Dyalog APL Language
Reference Guide

Dyalog version 17.0

The tool of thought for software solutions

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2018 by Dyalog Limited

All rights reserved.

Version: 17.0

Revision: 2987 dated 20230217

Please note that unless otherwise stated, all the examples in this document assume that JIO is 1, and OML is 1.

No part of this publication may be reproduced in any form by any means without the prior written

permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents hereof and
specifically disclaims any implied warranties of merchantability or fitness for any particular purpose.

Dyalog Limited reserves the right to revise this publication without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is aregistered trademark of The Open Group.

Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

macOS®, Mac OS® and OS X® (operating system software) are trademarks of Apple Inc., registered

inthe U.S. and other countries.
Array Editor is copyright of davidliebtag.com.

All other trademarks and copyrights are acknowledged.

Contents

Chapter 1: Primitive Functions 1
Key to Notationl 1
Migration Levell 1
Scalar FUNnCtions ... 2
Mixed FUNCHIONS 5
Conformability 8
Fill Elements ... oo 8
AXIS OPCTatOT 9
FUNCHONS (A-Z) <. 9
Primitive FUNCtioNSs A-Z ... i 9
ADOTt 10
Add 11
And, Lowest Common Multiple 12
ASSIGNMENt . 13
Assignment (Indexed) 16
Assignment (SelectiVe) 21
Binomial .. 23
Branch . 24
Catenate/Laminatel 26
Catenate First ... 28
Cellin g oo 28
CarCUar .. 29
GO U At .. 30
DAl . 31
DeCOde .. 32
Depth . 34
Direction (SIgNUM) _ ... 35
DSCIOSE ... 36
DAVIAe ... 37
D) (o 38
Drop With AXeS ... 39
ENClOSe ... 40
Enclose With AXeS o 41
ENcode oo 42
Endist 44
Equal _ oL 45
EXcluding ..o . 46

X O UL - 47

EXpand 48
Expand First 49
Exponential ... 49
Factorial .. 49
Find 50
TSt i 51
FlOOT 51
Format (Monadic) 52
Format (Dyadic) il 56
Grade Down (Monadic) 58
Grade Down (Dyadic) L 59
Grade Up (MonadiC) 62
Grade Up (Dyadic) ... i 65
(€5 (< 11 S 66
Greater Or Equal | . 67
DX . 68
Index With A XS ... 71
Index Generator 72
Index Of L 73
INdeXiN g 76
TN TS Ot OM i 80
Interval IndeX 81
3 88
LSS e 89
Less Or Equal .. . 89
Logarithm L 90
Mg it 90
MatCh . 91
Matrix DIvide ... 92
MaatriX IV eTSe 94
MAaXIMUIN | e e 95
MM TS D . 95
MINIMUIN . e 95
IMINUS e 95
VI X . 96
MU DY L 101
NN 101
Natural Logarithm . 102
N AtV 102
N St il 103
N OT il 103
N Ot e L 104
Not Equal L 104
NOt MatCh L. 105

Pt It OM 107
Partitioned EnCloSe 109
Pi TIMCS . o o 110
PaCK L 110
PlUS 111
POW T 111
RaAVEL | 112
Ravel With AXES .o e 112
Reciprocal ..l 115
R Cate 115
ReShaDe 117
ReSIAUC L. 117
ReVeTSe . 118
ReeVerse FarSt 118
RUgt L 119
ROIL L 120
ROOtAte 121
Rootate Farst 122
S | . 123
S AP 124
S It 125
S TACt . L 125
B ;1) £ 126
K 127
Take With A XES o e 128
Tl L 129
IS o e 129
Transpose (Monadic) L 129
Transpose (Dyadic) ... 130
YD il 132
Un0M e 132
U QU 133
W ETE 134
Wt OUt 134
ZLAe L 134
Chapter 2: Primitive Operators o i 135
Operator SYNtaX 135
Operators Summarised il 137
OPeratOrS (A2 - 139
Primitive Operators (A-Z) 139
Assignment (Modified) i, 139
Assignment (Indexed Modified) 140

Assignment (Selective Modified) 141

Al L 142
Axis (with Monadic Operand) L 146
Axis (with Dyadic Operand) 147
oMU il 150
Composition (Form I) .. 151
Composition (Form I1) 152
Composition (Form II1) ... 153
Composition (Form IV . 153
Each (with Monadic Operand) L 154
Each (with Dyadic Operand) 155
L B oA L 156
Inner ProdUct o 157
KOy il 158
Outer Product 162
Power Operator .. iill. 163
RaANK 166
RedUCe .. 169
Reduce First ... 171
Reduce N-WisSe .. 172
Reduce First N-Wiseo 172
T o 173
SCan FarSt 174
D aAW I 175
S NGl 176
VaTIANt 183
Chapter 3: The -Beam Operator 187
The [-Beam Operator 187
LB | il 187
Inverted Table Index Of ... iil.. 190
Execute EXpression ...l 192
Overwrite Free PocKets iill. 193
Canonical Representation 194
Unsqueezed TyPe 194
Syntax ColoUTing oo 195
Syntax Colour TOKens 196
Compress Vector of Short Integers 197
Serialise/Deserialise ATTaY o oo 199
Compiler Control ... iil. 200
Trap Control il 203
Case COMV eIt _ il 204
Called Monadically 205
Temporary Directory 206

Loaded Librarieso e e 207

vii

Number of Threads 208
Parallel Execution Threshold 208
Update Function Time Stamp 209
Hash Array . 210
Memory Manager StatiStiCs oL 212
Specify Workspace Available 215
Update DataTable ... L 216
Read DataTable 219
Remove Data Binding 221
Create Data Binding Source 222
Create NET Delegate 233
Identify INET Type ... o 234
Flush Session Caption 234
Close AL WindowWs - 235
Set Dyalog Pixel Type 235
Override COM Default Value 236
Export To Memory ...l 236
Close NET AppDomain 237
Set Workspace Save Options o oo 237
Expose Root Properties ... 238
Discard Thread on ExXit _ .. 239
Discard Parked Threads 239
Mark Thread as Uninterruptible 240
Use Separate Thread For NET e, 241
ContinuUe AULOSAVE 242
Disable Component Checksum Validation 242
Send Text to RIDE-embedded Browser 243
Connected to the RIDE ... 243
Manage RIDE Connections oo 244
Fork New TasK ..o e e 246
Change USer _ .. 247
Reap Forked Tasks oL 248
Signal CoUNtS ... 250
List Loaded Files .. .o e e 251
List Loaded File Objects L 252
Remove Loaded File Object Info 253
Loaded File Object Info L 255
JSON Translate Name L 256
Singular Value Decomposition 257
Line CoOUNt . 258
Chapterd: System FUnCtions 261
System ConStantS | ...l 263

System Variables ...l 264

viii

System Operators il 266
System NamesPaces - 266
System Functions Categorised 267
System FUnctions (A-Z) ... L 276
Character Input/OutpuUt .. 277
Evaluated Input/Output . 279
Underscored Alphabetic Characters 281
Alphabetic CharaCters 281
Account Information .. 282
ACCOUNt NG .. e 282
Arbitrary Ut 283
Arbitrary OUtPUL . 285
AT DULES 286
ALOMIC VO O . 290
Atomic Vector - Unicode 290
Base Class oL 293
ClaSS L 294
Clear WorKSpace ... L 296
Execute Windows Command 297
Start Windows Auxiliary Processor 301
Canonical Representation 302
Chan e SPaCe . 304
Comma Separated Values L 307
Comparison Tolerance L 321
Copy WoorKSpaCe . 322
DagitS L 324
Decimal Comparison Tolerance 324
Display Form ... 325
Division Method .. 328
D elaY L 329
Diagnostic MeSSage 329
Extended Diagnostic Messageo i iiiiiiiiiil. 330
Dequeue Events ... 335
Data Representation (Monadic) 338
Data Representation (Dyadic) 339
Edit OB et L 341
Event Message 343
Event NUmM T 343
EX oD 0N 344
EXpunge ObJeCt L 345
EXpOrt OBy eCt 347
File Append Component 348
File System Available . .. 348
File Check and Repair 349

File CODY .. L 352

File Create ..o 354
File Drop Component L 356
File Brase ..o 357
File HiStOry .o L 357
File Hold oo 359
FiX STt L 361
Component File Library 363
Format (Monadic) 364
Format (Dyadic) ... L 365
File Names _ 372
File NUmMbeTS 373
File Properties .. L 374
Floating-Point Representation 378
File Read A CCeSS ... 380
File Read Component Information __ 381
File Read Components L 382
File Rename ... L 383
File Replace Component 384
File ReSIZC ... L 385
File Siz€ L 386
File Set ACCeSS ... 386
File Share Tie L 387
Exclusive FIle Ti€ ... e e e e e e 388
File UnNtie .o e e e 389
Fix Definition 389
INStaNCes .. 390
Index Origin 391
JSON ConvVert .. 392
Koy Label o 402
Line COUNt 402
Load WorKSpaceo 403
LoCK D efinition 404
Latent EXPression 405
Map File L 405
Make DIreCtOry 408
Migration Level . L 409
St MONITOT . o e e e 411
Query MONItOT . 412
Name ASSOCIAtION 413
Native File Append ... 440
Name Classification L 441
Native File Copy ... 453
Native File Create 458
Native File Delete 460

Native File Brase 462

N oW IS AN CE . e 463
Native File EXIStS oo e e 465
Read Text File .o e 466
Native File Information 469
NaME LSt L 473
Native File LoCK ... 477
Native File MoOvVe L 479
Native File Names _ .o 483
Native File Numbers ... 483
File Name Parts _ .. 484
Write Text File o 486
Enqueue Bvent il 488
Nested Representation 490
Native File Read ... 491
Native File Rename 493
Native File Replace ... 493
Native File ReS1Z€ . oo e e e e e 494
N A S PACE ..l 495
Namespace Indicator 497
Native File Size ... 497
Native FIle i€ .o e e e e e e e 498
NULL O L 500
Native File Untie ..o e e e e e e e 501
Native File Translate ... 501
SIgn OfF AP L 502
VAT ANt . 502
Object Representation 503
Search Path . 507
Program Function Key L 509
Print PreCiSION o o 510
Profile Application 511
Print Width 518
RePIaCe L 519
Cross ReferenCes 541
Random LinK ... 542
Space Indicator 547
Response Time Limit ... 548
SCaATC 548
Save WoOTKSPaCE 549
Screen DImeNSIONSo 550
Session NameSPACE oo 550
Execute (UNIX) Command 551
Start UNIX Auxiliary Processor 552
Shadow Name . 553

State INdiCator .. 554

xi

Signal EVvent L 555
Siz€ 0f OB JCCt ... 559
Screen MaD il 560
Screen Read ... 564
SOUTC . . 568
State Indicator StacK 569
State 0f ObJeCt _ 571
St S 0D .. 572
QUeTY StOD - 573
Set Access Control .. 574
Query Access Control 575
Shared Variable Offer _ 576
Query Degree of Coupling 578
Shared Variable QuUery 579
Shared Variable Retract Offer 579
Shared Variable State 580
Terminal Control 581
Thread Child Numbers ...l 582
Gt TOKENS .. 582
IS SPACE ..o 584
Current Thread Identity ... L 585
Kall Thread ... e e e 585
Current Thread Name .. 586
Thread NUMbeTS 586
Token Pool L 586
PUt TOKENS .. 587
St TTaCE ... 588
Query TraCe il 589
Trap Bvent .. 590
Token ReqUeStS ... L 594
LM S A L 595
Wait for Threads to Terminate 596
Unicode CONVETIt e 597
Using (Microsoft NET Search Path) 600
Vector Representation 601
Verify & Fix Input .o 603
Workspace Available 604
Window Create Object 605
Window Get Property L 608
Window Child Names 609
Window Set Property ... 610
Workspace Identification 611
Window EXpPOSe ... 612
XML CONVEIt e e e e e e e e e 613

Xii

Set External Variable 629
Query External Variable 631
Chapter 5: SystemCommands 633
IntrodUCtioN . 633
System Commands (A-Z) 635
System Commands (A-zZ) 635
LSt ClasSeS .o ool 635
Clear WorKSpace ...l 635
Windows Command Processor _ il 637
Save Continuation _ ...l 638
Copy Woorkspace L 639
Change Space ... oo i 643
Drop WoorKSpacel 643
Edit Object .. 644
Erase Object ... 645
LSt EVents . 645
List Global Defined Functions 646
Display Held ToKens 647
List Workspace Library 648
Load Workspacel 649
List Methods 651
Create NamesPacel 651
List Global Namespaces i 652
List Global Namespaces i 652
Sign Off AP L 652
List Global Defined Operators 652
Protected CoPY ... 653
st Properties ..l 654
Reset State Indicator 654
Save WoorKSPaCe il 655
Execute (UNIX) Command 657
State Indicator ...l 658
Clear State Indicator il. 661
State Indicator & Name List il 661
Thread Identity i 662
List Global Defined Variables 663
Workspace Identification 663
Load without Latent EXpression 664
SYMbOlIC INAEX 665

Chapter 1:

Primitive Functions

Key to Notation

The following definitions and conventions apply throughout this manual:

f A function, or an operator's left operand (function or array).
g A function, or an operator's right operand (function or array).
A An operator’s left argument when an array.

B An operator’s right argument when an array.

X The left argument of a function.

Y The right argument of a function.

R The explicit result of a function.

[K] Axis specification.

[I] Index specification.

{X} The left argument of a function is optional.

The function may or may not return a result, or the result may be
suppressed.

{R}«

function may refer to a primitive function, a system function, a defined (canonical,
dfn or assigned) function or a derived (from an operator) function.

Migration Level

OML determines the degree of migration of the Dyalog APL language towards IBM's
APL2. Unless otherwise stated, the manual assumes [JML has a value of 1.

Language Reference Guide

Scalar Functions

There is a class of primitive functions termed scalar functions This class is identified
in Table 1 below. Scalar functions are pervasive, i.e. their properties apply at all
levels of nesting. Scalar functions have the following properties:

Table 1: Scalar Primitive Functions

Symbol Monadic Dyadic

+ Conjugate Plus (Add)

- Negative Minus (Subtract)
x Direction (Signum) Times (Multiply)
+ Reciprocal Divide

| Magnitude Residue

L Floor Minimum

[Ceiling Maximum

* Exponential Power

® Natural Logarithm Logarithm

o Pi Times Circular

! Factorial Binomial

~ Not $

? Roll $

€ Type (See Enlist) $

Chapter 1: Primitive Functions 3

Symbol Monadic

Dyadic

And

Or

Nand

Nor

Less

Less Or Equal

Equal

Greater Or Equal

Greater

£

Not Equal

$ Dyadic form is not scalar

Monadic Scalar Functions

« The function is applied independently to each simple scalar in its argument.
« The function produces a result with a structure identical to its argument.

o When applied to an empty argument, the function produces an empty result.
With the exception of + and €, the type of this result depends on the
function, not on the type of the argument. By definition + and € return a
result of the same type as their arguments.

Example

0.5

2 (1 4)
1 0.25

Language Reference Guide

Dyadic Scalar Functions

o The function is applied independently to corresponding pairs of simple
scalars in its arguments.

« A simple scalar will be replicated to conform to the structure of the other
argument. If a simple scalar in the structure of an argument corresponds to a
non-simple scalar in the other argument, then the function is applied
between the simple scalar and the items of the non-simple scalar.
Replication of simple scalars is called scalar extension.

« A simple unit is treated as a scalar for scalar extension purposes. A unit is a
single element array of any rank. If both arguments are simple units, the
argument with lower rank is extended.

o The function produces a result with a structure identical to that of its
arguments (after scalar extensions).

o If applied between empty arguments, the function produces a composite
structure resulting from any scalar extensions, with type appropriate to the
particular function. (All scalar dyadic functions return a result of numeric

type.)

Examples

23 4+123
7

2 (3 4) +1 (2 3)

57

(1 2) 3 + 4 (5 6)
56 89

10 x 2 (3 4)

30 40

2 4 =2 (4 6)
10

(1 1p5) - 1 (2 3)
3 2

114''+10

11(0pc' ' (0 0))x""

0 00

Note: The Axis operator applies to all scalar dyadic functions.

Chapter 1: Primitive Functions 5

Mixed Functions

Mixed rank functions are summarised in Table 2. For convenience, they are sub-
divided into five classes:

Table 2: Mixed rank functions

These functions change the structure of the arguments in
Structural

some way.
Selection These functions select elements from an argument.

These functions identify specific elements by a Boolean map
Selector o

or by an ordered set of indices.

. These functions transform arguments in some way, or provide

Miscellaneous | . .

information about the arguments.
Special These functions have special properties.

In general, the structure of the result of a mixed primitive function is different from
that of its arguments.

Scalar extension may apply to some, but not all, dyadic mixed functions.

Mixed primitive functions are not pervasive. The function is applied to elements of
the arguments, not necessarily independently.

Examples

"CAT' 'DOG' 'MOUSE'1c'DOG'
2

3t 1 'TWO' 3 'FOUR'
1 TWO 3

In the following tables, note that:

o [] Implies axis specification is optional
o $ This function is in another class

Language Reference Guide

Table 3: Structural Primitive Functions

Symbol | Monadic Dyadic

o $ Reshape

s Ravel [] Catenate/Laminate[]
5 Table Catenate First / Laminate []
¢ Reverse [] Rotate []

e Reverse First [] Rotate First []

® Transpose Transpose

Mix/Disclose (First) [] $

' Split [$

c Enclose [] Partitioned Enclose []
c Nest Partition []

€ Enlist (See Type) $
Table 4: Selection Primitive Functions

Symbol | Monadic Dyadic

> Disclose /Mix Pick

1 $ Take []

4 $ Drop []

/ Replicate []

+ Replicate First []

\ Expand []

X Expand First []

~ $ Without (Excluding)
n Intersection

v Unique Union

- Same Left

r Same Right

Chapter 1: Primitive Functions

Table 5: Selector Primitive Functions

Symbol | Monadic Dyadic

1 Index Generator Index Of

1 Where Interval Index
€ $ Membership
A Grade Up Grade Up

' Grade Down Grade Down
? $ Deal

€ Find

Table 6: Miscellaneous Primitive Functions

Symbol | Monadic Dyadic

o] Shape $

= Depth Match

Tally Not Match

& Execute Execute

3 Format Format

L Decode (Base)

Encode (Representation)

Matrix Divide Matrix Inverse
Table 7: Special Primitive Functions

Symbol | Monadic Dyadic

> Abort

> Branch

-« Assignment

[I]« Assignment(Indexed)
(I)« Assignment(Selective)
[1] Indexing

Language Reference Guide

Conformability

The arguments of a dyadic function are said to be CONFORMABLE if the shape of
each argument meets the requirements of the function, possibly after scalar extension.

Fill Elements

Some primitive functions may include fill elements in their result. The fill element
for an array is the enclosed type of the disclose of the array (c€>Y for array Y with
[OML<«0). The Type function (€ with [JmL<0) replaces a numeric value with zero and
a character value with ' '

The Disclose function (2) returns the first item of an array. If the array is empty, 2Y is
the PROTOTYPE of Y. The prototype is the type of the first element of the original
array.

Primitive functions which may return an array including fill elements are Expand (\
or X), Replicate (/ or #), Reshape (p) and Take (1).

Examples

ML<0
€1b
000O00O0

€2(13)('ABC")
00O

ce>(13)('ABC")
00O

ceo>c(13)('ABC')
00O

A<'ABC' (1 2 3)
A<0pA
ceoA

111

'=ceoA

Chapter 1: Primitive Functions 9

Axis Operator

The axis operator may be applied to all scalar dyadic primitive functions and certain
mixed primitive functions. An integer axis identifies a specific axis along which the
function is to be applied to one or both of its arguments. Ifthe primitive function is
to be applied without an axis specification, a default axis is implied, either the first or

last.
Example
10 1/[1] 3 2p16
12
56
1 2 3+[2]2 3p10 20 30
11 22 33
11 22 33

Sometimes the axis value is fractional, indicating that a new axis or axes are to be
created between the axes identified by the lower and upper integer bounds of the
value (either of which might not exist).

Example
‘NAMES',[0.5]"'="

(I0 isan implicit argument of an axis specification.

Functions (A-Z)

Scalar and mixed primitive functions are presented in alphabetical order of their
descriptive names as shown in Figures 3(i) and 3(ii) respectively. Scalar functions
are described in terms of single element arguments. The rules for extension are
defined at the beginning of this chapter.

The class of the function is identified in the heading block. The valence ofthe
function is implied by its syntax in the heading block.

Primitive Functions A-Z

10

Language Reference Guide

Abort

->

This is a special case of the Branch function used in the niladic sense. Ifit occurs in
a statement it must be the only symbol in an expression or the only symbol forming
an expression in a text string to be executed by ¢. It clears the most recently
suspended statement and all of its pendent statements from the state indicator.

The Abort function has no explicit result. The function is not in the function domain
of operators.

Examples
vV F
[1] 'FL1]!
[2] G
[3] 'FL31"
v
VG
[1] 'G[1]"
[2] -
[3] '‘G[3]"
v
F
FL1]
G[1]
OVR'VALIDATE'
vV VALIDATE
[1] ->(12=110AI)p0 o 'ACCOUNT NOT AUTHORISED' ¢ -
v
VALIDATE

ACCOUNT NOT AUTHORISED

1t0AT
52

Chapter 1: Primitive Functions 11

Add

ReX+Y

Y must be numeric. X must be numeric. R isthe arithmetic sumof X and Y. R is
numeric. This function is also known as Plus.

Examples
12+ 3 4

12+ 3,4k 5
L 6 7

1J1 232 + 373
4LJ4 5J5

5 + 4LJ4 5735
“1J4% 0J5

12 Language Reference Guide

And, Lowest Common Multiple

ReXAY

Case 1: X and Y are Boolean

R is Boolean is determined as follows:

X

00

Y

OO

o)

~OO0OO

Note that the ASCII caret (*) will also be interpreted as an APL And (*).

Example

0101~0011

0001

Case 2: Either or both X and Y are numeric (non-Boolean)

R is the lowest common multiple of X and Y. Note that in this case, JCT and ODCT

are implicit arguments.

Example

15127 23140

105 1 4 0

2 3 4% A 0j1 152 233

0J2 3J6 8J12

232 2j4 A 535 4j4

10J10 "4J12

Chapter 1: Primitive Functions 13

Assignment X<«Y

Assignment allocates the result of the expression Y to the name or names in X.

If'Y is an array expression, X must contain one or more names which are variables,
system variables, or are undefined. Following assignment, the name(s) in X become
variable(s) with value(s) taken from the result of the expression Y.

If X contains a single name, the variable assumes the value of Y. If X contains
multiple names then Y can be a single-item array of any rank (including a scalar) or a
vector. If' Y is a single-item array, the scalar value oY is assigned to all names in X.
Otherwise, each element of Y is assigned to the corresponding name in X. Although
not mandatory, Dyalog recommends that the names in X are enclosed in parentheses
to reduce potential ambiguity in assignment statements.

The assignment arrow (or specification arrow) is often read as 'Is' or 'Gets'.

Examples of single assignment

A<2.3
A
2.3
A<13
A
123

Examples of multiple assignment using parentheses

(A B)<«2
A
2
B
2
(P 0I0O Q)«'TEXT' 1 (1 2 3)
P
TEXT
gIo
1
Q

123

14

Language Reference Guide

Example of multiple assignment without parentheses
year month day«2017 05 24

day
24

month
5

year
2017

Implementation note: erroneous expressions such as var 3+5 will result in 5 being
assigned to var, even though a SYNTAX ERROR will be generated. In the case of
(var 3)<5 no assignment will be made.

Pass-through assignments are permitted. The value of Y is carried through each
assignment:

I<J«K<0
I,7,K
00O

Function Assignment

IfY is a function expression, X must be a single name which is either undefined, or is
the name of an existing function or defined operator. X may not be the name ofa
system function, or a primitive symbol.

Examples
PLUS«+
PLUS

+
SUM«+/
SUM

+/

MEAN<{(+/w)+pw}

Chapter 1: Primitive Functions 15

Namespace Reference Assignment

If an expression evaluates to a namespace reference, or ref, you may assign it to a
name. A name assigned to a simple scalar ref, has name class 9, whereas one assigned
to an array containing refs has name class 2.

‘f1'0OWC'Form'

‘nst1' ONS "'

N<ns1
ONC'N' A name class of a scalar ref

Fefl
ONC'F' A name class of a scalar ref

refs<N F A vector of refs.
ONC'refs' A nameclass of vector.

F2«2>orefs
OnCc 'F2°

Re-Assignment

A name that already exists may be assigned a new value if the assignment will not
alter its name class, or will change it from 2 to 9 or vice versa. The table of permitted
re-assignments is as follows:

Ref Variable Function Operator
Ref Yes Yes
Variable Yes Yes
Function Yes Yes
Operator Yes Yes

16

Language Reference Guide

Assignment (Indexed) {R}«X[I]«Y

Indexed Assignment is the Assignment function modified by the Indexing function.
The phrase [I]« is treated as the function for descriptive purposes.

Y may be any array. X may be the name of any array or a selection from a named
array (EXP X)[I]«Y,see Assignment (Selective) on page 21. I must be a valid
index specification. The shape of Y must conform with the shape (implied) of the
indexed structure defined by I. IfY is a scalar ora 1-element vector it will be
extended to conform. A side effect of Indexed Assignment is to change the value of
the indexed elements of X.

R is the value of Y. Ifthe result is not explicitly assigned or used it is suppressed.
0IO0 is an implicit argument of Indexed Assignment.

Three forms of indexing are permitted.

Simple Indexed Assignment

For vector X, I is a simple integer array whose items are from the set 1 pR. Elements
of X identified by index positions I are replaced by corresponding elements of Y.

Examples

+A<15
12345

A[2 3]«10 o A
110 10 4 5

The last-most element of Y is assigned when an index is repeated in I:

A[2 2]«100 101 ¢ A
1 101 10 4 5

For matrix X, I is composed of two simple integer arrays separated by the semicolon
character (;). The arrays select indices from the rows and columns of X respectively.

Chapter 1: Primitive Functions 17

Examples

RED
SUN

RED
SON

+B«2 3p'REDSUN'

B[2;2]«'0' ¢ B

For higher-rank array X, I is a series of simple integer arrays with adjacent arrays
separated by a single semicolon character (;). Each array selects indices from an axis
of X taken in row-major order.

Examples

11
14

21
24

12
15

22
25

C
13
16

23
26

C[1:;1;3]«103 ¢ C
103
16

23
26

An indexing array may be ELIDED. That is, if an indexing array is omitted from the
Kth axis, the indexing vector 1 (pX) [K] is implied:

Cl[;1:2 3]«2 2p112 113 122 123 ¢ C

11 112 113

14

15

16

21 122 123

24 25

o o
o o

o o
o o

o o

o o

26

C[;:]«0 o C

18

Language Reference Guide

Choose Indexed Assignment

The index specification I is a non-simple integer array. Each item identifies a single
element of X by a set of indices with one element per axis of X in row-major order.

Examples

C
11 12 13 14
21 22 23 24

Clel 1]«101 o C
101 12 13 14
21 22 23 24

CL(1 2) (2 3)]«102 203 ¢ C
101 102 13 14
21 22 203 24

C[2 2p(1 3)(2 4)(2 1)(1 4)]«2 2p103 204 201 104 o C
101 102 103 104
201 22 203 204

A scalar may be indexed by the enclosed empty vector:

S
10
S[c10]«c'VECTOR' ¢ S
VECTOR
S[c10]«5 ¢ S
5

Choose Indexed Assignment may be used very effectively in conjunction with Index
Generator (1) and Structural functions in order to assign into an array:

C
11 12 13 14
21 22 23 24
1pC
11 12 13 14
21 22 23 24
C[1 181pCl«1l 2 o C
1 12 13 14

21 2 23 24

C[2 "1t1pCl+99 ¢ C
112 13 99
21 2 23 99

Chapter 1: Primitive Functions 19

Reach Indexed Assignment

The index specification I is a non-simple integer array, each of whose items reach
down to a nested element of X. The items of an item of I are simple vectors (or
scalars) forming sets of indices that index arrays at successive levels of X starting at
the top-most level. A set of indices has one element per axis at the respective level
ofnesting of X in row-major order.

Examples
D«(2 3p16)(2 2p'SMITH' 'JONES' 'SAM' 'BILL')

D
1 2 3 SMITH JONES
L 56 SAM BILL
=J«c2 (1 2)
-3
D[J]«c'WILLIAMS' ¢ D
1 2 3 SMITH WILLIAMS
L 56 SAM BILL
DL(1 (1 1))(2 (2 2) 1)]«10 'W' o D
10 2 3 SMITH WILLIAMS
L 56 SAM WILL

GREEN YELLOW RED

E[c2 1]«'M' o E
GREEN MELLOW RED

The context of indexing is important. In the last example, the indexing method is
determined to be Reach rather than Choose since E is a vector, not a matrix as would
be required for Choose. Observe that:

c2 1 «»> c(c2),(<1)

Note that for any array A, A[<@] represents a scalar quantity, which is the whole of
A, so:

A<5p0

A
00000

Alc8]<«1

A

20 Language Reference Guide

Combined Indexed and Selective Assignment

Instead of X being a name, it may be a selection from a named array, and the
statement is of the form (EXP X)[I]<«Y.

##Lllo
##trld
Hel lo
World

MAT«4 3p'Hello'

‘Wor ld'

(2t"MAT)[1 2;]«"'#'

MAT
##rld
##llo
World
Hel lo

MAT<4 3p'Hello’
OML<1 A € is Enlist

##Lllo
##trld
Hello
World

'"World'

(EMAT)[szLO.SXpeMAT]«'#'

H# L#o
#o# L #
H# Ll #o
H#o# L #

MAT
#o# L #
H# L #o0
#o# L #
H# Ll #o

H# L#o
#o# L #
H# Ll #o
#o# L #

Chapter 1: Primitive Functions 21

Assignment (Selective) (EXP X)«Y

X is the name of a variable in the workspace, possibly modified by the indexing
function (EXP X[I])<Y,see Assignment (Indexed) on page 16. EXP is an
expression that selects elements of X. Y is an array expression. The result of the
expression Y is allocated to the elements of X selected by EXP. Note that X may refer
to a single name only.

The following functions may appear in the selection expression. Where appropriate
these functions may be used with axis [] and with the Each operator ™.

Functions for Selective Assignment

t Take

4 Drop

, Ravel

s Table

e Reverse, Rotate
o Reshape

> Disclose, Pick

Transpose (Monadic and Dyadic)
/+ Replicate
\% Expand
1} Index
€ Enlist (OML21)

Note: Mix and Split (monadic t and V), Type (monadic € when OML <1) and
Membership (dyadic €) may not be used in the selection expression.
Examples

A<'HELLO'
((Ae'AEIOU'")/A)«"*"

A
HxLLx

7«3 4p112
(5t,2)+«0

O OO
oo O
~RJdON
N 00 O

22 Language Reference Guide

MAT«3 3p19
(1 1§MAT)«0

MAT

~NF O
o onN
oo w

OML<1n so € is Enlist
names<«'Andy' 'Karen' 'Liam'
(('a'=enames)/enames)«"'x*"
names

Andy Kxren Lix*m

Each Operator

The functions listed in the table above may also be used with the Each Operator ™.

Examples

A<'"HELLO' 'WORLD'
(247A)«" !
A

*xLLO x%xRLD

A<'HELLO' 'WORLD'
((A='0")/"A)«"*"
A

HELL* WxRLD

A<'HELLO' 'WORLD'
((Ae"c'LO")/"A)«"x'
A

HE % % x WxRx*xD

Bracket Indexing

Bracket indexing may also be applied to the expression on the left of the assignment
arrow.

Examples

MAT«4 3p'Hello' 'World'
(T24"MAT[:;1 3])«'$"'
MAT

Hel$$ World Hel$$

Wor$$ Hello Wor$$

Hel$$ World Hel$$

Wor$$ Hello Wor$$

Chapter 1: Primitive Functions 23

Binomial

ReX!Y

X and Y may be any numbers except that if Y is a negative integer then X must be a
whole number (integer). R is numeric. An element of R is integer if corresponding
elements of X and Y are integers. Binomial is defined in terms of the function
Factorial for positive integer arguments:

XY <> (lY)=(!1X)x!Y-X
For other arguments, results are derived smoothly from the Beta function:
Beta(X,Y) <> +Yx(X-1)!X+Y-1

For positive integer arguments, R is the number of selections of X things from Y
things.
Example

1 1.2 1.4 1.6 1.8 215
5 6.105689248 7.219424686 8.281104786 9.227916704 10

21352
135

24

Language Reference Guide

Branch

+Y

Y may be a scalar or vector which, if not empty, has a simple numeric scalar as its first
element. The function has no explicit result. It is used to modify the normal
sequence of execution of expressions or to resume execution after a statement has
been interrupted. Branch is not in the function domain of operators.

The following distinct usages of the branch function occur:

Entered in a Statement

Ent inI iate E tion M
in a Defined Function ntered in Immediate Execution Mode

Continue with the Restart execution at the specific line of
~LINE e 1 .
specific line the most recently suspended function
Continue with the next
»10 . No effect
expression

In a defined function, if Y is non-empty then the first element in Y specifies a
statement line in the defined function to be executed next. Ifthe line does not exist,
then execution of the function is terminated. For this purpose, line 0 does not exist.
(Note that statement line numbers are independent of the index origin [J10).

IfY is empty, the branch function has no effect. The next expression is executed on
the same line, if any, or on the next line if not. Ifthere is no following line, the
function is terminated.

The : GoTo statement may be used in place of Branch in a defined function.

Example

v TEST
[1] 1
[2] >k
[3] 3
(4] 4

v

TEST

1
"

In general it is better to branch to a LABEL than to a line number. A label occurs in
a statement followed by a colon and is assigned the value of the statement line
number when the function is defined.

Chapter 1: Primitive Functions 25

Example
vV TEST
(1] 1
[2] -~FOUR
[3] 3
[4] FOUR: 4
\

The previous examples illustrate unconditional branching. There are numerous APL
idioms which result in conditional branching. Some popular idioms are identified in
the following table:

Branch Expression Comment

Branches to label L1 if TEST results in 1 but
~TESTpL1 Similar to above.
TESTtL1 Similar to above.
+L1p=TEST Similar to above.
»L1[TEST Similar to above but only if JI0«>1.
>L1x1TEST Similar to above but only if JI0«>1.
-(L1,L2,L3)[N] Unconditional branch to a selected label.
N Branches to the first selected label dependent on
(T1,T2,T3)/L1,L2,L3 Lers;scl'l.l,TZ,T& If all tests result in 0, there is no
SNGLL,L2,L3 I\irtl:t?(r)liitional branch to the first label after

A branch expression may occur within a statement including ¢ separators:

[5] >NEXTp=TEST ¢ A<«A+1 ¢ -END
[6] NEXT:

In this example, the expressions ' A<A+1' and '>END"' are executed only if TEST
returns the value 1. Otherwise control branches to label NEXT.

In immediate execution mode, the branch function permits execution to be continued
within the most recently suspended function, if any, in the state indicator. Ifthe state
indicator is empty, or if the argument Y is the empty vector, the branch expression
has no effect. Ifa statement line is specified which does not exist, the function is
terminated. Otherwise, execution is restarted from the beginning of the specified
statement line in the most recently suspended function.

26 Language Reference Guide

Example
v F

(1] 1

[2] 2

(31 3
v
2 OSTOP'F'
F

1

FL2]
)SI

#.F[2]x
-2

2

3

The system constant [JL C returns a vector of the line numbers of statement lines in
the state indicator, starting with that in the most recently suspended function. It is
convenient to restart execution in a suspended state by the expression:

~{LcC

Catenate/Laminate ReX,[K]Y

Y may be any array. X may be any array. The axis specification is optional. If
specified, K must be a numeric scalar or 1-element vector which may have a
fractional value. Ifnot specified, the last axis is implied.

The form R«X5Y may be used to imply catenation along the first axis.
Two cases of the function catenate are permitted:

1. With an integer axis specification, or implied axis specification.
2. With a fractional axis specification, also called laminate.

Catenation with Integer or Implied Axis Specification

The arrays X and Y are joined along the required axis to form array R. A scalaris
extended to the shape of the other argument except that the required axis is restricted
to a unit dimension. X and Y must have the same shape (after extension) except
along the required axis, or one of the arguments may have rank one less than the
other, provided that their shapes conform to the prior rule after augmenting the array
of lower rank to have a unit dimension along the required axis. The rank of R is the
greater of the ranks of the arguments, but not less than 1.

Chapter 1: Primitive Functions 27

Examples

"FUR', 'LONG'
FURLONG

1,2
12

(2 4p'THISWEEK')5'="'
THIS
WEEK

S,[1]+#5<2 3p16

U1 F -
~oaN
O o w

If, after extension, exactly one of X and Y have a length of zero along the joined axis,
then the data type of R will be that of the argument with a non-zero length.
Otherwise, the data type of R will be that of X.

Lamination with Fractional Axis Specification

The arrays X and Y are joined along a new axis created before the [Kth axis. The
new axis has a length of 2. K must exceed [JI0 (the index origin) minus 1, and K
must be less than [JI0 plus the greater of the ranks of X and Y. A scalar argument is
extended to the shape of the other argument. Otherwise X and Y must have the same
shape.

The rank of R is one plus the greater of the ranks of X and Y.

Examples

"HEADING',[0.5]"'-"'
HEADING

"NIGHT',[1.5]"'~*"
N *
Ix
Gx*
Hx
Tx
1o<«0
"HEADING',[70.5]"'-"'
HEADING

28

Language Reference Guide

Catenate First ReXs[K]Y

The form R<X5Y implies catenation along the first axis whereas the form R<X, Y
implies catenation along the last axis (columns). See Catenate/Laminate above.

Ceiling

R«[Y

Ceiling is defined in terms of Flooras [Y«»>-| -Y
Y must be numeric.

Ifan element of Y is real, the corresponding element of R is the least integer greater
than or equal to the value of Y.

Ifan element of Y is complex, the corresponding element of R depends on the
relationship between the real and imaginary parts of the numbers in Y.

Examples
[T2.3 0.1 100 3.3
T2 1 100 4

[1.2j2.5 1.2§72.5
133 1772

For further explanation, see Floor on page 51.

OCT is an implied argument of Ceiling.

Chapter 1: Primitive Functions 29

Circular

R«XoY

Y must be numeric. X must be an integer in the range ~12

<

X < 12.Risnumeric.

X determines which of a family of trigonometric, hyperbolic, Pythagorean and
complex functions to apply to Y, from the following table. Note that when Y is
complex, a and b are used to represent its real and imaginary parts, while 8

represents its phase.

(-X) o ¥ X |[XoY
(1-¥x2)x.5 0 | (1-Yx2)x.5
Arcsin Y 1 Sine Y
Arccos Y 2 Cosine Y
Arctan Y 3 Tangent Y
i#'i;?Y+1)x((y_1)+y+1)*0.5 b | (1+Yx2)*.5
Arcsinh Y 5 Sinh Y
Arccosh Y 6 Cosh Y
Arctanh Y 7 Tanh Y
~8eY 8 |(-1+Yx2)%0.5
Y 9 a
Y 10 |1y
Yx0J1 11 |b
*Yx0J1 12 o

Examples

0 "1 o1

0 1.570796327

1{o(PI«01)+2 3 4
1 0.8660254038 0.7071067812

20PI=3

30 Language Reference Guide

9 1103.5J71.2

3.5 71.2
9 110,03.5J71.2 2J3 3J4
3.5 2 3
1.2 3 4
“4o™1
0
Conjugate Re+Y

IfY is complex, R is Y with the imaginary part of all elements negated.

IfY is real or non-numeric, R is the same array unchanged, although - is faster. See
Same on page 123.

Examples

+3j4
3774
+1j2 233 3j4
1372 2373 3774

3j4++3jk4
6

3jbx+3jk
25

+A<15
12345

+JEX'A'

Chapter 1: Primitive Functions 31

Deal

ReX?Y

Y must be a simple scalar or 1-element vector containing a non-negative integer. X
must be a simple scalar or 1-element vector containing a non-negative integer and
X<Y.

R is an integer vector obtained by making X random selections from 1Y without
repetition.
Examples

13752
7 40 24 28 12 3 36 49 20 44 2 35 1

13?752
20 4+ 22 36 31 49 45 28 5 35 37 48 4O

0I0 and ORL are implicit arguments of Deal. A side effect of Deal is to change the
value of RL. See Random Link on page 542.

32

Language Reference Guide

Decode

ReX1Y

Y must be a simple numeric array. X must be a simple numeric array. R is the
numeric array which results from the evaluation of Y in the number system with radix
X.

X and Y are conformable if the length of the last axis of X is the same as the length of
the first axis of Y. A scalar or 1-element vector is extended to a vector of the required
length. Ifthe last axis of X or the first axis of Y has a length of 1, the array is
extended along that axis to conform with the other argument.

The shape of R is the catenation of the shape of X less the last dimension with the
shape of Y less the first dimension. That is:

PR «> (T14pX),1ipY

For vector arguments, each element of X defines the ratio between the units for
corresponding pairs of elements in Y. The first element of X has no effect on the
result.

This function is also known as Base Value.

Examples

60 6013 13
193

0 60L3 13
193

6013 13
193

211 010

10

Chapter 1: Primitive Functions 33

Polynomial Evaluation

If X is a scalar and Y a vector of length n, decode evaluates the polynomial(Index
origin 1):

Y[X! +Y[2] X" 2 +...+ Y [n]X°

Examples

211 2 3 4
26

311 2 3 4
58

1j111 2 3 4
5J9

For higher-rank array arguments, each of the vectors along the last axis of X is taken
as the radix vector for each of the vectors along the first axis of Y.

Examples
M
00001111
00110011
01010101
A

FWN
FWN
FWN

ALM

2 1 2 2 3
3 4+ 5 6 7
4L 9 10 12 13
5 16 17 20 21

[eNeoNeoNe)
_
FWN =~

Scalar extension may be applied:

21M
01234567

Extension along a unit axis may be applied:

+A<2 1p2 10
2
10
A1M
1 2 3 4 5 6 7
1

0
0 10 11 100 101 110 111

34

Language Reference Guide

Depth

(OML)

ResY

Y may be any array. R is the maximum number of levels of nesting of Y. A simple
scalar (rank-0 number, character or namespace-reference) has a depth of 0.

A higher rank array, all of whose items are simple scalars, is termed a simple array
and has a depth of 1. An array whose items are not all simple scalars is nested and has
a depth 1 greater than that of its most deeply nested item.

Y is of uniform depth if it is simple or if all of its items have the same uniform depth.

If(ML <2 and Y is not of uniform depth then R is negated (therefore, when [IML<2, a
negative value of R indicates non-uniform depth).

Examples

=1
0

='A'
0

='ABC'
1

=1 'A'
1

OML<0

=A«<(1 2)(3 (4 5)) A Non-uniform

A A A[1] is uniform,

A
1

o

OML<2

L]
>

m
>

o
—-

array

A[2] is non-uniform

Chapter 1: Primitive Functions 35

Direction (Signum) RexY

Y may be any numeric array.

Where an element of Y is real, the corresponding element of R is an integer whose
value indicates whether the value is negative (" 1), zero (0) or positive (1).

Where an element of Y is complex, the corresponding element of R is a number with
the same phase but with magnitude (absolute value) 1. It is equivalent to Y+ | Y.

Examples

x~15.3 0 101
101

x3j4 435
0.6J0.8 0.6246950476J0.7808688094

{w:|w}3j4 4j5
0.630.8 0.6246950476J0.7808688094

[x3j% 4j5

36

Language Reference Guide

Disclose

(OML) R«d>Y or R«tY

The symbol chosen to represent Disclose depends on the current Migration Level.
If OML <2, Disclose is represented by the symbol: >.
If OML>2, Disclose is represented by the symbol: 1.

Y may be any array. Risanarray. IfY is non-empty, R is the value of the first item of
Y taken in ravel order. IfY is empty, R is the prototype of Y.

Disclose is the inverse of Enclose. The identity R<+><R holds forall R. Disclose is
also referred to as First.

Examples
o1
1
22 4 6
2
>'MONDAY' 'TUESDAY'
MONDAY
2(1 (2 3))(4 (5 6))
1 23
510
0
] I=DII
1
>1cl1,c2 3

0 00

Chapter 1: Primitive Functions 37

Divide ReX+Y

Y must be a numeric array. X must be a numeric array. R is the numeric array
resulting from X divided by Y. System variable DIV is an implicit argument of
Divide.

IfO0DIV=0 and Y=0 then if X=0, the result of XY is 1; if X#0 then X+Y isa DOMAIN
ERROR.

If0DIV=1 and Y=0, the result of X+Y is O for all values of X.

Examples

2 0 5+4+ 0 2
0.51 2.5

3j1 2.5 4j5+2 1j1 .2
1.5J0.5 1.25J71.25 203725

OoIv«1
2 05+4+ 00
0.500

38

Language Reference Guide

Drop

ReX{$Y

Y may be any array. X must be a simple scalar or vector of integers. If X is a scalar, it
is treated as a one-element vector. If'Y is a scalar, it is treated as an array whose shape
is (pX)pl. After any scalar extensions, the shape of X must be less than or equal to
the rank of Y. Any missing trailing items in X default to 0.

R is an array with the same rank as Y but with elements removed from the vectors
along each ofthe axes of Y. For the Ith axis:

o if X[I] is positive, all but the first X[I] elements of the vectors result
o if X[I] is negative, all but the last X[I] elements of the vectors result

If the magnitude of X[I] exceeds the length of the Ith axis, the result is an empty
array with zero length along that axis.

Examples
4{'OVERBOARD'
BOARD
~54"'OVERBOARD'
OVER
p10+4 'OVERBOARD'
0
M
ONE
FAT
FLY
0 ~2M
0
F
F
T2 T1IM
ON
1iM
FAT
FLY
M3<2 3 u4p[A
1 1IM3
QRST
UVWX
“1 T1IM3
ABCD

EFGH

Chapter 1: Primitive Functions 39

Drop with Axes ReX4+[K]Y

Y may be any non-scalar array. X must be a simple integer scalar or vector. Kisa
vector of zero or more axes of Y.

R is an array of the elements of Y with the first or last X[i] elements removed.
Elements are removed from the beginning or end of Y according to the sign of X[i].

The rank of R is the same as the rank of Y:
PPR <> pp¥Y
The size of each axis of R is determined by the corresponding element of X:

(pRIL,K] <> Of (pY)[,KI1-1,X

Examples

O«M<2 3 4pi2k
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

14[2IM
5 6 7 8
9 10 11 12

17 18 19 20
21 22 23 24

24[3IM

,_dw
o

15 16
19 20
23 24

2 14[3 2IM

40 Language Reference Guide

Enclose RecY

Y may be any array. R is a scalar array whose item is the array Y. IfY is a simple
scalar, R is the simple scalar unchanged. Otherwise, R has a depth whose magnitude
is one greater than the magnitude of the depth of Y.

Examples
ci
1
c] A 1
A
c1 23
123
cl,c'CAT'
1 CAT
c2 Lp18
1234
56 7 8
c10
cc10
cci0
10

See also: Enclose with Axes below.

Chapter 1: Primitive Functions 41

Enclose with Axes R«c[K]Y

Y may be any array. K is a vector of zero or more axes of Y. R is an array ofthe
elements of Y enclosed along the axes K. The shape of R is the shape of Y with the K
axes removed:

pR <> (pY)[(1ppR)~K]

The shape of each element of R is the shape of the Kth axes of Y:
p2R <> (pY)[,K]

Examples

Jdisplay A«2 3 4p'DUCKSWANBIRDWORMCAKESEED'

r
+{DUCK
SWAN
BIRD

WORM
CAKE
SEED

Jdisplay <[3]A

DUCK SWAN BIRD

WORM CAKE SEED

Jdisplay <[2 3]A

| T

{DUCK | {WORM
SWAN CAKE
BIRD SEED

-€

Jdisplay <[1 3]A

[| |
IDUCK| +SWAN| {BIRD
|w0RM |CAKE |SEED

-€

42

Language Reference Guide

Encode

ReXTY

Y must be a simple numeric array. X must be a simple numeric array. R is the
numeric array which results from the representation of Y in the number system
defined by X.

The shape of R is (pX) , pY (the catenation of the shapes of X and Y).

If X is a vector or a scalar, the result for each element of Y is the value of the element
expressed in the number system defined by radix X. IfY is greater than can be
expressed in the number system, the result is equal to the representation of the
residue (x/X) | Y. Ifthe first element of X is 0, the value will be fully represented.

This function is also known as Representation.

Examples

1015 15 125
555

0 1075 15 125
01 12
55 5

Chapter 1: Primitive Functions

If X is a higher-rank array, each of the vectors along the first axis of X is used as the
radix vector for each element of Y.

Examples
A

NPNNNDNDNDNDN
00 00000 OOOOo
[e)N NeoloNeNoNoNe]

- -

AT75

[N el leNel _Ne)
WP, P, OO0OO0OO0OO
R FOOOOOO

-

The example shows binary, octal and hexadecimal representations of the decimal
number 75.

Examples

0 171.25 10.5
1 10
0.25 0.5

4+ 13713752
310 23201 31231
12 2 41217 6 3101 0 3 8

0IO0 isnot an implicit argument of encode.

44 Language Reference Guide

Enlist (OML21) R«eY

Migration level must be such that JML 21 (otherwise see Type on page 132).

Y may be any array, R is a simple vector created from all the elements of Y in ravel
order.

Examples

OML«1 A Migration level 1
MAT<«2 2p'MISS' 'IS' 'SIP' 'PI' ¢ MAT
MISS IS
SIP PI
eMAT
MISSISSIPPI

Mel (2 2p2 3 4 5) (6(7 8))
M
1 23 6 78
4 5
eM
12345678

Chapter 1: Primitive Functions 45

Equal

ReX=Y

Y may be any array. X may be any array. R is Boolean.
OCT and [ODCT are implicit arguments of Equal.

If X and Y are refs, then R is 1 if they are refs to the same object. If X isarefand Y is
not, or vice-versa, then R is 0.

If X and Y are character, then R is 1 if they are the same character. If X is character and
Y is numeric, or vice-versa, then R is 0.

If X and Y are numeric, then R is 1 if X and Y are within comparison tolerance of each
other.

For real numbers X and Y, X is considered equal to Y if (| X-Y) is not greater than
OcT=(CIX)I1y.

For complex numbers X=Y is 1 ifthe magnitude of X-Y does not exceed [OCT times
the larger of the magnitudes of X and Y; geometrically, X=Y if the number smaller in
magnitude lies on or within a circle centred on the one with larger magnitude,
having radius JCT times the larger magnitude.

reOoct=|A

46 Language Reference Guide

Examples

3=3.1 3 72 73
0100

a«<2+0j1x0CT

a
2J1E" 14

a=23j.00000000000001 23.0000000000001
10

'CAT'="'FAT'
011

'CAT'=1 2 3
000

'CAT'='C' 2 3
100

OCT<«1E~10
1=1.000000000001

1=1.0000001

Excluding R«X~Y

X must be a scalar or vector. R is a vector of the elements of X excluding those
elements which occurin Y taken in the order in which they occur in X.

Elements of X and Y are considered the same if X=Y returns 1 for those elements.

OCT and [IDCT are implicit arguments of Excluding. Excluding is also known as
Without.

Examples

"HELLO'~"'GOODBYE"
HLL

"MONDAY' 'TUESDAY' 'WEDNESDAY'~'TUESDAY' 'FRIDAY'
MONDAY WEDNESDAY

5 10 15~110
15

For performance information, see Programming Reference Guide: Search Functions
and Hash Tables.

Chapter 1: Primitive Functions 47

Execute

Re{X}eY

Y must be a simple character scalar or vector containing an APL expression to be
executed. The expression may contain one or more sub-expressions separated by ¢
(Diamond) characters.

Ifthe result of the expression is used or is assigned to a name, R is the result (if any)
of the last-executed sub-expression and the non-shy results of all preceding
expressions (that are not assigned within the expression) are displayed. Otherwise
the unassigned non-shy results of all of the sub-expressions are displayed.

If the expression is an empty vector or a vector containing only blanks or one that
does not produce a result, then ¢Y has no value and using or assigning it to a name
will generate VALUE ERROR.

If Y contains a branch expression, the branch is effected in the environment from
which the Execute was invoked, and ¢Y does not retum.

If specified, X must be a namespace reference or a simple character scalar or vector
representing the name of a namespace in which the expression is to be executed. If X
is omitted or is an empty character vector, the expression is executed in the current
space.

Examples
2'2+2"'
[
2'1+1 o 2+2'
2
4
A« 2'1+1 o 2+2'
2
A
4
b=2'1+1 o 2+2'
2
1
2 'A<2 | T1tOTS © >0p=A o A'
0
A
0
Ace "'

VALUE ERROR: No result was provided when the context
expected one

A«QII

A

‘myspace’ ONS''

myspaces'A<16'

myspace.A
123456

48

Language Reference Guide

Expand

R«X\[K]Y

Y may be any array. X is a simple integer scalar or vector. The axis specification is
optional. If present, K must be a simple integer scalar or 1-element vector. The value
of K must be an axis of Y. Ifabsent, the last axis of Y is implied. The form R«XXY
implies the first axis. If'Y is a scalar, it is treated as a one-element vector.

If Y has length 1 along the Kth (or implied) axis, it is extended along that axis to
match the number of positive elements in X. Otherwise, the number of positive
elements in X must be the length of the Kth (or implied) axis of Y.

R is composed from the sub-arrays along the Kt axis of Y. If X[I] (an element of X)
is the Jth positive element in X, then the Jth sub-array along the Kth axis of Y is
replicated X[I] times. If X[I] is negative, then a sub-array of fill elements of Y is
replicated | X[I] times and inserted in relative order along the K'h axis of the
result. If X[I] is zero, it is treated as the value ~1. The shape of R is the shape of Y
except that the length of the Kth axisis +/1[| X.

Examples
0\10

1 72 3 74 5\'A'
A AAA AAAAA

aN
o w

T2 2 0 1\M

o o
o o
N =
a1 N
o o
o w

1 0 1M

o
gaonN
O w

1 0 1I\[1]M

o
gaonN
O w

1 72 1\(1 2)(3 4 5)
12 00 00 345

Chapter 1: Primitive Functions 49

Expand First RXXY

The form R<XXY implies expansion along the first axis whereas the form R<X\Y
implies expansion along the last axis (columns). See Expand above.

Exponential RexY

Y must be numeric. R is numeric and is the Yth power of e, the base of natural
logarithms.

Example

x1 0
2.718281828 1

x0j1 132
0.5403023059J0.8414709848 ~1.131204384J2.471726672

1+x00jl A Euler Identity

Factorial

RelY

Y must be numeric excluding negative integers. R is numeric. R is the product of the
first Y integers for positive integer values of Y. For non-integral values of Y, ! Y is
equivalent to the gamma function of Y+1.

Examples

112345
12 6 24 120

171.5 0 1.5 3.3
~3.544907702 1 1.329340388 8.85534336

1031 1j2
0.4980156681J70.1549498283 0.1122942423J0.3236128855

50

Language Reference Guide

Find

R«XeY

X and Y may be any arrays. R is a simple Boolean array the same shape as Y which
identifies occurrences of X within Y.

If the rank of X is smaller than the rank of Y, X is treated as if it were the same rank
with leading axes of size 1. For example a vector is treated as a 1-row matrix.

Ifthe rank of X is larger than the rank of Y, no occurrences of X are found in Y.

OCT and [DCT are implicit arguments of Find.

Examples

"AN'€'BANANA'
010100

"ANA'€e 'BANANA'
010100

'BIRDS' 'NEST'e'BIRDS' 'NEST' 'SOUP'
100

MAT
IS YOU IS
OR IS YOU
ISN'T

'IS'€eMAT
100000010
000100000
100000000

'IS YOU'€eMAT
100000000
000100000
000000000

Chapter 1: Primitive Functions 51

First

(OML) R«d>Y or R«tY

See function Disclose on page 36.

Floor

R«lY

Y must be numeric.

For real numbers, R is the largest integer value less than or equal to Y within the
comparison tolerance JCT.

Examples
[72.3 0.1 100 3.3
~3 0 100 3

L0.5 + 0.4 0.5 0.6
011

For complex numbers, R depends on the relationship between the real and imaginary
parts of the numbers in Y.

[1j3.2 3.3j2.5 ~3.3j72.5
1J3 3J2 ~37°3

Complex Floor

The following (deliberately) simple function illustrates one way to express the rules
for evaluating complex Floor.

vV fl«CpxFloor cpxssa;b
[1] A Complex floor of scalar complex number (a+ib)
[2] a b«9 1locpxs

[3] :If 1>(a-Lla)+b-Lb
[4] fl«(la)+0J1x|b
[5] :Else
[6] :If (a-La)<b-Lb
[7] fle(la)+0J1x1+|b
[8] :Else
[9] fle(1+la)+0J1x|b
[10] tEndIf
[11] :EndIf
\'4

CpxFloor™1j3.2 3.3j2.5 ~3.3j72.5
1J3 3J2 ~3773

OCT and ODCT are implicit arguments of Floor.

52 Language Reference Guide

Format (Monadic) ResY

Y may be any array. R is a simple character array which will display identically to
the display produced by Y. The result is independent of JPW. IfY is a simple
character array, then R is Y.

Example
+B«gA«2 6p'HELLO PEOPLE'
HELLO
PEOPLE
B = A
1

IfY is a simple numeric scalar, then R is a vector containing the formatted number
without any spaces. A floating point number is formatted according to the system
variable OPP. 0PP is ignored when formatting integers.

Examples
OpP<«5
pC«310
0
pC«310
2
C
10
pC+312.34
5
C
12.34%
3123456789
123456789
$123.456789
123.46

Scaled notation is used if the magnitude of the non-integer number is too large to
represent with [JPP significant digits or if the number requires more than five leading
zeroes after the decimal point.

Chapter 1: Primitive Functions 53

Examples

$123456.7
1.2346E5

$0.0000001234
1.234%E77

If'Y is a simple numeric vector, then R is a character vector in which each element of
Y is independently formatted with a single separating space between formatted
elements.

Example

pC«3~123456 1 22.5 0.000000667 5.00001
27

C
“1.2346E5 1 22.5 "6.67E77 5

IfY is a simple numeric array rank higher than one, R is a character array with the
same shape as Y except that the last dimension of Y is determined by the length of the
formatted data. The format width is determined independently for each column of Y,
such that:

a. the decimal points for floating point or scaled formats are aligned.

b. the E characters for scaled formats are aligned, with trailing zeros added to
the mantissae if necessary.

c. integer formats are aligned to the left of the decimal point column, if any, or
right-adjusted in the field otherwise.

d. each formatted column is separated from its neighbours by a single blank
column.

e. the exponent values in scaled formats are left-adjusted to remove any
blanks.

Examples
C<22 ~0.000000123 2.34 212 123456 6.00002 O

pC«3s2 2 3pC
2 2 29
C
22 ~1.2300E77 2.3400EO
212 1.2346E5 6.0000EO
0 2.2000E1 ~1.2300E77

2.34% 72.1200E2 1.2346E5

54 Language Reference Guide

IfY is non-simple, and all items of Y at any depth are scalars or vectors, then R is a
vector.

Examples
B«3A«'ABC' 100 (1 2 (3 &4 5)) 10

pA
"

=A
-3

pB
26

=B
1

A

ABC 100 1 2 3 45 10

B
ABC 100 1 2 3 4 5 10

By replacing spaces with #, it is clearer to see how the result of 3 is formed:

AABCAAL00ANLA2AAZAYABAAALQ

Chapter 1: Primitive Functions 55

IfY is non-simple, and all items of Y at any depth are not scalars, then R is a matrix.

Example
D«sC«1 'AB' (2 2pi+14) (2 2 3p'CDEFGHIJKLMN')

C
1 AB 2 3 CDE
4 5 FGH
IJK
LMN
pC
"
=C
-2
D
1 AB 2 3 CDE
4 5 FGH
IJK
LMN
pD
5 16
=D
1

By replacing spaces with 4, it is clearer to see how the result of # is formed:
1/\/\AB/\/\2/\3/\/\CDE/\
AAAAAAAL}ASAAFGHA
AAAAAAAAAAANAANAAAA
/\/\/\/\/\/\/\/\/\/\/\/\IJKA
/\/\/\/\/\/\/\/\/\/\/\/\LMN/\

OPP is an implicit argument of Monadic Format.

56

Language Reference Guide

Format (Dyadic) R«XsY

Y must be a simple real (non-complex) numeric array. X must be a simple integer
scalar or vector. R is a character array displaying the array Y according to the
specification X. Rhasrank 1[ppY and “14pR is “1¥pY.Ifany element of Y is
complex, dyadic # reports a DOMAIN ERROR.

Conformability requires that if X has more than two elements, then pX must be
2x~11pY.If X contains one element, it is extended to (2x~14pY)p0,X. IfX
contains 2 elements, it is extended to (2x~1tpY)pX.

X specifies two numbers (possibly after extension) for each column in Y. For this
purpose, scalar Y is treated as a one-element vector. Each pair of numbers in X
identifies a format width (W) and a format precision (P).

If P is 0, the column is to be formatted as integers.

Examples
503 2 3p16
1 2 3
4 5 6

4 0s1.1 2 "4 2.547
1 2 4 3

If P is positive, the format is floating point with P significant digits to be displayed
after the decimal point.
Example

Y 1s1.1 2 "4 2.547
1.1 2.074%.0 2.5

If P is negative, scaled format is used with | P digits in the mantissa.

Example

7 735 15 155 1555
5.00E0 1.50E1 1.55E2 1.56E3

IfW is 0 or absent, then the width of the corresponding columns of R are determined
by the maximum width required by any element in the corresponding columns of Y,
plus one separating space.

Chapter 1: Primitive Functions 57

Example

352 3p10 15.2346 "17.1 2 3 4
10.000 15.235 717.100
2.000 3.000 4+.000

If a formatted element exceeds its specified field width when W>0, the field width for
that element is filled with asterisks.

