Dyalog for Microsoft Windows
.NET Interface Guide

Dyalog version 16.0

JYALOG

The tool of thought for software solutions

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2017 by Dyalog Limited

All rights reserved.

Version: 16.0

Revision: 2972 dated 20230217

Please note that unless otherwise stated, all the examples in this document assume that JIO is 1, and OML is 1.

No part of this publication may be reproduced in any form by any means without the prior written

permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents hereof and
specifically disclaims any implied warranties of merchantability or fitness for any particular purpose.

Dyalog Limited reserves the right to revise this publication without notification.

email: support@dyalog.com
http://www.dyalog.com

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is aregistered trademark of The Open Group.

Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

macOS®, Mac OS® and OS X® (operating system software) are trademarks of Apple Inc., registered

inthe U.S. and other countries.
Array Editor is copyright of davidliebtag.com

All other trademarks and copyrights are acknowledged.

Contents

Chapter1: OVerVieW . 1
IntrodUCtion ... 1
PrereqUISIteS - 3
Files Installed with Dyalog 4
Chapter2: Accessing.NETClasses 5
Introduction il 5
Locating .NET Classes and Assemblies 5
Using NET Classes ... 8
Browsing NET Classes 12
Advanced Techniques il 22
More EXamples ... 28

BnUMeratioNS . 32

Handling Pointers with Dyalog. ByRef 33
Chapter 3: UsingWindows.Forms 37
IntroduCtion ... 37
Creating GUI Objects o . 37
Object Hierarchy 38
Positioning and Sizing Forms and Controls 38
Modal Dialog BOXES 38
Non-Modal Forms 43
Chapter 4: Windows Presentation Foundation 45
Temperature Converter Tutorial 46
Data Binding ... 65
Syncfusion Libraries 99
Chapter 5: Writing NET ClassesinDyalog APL 105
Introduction ... 105
Assemblies, Namespaces and Classes i 106
Getting Started ... 107
Example 1 . 109
EXample 2 .. 114

EXxample 2a .. 119

EXample 3 L 122
EXample 4 L 125
EXample 5 L 129
Interfaces . . 133
Chapter 6: Dyalog APLandllS 135
Introduction 135
IS Installation Dependency o i 136
IIS Applications, Virtual Directories, Application Pools 136
Internet Services Manager o oo 139
Chapter 7: Writing Web Services 141
IntrodUCtiON . 141
Web Service (.aSmX) SCIIPLSt 142
Compilation 143
Exporting Methods 144
Web Service Data TyPeso 145
EX Ut 0N . 145
Global.asax, Application and Session Objects i, 146
Sample Web Service: EGl 147
Sample Web Service: LoanService 149
Sample Web Service: GolfService 153
Sample Web Service: EG2 170
Chapter 8: CallingWeb Services 175
Introduction ..ol 175
The MakeProxy function 175
Using LoanService from Dyalog APL 176
Using GolfService from Dyalog APL . . . 177
Exploring Web Services 181
Asynchronous UsSe 183
Chapter9: Writing ASP.NETWebPages 187
Introduction 187
Your first APL Web Page 189
The Page Load Event i 194
Code Behind 197
Workspace Behind 200
Chapter 10: Writing Custom Controls for ASP.NET 217

I O dUCH O o 217

The SimpleCtl Control 219
The TemperatureConverterCtll Control 221
The TemperatureConverterCtl2 Control 226
The TemperatureConverterCtl3 Control 235
Chapter 11: APLSCIIPt . 241
IntroductioN . 241
The APLScript Compiler ... il 242
Creating an APLScript File 244
Copying code from the Dyalog Session 245
General principles of APLScript 246
Creating Programs (.exe) with APLScript 247
Creating .NET Classes with APLScript i, 250
Creating ASP.NET Classes with APLScript 257
Chapter12:ImplementationDetails 261
IntrodUCtiON _ il 261
Isolation Mode ... il 262
Structure of the Active Workspace oo oo 263
Threading ... 266
Debugging an APL.INET Class o 268
The web.config file 271

Chapter 1:

Overview

Introduction

This manual describes the Dyalog APL interface to the Microsoft .NET Framework.
This document does not attempt to explain the features of the NET Framework,
except in terms of their APL interfaces. For information concerning the NET
Framework, see the documentation, articles and help files, which are available from
Microsoft and other sources.

The NET interface features include:

« The ability to create and use objects that are instances of .NET Classes

o The ability to define new .NET Classes in Dyalog APL that can then be
used from other NET languages such as C# and VB.NET.

« The ability to write Web Services in Dyalog APL.

o The ability to write ASP.NET web pages in Dyalog APL

.NET Interface Guide

.NET Classes

The .NET Framework defines a so-called Common Type System. This provides a set
of data types, permitted values, and permitted operations. All cooperating languages
are supposed to use these types so that operations and values can be checked (by the
Common Language Runtime) at run time. The NET Framework provides its own
built-in class library that provides all the primitive data types, together with higher-
level classes that perform useful operations.

Dyalog APL allows you to create and use instances of .NET Classes, thereby gaining
access to a huge amount of component technology that is provided by the NET
Framework.

It is also possible to create Class Libraries (Assemblies) in Dyalog APL. This allows
you to export APL technology packaged as NET Classes, which can then be used
from other NET programming languages such as C# and Visual Basic.

The ability to create and use classes in Dyalog APL also provides you with the
possibility to design APL applications built in terms of APL (and non-APL)
components. Such an approach can provide benefits in terms of reliability, software
management and re-usage, and maintenance.

GUI Programming with System.Windows.Forms

One of the most important .NET class libraries is called

System.Windows .Forms, which is designed to support traditional Windows
GUI programming. Visual Studio .NET, which is used to develop GUI applications
in Visual Basic and C#, produces code that uses System.Windows.Forms.
Dyalog APL allows you to use System.Windows . Forms, instead of (and in some
cases, in conjunction with) the built-in Dyalog APL GUI objects such as the Dyalog
APL Grid, to program the Graphical User Interface.

Web Services

Web Services are programmable components that can be called by different
applications. Web Services have the same goal as COM, but are technically platform
independent and use HTTP as the communications protocol with an application. A
Web Service can be used either internally by a single application or exposed
externally over the Internet for use by any number of applications.

Chapter 1: Overview 3

ASP.NET and WebForms

ASP.NET is a new version of Microsoft Active Server Page technology that makes it
easier to develop and deploy dynamic Web applications. To supplement ASP.NET,
there are some important new .NET class libraries, including WebForms which allow
you to build browser-based user interfaces using the same object-oriented mechanism
as you use Windows . Forms for the Windows GUI. The use of these component
libraries replaces basic HTML programming.

ASP.NET pages are server-side scripts, that are usually written in C# or Visual Basic.
However, you can also employ Dyalog APL directly as a scripting language
(APLScript) to write ASP.NET web pages. In addition, you can call Dyalog APL
workspaces directly from ASP.NET pages, and write custom server-side controls that
can be incorporated into ASP.NET pages.

These features give you a wide range of possibilities for using Dyalog APL to build
browser-based applications for the Intemet, or for your corporate Intranet.

Prerequisites

Dyalog APL Version 16.0 .NET Interface requires Version 4.0 or greater of the
Microsoft NET Framework. It does not operate with earlier versions of .NET.

For full Data Binding support (including support for the
INotifyCollectionChanged interfacel), and Syncfusion, Version 16.0
requires .NET Version 4.5.

The examples provided in the sub-directory Samples/asp.net require that IIS is
installed. If IS and ASP.NET are not present, the asp . net sub-directory will not be
installed during the Dyalog installation.

IThis interface is used by Dyalog to notify a data consumer when the contents of a variable, that is
data bound as a list of items, changes.

.NET Interface Guide

Files Installed with Dyalog

NET Interface Components

The components used to support the NET interface are summarised below. Different
versions of each component are supplied according to the target platform.

The Bridge DLL. This is the interface library through which all calls
between Dyalog APL and the NET Framework are processed

The DyalogProvider DLL. This DLL performs the initial processing of an
APLScript.

The APLScript Compiler. This is itself written in Dyalog APL and packaged
as an executable.

The DyalogNet DLL; a subsidiary library

The Dyalog DLL. This is the engine that executes all APL code that is
hosted by and called from another .NET application.

For a list of the files associated with each of these components, see Inustallation &
Configuration Guide: Files and Directories.

Code Samples

The samples subdirectory contains several sub-directories relating to the NET
interface:

L]

aplclasses; a sub-directory that contains examples of .NET classes
written in APL.

aplscript; a sub-directory that contains APLScript examples.
asp.net; a sub-directory that is mapped to the IIS Virtual Directory
dyalog.net, and contains various sample APL Web applications.
winforms; a sub-directory that contains sample applications that use the
System.Windows.Forms GUI classes.

web.config: this file specifies Dyalog configuration parameters for
ASP.NET. See The web.config file on page 271.

Chapter 2:

Accessing .NET Classes

Introduction

NET classes are implemented as part of the Common Type System. The Type System
provides the rules by which different languages can interact with one another. Types
include interfaces, value types and classes. The .NET Framework provides built-in
primitive types plus higher-level types that are useful in building applications.

A Class is a kind of Type (as distinct from interfaces and value types) that
encapsulates a particular set of methods, events and properties. The word object is
usually used to refer to an instance of a class. An object is typically created by
calling the system function [INEW, with the class as the first element of the argument.

Classes support inheritance in the sense that every class (but one) is based upon
another so-called Base Class.

An assembly is a file that contains all of the code and metadata for one or more
classes. Assemblies can be dynamic (created in memory on-the-fly) or static (files on
disk). For the purposes of this document, the term Assembly refers to a file (usually
with a .DLL extension) on disk.

Locating .NET Classes and Assemblies

Unlike COM objects, which are referenced via the Windows Registry, NET
assemblies and the classes they contain, are generally self-contained independent
entities (they can be based upon classes in other assemblies). In simple terms, you can
install a class on your system by copying the assembly file onto your hard disk and
you can de-install it by erasing the file.

Although classes are arranged physically into assemblies, they are also arranged
logically into namespaces. These have nothing to do with Dyalog APL namespaces
and, to avoid confusion, are henceforth referred to in this document as NET
namespaces.

.NET Interface Guide

Often, a single NET namespace maps onto a single assembly and usually, the name
ofthe NET namespace and the name of its assembly file are the same; for example,
the .NET namespace System.Windows.Forms is contained in an assembly
named System.Windows.Forms.dll.

However, it is possible for a NET Namespace to be implemented by more than one
assembly; there is not a one-to-one-mapping between NET Namespaces and
assemblies. Indeed, the main top-level .NET Namespace, System, is spread over a
number of different assembly files.

Within a single .NET Namespace there can be any number of classes, but each has its
own unique name. The full name of a class is the name of'the class itself, prefixed by
the name of the .NET namespace and a dot. For example, the full name of the
DateTime class in the NET namespace Systemis System.DateTime.

There can be any number of different versions of an assembly installed on your
computer, and there can be several NET namespaces with the same name,
implemented in different sets of assembly files; for example, written by different
authors.

To use a NET Class, it is necessary to tell the system to load the assembly (d11) in
which it is defined. In many languages (including C#) this is done by supplying the
names of the assemblies or the pathnames of the assembly files as a compiler
directive.

Secondly, to avoid the verbosity of programmers having to always refer to full class
names, the C# and Visual Basic languages allow the .NET namespace prefix to be
elided. In this case, the programmer must declare a list of NET namespaces with
Using (C#) and Imports (Visual Basic) declaration statements. This list is then
used to resolve unqualified class names referred to in the code.

In either language, when the compiler encounters the unqualified name of a class, it
searches the specified .NET namespaces for that class.

In Dyalog APL, this mechanism is implemented by the JUSING system variable.
[JUSING performs the same two tasks that Using/Imports declarations and
compiler directives provide in C# and Visual Basic; namely to give a list of NET
namespaces to be searched for unqualified class names, and to specify the assemblies
which are to be loaded.

[USING is a vector of character vectors each element of which contains 1 or 2
comma-delimited strings. The first string specifies the name of a NET namespace;
the second specifies the pathname of an assembly file. This may be a full pathname
or a relative one, but must include the file extension (. d11). If just the file name is
specified, it is assumed to be located in the standard .NET Framework directory that
was specified when the .NET Framework was installed (e.g.

C:\windows\Microsoft. NET\Framework\v2.0.50727)

Chapter 2: Accessing .NET Classes 7

It is convenient to treat .NET namespaces and assemblies in pairs. For example:

QUSING<«'System,mscorlib.dll’

QUSING,«c'System.Windows.Forms,System.Windows.Forms.dll'
OUSING,«c'System.Drawing,System.Drawing.dll'

Note that because Dyalog APL automatically loads mscorlib.d11 (which
contains the most commonly used classes in the System Namespace), it is not
actually necessary to specify it explicitly in JUSING.

[JUSING has Namespace scope, i.e. each Dyalog APL Namespace, Class or Instance
has its own value of JUSING that is initially inherited from its parent space but
which may be separately modified. JUSING may also be localised in a function
header, so that different functions can declare different search paths for NET
namespaces/assemblies.

IfJUSING is empty (QUSING<«0pc' "), APL will not search for NET classes in
order to resolve names which would otherwise give a VALUE ERROR.

Assigning a simple character vector to JUSING is equivalent to setting it to the
enclose of that vector. The statement (QUSING«'") does not empty DUSING, it sets
it to a single empty element, which gives accesstomscorlib.dl |l and the Bridge
DLL without a namespace prefix.

Within a Class script, you may instead employ one or more : Us i ng statements to
specify the NET search path. Each of these statements is equivalent to appending an
enclosed character vector to JUSING.

:Using System,mscorlib.dll
:Using System.Windows.Forms,System.Windows.Forms.dl!l
:tUsing System.Drawing,System.Drawing.dll

Classes also inherit from the namespace they are contained in. The statement
:Using

Is equivalent to
OUSING«0pc''

...and allows a class to clear the inherited value before appending to JUSING, or to
state that no .NET assemblies should be loaded.

The equivalent to JUSING<«"'"') isa : Using statement followed by a comma
separator but no namespace prefix and no assembly name:

:Using ,

.NET Interface Guide

Using .NET Classes

To create a Dyalog APL object as an instance of a NET class, you use the INEW
system function. The [INEW system function is monadic. It takes a 1 or 2-element
argument, the first element being a class.

Ifthe argument is a scalar or a 1-element vector, an instance of the class is created
using the constructor that takes NO argument.

If the argument is a 2-element vector, an instance of the class is created using the
constructor whose argument matches the disclosed second element.

For example, to create a DateTime object whose value is the 30th April 2008:
[JUSING«'System'

mydt<[INEW DateTime (2008 4 30)

The result of (ONEW is an reference to the newly created instance:

ONC c'mydt’
9.2

If you format a reference to a NET Object, APL calls its ToString method to
obtain a useful description or identification of the object. This topic is discussed in
more detail later in this chapter.

mydt
30/04/2008 00:00:00

If you want to use fully qualified class names instead, one of the elements of
[JUSING must be an empty vector. For example:

OQUSING«,c""'

mydt«<(JNEW System.DateTime (2008 4 30)

When creating an instance of the DateTime class, you are required to provide an
argument with two elements: (the class and the constructor argument, in our case a
3-element vector representing the date). Many classes provide a default constructor
which takes no arguments. From Dyalog APL, the default constructor is called by
calling [INEW with only a reference to the class in the argument. For example, to
obtain a default But ton object, we only need to write:

mybtn<[NEW Button

Chapter 2: Accessing .NET Classes 9

The above statement assumes that you have defined JUSING correctly; there must be
areference to System.Windows.Forms.dl |, and a namespace prefix which
allows the name But ton to be recognised as
System.Windows.Forms.Button.

The mechanism by which APL associates the class name with a class in a NET
namespace is described below.

Constructors and Overloading

Each NET Class has one or more constructor methods. A constructor is a method
which is called to initialise an instance of the Class. Typically, a Class will support
several constructor methods - each with a different set of parameters. For example,
System.DateTime supports a constructor that takes three Int 32 parameters
(year, month, day), another that takes six Int 32 parameters (year, month, day, hour,
minute, second), and so forth. These different constructor methods are not
distinguished by having different names but by the different sets of parameters they
accept.

This concept, which is known as overloading, may seem somewhat alien to the APL
programmer. After all, we are used to defining functions that accept a whole range of
different arguments. However, type checking, which is fundamental to the .NET
Framework, requires that a method is called with the correct number of parameters,
and that each parameter is of a predefined type. Overloading solves this issue.

When you create an instance of a class in C#, you do so using the new operator. This
is automatically mapped to the appropriate constructor method by matching the
parameters you supply to the various forms of the constructor. A similar mechanism
is implemented in Dyalog APL using the ONEW system function.

How the [JNEW System Function is implemented
When APL executes an expression such as:
mydt<[JNEW DateTime (2008 4 30)
the following logic is used to resolve the reference to DateTime correctly.

The first time that APL encounters a reference to a non-existent name (i.e. a name that
would otherwise generate a VALUE ERROR), it searches the NET
namespaces/assemblies specified by JUSING fora NET class of that name. If found,
the name (in this case DateTime) is recorded in the APL symbol table with a name
class 0f 9.6 and is associated with the corresponding .NET namespace. If not, VALUE
ERROR is reported as usual. Note that this search ONLY takes place if JUSING has
been assigned a value.

10

.NET Interface Guide

Subsequent references to that symbol (in this case DateTime) are resolved directly
and do not involve any assembly searching.

If you use ONEW with only a class as argument, APL will attempt to call the version
of'its constructor that is defined to take no arguments. If no such version of the
constructor exists, the call will fail witha LENGTH ERROR.

Otherwise, if you use [INEW with a class as argument and a second element, APL will
call the version of the constructor whose parameters match the second element you
have supplied to ONEW. Ifno such version of the constructor exists, the call will fail
witha LENGTH ERROR.

Notes

o The value of JUSING is only used when an object is instantiated.
Changing the value of JUSING has no effect on objects that have already
been instantiated in the active workspace.

« When a workspace containing .Net objects is saved, .the names of the Net
objects are saved with it but they are not automatically re-instantiated when
the workspace is loaded or copied. A reference to such an orphaned object
will report (NULL).

Displaying a .NET Object

When you display a reference to a .NET object, APL calls the object's ToString
method and displays the result. All objects provide a ToString method because all
objects ultimately inherit from the NET class System.Object. Many NET
classes will provide their own ToString that overrides the one inherited from
System.Object, and return a useful description or identifier for the object in
question. ToString usually supports a range of calling parameters, but APL always
calls the version of ToString that is defined to take no calling parameters.
Monadic format (3) and monadic OFMT have been extended to provide the same
result, and provides a quick shorthand method to call ToString in this way. The
default ToString supplied by System.Object returns the name of the object's
Type. This can be changed using the system function (JDF. For example,

z<[IJNEW DateTime 0OTS
z.([DF (sDayOfWeek),, " 'G< 99:99>'[JFMT 1001Hour Minute)
z

Saturday 09:17

Note that if you want to check the type of an object, this can be obtained using the
GetType method, which is supported by all NET objects.

Chapter 2: Accessing .NET Classes 11

Disposing of .NET Objects

NET objects are managed by the NET Common Language Runtime (CLR). The
CLR allocates memory for an object when it is created, and de-allocates this memory
when it is no longer required.

When the (last) reference from Dyalog APL to a NET object is expunged by [JEX or
by localisation, the system marks the object as unused, leaving it to the CLR to de-
allocate the memory that it had previously allocated to it, when appropriate. Note
that even though Dyalog has de-referenced the APL name, the object could
potentially still be referenced by another NET class.

De-allocated memory may not actually be re-used immediately and may indeed
never be re-used, depending upon the algorithms used by the CLR garbage disposal.

Furthermore, a NET object may allocate unmanaged resources (such as window
handles) which are not automatically released by the CLR.

To allow the programmer to control the freeing of resources associated with NET
objects in a standard way, objects implement the IDi sposable interface which
provides a Dispose () method. The C# language provides a using control
structure that automates the freeing of resources. Crucially, it does so however the
flow of execution exits the control structure, even as a result of error handling. This
obviates the need for the programmer to call Dispose () explicitly wherever it may
be required.

This programming convenience is provide in Dyalog APL by the
:Disposable ... :EndDisposable control structure. For further
information, see Language Reference Guide: Disposable Statement.

12 .NET Interface Guide

Browsing .NET Classes

Microsoft supplies a tool for browsing NET Class libraries called TLDASM.EXE]L.

As a convenience, the Dyalog APL Workspace Explorer has been extended to
perform a similar task as ILDASM so that you can gain access to the information
within the context of the APL environment.

The information that describes NET classes, which is known as its Metadata, is part
of'the definition of the class and is stored with it. This Metadata corresponds to Type
Information in COM, which is typically stored in a separate Type Library.

To gain information about one or more .NET Classes, open the Workspace Explorer,
right click the Metadata folder, and choose Load.

BN CLEAR WS Exploring []

File Edit Options View Tools

TBXQE| | EDEEE|Holela

Workspace Tree

: OsE
‘5{1' Typelibs There is no viewable contert for the selected item

JE"[MetaData

0 object(s). 48.79Mb free. 0 bytes used (0 bytes sele

I ILDASM.EXE can be found in the NET SDK and is distributed with Visual Studio

Chapter 2: Accessing .NET Classes 13

This brings up the Browse .NET Assembly dialog box as shown below. Navigate to
the .NET assembly of your choice, and click Open.

B Browse NET Assembly

- v e« Frameworktd » w4.0.30319 v | 0 Search v4.0.30319 o
Organize New folder = » [H 0
Media ~ MName Date modified ~
medias Microsoft. Windows.ApplicationServer.Ap... 30/10/2015 09:13
Microsoft. NET MrncAspEst.dll 30/10/2015 0%:19
assembly mscordacwhs.dll 24/03/2016 04:20
authman mscordbi.dil 24/03/2016 04:20
mscoreei.dll 30/10/2015 0
Framewaork .
mscoreeis.dll 30/10/201509:19
F lofd
ramewer mscorlib.dll 24/03/2016 04:20
Managed Directx mscorpe.dll 30/10/2015 09:19
Migration mscarpehost.dll 30/10/2015 09:19
MiracastView mscorre.dll 30/10/2015 09:19
ModemLogs mscorsecimpl.dll 30/10/2015 09:19
ocR mscorsn.dil 30/10/2015
Panther mscorsve.dll 30/10/2015 9
ngentasklauncher.dll 30/10/2015 09:19
Performance . . e e e e v
- v < >
File name: | mscorlib.dll V| MET Azzemblies (*.dll) ~

14

.NET Interface Guide

The .NET Classes provided with the NET Framework are typically located in
C:\WINDOWS\Microsoft.NET\Framework64\vV4.0.30319 (on a 64-bit
computer). The last named folder is the Version number.

