
1

Conga 3.0 Upgrade Guide
Version dated 27th July, 2017.

Although Conga version 3.0 adds very significant new functionality, it is designed to be upwards compatible

with earlier versions. Existing applications will continue to work unchanged, and all the functionality

described in the Conga User Guide for Conga version 2.7 is available in Conga 3.0. Unfortunately, Conga

version 3.0 was not completed in time for a revised Conga User Guide to be included with Dyalog version

16.0; this document serves as a temporary supplement to information in the main document and contains

preliminary documentation for the new features of Conga 3.0. Revisions of this document and the Conga

User Guide will be released through the Documentation Centre as they become available.

New Features
Conga version 3.0 provides many new features designed to make it easier to write network-based

applications:

1. Multiple Isolated "Roots" make it possible for separate components running in the same Dyalog

process to use Conga without interfering with each other in any way. This allows development tools

to use TCP connections without interfering with the application they are being used to develop.

2. New Server modes efficiently support different server styles or requirements:

• FIFOMode: Process incoming messages in strict chronological order (does not allow

selection of messages arriving on individual connections)

• ConnectionOnly: The server object will only receive connection events; the application is

expected to spawn individual APL threads to listen on each connection object separately.

3. Timeout and Disconnect as events instead of error codes 100 and 1119. Timeouts and

disconnections can optionally be signalled as events to simplify server logic.

4. Temporarily prevent new connections by setting the Pause property.

5. Sent event allows programs transferring large amounts of data to avoid flooding buffers with

untransmitted data by requesting a Sent event when the last byte has been transmitted, and using

this to trigger transfer of the next data block.

6. Transmit files without reading data into the APL workspace first.

7. HTTP protocol support means that, rather than receiving text blocks and deciphering them, you

can elect to receive HTTPHeader, HTTPBody, HTTPChunk, HTTPTrailer events after Conga has

parsed the incoming messages. This greatly simplifies the handling of HTTP messages.

8. WebSocket support means that HTTP connections can be upgraded to bi-directional web sockets,

allowing asynchronous bidirectional data transmission for highly interactive user interfaces.

9. Allow or Deny connections from specific address ranges to support applications that only want to

service connections made from certain locations. Provides simple protection against denial or

service or other malicious attacks.

10. Support for GnuTLS 3.4.16.

http://docs.dyalog.com/16.0/

2

11. Dynamic loading of secure socket support makes it unnecessary to install or ship the secure part of

Conga with your application if you do not intend to make use of secure features.

12. Shared Unicode/Classic library means that the same .so or .dll file is used by Classic and Unicode

versions of Conga (32 and 64 bit are still separate).

13. Simpler configuration – by default, Conga libraries are always loaded from the folder where the

interpreter executable is located, bypassing the need for LIBPATH or similar environment variables.

14. A numeric Version property makes it easier to write applications that need to know which version

of Conga they have available.

15. Experimental UDP support: Undocumented; contact support@dyalog.com for more information.

16. Numerous new samples and tools.

Compatibility and Code Distribution
Conga 3.0 is designed to be compatible with Conga 2.x, but the APL code that wraps the Conga libraries has

been substantially rewritten to provide support for multiple isolated roots and to provide new, simplified

ways to create client and server applications. At the same time, the workspace has been tied up and a

number of components have been removed from the distributed conga.dws:

• The TODServer example has been completely retired.

• The FTPClient, along with many of the utilities that used to be found in the HttpUtils and Samples

namespaces, have been moved to new locations (see the Code Libraries Reference Guide).

• The RPCServer and WebServer examples are replaced by new code that uses new features of Conga

3.0. These can be found in the [DYALOG]/Samples/Conga directory and are described in this

document.