Example

306 2 35 3 2p10.1 15 1001 22.357 101 1110.1
10 15.00
xxx 22.36

101 **x*x* %%

If the format precision exceeds the internal precision, low order digits are replaced by
the symbol '_".
Example

2632%100
1267650600228229

p2632%100
59

0 20%+3
0.3333333333333333____

0 720%%3
3.333333333333333____E™1

The shape of R is the same as the shape of Y except that the last dimension of R is the
sum of the field widths specified in X or deduced by the function. IfY is a scalar, the
shape of R is the field width.

p5 2 5 2 3 4pi2k
2 3 20

58 Language Reference Guide

Grade Down (Monadic) R«YyY

Y may be any array of rank greater than 0 but may not contain namespaces. R is an
integer vector being the permutation of 1 1t pY that places the sub-arrays along the
first axis in descending order. For the rules for comparing items of Y with one
another, see Grade Up (Monadic) on page 62.

0IO isan implicit argument of Grade Down.

Examples

y22.5 1 15 3 74
13425

M

._.
Fw
~N o

N
N W
£ F

-
N
[o)6}

M
132

Note that character arrays sort differently in the Unicode and Classic Editions.

M
Goldilocks
porridge
Porridge
3 bears
Unicode Edition Classic Edition
M ¥M
2 314 314 2
ML¥M;] ML¥M;]
porridge Porridge
Porridge Goldilocks
Goldilocks 3 bears
3 bears porridge

Chapter 1: Primitive Functions 59

ppb
pb

Rivers Jason| 554

Daintree|John [532

Rivers Jason|543

Foad Jay 558

Scholes |[John [547

Scholes |John |535

ypb
56 134 2

Grade Down (Dyadic) ReXVYY

Y must be a simple character array of rank greater than 0. X must be a simple
character array of rank 1 or greater. R is a simple integer vector of shape 1tpY
containing the permutation of 1 14 pY that places the sub-arrays of Y along the first
axis in descending order according to the collation sequence X. The indices of any
set of identical sub-arrays in Y occur in R in ascending order.

If X is a vector, the following identity holds:
XYY <> yXuY

A left argument of rank greater than 1 allows successive resolution of duplicate
orderings in the following way.

Starting with the last axis:

o The characters in the right argument are located along the current axis of
the left argument. The position of the first occurrence gives the ordering
value of the character.

o If a character occurs more than once in the left argument its lowest position
along the current axis is used.

« If a character of the right argument does not occur in the left argument, the
ordering value is one more than the maximum index of the current axis - as
with dyadic iota.

60

Language Reference Guide

The process is repeated using each axis in turn, from the last to the first, resolving
duplicates until either no duplicates result or all axes have been exhausted.

For example, if index origin is 1:

Left argument: Right argument:
abc ab
ABA ac

Aa

Ac

Along last axis:

Character: Value: Ordering:

ab 12 3

ac 13 =1 <-duplicate ordering with
Aa 11 4

Ac 13 =1 <-respect to last axis.

Duplicates exist, so resolve these with respect to the first axis:

Character: Value: Ordering:

ac 11 2
Ac 21 1

So the final row ordering is:

ab
ac
Aa
Ac

= EFENw

That is, the order of rows is 4 2 1 3 which corresponds to a descending row sort of:

Ac 1
ac 2
ab 3
Aa L

Chapter 1: Primitive Functions

6

Examples

pS1
2 27
S1
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz
S2
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi jklmnopgrstuvwxyz
S3
AaBbCcDdEeF fGgHhIiJjKkL LMmNNnOoPpQqRrSsTtUuVvWwXxYyZz
Sk
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi jklmnopgrstuvwxyz
abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

The following results are tabulated for comparison:

X X[S1yX;] X[S2yX;] X[S3yX;] X[S4yX;]
FIRsT TAPE rAT TAPE TAPE
TAP TAP fIRST TAP TAP
RATE RATE TAPE rAT RATE
FiRST rAT TAP RATE rAT
FIRST RAT RATE RAT RAT
rAT MAT RAT MAT MAT
fIRST fIRST MAT fIRST FIRsT
TAPE FiRST FiRST FiRST FiRST
MAT FIRsT FIRsT FIRsT FIRST
RAT FIRST FIRST FIRST fIRST

0IO0 isan implicit argument of Grade Down.

62 Language Reference Guide

Grade Up (Monadic) R«4Y

Y may be any array of rank greater than 0 but may not contain namespaces. R is an
integer vector being the permutation of 1 1t pY that places the sub-arrays along the
first axis in ascending order. The rules for comparing items of Y with one another are
as follows:

Rules for comparing simple scalars

Numeric comparisons are exact, as if JCT<[IJDCT«0 and JFR«1287

Two real numbers are compared numerically, thus 1.2 precedes 3.

In the Unicode Edition two characters are compared numerically according
to their position in the Unicode table. Thus 'a' (QUCS 97) precedes

'b' (AUCS 98). In the Classic Edition characters are compared according
to their index in [JAV.

Complex numbers are ordered by first comparing their real parts. If these are
equal, the order is determined by comparing their imaginary parts.

Thus 1J72 precedes 1 which precedes 1J2.

ONULL (which represents a null item obtained from an external source)
precedes all numbers, and all numbers precede all characters.

Thus ONULL precedes 100, and 100 precedes 'A".

Rules for comparing non-scalar arrays

Arrays are compared item by item in ravel order.

For arrays of equal shape, the order is determined by the first pair of items
which differ, thus (1949 4 29) precedes (1949 4 30). Similarly
("April' 29) precedes ('April' 30).

Arrays with the same rank but different shape are ordered as if the shorter
array were padded with items that precede all other types of item (negative
infinity) including [NULL. Thus 'car' precedes 'carpet’

and (1949 4) precedes (1949 4 30). An alternative model is to say
that shorter arrays precede longer ones that begin the same way. For
character vectors this is described as Lexicographical ordering, which is the
order that words appear in a dictionary.

Arrays with differing rank are ordered by first extending the shape of the
lower-ranked array with s at the beginning, and then comparing the
resultant equal-rank arrays as described above. So, to compare a vector (rank
1) with a matrix (rank 2), the vector is reshaped into a 1-row matrix.

Chapter 1: Primitive Functions 63

(IO isan implicit argument of Grade Up

« Empty arrays are compared first by type alone, so an empty numeric array
precedes an empty character array, regardless of rank or shape.

Thus ((0 3 2)p0) precedes '

'. If the empty arrays are of the same type,

they are sorted in order of their shape vector, working right to left.
So ((0 5 2)p99) precedes ((0 3 4)p0) and
((0 3 4)p"") precedes ((1 0 5 4)p'").

Examples

aN

[

2

3

422.5 1 15 3 74

4 31
M

~N o

AM
1

Note that character arrays sort differently in the Unicode and Classic Editions.

M

Goldilocks
porridge
Porridge
3 bears

Unicode Edition

Classic Edition

AM AM
L 132 2 413

ML AM;] ML AM;]
3 bears porridge
Goldilocks 3 bears
Porridge Goldilocks
porridge Porridge

64

Language Reference Guide

6 3 PPo

pb
Rivers Jason|554
Daintree|John [532
Rivers Jason|543
Foad Jay 558
Scholes |John |[547
Scholes |John [535

Apb
243165

Chapter 1: Primitive Functions 65

Grade Up (Dyadic) R«XAY

Y must be a simple character array of rank greater than 0. X must be a simple
character array of rank 1 or greater. R is a simple integer vector being the
permutation of 114 pY that places the sub-arrays of Y along the first axis in
ascending order according to the collation sequence X.

If X is a vector, the following identity holds:
XAY <> AX1Y

If X is a higher-rank array, each axis of X represents a grading attribute in increasing
order of importance (the first axis is the least significant and the last axis is the most
significant). Ifa character is repeated in X, it is treated as though it were located at
the position in the array determined by the lowest index in each axis for all
occurrences of the character. The character has the same weighting as the character
located at the derived position in X.

Examples

(2 2p'ABBA') A 'AB'[?5 2p2] A A and B are
equivalent
12345

Jdisplay A«2 1i4p' abcdegiklmnrt ABCDEGIKLMNRT'

|
{ abcdegiklmnrt
ABCDEGIKLMNRT

V<'Ab' 'AB' 'aba' 'ABA' 'abaca' 'abecedarian'
V,«<'Abelian' 'black' 'blackball' 'black belt'
V,«<'blacking' 'Black Mass'

Jdisplay M«tv

|
{Ab

AB

aba

ABA

abaca
abecedarian
Abelian
black
blackball
black belt
blacking
Black Mass

66 Language Reference Guide

ldisplay M (M[(,A)AM;1) (ML(,&A)AM;1) (M[AAM;])

I I I I

VAb Vaba ‘aba VAb

AB abaca abaca AB

aba abecedarian abecedarian aba

ABA black Ab ABA

abaca black belt Abelian abaca
abecedarian blackball AB abecedarian
Abelian blacking ABA Abelian
black Ab black black
blackball Abelian black belt black belt
black belt AB blackball Black Mass
blacking ABA blacking blackball
Black Mass Black Mass Black Mass blacking

Greater ReX>Y

Y must be numeric. X must be numeric. R is Boolean. R is 1 if X is greater than Y
and X=Y is 0. Otherwise R is 0.

OCT and [IDCT are implicit arguments of Greater.

Examples
12345 >2

00111
OCT<1E~10

1 1.00000000001 1.000000001 > 1
001

Chapter 1: Primitive Functions 67

Greater Or Equal ReX2Y

Y must be numeric. X must be numeric. R is Boolean. R is 1if X is greater than Y or
X=Y. Otherwise R is 0.

(CT and [ODCT are implicit arguments of Greater Or Equal.

Examples
12345323

00111
OcT<1E~10
121

1

1>1.00000000001

1>1.00000001

68

Language Reference Guide

Index

R«{X}DY

Dyadic case

X must be a scalar or vector of depth <2 of integers each 2[JI0. Y may be any array.
In general, the result R is similar to that obtained by square-bracket indexing in that:

(I J ...0%) =Y[I;J;...]

The length of left argument X must be less than or equal to the rank of right argument
Y. Any missing trailing items of X default to the index vector of the corresponding
axis of Y.

Note that in common with square-bracket indexing, items of the left argument X may
be of any rank and that the shape of the result is the concatenation of the shapes of
the items of the left argument:

(pXOY) = t,/p X
Index is sometimes referred to as squad indexing.
Note that index may be used with selective specification.

0I0 is an implicit argument of index.

Chapter 1: Primitive Functions

69

Examples

010+«1

VEC«+111 222 333 4uh
3[VEC

333
(c4 3)[VEC
L4y 333
(c2 3p3 1 4 1 2 3)[VEC
333 111 Lh4k
111 222 333
0«MAT«101"13 4
11 12 13 14
21 22 23 24
31 32 33 34
2 1[IMAT
21
2[IMAT
21 22 23 24
3(2 1)[MAT
32 31
(2 3)1[MAT
21 31
(2 3)(,1)OMAT
21
31
p(2 1p1)(3 4p2)[MAT
2 3 &
06 B[MAT
0
(3(2 1)[IMAT)«0 o MAT
11 12 13 14
21 22 23 24
0 0 33 34

A Selective assignment.

70

Language Reference Guide

Monadic case
IfY is an array, Y is returned.

IfY is arefto an instance of a Class with a Default property, all elements of the
Default property are returned. For example, if It em is the default property of
MyClass,and imc is an Instance of MyCl ass, then by definition:

imc.Item=[imc

NONCE ERROR is reported if the Default Property is Keyed, because in this case
APL has no way to determine the list of all the elements.

Note that the values of the index set are obtained or assigned by calls to the
corresponding PropertyGet and PropertySet functions. Furthermore, if there is a
sequence of primitive functions to the left of the Index function, that operate on the
index set itself (functions such as dyadic p, t, ¥, 2) as opposed to functions that
operate on the values of the index set (functions such as +,[, L ,p "), calls to the
PropertyGet and PropertySet functions are deferred until the required index set has
been completely determined. The full set of functions that cause deferral of calls to
the PropertyGet and PropertySet functions is the same as the set of functions that
applies to selective specification.

If for example, CompF i L e is an Instance of a Class with a Default Numbered
Property, the expression:

1t¢[ICompFile

would only call the PropertyGet function (for CompF i L e) once, to get the value of
the last element.

Note that similarly, the expression
10000p[JCompFile

would call the PropertyGet function 10000 times, on repeated indices if CompF i le
has less than 10000 elements. The deferral of access function calls is intended to be
an optimisation, but can have the opposite effect. You can avoid unnecessary
repetitive calls by assigning the result of] to a temporary variable.

Chapter 1: Primitive Functions 71

Index with Axes R«{X}0O[K]Y

X must be a scalar or vector of depth <2, of integers each 2[JI0. Y may be any array
K is a simple scalar or vector specifying axes of Y. The length of K must be the same
as the length of X:

(p,X) = p,K

In general, the result R is similar to that obtained by square-bracket indexing with
elided subscripts. Items of K distribute items of X along the axes of Y. For example:

I J 001 3]Y <« Y[I;;J]

Note that index with axis may be used with selective specification. JIO is an
implicit argument of index with axis.

Examples
010+t

0«CUBE«101"12 3 4
111 112 113 114
121 122 123 124
131 132 133 134

211 212 213 214
221 222 223 224
231 232 233 234

2[J[1]CUBE
211 212 213 214
221 222 223 224
231 232 233 234

2[][3]CUBE

112 122 132

212 222 232
CUBE[;;2] = 2[I[3]CUBE
(1 3)4[[2 3]CUBE

114 134

214 234

CUBE[:1 3:;4] = (1 3)4[[2 3]CUBE

72 Language Reference Guide

(2(1 3)0[1 3]JCUBE)«0 o CUBE A Selective assignment.
111 112 113 114
121 122 123 124
131 132 133 134

0 212 0 214
0 222 0 224
0 232 0 234
Index Generator RerlY

Y must be a simple scalar or vector array of non-negative numbers. R is a numeric
array composed of the set of all possible coordinates of an array of shape Y. The
shape of R is Y and each element of R occurs in its self-indexing position in R. In
particular, the following identity holds:

1Y <= (1Y)[tY]

0I0 is an implicit argument of Index Generator. This function is also known as

Interval.
Examples
gIo
1
pt0
0
15
12345
12 3
11 12 13
21 22 23
FA<2 4p'MAINEXIT'
MAIN
EXIT
Al1pA]
MAIN

EXIT

Chapter 1: Primitive Functions 73

(10«0
15
012 34
12 3
00 01 02
10 11 12
Al1pAl]
MAI
EXIT

Index Of

ReX1Y

Y may be any array. X may be any array of rank 1 or more.

In general, the function locates the first occurrence of sub-arrays in Y which match
major cells of X, where a major cell is a sub-array on the leading dimension of X with
shape 14 pX. The shape of the result Ris (1-ppX) ¢pY.

If a sub-array of Y cannot be found in X, then the corresponding element of R will be
010+>pX.

In particular, if X is a vector, the result R is a simple integer array with the same shape
as Y identifying where elements of Y are first found in X. Ifan element of Y cannot be
found in X, then the corresponding element of R will be JI0+>pX.

Elements of X and Y are considered the same if X=Y returns 1 for those elements.

010,0CT and ODCT are implicit arguments of Index Of.

Examples
010«1

2431412345
L1326

"CAT' 'DOG' 'MOUSE'i:'DOG' 'BIRD'

X<3 4p112

X
2 3 4
6 7 8
10 11 12

X112 3 4

O U1 —

74 Language Reference Guide

Y<2 4p1 2 3 4 9 10 11 12

Y
1 2 3 4
9 10 11 12
XY
13
X12 3 41
4

X1<10 100 10000.+X
X1

11 12 13 14

15 16 17 18

19 20 21 22

101 102 103 104
105 106 107 108
109 110 111 112

1001 1002 1003 1004
1005 1006 1007 1008
1009 1010 1011 1012

X11100 10000.+X
2 3

X
United Kingdom
Germany

France

Italy

United States
Canada

Japan

Canada

France

Y
United Kingdom
Germany
France
Italy
USA

Canada
Japan

China

India
Deutschland

Chapter 1: Primitive Functions 75

pX
9 14

py
2 5 14

X1y
12 3 4 10

6 7 10 10 10

X1X
123456763

Note that the expression y 1 x signalsa LENGTH ERROR because it looks for major
cells in the left argument, whose shape is 5 14 (thatis 1 ¥ py), which is not the same
as the trailing shape of x.

yix
LENGTH ERROR

yix
A

For performance information, see Programming Reference Guide: Search Functions
and Hash Tables.

76

Language Reference Guide

Indexing

ReX[Y]

X may be any array. Y must be a valid index specification. R is an array composed of
elements indexed from X and the shape of X is determined by the index specification.

This form of Indexing, using brackets, does not follow the normal syntax of'a dyadic
function. For an alternative method of indexing, see Index on page 68.

0I0 is an implicit argument of Indexing.

Three forms of indexing are permitted. The form used is determined by context.

Simple Indexing
For vector X, Y is a simple integer array composed of items from the set 1pX.

R consists of elements selected according to index positions in Y. R has the same
shapeas Y.

Examples
A<10 20 30 40 50

A[2 3p1 1 1 2 2 2]
10 10 10
20 20 20

A[3]
30

'ONE' 'TWO' 'THREE'[2]
TWO

For matrix X, Y is composed of two simple integer arrays separated by the semicolon
character (3). The arrays select indices from the rows and columns of X respectively.

Examples

+M<2 4p10x18
10 20 30 40
50 60 70 80

M[2;:3]
70

Chapter 1: Primitive Functions 77

For higher-rank array X, Y is composed of a simple integer array for each axis of X
with adjacent arrays separated by a single semicolon character (;). The arrays select
indices from the respective axes of X, taken in row-major order.

Examples

FA<2 3 4pl0x124
10 20 30 40
50 60 70 80
90 100 110 120

130 140 150 160
170 180 190 200
210 220 230 240

Al1:131]
10

A[2:3 234 1]
240 210
200 170

If an indexing array is omitted for the Kth axis, the index vector 1 (pX) [K] is
assumed for that axis.

Examples

Als23]
50 60 70 80
170 180 190 200

M
10 20 30 40
50 60 70 80

ML]
10 20 30 40
50 60 70 80

M[1;1]
10 20 30 40

M[s1]
10 50

78 Language Reference Guide

Choose Indexing

The index specification Y is a non-simple array. Each item identifies a single element
of X by a set of indices with one element per axis of X in row-major order.
Examples

M
10 20 30 40
50 60 70 80

Mlet 2]
20

M[2 2pc2 4]
80 80
80 80

ME(2 1)(1 2)]
50 20

A scalar may be indexed by the enclosed empty vector:
S«'7'
S[3pc10]

11

Simple and Choose indexing are indistinguishable for vector X:

V<10 20 30 40

V[e2]
20

€2
2

vi2]

20

Chapter 1: Primitive Functions 79

Reach Indexing

The index specification Y is a non-simple integer array, each of whose items reach
down to a nested element of X. The items of an item of Y are simple vectors (or
scalars) forming sets of indices that index arrays at successive levels of X starting at
the top-most level. A set of indices has one element per axis at the respective level of
nesting of X in row-major order.

Examples

G<('ABC' 1)('DEF" 2)('GHI' 3)('JKL' 4)
G«<2 3pG,('MNO' 5)('PQR' 6)
G

ABC 1 DEF 2 GHI 3

JKL 4 MNO 5 PQR 6

GL((1 2)1)((2 3)2)]
DEF 6

G[2 2p<(2 2)2]

oo
oo

Gleet 1]
ABC 1

G[c1 1]
ABC 1

V<,G

V[ecet]
ABC 1

V[e1]
ABC 1

V[1]
ABC 1

80

Language Reference Guide

Intersection ReXnY

Y must be a scalar or vector. X must be a scalar or vector. A scalar X or Y is treated as
a one-element vector. R is a vector composed of items occurring in both X and Y in
the order of occurrence in X. Ifan item is repeated in X and also occurs in Y, the item
is also repeated in R.

Items in X and Y are considered the same if X=Y returns 1 for those items.
OCT and [ODCT are implicit arguments of Intersection.

Examples
"ABRA'n'CAR'
ARA

1 'PLUS' 2 n 15
12

For performance information, see Programming Reference Guide: Search Functions
and Hash Tables.

Chapter 1: Primitive Functions 81

Interval Index ReX1Y

Classic Edition: the symbol 1 (Iota Underbar) is not available in Classic Edition,
and Interval Index is instead represented by JU2378.

X is an ordered non-scalar array that represents a set of intervals or ranges.

Note that the it interval starts at X[i 1, then includes all subsequent values up to
but not including X[i+1].

Forexample, if Xis (1 3 5) it defines 4 intervals numbered 0 to 3 as follows.

0 [less than 1 <1
1 |between 1 and 3 (21)A(<3)
2 |between 3 and 5 (23)A(<5)
3 | greater than or equal to 5 25

IfXis "AEIOU"' it defines 6 intervals numbered 0 to 5 as follows:

0 before A JucsS[0, 164]
1 between A and E ABCD

2 between E and I EFGH

3 between [and O IJKLMN

4 between O and U OPQREST

5 U and after UVWXYZ...

Y is an array of the same type (numeric or character) as X.

The result R is an integer array that identifies into which interval the corresponding
value in Y falls.

Like dyadic 1 (see Index Of on page 73), Interval Index works with major cells. Fora
vector these are its elements; for a matrix its rows, and so forth.

X and Y are compared using the same logic as monadic A (see Grade Up (Monadic)
on page 62) which is independent of JCT and [IDCT.

0I0 isan implicit arguments of Interval Index. In all the following examples, 10 is
1.

82 Language Reference Guide

Examples

10 20 30111 1 31 21
1032

In the above example:

e 11 isbetween X[1] and X[2] so the answer is 1.
e 1 isless than X[1] so the answer is 0

o 31 is greater than X[pX] so the answer is 3

e 21 is between X[2] and X[3] so the answer is 2.

"AEIOU' 1 'DYALOG'
151342

And in the alphabetic example above:

e "D"is between X[1] and X[2], so the answer is 1
e "Y"is after X[pX] so the answeris 5

e "A"isbetween X[1] and X[2], so the answer s 1
e assooON ..

Example (Classification)
Commercially, olive oil is graded as follows:

« ifits acidity is less than 0.8%, as "Extra Virgin"
« ifits acidity is less than 2%, as "Virgin"

« ifits acidity is less than 3.3%, as "Ordinary"

« otherwise, as "Lampante"

grades<«'Extra Virgin' 'Virgin' 'Ordinary' 'Lampante'
acidity<0.8 2 3.3

samples«1.3 1.9 0.7 4 .6 3.2
acidityisamples

110302
samples,jygrades[1+acidityisamples]

1.3|Virgin

1.9(Virgin

0.7[Extra Virgin

4 Lampante

0.6[Extra Virgin

3.2|0Ordinary

Chapter 1: Primitive Functions 83

Example (Data Consolidation by Interval)
x represents some data sampled in chronological order at timestamps t.

pXx
200000
X
3984300 2020650 819000 1677100 3959200 2177250 3431800

pt
200000 3

(101t) (T10tt)
0 0 0/23 59 54
0 0 0/23 59 55
0 0 0/23 59 56
0 0 0/23 59 56
0 0 0/23 59 58
0 0 2/23 59 58
0 0 3|23 59 59
0 0 3|23 59 59
0 0 4|23 59 59
0 0 5/23 59 59

u represents timestamps for 5-minute intervals:

pu
288 3
(10tu) (T10tu)

23 10
23 15
23 20
23 25

[eNeoNoloNoNoNoNoNoNe]

N

()]
[eNeoNoloNoNoloNoNoNe]

N

w

w

()]
[eNeoNoloNoNoloNoNoNe]

84 Language Reference Guide

Therefore, the expression (uit) {+/w}Bx summarises x in 5-minute intervals.

1t

u
1111111111 ... 288 288 288 288 288 288

(urt) {+/w}B x
1339083050 1365108650 1541944750 1393476000 1454347100

(urt) {(alu),+/w}B x
0 0 1339083050
0 5 0 1365108650
0 10 0 1541944750
0 15 0 1393476000
23 45 0 1388823150
1453472350
1492078850

N

w

(8]

o .
oNeoNe)

23 55

Chapter 1: Primitive Functions 85

Higher-Rank Left Argument

If X is a higher rank array, the function compares sub-arrays in Y with the major cells
of X, where a major cell is a sub-array on the leading dimension of X with shape
14 pX. In this case, the shape of the result Ris (1-ppX) pY.

Example

x « t '"Fi' 'Jay' 'John' 'Morten' 'Roger'
X
Fi
Jay
John
Morten
Roger
pX
56
y « x 5 t 'ID'" 'Jd' 'Geoff' 'Alpha' 'Omega' 'Zeus

y
Fi
Jay
John
Morten

[
o
AAFORLNFPROOFWNE

86 Language Reference Guide

Further Example

pX
5 6

Py
336

X
Fi
Jay
John
Morten
Roger

y
Fi
Jay
John

Morten
Roger
JD

Jd
Geof f
Alpha

X1y

N F =
= 0N
O w

Chapter 1: Primitive Functions

87

Nested Array Example

A card-player likes to sort a hand into suits spades, hearts, diamond, clubs
(fortunately alphabetic) and high-to-low within each suit.

suits<«'Clubs’

'Diamonds’

'Hearts'

pack<,(c"suits)o.,1414 a 11=Jack
hand«<t(,pack)[7?52]
hand<hand[Yhand;]

hand
Spades 12
Hearts 12
Hearts 7
Hearts 2
Diamonds |11
Diamonds |9
Clubs 8

Another card, the 10 of diamonds is dealt. Where must it go in the hand ?

(ehand)i'Diamonds'

(T2Vhand)s 'Diamonds'

2
Spades 12
Hearts 12
Hearts 7
Hearts 2
Diamonds |11
Diamonds |10
Diamonds |9
Clubs 8

Note thatif (A/YeX) and X is sorted and JCT=0 ,then x 1y is the same as x v y.

1057 2thand

‘Spades’
1h=Ace

10 A left arg must be sorted up

88

Language Reference Guide

Left

ReX4Y

X and Y may be any arrays.
The result R is the left argument X.

Example

42-'abc' 1 2 3
42

Note that when - is applied using reduction, the derived function selects the first
sub-array of the array along the specified dimension. This is implemented as an

idiom.
Examples
/1 2 3
1
mat«t'scent' 'canoe' 'arson' 'rouse' 'fleet'
-#mat A first row
scent
4/mat A first column
scarf
4/[2]2 3 4p124 A first row from each plane
1 2 3 4
13 14 15 16

Similarly, with expansion:

-\mat
$SSSSS
ccccce
aaaaa
rrrrr
fffff
-Xmat
scent
scent
scent
scent
scent

Chapter 1: Primitive Functions 89

Less

ReX<Y

Y may be any numeric array. X may be any numeric array. R is Boolean. Ris 1 if X
isless than Y and X=Y is 0. Otherwise R is 0.

(CT and [ODCT are implicit arguments of Less.

Examples

(2 4) (6 8 10) < 6
11 000

OCT<«1E~10

1 0.99999999999 0.9999999999<«1
001

Less Or Equal ReX<Y

Y may be any numeric array. X may be any numeric array. R is Boolean. Ris 1 if X
isless than Y or X=Y. Otherwise R is 0.

0CT and OODCT are implicit arguments of Less Or Equal.

Examples

2 4 6 810 < 6
11100

OcT«1E~10

1 1.00000000001 1.00000001 < 1
110

90 Language Reference Guide

Logarithm R«XeY

Y must be a positive numeric array. X must be a positive numeric array. X cannot be 1
unless Y is also 1. R is the base X logarithm of Y.

Note that Logarithm (dyadic @) is defined in terms of Natural Logarithm (monadic @)
as:

XeY«>(oY):oX

Examples

108100 2
2 0.3010299957

2 1080J1 1J2
0J2.266180071 0.3494850022J0.4808285788

Magnitude Re«|Y

Y may be any numeric array. R is numeric composed of the absolute (unsigned)
values of Y.

; / 2
Note that the magnitude of a complex number (a + zb) is defined to be a® +b

Examples

|2 "3.4 0 ~2.7
2 3.4 0 2.7

1354
5

0IO isan implicit argument of magnitude.

Chapter 1: Primitive Functions 91

Match ReX=Y

Y may be any array. X may be any array. R isa simple Boolean scalar. If X is
identical to Y, then R is 1. Otherwise R is 0.

Non-empty arrays are identical if they have the same structure and the same values in
all corresponding locations. Empty arrays are identical if they have the same shape
and the same prototype (disclosed nested structure).

OCT and ODCT are implicit arguments of Match.

Examples

8=10
1

"'=10
0

A
THIS
WORD

A=2 4p'THISWORD'
1

A=110
0

+B<A A
THIS THIS
WORD WORD

A=>oB
1

(0pA)=0p8B
0

'=50pB

1111
1111

' '=20pA

92

Language Reference Guide

Matrix Divide R<XBY

Y must be a simple numeric array of rank 2 or less. X must be a simple numeric array
ofrank 2 orless. Y must be non-singular. A scalar argument is treated as a matrix
with one-element. IfY is a vector, it is treated as a single column matrix. If X isa
vector, it is treated as a single column matrix. The number of rows in X and Y must
be the same. Y must have at least the same number of rows as columns.

R is the result of matrix division of X by Y. That is, the matrix product Y+ . xR is X.
R is determined such that (X-Y+.xR) *2 is minimised.
The shape of Ris (1+pY),14pX.
Examples
OPP<5

B

N~ W
o U1 =
010 F

35 89 79 H B
2.1444 8.2111 5.0889

A
35 36
89 88
79 75

AHB
2.1444 2.1889
8.2111 7.1222
5.0889 5.5778

Chapter 1: Primitive Functions 93

If there are more rows than columns in the right argument, the least squares solution
results. In the following example, the constants a and b which provide the best fit for
the set of equations represented by P = a + bQ are determined:

Q

el el
OO FWN +—~

P
12.03 8.78 6.01 3.75 70.31 72.79

PEHQ
14.941 72.9609

Example: linear regression on complex numbers

x<j#£750+?72 13 4p100
y«(x+.x3 4 5 6) + j£0.0001x750+?2 13p100

pPX
13 4
Py
13
y B x

3J0.000011066 4J~0.000018499 5J0.000005745 6J0.000050328
A i.e. yBx recovered the coefficients 3 4 5 6

Additional Information
xBy <> (B(®y)+.xy)+.x({y)+.xx
(Use +9 instead of § for complex y.)
This equivalence, familiar to mathematicians and statisticians, explains

« the conformability requirements for @
« how to compute the result for tall matrices from the better known square
matrix case

94

Language Reference Guide

Matrix Inverse R<BY

Y must be a simple array of rank 2 orless. Y must be non-singular. If'Y is a scalar, it
is treated as a one-element matrix. IfY is a vector, it is treated as a single-column
matrix. Y must have at least the same number of rows as columns.

R is the inverse of Y if Y is a square matrix, or the left inverse of Y if Y is not a square
matrix. That is, R+.xY is an identity matrix.

The shape of R is $p.

Examples
M
2 73
4 10
+A<EM

0.3125 0.09375
~0.125 0.0625

Within calculation accuracy, A+ . xM is the identity matrix.

A+ . xM

o -
= O

j«{a<0 ¢ a+0J1xw}
X«j#750+272 5 5p100

X
“37J741 253015 ~5J°09 3J020 29J041
“46J026 177724 173746 43J023 127718
1J013 33J025 "47J049 "45J7 14 2J726
17J048 ~50J022 ~12J025 "44J015 7T9J743
183013 8J038 43J723 34J°07 2J026
pX
55
jd«{e.==1w} A identity matrix of order w
[/,] (id 11px) - x+.xHEx
3.66384ET16

Chapter 1: Primitive Functions 95

Maximum

ReXTY

Y may be any numeric array. X may be any numeric array. R is numeric. R is the
larger of the numbers X and Y.

Example

~2.01 0.1 15.3 [73.2 "1.1 22.7
~2.01 0.1 22.7

Membership R«XeY

Y may be any array. X may be any array. R is Boolean. An element of R is 1 ifthe
corresponding element of X can be found in Y.

An element of X is considered identical to an element in Y if X=Y returns 1 for those
elements.

OCT and ODCT are implicit arguments of Membership.

Examples

‘"THIS NOUN' € 'THAT WORD'
110010100

'CAT' 'DOG' 'MOUSE' e 'CAT' 'FOX' 'DOG' 'LLAMA'
110

For performance information, see Programming Reference Guide: Search Functions
and Hash Tables.

Minimum ReXLY
Y may be any numeric array. X may be any numeric array. R is numeric. R is the
smaller of X and Y.
Example
“2.1 0.1 15.3 | 73.2 1 22
3.2 0.1 15.3
Minus ReX-Y

See Subtract on page 125.

96

Language Reference Guide

Mix

(OML) R«t[K]Y or Re>[K]Y

The symbol chosen to represent Mix depends on the current Migration Level.
If[OML <2, Mix is represented by the symbol: 1.
IfOML>2, Mix is represented by the symbol: .

Y may be any array whose items may be uniform in rank and shape, or differ in rank
and shape. If the items of Y are non-uniform, they are extended prior to the
application of the function as follows:

1. If the items of Y have different ranks, each item is extended in rank to that
of the greatest rank by padding with leading 1s.

2. Ifthe items of Y have different shapes, each is padded with the
corresponding prototype to a shape that represents the greatest length along
each axis of all items in Y.

For the purposes of the following narrative, y represents the virtual item in Y with the
greatest rank and shape, with which all other items are extended to conform.

R is an array composed from the items of Y assembled into a higher-rank array with
one less level of nesting. pR will be some permutation of (pY) ,py.

K is an optional axis specification whose value(s) indicate where in the result the
axes of y appear. There are three cases:

1. For all values of ML, K may be a scalar or 1-element vector whose value is
a fractional number indicating the two axes of Y between which new axes
are to be inserted for y. The shape of R is the shape of Y with the shape py
inserted between the | Kth and the [Kth axes of Y

2. If[OML22, K may be a scalar or 1-element vector integer whose value
specifies the position of the first axis of y in the result. This case is
identical to the fractional case where K (in this case) is [K (in the fractional
case).

3. IfML22, K may be a vector, with the same length as py, each element of
which specifies the position in the result of the corresponding axis of the y.

IfK is absent, the axes of y appear as the last axes of the result.

Chapter 1: Primitive Functions 97

Simple Vector Examples

In this example, the shape of Y is 3, and the shape of y is 2. So the shape of the result
will be a permutation of 2 and 3, i.e. in this simple example, either (2 3) or (3 2).

IfK is omitted, the shape of the resultis (pY) ,py.
t(1 2)(3 4)(5 6)

gl w =
NFEN

IfK is between 0 and 1, the shape of the resultis (py) ,pY because (py) isinserted
between the 0th and the 15t axis of the result, i.e. at the beginning.

t[.5](1 2)(3 4)(5 6)
135
2 46

IfK is between 1 and 2, the shape of the resultis (pY) , py because (py) isinserted
between the 15t and 214 axis of the result, i.e. at the end. This is the same as the case
when K is omitted.

+[1.57(1 2)(3 4)(5 6)
12
3 4
56
IfOML 22 an integer K may be used instead (Note that > is used instead of t).

OML<3
2(1 2)(3 4)(5 6)

gl W =
oFN

5[1](1 2)(3 4)(5 6)

[N

35
2 46
>[2](1 2)(3 4)(5 6)

g w
FEN

98 Language Reference Guide

Shape Extension

Ifthe items of Y are unequal in shape, the shorter ones are extended:

OML<3
5(1)(3 4)(5)

o FfO

1

3

5
>[11(1)(3 4)(5)

135

o4 0

More Simple Vector Examples:

Jbox on

Was OFF
"Andy' 'Geoff' 'Pauline’

Andy | Geoff|Pauline

t'Andy' 'Geoff' 'Pauline'’

Andy
Geof f
Pauline
[OML<3
5('andy' 19)('geoff' 37)('pauline' 21)
andy 19
geoff 37
pauline|21

o[1]('andy' 19)('geoff' 37)('pauline' 21)

andy|geoff|pauline

19 37 21

>('andy' 19)('geoff' 37)(c'pauline')

andy 19
geoff 37
pauline

Notice that in the last statement, the shape of the third item was extended by
catenating it with its prototype.

Chapter 1: Primitive Functions

99

Example (Matrix of Vectors)

In the following examples, Y is a matrix of shape (5 Y4) and each item of Y (y)isa
matrix of shape (3 2). The shape ofthe result will be some permutation of (5 4 3

2).
Y«<5 4p(120)xc3 2p1
Y
11 2 2 33 b4
11 2 2 3 3 b4
11 2 2 3 3 b4
55 6 6 71 8 8
55 6 6 77 8 8
55 6 6 77 8 8
99 10 1011 11(12 12
99 10 1011 1112 12
99 10 1011 1112 12
13 13|14 1415 15(16 16
13 13|14 14(15 15(16 16
13 13|14 14(15 15(16 16
17 17(18 18(19 19(20 20
17 17(18 18(19 19(20 20
17 17(18 18|19 19|20 20

By default, the axes of y appear in the last position in the shape of the result, but this
position is altered by specifying the axis K. Notice where the (3 2) appears in the
following results:

54

3

3

INDEX

A

p>Y
2

p2[1]Y

L

pa[2]Y

L

p>[3]Y

2

p2[4]Y
ERROR
pa[4]Y

Note that >[4]Y generates an INDEX ERROR because 4 is greater than the length
ofthe result.

100

Language Reference Guide

Example (Vector K)

The axes of y do not have to be contiguous in the shape of the result. By specifying a
vector K, they can be distributed. Notice where the 3 and the 2 appear in the
following results:

p=[1 3]Y
3524

pa[1 4]Y
3542

p2[2 4]y
534 2

p2[4 2]Y
52 4 3

Rank Extension

Ifthe items of Y are unequal in rank, the lower rank items are extended in rank by
prefixing their shapes with 1s. Each additional 1 may then be increased to match the
maximum shape of the other items along that axis.

OML<3
Y<(1)(2 3 4 5)(2 3p10x18)
Y
12 3 4 5(10 20 30
40 50 60
paY
324
oY
1 0 00
0 0 00
2 3 45
0 0 00
10 20 30 0
40 50 60 O

In the above example, the first item (1) becomes (1 1p1)to conform with the 3rd
item which is rank 2. It is then extended in shape to become (2 411 1p1) to
conform with the 2-row 3rd item, and 4-column 2nd item.. Likewise, the 2nd item
becomes a 2-row matrix, and the 3rd item gains another column.

Chapter 1: Primitive Functions 101

Multiply ReXxY
Y may be any numeric array. X may be any numeric array. R is the arithmetic
product of X and Y.
This function is also known as Times.
Example
3210x2496
6 890
2j3x.3j.5 1j2 3j4 .5
“0.931.9 T4J7 T6J17 1J1.5
Nand ReXAY

Y must be a Boolean array. X must be a Boolean array. R is Boolean. The value of R
is the truth value of the proposition "not both X and Y", and is determined as follows:

X Y R
0 0 1
0 1 1
1 0 1
1 1 0

Example

(0 1)(1 0) A (0 0)(1 1)
11 01

102 Language Reference Guide

Natural Logarithm Ree®Y

Y must be a positive numeric array. R is numeric. R is the natural (or Napierian)
logarithm of Y whose base is the mathematical constant e=2.71828....

Example

el 2
0 0.6931471806

®2 2p0j1 1j2 23j3 3j4
0.000000000J1.570796327 0.8047189562J1.107148718
1.282474679J0.9827937232 1.6094379120J0.927295218

Negative Re-Y

Y may be any numeric array. R is numeric and is the negative value of Y. For complex
numbers both the real and imaginary parts are negated.

Example
-4+ 20 73 75
4 72 0 35

-1j2 7233 4J°5
“1J72 2373 T4J5

Chapter 1: Primitive Functions 103

Nest RecY

Classic Edition: the symbol ¢ (Left Shoe Underbar) is not available in Classic
Edition, and Nest is instead represented by U2286.

Y may be any array.

IfY is simple, R is a scalar array whose item is the array Y. IfY is a simple scalar or is
already nested, R is Y unchanged.

Examples
€1 2 3

123

c1 (12 3)

111 2 3

c'Dyalog

Dyalog

n

‘Dyalog' 'APL'

Dyalog|APL

Nor ReXVY

Y must be a Boolean array. X must be a Boolean array. R is Boolean. The value of R
is the truth value of the proposition "neither X nor Y", and is determined as follows:

X Y R
0 0 1
0 1 0
1 0 0
1 1 0

Example

0011%vV0101
1000

104

Language Reference Guide

Not Re~Y
Y must be a Boolean array. R is Boolean. The value ofRisOifYis1,andRis1ifY
is 0.
Example
~0 1
10
Not Equal R«X#Y

Y may be any array. X may be any array. R isBoolean. Ris 0 if X=Y. Otherwise R
is1.

For Boolean X and Y, the value of R is the exclusive or (XOR) result, determined as
follows:

>
=<
-

== 00
OO
OO

OCT and [IDCT are implicit arguments of Not Equal.

Examples
123=%1.123
100
OCT<1E~10

1#1 1.00000000001 1.0000001
001

1 2 3 #'CAT'
111

Chapter 1: Primitive Functions 105

Not Match ReX#Y

Y may be any array. X may be any array. R isa simple Boolean scalar. If X is
identical to Y, then R is 0. Otherwise Ris 1.

Non-empty arrays are identical if they have the same structure and the same values in
all corresponding locations. Empty arrays are identical if they have the same shape
and the same prototype (disclosed nested structure).

OCT and ODCT are implicit arguments of Not Match.

Examples
8%10
0
"'#£10
1
+A<c(13) 'ABC'
1 2 3 ABC
A#£(13) 'ABC'
1
A#c(13) 'ABC'
0
8#0pA
1

(1t0pA)#c(0 0 0) '

106

Language Reference Guide

Or, Greatest Common Divisor ReXvY

Case 1: X and Y are Boolean

R is Boolean and is determined as follows:

X Y R

0 o0 0

0o 1 1

1t 0 1

I | 1
Example

0011voO0o1o01
0111

Case 2: X and Y are numeric (non-Boolean)

R is the Greatest Common Divisor of X and Y. Note that in this case, JCT and DCT
are implicit arguments.

Examples

151 27 v 35140
5127

rational«{tw 1+civw} A rational (OCT) approximation
A to floating array.
rational 0.4321 0.1234% 6.66, =1 2 3
4321 617 333 1 1 1
10000 5000 501 2 3

Chapter 1: Primitive Functions 107

Partition

R«Xc[K]Y

Classic Edition: the symbol ¢ (Left Shoe Underbar) is not available in Classic
Edition, and Partition is instead represented by JU2286.

Y may be any non-scalar array.
X must be a simple scalar or vector of non-negative integers.

The axis specification is optional. If present, it must be a simple integer scalar or one
element array representing an axis of Y. If absent, the last axis is implied.

R is an array of the elements of Y partitioned according to X.

A new partition is started in the result whenever the corresponding element in X is
greater than the previous one. Items in Y corresponding to Os in X are not included in
the result.

Note that if ML 2 3, the symbol € means the same as <.

Examples
OML<«3

Jdisplay 1 1 1 2 2 3 3 3<'NOWISTHE'

NOW IS THE

Jdisplay 1 1 1 0 0 3 3 3<'NOWISTHE'

NOW THE

TEXT<«' NOW IS THE TIME !
Jdisplay (' '"#TEXT)cTEXT

NOW IS THE TIME

108 Language Reference Guide

ldisplay CMAT<+[FMT ("'

' ,ROWS) ,COLSsNMAT

{ Jan Feb Mar
Cakes 0 100 150
Biscuits 0 0 350
Buns 0 1000 500

ldisplay (v#' '#CMAT)cCMAT

I
{
Jan Feb Mar
Cakes 0 100 150
Biscuits 0 0 350
Buns 0 1000 500
-€

Jdisplay N«<4 Lpi16

[
+1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

ldisplay 1 1 0 1eN

J .
12 _E]
[
9 10 12
13 14 16

A Split at blank cols.

Chapter 1: Primitive Functions 109

Jdisplay 1 1 0 1c[1]N

15 2 6 3 7 L 8

13 14 15 16

Partitioned Enclose (OML<3) R«Xc[K]Y

Y may be any array. X must be a simple Boolean scalar or vector.

The axis specification is optional. If present, it must be a simple integer scalar or
one-element vector. The value of K must be an axis of Y. Ifabsent, the last axis of Y
is implied.

X must have the same length as the Kth axis of Y. However, if X is a scalar or one-
element vector, it will be extended to the length of the Kth axis of Y.

R is a vector of items selected from Y. The sub-arrays identified along the Kth axis of
Y at positions corresponding to each 1 in X up to the position before the next 1 in X
(or the last element of X) become the successive items of R. The length of R is +/X
(after possible extension).

Examples

010011000 <19
234 65 6789

101 c[1] 3 4pr12

1234 910 11 12
567 8

1001 <c[2]3 4pr12
1 2 3 4
5 6 7 8
9 10 11 12

110 Language Reference Guide

Pi Times

R«oY

Y may be any numeric array. R is numeric. The value of R is the product of the
mathematical constant z=3.14159... (Pi),and Y.

Example

0.5 1 2
1.570796327 3.141592654 6.283185307

00J1
0J3.141592654

*00J1 A Euler
-1

Pick

R«XoY

Y may be any array.
X is a scalar or vector of indices of Y.
R is an item selected from the structure of Y according to X.

Elements of X select from successively deeper levels in the structure of Y. The items
of X are simple integer scalars or vectors which identify a set of indices, one per axis
at the particular level of nesting of Y in row-major order. Simple scalar items in Y
may be picked by empty vector items in X to any arbitrary depth.

0IO0 is an implicit argument of Pick.
Examples
G<('ABC' 1)('DEF" 2)('GHI' 3)('JKL"' &)
G<2 3pG,('MNO' 5)('PQR"' 6)
G
ABC 1 DEF 2 GHI 3
JKL 4 MNO 5 PQR 6

((c2 1),1)2G
JKL

(e2 1)>G
JKL 4

Chapter 1: Primitive Functions 111

((2 1)1 2)=G

K
(5pc10)>10
10
Plus ReX+Y
See Add on page 11.
Power ReX*Y

Y must be a numeric array. X must be a numeric array. R is numeric. The value of R
is X raised to the power of Y.

IfY is zero, R is defined to be 1.
If X is zero, Y must be non-negative.

In general, if X is negative, the result R is likely to be complex.

Examples

2%2 T2
4 0.25

9 64x0.5
38

“27x3 2 1.2 .5
~19683 729 "42.22738244J730.67998919 0J5.196152423

112 Language Reference Guide

Ravel Re,Y

Y may be any array. R isa vector ofthe elements of Y taken in row-major order.

Examples
M
123
4 5 6
»M
123456
A
ABC
DEF
GHI
JKL
LA
ABCDEFGHIJKL
p,10
1

See also: Ravel with Axes below.

Ravel with Axes R«,[K]Y

Y may be any array.
K is either:

o A simple fractional scalar adjacent to an axis of Y, or
o A simple integer scalar or vector of axes of Y, or
e An empty vector

Ravel with axis can be used with selective specification.
R depends on the case of K above.

IfK is a fraction, the result R is an array of the same shape as Y, but with a new axis of
length 1 inserted at the Kth position.

ppR «> 1+ppY¥
PR« (1,pY)[4K,1ppY]

Chapter 1: Primitive Functions

113

Examples

,[0.5]"'ABC'
ABC

p,[0.5]"ABC'
13

,[1.5]"'ABC'
A
B
C

p,[1.5]"ABC"
31

MAT<3 Lp112

p,[0.5IMAT
134

p,[1.5IMAT
31 4

p,[2.5IMAT
341

IfK is an integer scalar or vector of axes of Y, then:

« K must contain contiguous axes of Y in ascending order
« R contains the elements of Y ravelled along the indicated axes

Note that if K is a scalar or single element vector, R <> Y.

ppR «> 1+(ppY)-p,K

Examples

13 14 15 16

17 18 19 20

21 22 23 24
pM

114 Language Reference Guide

,[1 2]IM
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
p,[1 2IM
6 4
,[2 3IM

1 2 3 4+ 65 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24

p,[2 3]IM
2 12

IfK is an empty vector a new last axis of length 1 is created.
pR <> (pY),1
Examples

Ql«'January' 'February' 'March’
ldisplay Q1

January February March

Jdisplay ,[10]Q1

January

February

March

-€

See also: Ravel on page 112

Chapter 1: Primitive Functions 115

Reciprocal RetY

Y must be a numeric array. R is numeric. R isthe reciprocal of Y; thatis 1+Y. If
(DIV=0, +0 resultsin a DOMAIN ERROR. If(JDIV=1, +0 returns 0.

0DIV is an implicit argument of Reciprocal.

Examples

4 25
0.25 0.5 0.2

£0j1 0571 232 4ju
0J71 0J1 0.25J70.25 0.125J70.125

ODIV«1
+0 0.5

Replicate

R«X/[K]Y

Y may be any array. X is a simple integer vector or scalar.

The axis specification is optional. If present, K must be a simple integer scalar or 1-
element vector. The value of K must be an axis of Y. Ifabsent, the last axis of Y is
implied. The form R«X#Y implies the first axis of Y.

If Y has length 1 along the Kth (or implied) axis, it is extended along that axis to
match the length of X. Otherwise, the length of X must be the length of the Kth (or
implied) axis of Y. However, if X is a scalar or one-element vector, it will be extended
to the length of the Kth axis.

R is composed from sub-arrays along the Kth axis of Y. If X[I] (an element of X) is
positive, then the corresponding sub-array is replicated X[I] times. If X[I] is zero,
then the corresponding sub-array of Y is excluded. If X[I] is negative, then the fill
element of Y is replicated | X[I] times. Each ofthe (replicated) sub-arrays and fill
items are joined along the Kth axis in the order of occurrence. The shape of R is the
shape of Y except that the length of the (implied) Kth axis is +/ | X (after possible
extension).

This function is sometimes called Compress when X is Boolean.

116 Language Reference Guide

Examples

1010 1/15
135

1 72 3 74 5/15
1003330000555H5H5

2 0 1/M

0 1#M
0 1/[1IM
4L 56

IfY is a singleton (1=x/p,Y) its value is notionally extended to the length of X
along the specified axis.

10 1/4
4

101/,3
33

10 1/1 1p5

Chapter 1: Primitive Functions 117

Reshape R«XpY

Y may be any array. X must be a simple scalar or vector of non-negative integers. R
is an array of shape X whose elements are taken from Y in row-major sequence and
repeated cyclically ifrequired. IfY is empty, R is composed of fill elements of Y
(ce2Y with ml<«0). If X contains at least one zero, then R is empty. If X is an
empty vector, then R is scalar.

Examples

2 3p18
123
4L 56

2 3pih

£ -
- N
N w

2 3p10
00
00

o o

Residue ReX|Y

Y may be any numeric array. X may be any numeric array.
For positive arguments, R is the remainder when Y is divided by X. If X=0,R is Y.

For other argument values, R is given by the expression Y-Xx [Y+X+0=X. This
expression also applies when X and/or Y are complex if the simple | is replaced by
the CpxF Loor function. See Complex Floor on page 51.

OCT and ODCT are implicit arguments of Residue.

Examples

3373 73755 744
1271 72

0.5[3.12 71 ~0.6
0.12 0 0.4

1 0 1/75.25 0 2.41
“0.25 0 0.41

1j21233 3j4 5j6
1J1 ~1J1 031

Note that the ASCII Broken Bar (QUCS 166, U+00A6)is not interpreted as Residue.

118 Language Reference Guide

Reverse R«$[K]Y

Y may be any array. The axis specification is optional. If present, K must be an
integer scalar or one-element vector. The value of K must be an axis of Y. Ifabsent,
the last axis is implied. The form R«eY implies the first axis.

R is the array Y reversed on the Kth or implied axis.

Examples

$1 2 3 4+ 5
54321

M

£
o
o w

oM

o w
o
£

eM

-5
w o

$L1IM

-
(62}
w o

Reverse First R«e[K]Y

The form R«<®Y implies reversal along the first axis. See Reverse above.

Chapter 1: Primitive Functions 119

Right

ReXrY

X and Y may be any arrays. The result R is the right argument Y.
Examples

42 +'abc' 1 2 3

abc 1 2 3

32+1.8x+0 100 A {32+1.8+w} 0 100
32 212

(b3+/) 4+ 301 A {ws+/w} 4+ 3 01

0.5 0.375 0 0.125

1%2+2 2 2 2p[A A (4%2)2 2 2 2p0A
AB CD EF GH
IJ KL MN OP

When + is applied using reduction, the derived function selects the last sub-array of
the array along the specified dimension. This is implemented as an idiom.

Examples
/1 2 3

mat«t'scent' 'canoe' 'arson' 'rouse' 'fleet'

#mat A last row
fleet

+/mat A last column
tenet

+/[2]2 3 4pi124 p last row from each plane
9 10 11 12
21 22 23 24

120

Language Reference Guide

Roll

Re?Y

Y may be any non-negative integer array. R has the same shape as Y at each depth.

For each positive element of Y the corresponding element of R is an integer, pseudo-
randomly selected from the integers 1Y with each integer in this population having
an equal chance of being selected.

For each zero element of Y, the corresponding element of R is a pseudo-random
floating-point value in the range 0 - 1, but excluding 0 and 1,1i.e. (0<R[I]<1).

0I0 and ORL are implicit arguments of Roll. A side effect of Roll is to change the
value of (RL.

Note that different random number generators are available; see JRL for more
information.

Examples

2999
275
23p0
0.3205466592 0.3772891947 0.5456603511

Chapter 1: Primitive Functions 121

Rotate

R«X$[K]Y

Y may be any array. X must be a simple integer array. The axis specification is
optional. If present, K must be a simple integer scalar or one-element vector.

The value of K must be an axis of Y. If absent, the last axis of Y is implied. The form
R<XeY implies the first axis.

X must have the same shape as Y, excluding Y's Kth axis. Otherwise, if X is a one-
element array, it will be extended to conform.

R is an array with the same shape as Y, with the elements of each of the vectors along
the Kth axis of Y rotated by the value of the corresponding element of X. Ifthe value
is positive, the rotation is in the sense of right to left. Ifthe value is negative, the
rotation is in the sense of left to right.

Examples
3é1234567
456 7123
T2 ¢ 12345
45123
M
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
I
01710
03 21
I¢[2]M
1 6 7 4
5 2 3 8
9 14 11 16

13 10 15 12

122 Language Reference Guide

JoM
b 1
7 8

aN

3
6
12 9 10 11
15 16 13 14

Rotate First R«Xe[K]Y

The form R«<XeY implies rotation along the first axis. See Rotate above.

Chapter 1: Primitive Functions

123

Same

ReaY
RerY

Y may be any array.

The result R is the argument Y.

Examples
<'abc' 1 2 3
abc 1 2 3
(+,0size) 'a'Onl 4 n
acc 572
and 492
ascan 740
ascana 716
at 1764

avl 17476

left tine of fork meaning "it"

124 Language Reference Guide

Shape Re«pY

Y may be any array. R is a non-negative integer vector whose elements are the
dimensions of Y. IfY is a scalar, then R is an empty vector. The rank of'Y is given by

ppY.
Examples
pl0
p'CAT'
3
p3 4pri2
3 4
+G«(2 3p16)('CAT' 'MOUSE' 'FLEA')
123 CAT MOUSE FLEA
b 56
pG
2
ppG
1
06
2 3 3
06

Chapter 1: Primitive Functions 125

Split

R«4[KIY

Y may be any array. The axis specification is optional. If present, K must be a simple
integer scalar or one-element vector. The value of K must be an axis of Y. Ifabsent,
the last axis is implied.

The items of R are the sub-arrays of Y along the Kth axis. R isascalarifY is a scalar.
Otherwise R is an array whose rank is ~1+ppY and whose shape is (Kz1ppY)/pY.
Examples

43 4p'MINDTHATSTEP'
MIND THAT STEP

42 5p110
12345 6789 10

+[112 5p110
16 27 38 49 510

Subtract

ReX-Y

Y may be any numeric array. X may be any numeric array. R is numeric. The value of
R is the difference between X and Y.

This function is also known as Minus.

Example

37 240-21"7"2%
1 73 6 74

2j3-.3j5 A (a+bi)-(c+di) = (a-c)+(b-d)i
1.7372

126

Language Reference Guide

Table

ResY

Y may be any array. R is a 2-dimensional matrix of the elements of Y taken in row-
major order, preserving the shape of the first dimension of Y if it exists

Table has been implemented according to the Extended APL Standard (ISO/IEC
13751:2001).

Examples

ldisplay {w (pw)} 5'a’

ldisplay {w (pw)} 5'hello’

r

th 51

e

L

L

)
Le

Jdisplay {w (pw)} 52 3 4pi2h

T

{1 2 3 4 5 6 7 8 9 10 11 12 2 12

13 14 15 16 17 18 19 20 21 22 23 24

Chapter 1: Primitive Functions 127

Take ReXtY

Y may be any array. X must be a simple integer scalar or vector.

IfY is a scalar, it is treated as a one-element array of shape (p, X)p1. The length of
X must be the same as or less than the rank of Y. If the length of X is less than the rank
of Y, the missing elements of X default to the length of the corresponding axis of Y.

R is an array of the same rank as Y (after possible extension), and of shape | X. If X
[I] (an element of X) is positive, then X[I] sub-arrays are taken from the beginning
ofthe Ith axis of Y. If X[I] is negative, then X[I] sub-arrays are taken from the
end of the Ith axis of Y.

If more elements are taken than exist on axis I, the extra positions in R are filled with
the fill element of Y (c€>Y with Om(<«0).
Examples

5t 'ABCDEF"
ABCDE

511 2 3
12300

611 2 3
00123

54(13) (i4) (15)
123 1234 12345 000 00O

gl -
o N
~Nw
oo FX

2 3tM

gl -
o N
~N w

1 T2tM

M3<2 3 uplA
11M3

ABCD

EFGH

IJKL
~14M3

MNOP

QRST

UVWX

128 Language Reference Guide

Take with Axes ReXt[K]Y

Y may be any non-scalar array. X must be a simple integer scalar or vector. K isa
vector of zero or more axes of Y.

R is an array of'the first or last elements of Y taken along the axes K depending on
whether the corresponding element of X is positive or negative respectively.

The rank of R is the same as the rank of Y:
ppR <> ppY
The size of each axis of R is determined by the corresponding element of X:

(pR)[,K] <> |,X

Examples

O«M<2 3 4p12k4

2 3 4

5 6 7 8
0 11 12

13 14 15 16

17 18 19 20
21 22 23 24

2t[2IM
3 4
7 8

[N
N

13 14 15 16
17 18 19 20

2¢[3IM

O U1 =
o

13 14
17 18
21 22

2 T24[3 2IM

17 18
21 22

Chapter 1: Primitive Functions 129

Tally

R<#Y

Y may be any array. R is a simple numeric scalar.

Tally returns the number of major cells of Y. See Programming Reference Guide:
Cells and Subarrays.

This can also be expressed as the length of the leading axis or 1 if Y is a scalar. Tally
is equivalent to the function {6p (pw),1}.

Examples
£2 3 4p110
2
#2
1
#0
0

Note that #V is useful for returning the length of vector V as a scalar. (In contrast, pV
is a one-element vector.)

Times

ReXxY

See Multiply on page 101.

Transpose (Monadic) R«®Y

Y may be any array. R is an array of shape ¢pY, similar to Y with the order of the
axes reversed.

Examples
M

N

3
6

£ -

&M

WN =~
o O F

130 Language Reference Guide

Transpose (Dyadic) R«X{Y

Y may be any array. X must be a simple scalar or vector whose elements are included
inthe set 1ppY. Integer values in X may be repeated but all integers in the set 1[/X
must be included. The length of X must equal the rank of Y.

R is an array formed by the transposition of the axes of Y as specified by X. The Ith
element of X gives the new position for the I'h axis of Y. If X repositions two or
more axes of Y to the same axis, the elements used to fill this axis are those whose
indices on the relevant axes of Y are equal.

0IO0 is an implicit argument of Dyadic Transpose.

Examples

O Ol =~

13 14 15 16
17 18 19 20
21 22 23 24

9 10 11 12
21 22 23 24

11 18A
11 28A

1 2 3 &
17 18 19 20

Chapter 1: Primitive Functions 131

Alternative Explanation

Assign a distinct letter for each unique integerin X :
0123..
ij ko

IfR<X®Y,thenR[i3 jsks;..] equals Y indexed by the letters corresponding to
elements of X .

For example:
d10<«0

Y« ?2 513 19 17 11 p 100

i«?217 o j«?211 ¢ k«?5

RCisjsk] = Y[ksjsksisil
1

R[isjsk]l=Y[ce""ijk'[X]]
1

From the above it can be seen that:

e therank of Ris O[1+[/X
o the shape of Ris (pY)L.+([/pY)xXe.#10[1+[/X

132

Language Reference Guide

Type

(OML<1) R«eY

Migration level must be such that ML <1 (otherwise € means Enlist. See Enlist on
page 44).

Y may be any array. R is an array with the same shape and structure as Y in which a
numeric value is replaced by 0 and a character value is replaced by ' '
Examples
€(2 3p16)(1 4p'TEXT')
000
000

Union

ReXuY

Y must be a vector. X must be a vector. If either argument is a scalar, it is treated as a
one-element vector. R isa vector of the elements of X catenated with the elements of
Y which are not found in X.

Items in X and Y are considered the same if XY returns 1 for those items.
OCT and [IDCT are implicit arguments of Union.

Examples

‘WASH' v 'SHOUT'
WASHOUT

'ONE' 'TWO' v 'TWO' 'THREE'
ONE TWO THREE

For performance information, see Programming Reference Guide: Search Functions
and Hash Tables.

Chapter 1: Primitive Functions 133

Unique

RevY

Y may be any array. R is a vector of the unique major cells of Y (the unique items of a
vector, the unique rows of a matrix and so forth), in the order in which they first
appear in Y. For further information, see Programming Reference Guide: Cells and
Subarrays.

(CT and [ODCT are implicit arguments of Unique.

Examples
u 22 10 22 22 21 10 5 10
22 10 21 5

u v«<'CAT' 'DOG' 'CAT' 'DUCK' 'DOG' 'DUCK'

CAT |DOG|DUCK

Fmat<«tv
CAT
DOG
CAT
DUCK
DOG
DUCK
umat
CAT
DOG
DUCK

a«<3 4 5p120
1 2 3 4 5

11 12 13 14 15
16 17 18 19 20

11 12 13 14 15
16 17 18 19 20

11 12 13 14 15
16 17 18 19 20
va

11 12 13 14 15
16 17 18 19 20

134 Language Reference Guide

Where Re«pY

Classic Edition: the symbol 1 (Iota Underbar) is not available in Classic Edition,
and Where is instead represented by JU2378.