The most commonly used classes of the NET Namespace System are stored in this
directory in an Assembly named mscorlib.dl11, along with a number of other
fundamental NET Namespaces.

The result of opening this Assembly is illustrated in the following screen shot. The
somewhat complex tree structure that is shown in the Workspace Explorer merely
reflects the structure of the Metadata itself.

BN CLEAR WS Exploring []

File Edit Options View Tools
TR XQE| | EE@E| s

Workspace Tree

E|Jﬁt MetaData
Bﬂ?’f Lozded Metadata
BJ’@T mscorlib
aJﬁt Modules
Bm C:\Windows\Microsoft.NET\Frameworké4\v4.0.30319\mscorlib.dLlL
m-Tiét [Unnamed]
]M Microszsoft.Wind2
jm Microsoft.Win3d2.5afeHandles
H-HEt System
]M System.Collections
jm System.Col lections.Concurrent
H-Jét System.Collections.Generic
]M System.Collections.ObjectModel
j.li‘r System.Configuration.Assemblies
-t System.Deployment.Internal
jm System.Deployment.Internal.Isolation
]M System.Diagnostics
-t System.Diagneostics.CodeAnalysis
jm System.Diagnostics.Contracts
]M System.Diagnostics.Contracts.Internal
]M System.Dizgnostics.SymbalStore
- Tt System.Diagnostics.Tracing
q-Jét System.Globalization
]M System.IO [¥]

[E
[E
[E
[E
[E
£
[E
[E
£
[E
[E
£
[E
[E
[E
[E
£
[E

0 object(s). 48.79Mb free. 0 bytes used (0 bytes selected)

Chapter 2: Accessing .NET Classes

15

Opening the System/ Classes

sub-folder causes the Explorer to display the list of

classes contained in the NET Namespace System as shown in the picture below.

B CLEAR WS Exploring []

File Edit Options View Tools

PTRXQE| » DEEE| 4 ool

Workspace Tree

o5t System

et System.
JE"[‘ System.
Tt System.
.Ii‘:'t System.
Ji’:‘t System.
&t System.
Ji’:‘l‘ System.
Tt System.
JH System.
Tt System.
Tiét System.
Jﬁ"l‘ System.
i et System.
N =4 System.
Tt System.
.Ii‘:'t System.
Ji’:‘t System.
&t System.
Ji’:‘l‘ System.
Tt System.
JH System.
Tt System.
Tiét System.
Jﬁ"l‘ System.

L4

_ ComObject

_AppDomain
AccessViolationException
Action

Action™i

Action™2

Action™3

Action™4

Action’5

Action’é

Action7

Action™8

ActivationContext

Activator

Aggregatebtxception
AppContext

AppDomain
AppDomain+CAPTCASearcher
AppDomain+EvidenceCol lection
AppDomzin+NamespaceResolverForIntrospection
AppDomzinlnitializer
AppDomainlnitializerInfo+ltemInfo
AppDomainManager
AppDomainSetup

0 object(s). 42.79Mb free.

0 bytes used (0 bytes selected)

16

.NET Interface Guide

The Constructors folder shows you the list of all of the valid constructors and their
parameter sets with which you may create a new instance of the Class by calling
New. The constructors are those named .cfor; you may ignore the one named .cctor,
(the class constructor) and any labelled as Private.

For example, you can deduce that DateT ime . New may be called with three
numeric (Int32) parameters, or six numeric (Int32) parameters, and so forth. There
are in fact seven different ways that you can create an instance ofa DateTime.

B CLEAR WS Exploring []

File Edit Options View Tools

TRXQE| | DEEE| Mol alb)
Workspace Tree
Base Class
=-digt Constructors
Tt (Private)Void .cctor()
Mt (Private)Void .ctor(Inté4, System.DateTimeKind, Boolean)
Mt (Private)Void .ctor{System.Runtime.Serialization.Serialization
Bt (Private)Void .ctor(UInté4)
BBt Void .ctor(Int32, Int32, Int32)
L0t Void .ctor(Int32, Int32, Int32, Int32, Int32, Int32)
.Mt Void .ctor{Int32, Int32, Int32, Int32, Int32, Int32, Int32)
.0t Void .ctor{Int32, Int32, Int32, Int32, Int32, Int32, Int32, Sy
-0t Void .ctor{Int32, Int32, Int32, Int32, Int32, Int32, Int32, Sy
LBt Yoid .ctor{Int32, Int32, Int32, Int32, Int32, Int32, Int32, Sy
L Bi#t Void .ctor{Int32, Int32, Int32, Int32, Int32, Int32, System.Da
Tt Void .ctor{Int32, Int32, Int32, Int32, Int32, Int32, System.Gl
Tt Void .ctor{Int32, Int32, Int32, System.Globalization.Calendar)
Tt Yoid .ctor(Inté4)
Ji#t Void .ctor(Inté4, System.DateTimeKind)

@5t Fields

-5t Methods

[]--]@T Properties v
< >
0 object(s). 48.79Mb free. 0 bytes used (0 bytes selected)

For example, the following statement may be used to create a new instance of
DateTime (09:30 in the morning on 30th April 2001):

mydt<[NEW DateTime (2001 4 30 9 30 0)

mydt
30/04/2001 09:30:00

Chapter 2: Accessing .NET Classes

The Properties folder provides a list of the properties supported by the Class. It
shows the name of the property followed by its data type. For example, the
DayOfYear property is defined to be of type Int32.

B CLEAR WS Exploring []

File Edit Options View Tools
TR XQE| | EEEE| 4 ela
Workspace Tree
Ji‘?t Base Class
Ji'?r Constructors
m-Jit Fields
f-Jét Methods
ElJi‘?t Properties
J#&t (Private)InternalKind : System.UInték4
-di&t (Private)InternalTicks : System.Intéb
Jét Date : System.DateTime
Tt Day : System.Int32
Tt DayOfWeek @ System.DaylfWeek
Tt DayOfYear @ System.Intd2
J#t Hour : System.Int32
LBt Kind s System.DateTimeKind
~J#t Millisecond : System.Int32
-Ji&t Minute : System.Int32
Bt Month : System.Int32
- Jt Now = System.DateTime
.J#t Second : System.Int32
diEt Ticks System.Intél
Tt TimeOfDay : System.TimeSpan
Tt Today : System.DateTime
~J#t UtcNow : System.DateTime

0t Year : System.Int32 N
< >

0 object(s). 48.79Mb free. 0 bytes used (0 bytes selected)

You can query a property by direct reference:

mydt.DayOfWeek
Monday

18

.NET Interface Guide

Notice too that the data types of some properties are not simple data types, but

Classes in their own right. For example, the data type of the Now property is itself
System.DateTime. This means that when you reference the Now property, you
get back an object that represents an instance ofthe System.DateTime object:

mydt.Now
07/11/2001 11:30:48
ars
2001 11 7 11 30 48 O

The Methods folder lists the methods supported by the Class. The Explorer shows the
data type of the result of the method, followed by the name of the method and the
types of its arguments. For example, the IsLeapYear method takesan Int32
parameter (year) and returns a Boolean result.

mydt.IsLeapYear 2000

B CLEAR WS Exploring []

File Edit Options View Tools
TR XQHE| | EEEE| el

Workspace Tree

-Jét Boolean Equals(System.DateTime} "
..Jé&t Boolean Equals(System.DateTime, System.
Xt Boolean Equals(System.Object)

Bt Boolean IsDaylightSavingTime()

..Jé&t Boolean cp_EquaLitf{sttem.DateTime, Sy
Xt Boolean cp_GreaterThan{Efstem.DateTime,
..J&t Boolean cp_GreaterThanﬂrEquaL{Srstem.Da
..J&t Boolean cp_InequaLitr{Srstem.DateTime,
..Jé&t Boolean cp_LessThan{sttem.DateTime, Sy
Xt Boolean cp_LessThanﬂrEquaL{sttem.DateT
..J&t Boolean TryParse(System.5tring, System.
..J&t Boolean TryParse(System.5tring, System.
..Jé&t Boolean TryParseExact(System.S5tring, Sy
Xt Boolean TryParseExact(System.5tring, Sy
..t Double ToOADate() v
£ >

0 object(s). 48.79Mb free. 0 bytes used (0 bytes selected)

Chapter 2: Accessing .NET Classes

Many of the reported objects are listed as Private, which means they are inaccessible
to users of the class — you are not able to call them or inspect their value. For more

information about classes, see Language Reference Guide: Object Oriented

Programming.

B CLEAR WS Exploring [

File Edit Opticns View Tools

B X QE

Workspace Tree

Bt Boolezn
..Jét Boolean
..Jét Boolean
.Jét Boolean
Bt Boolezn
..Jét Boolean
..Jét Boolean
.Jét Boolean
Bt Boolezn
..Jét Boolean
..Jét Boolean
.Jét Boolean
Bt Boolezn
..Jét Boolean
..Jét Boolean

£

W) (Private)VYoid Finalize()

.Jét (Private)Void System.Runtime.Serializat

| EEEE| 4 M e

Equals(System.DateTime)
Equals(System.DateTime, System.
Equals(System.0Object)
IsDaylightSavingTime()
IslLeapYear(Int32)
op_EquaLity{System.DateTime, Sy
op_GreaterThan{System.DatETimE,
op_GreaterThanﬂrEquaL{System.Da
cp_Inequality{System.DateTime,
op_LessThan{System.DatETime, Sy
op_LessThanﬂrEquaL{System.DatET
TryParse(System.5tring, System.
TryParse(System.5tring, System.
TryParseExact(System.5tring. Sy
TryParseExact(System.5tring, Sy

~Jét Double ToOADate()
Bt Int32 Ccmpare{System.DateTime, System.D .,

>

0 object(s). 48.79Mb free.

0 bytes used (0 bytes selected)

.NET Interface Guide

Value Tips for External Functions

Value Tips can also be used to investigate the syntax of external functions. If you
hover over the name of an external function, the Value Tip displays its Function
Signature.

For example, in the example below, the mouse is hovered over the external function
dt.AddMonths and shows that it requires a single integer as its argument.

Jm CLEAR'WS - Dyalog APL/W-64

File Edit View Windows Session Log Action Options Tools Threads Help
ws g, & Wl % | Object [g &= 7 BE & | Tool P 57 i= § | Edit | Session
Language Bar - X

x|x
l|||||||El|||||I|f|L|||||||||||||¥|||||||||||ﬂ|-i|f||||||ﬁuJ

Dyalog APL/W-6% VYersion 15.0.27165

Serial No : 000042

Unicode Edition

Beta release

Wed Apr 20 12:38:19 2016

clear ws
OUSING+~"System'
dt+DateTime.Now
dt.MethodlList

Add AddDays AddHours AddMilliseconds AddMinutes AddMonths
nMenth Equals FromBinary FromFileTime FromFileTimeltc
TypeCode IsDaylightSavingTime IsleapYear Parse Parsekbxa
ileTime TeoFileTimeUtc TolocalTime TolengDateString Tole
ing ToString TolUniversalTime TryParse TryParseExact
dt.AddMonth

System.DateTime AddMonths(Int32)

Function Signature

£ >

Editor

Debugger .-
Ready... Ins NUM
CurObj: [System.DateTime &:1 Opg:0 OTRAP OSI:0 OIC:1 [DOML:1

Chapter 2: Accessing .NET Classes 21

Should the external function provide more than one signature, they are all shown in
the Value Tip as illustrated below. Here the function ToString has four different
overloads.

([System.DateTime])

File Edit View Windows Session Log Action Options Tools Threads Help
WS 5 a B %y | Object [5] = 7 FER Tool P IS @Y | Edt] @ P Q| Session APL385 Unicot
Language Bar

[LBl o] [
Dyalog APL/W-6% Version 15.0.27165
Serial No : 0000&2
Unicode Edition
Beta release
Wed Apr 20 12:53:23 2016
clear ws
OUSING+'System'
dt+DateTime.Now

o] [l

| [t4f=l=l0[ale] [lelo]olel-] [ANN]

X
a
lelela] g
Al

JCs dt
#.[System.DateTime]
YMETHODS
Add AddDays AddHours AddMilliseconds AddMinutes AddMonths
AddSeconds AddTicks AddYears Compare CompareTo DaysInMonth
Equals FromBinary FromFileTime FromFileTimeUte FromOADate
GetDateTimeFormats GetHashCode GetType GetTypeCode IsDaylightSavingTime
IsLeapYear Parse Parsefxact Referencefquals SpecifyKind Subtract
ToBinary ToFileTime ToFileTimelte TolocalTime TolongDateString
ToLongTimeString ToOADate ToShortDateString ToShortTimeString
ToStri Talles LT TeuD Toun = +
System.String ToString()
System.String ToString(System.5tring)
System.String ToString(System.IFormatProvider}
System.String ToString(System.String, System.IFormatProvider)
Functien Signature
o
¥ &
=]
Debugger w
Ready... In= NUM

CurObj: d (Undefined) &:1 0pQ:0 OTRAP [OSI:0 0OIO:1 [OML:1

22

.NET Interface Guide

Advanced Techniques

Shared Members

Certain .NET Classes provide methods, fields and properties, that can be called
directly without the need to create an instance of the Class first. These members are
known as shared, because they have the same definition for the class and for any
instance of the class.

The methods Now and IsLeapYear exported by System.DateTime fall into this
category. For example:

OJUSING«,c'System'

DateTime.Now
07/11/2008 11:30:48

DateTime.IsLeapYear 2000
1

APL language extensions for .NET objects

The NET Framework provides a set of standard operators (methods) that are
supported by certain classes. These operators include methods to compare two NET
objects and methods to add and subtract objects.

In the case of the DateTime Class, there are operators to compare two DateTime
objects. For example:

DT1+[INEW DateTime (2008 4 30)
DT2«+[INEW DateTime (2008 1 1)

A Is DT1 equal to DT2 ?
DateTime.op_Equality DT1 DT2
0

The op Additionand op Subtraction operators add and subtract
TimeSpan objects to DateTime objects. For example:

DT3«DateTime.Now
DT3
07/11/2008 11:33:45

TS<(NEW TimeSpan (1 1 1)
TS
01:01:01

Chapter 2: Accessing .NET Classes 23

DateTime.op_Addition DT3 TS
07/11/2008 12:34:46

DateTime.op_Subtraction DT3 TS
07/11/2008 10:32:44

The corresponding APL primitive functions have been extended to accept .NET
objects as arguments and simply call these standard .NET methods internally. The
methods and the corresponding APL primitives are shown in the table below.

NET Method APL Primitive Function

op_Addition +

op_Subtraction -

op_Multiply x

op_Division +

op_Equality =

op_Inequality #

op_LessThan <

op_LessThanOrEqual

IA

op_GreaterThan >

op_GreaterThanOrEqual >

So instead of calling the appropriate NET method to compare two objects, you can
use the familiar APL primitive instead. For example:

DT1=DT2
0
DT1>DT2
1
DT3+TS
07/11/2008 12:34:46
DT3-TS

07/11/2008 10:32:44

Apart from being easier to use, the primitive functions automatically handle arrays
and support scalar extension; for example:

DT1>DT2 DT3
10

24

.NET Interface Guide

In addition, the monadic form of Grade Up (4) and Grade Down (Y), and the
Minimum (|) and Maximum (') primitive functions have been extended to work on
arrays of references to NET objects. Note that the argument(s) must be a
homogeneous set of references to objects of the same .NET class, and in the case of
Grade Up and Grade Down, the argument must be a vector. For example:

ADT1 DT2 DT3
213

L/DT1 DT2 DT3
01/01/2008 00:00:00

Exceptions

When a NET object generates an error, it does so by throwing an exception. An
exception is in fact a NET class whose ultimate base class is System.Exception.

The system constant [JEXCEPTION returns a reference to the most recently generated
exception object.

For example, if you attempt to create an instance of a DateTime object with a year
that is outside its range, the constructor throws an exception. This causes APL to
report a (trappable) EXCEPTION error (error number 90) and access to the exception
object is provided by JEXCEPTION.

[JUSING«'System'

DT<«[NEW DateTime (100000 0 0)
EXCEPTION

DT<«[JNEW DateTime (100000 0 0)

QOEN
90

[JJEXCEPTION.Message
Year, Month, and Day parameters describe an un-
representable DateTime.

JEXCEPTION.Source
mscorlib

[JEXCEPTION.StackTrace
at System.DateTime.DateToTicks(Int32 year,
Int32 month,
Int32 day)

at System.DateTime..ctor(Int32 year,
Int32 month,
Int32 day)

Chapter 2: Accessing .NET Classes 25

Specifying Overloads and Casts

Ifa NET function is overloaded in terms of the types of arguments it accepts, Dyalog
APL chooses which overload to call depending upon the data types of the arguments
passed to it. For example, ifa NET function foo () is declared to take a single
argument either of type int oroftype double APL would call the first version if
you called it with an integer value and the second version if you called it with a non-
integer value.

In some circumstances it may be desirable to override this mechanism and explicitly
specify which overload to use.

A second requirement is to be able to specify to what .NET types APL should coerce
arrays before calling a NET function. For example, if a parameter to a .NET function
is declared as type System.ObJject, it might be necessary to force the APL
argument to be cast to a particular #fype of Object before the function is called.

Both these requirements are met by calling the function via the Variant operator [i.
There are two options, OverloadTypes (the Principle Option) and CastToTypes.
Each option takes an array of refs to .NET types, the same length as the number of
parameters to the function.

OverloadTypes Examples

To force APL to call the double version of function foo () regardless of the type of
the argument val:

(foo EI('OverloadTypes'Double))val
or more simply:
(foo [IDouble)val
Note that Doub L e is a refto the NET type System.Double.

JUSING«'System'
Double
(System.Double)

Taking this a stage further, suppose that foo () is defined with 5 overloads as
follows:

foo ()
foo(int 1)
double d)

foo (double d, int i)

(
(i
foo (
(
foo (double[] d)

The following statements will call the niladic, double, (double, int) and double[]
overloads respectively.

.NET Interface Guide

(foo [(<8)) @ A niladic
(foo [l Double) 1 A double
(foo [l(<Double Int32))1 1 A double,int

(foo [(Type.GetType c'System.Double[]'))cl 1 A double[]

Note that in the niladic case, an enclosed empty vector is used to represent a null
reference to a .NET type.

CastToTypes Example

The .NET function Array.SetValue () setsthe value ofa specified element (or
elements) of an array. The first argument, the new value, is declared as
System.ObJject, but the value supplied must correspond to the type ofthe Array
in question. APL has no means to know what this is and will therefore pass the value
as is, 1.e. in whatever internal format it happens to be at the time. For example:

[JUSING«'System'

A create a Boolean array with 2 elements
BA«Array.CreateInstance Boolean 2
BA.GetValue 0 n get the Oth element

A attempt to set the Oth element to 1 (AKA true)

BA.SetValue 1 0
EXCEPTION: Cannot widen from source type to target type
either because the source type is a not a primitive type
or the conversion cannot be accomplished.
test[5] BA.SetValue 1 0

A

The above expression failed because APL passed the first argument 1 ,unchanged
from its current internal representation, as a 1-byte integer which does not fit into a
Boolean element.

To rectify the situation, APL must be told to cast the argument to a Boolean as
follows:

(BA.SetValue [l ('CastToTypes'(Boolean Int32)))1 0
BA.GetValue 0 n get the Oth element

Chapter 2: Accessing .NET Classes 27

Overloaded Constructors

If a class provides constructor overloads, a similar mechanism is used to specify
which of the constructors is to be used when an instance of the class is created using
ONEW.

For example, ifMyClass isa .NET class with an overloaded constructor, and one of
its constructors is defined to take two parameters; a double and an int, the
following statement would create an instance of the class by calling that specific
constructor overload:

(ONEW [(<Double Int32)) MyClass (1 1)

28 .NET Interface Guide

More Examples

Directory and File Manipulation

The .NET Namespace System. IO (also in the Assembly mscorlib.dl1l)
provides some useful facilities for manipulating files. For example, you can create a
DirectoryInfo object associated with a particular directory on your computer,
call its GetFiles method to obtain a list of files, and then get their Name and
CreationTime properties.

[JUSING<,c'System.IO'
d<[INEW DirectoryInfo (c'C:\Dyalog')

d is an instance of the Directory Class, corresponding to the directory
c:\Dyalogl.

d
C:\Dyalog

The GetF1iles method returns a list of files; actually, FileInfo objects, that
represent each of the files in the directory: Its optional argument specifies a filter; for
example:

d.GetFiles c'x,exe'
evalstub.exe exestub.exe dyalog.exe dyalogrt.exe

The Name property returns the name of the file associated with the File object:

(d.GetFiles c'x.,exe').Name
evalstub.exe exestub.exe dyalog.exe dyalogrt.exe

And the CreationTime property returns its creation time, which isa DateTime
object:

(d.GetFiles c'x.exe').CreationTime

01/04/2004 09:37:01 01/04/2004 09:37:01 08/06/2004 ...

Ifyou call GetFiles without an argument (in APL, with an argument of 8), it
returns a complete list of files:

files«d.GetFiles @&

IIn this document, we will refer to the location where Dyalog APL is installed as C:\Dyalog. Your
installation of Dyalog APL may be in a different folder or even on a different drive but the
examples should work just the same it you replace C:\Dyalog by your folder name

Chapter 2: Accessing .NET Classes 29

Taking advantage of namespace reference array expansion, an expression to display
file names and their creation times is as follows.

files,[1.5]files.CreationTime

relnotes.hlp 03/02/2004 11:47:02
relnotes.cnt 03/02/2004 11:47:02
def_uk.dse 22/03/2004 12:13:31
DIALOGS.HLP 22/03/2004 12:13:31
dyares32.dll 22/03/2004 12:13:40

Sending an email
The .NET Namespace System.Web.Mail provides objects for handing email.

You can create a new email message as an instance of the Mai1Message class, set
its various properties, and then send it using the SmtpMail class.

Please note that these examples will only work if your computer is configured to
allow you to send email in this way.

QUSING«'System.Web.Mail,System.Web.dLl'
m<[OJNEW MailMessage

m.From<«'tony.blair@uk.gov'
m.To«'sales@dyalog.com'

m.Subject<«'order'

m.Body<«'Send me 100 copies of Dyalog APL now'

SmtpMail.Send m

However, note that the Send method of the SmtpMail object is overloaded and
may be called with a single parameter of type
System.Web.Mail.MailMessage as above, or four parameters of type
System.String:

So instead, you can just say:

SmtpMail.Send 'tony.blair@uk.gov'
‘sales@dyalog.com’
‘order'
'Send me the goods'

30

.NET Interface Guide

Web Scraping

The .NET Framework provides a whole range of classes for accessing the internet
from a program. The following example illustrates how you can read the contents of
a web page. It is complicated, but realistic, in that it includes code to cater for a
firewall/proxy connection to the internet. It is only 9 lines of APL code, but each line
requires careful explanation.

