016

)obs
DyalogSamples

)cs DyalogSamples
#.DyalogSamples

)Classes
SimpleCtl TemperatureConverterCtl1
TemperatureConverterCtl2 TemperatureConverterCtl3

Chapter 10: Writing Custom Controls for ASP.NET 217

The SimpleCtl Control
The SimpleCtl Class is illustrated below:

:Class SimpleCtl: Control
:Access public
:Using System
:Using System.Collections.Specialized,System.dll
:Using System.Web,System.Web.dll
:Using System.Web.UI
:Using System.Web.UI.WebControls
:Using System.Web.UI.HtmlControls

∇ Render output;HTML
:Access public override
:Signature Render HtmlTextWriter output
HTML←'<h3>Hello World</h3>'
output.WriteLine⊂HTML

∇

:EndClass ⍝ SimpleCtl

The Render function supercedes (see Programming Reference Guide: Access
Statement) the Rendermethod that SimpleCtl has inherited from its base class,
System.Web.UI.Control.

The Rendermethod defined by the System.Web.UI.Control base class is
void and takes a parameter of type HtmlTextWriter. When the SimpleCtl
control is referenced in a Web Page, ASP.NET creates an instance of it and calls its
Rendermethod because it is a Control and is expected to have one. Moreover,
ASP.NET supplies an object of type HtmlTextWriter as its parameter. You do
not need to worry where this object came from, or what it actually represents. You
need only know that an HtmlTextWriter provides a method called WriteLine
that may be used to output a text string to the browser. The mechanics of how this
actually happens are handled by the HtmlTextWriter object itself.

In APL terms, the argument to our Render function, output, will be a namespace
reference, and the function can simply call its WriteLinemethod with a character
vector argument. This argument can contain any valid HTML string and defines the
appearance of the SimpleCtl control.

Using the :Signature statement, the Render function is defined to have the
same syntax as the method it overrides, i.e. it does not return a result void and takes
a single parameter of type HtmlTextWriter. Note that to successfully replace the
base class method, the Render function must have exactly this :Signature.

218 .NET Interface Guide

Using SimpleCtl
Our SimpleCtl control may now be included in any .NETWeb Page fromwhich
temp.dll is accessible. The file samples\asp.net\temp\Simple.aspx is
simply an example. The fact that this control is written in Dyalog APL is immaterial.

<%@ Register TagPrefix="Dyalog"
Namespace="DyalogSamples" Assembly="temp" %>

<html>
<body>
<Dyalog:SimpleCtl runat=server/>
</body>
</html>

The first line of the script specifies that any controls referenced later in the script that
are prefixed by Dyalog:, refer to custom controls in the .NET Namespace called
DyalogSamples which is located in the Assembly temp.dll in the bin
subdirectory.

Chapter 10: Writing Custom Controls for ASP.NET 219

The TemperatureConverterCtl1 Control
The TemperatureConverterCtl1 control is an example of a compositional
control, i.e. a server-side custom control that is composed of other standard controls.

In this example, The TemperatureConverterCtl1 control gathers together two
textboxes and two push buttons into a single component as illustrated below. Type a
number into the Centigrade box, click the Centigrade To Fahrenheit button, and the
control converts accordingly. If you click the Fahrenheit To Centigrade button, the
reverse conversion is performed.

The TemperatureConverterCtl1 control contains other standard controls as
child controls. A control that acts as a container must implement an interface called
INamingContainer.

This interface does not in fact require any methods; it merely acts as a marker. So the
:Class statement specifies that it provides this interface:

:Class TemperatureConverterCtl1: Control,
System.Web.UI.INamingContainer

220 .NET Interface Guide

Child Controls
Whenever ASP.NET initialises a Control, it calls its CreateChildControls
method. The default CreateChildControlsmethod does nothing). So we
simply define a function called CreateChildControls with the appropriate
public interface (no arguments and no result) as shown below.

∇ CreateChildControls
[1] :Access Public override
[2] :Signature CreateChildControls
[3]
[4] Controls.Add ⎕NEW LiteralControl,⊂⊂'<h3>Fahrenheit: '
[5] m_FahrenheitTextBox←⎕NEW TextBox
[6] m_FahrenheitTextBox.Text←,'0'
[7] Controls.Add m_FahrenheitTextBox
[8] Controls.Add ⎕NEW LiteralControl,⊂⊂'</h3>'
[9]
[10] Controls.Add ⎕NEW LiteralControl,⊂⊂'<h3>Centigrade: '
[11] m_CentigradeTextBox←⎕NEW TextBox
[12] m_CentigradeTextBox.Text←,'0'
[13] Controls.Add m_CentigradeTextBox
[14] Controls.Add ⎕NEW LiteralControl,⊂⊂'</h3>'
[15]
[16] F2CButton←⎕NEW Button
[17] F2CButton.Text←'Fahrenheit To Centigrade'
[18] F2CButton.onClick←⎕OR'F2CConvertBtn_Click'
[19] Controls.Add F2CButton
[20]
[21] C2FButton←⎕NEW Button
[22] C2FButton.Text←'Centigrade To Fahrenheit'
[23] C2FButton.onClick←⎕OR'C2FConvertBtn_Click'
[24] Controls.Add C2FButton

∇

Line[4] creates an instance of a LiteralControl (a label) containing the text
"Fahrenheit" with an HTML tag "<h3>". Controls is a property of the Control
class (from which TemperatureConverterCtl1 inherits) that returns a
ControlCollection object This has an Addmethod whose job is to add the
specified control to the list of child controls managed by the object.

Lines[5-6] create a TextBox child control containing the text "0", and Line[7] adds
it to the child control list.

Line[8] adds a second LiteralControl to terminate the "<H3>" tag.

Lines [10-14] do the same for Centigrade.

Chapter 10: Writing Custom Controls for ASP.NET 221

Lines[16-17] create a Button control labelled "Fahrenheit To Centigrade". Line[18]
associates the callback function F2CConvertBtn_Click with the button's
onClick event. Note that it is necessary to assign the ⎕OR of the function rather
than its name. Line[19] adds the button to the list of child controls.

Lines[21-24] create a Centigrade button in the same way.

This function is run every time the page is loaded; however in a postback situation,
other code steps in to modify the values in the textboxes, as we shall see.

Fahrenheit and Centigrade Values
The TemperatureConverterCtl1maintains two public properties named
CentigradeValue and FahrenheitValue, which may be accessed by a client
application. These properties are not exposed directly as variables, but are obtained
and set via property get (or accessor) and property set (ormutator) functions. (This is
recommended practice for C#, so the example shows how it is done in APL). In this
case, the values are simply stored in or obtained directly from the corresponding
textboxes set up by CreateChildControls.

:Property CentigradeValue
∇ C←get

:Access Public
:Signature Double←get_CentigradeValue
C←⍎m_CentigradeTextBox.Text

∇

∇ set C
:Access Public
:Signature set_CentigradeValue Double Value
m_CentigradeTextBox.Text←⍕C.NewValue

∇
:EndProperty ⍝ CentigradeValue

222 .NET Interface Guide

Notice that the Get function uses ⍎ to convert the text in the textbox to a numeric
value. Clearly something more robust would be called for in a real application

Similar functions to handle the Fahrenheit property are provided but are not
shown here.

Responding to Button presses
We have seen how APL callback functions have been attached to the onClick
events in the two buttons. The C2FconvertBtn_Click callback function simply
obtains the CentigradeValue property, converts it to Fahrenheit using C2F, and
then sets the FahrenheitValue property.

∇ C2FConvertBtn_Click args
:Access Public
:Signature C2FConvertBtn_Click Object,EventArgs
FahrenheitValue←C2F CentigradeValue

∇

∇ f←C2F c
[1] f←32+c×1.8

∇

∇ F2CConvertBtn_Click args
:Access Public
:Signature F2CConvertBtn_Click Object ,EventArgs
CentigradeValue←F2C FahrenheitValue

∇

∇ c←F2C f
[1] c←(f-32)÷1.8

∇

The F2CconvertBtn_Click callback function converts from Fahrenheit to
Centigrade. Note that the functions C2F and F2C areinternal functions that are
private to the control, and it is therefore not necessary to define public interfaces for
them.

Chapter 10: Writing Custom Controls for ASP.NET 223

Using the Control on the Page
The text of the script file samples\temp\temp1.aspx is shown below. There is
really no difference between this example and the simple.aspx described earlier.

<%@ Register TagPrefix="Dyalog" Namespace="DyalogSamples"
Assembly="TEMP"%>

<html>
<body bgcolor="yellow">

<center>
<h3>Temperature
Control</h3>

<form runat=server>
<Dyalog:TemperatureConverterCtl1 id=TempCvtCtl1 runat=server/>
</form>
</center>
</body>
</html>

The HTML generated by the control at run-time is shown below. Notice that in place
of the server-side control declaration in temp1.aspx, there are two edit controls
with numerical values in them, and two push buttons to submit data entered on the
form to the server.