If your application requires any of the components that have been removed, or if you have any other

problems using this workspace, then a workspace called conga_v2.dws is available from

https://my.dyalog.com/lib/download.php?file=/conga/ws/conga_v2.dws. The congav2.dws workspace

contains all the old code, but loads the Conga 3.0 DLLs that are provided with Dyalog version 16.0. If you do

decide to use this workspace, Dyalog asks that you notify support@dyalog.com and inform us why you felt

this was necessary so that we can consider reinstating code and improve future releases.

Initialisation
To take advantage of some of the new features of Conga version 3.0, you will need to make changes to the

way that you initialise Conga-based applications.

Existing Conga 2.x-based applications typically initialise Conga by calling (DRC.Init ''). Unless you want

to make use of the multiple-root feature described in the following, we recommend creating a default

instance of Conga 3 as follows:

 iConga←Conga.Init ''

The above expression connects to the Conga root object named DEFAULT, which is shared by all

applications that use an empty right argument to Init. If you name the instance variable DRC, existing

application code that refers to DRC (except for the call to DRC.Init) should subsequently work

unchanged. In other words, if you replace the expression (DRC.Init '') with (DRC←Conga.Init '')

mailto:support@dyalog.com
https://my.dyalog.com/lib/download.php?file=/conga/ws/conga_v2.dws
mailto:support@dyalog.com

3

and ensure that you have the Conga namespace rather than DRC loaded into your workspace, the rest of

your Conga 2.x application should run unchanged.

The code samples that used to reside in the Samples namespace in earlier Conga workspaces have been

withdrawn – better alternatives now exist. A cut-down set of the most widely used samples can be found in

the Samples namespace in conga.dws. A new set of samples can be found in the Samples/Conga

directory, and tools such as the new HttpCommand which is intended to replace the old

Samples.HttpGet function, can be found in the Library/Conga directory.

New Features in Conga 3.0

1. Multiple Isolated Roots
As the use of Conga has grown, it has become common for more than one component in an application to

use Conga, leading to potential name conflicts between client and server objects created, and clashes

between different state settings. In particular, when an application and the tools used to maintain it both

use TCP communications, they need to be independent of each other. Each may need to be restarted or

reset without interfering with the other. Conga version 3.0 allows each component to have its own "Root"

under which Conga objects are created and perform operations (like deleting all existing Conga connections

in order to restart) without fear of interference with other components.

Prior to Conga version 3.0, all components in the same process used the same DRC namespace: the first

user would call DRC.Init and received a clean return code, and subsequent calls to Init warned that

Conga was already initialised. If a component decided to reset or re-initialise Conga, all other components

would be affected by this.

With Conga version 3.0, the DRC namespace is still provided for backwards compatibility, but – as

mentioned in the previous section - it is recommended that you use the Conga.Init function to create

or select a specific named root for your application or component rather than calling DRC.Init. For ad

hoc use, you can use an empty right argument to connect to the default root, but for an application that

might need to manage the state of Conga, Dyalog recommends using a right argument to identify your

application.

 iConga←Conga.Init 'MyApp'

The above statement can safely be called anywhere in your application; if a root with that name already

exists, then a reference will be returned to the existing root instance. If you want to be sure that a new

instance is created, you can use Conga.New. In this case, an empty argument will generate a new unused

root name, and a non-empty argument will signal an error if the root name is already in use. The function

RootNames can be used to get a complete list of existing roots:

 iC1←Conga.Init '' ⍝ Use the default root
 iC2←Conga.New '' ⍝ Create a new one with a generated name
 Conga.RootNames
 DEFAULT IC1

4

To re-initialise your root, erase the reference (all references) to the instance; it will be cleaned up, and you

can create a new one.

Warning: The intention is not that you create a large number of roots. The process of creating and tearing

down roots is expensive and complex. Components might need a separate root, but you should not create

new roots just to (for example) create queries on the internet – in this situation, use the default root that

you can get a reference to by passing an empty argument to Conga.Init.