First we need to define JUSING so that it specifies all of the NET Namespaces and
Assemblies that we require.

JUSING<«'System,System.dll' 'System.Net' 'System.IO'

The WebRequest class in the .NET Namespace System.Net implements the
NET Framework's request/response model for accessing data from the Internet. In
this example we create a WebRequest object associated with the URI
http://www.cdnow.com. Note that WebRequest is an example of a static
class. You don't make instances ofit; you just use its methods.

wrg«<WebRequest.Create c'http://www.cdnow.com'

In fact (and somewhat confusingly) if the URI specifies a scheme of "http://" or
"https://", you get back an object of type Ht t pWebRequest rather than a plain and
simple WebRequest. So, at this stage, wrq is an Ht tpiWebRequest object.

wrq
System.Net.HttpWebRequest

This class has a Proxy property through which you specify the proxy information
for a request made through a firewall. The value assigned to the Proxy property has
to be an object of type System.Net .WebProxy. So first we must create a new
WebProxy object specifying the hostname and port number for the firewall. You
will need to change this statement to suit your own internet configuration (it may
even not be necessary to do this).

PX<(NEW WebProxy(c'http://dyagate.dyadic.com:8080")
PX
System.Net.WebProxy

Having set up the WebProxy object as required, we then assign it to the Proxy
property of the Ht tpRequest object wrq.

wrq.Proxy<«PX

Chapter 2: Accessing .NET Classes 31

The Ht tpRequest class has a GetResponse method that returns a response from
an internet resource. No it's not HTML (yet), the result is an object of type
System.Net.HttpWebResponse.

wr<wrqg.GetResponse
wr
System.Net.HttpWebResponse

The Ht tpWebResponse class has a GetResponseStream method whose result
isoftype System.Net.ConnectStream. This object, whose base class is
System.IO.Stream,provides methods to read and write data both synchronously
and asynchronously from a data source, which in this case is physically connected to
a TCP/IP socket.

str<wr.GetResponseStream
str
System.Net.ConnectStream

However, there is yet another step to consider. The St ream class is designed for
byte input and output; what we need is a class that reads characters in a byte stream
using a particular encoding. This is a job forthe System.IO.StreamReader
class. Given a St ream object, you can create a new instance ofa StreamReader
by passing it the St ream as a parameter.

rdr<[ONEW StreamReader str
rdr
System.IO.StreamReader

Finally, we can use the ReadToEnd method of the St reamReader to get the
contents of the page.

s«rdr.ReadToEnd
ps
45242
Note that to avoid running out of connections, it is necessary to close the Stream:

str.Close

32

.NET Interface Guide

Enumerations

An enumeration is a set of named constants that may apply to a particular operation.
For example, when you open a file you typically want to specify whether the file is
to be opened for reading, for writing, or for both. A method that opens a file will take
a parameter that allows you to specify this. If this is implemented using an
enumerated constant, the parameter may be one of a specific set of (typically) integer
values; for example, 1=read, 2=write, 3=both read and write. However, to avoid
using meaningless numbers in code, it is conventional to use names to represent
particular values. These are known as enumerated constants or, more simply, as
enums.

In the NET Framework, enums are implemented as classes that inherit from the base
class System.Enum. The class as a whole represents a set of enumerated constants;
each of the constants themselves is represented by a static field within the class.

The next chapter deals with the use of System.Windows . Forms to create and
manipulate the user interface. The classes in this NET Namespace use enums
extensively.

For example, there is a class named
System.Windows.Forms.FormBorderStyle that contains a set of static
fields named None, FixedDialog, Sizeable, and so forth. These fields have
specific integer values, but the values themselves are of no interest to the
programmer.

Typically, you use an enumerated constant as a parameter to a method or to specify
the value of a property. For example, to create a Form with a particular border style,
you would set its BorderStyle property to one of the members of the
FormBorderStyle class, viz.

[JUSING+«'System'

[JUSING,«c'System.Windows.Forms,system.windows.forms.dll'
f1«<[INEW Form

f1.BorderStyle«FormBorderStyle.FixedDialog
FormBorderStyle.INL "2 a List enum members

Fixed3D FixedDialog FixedSingle FixedToolWindow None
Sizable SizableToolWindow

Chapter 2: Accessing .NET Classes 33

An enum has a value, which you may use in place of the enum itself when such
usage is unambiguous. For example, the FormBorderStyle.Fixed3D enum has
an underlying value is 2:

Convert.ToInt32 FormBorderStyle.Fixed3D
2

You could set the border style of the Form f1 to FormBorderStyle.Fixed3D
with the expression:

fl1.BorderStyle<«2

However, this practice is not recommended. Not only does it make your code less
clear, but also if a value for a property or a parameter to a method may be one of
several different enum types, APL cannot tell which is expected and the call will fail.

For example, when the constructor for System.Drawing. Font is called with 3
parameters, the 3'd parameter may be eithera FontStyle enumora
GraphicsUnit enum. If you were to call Font with a 31 parameter of 1, APL
cannot tell whether this refers to a FontStyle enum, ora GraphicsUnit enum,
and the call will fail.

Handling Pointers with Dyalog.ByRef

Certain NET methods take parameters that are pointers.

An example is the Di vRem method that is provided by the System.Math class.
This method performs an integer division, returning the quotient as its result, and the
remainder in an address specified as a pointer by the calling program.

APL does not have a mechanism for dealing with pointers, so Dyalog provides a
.NET class for this purpose. This is the Dyalog.ByRef class, which is a provided
by an Assembly that is loaded automatically by the Dyalog APL program.

Firstly, to gain access to the Dyalog .NET Namespace, it must be specified by
OUSING. Note that you need not specify the Assembly (DLL) from which it is
obtained (the Bridge DLL), because (like mscorlib.d11)itis automatically
loaded by when APL starts.

JUSING<«'System' 'Dyalog’

The Dyalog.ByRef class represents a pointer to an object of type
System.Object. It has a number of constructors, some of which are used
internally by APL itself. You only need to be concerned about two of them; the one
that takes no parameters, and the one that takes a single parameter of type
System.Object. The former is used to create an empty pointer; the latter to create
a pointer to an object or some data.

34

.NET Interface Guide

For example, to create an empty pointer:
ptri<[INEW ByRef
Or, to create pointers to specific values,

ptr2<[NEW ByRef 0
ptr‘3<—|:|NEW ByRef (c110)
ptri4«<[ONEW ByRef ([INEW DateTime (2000 4 30))

Notice that a single parameter is required, so you must enclose it if it is an array with
several elements. Alternatively, the parameter may be a NET object.

The ByRef class has a single property called Value.

ptr2.Value
0
ptr3.Value
12345678910
ptri&.Value

30/04/2000 00:00:00

Note that if you reference the Value property without first setting it, you get a
VALUE ERROR.

ptri.Value

VALUE ERROR
ptri.Value
A

Returning to the example, we recall that the Di vRem method takes 3 parameters:

1. the numerator

2. the denominator

3. apointer to an address into which the method will write the remainder after
performing the division.

remptr«<(JNEW ByRef

remptr.Value
VALUE ERROR

remptr.Value

A

Math.DivRem 311 99 remptr

remptr.Value
14

Chapter 2: Accessing .NET Classes 35

In some cases a NET method may take a parameter that is an Array and the method
expects to fill in the array with appropriate values. In APL there is no syntax to allow
a parameter to a function to be modified in this way. However, we can use the
Dyalog.ByRef class to call this method. For example, the
System.IO.FileStream class contains a Read method that populates its first
argument with the bytes in the file.

Ousing«'System.I0' 'Dyalog' 'System'
fs«[INEW FileStream ('c:\tmp\jd.txt' FileMode.Open)
fs.Length
25
fs.Read(arg<«[JNEW ByRef,cc25p0)0 25
25
arg.Value
io4 101 108 108 111 32 102 114 111 109 32 106 111 104 110
32 100 97 105 110 116 114 101 101 10

36

.NET Interface Guide

37

Chapter 3:

Using Windows.Forms

Introduction

System.Windows .Forms is a NET namespace that provides a set of classes for
creating the Graphical User Interface for Windows applications.

As an alternative to the built-in Dyalog GUI, Windows Forms has been superseded
by Windows Presentation Foundation which is described in the next Chapter. This
section is included to support existing Dyalog applications that make use of
Windows Forms.

Unless otherwise specified, all the examples described in this Chapter may be found
in the samples\winforms\winforms.dws workspace.

Creating GUI Objects

GUI objects are represented by .NET classes in the NET Namespace
System.Windows.Forms. In general, these classes correspond closely to the GUI
objects provided by Dyalog APL, which are themselves based upon the Windows
APIL

For example, to create a form containing a button and an edit field, you would create
instances of the Form, Button and TextBox classes.

38

.NET Interface Guide

Object Hierarchy

The most striking difference between the Windows . Forms GUI and the Dyalog
GUTI s that in Windows . Forms the container hierarchy represented by forms,
group boxes, and controls is not represented by an object hierarchy. Instead, objects
that represent GUI controls are created stand-alone (i.e. without a parent) and then
associated with a container, such as a Form, by calling the Add method of the
parent’s Controls collection. Notice too that Windows . Forms objects are
associated with APL symbols that are namespace references, but Windows.Forms
objects do not have implicit names.

Positioning and Sizing Forms and Controls

The position of a form or a control is specified by its Location property, which is
measured relative to the top left corner of the client area of'its container.

Location hasadatatype of System.Drawing.Point.To set Location,you
must first create an object of type System.Drawing.Point then assign that
object to Location.

Similarly, the size of an object is determined by its Size property, which has a data
type of System.Drawing. Size. This time, you must create a
System.Drawing.Size object before assigning it to the Size property of the
control or form.

Objects also have Top (Y) and Left (X) properties that may be specified or
referenced independently. These accept simple numeric values.

The position of a Form may instead be determined by its DeskTopLocation
property, which is specified relative to the taskbar. Another alternative is to set the
StartPosition property whose default setting is
WindowsDefaultLocation, which represents a computed best location.

Modal Dialog Boxes

Dialog Boxes are displayed modally to prevent the user from performing tasks
outside of the dialog box.

To create a modal dialog box, you create a Form, set its BorderStyle property to
FixedDialog,setits ControlBox,MinimizeBox and MaximizeBox
properties to false, and display it using ShowbDialog.

Chapter 3: Using Windows.Forms 39

A modal dialog box hasa DialogResult property that is set when the Form is
closed, or when the user presses OK or Cancel. The value of this property is returned
by the ShowDialog method, so the simplest way to handle user actions is to check
the result of ShowDialog and proceed accordingly. Example 1 illustrates a simple
modal dialog box.

Example 1

Function EG1 illustrates how to create and use a simple modal dialog box. Much of
the function is self-explanatory, but the following points are noteworthy.

EG1[1-2] setJUSING to include the NET Namespaces
System.Windows.Forms and System.Drawing.

EG1[6,8,9] create a Form and two Button objects. As yet, they are
unconnected. The constructor for both classes is defined to take no arguments, so the
[ONEW system function is only called with a class argument.

EG1[14] shows how the Location property is set by first creating a new Point
object with a specific pair of (x and y) values.

EG1[18] computes the values for the Point object forbutton2.Location,
from the values of the Left, Height and Top properties of but ton1; thus
positioning but ton2 relative to but tont.

V EG1l;formi;buttoni;button2;true;false;[JUSING;Z
[1] [JUSING«,c'System.Windows.Forms,
System.Windows.Forms.dl L'
[2] QUSING,«c'System.Drawing,System.Drawing.dll"’
[3] true false«l 0

[4]

[5] A Create a new instance of the form.

[6] form1<[ONEW Form

[7] A Create two buttons to use as the accept and cancel btns

[8] button1<«[JNEW Button
[9] button2<«[JNEW Button

[10]
[11] A Set the text of buttonil to "OK".
[12] buttonl.Text<«'OK'
[13] A Set the position of the button on the form.
[14] buttoni.Location<[JNEW Point,c10 10
[15] A Set the text of button2 to "Cancel".
[16] button2.Text<«'Cancel’
[17] A Set the position of the button relative to buttont.
[18] button2.Location<[INEW Point,
cbuttoni.Left buttoni.(Height+Top+10)

40

.NET Interface Guide

EG1[21,23] setsthe DialogResult property of buttonl and button? to
DialogResult.OKand DialogResult.Cancel respectively. Note that
DialogResult is an enumeration with a predefined set of member values.

Similarly, EG1[32] defines the BorderStyle property of the form using the
FormBorderStyle enumeration.

EG1[38 40] defines the AcceptButton and CancelButton properties of the
Formto button1 and but ton2 respectively. These have the same effect as the
Dyalog GUI Default and Cancel properties.

EG1[42] setsthe StartPosition ofthe Form to be centre screen. Once again
this is specified using an enumeration; FormStartPosition

[20] @ Make buttonl's dialog result OK.

[21] buttonl.DialogResult«DialogResult.OK
[22] a Make button2's dialog result Cancel.
[23] button2.DialogResult«DialogResult.Cancel
[24]

[25]

[26] A Set the title bar text of the form.
[27] forml.Text«'My Dialog Box'

[28] A Display a help button on the form.
[29] formi.HelpButton<«true

[30]

[31] A Define the border style of the form to that of a
dialog box.

[32] formi.BorderStyle«FormBorderStyle.FixedDialog

[33] A Set the MaximizeBox to false to remove the

maximize box.
[34] forml.MaximizeBox«false
[35] A Set the MinimizeBox to false to remove the
minimize box.
[36] forml.MinimizeBox«false
[37] A Set the accept button of the form to buttont.
[38] forml.AcceptButton«buttonil
[39] A Set the cancel button of the form to button2.
[40] formi.CancelButton<button2
[41] A Set the start position of the form to the centre
of the screen.
[42] formi.StartPosition«FormStartPosition.CenterScreen

EG1[45 46] associate the buttons with the Form. The Controls property of the
Form returns an object of type Form.ControlCollection. This class has an
Add method that is used to add a control to the collection of controls that are owned
by the Form.

Chapter 3: Using Windows.Forms 41

EG1[50] calls the ShowDialog method (with no argument; hence the 8). The
result is an object of type Form.DialogResult, which is an enumeration.

EG1[52] compares the result returned by ShowDialog with the enumeration
member DialogResult.OK (note that the primitive function = has been extended
to compare objects).

[44] A Add buttonl to the form.

[45] formil.Controls.Add buttoni

[46] A Add button2 to the form.

[47] formi.Controls.Add button2

[48]

[49] A Display the form as a modal dialog box.

[50] Z«forml.ShowDialog &

[51] A Determine if the OK button was clicked on the

dialog box.
[52] :If Z=DialogResult.OK
[53] A Display a message box saying that the OK
button was clicked.
[54%] Z«MessageBox.Showc'The OK button on the form
was clicked.'
[55] :Else
[56] A Display a message box saying that the Cancel
button was clicked.
[57] Z+MessageBox.Showc'The Cancel button on the

form was clicked.
[58] :EndIf
v

Warning: The use of modal forms in .NET can lead to problematic situations while
debugging. As the control is passed to .NET the APL interpreter cannot regain
control in the event of an unforeseen error. It is advisable to change the code to
something like the following until the code is fully tested:

[52] formil.Visible«1
[53] :While forml.Visible ¢ :endwhile

.NET Interface Guide

Example 2

Functions EG2 and EG2A illustrate how the Each operator (") and the extended
namespace reference syntax in Dyalog APL may be used to produce more succinct,
and no less readable, code.

V EG2;formi;labell;textBoxl;true;false;[JUSING;Z
[1] (QUSING«,c'System.Windows.Forms,
System.Windows.Forms.dll'
[2] OUSING,«c'System.Drawing,System.Drawing.dll"'
[3] true false<«<l1 0

[4]

[5] A Create a new instance of the form.
[6] formi«<[ONEW Form

[7]

[8] textBox1<[INEW TextBox
[9] labe l1<[INEW Label

[11] A Initialize the controls and their bounds.
[12] labell.Text«'First Name'

[13] labell.Location<[DNEW Point (48 48)

[14] labell.Size<[INEW Size (104 16)

[15] textBox1.Text«""

[16] textBox1.Location<[JNEW Point (48 64)

[17] textBox1.Size<[JNEW Size (104 16)

[19] A Add the TextBox control to the form's control
collection.
[20] formi.Controls.Add textBox1
[21] A Add the Label control to the form's control
collection.
[22] formi.Controls.Add label1l
[23]
[24] A Display the form as a modal dialog box.
[25] Z«forml.ShowDialog &
\4

EG2A[7] takes advantage of the fact that .NET classes are namespaces, so the
expression Form TextBox Label isa vector of namespace refs, and the
expression JNEW 'Form TextBox Label runsthe[NEW system function on
each of them.

Similarly, EG2A[10 11 12] combine the use of extended namespace reference and
the Each operator to set the Text, Location and Size properties in several
objects together.

Chapter 3: Using Windows.Forms 43

V EG2A;forml;labell;textBox1;true;false;[JUSING;Z
[1] A Compact version of EG2 taking advantage of ref
syntax and ”
[2] [JUSING<«'System.Windows.Forms,System.Windows.Forms.dll'
[3] QUSING,«c'System.Drawing,System.Drawing.dll'
[4] true false«l 0

[5]

[6] A Create a new instance of the form, TextBox and Label.
[7] (form1l textBox1 labell)<«[INEW 'Form TextBox Label

[8]

[9] A Initialize the controls and their bounds.

[10] (labell textBox1).Text«'First Name' ''
[11] (labell textBox1).Location<[INEW 'Point, (48 48) (48 64)
[12] (labell textBox1).Size<«[INEW 'Size, (104 16) (104 16)

[14] A Add the Label and TextBox controls to the form's
control collection.
[15] forml.Controls.AddRangeclabell textBox1

[16]
[17] A Display the form as a modal dialog box.
[18] Z«formi.ShowDialog &

Non-Modal Forms

Non-modal Forms are displayed using the Run method of the
System.Windows.Forms.Application object. This method is designed to be
called once, and only once, during the life of an application and this poses problems
during APL development. Fortunately, it turns out that, in practice, the restriction is
that Application.Run may only be run once on a single system thread.
However, it may be run successively on different system threads. During
development, you may therefore test a function that calls Application.Run, by
running it on a new APL thread using Spawn (&). See Chapter 13 for further details.

DataGrid Examples

Three functions in the samples\winforms\winforms.dws workspace provide
examples of non-modal Forms. These examples also illustrate the use of the
WinForms.DataGrid class.

Function Grid1 is an APL translation of the example given in the help file for the
DataGrid class in the .NET SDK Betal. The original code has been slightly modified
to work with the current version of the SDK.

Function Grid2 is an APL translation of the example given in the help file for the
DataGrid class in the .NET SDK Beta2.

44

.NET Interface Guide

Function Grid is an APL translation of the example given in the file:

C:\Program Files\Microsoft.NET\SDK\v1l.1\...
QuickStart\winforms\samples\Data\Grid\vb\Grid.vb

This example uses Microsoft SQL Server 2000 to extract sample data from the sample
NorthWind database. To run this example, you must have SQL Server running and
you must modify function Grid_Load to specify the name of your server.

GDIPLUS Workspace

The samples\winforms\gdiplus.dws workspace contains a sample that
demonstrates the use of non-rectangular Forms. It is a direct translation into APL
from a C# sample (WinForms-Graphics-GDIPlusShape) that was distributed on the
Visual Studio .NET Beta 2 Resource CD.

TETRIS Workspace

The samples\winforms\tetris.dws workspace contains a sample that
demonstrates the use of graphics. It is a direct translation into APL from a C# sample
(WinForms-Graphics-Tetris) that was distributed on the Visual Studio .NET Beta 2
Resource CD.

WEBSERVICES Workspace

An example of a non-modal Form is provided by the WFGOLF function in the
samples\asp.net\webservices\webservices.dws workspace. This
function performs exactly the same task as the GOLF function in the same workspace,
but it uses Windows.Forms instead of the built-in Dyalog GUL

WFGOLF, and its callback functions WFBOOK and WF SS perform exactly the same
task, with almost identical dialog box appearance, of GOLF and its callbacks BOOK
and SS that are described in Chapter 7.

Note that when you run WFGOLF or GOLF for the first time, you must supply an
argument of 1 to force the creation of the proxy class for the GolfService web
service.

Chapter 4: Windows Presentation Foundation 45

Chapter 4:

Windows Presentation Foundation

Introduction

Windows Presentation Foundation is a graphical system that includes a
programmable Graphical User Interface. It is supplied as a set of Microsoft NET
assemblies and is supported on all current Windows platforms.

The WPF GUI is in many ways more sophisticated and powerful than either Dyalog
APL's own built-in GUI or the GUI provided by Windows Forms.

Like any other set of NET classes, WFP can be integrated into Dyalog APL
applications via the .NET interface. Dyalog APL users may therefore develop
GUI applications that are based upon WPF as an alternative to the built-in Dyalog
GUI or Windows Forms.

Quite apart from its advanced GUI capabilities, WPF supports data binding. This is a
complex subject, but putting it very simply, data binding allows a property of a user-
interface object (such as the Text property ofa TextBox object) to be bound to
some data. When the data changes, the bound property of the object changes and
vice versa.

Dyalog APL Version 14 includes a data binding function (2015 !) which supports
data binding to APL arrays and namespaces.

A WPF GUI can be built dynamically by creating a set of component objects (using
ONEW) in a similar way to the Dyalog APL GUI and Windows Forms. However, the
same user-interface can instead be specified statically using XAML, a text markup
system that describes the GUI using XML. Along with data binding, this feature
allows the application logic and the user-interface to be developed and maintained
separately.

The examples described in this section are provided in the workspace
WPFIntro.dws

IThis function may remain as an I-beam or be replaced by one or more system functions in a future
Version of Dyalog APL.

46 .NET Interface Guide

Temperature Converter Tutorial

This tutorial illustrates how to go about developing a simple WPF application in
Dyalog APL. It is functionally identical to the GUI tutorial example that illustrates
how to develop a GUI application using the built-in Dyalog APL Graphical User
Interface. See Interface Guide: GUI Tutorial.

Like the GUI Tutorial, this is necessarily an elementary example, but illustrates the
principles that are involved. The example is a simple Temperature Converter.

The user may enter a temperature value in either Fahrenheit or Centigrade and have it
converted to the other scale.

No attempt has been made to update the WPF example, in terms of its user-interface,
from the original version which was developed for Windows 3. This allows a direct
comparison to be made between using the WPF and using the built-in Dyalog GUI.

There are two versions provided. The first uses XAML to describe the user-interface
with code to drive it. The second version is written entirely in APL code. The two
versions of this example may be found in WPFIntro.dws in the namespaces
UsingXAML and UsingCode respectively.