<html>
<body bgcolor="yellow">

<center>
<h3>Temperature
Control</h3>

<form name="ctrl1" method="post" action="temp1.aspx" id="ctrl1">
<input type="hidden" name="__VIEWSTATE"
value="YTB6MTc3MzAxNzYxNF9fX3g=03f01d88" />

<h3>Fahrenheit: <input name="TempCvtCtl1:ctrl1" type="text"
value="32" /></h3><h3>Centigrade: <input name="TempCvtCtl1:ctrl4"
type="text" value="0" /></h3><input type="submit"
name="TempCvtCtl1:ctrl6" value="Fahrenheit To Centigrade"
/><input type="submit" name="TempCvtCtl1:ctrl7" value="Centigrade
To Fahrenheit" />
</form>

</center>
</body>
</html>

224 .NET Interface Guide

The TemperatureConverterCtl2 Control
The previous example showed how to compose an ASP.NET custom control from
other standard controls. This example shows how you can instead generate standard
form elements on the browser by rendering the HTML for them directly.

In the composite temperature control TemperatureConverterCtl1, discussed
previously, all the data transfers between the browser and the server, relating to the
standard child controls that it contains, are handled automatically by the controls
themselves. Rendered controls require a bit more programming because it is up to the
control developer to do the data transfer. The data transfer is managed through two
interfaces, namely IPostBackDataHandler and
IPostBackEventHandler. We will see how these interfaces are used later.

The :Class statement for TemperatureConverterCtl2 specifies that it
provides these interfaces.

:Class TemperatureConverterCtl2: Control,
System.Web.UI.IPostBackDataHandler,
System.Web.UI.IPostBackEventHandler

Chapter 10: Writing Custom Controls for ASP.NET 225

Fahrenheit and Centigrade Values
Like the previous TemperatureConverterCtl1 control, the
TemperatureConverterCtl2maintains two public properties named
CentigradeValue and FahrenheitValue using property get and property set
functions.

This time, the control manages the current temperature values in two internal
variables named _CentigradeValue and _FahrenheitValue, which we must
initialise.

_CentigradeValue←0
_FahrenheitValue←0

The CentigradeValue's get function simply returns the current value of _
CentigradeValue. Its .NET Properties are defined as shown so that it is exported
as a property get function for the CentigradeValue property, and returns a
Double.

∇ C←get
:Access Public
:Signature Double←get
C←_CentigradeValue

∇

The CentigradeValue's set function simply resets the value of _
CentigradeValue to that of its argument. Its .NET Properties are defined as
shown so that it is exported as a property set function for the CentigradeValue
property, and takes a Double.

∇ set C
:Access Public
:Signature set Double Value
_CentigradeValue←C.NewValue

∇

The property get and property set functions for the FahrenheitValue property
are similarly defined. The .signatures for these functions are similar to those for the
CentigradeValue functions and are not shown.

226 .NET Interface Guide

Rendering the Control
Like the SimpleCtl example described earlier in this Chapter, the
TemperatureConverterCtl2 control has a Render function that generates
the HTML to represent its appearance, and in this case its behaviour too.

∇ Render output;C;F;BF;CF
[1] :Access Public override
[2] :Signature Render HtmlTextWriter output
[3]
[4] F←'<h3>Fahrenheit <input name='
[5] F,←UniqueID
[6] F,←' id=FahrenheitValue type=text value='
[7] F,←⍕_FahrenheitValue
[8] F,←'></h3>'
[9] output.Write⊂F
[10]
[11] C←'<h3>Centigrade <input name='
[12] C,←UniqueID
[13] C,←' id=CentigradeValueKey type=text value='
[14] C,←⍕_CentigradeValue
[15] C,←'></h3>'
[16] output.Write⊂C
[17]
[18] BF←'<input type=button value=FahrenheitToCentigrade '
[19] BF,←' onClick="jscript:'
[20] BF,←Page.GetPostBackEventReference
⎕THIS'FahrenheitToCentigrade'
[21] BF,←'">'
[22] output.Write⊂BF
[23]
[24] CF←'<input type=button value=CentigradeToFahrenheit '
[25] CF,←' onClick="jscript:'
[26] CF,←Page.GetPostBackEventReference
⎕THIS'CentigradeToFahrenheit'
[27] CF,←'">'
[28] output.Write⊂CF
[29]
[30] output.WriteLine∘⊂¨'' '
' '
'

∇

As we saw in the SimpleCtl example, the Rendermethod will be called by
ASP.NET with a parameter that represents an HtmlTextWriter object. This is
represented by the APL local name output.

Lines[4-9] and lines [11-16] generate HTML that defines two text boxes in which the
user may enter the Fahrenheit and centigrade values respectively. Lines[9&16] use
the Writemethod of the HtmlTextWriter object to output the HTML.

Chapter 10: Writing Custom Controls for ASP.NET 227

Lines[5&12] obtain the fully qualified identifier for this particular instance of the
TemperatureConverterCtl2 control from its UniqueID property. This is a
property, which it inherits from Control and is therefore also a property of the
current (APL) namespace.

Lines[18-22] and Lines[24-28] generate and output the HTML to represent the two
buttons that convert from Fahrenheit to Centigrade and from Centigrade to
Fahrenheit respectively.

Lines[19-20] and [25-26]generate HTML that wires the buttons up to JavaScript
handlers to be executed by the browser. The JavaScript simply causes the browser to
execute a postback, i.e. send the page contents back to the server.
GetPostBackEventReference is a (shared) method provided by the
System.Web.UI.Page class that generates a reference to a client-side script
function. In this case it is called with two parameters, an object that represents the
current instance of the TemperatureConverterCtl2 control, and a string that
will be passed to the server to indicate the cause of the postback (i.e. which button
was pressed). The first parameter is a reference to the current object, which is returned
by the system function ⎕THIS.

The client-side script is itself generated, and inserted into the HTML stream
automatically.

To help to understand this process fully, it is instructive to examine the HTML that is
generated by these functions. We will do this a bit later in the Chapter.

228 .NET Interface Guide

Loading the Posted Data
Once the server-side control has rendered the HTML for the browser, the user is free
to type numbers into the text boxes and to press the buttons.

When the user presses a button, the browser runs the client-side JavaScript code that
in turn generates a postback to the server.

The :Class statement for TemperatureConverterCtl2 specifies that it
supports the IPostBackDataHandler interface. This interface must be
implemented by controls that want to receive postback data (i.e., the contents of
Form fields that the user may have entered or changed) IpostBackDataHandler
has two methods LoadPostData and RaisePostDataChangedEvent.
LoadPostData is automatically invoked when a postback occurs, and the
postback data is supplied as a parameter.

So when the postback occurs, the server reloads the original page and, because this is
a postback situation and our control has advertised the fact that it implements
IPostBackDataHandler, ASP.NET invokes its LoadPostBackmethod. This
method is called with two parameters. The first is a key and the second is a collection
of name/value pairs. This contains the names of all the Form fields on the page (and
there may be others not directly associated with our custom control) and the values
they had when the user pressed the button. The key provides the means to extract the
relevant part of this collection. The LoadPostData function is shown below.

∇ R←LoadPostData args;postDataKey;values;controlValues;new
[1] :Signature Boolean←IPostBackDataHandler.LoadPostData
String postDataKey,NameValueCollection values
[2] postDataKey values←args
[3] controlValues←values[⊂postDataKey]
[4] new←ParseControlValues controlValues
[5] R←∨/new=_FahrenheitValue _CentigradeValue
[6] _FahrenheitValue _CentigradeValue←new

∇

Line[2] obtains the two parameters from the argument and Line[3] uses the key to
extract the appropriate data from the collection. ControlValues is a comma-
delimited string containing name/value pairs. The function
ParseControlValues simply extracts the values from this string, i.e. the
contents of the Fahrenheit and Centigrade text boxes.

Chapter 10: Writing Custom Controls for ASP.NET 229

Postback Events
The result of LoadPostData is Boolean and indicates whether or not any of the
values in a control have changed. If the result is True (1), ASP.NET will next call
the RaisePostDataChangedmethod. This method is called with no parameters
and merely signals that something has changed. The control knows what has
changed by comparing the old with the new, as in LoadPostData[5].

Finally, the page framework calls the RaisePostBackEventmethod, passing it a
string that identifies the page element that caused the post back.

The objective of these calls is to provide the control with the information it requires
to synchronise its internal state with its appearance in the browser.

In this case, we are not interested in which of the two text box values the user has
altered; what matters is which of the two buttons FarenheitToCentigrade or
CentigradeToFarenheit was pressed. Therefore, in this case, the control uses
RaisePostBackEvent rather than RaisePostDataChanged (or indeed,
LoadPostData itself, which is another option). The reason is that
RaisePostBackEvent receives the name of the button as its argument.

So in our case, the RaisePostDataChanged function does nothing.
Nevertheless, it is essential that the function is provided and essential that it supports
the correct public interface, namely that it takes no arguments are returns no result
(Void).

∇ RaisePostDataChangedEvent
[1] :Access public
[2] :Signature RaisePostDataChangedEvent
[3] ⍝ Do nothing

∇

The RaisePostBackEvent function simply switches on its argument, which is
the name of the button that the user pressed, and recalculates _CentigradeValue
or _FahrenheitValue accordingly.