2. New Server Modes
The default mode for a server allows an application to selectively wait on the entire Server, receiving both

connection-related events and data transmissions to all or part of the tree of objects that make up the

server. As usage patterns evolve, Conga is also evolving to provide modes that are better suited to, or

tuned for, these patterns.

2.a FIFOMode

For high volume services with hundreds or thousands of connections, the cost of providing filtering

functionality becomes unacceptable. In addition, the filtering mechanism can lead to some connections

receiving better service than others. The FIFOMode switch turns off the ability to call the Wait function

on a subset of a Server object hierarchy. In return, you get significantly less CPU consumption, and are

guaranteed that messages come off the queue in strict chronological order of arrival.

Enable FIFOMode for a server using SetProp:

 iConga.SetProp 'S1' 'FIFOMode' 1

With FIFOMode enabled, attempts to Wait on a connection object that is a child of the server will fail with

error 1142 ERR_FIFOMODE.

2.b ConnectionOnly

Some server applications have a structure that makes it convenient to launch an APL thread for each client

connection and leave that thread running for the duration of that client session. The ConnectionOnly switch

enables a mode where Wait on the server object will only ever report Connect events; individual

application threads are expected to call Wait on the connection that they are managing.

Samples/RPCServices/ThreadedRPC contains an example of a server that uses ConnectionOnly and runs a

thread for each connection.

3. Timeout and Close as Events
Many application developers have found it inconvenient that "normal" events such as a timeout due to

inactivity or the closing of a connection are reported as if they were errors with non-zero return codes from

Wait, rather than being classified as events.

In Conga version 3.0 it is possible to receive events. However, as this is a breaking change, it is not enabled

by default and you need to explicitly set the EventMode property to enable it. The property is set on the

root object and applies to all clients and servers created as children of that root. Dyalog strongly

5

recommends that you enable EventMode, and it is likely that this will become the default in a future

version of Conga.

To enable Event Mode, use:

 iConga.SetProp '.' 'EventMode' 1

Once EventMode is set, return codes 100 and 1119 will no longer issued. Instead Wait will return one of:

0 S1 Timeout
0 S1 Close

4. Temporarily Prevent New Connections to a Server
If a server needs a break from incoming connections (for example, because it is preparing to shut down for

maintenance or is overloaded), this can be achieved the Pause property. The Pause property has three

possible settings:

Setting Effect

1 Keeps the listening socket open but does not accept new incoming connections. Connection
attempts that have not timed out on the client side will be accepted when Pause is set to 0.

2 Closes the socket but keeps the server object alive. When Pause is set to 0 the socket will be
re-created.

0 Resume normal operations.

For example:

 iConga.SetProp 'S1' 'Pause' 1 ⍝ Do not accept connections

5. Sent event
If you are transmitting a large amount of data in chunks, Conga allows you to make repeated calls to the

Send function without waiting for the previous send to complete. This can cause large amounts of data to

accumulate in buffers either in Conga or the network layer, which might be undesirable – it also makes it

difficult to cancel an operation, since a large number of operations are already queued.

In Conga version 3.0, you can request a receipt upon the completion of the actual transmission by

appending a 3 following the data passed to the Send function:

 iConga.Send 'C1' data 3
0
 iConga.Wait 'C1'
0 C1 Sent 0

When using Command mode, the sent event will be overridden by the answer on a command; if the

response to a command arrives before you enter the next Wait, you will simply get the response and the

Sent event will be suppressed.

6

6. File Transmission
When an APL-based server needs to transmit the entire contents of a file, earlier versions of Conga

required that you first read the contents of the file into the APL workspace and then pass it to the Send

function – an inefficient process.

For a connection that is not in Command mode, Send now accepts a two-element nested vector; the first

element is data to be transmitted first and the second element contains a file name, the contents of which

will be transmitted after the initial data. The first element allows you to prepend header information to the

transmission, where necessary. For example:

 iConga.Send 'C1' ('' 'c:\mywebsite\index.html')
0

7. HTTP Protocol Support
A common use of Conga is to act as an HTTP client (retrieving data from web sites or making web service

requests) or as an HTTP server (serving up data managed by an APL application). In previous Conga versions

this required buffering data and parsing the HTTP protocol in APL.