Using XAML

The functions and data for this example are provided in the workspace
WPFIntro.dws in the namespace WPF .Us ingXAML. To run the example:

JLOAD wpfintro
WPF .UsingXAML.TempConverter

Arguably the easiest way to create a WPF GUI is to define it using XAML. The
XAML defines the structure, layout and appearance of the user-interface in a very
concise manner. It is still necessary to write code to display the XAML and to
respond to user actions, but the amount of code involved is minimal.

Chapter 4: Windows Presentation Foundation 47

The XAML for the Temperature Converter is shown below.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="WPF Temperature Converter"
SizeToContent="WidthandHeight">
<DockPanel LastChildFill="False">
<Menu DockPanel.Dock="Top">
<Menultem Header=" Scale">
<Menultem Name="mnuFahrenheit" Header=" Fahrenheit"
IsCheckable="True" IsChecked="True"/>
<Menultem Name="mnuCentigrade" Header=" Centigrade"
IsCheckable="True"/>
</Menultem>
</Menu>
<Grid Width="230" Margin="40,10,10,10">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition Width="80"/>
<ColumnDefinition Width="60"/>
</Grid.ColumnDefinitions>
<Label Grid.Row="0" Grid.Column="0" Content="Fahrenheit"/>
<Label Grid.Row="1" Grid.Column="0" Content="Centigrade"/>
<TextBox Name="txtFahrenheit" Grid.Row="0" Grid.Column="1"
Margin="5"/>
<TextBox Name="txtCentigrade" Grid.Row="1" Grid.Column="1"
Margin="5"/>
<Button Name="btnF2C" Grid.Row="0" Grid.Column="2"
Content="F>C" Margin="5"/>
<Button Name="btnC2F" Grid.Row="1" Grid.Column="2"
Content="C>F" Margin="5"/>
<Button Name="btnQuit" Grid.Row="2" Grid.Column="1"
Content="Quit" Margin="5"/>
</Grid>
<ScrollBar Name="scrTemp" DockPanel.Dock="Right" Width="20"
Orientation="Vertical" Minimum="1" Maximum="213">
</ScrollBar>
</DockPanel>
</Window>

48

.NET Interface Guide

rﬁ WPF Temperature Converter l — | (=] |_ihl

Scale

Fahrenheit | F=(C |
Centigrade C>F |
Quit |

The window defined by this XAML is illustrated in the screen image shown above.
Let us examine the XAML, component by component.

Parent and Child Controls

First, notice how the structure of the GUI is defined by enclosing the child
components inside the opening and closing tags of its parent. So:

<Window
<DockPanel>

</DockPanel>
</Window>

specifies a Window control that contains a DockPanel control.

Similarly,
<Menu>
<Menultem ... >
<Menultem ... />
<Menultem ... />
</Menultem>
</Menu>

defines a Menu that contains a MenuI tem, that itself contains two other MenuItem
objects.

Named and Un-named Controls

Secondly, notice that certain objects are named whereas others are not. For example:
TextBox Name="mnuFahrenheit defines a TextBox named txtFahenheit;
whereas <DockPanel ...>defines an unnamed DockPanel object.

Chapter 4: Windows Presentation Foundation 49

Objects are given names so that they can be referenced from the code that displays
content in the user-interface or handles the user actions. In this case, the code will
read the content of the txtFahrenheit TextBox but has no need to reference the
DockPanel.

The Main Window

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"

Title="WPF Temperature Converter"
SizeToContent="WidthandHeight">

;)Window>
This extract of XAML defines a Window control; a top-level window that is
equivalent to a Dyalog APL GUI Form.

The xmins attributes define the XML namespaces (effectively the vocabulary of the
xml scheme) and are mandatory in an XAML document.

The name of the TextBox is Temp, and its caption is WFP Temperature Converter.
The SizeToContent property is set to "WidthandHeight", which causes the
TextBox to automatically size itselfto fit its content in both horizontal and vertical
directions.

The DockPanel

<DockPanel LastChildFill="False">
</DockPanel>

WPF provides a number of layout controls. These are containers whose only purpose
is to arrange child controls in a particular way, and to dictate how they are re-
arranged when the parent window is resized. The DockPanel is one of the simplest
of'the WPF layout controls.

In this case, the DockPanel is controlling 3 child windows a Menu, a Grid and a
ScrollBar.

The attachment of a particular child control is specified by setting its

DockPanel . Dock property. By default, the last control added to a DockPanel is
stretched to fill the remaining space when the window is expanded. In this case, the
requirement is for a fixed-width scrollbar attached to the right edge, so the default is
overridden by setting the LastChil1dFil1l property to "False".

.NET Interface Guide

The Menu

<Menu DockPanel.Dock="Top">
<Menultem Header="_Scale">
<Menultem Name="mnuFahrenheit" Header=" Fahrenheit"
IsCheckable="True" IsChecked="True"/>
<Menultem Name="mnuCentigrade" Header=" Centigrade"
IsCheckable="True"/>
</Menultem>
</Menu>

ﬁ WPF Temperature Converter =NRN X

Scale |

v Fahrenheit 1 E| =

Centigrade |
B o Lller=Is e CF |

Quit |

The above extract from the XAML defines a Menu. Setting Dock to "Top" causes the
Menu as a whole to be docked, so that it appears like a menubar, along the top ofthe
DockPanel. The Menu contains a single MenuItem labelled Scale which itself
contains two sub-items labelled Fahrenheit and Centigrade respectively. The
IsCheckable property specifies whether or not the user can check the MenuItem,
and the ITsChecked property sets and reports its checked state. The underscore
characters (e.g. as in "_Scale") identify the following character as a keyboard
shortcut.

The Grid

<Grid Width="230" Margin="40,10,10,10">

</Grid>
The Grid object is another WPF layout control that organises other controls in rows
and columns. Here, the XAML defines a Grid with a width 0f 230; a left margin if

40, and a top, right and bottom margin of 10. As there is no explicit unit specified,
the system uses the default device-independent unit (px) of 1/96th inch.

Chapter 4: Windows Presentation Foundation 51

The rows and columns of a Grid are defined by collections of RowDefinition
and ColumnDefinition objects.

Here the XAML specifies that the Grid contains 3 rows, each of which has a
Height set to "Auto" which means that its height depends upon the height ofits
content.

<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>

</Grid.RowDefinitions>

Similarly, there are 3 columns. The first column (which will contain labels) takes its
width from its content, i.e. it will be just wide enough to display the longest label.
The other columns for the edit boxes and buttons are specified to be 80px and 60px
wide respectively. In this case, the content (TextBox and Button objects) will
take their widths from that of the column.

<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition Width="80"/>
<ColumnDefinition Width="60"/>

</Grid.ColumnDefinitions>

The Label Objects(Column 1)

<Label Grid.Row="0" Grid.Column="0" Content="Fahrenheit"/>
<Label Grid.Row="1" Grid.Column="0" Content="Centigrade"/>

Here the XAML specifies Label objects Fahrenheit and Centigrade. Because they
are defined within the <Grid> ...</Grid> tags, they are child objects of the
Grid. In addition it is necessary to specify in which cells they are displayed using
their Grid.Row and Grid.Column properties. Note that the cell coordinates have
Zero origin.

The TextBox Objects(Column 2)

<TextBox Name="txtFahrenheit" Grid.Row="0" Grid.Column="1"
Margin="5"/>
<TextBox Name="txtCentigrade" Grid.Row="1" Grid.Column="1"
Margin="5"/>

The XAML specifies two TextBox objects named txtFahrenheit and txtCentigrade
respectively. Setting Margin to "5" means that a margin of 5px is applied around
each edge; otherwise the text boxes would occupy the entire width of the column
(80px). The effective width of each TextBox will therefore be 70px (80-2x5).

52

.NET Interface Guide

The Button Objects (Column 3)

<Button Name="btnF2C" Grid.Row="0" Grid.Column="2"
Content="F>C" Margin="5"/>
<Button Name="btnC2F" Grid.Row="1" Grid.Column="2"
Content="C>F" Margin="5"/>
<Button Name="btnQuit" Grid.Row="2" Grid.Column="1"
Content="Quit" Margin="5"/>

The XAML specifies three named Button controls. Note that the caption on a
Button is specified by its Content property.

The ScrollBar Object

This example uses a ScrollBar which the user may scroll to input a value, either
in Fahrenheit or Centigrade depending upon which of the two menu items
(Fahrenheit or Centigrade) is checked.!

<ScrollBar Name="scrTemp" DockPanel.Dock="Right" Width="20"
Orientation="Vertical" Minimum="1" Maximum="213">
</ScrollBar>

This XAML snippet defines a Scrol1Bar named scrTemp.

Setting DockPanel . Dock to "Right" means that it will be docked (aligned) on the
right edge of the DockPanel. It will be a vertical scrollbar, have a fixed width of
20px and a default height. The range ofthe Scrol1Bar is defined by its Minimum
and Max imum properties which are set so that the Scrol1Bar will specify a value
in Fahrenheit.

Note that in order to cause the Scrol1Bar to be docked (aligned) along the right
edge ofthe DockPanel itis necessary to set LastChildFil1l to "False" (for the
DockPanel)and Dock to "Right" (for the Scrol1Bar), because the value of
LastChildFill (default "True") overrides the Dock value of the last defined
child of the DockPanel.

Note

The XAML that defines this user-interface is at the same time both simple and
complex. It is simple because (in this case) it is readily understood. It is complex
because in order to write it, the user-interface designer must understand precisely
how the various controls and their properties behave and work together. For these
details, you should refer to the appropriate documentation and check out the large
number of examples published on the internet.

1A scrollBar is not the ideal choice of control for this type of user interation, but this example
is designed to look and behave like the original Dyalog GUI example, which was written for the
original version of Dyalog APL for Windows.

Chapter 4: Windows Presentation Foundation 53

The Code to display the XAML

The function TempConverter shown below contains the code needed to display
and operate the user interface whose layout is defined by the XAML described
above.

vV TempConverter;stri;xml;win;txtFahrenheit;txtCentigrade;
mnuFahrenheit;mnuCentigrade;btnF2C;
btnC2F;btnQuit;scrTemp;sink

[1] JUSING<«'System'

[2] OUSING,«c'System.IO"

[3] OUSING,«c'System.Windows.Markup'

[4] JQUSING,«c'System.Xml,system.xml.dl L'

[5] [JUSING,«c'System.Windows.Controls.Primitives,
WPF/PresentationFramework.dll'

[7] str<[JNEW StringReader (cXAML)
[8] xml<[ONEW XmlTextReader str
[9] win<XamlReader.Load xml

[10]

[11] txtFahrenheit«win.FindNamec'txtFahrenheit'

[12] txtCentigrade«win.FindNamec'txtCentigrade'

[13] mnufFahrenheit<«win.FindNamec 'mnufFahrenheit'

[14] mnuFahrenheit.onClick<'SET_F'

[15] mnuCentigrade«win.FindNamec'mnuCentigrade'’

[16] mnuCentigrade.onClick«'SET_C'

[17] (btnF2C«win.FindNamec'btnF2C').onClick«'f2c'
[18] (btnC2F«win.FindNamec'btnC2F').onClick«'c2f"'
[19] (btnQuit«win.FindNamec'btnQuit').onClick<'Quit'
[20] (scrTemp«win.FindNamec'scrTemp').onScroll«'F2C'
[21] sink«win.ShowDialog

v

The variable XAML (a character vector) contains the XAML described previously.

Note that apart from the names given to the objects by the XAML and used by the
function, the XAML and the code are independent.

TempConverter[7-8] create a XamlReader object from the character vector
via StringReader and XmlTextReader objects.

[7] str<[INEW StringReader (cXAML)
[8] xml<[ONEW XmlTextReader str

TempConverter[9] instantiates the XAML content by calling its Load method,
which returns a reference w1 n to the top-level control (in this case a Window)
defined therein. The Window is not yet visible.

[9] win<XamlReader.Load xml

54

.NET Interface Guide

Earlier, it was explained that objects defined by the XAML must be named in order
that they can be referenced (used) by the code. The mechanism to achieve this is to
call the FindName method of the Window, which returns a reference to the
specified (named) object. So these statements:

[11] txtFahrenheit«win.FindNamec'txtFahrenheit'
[12] txtCentigrade«win.FindNamec'txtCentigrade'

obtain refs (in this case named txtFahrenheit and txtCentigrade)to objects
named txtFahrenheit and txtCentigrade. It is convenient (but not essential) to use the
same name for the ref as is used for the control.

Most of the remaining statements obtain refs to the MenuItem, Button and
ScrollBar objects and attach callback functions to their Click and Scroll
events respectively.

[13] mnufFahrenheit<win.FindNamec'mnuFahrenheit'

[14] mnufFahrenheit.onClick«'SET_F'

[15] mnuCentigrade<«win.FindNamec 'mnuCentigrade’

[16] mnuCentigrade.onClick«'SET_C'

[17] (btnF2C«win.FindNamec'btnF2C"').onClick<«'f2c'
[18] (btnC2F«win.FindNamec'btnC2F').onClick<«'c2f'
[19] (btnQuit«win.FindNamec'btnQuit').onClick«'Quit'
[20] (scrTemp«win.FindNamec'scrTemp').onScroll«'F2C'

Finally the code displays the Window and hands it over to the user by calling the
ShowDialog method ofthe top-level Window.

[21] sink<win.ShowDialog

ShowDialog displays the Window modally; i.e. until it is closed, the user may
interact only with that Window. It is equivalent to IDQ winorwin.Wait in the
Dyalog built-in GUIL

The CallBack Functions

The callback functions are named as they are in the basic Dyalog GUI example and
are remarkably similar. See Interface Guide: GUI Tutorial.

Callback function f2c which is attached to the C1ick event ofthe btnF2C button
(labelled F>C) reads the character string in the txtFahrenheit TextBox,
converts it to a number using Tex t 2Num, calculates the equivalent in centigrade
and then displays the result in the txtCentigrade TextBox.

Chapter 4: Windows Presentation Foundation 55

vV f2c;value
[1] A Callback to convert Fahrenheit to Centigrade

[2] :If 1=p,value«Text2Num txtFahrenheit.Text
[3] txtCentigrade.Text«2s(value-32)x5+9
[4] :Else
[5] txtCentigrade.Text«'invalid'
[6] :EndIf

\'4

For completeness, the Tex t 2Num function is shown below. Note that if the user
enters an invalid number, Tex t 2Num returns an empty vector, and the callback
displays the text invalid instead.

V num«Text2Num txt;val
[1] val num<[JVFI txt
[2] num<val/num

\4

The c2f function converts from Centigrade to Fahrenheit when the user presses the
button labelled C>F.

V c2f;value
[1] A Callback to convert Centigrade to Fahrenheit

[2] :If 1=p,value«Text2Num txtCentigrade.Text
[3] txtFahrenheit.Text«2332+value+5<9
[4] :Else
[5] txtFahrenheit.Text«'invalid'
[6] :EndIf
\'4

The callbacks F2C and C2F, one of which at a time is attached to the Scroll event
ofthe ScrollBar object are shown below. The argument Ms g contains two items,
namely:

[1] [Object |a refto the ScrollBar object

a ref to an object of type

[2] | Object System.Windows.Controls.Primitives.ScrollEventArgs

In this case the code uses the NewValue property of the ScrollEventArgs object. An
alternative would be to refer to the Value property ofthe Scrol1Bar object

V F2C Msg;C;Fjval
[1] A Callback for Fahrenheit input via scrollbar
[2] txtFahrenheit.Text«2sval«213-(2>5Msg).NewValue
[3] txtCentigrade.Text«2s(val-32)x5+9

\'4

56

.NET Interface Guide

vV C2F Msg;C;F;val
[1] A Callback for Centigrade input via scrollbar
[2] txtCentigrade.Text«2sval«101-(2>5Msg).NewValue
[3] txtFahrenheit.Text«2332+val+5+9

\'4

The callbacks SET_F and SET_C which are attached to the C11ck events of the
two Menultem objects are shown below.

v SET_F
[1] A Sets the scrollbar to work in Fahrenheit
[2] scrTemp. (Minimum Maximum)<«1l 213
[3] scrTemp.onScroll«'F2C'

[4] mnuFahrenheit.IsChecked«1
[5] mnuCentigrade.IsChecked<«0

\'4

v SET_C
[1] A Sets the scrollbar to work in Centigrade
[2] scrTemp. (Minimum Maximum)<«1l 101

[3] scrTemp.onScrol l«'C2F"'

(4] mnuCentigrade.IsChecked+«1

[5] mnuFahrenheit.IsChecked<«0
\'

Finally, the callback function Quit which is attached to the C1ick event on the
Quit button, simply calls the C1ose method ofthe Window:

V Quit arg
[1] win.Close
\'4

Notice that unlike its equivalent in the Dyalog GUI, it is not appropriate to close the
Window using the expression JEX 'win'. This would expunge the refto the
Window but have no effect on the Window itself.

Using Code

The functions for this example are provided in the workspace WPFIntro.dws in
the namespace WPF .UsingCode. To run the example:

JLOAD wpfintro
WPF .UsingCode.TempConverter

The following function TempConverter performs exactly the same task of
defining and manipulating the user-interface for the Temperature Converter example
using XAML which was discussed previously.

The callback functions it uses are identical.

Chapter 4: Windows Presentation Foundation

57

[1]
(2]

3]
(4]
(5]

6]

(7]

8l

[91]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]

v TempConverter;[JUSING;win;dpsmnusmnufFahrenheit;
mnuCentigrade;gr;tn;rdl;rd2;rd3;
rcis;rc2;rc3;l1;12;txtFahrenheit;
txtCentigrade;btnF2C;btnC2F;
btnQuit;sink;mnuScale;scrTemp

JUSING«,c'System.Windows.Controls,
WPF/PresentationFramework.dll'
JUSING,«c'System.Windows.Controls.Primitives,
WPF/PresentationFramework.dll'
QUSING,«c'System.Windows,
WPF/PresentationFramework.dll'
JUSING,«c'System.Windows,
WPF/PresentationCore.dl '

win<[JNEW Window
win.SizeToContent«SizeToContent.WidthAndHeight
win.Title«'WPF Temperature Converter'

dp<[INEW DockPanel
dp.LastChildFill<0

mnu<[INEW Menu

mnuScale<[INEW Menultem
mnuScale.Header<«'_Scale'
sink«mnu.Items.Add mnuScale

mnuFahrenheit<«[JNEW Menultem
mnuFahrenheit.Header<«'Fahrenheit'
mnufFahrenheit.IsCheckable«1
mnuFahrenheit.IsChecked<«1
mnuFahrenheit.onClick«'SET_F'
sink«mnuScale.Items.Add mnuFahrenheit

mnuCentigrade«[JNEW MenuItem
mnuCentigrade.Header<«'_Centigrade'
mnuCentigrade.IsCheckable<«1
mnuCentigrade.IsChecked<«0
mnuCentigrade.onClick«'SET_C'
sink<mnuScale.Items.Add mnuCentigrade

sink«dp.Children.Add mnu
dp.SetDock mnu Dock.Top

gr<[INEW Grid
gr.Width«230
gr.Margin<[NEW Thickness(40 10 10 10)

rdi<[OJNEW RowDefinition
rdl.Height«GridLength.Auto

58

.NET Interface Guide

[43]

rd2<[JNEW RowDefinition
rd2.Height<«GridLength.Auto
rd3<[NEW RowDefinition
rd3.Height«GridLength.Auto
gr.RowDefinitions.Add ' rdl rd2 rd3

rcl<[INEW ColumnDefinition
rcl.Width<GridlLength.Auto

rc2<[INEW ColumnDefinition
rc2.Width<[OJNEW GridLength 80
rc3<[JNEW ColumnDefinition
rc3.Width<«[JNEW GridLength 60
gr.ColumnDefinitions.Add 'rcl rc2 rc3

L1<[INEW Label
l1.Content<«'Fahrenheit"
sink<gr.Children.Add L1
gr.SetRow L1 O
gr.SetColumn L1 O

L2<[NEW Label
l2.Content<«'Centigrade’
sink<gr.Children.Add L2
gr.SetRow L2 1
gr.SetColumn 12 0

txtFahrenheit<«[INEW TextBox
txtFahrenheit.Margin<JNEW Thickness 5
sink«<gr.Children.Add txtFahrenheit
gr.SetRow txtFahrenheit 0
gr.SetColumn txtFahrenheit 1

txtCentigrade<[INEW TextBox
txtCentigrade.Margin<[INEW Thickness 5
sink<gr.Children.Add txtCentigrade
gr.SetRow txtCentigrade 1
gr.SetColumn txtCentigrade 1

btnF2C«[IJNEW Button
btnF2C.Content<«'F>C'
btnF2C.Margin<[NEW Thickness 5
btnF2C.onClick<«'f2c'
sink<gr.Children.Add btnF2C
gr.SetRow btnF2C 0
gr.SetColumn btnF2C 2

btnC2F<«[IJNEW Button
btnC2F.Content<«'C>F'

btnC2F .Margin<[NEW Thickness 5
btnC2F.onClick<«'c2f"'
sink<gr.Children.Add btnC2F

Chapter 4: Windows Presentation Foundation

59

[o4]

[95]

[96]

[97]

(98]

[99]

[100]
[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
[110]
[111]
[112]
[113]
[114]
[115]
[116]
[117]
[118]
[119]

gr.SetRow btnC2F 1
gr.SetColumn btnC2F 2

btnQuit<«[NEW Button
btnQuit.Content<«'Quit'
btnQuit.Margin<[NEW Thickness 5
btnQuit.onClick<«'Quit"'
sink«gr.Children.Add btnQuit
gr.SetRow btnQuit 2
gr.SetColumn btnQuit 1

sink«dp.Children.Add gr

scrTemp<«[IJNEW ScrollBar

scrTemp.Width«<20
scrTemp.Orientation<Orientation.Vertical
scrTemp.Minimum<«<1

scrTemp.Maximum«213
scrTemp.onScroll«'F2C'

sink«dp.Children.Add scrTemp
dp.SetDock scrTemp Dock.Right

win.Content«dp

sink«<win.ShowDialog

60

.NET Interface Guide

Although this approach appears at first sight to be considerably more verbose than
using XAML (a 120-line function compared with a 21-line function and a 44-line
block of XAML) each line of code performs only one very simple task, and no
attempt has been made to write utility functions to perform the same task for similar
controls, as might be done in a real application.

As before, let us examine the code line-by-line.

TempConverter[2-5] define JUSING so that the appropriate .NET assemblies
are on the search-path. Note that the Scrol1Bar control is in
System.Windows.Controls.Primitives and not
System.Windows.Controls like the others.