Y must be a simple Boolean array.
R is a vector of the indices of all the 1sin Y. IfY is all zeros, R is an empty vector.

0I0 is an implicit argument of Where.

Examples
gIo

1101000010

1'e'="'Pete’

-
-
=1

1 21 3|2 1|2 2|2 4|3 1|3 3|3 4

12 340 00 0 1

1211132213224

131 42
DOMAIN ERROR
13142
A
Without R«X~Y
See Excluding on page 46.
Zilde R+©

The empty vector (1 0) may be represented by the numeric constant € called ZILDE.

135

Chapter 2:

Primitive Operators

Operator Syntax

Operators take one or two operands. An operator with one operand is monadic. The
operand of a monadic operator is to the left of the operator. An operator with two
operands is dyadic. Both operands are required for a dyadic operator.

Operators have long scope to the left. That is, the left operand is the longest function
or array expression to its left (see Programming Reference Guide: Operators). A
dyadic operator has short scope on the right. Right scope may be extended by the
use of parentheses.

An operand may be an array, a primitive function, a system function, a defined
function or a derived function. An array may be the result of an array expression.

An operator with its operand(s) forms a derived function. The derived function may
be monadic or dyadic and it may or may not return an explicit result.

Examples

+/15
15

(x02)13
1 49

PLUS « + o TIMES <« x
1 PLUS.TIMES 2

2
ONL 2
A
X
Oex"+ONL 2

ONL 2

136

Language Reference Guide

Monadic Operators
Like primitive functions, monadic operators can be:

« named
« enclosed within parentheses
« displayed in the session

Examples

0 « each « () A name and display

shape<«p
shape each (1 2) (3 4 5)

slash«/

+slash 110
55

swap<=~

3 -swap 4
1

Right Operand Currying

A dyadic operator may be bound or curried with its right operand to form a monadic
operator

Examples

0 « inv « ¥71 a produces monadic inverse operator
¥ 71

+\inv 1 2 3 A scan-inverse
111

lim « %= A power-limit

1 +o+lim 1 A Phi

1.61803

Chapter 2: Primitive Operators 137

Operators Summarised

Table 8 and Table 9 below summarise the Monadic and Dyadic primitive operators
whose detailed descriptions follow in alphabetical order in this section.

Some operators may include an axis specification (indicated [Jin the tables). Note
that in these case [JI0 is an implicit argument of the derived function.

Table 8: Monadic Primitive Operators

Producing Monadic

Producing Dyadic

Name derived function derived function
Assignment

(Modified) Xf<Y
Assignment (Indexed

Modified) X[T1f«Y
Assignment (Selective

Modified) (EXP X)f<Y
Commute f=y XF=Y

Each £y XY

[-Beam ATY X(AT)Y

Key faY XfEY
Reduction f/Y [] Xf/Y []
Reduction First fAY [] XfAY []
Scan fA\Y [1]

Scan First fxY []

Spawn f&Y Xf&Y

Language Reference Guide

Table 9: Dyadic Primitive Operators

Producing Monadic derived

Producing Dyadic derived

Name function function
At fegyY XfegyY
Axis fIBIY Xf[BlY
Composition | fogyY Xfog¥Y
Composition | AegY

Composition | (foB)Y

Produc e .Y
grgflict Xe.gY
Power fxgY XfxgY
Rank fokyY XfekY
Stencil flhgyY

Variant fElgY XflgY

Chapter 2: Primitive Operators 139

Operators (A-Z)

Monadic and Dyadic primitive operators are presented in alphabetical order of their
descriptive names as shown in Table 8 and Table 9.

Primitive Operators (A-Z)

Assignment (Modified) {R}«Xf<Y

f may be any dyadic function which returns an explicit result. Y may be any array
whose items are appropriate to function f. X must be the name of an existing array
whose items are appropriate to function f.

R is the “pass-through” value, that is, the value of Y. Ifthe result of the derived
function is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the value of the array named by X to the

result of XfY.
Examples
A
12345
A+<10
A
11 12 13 14 15
JeAx<«2
2
A

22 24 26 28 30

vec+ L4+9?9 ¢ vec
351717240 732

vec/=«vec>0 ovec
35142

140

Language Reference Guide

Assignment (Indexed Modified) {R}Y«X[I]f«Y

f may be any dyadic function which returns an explicit result. Y may be any array
whose items are appropriate to function f. X must be the name of an existing array.
I must be a valid index specification. The items of the indexed portion of X must be
appropriate to function f.

Y is either an array of the same shape as the indices specified by I or a scalar that is
notionally extended to be the same shape as those indices.

The operator loops through the indices specified by I in ravel order. For each
successive index 1 in the set specified by I, it calculates the result of X[i 1fY[1]
and assigns it back to X[i].

R is the "pass-through" value, that is, the value of Y. Ifthe result of the derived
function is not assigned or used, there is no explicit result.

Examples

A
12345

+A[2 4]+«1
1

A
13355

A[3]%<2

A
131.5565

As the operator performs a loop, if an index in I is repeated, function f will be
applied that number of times and successively to the same item of X.

Example

B«3 5p0
B[1 1 3;1 3 3 5]+«1

~ON
[eNoNe]
N O F
[eNeNeNod]
~ON

Chapter 2: Primitive Operators 141

Assignment (Selective Modified) {R}«(EXP X)f<«Y

f may be any dyadic function which returns an explicit result. Y may be any array
whose items are appropriate to function f. X must be the name of an existing array.
EXP is an expression that selects elements of X. (See Assignment (Selective) on page
21 foralist of allowed selection functions.) The selected elements of X must be
appropriate to function f.

Y is either an array of the same shape as the selected elements of X or a scalar that is
notionally extended to be the same shape as the selection.

The operator loops through the selected elements of X in ravel order. For each
selected element X[i], it calculates the result of X[1 1f Y[i] and assigns it back to
the same element X[i].

R is the "pass-through" value, that is, the value of Y. Ifthe result of the derived
function is not assigned or used, there is no explicit result.

Example

A
12 36 23 78 30

((A>30)/A) =<« 100
A
12 3600 23 7800 30

As the operator performs a loop, if an element of X is selected more than once,
function f will be applied the corresponding number of times and successively to the
same element of X.

a<3p0
(5pa)++«1
a

221

142 Language Reference Guide

At R«{X}(feg)Y

This operator substitutes selected items in Y with new values or applies a function to
modify selected items in Y.

The right operand g identifies which items of array Y are to be substituted or
modified. It is either:

« an array that specifies a set of indices in Y. If g is a simple scalar or vector,
it selects major cells in Y. If nested, it specifies indices for Choose or Reach
indexing.

« or a function that when applied to Y returns a Boolean array of the same
shape as Y (a mask) in which a 1 indicates that the corresponding item of Y
is to be substituted or modified. Note that the ravel of the mask selects from
the ravel of the right argument's index array.

The left operand f is either:

o an array that contains values to replace those items in Y identified by g

« or a function to be applied to those items, the result of which is used to
replace them. If this function is dyadic, its left argument is the array X. Note
that the function is applied to the sub-array of Y selected by gas a whole
and not to each item separately.

The result R is the same as Y but with the items specified by g substituted or
modified by f.

Chapter 2: Primitive Operators 143

Examples (array @ array)
Replace the 2nd and 4th items of 15

(10 20@2 4):15 A1
110 3 20 5

10 20@2 415
1 10 3 20 5

Replace the 2nd and 4th items of nested vector with 8 :
(c8)@2 4 1715

111 2 3]|1 2 3 45

Replace the 2nd and 4th rows (major cells) of a matrix:

(2 3p10 20)(@2 4)4 3p112
1 2 3
10 20 10
7 8 9
20 10 20

Replace first and last elements with 0 using Choose Indexing:

oe(1 1)(4 3))4 3pr12

ONFO

(
3
6
9
0

= 00 U1 N

INote that the expression does not require parentheses because without them, the array 2 4 binds
anyway to the @ operator rather than to the 1 function.

144 Language Reference Guide

Replace nested items using Reach Indexing:

G

ABC|1 DEF |2 GHI |3

JKL [4 MNO|5 PQR |6

GL((1 2)1)((2 3)2)]

DEF |6

(""" ' e((1 2)1)((2 3)2)) G

ABC|1 2 GHI|3

JKL [4 MNO|5 PQR| *

Examples (function @ array)

Replace the 2nd and 4th items of 15 with their reciprocals:

@2 4 15
1 0.530.25 5

Replace the 2nd and 4th items of 15 with their reversal

$@2 4 15
14325

Multiply the 2nd and 4th items of 15 by 10:

10x@2 415
1203 40 5

Replace the 2nd and 4th items by their totals:
+/7@2 4 1715

113|1 2 3|10|1 2 3 4 5

Chapter 2: Primitive Operators

145

Replace the 2nd and 4th rows (major cells) of a matrix with their accumulatives:

(+\@2 4)4 3p112
1

ONF -~
= 00 O N
w o o1w

10 21 3

Examples (array @ function)

Replace odd elements with 0:

0@(20])15
02040

Replace multiples of 3 (note that masked items are substituted in ravel order):

'abcde'@(0=3|+) 4 Lp116

1 2 a 4
5 b 7 8
c 10 11 d
13 14 e 16

Examples (function @ function)

Replace odd elements with their reciprocals:

+@(20])15
1 2 0.3333333333 4 0.2

Replace odd items of 15 with themselves reversed:

$@(20])15
52341

146 Language Reference Guide

Axis (with Monadic Operand)

R«f[B]Y

f must be a monadic primitive mixed function taken from those shown in Table 10
below, or a function derived from the operators Reduction (/) or Scan (\). B must be
a numeric scalar or vector. Y may be any array whose items are appropriate to

function f. Axis does not follow the normal syntax of an operator.

Table 10: Primitive monadic mixed functions with optional axis.

Function Name Range of B

¢ or e Reverse |[BeippY

t Mix (0#1|B)~(B>0I0-1)A(B<[0I0+ppY)
+ Split BeippY

s Ravel fraction, or zero or more axes of Y

S Enclose (B=10)v(~/BerppY)

In most cases, B must be an integer which identifies a specific axis of Y. However,
when f is the Mix function (1), B is a fractional value whose lower and upper integer

bounds select an adjacent pair of axes of Y or an extreme axis of Y.

For Ravel (,) and Enclose (<), B can be a vector of two or more axes.

0I0 isan implicit argument of the derived function which determines the meaning

of B.

Examples

$[1]12 3p16

4+ 56
123

t[.1]'ONE"

"TWO'

Chapter 2: Primitive Operators 147

Axis (with Dyadic Operand) Re«Xf[B]Y

f must be a dyadic primitive scalar function, or a dyadic primitive mixed function
taken from Table 11 below. B must be a numeric scalar or vector. X and Y may be any
arrays whose items are appropriate to function f. Axis does not follow the normal
syntax of an operator.

Table 11: Primitive dyadic mixed functions with optional axis.

Function | Name Range of B

/ or # |Replicate BeippY

\ or X\ |Expand BeippY

- [Emes e

¢ or e |Rotate BeippY

, or 5 |Catenate BeippY

. or - |Laminate (0%1]B8)~(B>0I0-1)"(B<[IO0O+(ppX)
lppY)

t Take one or more axes of Y

¥ Drop one or more axes of Y

1} Index one or more axes of Y

In most cases, B must be an integer value identifying the axis of X and Y along which
function f is to be applied.

Exceptionally, B must be a fractional value for the Laminate function (,) whose
upper and lower integer bounds identify a pair of axes or an extreme axis of X and Y.
For Take (1) and Drop (V), B can be a vector of two or more axes.

0I0 isan implicit argument of the derived function which determines the meaning
of B.

148 Language Reference Guide

Examples
1 45 =[1] 3 2p16
10
01
10
2 72 1/[2]2 3p'ABCDEF'
AA
DD F
'ABC',[1.1]'="
A=
B=
C=
"ABC',[0.1]'="
ABC
J10<0
"ABC',[70.5]'="

n >
no

B

Axis with Scalar Dyadic Functions

The axis operator [X] can take a scalar dyadic function as operand. This has the
effect of "stretching" a lower rank array to fit a higher rank one. The arguments must
be conformable along the specified axis (or axes) with elements of the lower rank
array being replicated along the other axes.

For example, if H is the higher rank array, L the lower rank one, X is an axis
specification, and f a scalar dyadic function, then the expressions Hf [X]L and L f
[X JH are conformable if (pL)<«=>(pH) [X]. Each element of L is replicated along
the remaining (pH)~X axes of H.

In the special case where both arguments have the same rank, the right one will play
the role of the higher rank array. IfR is the right argument, L the left argument, X is an
axis specification and f a scalar dyadic function, then the expression Lf [X]R is
conformable if (pL)<«>(pR)[X].

Chapter 2: Primitive Operators

149

Examples

10 20
40 50

11 21
42 52

11 22
41 52

100
400
700
1000
101
401
702
1002
101
401
701
1001
110
440
710
1040
110
410

740
1040

mat
30
60

mat+[1]1 2
31
62

mat+[2]1 2 3
33
63

cube
200 300
500 600

800 900
1100 1200

cube+[1]1 2
201 301
501 601

802 902
1102 1202

cube+[3]1 2 3
202 303
502 603

802 903
1102 1203

cube+[2 3]Imat
220 330
550 660

820 930
1150 1260

cube+[1 3]Imat
220 330
520 630

850 960
1150 1260

A add along first axis

A add along last axis

150

Language Reference Guide

Commute

{R}«{X}f~Y

f may be any dyadic function. X and Y may be any arrays whose items are
appropriate to function f.

The derived function is equivalent to Y f X. The derived function need not return a
result.

If left argument X is omitted, the right argument Y is duplicated in its place, i.e.
f=Y <> Y f=Y
Examples

N
3254613

N/=2|N
3513

p=3
333

mean<+/o(+op~) A mean of a vector
mean 110
5.5

The following statements are equivalent:
F/=<I
FeF/~I
F«I/F

Commute often eliminates the need for parentheses

Chapter 2: Primitive Operators 151

Composition (Form I) {R}<«fogY

f may be any monadic function. g may be any monadic function which returns a
result. Y may be any array whose items are appropriate to function g. The items of
gY must be appropriate to function f.

The derived function is equivalent to fgY. The derived function need not return a
result.

Composition allows functions to be glued together to build up more complex
functions.

Examples

RANK <« pop
RANK ™ "'JOANNE' (2 3p16)
1 2

+/0172 4 6
3 10 21

OVR'SuM'
V R«<SUM X
[1] Re+/X
v

SUMe1™2 4 6
3 10 21

152

Language Reference Guide

Composition (Form ll) {R}<«AogY

g may be any dyadic function. A may be any array whose items are appropriate to
function g. Y may be any array whose items are appropriate to function g.

The derived function is equivalent to AgY. The derived function need not return a
result.

Examples

2 20p 7 'AB'
AA BB
AA BB

SINE « 1e0

SINE 10 20 30
“0.5440211109 0.9129452507 ~0.9880316241

The following example uses Composition Forms I and II to list functions in the
workspace:

ONL 3
ADD
PLUS

Qo«oOVR™4ONL 3

vV ADD X
[1] +LABp~0#[NC'SUM' o SUM<«0
[2] LAB: SUM«SUM++/X

v

V R<A PLUS B
[1] R<A+B

v

Chapter 2: Primitive Operators 153

Composition (Form lll) {R}«(feB)Y

f may be any dyadic function. B may be any array whose items are appropriate to
function f. Y may be any array whose items are appropriate to function f.

The derived function is equivalent to YfB. The derived function need not return a
result.

Examples

(x°0.5)4 16 25
2 45

SQRT « %0.5

SQRT 4 16 25
245

The parentheses are required in order to distinguish between the operand B and the
argument Y.

Composition (Form IV) {R}«XfogY

f may be any dyadic function. g may be any monadic function which returns a
result. Y may be any array whose items are appropriate to function g. Also gY must
return a result whose items are appropriate as the right argument of function f. X
may be any array whose items are appropriate to function f.

The derived function is equivalent to XfgY. The derived function need not return a
result.

Examples

+o+/40p1 A Golden Ratio! (Bob Smith)
1.618033989

0,015
01 012 0123 01234 012345

154 Language Reference Guide

Each (with Monadic Operand) {R}«f"Y

f may be any monadic function. Y may be any array, each of whose items are
separately appropriate to function f.

The derived function applies function f separately to each item of Y. The derived
function need not return a result. If'a result is returned, R has the same shape as Y,
and its elements are the items produced by the application of function f to the
corresponding items of Y.

IfY is empty, the prototype of R is determined by applying the operand function
once to the prototype of Y.

Examples
G<('TOM"' (13))('DICK' (14))('HARRY' (15))
pG
3
oG
2 2 2
"G

3 3 b 4 5 5

+0FX"('FOO1"' 'A«1')('FO02' 'A«2')
FOO1 FOO2

Chapter 2: Primitive Operators 155

Each (with Dyadic Operand) {R}«XfY

f may be any dyadic function. X and Y may be any arrays whose corresponding
items (after scalar extension) are appropriate to function f when applied separately.

The derived function is applied separately to each pair of corresponding elements of
Xand Y. If X or Y is a scalar or single-clement array, it will be extended to conform
with the other argument. The derived function need not produce an explicit result.
If a result is returned, R has the same shape as Y (after possible scalar extension)
whose elements are the items produced by the application of the derived function to
the corresponding items of X and Y.

If X or Y is empty, the operand function is applied once between the prototypes of X
and Y to determine the prototype of R.

Examples

+G<(1 (2 3))(4 (5 6))(8 9)10
1 23 L 5 6 8 9 10
167G
23 1 56 4 98 10

12 3 417G
1 4 56 890 10000

"ABC',"'XYZ'
AX BY CzZ

156

Language Reference Guide

I-Beam

R«{X}(AI)Y

I-Beam is a monadic operator that provides a range of system related services.

WARNING: Although documentation is provided for [-Beam functions, any service
provided using I-Beam should be considered as "experimental”" and subject to change
— without notice - from one release to the next. Any use of [-Beams in applications
should therefore be carefully isolated in cover-functions that can be adjusted if
necessary.

A is an integer that specifies the type of operation to be performed. Y is an array that
supplies further information about what is to be done.

X may or may not be required depending on A.
R is the result of the derived function.

For further information, see I-Beam on page 187.

Chapter 2: Primitive Operators 157

Inner Product R«Xf.gY

f and g are dyadic functions. The last axis of X must have the same length as the first
axis of Y, orone of X and Y is single (*/1=pX or*/1=pY).

The result of the derived function has shape (T1+pX),14pY; each item is
f/x gy where x and y are vectors taken from all the combinations of vectors
along the last axis of X and the first axis of Y.

Notes:

e g must return a result.

o f must return a result with the possible exception of the case when
1=px g’y.

o The expression f/x g 'y applies even when R or x g~y or X or Y is
empty. When X or Y is empty, the vector x is X reshaped to the appropriate
length (y is Y reshaped to appropriate length).

o X isjust X itself if X is a scalar. Likewise y and Y.

Examples

1 2 3+.x10 12 14
76

+/1 2 3x10 12 14
76

NAMES
HENRY
WILLIAM
JAMES
SEBASTIAN

NAMESA.='WILLIAM '
0100

158 Language Reference Guide

Key R«{X}fBY

Classic Edition: the symbol B is not available in Classic Edition, and the Key
operator is instead represented by JU2338.

f may be any dyadic function that returns a result.

If X is specified, it is an array whose major cells specify keys for corresponding major
cells of Y. The Key operator B applies the function f to each unique key in X and the
major cells of Y having that key.

If X is omitted, Y is an array whose major cells represent keys. In this case, the Key
operator applies the function f to each unique key in Y and the elements of 1 #Y
having that key. fEY is the same as Y fE1#Y.

The elements of R appear in the order in which they first appearin Y.
Key is similar to the GROUP BY clause in SQL.
OCT and [ODCT are implicit arguments of the Key operator.

Example

cards<«'2' 'Queen' 'Ace' '4' 'Jack'
suits«'Spades' 'Hearts' 'Spades' 'Clubs' 'Hearts'

suits,[1.5]cards

Spades 2
Hearts Queen
Spades Ace
Clubs 4

Hearts Jack

suits {a':'w}B cards
Spades : 2 Ace
Hearts : Queen Jack
Clubs 4

In this example, both arrays are vectors so their major cells are their elements. The
function {a' : 'w} is applied between the unique elementsin suits (' Spades
"Hearts' 'Clubs')and the elementsin cards grouped according to their

corresponding elementsin suits,ie. ('2' 'Ace'),('Queen' 'Jack')and

G4

Chapter 2: Primitive Operators 159

Monadic Examples

{00 w} B suits A indices of unique major cells
Spades 13
Hearts 25
L

Clubs
{o,#w} B suits A count of unique major cells
Spades 2
Hearts 2
Clubs 1
letters<«'zabayza'
{o(#w)}Hletters
z 2
a 3
b 1
y 1

Further Examples

x is a vector of stock codes, y is a corresponding matrix of values.

pX
10

Py
10 2

X,y
IBM 13 75
AAPL 45 53
GOOG 21 4
GOOG 67 67
AAPL 93 38
MSFT 51 83
IBM 3 5
AAPL 52 67
AAPL 0 38
IBM 6 41

If we apply the function {o w} to x and y using the B operator, we can see how the
rows (its major cells) of y are grouped according to the corresponding elements (its
major cells) of x.

160

Language Reference Guide

x{o w}By
IBM 13 75
3 5
6 41
AAPL 45 53
93 38
52 67
0 38
GOOG 21 4
67 67
MSFT 51 83

More usefully, we can apply the function {o.(+#w) }, which delivers the stock
codes and the corresponding totals in y:

x{o(+#w)}By
IBM 22 121
AAPL 190 196
GOOG 88 71
MSFT 51 83

There is no need for the function to use its left argument. So to obtain just the totals
in y grouped by the stock codes in x:

x{+#w}By
22 121
190 196
88 71
51 83

Defined Function Example

This example appends the data for a stock into a component file named by the
symbol.

V r<«stock foo data;fid;file
[1] fileeostock

[2] :Trap 0
[3] fid«file OFTIE O
(4] file OFERASE fid
[5] :EndTrap

[6] fid«file OFCREATE O
[7] r«data [OFAPPEND fid
[8] OFUNTIE fid

A%

x fooBy
1111

Chapter 2: Primitive Operators 161

Example

{00 w} B suits A indices of unique major cells
Spades 13
Hearts 25
Clubs L

{o,#w} B suits A count of unique major cells
Spades 2
Hearts 2
Clubs 1

Another Example

Given a list of names and scores., the problem is to sum the scores for each unique
name. A solution is presented first without using the Key operator, and then with the
Key operator.

names A 12, some repeat
Pete Jay Bob Pete Pete Jay Jim Pete Pete Jim
Pete Pete

(unames)o.=names
100110011011
01 000100O0OO0COO
001 000O0OO0OO0OO0OCOO
0000001 0O0O1TO00O

scores

66 75 71 100 22 10 67 77 55 42 1 78

b«J(unames)o.=names
ldisp b/"ec112

14589 11 12(2 6|3|7 10

+/"b/"cscores
399 85 71 109

ldisp {<w}B names

14589 11 12(2 6|3|7 10

names {+/w}B scores
399 85 71 109

162 Language Reference Guide

Outer Product {R}<«Xe.gY

g may be any dyadic function. The left operand of the operator is the symbol o. X
and Y may be any arrays whose elements are appropriate to the function g.

Function g is applied to all combinations of the elements of X and Y. If function g
returns a result, the shape of R is (pX), pY. Each element of R is the item returned
by function g when applied to the particular combination of elements of X and Y.

Examples

1 2 30.x10 20 30 40
10 20 30 4O
20 40 60 80
30 60 90 120

1 2 30.p'AB'
A B
AA BB
AAA BBB

°o.,1 2 3
3
3

N = -

2
2
2

N =
N =

(13)e.=13

(e NeN g
oo
~ OO

If X or Y is empty, the result R is a conformable empty array, and the operand function
is applied once between the first items of X and Y to determine the prototype of R.

Chapter 2: Primitive Operators 163

Power Operator {R}«{X}(fxg)Y

Ifright operand g is a numeric integer scalar, power applies its left operand function
f cumulatively g times to its argument. In particular, g may be Boolean 0 or 1 for
conditional function application.

Ifright operand g is a scalar-returning dyadic function, then left operand function f
is applied repeatedly until ((f Y) g Y) oruntil a strong interrupt occurs. Notice
that power calls its dyadic right operand g with the next (f Y) and current (Y)
values of the iteration as left and right arguments. In particular, if g is = or =, the
result is sometimes termed a fixpoint of f.

If a left argument X is present, it is bound as left argument to left operand function f:
X (f ¥ g) Y > (Xof ¥ g) Y

A negative right operand g applies the inverse of the operand function f ,
(| g)times. In this case, f may be a primitive function or an expression of primitive
functions combined with primitive operators:

° compose
each

°. outer product

= commute

\ scan

[] axis

3 power

If the function does not have an inverse, a negative argument g generates DOMAIN
ERROR.

Examples

(,0co,%(1==,vec))vec A ravel-enclose if simple.
ab cel 0 1{(c*a)w} "abc A enclose first and last.
cap«{(aa*a)w} A conditional application.

a b cel 0 lccap abc A enclose first and last.

164 Language Reference Guide

14

7

succ«lo+
(succ*4)10
(succ*~3)10

1+o+%x=1

1.618033989

f«<(320+)0(x01.8)

f 0 100
32 212

cfx"1

c 32 212
0 100

invs«{(aa*"1)w}

+\invs 1 3 6 10
3 4

201invs 9
01

dual«{ww*~1 oo ww w}
mean<{(+/w)+pw}

mean duale 1 2 3 4 5

2.605171085

+/dual+ 1 2 3 4 5

0.4379562044

mean dual(x=)1 2 3 4 5§

3.31662479

hw

®dualt 'hello' 'world'

eo Llr Ll od

successor function.
fourth successor of 10.
third predecessor of 10.

fixpoint: golden mean.

Fahrenheit from Celsius.

c is Inverse of f.
Celsius from Fahrenheit.

inverse operator.

scan inverse.

decode inverse.

dual operator.
mean function.

geometric mean.

parallel resistance.

root-mean-square.

vector transpose.

Chapter 2: Primitive Operators 165

Warning

Some expressions, such as the following, will cause an infinite internal loop and
APL will appear to hang. In most cases this can be resolved by issuing a hard
INTERRUPT.

1%-1
1%-2

One can ensure that weak interrupts and OTKILL can interrupt by packaging the ¥
within the dop {a«+ ¢ a (aa{acr ¢ o oo w}Xww) w}.

Example

PowOp<«{a<«+ ¢ o (aoa{a<r ¢ o a0 w}xww) w}
tnum<!PowOp-81 A using naked * will freeze APL

Otkill tnum

166

Language Reference Guide

Rank

R«{X}(f3B)Y

Classic Edition: the symbol @ is not available in Classic Edition, and the Rank
operator is instead represented by JU2364.

The Rank operator ¢ applies monadic function f successively to sub-arrays of Y, or
dyadic function f between sub-arrays of X and Y. Sub-arrays are selected by right
operand B.

B is a numeric scalar or vector of up to three items, specifying the ranks of the cells to
which f should be applied. The most general form is a three item vectorp q r,
where:

o p specifies the rank of the argument cells when f is applied monadically

 (q specifies the rank of the left argument cells when f is applied dyadically

o r specifies the rank of the right argument cells when f is applied
dyadically

If B is a two item vector g r, it is implicitly extended to r q r.IfB hasa single
item r, it is implicitly extended tor r r.

Ifan item k of B is zero or positive it selects k-cells of the corresponding argument. If
it is negative, it selects (r+k)-cells where r is the rank of the corresponding argument.
A value of 71 selects major cells. For further information, see Programming
Reference Guide: Cells and Subarrays.

If X is omitted, f may be any monadic function that returns a result. Y may be any
array. The Rank operator s applies function f successively to the sub-arrays in Y
specified by p (i.e. the first item of B, as specified or implicitly extended).

If X is specified, it may be any array and f may be any dyadic function that returns a
result. Y may be any array. In this case, the Rank operator applies function f
successively between the sub-arrays in X specified by q and the sub-arrays in Y
specified by r.

The sub-arrays of R are the results of the individual applications of f. If these results
differ in rank or shape, they are extended to a common rank and shape in the manner
of Mix. See Mix on page 96.

Notice that it is necessary to prevent the right operand k binding to the right
argument. This can be done using parentheses e.g. (f¢1)Y. The same can be
achieved using + e.g. f e 1Y because ¢ binds tighter to its right operand than + does
to its left argument, and + therefore resolves to Identity.

Chapter 2: Primitive Operators 167

Monadic Examples

Using enclose (<) as the left operand elucidates the workings of the rank operator.

Y
36 99 20 5
63 50 26 10
64 90 68 98
66 72 27 T4
by 1 46 62
48 9 81 22

pY
2 3 4

co2 Y

36 99 20 5|66 72 27 T4
63 50 26 10|44 1 46 62
64 90 68 98(48 9 81 22

col Y

36 99 20 5 |63 50 26 10|64 90 68 98

66 72 27 74|44 1 46 62 |48 9 81 22

The function { (cAw) [Jw} sorts a vector.

{(chw)lw} 31 4159265
1123455609

The rank operator can be used to apply the function to sub-arrays; in this case to sort
the 1-cells (rows) of a 3-dimensional array.

Y
36 99 20 5
63 50 26 10
64 90 68 98

66 72 27 T4
by 1 46 62
48 9 81 22

({(chw)[w}e1)Y
36 99

10 26 50 63
64 68 90 98

27 66 72 74
1 44 46 62
9 22 48 81

168 Language Reference Guide

Dyadic Examples

10 20 30 (+°0 1)3 4p112
10 11 12 13
24 25 26 27
38 39 40 41
Using the function {a w} as the left operand demonstrates how the dyadic case of
the rank operator works.

10 20 30 ({o w}°0 1)3 4p112

10{0 1 2 3

20| 5 6 7

30|18 9 10 11

Note that a right operand of ~ 1 applies the function between the major cells (in this
case elements) of the left argument, and the major cells (in this case rows) of the right
argument.

10 20 30 ({0 w}o71)3 4pr12

10{0 1 2 3

20|14 5 6 7

30|18 9 10 11

Chapter 2: Primitive Operators 169

Reduce

R«f/[K]Y

f must be a dyadic function. Y may be any array whose items in the sub-arrays along
the Kth axis are appropriate to function f.

The axis specification is optional. If present, K must identify an axis of Y. Ifabsent,
the last axis of Y is implied. The form R«f #Y implies the first axis of Y.

R is an array formed by applying function f between items of the vectors along the
Kth (or implied) axis of Y. For a typical vector Y, the result R is:

R <> c(12Y)f(22Y)f...... f(naY)
The shape S of R is the shape of Y excluding the K™ axis, i.e.
S <> pR <> (K#ippY)/pY
IfY is a scalar then for any function f,Ris Y.

Ifthe length of the Kt axis of Y is 1, or if the length of any other axis of Y is 0, then f
isnot applied and R is SpY.

Otherwise, if the length of the K™ axis is 0 then the result depends on f and on >Y
(the prototypical item of Y) as follows:

If f is one ofthe functions listed in Table 12 then R is SpeI, where I
is formed from =Y by replacing each depth-zero item of @Y with the
identity element from the table.

Otherwise if f is Catenate, R is SpcQ/>Y. If f is Catenate First, R is
Spc0#>Y.If f is Catenate along the Jth axis, R is Spc0/[J]>Y. See
Catenate/Laminate on page 26.

Otherwise, DOMAIN ERROR is reported.

170 Language Reference Guide

Table 12: Identity Elements

Function Identity
Add + 0
Subtract - 0
Multiply x 1
Divide + 1
Residue | 0
Minimum L M1
Maximum [-M
Power * 1
Binomial ! 1
And A 1
Or v 0
Less < 0
Less or Equal < 1
Equal = 1
Greater > 0
Greater or Equal > 1
Not Equal # 0
Encode T 0
Union v o
Replicate /# 1
Expand \X 1
Rotate de 0

1M represents the largest representable value: typically this is 1.7E308, unless OFR is 1287, when
the value is 1E6145.

Chapter 2: Primitive Operators 171

Examples
v/001 0010

MAT
1 2 3
4L 5 6
+/MAT
6 15
+#MAT
579
+/[1IMAT
579
+/(1 2 3)(4+ 5 6)(7 8 9)
12 15 18
,/'ONE' 'NESS'
ONENESS
+/10
0
(c@)=,/8
1
(e'')=,/0p'Hello’ 'World'
1
(c0 3 4p0)=5/0pc2 3 4p0
1
Reduce First Re«f#£Y

The form R«f #Y implies reduction along the first axis of Y. See Reduce above.

172

Language Reference Guide

Reduce N-Wise ReXf/[K]Y

f must be a dyadic function. X must be a simple scalar or one-item integer array. Y
may be any array whose sub-arrays along the Kth axis are appropriate to function f.

The axis specification is optional. If present, K must identify an axis of Y. If absent,
the last axis of Y is implied. The form R«Xf #Y implies the first axis of Y.

R is an array formed by applying function f between items of sub-vectors of length X
taken from vectors along the Kth (or implied) axis of Y.

X can be thought of as the width of a "window" which moves along vectors drawn
from the Kth axis of Y.

If X is zero, the resultisa (pY)+(-ppY) t1 array of identity elements for the
function f. See Identity Elements on page 170.

If X is negative, each sub-vector is reversed before being reduced.

Examples

il
1234

3+/14Aa (1+2+3) (2+3+4)
6 9

2+/14n (1+2) (2+3) (3+4)
357

1+/14a (1) (2) (3) (W)
1234

0+/14a Identity element for +
0o0O0O00O

0x/14p Identity element for x
11111

2,/14a (1,2) (2,3) (3,4)
12 23 34

“2,/14m (2,1) (3,2) (4,3)
21 32 43

Reduce First N-Wise ReXFALK]Y

The form R«<Xf #Y implies N-Wise reduction along the first axis of Y. See Reduce N-
Wise above.

Chapter 2: Primitive Operators 173

Scan

R«f\[K]Y

f may be any dyadic function that returns a result. Y may be any array whose items
in the sub-arrays along the Kth axis are appropriate to the function f.

The axis specification is optional. If present, K must identify an axis of Y. Ifabsent,
the last axis of Y is implied. The form R«fXY implies the first axis of Y.

R is an array formed by successive reductions along the Kth axis of Y. IfV is a typical
vector taken from the Kth axis of Y, then the Ith element of the result is determined as
f/ItV.

The shape of R is the same as the shape of Y. If'Y is an empty array, then R is the
same empty array.
Examples

vi\0 01 0010
001111

“\N1 110111
1110000

+\1 2 3 45
1 36 10 15

+\(1 2 3)(4+ 5 6)(7 8 9)
123 579 12 15 18

174 Language Reference Guide

[
~N N
w

+\[11M

-
~N N
w

,\"ABC'
A AB ABC

T<'ONE(TWO) BOOK(S)'

#\Te' ()
0001111 000000110

((Te'()")v=\Te'()")/T
ONE BOOK

Scan First R«f\Y

The form R«f XY implies scan along the first axis of Y. See Scan above.

Chapter 2: Primitive Operators 175

Spawn {R}«{X}fRY

& is a monadic operator with an ambivalent derived function. & spawns a new thread
in which f is applied to its argument Y (monadic case) or between its arguments X
and Y (dyadic case). The shy result of this application is the number of the newly
created thread.

When function fterminates, its result (if any), the thread result, is returned. If the
thread number is the subject of an active JTSYNC, the thread result appears as the
result of HTSYNC. Ifno dTSYNC is in effect, the thread result is displayed in the
session in the normal fashion.

Note that & can be used in conjunction with the each operator ~ to launch many
threads in parallel.

Examples
+&4 A Reciprocal in background
0.25
O«+&4 A Show thread number
3.25
FO0&88 A Spawn monadic function.
2 FOO&3 A dyadic
{NIL}&0 A niladic
¢& 'NIL' A

X.GO0&99 A thread in remote space.
¢&'0dL 2' A Execute async expression.
‘NS'¢&'FOO' A .. remote

PRT&4nl 9 A PRT spaces in parallel.

176

Language Reference Guide

Stencil

R«(fldg)Y

Classic Edition: the symbol B is not available in Classic Edition, and the Stencil
operator is instead represented by JU233a.

Stencil is used in image processing, artificial neural networks, computational fluid
dynamics, cellular automata, and many other fields of application. The computation
is sometimes referred to as tessellation, moving window, or stencil codel. This
operator applies the left operand function f to a series of (possibly overlapping)
rectangles in the array Y.

In general, the right operand g is a 2- row matrix of positive non-zero integers with
up to ppY columns. The first row contains the rectangle sizes, the second row the
movements i.e. how much to move the rectangle in each step. If g is a scalar or vector
it specifies the rectangle size and the movement defaults to 1.

The predominant case uses a rectangle size which is odd and a movement of 1.

Rectangles are centred on successive elements of Y and (unless the rectangle size is
1), padded with fill elements.

The first rectangle is centred on the first element of Y preceded by the appropriate
number of fill elements. Subsequent rectangles are centred on subsequent elements of
Y according to the size of the movement, and padded before or after as appropriate.
When the movement is 1, each element of Y in its turn is the middle of a rectangle.

f is invoked dyadically with a vector left argument indicating for each axis the
number of fill elements and on what side; positive values mean that the padding
precedes the array values, negative values mean that the padding follows the array
values.

ISee https://en.wikipedia.org/wiki/Stencil code

Chapter 2: Primitive Operators 177

Example
{co. w}@3 3+3 3p112
1 1/0 00 1 0/0 00 1t "1{o0o0o0
012 123 230
045 4 5 6 56 0
0101 2 00f1 23 0 "1|2 30
045 4 5 6 56 0
078 789 8 90
"1 1|0 4 5[||"1 ofw 5 6|||"1 1|5 6 0O
078 789 8 90
000 000 000
{+/,w}d3 3r3 3p112
12 21 16
27 45 33
24 39 28

In the first expression above, the left operand function {ca. w} simply displays its
left and right arguments to illustrate the mechanics of the operation. The right
operand (3 3) specifies that each rectangle contains 3 rows and 3 columns, and the
movement is 1.

In order for the first element of Y (1) to be centred, the first rectangle is padded with a
row above and a column to the left, as indicated by the left argument (1 1) to the
function.

Another way to think about the way Stencil operates is that it portions the array into
sections or neighbourhoods in which elements can be analysed with respect to their
immediate neighbours. Stencil has uses in image processing applications.

178 Language Reference Guide

Examples
{ca w}B(3 3,[.5]2)+3 3p112
1 1|0 00 1 71{0 00
012 230
o4 5 560
-1 1(0 4 5 1 "1(5 6 0
07 8 890
00O 00O
{ca w}ME(3 3,[.5]3)3 3p112
11|00 0
012
o4 5

179

Chapter 2: Primitive Operators

12321,01210

01210,

<5 5p0 01 0O,

=+
Q-1 OO0 -1O0O0—-H100O0
o
OO0 O0O0O0O0O0O -

[eNeoRoNoNeoNoNoNok Nol_|
M0000001.1.00
H.001.1.001.001.
W,0001.01.0001.

N eojolojNojojloNojojloNo]
OO +-H1OO0OO0O-OO0OOo
oNeooNok NojlololNoNe)
OO0 —HA—HO—HOO

>~
1
AN OMHOOHOMOOMHOOMOMANM
An.un.,.Z‘l.1.7.1.1..4._.3..b.5
W1012027767
M013h.258867
Axn1_36.l667756
/..026-/556&.35
r.ﬁ..01.h.|+33h.1.1.3

S ANMOLUO FF NN

O F OO LNAN

O—"F OO OIOMMmM

You can see that the result identifies where there are clusters in y.

180 Language Reference Guide

Examples (odd rectangle, movement not 1)

If the movement is greater than one, corresponding portions are skipped as shown
below.

{cw}B(53 2) 18
01 2|2 3 4|4 5 6|6 7 8
{

tsa),' f ',3w}d(53 2) 18

2
2
4
6
8

OO OX
- —h —h —h
N F NO

(
1
3
5
7
t middle
{cw}d (55 2) 19
00123[12345[34567[56789[78900
{

tsa),' f ',swld(55 2) 19
3
5

NOoON
- —h —h —h
~N~Nowro
0o FNO—~

“2t3
12
3 4
56 7
789
900
t mi

iddle

el

Chapter 2: Primitive Operators 181

Even Rectangle Size

For even rectangle sizes, the "middle" consists of two elements which are moved
according to the movement parameter (equal to 1 in these examples).

Examples
Jes<{cw}d 2 18

1212 3|3 4|4 5(5 6(6 7|7 8

{(T2%3a),"' f ',sw}d 218
0of 12
0 f 2 3
0O f 3 4
0 f 45
0 f56
0O f 67
0O f 78
A t+ t middle

Jes<{cw}d 418

0123123423 45345 ¢6(4+5617|5678|67 80

ps
7
{(T2t30),"' f ',sw}d 418
1 f01 23
0f123%4L
0f 2345
0O f 3456
0O f4k 567
0O f56 178
"1 f 6780
A t+ t middle

182 Language Reference Guide

Examples (even rectangle, movement not 1)
{cw}d(s% 2) 18

0123|123 45|45617|6780

{(T2tsa),' f ',3w}Bb(s4% 2) 18
1 f0123
0f 2345
0O fL4L5bs 67
1 f678020
A + * middle

{cw}d(56 2) 18

001234123 456(3 45678567800

(70 ",3wld(s6 2) 18

FNO~

), f
2 3 4
4L 56
6 78

IOON
- —h —h
wr o
[RANTE

2 f567 800
+ 1+ middle

el

Chapter 2: Primitive Operators 183

Variant

{R}«{X}(fEB)Y

Classic Edition: the symbol [l is not available in Classic Edition, and the Variant
operator is instead represented by JU2360. Note too that [] and JOPT are
synonymous though only the latter is available in the Classic Edition.

The Variant operator [f] specifies the value of an option to be used by its left operand
function f. An option is a named property of a function whose value in some way
affects the operation of that function.

For example, the Search and Replace operators include options named IC and Mode
which respectively determine whether or not case is ignored and in what manner the
input document is processed.

One of'the set of options may be designated as the Principal option whose value
may be set using a short-cut form of syntax as described below. For example, the
Principal option for the Search and Replace operators is IC.

For the operand function with right argument Y and optional left argument X, the
right operand B specifies the values of one or more options that are applicable to that
function. If B is empty, function f is called with default options. Otherwise, B may
be a scalar, a 2-element vector, or a vector of 2-element vectors which specifies
values for one or more options as follows:

o If B is a 2-element vector and the first element is a character vector, it
specifies an option name in the first element and the option value (which
may be any suitable array) in the second element.

« If B is a vector of 2-element vectors, each item of B is interpreted as above.

o If B is a scalar (a rank-0 array of any depth), it specifies the value of the
Principal option,

Option names and their values must be appropriate for the left operand function,
otherwise DOMAIN ERROR (error code 11) will be reported.

Example
tn<'Dick' (OFCREATE[E'Z' 1)0

184

Language Reference Guide

The following illustrations and examples apply to functions derived from the Search
and Replace operators.

Examples of operand B

The following expression sets the IC option to 1, the Mode optionto 'D' and the
EOL optionto 'LF".

E('Mode' 'D")('IC' 1)('EOL' 'LF')
The following expression sets just the EOL property to 'CR".

[J'eoL’ 'CR'

The following expression sets just the Principal option (which for the Search and
Replace operatorsis IC)to 1.

B 1

The order in which options are specified is typically irrelevant but if the same option
is specified more than once, the rightmost one dominates. The following expression
sets the option ICto 1:

EB('ICc" o) ('IC' 1)

The Variant operator generates a derived function f[IB and may be assigned to a
name. The derived function is effectively function f bound with the option values
specified by B.

The derived function may itself be used as a left operand to Variant to produce a
second derived function whose options are further modified by the second
application of the operator. The following sets the same options as the first example
above:

['Mode' 'D'EI'IC' 1[I'EOL' 'LF'

When the same option is specified more than once in this way, the outermost
(rightmost) one dominates. The following expression also sets the option IC to 1:

E'ICc' ofl'IC' 1

Chapter 2: Primitive Operators 185

Further Examples

The following derived function returns the location ofthe word 'variant ' within
its right argument using default values for all the options.

f1 « 'variant' [OS O
f1 'The variant Variant operator'
L

It may be modified to perform a case-insensitive search:

(f1 B 1) 'The variant Variant operator'
b 12

This modified function may be named:

f2 « f1 [0 1
f2 'The variant Variant operator'
b 12

The modified function may itself be modified, in this case to revert to a case sensitive
search:

f3 « f2 0
f3 'The variant Variant operator'
L

This is equivalent to:

(f1 B 1 [0) 'The variant Variant operator'
4

Variant and .NET

The Variant operator may also be used in conjunction with .NET classes; it can used
to cast an array into a specific NET data type, and to specify which constructor
should be used when creating a new instance of a .NET class which has overloaded
constructors. For further information, see .NET Interface Guide: Advanced
Techniques.

186 Language Reference Guide

Chapter 3: The I-Beam Operator 187

Chapter 3:

The |-Beam Operator

The |I-Beam Operator

I-Beam

R«{X}(AT)Y

I-Beam is a monadic operator that provides a range of system related services.

WARNING: Although documentation is provided for I-Beam functions, any service
provided using I-Beam should be considered as "experimental" and subject to change
— without notice - from one release to the next. Any use of I-Beams in applications
should therefore be carefully isolated in cover-functions that can be adjusted if
necessary. See also: Other I-Beams on page 259.

A is an integer that specifies the type of operation to be performed as shown in the
table below. Y is an array that supplies further information about what is to be done.

X may or may not be required depending on A.
R is the result of the derived function.

When attempting to use I-Beam with an unsupported operation value, A, one of three
different error messages will be reported:

o Invalid I-Beam function selection
o I-Beam function xxx has been withdrawn
o [-Beam function xxx is not supported by this interpreter

This allows the user to distinguish between operation values that have never been
used, those that have been used in earlier versions but are no longer included in the
current version, and those that are valid in other editions or on other platforms other
than the current interpreter.

The column labelled O/S indicates if a function applies only on Windows (W) or
only on non-Windows (X) platforms.

188 Language Reference Guide

A Derived Function O/S
8 Inverted Table Index-of

85 Execute Expression

127 Overwrite Free Pockets

180 Canonical Representation

181 Unsqueezed Type

200 Syntax Colouring

201 Syntax Colour Tokens

219 Compress/Decompress Vector of Short Integers

220 Serialise/Deserialise Array

400 Compiler Control

600 Trap Control

739 Temporary Directory

819 Case Convert

900 Called Monadically

950 Loaded Libraries

1111 Number of Threads

1112 Parallel Execution Threshold

1159 Update Function Time and User Stamp

1500 Hash Array

2000 Memory Manager Statistics

2002 Specify Workspace Available

2010 Update DataTable \%
2011 Read DataTable W
2014 Remove Data Binding W
2015 Create Data Binding Source \%
2016 Create NET Delegate W
2017 Identify .NET Type W

Chapter 3: The I-Beam Operator 189
A Derived Function O/S
2022 Flush Session Caption Y
2023 Close all Windows
2035 Set Dyalog Pixel Type w
2041 Override COM Default Value w
2100 Export to Memory W
2101 Close NET AppDomain W
2400 Set Workspace Save Options
2401 Expose Root Properties
2501 Discard thread on exit w
2502 Discard parked threads \W
2503 Mark Thread as Uninterruptible
2520 Use Separate Thread For NET
2704 Continue Autosave
3002 Disable Component Checksum Validation
3500 Send Text to RIDE-embedded Browser
3501 Connected to the RIDE
3502 Manage RIDE Connections
4000 Fork New Task X
4001 Change User X
4002 Reap Forked Tasks X
4007 Signal Counts X
5176 List Loaded Files
5177 List Loaded File Objects
5178 Remove Loaded File Object Info
5179 Loaded File Object Info
7162 JSON Translate Name
8415 Singular Value Decomposition

50100

Line Count

190 Language Reference Guide

Inverted Table Index Of R«X(81)Y

This function computes X index-of Y (viz. Xt1Y) where X and Y are compatible
inverted tables. R is the indices of Y in X.

An inverted table is a (nested) vector all of whose items have the same number of
major cells. That is, 1=ppw and (#>w) =#"w. An inverted table representation of
relational data is more efficient in time and space than other representations.

The following is an example of an inverted table:

X«<(10 3p0a) (110) 'metalepsis'
X

ABC|0 1 2 3 456 7 8 9[metalepsis
DEF
GHI
JKL
MNO
PQR
STU
VWX
YZA
BCD

Using inverted tables, it is often necessary to perform a table look-up to find the
"row" indices of one in another. Suppose there is a second table Y:

Y«(ce3 1 4 1 5 9)["X
Y

GHI 31 4 159 tmamli
ABC
JKL
ABC
MNO
YZA

To compute the indices of Y in X using dyadic t, it is necessary to first un-invert each
of'the tables in order to create nested matrices that 1 can handle.

Chapter 3: The I-Beam Operator 191

unvert X

ABC|O|m

DEF|1fe

GHI|2|t

JKL|3|a

MNO| 4| L

PQR|5]|e

sTule|p

VWX|[7|s

YZA|8]i

BCD|9|s

(unvert X) 1 (unvert Y)
3141509

Each un-inverted table requires considerably more workspace than its inverted form,
so if the inverted tables are large, this operation is potentially expensive in terms of
both time and workspace.

81 is an optimised version of the above expression.

X (81) Y
3141509

192

Language Reference Guide

Execute Expression R«X(85I)Y

Executes an expression.
Y is a character vector containing an APL expression.

The function executes the expression in Y exactly as it would be executed by the
monadic Execute primitive function ¢, but handles shy results of the execution rather
differently.

The left argument X determines how a shy result from the execution of Y is treated
and is either 0 or 1.

If X is 1, and the expression in Y returns an explicit result, R is that result. If the
expression in Y returns no result or returns a shy result, the function signals ERROR
85. Effectively, a shy result is discarded.

If X is 0, and the expression in Y returns an explicit result or a shy result, R is that
result (but is no longer shy). If the expression in Y returns no result, the function
signals ERROR 85.

Examples

¢'ael2!

O« ¢'a<42'’ A shy result
42

0 (85I) 'a«L42' A not shy
42

1 (85I) 'a<«42'
ERROR 85

1(85I) 'a<42'

A

Chapter 3: The I-Beam Operator 193

Overwrite Free Pockets R«1271Y

Overwrites all free pockets in the workspace.

Some applications (cryptography for example) make use of secure data during
execution. The nature of the APL workspace is such that remnants of this secure data
may persist in the workspace (and thus the process memory) even after the relevant
APL variables have been expunged. This function overwrites all unused data pockets
in the workspace so that any potentially secure data is removed.

Y is any empty array, preferably 8(zilde). R is always 1.

It is the responsibility of the programmer to ensure that there are no USED pockets in
the workspace that reference the data.

Example
v foosa
[1] a<'my secure data'
[2] Oex'a’
[3] A 'my secure data' is now in an
[4] A UNUSED pocket in the workspace
[5] a+12710 A all unused pockets are overwritten,
[6] A 'my secure data' is no longer present
\'4
Whereas
Vv foosasb
[1] a<'my secure data'
[2] b<«a
[3] OJex'a'
[4] A 'my secure data' is now in an
[5] A UNUSED pocket in the workspace
[6] a<12710 A all unused pockets are overwritten,
[7] A but 'my secure data' is still present
[8] A because it is referenced by b

194 Language Reference Guide

Canonical Representation R«<1801Y

This function is the same as the system function [JCR except that it can be used to
obtain the canonical representation of methods in classes. 1801 is used by
JPROFILE.

Example

)load ComponentFile
C:\Program Files\Dyalog\Dyalog APL-64 15.0 Unicode\...

1801 'ComponentFile.Close’
Close
:Implements Destructor
:If tiee[JFNUMS
:If temp o Name [JFERASE tie
:Else o OFUNTIE tie
tEndIf
:EndIf

Unsqueezed Type R«1811Y

Y is any array.

The result R is an integer scalar containing an integer value which indicates the type
of'the array. For further information see Data Representation (Monadic) on page 338.

1811 is functionally identical to monadic [IDR, except that no attempt is made to
squeeze the data into smaller data types. [JDR always attempts to squeeze the data;
1811 does not, but ifa workspace compaction occurs during execution of 1811, the
data may still be squeezed before the type is identified.

Example

Odr 1t1 1000
11

(181x) 1t1 1000
163

Chapter 3: The I-Beam Operator 195

Syntax Colouring

R«200TY

This function obtains syntax colouring information for a function.

Y is a vector of character vectors containing the [JNR representation of a function or

operator.

R is a vector of integer vectors with the same shape and structure of Y in which each

number identifies the syntax colour element associated with the corresponding

characterin Y.

vfoov
vV foo;local
[1] global
[2] local«pp'hello’
\'4
ONR 'foo'

foo;local global local«pp'hello’

{(tw),*200Iw}NR 'foo'
foo; local

local«pp'hello’
In this example:

21
19
3 is the syntax identifier for "white space"
34
7 is the syntax identifier for "global name"
23

is the syntax identifier for "character constant"

is the syntax identifier for "primitive"

is the syntax identifier for "local name"

is the syntax identifier for "idiom"

3 21 21 21 19 34 3% 34
global 3 7. 17 7 17 71T 7 O

3+ 3+ 000000
0 000O0O0OO0OO
3 34 34 3% 34 34% 19 23 23 4 4 4 4 4 4 4

The list of syntax colour elements supported by the current interpreter is given by
2011. It is important to note that the values may change within a release, and are

very likely to change across releases .. you should always call 201 I rather than

relying the results from a different interpreter. See Syntax Colour Tokens on page

196.

196 Language Reference Guide

Syntax Colour Tokens R«2011Y

This function provides a description of the syntax colour tokens reported by 200I.
See Syntax Colouring on page 195

Y is & (zilde).
R is a 3-column matrix that describes the syntax colouring tokens as follows:
R[;1] Token type
R[;2] Token Value
R[;3] Internal description
Example
p20116
207 3
3 3t201z18

Global token|O|MINI_NULL

Global token|1|MINI_COMMENT

Global token|2|MINI_UCC

Chapter 3: The I-Beam Operator 197

Compress Vector of Short Integers ReX(2191)Y

In this section, the term sint_vector is used to refer to a simple integer vector whose
items are all in the range “128 to 127 i.e. they are type 83. For further information
see Data Representation (Monadic) on page 338.

In most cases this I-Beam functionality will be used in conjunction with 220x
(Serialise/Deserialise Array). However, it may be possible to pass the raw compressed
data to and from other applications.

X specifies the operation to be performed, either compression or decompression, the
compression library to be used, and any optional parameters. Y contains the data to
be operated on.

Compression
Y must be a sint_vector.

R is a two item vector, each of which is a sint_vector. R[1] describes the
compression, and R[2] contains the raw data which is the result of applying the
compression library to the input data Y.

X is specified as follows:

X[1] X[2] Compression Library
1 n/a LZ4
2 0.9 zlib
3 0.9 gzip

If LZ4 compression is required, then X must either be a scalar or a one element vector.
Otherwise, X[2], if present, specifies the compression level; higher numbers
produce better compression, but take longer.

Decompression

R is a sint_vector, containing the output of applying the decompression library to the
input data, Y.

If X is a scalar or a one item vector, and has the value 0, then Y must be a vector of
two items which is the result of previously calling 219 to compress a sint_vector.

198 Language Reference Guide

Otherwise, X is a scalar or one or two element vector and Y must be a sint_vector.

The first element of X must be one of the following values.

X[1] Compression Library
1 Lz4
2 zlib
-3 gzip

The second, optional, element of X specifies the length of the uncompressed data. Its
presence results in a more efficient use of the compression library.

X may not be a two item vector whose first item has the value 0.

Examples

sint«{w-256xw>127}

utf8<«'UTF-8"'o[ucs

str<'empty<8'

Hdvesint utf8 str
101 109 112 116 121 30 7122 ~112 30 ~115 84

Hcomp«l (2191) v
8 551 0000 11 780 101 109 112 116 121 30 ~122 112
~30 7115 “84

utf8 256| 0(2191)comp
empty<«6

utf8 256| ~1(2191)2>comp
empty<«6

Chapter 3: The I-Beam Operator 199

Serialise/Deserialise Array R«X(2201)Y

In this section, the term sint_vector is used to refer to a simple integer vector whose
items are all in the range “128 to 127 i.e. they are type 83. For further information
see Data Representation (Monadic) on page 338.

It is expected that in many cases this [-Beam functionality will be used in
conjunction with 2191 - Compress/Decompress vector of short integers. It would
also be possible to encrypt the serialised form and write to a file (either component or
native), and reverse the process at a later date.

X is a scalar which can take the value O or 1.

When X is 1, Y can be any array. The result R is the serialised form of the array,
presented as a sint_vector.

When X is 0, Y must be a sint_vector. The result R is an array whose serialised form is
represented by Y.

Typically it is not possible to construct a vector which can be deserialised; it is
expected that the only source of a vector which can be deserialised is the result of
using 1(2201) to serialise an array.

The result of 1 (2201) will differ between interpreters of differing widths and
editions, but the resulting vector can be deserialised in other interpreters, with the
exception that, like arrays in component files, it may not be possible to deserialise an
array which was serialised in a later interpreter

The following identity holds true:
A= 0(2201) 0(2191) 1(2191) 1(2201) A

Example

a<'ab'
b<«1(220I)a
b
33 7108 5 00 0313900200097 98 00
c«0(2201)b
c=a

200 Language Reference Guide

Compiler Control R«{X}(400x)Y

Controls the actions of the Compiler. For further information, see Compiler User

Guide.
The optional left-argument X must be one of the following:
X Description
0 Set automatic compilation options (default)
1 Determine whether the function/operator Y has been successfully
compiled
2 Compile the function/operator Y
3 Discard compiled form of the function/operator Y
4 Show bytecode for the compiled function/operator Y
nsref Compile the function/operator Y using user-defined callbacks in this
namespace to provide information about global names

The nature of Y and R depend on the value of X as follows:

X=0

: Control Automatic Compilation (default)

Y must be an integer 0, 1, 2, or 3.

Y

Description

0

disable automatic compilation (initial setting)

compile functions when they are fixed (with 0F X or from the function
editor)

compile operators the first time they are executed

compile functions when they are fixed (with 0F X or from the function
editor) and compile operators the first time they are executed

The result R is the previous value of Y.

The automatic compilation setting is maintained within the workspace, and is saved
and loaded with the workspace.

Chapter 3: The I-Beam Operator 201

X=1: Query Compilation State

Y must be a character vector, matrix or vector of vectors specifying the name ofa
function or operator or a list of such names.

The result R is a Boolean scalar or vector, with the value 1 if the corresponding
function/operator has been successfully compiled or 0 if it has not.

X=2: Compile

Y must be a character vector, matrix or vector of vectors specifying the name of a
function or operator or a list of such names that should be compiled.

The result R is a matrix of diagnostic information or, if Y was either a matrix or a
vector of vectors, a vector of such matrices. Each row of the matrix describes a
problem that caused the compilation to fail, with four columns corresponding to:

the APL error number

the line number in the function/operator
the column number (currently always 0)
4. the error message

W N =

If the matrix R has zero rows then the compilation was successful.

If this mechanism is used to compile operators, then the compiled bytecode will
assume that the operator's operands are functions rather than arrays. At run time, the
operands will be checked — if they are functions then the compiled bytecode will be
used, otherwise the operator will be interpreted.

X=3: Discard Compiled Form

IfY is empty, discard any compiled bytecode for all functions and operators in the
workspace. If Y is a character vector, matrix or vector of vectors specifying the name
of'a function or operator or a list of such names, discard any compiled bytecode for
the name(s) specified by Y. R is always 0

X=4: Show Bytecode

Y must be a character vector, matrix or vector of vectors specifying the name ofa
function or operator or a list of such names.

The result R is a multi-line string (that is, a character vector with embedded newlines)
or, if Y was either a matrix or a vector of vectors, a vector of such strings. Each string
is a human-readable representation of the bytecode of a compiled function or
operator.

This functionality is provided for information and diagnostic purposes only. The
human-readable form of the bytecode is subject to change at any time.

202 Language Reference Guide

X is a namespace reference: Compile With Callbacks

Y must be a character vector, matrix or vector of vectors specifying the name of a
function or operator or a list of such names. The specified functions or operators are
compiled in the same way as when X = 2 except that the compiler uses the user-
defined callback functions in the namespace X to obtain information about global
names. The namespace X can contain any or all of following callback functions:

Callback | Description

analogous to the system function ONC. When applied
monadically to an enclosed character vector it should return the
detailed name class of that name. For example, given the name
of a global dfn it should return the value 3.2.

quadNC

analogous to the system function JAT. When applied
monadically to an enclosed character vector it should return a 1
quadAT by 4 matrix whose first item is a vector of 3 integers describing
(respectively) the result, function valence and operator valence
of the name.

used to obtain the value of global constants. When applied

monadically to a character vector that is a global constant it
should return the enclose of the constant value, otherwise it
returns €.

getValue

Each ofthese callback functions returns information about names that should be
guaranteed to exist when the compiled functions are executed. The compiler assumes
that the information returned by the callbacks is correct, and generates bytecode
accordingly. In the case of quadNC and quadAT, if the information returned by the
callbacks turns out not to be correct when the compiled function is executed, then a
runtime error is generated.

The result R is a matrix of diagnostic information or, if Y was either a matrix or a
vector of vectors, a vector of such matrices. Each row of the matrix describes a
problem that caused the compilation to fail, with four columns corresponding to:

the APL error number

the line number in the function/operator
the column number (currently always 0)
4. the error message

hadi e

If the matrix R has zero rows then the compilation was successful.

Chapter 3: The I-Beam Operator 203

Trap Control

R«600TY

This function is used to temporarily disable the error trapping mechanism used by
:Trap and OTRAP. This can be useful in debugging applications.

Y is an integer 0, 1 or 2 as shown in the following table.

R is the previous value (0, 1, or 2) of the trap state.

Y

Effect

0

Enable all traps.

1

Disable all traps.

Disable traps in suspended functions from triggering when an error is
generated in the Session.