In Conga version 3.0, you can set the mode of any Client or Server to be HTTP. If you do this, the normal

Receive and Block events are replaced with events that signal the arrival of a complete piece of HTTP

protocol: HTTPHeader, HTTPBody, HTTPChunk and HTTPTrailer. This not only simplifies the task of receiving

HTTP data, it also significantly improves performance by moving the parsing into multi-threaded,

asynchronous C code dedicated to this task.

At present, Conga does not provide any further processing (for example, taking headers apart or decoding

base-64 encoded data). When transmitting data, you are required to generate valid HTTP messages. The

only support that Conga version 3.0 provides is to add a valid Content-Length header when transmitting a

file (see File Transmission).

The HttpUtils namespace, which can be loaded using]Load HttpUtils, provides code that can be

used to work with HTTP requests and responses. This is located in the Library/Conga directory and

described in the Code Libraries Reference Guide.

Additional details on HTTP protocol support are provided later in this document.

8. Web Sockets
An established HTTP connection can be upgraded to bi-directional websocket connection; this allows both

client and server to transmit data at any time rather than sticking to the normal cycle of the client making a

request followed by a server response.

Web Socket Upgrade – Client Side

It is the client that requests the upgrade. To upgrade a Conga-based client, set the WSFeatures property to

whether you want to automatically accept a positive response from the server (1) or you need to validate

the response and confirm it (0). Unless you are familiar with websocket internals, auto-upgrade is

recommended.

7

 iConga.SetProp clt 'WSFeatures' 0 ⍝ Do not automatically accept
0

Next, set the WSUpgrade property to a three-element vector containing a URL, hostname (normally the

same one you already connected to) and any necessary header information that the particular server you

are connecting to may be looking for in order to decide how to handle the connection. For example:

 iConga.SetProp 'C1' 'WSUpgrade' ('/' 'localhost' 'some-setting: value')
0

Now call Wait – if the server accepts your request the response will be a WSResponse event, with data

containing header information that the server has decided to send:

 res
0 C1 WSResponse HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-Websocket-Accept: G/cEt4HtsYEnP0MnSVkKRk459gM=

If WSFeatures had been set to 1, the response would have been a WSUpgrade event:

0 C1 WSUpgrade 0

If auto-accept is not enabled, we now need to examine the headers, decide whether they are OK, and

finally set the WSAccept property:

 iConga.SetProp 'C1' 'WSAccept' ((4⊃res)'')
0

You are required to confirm the headers that you want to accept as the first element. The second element

is not used but required for symmetry with the server call (see the next section). The next call to Wait

should return a WSResponse event, after which the socket can be used as a websocket.

0 C1 WSResponse HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-Websocket-Accept: G/cEt4HtsYEnP0MnSVkKRk459gM=

Web Socket Upgrade – Server Side

When a client requests a web socket upgrade, the server will either receive a WSUpgrade (if it has

WSFeatures set to 1) or a WSUpgradeReq event from a call to Wait:

0 S1.CON00000000 WSUpgradeReq GET / HTTP/1.1
 Host: localhost
 Upgrade: websocket
 Connection: Upgrade
 some-setting: value
 Sec-WebSocket-Version: 13
 Sec-WebSocket-Key: KSO+hOFs1q5SkEnx8bvp6w==

8

The format of the messages is the same; in the event of a WSUpgrade the 4th element is for information

only and the upgrade has been done, otherwise you need to follow a similar pattern as the client, either

closing the connection if the request is denied or responding with a confirmation of the received headers

plus any information that need to be sent to the client:

 iConga.SetProp 'S1.CON00000000' 'WSAccept' ((4⊃res)'server-says: hello')
0

At this point, even before the client has received a WSResponse (if it is a Conga client, or the equivalent in

JavaScript or some other programming language), the socket is considered open and the server should be

able to transmit data. However, it may be prudent to wait for the client to initiate communications, as final

confirmation that the websocket is operational.