[2] JUSING«,c'System.Windows.Controls,
WPF/PresentationfFramework.dll'

[3] JUSING,«c'System.Windows.Controls.Primitives,
WPF/PresentationfFramework.dll'

(4] JUSING,«c'System.Windows,
WPF/PresentationfFramework.dll'

[5] JUSING,«c'System.Windows,
WPF/PresentationCore.dll

TempConverter[8-9] creates a Window and sets its SizeToContent and
Title properties as in the XAML example. Notice however that whereas using
XAML the string SizeToContent="WidthandHeight" is sufficient, when
using code it is necessary to get the Type right. In this case, the SizeToContent
property must be set to a specific member (in this case WidthAndHeight) ofthe
System.Windows.SizeToContent enumeration. Other members of this Type
are Width, Height and Manual (the default).

[7] win<[IJNEW Window
[8] win.SizeToContent<«SizeToContent.WidthAndHeight
[9] win.Title«'WPF Temperature Converter'

TempConverter[11-12] create a DockPanel control and set its
LastChildFill property to 0. In this case the APL value 0 is used instead of the
string "False" in XAML.

[11] dp<[ONEW DockPanel
[12] dp.LastChildFill<«0

TempConverter[14] creates a Menu control.

[14] mnu<NEW Menu

Chapter 4: Windows Presentation Foundation 61

TempConverter[16-18] create a MenuItem control with the caption Scale,
and then add the control to the Items collection of the main Menu using its Add
method. This illustrates one significant difference between using XAML and code.
In XAML, the parent/child relationships between controls are defined by the
structure and order of the XML. Using code, child controls must be explicitly added
to the appropriate list of child controls managed by the parent.

[16] mnuScale<«[JNEW MenuItem
[17] mnuScale.Header<'_Scale'
[18] sink<mnu.Items.Add mnuScale

TempConverter[20-25] create a MenuItem control labelled Fahrenheit. The
IsCheckable and IsChecked properties are set to 1, which is equivalent to
"True" in XAML. The callback function SET_F is assigned to the C1ick event
exactly as in the XAML version of this example. The last line in this section makes
the Fahrenheit MenulItem a child of the Scale MenuItem.

[20] mnuFahrenheit<«[JNEW MenuIltem

[21] mnuFahrenheit.Header<«'Fahrenheit'
[22] mnuFahrenheit.IsCheckable<«1

[23] mnuFahrenheit.IsChecked+«1

[24] mnuFahrenheit.onClick«'SET_F'

[25] sink<mnuScale.Items.Add mnuFahrenheit

The code used to create the Centigrade MenuTl tem is more or less the same.

TempConverter[34-35] adds the top-level Menu to the DockPanel. Note that
in the case of a DockPanel, the list of its child controls is represented by its
Children property. Furthermore, to define how it is docked this is done, using
code, by the SetDock method of the DockPanel. This contrasts with the way this
is achieved using XAML (DockPanel.Dock="Top"). Note too that the argument
to SetDock is not just a simple string as in XAML, but a member of the
System.Windows.Controls.Dock enumeration.

[34] sink«dp.Children.Add mnu
[35] dp.SetDock mnu Dock.Top

TempConverter[37-39] create the Grid control. Its Width property will
accept a simple numeric value, but its Margin property must be given an instance of
aSystem.Windows.Thickness structure. In this case, the ThickNess
constructor is given a 4-element numeric vector that specifies its Left, Top,

Right and Bottom members respectively.

[37] gr<[INEW Grid
[38] gr.Width<230
[39] gr.Margin<[INEW Thickness(40 10 10 10)

.NET Interface Guide

TempConverter[41-47] create instances of 3 RowDefinition classes and
add them to the RowDefinitions collection ofthe Grid. Note that whereas in
XAML the Height can be specified as a string, using code it is necessary once
again to use the correct Type. In this case, Height must be specified by a member of
the System.Windows.GridLength structure.

[41] rd1<[ONEW RowDefinition

[42] rdi.Height<«GridLength.Auto

[43] rd2<[JNEW RowDefinition

[44] rd2.Height«GridLength.Auto

[45] rd3<[ONEW RowDefinition

[46] rd3.Height«GridLength.Auto

[47] gr.RowDefinitions.Add ' rdl rd2 rd3

Similarly, TempConverter[49-55] create instances of 3 ColumnDefinition
classes and add them to the ColumnDefinitions collection ofthe Grid. Note
that The Width property will not accept a simple numeric value, it must be a
member of the GridLength structure. To set the Width to 80, it is necessary first
to create an instance of a GridLength structure giving this value as the argument
to its constructor.

[49] rc1<[NEW ColumnDefinition

[50] rcl.Width<GridlLength.Auto

[51] rc2<[INEW ColumnDefinition

[52] rc2.Width<[INEW GridLength 80

[53] rc3<[NEW ColumnDefinition

[54] rc3.Width<[INEW GridLength 60

[55] gr.ColumnDefinitions.Add'rcl rc2 rc3

TempConverter[57-61] create a Label control with the caption Fahrenheit.
To display the Label in a Grid it is necessary to first add it to the Children
collection ofthe Grid, and then set its position in the Grid using its SetRow and
SetColumn methods. Similar code is used to create and position the second
Label.

[57] L1<[INEW Label

[58] l1.Content«'Fahrenheit’
[59] sink<gr.Children.Add L1
[60] gr.SetRow L1 0O

[61] gr.SetColumn L1 0

Chapter 4: Windows Presentation Foundation 63

TempConverter[69-73] create and position a TextBox control, in the same
way as the Label controls. Notice that in this case, the constructor for the Thickness
structure is given a single value that specifies all four of its Left, Top, Right and
Bottom members.

[69] txtFahrenheit<«[JNEW TextBox

[70] txtFahrenheit.Margin<[ONEW Thickness 5
[71] sink<gr.Children.Add txtFahrenheit
[72] gr.SetRow txtFahrenheit O

[73] gr.SetColumn txtFahrenheit 1

TempConverter[81-87] create and position a But ton control. The callback
function f 2c is attached to the C1ick event in the same way as in the XAML
version of this example.

[81] btnF2C«[INEW Button

[82] btnF2C.Content<«'F>C'

[83] btnF2C.Margin<[INEW Thickness 5
[84] btnF2C.onClick<«'f2c'

[85] sink<gr.Children.Add btnF2C
[86] gr.SetRow btnF2C 0

[87] gr.SetColumn btnfF2C 2

TempConverter[105] adds the Grid to the list of Children to be managed by
the DockControl.

[105] sink«dp.Children.Add gr

TempConverter[107-112] create a Scrol1Bar control. Its Width, Minimum
and Max imum properties all accept simple numeric values. However, its
Orientation property must be set to a member of the
System.Windows.Controls.Orientation enumeration.

[107] scrTemp<«[NEW ScrollBar

[108] scrTemp.Width«20

[109] scrTemp.Orientation«Orientation.Vertical
[110] scrTemp.Minimum<«1

[111] scrTemp.Maximum<213

[112] scrTemp.onScroll«'F2C'

TempConverter[114-115] add the ScrollBar to the list of Children
managed by the DockPanel, and use its Set Dock method to cause it to be right-
aligned.

[114] sink«dp.Children.Add scrTemp
[115] dp.SetDock scrTemp Dock.Right

64

.NET Interface Guide

Finally, the DockPanel is assigned to the Content property of the Window, and
the Window displayed as in the XAML version of this example. Note that a Window
may contain just one control.

[117] win.Content<«dp
[118]
[119] sink<win.ShowDialog

Chapter 4: Windows Presentation Foundation 65

Data Binding

This section provides some simple examples of WPF data binding using Dyalog
APL. Each example builds upon the one before, so it is advisable to read them in
order.

Example 1

This example illustrates data binding using XAML to specify the user-interface
coupled with an APL function to drive it and handle the data binding.

B Data Binding (Text) (oo o=l I

Hello World ‘

The XAML

The XAML shown below, describes a Window containing a TextBox.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Name="Temp"

Title="Data Binding (Text)"

SizeToContent="WidthandHeight">
<TextBox Name="txt" Width="300" Margin="5"
Text="{Binding txtSource,Mode=TwoWay,
UpdateSourceTrigger=PropertyChanged}" />
</Window>

It contains a data binding expression, namely:

Text="{Binding txtSource,Mode=TwoWay,
UpdateSourceTrigger=PropertyChanged}"

This specifies that the Text property of the TextBox is bound to a value in the
Binding Source (which has yet to be defined) whose path is txt Source. The
binding mode is set to TwoWay which means that any change in the TextBox will
be reflected in a new value in the Binding Source, and vice-versa. The value in the
Binding Source will be updated when the property (in this case the Text Property)
changes.

66

.NET Interface Guide

The APL Code
The function Text which generates this example is shown below.

The argument tx t is the text to be displayed initially in the TextBox. Note that the
variable XAML_Text contains the XAML that describes the user-interface listed
above.

Vv Text txt;0JUSING;str;xml;win
[1] [JUSING,«,c'System.Windows.Controls,
WPF/PresentationfFramework.dll'
[2] win<LoadXAML XAML_Text
[3] win.txtBox<win.FindNamec'txt'
(4]
[5] JEX'txtSource'
[6] txtSource«txt
[7] win.txtBox.DataContext«2015I'txtSource'
[8]
[9] win.Show
v

The utility function LoadXAML incorporates the 3 lines of code, used to create a
WPF window from XAML, that were coded in-line in previous examples in this
chapter.

V win<LoadXAML xaml ;[JJUSING;str;xml

[1] JUSING<«'System.IO'

[2] QUSING,«c'System.Windows.Markup'

[3] [JUSING,«c'System.Xml,system.xml.dl L'

[4] JUSING,«c'System.Windows.Controls,
WPF/PresentationfFramework.dll'

[5] str<[NEW StringReader(examl)

[6] xml<[ONEW XmlTextReader str

[7] win«XamlReader.Load xml

v
Text[1] defines the NET search path needed to access the WPF controls.

[1] JUSING,«,c'System.Windows.Controls,
WPF/PresentationfFramework.dll'

Text[2-3] uses the utility function LoadXAML to load a WPF user-interface from
the XAML and then uses the FindName method to obtain a reference to the object
named #xt.

[2] win«LoadXAML XAML
[3] win.txtBox«win.FindNamec'txt'

Chapter 4: Windows Presentation Foundation 67

Text[5-6] initialise a new global variable named txtSource to the value of the
argument. When using a global variable as a data binding source, it is generally
advisable to establish a new variable by first expunging it.!

[5] OEX'txtSource'
[6] txtSource«txt

Text[7]creates a Binding Source object using 201 5T and assigns it to the
DataContext property of the TextBox object. Because it is a character vector,
the exported Type for the bound variable txtSourceis System.String which
is appropriate for the Text property ofa TextBox.

[7] win.txtBox.DataContext«2015I'txtSource'

Text[9] displays the Window. Note that although the APL local variable win
goes out of scope when the function terminates, the Window remains visible until
the user has closed it.

[9] win.Show

Testing the Data Binding
The following expressions may be used to explore the effect of data binding.

JLOAD wpfintro
)CS DataBinding.Text

Text 'Hello World'

) Data Binding (Text) (onlo (5 e

‘ Hello World ‘

txtSource«dtxtSource

B Data Binding (Text) (sconlo(Eho Mt

‘ dlroW alleH ‘

IThis is because its binding type (the exported type of the data bound variable) is stored in the
workspace along with its value, and the binding type (were it to be incorrect) may not be changed
once it has been established.

68

.NET Interface Guide

Typing into the TextBox changes the value of the bound variable.

55 Data Binding (Text) e B

What is in titSource now? |

txtSource
What is in txtSource now?

Example 2

This example illustrates the use of the optional left argument to 20151 to specify the
data type used to export the value of the bound variable.

[Data Binding (Text) o

Hello World |

The XAML

The XAML shown below, describes the same Window containing a TextBox as
before.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Name="Temp"

Title="Data Binding (FontSize)"

SizeToContent="WidthandHeight">
<TextBox Name="txt" Text="Hello World" Width="300"
Margin="5"
FontSize="{Binding sizeSource,Mode=OneWay}"/>

</Window>

This time, the data binding expression is:

FontSize="{Binding sizeSource,Mode=OneWay}"/>

This specifies that the FontSize property of the TextBox is bound to a value in
the Binding Source (which has yet to be defined) whose path is sizeSource. The
binding mode is set to OneWay which means that the Font Size property depends
on the data value but not vice versa. Were the FontSize to change for any external
reason (which is admittedly unlikely in the case of FontSize), it would not alter
the value in sizeSource to which it is bound.

Chapter 4: Windows Presentation Foundation 69

The APL Code

The function FontS1i ze is almost identical to the function Text which is described
in Example 1.

V FontSize size;[QUSING;win

[1] OUSING<«'System'

[2] JUSING,«c'System.Windows.Controls,
WPF/PresentationFramework.dll'

[3] win<LoadXAML XAML

[4] win.txtBox«win.FindNamec'txt'

[5]

[6] OEX'sizeSource'

[7] sizeSource<«size

[8] win.txtBox.DataContext«Int32(2015I) " 'sizeSource’

[9]

[10] win.Show

v

The key difference isin FontSize[8]. Here the left argument of (20151T) is
Int32. This means that the exported Type of the variable sizeSource will be
Int32. This Type (a 32-bit integer) is required by the FontSize property ofa
TextBox; no other Type will do. If this were omitted, APL would export the value
of'the variable using a Type dependent on its internal format (most likely Int16)
and the binding would fail.

[8] win.txtBox.DataContext«Int32(2015I) " 'sizeSource’

Testing the Data Binding

JLOAD wpfintro
)CS DataBinding.FontSize

FontSize 12

fB Data Binding (FontSize) (oulsEl| R

Hello World ‘

sizeSource
12
sizeSource<«30

§§ Data Binding (FontSize) (nla(=h| e

‘ Hello World

70 .NET Interface Guide

Example 3

This example uses APL code to both build the user-interface (instead of using
XAML) and handle the data binding. In this case both the Text and the FontSize
properties are bound to APL variables. The function is shown below:

V TextFontSize(txt size);JUSING;win;sink

OUSING<«'System'
OQUSING,«,c'System.Windows.Controls,
WPF/PresentationfFramework.dll'
OUSING,«c'System.Windows.Controls.Primitives,
WPF/PresentationFramework.dll'
OJUSING,«c'System.Windows,
WPF/PresentationFramework.dll'
OQUSING,«c'System.Windows,
WPF/PresentationCore.dll'

A Create a Window, DockPanel and TextBox
win<[NEW Window
win.SizeToContent«SizeToContent.WidthAndHeight
win.Title«'Data Binding (Text and FontSize)'
win.txtBox<«[INEW TextBox
win.txtBox.Width«350
win.Content«win.txtBox

A Define data binding from variable "txtSource"
A to the Text property of TextBox win.txtBox
OEX'txtSource'
txtSource«txt
win.txtbinding<«[ONEW Data.Binding(c'txtSource')
win.txtbinding.Source«20151'txtSource’
win.txtbinding.Mode<«Data.BindingMode.TwoWay
win.txtbinding.UpdateSourceTrigger<«
Data.UpdateSourceTrigger.PropertyChanged
sink<win.txtBox.SetBinding
TextBox.TextProperty win.txtbinding

A Define data binding from variable "sizeSource"
A to the FontSize property of TextBox win.txtBox
OEX'sizeSource'

sizeSource«size

win.fntbinding<«[NEW Data.Binding(c'sizeSource')
win.fntbinding.Source«Int32(2015I) " 'sizeSource’
win.fntbinding.Mode<Data.BindingMode.OneWay
sink<win.txtBox.SetBinding

TextBox.FontSizeProperty win.fntbinding

win.Show

Chapter 4: Windows Presentation Foundation 7

Apart from the code that creates the controls, the only material difference between
this and the previous examples is the way that the bindings are handled.

In code (as opposed to using XAML) this is done using explicit Binding objects!
The code for binding the Text property to the txt Source variable is as follows:

[19] win.txtbinding<[INEW Data.Binding(c'txtSource')
[20] win.txtbinding.Source«20151'txtSource’
[21] win.txtbinding.Mode<«Data.BindingMode.TwoWay
[22] win.txtbinding.UpdateSourceTrigger+
Data.UpdateSourceTrigger.PropertyChanged
[23] sink<win.txtBox.SetBinding
TextBox.TextProperty win.txtbinding

Line [19] creates a Binding object, passing the constructor the name of the APL
variable txtSource as the Path to the binding value.

[19] win.txtbinding<[ONEW Data.Binding(c'txtSource')

Line [20] creates a Binding Source object using 20151 as before, but this time
assigns it to the Source property of the Binding object.

[20] win.txtbinding.Source«20151'txtSource’

Line [21] sets the Mode property of the Binding object to TwoWay (a field of the
BindingMode Type). As in Example 1, this specifies two-way binding.

[21] win.txtbinding.Mode<«Data.BindingMode.TwoWay

Line [22] sets the UpdateSourceTrigger property of the Binding object to
PropertyChanged (a field of the UpdateSourceTrigger Type). This causes
the value in the Binding Source (in this case t xt Source) to be changed whenever
the property (in this case the Text property) of the TextBox changes. This will
occur on every keystroke.

[22] win.txtbinding.UpdateSourceTrigger<«
Data.UpdateSourceTrigger.PropertyChanged

(Note that the three types Binding, BindingMode and
UpdateSourceTrigger are located in System.Windows .Data)

The code that establishes the binding between the sizeSource variable and the
FontSize property is very similar.

IBinding objects are implicit in all binding operations, but are created declaratively when using
XAML.

72

.NET Interface Guide

[29] win.fntbinding<[INEW Data.Binding(c'sizeSource')

[30] win.fntbinding.Source«Int32(20151) 'sizeSource’

[31] win.fntbinding.Mode<Data.BindingMode.OneWay

[32] sink<win.txtBox.SetBinding
TextBox.FontSizeProperty win.fntbinding

Note however that (as in Example 2) the left-argument to (2015I) specifies that the
exported data type ofthe sizeSource variable isto be Int32.
Testing the Data Binding

JLOAD wpfintro
)CS DataBinding.TextFontSizeCode

TextFontSize 'Hello World' 30

{5 Data Binding (Text and FontSize) (e o(El: eS|

‘Hello World ‘

txtSource sizeSource«($dtxtSource) 18

§ Data Binding (Text and FontSize) (o=l [Ren)
‘ diroW olleH |

As in previous examples, when the user changes the text, the new text appears in
txtSource.

{5 Data Binding (Text and FontSize) (e o(El: eS|

Learn to play the bouzouki! |

txtSource
Learn to play the bouzouki!

Note

It is perhaps worth mentioning that if you want to bind two properties of the same
object to two APL variables, it has to be done by writing code as shown in this
example, using two separate Binding Source objects. This is because using XAML
you may only associate a single Binding Source to an object.

However, this minor restriction is easily surmounted by using an APL namespace as
a Binding Source as illustrated in the next Example.

Chapter 4: Windows Presentation Foundation 73

Example 4

This example uses XAML to specify the user-interface and the main components of
the data binding.

The XAML

The XAML is much the same as in Example 1 and 2 except that it connects two
properties Text and FontSize ofthe same TextBox to two Paths xtSource and
sizeSource.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"

Title="Data Binding (Text and FontSize)"
SizeToContent="WidthandHeight">

<TextBox Name="txt" Width="350" Margin="5"
Text="{Binding txtSource,Mode=TwoWay,
UpdateSourceTrigger=PropertyChanged}"
FontSize="{Binding sizeSource,Mode=OneWay}"/>
</Window>

.NET Interface Guide

The APL Code
The function TextFontSize is shown below.

vV TextFontSize(txt size);JUSING;win;options

[1] [JUSING«'System'

[2] [JUSING,«c'System.Windows,
WPF/PresentationfFramework.dll'

[3]

[4] win«LoadXAML XAML

[5]

[6] src<«[NS "'

[7] src.(txtSource sizeSource)«txt size

[8] options+«2 2p'txtSource'String'sizeSource'Int32

[9]

[10] win.DataContext<«options(20151) 'src'

[11]

[12] win.Show

v

Lines [6-7] create a new namespace src containg two variables txtSource and
sizeSource which are initialised to the arguments of the function.

[6] src<«[NS"'"'
[7] src.(txtSource sizeSource)<«txt size

Line [8] creates a local variable named options which will be used as the left
argument 0f 2015I). It is a 2-column matrix. The first column is a list of the names
of'the variables which are to be exported by the namespace when used as a Binding
Source. The second column specifies their data types.

[8] options+«2 2p'txtSource'String'sizeSource'Int32

Line [10] creates a Binding Source object from the namespace src and a left
argument opt ions and assigns it to the DataContext property of the Window
win.

[10] win.DataContext«options(20151I) 'src'

An alternative would be to assign it to the DataContext property of the TextBox
object, but this would require one further line of code to identify it. The reason this
works is that the DataContext property of a TextBox (and many other controls) is
inherited from its parent Window. This feature allows a single Binding Source
namespace to be used to specify data bindings between its component variables and
any number of properties of any number of controls in the same Window.

Chapter 4: Windows Presentation Foundation 75

As shown before, the left argument 0f2015I) is optional. Without it, the
namespace would export all its variables using default binding types. In this case,
because the binding type of sizeSource must be specified as Int32, it is
necessary to use a left argument, which means specifying all the variables involved.

Testing the Data Binding

JLOAD wpfintro
)CS DataBinding.TextFontSizeXAML

DB_Text_FontSize_XAML'Hello World' 30

{5 Data Binding (Text and FontSize) (el sl e
‘Hello World ‘

src.(txtSource sizeSource<«(dtxtSource) 18)

f Data Binding (Text and FontSize) (|0 (RS
‘ dlroW olleH ‘

As in previous examples, when the user changes the text, the new text appears in
txtSource.

{5 Data Binding (Text and FontSize) (el sl e

Learn to play the bouzouki! ‘

src.txtSource
Learn to play the bouzouki!

Example 5

WPF data binding provides the means to bind controls that display lists of items,
such as the ListBox, ListView, and TreeView controls, to collections of data.
These controls are all based upon the TtemsControl class. To bind an
ItemsControl to acollection object, you use its ITtemsSource property.

Ifthe right argument of 201 5T names a variable, or a namespace containing a
variable, that is a vector other than a simple character vector, it returns a Binding
Source object that provides the necessary interfaces to bind the variable as a
collection to the TtemSource property ofan TtemsControl.

76

.NET Interface Guide

The APL variable will normally contain a vector of character vectors, because most
ItemsControl objects deal with collections of strings. However, any APL vector
other than a simple character vector will be treated in this way.

This example illustrates binding between a variable containing a vector of character
vectors, to the items of a ListBox.

Incidentally, the TtemsSource property overrides the Items collection as a
means to specify the content of the ITtemsControl. When the ITtemsSource
property is set, the Items collection becomes read-only and of fixed-size. Note that
the TtemsSource property supports OneWay binding by default.