∇ RaisePostBackEvent eventArgument
[1] :Access public
[2] :Signature RaisePostBackEvent String eventArg
[3] :Select eventArgument
[4] :Case 'FahrenheitToCentigrade'
[5] _CentigradeValue←F2C _FahrenheitValue
[6] :Case 'CentigradeToFahrenheit'
[7] _FahrenheitValue←C2F _CentigradeValue
[8] :EndSelect

∇

230 .NET Interface Guide

Finally, the page framework calls the OnPreRender and Render functions again,
which generate new HTML for the browser.

Using the Control on a Page
So long as it has access to this DLL, our custom control may be accessed from any
ASP.NETWeb Page, and a simple example is shown below.

<%@ Register TagPrefix="Dyalog" Namespace="DyalogSamples"
Assembly="TEMP" %>

<html>
<body bgcolor="yellow">
<center>
<h3>
Temperature Control</h3>
<h4>
Server-Side Noncompositional control</h4>

<form runat=server>
<Dyalog:TemperatureConverterCtl2 id=TempCvtCtl2
runat=server/>
</form>

</center>
</body>
</html>

The HTML that is generated by the control is illustrated below. Notice the presence
of a JavaScript function named __doPostBack. This is generated by the
RegisterPostBackScriptmethod called from the OnPreRender function.
The code that wires the buttons to this function was generated by the
GetPostBackEventReferencemethod called from the Render function.

Chapter 10: Writing Custom Controls for ASP.NET 231

<html>
<body bgcolor="yellow">
<center>
<h3>Temperature
Control</h3>
<h4>Server-Side
Noncompositional control</h4>

<form name="ctrl1" method="post" action="temp2.aspx" id="ctrl1">
<input type="hidden" name="__EVENTTARGET" value="" />
<input type="hidden" name="__EVENTARGUMENT" value="" />
<input type="hidden" name="__VIEWSTATE"
value="YTB6MTc3MzAxNzYxM19fX3g=9cfcfa5c" />

<script language="javascript">
<!--

function __doPostBack(eventTarget, eventArgument) {
var theform = document.ctrl1
theform.__EVENTTARGET.value = eventTarget
theform.__EVENTARGUMENT.value = eventArgument
theform.submit()

}
// -->
</script>

<h3>Fahrenheit <input name=TempCvtCtl2 id=FahrenheitValue
type=text value=0></h3><h3>Centigrade <input name=TempCvtCtl2
id=CentigradeValueKey type=text value=0></h3><input type=button
value=FahrenheitToCentigrade onClick="jscript:__doPostBack
('TempCvtCtl2','FahrenheitToCentigrade')"><input type=button
value=CentigradeToFahrenheit onClick="jscript:__doPostBack
('TempCvtCtl2','CentigradeToFahrenheit')">

</form>

</center>
</body>
</html>

232 .NET Interface Guide

Chapter 10: Writing Custom Controls for ASP.NET 233

The TemperatureConverterCtl3 Control
In the previous examples, events generated by control have been internal events, i.e.
events that have been detected and processed internally by the control itself.

A separate requirement is to be able to design a custom control that generates
external events, i.e. events that can be detected and handled by the page that is
hosting the control. This example illustrates how to do this.

The TemperatureConverterCtl3 namespace is a copy of TemperatureConverterCtl2
with a couple of changes.

The first change is that it describes an event that the control is going to generate.
This is done using ⎕NQ inside TemperatureConverterCtl3 like this:

2 ⎕NQ '' 'SetEventInfo' 'Export'
(('Double' 'Fahrenheit')
('Double' 'Centigrade'))

In this case, the name of the event is Export and it will report two parameters named
Fahrenheit and Centigrade which are both of data type Double.

234 .NET Interface Guide

This version of the control presents a slightly different appearance to the previous
one. The control itself is wrapped up in an HTML Table,with the conversion buttons
arranged in a column. These buttons generate internal events that are caught and
handled by the control itself. The third row of the table contains an additional button
labelled Export which will generate the Export event when pressed. The Render
function is shown below.

∇ Render output;TableRow;HTML;SET
[1] :Access public override
[2] :Signature Render HtmlTextWriter output
[3] TableRow←{
[4] HTML←'<tr><td>',⍺,'</td><td><input name=',UniqueID
[5] HTML,←' id=',⍺,'Value type=text '
[6] HTML,←'value=',(⍕⍵),'></td>'
[7] HTML,←'<td><input type=button value=Convert'
[8] HTML,←' onClick="jscript:'
[9] HTML,←(Page.GetPostBackEventReference ⎕THIS
⍺),'"></td></tr>'
[10] HTML
[11] }
[12]
[13] HTML←''
[14] HTML←'<table>'
[15] HTML,←'Fahrenheit'TableRow _FahrenheitValue
[16] HTML,←'Centigrade'TableRow _CentigradeValue
[17]
[18] SET←'<tr><td><input type=button value=Export '
[19] SET,←' onClick="jscript:'
[20] SET,←Page.GetPostBackEventReference ⎕THIS'Export'
[21] SET,←'"></td></tr>'
[22] HTML,←SET,'</table>'
[23] output.Write⊂HTML

∇

Notice that Render[18] causes the Export button to generate a Postback event
which will call RaisePostBackEvent with the argument 'Export'. Up to
now, this is just an internal event just like the events generated by the conversion
buttons.

The RaisePostBackEvent propagates this event to the host page.

Chapter 10: Writing Custom Controls for ASP.NET 235

∇ RaisePostBackEvent eventArgument
[1] :Signature IPostBackEventHandler.RaisePostBackEvent String
eventArg
[2] :Select eventArgument
[3] :Case 'Fahrenheit'
[4] _CentigradeValue←F2C _FahrenheitValue
[5] :Case 'Centigrade'
[6] _FahrenheitValue←C2F _CentigradeValue
[7] :Case 'Export'
[8] 4 ⎕NQ'' 'Export'_FahrenheitValue _CentigradeValue
[9] :EndSelect

∇

This is simply done by the third :Case statement, so that when the function is
invoked with the argument 'Export', it fires an Export event. This is done by line
[8] using 4 ⎕NQ. The elements of the right argument are:

[1] ''
Specifies that the event is generated by this
instance of the control

[2] 'Export' The name of the event to be generated

[3] _FahrenheitValue The value of the first parameter, Fahrenheit

[4] _CentigradeValue
The value of the second parameter,
Centigrade

It is then up to the page that is hosting the control to respond to the event in
whatever way it deems appropriate.

236 .NET Interface Guide

Hosting the Control on a Page
The following example illustrates an ASP.NET web page that hosts the
TemperatureConverterCtl3 custom control and responds to its Export event. The
page uses a <script> written in APL, but it could just as easily be written in VB.NET.

<%@ Register TagPrefix="Dyalog" Namespace="DyalogSamples"
Assembly="TEMP"%>

<script language="Dyalog" runat="server">
∇ ExportCB args;sender;e

[1] sender e←args
[2] (Flab Clab).Text←⍕¨e.(Fahrenheit Centigrade)

∇
</script>

<html>
<body>
<center>
<h3>Temperature Control

</h3>
<h4>Generating Events

</h4>

<form runat=server>
<Dyalog:TemperatureConverterCtl3 id="TempcvtCtl3"

onExport="ExportCB"
runat=server/>
</form>

<p>Exported values are:</p>
<table>
<tr><td>Fahrenheit:</td>

<td><asp:Label id="Flab" Text="" runat="server">
</asp:Label></td>

</tr>
<tr><td>Centigrade:</td>

<td><asp:Label id="Clab" Text="" runat="server">
</asp:Label></td>

</tr>
</table>
</center>
</body>
</html>

In this example, the host page associates a callback function ExportCB with the
Export event The ExportCB callback function is defined within the
<script></script> section of the page. It simply sets the Text property of two Label
controls to display the parameters reported by the event.

Chapter 10: Writing Custom Controls for ASP.NET 237

The picture below illustrates what happens when you run the page. Notice that the
user can independently convert values between the two temperature scales and
export these values from the control, to the host page, by pressing the Export button.

238 .NET Interface Guide

239

Chapter 11:

APLScript

Introduction
APLScript is a Dyalog APL scripting language. It was originally designed
specifically to program ASP.NETWeb Pages and Web Services, but it has been
extended to be of more general use outside the Microsoft .NET environment.

APLScript is not workspace oriented (although you can call workspaces from it)
but is simply a character file containing function bodies and expressions.

APLScript files may be viewed and edited using any character-based editor which
supports Unicode text files, such as Notepad. APLScript files may also be edited
using Microsoft Word, although they must be saved as text files without any Word
formatting.

APLScript files employ Unicode encoding so you need a Unicode font with APL
symbols, such as APL385 Unicode, to view them. In order to type Dyalog APL
symbols into an APLScript file, you also need the Dyalog APL Input Method
Editor (IME), or other APL compatible keyboard.

If you choose to use the Dyalog APL IME it can be configured from the Dyalog
Configuration dialog. You may change the associated .DIN file and various other
options. See Installation & Configuration Guide: Unicode Input Tab.

There are basically three types of APLScript files that may be identified by three
different file extensions. APLScript files with the extension .aspx and .asmx
specify .NET classes that represent ASP.NETWeb Pages and Web Services
respectively. APLScript files with the extension .aplmay specify .NET classes or
may simply represent an APL application in a script format as opposed to a
workspace format. Such applications do not necessarily require the Microsoft .NET
Framework.