Transmitting Data on a Web Socket

Once an HTTP connection has been upgraded to a Web Socket, the Send function can be used to transmit

data. The specification of the data to send must be a 2 or 3 element vector, where the first element is the

data to be transmitted as a character or integer vector and the second element is a Boolean that declares

whether this is the final transmission in a sequence. An optional 3rd element specifies the "operation code";

the opcode can be 1 for Text (data must be character and will be converted to UTF-8), 2 for Binary (values

between ¯128 and 127) or 0 for a “continuation”, in which case the data must have the same type as your

earlier transmission. For example:

 iConga.Send 'C1' ('Hello there' 1 1)
0

Incoming data is returned by iConga.Wait in the form of a WSReceive event, which returns the same

data elements as the argument to Send described above: (data final opcode).

9. Allow or Deny Connections from Specific Address Ranges
Sets of IPv4 and IPv6 addresses that connections will be allowed from can be specified – or conversely

ranges that will be denied. This means that you do not need to perform validation of valid peer addresses in

APL application code.

Address ranges are set by setting the AllowEndPoints or DenyEndPoints properties when a server is started.

If both are specified, then the intersections between the ranges will be disallowed. Each set of ranges is

specified in the format:

┌→───┐
│ ┌→───────┐ ┌→──┐ │
│ │property│ │ ┌→──┐ ┌→──────────────────────────┐ │ │
│ └────────┘ │ │ ┌→───┐ ┌→───┐ │ │ ┌→───┐ ┌→───────────────┐ │ │ │
│ │ │ │IPv6│ │fe80::d189:fd4:7003:a0a3/120,fe80::9df3:f956:84f5:12ab/120│ │ │ │IPv4│ │192.168.202.1/24│ │ │ │
│ │ │ └────┘ └──┘ │ │ └────┘ └────────────────┘ │ │ │
│ │ └───┘ └───────────────────────────┘ │ │
│ └───┘ │
└──┘

Where "property" is replaced by either AllowEndPoints or DenyEndPoints. You can specify IPv4 and/or IPV6

sections and have any number of ranges in each section.

9

10. Support for GnuTLS 3.4.16
In Conga 3.0, secure socket support is built upon GnuTLS version 3.4.16. The internal details of how

certificates are handed have changed significantly, but there should be no user-visible changes except that

secure connections are more likely to succeed and that it is possible to use certificates that are stored in

the Microsoft Certificate store for Servers as well as clients. Conga version 3.0 connections will provide

Server Name Indication and Session Tickets – but none of this is visible from the APL application.

11. Dynamic Loading of Secure Socket Libraries
The secure socket libraries, with names beginning with conga30ssl, are loaded on demand when the first

secure connection is created. If you do not include these libraries when installing applications that use

Conga, you will be able to use all non-secure features of Conga. Any attempt to use secure features will fail.

12. Shared Unicode/Classic Library
The same .dll or .so library is now used by Classic and Unicode editions of Dyalog APL. This should have no

user-visible effects other than that the file name is the same for both editions.

13. Simple Configuration
By default, Conga libraries are always loaded from the directory where the interpreter executable is

located, bypassing the need for LIBPATH or similar environment variables. This simplifies the installation of

Conga-based applications, since Conga will work if all the required DLLs are placed in the same folder as the

interpreter without requiring further configuration of the system.

13. Numeric Version Property
Version now returns a 3-element integer vector containing the major and minor version numbers,

followed by the SVN revision number of the source code used to build the current version. For example:

 iConga.Version
3 0 1235

14. Experimental UDP Support
UDP support is available but is still being prototyped in collaboration with potential users. Please contact

support@dyalog.com for more information.