Note that the Disable traps in session option of the Session Options menu performs
the same tasks as (600I0) and (600I2).

For error-guards in dfns 600I0 and 600I2 are equivalent; in neither case is an error
generated in the session caught by an error guard in a suspended dfn.

204

Language Reference Guide

Case Convert R«{X}(8191)Y

Converts character data in Y to upper or lower-case. This function is considerably
faster than any comparable function coded in APL, especially on nested arrays.

Y may be any array of arbitrary depth so long as all the elements are characters.

The optional left-argument X is 0 (convert to lower-case) or 1 (convert to upper-case).
If omitted, the default is 0.

The result R has the same structure as Y but each character element is case folded to
upper or lower case.

Characters are converted per the default case mappings specified by The Unicode
Consortium, described at:

ftp://ftp.unicode.org/Public/3.0-Update/UnicodeData-3.0.0.html

and using the table at:

http://unicode.org/Public/UNIDATA/UnicodeData.txt

If conversion is being used to do case-insensitive character comparisons then
converting everything to lower case is generally preferable to converting everything
to upper. This is because converting to lower case can be faster.

This I-beam is supported in Classic Edition using the same code as the Unicode
Edition. This means that any case-folding defined in the input translate tables is
ignored, and that TRANSLATION ERRORs will be generated if the folded characters
do not appear in [JAV.

Examples

(8191x) 'How many Roads must a man walk down'
how many roads must a man walk down

1 (8191) 'How many Roads must a man walk down'
HOW MANY ROADS MUST A MAN WALK DOWN

data«1000pc'Hello there.'
lc_data«8191 data
4tlc_data
hello there. hello there. hello there. hello there.

Chapter 3: The I-Beam Operator 205

Called Monadically R«<9001Y

Identifies how the current function was called. 9001 applies only when called from
within a variadic defined function (not a dfn).

Y may be any array.

The result R is Boolean. 1 means that the current function was called monadically; 0
means that it wasn't. If there is no function on the stack, the result is 0.

Example

vV r<{left}foo right
[1] r<90016&
\'4
foo 10

0 foo 10

206 Language Reference Guide

Temporary Directory R«7391Y

Returns the name of a system temporary directory suitable for user files, as a character
vector. The name reported does not include a trailing directory separator

Y is 0.

The result R is a character vector.

Example (Windows)

73910
C:/Users/Pete/AppData/Local/Temp

Example (non-Windows)

73910
/tmp

Chapter 3: The I-Beam Operator 207

Loaded Libraries R«9501Y

Reports the names of the dynamic link libraries that are currently loaded as a result of
executing [INA.

Y is an empty vector.

The result R is a vector of character vectors containing the names of all the DLLs or
shared libraries that have been explicitly loaded by OONA and are still loaded by
virtue of the presence of at least one external function reference.

Examples

Jclear
clear ws
"Aloc'[ONA'P kernel32|GlobalAlloc U4 P'
'"Free'[DNA'P kernel32|GlobalFree P'
'"Lock'ONA'P kernel32|GlobalLock P'
'"Ulok 'ONA'U4 kernel32|GlobalUnlock P'
'Valu'DNA'U4 version|VerQueryValuex P <0T >U4 >Uu'
"copy'ONA'P msvcrt|memcpy >U4[] P U4’

95018
KERNEL32.DLL VERSION.DLL MSVCRT.DLL

)fns

Aloc Free Lock Ulok Valu copy
Jerase Aloc Free Lock Valu
95016

KERNEL32.DLL MSVCRT.DLL
)fns

Ulok copy

Jerase Ulok
95018
MSVCRT.DLL

Jclear
clear ws
95018

208

Language Reference Guide

Number of Threads Re«1111IY

Specifies how many threads are to be used for parallel execution.
IfY has the value 8, R is the number of virtual processors in the machine.

Otherwise, Y is an integer that specifies the number of threads that are to be used
henceforth for parallel execution. Prior to this call, the default number of threads is
specified by the parameter APL_MAX_THREADS. See Installation & Configuration
Guide: APL_ MAX THREADS Parameter.

Note that whatever the value of Y, Dyalog limits the number of threads to 64. So the
effective number of threadsis Y| 6 4.

R is the previous value.
To reset the number of threads to be the same as the number of virtual processors run:
{}11111 111118

See Programming Reference Guide: Parallel Execution and Parallel Execution
Threshold on page 208.

Parallel Execution Threshold R«11121Y

Y is an integer that specifies the array size threshold at which parallel execution takes
place. If a parallel-enabled function is invoked on an array whose number of
elements is equal to or greater than this threshold, execution takes place in parallel. If
not, it doesn't.

Prior to this call, the default value of the threshold is specified by an environment
variable named APL._ MIN PARALLEL. Ifthis variable is not set, the default is
32768.

R is the previous value.

See Programming Reference Guide: Parallel Execution and Number of Threads on
page 208.

Chapter 3: The I-Beam Operator 209

Update Function Time Stamp {R}«X(11591)Y

Y is an array of function names in the same format as the right argument of JAT. For
further information, see Attributes on page 286.

X is an array of function attributes in the same format as the output of JAT.

The shy result R is a vector of numeric items, one per each specified function
containing the following values:

No change was made; the name is not that of a function, or the function
was locked

1 | The time and user stamp were updated

Note that the last item of the function time stamp must be set to 0 otherwise 1159 I
will generate a DOMAIN ERROR. Additionally, the time stamp must be greater than
1970 1 1 0 0 0 O.

Example
ldisp OAT'Christmas’

0 0 0/2013 3 1 11 14 58 0|0|Richard

x<[JAT 'Christmas'
x[2 4]«(2012 12 25 11 59 0 0)('Santa')
x (11591) 'Christmas'

ldisp OAT'Christmas’

0 0 0/2012 12 25 11 59 0 0|0|Santa

210 Language Reference Guide

Hash Array

R«{X}1500z1Y

This function creates a hashed array, returns an unhashed copy of an array or reports

the state of hashing of an array.

Y may be any array.

If X is omitted, the result R is a copy of Y that has been invisibly marked as hashed. R
behaves the same as Y in all respects. The only difference is that dyadic 1 and related
functions are expected to run faster when applied to a hashed array. The hash will be
created the first time the array is used as an argument to t or other set functions. The

hashed property is preserved across assignments and argument passing, but in
general is not preserved by any primitive functions.

If X is 1, the result R returns an indication of whether Y has been marked for hashing

or whether the hash has been created:

R

State of Y

0

Y has not been marked for hashing

Y has been marked for hashing, but the hash tables has not yet been
created

2

Y has a hash table

If X is 2, the result R is the unhashed form of Y.

Examples:

0

R«<150011 2 3 A R is marked for hashing
1 (15001)R

S<R A S is marked for hashing
{w12 3 5}R A R is now hashed

1 (15001)R

U«<(pR)pR A U is not hashed

U«ocR A ditto

1 (15001)U

IfR is a hashed array then certain forms of modified assignment will preserve and
efficiently update the hash table:

R,«Y A only for scalar or vector R
R;*Y
Ry=<«Y A only for negative singleton Y

Chapter 3: The I-Beam Operator 211

Examples:
R«1500x1 2 3 A R is hashed
R,«5 A ,« preserves and updates
A the hash table
R
1235
Ri2 4+ 6

255

R¥=«72 @A V=« preserves and updates
A the hash table
R
12
Ri2 4 6
2 33

The hashed property survives) SAVE/)LOAD and) SAVE/) COPY. It does not
currently survive writing to a component file and reading back again.

212 Language Reference Guide

Memory Manager Statistics R«{X}(20001)Y

This function returns information about the state of the workspace and provides a
means to reset certain statistics and to control workspace allocation. This I-Beam is
provided for performance tuning and is VERY LIKELY to change in the next
release. See also Installation & Configuration Guide: Workspace Management.

Y is a simple integer scalar or vector containing values listed in the table below.

If X is omitted, the result R is an array with the same structure as Y, but with values in
Y replaced by the following statistics. For any value in Y outside those listed below,
the result is undefined.

Value |Description

0 Workspace available (a "quick" [JWA)

1 Workspace used

2 Number of compactions since the workspace was loaded
3 Number of garbage collections that found garbage

4 Current number of garbage pockets in the workspace

9 Current number of free pockets in the workspace

10 Current number of used pockets in the workspace

12 Sediment size

Current workspace allocation, i.e. the amount of memory that is

13 actually being used

Workspace allocation high-water mark, i.e. the maximum amount
14 of memory that has been allocated since the workspace was loaded
or since this count was reset.

15 Limit on minimum workspace allocation
16 Limit on maximum workspace allocation
19 The number of calls to JWA or 20021 since the last time 2000I

was called, or when the process started.

Note that while all other operations are relatively fast, the operation to count the
number of garbage pockets (4) may take a noticeable amount of time, depending
upon the size and state of the workspace.

See also Specify Workspace Available on page 215.

Chapter 3: The I-Beam Operator 213

Examples

2000z0
55414796
200010,116 A with MAXWS=95G

1.02004292E11 1181312 1 1 0 "1 "1 71 71 78 13280 "1
1180800 1595016496 1595042464 O 1.020054733E11

If X is specified, it must be either a simple integer scalar, or a vector of the same
length as Y, and the result R is 8. In this case, the value in Y specifies the item to be
set and X specifies its new value according to the table below.

Value |Description

2 0 resets the compaction count; no other values allowed

3 0 resets the count of garbage collections that found garbage; no
other values allowed
0 resets the workspace allocation high-water mark; no other values

14 allowed. This should be called following a call to OWA (which
compacts the workspace and returns unused memory to the
operating system).

15 Sets the minimum workspace allocation to the corresponding value
in X; must be between 0 and the current workspace allocation
Sets the maximum workspace allocation to the corresponding value

16 in X; 0 implies MAXWS otherwise must be between the current
workspace allocation and MAXWS.

19 0 resets the compaction count; no other values allowed

Notes:

« Note that the workspace allocation high-water mark indicates a minimum
value for MAXWS.

Limiting the maximum workspace allocation can be used to prevent code
which grabs as much workspace as it can from skewing the peak usage

result.

Limiting the minimum workspace allocation can avoid repeatedly
committing and releasing memory to the Operating System when memory
usage is fluctuating.

214 Language Reference Guide

Examples

200012 3
6 0 33216252
0 (20001)2 3 14 A Reset compaction count

20002 3
30000000 40000000(2000x)15 16 A Restrict min/max ws

(20001)15 16
30000000 40000000

0 (20001)15 16 A Reset min/max ws

(2000T)15 16
0 65536000

(20001)13 14 A Current, peak WS allocation
4072532 4072532

a«10ebp'x' A Increase WS allocation

(2000x)13 1% A Current, peak WS allocation
15108580 15108580

Oex 'a' ¢ {}Owa A Decrease current WS allocation

(20001)13 14 A Current, peak WS allocation
1962856 15108580

0 (20001) 14 ma Reset High-water mark

(20001)13 14 A Current, peak WS allocation
1962856 1962856

Chapter 3: The I-Beam Operator 215

Specify Workspace Available R«20021Y

This function is identical to the system function [JWA except that it provides the
means to specify the amount of memory ! that is committed for the workspace rather
than have it assigned by the internal algorithm. Committed memory is memory that is
allocated to a specific process and thereby reduces the amount of memory available
for other applications. See also Installation & Configuration Guide: Workspace
Management.

Like JWA, 20021 compacts the workspace so that it occupies the minimum number
of bytes possible, adds an extra amount, and then de-commits all the remaining
memory that it is currently using, allowing it to be allocated by the operating system
for use by other applications.

The argument Y is an integer which specifies the size, in bytes, of this extra amount.

The purpose of the extra amount is to reduce the likelihood that APL will
immediately have to ask the operating system to re-commit memory that it has just
de-committed, something that would have a deleterious effect on performance. At the
same time, if the extra amount were to be excessively large, APL could starve other
applications of memory which itself could reduce the effective performance of the
system. Whereas [JWA calculates the size of the extra amount using a simple internal
algorithm, 20021 uses a value specified by the programmer.

R is an integer which reports the size in bytes of the memory committed for the
workspace, and is the sum of the minimum amount required by the workspace itself
and the argument Y.

Ifthe size of the committed workspace would be smaller than the minimum value
(specified by 20001I) or larger than the maximum value (which defaults to MAXWS),
aDOMAIN ERROR is signalled.

See also Memory Manager Statistics on page 212.

Note that this function does not change the size of the extra amount that will be
applied subsequently by WA or by an automatic compaction.

IThe term memory here means virtual memory which includes memory mapped to disk.

216

Language Reference Guide

Update DataTable R«{X}2010zxY

Windows only.

This function performs a block update of an instance of the ADO.NET object
System.Data.DataTable. This object may only be updated using an explicit
row-wise loop, which is slow at the APL level. 201 0T implements an internal row-
wise loop which is much faster on large arrays. Furthermore, the function handles
NULL values and the conversion of internal APL data to the appropriate .NET
datatype in a more efficient manner than can be otherwise achieved. These 3 factors
together mean that the function provides a significant improvement in performance
compared to calling the row-wise programming interface directly at the APL level.

Y isa 2,3 or4-item array containing:

1. A reference to an instance of System.Data.DataTable.

2. A matrix with the same number of columns as the table specified by Y[1].

3. An optional vector which specifies for each column in the DataTable the
values in Y[2 Jwhich should be converted to a System.DBNull.

4. An optional vector which specifies the indices (in zero origin) of the rows
of the DataTable which are to be updated. If omitted, the matrix specified
by Y[2] will be appended to the DataTable.

The optional argument X is Boolean vector, where a 1 indicates that the
corresponding column of Y[2] is a string from which the new values should be
converted according to that column's data type.

Example

Shown firstly for comparison is the type of code that is required to update a
DataTable by looping:

OUSING«'System' 'System.Data,system.data.dll’

dt<[INEW DataTable

ac<{dt.Columns.Add o w}

'S1' 'S2' 'I1' 'D1' ac”String String Int32 DateTime
S1 S2 I1 D1

NextYear<«DateTime.Now+{[ONEW TimeSpan (4tw)} "1n«365
data<(s"in),(np'odd' 'even'),(10|in),sNextYear
~2 4tdata

364 even 4 18-01-2011 14:03:29

365 odd 5 19-01-2011 14:03:29

ar<{(row<dt.NewRow).ItemArray<w ¢ dt.Rows.Add row}
t«3o0ai ¢ aridata o (3=°0ai)-t
449

Chapter 3: The I-Beam Operator 217

This result shows that this code can only insert roughly 800 rows per second (3°[JAI
returns elapsed time in milliseconds), because of the need to loop on each row and
perform a noticeable amount of work each time around the loop.

20101 does all the looping in compiled code:

dt.Rows.Clear A Delete the rows inserted above
SetDT+«2010z
t<3o[JAI ¢ SetDT dt data o (3o[JAI)-t

L

So in this case, using 20101I achieves over 90,000 rows per second.

DateTime columns

Creating large arrays of DateTime objects in the workspace takes additional
resources, and unless the data is already stored that way, it is not necessary to convert
itto .NET objects. Data in TS format (7-element integer vector) or in a suitable
character format may be used directly. The former is a specific Dyalog optimisation;
the latter a feature of NET Version 4.0. The following examples use numeric and
character data for the dates:

months«12p31 ¢ months[2 4 6 9 11]«29 30 30 30 30
n<pNextYear«71">,/(112){(<2016,0a), ww} ‘months
data<(s"tn),(np'odd' 'even'),(10]|in),s;NextYear
SetDT dt data

n<pNextYear<«>,/(112){(<'2016/',(5a),"'/"'),°% 1w} months
data<(s"in),(np'odd' 'even'),(10|wn),;NextYear
SetDT dt data

Using Strings

In circumstances where .NET fails to accept character data automatically, it is
possible to force conversion from character format to the corresponding .NET type.

If specified, the optional left argument X instructs the system to pass the
corresponding columns of data to the Parse () method of the data type for those
columns prior to performing the update.

In the following example, the left argument is not strictly necessary using NET
Version 4.0, but forces parsing for the data in the 4th column:

months«12p31 ¢ months[2 4 6 9 11]«29 30 30 30 30
n<pNextYear<>,/(112){(<c'2016/"',(%a),"'/"'),o3 1w} months
data<(s"in),(np'odd' 'even'),(10|in),s;NextYear

0 0 01 SetDT dt data

218

Language Reference Guide

Handling Nulls

If applicable, Y[3] is a vector with as many elements as the DataTable has
columns, indicating the value that should be converted to System.DBNul L as data
is written. For example, using the same DataTable as above:

t
<null> odd 1 21-01-2010 14:50:19
two even 2 22-01-2010 14:50:19
three odd 99 23-01-2010 14:50:19

dt.Rows.Clear A Clear the contents of dt
SetDT dt t ('<null>' 'even' 99 '"')

Above, we have declared that the string ' <nul L > ' should be considered to be a
null value in the first column, 'even' in the second column, and the integer 99 in
the third.

Updating Selected Rows

Sometimes, you may have read a very large number of rows from a DataTable, but
only want to update a single row, or a very small number of rows. Row indices can
be provided as the fourth element of the argument to 201 0I. If you are not using Y

[3] explicitly, you can just use an empty vector as a placeholder. Continuing from
the example above, we could replace the first row in our DataTable using:

SetDT«2010z1
SetDT dt (1 4p'one' 'odd' 1 DateTime.Now) & O

Note

e Y[2] must be provided as a matrix, even if you only want to update a
single row,
o Y[4] specifies row indices using zero origin (the first row has number 0).

Warning

If you are experimenting with writing to a DataTable, note that you should call
dt.Rows.Clear each time to clear the current contents of the table. Otherwise
you will end up with a very large number of rows after a while.

Chapter 3: The I-Beam Operator 219

Read DataTable R«{X}2011zxY

Windows only.

This function performs a block read from an instance of the ADO.NET object
System.Data.DataTable. This object may only be read using an explicit row-
wise loop, which is slow at the APL level. 201 1T implements an internal row-wise
loop which is much faster on large arrays. Furthermore, the function handles NULL
values and the conversion of NET datatypes to the appropriate internal APL form in
a more efficient manner than can otherwise be achieved. These 3 factors together
mean that the function provides a significant improvement in performance compared
to calling the row-wise programming interface directly at the APL level.

Y is a scalar or a 2-item array containing:

1. A reference to an instance of System.Data.DataTable.

2. An optional vector which specifies the values to which a
System.DBNull should be mapped in the corresponding columns of the
result

The optional argument X is Boolean vector, where a 1 indicates that the
corresponding column of the result should be converted to a string using the
ToString method of the data type of column in question. It is envisaged that this
argument may be extended in the future, to allow other conversions — for example
converting Dates to a floating-point format

The result R is a matrix with the same shape as the DataTable identified in Y.

Example

First for comparison is shown the type of code that is required to read a DataTable
by looping:

t«35[JAI ¢ datal«t([Jdt.Rows).ItemArray ¢ (3>[JAI)-t
191

The above expression tumns the dt . Rows collection into an array using [], and mixes
the ITtemArray properties to produce the result. Although here there is no explicit
loop, involved, there is an implicit loop required to reference each item of the
collection in succession. This operation performs at about 200 rows/sec.

20111 does the looping entirely in compiled code and is significantly faster:

GetDT<«20111x
t<3o5[AI ¢ data2«GetDT dt ¢ (3-0AI)-t
25

220 Language Reference Guide

Example

In the first example shown above, 2011 I created 365 instances of
System.DateTime objects in the workspace. If we are willing to receive the
timestamps in the form of strings, we can read the data almost an order of magnitude
faster:

t<3o5[AI ¢ data3«0 0 0 1 GetDT dt ¢ (3°0AI)-t
3

The left argument to 201 1T allows you to flag columns which should be returned as
the ToString () value of each object in the flagged columns. Although the
resulting array looks identical to the original, it is not: The fourth column contains
character vectors:

2 4tdata3
364 even 4 18-01-2011 14:03:29
365 odd 5 19-01-2011 14:03:29

Depending on your application, you may need to process the text in the fourth
column in some way — but the overall performance will probably still be very much
better than it would be if DateTime objects were used.

Handling Nulls

Using the DataTable produced by the corresponding example shown for 20101 it
can be shown that by default null values will be read back into the APL workspace
as instances of System.DBNull.

GetDT«20111>
J«z<GetDT dt

odd 1 21-01-2010 14:50:19
two 2 22-01-2010 14:50:19
three odd 23-01-2010 14:50:19

(1 18z).GetType

System.DBNull System.DBNull System.DBNull

However, by supplying a left argument to 201 1T, we can request that nulls in each
column are mapped to a corresponding value of our choice; in this case, ' <nul l>"',
‘even’',and 99 respectively.

GetDT dt ('<null>' 'even' 99 '')
<null> odd 1 21-01-2010 14:50:19
two even 2 22-01-2010 14:50:19
three odd 99 23-01-2010 14:50:19

Chapter 3: The I-Beam Operator 221

Remove Data Binding R«20141Y

Windows only.
This function disassociates a data-bound variable from its data binding source.
Y is any array.

IfY oran element of Y is a character vector that contains the name of a data-bound
variable, that variable is dissociated from its data binding source.

The result R is always 1.

Example
20141 'txtSource’

222

Language Reference Guide

Create Data Binding Source R«{X}20151Y

Windows only.
Creates an object that may be used as a data source for WPF data binding. !

This function connects a Binding Target to a Binding Source. In WPF a Binding
Target is a particular property of a user interface object; for example, the Text
property of a TextBox object. A Binding Source is a Path to a value in a data object
(which may contain other values). The value of the Binding Source determines the
value of the Binding Target. If two-way binding is in place, a change in a user-
interface component causes the bound data value to change accordingly. In the
example ofthe TextBox, the value in the Binding Source changes as the user types
into the TextBox.

Y is a character vector containing one of the following:

« the name of a variable

« the name of a namespace containing one or more variables

« the name of a variable containing a vector of refs to namespaces, each of
which contains one or more variables.

If the name specified by Y doesn't exist or represents neither a variable nor a
namespace, the function reports DOMAIN ERROR. Currently, no further validation of
the structure and contents of Y is performed, but nothing other than the examples
described herein is supported.

If the optional left argument X is given and Y is a variable other than a ref, X specifies
the binding type for that variable. If Y specifies one or more namespaces, X specifies
the names and binding types of each of the variables which are to be bound,
contained in the namespaces specified by Y.

The structure of X depends upon the structure of Y and is discussed later in this topic.

If X is omitted, all of the variables specified by Y are bound with default binding
types.
Here the term bind variable refers to any variable specified by X and Y to be bound,

and the term binding type means the NET data type to which the value of the bind
variable is converted before it is passed to the NET interface.

11t is beyond the scope of this document to fully explain the concepts of WPF data binding. See
Microsoft Developer Network, Data Binding Overview.

Chapter 3: The I-Beam Operator 223

20151 creates a Binding Source object R. This is a NET object which contains Path
(s) to one or more bind variables. This object may then be assigned to a property of a
WPF object or passed a s as a parameter to a WPF method that requires a Binding
Source.

Bind Variables and Bind Types
A bind variable should be of rank 2 or less. Higher rank arrays are not supported.

Ifnot specified by X, the binding type of a bind variable is derived from its content at
the time 201571 is executed. The binding type is then stored with the variable in the
workspace. There is no mechanism to change a variable's binding type without
erasing the variable and re-executing 2015I. If you change the type or rank of a
bind variable while it is bound (for example from a variable to a namespace), the
behaviour of the system is unpredictable.

The default binding type is derived as follow:

Ifthe bind variable is a simple scalar number the default binding type is
System.Object. At the point when the value of the variable is passed to the NET
interface this will be cast to a numeric type such as System. Int16,
System.Int32,System.Int64,or System.Double,depending upon the
internal representation of the data. The NET property to which it is bound will
typically only accept a single Type (for example System. Int32), so to avoid
unpredictable behaviour, it is recommended that the left argument X be used to
specify the binding type for numeric data.

Ifthe bind variable is a character scalar or vector, the default binding type is also
System.Object, but at the point when the value of the variable is passed to the
NET interface it will always be passed as System. String, which is suitable for
binding to any property that accepts a System. String, such as the Text property
ofa TextBox.

If the bind variable is a vector other than a simple character vector, such as a vector of
character vectors, a simple numeric vector, or a vector of NET objects, the bind type
will be a collection. This is suitable for binding to any property that represents a
collection (list) of items, for example the TtemsSource property ofa ListBox.

Ifthe bind variable is a matrix, the default binding type is System.Object.

All the examples that follow assume JUSING<«'System'.

224

Language Reference Guide

Binding Single Variables
In this case, Y specifies the name of a variable which is one of the following:

« character vector (or scalar)

¢ numeric scalar

« scalar NET object (not currently supported)
« vector of character vectors

e numeric vector

« vector of NET objects

o matrix

X (if specified) defines the binding type for the bind variable named by Y and is a
single .NET Type.

Note that in the following examples, the reason for expunging the name first is
discussed in the section headed Rebinding a Variable.

Binding a Character Vector
This example illustrates how to bind a variable which contains a character vector.

JEX'txtSource'
txtSource<HELLO WORLD'
bindsource«<2015I'txtSource’

In this example, the binding type of the variable txtSource will be
System.String, suitable for binding to any property that accepts a String, such as
the Text property ofa TextBox.

Binding a Numeric Scalar

This example illustrates how to bind a variable which contains a numeric scalar
value.

JEX'sizeSource'
sizeSource<«36
bindSource«Int32(20151) 'sizeSource’

In this example, the left argument Int 32 specifies that the binding type for the
variable sizeSource is to be System. Int32. This means that whenever APL passes
the value of sizeSource to the control, it will first be cast to an Int32. This
makes it suitable, for example, for binding to the FontSize property ofa
TextBox.

Chapter 3: The I-Beam Operator 225

A number of controls have a Value property which must be expressed as a
System.Double. The next example shows how to create a Binding Source for
such a variable.

JEX'valSource'
valSource<«42
bindSource«Double(20151) 'valSource'

Binding a Scalar .NET Object

This is currently not supported.

Binding a Vector of Character Vectors

WPF data binding provides the means to bind controls that display lists of items,
such as the ListBox, ListView, and TreeView controls, to collections of data.
These controls are all based upon the TtemsControl class. To bind an
ItemsControl to acollection object, you use its ItemsSource property.

This example illustrates how to bind a variable which contains a vector of character
vectors.

OJEX'itemsSource'
jtemsSource<'beer' 'wine' 'water'
bindsource«2015I'itemsSource’

In this example, the binding type of the variable i temsSource will be
System.Collection, suitable for binding to the ItemSource property of an
ItemsControl.

Binding a Numeric Vector

By default, a numeric vector is bound in the same way as a vector of character
vectors, i.e.asa System.Collection, suitable for binding to the TtemSource
property ofan ItemsControl.

JeX'yearsSource'
yearsSource<«2000+120
bindSource<«2015I'yearsSource’

In principle, a numeric vector may alternatively be bound to a WPF property that
requires a 1-dimensional numeric array, by specifying the appropriate data type (e.g.
Int32, Double) for the array as the left argument. For example:

JEX'arraySource'
arraySource<«i42 24
bindSource«Int32 (2015I)'arraySource’

226

Language Reference Guide

Binding a Vector of .NET Objects

A vector of NET objects is bound in the same way as a vector of character vectors,
i.e.asa System.Collection, suitable for binding to the ITtemSource property
ofan TtemsControl.

tEaster
2015 4 12
2016 5 1
2017 4 16
2018 4+ 8
2019 4+ 28
2020 4 19
2021 5 2
2022 4+ 24
2023 4 16
2024 5 5

dt<{[INEW DateTime w} 'Easter
bindSource«<20151'dt"'

Note that, as a specific optimisation for binding DateTime data, it is not necessary
to create DateT ime objects in the workspace. Instead, the data may be represented
by 7-element integer vectors (OTS format) or character strings that can be parsed by
the DateTime.Parse (String) method. However, in both cases it is necessary
to explicitly specify the binding type to force the data to be converted to
DateTime, as illustrated by the following examples:

TSEaster<«7t Easter
bindSource<DateTime (2015I) 'TSEaster'

CharEaster<«'2015/4/12"' '2016/5/1' '2017/4/16'
bindSource«DateTime (2015I) 'CharEaster'

Binding a Matrix

If the bind variable is a matrix, it is bound in a similar way to a vector of namespaces
and is discussed below.

Chapter 3: The I-Beam Operator 227

Rebinding a Variable

As mentioned earlier, when a variable is bound its binding type is stored with it in
the workspace. If you subsequently attempt to rebind the variable there is no
mechanism in place to alter the binding type. If the current binding type (whether
specified by the left argument X, or by being the default) differs from the saved one,
the function will generate a DOMAIN ERROR.

num<i2
bs<«2015I'num'

bs«'Int32'(20151) 'num'
DOMAIN ERROR: You cannot redefine the binding types
bs«'Int32'(20151) 'num'

A

In this example, perhaps the programmer realised after binding num (with a default
binding type of System.Object) that the binding type should really be
System.Int32,and simply was trying to correct the error. To avoid this problem,
it is recommended that you expunge the name before using it.

OJex 'num'
num<i2
bs«2015x'num'Aa (default) binding type System.Object

OEX 'num'
num<«42
bs«Int32(2015I) 'num'

228

Language Reference Guide

Binding A Namespace

In this case, Y specifies the name of a namespace that contains one or more variables.
By default, each variable is bound using its default binding type as described above.
Objects other than variables are ignored.

Ifit is required to specify the binding type of any of the variables, or if certain
variables are to be excluded, the left argument is a 2-column matrix. The first column
contains the names of the variables to be bound, and the second column their
binding types.

Example

The following code snippet binds a namespace containing two variables named
txtSource and sizeSource. In this case, the name of each variable may be
specified as the Path for a WPF property that requiresa String oran Int32. For
example, if bindSource were assigned to the DataContext property ofa
TextBox, its Text property could be bound to txtSource and its FontSize
property to sizeSource.

src<[INS""'

src.txtSource«<'Hello World'

src.sizeSource<«36

options«2 2p'txtSource'String'sizeSource'Int32
bindSource<«options(20151)'src'

Binding a Vector of Namespaces

In this case, Y specifies the name of a variable that contains a vector of refs to
namespaces. In this case, the result R is of type
Dyalog.Data.DataBoundCollectionHandler which is suitable for
binding to a WPF property that requires an IEnumerable implementation, such as
the TtemsSource property ofthe DataGrid.

Each namespace in Y represents one of a collection of instances of an object, which
exports a particular set of properties for binding purposes. For example, Y could
specify a wine database where each namespace represents a different wine, and each
namespace contains the same set of variables that contain the name, price (and so
forth) of each wine.

Chapter 3: The I-Beam Operator 229

Example

winelist<[ONS " (pWines)pc'
winelist.Name«Wines
winelist.Price«0.01x10000+?(pWines)p10000

bindSource«2015I'winelist'

Binding a Matrix

Binding a matrix is like binding a vector of namespaces. Each row of Y represents
one of a collection of instances of an object, which exports a particular set of
properties for binding purposes. Each column of Y represents one of these properties.

Every row in the datasource will be of the same type (which might not be the case
with an array of namespaces), and so the collection is a collection of specific things.
The specific thing is a NET type that is created dynamically and has a unique name.

Unlike variables in namespaces, the columns of an APL matrix do not have names
which can be exported as properties, so this information must be provided in the left
argument to (2015I) which also specifies their data types. If the left argument is
omitted, the default names are Co lumni, Column2, ... and so forth and the default
data type is System.Object.

So ifthe right argument of (2015I) Y is the name of a matrix, the left argument X is
amatrix with as many rows as there are columns in Y. X[5 1] contains the names by
which each of the columns of Y will be exported as a property, and X[; 2] their data

types.

Values in the matrix may be scalar numbers, character scalars or vectors, or nested
vectors, but each column in the matrix must be uniform.

The result R is a specific type that is created dynamically and assigned a unique
name ofthe form Dyalog.Data.DyalogCollectionNotifyHandler 1
[Dyalog.Data.DataBoundRow nnnnnnnn]. Thisis suitable for binding to a
WPF property that requires an IEnumerable implementation, such as the
ItemsSource property of the DataGrid.

230 Language Reference Guide

Example

mat is a matrix of numbers and is bound with default property/column names
Columni,Column2,..Column10 and the default data type of System.Object

mat«?20 10p100
bindSource«2015I 'mat’

Example

winelist is a matrix whose first column contains a list of wines, and whose
second column their prices. The left argument is a matrix. Its first column specifies
the property names by which the columns will be exported (' Name ' and 'Price"')
and its second column, their data types (System.Object)

winelist«Wines,[1.5]0.01x10000+? (pWines)p10000
info<(;'Name' 'Price'),cObject

bindSource«info(2015I) 'winelist'

Example

emp is a 3-column matrix which contains names, numbers and addresses. Each
address is made up of two character vectors containing street and town

emp

John Smith Mary White T.W. Penk

1 2 3

2 East Rd|Headley 42 High St|Alton 23 West St|Farnham

schema

Name (System.Object)

Number |(System.Object)

Address
Street|(System.Object)

Town (System.Object)

bindSource«schema(20151) 'emp’

Chapter 3: The I-Beam Operator 231

Notification Events

The object R generates notification events when the value(s) of the Binding Source
are updated as the contents of the Binding Target are changed by the user. These
events are generated after the data has changed and there is no mechanism to prevent
the change from occurring.

There are two types of event; ElementChanged and CellsChanged. The
CellsChanged event applies only to a data bound matrix; the ElementChanged event
applies to all other types of binding.

The event message supplied as the right argument to your callback function, is a 2-
element vector as follows :

[1] [Object ref
[2] [EventArgs ref

EventArgs is an instance of the internal class
Dyalog.Data.ElementChangedEventArgs or
Dyalog.Data.CellsChangedEventArgs whose ficlds are described below:

Dyalog.Data.ElementChangedEventArgs fields

An indication of which member has changed. Typically this will
either be 1 to indicate that the indices are unavailable or a
scalar value indicating (origin 0), which element of an array has
been modified or added.

Indices

The name of the variable that has been modified. This is
Name especially useful when the datasource corresponds to a
namespace.

A path used to locate the variable that has been modified. This is
especially useful when the datasource corresponds to a deeply
Path nested namespace, where the value changed is an element of an
array inside a namespace which is itself an element of an array
within the datasource.

232

Language Reference Guide

Dyalog.Data.Cel lsChangedEventArgs fields

Path Identifies the cell or row that was changed. See below.
The name of the matrix that was specified as the right
SourceName
argument to 2015T.
A character vector that describes what in the matrix has
Reason changed is 'RowDeleted', 'CellChanged' or
'RowInserted’
Value The new value in the cell or ONULL

IfReasonis 'Cel LChanged', Path is the row and column number (in origin 0) of
the cell that was changed and Value is its new value.

IfReasonis 'RowDeleted' or 'RowInserted', Path is the number of the row
that has been added or removed (in origin 0) and Value is ONULL.

Chapter 3: The I-Beam Operator 233

Create .NET Delegate R«20161Y

Windows only.

NET methods (and properties) may specify a parameter to be a delegate. A delegate
is a place holder for a function, normally with a particular signature and result type,
that should be supplied when the method is called. Sometimes the signature of a
NET method that takes a delegate as a parameter does not provide enough
information for Dyalog to determine automatically what type of delegate is required.
20161 allows you to specify the type so that Dyalog can perform the necessary
conversion(s) at run-time.

Y is a 2-element array. The first element is a .NET type that inherits from the abstract
NET Class System.Delegate. The second item is either the name of or the [JOR
of an APL function which is to be invoked via a .NET method or property.

The result R is a refto an instance of a NET type specified by the first element of Y,
which internally is associated with the function identified by the second element of
Y.

Example

vfoov
vV foo(ev arg)

[1] A Callback for .NET method
\'4
QUSING«'System'
del<«2016I EventHandler'foo'
del

System.EventHandler

Then, when calling a NET method that requires a Delegate oftype
System.Eventhandler, but whose signature is imprecise in this respect, the
object de L should be used instead.

234

Language Reference Guide

Identify .NET Type R«20171Y

Windows only.

Returns the NET Type of a named .NET class that is loaded in the current
AppDomain. Note that System. Type . Get Type requires the fully qualified
name, i.c. prefixed by the assembly name, whereas (201 7I) does not.

Y is a character string containing the name of a .NET object. Unless the fully
qualified name is given, the namespaces in the current AppDomain are searched in
the order they are specified by QUSING or :Using.

Ifthe object is identified in the current AppDomain, the result R is its Type. If not,
the function generates DOMAIN ERROR.

Example

OUSING«+'System'
20171 'DateTime’
System.DateTime

Flush Session Caption R«20221Y

Windows only.

Under Windows, the Session Caption displays information such as the name of the
current workspace. The contents of the Caption can be modified: see Window
Captions in the Installation and Configuration Guide for more details.

However, the Caption is updated only at the six-space prompt; calling OLOAD for
example from within a function will not result in the Caption being updated at the
end of the [JLOAD.

This [-Beam causes the Session Caption to be updated (flushed) when called. Note
that this I-Beam does not alter the contents of the Caption.

Example
202210

Chapter 3: The I-Beam Operator 235

Close All Windows R«20231Y

Under Windows the option, Windows -> Close All Windows allows the user to close
all open Editor and Tracer Windows, but does not reset the state indicator.

This I-beam mimics this behaviour, thus allowing the user to write code which can
close all windows before attempting to save the workspace; with the exception of
calling 0 [JSAVE it is not possible to save a workspace if any editor or tracer
windows are open.

Under non-Windows operating systems this is the only mechanism for closing all
such windows. This I-beam is effective in RIDE too.

Example
202310

Set Dyalog Pixel Type R«20351Y

Windows only.

Determines how Coord 'Pixel ' isinterpreted. This is determined initially by the
value ofthe DYALOG_ PIXEL TYPE parameter and, when altered by this function,
applies to all subsequent GUI operations.

Y is a character vector that is either ' ScaledPixel ' or 'RealPixel'. Any other
value will cause a DOMAIN ERROR.

The result R is the previous value.

Example

20351'ScaledPixel’
RealPixel

20351'RealPixel’
ScaledPixel

2035I'realpixel’
DOMAIN ERROR
20351'realpixel’

A

236

Language Reference Guide

Override COM Default Value R«{X}(2041x)Y

Windows only.

Certain COM objects, for example, VT_BLOBs, cannot be represented in APL or
may be in error. By default Dyalog will generate a DOMAIN ERROR in these cases.
For COM objects of type VT_EMPTY the interpreter by default returns [INULL.

20411 allows the APL programmer to specify what is returned by the interpreter in
these cases.

Y may be 1 or 2.

IfY is 1, then X specifies the value that is returned instead of ONULL when the COM
object is of type VT_EMPTY.

IfY is 2, then X specifies the value that is returned when the COM object is in error,
oris of a type that cannot be represented in APL.

In both cases, omitting X results in the default behaviour being restored.

R is the previous value specified; if there was no previous value then this function
will perform its task but generate a VALUE ERROR.

Export To Memory R«21001Y

Windows only.
This function exports the current active workspace as an in-memory .NET Assembly.
Y may be any array and is ignored.

The result R is 1 if the operation succeeded or 0 if it failed.

Chapter 3: The I-Beam Operator 237

Close .NET AppDomain R«2101IY

Windows only.

This function closes the current NET AppDomain.

Y may be any array and is ignored.

The result R is 0 if the operation succeeded or a non-zero integer if it failed.

This I-Beam is very likely to be changed in future.

Set Workspace Save Options R«2400IY

This function sets a flag in the workspace that determines what happens when it is
saved. The flag itselfis part of the workspace and is saved with it.

Ifthe flag is set, all Trace, Stop and Monitor settings will be cleared whenever the
workspace is saved, whether by) SAVE,[JSAVE or by File/Save from the Session
menubar.

Y must be 1 (set the flag) or O (clear the flag).
The result R is the previous value of the flag.

This function may be extended in the future and a left-argument may be added.

Example

(24001)1
0
)SAVE
0 Trace bits cleared.
3 Stop bits cleared.
0 Monitor bits cleared.
temp saved Sat Apr 05 17:01:30 2014

238 Language Reference Guide

Expose Root Properties R«2401IY

This function is used to expose or hide Root Properties, Event and Methods.
IfY is 1, Root Properties, Events and Methods are exposed.

IfY is 0, no further Root Properties, Events or Methods are exposed; however any
that have already been exposed will remain so.

This functionality is available in Windows versions by selecting or unselecting the
Expose Root Properties Menultem in the Options Menu in the Session. Note that
deselecting this Menultem only affects future references to Root Properties, Events or
Methods.

This function is the only mechanism available under non-Windows versions of
Dyalog APL; the state of this setting is saved in the workspace, and therefore cannot
be controlled by an environment variable.

Example

#.GetEnvironment 'MAXWS'
VALUE ERROR
#.GetEnvironment 'MAXWS'

A

240111
0

#.GetEnvironment 'MAXWS'
64M

240110
1

#.GetEnvironment 'MAXWS'
64M

#.GetCommandLine
VALUE ERROR
#.GetCommandLine

Chapter 3: The I-Beam Operator 239

Discard Thread on Exit R«25011Y

APL threads that Dyalog creates to serve incoming .NET requests are not terminated
when their work is done. They persist so that if another call comes in on the same
NET thread the same APL thread can handle it. In effect the thread is parked until it
is needed again. If the thread is not required, there is a small performance cost in
maintaining it in this state.

(250110) must be called from WITHIN one of these threads and tells the
interpreter NOT to park the thread on termination, but to discard the thread
completely.

Discard Parked Threads R«25021Y

APL threads that Dyalog creates to serve incoming .NET requests are not terminated
when their work is done. They persist so that if another call comes in on the same
NET thread the same APL thread can handle it. In effect the thread is parked until it
is needed again. If the thread is not required, there is a small performance cost in
maintaining it in this state.

(250210) removes all parked threads from the workspace.

240 Language Reference Guide

Mark Thread as Uninterruptible R«25031Y

This function marks the current thread (the thread in which it is called) as
uninterruptible, and/or determines whether or not any child threads, subsequently
created by the current thread, will be uninterruptible.

The right argument Y is an integer whose value is the sum of the following (bit-wise)
values:

o 1 : mark thread as uninterruptible
o 2 :mark its children as uninterruptible

The result R is an integer value that indicates the previous state of the thread.

In many multi-threaded applications a large proportion of the threads are used for
communication mechanisms (ODQ on TCPSockets, Conga, isolates); but most of the
"real work" is done in thread zero.

It is undesirable that a weak interrupt interrupts a seemingly random thread. The
mechanism to prevent a thread from being (weak) interrupted allows an application
to be configured so that only specific threads would respond to a weak interrupt.

Chapter 3: The I-Beam Operator 241

Use Separate Thread For .NET R«25201Y

This function determines the way that .NET calls are executed in APL thread 0.
The right argument Y is a Boolean value:

e 1 :run .NET calls in a separate system thread
e 0:run .NET calls in the same system thread

The result R is a Boolean value which indicates the previous behaviour.

When an APL thread first makes a NET call, it creates a unique system thread in
which that and subsequent .NET calls are made. Ifa NET call results in the creation
of a message queue, that queue is associated with that same system thread. So each
message queue is also unique. This strategy successfully maintains separation
between multiple Windows message queues being executed in different APL
threads.

By default, the base APL thread (thread 0) runs .NET code in the same system thread
as itself. This is a different system thread to that used to run .NET code from other
APL threads, so the separation between message queues associated with APL thread
0 and those associated with other APL threads is maintained. However, in certain
circumstances, messages generated by .NET objects interfere with APL's internal
message processing (and vice-versa), for example when handling exceptions.

For this reason, Dyalog recommends that APL code that creates instances of NET
objects that generate events (such as Windows Presentation Foundation objects) are
run in a separate APL thread.

Where this is not possible, 2520I1 may be used to force Dyalog to use a unique
system thread for .NET that is associated with APL thread 0. If so, it is recommended
that 252011 is called at application start-up time.

242 Language Reference Guide

Continue Autosave {R}«27041xY

This function enables or disables the automatic saving ofa CONTINUE workspace
when Dyalog exits. By default this is disabled when Dyalog starts and must be
explicitly enabled using this function.

Y is an integer defined as follows:

Value |Description

0 Disable the automatic saving of a CONTINUE workspace.
Enable the automatic saving of a CONTINUE workspace. This

1 setting applies only to the current session or until disabled by
2704z0.

The shy result R is the previous value of this setting.
Circumstances when Dyalog automatically saves a CONTINUE workspace include:

e arun-time violation. This is most frequently caused by an untrapped
APL error which causes Dyalog to return to session-input mode (i.e. an
application programming fault).

o a hang-up signal.

Disable Component Checksum Validation {R}«30021Y

Checksums allow component files to be validated and repaired using (JF CHK.

From Version 13.1 onwards, components which contain checksums are also
validated on every component read.

Although not recommended, applications which favour performance over security
may disable checksum validation by [JFREAD using this function.

Y is an integer defined as follows:

Value [Description

0 [OFREAD will not validate checksums.

OFREAD will validate checksums when they are present. This is the
default.

The shy result R is the previous value of this setting.

Chapter 3: The I-Beam Operator 243

Send Text to RIDE-embedded Browser R«{X}(35001)Y

Optionally, X is a simple character vector or scalar, the contents of which are used as
the caption for the tab in the RIDE client that contains the embedded browser. If
omitted, then the caption defaults to "3500T".

Y is a simple character vector the contents of which are displayed in the embedded
browser tab.

To include SVG content, the HTML text in Y must include the following:

<meta http-equiv="X-UA-Compatible" content="IE=9" >.

The result R identifies whether the write to the RIDE was successful. Possible values
are:

o 0 : the write to the RIDE client was successful
e 1 : the write to the RIDE client was not successful

Connected to the RIDE R«(35011)Y

Y can be any value and is ignored.

The result R identifies whether the Dyalog Session is running through the RIDE.
Possible values are:

o 0 : the Session is not running through the RIDE
o 1 :the Session is running through the RIDE

This I-Beam may be extended in future.

244

Language Reference Guide

Manage RIDE Connections R«35021Y

35021 gives control over RIDE connections to the interpreter. More details about
RIDE can be found in the RIDE User Guide.

Y may be either O or 1 or a simple character vector.

R has the value 0 if the call to 3502I was successful; if unsuccessful the value may
be either a positive or negative integer.

IfY is 0, then any active RIDE connections are disconnected, and no future
connections may be made.

IfY is 1, then the interpreter attempts to enable RIDE, using the value of the
initialisation string to determine the connection details. If the current initialisation
string is ill-defined, R will be 64. If the Conga DLL/shared libraries are not available,
R will be 32. In previous versions of Dyalog there were separate RIDE and Conga
DLLs/shared libraries; these have been merged into one set in 16.0.

IfY is a character vector and RIDE is currently disabled, then the current
initialisation string is unconditionally replaced by the contents of Y. IfRIDE is
currently enabled, the initialisation string is not replaced, and R will have the value
~2.

The initialisation string has the same syntax as the value of the RIDE_INIT
configuration parameter which is described in the RIDE User Guide

IfRIDE is currently disabled, and 350210 is called or if RIDE is currently enabled
and 350211 is called, no action is taken and R will have the value ~1.

The configuration parameter RIDE_INIT can still be used to establish the initial
value ofthe RIDE initialisation string.

The runtime interpreter has RIDE disabled by default, whether or not RIDE_INIT is
set; the only method of enabling RIDE in a runtime interpreter is to call 350211.

IfRIDE_INIT is set when a development interpreter is called, RIDE will be enabled
provided that the RIDE DLL/shared library is available and the RIDE_INIT
variable is properly formed. If the connection is of type SERVE the port must not be
in use. If any of these conditions are not met, then the interpreter fails with a non-zero
exit code. If RIDE_INIT is not set then the development interpreter will start, but
with RIDE disabled. It is therefore possible to override the RIDE_INIT variable in
the development interpreter with code similar to:

r<350210 A Stop RIDE
r<3502I1'SERVE::4511' a Update init string
r«<3502zr1 A Start RIDE

And similarly for altering the RIDE settings in an active APL session.

Chapter 3: The I-Beam Operator 245

Notes:

In 14.1 and earlier 350216 was used to enable RIDE; this value is still valid, albeit
deprecated: code should call 350211 instead.

Enabling the RIDE to access applications that use the run-time interpreter means that
the APL code of those applications can be accessed. The I-beam mechanism
described above means that the APL code itself must grant the right for a RIDE client
to connect to the run-time interpreter. Although Dyalog Ltd might change the details
of this mechanism, the APL code will always need to grant connection rights. In
particular, no mechanism that is only dependent on configuration parameters will be
implemented.

246

Language Reference Guide

Fork New Task R«<4000IY

This applies to AIX only.
Y must be is a simple empty vector but is ignored.

This function forks the current APL task. This means that it initiates a new separate
copy of the APL program, with exactly the same APL state indicator.

Following the execution of this function, there will be two identical APL processes
running on the machine, each with the same state indicator and set of APL objects
and values. However, none of the external interfaces and resources in the parent
process will exist in the newly forked child process.

The function will return a result in both processes.

¢ In the parent process, R is the process id of the child (forked) process.
¢ In the child process, R is a scalar zero.

The following external interfaces and resources that may be present in the parent
process are not replicated in the child process:

o Component file ties

o Native file ties

o Mapped file associations

o Auxiliary Processors

o NET objects

o Edit windows

o Clipboard entries

o GUI objects (all children of ' . ")
e I/O to the current terminal

Note that External Functions established using [JNA are replicated in the child
process.

The function will fail with a DOMAIN ERROR ifthere is more than one APL thread
running.

The function will fail witha FILE ERROR 11 Resource temporarily
unavai lable ifan attempt is made to exceed the maximum number of processes
allowed per user.

Chapter 3: The I-Beam Operator 247

Change User R«4001I1Y

UNIX, Linux and macOS only.

Y is a character vector that specifies a valid UNIX user name. The function changes
the userid (uid) and groupid (gid) of the process to values that correspond to the
specified user name.

Note that it is only possible to change the user name if the effective uid is O (that is,
the process has root privileges).

If the operation is successful, R is the user name specified in Y. Note that the value of
0AN will not be affected, but the value of 5[JATI will be.

If the operation fails, the function generatesa FILE ERROR 1 Not Owner error.

If the argument to 4001 I is other than a non-empty simple character vector, the
function generates a DOMAIN ERROR.

If the argument is not the name of a valid user the function generatesa FILE ERROR
3 No such process.

If the argument is the same name as the current effective user, then the function
returns that name, but has no effect.

If the argument is a valid name other than the name of the effective user id of the
current process, and that effective user id is not root the function generatesa FILE
ERROR 1 Not owner.

248

Language Reference Guide

Reap Forked Tasks R«<4t0021Y

This applies to AIX only.

Under UNIX, when a child process terminates, it signals to its parent that it has
terminated and waits for the parent to acknowledge that signal. 4#0021I is the
mechanism to allow the APL programmer to issue such acknowledgements.

Y must be a simple empty vector but is ignored.

The result R is a matrix containing the list of the newly-terminated processes which
have been terminated as a result of receiving the acknowledgement, along with
information about each of those processes as described below.

R[;1] is the process ID (PID) of the terminated child

R[;2] is "1 ifthe child process terminated normally, otherwise it is the signal
number which caused the child process to terminate.

R[;3] is "1 ifthe child process terminated as the result of a signal, otherwise it is
the exit code of the child process

The remaining 15 columns are the contents of the rusage structure returned by the
underlying wait3 () system call. Note that the two timevalstructs are each
returned as a floating point number.

The current rusage structure contains:

struct rusage {
struct timeval ru utime; /* user time used */
struct timeval ru stime; /* system time used */

long ru maxrss; /* maximum resident set size */
long ru_ixrss; /* integral shared memory size */
long ru_idrss; /* integral unshared data size */
long ru_isrss; /* integral unshared stack size */
long ru minflt; /* page reclaims */

long ru majflt; /* page faults */

long ru_nswap; /* swaps */

long ru_inblock; /* block input operations */

long ru oublock; /* block output operations */
long ru msgsnd; /* messages sent */

long ru_msgrcv; /* messages received */

long ru nsignals; /* signals received */

long ru nvcsw; /* voluntary context switches */

long ru_nivcsw; /* involuntary context switches */

Chapter 3: The I-Beam Operator 249

40021 may return the PID of an abnormally terminated Auxiliary Processor; APL
code should check that the list of processes that have been reaped is a superset of the
list of processes that have been started.

Example

V tryforks;pid;fpid;rpid
[1] rpids«fpids«6

[2] :For i :In 15

[3] fpid«<4000x'' @ fork() a process
[4] A if the child, hang around for a while
[5] :If fpid=0

[6] oL 2xi

[7] [JoFF

[8] :Else

[9] p if the parent, save child's pid

+fpids,«fpid
:EndIf
:EndFor

[10]
[11]
[12]
[13]
[14] :For i :In 120

[15] oL 3

[16] A get Llist of newly terminated child processes
[17] rpid«4+002x""

[18] A and if not empty, make note of their pids
[19] :If Ozoprpid

[20] +rpids,«rpid[;1]

[21] :EndIf

[22] @A if all fork()'d child processes accounted for
[23] :If fpids=fpidsnrpids

[24] :Leave A quit

[25] :EndIf

[26] :EndfFor

250 Language Reference Guide

Signal Counts R«40071Y

UNIX, Linux and macOS only.
Y must be a simple empty vector but is ignored.

The result R is an integer vector of signal counts. The length of the vector is system
dependent. On AIX 32-bit it is 63 on AIX 64-bit it is 256 but code should not rely
on the length.

Each element is a count of the number of signals that have been generated since the
last call to this function, or since the start of the process. R[1] is the number of
occurrences of signal 1 (SIGHUP), R[2] the number of occurrences of signal 2, and
so forth.

Each time the function is called it zeros the counts; it is therefore inadvisable to call
it in more than one APL thread.

Currently, only SIGHUP, SIGINT, SIGQUIT, SIGTERM and SIGWINCH are
counted and all other corresponding elements of R are 0.

Chapter 3: The I-Beam Operator 251

List Loaded Files R«51761Y

The editor may be used to edit Dyalog script files (dyalog files) and general text files
and to save the contents in the workspace. Additionally F IX can be used to fix
scripts held in files. This I-Beam returns a list of all of the files which are associated
with objects in the workspace, together with information about each file.

Y may be any value.

R is a vector of vectors, one element per associated file. Each element is a 5 element

vector:
Element Contains
1 File name
2 Encoding
3 Checksum
4 Newline
5 Flags

Encoding, newline and flags are defined the same as for ONGET. See File Encodings
on page 466. Checksum is an 8-character hexadecimal value, see Object Reference
Guide: GetBuildID Method for more information.

Examples:

JCLEAR
clear ws
(""" ''" (8p'0') & 0)=>51761""'
1
dyalog«2 [INQ '.' 'GetEnvironment' 'DYALOG'
aedit«'/SALT/spice/aedit.dyalog'’
OFIX 'file:///"',dyalog,aedit
#.arrayeditor

145517618 A Ignore filename
UTF-8-BOM 18507aa6 13 10 O

252 Language Reference Guide

List Loaded File Objects R«51771Y

The editor may be used to edit Dyalog script files (dyalog files) and general text files
and to save the contents in the workspace. Additionally [JF IX can be used to fix
scripts held in files. This I-Beam returns details about all of the objects in the
workspace that are associated with such files.

Y must be an empty atray.

R is a vector of 8-element vectors, one vector per object in the workspace that is
associated with a file.

Element | Contains

1 Object name or ref (refs are returned for all types of namespace)

Parent namespace

Name class (see [ONC)

File name

Start line (first line in file, 0 origin, of the object)

Line count (number of lines in file occupied by the object)

File Checksum

o<l LN B Be N BRV, B I S I N)

File modification time (OTS format)

If an object occupies a file in its entirety, both Start line and Line count will be 0.

Examples:

)JCLEAR
clear ws
55177 18

[Null]|O||0[0|00000000|1970 1 1 0 O 0 O

Chapter 3: The I-Beam Operator 253

dyalog«2 [ONQ '.' 'GetEnvironment' 'DYALOG'

aedit«'/SALT/spice/aedit.dyalog’

+OFIX 'file://',dyalog,aedit
#.arrayeditor

1110111 1/t517718 aremove file names for brevity

[
]Tun |#.arrayeditor|3|38|4+ |008feted|2018 5 11 8 56 10
0
| 1 | | |
| 1 I | |
Telp |#.arrayeditor|3|28|9 |008felted|2018 5 11 8 56 10
0
| 1 | |]
| 1 I | |
Tist |#.arrayeditor|3]|22|5 |008feked|2018 5 11 8 56 10
0
| | | | |
| 1 I | |
?ESC |#.arrayeditor|3|10|11|008feked|2018 5 11 8 56 10
0
| - | | |
I LI I I I
T.arrayeditor|# 9]0 |0 |o08feked|2018 5 11 8 56 10
0
L | L1 | | |
1
Remove Loaded File Object Info R«51781Y

The editor may be used to edit Dyalog script files (dyalog files) and general text files
and to save the contents in the workspace. Additionally F IX can be used to fix
scripts held in files. This I-Beam removes the information held about an object in the
workspace specified by Y that is associated with such a file.

Y is a character vector that specifies the name of a workspace object or a refto an
object.

R is Boolean. 1 means that the information was removed; 0 that it wasn't.

Note that the workspace object itself remains in the workspace; just the information
about its associated file is removed.

254 Language Reference Guide

Examples:

dyalog«2 ONQ '.' 'GetEnvironment' 'DYALOG'
aedit«'/SALT/spice/aedit.dyalog’
+OFIX 'file://',dyalog,aedit
#.arrayeditor
5178I'arrayeditor'
1
51781'xyz' A unused name
0

Chapter 3: The I-Beam Operator 255

Loaded File Object Info R«51791Y

The editor may be used to edit Dyalog script files (dyalog files) and general text files
and to save the contents in the workspace. Additionally F IX can be used to fix
scripts held in files. This I-Beam returns details about an object in the workspace
specified by Y that is associated with such a file.

Y is a character vector that specifies the name of a workspace object or a refto an

object.
R is an 8-element vector containing the following information pertaining to the
object and
Element | Contains
1 Object name or ref (Y)
2 Parent namespace
3 Name class (see [INC)
4 File name
5 Start line (first line in file, 0 origin, of the object)
6 Line count (number of lines in file occupied by the object)
7 File Checksum
8 File modification time (OTS format)

If an object occupies a file in its entirety, both Start line and Line count are 0.

Examples:

dyalog«2 ONQ '.' 'GetEnvironment' 'DYALOG'

aedit«'/SALT/spice/aedit.dyalog’

+OFIX 'file://',dyalog,aedit
#.arrayeditor

11101111/ 51791'arrayeditor’

#.arrayeditor|#]|9|0(0|008felted|2018 5 11 8 56 10 O

11101111/ 51791t'arrayeditor.List"'

List|#.arrayeditor|3|22(5(008feked|[2018 5 11 8 56 10 O

5179T'xyz' A unused name

[Null]|o||0[0|00000000|1970 1 1 0 0 0 O

256

Language Reference Guide

JSON Translate Name ReX(71621)Y

Converts between JSON names and APL names.

When [JJSON imports an entity from JSON text whose name would be an invalid
APL name, the function converts the invalid name into a valid APL name using a
name mangling algorithm. When [JJ SON exports an APL namespace as JSON text,
the process is reversed.

This function performs the same name mangling allowing the programmer to
identify JSON entities as APL names, and vice-versa.

Y is a character vector or scalar.
X is a scalar numeric value which must be 1 or 0.

When X is 0, R is the name in Y converted, if necessary, so that it is a valid APL
name. It performs the same translation of JSON object names to APL names that is
performed when importing JSON.

When X is 1, R is the name in Y which, if mangled, is converted back to the original
form.. It performs the same translation of APL names to JSON object names that is
performed when exporting JSON.

Examples:

0(71621)'2a'
A2a

1(71621) 'A2a'
2a

0(71621) 'foo'
foo

1(71621) 'foo'
foo

Note that the algorithm can be applied, even when mangling is not required. So:

1(71621)'A97"
a

For further details, see JSON Name Mangling on page 401.

Chapter 3: The I-Beam Operator 257

Singular Value Decomposition R«(8415I1)Y

Y is a simple numeric matrix.

The result R is a 4 element vector whose elements are as follows.

[1] | U|a unitary matrix

[2] [S|a diagonal matrix

[3] [V]|a unitary matrix

a Boolean flag indicating whether the algorithm converged (1)or not

(41| f 0)

This function computes a factorisation of the matrix Y such that:
Y = U +.x S +.x §+V

This can be useful for analysing matrices for which l cannot compute an inverse,
because they are singular or nearly singular.

For further information, see https://en.wikipedia.org/wiki/Singular_value
decomposition.

https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Singular_value_decomposition

258 Language Reference Guide

Line Count R«501001Y

This function is a compact version of the system function [JL C. If an expression
requires only the most recent line(s) in the function calling stack, this is a more
efficient altemative to using [JLC.

Y may be an integer specifying the depth of the function calling stack that is required
in the result.

The result R is the same as [JLC, but truncated to the number of stack levels specified

by Y.
Example
VvV Foo

[1] :If Y=plLC
[2] 5010010
[3] 5010011
[4] 5010012
[5] 5010013
[6] 5010014
[7] 5010015
(8] >
[9] :Else
[10] Foo
[11] :EndIf

\'4

Foo

3
4 10
5 10 10
6 10 10 10
7 10 10 10

Chapter 3: The I-Beam Operator 259

Other |-Beams

Dyalog APL includes a number of [-Beams which exist in order to support
experimental features or features which are documented elsewhere.

The following table lists those I-Beams, together with the document which contains
a description of them:

Table 13: Experimental and other I-Beams

Where
A Purpose documented
8659 . . .
Shared Code Files. These are supported only in 64-bit | Shared Code
8666 | Unicode interpreters, and were previously known as Files User
External Workspaces Guide

8667

260 Language Reference Guide

261

Chapter 4:

System Functions

Dyalog includes a collection of built-in facilities which provide various services
related to both the APL and the external environment. They have distinguished case-
insensitive names beginning with the [J symbol and are implicitly available in a clear
workspace. Collectively, these facilities are referred to as System Functions but they
are variously implemented as constants, variables, functions, operators, and in one
case, as a namespace.