The XAML

The variable XAML_F i lteredList, shown below, contains XAML to specify a
Window containing a StackPanel. The StackPanel control is a WPF layout
control that organises child controls in a single line, by default vertically. In this
example, the StackPanel contains a TextBox and, below it,a WrapPanel, and
below that a TextBlock. The WrapPanel is also a layout control that organises
its child controls sequentially from left to right. The WrapPanel contains two
ListBox controls.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Filtered List Example"
SizeToContent="WidthAndHeight"
Topmost="true">
<StackPanel>
<TextBox Name="filter" Margin="5"
Text="{Binding Filter,Mode=TwoWay,
UpdateSourceTrigger=PropertyChanged}" />
<WrapPanel>
<ListBox Name="all" Width="135" Height="440"
Margin="5" ItemsSource="{Binding DyalogNames}"/>
<ListBox Name="filtered" Width="135" Height="440"
Margin="5" ItemsSource="{Binding FilteredList}"/>
</WrapPanel>
<TextBlock Text="Dyalog WPF Demo" Margin="5"/>
</StackPanel>
</Window>

Chapter 4: Windows Presentation Foundation 77

The Code

V FilteredList;MySource;win;sink

MySource<[INS"'"'

MySource.Filter<«
MySource.FilteredList«0pc'
MySource.DyalogNames«DyalogNames

win<LoadXAML XAML_FilteredList

win.DataContext«20151'MySource’

(win.FindNamec'filter').onTextChanged«
'FilteredList_TextChanged'

— [U W W Vo W Ve U o |
VONOUOILF WN +—~
[S S S S S S S '

10] sink«win.ShowDialog
v

Like the previous example, this example uses a namespace My Sour ce containing
the bound variables Filter,FilteredList and DyalogNames.

FilteredList[8] creates a Binding Source object and assigns it to the
DataContext property of the Window win.

[8] win.DataContext«2015I'MySource’

The DataContext property is inherited by all child controls, so they all share the
same Binding Source. Their different Paths to different values in the Binding
Source are specified in the XAML as follows.

The Text property of the TextBox named filter is bound to the variable Filter
by the expression Text="{Binding Filter, ...

<TextBox Name="filter" Margin="5"
Text="{Binding Filter,Mode=TwoWay,

The TtemsSource property of the ListBox named a// is bound to the variable
DyalogNames by the expression ItemsSource="{Binding
DyalogNames}"

<ListBox Name="all" Width="135" Height="440"
Margin="5" ItemsSource="{Binding DyalogNames}"/>

Thirdly, the TtemsSource property of the ListBox named filtered is bound to
the variable Fi lteredList by the expression ItemsSource="{Binding
FilteredList}"

<ListBox Name="filtered" Width="135" Height="440"
Margin="5" ItemsSource="{Binding FilteredList}"/>

78

.NET Interface Guide

Testing the Data Binding
FilteredList

| Filtered List Example - [

Andy Shiers

Fiona Smith
Richard Smith
Jay Foad
Jonathan Manktelow
Bjarn Christensen
John Schaoles
Vibeke Ulmann
Jason Rivers

Liam Flanagan
Karen Shaw

Pat Buteux

John Daintree
Erian Becker
Reger Hui
Meorten Kromberg
Gitte Christensen
Dan Baronet

Micolas Delcros

Dyalog WPF Demo

If the user types a single character, in this case "e", into the TextBox, this fires a
TextChanged event which in turn fires the callback function shown below:

V FilteredList_TextChanged a;hits
[1] hits«(cMySource.Filter){v/aew} DyalogNames
[2] MySource.FilteredList<hits/DyalogNames

\'4

Chapter 4: Windows Presentation Foundation 79

When the callback runs, the variable MySource.Fi lter, which is bound to the
Text property of the TextBox, will contain "e". The function calculates a mask
hits which identifies which members of the variable DyalogNames contain this
string. It then assigns that subset to the variable MySource.FilteredList. This
is bound to the ITtemsSource property of the right-hand Li stBox, so the result is

as follows:

B Filtered List Example

- N

e

Andy Shiers Andy Shiers

Fiona Smith Jonathan Manktelow
Richard Smith Bjarn Christensen
Jay Foad lohn Scholes

Jonathan Manktelow
Bjgrn Christensen
John Scholes
Vibeke Ulmann
Jason Rivers

Liam Flanagan
Karen Shaw

Pat Buteux

John Daintree
Brian Becker
Reger Hui
Marten Kromberg
Gitte Christensen
Dan Baronet

Micalas Delcros

Dyalog WPF Demao

Wibeke Ulmann
Jason Rivers
Karen Shaw

Pat Buteux

John Daintree
Brian Becker
Reger Hui
Marten Kromberg
Gitte Christensen
Dan Baronet

Micalas Delcros

.NET Interface Guide

Similarly, typing "er" into the TextBox reduces the number of hits as shown below:

| Filtered List Example - [

ler |

Andy Shiers Andy Shiers

Fiona Smith lason Rivers
Richard Smith Erian Becker

Jay Foad Reoger Hui
Jonathan Manktelow Morten Kromberg

Bjarn Christensen
John Schaoles
Vibeke Ulmann
Jason Rivers

Liam Flanagan
Karen Shaw

Pat Buteux

John Daintree
Brian Becker
Reger Hui
Marten Kromberg
Gitte Christensen
Dan Baronet

Micolas Delcros

Dyalog WPF Demo

Chapter 4: Windows Presentation Foundation 81

Example 6

This example illustrates data binding using a vector of NET objects, in this case
DateTime objects.

The XAML

The XAML shown below, describes a Window containing a StackPanel, inside
which is a ListBox.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="NetObjects (DateTime) Example"
SizeToContent="WidthAndHeight" >
<StackPanel>
<TextBlock Text="Dates of forthcoming Orthodox Easters"
FontSize="18" Margin="5"/>
<ListBox Name="EasterDates" Height="100"
Margin="5" />
</StackPanel>
</Window>

The APL Code
The function NetOb jects is shown below.

V NetObjects;[JUSING;win;dt
[1] JUSING«'System'
[2] win<LoadXAML XAML
[3] win.dates«win.FindNamec'EasterDates'
[4] dt<{[ONEW DateTime w} 'Easter
[5] win.dates.ItemsSource«20151'dt"'
[6] sink<win.ShowDialog

82

.NET Interface Guide

NetObjects[3] uses FindName to obtain a refto the ListBox (defined in the
XAML) named EasterDates:

[3] win.dates«win.FindNamec'EasterDates'

The global variable Eas ter contains a vector of 3-element numeric vectors
representing the dates of forthcoming Orthodox Easter Sundays.

tEaster
2015 4 12
2016 5 1
2017 4 16
2018 4+ 8
2019 4 28
2020 4 19
2021 5 2
2022 4 24
2023 4 16
2024 5 5

NetObjects[4] creates a vector of DateTime objects from the global variable
Easter.

(4] dt<{[ONEW DateTime w} 'Easter

Then, NetObjects[5] creates a binding source object from this array and assigns it to
the ItemsSource property of the ListBox.

[5] win.dates.ItemsSource«20151'dt"

Testing the Data Binding

JLOAD wpfintro
DataBinding.NETObjects.NETObjects

rlED MetObjects (DateTime) Example l = | (=] |_ﬂh |

Dates of forthcoming Orthodox Easters

4/12/2015 -
3172016
4/16/2017
4/8/2018
4/28/2019
4/18/2020 N

Chapter 4: Windows Presentation Foundation 83

Example 6a (Casting to DateTime)

This example is similar to Example 6 but illustrates how numeric data in TS format
can be converted to DateTime type.

The XAML

The XAML shown below describes a Window containing a StackPanel, inside
which is a ListBox.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="DateTimes using TS data"
SizeToContent="WidthAndHeight" >
<StackPanel>
<TextBlock Text="Some High Tides at Portsmouth, England"
FontSize="18" Margin="5"/>
<ListBox Name="TideTimes" Height="200"
Margin="5" />
</StackPanel>
</Window>

The APL Code
The function Tides is shown below.

vV Tides;[USING;win;dt;Highs
[1] OUSING«'System'
[2] win<LoadXAML XAML_Tides
[3] win.times«win.FindNamec'TideTimes'
[4] Highs+(<c2016 2 18),7(7 9)(8 u44) (19 47)(21 47)
[5] Highs,«(<c2016 2 19),7(8 17)(10 12)(20 51)(22 51)
[6] dt<7t"Highs
[7] win.times.ItemsSource«DateTime(2015I) 'dt'
[8] sink«<win.ShowDialog

84

.NET Interface Guide

Tides[3] uses FindName to obtain a refto the Li stBox (defined in the XAML)
named TideTimes:

[3] win.times«win.FindNamec'TideTimes'

Tides[4-5] creates a vector of integer vectors each of which species the time and
date of a high tide at Portsmouth. Tides[6] extends each to 7-elements, which is
required to represent a DateTime object.

Then, Tides[7] creates a binding source object from this array and assigns it to the
ItemsSource property of the Li stBox. Note that the left argument DateTime
specifies that the data be cast to that type.

[7] win.times.ItemsSource«<DateTime(2015I) 'dt"

Testing the Data Binding

JLOAD wpfintro
DataBinding.NetObjects.Tides

. DateTimes using OTS data

Some High Tides at Portsmouth, England

2/18/2016 7:09 AM
2182016 &44 AM
2182016 747 PM
2/18/2016 247 PM
2/19/2016 &17 AM
2/19/2016 10:12 AM
2/19/2016 &51 PM
2/19/2016 10:51 PM

Tides[3] uses FindName to obtain a refto the ListBox (defined in the XAML)
named 7ideTimes:

[3] win.times«win.FindNamec'TideTimes'

Tides[4-5] creates a vector of integer vectors each of which species the time and
date of a high tide at Portsmouth. Tides[6] extends each to 7-elements, which is
required to represent a DateTime object.

Chapter 4: Windows Presentation Foundation 85

Then, Tides[7] creates a binding source object from this array and assigns it to the
ItemsSource property of the ListBox. Note that the left argument DateTime
specifies that the data be cast to that type.

[7] win.times.ItemsSource«DateTime(2015I) 'dt'

Testing the Data Binding

JLOAD wpfintro
DataBinding.NetObjects.Tides

. DateTimes using OTS data

Some High Tides at Portsmouth, England

2/18/2016 7:.09 AM
21872078 &:44 AM
2/18/2016 747 PM
2/18/2016 947 PM
2/19/2016 &17 AM
2/19/2016 10:12 AM
2/19/2016 &31 PM
2/19/2076 10:51 PM

.NET Interface Guide

Example 7

This example illustrates data binding using a vector of namespaces.

Each row in the WPF DataGrid control is represented by an object, and each
column as a property of that object. Each row in the DataGrid is bound to an
object in the data source, and each column in the data grid is bound to a property of
the data object.

[€ DataGrid Example [ESRER
Wine Price
Chateau Cancn-La-Gafferiere 510539/ «
Chateau Cantenac $110.10
Chateau Cap-Le-Mourlin $156.53
Chateau Cardinal-Villemaurine 515046
Chateau Cassevert 513456
Chateau Chapelle-Madeleine 518446
Chateau Cote-Daugay-ex-Madeleine | 5185.80
Chateau Coutet 5190.22 (=
Chateau Cure-Bon-La-Madeleine $133.16
Chateau Faurie-de-Soutard $151.28
Chateau Fonplegade 519543
Clos Fourtet $183.00
Chateau Franc-Mayne §195.77
Chateau Franc-Pourret $130.77
Domaine du Grand-Faurie 5133.13
Chateau Grand-Mayne $156.58
Chateau Grand-Ponet 5116.63
Chateau Grandes Murailles $150.82
Chateau Guadet-5aint-Julien 5147.74
Chateau GueyrotHaut-Cadet 513454
Chateau Haut-Pontet $154.69
Chateau Haut-5imard $182.55
Chateau Haut-Trimoulet $153.00(=

Chapter 4: Windows Presentation Foundation 87

The XAML

The XAML shown below, describes a Window containing a DockPanel, inside
which isa DataGrid.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="DataGrid Example" Height="500"
SizeToContent="Width"
Topmost="true">
<DockPanel>
<DataGrid Name="DG1l" ItemsSource="{Binding}"
AutoGenerateColumns="False" >
<DataGrid.Columns>
<DataGridTextColumn Header="Wine"
Binding="{Binding Name}"/>
<DataGridTextColumn Header="Price"
Binding="{Binding Price, StringFormat=C}" />
</DataGrid.Columns>
</DataGrid>
</DockPanel>
</Window>

The phrase TtemsSource="{Binding} " states that the content of the
DataGrid is bound to a data source, which in this case will be inherited from the
DataContext property of the parent Window.

Binding="{Binding Name}" specifies that the contents of the first column are
bound to a Path named Name in the data source.

Similarly, Binding="{Binding Price, StringFormat=C}" specifies that
the Path for the second column is Price (St ringFormat=C merely specifies the
default currency format).

The APL Code
The function Grid is shown below.

V Grid;[JUSING;MySource;win
[1] OUSING«'System'
[2] winelist«[ONS"(pWines)pc''
[3] winelist.Name<Wines
[4] winelist.Price«0.01x10000+?(pWines)p10000

[6] win<LoadXAML XAML
[7] win.DataContext«2015I'winelist’
[8] win.Show

.NET Interface Guide

The global variable Wines contains a vector of character vectors, each of which is
the name ofa wine. Grid[2-4] creates wine l i st, a vector of namespaces, of the
same length, each of which contains two variables c Name and Price.

Testing the Data Binding

JLOAD wpfintro
)CS DataBinding.DataGrid

Grid

[£ DataGrid Example ESREER
Wine Price
Chateau Cancn-La-Gafferiers 510539 -
Chateau Cantenac $110.10
Chateau Cap-Le-Mourlin 5156.53
Chateau Cardinal-Villemaurine $150.46
Chateau Cassevert 513456
Chateau Chapelle-Madeleine 518448
Chateau Cote-Daugay-ex-Madeleine [$185.80
Chateau Coutet $190.22 (=
Chateau Cure-Bon-La-Madelsine 5133.16
Chateau Faurie-de-5outard $151.28
Chateau Fonplegade 519543
Clos Fourtet $1E9.00
Chateau Franc-Mayne $195.77
Chateau Franc-Pourret 5130.77
Domaine du Grand-Faurie 5133.13
Chateau Grand-Mayne $156.58
Chateau Grand-Ponet $116.63
Chateau Grandes Murailles $150.82
Chateau Guadet-5aint-Julien $147.74
Chateau GueyrotHaut-Cadet 5134.54
Chateau Haut-Pontet $154.69
Chateau Haut-5imard 5182.55
Chateau Haut-Trimoulet $153.00(=

Chapter 4: Windows Presentation Foundation

Let's round the prices to the nearest $5.

winelist.Price«<5x[0.5+winelist.Price+5

rﬁ DataGrid Example l = | [E] ﬂh,l
Wine Price
Chateau Cancn-La-Gafferiere $105.00] =
Chateau Cantenac $110.00
Chateau Cap-Le-Maourlin §155.00
Chateau Cardinal-Villemaurine $150.00
Chateau Cassevert $135.00] _
Chateau Chapelle-Madeleine 5185.00
Chateau Cote-Daugay-ex-Madeleine | $185.00
Chateau Coutet $200.00(=
Chateau Cure-Bon-La-Madeleine §135.00
Chateau Faurie-de-Soutard $150.00
Chateau Fonplegade §195.00(
Clos Fourtet $190.00
Chateau Franc-Mayne £195.00
Chateau Franc-Pourret $130.00
Domaine du Grand-Faurie §135.00
Chateau Grand-Mayne §155.00
Chateau Grand-Ponet 5115.00
Chateau Grandes Murailles $150.00
Chateau Guadet-5aint-Julien $150.00
Chateau GueyrotHaut-Cadet 5135.00
Chateau Haut-Pontet §155.00
Chateau Haut-Simard $185.00
Chateau Haut-Trimoulet $155.00| =

.NET Interface Guide

Example 8

This example illustrates data binding using a matrix and is practically identical to
Example 7 except that it uses a matrix instead of a vector of namespaces.

Each row in the WPF DataGrid control is represented by an object, and each
column as a property of that object. Each row in the DataGrid is bound to an
object in the data source, and each column in the data grid is bound to a property of
the data object.

[€ DataGrid Example e
Wine Price
Chateau Cancn-La-Gafferiere 510539/ «
Chateau Cantenac $110.10
Chateau Cap-Le-Mourlin $156.53
Chateau Cardinal-Villemaurine 515046
Chateau Cassevert 513456
Chateau Chapelle-Madeleine 518446
Chateau Cote-Daugay-ex-Madeleine | 5185.80
Chateau Coutet 5190.22 (=
Chateau Cure-Bon-La-Madeleine $133.16
Chateau Faurie-de-Soutard $151.28
Chateau Fonplegade 519543
Clos Fourtet $183.00
Chateau Franc-Mayne §195.77
Chateau Franc-Pourret $130.77
Domaine du Grand-Faurie 5133.13
Chateau Grand-Mayne $156.58
Chateau Grand-Ponet 5116.63
Chateau Grandes Murailles $150.82
Chateau Guadet-5aint-Julien 5147.74
Chateau GueyrotHaut-Cadet 513454
Chateau Haut-Pontet $154.69
Chateau Haut-5imard $182.55
Chateau Haut-Trimoulet $153.00(=

Chapter 4: Windows Presentation Foundation 91

The XAML

The XAML shown below, describes a Window containing a DockPanel, inside
which isa DataGrid. The XAML is identical to the XAML in Example 7, except
for the window caption.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="DataGrid Matrix Example" Height="500"
SizeToContent="Width"
Topmost="true">
<DockPanel>
<DataGrid Name="DG1l" ItemsSource="{Binding}"
AutoGenerateColumns="False" >
<DataGrid.Columns>
<DataGridTextColumn Header="Wine"
Binding="{Binding Name}"/>
<DataGridTextColumn Header="Price"
Binding="{Binding Price, StringFormat=C}" />
</DataGrid.Columns>
</DataGrid>
</DockPanel>
</Window>

The phrase TtemsSource="{Binding} " states that the content of the
DataGrid is bound to a data source, which in this case will be inherited from the
DataContext property of the parent Window.

Binding="{Binding Name}" specifies that the contents of the first column are
bound to a Path named Name in the data source.

Similarly, Binding="{Binding Price, StringFormat=C}" specifies that
the Path for the second column is Price (the phrase St ringFormat=C merely
specifies the default currency format).

The APL Code
The function Grid is shown below.

V Grid;[JUSING;MySource;winsinfo
[1] OUSING«'System'
[2] OEX'winelist'
[3] winelist«Wines,[1.5]0.01x10000+? (pWines)p10000
[4] win<LoadXAML XAML
[5] info«(5;'Name' 'Price'),cObject
[6] win.DataContext«info(2015I) 'winelist'
[7] win.Show

92

.NET Interface Guide

Asin Example 7, the global variable Wines contains a vector of character vectors,
each of which is the name of a wine.

Grid[2-4] creates a matrix wine L i st, whose first column contains the names of
the wines, and whose second column their (randomly generated) prices. As this is a
global variable, the variable is expunged before being used in order to remove any
previous data binding information that was associated with it.

Grid[5]creates the left argument for (2015I) which defines the names and data
types of the properties which the columns of the matrix wine Ll i st will be exposed
as. In this case, the names of the paths are Name and Pri ce, and their data types are
both System.Object. So the first column will be exposed as Name and the
second as Price, matching the path names specified in the XAML:

<DataGridTextColumn Header="Wine"
Binding="{Binding Name}"/>
<DataGridTextColumn Header="Price"
Binding="{Binding Price, StringFormat=C}" />

Testing the Data Binding

JLOAD wpfintro
)CS DataBinding.DataGridMatrix
Grid

Chapter 4: Windows Presentation Foundation

rﬁ DataGrid Example l | (5] ﬂh,l
Wine Price
Chateau Cancn-La-Gafferiere $105.39]| -
Chateau Cantenac $110.10
Chateau Cap-Le-Maourlin §156.53
Chateau Cardinal-Villemaurine 5150.46
Chateau Cassevert §134.56]|
Chateau Chapelle-Madelzine 518445
Chateau Cote-Daugay-ex-Madeleine | 5185.80
Chateau Coutet 519022 =
Chateau Cure-Bon-La-Madeleine $133.16
Chateau Faurie-de-Soutard $151.28
Chateau Fonplegade §195.43(
Clos Fourtet $189.00
Chateau Franc-Mayne $195.77
Chateau Franc-Pourret §130.77
Domaine du Grand-Faurie 5133.13
Chateau Grand-Mayne 5156.58
Chateau Grand-Ponet $116.63
Chateau Grandes Murailles $150.82
Chateau Guadet-5aint-Julien §147.74
Chateau GueyrotHaut-Cadet §134.54
Chateau Haut-Pontet 515464
Chateau Haut-Simard §182.55
Chateau Haut-Trimoulet 5153.00| =

.NET Interface Guide

Let's round the prices to the nearest $5.

winelist[;2]«5%x[0.5+winelist[;2]+5

rﬁ DataGrid Example l =NN ﬁ,l
Wine Price
Chateau Cancn-La-Gafferiere $105.00(«
Chateau Cantenac $110.00
Chateau Cap-Le-Mourlin $155.00
Chateau Cardinal-Villemaurine $150.00
Chateau Cassevert $135.00(
Chateau Chapelle-Madeleine 5185.00
Chateau Cote-Daugay-ex-Madeleine | 5185.00
Chateau Coutet 5200.00 (=
Chateau Cure-Bon-La-Madeleine $135.00
Chateau Faurie-de-Soutard $150.00
Chateau Fonplegade §195.00(
Clos Fourtet $190.00
Chateau Franc-Mayne $195.00
Chateau Franc-Pourret $130.00
Domaine du Grand-Faurie $135.00
Chateau Grand-Mayne $155.00
Chateau Grand-Ponet 5115.00
Chateau Grandes Murailles $150.00
Chateau Guadet-5aint-Julien 5150.00
Chateau GueyrotHaut-Cadet $135.00
Chateau Haut-Pontet $155.00
Chateau Haut-5imard $185.00
Chateau Haut-Trimoulet $155.00(=

Chapter 4: Windows Presentation Foundation 95

Using Code

The same result can be achieved using code instead of XAML as illustrated by the
function GridCodeNoFmt. The function is so-named because this code is
insufficient to display the second column in currency format.

V GridCodeNoFmt ;[JUSING;MySource;win;info;fmt
[1] [JUSING<«'System'
[2]
JUSING,«,c'System.Windows.Controls,WPF/Presentationframework.dll"'
[3]
[(QUSING,«c'System.Windows.Controls.Primitives,WPF/PresentationFram
ework.dl L'
[4] [JUSING,«c'System.Windows ,WPF/PresentationFramework.dll"'
[5] [JUSING,«c'System.Windows ,WPF/PresentationCore.dll’
[6]
[7] OJEX'winelist'
[8] winelist«Wines,[1.5]0.01x10000+? (pWines)p10000
[9] win<[ONEW Window
[10] win.Title<«'DataGrid Matrix (Code)'
[11] win.grid<[INEW DataGrid
[12] info«(;'Name' 'Price'),cObject
[13] win.grid.ItemsSource«info(2015I) 'winelist’
[14] win.grid.Height+500
[15] win.Content«win.grid
[16] win.SizeToContent«SizeToContent.WidthAndHeight
[17] win.Show
\4

This is because by default the DataGrid generates its columns automatically with
default formatting.