15. Numerous New Samples
A number of new classes and namespaces are provided as examples of how to construct different types of

services, as well as utilities to make it easier to make client requests of HTTP and other services. The

[DYALOG]/Library/Conga directory contains FtpClient, HttpCommand and HttpUtils; these are described in

the Code Libraries Reference Guide.

The Samples/Conga directory is cloned from the GitHub repository https://github.com/Dyalog/samples-

conga. The GitHub repository, and the documentation that it contains, are likely to be updated during the

lifetime of Dyalog version 16.0, and we recommend that you visit it periodically. At the time of Dyalog

version 16.0's release it had three sub-folders, providing code samples that might be useful in providing or

consuming Conga-based services.

mailto:support@dyalog.com
https://github.com/Dyalog/samples-conga
https://github.com/Dyalog/samples-conga

10

The GitHub repository https://github.com/Dyalog/conga-apl contains the source code for the conga

workspace, and within it there is a directory named Tests. The Tests directory contains the test scripts used

by Dyalog Ltd to test Conga version 3.0. These tests also provide working examples of old and new Conga

features. Contributions are very welcome!

Directory CertTool

This directory currently contains a single sample that shows how the GnuTLS certTool can be used to
generate self-signed certificates.

Directory HttpServers

This directory contains a number of HTTP server classes which can be use as arguments to the new

Conga.Srv function. Most of the samples can be loaded and run using a recipe similar to the following:

]Load Samples/Conga/DocHttpRequest
 iSrv←Conga.Srv 8088 DocHttpRequest
 iSrv.Start

]Load Library/Conga/HttpCommand
 (rc headers data)←HttpCommand.Get 'http://localhost:8088/index.html'

Directory RPCServices

This directory folder contains examples of simple servers that can be used to make remote procedure calls
using Conga's Command mode, in which each transmission consists of an APL array.

HTTP Protocol Support

Receiving HTTP Messages

Whether acting as a client or server, the process of receiving HTTP messages is the same and will follow one

of three patterns.

1) HTTP Header only. The entire message is contained in the message header. This is typical with the

HTTP GET method – all of the information is passed in the HTTP header and there is no body. This

is indicated by a 0 (zero) value in the Content-Length HTTP header field.

2) HTTP Header and Body. The message is split between the HTTP header block and the HTTP body

block. The body contains the data or payload for the message. The size of the body is indicated by

the Content-Length header field.

3) HTTP Header, one or more Chunks, followed by a Trailer. When the payload is too large, or is being

generated spontaneously, the payload can be split and transmitted in several chunks. A trailer,

possibly empty, is sent after the last chunk. Chunked mode is indicated by the Transfer-Encoding

header field having the value "chunked" and there being no Content-Length header field.

Conga version 3.0's HTTP mode introduces four events, one for each of the types of message above. The

events are HTTPHeader, HTTPBody, HTTPChunk and HTTPTrailer. When any of these events occurs, the

format of the event's data element depends on the setting of the server/client/connection object's

https://github.com/Dyalog/conga-apl

11

'DecodeBuffers' property. Each HTTP event has a related, additive, 'DecodeBuffers' value. When

DecodeBuffers is not set for an HTTP event, Conga will return a simple character vector that you will then

need to parse in your code. When DecodeBuffers is set, Conga will do the parsing and return an array of

elements that are meaningful to the particular event.

Typically, you will set DecodeBuffers to 15 to decode the data for all HTTP-related events.

 iConga.SetProp obj 'DecodeBuffers' 15

where obj is the connection, server, or client object.