0o 0A 0A OAI OAN
OARBIN OARBOUT OAT OAv OAvu
OBASE OCLASS OCLEAR OcMp dcr

dcs gcsv dct Ocy 0o

OocT OoF do1v OoL 0oM

OoMX aoQ aor 0eb OEM

O€EN Oex OEXCEPTION [OEXPORT |OFAPPEND
OFAVAIL [OFCHK OFCcoPY OFCREATE |OFDROP
OFERASE OFHIST OFHOLD OFIX gFLIB
OFMT OFNAMES OF NUMS OFPROPS |OFR
OFRDAC OFRDCI OFREAD OFRENAME |[OFREPLACE
OFRESIZE |OFSIZE OFSTAC OFSTIE OFTIE
OFUNTIE |OFX OINSTANCES [0I0 OJSON
OKL dLc OLOAD OLoCK aLx

OMAP OMKDIR OML OMONITOR |[ONA
ONAPPEND |ONC ONCOPY ONCREATE |ONDELETE
ONERASE |ONEW ONEXISTS [ONGET ONINFO

262

Language Reference Guide

ONL ONLOCK ONMOVE ONNAMES ONNUMS
ONPARTS |ONPUT ONQ ONR ONREAD
ONRENAME |ONREPLACE |[[ONRESIZE |[NS ONSI
ONSIZE ONTIE ONULL ONUNTIE |ONXLATE
OOFF gorT 0or OPATH OPFKEY
Opp OPROFILE |OPW Or OREFS
ORL ORSI ORTL Os OSAVE
asb Ose OSH OSHADOW OsI
OSIGNAL OsIzE Osm OsR OSRC
OSTACK OSTATE gsTop asvce dsvo
asvaQ OSVR asvs aTc OTCNUMS
OTGET OTHIS aTIio OTKILL OTNAME
OTNUMS OTPOOL aOTPUT OTRACE OTRAP
OTREQ aTs OTSYNC gucs OUSING
OvVFI OvR OwA Owc Owe

OWN aws OWS1ID aOwx OXML
OxsI OxT

Chapter 4: System Functions 263

System Constants

System constants, which can be regarded as niladic system functions, return
information from the system. They have distinguished names, beginning with the
quad symbol,[]. A system constant may not be assigned a value. System constants
may not be localised or erased. System constants are summarised in the following

table:
Name Description
0OA Underscored Alphabetic upper case characters
0A Alphabetic upper case characters
0AI Account Information
OAN Account Name
OAv Atomic Vector
o Digits
(oM Diagnostic Message
(domx Extended Diagnostic Message
QdeN Event Number
OJEXCEPTION |Reports the most recent Microsoft NET Exception
gLc Line Count
ONULL Null Item
gso Screen (or window) Dimensions
aTc Terminal Control (backspace, linefeed, newline)
aTs Time Stamp
OwA Workspace Available

264

Language Reference Guide

System Variables

System variables retain information used by the system in some way, usually as
implicit arguments to functions.

The characteristics of an array assigned to a system variable must be appropriate;
otherwise an error will be reported immediately.

Example

0I10+3

DOMAIN ERROR
0103
A

System variables may be localised by inclusion in the header line of a defined
function or in the argument list of the system function JSHADOW. When a system
variable is localised, it retains its previous value until it is assigned a new one. This
feature is known as "pass-through localisation". The exception to this rule is JTRAP.

A system variable can never be undefined. Default values are assigned to all system
variables in a clear workspace.

Name Description Scope

] Character Input/Output Session

0 Evaluated Input/Output Session
OAvu Atomic Vector — Unicode Namespace
adct Comparison Tolerance Namespace
goct Decimal Comp Tolerance Namespace
go1v Division Method Namespace
OFR Floating-Point Representation Namespace
gIo Index Origin Namespace
gLx Latent Expression Workspace
ML Migration Level Namespace
OPATH Search Path Session

Chapter 4: System Functions 265

Name Description Scope

gep Print Precision Namespace
apw Print Width Session
OrRL Random Link Namespace
ORTL Response Time Limit Namespace
ds™m Screen Map Workspace
OTRAP Event Trap Workspace
QUSING Microsoft .NET Search Path Namespace
Owsib Workspace Identification Workspace
Owx Window Expose Namespace

In other words, (0, [1, JPATH and [PW relate to the session. [JL X, JSM, JTRAP and
OWSID relate to the active workspace. All the other system variables relate to the

current namespace.

Session

Workspace

Namespace

0

OLx

dAvu

a0

OsMm

gct

OPATH

OTRAP

gocT

apw

OWSID

goiv

OFRrR

gIo

OML

aep

ORL

ORTL

OUSING

Owx

266 Language Reference Guide

System Operators

The following system facilities are for convenience implemented as operators rather
than as functions:

Name Description

Or Replace

as Search

gopT Variant (Classic Edition only)

System Namespaces

OSE is currently the only system namespace.

Chapter 4: System Functions 267

System Functions Categorised

Dyalog includes a collection of built-in facilities which provide various services
related to both the APL and the external environment. They have distinguished case-
insensitive names beginning with the [J symbol and are implicitly available in a clear
workspace. Collectively, these facilities are referred to as System Functions but they
are variously implemented as constants, variables, functions, operators, and in one
case, as a namespace.

The following tables list the system functions divided into appropriate categories.
Each is then described in detail in alphabetical order.

Settings Affecting Behaviour of Primitive Functions

Name Description

gdct Comparison Tolerance

gdocT Decimal Comp Tolerance
gorv Division Method

OFrR Floating-Point Representation
Q1o Index Origin

OML Migration Level

aep Print Precision

OrRL Random Link

The following table describes the dependencies that exist between functions,
operators and system variables.

?::ie:ll)l e E?lt?i:i:s Dyadic Functions Operators
=EENUS~ << =

er. et Pl i > i AV (n:)nchlaolean) °

OoIv R N

0o VAdur?2 (24701128 g []

oML e t + = |c[K]

gep 7

ORrRL ? ?

268 Language Reference Guide

Session Information/Management

Name Description
OAI Account Information
OAN Account Name
[OCLEAR Clear workspace (WS)
gdcy Copy objects into active WS
goL Delay execution
OLOAD Load a saved WS
gdoFF End the session
OPATH Search Path
OSAVE Save the active WS
aTs Time Stamp
Constants
Name Description
OA Alphabetic upper case characters
(o Digits
aNuLL Null Item

Chapter 4: System Functions

269

Tools and Access to External Utilities

Name Description

[CMD Execute the Windows Command Processor or another
program

dcmD Start a Windows AP

dcsv Comma Separated Values

(bR Data Representation (Monadic)

[H[p] Data Representation (Dyadic)

OFMT Resolve display

OFMT Format array

0JSON JSON Convert

(OMAP Map a file

ONA Declare a DLL function

0Or Replace

as Search

OSH Execute a UNIX command or another program

0sH Start a UNIX AP

gucs Unicode Convert

OUSING Microsoft .NET Search Path

OvrfI Verify and Fix numeric

OxML XML Convert

270 Language Reference Guide

Manipulating Functions and Operators

Name Description

OAT Object Attributes

dcr Canonical Representation
Qeb Edit one or more objects
Oex Expunge objects

aFXx Fix definition

gLock Lock a function

ONR Nested Representation
OPROFILE Profile Application
OREFS Local References

gsTop Set Stop vector

gsTop Query Stop vector
OTRACE Set Trace vector
OTRACE Query Trace vector

Ovr Vector Representation

Chapter 4: System Functions

21

Namespaces and Objects

Name Description
OBASE Base Class
OCLASS Class
0cs Change Space
(oFr Display Format
OFIX Fix
OINSTANCES |Instances
ONEW New Instance
ONS Namespace
0sSrcC Source
OTHIS This
Input/Output
Name Description
0 Evaluated Input/Output
0 Character Input/Output

Built-in GUl and COM Support

Name Description

aoQ Await and process events
OEXPORT Export objects

0ONQ Place an event on the Queue
Owc Create GUI object

awe Get GUI object properties
OwWN Query GUI object Names
0aws Set GUI object properties

Language Reference Guide

Component Files
Name Description
OFAPPEND Append a component to File
OFAVAIL File system Availability
OF CHK File Check and Repair
grcorpy Copy a File
OFCREATE Create a File
OFDROP Drop a block of components
OFERASE Erase a File
OFHIST File History
OFHOLD File Hold
gFLIB List File Library
OFNAMES Names of tied Files
OF NUMS Tie Numbers of tied Files
OFPROPS File Properties
OFRDAC Read File Access matrix
OFRDCI Read Component Information
OFREAD Read a component from File
OFRENAME Rename a File
OFREPLACE Replace a component on File
OFRESIZE File Resize
OFSIZE File Size
OFSTAC Set File Access matrix
OFSTIE Share-Tie a File
OFTIE Tie a File exclusively

OFUNTIE

Untie Files

Chapter 4: System Functions

273

Native Files

Name Description

OMKDIR Create a directory

ONAPPEND Append to File

(NcoPY Copy files and directories

[ONCREATE Create a File

[ONDELETE Delete a File or Directory

[ONERASE Erase a File

ONEXISTS Discover whether or not a file or directory exists

ONGET Read Text File

ONINFO thain %nformation about one or more files and/or
directories

ONLOCK Lock a region of a file

ONMOVE Move files and directories

ONNAMES Names of tied Files

OONNUMS Tie Numbers of tied Files

ONPARTS Split a file name into its constituent parts.

ONPUT Write Text File

ONREAD Read from File

ONRENAME Rename a File

ONREPLACE Replace data on File

ONRESIZE File Resize

ONSIZE File Size

ONTIE Tie a File exclusively

ONUNTIE Untie Files

ONXLATE Specify Translation Table

274

Language Reference Guide

Threads
Name Description
OTCNUMS Thread Child Numbers
gTip Current Thread Identity
OTKILL Kill Threads
OTNAME Current Thread Name
OTNUMS Thread Numbers
OTSYNC Wait for Threads to Terminate
Synchronisation
Name Description
OTGET Get Tokens
OTKILL Kill Threads
gTpooL Token Pool
gTPuT Put Tokens
OTREQ Token Requests

Error Handling

Name Description

0oMX Extended Diagnostic Message

OeM Event Messages

OEXCEPTION |Reports the most recent Microsoft NET Exception
OSIGNAL Signal event

OTRAP Event Trap

Chapter 4: System Functions

275

Stack and Workspace Information

Name Description

0Lc Line Count

aLx Latent Expression

ONC Name Classification

ONL Name List

ONSI Namespace Indicator

OrsSI Space Indicator

OsI State Indicator

(OSHADOW Shadow names

(QsIze Size of objects

(STACK Report Stack

OSTATE Return State of an object

OwA Workspace Available

OwsID Workspace Identification

OxsI Extended State Indicator
Shared Variables

Name Description

gsvc Set access Control

gsvc Query access Control

gsvo Shared Variable Offer

gdsvo Query degree of coupling

asvaQ Shared Variable Query

OSVR Retract offer

gsvs Query Shared Variable State

276 Language Reference Guide

Various Other

Name

Description

DA

Underscored Alphabetic Characters

OARBIN

Arbitrary Input

OARBOUT

Arbitrary Output

OAv

Atomic Vector

OAvu

Atomic Vector - Unicode

(oM

Diagnostic Message

gEN

Event Number

OKL

Key Labels

OPFKEY

Programmable Function Keys

gso

Screen Dimensions

OsMm

Screen Map

OSR

Screen Read

OMONITOR

Monitor set

OMONITOR

Monitor query

ONXLATE

Specify Translation Table

gorT

Variant Operator

0Oor

Object Representation

ORTL

Response Time Limit

aTc

Terminal Control

OxT

Associate External variable

OxT

Query External variable

Owx

Expose GUI property names

System Functions (A-Z)

Chapter 4: System Functions 277

Character Input/Output 0

[1is a variable which communicates between the user's terminal and APL. Its
behaviour depends on whether it is being assigned or referenced.

When [is assigned with a vector or a scalar, the array is displayed without the
normal ending new-line character. Successive assignments of vectors or scalars to [1
without any intervening input or output cause the arrays to be displayed on the same
output line.

Example

D«'2+2' o D«':' o D«q
2+2=4

Output through [is independent of the print width in JPW. The way in which lines
exceeding the print width of the terminal are treated is dependent on the
characteristics of the terminal. Numeric output is formatted in the same manner as
direct output (see Programming Reference Guide: Display of Arrays).

When [] is assigned with a higher-rank array, the output is displayed in the same
manner as for direct output except that the print width 0PW is ignored.

When [1 is referenced, terminal input is expected without any specific prompt, and
the response is returned as a character vector.

If the [] request was preceded by one or more assignments to [] without any
intervening input or output, the last (or only) line of the output characters are
returned as part of the response.

Example
mat<+ 600000

Examples

[J<'OPTION : ' o R<[]
OPTION : INPUT

R
OPTION : INPUT

pR
14

278

Language Reference Guide

The output of simple arrays of rank greater than 1 through [] includes a new-line
character at the end of each line. Input through [] includes the preceding output
through [] since the last new-line character. The result from [], including the prior
output, is limited to 256 characters.

A soft interrupt causes an INPUT INTERRUPT error if entered while [1 is awaiting
input, and execution is then suspended (unless the interrupt is trapped):

R«
(Interrupt)
INPUT INTERRUPT
A time limit is imposed on input through [T if[RTL is set to a non-zero value:

ORTL«5 ¢ [1«'PASSWORD ? ' ¢ R+l
PASSWORD ?
TIMEOUT
ORTL«5 ¢ [1«'PASSWORD : ' ¢ R<[l
A

The TIMEOUT interrupt is a trappable event.

Chapter 4: System Functions 279

Evaluated Input/Output 0

[0 is a variable which communicates between the user's terminal and APL. Its
behaviour depends on whether it is being assigned or referenced.

When [] is assigned an array, the array is displayed at the terminal in exactly the same
form as is direct output (see Programming Reference Guide: Display of Arrays).

Example

d«2+15
34567

0«2 4p'WINEMART'
WINE
MART

When [is referenced, a prompt (¢) is displayed at the terminal, and input is
requested. The response is evaluated and an array is returned if the result is valid. If
an error occurs in the evaluation, the error is reported as normal (unless trapped by a
OTRAP definition) and the prompt () is again displayed for input. An EOF
interrupt reports INPUT INTERRUPT and the prompt (0:) is again displayed for
input. A soft interrupt is ignored and a hard interrupt reports INTERRUPT and the
prompt (0:) is redisplayed for input.

Examples
10x[]+2
O:
13
30 40 50
2+0
O:
X
VALUE ERROR
X
A
O:
2+13

280 Language Reference Guide

A system command may be entered. The system command is effected and the prompt
is displayed again (unless the system command changes the environment):

p3,0

JWSID
WS/MYWORK
0:

O

0.
JCLEAR
CLEAR WS

)SI

Ifthe response to a[]: prompt is an abort statement (=), the execution will be
aborted:

1 23=10
0O:

-

A trap definition on interrupt events set for the system variable JTRAP in the range
1000-1008 has no effect whilst awaiting input in response to a[J: prompt.

Example
OTRAP<(11 'C"' "''ERROR''')(1000 'C"' '''STOP''")
2+0
0:
(Interrupt Signal)
INTERRUPT
0:
'C'+2
ERROR

A time limit set in system variable ORTL has no effect whilst awaiting input in
response to a[J: prompt.

Chapter 4: System Functions 281

Underscored Alphabetic Characters R<JA

0A is a deprecated feature. Dyalog strongly recommends that you move away from
the use of JA and of the underscored alphabet itself, as these symbols now constitute
the sole remaining non-standard use of characters in Dyalog applications.

In Versions of Dyalog APL prior to Version 11.0, JA was a simple character vector,
composed of the letters of the alphabet with underscores. If the Dyalog Alt font was
in use, these symbols displayed as additional National Language characters.

Version 10.1 and Earlier

0A
ABCDEFGHIJKLMNOPQRSTUVWXYZ

For compatibility with previous versions of Dyalog APL, functions that contain

references to [JA will continue to return characters with the same index in [JAV as
before. However, the display of [JA is now 0A, and the old underscored symbols

appear as they did in previous Versions when the Dyalog Alt font was in use.

Current Version

Alphabetic Characters R«[JA

This is a simple character vector, composed of the letters of the alphabet.

Example

OA
ABCDEFGHIJKLMNOPQRSTUVWXYZ

282 Language Reference Guide

Account Information

R«JAI

This is a simple integer vector, whose four elements are:

OAI[1]

user identification.!

OAI[2]

compute time for the APL session in milliseconds.

OAI[3]

connect time for the APL session in milliseconds.

OAI[4]

keying time for the APL session in milliseconds.

Elements beyond 4 are not defined but reserved.

Example
OAI

52 7396 2924216 2814831

1Under Windows, this is the ap1nid (network ID from configuration dialog box).
Under UNIX and Linux this is the effective UID of the account whereas [JAN returns

the real name.

Account Name

R«{JAN

This is a simple character vector containing the user (login) name. Under UNIX and
Linux this is the real user name, whereas [JAI returns the effective user id.

Example

OAN
Pete

pOAN

Chapter 4: System Functions 283

Arbitrary Input R«X [OARBIN Y

This transmits a stream of 8-bit codes in Y to an output device specified by X prior to
reading from an input device specified by X.

Y may be a scalar or a simple vector of integer numbers in the range 0-255.
X may take several forms:

terminate (input output) [ARBIN codes
terminate input OARBIN codes

terminate

This is a numeric scalar or vector that specifies how the read operation should be
terminated.

« Ifit is a numeric scalar, it defines the number of bytes to be read.
o Ifit is a numeric vector, it defines a set of terminating bytes.
« If it is the null vector, the read terminates on Newline (10).

input
This is a simple numeric scalar that specifies the input device.

« Ifit is positive or zero, it represents a file descriptor that must have been
associated by the command that started Dyalog APL.

« If it is negative, it represents the tie number of a file opened by [INTIE or
ONCREATE.

output
If specified, this is a simple numeric integer that identifies the output device.

« Ifit is positive or zero, it represents a file descriptor that must have been
associated by the command that started Dyalog APL.

« Ifit is negative, it represents the tie number of a file opened by ONTIE or
ONCREATE.

The result R is a simple numeric vector. Each item of R is the numeric representation
of'an 8-bit code in the range 0 to 255 received from the input device. The meaning
of'the code is dependent on the characteristics of the input device. Ifa set of
delimiters was defined by terminate, the last code returned will belong to that set.

284 Language Reference Guide

ORTL (Response Time Limit) is an implicit argument of JARBIN. This allows a time
limit to be imposed on input. Ifthe time limit is reached, JARBIN returns with the
codes read up to that point. This does not apply under Windows.

The operation will fail with a DOMAIN ERROR ifY contains anything other than
numbers in the range 0-255, or if the current process does not have permission to read
from or write to the specified device(s).

Examples (UNIX)
)sh mkfifo ./fifo

in<'./fifo'ONTIE O
out«'./fifo'NTIE O

(10 (in out))JARBIN [Jucs D
48 49 50 51 52 53 54 55 56 57

(& (in out))OARBIN 10
10

A cope with parity on line ending 10
((10+0 128) (in out))OARBIN 10
10

Chapter 4: System Functions 285

Arbitrary Output {R}«X OARBOUT Y

This transmits a stream of 8-bit codes in Y to an output device specified by X.
Y may be a scalar or a simple vector of integer numbers in the range 0-255.
X is a simple numeric integer that specifies the output device.

o If X is positive or zero, it represents a file descriptor that must have been
associated by the command that started Dyalog APL.

o If X is negative, it represents the tie number of a file opened by ONTIE or
ONCREATE.

IfY is an empty vector, no codes are sent to the output device.
The shy result R is 8.

The operation will fail with a DOMAIN ERROR if Y contains anything other than
numbers in the range 0-255, or if the current process does not have permission to
write to the specified device.

Examples
Write ASCII digits ' 123" to stream 9:
9 [ARBOUT 49 50 51
Write ASCII characters ' ABC' to MYFILE:

'"MYFILE' [ONCREATE ~1
~1 [JARBOUT 65 66 67

Append the string 'KdAho TTdoxa' to the same file, and close it:

~1 [ARBOUT 'UTF-8' [UCS'Kdaho Taoxa'
ONUNTIE "1

286

Language Reference Guide

Attributes

R«{X} DOAT Y

Y can be a simple character scalar, vector or matrix, or a vector of character vectors
representing the names of 0 or more defined functions or operators. Used dyadically,
this function closely emulates the APL2 implementation. Used monadically, it
returns information that is more appropriate for Dyalog APL.

Y specifies one or more names. If Y specifies a single name as a character scalar, a
character vector, or as a scalar enclosed character vector, the result R is a vector. If Y
specifies one or more names as a character matrix or as a vector of character vectors R
is a matrix with one row pername in Y.

Monadic Use

If X is omitted, R is a 4-element vector or a 4 column matrix with the same number of
rows as names in Y containing the following attribute information:

R[1] orR[;1]: Each item is a 3-element integer vector representing the function
header syntax:

0 if the function has no result
1 | Function result 1 if the function has an explicit result
~1 if the function has a shy result

0 if the object is a niladic function or not a function
1 if the object is a monadic function

2 if the object is a dyadic function

~2 if the object is an ambivalent function

2 | Function valence

0 if the object is not an operator
3 | Operator valence |1 if the object is a monadic operator
2 if the object is a dyadic operator

The following values correspond to the syntax shown alongside:

0 0 O vV FOO

1 0 O vV Z+FOO

1 0 O v {Z}«F0O

072 O v {A} FOO B
11 2 v {Z}«(F OP G)B

R[2] orR[;2]: Each itemis the (OTS form) timestamp of the time the function was
last fixed.

Chapter 4: System Functions 287

R[3] orR[;3]: Each item is an integer reporting the current JLOCK state of the
function:

0 Not locked

1 Cannot display function

2 Cannot suspend function
3 Cannot display or suspend

RL4] orR[;4]: Each item is a character vector - the network ID of the user who last
fixed (edited) the function.

Example

v {z}«{l}(fn myop)r
[1] e

vV z<foo

(1]

v z+«{larg}util rarg
[1] ces

(LOCK'foo'

util2«util

Jdisplay OAT 'myop' 'foo' 'util' 'util2'
J >————— e = >———

| 171 72 1] 1996 8 2 2 13 56 O] 0 |john]|

| ~—————— ~ _————

| ovmmm. e °
I]]]]
__________________ -
| S>———— - — - >———
. . .

-
o
o
o
o
o
o
o
o
o
w

| 11 72 0l 11996 3 1 14 12 10 O] O |pete]

1 1
~————— ~—— —_—

| 11 =2 0] 11998 8 26 16 16 42 0| O |graeme]| |

288 Language Reference Guide

Dyadic Use

The dyadic form of JAT emulates APL2. It returns the same rank and shape result
containing information that matches the APL2 implementation as closely as
possible.

The number of elements or columns in R and their meaning depends upon the value
of X which may be 1,2, 3 or4.

If X is 1, R specifies valences and contains 3 elements (or columns) whose meaning is
as follows:

1 if the object has an explicit result or is a variable

1 | Explicit It .
Xphicit resu 0 otherwise

0 if the object is a niladic function or not a function
2 | Function valence |1 if the object is a monadic function
2 if the object is an ambivalent function

0 if the object is not an operator
3 | Operator valence |1 if the object is a monadic operator
2 if the object is a dyadic operator

If X is 2, R specifies fix times (the time the object was last updated) for functions and
operators named in Y. The time is reported as 7 integer elements (or columns) whose
meaning is as follows. The fix time reported for names in Y which are not defined
functions or operators is 0.

1 Year

Month

Day

Minute

Second

2
3
4 | Hour
5
6
7

Milliseconds (this is always reported as 0)

Chapter 4: System Functions 289

If X is 3, R specifies execution properties and contains 4 elements (or columns)
whose meaning is as follows:

0 if the object is displayable

I |Displayable 1 if the object is not displayable

0 if execution will suspend in the object

2 1
Suspendable 1 if execution will not suspend in the object

3 Weak Interrupt 0 if the object responds to interrupt
behaviour 1 if the object ignores interrupt
4 (always 0)

If X is 4, R specifies object size and contains 2 elements (or columns) which both
report the ST ZE of the object.

290 Language Reference Guide

Atomic Vector R«[JAV

0AV is a deprecated feature and is replaced by JUCS.

This is a simple character vector of all 256 characters in the Classic Dyalog APL
character.

In the Classic Edition the contents of [JAV are defined by the Output Translate Table.

In the Unicode Edition, the contents of [JAV are defined by the system variable
OAvU.

Examples

OAV[48+110]
0123456789

5 52p12ifav
%' ow abcdefgh1Jklmnopqrstuvwxyz__'A9012§3§§ZB9 n¥$£¢
AABCDEFGHIJKLMNOPQRSTUVWXYZ v OAAAACEEEIIIIDOOOOUUU
Ypai505{€}-0 ARAR=ENOPURA44E32ceE8E 1 TAL/A\\<s=2>7vA
-++x2ep~ti1ox[[Vo(conuiT|;,VAVARPee]!5eV5=£66060"#_8&'
@UAGAG [T e io«>n) IONSOMN*% "' aw_abcdefghijk

Atomic Vector - Unicode OAvU

OAVU specifies the contents of the atomic vector, JAV, and is used to translate data
between Unicode and non-Unicode character formats when required, for example
when:

« Unicode Edition loads or copies a Classic Edition workspace or a
workspace saved by a Version prior to Version 12.0.

o Unicode Edition reads character data from a non-Unicode component file,
or receives data type 82 from a TCP socket.

o Unicode Edition writes data to a non-Unicode component file

o Unicode Edition reads or writes data from or to a Native File using
conversion code 82.

« Classic Edition loads or copies a Unicode Edition workspace

o Classic Edition reads character data from a Unicode component file, or
receives data type 80, 160, or 320 from a TCP socket.

o Classic Edition writes data to a Unicode component file.

OAVU is an integer vector with 256 elements, containing the Unicode code points
which define the characters in JAV.

Chapter 4: System Functions 291

Note

In Versions of Dyalog prior to Version 12.0 and in the Classic Edition, a character is
stored internally as an index into the atomic vector, JAV. When a character is
displayed or printed, the index in [JAV is translated to a number in the range 0-255
which represents the index of the character in an Extended ASCII font. This mapping
is done by the Output Translate Table which is user-configurable. Note that although
ASCII fonts typically all contain the same symbols in the range 0-127, there are a
number of different Extended ASCII font layouts, including proprietary APL fonts,
which provide different symbols in positions 128-255. The actual symbol that
appears on the screen or on the printed page is therefore a function of the Output
Translate Table and the font in use. Classic Edition provides two different fonts (and
thus two different [JAV layouts) for use with the Development Environment, named
Dyalog Std (with APL underscores) and Dyalog Alt (without APL underscores).

The default value of JAVU corresponds to the use of the Dyalog Alt Output
Translate Table and font in the Classic Edition or in earlier versions of Dyalog APL.

2 13p[AVU[97+126]
193 194 195 199 200 202 203 204 205 206 207 208 210
211 212 213 217 218 219 221 254 227 236 240 242 245
o . hucs 2 13p0AVU[97+126]
ARRGEEETTITPO
000UUUYpaidoo
[AVU can be localised, in order to make it straightforward to write access functions
which receive or read data from systems with varying atomic vectors. If you have
been using Dyalog Alt for most things but have some older code which uses
underscores, you can bring this code together in the same workspace and have it all
look "as it should" by using the Alt and Std definitions for JAVU as you copy each
part of the code into the same Unicode Edition workspace.

)COPY avu.dws Std.[JAVU
C:\Program Files\Dyalog\Dyalog APL 12.0 Unicode\ws\avu
saved Thu Dec 06 11:24:32 2007

2 13p0AVU[97+126]
9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408
9409 9410
9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421
9422 9423

Oucs 2 13p0AVU[97+126]
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

292

Language Reference Guide

Rules for Conversion on Import

When the Unicode Edition imports APL objects from a non-Unicode source,
function comments and character data of type 82 are converted to Unicode. When
the Classic Edition imports APL objects from a Unicode source, this translation is
performed in reverse.

If the objects are imported from a Version 12.0 (or later) workspace (i.e. from a
workspace that contains its own value of [JAVU) the value of #.[JAVU (the value of
[JAVU in the root) in the source workspace is used. Otherwise, such as when APL
objects are imported from a pre-Version 12 workspace, from a component file, or
from a TCP socket, the local value of JAVU in the farget workspace is used.

Rules for Conversion on Export

When the Unicode Edition exports APL objects to a non-Unicode destination, such
as a non-Unicode Component File or non-Unicode TCPSocket Object, function
comments (in JORs) and character data of type 82 are converted to [JAV indices using
the local value of JAVU.

When the Classic Edition exports APL objects to a Unicode destination, such as a
Unicode Component File or Unicode TCPSocket Object, function comments (in
[ORs) and character data of type 82 are converted to Unicode using the local value
of JAVU.

In all cases, if a character to be translated is not defined in JAVU,a TRANSLATION
ERROR (event number 92) will be signalled.

Chapter 4: System Functions 293

Base Class R«[BASE.Y

[OBASE isused to access the base class implementation of the name specified by Y.

Y must be the name of a Public member (Method, Field or Property) that is provided
by the Base Class of the current Class or Instance.

OBASE is typically used to call a method in the Base Class which has been
superseded by a Method in the current Class.

Note that OBASE .Y is special syntax and any direct reference to JBASE on its own
or in any other context, is meaningless and causes SYNTAX ERROR.

In the following example, Class DomesticParrot derives from Class Parrot
and supersedes its Speak method. DomesticParrot.Speak calls the Speak
method in its Base Class Parrot, via[JBASE.

:Class Parrot: Bird
V R<«Speak
tAccess Public
R«'Squark!"’
\'4
tEndClass A Parrot

:Class DomesticParrot: Parrot
V R«<Speak
tAccess Public
R<[BASE.Speak,' Who''s a pretty boy, then!'
\'4
tEndClass A DomesticParrot

Maccaw<[INEW Parrot
Maccaw.Speak
Squark!

Pol ly<[OJNEW DomesticParrot
Polly.Speak
Squark! Who's a pretty boy, then!

294 Language Reference Guide

Class R«{X}OCLASS Y

Monadic Case

Monadic [JCLASS retumns a list of references to Classes and Interfaces that specifies
the class hierarchy for the Class or Instance specified by Y.

Y must be a reference to a Class or to an Instance of a Class.

R is a vector of vectors whose items represent nodes in the Class hierarchy of Y. Each
item of R is a vector whose first item is a Class reference and whose subsequent items
(ifany) are references to the Interfaces supported by that Class.

Example 1

This example illustrates a simple inheritance tree or Class hierarchy. There are 3
Classes, namely:

Animal
Bird (derived from Animal)
Parrot (derived from Bird)

:Class Animal
:EndClass A Animal
:Class Bird: Animal
:EndClass A Bird
:Class Parrot: Bird

;éﬁdClass A Parrot

OCLASS Eeyore<«[INEW Animal
#.Animal

[OCLASS Robin<[INEW Bird
#.Bird #.Animal

OCLASS Polly<[INEW Parrot
#.Parrot #.Bird #.Animal

OCLASS™ Parrot Animal
#.Parrot #.Bird #.Animal #.Animal

Chapter 4: System Functions 295

Example 2

The Penguin Class example (see Programming Reference Guide: Penguin Class
Example) illustrates the use of Interfaces.

In this case, the Penguin Class derives from Animal (as above) but additionally
supports the BirdBehaviour and FishBehaviour Interfaces, thereby
inheriting members from both.

Pingo<[JNEW Penguin
OCLASS Pingo
#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

Dyadic Case

If X is specified, Y must be a reference to an Instance of a Class and X is a reference to
an Interface that is supported by Instance Y or to a Class upon which Instance Y is
based.

In this case, R is a reference to the implementation of Interface X by Instance Y, or to
the implementation of (Base) Class X by Instance Y, and is used as a cast in order to
access members of Y that correspond to members of Interface of (Base) Class X.

Example 1:

Once again, the Penguin Class example (see Programming Reference Guide:
Penguin Class Example) is used to illustrate the use of Interfaces.

Pingo<«[INEW Penguin
OCLASS Pingo
#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

(FishBehaviour [OCLASS Pingo).Swim
I can dive and swim like a fish

(BirdBehaviour [ICLASS Pingo).Fly
Although I am a bird, I cannot fly

(BirdBehaviour [OCLASS Pingo).Lay
I lay one egg every year

(BirdBehaviour [OCLASS Pingo).Sing
Croak, Croak!

296

Language Reference Guide

Example 2:

This example illustrates the use of dyadic JCLASS to cast an Instance to a lower
Class and thereby access a member in the lower Class that has been superseded by
another Class higher in the tree.

Pol Ly«[INEW DomesticParrot
Polly.Speak
Squark! Who's a pretty boy, then!

Note that the Speak method invoked above is the Speak method defined by Class
DomesticParrot, which supersedes the Speak methods of sub-classes Parrot
and Bird.

You may use a cast to access the (superseded) Speak method in the sub-classes
Parrot and Bird.

(Parrot [JCLASS Polly).Speak
Squark!

(Bird [OCLASS Polly).Speak
Tweet, tweet!

Clear Workspace OCLEAR

A clear workspace is activated, having the name CLEAR WS. The active workspace
is lost. All system variables assume their default values. The maximum size of
workspace is available.

The contents of the session namespace [JSE are not affected.

Example

OCLEAR
OwsIb
CLEAR WS

Chapter 4: System Functions 297

Execute Windows Command {R}<[CMD Y

[0CMD executes the Windows Command Processor or UNIX shell or starts another
Windows application program. [JCMD is a synonym of [JSH. Either system function
may be used in either environment (Windows or UNIX) with exactly the same effect.
[0CMD is probably more natural for the Windows user. This section describes the
behaviour of JCMD and [JSH under Windows. See Execute (UNIX) Command on
page 551 for a discussion of the behaviour of these system functions under UNIX.

The system commands) SH and) CMD provide similar facilities. For further
information, see Execute (UNLX) Command on page 657 and Windows Command
Processor on page 637.

Executing the Windows Command Processor

IfY is a simple character vector, JCMD invokes the Windows Command Processor
(normally cmd . exe) and passes the command specified by character vector Y to it
for execution. The term command means here an instruction recognised by the
Command Processor, or the pathname of a program (with optional parameters) to be
executed by it. In either case, APL waits for the command to finish and then returns
the result R, a vector of character vectors containing its result. Each element in R
corresponds to a line of output produced by the command.

Example
z<(cMD'dir’
pZ

12
tz

Volume in drive C is 0OS
Volume Serial Number is BL438-9B76

Directory of C:\Users\Pete\Documents\Dyalog APL-64 17.0
Unicode Files

23/06/2018 15:59 <DIR>
23/06/2018 15:59 <DIR>

23/06/2018 14:53 181,488 default.dlf

13/06/2018 20:13 1,262,296 def_uk.dse

14/06/2018 14:36 108,976 UserCommand20.cache
3 File(s) 1,552,760 bytes

2 Dir(s) 101,371,097,088 bytes free

If the command specified in Y already contains the redirection symbol (>) the capture
of output through a pipe is avoided and the result R is empty. Ifthe command
specified by Y issues prompts and expects user input, it is ESSENTIAL to explicitly
redirect input and output to the console.

298 Language Reference Guide

Ifthis is done, APL detects the presence ofa ">" in the command line, runs the
command processor in a visible window, and does not direct output to the pipe. If
you fail to do this your system will appear to hang because there is no mechanism for
you to receive or respond to the prompt.

Example

[O0CMD 'DATE <CON >CON'
(Command Prompt window appears)
Current date is Wed 19-07-1995
Enter new date (dd-mm-yy): 20-07-95

(COMMAND PROMPT window disappears)

Spaces in pathnames

IfY specifies a program (with or without parameters) and the pathname to the
program contains spaces, you must enclose the string in double-quotes.

For example, to start a version of Excel to which the pathname is:

C:\Program Files\Microsoft Office\OFFICEll\excel.exe

the argument to [JCMD should be:

(CMD '"c:\program files\microsoft office\officell\excel.exe

Double-Quote Restriction

The Windows Command Processor does not permit more than one set of double-
quotes in a command string.

The following statements are all valid:

CMD 'c:\windows\system32\notepad.exe c:\myfile.txt'
OCMD 'c:\windows\system32\notepad.exe "c:\myfile.txt"'
[0CMD '"c:\windows\system32\notepad.exe" c:\myfile.txt'

Whereas the next statement, which contains two sets of double-quotes, will fail:

OCMD '"c:\windows\system32\notepad.exe" "c:\myfile.txt"'

Such a statement can however be executed using the second form of JCMD(where the
argument is a 2-element vector of character vectors) which does not use the Windows
Command Processor and is not subject to this restriction. However, the call to JCMD
will return immediately, and no output from the command will be returned.

OCMD'"c:\windows\system32\notepad.exe" "c:\myfile.txt"' "'

Chapter 4: System Functions 299

Implementation Notes

The right argument of [JCMD is simply passed to the appropriate command processor
for execution and its output is received using an unnamed pipe.

By default, JCMD will execute the string ('cmd.exe /c',Y); where Y is the
argument given to JCMD. However, the implementation permits the use of
alternative command processors as follows:

Before execution, the argument is prefixed and postfixed with strings defined by the
APL parameters CMD PREFIX and CMD POSTFIX. The former specifies the name
of your command processor and any parameters that it requires. The latter specifies a
string which may be required. If CMD_PREFIX is not defined, it defaults to the
name defined by the environment variable COMSPEC followed by "/c". If
COMSPEC is not defined, it defaults to cmd . exe. IfCMD_POSTFIX is not
defined, it defaults to an empty vector.

[JCMD treats certain characters as having special meaning as follows:

| marks the start of a trailing comment,

s [divides the command into sub-commands,

if found within the last sub-command, causes [JCMD to use a visible
window.

If you simply wish to open a Command Prompt window, you may execute the
command as a Windows Program (see below). For example:

(OCMD 'cmd.exe' '’

Starting a Windows Program

IfY is a 2-element vector of character vectors, JCMD starts the executable program
named by Y[1] with the initial window parameter specified by Y[2]. The shy
result is an integer scalar containing the window handle allocated by the window
manager. Note that in this case APL does not wait for the program specified by Y to
finish, but returns immediately. The shy result R is the process identifier (PID).

Y [1] must specify the name or complete pathname of an executable program. If the
name alone is specified, Windows will search the following directories:

the current directory,

the Windows directory,

the Windows system directory,

the directories specified by the PATH variable,
the list of directories mapped in a network.

IS

300

Language Reference Guide

Note that Y[1] may contain the complete command line, including any suitable
parameters for starting the program. If Windows fails to find the executable program,
[JCMD will fail and report FILE ERROR 2.

Y[2] specifies the window parameter and may be one of the following. Ifnot, a
DOMAIN ERROR isreported.

‘Normal' Application is started in a normal window, which is given
" the input focus

Application is started in a normal window, which is NOT

Unfocused given the input focus

'Hidden' Application is run in an invisible window

‘Minimized' | Application is started as an icon which is NOT given the
'Minimised' |input focus

‘Maximized' | Application is started maximized (full screen) and is given
'‘Maximised' |the input focus

An application started by JCMD may ONLY be terminated by itself or by the user.
There is no way to close it from APL. Furthermore, ifthe window parameter is
HIDDEN, the user is unaware of the application (unless it makes itself visible) and
has no means to close it.

Examples

Path«<'c:\Program Files\Microsoft Office\Office\'
O«<0OCcMD (Path,'excel.exe') "'

33
cMD (Path, 'winword /mMyMacro') 'Minimized'

Executing Programs

Either form of JCMD may be used to execute a program. The difference is that when
the program is executed via the Command Processor, APL waits for it to complete
and returns any result that the program would have displayed in the Command
Window had it been executed from a Command Window. In the second case,

APL starts the program (in parallel).

Note:

This function is disabled and instead generates a DOMAIN ERROR ifthe RIDE
SPAWNED parameter is non-zero. This is designed to prevent it being invoked from
a RIDE session which does not support this type of user interface. For further details,
see the RIDE User Guide.

Chapter 4: System Functions 301

Start Windows Auxiliary Processor {R}«X OCMD Y

Used dyadically, JCMD starts an Auxiliary Processor. The effect, as far as the APL
workspace is concerned, is identical under both Windows and UNIX, although the
method of implementation differs. [JCMD is a synonym of [JSH. Either function may
be used in either environment (Windows or UNIX) with exactly the same effect.
[0CMD is probably more natural for the Windows user. This section describes the
behaviour of JCMD and [JSH under Windows. See Start UNIX Auxiliary Processor
on page 552 for a discussion of the behaviour of these system functions under UNIX.

X must be a simple character vector containing the name (or pathname) of a Dyalog
APL Auxiliary Processor (AP). Although it is possible for users to create their own
APs, Dyalog recommends that user write their own DLLs/shared libraries instead.

Y may be a simple character scalar or vector, or a vector of character vectors. Under
Windows the contents of Y are ignored.

[CMD loads the Auxiliary Processor into memory. Ifno other APs are currently
running, JCMD also allocates an area of memory for communication between APL
and its APs.

The shy result R is the process id of the Auxiliary Processor task.

The effect of starting an AP is that one or more external functions are defined in the
workspace. These appear as locked functions and may be used in exactly the same
way as regular defined functions.

When an external function is used in an expression, the argument(s) (if any) are
passed to the AP for processing via the communications area described above. APL
halts whilst the AP is processing, and waits for a result. Under Windows, unlike
under UNIX, it is not possible for external functions to run in parallel with APL.

302

Language Reference Guide

Canonical Representation R<CR Y

Y must be a simple character scalar or vector which represents the name of a defined
function or operator.

IfY is a name of a defined function or operator, R is a simple character matrix. The
first row of R is the function or operator header. Subsequent rows are lines of the
function or operator. R contains no unnecessary blanks, except for leading
indentation of control structures, trailing blanks that pad each row, and the blanks in
comments. If'Y is the name of a variable, a locked function or operator, an external
function, or is undefined, R is an empty matrix whose shape is 0 O.

Example

VR<MEAN X A Arithmetic mean
[1] Re(+/X)+pX
\'4

[2]

+F<[JCR'MEAN'
R«<MEAN X A Arithmetic mean
Re<(+/X)+pX

pF
2 30

The definition of [JCR has been extended to names assigned to functions by
specification («), and to local names of functions used as operands to defined
operators.

IfY is a name assigned to a primitive function, R is a one-element vector containing
the corresponding function symbol. IfY is a name assigned to a system function, R is
a one element nested array containing the name of the system function.

Examples

PLUS<«+
+F<[JCR'PLUS"

pF

C<[CR

c'c'
dcr

pC'C'

Chapter 4: System Functions 303

VR<CONDITION (FN1 ELSE FN2) X
[1] -~CONDITION/L1
[2] R<FN2 X ¢ =0
[3] L1:R<FN1 X
(4] v

2 [OSTOP 'ELSE'
(X20) | ELSE [X«<72.5

ELSE[2]
X
2.5
OCR'FN2'
[
~{LC
2

IfY is a name assigned to a derived function, R is a vector whose elements represent
the arrays, functions, and operators from which Y was constructed. Constituent
functions are represented by their own [JCRs, so in this respect the definition of JCR
isrecursive. Primitive operators are treated like primitive functions, and are
represented by their corresponding symbols. Arrays are represented by themselves.

Example
BOX<«2 20p
+F<[JCR'BOX"
2 2 op
pF
3
Jdisplay F

IfY is a name assigned to a defined function, R is the JCR of the defined function. In
particular, the name that appears in the function header is the name of the original
defined function, not the assigned name Y.

Example

AVERAGE<MEAN
OCR'AVERAGE'
R«<MEAN X A Arithmetic mean
Re(+/X)+pX

304

Language Reference Guide

Change Space {R}«{X}0CS Y

Y must be namespace reference (ref) or a simple character scalar or vector identifying
the name of a namespace.

If specified, X is a simple character scalar, vector, matrix or a nested vector of
character vectors identifying zero or more workspace objects to be exported into the
namespace Y.

The identifiers in X and Y may be simple names or compound names separated by
'. " and including the names of the special namespaces '0SE ", '#',and "##'.

The result R is the full name (starting # .) of the space in which the function or
operator was executing prior to the JCS.

[cCS changes the space in which the current function or operator is running to the
namespace Y and returns the original space, in which the function was previously
running, as a shy result. After the [JCS, references to global names (with the
exception of those specified in X) are taken to be references to global names in Y.
References to local names (i.e. those local to the current function or operator) are,
with the exception of those with name class 9, unaffected. Local names with name
class 9 are however no longer visible.

When the function or operator terminates, the calling function resumes execution in
its original space.

The names listed in X are temporarily exported to the namespace Y. If objects with
the same name exist in Y, these objects are effectively shadowed and are inaccessible.
Note that Dyadic [JCS may be used only if there is a traditional function in the state
indicator (stack). Otherwise there would be no way to retract the export. In this case
(for example in a clear workspace) DOMAIN ERROR is reported.

Note that calling [JCS with an empty argument Y obtains the namespace in which a
function is currently executing.

Example

This simple example illustrates how [JCS may be used to avoid typing long
pathnames when building a tree of GUI objects. Note that the objects NEW and
OPEN are created as children of the FILE menu as a result of using [ICS to change
into the F .MB . FILE namespace.

Chapter 4: System Functions 305

v MAKE_FORM;F ;0OLD

[1] '"F'OWC'Form'

[2] '"F.MB'OWC'MenuBar'

[3] '"F.MB.FILE'[JWC'Menu' '&File'
(4]

[5] OLD<[JCS'F.MB.FILE'

[6] "NEW'[(OWC 'MenuItem' '&New'
[7] 'OPEN'[OWC'Menultem' '&Open’
[8] (Jcs oLD

[9]

Elo% '"F.MB.EDIT'(OWC'Menu' '&Edit'
11

[12] OLD<[JCS'F.MB.EDIT'

[13] '"UNDO'[OWC'MenuItem' '&Undo'
[14] 'REDO'OWC'MenuItem' '&Redo'
[15] cs oLD

[16] v

\4

Example

Suppose a form F 1 contains buttons B1 and B2. Each button maintains a count of the
number of times it has been pressed, and the form maintains a count of the total
number of button presses. The single callback function PRESS and its subfunction
FMT can reside in the form itself

#.F1

)CS F1

A Note that both instances reference
A the same callback function
'B1'OWS'Event' 'Select' 'PRESS'
'B2'OWS'Event' 'Select' 'PRESS'

A Initialise total and instance counts.
TOTAL « B1.COUNT « B2.COUNT « O

PRESS MSG

"FMT' 'TOTAL 'JCS=MSG n Switch to instance space
(TOTAL COUNT)++«1 A Incr total & instance count
OWS'Caption' (COUNT FMT TOTAL)m Set instance caption

CAPT«INST FMT TOTL A Format button caption.
CAPT«(3INST),'/',sTOTL n E.g. 40/100.

306

Language Reference Guide

Example

This example uses [JCS to explore a namespace tree and display the structure. Note
that it must export its own name (tree) each time it changes space, because the name
tree is global.

V tabs tree space;subs A Display namespace tree
[1] tabs,space
[2] "tree'llCS space

[3] >(psubs<{[INL 9)40
(4] (tabs,'. '"JYotreesubs
\'

)Jns x.y
#.x.y

Jns z
#.z

""tree '#'
#

Note

0CS is not permitted in a dfn or dop. If used therein it will cause a NONCE ERROR.

Chapter 4: System Functions 307

Comma Separated Values {R}«{X} OCSV Y

This function imports and exports Comma Separated Value (CSV) data.

Monadic JCSV imports data from a CSV file or converts data from CSV format to an
internal format. Dyadic JCSV exports data to a CSV file or converts data from
internal format to a CSV format.

Internal Format

Arrays that result from importing CSV data or arrays that are suitable for exporting as
CSV data are represented by 3 possible structures:

« A table (a matrix whose elements are character vectors or scalars, or
numbers).

o A vector, each of whose items contain field (column) values. Character field
values are character matrices; numeric field values are numeric vectors.

« A vector, each of whose items contain field (column) values. Character field
values are vectors of character vectors; numeric field values are numeric
vectors.

Note that when importing CSV data, all fields are assumed to be character fields
unless otherwise specified (see Column Types below). A field that contains only
"numbers" will not be converted to numeric data unless specified as being numeric.

MetaCharacters

Some characters in a CSV file are metacharacters which define the structure of the
data; for example, the field separator character between fields. Characters which are
not metacharacters are literal characters. The variant options QuoteChar,
EscapeChar and DoubleQuote make it possible to interpret metacharacters as literal
characters and thus permit fields to contain field separator characters, leading and
trailing spaces, and line-endings.

Fixed-width fields do not require these options and they are ignored if fixed-width
fields are being processed.

308 Language Reference Guide

Monadic [JCSV
R<[ICSV Y

Y is an array that specifies just the source of the CSV data (see below) ora 1,2,3 or4-
element vector containing:

[1] Source of CSV Data

[2] Description of the CSV data
[3] Column Types

[4] Header Row Indicator

Source may be one of:

« a character vector or scalar containing a file name

« anative tie number

« a character vector or scalar containing CSV data with embedded newline
characters. To avoid this source being interpreted as a file name, Y[2] must
be specified as 'S"'.

« a vector of character vectors and/or scalars containing CSV data with
implicit newlines after each character vector or scalar

Description
If Y[1] is a file name or tie number Description may be one of:

« a character vector specifying the file encoding such as 'UTF-8" (see File
Encodings on page 466).

« a 256-clement numeric vector that maps each possible byte value (0-255) to
a Unicode code point (1st element = Unicode code point corresponding to
byte value 0, and so on). 1 indicates that the corresponding byte value is
not mapped to any character. Apart from ~ 1, no value may appear in the
table more than once.

If omitted or empty, the file encoding is deduced (see below).

If Y[1] is a character array containing CSV data Description is a character scalar
'S"' (simple)or 'N' (nested). The defaultis 'N'

Chapter 4: System Functions 309

Column Types

This is a scalar numeric code or vector of numeric codes that specifies the field types
from the list below. If Column Types is zilde or omitted, the default is 1 (all fields are
character).

0 | The field is ignored.

1 | The field contains character data.

The field is to be interpreted as being numeric. Empty cells and cells
2 | which cannot be converted to numeric values are not tolerated and cause
an error to be signalled.

The field is to be interpreted as being numeric but invalid numeric vales
3 | are tolerated. Empty fields and fields which cannot be converted to
numeric values are replaced with the Fill variant option (default 0).

The field is to be interpreted numeric data but invalid numeric data is
tolerated. Empty fields and fields which cannot be converted to numeric
values are returned instead as character data; this type is disallowed when
variant option Invert is set to 1.

The field is to be interpreted as being numeric but empty fields are
tolerated and are replaced with the Fill variant option (default 0). Non-
empty cells which cannot be converted to numeric values are not tolerated
and cause an error to be signalled.

Note that if Column Types is specified by a scalar 4, all numeric data in all fields will
be converted to numbers.

Header Row Indicator

This is a Boolean value (default 0) to specify whether or not the first record in a
CSV file is a list of column labels. If Header Row Indicator is 1, the first record (the
header row) is treated differently from other records. It is assumed to contain
character data (labels) regardless of Y[3] and is returned separately in the result.

310

Language Reference Guide

Variant options

Monadic [JCSV may be applied using the Variant operator with the following
options. The Principal option is Invert.

Name

Meaning

Default

Invert

0, 1 or 2 (see below)

0

Separator

The field separator, any single character. If Widths is
other than 8, Separator is ignored.

Widths

A vector of numeric values describing the width (in
characters) of the corresponding columns in the CSV
source, or € for variable width delimited fields

Decimal

The decimal mark in numeric fields - one of ' . "' or

1 1
H

Thousands

The thousands separator in numeric fields, which
may be specified as an empty character vector
(meaning no separator is defined) or a character scalar

Trim

A Boolean specifying whether
undelimited/unescaped whitespace is trimmed at the
beginning and end of fields

Ragged

A Boolean specifying whether records with varying
numbers of fields are allowed; see notes below

Fill

The numeric value substituted for invalid numeric
data in columns of type 3

Records

The maximum number of records to process or O for
no limit. This applies only to a file specified by a tie
number.

QuoteChar

The field quote character (delimiter), which may be
specified as an empty character vector (meaning none
is defined) or a character scalar

EscapeChar

The escape character, which may be specified as an
empty character vector (meaning none is defined) or
a character scalar

DoubleQuote

A Boolean which indicates whether (1) or not (0) a
quote character within a quoted field is represented
by two consecutive quote characters

Chapter 4: System Functions 311

The Separator, QuoteChar and EscapeChar characters, when defined, must be
different.

Other options defined for export are also accepted but ignored.

Invert Option

This option specifies how the CSV data should be returned as follows:

A table (a matrix whose elements are character vectors or scalars or
numbers).

A vector, each of whose items contain field (column) values. Character
1 | field values are character matrices; numeric field values are numeric
vectors.

A vector, each of whose items contain field (column) values. Character
2 | field values are vectors of character vectors; numeric field values are
numeric vectors.

QuoteChar, EscapeChar and DoubleQuote Options

If EscapeChar is set then any character may be prefixed by the escape character. The
escape character is typically defined as ' \ '. The escape character immediately
followed by the character c is the literal character c even if ¢ alone would have been
a metacharacter.

If QuoteChar is set then fields may be delimited by the specified quote character.
Within quoted fields all characters except the quote character, and the escape
character if defined, are literal characters.

If DoubleQuote is set to 1 then two consecutive quote characters within a quoted
field are interpreted as the single literal quote character.

Result

The result R contains the imported data.

If Y[4] does not specify that the data contains a header then R contains the entire
data in the form specified by the Invert variant option.

If Y[4] does specify that the data contains a header then R is a 2-element vector
where:

e R[1] is the imported data excluding the header.
e R[2] is a vector of character vectors containing the header record.

312

Language Reference Guide

Examples

H ©- = sales.csw - Excel Signin &=

File Hom ‘ Inser1| Page | Forr‘n‘ Data | Revie | View |Add- |Tear'r| g

B4 - F | 189

A B C D E F
1 |Product Sales
2 |Widgets 1312
3 |Gimlets 205
4 |Dingbats 189]
5
sales ® 1 3

Ready H m - | 00%

S[INGET CSVFile«'c:\Dyalogl6.0\sales.csv'

Product,Sales

Widgets,1912

Gimlets,205

Dingbats, 189

[0CSV CSVFile

I

| Product Sales
Widgets 1912
Gimlets 205
Dingbats 189

Chapter 4: System Functions

(csv CSVFile''

€& 1 A Header row

Widgets 1912 Product Sales
€

Gimlets 205

Dingbats 189

[OJCSV CSVFile''(1 2)1 A Fields are Char, Num

Widgets

Gimlets

Dingbats

1912 Product

Sales

205

189

(OCSVEl'Invert' 1)CSVFile''

(1 2) 1 A Invert 1

|

{Widgets
Gimlets
Dingbats

1912 205 189

Product Sales

>(0OCSVE'Invert' 2)CSVFile''

(12) 1 A Invert 2

Widgets

Gimlets Dingbats

1912 205 189

314

Language Reference Guide

Notes

When Y specifies just the source of the CSV data, it does not need to be
enclosed or ravelled to create a 1-element vector.

Y[2], the description of the source, distinguishes an otherwise ambiguous
character vector source (which could contain either CSV data or a file
name). The other source forms are unambiguous but the description, when
given, must still match the given source type.

Tab-separated fields may be imported by specifying 'Separator'
(Oucs 9).

Fields containing embedded new lines are supported (they must, of course,
appear in quotes or be prefixed by the escape character). On import, line
endings are always converted to a single line feed character.

If Ragged is not set then all records must have the same number of fields
(character delimited format) or same number of characters (fixed width field
format).

If Ragged is set:

o The expected number of columns must be specified using the Widths
variant option and/or the column types in Y[3].

o In character delimited format, all processed records are implicitly
extended or truncated as required so that they contain the expected
number of fields; implicitly added fields will be empty.

o In fixed width format, all processed records are implicitly extended
with spaces or truncated as required so that they contain as many
characters as are specified in the Widths option declaration.

Chapter 4: System Functions 315

File handling

Data may be read from a named file or a tied native file. A tied native file may be
read in sections by repeatedly invoking [JCSV for a specified maximum number of
records (specified by the Records variant) until no more data is read.

In all cases the files must contain text using one of the supported encodings. See File
Encodings on page 466. The method used to determine the file encoding is as
follows:

o Ifa Byte Order Mark (BOM) is encountered at the start of the file, it is used
regardless of Y[2] (if specified). Note, however, that the BOM can only be
encountered if the file is read from the start - specifically, if a native file is
read in sections, any BOM present will only be encountered when the first
section is read.

o Otherwise, the file will be read and decoded according to the file encoding
in Y[2] if specified.

o Otherwise:

o Native files will be decoded as if 'UTF-8" had been specified.
o Files specified by name will be examined and the likely file encoding
will be deduced using the same heuristics performed by ONGET.

Note also:

« Native files are read from the current file position. On successful
completion, the file position will be at the first unprocessed character (end
of file if the Records variant option is not specified). If an error is signalled
the file position is undefined.

o The result does not report the file encoding or line ending type as it does
with ONGET. If this information is required then it must be obtained by
other means.

316

Language Reference Guide

Dyadic [JCSV
{R}«Xx 0OCSV Y
The left argument X is either:

« a matrix or a vector of vectors/matrices containing the data to be converted
to CSV format.

« ora 2-clement vector containing a matrix or vector of vectors/matrices
containing the data to be converted to CSV format, and a vector of
character vectors containing the header record.

Y isa 1 or 2-element vector containing:

[1] Destination of CSV Data (see below)

[2] Description of the CSV data (see below)

Destination - may be one of:

« a character vector or scalar containing a file name

« anative tie number

« an empty character vector, indicating that the CSV data is to be returned in
the result R

Description
If Y[1] is a file name or tie number, Description may be:

« a character vector specifying the file encoding such as 'UTF-8" (see File
Encodings on page 466).

¢ a 256-element numeric vector that maps each possible byte value (0-255) to
a Unicode code point (Ist element = Unicode code point corresponding to
byte value 0, and so on). 1 indicates that the corresponding byte value is
not mapped to any character. Apart from 1, no value may appear in the
table more than once.

If Y[1] is empty, Description may be a character scalar ' S' (simple)or 'N'
(nested). If omitted, the defaultis 'S’

Chapter 4: System Functions 317

Variant options

Dyadic JCSV may be applied using the Variant operator with the following options.

Name Meaning Default

a character vector 'Error' or 'Replace’
which specifies, when creating a named file
which already exists, whether to overwrite it
('Replace')orsignal an error ('Error')

IfExists '"Error'

the field separator, any single character. If Widths | , ,

Separator . .
P is other than 8, Separator is ignored.

a vector of numeric values describing the width
(in characters) of the corresponding columns in
the CSV source, or & for variable width delimited
fields

Widths

. the decimal mark in numeric fields - one of ' . " |, ,
Decimal or ' .

the thousands separator in numeric fields, which
may be specified as an empty character vector .
(meaning no separator is defined) or a character
scalar

Thousands

a Boolean specifying whether whitespace is
Trim trimmed at the beginning and end of character 1
fields

(13 10) on
the line ending sequence - see Line separators: | Windows;
on page 468 10 on other
platforms

LineEnding

The field quote character (delimiter), which may
QuoteChar | be specified as an empty character vector
(meaning none is defined) or a character scalar

The escape character, which may be specified as
EscapeChar |an empty character vector (meaning none is
defined) or a character scalar

A Boolean which indicates whether (1) or not (0)
DoubleQuote | a quote character within a quoted field is 1
represented by two consecutive quote characters

318

Language Reference Guide

The Separator, QuoteChar and EscapeChar characters, when defined, must be
different. Other options defined for import are also accepted but ignored.

The Overwrite variant option (Boolean) from Version 16.0 remains supported but is
deprecated in favour of IfExists.

QuoteChar, EscapeChar and DoubleQuote options

o The CSV text will be generated such that it can be read back according to

the corresponding rules for import.

« If these options do not permit this (for example, a field contains the quote
character and neither DoubleQuote or EscapeChar are set) an error is

signalled.

« Quoting and Escaping is used as conservatively as possible.
o Ifboth QuoteChar and EscapeChar are set, quoting is favoured.

IfY specifies that the CSV data is written to a file then R is the number of bytes (not
characters) written, and is shy.

Otherwise, R is the CSV data in the format specified in Y, and is not shy.

Examples

CSVFile«'c:\Dyaloglé6.0\sales.csv'
0<«DATA HDR<«[JCSV CSVFile''(1 2)1

T
4
Widgets 1912
Gimlets 205
Dingbats| 189
-€

€

Product

Sales

Chapter 4: System Functions

319

DATAs<«'Gizmos' 23
DATA HDR [cCSv''

Product,Sales
Widgets,1912
Gimlets, 205

Dingbats, 189

Gizmos,23

CSVFilel«'c:\Dyalogl6.0\salesl.csv'
O<DATA HDR [CSV CSVFilel

67
DATA;<«'Gimbals' 123
O<DATA HDR [CSV CSVFilel
FILE NAME ERROR: Unable to create file ("The file

exists.")
[J<-DATA HDR [CSV CSVFilel
A

O«DATA HDR(OCSVE'IfExists' 'Replace’')CSVFilel

80

H ©- = salesl.csv - Bucel Sign in Eal |

File Hom | Inseﬂ‘ Page ‘ Form| Data | Revie|‘u"iew |Add- | PDF | Tearr| @ Tell me

Al - Jx Product
A E € D E | F G
1 IProduct !Sales
2 _Widgets 1912
3 |Gimlets 205
4 |Dingbats 189
3 |Gizmos 23
& |Gimbals 123
sales1 () 1 3
Ready H |- | + 100%

320

Language Reference Guide

Notes

When Y contains only the destination of the CSV data (i.e. omits the
description in its second element) it does not have to be enclosed to form a
single element vector.

Native files are written from the current file position. On successful
completion, the file position will be at the end of the written data. If an
error is signalled the amount of data written is undefined.

If the file encoding specifies that a BOM is required and output is to a
native file, it will only be written if the file position is initially at O - that
is, the start of the file is being written.

When fixed width fields are written, character data shorter than the
specified width is padded with spaces to the right and character data longer
than the specified width signals an error. Numeric data is converted to
character data as far as possible so that it fits into the specified width. If this
is not possible, an error is signalled.

Tab-separated fields may be exported by specifying 'Separator'

(Oucs 9).