240 .NET Interface Guide

The APLScript Compiler
APLScript files are compiled into executable code by the APLScript compiler whose
name is given in the table below.

Unicode Edition Classic Edition

32-Bit dyalogc_unicode.exe dyalogc.exe

64-Bit dyalogc64_unicode.exe dyalogc64.exe

This program is called automatically by ASP.NET when a client application
requests a Web Page (.aspx) orWeb Service (.asmx) and in these circumstances
always generates the corresponding .NET class. However, the Script Compiler may
also be used to:

l Compile an APLScript into a workspace (.dws) that you may subsequently
run using dyalog.exe or dyalogrt.exe in the traditional manner.

l Compile an APLScript into a .NET class (.dll) which may subsequently
be used by any other .NET compatible host language such as C# or Visual
Basic.

l Compile an APLScript into a native Windows executable program (.exe),
which may be run as a stand-alone executable. This program may be
distributed, along with the Dyalog APL runtime DLL, as a packaged
application, and does not require any of the additional support files and
registry entries that are typically needed by the Dyalog APL run-time
dyalogrt.exe. Note too that the Dyalog APL dynamic link library does
not use MAXWS but instead allocates workspace dynamically as required.
See the Dyalog for Microsoft Windows Installation and Configuration
Guide: Run-Time Applications and Components for further details.

l Compile a Dyalog APL Workspace (.dws) into a native Windows
executable program, with the same characteristics and advantages described
above.

The Script is designed to be run from a command prompt. If in the 32-bit Classic
Edition you type dyalogc /? (to query its usage) the following output is
displayed:

Chapter 11: APLScript 241

Dyalog APLScript compiler 32 bit. Classic Mode. Version
13.1.12350.0
Copyright Dyalog Ltd 2012

dyalogc.exe command line options:

/? Usage
/r:file Add reference to assembly
/o[ut]:file Output file name
/x:file Read source files from Visual Studio.NET
project file
/res:file Add resource to output file
/icon:file File containing main program icon
/q Operate quietly
/v Verbose
/s Treat warnings as errors
/nonet Creates a binary that does not use Microsoft
.NET
/runtime Build a non-debuggable binary
/lx:expression Specify entry point (Latent Expression)
/t:library Build .NET library (.dll)
/t:nativeexe Build native executable (.exe). Default
/t:workspace Build dyalog workspace (.dws)
/nomessages Process does not use windows messages. Use when
creating

a process to run under IIS
/console Creates a console application
/c Creates a console application
/unicode Creates an application that runs in a Unicode
intepreter
/wx:[0|1|3] Sets WX for default code

242 .NET Interface Guide

Creating an APLScript File
Conceptually, the simplest way to create an APLScript file is with Notepad,
although you may use many other tools including Microsoft Visual Studio as
described in the next Chapter.

1. Start Notepad
2. Choose Format/Font from the Menu Bar and select an appropriate Unicode

font that contains APL symbols, such as APL 385 Unicode or Arial Unicode
MS.

3. Select an APL keyboard by clicking on your keyboard selector in the
System Tray. Note that this keyboard setting (and button) is associated only
with the current instance of Notepad. If you start another instance of
Notepad, or another editor, you will have to select the APL keyboard for it
separately and there will be two floating toolbars on your display.

4. Now type in your APL code. If you use a Ctrl keyboard, you will discover
that Ctrl+ keystrokes generate APL symbols For example, Ctrl+n generates
⊤.

5. Choose File/Save. When the Save As dialog appears, ensure that Encoding
is set to Unicode and Save as type: is set to All Files. Enter the name of the
file, adding the extension .asmx or .aspx, and then click Save. Note that you
have to save the .asmx file somewhere in an IIS Virtual Directory structure.

Chapter 11: APLScript 243

Copying code from the Dyalog Session
You may find it easier to write APL code using the Dyalog APL function or class
editor that is provided by the Dyalog APL Session. Or you may already have code in
a workspace that you want to copy into an APLScript file.

If so, you can transfer code from the Session into your APLScript editor (e.g.
Notepad) using the clipboard. Notice that because APLScript requires Unicode
encoding (for APL symbols), you must ensure that character data is written to the
clipboard in Unicode.

In the Unicode interpreter this is always done. In the Classic interpreter this is
controlled by a parameter called UnicodeToClipboard that specifies whether or not
data is transferred to and from the Windows clipboard as Unicode. This parameter
may be changed using the Trace/Edit page of the Configure dialog box.

If set (the default), APL text pasted to the clipboard from the Session is written as
Unicode and APL requests Unicode data back from the clipboard when it is required.
This makes it easy to transfer APL code between the Session and an APLScript
editor, which is using the Arial Unicode MS font.

In the Classic interpreter when pasting code into the Dyalog editor, there are two
menu items under the Edit menu, which allow you to explicitly select whether the
Unicode mapping should be used, or the old mapping which corresponds to the
Dyalog Std TT or Dyalog Alt TT fonts. You should use "Paste non-Unicode" when
transferring text from the on line help, or text copied from earlier versions of Dyalog
APL without the Unicode option.

Unless you explicitly want to have line numbers in your APLScript, the simplest
way to paste APL code from the Session into an APLScript text editor is as follows:

1. open the function in the function editor
2. select all the lines of code, or just the lines you want to copy
3. select Edit/Copy or press Ctrl+Ins
4. switch to your APLScript editor and select Edit/Paste or press Shift+Ins.
5. insert Del (∇) symbols at the beginning and end of the function.

244 .NET Interface Guide

If you want to preserve line numbers (this is allowed, but not recommended in
APLScript files), you may use the following technique:

1. in the Session window, type a del (∇) symbol followed by the name of the
function, followed by another del (∇) and then press Enter. This causes the
function to be displayed, with line numbers, in the Session window.

2. select the function lines, including the surrounding Dels (∇) and choose
Edit/Copy or press Ctrl+Insert.

3. switch to your APLScript editor and select Edit/Paste or press Shift+Ins.

General principles of APLScript
The layout of an APLScript file differs according to whether the script defines a
Web Page, a Web Service, a .NET class, or an APL application that may have
nothing to do with the .NET Framework. However, within the APLScript, the
code layout rules are basically the same.

An APLScript file contains a sequence of function bodies and executable statements
that assign values to variables. In addition, the file typically contains statements that
are directives to the APLScript compiler. If the script is a Web Page orWeb Service,
it may also contain directives to ASP.NET. The former all start with a colon symbol
(:) in the manner of control structures. For example, the :Namespace statement tells
the APLScript compiler to create, and change into, a new namespace. The
:EndNamespace statement terminates the definition of the contents of a
namespace and changes back fromwhence it came.

Assignment statements are used to set up system variables, such as ⎕ML, ⎕IO,
⎕USING and arbitrary APL variables. For example:

⎕ML←2
⎕IO←0
⎕USING∪←⊂'System.Data'

A←88
B←'Hello World'

⎕CY'MYWS'

These statements are extracted from the APLScript and executed by the compiler
in the order that they appear. It is important to recognise that they are executed at
compile time, and not at run-time, and may therefore only be used for initialisation.

Notice that it is acceptable to execute ⎕CY to bring in functions and variables from a
workspace that are to be incorporated into the code. This is especially useful to
import a set of utilities. Note also that it is possible to export these functions as
methods of .NET classes if the functions contain the appropriate colon statements.

Chapter 11: APLScript 245

The APLScript compiler will in fact execute any valid APL expression that you
include. However, the results may not be useful and may indeed simply terminate the
compiler. For example, it is not sensible to execute statements such as ⎕LOAD, or
⎕OFF.

Function bodies are defined between opening and closing del (∇) symbols. These are
fixed by the APLScript compiler using ⎕FX. Line numbers and white space
formatting are ignored.

Creating Programs (.exe) with APLScript
The following examples, which illustrate how you can create an executable program
(.exe) direct from an APLScript file, may be found in the directory
samples\aplscript.

A simple GUI example
The following APLScript illustrates the simplest possible GUI application that
displays a message box containing the string "Hello World".

:Namespace N
⎕LX←'N.RUN'
∇RUN;M
'M'⎕WC'MsgBox' 'A GUI exe' 'Hello World'
⎕DQ'M'
∇
:EndNamespace

This example, which is saved in the file eg1.apl, is compiled to a Windows
executable (.exe) using dyalogc.exe and run from the same command window
as shown below. Notice that it is essential to surround the code with :Namespace
/ :EndNamespace statements and to define a ⎕LX either in the APLScript itself,
or as a parameter to the dyalogc command.

246 .NET Interface Guide

You can associate the .exe with a desktop icon, and it will run stand-alone, without
a Command Prompt window. Furthermore, any default APL output that would
normally be displayed in the session window will simply be ignored.

A simple console example
The following APLScript illustrates the simplest possible application that displays
the text "Hello World".

This example, which is saved in the file eg2.apl, is compiled to a Windows
executable (.exe) and run from a command window as shown below. Notice that
the /console flag is used to tell the APLScript compiler to create a console
application that runs from a command prompt. In this case, default APL output that
would normally be displayed in the session window turns up in the command
window fromwhich the program was run.