Event/Value Data format without DecodeBuffer set Data format with DecodeBuffer set

HTTPHeader 1 FirstLine, CRLF, Headers, CRLF,CRLF

For a request, the first line is an HTTP command, a URI
and HTTP version:
GET /index.html HTTP/1.1

For a response, the first line is HTTP version, HTTP
status code and HTTP status text:
HTTP/1.1 200 OK

Subsequent lines have HTTP headers
Host: www.someplace.com
User-Agent: Dyalog/Conga
Accept: */*
Accept-Encoding: gzip, deflate

A Content-Length header with a value of 0 indicates the
message consists of a header only and you have
received the entire message.

If there is a Transfer-Encoding header with a value of
'chunked', the message will be sent in chunked format
and you will need to loop and receive some number of
chunks and ultimately a trailer.

A 4-element array whose first 3 elements vary
based on whether the message is a request or
response.

[1] Method (request) or HTTP version (response)

[2] URI (request) or HTTP status code (response)

[3] HTTP version (request) or HTTP status
(response)

[4] 2-column matrix of header name/value pairs
 [;1] header name
 [;2] header value

Note: your application may still need to do
further decoding of the header values (e.g. some
values may be Base64 encoded)

HTTPTrailer 2 '0', CRLF, Trailers, CRLF

Character vector (possibly empty) of lines separated by
CRLF.

Each line contains an HTTP header.

Upon receipt of the trailer, you have received the entire
message.

A 2-column matrix of header name/value pairs

[;1] header name
[;2] header value

Note: your application may still need to do
further decoding of the header values (e.g. some
values may be Base64 encoded)

HTTPChunk 4 HexChunkLength, [;Chunk-Extension(s)], CRLF, Chunk-
Text, CRLF

A 2-element array of

[1] character vector chunk message text

[2] 2-column matrix of chunk-extension
name/value pairs
 [;1] chunk-extension name
 [;2] chunk-extension value

HTTPBody 8 Character vector of the message body Character vector of the message body

12

Sending HTTP Messages

The HTTP-related event types are used to receive HTTP messages. To send an HTTP message you can either

• Compose a properly formatted HTTP message as a character vector and pass it to DRC.Send

• Send a 5-element array. The contents of the first three elements depend on whether the message

is a request or a response.

[1] HTTP method (request) or HTTP version (response)

[2] URI (request) or HTTP status code (response)

[3] HTTP verison (request) or HTTP status test (response)

[4] 2-column matrix of header name/value pairs

[5] character vector message body

HTTP Utility Libraries

As noted earlier in this document, Conga itself does no further processing of the message data; any

additional processing is the responsibility of the user. To address this situation, Dyalog has provided two

utility libraries, HttpCommand and HttpUtils, in the [DYALOG]/Library/Conga/ directory; these can be

loaded using the SALT Load function. Both of the following statements will load HttpUtils, though the

latter is suitable for running under program control. To load HttpCommand, substitute HttpCommand

for HttpUtils in the statements below.

]Load HttpUtils
 ⎕SE.SALT.Load 'HttpUtils'

HttpUtils and HttpCommand are maintained in the library-conga Dyalog GitHub repository found at

https://github.com/Dyalog/library-conga. There you can see the revision history, download the latest

versions and participate in the development by reporting issues and by posting questions and suggestions.

HttpCommand is a stand-alone utility to act at an HTTP client, sending HTTP messages and receiving

responses. It can be used to interact with web services, retrieve web pages and other information from the

internet. HttpCommand is documented in the Code Libraries Reference Guide.

HttpUtils is a namespace containing classes and utility functions to manipulate HTTP messages.

HttpUtils was conceived and developed specifically in support of Conga 3.0's HTTP mode and the

HTMLRenderer GUI object introduced in Dyalog version 16.0. As HttpUtils is a very new library, we

welcome suggestions for improvements and additional features.

HttpUtils has two primary classes, HttpRequest and HttpResponse. These can both be used by

clients and servers.

When acting as a client:

1) use HttpRequest to build and format the request to be sent to a server.

2) use HttpResponse to collect and convert the response data into an easier-to-use format.

Conversely, when acting as a server:

1) use HttpRequest to collect incoming requests from clients.