Fields containing a single embedded new line are supported. On export,
line feed characters are mapped back to the defined line ending sequence.

Chapter 4: System Functions 321

Comparison Tolerance gdcT

The value of [JCT determines the precision with which two numbers are judged to be
equal. Two numbers, X and Y, are judged to be equal if (| X-Y) <OCTx(|X)
[1 Ywhere < is applied without tolerance.

Thus [ICT is not used as an absolute value in comparisons, but rather specifies a
relative value that is dependent on the magnitude of the number with the greater
magnitude. It then follows that [JCT has no effect when either of the numbers is zero.

OCT may be assigned any value in the range from 0 to 2x~32 (about 2.3E710). A
value of 0 ensures exact comparison. The value in a clear workspace is 1E7 1 4.

IfOFR is 1287, the system uses ODCT. See Decimal Comparison Tolerance on page
324.

OCT and [DCT are implicit arguments of the monadic primitive functions Ceiling
(), Floor (L) and Unique (v), and of the dyadic functions Equal (=), Excluding (~),
Find (€), Greater (>), Greater or Equal (2), Greatest Common Divisor (v), Index of
(1), Intersection (n), Less (<), Less or Equal (<), Lowest Common Multiple (»),
Match (), Membership (€), Not Match (#), Not Equal (#), Residue (|) and Union
(v), as well as JFMT O-format.

Examples

OcT«1E~10
1.00000000001 1.0000001 =1
10

322

Language Reference Guide

Copy Workspace {R}<{X}0OcCY Y

Y must be a simple character scalar or vector identifying a saved workspace (or
Session file). X is optional. Ifpresent, it must be a simple character scalar, vector or
matrix or a vector of character vectors that specifies one or more APL names.

Each name in X is taken to be the name of an active object in the workspace
identified by Y. If X is omitted, the names of all defined active objects in that
workspace are implied (defined functions and operators, variables, labels and
namespaces).

Each object named in X (or implied) is copied from the workspace identified by Y to
become the active object referenced by that name in the active workspace if the
object can be copied. A copied label is re-defined to be a variable of numeric type.
If the name of the copied object has an active referent in the active workspace, the
name is disassociated from its value and the copied object becomes the active
referent to that name. In particular, a function in the state indicator which is
disassociated may be executed whilst it remains in the state indicator, but it ceases to
exist for other purposes, such as editing.

The shy result R is Opc '’

You may copy an object from a namespace by specifying its full pathname. The
object will be copied to the current namespace in the active workspace, losing its
original parent and gaining a new one in the process. You may only copy a GUI
object into a namespace that is a suitable parent for that object. For example, you
could only copy a Group object from a saved workspace if the current namespace in
the active workspace is itself a Form, SubForm or Group.

See Copy Workspace on page 639 for further information and, in particular, the
manner in which dependant and referenced objects are copied, and copying objects
from Session (.dse) files.

A DOMAIN ERROR isreported in any of the following cases:

o Y is ill-formed, or is not the name of a workspace with access authorised for
the active user account.

o Any name in X is ill-formed.

e An object named in X does not exist as an active object in workspace
named in Y.

An object being copied has the same name as an active label.

When copying data between Classic and Unicode Editions, OCY will fail and a
TRANSLATION ERROR will be reported if any object in workspace Y fails
conversion between Unicode and [JAV indices, whether or not that object is specified
by X. See Atomic Vector - Unicode on page 290 for further details.

Chapter 4: System Functions 323

A WS FULL isreported ifthe active workspace becomes full during the copying
process.

Example

OvrR'FoOO'
V R«FOO
[1] R«<10
v
'"FOO' [CY 'BACKUP'
OvrR'FoO'
V R«<FOO X
[1] R<10xX
v

System variables are copied if explicitly included in the left argument, but not if the
left argument is omitted.

Example
OLx

('OLx' "X')OCY'WS/CRASH'
OLx
>RESTART

A copied object may have the same name as an object being executed. If so, the
name is disassociated from the existing object, but the existing object remains
defined in the workspace until its execution is completed.

Example

)SI
#.FOO[1]*

OvrR'FoOO'
V R«FOO
[1] R«<10
v

"FOO'CY 'WS/MYWORK

FOO
123

)SI
#.FOO[1]*

~{LC
10

324

Language Reference Guide

Digits R«D
This is a simple character vector of the digits from 0 to 9.
Example
0o
0123456789
Decimal Comparison Tolerance docT

The value of IDCT determines the precision with which two numbers are judged to
be equal when the value of OFR is 1287. If[JFR is 645, the system uses CT.

ODCT may be assigned any value in the range from 0 to 2*~32 (about
2.3283064365386962890625E710). A value of 0 ensures exact comparison.
The value in a clear workspace is 1E728.

OCT and [DCT are implicit arguments of the monadic primitive functions Ceiling
(M), Floor (L) and Unique (v), and of the dyadic functions Equal (=), Excluding (~),
Find (€), Greater (>), Greater or Equal (2), Greatest Common Divisor (v), Index of
(1), Intersection (n), Less (<), Less or Equal (<), Lowest Common Multiple (»),
Match (=), Membership (€), Not Match (#), Not Equal (#), Residue (|) and Union
(v), as well as OFMT O-format.

For further information, see Comparison Tolerance on page 321.

Examples

(bCT«1E~10
1.00000000001 1.0000001 = 1
10

Chapter 4: System Functions 325

Display Form {R}<0DF Y

[(DF sets the Display Form of a namespace, a GUI object, a Class, or an Instance of a
Class.

Y must be ONULL or a simple character array that specifies the display form of a
namespace. If defined, this array will be returned by the format functions and JFMT
instead of the default for the object in question. This also applies to the string that is
displayed when the name is referenced but not assigned (the default display). If Y is
ONULL, [IDF resets the Display Form to the default.

The result R is the previous value of the Display Form which initially is ONULL.

'F'OWC'Form'
3F
#.F
p3F
3
OFMT F
#.F
pOFMT F
1 3
F A default display uses 3
#.F
F.ODF 'Pete''s Form'
3F
Pete's Form
p3F
11
OFMT F
Pete's Form
pOFMT F
1 11

Notice that [IDF will accept any character array, but JFMT always returns a matrix.

F.ODF 2 2 SpOA
F

ABCDE

FGHIJ

KLMNO
PQRST
p3F

326

Language Reference Guide

pO<OFMT F
ABCDE
FGHIJ

KLMNO
PQRST
55

Note that [IDF defines the Display Form statically, rather than dynamically.
'F'OWC'Form' 'This is the Caption'

F
#.F

F.(ODF Caption)a set display form to current
caption

F
This is the Caption

F.Caption«'New Caption' a changing caption does not
A change the display form
F
This is the Caption

You may use the Constructor function to assign the Display Form to an Instance of a
Class. For example:

:Class MyClass
vV Make arg
tAccess Public
:Implements Constructor
ODF arg
v
tEndClass A MyClass

PD<[JNEW MyClass 'Pete'’
PD
Pete

Chapter 4: System Functions 327

It is possible to set the Display Form for the Root and for [JSE

)CLEAR
clear ws
#
#
ObF OWSID
#
CLEAR WS
OsE
0se
Ose.0DF 'Session'
OsEe
Session

Note that [IDF applies directly to the object in question and is not automatically
applied in a hierarchical fashion.

IXIDNS [}
X
#.X
'Y'X.ONS "'
X.Y
#.X.Y
X.ODF 'This is X'
X
This is X
X.Y

#.X.Y

328 Language Reference Guide

Division Method do1v

The value of [IDIV determines how division by zero is to be treated. If[JDIV=0,
division by 0 produces a DOMAIN ERROR except that the special case of 0+0
returns 1.

IfJDIV=1, division by 0 returns 0.
ODIV may be assigned the value 0 or 1. The value in a clear workspace is 0.

ODIV is an implicit argument of the monadic function Reciprocal (+) and the dyadic
function Divide (%).
Examples

(DIvV+<0

102 +201
0.512

+0 1
DOMAIN ERROR
+0 1

A

0ODIV«1

30 2
0 0.5

102 +004
00 0.5

Chapter 4: System Functions 329

Delay

{R}<0DL Y

Y must be a simple non-negative single numeric value (of any rank). A pause of
approximately Y seconds is caused.

The shy result R is a scalar numeric value indicating the length of the pause in
seconds.

The pause may be interrupted by a strong interrupt.

Diagnostic Message R+[]DM

This niladic function returns the last reported APL error as a three-element vector,
giving error message, line in error and position of caret pointer.

Example
2+0
DOMAIN ERROR
2+0

A

(oM
DOMAIN ERROR 230 A

Note: JSIGNAL can be used to reset the value of this system constant.

330 Language Reference Guide

Extended Diagnostic Message R+[JDMX

[DDMX is a system object that provides information about the last reported APL error.
ODMX has thread scope, i.e. its value differs according to the thread from which it is
referenced. In a multi-threaded application therefore, each thread has its own value of
(DMX.

[ODMX contains the following Properties (name class 2.6). Note that this list is likely
to change. Your code should not assume that this list will remain unchanged. You
should also not assume that the display form of JDMX will remain unchanged.

character
Category vector The category of the error
OM nested | Diagnostic message. This is the same as
vector |[IDM, but thread safe
character | Event message; this is the same as JEM
EM
vector |[EN
. Error number. This is the same as [JEN, but
EN integer)
thread safe
ENX integer | Sub-error number
URL of a web page that will provide help
character for this error. APL identifies and has a
He L pURL handler for URLSs starting with htp:,

vector o
https:, mailto: and www. This list may be

extended in future

Identifies the line of interpreter source
code (file name and line number) which

nested
InternallLocation raised the error. This information may be
vector
useful to Dyalog support when
investigating an issue
character . .
Message Further information about the error
vector
see If applicable, identifies the error generated
OSError PP . g
below | by the Operating System
For system generated errors, Vendor will
character | always contain the character vector
Vendor

vector ‘Dyalog'. This value can be set using
OSIGNAL

Chapter 4: System Functions 3

OSError is a 3-element vector whose items are as follows:

This indicates how the operating system error was
retrieved.

int . .
t tnteger 0 = by the C-library errno () function
1 = by the Windows GetLastError () function
. Error code. The error number retumed by the operating
2 integer

system using errno () or GetLastError () as above

character | The description of the error returned by the operating

3 vector system

Example

1+0
DOMAIN ERROR

1+0

A
(bMx
EM DOMAIN ERROR

Message Divide by zero

[(DMX.InternallLocation
arith_su.c 554

Isolation of Handled Errors

[ODMX cannot be explicitly localised in the header of a function. However, for all

trapped errors, the interpreter creates an environment which effectively makes the
current instance of [JDMX local to, and available only for the duration of, the trap-
handling code.

With the exception of JTRAP with Cutback, ODMX is implicitly localised within:

o Any function which explicitly localises JTRAP
o The :Case[List] or :Else clause ofa : Trap control structure.
o The right hand side of a D-function Error-Guard.

332

Language Reference Guide

and is implicitly un-localised when:

o A function which has explicitly localised OTRAP terminates (even if the
trap definition has been inherited from a function further up the stack).

e The :EndTrap of the current : Trap control structure is reached.

« A D-function Error-Guard exists.

During this time, if an error occurs then the localised [JDMX is updated to reflect the
values generated by the error.

The same is true for JTRAP with Cutback, with the exception that if the cutback trap
event is triggered, the updated values for JDMX are preserved until the function that
set the cutback trap terminates.

The benefit of the localisation strategy is that code which uses error trapping as a
standard operating procedure (such as a file utility which traps FILE NAME ERROR
and creates missing files when required) will not pollute the environment with
irrelevant error information.

Example

V tie<NewFile name
[1] :Trap 22

[2] tie<name [JFCREATE O
[3] :Else

[4] [JOMX

[5] tie<name [OFTIE O
[6] name [JFERASE tie
[7] tie«name [JFCREATE O

[8] :EndTrap
[9] OFUNTIE tie
v

[0DMX is cleared by)RESET:

Jreset
pOFMT [DMX
00

Note: JSIGNAL can be used to reset the value of this system constant.

The first time we run NewFile 'pete’,the file doesn't exist and the JFCREATE
in NewFile[2] succeeds.

NewFile 'pete’

Chapter 4: System Functions 333

If we run the function again, the JFCREATE in NewF i Le[2 Jgenerates an error
which triggers the : E L se clause of the :Trap. On entry to the : E L se clause, the
values in [JDMX reflect the error generated by JF CREATE. The file is then tied, erased
and recreated.

EM FILE NAME ERROR
Message File exists

After exiting the : Trap control structure, the shadowed value of JDMX is discarded,
revealing the original value that it shadowed.

pOFMT [IDMX
00

Example

The EraseF i le function also uses a : Trap in order to ignore the situation when
the file doesn't exist.

V Erasefile name;tie

[1] :Trap 22
[2] tie«name [FTIE 0O
[3] name [JFERASE tie
[4] :Else
[5] ODMX
[6] :EndTrap

\4

The first time we run the function, it succeeds in tieing and then erasing the file.

Erasefile 'pete’

The second time, the (F TIE fails. On entry to the : E L se clause, the values in [JDMX
reflect this error

ErasefFile 'pete’
EM FILE NAME ERROR
Message Unable to open file
OSError 1 2 The system cannot find the file specified.

334

Language Reference Guide

Once again, the local value of [IDMX is discarded on exit from the : Trap, revealing
the shadowed value as before.

pOFMT [IDMX
0o

Example

In this example only the error number (EN) property of [IDMX is displayed in order to
simplify the output:

vV foo n;[TRAP

[1] 'Start foo'[IDMX.EN
[2] OTRAP«(2 'E' '-»err')(11 'C' '-»err')
[3] goo n
[4] err:'End foo: '[DJDMX.EN
\'4

v goo n;[TRAP
[1] OTRAP«5 'E' '-serr'
[2] ¢n>'+0"' '1 2+1 2 3' 'o!
[3] err:'goo: '[IDMX.EN

\'4

In the first case a DOMAIN ERROR (11)is generated on goo[2]. This error is not
included in the definition of JTRAP in goo, but rather the Cutback JTRAP
definition in foo. The error causes the stack to be cut back to foo, and then
execution branches to foo[4]. Thus [JDMX. EN in f oo retains the value set when
the error occurred in goo.

foo 1
Start foo O
End foo: 11

In the second case a LENGTH ERROR (5)is raised on goo[2]. This erroris included
in the definition of JTRAP in goo so the value [IDMX . EN while in goo is 5, but
when goo terminates and f oo resumes execution the value of [JDMX . EN localised in
goo is lost.

foo 2
Start foo O
goo: 5

End foo: O

Chapter 4: System Functions 335

In the third case a SYNTAX ERROR (2)is raised on goo[2]. Since the JTRAP
statement is handled within goo (although the applicable JTRAP is defined in fo0),
the value [IDMX . EN while in goo is 2, but when goo terminates and f oo resumes
execution the value of JDMX . EN localised in goo is lost.

foo 3
Start foo O
goo: 2
End foo: O

Dequeue Events {R}<DQ Y

0DQ awaits and processes events. Y specifies the GUI objects(s) for which events are
to be processed. Objects are identified by their names, as character scalars/vectors, or
by namespace references. These may be objects of type Root, Form, Locator, FileBox,
MsgBox, PropertySheet, TCPSocket, Timer, Clipboard and pop-up Menu. Sub-
objects (children) of those named in Y are also included. However, any objects
which exist, but are not named in Y, are effectively disabled (do not respond to the
user).

IfYis#, "#',or'.", all objects currently owned and subsequently created by the
current thread are included in the (JDQ. Note that because the Root object is owned
by thread 0, events on Root are reported only to thread 0.

IfY is empty it specifies the object associated with the current namespace and is only
valid if the current space is one of the objects listed above.

Otherwise, Y contains the name(s) of or reference(s) to the objects for which events
are to be processed. Effectively, this is the list of objects with which the user may
interact. A DOMAIN ERROR is reported if an element of Y refers to anything other
than an existing "top-level" object.

Associated with every object is a set of events. For every event there is defined an
"action" which specifies how that event is to be processed by [IDQ. The "action" may
be a number with the value 0, 1 or ™1, a character vector containing the name ofa
"callback function", or a character vector containing the name of a callback function
coupled with an arbitrary array. Actions can be defined in a number of ways, but the
following examples will illustrate the different cases.

336

Language Reference Guide

OBJ [OWS 'Event' 'Select' 0

OBJ [OWS 'Event' 'Select' 1

OBJ [OWS 'Event' 'Select' 'FOO'
OBJ [OWS 'Event' 'Select' 'FOO' 10

OBJ [OWS 'Event' 'Select' 'FOO&'

These are treated as follows:

Action = 0 (the default)

[DQ performs "standard" processing appropriate to the object and type of event. For
example, the standard processing for a KeyPress event in an Edit object is to action
the key press, i.e. to echo the character on the screen.

Action="1

This disables the event. The "standard" processing appropriate to the object and type
of'event is not performed, or in some cases is reversed. For example, if the "action
code" for a KeyPress event (22) is set to ~1, [0DQ simply ignores all keystrokes for
the object in question.

Action=1

[DQ terminates and returns information pertaining to the event (the event message)
in R as a nested vector whose first two elements are the name of the object (that
generated the event) and the event code. R may contain additional elements
depending upon the type of event that occurred.

Action = fn {larg}

fn is a character vector containing the name of a callback function. This function is
automatically invoked by DQ whenever the event occurs, and prior to the standard
processing for the event. The callback is supplied the event message (see above) as
its right argument, and, if specified, the array | arg as its left argument. Ifthe
callback function fails to return a result, or returns the scalar value 1, [JDQ then
performs the standard processing appropriate to the object and type of event. Ifthe
callback function returns a scalar 0, the standard processing is not performed or in
some cases is reversed.

If the callback function returns its event message with some of the parameters
changed, these changes are incorporated into the standard processing. An example
would be the processing of a keystroke message where the callback function
substitutes upper case for lower case characters. The exact nature of this processing is
described in the reference section on each event type.

Chapter 4: System Functions 337

Action = gexpr

If Action is set to a character vector whose first element is the execute symbol (&)
the remaining string will be executed automatically whenever the event occurs. The
default processing for the event is performed first and may not be changed or
inhibited in any way.

Action = fn& {larg}

fn is a character vector containing the name of a callback function. The function is
executed in a new thread. The default processing for the event is performed first and
may not be changed or inhibited in any way.

The Result of JDQ

(DQ terminates, returning the shy result R, in one of four instances.

Firstly, 0DQ terminates when an event occurs whose "action code" is 1. In this case,
its result is a nested vector containing the event message associated with the event.
The structure of an event message varies according to the event type (see Object
Reference). However, an event message has at least two elements of which the first
is aref to the object or a character vector containing the name of the object, and the
second is a character vector or numeric code which identifies the event type.

0DQ also terminates if all of the objects named in Y have been deleted. In this case,
the result is an empty character vector. Objects are deleted either using JEX, or on
exit from a defined function or operator if the names are localised in the header, or on
closing a form using the system menu.

Thirdly, JDQ terminates if the object named in its right argument is a special modal
object, such asaMsgBox, FileBox orLocator, and the user has finished
interacting with the object (e.g. by pressing an "OK" button). The return value of
0DQ in this case depends on the action code of the event.

Finally, [0DQ terminates with a VALUE ERROR ifit attempts to execute a callback
function that is undefined.

338 Language Reference Guide

Data Representation (Monadic)

R<OR Y

Monadic [JDR returns the type of its argument Y. The result R is an integer scalar
containing one of the following values. Note that the internal representation and
data types for character data differ between the Unicode and Classic Editions.

Table 14: Unicode Edition

Value

Data Type

11

1 bit Boolean

80

8 bits character

83

8 bits signed integer

160

16 bits character

163

16 bits signed integer

320

32 bits character

323

32 bits signed integer

326

Pointer (32-bit or 64-bit as appropriate)

645

64 bits Floating

1287

128 bits Decimal

1289

128 bits Complex

Table 15: Classic Edition

Value

Data Type

11

1 bit Boolean

82

8 bits character

83

8 bits signed integer

163

16 bits signed integer

323

32 bits signed integer

326

Pointer (32-bit or 64-bit as appropriate)

645

64 bits Floating

1287

128 bits Decimal

1289

128 bits Complex

Chapter 4: System Functions 339

Data Representation (Dyadic) R«X DR Y

Dyadic (DR converts the data type of its argument Y according to the type
specification X. See Data Representation (Monadic) above for a list of data types but
note that 1287 is not a permitted value in X.

Case 1:

X is a single integer value. The bits in the right argument are interpreted as elements
of an array of type X. The shape of the resulting new array will typically be changed
along the last axis. For example, a character array interpreted as Boolean will have 8
times as many elements along the last axis.

Case 2:
X is a 2-clement integer value. Y is any array.

X[1] iseither 0 ora data type. If X[1] is 0, Y is converted to data type X[2]. If X

[1] is non-zero, the bits in Y are first interpreted as being of type X[1] before being
converted to type X[2]. If Y is a scalar it is ravelled. Conversion of Y from one
internal data type to another is performed so as to preserve its values without loss of
precision.

The result R is a two element nested array comprised of:

1. The converted elements or a fill element (0 or blank) where the conversion
failed

2. A Boolean array of the same shape indicating which elements were
successfully converted.

Examples

bits« 01 001000, 01001011
80 [DR bits
HK
83 DR bits
72 75
163 [ODR bits
19272

0 645 [DR 72 75

72 75|11

163 645 [ODR 72 75

19272 (1

340 Language Reference Guide

Case 3: Classic Edition Only

X is a 3-element integer value and X[2 3] is 163 82. The bits in the right
argument are interpreted as elements of an array of type X[1]. The system then
converts them to the character representation of the corresponding 16 bit integers.
This case is provided primarily for compatibility with APL*¥*PLUS. For new
applications, the use of the [conv] field with ONAPPEND and [JNREPLACE is
recommended.

Conversion to and from character (data type 82) uses the translate vector given by
[ONXLATE 0. By default this is the mapping defined by the current output translate
table (usually WIN.DOT).

Notes:

« The internal representation of data may be modified during workspace
compaction. For example, numeric arrays and (in the Unicode Edition)
character arrays will, if possible, be squeezed to occupy the least possible
amount of memory. However, the internal representation of the result R is
guaranteed to remain unmodified until it is re-assigned (or partially re-
assigned) with the result of any function.

o The precise operation of dyadic [JDR depends upon the byte-ordering
scheme of the computer system. The examples below assume a big-endian
architecture.

Chapter 4: System Functions 341

Edit Object {R}«{X}0ED Y

0ED invokes the Editor. Y is a simple character vector, a simple character matrix, or a
vector of character vectors, containing the name(s) of objects to be edited. The
optional left argument X is a character scalar or character vector which specifies the
type(s) of the corresponding (new) object(s) named in Y, where:

v function/operator
> simple character vector
€ vector of character vectors

- character matrix

® Namespace script
o Class script
o Interface

If an object named in Y already exists, the type specification in X is ignored for that
name.

If0ED is called from the Session, it opens Edit windows for the object(s) named in Y
and returns a null result. The cursor is positioned in the first of the Edit windows
opened by [JED, but may be moved to the Session or to any other window which is
currently open. The effect is almost identical to using) ED.

IfED is called from a defined function or operator, its behaviour is different. On
asynchronous terminals, the Edit windows are automatically displayed in "full-
screen" mode (ZOOMED). In all implementations, the user is restricted to those
windows named in Y. The user may not skip to the Session even though the Session
may be visible.

(ED terminates and returns a result ONLY when the user explicitly closes all the
windows for the named objects. In this case the result contains the names of any
objects which have been newly (re)fixed in the workspace as a result of the JED, and
has the same structure as Y.

Objects named in Y that cannot be edited are silently ignored. Objects qualified with
a namespace path are (e.g. a.b.c.foo)are silently ignored if the namespace does
not exist.

342

Language Reference Guide

Variants of Edit Object

The behaviour of JED may be modified using the variant operator [] with the
following options:

e 'ReadOnly' -0Oorl
e 'EditName' - 'Default', 'Allow' or 'Disallow’.

IfReadOnly isset to 1, the edit window and all edit windows opened from it will
be read-only. Note that setting ReadOn Ly to 0 will have no effect if the edit
window is inherently read-only due to the nature of'its content.

The 'EditName' option determines whether or not the user may open another edit
window by clicking a name, and its values are interpreted as follows:

EditName OED called from session OED called from function
'‘Default'’ Allow Disallow

"Allow' Allow Allow

‘Disallow’ Disallow Disallow

There is no Principal Option.

Examples
A«3 11p'Hello World'

In the first example, ED will display the contents of A as an editable character array
which the user may change. The user can double-click on Hello to open an edit
window on an object named He | Lo (which will be a new function ifHel Lo is
currently undefined). Furthermore, the user can enter any arbitrary name and double-
click to edit it. This may be undesirable in an application.

OeEp 'A'
In the second example, the Edit window will display the contents of A as a

ReadOnly Character array. The user can still open a new edit by double-clicking
Hello or World but nothing else.

(OED ['ReadOnly' 1) 'A'

In the final example, the Edit window will display the contents of A as a ReadOnly
Character array and the user cannot open a new edit window.

(OED [E('ReadOnly' 1)('EditName' 'Disallow'))'A’

Chapter 4: System Functions 343

Event Message R<EM Y

Y must be a simple non-negative integer scalar or vector of event codes. If Y isa
scalar, R is a simple character vector containing the associated event message. If'Y is
a vector, R is a vector of character vectors containing the corresponding event
messages.

If'Y refers to an undefined error code "n", the event message returned is "ERROR
NUMBER n".

See Programming Reference Guide: APL Error Messages

Example

OeM 11
DOMAIN ERROR

Event Number R<[EN

This simple integer scalar reports the identification number for the most recent event
which occurred, caused by an APL action or by an interrupt or by the JSIGNAL
system function. Its value in a clear workspace is 0.

Example

=0
DOMAIN ERROR: Divide by zero
=0
A
OEN
11

See Programming Reference Guide: APL Error Messages

Note: JSIGNAL can be used to reset the value of this system constant.

344

Language Reference Guide

Exception

R<JEXCEPTION

This is a system object that identifies the most recent Exception thrown by a
Microsoft .NET object.

OEXCEPTION derives from the Microsoft NET class System.Exception. Among its
properties are the following, all of which are strings:

The name of the .NET namespace in which the exception

Source
was generated

StackTrace | The calling stack

Message The error message

OUSING«+'System'
DT«[INEW DateTime (100000 0 0)
EXCEPTION: Year, Month, and Day parameters describe an

un-representable DateTime.
DT+[INEW DateTime (100000 0 0)

A
OEN
90

OEXCEPTION.Message
Year, Month, and Day parameters describe an un-
representable DateTime.

OEXCEPTION. Source
mscorlib

OEXCEPTION.StackTrace
at System.DateTime.DateToTicks(Int32 year,
Int32 month, Int32 day)

at System.DateTime..ctor(Int32 year,
Int32 month, Int32 day)

Similarly to GUT objects, JEXCEPTION is not preserved across a save/load cycle if
the workspace is loaded in a different interpreter.

Note: JSIGNAL can be used to reset the value of this system constant.

Chapter 4: System Functions 345

Expunge Object {R}<EX Y

Y must be a simple character scalar, vector or matrix, or a vector of character vectors
containing a list of names. R is a simple Boolean vector with one element per name
inY.

Each name in Y is disassociated from its value if the active referent for the name is a
defined function, operator, variable or namespace.

The value of an element of R is 1 if the corresponding name in Y is now available for
use. This does not necessarily mean that the existing value was erased for that name.
A value of 0 is returned for an ill-formed name or for a distinguished name in Y. The
result is suppressed if not used or assigned.

Examples

OEX'VAR'

+JEX'FOO' '0jI0' 'X' '123°
1010

If a named object is being executed the existing value will continue to be used until
its execution is completed. However, the name becomes available immediately for
other use.

Examples
)SI
#.FO0O[1]x*
OVR'FOO'
V R«FOO
[1] R«10
v
+JEX'FOO'
1
)SI
#.FO0[1]x*
vFoo[O]
defn error
FOO«1 2 3
~[LC
10
FOO

123

346

Language Reference Guide

If a named object is an external variable, the external array is disassociated from the
name:

OXT'F'
FILES/COSTS

OQeX'F' o OXT'F'
If the named object is a GUI object, the object and all its children are deleted and
removed from the screen. The expression JEX ' . ' deletes all GUI objects owned by
the current thread in the Root namespace but not those in sub-namespaces. In
addition, if this expression is executed by thread 0, it resets all the properties of ' .

to their default values. Furthermore, any unprocessed events in the event queue are
discarded.

Ifthe named object is a shared variable, the variable is retracted.

If the named object is the last remaining external function of an auxiliary process, the
AP is terminated.

Ifthe named object is the last reference into a dynamic link library, the DLL is freed.

Chapter 4: System Functions 347

Export Object {R}«{X}OEXPORT Y

OEXPORT is used to set or query the export type of a defined function (or operator)
referenced by the JPATH mechanism.

Y is a character matrix or vector-of-vectors representing the names of functions and
operators whose export type is to be set or queried.

X is an integer scalar or vector (one per name in the namelist) indicating the export
type. X can currently be one of the values:

+ 0 - not exported.
e 1 - exported (default).

A scalar or 1-element-vector type is replicated to conform with a multi-name list.

The result R is a vector that reports the export type of the functions and operators
named in Y. When used dyadically to set export type, the result is shy.

When the path mechanism locates a referenced function (or operator) in the list of
namespaces in the [JPATH system variable, it examines the function's export type:

This instance of the function is ignored and the search is resumed at the
next namespace in the JPATH list. Type-0 is typically used for functions
residing in a utility namespace which are not themselves utilities, for
example the private sub-function of a utility function.

This instance of the function is executed in the namespace in which it was
1 | found and the search terminated. The effect is exactly as if the function
had been referenced by its full path name.

Warning: The left domain of [JEXPORT may be extended in future to include extra
types 2, 3,... (for example, to change the behaviour of the function). This means that,
while JEXPORT returns a Boolean result in the first version, this may not be the case
in the future. If you need a Boolean result, use 0# or an equivalent.

(0#0EXPORT Onl 3 4)#0nl 3 4+ na Llist of exported
A functions and ops.

348 Language Reference Guide

File Append Component {R}«X OFAPPEND Y

Access code 8

Y must be a simple integer scalar ora 1 or 2 element vector containing the file tie
number followed by an optional passnumber. Ifthe passnumber is omitted it is
assumed to be zero. Subject to a few restrictions, X may be any array.

The shy result R is the number of the component to which X is written, and is 1
greater than the previously highest component number in the file, or 1 if the file is

new.
Examples
(100071000) [OFAPPEND 1
O«(2 3p16) 'Geoff' ([OOR'FOO') [FAPPEND 1
12
O<A B C OFAPPEND™1
13 14 15
Dump+{
tie«o [JFCREATE O A create file.
(OFUNTIE tie){}w OFAPPEND tie A append and untie.
}

File System Available R«(FAVAIL

OF AVAIL returns the scalar value 1 unless the component file system is unavailable
for some reason, in which case it returns scalar 0. If[JFAVAIL does return 0, most of
the component file system functions will generate the error message FILE SYSTEM
NOT AVAILABLE.

Chapter 4: System Functions 349

File Check and Repair R«{X} OFCHK Y

OF CHK validates and repairs component files, and validates files associated with
external variables, following an abnormal termination of the APL process or
operating system.

Y must be a simple character scalar or vector which specifies the name of'the file to
be exclusively checked or repaired. For component files, the file must be named in
accordance with the operating system's conventions, and may be a relative or
absolute pathname. The file must exist and must not be tied. If no file extension is
supplied, the set of extensions specified by the CFEXT parameter are tried one after
another until the file is found or the set of extensions is exhausted. See Installation &
Configuration Guide: CFEXT Parameter.

For files associated with external variables, any filename extension must be specified
even if JXT would not require it. The file must exist and must not currently be
associated with an external variable.

Options for [JF CHK are specified using the Variant operator [or by the optional left
argument X. The former is recommended but the older mechanism using the left
argument is still supported.

In either case, the default behaviour is as follows:

1. If the file appears to have been cleanly untied previously, return 8, i.e.
report that the file is good.

2. Otherwise, validate the file and return the appropriate result. If the file is
corrupt, no attempt is made to repair it.

The result R is a vector of the numbers of missing or damaged components. R may
include non-positive numbers of "pseudo components" that indicate damage to parts
ofthe file other than in specific components:

0 ACCESS MATRIX.
-1 Free-block tree.
-2 Component index tree.

Other negative numbers represent damage to the file metadata; this set may be
extended in the future.

350 Language Reference Guide

Specifying options using Variant
Using Variant, the options are as follows:

o Task
« Repair
o Force

Rebuild causes the file indices to be discarded and rebuilt. Repair only takes place
on files which have been checked and found to be damaged. It involves a rebuild,
but that only takes place if it is needed. Note that Repair and Force only apply if
Task is 'Scan'.

Task

causes the file to be checked and optionally repaired (see

scan 'Repair' below)

Rebuild causes the file to be unconditionally rebuilt

Repair (principle option)

0 do not repair

1 causes the file to be repaired if damage is found
Force

do not validate the file if it appears to have been properly
closed

1 validate the file even if it appears to have been properly closed

Default values are highlighted thus in the above tables.

Examples
To check a file and attempt to fix it if damage is found:
(OFCHK [1) 'suspect.dcf'
To forcibly check a file and attempt to fix it if damage is found:
(OFCHK [('Repair' 1)('Force'1))'suspect.dcf’

Chapter 4: System Functions 351

Specifying options using a left argument

Using the optional left-argument, X must be a vector of zero or more character vectors
fromamong 'force', 'repair' and 'rebuild’', which determine the detailed
operation of the function. Note that these options are case-insensitive.

o If X contains 'force', OFCHK will validate the file even if it appears to
have been cleanly untied.

o If X contains 'repair’', OF CHK will repair the file, following validation,
if it appears to be damaged. This option may be used in conjunction with
‘force'.

o If X contains 'rebuild', OF CHK will repair the file unconditionally.

Following a check of the file, a non-null result indicates that the file is damaged.

Following a repair of the file, the result indicates those components that could not
be recovered. Un-recovered components will givea FILE COMPONENT DAMAGED
error if read but may be replaced without error.

Repair can recover only check-summed components from the file, i.e. only those
components that were written with the checksum option enabled (see File Properties
on page 374).

Following an operating system crash, repair may result in one or more individual
components being rolled back to a previous version or not recovered at all, unless
Journaling levels 2 or 3 were also set when these components were written.

352

Language Reference Guide

File Copy

R«X OFCOPY Y

Access Code: 4609

Y must be a simple integer scalar or 1 or 2-element vector containing the file tie
number and optional passnumber. The file need not be tied exclusively.

X is a character vector containing the name of a new file to be copied to. If no file
extension is supplied, the first extension specified by the CFEXT parameter will be
added. See Installation & Configuration Guide: CFEXT Parameter.

OF COPY creates a copy of the tied file specified by Y, named X.

The new file X will have the same component level information, including the user
number and update time as the original. The operating system file creation,
modification and access times will be set to the time at which the copy occurred.

Unless otherwise specified (see File Properties below) the new file X will have the
same file properties as the original, except that it will be a large-span file regardless
ofthe span of the original.

The result R is the file tie number associated with the new file X.

Note that the Access Code is 4609, which is the sum of the Access Codes for
OFREAD (1),0FRDCI (512) and OFRDAC (4096).

Note also that although the file need not be tied exclusively, the JF COPY function
will not yield the file to other APL processes while it is running, and it may take
some considerable time to run in the case of a large component file.

Example

told«<'oldfile32'0FTIE O
'S' OFPROPS told
32
tnew<'newfileéb4' [FCOPY told

'S' OFPROPS tnew
64

If X specifies the name of an existing file, the operation fails witha FILE NAME
ERROR.

Note: This operation is atomic. If an error occurs during the copy operation (such as
disk full) or if a strong interrupt is issued, the copy will be aborted and the new file X
will not be created.

Chapter 4: System Functions 353

File Properties

[F COPY allows you to specify properties for the new file via the variant operator [l
used with the following options:

e 'J' -joumaling level; a numeric value.
e 'C' -checksum level; 0 or 1.

e 'Z' -compression; 0 or 1.

e 'U' -Unicode; 0 or1

o 'S' -File Size (span); 64

The Principal Option is as follows:

e O-sets ('J' 0) ('C' 0)

o l-sets('J' 1) ('C" 1)

e« 2-sets ('J' 2) ('C'" 1)

e 3-sets ('J' 3) ('C' 1)
Examples

newfid«'newfile' ([JFCOPY [J3) 1

"SEUJCZ' [FPROPS newfid
64 01 310

Altematively:
JFCOPY<JFCOPY [3

will name a variant of JF CREATE which will create component file with level 3
journaling, and checksum enabled. Then:

newfid«'newfile' JFCOPY 1

Note: Setting ('U"' 0) (no Unicode support) is discouraged as it may cause the
copy to fail with a TRANSLATION ERROR. Similarly using a Classic interpreter to
OF COPY files may result in TRANSLATION ERRORs.

354

Language Reference Guide

File Create {R}«X [OFCREATE Y

Y must be a simple integer scalar ora 1 or 2 element vector. The first element is the

file tie number. The second element, if specified, must be 641.

The file tie number must not be the tie number associated with another tied file.
X must be either:

a. a simple character scalar or vector which specifies the name of the file to be
created. If no file extension is supplied, the first extension specified by the
CFEXT parameter will be added. See Installation & Configuration Guide:
CFEXT Parameter.

b. avector of length 1 or 2 whose items are:

i. a simple character scalar or vector as above.
ii. an integer scalar specifying the file size limit in bytes.

The newly created file is tied for exclusive use.

The shy result of JF CREATE is the tie number of the new file.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create or tie operation, allocates, and returns as an
explicit result, the first (closest to zero) available tie number. This allows you to
simplify code. For example:

from:
tie<1+[/0,0FNUM A With next available number,
file OFCREATE tie A ... create file.
to:
tie«file OFCREATE O a Create with first available..
Examples

"..\BUDGET\SALES" OFCREATE 2 A Windows
'../budget/SALES.85"' [OFCREATE 2 A UNIX

'COSTS' 200000 [JFCREATE 4 A max size 200000

IThis element sets the span of the file which in earlier Versions of Dyalog APL could be 32 or 64.
Small-span (32-bit) component files may no longer be created and this element is retained only for
backwards compatibility of code.

Chapter 4: System Functions 355

File Properties

[F CREATE allows you to specify properties for the newly created file via the variant
operator [used with the following options:

e 'J' -joumaling level; a numeric value
e 'C' -checksum level; 0 or 1

e 'Z' -compression; 0 or 1

e 'U' -Unicode; 0 or1

o 'S' -File Size (span); 64

The Principal Option is as follows:
e O-sets ('J" 0) ('C' 0)
o l-sets('J' 1) ('C" 1)
e« 2-sets ('J' 2) ('C'" 1)
e 3-sets ('J" 3) ('C' 1)
Examples

‘newfile' ([OOFCREATE[EI3) O
1

"SEUJCZ' [OFPROPS 1
64 01 310

Altematively:
JFCREATE<[JFCREATE [] 3

will name a variant of JF CREATE which will create component file with level 3
journaling, and checksum enabled. Then:

‘newfile'JFCREATE 0O

356 Language Reference Guide

File Drop Component {R}<«[OFDROP Y

Access code 32

Y must be a simple integer vector of length 2 or 3 whose elements are:

[1]]a file tie number

a number specifying the position and number of components to be
dropped. A positive value indicates that components are to be removed
from the beginning of the file; a negative value indicates that
components are to be removed from the end of the file

[2]

[3] | an optional passnumber which if omitted is assumed to be zero

The shy result ofa [JFDROP is a vector of the numbers of the dropped components.
This is analogous to JF APPEND in that the result is potentially useful for updating
some sort of dictionary:

cnos,«vec [OFAPPEND'tie A Append index to dictionary
cnos~<[JFDROP tie,-pvec A Remove index from dict.

Note that the result vector, though potentially large, is generated only on request.

Examples

OFSIzZE 1
1 21 5436 4294967295

OFDROP 1 3 ¢ [FSIZE 1
4 21 5436 4294967295

OFDROP 1 ~2 o [FSIZE 1
4 19 5436 4294967295

Chapter 4: System Functions 357

File Erase

{R}«X OFERASE Y

Access code 4

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie
number followed by an optional passnumber. Ifthe passnumber is omitted it is
assumed to be zero. X must be a character scalar or vector containing the name of the
file associated with the tie number Y. This name must be identical with the name
used to tie the file, and the file must be exclusively tied. The file named in X is
erased and untied. See User Guide for file naming conventions under UNIX and
Windows.

The shy result of OFERASE is the tie number of the erased file.

Examples
"SALES'0FERASE 'SALES' OFTIE O

‘./temp' [OFCREATE 1

"temp' [FERASE 1
FILE NAME ERROR

"temp'0JFERASE 1

A

File History R«(FHIST Y

Access code 16384

Y must be a simple integer vector of length 1 or 2 containing the file tie number and
an optional passnumber. If the passnumber is omitted it is assumed to be zero.

The result is a numeric matrix with shape (5 2) whose rows represent the most recent
occurrence of the following events.

File creation (see note)

(Undefined)

Last update of the access matrix

(Undefined)

Last update performed by [JFAPPEND, JFCREATE, JFDROP or
OFREPLACE

IS

For each event, the first column contain the user number and the second a timestamp.
Like the timestamp reported by OFRDCI this is measured in 60ths of a second since
Ist January 1970 (UTC).

Currently, the second and fourth rows of the result (undefined) contain (0 0).

358 Language Reference Guide

Note: OFHIST collects information only if journaling and/or checksum is in
operation. If neither is in use, the collection of data for JFHIST is disabled and its
result is entirely 0. If a file has both journaling and checksum disabled, and then
either is enabled, the collection of data for JFHIST is enabled too. In this case, the
information in row 1 of JFHIST relates to the most recent enabling [JFPROPS
operation rather than the original JF CREATE.

In the examples that follow, the FHi st function is used below to format the result of
OFHIST.

V r<FHist tn;cols;rows;fhist;fmt;ToTS;I2D

[1] rows«'Created' 'Undefined' 'Last [JFSTAC'
[2] rows,<'Undefined' 'Last Updated'
[3] cols«'User' 'TimeStamp'
(4] fmt«'ZI4,2(c->,212),c o,212,2(c:>,712)"'
[5] I2D«{+2 ONQ'.' 'IDNToDate'w}
[6] ToTS«{d t«1 1 0 O 0<qlO 24 60 60 60TW
[7] {fmt OFMT(0 ~141I2D"25568+,d),0 ~14t}
[8] fhist«<[JFHIST tn
[9] fhist[;2]«ToTS fhist[;2]
[10] fhist[;1]«s fhist[;1]

] r<((c''),rows),colssfhist

Examples

'c:\temp'JFCREATE 1 ¢ FHist 1
User TimeStamp

Created 0 2012-01-14% 12:29:53
Undefined 0 1970-01-01 00:00:00
Last [FSTAC 0 2012-01-14 12:29:53
Undefined 0 1970-01-01 00:00:00
Last Updated O 2012-01-14% 12:29:53

(1t10)JFAPPEND 1 ¢ FHist 1
User TimeStamp

Created 0 2012-01-14 12:29:53

Undefined 0 1970-01-01 00:00:00

Last OFSTAC 0 2012-01-14% 12:29:53

Undefined 0 1970-01-01 00:00:00

Last Updated 0 2012-01-14 12:29:55
OFUNTIE 1

'c:\temp'0FCREATE 1 ¢ FHist 1
User TimeStamp

Created 0 2012-01-14 12:29:53
Undefined 0 1970-01-01 00:00:00
Last OFSTAC 0 2012-01-14% 12:29:53
Undefined 0 1970-01-01 00:00:00
Last Updated O 2012-01-14% 12:29:55

Chapter 4: System Functions 359

File Hold

{R}<[FHOLD Y

Access code 2048

This function holds component file(s) and/or external variable(s). It is used to
synchronise access to resources shared between multiple cooperating Dyalog
processes. It is not intended to synchronise access between Dyalog threads; for this
purpose you should use : Hol d.

For a multi-threaded and multi-process application, a single JF HOLD is used to
synchronise inter-process access, while : Ho L d is used in multiple threads to
synchronise access between threads in the same process. See also Programming
Reference Guide: Hold Statement.

If applied to component files, then Y is an integer scalar, vector, or one-row matrix of
file tie numbers, or a two-row matrix whose first row contains file tie numbers and
whose second row contains passnumbers.

If applied to external variables, then Y is a simple scalar character, a character vector,
a non-simple scalar character vector, or a vector of character vectors that specifies one
or more names of external variable(s) (NOT the file names associated with those
variables). Note that when Y is simple, each character in Y is interpreted as a variable
name. Ifapplied to component files and external variables, Y is a vector whose
elements are either integer scalars representing tie numbers, or character scalars or
vectors containing names of external variables.

The effect is as follows:

1. All of the user's preceding holds (if any) are released, whether referenced in
Y or not.

2. Execution is suspended until the designated files are free of holds by any
other task.

3. When all the designated files are free, execution proceeds. Until the hold is
released, other tasks using JFHOLD on any of the designated files will wait.

IfY is empty, all of the user's preceding holds (if any) are released, and execution
continues. A hold is released by any of the following:

o Another JFHOLD

« Untying or retying all the designated files. If some but not all are untied or
retied, they become free for another task but the hold persists for those that
remain tied.

o Termination of APL.

« Any untrapped error or interrupt.

o A return to immediate execution.

360 Language Reference Guide

Note that a hold is not released by a request for input through [or .

[F HOLD is generally useful only when called from a defined function, as holds set in
immediate execution (desk calculator) mode are released immediately.

If'Y is a matrix, the shy result R is Y[1 ;]. Otherwise, the shy result R is Y.

Examples:
[JFHOLD 1

QFHOLD &
[(FHOLD c<'XTVAR'
QFHOLD 1 2,[0.5]0 16385

(FHOLD 1 'XTVAR'

Chapter 4: System Functions 361

Fix Script {R}<{X}OFIX Y

0F IX establishes Namespaces, Classes, Interfaces and functions from the script
specified by Y in the workspace.

In this section, the term namespace covers scripted Namespaces, Classes and
Interfaces.

Y may be a simple character vector, or a vector of character vectors or character
scalars. The value of X determines what Y may contain.

If'Y is a simple character vector, it must start with "file://", followed by the name of a
file which must exist. The contents of the file must follow the same rules that apply
to Y when Y is a vector of character vectors or scalars. The file name can be relative
or absolute; when considering cross-platform portability, using "/" as the directory
delimiter is recommended, although "\" is also valid under Windows.

If specified, X must be a numeric scalar. It may currently take the value 0, 1 or 2. If
not specified, the value is assumed to be 1.

If X is 0, Y must specify a single valid namespace which may or may not be named,
or a file containing such a definition. If so, the shy result R contains a reference to the
namespace. Even if the namespace is named, it is not established per se, although it
will exist for as long as at least one reference to it exists.

If X is 1, Y must specify a single valid namespace which may or may not be named,
or a file containing such a definition. If so, the shy result R contains a reference to the
namespace.If Y contains the definition of a named namespace, the namespace is
established in the workspace.

If X is 2, Y may specify a mixture of any number of valid, named namespaces or
function definitions, or a file containing such a definition. A function definition
must be either that of a dfn or a tradfn only and must be of the same form as when
they are defined in namespace scripts. If so, the shy result R is a vector of character
vectors, containing the names of all of the objects that have been established in the
workspace; the order of the names in R is not defined. Currently 2 [F IX is not
certain to be an atomic operation, although this might change in future versions.

362 Language Reference Guide

Example 1

In the first example, the Class specified by Y is named (MyCl ass) but the result of
0F IX is discarded. The end-result is that MyCl ass is established in the workspace
as a Class.

O«0FIX ':Class MyClass' ':EndClass'
#.MyClass

Example 2

In the second example, the Class specified by Y is named (MyCl ass) and the result
of OF IX is assigned to a different name (MYREF). The end-result is that a Class
named MyCl ass is established in the workspace, and MYREF is a reference to it.

MYREF«[JFIX ':Class MyClass' ':EndClass'
)JCLASSES
MyClass MYREF
[ONC'MyClass' 'MYREF'
9.4 9.4
MYREF
#.MyClass
MYREF=MyClass
1

Example 3

In the third example, the left-argument of O causes the named ClassMyClass to be
visible only via the reference to it (MYREF). It is there, but hidden.

MYREF«0 OFIX ':Class MyClass' ':EndClass'
)JCLASSES

MYREF
MYREF

#.MyClass

Example 4
The fourth example illustrates the use of un-named Classes.

src«':Class' 'VMake n'
src,«'Access Public' 'Implements Constructor'
src,«'DDF n' 'v' ':EndClass'
MYREF<OFIX src
JCLASSES
MYREF
MYINST<[NEW MYREF 'Pete’
MYINST
Pete

Chapter 4: System Functions 363

Example 5

In the final example, the left argument of 2 allows a script containing multiple
objects to be fixed:

src«':Namespace andys' 'Vfoo' '2' 'V’
src,«':EndNamespace’' 'dfn<{a w}' 'Vr<tfn’
src,«'r«33' 'v' ':Class c1' 'vgoo' '1'
src,«'v' ':EndClass'
Z0«20fix src

cl tfn dfn andys

L

Restriction

OF IX isunable to fix a namespace from Y when Y specifies a multi-line dfn which is
preceded by a ¢ (diamond separator).

OFIX':Namespace iaK' 'foo' 'a«l o adfn«<{' 'w !

DOMAIN ERROR: There were errors processing the script
OFIX':Namespace iaK' 'foo' 'a«l ¢ adfn<{' 'w' ' }'
A

Component File Library R«QOFLIB Y

Y must be a simple character scalar or vector which specifies the name of the
directory whose APL component files are to be listed. IfY is empty, the current
working directory is assumed.

The result R is a character matrix containing the names of the component files in the
directory with one row per file. The number of columns is given by the longest file
name. Each file name is prefixed by Y followed by a directory delimiter character.
The ordering of the rows is not defined.

If there are no APL component files accessible to the user in the directory in
question, the result is an empty character matrix with 0 rows and 0 columns.

Examples

grLIs "'
SALESFILE
COSTS

grLIB '.'
./SALESFILE
./COSTS

OFLIB '../budget'
../budget/SALES.85
../budget/COSTS. 85

364 Language Reference Guide

Format (Monadic) R<FMT Y

Y may be any array. R is a simple character matrix which appears the same as the
default display of Y. IfY contains control characters from JTC, they will be resolved.

Examples
A<(JFMT 'n' OTC[1],'e"’

pA
11
A
A
A<JVR 'FOO'
A
vV R<«FOO
[1] R<10
v
pA
31
B<[FMT A
B
vV R<«FOO
[1] R«10
v
pB

3 12

Chapter 4: System Functions 365

Format (Dyadic) R«X OFMT Y

Y must be a simple array of rank not exceeding two, or a non-simple scalar or vector
whose items are simple arrays of rank not exceeding two. The simple arrays in Y
must be homogeneous, either character or numeric. All numeric values in Y must be
simple; if Y contains any complex numbers, dyadic JFMT will generate a DOMAIN
ERROR. X must be a simple character vector. R is a simple character matrix.

X is a format specification that defines how columns of the simple arrays in Y are to
appear. A simple scalarin Y is treated as a one-clement matrix. A simple vectorin Y
is treated as a one-column matrix. Each column ofthe simple arrays in Y is formatted
in left-to-right order according to the format specification in X taken in left-to-right
order and used cyclically if necessary.

R has the same number of rows as the longest column (or implied column) in Y, and
the number of columns is determined from the format specification.

The format specification consists of a series of control phrases, with adjacent phrases
separated by a single comma, selected from the following:

rAw Alphanumeric format
réw.s Scaled format
rqfw.d Decimal format
rqGlpattern(] Pattern

rqlw Integer format

Tn Absolute tabulation
Xn Relative tabulation
0t0 Text insertion

(Alternative surrounding pairs for Pattern or Text insertionare < >, < o, 0 [0 or

)

366

Language Reference Guide

where:

t

pattern

is an optional repetition factor indicating that the format phrase
is to be applied to r columns of Y

is an optional usage of qualifiers or affixtures from those
described below.

is an integer value specifying the total field width per column
of Y, including any affixtures.

is an integer value specifying the number of significant digits in
Scaled format; s must be less than w-1

is an integer value specifying the number of places of decimal
in Decimal format; d must be less than w.

is an integer value specifying a tab position relative to the
notional left margin (for T-format) or relative to the last
formatted position (for X-format) at which to begin the next
format.

is any arbitrary text excluding the surrounding character pair.
Double quotes imply a single quote in the result.

see following section G format

Qualifiers q are as follows:

B

C

Km

L
ov[tM

SOpl

leaves the field blank if the result would otherwise be zero.
inserts commas between triads of digits starting from the
rightmost digit of the integer part of the result.

scales numeric values by 1Em where m is an integer; negation
may be indicated by ~ or - preceding the number.

left justifies the result in the field width.

replaces specific numeric value v with the text t.

substitutes standard characters. p is a string of pairs of symbols
enclosed between any of the Text Insertion delimiters. The first
of each pair is the standard symbol and the second is the symbol
to be substituted. Standard symbols are:

* overflow fill character

. decimal point

, triad separator for C qualifier

0 fill character for Z qualifier

_ loss of precision character

fills unused leading positions in the result with zeros (and
commas if C is also specified).

digit selector

Chapter 4: System Functions 367

Affixtures are as follows:

prefixes negative results with the text t instead of the negative

MO0 :
sign.
NOtO post-fixes negative results with the text t
POtO prefixes positive or zero results with the text t.
Ot post-fixes positive or zero results with the text t.
presets the field with the text t which is repeated as necessary
RO to fill the field. The text will be replaced in parts of the field

filled by the result, including the effects of other qualifiers and
affixtures except the B qualifier

The surrounding affixture delimiters may be replaced by the alternative pairs
described for Text Insertion.

Examples
A vector is treated as a column:

'I5' OFMT 10 20 30
10
20
30

The format specification is used cyclically to format the columns of the right
argument:

'I3,F5.2"' OFMT 2 4p18
1 2.00 3 4.00
5 6.00 7 8.00

The columns of the separate arrays in the items of a non-simple right argument are
formatted in order. Rows in a formatted column beyond the length of the column are
left blank:

"2I4,F7.1" OFMT (14)(2 2p O0.1x1k4)
0 0.2
0 0.4

FwWr e~

Characters are right justified within the specified field width, unless the L qualifieris
specified:

"A2' [OFMT 1 6p'SPACED'
SPACED

368

Language Reference Guide

If the result is too wide to fit within the specified width, the field is filled with
asterisks:

'F5.2' OFMT 0.1x5 1000 ~100
0.50

* % k k %
* k k k %

Relative tabulation (X-format) identifies the starting position for the next format
phrase relative to the finishing position for the previous format, or the notional left
margin ifnone. Negative values are permitted providing that the starting position is
not brought back beyond the left margin. Blanks are inserted in the result, if
necessary:

'I12,X3,3A1" [OFMT (13)(2 3p'TOPCAT')

1 TOP
2 CAT
3

Absolute tabulation (T-format) specifies the starting position for the next format
relative to the notional left margin. Ifposition 0 is specified, the next format starts at
the next free position as viewed so far. Blanks are inserted into the result as required.
Over-written columns in the result contain the most recently formatted array columns
taken in left-to-right order:

X<'6I1,T5,A1,T1,3A1,T7,F5.1"

X OFMT (1 6p16)('*x')(1 3p'ABC')(22.2)
ABCLx6 22.2

If the number of specified significant digits exceeds the internal precision, low order
digits are replaced by the symbol _:

'F20.1' OFMT 1E18%3
3333333333333333__._

The Text Insertion format phrase inserts the given text repeatedly in all rows of the
result:

MEN<3 5p'FRED BILL JAMES'
WOMEN<«2 5p'MARY JUNE '

'5A1,<|>" OFMT MEN WOMEN
FRED |MARY |
BILL |JUNE |
JAMES | |

Chapter 4: System Functions 369

The last example also illustrates that a Text Insertion phrase is used even though the
data is exhausted. The following example illustrates effects of the various qualifiers:

X«<'F5.1,BF6.1,X1,2F5.1,X1,LF5.1,K3CS<.,,.>F10.1"'

X OFMT &5 3p~1.5 0 25
1.5 71.5 701.5 71.5 ~1.500,0
0.0 000.0 0.0 0,0
25.0 25.0 025.0 25.0 25.000,0

Affixtures allow text to be included within a field. The field width is not extended
by the inclusion of affixtures. N and Q affixtures shift the result to the left by the
number of characters in the text specification. Affixtures may be used to enclose
negative results in parentheses in accordance with common accounting practice:

'M<(>N<)>Q< >F9.2"' [FMT 150.3 ~50.25 0 1114.9
150.30
(50.25)
0.00
1114.90

One or more format phrases may be surrounded by parentheses and preceded by an

optional repetition factor. The format phrases within parentheses will be re-used the
given number of times before the next format phrase is used. A Text Insertion phrase
will not be re-used if the last data format phrase is preceded by a closing parenthesis:

'12,2(</>,7I12)"' OFMT 1 3p$100]|3t0TS
20/07/89

G Format

Only the B, K, S and O qualifiers are valid with the G option

[patternlisan arbitrary string of characters, excluding the delimiter characters.
Characters '9' and 'Z' (unless altered with the S qualifier) are special and are known as
digit selectors.

The result of a G format will have length equal to the length of the pattern.

The data is rounded to the nearest integer (after possible scaling). Each digit of the
rounded data replaces one digit selector in the result. If there are fewer data digits

than digit selectors, the data digits are padded with leading zeros. If there are more
data digits than digit selectors, the result will be filled with asterisks.

A '9' digit selector causes a data digit to be copied to the result.

370

Language Reference Guide

A 'Z' digit selector causes a non-zero data digit to be copied to the result. A zero data
digit is copied if and only if digits appear on each side of it. Otherwise a blank
appears. Similarly text between digit selectors appears only if digits appear on each
side of the text. Text appearing before the first digit selector or after the last will
always appear in the result.

Examples

'Gc99/99/99>"'0FMT 0 100 100 18 7 89
08/07/89

'GeZ1/77/17>'0FMT 80789 + 0 1
8/07/89
8/07/9

'GeAndy ZZ Pauline ZZ>' [FMT 2721.499 2699.5
Andy 27 Pauline 21
Andy 27

p«'K2GeDM 7.2272.279,99>"' [FMT 1234567.89 1234.56
DM 1.234.567,89
DM 1.234%,56
2 15

An error will be reported if:

o Numeric data is matched against an A control phrase.

o Character data is matched against other than an A control phrase.
o The format specification is ill-formed.

o For an F control phrase, d>w-2

« For an E control phrase, s>w-2

O Format Qualifier

The O format qualifier replaces a specific numeric value with a text string and may
be used in conjunction with the E, F, [and G format phrases.

An O-qualifier consists of the letter "O" followed by the optional numeric value
which is to be substituted (if omitted, the default is 0) and then the text string within
pairs of symbols such as "<>". For example:

O - qualifier Description

O<nil> Replaces the value 0 with the text "nil"

O42<N/A> Replaces the value 42 with the text "N/A"

00.001<1/1000> Replaces the value 0.001 with the text "1/1000"

Chapter 4: System Functions 371

The replacement text is inserted into the field in place of the numeric value. The text
is normally right-aligned in the field, but will be left-aligned if the L qualifier is also
specified.

It is permitted to specify more than one O-qualifier within a single phrase.

The O-qualifier is JCT sensitive.

Examples
"O<NIL>F7.2'0FMT 12.3 0 42.5
12.30
NIL
42.50
"O<NIL>LF7.2'00FMT 12.3 0 42.5
12.30
NIL
42.50
"O<NIL>O42<N/A>I6'0FMT 12 0 42 13
12
NIL
N/A
13
'099<replace>F20.2'0fmt 99 100 101
replace
100.00
101.00

OCT and ODCT are implicit arguments of JFMT with the O format qualifier.

372 Language Reference Guide

File Names R<[JFNAMES

The result is a character matrix containing the names of all tied files, with one file
name per row. The number of columns is that required by the longest file name.

A file name is returned precisely as it was specified when the file was tied. Ifno files
are tied, the result is a character matrix with 0 rows and 0 columns. The rows of the
result are in the order in which the files were tied.

Examples
'/usr/pete/SALESFILE' [OFSTIE 16

'../budget/COSTFILE' [FSTIE 2
'PROFIT' [FCREATE 5

OFNAMES
/usr/pete/SALESFILE
../budget/COSTFILE
PROFIT

pOFNAMES
319

OFNUMS ,00FNAMES
16 /usr/pete/SALESFILE
2 ../budget/COSTFILE
5 PROFIT

Chapter 4: System Functions 373

File Numbers R<«[JFNUMS

The result is an integer vector of the file tie number of all tied files. Ifno files are
tied, the result is empty. The elements of the result are in the order in which the files
were tied.

Examples
'/home/pete/SALESFILE' OFSTIE 16
'../budget/COSTFILE' OFSTIE 2
"PROFIT' [OFCREATE 5

OF NUMS
16 2 5

OFNUMS ,[IFNAMES
16 /home/pete/SALESFILE
2 ../budget/COSTFILE
5 PROFIT

OFUNTIE OFNUMS
pOF NUMS

374 Language Reference Guide

File Properties R«X OFPROPS Y

Access Code 1 (to read) or 8192 (to change properties)
OFPROPS reports and sets the properties of a component file.

Y must be a simple integer scalar or 1 or 2-element vector containing the file tie
number followed by an optional passnumber. If the passnumber is omitted, it is
assumed to be 0.

X must be a simple character scalar or vector containing one or more valid Identifiers
listed in the table below, or a 2-element nested vector which specifies an Identifier
and a (new) value for that property. To set new values for more than one property, X
must be is a vector of 2-element vectors, each of which contains an Identifier and a
(new) value for that property.

Ifthe left argument is a simple character array, the result R contains the current values
for the properties identified by X. If the left argument is nested, the result R contains
the previous values for the properties identified by X.