:Namespace N
⎕LX←'N.RUN'
∇RUN
'Hello World'
∇
:EndNamespace

Once more, it is essential to surround the code with
:Namespace/:EndNamespace statements and to define a ⎕LX either in the
APLScript itself, or as a parameter to the dyalogc command.

Chapter 11: APLScript 247

Defining Namespaces
Namespaces are specified in an APLScript using the :Namespace and
:EndNamespace statements. Although you may use ⎕NS and ⎕CS within
functions inside an APLScript, you should not use these system functions outside
function bodies. Note that such use is not prevented, but that the results will be
unpredictable.

:Namespace Name

introduces a new namespace called Name relative to the current space.

:EndNamespace

terminates the definition of the current namespace. Subsequent statements and
function bodies are processed in the context of the original space.

It is imperative that at least ONE namespace be specified.

All functions specified between the :Namespace and :EndNamespace
statements are fixed in that namespace. Similarly, all assignments define variables
inside that namespace.

The following example illustrates how APL namespace usage is handled in
APLScript. The program, contained in the file eg3.apl, is as follows:

:Namespace N
⎕LX←'N.RUN'

∇RUN
⎕PATH←'↑'
NS.START
END
∇
∇R←CURSPACE
R←⊃⎕NSI
∇
∇END
'Ending in ',CURSPACE
∇

:NameSpace NS
∇START
'Starting in ',CURSPACE
∇
:EndNameSpace
:EndNameSpace

248 .NET Interface Guide

This somewhat contrived example illustrates how a namespace is defined inside
another namespace using :NameSpace and :EndNamespace statements. The
namespace NS contains a single function called START, which is called from the
main function RUN.

Notice that ⎕PATH is defined dynamically in function RUN. If it were defined
outside a function in a static statement in the script (say, after the statement that sets
⎕LX), it would not be honoured when the application was run.

This program is shown, compiled and run as a console application, below.

Creating .NET Classes with APLScript
It is possible to define and use new .NET classes within an APLScript.

A class is defined by :Class and :EndClass statements. The methods provided
by the class are defined as function bodies enclosed within these statements. Please
see the Language Reference for a complete discussion of writing classes in Dyalog
APL. This chapter will only provide a brief introduction to the subject, aimed
specifically at APLScript.

You may also define sub-classes or nested classes using nested :Class and
:EndClass statements.

:Class Name: Type

Declares a new class called Name, which is based upon the Base Class Type, which
may be any valid .NET Class.

:EndClass

Terminates a class definition block

A class specified in this way will automatically support the methods, properties and
events that it inherits from its Base Class, together with any new public methods that
you care to specify.

Chapter 11: APLScript 249

However, the new class only inherits a default constructor (which is called with no
parameters) and does not inherit all of the other private constructors from its Base
Class. You can define a method to be a constructor using the :Implements
Constructor declarative comment. Constructor overloading is supported and you
may define any number of different constructor functions in this way, but they must
have unique parameter sets for the system to distinguish between them.

You can create and use instances of a class by using the ⎕NEW system function in
statements elsewhere in the APLScript.

Exporting Functions as Methods
Within a :Class definition block, you may define private functions and public
functions. A public function is one that is exposed as a method and may be called by
a client that creates an instance of your class. Public functions must have a section of
declaration statements. Other functions are purely internal to the class and are not
directly accessible by a client application.

The declaration statements for public functions perform the same task for an
APLScript that is performed using the .NET Properties dialog box, or by executing
SetMethodInfo in the Dyalog APL Session, prior to creating a .NET assembly. The
following declaration statements may be used.

:Access Public

Specifies that the function is callable. This statement applies only to a .NET class or
to a Web Page and is not applicable to a Web Service.

:Access WebMethod

Specifies that the function is callable as a Web Method. This statement applies only
to a Web Service (.asmx). From version 11.0, the statement is equivalent to:

:Access Public
:Attribute System.Web.Services.WebMethodAttribute

:Implements Constructor

Specifies that the function is a constructor for a new .NET class. This function must
appear between :Class and :EndClass statements and this applies only to a
Web Page (.aspx). See Defining Classes in APLScript for further details. A
constructor is called when you execute the Newmethod in the class.

250 .NET Interface Guide

:Signature result←fn type1 Name1, type2 Name2,..

Declares the result of the method to have a given data type, if any. It also declares
parameters to the method to have given data types and names. Namex is optional and
may be any well-formed name that identifies the parameter. This name will appear in
the metadata and is made available to a client application as information. It is
therefore sensible to choose meaningful names. The names you allocate to parameters
have no other meaning and are not associated with the names of local variables that
you may choose to receive them. However, it is not a bad idea to use the same local
names as the public names of your parameters.

A .NET Class example
The following APLScript illustrates how you may create a .NET Class using
APLScript. The example class is the same as Example 1 in Chapter 5. The APLScript
code, saved in the file samples\aplclasses\aplclasses6.apl, is as
follows:

:Namespace APLClasses

:Class Primitives: Object
⎕USING←,⊂'System'
:Access public

∇ R←IndexGen N
:Access Public
:Signature Int32[]←IndexGen Int32 number
R←⍳N
∇
:EndClass

:EndNamespace

This APLScript code defines a namespace called APLClasses. This simply acts as
a container and is there to establish a .NET namespace of the same name within the
resulting .NET assembly. Within APLClasses is defined a .NET class called
Primitives whose base class is System.Object. This class has a single public
method named IndexGen, which takes a parameter called number whose data type
is Int32, and returns an array of Int32 as its result.

The following command shows how aplclasses6.apl is compiled to a .NET
Assembly using the /t:library flag.

APLClasses>dyalogc /t:library aplclasses6.apl
Dyalog APLScript compiler 32bit Classic Mode Version 13.0.8690.0
Copyright Dyalog Limited 2011
APLClasses>

Chapter 11: APLScript 251

The next picture shows a view of the resulting aplclasses6.dll using
ILDASM.

252 .NET Interface Guide

This .NET Class can be called fromAPL just like any other. For example:

)CLEAR
clear ws

⎕USING←'APLClasses,Samples\APLClasses\
aplclasses6.dll'

APL←⎕NEW Primitives
APL.IndexGen 10

1 2 3 4 5 6 7 8 9 10

Defining Properties
Properties are defined by :Property and :EndProperty statements. A property
pertains to the class in which it is defined.

:Property Name
∇ C←get

[1] :Access public
[2] :Signature Double←get
[3] C←...

∇

Declares a new property called Name whose data type is System.Double. The
latter may be any valid .NET type which can be located through ⎕USING.

:EndProperty

Terminates a property definition block

Within a :Property block, you must define the accessors of the property. The
accessors specify the code that is associated with referencing and assigning the value
of the property. No other function definitions or statements are allowed inside a
:Property block.

The accessor used to reference the value of the property is represented by a function
named get that is defined within the :Property block. The accessor used to
assign a value to the property is represented by a function named set that is defined
within the :Property block.

The get function is used to retrieve the value of the property and must be a niladic
result returning function. The data type of its result determines the Type of the
property. The set function is used to change the value of the property and must be a
monadic function with no result. The argument to the function will have a data type
Type specified by the :Signature statement. A property that contains a get
function but no set function is effectively a read-only property.

Chapter 11: APLScript 253

The following APLScript, saved in the file
samples\aplclasses\aplclasses7.apl, shows how a property called
IndexOrigin can be added to the previous example. Within the :Property
block there are two functions defined called get and set which are used to
reference and assign a new value respectively. These functions have the fixed names
and syntax specified for property get and property set functions as described above.

:Namespace APLClasses

:Class Primitives: Object
⎕USING←,⊂'System'
:Access public

∇ R←IndexGen N
:Access Public
:Signature Int32[]←IndexGen Int32 number
R←⍳N
∇

:Property IndexOrigin
∇io←get

:Signature Int32←get Int32 number
io←⎕IO
∇

∇set io
:Signature set Int32 number

:If io∊0 1
⎕IO←io

:EndIf
∇
:EndProperty

:EndClass

:EndNamespace

254 .NET Interface Guide

The ILDASM view of the new aplclasses7.dll, with the addition of an
IndexOrigin property, is illustrated below.

For other examples of the use of property definitions, see The Component File
Solution in Chapter 11.

This .NET Class can be called fromAPL just like any other. For example:

)CLEAR
clear ws

⎕USING←'APLClasses,Samples\APLClasses\
APLClasses7.DLL'

APL←⎕NEW Primitives
APL.IndexGen 10

1 2 3 4 5 6 7 8 9 10
APL.IndexOrigin

1
APL.IndexOrigin←0
APL.IndexGen 10

0 1 2 3 4 5 6 7 8 9

Chapter 11: APLScript 255

Indexers
An indexer is a property of a class that enables an instance of that class (an object) to
be indexed in the same way as an array, if the host language supports this feature.
Languages that support object indexing include C# and Visual Basic. Dyalog APL
does also allow indexing to be used on objects. This means that you can define an
APL class that exports an indexer and you can use the indexer from C#, Visual Basic
or Dyalog APL.

Indexers are defined in the same way as properties, between :Property Default
and :EndProperty statements. There may be only one indexer defined for a class.

Note: the :Property Default statement in Dyalog APL is closely modelled on
the indexer feature in C# and employs similar syntax. If you use ILDASM to browse
a .NET class containing an indexer, you will see the indexer as the default property
of that class, which is how it is actually implemented.