96

.NET Interface Guide

[b DataGrid Matrix (Code) o B e |
Marne Price
Chateau Ausone 10841«
Clos de I'Angelus 127.08
Chateau Baleau 140.68
Chateau Balestard-La-Tonnelle 137.52
Chateau Beau-Mazerat 109.09|=
Chateau Belair 184,01
Chateau Bellevue 161.19
Chateau Bergat 150.88
Chateau Berliquet 177.41
Chateau Bragard 167.79
Chateau Cadet-Bon 119,92
Chateau Cadet-Peychez 162,74
Chateau Cadet-Picla 187.38
Chateau Cancn 175149
Chateau Cancn-La-Gafferiere 178.71
Chateau Cantenac 135.82
Chateau Cap-Le-Mourlin 102.4
Chateau Cardinal-Villemaurine 155.95
Chateau Cassevert 13918
Chateau Chapelle-Madeleine 10445
Chateau Cote-Daugay-ex-Madeleine |157.21
Chateau Coutet 119.02
Chateau Cure-Bon-La-Madeleine 101.76
Chateau Faurie-de-Soutard 12221
Chateau Fonplegade 153.16| =

In order to apply special formatting to one or more columns, it is necessary to set the
AutoGenerateColumns property to 0, and to generate the columns
programmatically as is shown in the second version of the function, Gr i dCode.

Chapter 4: Windows Presentation Foundation 97

GridCode;[JUSING;MySource;win;info;fmt
OQUSING«'System'

JUSING,«,c'System.Windows.Controls,WPF/PresentationfFramew

\'4
[1]
[2]
ork.dlL'
[3]

JUSING,«c'System.Windows.Controls.Primitives,WPF/Presenta
tionfFramework.dll'

4]

QUSING,«c'System.Windows ,WPF/Presentationframework.dLll'

(5]

el

(7]

(8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]

v

JUSING,«c'System.Windows ,WPF/PresentationCore.dl '

OEX'winelist'
winelist«Wines,[1.5]0.01x10000+?(pWines)p10000
win<[NEW Window
win.Title«'DataGrid Matrix (Code with Formatting)'
win.grid<[NEW DataGrid
info<(5;'Name' 'Price'),cObject
win.grid.ItemsSource<info(2015I) 'winelist’
win.grid.Height<«500
win.grid.AutoGenerateColumns<«0
win.Content«win.grid
win.SizeToContent«SizeToContent.WidthAndHeight
A Add columns and set format
win.grid.Columns.Add”'"' 'C'{

col<[INEW DataGridTextColumn

col.Header<«w

col.Binding«[INEW Data.Binding(cw)

col.Binding.StringFormat«,a

col
}"'Name' 'Price'

win.Show

In this version of the function, lines [19-25] create the two columns Name and
Price, applying currency format to the Price column.

.NET Interface Guide

[b DataGrid Matrix (Code+ Fmt}ll = 5] |
Marne Price
Chateau Ausone 513062 ~
Clos de I'Angelus 5102.14
Chateau Baleau $110.31
Chateau Balestard-La-Tonnelle 511572
Chateau Beau-Mazerat §137.45||=
Chateau Belair 5124.27
Chateau Bellevue 5106.04
Chateau Bergat §180.44 |
Chateau Berliquet $101.26
Chateau Bragard 517214
Chateau Cadet-Bon $143.27
Chateau Cadet-Peychez 5116.36
Chateau Cadet-Picla 515297
Chateau Cancn 5174.25
Chateau Cancn-La-Gafferiere 5155.95
Chateau Cantenac $107.56
Chateau Cap-Le-Mourlin $180.33
Chateau Cardinal-Villemaurine $138.34
Chateau Cassevert $190.48
Chateau Chapelle-Madeleine $119.01
Chateau Cote-Daugay-ex-Madeleine | 5179.26
Chateau Coutet 5166.12
Chateau Cure-Bon-La-Madeleine 5114.33
Chateau Faurie-de-Soutard $159.73
Chateau Fonplegade $18268| -

Chapter 4: Windows Presentation Foundation 99

Syncfusion Libraries

Under a licensing agreement with Syncfusion, Dyalog includes the Syncfusion
library of WPF controls. These may be used by Dyalog APL users to develop
applications, and may be distributed with Dyalog APL run-time applications.

The Syncfusion libraries comprise a set of NET assemblies which are supplied in the
Syncfusion/4.5 sub-directory of the main Dyalog APL installation directory (for
example: c:\Program Files\Dyalog\Dyalog APL-64 14.0 Unicode\Syncfusion\4.5.

Requirements

To use the Syncfusion libraries you must be using Microsoft NET Version 4.5. See
Ul Guide: Configuration Dialog: NET Framework Tab.

In addition, to use the controls contained in these assemblies it is necessary to
perform one or both of the following steps.

Using XAML

Ifusing XAML, the XAML must include the appropriate xm1ns statements that
specify where the Syncfusion controls are to be found. For example:

xmlns:syncfusion="clr-namespace:Syncfusion.Windows.Gauge;
assembly=Syncfusion.Gauge.WPEF"

The above statement defines the prefix syncfusion to mean the specified
Syncfusion namespace and assembly that contains the various Gauge controls. When
the prefix syncfusion is subsequently used in front of a control in the XAML, the
system knows where to find it. For example:

<syncfusion:CircularGauge Name="fahrenheit" Margin="10">

OUSING

In common with all NET types, when a Syncfusion control is loaded using XAML
orusing [ONEW it is essential that the current value of JUSING identifies the NET
namespace and assembly in which the control will be found. For example:

OUSING,«c'Syncfusion.Windows.Gauge,
Syncfusion/4.5/Syncfusion.Gauge .WPF.dL L'

This statement tells APL to search the NET namespace named
Syncfusion.Windows.Gauge, which is located in the assembly file whose path
(relative to the Dyalog installation directory) is
Syncfusion/4.5/Syncfusion.Gauge.WPF.d11.

100 .NET Interface Guide

Syncfusion Circular Gauge Example

I SyncFusion CircularGauge — o HEN

Chapter 4: Windows Presentation Foundation 101

The XAML

Like most Syncfusion controls, the CircularGauge is made up of a complex
structure of objects, and the XAML (see variable XAML_SF) is too extensive to
describe in detail herein. It was created from the sample XAML from the Syncfusion
documentation for this control entitled Essential Gauge for WPF, which may be
downloaded from http://help.syncfusion.com/wpt/gauge.

The key statements in the XAML are as follows:

xmlns:syncfusion="clr-namespace:Syncfusion.Windows.Gauge;
assembly=Syncfusion.Gauge.WPEF"

The above statement defines the prefix syncfusion to mean the specified
Syncfusion namespace and assembly. When the prefix syncfusionis
subsequently used in front of a control in the XAML, the system knows where to
find it.

The next two statements define CircularPointer controls (the needles on the
gauges); one for the Fahrenheit gauge (named f* pointer) and one for the Centigrade
gauge (named c¢_pointer).

<syncfusion:CircularPointer Name="f pointer" BorderWidth="0.3"

PointerLength="100" PointerPlacement="Inside" PointerWidth="20"
Value="32"/>

<syncfusion:CircularPointer Name="c_ pointer" BorderWidth="0.3"

PointerLength="100" PointerPlacement="Inside" PointerWidth="20"
Value="0"/

The APL Code

The following functions were used to produce the example illustrated above. The
main function is SF_TC_XAML.

V SF_TC_XAML;[USING;win;f_pointer;c_pointer;sink

[1]

[2] win<LoadXAML XAML_SF

[3]

[4] f_pointer<win.FindNamec'f_pointer'
[5] c_pointer«win.FindNamec'c_pointer'
[6]

[7] f_pointer.onMouseEnter<«'MouseEnter'
[8] c_pointer.onMouseEnter<«'MouseEnter'
[9]

[10] sink<win.ShowDialog

v

After creating the Window from the text in XAML_SF, the function SF_TC_XAML
obtains refs to the two CircularPointer controls named f pointer (in the
Fahrenheit gauge) and ¢_pointer (in the Centigrade gauge). It then attaches the
MouseEnter callback to each of these objects.

http://help.syncfusion.com/wpf/gauge

102

.NET Interface Guide

V MouseEnter(this ev);ptrs

[1] ptrs«f_pointer c_pointer

[2] ptrs.onValueChanged«(ptrsithis)$¢0 'TempChanged'
v

In this example, the user grabs one of the gauge needles and moves it around the face
of'the gauge. When the user moves the mouse into one of these needles, the
MouseEnter callback fires. The function MouseEnter receives the
CircularPointer object that generated the event this as the first item in its
argument.

The code simply attaches the callback function TempChangedto this,and
disables any callback on the other CircularPointer object.

Note that if both CircularPointer objects had callbacks on TempChanged at
the same time, the system would enter a callback loop.

vV TempChanged(obj ev)
[1] :Select obj

[2] :Case f_pointer
[3] c_pointer.Value«(obj.Value-32)x5+9
[4] :Case c_pointer
[5] f_pointer.Value«32+obj.Value+5+9
[6] :EndSelect

\'4

The LoadXAML function used in this example is subtly different from previous
examples.

V win<LoadXAML xaml ;0JUSING;str;xml

[1] JUSING«'System.IO'

[2] QUSING,«c'System.Windows.Markup'

[3] JUSING,«c'System.Xml,system.xml.dl L'

[4] [JUSING,«c'System.Windows.Controls,
WPF/PresentationFramework.dll'

[5] QUSING,«c'Syncfusion.Windows.Gauge,
Syncfusion/4.5/Syncfusion.Gauge.WPF.dlL"'

[6] str«<[OJNEW StringReader(cxaml)

[7] xml<[ONEW XmlTextReader str

[8] win<XamlReader.Load xml

Chapter 4: Windows Presentation Foundation 103

In particular, it contains the all-important statement:

[5] QUSING,«c'Syncfusion.Windows.Gauge,
Syncfusion/4.5/Syncfusion.Gauge .WPF.dl L'

This statement tells APL to search the NET namespace named
Syncfusion.Windows.Gauge, which is located in the assembly file whose path
(relative to the Dyalog installation directory) is
Syncfusion/4.5/Syncfusion.Gauge.WPF.d11.

104 .NET Interface Guide

105

Chapter 5:

Writing .NET Classes in Dyalog APL

Introduction

Dyalog APL allows you to build new .NET Classes, components and controls.
NET classes created by Dyalog may be hosted by any application or programming
language that supports NET.

A component is a class with emphasis on cleanup and containment and implements
specific interfaces.

A control is a component with user interface capabilities.

With one exception, every .NET Class inherits from exactly one base class. This
means that it begins with all of the behaviour of the base class, in terms of the base
class properties, methods and events. You add functionality by defining new
properties, methods and events on top of those inherited from the base class or by
overriding base class methods with those of your own.

106 .NET Interface Guide

Assemblies, Namespaces and Classes

To create a .NET class in Dyalog APL, you simply create a standard APL Class and
export the workspace as a Microsoft NET Assembly (*.dll).

NET Classes are organised in NET Namespaces. If you wrap your Class (or Classes)
within an APL namespace, the name of that namespace will be used to identify the
name of the corresponding NET Namespace in your Assembly.

Ifa Class is to be based upon a specific NET Class, the name of that NET Class must
be specified as the Base Class in the : Class statement, and the :Us ing statement
(s) must correctly locate the base class. If not, the Class is assumed to be based upon
System.Object. Ifyou use any .NET Types within your Class, you must ensure
that these too are located by :Using.

Once you have defined the functionality of your NET classes, you are ready to save
them in an assembly. This is simply achieved by selecting Export from the Session
File menu.

You will be prompted to specify the directory and name of the assembly (DLL) and it
will then be created and saved. Your .NET class is now ready for use by any NET
development environment, including APL itself.

When a Dyalog .NET class is invoked by a host application, it automatically loads
the Dyalog DLL, the developer/debug or run-time dynamic link library version of
Dyalog APL. You decide which of these DLLs is to be used according to the setting
ofthe Runtime application checkbox in the Create bound file dialog box. Note
however that the Dyalog .NET class, and all the Dyalog DLLs on which it depends,
reside in the same directory as the host program.

If you want to repeat the most recent export after making changes to the class, you
can click on the icon to the right of the save icon on the WS button bar at the top of
the session. Note that the workspace itselfis not saved when you do an export, so if
you want the export options to be remembered you must) SAVE the workspace after
you have exported it.

Chapter 5: Writing .NET Classes in Dyalog APL 107

Getting Started

The tutorial described in this Chapter was originally designed (for Dyalog Version
10) to be exercised in a console window, with the user invoking the C# compiler
directly using a command-line interface. It was originally envisaged to be run in-situ
in the samples\aplclasses sub-directory.

Today, the samples\aplclasses sub-directory is read-only, and direct access to
the C# compiler via a command-line interface is problematical. Another
consideration is the change in requirement for dependent Dyalog DLLs, which must
now reside in the same directory as the host program.

The tutorial has therefore been re-factored to use Microsoft Visual Studio, using the
material unchanged from the original version.

All the examples are to be executed as simple console applications written in C# in
the framework of Microsoft Visual Studio Community 2015 (hereafter referred to as
VS). To run the examples as described herein, you should install VS.

Initialisation

The first step is to start VS and create a new C# Console application. You may name
and store it as you like, but this tutorial chooses the name DyApp and the folder c: \,
so VS creates a directory named c : \DyApp containing several other files and
directories.

When the application is executed (in debug mode) by VS it will be run in the
application's sub-directory bin\Debug.

Itis mandatory that the Dyalog .NET class, and all the Dyalog DLLs on which it
depends, reside in the same directory as the host program.

So the first step is to copy the requisite Dyalog DLLs to the bin\Debug sub-
directory. These DLLs are:

o Development DLL or Run-Time DLL (this tutorial uses the Development
DLL)

o Bridge DLL

o DyalogNet DLL

For the names of these files corresponding to the version of Dyalog that you are
using, see Installation & Configuration Guide: Files and Directories.

108 .NET Interface Guide

Following these steps, the contents of the bin\Debug sub-directory should be
similar to those shown below:

Directory of c:\DyApp\bin\Debug

23/09/2016 15:17 <DIR>
23/09/2016 15:17 <DIR>

28/07/2016 18:05 532,480 bridgel50 unicode.dll
26/08/2016 13:39 7,123,968 dyalogl50 unicode.dll
28/07/2016 18:05 18,944 dyalognet.dll

23/09/2016 15:17 189 DyApp.exe.config
23/09/2016 15:17 22,696 DyApp.vshost.exe
23/09/2016 15:17 189 DyApp.vshost.exe.config
30/10/2015 10:19 490 DyApp.vshost.exe.manifest
Running the Tutorial

All of the examples are provided in the Dyalog sub-directory
samples\aplclasses. The source code for the Dyalog classes are workspaces
named aplclassesl.dws,aplclasses?2.dws etc. whilst the corresponding
C# source code for hosting them is named aplfnsl.cs,aplfns2.cs etc.

In order to execute each example, we will export the workspace
(aplclassesl.dws,aplclasses?2.dws and so forth) as a Microsoft NET
Assembly named (in all cases) aplclasses.dll to the bin\Debug sub-
directory.

To start with we will replace the main program in the VS application with C# code
imported from the first example aplfnsl.cs, and execute it with the results
displayed in a simple console window. Subsequent examples will be developed by
editing this code directly or by copy/pasting code from the other C# source code files
that are supplied.

Each workspace contains a .NET Namespace called APLClasses which itself
contains a single NET Class called Primitives that exports a single method
called IndexGen.

Chapter 5: Writing .NET Classes in Dyalog APL 109

Example 1

Load the workspace aplclassesl.dws from samples\aplclasses,then
view the Primitives class:

Jed oAPLClasses.Primitivesl

:Class Primitives
:Using System
V r<IndexGen n
:Access public
:Signature Int32[]«IndexGen Int32 n
r<in
\'4
:EndClass

Primitives contains one public method/function named IndexGen.

The public characteristics for the exported method are included in the definition of
the class and its functions. Those are specified in the : Signature statement.

Its syntax is:

:Signature [return type«] fnname [arglitype [arginame]
[,argNtype [argNname]]x]

that is: The type of the result returned by the function - followed by arrow - if any,
the exported name (it can be different from the APL function name but it must be
provided), and, if any arguments are to be supplied, their types and optional names,
each type-name pair separated from the next by a comma. In the example above the
function returns an array of 32-bit integers and takes a single integer as its argument.
For further details, see Language Reference Guide: Signature Statement.

Note that, when the class is fixed, APL will try to find the NET data types you have
specified for the result and for the parameters. If one or more of the data types are not
recognised as available .NET Types, you will be informed in the status window and
APL will refuse to fix the class. If you see such a warning you have either entered an
incorrect data type name, or you have not set : Us i ng correctly, or some other
syntax problem has been detected (for example the function is missing a terminating
V. In the previous example, the only data type used is System. Int32. Since we
have set :Using System, the name Int32 is found in the right place and all is
well.

1The character before the name APLClasses.Primitives, o, is typically obtained with Ctrl-O.
It is used to tell the editor to edit a class

110 .NET Interface Guide

It should be noted that in the previous release of Dyalog APL the statements
:Returns and :Parameterlist were used instead of :Signature. They are
still accepted for backwards compatibility but are considered deprecated. Their
syntax will not be documented here but a list can be found in Appendix A.

Now you are ready to create the assembly. This is done by selecting Export... from
the Session File menu. This displays the following dialog box.

B Create bound file

Sawein: | Debug j " i Ed-
" Mame Date modified Type
ik access |__'| bridgel S'D_unl-code.dll 28/07/2016 1805 Applfcatfc
|| dyalog130_unicode.dll 26/08/2016 13:39 Applicatic
Val [dyalognet.dil 28/07/2016 1805 Applicatic
Desktop
M
Libraries
This PC
Metwork:
<
File: name:

Save as type:

|ap|c:|asses - Save
=l

| Microsoft NET Assembly (*.dll} Cancel

[Runtime application | Use External Workspace

Cormand Line: |

I Signdssembly [Version

ik

|zolation Mode: |Each host proceszs haz a single workszpace j

This gives you the opportunity to change the name or path of the assembly. The
Runtime application checkbox allows you to choose to which if the two versions of
the Dyalog APL dynamic link library the assembly will be bound. In this tutorial we
will use the Development version. The Isolation Mode Combo box allows you to
choose which Isolation Mode you require.

o Change the File name to aplclasses.
o Clear the Runtime application checkbox

Chapter 5: Writing .NET Classes in Dyalog APL 11

Finally, click Save. APL now makes the assembly and, as it does so, displays
information in the Status window as shown below. If any errors occur during this
process, the Status window will inform you.

File Options

Declared Assembly aplclasses
Declared Module aplclasses in file C:\DyAppibin\Debughiaplclasses.dll
Declared Type APLClasses.Primitives
Compiling Method "IndexGen"
Parameter type "Int32" resolved to System.Int32
Result type "Int32[]" resolved to System.Int32[]
Compiled Method "IndexGen”
Emitted Type APLClasses.Primitives
Emitted Assembly to file "C:\DyApp\bin\Debugiaplclasses.dlL"

Close |

aplfns1.cs

The following C# source, called samples\APLClasses\aplfnsl.cs,will be
used to call our Dyalog NET Class.

The using statements specify the names of NET namespaces to be searched for
unqualified class names.

The program creates an object named apl of type Primitives by calling the new
operator on that class. Then it calls the IndexGen method with a parameter of 10.

using System;
using APLClasses;
public class MainClass
{
public static void Main ()
{
Primitives apl = new Primitives();
int[] rslt = apl.IndexGen (10);
for (int i=0;i<rslt.Length;i++)
Console.WritelLine (rslt[i]);

112

.NET Interface Guide

In VS, click Project/Add Existing Item and navigate to add apl fnsl.cs from
samples\aplclasses.

Next, using the Solution Explorer,rename aplfnsl.csto aplfns.cs and delete
the dummy program program. cs. This is necessary otherwise there would be two
Main () entry-points in the application.

Open aplfns.cs inthe VS code editor (double -click its name in Solution
Explorer) and add the following two lines of code:

Console.Write ("Press <Enter> to exit... ");
while (Console.ReadKey () .Key != ConsoleKey.Enter) { }

These allow you, the user, to view the contents of the console window before it
disappears when the program ends.

Notice that APL.Classes and Primitives are marked as being in error. This is
because as yet, VS does not know what these are.

To resolve this issue, select Project/Add Reference... click Browse, navigate to
c:\DyApp\bin\Debugand add aplclasses.dll.

The final code is shown below:

pinscs = <
[#] DyApp - *iz MainClass |2 Main() -

1 Slusing System; —

2 using APLClasses; Y

3 Spublic class MainClass 1

4 {

5 = public static vedid Main()

6 {

7 Primitives apl = new Primitives();

8 int[] rslt = apl.IndexGen(1@);

g

1@ fer (int i=@;i<rslt.Llength;i+s)

11 Console.WriteLine(rs1t[i]);

12 Console.Write("Press <Enter> to exit... ");

13 while (Conscle.ReadKey().Key != Consclekey.Enter) { }

14 }

15 }

-

100% ~| 4 4

Chapter 5: Writing .NET Classes in Dyalog APL 113

Now click Start to run the program. The results are shown in a console window.

[N file///C:/DyApp/bin/Debug/DyApp.EXE —

[y

il

[=3]

~

Press <Enter» to exit... g

114

.NET Interface Guide

Example 2

In Example 1, we said nothing about a constructor used to create an instance of the
Primitives class. In Example 2, we will show how this is done.

In fact, in Example 1, APL supplied a default constructor, which is inherited from the
base class (System.Object)and is called without arguments.

Example 2 will extend Example 1 by adding a constructor that specifies the value of
01o.

Load the workspace aplclasses2.dws from samples\aplclasses, then
display the Primitives class:

t0SRC APLClasses.Primitives
:Class Primitives
:Using System

v CTOR IO
:Implements constructor
:Access public
:Signature CTOR Int32 IO
Q1o<IO

v

V R«IndexGen N
:Access public
:Signature Int32[]«IndexGen Int32
R<1N

\'4

tEndClass A Primitives

This version of Primi tives contains a constructor function called CTOR that
simply sets IO to the value of its argument. The name of this function is purely
arbitrary.

Using this version, build a new .NET Assembly using File/Export... as before.