Identifier | Property Description / Legal Values

File Size 32 = Small-span Component Files (<4GB)

> (read only) |64 = Large-span Component Files
£ Endian-ness |0 = Little-endian
(read only) |1 = Big-endian
U Unicode 0 = Characters will be written as type 82 arrays

1 = Characters will be written as Unicode arrays

0 = Disable Journaling

1 = Enable APL crash proof Journaling

J Journaling |2 = Enable System crash proof Journaling; repair
needed on recovery

3 = Enable full System crash proof Journaling

0 = Disable checksum

¢ Checksum 1 = Enable checksum

0 = Disable compression

C . .
7 ompression 1 = Enable compression

Chapter 4: System Functions 375

The default properties for a newly created file are as follows:

« S=64

e U=1 (in Unicode Edition) or 0 (in Classic Edition)
« J=1

e« C=1

¢« Z=0

« E depends upon the computer architecture.

Note that the defaults for C and J can be overridden by calling JF CREATE via the
Variant operator [I]. For further information, see File Create on page 354.

Journaling Levels

Level 1 journaling (APL crash-proof) automatically protects a component file from
damage in the event of abnormal termination of the APL process. The file state will
be implicitly committed between updates and an incomplete update will
automatically be rolled forward or back when the file is re-tied. In the event of an
operating system crash the file may be more seriously damaged. If checksum was also
enabled it may be repaired using (JF CHK but some components may be restored to a
previous state or not restored at all.

Level 2 journaling (system crash-proof — repair needed on recovery) extends level 1
by ensuring that a component file is fully repairable using JF CHK with no
component loss in the event of an operating system failure. If an update was in
progress when the system crashed the affected component will be rolled back to the
previous state. Tying and modifying such a file without first running [JF CHK may
however render it un-repairable.

Level 3 journaling (system crash-proof) extends level 2 by protecting a component
file from damage in the event of abnormal termination of the APL process and also
the operating system. Rollback of an incomplete update will be automatic and no
explicit repair will be needed.

Enabling journaling on a component file will reduce performance of file updates;
higher journaling levels have a greater impact.

Joumaling levels 2 and 3 cannot be set unless the checksum option is also enabled.

The default level of journaling may be changed using the APL_FCREATE _
PROPS_J parameter (see Dyalog for Microsoft Windows Installation and
Configuration Guide: Configuration Parameters for more information).

376

Language Reference Guide

Checksum Option

The checksum option is enabled by default. This enables a damaged file to be
repaired using [JF CHK. It will however reduce the performance of file updates
slightly and result in larger component files. The default may be changed using the
APL_FCREATE_PROPS_C parameter (See User Guide).

Enabling the checksum option on an existing non-empty component file will result
in all previously written components without a checksum being check-summed and
converted. This operation which will take place when JFPROPS is changed, may
not therefore be instantaneous.

Journaling and checksum settings may be changed at any time a file is exclusively
tied.

Example

tn<'myfile64' [FCREATE O
'SEUJT' [OFPROPS tn
64 01 0

The following expression disables Unicode and switches Journaling on. The
function returns the previous settings:

('U' 0)('J" 1) OFPROPS tn
10

Note that to set the value of just a single property, the following two statements are
equivalent:

‘J' 1 OFPROPS tn
(,e'J" 1) OFPROPS tn

Properties may be read by a task with JFREAD permission (access code 1), and set by
a task with JF STAC access (8192). To set the value of the Journaling property, the
file must be exclusively tied.

Recommendation

It is recommended that all component files are protected by a minimum of Level 1
Journalling and have Checksum enabled.

Unprotected files should only be used:

« for temporary work files where speed is paramount and integrity a
secondary issue
« or where compatibility with Versions of Dyalog prior to Version 12.0 is

required

Chapter 4: System Functions 377

This recommendation is given for the following reasons:

o Unprotected files are easily damaged by abnormal termination of the
interpreter

o They cannot be repaired using OF CHK

o They do not support FHIST

o They are not well supported by the Dyalog File Server (DFS)

o They do not support compression of components

« Additional features added in future may not be supported

Compression Option

Components are compressed using the LZ4 compressor which delivers a medium
level of compression, but is considered to be very fast compared to other algorithms.

Compression is intended to deliver a performance gain reading and writing large
components on fast computers with slow (e.g. network) file access. Conversely, on a
slow computer with fast file access compression may actually reduce read/write
performance. For this reason it is optional at the component level.

The default forthe 'Z ' property is 0 which means no compression; 1 means
compression. When written, components are compressed or not according to the
current value ofthe ' 2 ' property. Changing this property does not change any
components already in the file.

A component file may therefore contain a mixture of normal and compressed
components. Note that only the data in file components are compressed, the file
access matrix and other header information is not compressed.

When read, compressed components are decompressed regardless of the value of the
"7"' property.

An exclusive tie is not needed to change the file property.

Compression is not supported for files in which both Journalling and Checksum are
disabled.

378

Language Reference Guide

Floating-Point Representation OFR

The value of [JFR determines the way that floating-point operations are performed.

IfOFR is 645, all floating-point calculations are performed using IEEE 754 64-bit
floating-point operations and the results of these operations are represented
internally using binary641 floating-point format.

If[FR is 1287, all floating-point calculations are performed using IEEE 754-2008
128-bit decimal floating-point operations and the results of these operations are
represented internally using decimall282 format.

Note that when you change (FR, its new value only affects subsequent floating-
point operations and results. Existing floating-point values stored in the workspace
remain unchanged.

The default value of [JFR (its value in a c Lear ws)is configurable.

[FR may be localised. If so, like most other system variables, it inherits its initial
value from the global environment.

However: Although [JFR can vary, the system is not designed to allow "seamless"
modification during the running of an application and the dynamic alteration of'is
not recommended. Strange effects may occur. For example, the type of a constant
contained in a line of code (in a function or class), will depend on the value of JFR
when the function is fixed.

Also note:
[OFR«1287
x<1+3
[(FR<645
x=1+3

1

Thttp://en.wikipedia.org/wiki/Double_precision_floating-point_format

2http://en.wikipedia.org/wiki/Decimal 128 _floating-point_format

Chapter 4: System Functions 379

The decimal number has 17 more 3's. Using the tolerance which applies to binary
floats (type 645), the numbers are equal. However, the "reverse" experiment yields 0,
as tolerance is much narrower in the decimal universe:

OFR<645
x<«1+3
OFR«1287
x=1+3

0

Since [JF R can vary, it will be possible for a single workspace to contain floating-
point values of both types (existing variables are not converted when [JFR is
changed). For example, an array that has just been brought into the workspace from
external storage may have a different type from [JFR in the current namespace.
Conversion (if necessary) will only take place when a new floating-point array is
generated as the result of "a calculation". The result of a computation returning a
floating-point result will not depend on the type of the arrays involved in the
expression: [JFR at the time when a computation is performed decides the result type,
alone.

Structural functions generally do NOT change the type, for example:

OFR«1287
x«<1.1 2.2 3.3

OFR<645

0ODbR x
1287

ODbR 21tx
1287

128-bit decimal numbers not only have greater precision (roughly 34 decimal digits);
they also have significantly larger range — from “1E6145 to 1E6145. Loss of
precision is accepted on conversion from 645 to 1287, but the magnitude of a
number may make the conversion impossible, in which case a DOMAIN ERROR is
issued:

OFR<«1287

x<1E1000

OFR«645 ¢ x+0
DOMAIN ERROR

380

Language Reference Guide

When experimenting with [JFR it is important to note that numeric constants entered
into the Session are evaluated (and assigned a data type) before the line is actually
executed. This means that constants are evaluated according to the value of [JFR that
pertained before the line was entered. For example:

OFR<«645

OFR
645

OFR<«1287 o [DR 0.1
645

0ObR 0.1
1287

WARNING: The use of COMPLEX numbers when [JFR is 1287 is not
recommended, because:

any 128-bit decimal array into which a complex number is inserted or appended will
be forced in its entirety into complex representation, potentially losing precision.

All comparisons are done using DCT when [FR is 1287, and the default value of
1E728 is equivalent to 0 for complex numbers.

File Read Access R<[JFRDAC Y

Access code 4096

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie
number followed by an optional passnumber. Ifthe passnumber is omitted it is
assumed to be zero. The result is the access matrix for the designated file.

For details see Programming Reference Guide: Component Files.

Examples

OFRDAC 1
28 2105 16385
0 2073 16385
31 1 0

Chapter 4: System Functions 381

File Read Component Information R«[JFRDCI Y

Access code 512

Y must be a simple integer vector of length 2 or 3 containing the file tie number,
component number and an optional passnumber. Ifthe passnumber is omitted it is
assumed to be zero.

The result is a 3 element numeric vector containing the following information:

1. the size of the component in bytes (i.e. how much disk space it occupies).
2. the user number of the user who last updated the component.
3. the time of the last update in 60ths of a second since 1st January 1970

(UTC).
Example

OFRDCI 1 13
2200 207 3.702094494E10

382 Language Reference Guide

File Read Components R«(JFREAD Y

Access code 1

Y is a 2 or 3 item vector containing the file tie number, the component number(s), and
an optional passnumber. Ifthe passnumber is omitted it is assumed to be zero. All
elements of Y must be integers.

The second item in Y may be scalar which specifies a single component number or a
vector of component numbers. If it is a scalar, the result is the value of the array that
is stored in the specified component on the tied file. If it is a vector, the result is a
vector of such arrays.

Note that any invocation of JFREAD is an atomic operation. Thus if compnos isa
vector, the statement:

OFREAD tie compnos passno
will return the same result as:
{OFREAD tie w passno} compnos

However, the first statement will, in the case of a share-tied file, prevent any
potential intervening file access from another user (without the need for a [JF HOLD).
It will also perform slightly faster, especially when reading from a share-tied file.

Examples
PpSALES<+[JFREAD 1 241

3 2 12

GetFile«{io«0 A Extract contents.
tie«w [Ofstie O A new tie number.
fm to«2t0fsize tie A first and next component.
cnos<«<fm+ito-fm A vector of component nos.
cvec<[Jfread tie cnos A vector of components.
cvec-funtie tie A ... untie and return.

Chapter 4: System Functions 383

File Rename {R}«X OFRENAME Y

Access code 128

Y must be a simple 1 or 2 element integer vector containing a file tie number and an
optional passnumber. Ifthe passnumber is omitted it is assumed to be zero.

X must be a simple character scalar or vector containing the new name of the file.
This name must be in accordance with the operating system's conventions, and may
be specified with a relative or absolute pathname. If no file extension is supplied, the
first extension specified by the CFEXT parameter will be added. See Installation &
Configuration Guide: CFEXT Parameter.

The file being renamed must be tied exclusively.

The shy result of JFRENAME is the tie number of the file.

Examples

"SALES' QOFTIE 1
'PROFIT' QOFTIE 2

OFNAMES
SALES
PROFIT

"SALES.85' [FRENAME 1
"../profits/PROFITS.85"' [OFRENAME 2

OFNAMES
SALES.85
../profits/PROFITS.85

Rename<«{
fm to<«w
OFUNTIE to OFRENAME fm OFTIE O

384

Language Reference Guide

File Replace Component {R}«X OFREPLACE Y

Access code 16

Y must be a simple 2 or 3 element integer vector containing the file tie number, the
component number, and an optional passnumber. Ifthe passnumber is omitted it is
assumed to be zero. The component number specified must lie within the file's
component number limits.

X is any array (including, for example, the [JOR of a namespace), and overwrites the
value of the specified component. The component information (see File Read
Component Information on page 381) is also updated.

The shy result of JFREPLACE is the file index (component number of replaced
record).

Example
SALES<+[JFREAD 1 241
(SALESx1.1) [FREPLACE 1 241
Define a function to replace (index, value) pairs in a component file JIMS.DCF:
Frep«<{
tie«a OFTIE O

_«<{w OFREPLACE tie a}/"w
OFUNTIE tie

'jms'Frep(3 'abc')(29 'xxx')(7 'yyy')

Chapter 4: System Functions 385

File Resize {R}«{X}OFRESIZE Y

Access code 1024

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie
number followed by an optional passnumber. Ifthe passnumber is omitted it is
assumed to be zero.

X is an integer that specifies the maximum permitted size of the file in bytes. The
value 0 means the maximum possible size of file.

An attempt to update a component file that would cause it to exceed its maximum
size will fail witha FILE FULL error (21). A side effect of JFRESIZE is to cause
the file to be compacted. This process removes any gaps in the file caused by
replacing a component with a shorter array. Any interrupt entered at the keyboard
during the compaction is ignored. Note that if the left argument is omitted, the file is
simply compacted and the maximum file size remains unchanged.

During compaction, the file is restructured by reordering the components and by
amalgamating the free areas at the end of the file. The file is then truncated and
excess disk space is released back to the operating system. For a large file with many
components, this process may take a significant time.

The shy result of JFRESIZE is the tie number of the file.

Example

"test'[JFCREATE 1 o [FSIZE 1
11 120 1.844674407E19

(10 1000p1.1)00FAPPEND 1 ¢ [JFSIZE 1
1 2 80288 1.84L4674LOTELY

100000 OFRESIZE 1 A Limit size to 100000 bytes
(10 1000p1.1)00FAPPEND 1

FILE FULL
(10 1000p1.1)0FAPPEND 1

A

OFRESIZE 1 A Force file compaction.

386 Language Reference Guide

File Size R<OFSIZE Y

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie
number followed by an optional passnumber. Ifthe passnumber is omitted it is
assumed to be zero. The result is a 4 element numeric vector containing the
following:

Element | Description

1 the number of first component
) 1 + the number of the last component, (i.e. the result of the next
OFAPPEND)
3 the current size of the file in bytes
4 the file size limit in bytes
Example
OFSIZE 1

1 21 65271 4294967295

File Set Access {R}«X [OFSTAC Y

Access code 8192

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie
number followed by an optional passnumber. If the passnumber is omitted it is
assumed to be zero.

X must be a valid access matrix, i.e. a 3-column integer matrix with any number of
rows. The function sets access control for the specified file operations (15t column),
users (374 column), with the specified passnumbers (214 column). Note that a 0 in the
15t column specifies all file operations, a ~1 in the 2" column specifies that no
passnumber is required, and a 0 in the 374 column specifies all users. For further
details, see Programming Reference Guide: Component Files.

The shy result of F STAC is the tie number of the file.

Examples

'SALES' [FCREATE 1
(3 3p28 2105 16385 0 2073 16385 31 ~1 0) [OFSTAC 1
((OFRDAC 1)521 2105 16385) [FSTAC 1

(1 3p0 1 O0)OFSTAC 2 n Let everyone do anything

Chapter 4: System Functions 387

File Share Tie {R}«X OFSTIE Y

Y must be 0 ora simple 1 or 2 element integer vector containing an available file tie
number to be associated with the file for further file operations, and an optional
passnumber. Ifthe passnumber is omitted it is assumed to be zero. The tie number
must not already be associated with a tied file.

X must be a simple character scalar or vector which specifies the name of'the file to
be tied. The file must be named in accordance with the operating system's
conventions, and may be specified with a relative or absolute pathname. If no file
extension is supplied, the set of extensions specified by the CFEXT parameter are
tried one after another until the file is found or the set of extensions is exhausted. See
Installation & Configuration Guide: CFEXT Parameter.

The file must exist and be accessible by the user. Ifit is already tied by another task,
it must not be tied exclusively.

The shy result of JF STIE is the tie number of the file.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create, share tie or exclusive tie operation,
allocates the first (closest to zero) available tie number and returns it as an explicit
result. This allows you to simplify code. For example:

from:
tie«1+[/0,0FNUMS @ With next available number,
file OFSTIE tie A ... share tie file.
to:
tie«file OFSTIE O A Tie with 1st available number.
Example

"SALES' [OFSTIE 1

'../budget/COSTS' [OFSTIE 2

388 Language Reference Guide

Exclusive File Tie {R}«X OFTIE Y

Access code 2

Y must be 0 ora simple 1 or 2 element integer vector containing an available file tie
number to be associated with the file for further file operations, and an optional
passnumber. Ifthe passnumber is omitted it is assumed to be zero. The tie number
must not already be associated with a share tied or exclusively tied file.

X must be a simple character scalar or vector which specifies the name of the file to
be exclusively tied. The file must be named in accordance with the operating
system's conventions, and may be a relative or absolute pathname. If no file
extension is supplied, the set of extensions specified by the CFEXT parameter are
tried one after another until the file is found or the set of extensions is exhausted. See
Installation & Configuration Guide: CFEXT Parameter.

The file must exist and the user must have write access to it. It may not already be
tied by another user.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create, share tie or exclusive tie operation,
allocates the first (closest to zero) available tie number, and returns it as an explicit
result. This allows you to simplify code. For example:

from:

tie<1+[/0,00FNUMS A With next available number,
file OFTIE tie A ... tie file.

to:
tie«file OFTIE O A Tie with first available number.
The shy result of F TIE is the tie number of the file.

Examples
'SALES' [OFTIE 1

'../budget/COSTS' OFTIE 2

'../budget/expenses' [FTIE O

Chapter 4: System Functions 389

File Untie {R}<[JFUNTIE Y

Y must be a simple integer scalar or vector (including Zilde). Files whose tie
numbers occur in Y are untied. Other elements of Y have no effect.

If'Y is empty, no files are untied, but all the interpreter's internal file buffers are
flushed and the operating system is asked to flush all file updates to disk. This
special facility allows the programmer to add extra security (at the expense of
performance) for application data files.

The shy result of JFUNTIE is a vector of tie numbers of the files actually untied.

Example
(OFUNTIE OFNUMS A Unties all tied files

[(JFUNTIE 6 A Flushes all buffers to disk

Fix Definition {R}OFX Y

Y is the representation form of a function or operator which may be:

e its canonical representation form similar to that produced by [JCR except
that redundant blanks are permitted other than within names and constants,
and the first and last rows may start with a del symbol (V).

« its nested representation form similar to that produced by [ONR except that
redundant blanks are permitted other than within names and constants, and
the first and last items may be del (V) symbols.

« its object representation form produced by [JOR.

« its vector representation form similar to that produced by VR except that
additional blanks are permitted other than within names and constants.

OF X attempts to create (fix) a function or operator in the workspace or current
namespace from the definition given by Y. IO is an implicit argument of (JF X.
Note that [JF X does not update the source of a scripted namespace, or of class or
instance; the only two methods of updating the source of scripted objects is via the
Editor, or by calling OF IX.

Ifthe function or operator is successfully fixed, R is a simple character vector

containing its name and the result is shy. Otherwise R is an integer scalar containing
the (OI0 dependent) index of the row of the canonical representation form in which
the first error preventing its definition is detected. In this case the result R is not shy.

390

Language Reference Guide

Functions and operators which are pendent, that is, in the state indicator without a
suspension mark (*), retain their original definition until they complete, or are
cleared from the state indicator. All other occurrences of the function or operator
assume the new definition. The function or operator will fail to fix if it has the same
name as an existing variable, or a visible label.

Instances

R<0JINSTANCES Y

OINSTANCES returns a list all the current instances of the Class specified by Y.
Y must be a reference.

IfY is a reference to a Class, R is a vector of references to all existing Class Instances
of Y. Otherwise, R is empty.

Examples

This example illustrates a simple inheritance tree or Class hierarchy. There are 3
Classes, namely:

Animal
Bird (derived from Animal)
Parrot (derived from B1ird)

:Class Animal
;éﬁdClass A Animal
:Class Bird: Animal
;éﬁdClass A Bird
:Class Parrot: Bird

;éﬁdClass A Parrot

Eeyore<[ONEW Animal
Robin<[ONEW Bird
Polly<[INEW Parrot

JINSTANCES Parrot
#.[Parrot]

OINSTANCES Bird
#.[Bird] #.[Parrot]

OOINSTANCES Animal
#.[Animal] #.[Bird] #.[Parrot]

Chapter 4: System Functions 391

Eeyore.[IDF 'eeyore'
Robin.[ODF 'robin'
Polly.ODF 'polly'

OINSTANCES Parrot
polly

OINSTANCES Bird
robin polly

OINSTANCES Animal
eeyore robin polly

Index Origin 010

(IO determines the index ofthe first element of a non-empty vector.
(IO may be assigned the value 0 or 1. The value in a clear workspace is 1.

0I0 isan implicit argument of any function derived from the Axis operator ([K]), of
the monadic functions Fix (OF X), Grade Down (¥), Grade Up (4), Index Generator
(1), Roll (?), and ofthe dyadic functions Deal (?), Grade Down (V), Grade Up (4),
Index (1), Index Of (1), Indexed Assignment, Indexing, Pick () and Transpose (R).

Examples
010+t

12345

01234

+/[0]2 3p16

‘ABC',[T.5]'="

n >
n
no

392

Language Reference Guide

JSON Convert R«{X}OJSON Y

This function imports and exports data in JavaScript Object Notation (JSON) Data
Interchange Format!.

If specified, X must be a numeric scalar with the value 0 (import JSON) or 1 (export
JSON). If X is not specified and Y is a character array, X is assumed to be 0 (import);
otherwise it is assumed to be 1 (export).

Other options for JTSON are Format and Compact which are specified using the
Variant operator (. See Variant on page 183.The Principle Option is Format.

JSON Import (X is 0)

Y is a character vector or matrix in JSON format. There is an implied newline
character between each row of a matrix.

The content of the result R depends upon the Format variant which may be 'D"'
(the default)or 'M".

IfFormat is 'D' (which stands for "data") the JSON described by Y is converted to
APL object(s) and R is an array or a namespace containing arrays and sub-
namespaces.

o JSON objects are created as APL namespaces.

o JSON null is converted to the enclosed character vector € 'nul L',

o JSON true is converted to the enclosed character vector ¢' true'

o JSON false is converted to the enclosed character vector ¢ ' false'.

o Ifthe JSON source contains object names which are not valid APL names
they are converted to APL objects with mangled names. See JSON Name
Mangling on page 401. 71621T can be used to obtain the original name.
See JSON Translate Name on page 256.

IIETF RFC 7159 - The JavaScript Object Notation (JSON) Data Interchange Format - is a widely
supported, text based data interchange format for the portable representation of structured data; any
application which conforms to the standard may exchange data with any other.

Chapter 4: System Functions 393

IfFormat is "M' (which stands for "matrix") the result R is a matrix whose columns
contain the following:

[;1] depth

[:2] name (for JSON object members)
(53] value

[s4] JSON type (integer: see below)

o The representation of null, true and false are the same as for Format 'D'.
o Object names are reported as specified in the JSON text; they are not
mangled as they are for Format 'D"'.

JSON types are as follows:

Type Description

1 Object

2 Array

3 Numeric

4 String

5 Null

6 Boolean (true / false)

7 JavaScript Object (export only)

Table 16: JSON data types

Duplicate Names

The JSON standard says that members of a JSON object should have unique names
and that different implementations behave differently when there are duplicates.
Dyalog handles duplicate names as follows:

« No error is generated

o For Format 'D', the last member encountered is used and all previous
members with the same name are discarded

o For Format 'M' all duplicate members are recorded in the result matrix

394 Language Reference Guide

Examples

pJSON
18 19

JSON
{

llall:

“b": [
"string 1",
"string 2"

]!

"c": true,

IIdII: {

"e": false,

llfall: [
"string 3",
123,
1000.2,
null

]

}
}
}

Chapter 4: System Functions 395

Import as Data (Format 'D')
j«0JISON JSON

]
#.[JSON object]
j.ONL 9
a
j.a.0ONL 2
b
c

string 1|string 2

true

j.a.0ONL 9

a

j.a.d.ONL 2 A Note that fa is an invalid APL name

e
AfA9082A
j.a.d.e

false

j.a.d.AfA9082A

string 3[123(1000.2
null

396

Language Reference Guide

Import as Matrix (Format

IMI)

(OJSONEI'M') JSON

0 1
1]a 1
2|b 2
3 string 4
3 string 4
2|c 6
true
2|d 1
3fe 6
false
3ffa 2
4 string 4
4 123 3
4 1000.2 3
4 5
null

Chapter 4: System Functions 397

JSON Export (X is 1)

Y is the data to be exported as JSON and may be an array, a namespace or a matrix
representation of JSON such as would have been produced by JSON Import with
Format 'M'.Y isinterpreted according to the Format variant which may be 'D"
(the default)or 'M".

[0JSON will signal DOMAIN ERROR ifY is incompatible with the specified (or
implied) value of Format.

If Format is M, the data values in Y[; 3] must correspond precisely with the JSON
types specified in Y[; 4 Jas specified in the following table.

Y[;4] (Type) Y[;31 (Value)

1 Empty array

2 Empty array

3 Numeric scalar

4 Character vector

5 Null

6 Enclosed character vector
7 Enclose character vector

R is a character vector whose content depends upon the value of the Compact
variant.

If Compact is 0, the JSON text is padded with spaces and new lines for readability.
If Compact is 1 (the default) the JSON text is compacted into its minimal form.

The name of any namespace member that begins with A and otherwise conforms to
the conversion format used for JSON object names will be demangled.

398

Language Reference Guide

Example

j A See above
#.[JSON object]
pIS<1 [ISON j
o4
JS
{"a":{"b":["str'ing 1","String 2"],"c":true,"d":
{"e":false,"fa":["string 3",123,1000.2,null]}}}

1 (OJSONE]' Compact' 0) j
IIbII: [

"string 1",

"string 2"

lla

]!
"c": true,
lIdII: {
"e": false,
llfall: [
"string 3",
123,
1000.2,
null
]
}
}
}

If there are any mis-matches between the valuesin Y[53] and the typesin Y[s 4],
[JSON will signal DOMAIN ERROR and report the first row where there is a mis-
match (IO sensitive) as illustrated in the following example.

Example

M<(0OJSONEl'Format' 'M')'{"values": [75, 300]}
M

[N

values 2

2 3003

Chapter 4: System Functions 399

M[3;3]«c'75' A character not numeric

M A but looks the same as before
0 1
1|values 2
2 75 |3
2 300(3

1 (OJSONE 'Format' 'M')M
DOMAIN ERROR: Value does not match the specified type in
row 3

1 (OJSONEl' Format' 'M')M

A

JavaScript Objects
The following example illustrates how JavaScript objects may be exported.

In the example, the object is a JavaScript function which is specified by the contents
of'an enclosed character vector. Note that in this case Dyalog performs no validation
of'the code itself.

Example

'Slider' [NS '

Slider.range<«c'true' A Note the <
Slider.min<«0

Slider.max<«500

Slider.values<«75 300

fni«' function(event, ui) {'
fn2«'$("#amount").val("$" + ui.values[0] +'
fn2,«<'" " - $" + ui.values[1]);}'

Slider.slide«,/fnl fn2 A Enclosed character vec

pJS«1 [JJSON Slider
159

JS
{"max":500,"min":0,"range":true,"slide": function(event,
ui) {$(\"#amount\").val(\"$\" + ui.values[0] + \" -
$\" + ui.values[1]);},"values":[75,300]}

400

Language Reference Guide

Restrictions and Limitations

The JSON standard describes a limited set of data types and JSON does not provide a
general APL import/export mechanism. In particular:

Not all APL arrays are representable in JSON.

For example, arrays with more than one dimension cannot be represented in JSON.
Of course, this does mean that applications using JSON are unlikely to use such
objects; you probably will need rearrange your data into the format that is expected
by the receiving application. In the case of a 2-dimensional matrix, a split will give
you a vector of tuples that a JSON application is likely to expect:

[0JSON 3 4p112
DOMAIN ERROR: Array unsupported by JSON
0JSON 3 4pu12

A

0JSON 43 4pii2
((t1,2,3,4+1,[5,6,7,8]1,[9,10,11,12]]

Not all JSON types have exact APL equivalents

The JSON standard includes Boolean values true and false which are distinct from
numeric values 1 and 0, and have no direct APL equivalent.

To represent JSON true and false types this implementation adopts the convention of
using APL arrays ' true' and ¢ ' false' respectively. These arrays cannot
otherwise be represented in JSON and allow true and false to be uniquely identified.

Not all names are valid APL names.

The names of JSON object members which would not be valid for APL are modified.
See JSON Name Mangling below.

Chapter 4: System Functions 401

JSON Name Mangling

When Dyalog converts from JSON to APL data, and a member of a JSON object has
a name which is not a valid APL name, it is renamed.

Example:

In this example, the JSON describes an object containing two numeric items, one
named a (which is a valid APL name) and the other named 2a (which is not):

{"a": 1, n"ogn. 2}

When this JSON is imported as an APL namespace using JJSON, Dyalog converts
the name 2a to a valid APL name. The name mangling algorithm creates a name
beginning with A.

(0JSON'{"a": 1, "2a": 2}").0ONL 2
a
A2a

When Dyalog exports JSON it performs the reverse name mangling, so:

1 OJSON OJSON'{"a": 1, "2a": 2}"'
{"3":1,"23":2}

Should you need to create and decode these names directly,7162I provides the
same name mangling and un-mangling operations. See JSON Translate Name on
page 256.

0(71621)'2a"’
A2a

1(71621) 'A2a"
2a

402

Language Reference Guide

Key Label

R<0KL Y

Classic Edition only.

Y is a simple character vector or a vector of character vectors containing Input Codes
for Keyboard Shortcuts. In the Classic Edition, keystrokes are associated with
Keyboard Shortcuts by the Input Translate Table.

R is a simple character vector or a vector of character vectors containing the labels
associated with the codes. IfY specifies codes that are not defined, the
corresponding elements of R are the codesin Y.

OKL provides the information required to build device-independent help messages
into applications, particularly full-screen applications using [JSM and [JSR.

Examples:

OKkL 'RC'
Right

OKL 'ER' 'EP' 'QT' 'F1' 'F13'
Enter Esc Shift+Esc F1 Shift+F1

Line Count R«LC

This is a simple vector of line numbers drawn from the state indicator (See
Programming Reference Guide: The State Indicator). The most recently activated
line is shown first. Ifa value corresponds to a defined function in the state indicator,
it represents the current line number where the function is either suspended or
pendent.

The value of JLC changes immediately upon completion of the most recently
activated line, or upon completion of execution within ¢ or[d. Ifa[JSTOP control is
set, L C identifies the line on which the stop control is effected. In the case where a
stop control is set on line 0 of a defined function, the first entry in JLC is 0 when the
control is effected.

The value of [JL C in a clear workspace is the null vector.

Chapter 4: System Functions 403

Examples
)SI
#.TASK1[5]*
-3
#.BEGIN[3]
0Lc
53
-[LC
0Lc
pdLC
0

Load Workspace OLOAD Y

Y must be a simple character scalar or vector containing the identification of a saved
workspace.

IfY is ill-formed or does not identify a saved workspace or the user account does not
have access permission to the workspace,a DOMAIN ERROR is reported.

Otherwise, the active workspace is replaced by the workspace identified in Y. The
active workspace is lost. Ifthe loaded workspace was saved by the) SAVE system
command, the latent expression (L X) is immediately executed, unless APL was
invoked with the -x option. Ifthe loaded workspace was saved by the JSAVE
system function, execution resumes from the point of exit from the JSAVE function,
with the result of the JSAVE function being 0, running in the same namespace in
which the JSAVE was executed.

The workspace identification and time-stamp when saved is not displayed.

If the workspace contains any GUI objects whose Visib l e property is 1, these
objects will be displayed. Ifthe workspace contains a non-empty JSM but does not
contain an SM GUI object, the form defined by [JSM will be displayed in a window
on the screen.

Under UNIX, the interpreter attempts to open the file whose name matches the
contents of Y. Under Windows, unless Y contains at least one ".", the interpreter will
append the file extension ".DWS" to the name.

404 Language Reference Guide

Lock Definition {R}«{X}OLOCK Y

Y must be a simple character scalar, or vector which is taken to be the name of a
defined function or operator in the active workspace. JLOCK does not apply to dfns
or derived functions.

The active referent to the name in the workspace is locked. Stop, trace and monitor
settings, established by the JSTOP,[JTRACE and JMONITOR functions, are

cancelled.

The optional left argument X specifies to what extent the function code is hidden. X
may be 1, 2 or 3 (the default) with the following meaning:

1. The object may not be displayed and you may not obtain its character form

using [JCR, VR or [INR.
2. Execution cannot be suspended with the locked function or operator in the

state indicator. On suspension of execution the state indicator is cut back to
the statement containing the call to the locked function or operator.
3. Both 1 and 2 apply. You can neither display the locked object nor suspend

execution within it.
Locks are additive, so that
1 OLOCK'FOO' ¢ 2 [LOCK'FOO'
is equivalent to:
3 [LOCK'FoO'
The shy result R is the lock state (1,2 or 3) of Y.
A DOMAIN ERROR isreported if Y is ill-formed.

Examples

OFX'r«foo' 'r«10'
[ONR'foo'

r<foo r«10
pONR ' foo'

[(LOCK' foo'
pONR ' foo'

Chapter 4: System Functions 405

Latent Expression OLXx

This may be a character vector or scalar representing an APL expression. The
expression is executed automatically when the workspace is loaded. If APL is
invoked using the -x flag, this execution is suppressed.

The value of [JL X in a clear workspace is

Example
OLX<'"'"'GOOD MORNING PETE'"''

)SAVE GREETING
GREETING saved Tue Sep 8 10:49:29 1998

JLOAD GREETING
./GREETING saved Tue Sep 8 10:49:29 1998
GOOD MORNING PETE

Map File

R«{X}OMAP Y

[OMAP function associates a mapped file with an APL array in the workspace.

Two types of mapped files are supported; 4PL and raw. An APL mapped file contains
the binary representation of a Dyalog APL array, including its header. A file of this
type must be created using the utility function AMPUT (supplied in the util
workspace). When you map an APL file, the rank, shape and data type of the array is
obtained from the information on the file.

A raw mapped file is an arbitrary collection of bytes. When you map a raw file, you
must specify the characteristics of the APL array to be associated with this data. In
particular, the data type and its shape.

The type of mapping is determined by the presence (raw) or absence (APL) of the left
argument to (JMAP.

406 Language Reference Guide

The right argument Y specifies the name of the file to be mapped and, optionally, the
access type and a start byte in the file. Y may be a simple character vector, ora 2 or 3-
element nested vector containing:

1. file name (character scalar/vector)

2. access code (character scalar/vector) : one of : 'R"' or 'r' (read-only
access), 'W' or 'w' (read-write access). If not specified, the file is mapped
read-only.

3. start byte offset (integer scalar/vector). This is only applicable for read-only
access and is not supported for read-write access. It must be a multiple of
the word size (4 on 32-bit systems, 8 on 64-bit systems). The default is 0.

If you map a file with read-only access you may modify the corresponding array in
the workspace, however your changes are not written back to the file.

If X is specified, it defines the type and shape to be associated with raw data on file.
X must be an integer scalar or vector. The first item of X specifies the data type and
must be one of the following values:

Classic Edition 11, 82, 83, 163, 323 or 645

Unicode Edition 11, 80, 83, 160, 163, 320, 323 or 645

The values are more fully explained in Data Representation (Monadic) on page 338.

Following items determine the shape of the mapped array. A value of ~1 on any (but
normally the first) axis in the shape is replaced by the system to mean: read as many
complete records from the file as possible. Only one axis may be specified in this
way. Note that if X is a singleton, the data on the file is mapped as a scalar and only
the first value on the file is accessible.

Ifno left argument is given, file is assumed to contain a simple APL array, complete
with header information (type, rank, shape, etc.). Such mapped files may only be
updated by changing the associated array using indexed/pick assignment: var

[a]«b, the new values must be of the same type as the originals.

Note that a raw mapped file may be updated only ifits file offset is 0.

Chapter 4: System Functions 407

Examples

Map raw file as a read-only vector of doubles:
vec+645 ~1 [JMAP'c:\myfile'

Map raw file as a 20-column read-write matrix of 1-byte integers:
mat«83 ~1 20 OMAP'c:\myfile' 'W'

Replace some items in mapped file:
mat[2 3:;4 5]«2 2pi4

Map bytes 100-160 in raw file as a 5x%2 read-only matrix of doubles:
dat«645 5 2 [IMAP'c:\myfile' 'R' 80

Put simple 4-byte integer array on disk ready for mapping:
(=83 323 DR 2 3 4p124)AMPUT'c:\myvar'

Then, map a read-write variable:
var<[MAP'c:\myvar' 'w'

Note that a mapped array need not be named. In the following example, a raw’ file is
mapped, summed and released, all in a single expression:

+/163 ~1 [OMAP'c:\shorts.dat'
42

If you fail to specify the shape of the data, the data on file will be mapped as a scalar
and only the first value in the file will be accessible:

83 [OMAP 'myfile' A map FIRST BYTE of file.
~86

Compatibility between Editions

In the Unicode Edition OMAP will fail with a TRANSLATION ERROR (event
number 92) if you attempt to map an APL file which contains character data type 82.

In order for the Unicode Edition to correctly interpret data in a raw file that was
written using data type 82, the file may be mapped with data type 83 and the
characters extracted by indexing into JAVU.

408

Language Reference Guide

Make Directory {R}«{X}[OMKDIR Y

This function creates new directories.

Y is a character vector or scalar containing a single directory name, or a vector of
character vectors containing zero or more directory names. Names must conform to
the naming rules of the host Operating System.

By default, for each file in Y the path must exist and the base name must not exist
(see File Name Parts on page 484), otherwise an error is signalled. The optional left
argument X is the numeric scalar 0, 1, 2 or 3 which amends this behaviour as shown
in the following table. If omitted, it is assumed to be 0.

0 | Default behaviour.

No action is taken if a directory specified by Y already exists. The return
1 | value may be used to determine whether a new directory was created or
not.

Any part of the paths specified in Y which does not already exist will be
created in preparation of creating the corresponding directory.

3 | Combination of 1 and 2.

IfY specifies a single name, the shy result R is a scalar 1 if a directory was created or
0 ifnot. If Y is a vector of character vectors, R is a vector of 1s and Os with the same
length as Y.

Examples

ONEXISTS '/Users/Pete/Documents/temp’
0

O«0OMKDIR '/Users/Pete/Documents/temp’
1

O«[OMKDIR '/Users/Pete/Documents/temp’
FILE NAME ERROR: Directory exists
O«0OMKDIR'/Users/Pete/Documents/temp’

A

O0«0OMKDIR'/Users/Pete/Documents/temp/t1/t2'
FILE NAME ERROR: Unable to create directory ("The system
cannot find the path specified.")
O«[OMKDIR'/Users/Pete/Documents/temp/t1/t2"'

A

0«2 OMKDIR'/Users/Pete/Documents/temp/t1/t2"'

+OMKDIR'templ' 'temp2'

Chapter 4: System Functions 409

Note

When multiple names are specified they are processed in the order given. If an error
occurs at any point whilst creating directories, processing will immediately stop and
an error will be signalled. The operation is not atomic; some directories may be
created before this happens. In the event of an error there will be no result and
therefore no indication of how many directories were created before the error
occurred.

Migration Level OML

OML determines the degree of migration of the Dyalog APL language towards IBM's
APL2. Setting this variable to other than its default value of 1 changes the
interpretation of certain symbols and language constructs.

OML<0 Original Native Dyalog

[OML<«1|Z«eR [Monadic '€"' is interpreted as 'enlist' rather than 'type'.

OML<2 [Z«tR |Monadic 't "' is interpreted as 'first' rather than 'mix".

Z+>R |Monadic '>"' is interpreted as 'mix' rather than 'first'.

Monadic '="' returns a positive rather than a negative value,

Ze=R if its argument has non-uniform depth.

R«<Xc |Dyadic 'c' follows the APL2 (rather than the original

OML<3 [K]Y |Dyalog APL) convention.

OTC |The order of the elements of JTC is the same as in APL2.

Subsequent versions of Dyalog APL may provide further migration levels.

Examples
X«2(3 4)
OML<«0
eX

0 0O
X

20

3 4
>X

2
=X

"2

410 Language Reference Guide

ML<«1
exX
2 3 4
+X
2 0
3 4
oX
2
=X
-2
OML<2
ex
2 3 4
t+X
2
oX
20
3 4
=X

Chapter 4: System Functions 411

Set Monitor {R}«X [OMONITOR Y

Y must be a simple character scalar or vector which is taken to be the name ofa
visible defined function or operator.

Note that JMONITOR does not apply to dfns or dops.

X must be a simple non-negative integer scalar or vector. R is a simple integer vector
of non-negative elements.

X identifies the numbers of lines in the function or operator named by Y on which a
monitor is to be placed. Numbers outside the range of line numbers in the function
or operator (other than 0) are ignored. The number 0 indicates that a monitor is to be
placed on the function or operator as a whole. The value of X is independent of JIO.

R is a vector of numbers on which a monitor has been placed in ascending order. The
result is suppressed unless it is explicitly used or assigned. R will be empty for dfns
and dops.

The effect of JMONITOR is to accumulate timing statistics for the lines for which the
monitor has been set. See Query Monitor on page 412 for details.

Examples

+(0,110) [OMONITOR 'FOO'
012345

Existing monitors are cancelled before new ones are set:

+1 [JMONITOR 'FOO'
1

All monitors may be cancelled by supplying an empty vector:
& OMONITOR 'FOO'

Monitors may be set on a locked function or operator, but no information will be
reported. Monitors are saved with the workspace.

412 Language Reference Guide

Query Monitor R«[JMONITOR Y

Y must be a simple character scalar or vector which is taken to be the name ofa
visible defined function or operator.

Note that JMONITOR does not apply to dfns or dops.

R is a simple non-negative integer matrix of 5 columns with one row for each line in
the function or operator Y which has the monitor set, giving:

Column 1 Line number

Column 2 Number of times the line was executed
Column 3 CPU time in milliseconds

Column 4 Elapsed time in milliseconds

Column 5 Reserved

The value of 0 in column one indicates that the monitor is set on the function or
operator as a whole. R will be empty for dfns and dops.

Example
vV FOO
[1] A<?25 25p100
[2] B<EA
[3] cC<E8B

(4] R1<|0.5+A+.xB
[5] R2<«A=C
v

(0,15) (OMONITOR 'FOO' m Set monitor

FOO A Run function
OMONITOR 'FOO' A Monitor query

01 1418 1000 O

11 83 00

21 400 00

3 1 397 00

4 1 467 1000 O

51 100 00

Chapter 4: System Functions 413

Name Association {R}«{X}ONA Y

ONA provides access from APL to compiled functions within a library. A library is
implemented according to the Operating System as follows:

o a Dynamic Link Library(DLL) under Windows
« a Shared Library (.so or .dylib) under Linux or macOS
« a static library (.a) under AIX

A DLL! is a collection of functions typically written in C (or C++) each of which
may take arguments and return a result.

Instructional examples using (ONA can be found in the supplied workspace quadna.

The DLL may be part of the standard operating system software, a library purchased
from a third party supplier, or one that you have written yourself.

The right argument Y is a character vector that identifies the name and syntax of the
function to be associated. The left argument X is a character vector that contains the
name to be associated with the external function. If the [INA is successful, a function
(name class 3) is established in the active workspace with name X. If X is omitted, the
name of the external function itselfis used for the association.

The shy result R is a character vector containing the name of the external function
that was fixed.

For example, math.d11 might be a library of mathematical functions containing a
function divide. To associate the APL name d1i v with this external function:

'div' ONA 'F8 math|divide I4 I4'

where F 8 and I4,specify the types ofthe result and arguments expected by
divide. The association has the effect of establishing a new function: di v in the
workspace, which when called, passes its arguments to divide and returns the

result.

)fns
div

div 10 &
2.5

IThe term DLL is used herein as a generic name for one of these libraries.

414

Language Reference Guide

Type Declaration

In a compiled language such as C, the types of arguments and results of functions
must be declared explicitly. Typically, these types will be published with the
documentation that accompanies the DLL. For example, function divide might be
declared:

double divide (int32 t, int32 t);

which means that it expects two long (4-byte) integer arguments and returns a double
(8-byte) floating point result. Notice the correspondence between the C declaration
and the right argument of [INA:

C: double divide (int32 t, int32 t);
APL:'div' [ONA 'F8 math|divide Iy I !

It is imperative that care be taken when coding type declarations. A DLL cannot
check types of data passed from APL. A wrong type declaration will lead to
erroneous results or may even cause the workspace to become corrupted and crash.
During development, you may wish to prevent this happening. See: Installation &
Configuration Guide: ErrorOnExternalException parameter.

The full syntax for the right argument of [INA is:
[result] library|function [argl] [arg2]

Note that functions associated with DLLs are never dyadic. All arguments are passed
as items of a (possibly nested) vector on the right of the function.

Locating the DLL

The DLL may be specified using a full pathname, file extension, and function type.

Be aware

A 32-bit interpreter can only load 32-bit DLLs/shared libraries; a 64-bit interpreter
can only load 64-bit DLLs/shared libraries.

Ifa DLL/shared library has a missing dependency, the error generated by the
operating system, and therefore reported by Dyalog will suggest that the DLL/shared
library that was explicitly called in the ONA call is missing.

Chapter 4: System Functions 415

Pathname:

APL uses the LoadLibrary () system function under Windows or d1open ()
under UNIX, Linux and macOS to load the DLL. Ifa full or relative pathname is
omitted, these functions search a list of directories determined by the operating
system. This list always includes the directory which contains the Dyalog program,
and on all non-Windows platforms, $DY ALOG/1ib. For further details, see the
operating system documentation about these functions.

Alternatively, a full or relative pathname may be supplied in the usual way:

ONA'... c:\mydir\mydll|foo ..."

Errors:
Ifthe specified DLL (or a dependent DLL) fails to load it will generate:
FILE ERROR 2 No such file or directory

It is frequently the case that this error is a result of a missing dependency; operating
systems do not return error codes which allow the interpreter to generate a more
specific error.

If the DLL loads successfully, but the specified library function is not accessible, it
will generate:

VALUE ERROR

File Extension:

Under Windows, if the file extension is omitted, .dll is assumed. Note that some
DLLs are in fact .exe files, and in this case the extension must be specified explicitly:

ONA'... mydll.exe|foo ...'

Name Mangling

C++ and some other languages will by default mangle (or decorate) function names
which are exported from a DLL file. The given external function name must exactly
match the exported name, either by matching the name mangling or by ensuring the
names exported from the library are not mangled.

Call by Ordinal Number

Under Windows, a DLL may associate an ordinal number with any of its functions.
This number may then be used to call the function as an alternative to calling it by
name. Using [INA to call by ordinal number uses the same syntax but with the
function name replaced with its ordinal number. For example:

ONA'... mydlL]|57 ..."'

416

Language Reference Guide

libc.a on Non-Windows Platforms

On non-Windows platforms many of the most useful system library functions appear
in libc.a. The quadna workspace includes the function NonWindows .Setup
which has code which will locate L ibc . a on each platform.

Multi-Threading

Appending the '&' character to the function name causes the external function to be
run in its own system thread. For example:

ONA'... mydll|foo& ...'

This means that other APL threads can run concurrently with the one that is calling
the (ONA function.

Data Type Coding Scheme
The type coding scheme introduced above is of the form:
[direction] [special] type [width] [array][[count]]

The options are summarised in the following table and their functions detailed
below.

Chapter 4: System Functions 417

Description | Symbol | Meaning
< Pointer to array input to DLL function.
Direction > Pointer to array output from DLL function
= Pointer to input/output array.
0 Null-terminated string.
Special
Byte-counted string
I int
u unsigned int
C char
T char!
F float
Type
D decimal
J complex
P uintptr-t
A APL array
Z APL array with header (as passed to a TCP/IP socket)
1 1-byte
2 2-byte
Width 4 4-byte
8 8-byte
16 16-byte (128-bit)
[n] Array of length n elements
Array
[] Array, length determined at call-time
Structure {...} |Structure.
com [t [o ey g e s

IClassic Edition: - translated to/from ANSI
2equivalent to U4 on 32-bit versions and U8 on 64-bit versions

418

Language Reference Guide

In the Classic Edition, C specifies untranslated character, whereas T specifies that the
character data will be translated to/from [JAV.

In the Unicode Edition, C and T are identical (no translation of character data is
performed) except that for C the default width is 1 and for T the default width is
"wide" (2 bytes under Windows, 4 bytes under UNIX, Linux or macOS).

The use of T with default width is recommended to ensure portability between
Editions.

Direction

C functions accept data arguments either by value or by address. This distinction is
indicated by the presence ofa'*'or'[]'in the argument declaration:

int numl; // value of numl passed.
int *num2; // Address of num2 passed.
int num3[]; // Address of num3 passed.

An argument (or result) of an external function of type pointer, must be matched in
the [ONA call by a declaration starting with one of the characters: <, >, or =.

In C, when an address is passed, the corresponding value can be used as either an
input or an output variable. An output variable means that the C function overwrites
values at the supplied address. Because APL is a call-by-value language, and doesn't
have pointer types, we accommodate this mechanism by distinguishing output
variables, and having them returned explicitly as part of the result of the call.

This means that where the C function indicates a pointer type, we must code this as
starting with one of the characters: <, > or =.

indicates that the address of the argument will be used by C as an input
variable and values at the address will not be over-written.

indicates that C will use the address as an output variable. In this case,
APL must allocate an output array over which C can write values. After
the call, this array will be included in the nested result of the call to
the external function.

indicates that C will use the address for both input and output. In this
case, APL duplicates the argument array into an output buffer whose

= address is passed to the external function. As in the case of an output
only array, the newly modified copy will be included in the nested
result of the call to the external function.

Chapter 4: System Functions 419

Examples

<I2 Pointer to 2-byte integer - input to external function
>C Pointer to character output from external function.

=T Pointer to character input to and output from function.
=A Pointer to APL array modified by function.

Special

In C it is common to represent character strings as null-terminated or byte counted
arrays. These special data types are indicated by inserting the symbol 0 (null-
terminated) or # (byte counted) between the direction indicator (<, >, =) and the type
(T or C) specification. For example, a pointer to a null-terminated input character
string is coded as <OT[], and an output one coded as >0T[].

Note that while appending the array specifier'[]'is formally correct, because the
presence of the special qualifier (0 or #) implies an array, the '[]' may be omitted:
<0T, >0T, =#C, etc.

Note also that the 0 and # specifiers may be used with data of all types (excluding A
and Z) and widths. For example, in the Classic Edition, <OU2 may be useful for
dealing with Unicode.

420 Language Reference Guide

Type

The data type of the argument may be one of the following characters and may be
specified in lower or upper case:

Code | Type Description
I Integer The value is interpreted as a 2s complement signed
integer
u Unmgned The value is interpreted as an unsigned integer
integer
The value is interpreted as a character. In the Unicode
Edition, the value maps directly onto a Unicode code
point. In the Classic Edition, the value is interpreted as an
C Character |index into [JAV. This means that JAV positions map onto
corresponding ANSI positions.
For example, with JI0=0:
OAV[35] = 's' mapsto ANSI[35] = '
The value is interpreted as a character. In the Unicode
Edition, the value maps directly onto a Unicode code
point. In the Classic Edition, the value is translated using
T Translated |standard Dyalog [JAV to ANSI translation. This means
character |that JAV characters map onto corresponding ANSI
characters.
For example, with JI0=0:
OAV[35] = 's' mapsto ANSI[115] = 's'
Unicode >QUTF8[] will translate to a UTF-8 encoded string
UTF <OUTF16[] will translate from a UTF-16LE encoded
encoded .
string
The value is interpreted as an IEEE 754-2008 binary64
F Float . .
floating point number
The value is interpreted as an IEEE 754-2008 decimal128
D Decimal floating point number (DPD format on AIX, BID format
on other platforms)
J Complex
. This is equivalent to U4 on 32-bit versions and U8 on 64-
P uintptr-t . .
bit versions
v Function | This allows the passing of an APL function for the
pointer function to call

Chapter 4: System Functions 421

Code | Type Description

This is the same format as is used to transmit APL arrays

APL o
A Y 140 an Auxiliary Processor (AP)

APL arra . . .
. Y| This is the same format as is used to transmit APL arrays
/A with
over TCP/IP Sockets
header

Width

The type specifier may be followed by the width of the value in bytes. For example:
Iy 4-byte signed integer.

u2 2-byte unsigned integer.

F8 8-byte floating point number.

Fl 4-byte floating point number.

D16 16-byte decimal floating-point number

Type Possible values for Width Default value for Width
I 1,2,4,8 4

u 1,2,4,8 4

C 1,24 1

T 1,24 wide character(see below)
UTF 8,16 none

F 4,8 8

D 16 16

J 16 16

P Not applicable

v Not applicable

A Not applicable

YA Not applicable

In the Unicode Edition, the default width is the width of a wide character according
to the convention of the host operating system. This translates to T2 under Windows
and T4 under UNIX, Linux or macOS.

Note that 32-bit versions can support 64-bit integer arguments, but not 64-bit integer
results.

422

Language Reference Guide

Examples

I2 16-bit integer

<I4 Pointer to input 4-byte integer

u Default width unsigned integer

=F4 Pointer to input/output 4-byte floating point number.

Arrays

Arrays are specified by following the basic data type with [n] or [], where n
indicates the number of elements in the array. In the C declaration, the number of
elements in an array may be specified explicitly at compile time, or determined
dynamically at runtime. In the latter case, the size of the array is often passed along
with the array, in a separate argument. In this case, n, the number of elements is
omitted from the specification. Note that C deals only in scalars and rank 1 (vector)
arrays.

int vec[10]; // explicit vector length.
unsigned size, list[]; // undetermined length.

could be coded as:

I[10] vector of 10 ints.

U U[] wunsigned integer followed by an array of unsigned integers.

Confusion sometimes arises over a difference in the declaration syntax between C
and [ONA. In C, an argument declaration may be given to receive a pointer to either a
single scalar item, or to the first element of an array. This is because in C, the address
of an array is deemed to be the address of its first element.

void foo (char *string);

char ch = 'a', ptr = "abc";

foo(&ch);// call with address of scalar.
foo(ptr);// call with address of array.

However, from APL's point of view, these two cases are distinct and if the function is
to be called with the address of (pointer to) a scalar, it must be declared: '<T"'.
Otherwise, to be called with the address of an array, it must be declared: '<T[]"'.
Note that it is perfectly acceptable in such circumstances to define more than one
name association to the same DLL function specifying different argument types:

'"FooScalar'[ONA'mydll]|foo <T' ¢ FooScalar'a'
'"FooVector '[ONA'mydll|foo <T[]' ¢ FooVector'abc'

Chapter 4: System Functions 423

Structures

Arbitrary data structures, which are akin to nested arrays, are specified using the
symbols { }. For example, the code {F8 I2} indicates a structure comprised of an 8-
byte float followed by a 2-byte int. Furthermore, the code <{F8 I2}[3] meansan
input pointer to an array of 3 such structures.

For example, this structure might be defined in C thus:

typedef struct

{
double f£f;
short i;
} mystruct;

A function defined to receive a count followed by an input pointer to an array of
such structures:

void foo (unsigned count, mystruct *str);
An appropriate ONA declaration would be:
ONA'mydll.foo U <{F8 I2}[]"

A call on the function with two arguments - a count followed by a vector of
structures:

foo 4,c(1.4% 3)(5.9 1)(6.5 2)(0 0)

Notice that for the above call, APL converts the two Boolean (0 0) elements to an
8-byte float and a 2-byte int, respectively.

Note that if the C compiler would add extra space for alignment within a structure
the OONA syntax will need to code that explicitly. For example:

typedef struct
{
short 1i;
/* most C compilers would add 6 bytes of alignment here */
double d;
} mystruct;

An appropriate [INA declaration would be:
ONA'mydll.foo U <{I2 {I1[6]1} F8}[]'

A call on the function with two arguments - a count followed by a vector of
structures:

pad«cép0
foo 4,c(3 pad 1.4)(1 pad 5.9)(2 pad 6.5)(0 pad 0)

A library designer tries to avoid defining structures that induce padding.

424

Language Reference Guide

Count

If a definition includes multiple adjacent occurrences of the same item, the count
syntax may be used rather than explicitly repeating the same definition.

For example:
>I8[3] ratherthan >I8 >I8 >I8
{18 U8 I8 P}[2] ratherthan {I8 U8 I8 P} {I8 U8 I8 P}

Specifying Pointers Explicitly

[INA syntax enables APL to pass arguments to DLL functions by value or address as
appropriate. For example if a function requires an integer followed by a pointer to an
integer:

void fun (int valu, int *addr);
You might declare and call it:

ONA'mydlLl]|fun I <I' ¢ fun 42 42

The interpreter passes the value of the first argument and the address of the second
one.

Two common cases occur where it is necessary to pass a pointer explicitly. The first
is ifthe DLL function requires a null pointer, and the second is where you want to
pass on a pointer which itself'is a result from a DLL function.

In both cases, the pointer argument should be coded as P. This causes APL to pass
the pointer unchanged, by value, to the DLL function.

In the previous example, to pass a null pointer, (or one returned from another DLL
function), you must code a separate [JNA definition.

"fun_nul Ll 'ONA'mydlL]|fun I P' ¢ fun_null 42 O

Now APL passes the value of the second argument (in this case 0 - the null pointer),
rather than its address.

Note that by using P, which is 4-byte for 32-bit processes and 8-byte for 64-bit
processes, you will ensure that the code will run unchanged under both 32-bit and
64-bit versions of Dyalog APL.

Chapter 4: System Functions 425

Using a Function

A DLL function may or may not return a result, and may take zero or more
arguments. This syntax is reflected in the coding of the right argument of ONA.
However, notice that the corresponding associated APL function is a result-returning
niladic (if it takes no arguments) or monadic function. It cannot be dyadic and it must
always return a vector result - a null one if there is no output from the DLL function.
See Result Vector section below. Examples of the various combinations are:

DLL function Non-result-returning:

[ONA ‘mydlLl]fnt' A Niladic
OONA ‘mydlLl]|fn2 <OT' A Monadic - 1-element arg
[ONA 'mydlL]|fn3 =0T <0T' A Monadic - 2-element arg

DLL function Result-returning:

ONA '"I4% mydlLl]|fn4' A Niladic
ONA 'I4 mydlLl|fn5 F8' A Monadic - 1-element arg
ONA '"I4 mydlLl|fn6é >I4[] <OT'm Monadic - 2-element arg

When the external function is called, the number of elements in the argument must
match the number defined in the [INA definition. Using the examples above:

fni A Niladic Function.
fn2, <'Single String' A 1-element arg
fn3 'This' 'That' A 2-element arg

Note in the second example, that you must enclose the argument string to produce a
single item (nested) array in order to match the declaration. Dyalog converts the type
of'a numeric argument if necessary, so for example in fn5 defined above, a Boolean
value would be converted to double floating point (F8) prior to being passed to the
DLL function.

Pointer Arguments
When passing pointer arguments there are three cases to consider.
< Input pointer:

In this case you must supply the data array itself as argument to the function. A
pointer to its first element is then passed to the DLL function.

fn2 c'hello’

426

Language Reference Guide

> Output pointer:

Here, you must supply the number of elements that the output will need in order for
APL to allocate memory to accommodate the resulting array.

fné 10 'world' @ 1st arg needs space for 10 ints.

Note that if you were to reserve fewer elements than the DLL function actually used,
the DLL function would write beyond the end of the reserved array and may cause
the interpreter to crash with a System Error (syserror 999 on Windows or SIGSEGV
on UNIX, Linux or Mac OS).

= |nput/Output:

As with the input-only case, a pointer to the first element of the argument is passed to
the DLL function. The DLL function then overwrites some or all of the elements of
the array, and the new value is passed back as part of the result of the call. As with
the output pointer case, if the input array were too short, so that the DLL wrote
beyond the end of the array, the interpreter would almost certainly crash.

fn3 '..... " 'hello'

Result Vector

In APL, a function cannot overwrite its arguments. This means that any output from a
DLL function must be returned as part of the explicit result, and this includes output
via 'output’ or 'input/output’ pointer arguments.

The general form of the result from calling a DLL function is a nested vector. The
first item of the result is the defined explicit result of the external function, and
subsequent items are implicit results from output, or input/output pointer arguments.

The length of the result vector is therefore: 1 (if the function was declared to return
an explicit result) + the number of output or input/output arguments.

ONA Declaration Result | Output Arguments | Result Length
mydlLl|fn1 0 0
mydll|fn2 <OT 0 0 0
mydlLl|fn3 =0T <OT 0 10 1

I4 mydlLl]fn4 1 1

I4 mydlLl]|fn5 F8 1 0 1

I4 mydllIfn6é >I4[] <OT |1 10 2

Note that the result vector from a function that is declared void () and has no
output parameters is € (zilde).

Chapter 4: System Functions 427

As a convenience, if the result would otherwise be a 1-item vector, it is disclosed.
Using the third example above:

pfn3 '..... ' 'abc
5

fn3 has no explicit result; its first argument is input/output pointer; and its second
argument is input pointer. Therefore as the length of the result would be 1, it has
been disclosed.

64 bit integer results

When a 64 bit integer result is returned it is converted into 128 bit decimal floating
point, because this is the only APL data type that can fully preserve all 64 bits of the
result. If you wish to perform arithmetic with this value, you must set [JFR to 1287 in
order to preserve the same precision. If this is not done then the precision will be 53
bits which might not be enough.

Callbacks (V)

Currently, support for a [JNA function to call an APL function is limited to the use of
the NAG (National Algorithms Group) library of functions. This library is a
FORTRAN library and FORTRAN passes arguments by reference (address) rather
than by value. The expression:

vE8«(P P P P)

declares a callback function that returns a double and takes 4 pointer arguments. The
result can be any of the normal results. It is not possible to return a pointer. The
arguments can be from 0 to 16 P values.

The argument when passed can be the name of an APL function or the [JOR ofa
function.

The function when called can then decode the pointer arguments appropriately using
a[ONA of MEMCPY ().

ANSI /Unicode Versions of Library Calls

Under Windows, most library functions that take character arguments, or return
character results have two forms: one Unicode (Wide) and one ANSI. For example, a
function such as MessageBox (), has two forms MessageBoxA () and
MessageBoxW (). The A stands for ANSI (1-byte) characters, and the W for wide (2-
byte Unicode) characters.

It is essential that you associate the form of the library function that is appropriate for
the Dyalog Edition you are using, i.e. MessageBoxA () for the Classic Edition, but
MessageBoxW () forthe Unicode Edition.

428

Language Reference Guide

Whilst this is convenient it is not complete. It is adequate for character arrays that
consist of characters from UCS-2 (i.e. those that will fit in an array with a [JDR of 80
or 160). If a more complete support is required then the W form of the function would
be required and explicit use of UTF16 specified.

To simplify writing portable code for both Editions, you may specify the character *
instead of A or W at the end of a function name. This will be replaced by A in the
Classic Edition and W in the Unicode Edition.

The default name of the associated function (if no left argument is given to [INA),
will be without the trailing letter (MessageBox).