Creating ASP.NET Classes with APLScript
As mentioned previously, the original purpose of APLScript was to provide the
ability to write ASP.NETWeb Pages and Web Services in Dyalog APL. Both these
applications are based upon script files.

Web Page Layout
An ASP.NETWeb Page typically consists of a mixture of HTML and code written in
a scripting language. The script code is separated from the HTML by being
embedded within <script> and </script> tags and normally appears in the <head>
</head> section of the page. Only one block of script is allowed in a page. The script
block normally consists of a collection of functions, which are invoked by some
event on the page, or on an element of the page.

APLScript code starts with a statement:

<script language="Dyalog" runat=server>

and finishes with:

</script>

Typically, the APLScript code consists of callback functions that are attached to
server-side events on the page.

For further information, see The web.config file on page 270.

256 .NET Interface Guide

Web Service Layout
The first line in a Web Service script must be a declaration statement such as:

<%@ WebService Language="Dyalog" Class="ServiceName" %>

where ServiceName is an arbitrary name that identifies yourWeb Service.

The next statement must be a :Class statement that declares the name of the Web
Service and its Base Class from which it inherits. The base class will normally be
System.Web.Services.WebService. For example:

:Class ServiceName: System.Web.Services.WebService

The last line in the script must be:

:EndClass

Although it may appear awkward to have to specify the name of yourWeb Service
twice, this is necessary because the two statements are being processed quite
separately by different software components. The first statement is processed by
ASP.NET.When it sees Language="Dyalog", it then calls the Dyalog
APLScript compiler, passing it the remainder of the script file. The :Class
statement tells the APLScript compiler the name of the Web Service and its base
class. :Class and :EndClass statements are private directives to the
APLScript compiler and are not relevant to ASP.NET.

How APLScript is processed by ASP.NET
Like any otherWeb Page orWeb Service, an APLScript file is processed by
ASP.NET.

The first time ASP.NET processes a script file, it first performs a compilation process
whose output is a .NET assembly. ASP.NET then calls the code in this assembly to
generate the HTML (for a Web Page) or to run a method (for a Web Service).

ASP.NET associates the compiled assembly with the script file, and only recompiles
it if/when it has changed.

ASP.NET does not itself compile a script; it delegates this task to a specialised
compiler that is associated with the language declared in the script. This association
is made either in the application's web.config file or in the global
machine.config file. Dyalog Installs a default web.config file which includes
these settings in the samples\asp.net folder.

The APLScript compiler is itself written in Dyalog APL.

Chapter 11: APLScript 257

Although the compilation process takes some time, it is typically only performed
once, so the performance of an APLScriptWeb Service orWeb Page is not
compromised. Once it has been compiled, ASP.NET redirects all subsequent requests
for an APLScript to its compiled assembly.

Please note that the use of the word compile in this process does not imply that your
APL code is actually compiled into Microsoft Intermediate Language (MSIL).
Although the process does in fact generate someMSIL, your APL code will still be
interpreted by the Dyalog APL DLL engine at run-time. The word compile is used
only to be consistent with the messages displayed by ASP.NET when it first
processes the script.

258 .NET Interface Guide

259

Chapter 12:

Implementation Details

Introduction
The Dyalog DLL is the Dyalog APL engine that hosts the execution of all .NET
classes that have been written in Dyalog APL, including APLWeb Pages and APL
Web Services. The Dyalog DLL provides the interface between client applications
(such as ASP.NET) and your APL code. It receives calls from client applications, and
executes the appropriate APL code. It also works the other way, providing the
interface between your APL code and any .NET classes that you may call.

The Development DLL (the full developer version of the Dyalog DLL) contains the
APL Session, Editor, Tracer and so forth, and may be used to develop and debug an
APL .NET class while it is executing. Note that to gain access to the various
workspace tools, such as the Workspace Explorer and the Search/Replace Dialog, the
corresponding DyaRes DLL must be present alongside (in the same directory as) the
Development DLL.

The Run-Time DLL (the re-distributable run-time version of the Dyalog DLL)
contains no debugging facilities.

For the names of these files corresponding to the version of Dyalog that you are
using, see Installation & Configuration Guide: Files and Directories.

260 .NET Interface Guide

Isolation Mode
For each application which uses a class written in Dyalog APL, at least one copy of
the development or run-time version of the Dyalog DLL will be started in order to
host and execute the appropriate APL code. Each of these engineswill have an APL
workspace associated with it, and this workspace will contain classes and instances
of these classes. The number of engines (and associated workspaces) which are
started will depend on the Isolation Mode which was selected when the APL
assemblies used by the application were generated. Isolation modes are:

l Each host process has a single workspace
l Each appdomain has its own workspace
l Each assembly has its own workspace

Note that, in this context, Microsoft Internet Information Services (IIS) is a single
application, even though it may be hosting a large number of different web pages.
Each ASP.NET application will be running in a separate AppDomain, a mechanism
used by .NET to provide isolation within an application. Other .NET applications
may also be divided into different AppDomains.

In other words, if you use the first option, ALL classes and instances used by any IIS
web page will be hosted in the same workspace and share a single copy of the
interpreter. The second option will start a new Dyalog engine for each ASP.NET
application; the final option an engine for each assembly containing APL classes.

Chapter 12: Implementation Details 261

Workspace Size
By default, there is no limit placed upon the size of the workspace used by the
Dyalog DLL and it will grow (and shrink) according to user demand.

The maximumworkspace size may be specified by themaxws parameter that is used
to control the workspace size in the development and run-time versions of the
Dyalog program. The difference is that themaxws parameter must be specified for
the host application, the application in which the Dyalog DLL is embedded.

This is achieved by defining a Registry key named:

HKLM\Software\Dyalog\Embedded\<appname>

or on 64-bit Windows:

HKLM\Software\Wow6432Node\Dyalog\Embedded\<appname>

where <appname> is the name of the application, containing a String Value named
maxws set to the desired size.

The name of the ASP.NET application is aspnet_wp.exe or w3wp.exe ((IIS 6 and
above).

An additional way is to set themaxws parameter on the command line of the
Assembly at export time. That might be be useful if you know that you are only
using one Dyalog assembly or the IsolationMode is "Each Assembly". For more
information, see Isolation Mode on page 260.

262 .NET Interface Guide

Structure of the Active Workspace
Each engine which is started has a workspace associated with it that contains all the
APL objects it is currently hosting.

Unless the highest isolation mode, Each assembly has its own workspace has been
selected, the workspace will contain one or more namespaces associated with .NET
AppDomains. When .NET calls Dyalog APL to process an APL class, it specifies the
AppDomain in which it is to be executed. To maintain AppDomain isolation and
scope, Dyalog APL associates each different AppDomain with a namespace whose
name is that of the AppDomain, prefixed by AppDomain_.

Within each AppDomain_ namespace, there will be one or more namespaces
associated with the different Assemblies from which the APL classes have been
loaded. These namespaces are named by the Assembly name prefixed by
Assembly_. If the APL class is a Web Page or a Web Service, the corresponding
Assembly is created dynamically when the page is first loaded. In this case, the name
of the Assembly itself is manufactured by .NET. Below the Assembly_ namespace
is a namespace that corresponds to the .NET Namespace that represents the container
of your class. If the APL class is a Web Page orWeb Service, this namespace is called
ASP. Finally, the namespace tree ends with a namespace that represents the APL
class. This will have the same name as the class. In the case of a Web Page orWeb
Service, this is the name of the .aspx or .asmx file.

Note that in the manufactured namespace names, characters that would be invalid
symbols in a namespace name are replaced by underscores.

The following picture shows the namespace tree that exists in the Dyalog DLL
workspace when the first example (see Example 1 on page 107) in the chapter
Writing .Net Classes is executed under Visual Studio. However, to cause the
suspension, an error has been introduced in the method IndexGen.

In this case, there is a single AppDomain involved whose name, DyApp_vshost_
exe is specified by .NET. APL has made a corresponding namespace called
AppDomain_DyApp_vshost_exe. Next, there is a namespace associated with
the Assembly aplclasses, named Assembly_aplclasses. Beneath this is a
namespace called APLClasses associated with the .NET Namespace of the same
name. Finally, there is the APL Class called Primitives .

Chapter 12: Implementation Details 263

Notice that the state indicator displays the entire .NET calling structure, and not just
the APL stack. In this case, the state indicator shows that IndexGen was called from
MainClass.Main, which combines the class and method names specified in
aplfns.cs. Note that .NET calls are slightly indented.

Notice too that IndexGen has been started on APL thread 1 which, in this case, is
associated with system thread 8752. If the client application were to call IndexGen
on multiple system threads, this would be reflected by multiple APL threads in the
workspace. This topic is discussed in further detail below.

264 .NET Interface Guide

The possibility for the client to execute code in several instances of an object at the
same time requires that each executing instance is separated from all the others. Each
instance will be created as an unnamed object in the workspace, within the relevant
appdomain and assembly namespaces.