2) use HttpResponse to build and format the responses to be sent back to the clients.

https://github.com/Dyalog/library-conga

13

The techniques for sending requests and receiving responses or receiving requests and sending responses

are very similar and follow the patten found below.

clt←DRC.Clt '' address port 'HTTP' ⍝ start a client in HTTP mode
req←⎕NEW #.HttpUtils.HttpRequest ⍝ create a new request
req.(Command Uri)←'GET' 'http://some-address' ⍝ set some fields
:If 0=⊃DRC.Send clt req.Format ⍝ format and send the request
 :Repeat
 :If ~done←0≠err←1⊃rc←DRC.Wait clt 5000 ⍝ standard Conga loop
 (err obj evt dat)←4↑rc ⍝ break out the results

 :Select evt ⍝ which Conga event?
 :Case 'Connect'
 resp←⎕NEW #.HttpUtils,HttpResponse ⍝ create the response container

 :Case 'HTTPHeader'
 resp.CongaHttpHeader dat ⍝ process the message headers

 :Case 'HTTPBody'
 resp.CongaHttpBody dat ⍝ process the message body

 :Case 'HTTPChunk'
 resp.CongaHttpChunk dat ⍝ process the a chunk of the message

 :Case 'HTTPTrailer'
 resp.CongaHttpTrailer dat ⍝ process the message trailers

 :EndSelect
 :EndIf
 :Until done∨resp.IsComplete ⍝ do we have the complete resposnse?
:EndIf

At this point we have all of the response data in public fields of the HttpResponse instance.

 resp.(HttpStatus HttpStatusText)
┌───┬──┐
│200│ok│
└───┴──┘

 resp.Headers ⍝ HTTP headers
┌────────────────┬───┐
│cache-control │private │
├────────────────┼───┤
│content-type │text/html │
├────────────────┼───┤
│content-encoding│gzip │
├────────────────┼───┤
│vary │Accept-Encoding │
├────────────────┼───┤
│server │Microsoft-IIS/8.5 │
├────────────────┼───┤
│set-cookie │ASPSESSIONIDCATBDSCB=ANDNFICBLDIEHFOOINJHFOAL; path=/│
├────────────────┼───┤
│x-powered-by │ASP.NET │
├────────────────┼───┤

14

│date │Tue, 27 Jun 2017 12:34:02 GMT │
├────────────────┼───┤
│content-length │370 │
└────────────────┴───┘

 resp.Data ⍝ response data (edited for presentation here)
<html>
<head>
<meta http-equiv="Content-Language" content="en-us">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>Some really cool place</title>
</head>
<body bgcolor="#FFFFFF">
<p align="center"></p>
<p align="center"> </p>
<p align="center">Some really cool place...coming soon!
</p>
</body>
</html>

	Conga 3.0 Upgrade Guide
	New Features
	Compatibility and Code Distribution
	Initialisation

	New Features in Conga 3.0
	1. Multiple Isolated Roots
	2. New Server Modes
	2.a FIFOMode
	2.b ConnectionOnly

	3. Timeout and Close as Events
	4. Temporarily Prevent New Connections to a Server
	5. Sent event
	6. File Transmission
	7. HTTP Protocol Support
	8. Web Sockets
	Web Socket Upgrade – Client Side
	Web Socket Upgrade – Server Side
	Transmitting Data on a Web Socket

	9. Allow or Deny Connections from Specific Address Ranges
	10. Support for GnuTLS 3.4.16
	11. Dynamic Loading of Secure Socket Libraries
	12. Shared Unicode/Classic Library
	13. Simple Configuration
	13. Numeric Version Property
	14. Experimental UDP Support
	15. Numerous New Samples
	Directory CertTool
	Directory HttpServers
	Directory RPCServices

	HTTP Protocol Support
	Receiving HTTP Messages
	Sending HTTP Messages
	HTTP Utility Libraries