Type Definitions (typedefs)

The C language encourages the assignment of defined names to primitive and
complex data types using its #define and typedef mechanisms. Using such
abstractions enables the C programmer to write code that will be portable across
many operating systems and hardware platforms.

Windows software uses many such names and Microsoft documentation will
normally refer to the type of function arguments using defined names such as
HANDLE or LPSTR rather than their equivalent C primitive types: int or char*.

It is beyond the scope of this manual to list al/ the Microsoft definitions and their C
primitive equivalents, and indeed, DLLs from sources other than Microsoft may well
employ their own distinct naming conventions.

In general, you should consult the documentation that accompanies the DLL in order
to convert typedefs to primitive C types and thence to (ONA declarations. The
documentation may well refer you to the 'include' files which are part of the Software
Development Kit, and in which the types are defined.

The following table of some commonly encountered Windows typedefs and their
ONA equivalents might prove useful.

Windows typedef ONA equivalent
HWND P

HANDLE P
GLOBALHANDLE P
LOCALHANDLE P

DWORD U4

WORD u2

BYTE u1

Chapter 4: System Functions

429

Windows typedef

ONA equivalent

LPSTR =0T[] (note 1)
LPCSTR <0T[] (note 2)
WPARAM U (note 3)
LPARAM U4+ (note 3)
LRESULT I4

BOOL I

UINT u

ULONG Ut

ATOM u2

HDC P

HBITMAP P

HBRUSH P

HFONT P

HICON P

HMENU P

HPALETTE P
HMETAFILE P
HMODULE P
HINSTANCE P
COLORREF {u1l4]}
POINT {I I}
POINTS {12 12}
RECT {I 111}
CHAR TorcC

430

Language Reference Guide

Notes

1. LPSTR is a pointer to a null-terminated string. The definition does not
indicate whether this is input or output, so the safest coding would be =0T
[1 (providing the vector you supply for input is long enough to
accommodate the result). You may be able to improve simplicity or
performance if the documentation indicates that the pointer is 'input only'
(<0T[]) or 'output only' (>0T[]). See Direction above.

2. LPCSTR is a pointer to a constant null-terminated string and therefore
coding <OT[] is safe.

3. WPARAM is an unsigned value, LPARAM is signed. They are 32 bit values in
a 32-bit APL, and 64-bit in a 64 bit APL. You should consult the
documentation for the specific function that you intend to call to determine
what type they represent

4. The use of type T with default width ensures portability of code between
Classic and Unicode Editions. In the Classic Edition, T (with no width
specifier) implies 1-byte characters which are translated between [JAV and
ASCII, while in the Unicode Edition, T (with no width specifier) implies 2-
byte (Unicode) characters.

The Dyalog DLL

The Dyalog DLL (see Installation & Configuration Guide: Run-Time Applications
and Components) contains three functions: MEMCPY, STRNCPY and STRLEN.

MEMCPY

MEMCPY is an extremely versatile function used for moving arbitrary data between
memory buffers.

Its C definition is:

void *MEMCPY (// copy memory
void *to, // target address
void *fm, // source address
size t size // number of bytes to copy

)

MEMCPY copies size bytes starting from source address £m, to destination address
to. The source and destination areas should not overlap; if they do the behaviour is
undefined and the result is the first argument.

MEMCPY's versatility stems from being able to associate to it using many different
type declarations.

Chapter 4: System Functions 431

Example

Suppose a global buffer (at address: addr) contains (numb) double floating point
numbers. To copy these to an APL array, we could define the association:

‘doubles' [ONA 'dyalog32|MEMCPY >F8[] I4 U4’
doubles numb addr (numbx8)

Notice that:

o As the first argument to doub Lles is an output argument, we must supply
the number of elements to reserve for the output data.

e« MEMCPY is defined to take the number of bytes to copy, so we must
multiply the number of elements by the element size in bytes.

Example

Suppose that a database application requires that we construct a record in global
memory prior to writing it to file. The record structure might look like this:

typedef struct {
int empno;// employee number.
float salary;// salary.
char name[20];// name.
} person;

Then, having previously allocated memory (addr) to receive the record, we can
define:

‘prec' [ONA 'dyalog64|MEMCPY P <{P F4 T[20]} P'
prec addr(99 12345.60 'Charlie Brown') (4+4+20)

STRNCPY

STRNCPY is used to copy null-terminated strings between memory buffers.

Its C definition is:

void *STRNCPY (// copy null-terminated string
char *to,// target address
char *fm,// source address
size t size// MAX number of chars to copy

)

STRNCPY copies a maximum of size characters from the null-terminated source
string at address fm, to the destination address to. If the source and destination
strings overlap, the result is the first argument.

If the source string is shorter than si ze, a null character is appended to the
destination string.

If the source string (including its terminating null) is longer than size, only size
characters are copied and the resulting destination string is not null-terminated

432

Language Reference Guide

Example

Suppose that a database application returns a pointer (addr) to a structure that
contains two pointers to (max 20-char) null-terminated strings.

typedef struct { // null-terminated strings:
char *first; // first name (max 19 chars + 1 null).
char *last; // last name. (max 19 chars + 1 null).
} name;

To copy the names from the structure:

'get '[ONA'dyalogéb4|STRNCPY >0T[] P U4'
get 20 addr 20

Charlie
get 20 (addr+4) 20

Brown

Note that (as this is a 64-bit example), F R must be 1287 for the addition to be
reliable.

To copy data from the workspace into an already allocated (new) structure:

‘put '[ONA‘'dyalog32|STRNCPY I4 <OT[] U4’
put new 'Bo' 20
put (new+4) 'Peep' 20

Notice in this example that you must ensure that names no longer than 19 characters
are passed to put. More than 19 characters would not leave STRNCPY enough
space to include the trailing null, which would probably cause the application to
fail.

STRNCPYA

This is a synonym for STRNCPY.. It is there so that STRNCPY* (on Windows)
selects between STRNCPY A and STRNCPYW.

STRNCPYW

This is a cover for the C standard function wcsncpy () . It is named this way so that
(on Windows) STRNCPY * will behave helpfully.

STRLEN

STRLEN calculates the length of a C string (a 0-terminated string of bytes in
memory). Its C declaration is:

size t STRLEN(// calculate length of string
const char *s // address of string

)

Chapter 4: System Functions 433

Example

Suppose that a database application returns a pointer (addr) to a null-terminated
string and you do not know the upper bound on the length of the string.

To copy the string into the workspace:

‘len'0ONA'P dyalog32|STRLEN P'

‘cpy'[NA'dyalog32|MEMCPY >T[] P P'

cpy L addr (l«len addr)
Bartholemew

Examples

The following examples all use functions from the Microsoft Windows
user32.dl1l.

This DLL should be located in a standard Windows directory, so you should not
normally need to give the full path name of the library. However if trying these
examples results in the error message FILE ERROR 1 No such file or
directory, you must locate the DLL and supply the full path name (and possibly
extension).

Example 1

The Windows function GetCaretBlinkTime retrieves the caret blink rate. It
takes no arguments and returns an unsigned in¢ and is declared as follows:

UINT GetCaretBlinkTime (void) ;

The following statements would provide access to this routine through an APL
function of the same name.

ONA 'U user32|GetCaretBlinkTime'
GetCaretBlinkTime
530

The following statement would achieve the same thing, but using an APL function
called BLINK.

"BLINK' [ONA 'U user32|GetCaretBlinkTime'
BLINK
530

434

Language Reference Guide

Example 2

The Windows function SetCaretBlinkTime sets the caret blink rate. It takes a
single unsigned int argument, does not return a result and is declared as follows:

void SetCaretBlinkTime (UINT) ;

The following statements would provide access to this routine through an APL
function of the same name:

[ONA 'user32|SetCaretBlinkTime U'
SetCaretBlinkTime 1000

Example 3

The Windows function MessageBox displays a standard dialog box on the screen
and awaits a response from the user. It takes 4 arguments. The first is the window
handle for the window that owns the message box. This is declared as an unsigned
int. The second and third arguments are both pointers to null-terminated strings
containing the message to be displayed in the Message Box and the caption to be
used in the window title bar. The 4th argument is an unsigned int that specifies the
Message Box type. The result is an int which indicates which of the buttons in the
message box the user has pressed. The function is declared as follows:

int MessageBox (HWND, LPCSTR, LPCSTR, UINT);

The following statements provide access to this routine through an APL function of
the same name. Note that the 2nd and 3rd arguments are both coded as input pointers
to type T null-terminated character arrays which ensures portability between
Editions.

[ONA 'I user32|MessageBoxx P <0T <OT U'

The following statement displays a Message Box with a stop sign icon together with
2 push buttons labelled OK and Cancel (this is specified by the value 19).

MessageBox 0O 'Message' 'Title' 19

The function works equally well in the Unicode Edition because the <0T
specification is portable.

MessageBox 0 'To MAvupa' 'O Tithog' 19

Note that a simpler, portable (and safer) method for displaying a Message Box is to
use Dyalog APL's primitive MsgBox object.

Chapter 4: System Functions 435

Example 4

The Windows function FindWindow obtains the window handle of a window
which has a given character string in its title bar. The function takes two arguments.
The first is a pointer to a null-terminated character string that specifies the window's
class name. However, if you are not interested in the class name, this argument
should be a NULL pointer. The second is a pointer to a character string that specifies
the title that identifies the window in question. This is an example of a case
described above where two instances of the function must be defined to cater for the
two different types of argument. However, in practice this function is most often
used without specifying the class name. The function is declared as follows:

HWND FindWindow (LPCSTR, LPCSTR) ;

The following statement associates the APL function FW with the second variant of
the FindWindow call, where the class name is specified as a NULL pointer. To
indicate that APL is to pass the value of the NULL pointer, rather than its address, we
need to code this argument as Ik.

"FW' [ONA 'P user32|FindWindowx P <OT'
To obtain the handle of the window entitled "CLEAR WS - Dyalog APL/W":

O<HNDL<FW O 'CLEAR WS - Dyalog APL/W'
59245156

Example 5

The Windows function GetWindowText retrieves the caption displayed in a
window's title bar. It takes 3 arguments. The first is an unsigned inf containing the
window handle. The second is a pointer to a buffer to receive the caption as a null-
terminated character string. This is an example of an output array. The third
argument is an int which specifies the maximum number of characters to be copied
into the output buffer. The function returns an int containing the actual number of
characters copied into the buffer and is declared as follows:

int GetWindowText (HWND, LPSTR, int);

The following associates the "GetWindowText" DLL function with an APL
function of the same name. Note that the second argument is coded as ">0T"
indicating that it is a pointer to a character output array.

ONA 'I user32|GetWindowTextx P >0T I'
Now change the Session caption using)WSID :

JWSID MYWS
was CLEAR WS

436 Language Reference Guide

Then retrieve the new caption (max length 255) using window handle HNDL from
the previous example:

Jdisplay GetWindowText HNDL 255 255

There are three points to note.

1. Firstly, the number 255 is supplied as the second argument. This instructs
APL to allocate a buffer large enough for a 255-element character vector

into which the DLL routine will write.
2. Secondly, the result of the APL function is a nested vector of 2 elements.
The first element is the result of the DLL function. The second element is

the output character array.
3. Finally, notice that although we reserved space for 255 elements, the result

reflects the length of the actual text (19).

An alternative way of coding and using this function is to treat the second argument
as an input/output array.

e.g.
[ONA 'I User32|GetWindowTextx P =0T I'

Jdisplay GetWindowText HNDL (255p' ') 255

In this case, the second argument is coded as =0T, so when the function is called an
array of the appropriate size must be supplied. This method uses more space in the
workspace, although for small arrays (as in this case) the real impact of doing so is
negligible.

Example 6

The function GetCharWidth returns the width of each character in a given range.
Its first argument is a device context (handle). Its second and third arguments specify
font positions (start and end). The third argument is the resulting integer vector that
contains the character widths (this is an example of an output array). The function
returns a Boolean value to indicate success or failure. The function is defined as
follows. Note that this function is provided in the library: gdi32.d11.

Chapter 4: System Functions 437

BOOL GetCharWidth (HDC, UINT, UINT, LPINT);

The following statements provide access to this routine through an APL function of
the same name:

ONA 'U4 gdi32|GetCharWidthx P U U >I[]"'
'Prin'0OWC'Printer'

ldisplay GetCharWidth ('Prin' [OWG 'Handle') 65 67 3

.

Note: 'Prin'[OWG'Handle " returns a handle which is represented as a number.
The number will be in the range (0 - 2*32] on a 32-bit version and (0 - 2*64] on a 64-
bit version. These can be passed to a P type parameter. Older versions used a 32-bit
signed integer.

Example 7

The following example from the supplied workspace: quadna.dws. quadna
illustrates several techniques which are important in advanced ONA programming.
Function DL L Version returns the major and minor version number for a given
DLL. Note that this example assumes that the computer is running the 64-bit version
of Dyalog.

In advanced DLL programming, it is often necessary to administer memory outside
APL's workspace. In general, the procedure for such use is:

Allocate global memory.

Lock the memory.

Copy any DLL input information from workspace into memory.
Call the DLL function.

Copy any DLL output information from memory to workspace.
Unlock the memory.

Free the memory.

Nk =

Notice that steps 1 and 7 and steps 2 and 6 complement each other. That is, if you
allocate global system memory, you must free it after you have finished using it. If
you continue to use global memory without freeing it, your system will gradually
run out of resources. Similarly, if you lock memory (which you must do before using
it), then you should unlock it before freeing it. Although on some versions of
Windows, freeing the memory will include unlocking it, in the interests of good
style, maintaining the symmetry is probably a good thing.

438

Language Reference Guide

V version«DllVersion file;Alloc;Free;Lock;Unlock;Size
;Info;Value;Copy;sizes;hndl;addr;buff;ok

]
[2] 'Alloc'ONA'P kernel32|GlobalAlloc U4 P'
[3] 'Free'[INA'P kernel32|GlobalFree P'
[4] "Lock 'ONA'P kernel32|GloballLock P'
[5] 'Unlock'0NA'U4 kernel32|GlobalUnlock P'

[7] 'Size'[ONA'U4 version|GetFileVersionInfoSizex <0T >U4'
[8] 'Info'ONA'U4 version|GetFileVersionInfox<OT U4 U4 P'
[9] 'Value'ONA'U4 version|VerQueryValuex P <0T >P >Uy4'
[10]

[11] 'Copy'ONA'dyalogé4|MEMCPY >U4[] P P'

[12]

[13] :If xsize<«>Size file O A Size of info
[14] :AndIf xhndl<Alloc 0 size A Alloc memory
[15] :If xaddr<Lock hndl A Lock memory
[16] :If xInfo file 0 size addr A Version info
[17] ok buff size«Value addr'\' 0 0 A Version value
[18] :If ok
[19] buff«Copy(size+t)buff size A Copy info
[20] version«(2/2x16)T>24buff A Split version
[21] :EndIf
[22] :EndIf
[23] ok«Unlock hndl A Unlock memory
[24] tEndIf
[25] ok«Free hndl A Free memory
[26] :EndIf

v

Lines [2-11] associate APL function names with the DLL functions that will be used.
Lines [2-5] associate functions to administer global memory.

Lines [7-9] associate functions to extract version information from a DLL.

Line[11] associates Copy with MEMCPY function from dyalog64.dll.

Lines [13-26] call the DLL functions.

Line [13] requests the size of buffer required to receive version information for the
DLL. A size of 0 will be returned if the DLL does not contain version information.

Notice that care is taken to balance memory allocation and release:

On line [14], the :If clause is taken only if the global memory allocation is successful,
in which case (and only then) a corresponding Free is called on line [25].

Unlock on line[23] is called if and only ifthe call to Lock on line [15] succeeds.

A result is returned from the function only ifall the calls are successful Otherwise,
the calling environment will sustain a VALUE ERROR.

Chapter 4: System Functions 439

More Examples

ONA'I4 advapi32 |RegCloseKey P’

ONA'I4 advapi32 |RegCreateKeyExx* P <OT U4 <OT U4 U4 P >P
>Uy4!

ONA'I4 advapi32 |RegEnumValuex P U4+ >0T =U4 =U4 >U4 >O0T
=Uy'

ONA'I4 advapi32 |RegOpenKeyx P <0T >pP'

ONA'I4 advapi32 |RegOpenKeyExx P <OT U4 U4 >P'

ONA'I4 advapi32 |RegQueryValueExx P <0T =U4% >U4% >0T =U4'
ONA'I4 advapi32 |RegSetValueExx P <OT =U4% U4 <OT Uu'
ONA'P dyalog32 |STRNCPY PPP'

ONA'P dyalog32 |STRNCPYA PPP

ONA'P dyalog32 |STRNCPYW PPP

ONA'P dyalog32 |MEMCPY PPP

ONA'I4 gdi32 | AddFontResourcex <0T'

ONA'I4 gdi32 [BitBLlt P I4 I4 I4 I4 P I4 I U4'
ONA'U4 gdi32 |GetPixel P I4 I4'

ONA'P gdi32 |GetStockObject Iy'

ONA'I4 gdi32 |RemoveFontResourcex <OT'

ONA'U4 gdi32 |SetPixel P I4 I4 Uy’

ONA' glu32 |gluPerspective F8 F8 F8 F8'

ONA'I4 kernel32 |CopyFilex <0T <OT Iu'

ONA'P kernel32 |GetEnvironmentStrings'

ONA'U4 kernel32 |GetlLastError'

ONA'U4 kernel32 |GetTempPathx us >0T'

ONA'P kernel32 |GetProcessHeap'

ONA'I4 kernel32 |GlobalMemoryStatusEx ={U4 U4 U8 U8 U8 U8 U8 U8}'

ONA'P kernel32 |HeapAlloc P U4 P!
ONA'I4 kernel32 |Heapfree P U4+ P'
ONA' opengl32 |glClearColor F4 F4 F4 Fu'
ONA' opengl32 |glClearDepth F8'

ONA' opengl32 |glEnable uy'

ONA' opengl32 |glMatrixMode uy!

ONA'I4 user32 |ClientToScreen P ={I4 Iy}’
ONA'P user32 |FindWindowx <0T <OT'
ONA'I4 user32 | ShowWindow P Iy’
[ONA'I2 user32 |GetAsyncKeyState 4!

ONA'P user32 |GetDC P!

[ONA'I4 User32 |GetDialogBaseUnits'
ONA'P user32 |GetFocus'

ONA'U4 user32 |GetSysColor Iy

ONA'I4 user32 |GetSystemMetrics Iy'

ONA'I4 user32 |InvalidateRgn PP I4'
ONA'I4 user32 |[MessageBoxx* P <0T <OT U4
ONA'I4 user32 |ReleaseDC PP

ONA'P user32 | SendMessagex PU4+ PP’
ONA'P user32 | SetFocus P!

ONA'I4 user32 IWinHelpx P <OT U4 P'

ONA'I4 winnm | sndPlaySound <0T uy'

440 Language Reference Guide

Native File Append {R}«X [ONAPPEND Y

This function appends the ravel of'its left argument X to the end of the designated
native file. X must be a simple homogeneous APL array. Y isa 1- or 2-element
integer vector. Y[1] is a negative integer that specifies the tie number of a native
file. The optional second element Y[2] specifies the data type to which the array X
is to be converted before it is written to the file.

The shy file index result returned is the position within the file of the end of the
record, which is also the start of the following one.

Unicode Edition

Unless you specify the data type in Y[2], a character array will by default be written
using type 80.

If the data will not fit into the specified character width (bytes) ONAPPEND will fail
with a DOMAIN ERROR.

As a consequence of these two rules, you must specify the data type (either 160 or
320) in order to write Unicode characters whose code-point are in the range 256-
65535 and >65535 respectively.

Example

n<'test '[INCREATE 0O
‘abc' [nappend n

'tapgépva'lnappend n
DOMAIN ERROR
"tagépva'[DNAPPEND n

A

"tapépva'NAPPEND n 160

[ONREAD n 80 3 0
abc

[ONREAD n 160 7
Tapépva

To write 2 or more lines, you must insert appropriate end-of-line codes.

('hello',(OUuCS 13 10), 'world')dnappend 1 A Windows
('hello',(0OUCS 10), 'world')dnappend ~1 A Other

Chapter 4: System Functions 441

Name Classification R<NC Y

Y must be a simple character scalar, vector, matrix, or vector of vectors that specifies a
list of names. R is a simple numeric vector containing one element per name in Y.
Each element of R is the name class of the active referent to the object named in Y.

IfY is simple, a name class may be:

Name Class Description

-1 invalid name

0 unused name

1 Label

Variable

Function

Event

2
3
4 Operator
8
9

Object (GUIL namespace, COM, .NET)

IfY is nested a more precise analysis of name class is obtained whereby different
types are identified by a decimal extension. For example, defined functions have
name class 3.1, dfns have name class 3.2, and so forth. The complete set of name
classification is as follows:

Array Function Operator
Namespace (9)
@ 3) @ P
n.1 Variable | Traditional |Traditional Created by [NS,)NS or
:Namespace
n.2 Field dfn dop Instance
03 Propert Derived or |Derived or
' PEY | Primitive | Primitive
n4 Class
n.5 Interface
n.6 Extemnal External External Class
Shared
n.7 External Interface

442 Language Reference Guide

In addition, values in R are negative to identify names of methods, properties and
events that are inherited through the class hierarchy of the current class or instance.

Variable (Name-Class 2.1)

Conventional APL arrays have name-class 2.1.

NUM<«88
CHAR<'Hel lo World'

ONC t'NUM' 'CHAR'

2 2
ONC 'NUM' 'CHAR'
2.1 2.1
'MYSPACE '[INS '
MYSPACE.VAR«10
MYSPACE .ONC'VAR'
2
MYSPACE .ONCc ' VAR
2.1
Field (Name-Class 2.2)

Fields defined by APL Classes have name-class 2.2.

:Class nctest
:Field Public pubFld
:Field pvtFld

V r«<NameClass x
tAccess Public
r<[NC x

\'4

;éﬁdClass A nctest

ncinst«[ONEW nctest

The name-class of a Field, whether Public or Private, viewed from a Method that is
executing within the Instance Space, is 2.2.

ncinst.NameClass'pubFld' 'pvtFld'
2.2 2.2

Chapter 4: System Functions 443

Note that an internal Method sees both Public and Private Fields in the Class
Instance. However, when viewed from outside the instance, only public fields are
visible

ONC 'ncinst.pubFld' 'ncinst.pvtFld'
2.2 0

In this case, the name-class is negative to indicate that the name has been exposed by
the class hierarchy, rather than existing in the associated namespace which APL has
created to contain the instance. The same result is returned if [INC is executed inside
this space:

ncinst.[ONC'pubFld' 'pvtFld'
2.2 0

Note that the names of Fields are reported as being unused if the argument to [ONC is
simple.

ncinst.[ONC 2 6p'pubFldpvtFld’
00

Property (Name-Class 2.3)

Properties defined by APL Classes have name-class 2.3.

:Class nctest
:Field pvtFld«99

:Property pubProp
tAccess Public
V r<get
r<pvtFld
v
:EndProperty

:Property pvtProp
V r<get
r<pvtFld
v
:EndProperty

V r«NameClass x
:Access Public
r<[NC x
\4
;éadClass A nctest

ncinst«[INEW nctest

444

Language Reference Guide

The name-class of a Property, whether Public or Private, viewed from a Method that
is executing within the Instance Space, is 2.3.

ncinst.NameClass'pubProp' 'pvtProp'
2.3 2.3

Note that an internal Method sees both Public and Private Properties in the Class
Instance. However, when viewed from outside the instance, only Public Properties
are visible

ONC 'ncinst.pubProp' 'ncinst.pvtProp'
2.3 0

In this case, the name-class is negative to indicate that the name has been exposed by
the class hierarchy, rather than existing in the associated namespace which APL has
created to contain the instance. The same result is returned if [INC is executed inside
this space:

ncinst.ONC 'pubProp' 'pvtProp'
2.3 0

Note that the names of Properties are reported as being unused if the argument to
[NC is simple.

ncinst.ONC 2 6p'pubProppvtProp'
00

External Property (Name-Class 2.6)

Properties exposed by external objects (NET and COM and the APL GUI) have
name-class ~2. 6.

[JUSING«'System'

dt<[INEW DateTime (2006 1 1)

dt.[ONC 'Day' 'Month' 'Year'
2.6 2.6 2.6

'ex' [OWC 'OLEClient' 'Excel.Application'’
ex.[INC 'Caption' 'Version' 'Visible'
2.6 2.6 72.6

"f'OWC'Form'
f.ONC'Caption' 'Size'
2.6 72.6

Note that the names of such Properties are reported as being unused if the argument
to [ONC is simple.

f.ONC 2 7p'CaptionSize '

Chapter 4: System Functions

445

Defined Function (Name-Class 3.1)

Traditional APL defined functions have name-class 3.1.

V R<AVG X
(1] Re(+/X)+pX
v
AVG 1100
50.5
ONC'AVG'
3
ONCe'AVG'
3.1
"MYSPACE'[INS 'AVG'
MYSPACE.AVG 1100
50.5
MYSPACE.[NC'AVG'
3
ONCc 'MYSPACE.AVG'
3.1

Note that a function that is simply cloned from a defined function by assignment

retains its name-class.

MEAN<AVG

ONC'AVG' 'MEAN'

3.1 3.1

Whereas, the name of a function that amalgamates a defined function with any other
functions has the name-class of a Derived Function, i.e. 3.3.

VMEAN<AVGo ,

ONC'AVG' 'VMEAN'

3.1 3.3

Dfn (Name-Class 3.2)

Dfns have name-class 3.2

Avg<{(+/w)+pw}

(NC'Avg'

ONCc'Avg'

446

Language Reference Guide

Derived Function (Name-Class 3.3)
Names that reference a primitive or derived function have a name-class of 3.3.

PLUS<«+

SUM<+/

CUM<PLUS\

ONC'PLUS' 'SUM' 'CUM'
3.3 3.3 3.3

ONC 3 4p'PLUSSUM CUM '
3 33

Note the difference between the name-class of a name referring to a defined function
(3.1) and that of a name referring to a defined function bound with an operator to
form a derived function (3.3). Trains, being derived functions, also have nameclass
3.3.

V R«AVG X
[1] Re(+/X)+pX
\'4

MEAN<AVG
VMEAN<«AVGe,

negrec<-,+

ONC'AVG' 'MEAN' 'VMEAN' 'negrec'
3.1 3.1 3.3 3.3

External Function (Name-Class 3.6)

Methods exposed by the Dyalog APL GUI and COM and .NET objects have name-
class ~3. 6. Methods exposed by External Functions created using [INA and [JSH all
have name-class 3. 6.

'"F'OWC'Form'

F.ONC'GetTextSize' 'GetFocus'
-3.6 73.6

'"EX'OWC'OLECLient' 'Excel.Application'
EX.ONC 'Wait' 'Save' 'Quit’
3.6 3.6 3.6

OJUSING«'System'

dt<[INEW DateTime (2006 1 1)

dt.[ONC 'AddDays' 'AddHours'
3.6 73.6

Chapter 4: System Functions 447

‘beep'0NA'user32|MessageBeep i'

ONC'beep'
3
ONCc'beep’
3.6
"xutils'OSH"'
)FNS
avx box dbr getenv hex Ltom Ltov
mtol ss vtol
ONC'hex' 'ss'
3.6 3.6

Note that the names of such Methods are reported as being unused if the argument to
ONC is simple.

'F'OWC'Form'

F.ONCt*'GetTextSize' 'GetFocus'
00

Operator (Name-Class 4.1)

Traditional Defined Operators have name-class 4.1.

VFILTERV
V VEC«<(P FILTER)VEC @ Select from VEC those elts .
[1] VEC<«(PVEC)/VEC A for which BOOL fn P is true.

v
ONC'FILTER'
' ONCe'FILTER'
4.1
Dop (Name-Class 4.2)

Dops have name-class 4.2.

pred«<{I0 OML+«1 3 A Partitioned reduction.
sa0/ (a/1pa)cw

2 3 3 2 +pred 110

3 12 21 19
ONC'pred'
I
ONCc'pred'

448 Language Reference Guide

Derived Operator (Name-Class 4.3)
Derived operators include:

« A name referring to a monadic operator.
« A dyadic operator curried with its right-operand.

Example:
each<«”
each
ONC c'each'
4.3
invexT1
inv
* 1
ONC c'inv'
4.3
c2f«(320+)o(x01.8) A Centigrade to Fahrenheit
f2c 0 100
32 212
f2c inv 32 212 A Fahrenheit to Centigrade
0 100

External Event (Name-Class 8.6)

Events exposed by Dyalog APL GUI objects, COM and .NET objects have name-
class 78.6.

f<[ONEW'Form' ('Caption' 'Dyalog GUI Form')
f.ONC'Close' 'Configure' 'MouseDown'
8.6 "8.6 8.6

x L<[JNEW'OLEClient'(c'ClassName'
'"Excel.Application')

xL.0ONL -8
NewWorkbook SheetActivate SheetBeforeDoubleClick

xL.[ONC 'SheetActivate' 'SheetCalculate’
8.6 78.6

OJUSING<'System.Windows.Forms,system.windows.forms.dl L'
ONC,<'Form'
9.6
Form.[ONL -8
Activated BackgroundImageChanged BackColorChanged

Chapter 4: System Functions 449

Namespace (Name-Class 9.1)

Plain namespaces created using [INS, or fixed from a : Namespace script, have
name-class 9.1.

'MYSPACE' [ONS ''
ONC'MYSPACE'
9
[ONCc'MYSPACE'
9.1

Note however that a namespace created by cloning, where the right argument to [INS
is a[JOR of a namespace, retains the name-class of the original space.

'CopyMYSPACE 'ONS OOR 'MYSPACE'
"CopyF'ONS OOR 'F'OWC'Form'

[ONC'MYSPACE' 'F'
9.1 9.2

ONC'CopyMYSPACE' 'CopyF'
9.1 9.2

The Name-Class of NET namespaces (visible through JUSING) is also 9.1

QUSING«""
ONC 'System' 'System.IO'
9.1 9.1

Instance (Name-Class 9.2)

Instances of Classes created using [INEW, and GUI objects created using [JWC all have
name-class 9.2.

MyInst<[NEW MyClass

ONC'MyInst'
9
ONCc'MyInst'
9.2
UrInst<[INEW OFIX ':Class' ':EndClass'
ONC 'MyInst' 'UrlInst'
9.2 9.2
'F'OWC 'Form'
'F.B' OWC 'Button'
ONC 2 3p'F F.B'
9 9

ONC'F' 'F.B'
9.2 9.2

450 Language Reference Guide

F.ONC'B'
9

F.ONCe, 'B'
9.2

Instances of COM Objects whether created using JWC or INEW also have name-class
9.2.

x L<[INEW'OLEClient'(c'ClassName'
'Excel.Application')
'XL'OWC'OLECLient' 'Excel.Application'
ONC'xLl"' 'XL'
9.2 9.2

The same is true of Instances of NET Classes (Types) whether created using ONEW or
.New.

OUSING«'System'
dt<[ONEW DateTime (3t0TS)
DT«DateTime.New 310TS
ONC 'dt' 'DT'

9.2 9.2

Note that if you remove the GUI component of a GUI object, using the Detach
method, it reverts to a plain namespace.

F.Detach
ONCe, 'F'
9.1

Correspondingly, if you attach a GUI component to a plain namespace using the
monadic form of JWC, it morphs into a GUI object

F.OWC 'PropertySheet'
[ONCe, 'F'

Chapter 4: System Functions 451

Class (Name-Class 9.4)

Classes created using the editor or JF IX have name-class 9.4.

JED oMyClass

:Class MyClass
V r«<NameClass x
:Access Public Shared
r<[NC x
\'4
:EndClass A MyClass

ONC 'MyClass'

9
[ONCc'MyClass'

9.4
OFIX ':Class UrClass' ':EndClass'
ONC 'MyClass' 'UrClass'

9.4 9.4

Note that the name of'the Class is visible to a Public Method in that Class, or an
Instance of'that Class.

MyClass.NameClass'MyClass'
9

MyClass.NameClassc'MyClass'
9.4

Interface (Name-Class 9.5)

Interfaces, defined by : Interface ... :EndInterface clauses, have name-
class 9.5.

:Interface IGolfClub
:Property Club

V r<get

v

V set

v
:EndProperty

vV Shank<Swing Params
v

tEndInterface A IGolfClub
ONC 'IGolfClub'

ONC <'IGolfClub'

452 Language Reference Guide

External Class (Name-Class 9.6)
External Classes (Types) exposed by .NET have name-class 9.6.
OUSING<«'System' 'System.IO'

[ONC 'DateTime' 'File' 'DirectoryInfo'
9.6 9.6 9.6

Note that referencing a .NET class (type) with [INC, fixes the name of that class in the
workspace and obviates the need for APL to repeat the task of searching for and
loading the class when the name is next used.

External Interface (Name-Class 9.7)

External Interfaces exposed by .NET have name-class 9.7.

OUSING<«'System.Web.UI,system.web.dll"'

[ONC 'IPostBackDataHandler' 'IPostBackEventHandler'
9.7 9.7

Note that referencing a .NET Interface with [INC, fixes the name of that Interface in
the workspace and obviates the need for APL to repeat the task of searching for and
loading the Interface when the name is next used.

Chapter 4: System Functions 453

Native File Copy {R}«X ONCOPY Y

This function copies native files and directories from one or more sources specified
by Y to a destination specified by X. ONCOPY is similar to JNMOVE (see Native File
Move on page 479).

X is a character vector that specifies the name of the destination.

Y is a character vector that specifies the name of the source, or a vector of character
vectors containing zero or more sources.

Source and destination path names may be full or relative (to the current working
directory) path names which adhere to the operating system conventions.

If X specifies an existent directory then each source in Y is copied into that directory,
otherwise X specifies the name of the copy. X must specify an existent directory if the
source contains multiple names or if the Wildcard option is set.

The shy result R contains count(s) of top-level items copied. If Y is a single source
name, R is a scalar otherwise it is a vector of the same length as Y.

Variant Options

ONCOPY may be applied using the Variant operator with the options Wildcard (the
Principal option), IfExists and PreserveAttributes.

Wildcard Option (Boolean)

0 the name or names in Y identifies a specific file name.

the name or names in Y that specify the base name and
extension (see File Name Parts on page 484), may also contain
1 the wildcard characters "?" and "*". An asterisk is a substitute
for any 0 or more characters in a file name or extension; a
question-mark is a substitute for any single character.

Note that when Wildcard is 1, element(s) of R can be 0, 1 or >1. If Wildcard is 0,
elements of R are always 1.

454 Language Reference Guide

IfExists Option

The IfExists variant option determines what happens when a source file is to be
copied to a target file that already exists. It does not apply to directories, only to the
files within them.

Value Description

Existing files will not be overwritten and an error

Error will be signalled. This is the default
Existing files will not be overwritten but the
"Skip' corresponding copy operation will be skipped
(ignored).
'Replace'’ Existing files will be overwritten.

Existing files may be overwritten if, and only if, the
corresponding source file is newer (more recently
modified) than the existing one, otherwise it is
skipped.

‘ReplaceIfNewer'

The following cases cause an error to be signalled regardless of the value of the
IfExists variant.

« If the source specifies a directory and the destination specifies an existing
file.

« If the source specifies a file and the same base name exists as a sub-
directory in the destination.

PreserveAttributes Option (Boolean)

The PreserveAttributes variant option determines whether or not file attributes are
preserved. It does not apply to directories, only to files.

0 file attributes are not preserved.

where possible, copied files will be given at least the same
1 modification time as the source. Other file attributes will be
preserved as permitted by the operating system and file system.

Note also that when files are copied across file systems, the different file systems may
have different timestamp granularity and the timestamps may not be exactly the
same.

Chapter 4: System Functions 455

Examples

There are a number of possibilities which are illustrated below. In all cases, if the
source is a file, a copy of'the file is created. If the source is a directory, a copy of the
directory and all its contents is created.

Examples (single source, Wildcard is 0)

o The source name must be an existent file or directory.

« If the destination name does not exist but its path name does exist, the
source is copied to the destination name.

o If the destination name is an existing directory the copy is created within
that directory with the base name of the source.

>1 [NPARTS "'
j:/Documents/Dyalog APL-64 17.0 Unicode Files/

A Make a named back-up of the Session file
+'session.bak' [ONCOPY 'default.dLf'

1
+ [OMKDIR 'backups' A Make a backups directory
1
A Copy the Session file to backups directory
+'backups '[INCOPY 'default.dlf’
1
150 (ONINFOEIL) 'backups*'
backups/default.dlf

Examples (single source, Wildcard is 1)

o The source name may include wildcard characters which matches a number
of existing files and/or directories. The destination name must be an
existing directory.

o The files and/or directories that match the pattern specified by the source
name are copied into the destination directory. If there are no matches, zero
copies are made.

>1 [NPARTS ''
j:/Documents/Dyalog APL-64 17.0 Unicode Files/

+ OMKDIR 'backups' A Make a backups directory
1
A Copy all files to backups directory
+'backups ' (ONCOPY['Wildcard' 1)'x. %'
3

456

Language Reference Guide

1250 (ONINFO[EL) 'backups\x'

backups/default.dlf
backups/def_uk.dse
backups/UserCommand20.cache

Examples (multiple sources, Wildcard is 0)

1
A

1

o Each source name must specify a single file or directory which must exist.
The destination name must be an existing directory.

« Copies of each of the files and/or directories specified by the source base
names are made in the destination directory.

>1 [INPARTS "'
:/Documents/Dyalog APL-64 17.0 Unicode Files/

+ OMKDIR 'backups' A Make a backups directory

Copy 2 files to backups directory

+'backups '[INCOPY'default.dlf' 'def_uk.dse'
1

120 (ONINFO[E1) 'backups*'

backups/default.dlf
backups/def_uk.dse

Examples (multiple sources, Wildcard is 1)

1
A

2

o The destination name must be an existing directory.
o Copies of each of the files and/or directories that match the patterns
specified by the source names (if any) are made in the destination directory.

51 [INPARTS "'
:/Documents/Dyalog APL-64 17.0 Unicode Files/

+ [OMKDIR 'backups' ma Make a backups directory

Copy files to backups directory

+'backups' (ONCOPY[1) 'dx' 'UserCommand20.cache’
1

1250 (ONINFO[EL) 'backups*'

backups/default.dlf
backups/def_uk.dse
backups/UserCommand20.cache

Chapter 4: System Functions 457

Notes

o The special directories . and .. can never be copied into an existing
directory.

« If any source name is a symbolic link it is dereferenced; that is, the source
or directory it references is copied rather than the link itself.

 In the result R, a directory together with all its contents is counted once. A
directory may be partially copied if the IfExists option is set to
'Replace’ or 'ReplaceIfNewer’).

o If an error occurs during the copy process then processing will immediately
stop and an error will be signalled. The operation is not atomic; some items
may be copied before this happens. In the event of an error there will be no
result and therefore no indication of how many names were copied before
the error occurred.

458

Language Reference Guide

Native File Create {R}«X [ONCREATE Y

This function creates a new file. Under Windows the file is opened with mode 66
(see Native File Tie on page 498). Under non-Windows operating systems the current
umask will specify the file permissions. The name of the new file is specified by the
left argument X which must be a simple character vector or scalar containing a valid
pathname for the file.

Y is 0 or a negative integer value that specifies an (unused) tie number by which the
file may subsequently be referred. If Y is 0, the system allocates the first (closest to
zero) available tie number which is returned as the result.

The shy result of INCREATE is the tie number of the new file.

Variant Options

ONCREATE may be applied using the Variant operator with the options Unique and
IfExists. There is no primary option.

Unique Option (Boolean)

0 the file named by X will be created

a uniquely named file will be created by extending the base
name (see File Name Parts on page 484) with random

1 characters. If a unique name cannot be created then an error
will be signalled. The actual name of the file can be
determined from [INNAMES or ININFO.

IfExists Option (character vector)

[ONCREATE will generate a FILE NAME ERROR if the file
Error .
already exists
Replace [ONCREATE will replace an existing file with an empty one of
the same name.

Chapter 4: System Functions 459

Examples

'myfile' OONCREATE 0
-1

ONUNTIE ~1

+'myfile' [ONCREATE O
FILE NAME ERROR: myfile: Unable to create file ("The file
exists.")

~'myfile'[JNCREATE O

A
+'myfile' (ONCREATE['IfExists' 'Replace') 0
1 A Note that it uses same tie number as before
_ ~'myfile' (ONCREATEEI('Unique' 1)) O
’ ONNUMS ,[INNAME S

1 myfile
2 myfileb52c36z

Notes:

o Setting IfExists to Rep lace has no effect when Unique is 1, because the
file cannot already exist.
« The IfExists option does not affect the operation of slippery ties.

460

Language Reference Guide

Native File Delete {R}«{X}[INDELETE Y

This function deletes files and directories.

Y is a character vector or scalar containing a single file or directory name, or a vector
of character vectors containing zero or more file or directory names. Names must
conform to the naming rules of the host Operating System.

The optional left argument X is a numeric scalar; valid values are shown in the
following table. If omitted, its default value is 0.

0 | Each file or directory with the given name must exist.

If the file or directory with the given name does not exist then no action is
1 | taken. The result R may be used to determine whether the file or directory
was deleted or not.

If a name identifies a non-empty directory it, and all its contents, are to be
deleted.

3 | Combination of 1 and 2.

R is a numeric count of top-level entities deleted when processing the corresponding
name in Y. If Y specifies a single name, R is a scalar. If Y is a vector of character
vectors R is a vector with the same length as Y.

Variant Options

ONDELETE may be applied using the Variant operator with the Wildcard option.
Wildcard Option (Boolean)

0 the name or names in Y identifies a specific file name.

the name or names in Y that specify the base name and
extension (see File Name Parts on page 484), may also contain
1 the wildcard characters "?" and "*". An asterisk is a substitute
for any 0 or more characters in a file name or extension; a
question-mark is a substitute for any single character.

Note that when Wildcard is 1, element(s) of R can be 0 or >1. If Wildcard is 0,
elements of R are always 1.

If'Y specifies the name of a symbolic link, ONDELETE deletes that symbolic link; the
target of the symbolic link is unaffected.

Chapter 4: System Functions

461

Examples
ONEXISTS'/Users/Pete/Documents/temp/t1/t2"
1
+[NDELETE'/Users/Pete/Documents/temp/t1/t2"
1

+[ONDELETE'/Users/Pete/Documents/temp/t1/t2"
FILE NAME ERROR: Invalid file or directory name ("The
system cannot find the file specified.")

F[NDELETE ' /Users/Pete/Documents/temp/t1/t2"

A

+1 [NDELETE'/Users/Pete/Documents/temp/t1/t2"’

° +[INDELETE 'templ' 'temp2'
i +[MKDIR'templ' 'temp2'
b +(OONDELETE[J1) "t*'
2
+[MKDIR' temp1l"'
13 ~'Hello World' ONPUT 'templ/hw.txt'

+[NDELETE 'tempi'’
FILE ACCESS ERROR: templ: Unable to delete directory
("The directory is not empty.")
+[INDELETE ' temp1"'
A
+2 [INDELETE 'tempil’
1

Ifthe file is in use or the current user is not authorised to delete it, INDELETE will

not succeed but will instead generatea FILE ACCESS ERROR.

Note

When multiple names are specified they are processed in the order given. If an error
occurs at any point whilst deleting files or directories, processing will immediately

stop and an error will be signalled. The operation is not atomic; the directory

contents may be partially deleted before this happens. In the event of an error there
will be no result and therefore no indication of how many files were deleted before

the error occurred.

462 Language Reference Guide

Native File Erase {R}«X [ONERASE Y

This function erases (deletes) a tied native file. Y is a negative integer tie number
associated with a tied native file. X is a simple character vector or scalar containing
the name of the same file and must be identical to the name used when it was opened
by ONCREATE orONTIE.

The shy result of INERASE is the tie number that the erased file had.

Example

file Onerase file [Ontie O

Chapter 4: System Functions 463

New Instance R<[INEW Y

[ONEW creates a new instance of the Class, Dyalog GUI object, or NET Type
specified by Y.

Y must be a 1- or 2-item scalar or vector. The first item is a reference to a Class or to a
NET Type, or a character vector containing the name of a Dyalog GUI object.

The second item, if specified, contains the argument to be supplied to the Class or
Type Constructor or a list of property/value pairs for a Dyalog GUI object.

The result R is a reference to a new instance of Class, Dyalog GUI object, or Type Y.

For further information, see Interface Guide.

Class Example

:Class Animal
Vv Name nm
:Access Public
:Implements Constructor
ODF nm
\'4
:EndClass A Animal

Donkey<[INEW Animal 'Eeyore'
Donkey
Eeyore

IfONEW is called with just a Class reference (i.e. without parameters for the
Constructor), the default constructor will be called. A default constructor is defined
by a niladic function with the :Implements Constructor attribute. For example, the
Animal Class may be redefined as:

:Class Animal
VvV NoName
tAccess Public
:Implements Constructor
[ODF 'Noname'
\'4
v Name nm
tAccess Public
:Implements Constructor
[ODF nm
v
tEndClass A Animal

464

Language Reference Guide

Horse<[NEW Animal
Horse
Noname

.NET Examples

[JUSING<«'System' 'System.Web.Mail,System.Web.dll'
dt<[IJNEW DateTime (2006 1 1)
msg«<[INEW MailMessage
ONC 'dt' 'msg' 'DateTime' 'MailMessage’
9.2 9.2 9.6 9.6

Note that NET Types are accessed as follows.

If the name specified by the first item of Y would otherwise generate a VALUE
ERROR, and JUSING has been set, APL attempts to load the Type specified by Y
from the .NET assemblies (DLLs) specified in JUSING. If successful, the name
specified by Y is entered into the SYMBOL TABLE with a name-class of 9. 6.
Subsequent references to that symbol (in this case DateTime) are resolved directly
and do not involve any assembly searching.

Dyalog GUI Examples

F<[INEW <'Form'
F
#.[Form]

To specify the initial values of any properties, Y[2] must be a vector (or scalar) of
items each of which is of the form (PropertyName Property Value); the free-form
syntax implemented by OWC and [OOWS is not allowed.

[(ONEW'Form' (c'Caption' 'Hello')
#.[Form]

F<[ONEW'Form' (('Caption' 'Hello')('Posn' (10 10)))
F
#.[Form]

Note that as [INEW provides no facility to name a GUI object, the Event property
should use the onEvent syntax so that a callback function (or the result of JDQ)
receives a ref to the object. Otherwise, without the onEvent syntax, the first element
of'the argument to a callback function will contain a character vector such as '
[Form].[Button]' which merely describes the type of the object but does not
identify the object itself.

cap<«'Caption' 'Push Me'

ev< 'Event' ('onSelect' 'foo')

F.(B<[INEW'Button'#.(pos cap ev))

Note that you may not create an instance of OCXClass using [JNEW.

Chapter 4: System Functions 465

Native File Exists R«NEXISTS Y

This function reports whether or not file and directories exist.

Y is a character vector or scalar containing a single directory name, or a vector of
character vectors containing zero or more directory names. Names must conform to
the naming rules of the host Operating System.

IfY specifies a single name, the result R is a scalar 1 ifa file or directory exists or 0 if
not. If Y is a vector of character vectors, R is a vector of 1s and 0s with the same
length as Y.0

Variant Options

ONEXISTS may be applied using the Variant operator with the Wildeard option.
Wildcard Option (Boolean)

0 the name or names in Y identifies a specific file name.

the name or names in Y that specify the base name and
extension (see File Name Parts on page 484), may also contain
1 the wildcard characters "?" and "*". An asterisk is a substitute
for any 0 or more characters in a file name or extension; a
question-mark is a substitute for any single character.

Ifthe Wildcard option is 1, R indicates whether or not one or more matches to the
corresponding pattern in Y exist.

Example
O«0OMKDIR'/Users/Pete/Documents/temp/t1/t2"
1
ONEXISTS'/Users/Pete/Documents/temp/t1/t2"'
1
ONEXISTS'/Users/Pete/Documents/temp/t1/t2/pd'
0
+[MKDIR'templ' 'temp2’
11

ONEXISTS 'templ' 'temp2' 'temp3'’
110

(ONEXISTSEHL) "t='
1

Note

IfY is a symbolic link, ONEXISTS will return 1 whether or not the target of the
symbolic link exists.

466

Language Reference Guide

Read Text File

R«{X} ONGET Y

This function reads the contents of the specified text file. See also Write Text File on
page 486.

Y is either a character vector/scalar containing the name of the file to be read, ora 2-
item vector whose first item is the file name and whose second is an integer scalar
specifying f Lags for the operation.

If f Lags is O (the default value if omitted) the content in the result R is a character
vector. If f Lags is | the result is a nested array of character vectors corresponding to
the lines in the file.

The optional left-argument X is either

« a character vector that specifies the file-encoding as shown in the table

below.

o a 256-element numeric vector that maps each possible byte value (0-255) to
a Unicode code point (Ist element = Unicode code point corresponding to
byte value 0, and so on). 1 indicates that the corresponding byte value is
not mapped to any character. Apart from 1, no value may appear in the
table more than once.

Table 17: File Encodings

Encoding | Description

UTF-8 The data is encoded as UTF-8 format.

UTF-16LE | The data is encoded as UTF-16 little-endian format.

UTF-16BE | The data is encoded as UTF-16 big-endian format.

UTF-16 The data is encoded as UTF-16 with the endianness of the host
system (currently BE on AIX platforms, LE on all others).

UTF-32LE | The data is encoded as UTF-32 little-endian format.

UTF-32BE | The data is encoded as UTF-32 big-endian format.

UTF-32 The data is encoded as UTF-32 with the endianness of the host
system (currently BE on AIX platforms, LE on all others).

ASCII The data is encoded as 7-bit ASCII format.

Y;ggows- The data is encoded as 8-bit Windows-1252 format.

ANSI ANSI is a synonym of Windows-1252.

Chapter 4: System Functions 467

The above UTF formats may be qualified with -BOM or -NOBOM (e.g. UTF-8-
BOM). See Write Text File on page 486.

Whether or not X is specified, if the start of the file contains a recognised Byte Order
Mark (BOM), the file is decoded according to the BOM. Otherwise, if X is specified

the file is decoded according to the value of X. Otherwise, the file is examined to try
to decide its encoding and is decoded accordingly.

The result R is a 3-element vector comprising (content) (encoding)
(newline) where:

A simple character vector, or a vector of character vectors,

content according to the value of f lags.
The encoding that was actually used to read the file. If this is a
UTF format, it will always include the appropriate endianness
(except for UTF-8 to which endianness doesn't apply) and a -
. BOM or -NOBOM suffix to indicate whether or not a BOM is
encoding

actually present in the file. For example, UTF-16LE-BOM.

If X specified a user-defined encoding as a 256-element numeric
vector, encoding will be that same vector.

Determined by the first occurrence in the file of one of the
newline |newline characters identified in the line separator table, or € if
no such line separator is found.

If content is simple then all its line separators (listed in the table below) are
replaced by (normalised to) JUCS 10, which in the Classic Edition must be in JAVU
(else TRANSLATION ERROR).

If content is nested, it is formed by splitting the contents of the file on the
occurrence of any ofthe line separators shown in the table below. These line
separators are removed.

The 3rd element of the result new L i ne is a numeric vector from the Value column of
the table below corresponding to the first occurrence of any of the newline
characters in the file. If none of these characters are present, the value is 8.

468

Language Reference Guide

Table 18: Line separators:

Value

Code

Description

newline characters

13 CR Carriage Return (U+000D)

10 LF Line Feed (U+000A)

13 10 CRLF Carriage Return followed by Line Feed
133 NEL New Line (U+0085)

other line separator characters

11 VT Vertical Tab (U+000B)

12 FF Form Feed (U+000C)

8232 LS Line Separator (U+2028)
8233 PS Paragraph Separator (U+2029)

Chapter 4: System Functions 469

Native File Information R«{X}ONINFO Y

This function returns information about one or more files or directories.
Y may be:

« anumeric scalar containing the tie number of a native file

« a character vector or scalar containing a file or directory name that conforms
to the naming rules of the host Operating System.

« a vector of character vectors and/or tie numbers

Variant Options

[ONINFO may be applied using the Variant operator with the options Wildcard (the
Principal option), Recurse and Follow.

Wildcard Option (Boolean)

0 the name or names in Y identifies a specific file name.

the name or names in Y that specify the base name and
extension (see File Name Parts on page 484), may also contain
1 the wildcard characters "?" and "*". An asterisk is a substitute
for any 0 or more characters in a file name or extension; a
question-mark is a substitute for any single character.

Recurse Option (Boolean)

the name(s) in Y are searched for only in the corresponding
specified directory

the name(s) in Y are searched for in the corresponding specified
1 directory as well as all sub-directories. If Wildcard is also 1,
the wild card search is performed recursively.

The optional left argument X is a simple numeric array containing values shown in
the following table.

Follow Option (Boolean)

0 the properties reported are those of the symbolic link itself

the properties reported for a symbolic link are those of the
target of the symbolic link

470

Language Reference Guide

The optional left argument X is a simple numeric array containing values shown in

the following table.
X | Property Default
0 Name of the file or directory, as a character vector. If Y is a tie
number then this is the name which the file was tied.
Type, as a numeric scalar:
0=Not known
1=Directory
2=Regular file
1 | 3=Character device 0
4=Symbolic link (only when Follow is 0)
5=Block device
6=FIFO (not Windows)
7=Socket (not Windows)
2 | Size in bytes, as a numeric scalar 0
3 | Last modification time, as a timestamp in 0TS format 700
4 Owner user id, as a character vector — on Windows a SID, on '
other platforms a numeric userid converted to character format
5 | Owner name, as a character vector v
Whether the file or directory is hidden (1) or not (0), as a
6 numeric scalar. On Windows, file properties include a "hidden" | _ L
attribute; on non-Windows platforms a file or directory is
implicitly considered to be hidden if its name begins with a "."
7 | Target of symbolic link (when Type is 4) "
8 | Current file position 0
9 | Last access time in JTS format, when available 7p0
10 | Creation time in (TS format, when available 7p0
11 | Whether the file can (1) or cannot (0) be read ("1 if unknown) |1
12 Whether the file can (1) or cannot (0) be written (T1 if -4
unknown)

Chapter 4: System Functions 471

Note that the current file position identifies where INRE AD will next read from or
ONAPPEND will next write to and is only pertinent when the corresponding value in
Y is a tie number rather than a name. It will be reported as 0 for named files.

Each value in X identifies a property of the file(s) or directory(ies) identified by Y
whose value is to be returned in the result R. If omitted, the default value of X is 0.
Values in X may be specified in any order and duplicates are allowed. A value in X
which is not defined in the table above will not generate an error but results in a &
(Zilde) in the corresponding element of R.

R is the same shape as X and each element contains value(s) determined by the
property specified in the corresponding element in X. The depth of R depends upon
whether or not the Wildcard option is enabled. If, for any reason, the function is
unable to obtain a property value, (for example, if the file is in use exclusively by
another process) the default value shown in the last column is returned instead.

Ifthe Wildcard option is not enabled (the default) then Y specifies exactly one file or
directory and must exist. In this case each element in R is a single property value for
that file. If the name in Y does not exist, the function signals an error. On non-
Windows platforms "*" and "?" are treated as normal characters. On Windows an
error will be signalled since neither "*" nor "?" are valid characters for file or
directory names.

If the Wildcard option is enabled, zero or more files and/or directories may match the
pattern in Y. In this case each element in R is a vector of property values for each of
the files. Note that no error will be signalled if no files match the pattern.

When using the Wildcard option, matching of names is done case insensitively on
Windows and macOS, and case sensitively on other platforms. The names "' and ..
are excluded from any matches. The order in which the names match is not defined.

Examples
(0 1 2) ONINFO 'c:/Users/Pete/Documents’

c:/Users/Pete/Documents| 1 163840

€

>1[INPARTS '' A current working directory
c:/Users/Pete/
(ONINFOEL) 'D*!

Desktop|Documents|Downloads|Dropbox

472 Language Reference Guide

(ONINFO[L) 'Documents/*.zip'

Documents/dyalog.zip

5 (0,16) ONINFO 'Documents/dyalog.zip'

Documents/dyalog.zip

2

3429284

2016 1 22 16 43 58 O

5-1-5-21-2756282986-1198856910-2233986399-1001

HP/Pete

0

51[INPARTS '' A current working directory
C:/Users/Pete/Documents/Dyalog APL-64 16.0 Unicode Files/
(ONINFOEIL) "*.x'

default.dlf|def_uk.dse|jsonx.dws|[UserCommand20.cache

+ [OMKDIR 'd1' 'd2'

'a'oNPUT"'find' 'd1/find' 'di/nofind' 'd2/find'
(Oninfoll'Recurse' 1)'find'

di/find|d2/find|find

The following expression will return all Word document (. docx and . doc) in the
current directory, searching recursively through any sub-directories:

(ONINFORI('Recurse' 1)('Wildcard' 1))'x.docx' 'x.doc'

Chapter 4: System Functions 473

Note

Of the file timestamps, only the last modification time should be considered reliable
and portable. Neither the access time or creation time are well supported across all
platforms.

Name List

R«{X}ONL Y

Y must be a simple numeric scalar or vector containing one or more of the values for
name-class. See also Name Classification on page 441.

X is optional. If present, it must be a simple character scalar or vector. R is a list of the
names of active objects whose name-class is included in Y in standard sorted order.

If any element of Y is negative, positive values in Y are treated as if they were
negative, and R is a vector of character vectors. Otherwise, R is simple character
matrix.

Furthermore, if JNL is being evaluated inside the namespace associated with a Class
or an Instance of a Class, and any element of Y is negative, R includes the Public
names exposed by the Base Class (if any) and all other Classes in the Class hierarchy.

If X is supplied, R contains only those names which begin with any character of X.
Standard sorted order is in Unicode point order for Unicode editions, and in the
collation order of [JAV for Classic editions.

Ifan element of Y is an integer, the names of all of the corresponding sub-name-
classes are included in R. For example, if Y contains the value 2, the names of all
variables (name-class 2.1), fields (2.2), properties (2.3) and external or shared
variables (2.6) are obtained. Otherwise, only the names of members of the
corresponding sub-name-class are obtained.

474 Language Reference Guide

Examples:
ONL 2 3

FAST
FIND
FOO

"AV' ONL 2 3

ONL 79
Animal Bird BirdBehaviour Coin Cylinder
DomesticParrot Eeyore FishBehaviour Nickel Parrot
Penguin Polly Robin
ONL 9.3 A Instances
Eeyore Nickel Polly Robin
ONL 9.4 p Classes
Animal Bird Coin Cylinder DomesticParrot Parrot
Penguin
ONL 79.5 A Interfaces
BirdBehaviour FishBehaviour

ONL can also be used to explore Dyalog GUI Objects, .NET types and COM objects.

Dyalog GUI Objects

ONL may be used to obtain lists of the Methods, Properties and Events provided by
Dyalog APL GUI Objects.

'F' OWC 'Form'

F.ONL -2 a Properties
Accelerator AcceptFiles Active AlphaBlend AutoConf
Border BCol Caption

F.ONL -3 na Methods
Animate Choosefont Detach GetFocus GetTextSize
ShowSIP Wait

F.ONL -8 a Events
Close Create DragDrop Configure ContextMenu
DropFiles DropObjects Expose Help

Chapter 4: System Functions 475

.NET Classes (Types)
ONL can be used to explore NET types.

When a reference is made to an undefined name, and JUSING is set, APL attempts to
load the Type from the appropriate NET Assemblies. If successful, the name is
entered into the symbol table with name-class 9.6.

[JUSING<«'System'

DateTime
(System.DateTime)

ONL -9
DateTime

[ONC,c'DateTime’
9.6

The names of the Properties and Methods of a NET Type may then be obtained
using [INL.

DateTime.[IJNL -2 A Properties
MaxValue MinValue Now Today UtcNow

DateTime.[JNL -3 A Methods
get_Now get_Today get_UtcNow op_Addition op_Equality

In fact it is not necessary to make a separate reference first, because the expression
Type.ONL (where Type is a NET Type) is itselfa reference to Type. So, (with
OUSINGstill setto 'System"'):

Array.[ONL -3
BinarySearch Clear Copy CreateInstance IndexOf
LastIndexOf Reverse Sort

ONL -9
Array DateTime

476

Language Reference Guide

Another use for [ONL is to examine .NET enumerations. For example:

OJUSING<'System.Windows.Forms,system.windows.forms.dl L'

FormBorderStyle.[OJNL -2
Fixed3D FixedDialog FixedSingle FixedToolWindow None
Sizable SizableToolWindow

FormBorderStyle.FixedDialog.value__

FormBorderStyle.({w,[1.5]¢"w, "' .value__'}INL -2)
Fixed3D 2
FixedDialog 3
FixedSingle 1
FixedToolWindow 5
None 0
Sizable L
SizableToolWindow 6

COM Objects

Once a reference to a COM object has been obtained, ONL may be used to obtain
lists of its Methods, Properties and Events.

x L<[IJNEW'OLEClient'(c'ClassName'
'"Excel.Application')

xL.ONL -2 a Properties
_Default ActiveCell ActiveChart ActiveDialog
ActiveMenuBar ActivePrinter ActiveSheet ActiveWindow

xL.ONL -3 n Methods
_Evaluate _FindFile _Run2 _Wait _WSFunction
ActivateMicrosoftApp AddChartAutoFormat AddCustomList
Browse Calculate

ONL -9
x 1

Chapter 4: System Functions 477

Native File Lock {R}«X [NLOCK Y

This function assists the controlled update of shared native files by locking a range
of bytes.

Locking enables controlled update of native files by co-operating users. A process
requesting a lock on a region of a file will be blocked until that region becomes
available. A write-lock is exclusive, whereas a read-lock is shared. In other words,
any byte in a file may be in one of only three states:

o Unlocked
o Write-locked by exactly one process.
o Read-locked by any number of processes.

Y must be a simple integer scalar or vector containing 1, 2 or 3 items namely:

1. Tie number
2. Offset (from 0) of first byte of region. Defaults to 0
3. Number of bytes to lock. Defaults to maximum possible file size

X must be a simple integer scalar or vector containing 1 or 2 items, namely:

1. Type: 0: Unlock, 1:Read lock, 2:Write lock.
2. Timeout: Number of seconds to wait for lock before generating a TIMEOUT
error. Defaults to indefinite wait.

The shy result R is Y. To unlock the file, this value should subsequently be supplied
in t