The picture below shows the workspace structure when the assembly was generated
with isolation mode set to Each assembly has its own workspace. In this case, the
AppDomain and Assembly structure is not created above the classes in the
workspace, so the workspace structure is somewhat simpler:

Chapter 12: Implementation Details 265

Threading
The .NET Framework is inherently a multi-threaded environment. For example,
ASP.NET runs its own thread pool from which it allocates system threads to its
clients. Calls from ASP.NET into APLWeb Pages and Web Services will typically
be made from different system threads. This means that APL will receive calls from
.NET while it is processing a previous call. The situation is further complicated when
you write an APLWeb Page that calls an APLWeb Service, both of which may be
hosted by a single Dyalog DLL inside ASP.NET. In these circumstances, ASP.NET
may well allocate different system threads to the .NET calls, which are made into the
two separate APL objects. Although in the first example (multiple clients) APL
could theoretically impose its own queuing mechanism for incoming calls, it cannot
do so in the second case without causing a deadlock situation.

It is important to remember that whether running as DYALOG.EXE, or as the
Dyalog DLL, the Dyalog APL interpreter executes in a single system thread.
However, APL does provide the ability to run several APL threads at the same time.
If you are unfamiliar with APL threads, see Language Reference, Chapter 1 for an
introduction to this topic.

To resolve this situation, Dyalog APL automatically allocates APL threads to .NET
system threads and maintains a thread synchronisation table so that calls on the same
system thread are routed to the same APL thread, and vice versa. This is important
because a GUI object (cf. System.Winforms) is owned by the system thread that
created it and can only be accessed by that thread.

The way that system threads are allocated to APL threads differs between the case
where APL is running as the primary executable (DYALOG.EXE) or as a DLL
hosted by another program. The latter is actually the simpler of the two and will be
considered first.

DYALOG DLL Threading
In this case, all calls into the Dyalog DLL are initiated by Microsoft .NET.

When a .NET system thread first needs to run an APL function, APL starts a new
APL thread for it, and executes the function in that APL thread. For example, if the
first call is a request to create a new instance of an APL .NET object, its constructor
function will be run in APL thread 1. An entry is made in the internal thread table
that associates the originating system thread with APL thread 1. When the
constructor function terminates, the APL thread is retained so that it is available for a
subsequent call on its associated system thread. In this respect, the automatically
created APL thread differs from an APL thread that was created using the spawn
operator & (See Language Reference).

266 .NET Interface Guide

When a subsequent call comes in, APL locates the originating system thread in its
internal thread table, and runs the appropriate APL function in the corresponding
APL thread. Once again, when the function terminates, the APL thread is retained for
future use. If a call comes in on a new system thread, a new APL thread is created.

Notice that under normal circumstances, APL thread 0 is never used in the Dyalog
DLL. It is only ever used if, during debugging, the APL programmer explicitly
changes to thread 0 by executing)TID 0 and then runs an expression.

Periodically, APL checks the existence of all of the system threads in the internal
thread table, and removes those entries that are no longer running. This prevents the
situation arising that all APL threads are in use.

DYALOG.EXE Threading
In these cases, all calls to Microsoft .NET are initiated by Dyalog APL. However,
these calls may well result in calls being made back from .NET into APL.

When you make a .NET call from APL thread 0, the .NET call is run on the same
system thread that is running APL itself.

When you make a .NET call from any other APL thread, the .NET call is run on a
different system thread. Once again, the correspondence between the APL thread
number and the associated system thread is maintained (for the duration of the APL
thread) so that there are no thread/GUI ownership problems. Furthermore, APL
callbacks invoked by .NET calls back into APL will automatically be routed to the
appropriate APL thread. Notice that, unlike a call to a DLL via ⎕NA, there is no way
to control whether or not the system uses a different system thread for a .NET call. It
will always do so if called from an APL thread other than APL thread 0.

Thread Switching
Dyalog APL will potentially thread switch, i.e. switch execution from one APL
thread to another, at the start of any line of APL code. In addition, Dyalog APL will
potentially thread switch when a .NET method is called or when a .NET property is
referenced or assigned a value. If the .NET call accesses a relatively slow device,
such as a disk or the internet, this feature can improve overall throughput by
allowing other APL code while a .NET call is waiting. On a multi-processor
computer, APL may truly execute in parallel with the .NET code.

Note that when running DYALOG.EXE, .NET calls made fromAPL thread 0 will
prevent any switching between APL threads. This is because the .NET code is being
executed in the same system thread as APL itself. If you want to use APL multi-
threading in conjunction with .NET calls, it is therefore advisable to perform all of
the .NET calls from threads other than APL thread 0.

Chapter 12: Implementation Details 267

Debugging an APL.NET Class
All DYALOG.NET objects are executed by the Dyalog DLL. The full development
version of the Dyalog DLL contains all of the development and debug facilities of
the APL Session, including the Editors and Tracer. The run-time version contains no
debugging facilities at all. The choice of which version of the Dyalog DLL is used is
made when the assembly is exported fromAPL using the File|Export menu, or
compiled using dyalogc.exe.

If an APL .NET object that is bound to the full development version generates an
untrapped APL error (such as a VALUE ERROR) and the client application is
configured so that it is allowed to interact with the desktop, the APL code will
suspend and the APL Session window will be displayed. Otherwise, it will throw an
exception.

If an APL .NET object that is bound to the run-time version of the Dyalog DLL
generates an untrapped APL error it will throw an exception.

Specifying the DLL
There are a number of different ways that you choose to which of the two versions of
the Dyalog DLL your DYALOG.NET class will be bound. Note that the appropriate
DLL must be available when the class is subsequently invoked. If the DLL to which
the APL .NET class is bound is not present, it will throw an exception.

If you build a .NET class from a workspace using the File/Export menu item, you use
the Runtime application checkbox. If Runtime application is unchecked, the .NET
Class will be bound to the full development version. If Runtime application is
checked, the .NET Class will be bound to the run-time version.

If you build a .NET class using the APLScript compiler, it will by default be bound
to the full development version. If you specify the /runtime flag, it will be bound
to the run-time version.

If your APL .NET class is a Web Page or a Web Service, you specify to which of the
two DLLs it will be bound using the Debug attribute. This is specified in the
opening declaration statement in the .aspx, .asax or .asmx file. If the statement
specifies "Debug=true", the Web Page orWeb Service will be bound to the full
development version. If it specifies "Debug=false", the Web Page orWeb
Service will be bound to the run-time version.

If you omit the Debug= attribute in yourWeb page, the value will be determined
from the various .NET config files on your computer.

268 .NET Interface Guide

Forcing a suspension
If an APL error occurs in an APL .NET object, a suspension will occur and the
Session will be available for debugging. But what if you want to force this to happen
so that you can Trace your code and see what is happening?

If your APL class is built directly from a workspace, you can force a suspension by
setting stops in your code before using Export to build the DLL. If your class is a
Web Page orWeb Service where the code is contained in a workspace using the
workspace behind technique (See Chapter 8), you can set stops in this workspace
before you)SAVE it.

If your APL class is defined entirely in a Web Page, Web Service, or an APLScript
file, the only way to set a break point is to insert a line that sets a stop explicitly
using ⎕STOP. It is essential that this line appears after the definition of the function
in the script. For example, to set a stop in the Intro\intro1.aspx example
discussed in Chapter 8, the script section could be as follows:

<script language="dyalog" runat="server">

∇Rotate args
:Access Public
:Signature Reverse Object,EventArgs

(⊃args).Text←⌽Pressme.Text
∇

3 ⎕STOP 'Rotate'

</script>

As an alternative, you can always insert a deliberate error into your code!

Finally, you can usually force a suspension by generating a Weak Interrupt. This is
done from the pop-up menu on the APL icon in the System Tray that is associated
with the full development version of the Dyalog DLL. Note that selecting Weak
Interrupt from this menu will not have an immediate effect, but it sets a flag that will
cause Dyalog APL to suspend when it next executes a line of APL code. You will
need to activate your object in some way, e.g. by calling a method, for this to occur.
Note that this technique may not work if the Dyalog DLL is busy because a thread
switch automatically resets the Weak Interrupt flag. In these circumstances, try again.

The run-time version of the Dyalog DLL does not display an icon in the System
Tray.

Chapter 12: Implementation Details 269

Using the Session, Editor and Tracer
When an DYALOG.NET object suspends execution, all other active APL .NET
objects bound to the full development version of the Dyalog DLL that are currently
being executed by the same client application will also suspend. Furthermore, all the
classes currently being hosted by the Dyalog DLL are visible to the APL developer
whether active (an instance is currently being executed) or not. Note that if a client
application, such as ASP.NET, is also hosting APL .NET objects bound to the
runtime version of the Dyalog DLL, these objects will be hosted in a separate
workspace attached to the run-time version of the Dyalog DLL and will not be
visible to the developer.

Debugging a running DYALOG.NET object is substantially the same process as
debugging a stand-alone multi-threaded APL application. However, there are some
important things to remember.

Firstly, the namespace structure above your APL class should be treated as being
inviolate. There is nothing to prevent you from deleting namespaces, renaming
namespaces, or creating new ones in the workspace. However, you do so at your
peril!

Similarly, you should not alter, delete or rename any functions that have been
automatically generated on your behalf by the APLScript compiler. These functions
are also inviolate.

If execution in the Dyalog DLL is suspended, you may not execute)CLEAR or
)RESET. You may execute)OFF or ⎕OFF, but if you do so, the client application
will terminate. If you attempt to close the APL Session window, you will be warned
that this will terminate the client application and you may cancel the operation or
continue (and exit).

If you fix a problem in a suspended function and then press Resume orContinue
(Tracer) or execute a branch, and the execution of the currently invoked method
succeeds, you will be left with an empty state indicator (assuming that no other
threads are actively involved). The Dyalog DLL is at this stage idle, waiting for the
next client request and the state indicator will be empty.

If, at this point, you close the APL Session window, a dialog box will give you the
option of terminating the (client) application, or simply hiding the APL Session
Window. If you execute)OFF or ⎕OFF the client application will terminate.

Note that in the discussion above, a reference to terminating the client application
means that APL executes Application.Exit(). This may cause the application
to terminate cleanly (as with ASP.NET) or it may cause it to crash.

270 .NET Interface Guide

The web.config file
ASP.NET configuration parameters are defined in a file named web.config
located in or above the root directory of an ASP.NET application. Parameters defined
in these files supplement or override ASP.NET parameters which are defined system-
wide.

The web.config file provided with Dyalog is located in the Dyalog sub-directory
samples\asp.net and applies to all the examples residing in child directories of
this directory. If you create a Dyalog ASP.NET application elsewhere on your
system, you will need to copy this web.config into the application root directory.
The parameters defined in the Dyalog web.config file are described below.
Further details are provided in comments in the file.

DyalogBinDirectory
This specifies the full path to the Dyalog binaries (DLLs and script compiler).

dyalog (compiler)
This section defines an ASP.NET language named dyalog so that the expression
Language = "dyalog" in a script file associates that script with the Dyalog
APLScript compiler dyalogc.exe. Subsidiary parameters and keys for the dyalog
compiler are:

debug "true" (default) or "false" to bind the script to
the Development DLL or the Run-time DLL

DyalogCompilerEncoding "classic" or "unicode"..

DyalogCompilerOptions
This is used to define options for the script
compiler. For example, to set []WX to 1 use
"/wx:1".

DyalogCompilerEmitPragmas Must be "true" if you are using workspace
behind.

DyalogIsolationMode
This parameter specifies the isolation method. See Isolation Mode on page 260 for
further details.

DyalogCacheDirectory may be used to define the directory used to save the cached
files.

271

Index

.

.NET classes 5

.NET Classes
exploring 12
using 8
writing 103

.NET namespaces 5

A

Access:Constructor statement 249
accessors 252
ACTFNSworkspace 198
Active Server Pages 133
adding .NET objects 21
APL language extensions

for .NET objects 21
aplc.exe 240
APLScript 239

Access:Constructor statement 249
Access:Public statement 142, 191, 249
Access:WebMethod statement 249
Class statement 196, 248, 256
compiler 240, 256
copying fromworkspaces 245
defining classes 248
defining properties 252
editing 242
EndClass statement 196, 248, 256
EndIndexer statement 255
EndNamespace statement 247
EndProperty statement 252
example of a .NET Class 250
example of a console application 246
example of a GUI application 245
importing code 243

Indexer statement 255
layout 244
Namespace statement 247
ParameterList statement 191, 250
Property statement 252
Returns statement 142, 250
specifying namespaces 247
Web Page 255
Web Service 256

APLScript compiler 4
AppDomain 260
application 134, 136
application pool 135
Application.Run method 41
Application_End method 152
Application_Start method 152
ASP.NET.config files 152
assemblies

browsing 179
creating 104
exploring 12

AsyncCallback class 183
asynchronous use

of a Web Service 181
AutoPostback property 194

B

base class 5, 31, 103-104, 112, 140, 148, 179,
193, 195-196, 248-250, 256
bridge dll 4, 7, 32, 104, 110
BRIDGE.DLL 32
Browse .NET Assembly dialog box 13
Button class 37, 221
ByRef class 32

C

C# 109, 115, 117, 121, 125, 128-129
casts 24
CastToTypes 24
child controls

of a custom control 220
class constructor 16

272 .NET Interface Guide

Class Methods 21
Class statement 196, 248, 256
code behind 195
Common Language Runtime 2
Common Operators 21
Common Type System 2, 5
comparing .NET objects 21
compositional control 219
config files

for ASP.NET 152
constructor 37, 112
constructor methods 9
constructor overloading 123
Constructor statement 249
Constructors 9
Constructors folder 16
Control class 215
control structures

disposable 11
ControlCollection class 220
Convert class 32, 206
CreateChildControls method 220
creating GUI objects 35
custom controls 215, 219

D

data binding 43, 63
DataGrid class 214

examples 41
DataGrid control 201
debug 270
debugging 118
DECF 34
Directory class 27
disposable statement 11
DivRemmethod 32
DropDownList class 192
dyalog compiler 270
dyalog dll 4, 104, 143, 240, 259, 265-267
Dyalog DLL

workspace management 261
Dyalog namespace 32
DyalogBinDirectory 270

DyalogCacheDirectory 270
DyalogCompilerEmitPragmas 270
DyalogCompilerEncoding 270
DyalogCompilerOptions 270
DyalogIsolationMode 270
dyalognet dll 4
dyalogprovider dll 4

E

EndClass statement 196, 248, 256
enumeration 38-39
enumerations 31
ErrorMessage property 210
EventArgs class 204
exception 23, 120
Exception class 23
Export 104, 112

F

File class 27
FileStream class 34
floating-point representation 34
Font class 32
FontStyle class 32
Form.ControlCollection class 38
FormBorderStyle class 31, 38
FormStartPosition class 38

G

GDIPlus workspace 42
GetPostBackEventReference method 227, 230
GetType method 10
global.asax file 152
GOLF function 42, 175
GolfService

calling from C# 167
testing from a browser 162
using fromDyalog APL 175
writing 151

GraphicsUnit class 32
GUI objects 35

Index 273

H

hidden fields 189
HtmlTextWriter class 226
HttpWebRequest class 29
HttpWebResponse class 30

I

IIS 133
application 134, 136
application pool 135
installation 134
virtual directory 134, 139, 144-145, 147,

168, 186, 242
ILDASM 12, 251, 254-255
INamingContainer Interface 219
Indexers 255
Input Method Editor (IME) 239
Interfaces 131
intrinsic controls 188-189
IpostBackDataHandler Interface 228
IPostBackDataHandler Interface 224
IPostBackEventHandler Interface 224
Isolation Mode 260
IsPostBack property 193, 204
IsValid property 207

J

JavaScript 227, 230

L

LiteralControl class 220
LoadPostData method 228
LoanService

exploring 179
testing from a browser 149
using asynchronously 181
using fromDyalog APL 174
writing 147

M

MailMessage class 28
MakeProxy function 173, 175
manipulating files. 27
Math class 32
maxws parameter 261
MAXWS parameter 240
Metadata 12, 14, 179
method overloading 127
method signature 191
Methods folder 18
Microsoft Internet Information Services 133
modal dialog box 36-37

N

namespace reference array expansion 28, 175
NET classes 12
New method 16, 37, 249
New system function 9
non-modal Forms 41
Notepad 239

O

object hierarchy 36
OnServerValidate event 209
Overloading 9
overloads 24
OverloadTypes 24
overriding 103

P

Page_Load event 192, 201
Page_Load function 202-203
Page_Load method 201
ParameterList statement 250
PATH:in APLScript 248
Point class 36-37
Pointers 32
positioning Forms and controls 36

274 .NET Interface Guide

post back 189, 203, 221, 228
post back events 229
private 16, 222
PROJ workspace 198
properties

defining 221
property get function 225
property set function 225

Properties folder 17
proxy class 42, 173-175
ProxyData class 29

R

RadioButton control 210
RadioButtonList control 211-212
RaisePostBackEvent method 229
RaisePostDataChangedEvent method 228
RegisterPostBackScript method 230
Render method 217, 226, 230
RequiredFeildValidator control 205
RequiredFieldValidator control 209
Returns statement 250
runat attribute 188

S

Sending an email 28
server controls 188
signature statement 107, 142
Size class 36
sizing Forms and controls 36
SmtpMail class 28
State Indicator 263
Stream class 30
StreamReader class 30
subtracting .NET objects 21

T

TestAsyncLoan function 182
TETRIS workspace 42
TextBox class 220
thread switching 266

ToDouble method 206
ToInt32 method 207
ToString method 8, 10

U

Unicode 239
Unicode font 242
UnicodeToClipboard parameter 243
URI class 29
Using statement 7
USING system variable 6, 29, 37, 131, 191
using XAML 44

V

Validate method 212
Validation

of ASP.NET web pages 205
ValidationSummary control 205, 214
variant operator 24
virtual directory 134
Visual Studio .NET 104

W

Weak Interrupt
in dyalog101.dll 268

web pages
code behind 195
custom controls 215
writing 185

web scraping 29
Web Services 2

asynchronous use 181
web.config 270
WEBSERVICES workspace 42, 152, 173, 175
WFGOLF function 42
Windows Presentation Foundation 43
Windows.Forms 35
WINFORMSworkspace 35, 41
Workspace Explorer

browsing assemblies 179
workspace size 261

Index 275

WPF tutorial 44
WSDL.EXE 173

X

XAML 44

276 .NET Interface Guide