Chapter 5: Writing .NET Classes in Dyalog APL 115

& Create bound file

Save in: I Debug j &= I'fi(EE-
* Marne - Date modified Type
Quick access a;:r.lclasss.dll . 23/09/2016 16:09 Applfcat!c
bridge150_unicode.dll 28/07/2016 18:05 Applicatic
dyalog130_unicode.dll 26/08/2016 13:39 Applicatic
Desktop dyalegnet.dll 28/07/2016 18:05 Applicatic
"
Libraries
This PC
Network

<

>
File name: Iapldasses.dll j &I
Save as type: II‘u'Iic:'osaﬁ NET Assembly (*dll) j Cancel |

[Runtime application [Use External Workspace [T SignAssembly [Delay S0 ersion |

F.ey File: I Browse |

Command Line: I

Izolation Mode: IEach host process has a single workspace ;I

P

Please note that as before it is essential that the Build runtime assembly checkbox is
unchecked.

116

.NET Interface Guide

B Status

File Options

Declared Assembly aplclasses
Declared Module aplclasses in file C:\DyApp\bin\Debuglaplclasses.dll
Declared Type APLClasses.Primitives
Compiling Constructor "CTOR"
Parameter type "Int32" resolved to System.Int32
Result type "<empty>" resolved to System.Void
Compiled Constructor "CTOR"
Compiling Method "IndexGen"
Parameter type "Int32" resolved to System.Int32
Result type "Int32[]" resolved to System.Int32[]
Compiled Method "IndexGen"
Emitted Type APLClasses.Primitives
Emitted Assembly to file "C:\DyApp\bin\Debug\aplclasses.dll"

Cloze |

Chapter 5: Writing .NET Classes in Dyalog APL 117

aplfns2.cs

The following C# source, called samples\APLClasses\aplfns2.cs,canbe
used to call the new version of our APL NET Class.
using System;

using APLClasses;
public class MainClass

{

public static void Main ()
{
Primitives apl = new Primitives(0);
int[] rslt = apl.IndexGen(10);
for (int i=0;i<rslt.Length;i++)
Console.WriteLine (rslt[i]);
}

}

The program is the same as in the previous example, except that the code that creates
an instance ofthe Primitives class is simply changed to specify an argument; in
this case 0.

Primitives apl = new Primitives(0);

Rather than load aplfns2.csinto VS, it is simpler to just make this change in-situ
as shown below.

[#] Dyapp = ¥z MainClass @ Main() -
1 Slusing System; =+
2 using APLClasses; -
3 —lpublic class MainClass
4 {
5 = public static woid Main() =
& i
7 Primitives apl = new Primitives(@);
3 int[] rslt = apl.IndexGen(18);
9
18 for (int i=8;i<rslt.Length;i++)
11 Conscle.Writeline(rs1t[i]);
12 Conscle.Write("Press <Enter» to exit... ");
13 while (Console.ReadKey().Key != Consolekey.Enter) { }
14 }
15 ¥
-
100% ~ 4 »

118 .NET Interface Guide

Then click Start to build and run the modified application:

[N file:///C:/DyApp/bin/Debug/DyApp.EXE

L kD=

Kl

=]

=

<Enter> to exit...

Chapter 5: Writing .NET Classes in Dyalog APL 119

Example 2a

In Example 2, the argument to CTOR, the constructor for the Primitives class,
was defined to be Int32. This means that the NET Framework will allow a client to
specify any integer when it creates an instance of the Primitives class. What
happens if the client uses a parameter of 2? Clearly this is going to cause an APL
DOMAIN ERROR when used to set IO.

aplfns2a.cs

The following C# source, called samples\APLClasses\aplfns2a.cs,can be
used to demonstrate what happens.

using System;
using APLClasses;
public class MainClass

{

public static void Main ()

{
Primitives apl = new Primitives(2);
int[] rslt = apl.IndexGen(10);

for (int i=0;i<rslt.Length;i++)
Console.WriteLine (rslt([i]);
}

}

The code is the same as in the previous example, except that the line that creates an
instance ofthe Primitives class specifies an inappropriate argument 2.

Primitives apl = new Primitives(2);

Rather than load aplfns2.csinto VS, it is simpler to just make this change in-situ
as shown below.

[DyApp - *z MainClass =@ Main() -
1 -lusing System; =
2 using APLClasses; P
3 Spublic class MainClass
4 {
5 = public static void Main() =
6 {
7 Primitives apl = new Primitives(2);
g int[] rslt = apl.IndexGen(18);
=1
1@ for (int i=@j;i<rslt.Lengthji+d)
11 Console.Writeline(rslt[i]);
12 Conscle.Write("Press <Enter> to exit... ");
13 while (Conscle.ReadKey().Key != Consclekey.Enter) { }
14 }
15 }
w
100% - 4 4

120 .NET Interface Guide

Then click Start to build and run the modified application:

... as we have built the Dyalog .NET class to use the Development DLL, the APL
Session appears, and the Tracer can be used to debug the problem. You can see that
the constructor CTOR has stopped with a DOMAIN ERROR. Meanwhile, the C#
program is still waiting for the call (to create an instance of Primitives)to finish.

® aplclasses (AppDomain_DyApp_vshost_exe Assembly_aplclasses.APLClasses. [Primitives])- Dyalog APLAW

File Edit View Windows Session Log Action Options Tools Threads Help

ws) &0t |obece B B S5 v [& |Tool @ G B ¥ ||Ede By (B v o ||Session (5 [APL38 Unicode w || 18- 1
Language Bar

[e 0= A o S PR R t[=RI0A]Y] [felvlo[e[L:lelelels] [TF]-[-[¢] [DOExls] [¢[o[-fula]?[e] =
Dyalog APL/W Version 15.0.2816%
Serial No : 000042
Unicode Edition
Sun Sep 25 12:57:15 2016
1:DOMAIN ERROR
CTOR[4] DIO-I0

.

I0

A

2
IST

[#.AppDomain_DyApp_vshost_exe.Assembly_aplclasses.APLClasses.[Primitives]] #.AppDomain_DyApp_vshost_exe.Assembly_aplclass
CTOR[41+
- MainClass.Main[]

System.AppDomain._nExecuteAssembly[]
System.AppDomain.ExecuteAssembly[]
Microsoft.VisualStudio.HostingProcess.HostProc.RunUsersAssembly[]
System.Threading.ThreadHelper.ThreadStart_Context[]
System.Threading.ExecutionContext.RunInternal[]
System.Threading.ExecutionContext.Run[]
System.Threading.ExecutionContext.Run[]

- System.Threading.ThreadHelper.ThreadStart[]

81 (system thread:9572}

Debugger
Tidst I CTOR[4]+010~I0
TP P DPEXIHAN -|df 4 B aA |AppDen v
[07¢ CTOR 10
[1] 1 :Implements constructor
[2] | :Access public —
[3]! :Signature CTOR Int32 IO =
[4+]} [O1o-10 =
; o
: =
3
B s
il s
Unscripted Function Pos: 4/5,0 ® fir
Ready... Ins |NUM
CurObj: IO (Yariable) g2 O0Q:0 |[OTRAP |[OSI:1 [DI0:1 |OML:0

Notice that in Dyalog APL, the) ST System Command provides information about
the entire calling stack, including the NET function calls that are involved. Notice
too that the CTOR function, the constructor for this APL .NET class, is running here
in APL thread 1, which is associated with the system thread 9572.

In this case, debugging is simple, and you can simply type:

I0«1
~{LC

Now, the CTOR function completes, the aplfns program continues and the output
is displayed.

Chapter 5: Writing .NET Classes in Dyalog APL 121

[N file:///C:/DyApp/bin/Debug/DyApp.EXE

Press <Enter> to exit...

122

.NET Interface Guide

Example 3

The correct NET behaviour when an APL function fails with an error is to throw an
exception, and this example shows how to do it.

In the NET Framework, exceptions are implemented as NET Classes. The base
exception is implemented by the System.Exception class, but there are a
number of super classes, such as System.ArgumentException and
System.ArithmeticException that inherit from it.

[SIGNAL may be used to throw an exception. To do so, its right argument should be
90 and its left argument should be an object oftype System.Exception oran
object that inherits from System.Exception.

When you create the instance of the Exception class, you may specify a string
(which will turn up in its Message property) containing information about the error.

aplclasses3.dws contains an improved version of the CTOR constructor
function.

v CTOR IO;EX

[1] tAccess public

[2] :Signature CTOR Int32 IO

[3] :Implements constructor

(4] :If I0e0 1

[5] 0JI0<«IO

[6] :Else

[7] EX<(NEW ArgumentException,cc'IndexOrigin must be
0 or 1'

[8] EX OSIGNAL 90

[9] :EndIf

v

Load aplclasses3.dws and export a new version of aplclasses.dll as
before. The Create bound dialog box should appear exactly as in Example 2 (see
page 115).

Chapter 5: Writing .NET Classes in Dyalog APL 123

B Status

File Options

Declared Module aplclasses in file C:\DyAppi\bin\Debug\aplclasses.dll ~
Declared Type APLClasses.Primitives
Compiling Constructor "CTOR"
Parameter type "Int32" resolved to System.Int32
Result type "<empty>" resolved to System.Void
Compiled Constructor "CTOR"
Compiling Method "IndexGen"
Parameter type "Int32" resolved to System.Int32
Result type "Int32[]" resolved to System.Int32[]
Compiled Method "IndexGen"
Emitted Type APLClasses.Primitives
Emitted Assembly to file “C:\Dyhpp\bin\Debug\aplcLasses.dLL“

L

Close |

aplfns3.cs

The following C# source, called samples\APLClasses\aplfns3.cs,contains
code to catch the exception and to display the exception message.
using System;

using APLClasses;
public class MainClass

{
public static void Main ()
{
try
{
Primitives apl = new Primitives(2);
int[] rslt = apl.IndexGen(10);
for (int i=0;i<rslt.Length;i++)
Console.WritelLine (rslt[i]);
}
catch (Exception e)
{
Console.WriteLine (e.Message) ;
}
}
}

Using copy/paste, merge the new code into aplfns.cs in VS, to produce the
following:

124 .NET Interface Guide

s -
[DyApp -1 *2 MainClass 1@ Main() -

1 Slusing System; +

2 using APLClasses; -

3 =lpublic class MainClass T

4 i

5 = public static veid Main()

6 {

7 try

8 {

a Primitives apl = new Primitives(2);

1@ int[] rslt = apl.IndexGen(18);

12 for (int 1 = @; 1 < rslt.Length; iH)

13 Console.Writeline(rslt[i]);

15 catch (Exception e)

16 {

17 Console.WriteLline(e.Message);

18 }

19 Console.Write{"Press <Enter> to exit... ™);

20 while (Conscle.ReadKey().Key != Consclekey.Enter) { }

21 }

22 } -
100% -4 »

Click Start to run the new version:

[N file:///C:/DyApp/bin/Debug/DyApp.EXE

Inde be

Chapter 5: Writing .NET Classes in Dyalog APL 125

Example 4

This example builds on Example 3 and illustrates how you can implement
constructor overloading, by establishing several different constructor functions.

By way of an example, when a client application creates an instance of the
Primitives class, we want to allow it to specify the value of JI0 or the values of
both [JI0 and OML.

The simplest way to implement this is to have two public constructor functions
CTOR1 and CTOR2, which call a private constructor function CTOR

aplclasses4.dws contains a new version ofthe Primi tives class with these

additions:
v CTOR1 IO
[1] :Implements constructor
[2] :Access public
[3] :Signature CTOR1 Int32 IO
[4] CTOR I0 O
\'4
v CTOR2 IOML
[1] :Implements constructor
[2] :Access public
[3] :Signature CTOR2 Int32 IO,Int32 ML
[4] CTOR IOML
\'4
Vv CTOR IOMLEX
[1] IO ML«IOML
[2] :If ~I0e0 1
[3] EX<[NEW ArgumentException,cc'IndexOrigin must
be 0 or 1'
[4] EX [OSIGNAL 90
[5] :EndIf
[6] :If ~MLeO 1 2 3
[7] EX<[JNEW ArgumentException,cc'MigrationLevel
must be 0, 1, 2 or 3'
[8] EX OSIGNAL 90
[9] tEndIf
[10] 010 OML«IO ML

v

126

.NET Interface Guide

The :Signature statements for these three functions show that CTOR1 is defined
as a constructor that takes a single Int 32 parameter, CTOR2 is defined as a
constructor that takes two Int32 parameters, and CTOR has no .NET Properties
defined at all. Note that in .NET terms, CTOR is not a Private Constructor; it is
simply an internal function that is invisible to the outside world.

Next, a function called Get IOML is defined and exported as a Public Method. It
simply returns the current values of JI0 and [ML.

V R«<GetIOML
[1] tAccess public
[2] :Signature Int32[]«GetIOML
[3] R<JIO [OML

\'

Load aplclasses4.dws and export a new version of aplclasses.dll as
before. The Create bound dialog box should appear exactly as in Example 2 (see
page 115).

B Status

File Options

Declared Module aplclasses in file C:\Dyhpp\bin\Debug\achLasses.dLL ~
Declared Type APLClasses.Primitives

Compiling Constructor "CTOR1"
Parameter type "Int32" resolved to System.Int32
Result type "<empty>" resolved to System.Void

Compiled Constructor "CTOR1"

Compiling Constructor "CTOR2"
Parameter type "Int32" resolved to System.Int32
Parameter type "Int32" resolved to System.Int32
Result type "<empty*" resolved to System.Void

Compiled Constructor "CTORZ2"

Compiling Method "GetIOML"
Result type "Int32[]" resolved to System.Int32[]

Compiled Method "GetIOML"

Compiling Method "IndexGen"
Parameter type "Int32" resolved to System.Int32
Result type "Int32[]" resolved to System.Int32[]

Compiled Method "IndexGen"

Emitted Type APLClasses.Primitives
Emitted Assembly to file "C:\DyApp\bin\Debug\apleclasses.dll"

! Cloze |

L

Chapter 5: Writing .NET Classes in Dyalog APL 127

aplfns4.cs

samples\APLClasses\aplfns4.cscontains code to invoke the two different
constructor functions CTOR1 and CTOR2 :

using System;
using APLClasses;
public class MainClass
{
public static void Main ()
{
Primitives apll0 = new Primitives(l);
int[] rsltl0 = apll0.GetIOML() ;
for (int i=0;i<rsltl0.Length;i++)
Console.WriteLine (rsltl0[i]);

Primitives apl03 = new Primitives(O0,3);
int[] rslt03 = apl03.GetIOML() ;
for (int i=0;i<rslt03.Length;i++)
Console.WriteLine (rslt03[i]);
}
}

Here the code creates two instances of the Primitives class named ap110 and
apl03. The first is created with a constructor parameter of (1) ; the second with a
constructor parameter of (0, 3).

The C# compiler matches the first call with CTOR1, because CTOR1 is defined to
accept a single Int 32 parameter. The second call is matched to CTOR2 because
CTOR2 is defined to accept two Int32 parameters.

128 .NET Interface Guide

Using copy/paste, merge the new code from aplfns4.cs into aplfns.cs in VS to
produce the following:

s+ <
D).rApp ~ | ® MainClass 1@ Main() -

1 Slusing System; +

2 using APLClasses; -

3 —public class MainClass 1

4 {

5 = public static veid Main()

6 {

7 Primitives apll® = new Primitives(l1);

g int[] rsltl@ = apll@.GetIOML();

9 for (int 1 = @; 1 < rsltl@.Length; i++)

1@ Console.Writeline(rs1t1@[i]);

12 Primitives apl®3 = new Primitives(@, 3);

13 int[] rslt@3 = aple3.GetIOML();

14 fer (int 1 = 8; 1 < rslt@3.Length; i+4)

15 Console.Writeline(rs1t@3[i]);

16 Conscle.Write("Press <Enter: to exit... ");

17 while (Conscle.ReadKey().Key != Consolekey.Enter) { }

18 1

19 T

-

100% = 4 »

=

0

]

E3]

Chapter 5: Writing .NET Classes in Dyalog APL 129

Example 5

This example takes things a stage further and illustrates how you can implement
method overloading.

In this example, the requirement is to export three different versions of the
IndexGen method; one that takes a single number as an argument, one that takes
two numbers, and a third that takes any number of numbers. These are represented by
three functions named IndexGen1, IndexGen2 and IndexGena3 respectively.
Because monadic t performs all of these operations, the three APL functions are in
fact identical. However, their public interfaces, as defined in their :Signature
statement, are all different.

The overloading is achieved by entering the same name for the exported method
(IndexGen)in the box provided, for each of the three APL functions.

aplclasses5.dws contains a new version of the Primitives class with three
different versions of IndexGen as shown below:

V R«IndexGenil N
[1] tAccess public
[2] :Signature Int32[]«IndexGen Int32 N
[3] R<1N

This is the version we have seen before. The method is defined to take a single
argument of type Int32, and to return a 1-dimensional array (vector) of type
Int32.

V R«IndexGen2 N
[1] :Access public
[2] :Signature Int32[][,]«IndexGen Int32 N1, Int32 N2
[3] R«<1N

This version is defined to take two arguments of type Int32, and to return a 2-
dimensional array, each of whose elements is a 1-dimensional array (vector) of type
Int32.

V R«IndexGen3 N
[1] :Access public
[2] :Signature Array<IndexGen Int32[] N
[3] R«1N

130

.NET Interface Guide

In principle, we could define 7 more different versions of the method, taking 3, 4, 5
etc. numeric parameters. Instead, this method is defined more generally, to take a
single parameter that is a 1-dimemsional array (vector) of numbers, and to return a
result of type Array. In practice we might use this version alone, but for a C#
programmer, this is harder to use than the two other specific cases.

Notice also that all function use the same descriptive name, <IndexGen>.

Load aplclasses5.dws and export a new version of aplclasses.dll as
before. The Create bound dialog box should appear exactly as in Example 2 (see
page 115).

D Status

File Options

Declared Module aplclasses in file C:\DyApp\bin\Debuglaplclasses.dll ~
Declared Type APLClasses.Primitives
Compiling Constructor "CTOR1"
Parameter type "Int32" resolved to System.Int32
Result type "<empty>" resolved to System.Void
Compiled Constructor "CTOR1"
Compiling Constructor "CTOR2"
Parameter type "Int32" resolved to System.Int32
Parameter type "Int32" resolved to System.Int32
Result type "<empty>" resolved to System.Void
Compiled Constructor "CTOR2"
Compiling Method "GetIOML"
Result type "Int32[]" resolved to System.Int32[]
Compiled Method "GetIOML"
Compiling Methed "IndexGeni®
Parameter type "Int32" resolved to System.Int32
Result type "Int32[]" resolved to System.Int32[]
Compiled Method "IndexGeni®
Compiling Method "IndexGen2"”
Parameter type "Int32" resolved to System.Int32
Parameter type "Int32" resolved to System.Int32
Result type "Int32[][,]" resolved to System.Int32[][,]
Compiled Method "IndexGen2"
Compiling Method "IndexGen3”
Parameter type "Int32[]" resolved to System.Int32[]
Result type "Array” resolved to System.Array
Compiled Method "IndexGen3"
Emitted Type APLClasses.Primitives
Emitted Assembly to file "C:\DyApp\bin\Debug\apleclasses.dll"

W

Cloze |

Chapter 5: Writing .NET Classes in Dyalog APL 131

aplfns5.cs

samples\APLClasses\aplfns5. cscontains code to invoke the three
different variants of IndexGen, in the new aplclasses.dl1. Notice that it uses
alocal sub-routine PrintArray ().

using System;
using APLClasses;
public class MainClass
{
static void PrintArray(int[] arr)
{
for (int i=0;i<arr.Length;i++)
{
Console.Write(arr([i]);
if (i'!=arr.Length-1)
Console.Write (", ")
}
}

public static void Main ()
{
Primitives apl = new Primitives(0);
int[] rslt = apl.IndexGen (10);
PrintArray(rslt);
Console.WriteLine ("") ;

int[,]1[] rslt2 = apl.IndexGen(2,3);
for (int i=0;1i<2;i++)
{
for (int j=0;73<3;j++)
{

int[] row = rslt2[i,j];

Console.Write (" (") ;
PrintArray (row) ;
Console.Write(")");

}

Console.WriteLine ("");

}

int[] args = new int[3];
args[0]1=2;

args[1l]=3;

args[2]=4;

Array rslt3 = apl.IndexGen (args);
Console.WriteLine (rslt3);

}

Using copy/paste, merge the new code from apl fns5. cs into aplfns.cs in VS to
produce the following:

132 .NET Interface Guide

einscs =
[DyApp - #2 MainClass -y PrintArray(int[] arr) -

1 Slusing System; =+

2 using APLClasses; -

3 Spublic class MainClass =

4 1

5 = static void PrintArray(int[] arr)

6 {

7 for (int 1 = @; 1 < arr.Length; i++)

8 {

a Console.Write(arr[i]);

1@ if (i != arr.Length - 1) Conscle.Write(™,");

11 }

12 1

13 = public static weoid Main()

14 {

15 Primitives apl = new Primitives(@);

16 int[] rslt = apl.IndexGen(1@);

17

18 PrintArray(rslt);

19 Console.WriteLine("");

28

21 int[,][] rslt2 = apl.IndexGen(2, 3);

22

23

- for (int 1 =@; 1 < 2; iH)

25

26 for (int j = @; j < 3; j++)

27 {

28 int[] row = rslt2[i, j];

29 Console.Write("(");

3@ PrintArray(row);

31 Console.Wwrite(")");

32 1

33 Console.WriteLine("");

4 }

35

36 int[] args = new int[3];

37

38 args[®e] = 2;

39 args[1] = 3;

4@ args[2] = 4;

4z Array rslt3 = apl.IndexGen(args);

43

LE Console.Writeline(rslt3);

45

46 Console.Write("Press <Enter> to exit... ™);

a7 while (Conscle.ReadKey().Key != Consolekey.Enter) { }

LT 3}

49 } -
00% ~ 4 »

Chapter 5: Writing .NET Classes in Dyalog APL 133

Click Start to run the new version:

It is possible for a function to have several : Signature statements. Given that our
three functions perform exactly the same operation, it might have made more sense to
use a single function:

V R«IndexGenil N
[1] tAccess public
[2] :Signature Int32[]«IndexGen Int32 N
[3] :Signature Int32[][,]«IndexGen Int32 N1, Int32 N2
[4] :Signature Array<IndexGen Int32[] N
[5] R«<1N

Interfaces

Interfaces define additional sets of functionality that classes can implement;
however, interfaces contain no implementation, except for static methods and static
fields. An interface specifies a contract that a class implementing the interface must
follow. Interfaces can contain shared (known as "static" in many compiled
languages) or instance methods, shared fields, properties, and events. All interface
members must be public. Interfaces cannot define constructors. The .NET runtime
allows an interface to require that any class that implements it must also implement
one or more other interfaces.

When you define a class, you list the interfaces which it supports following a colon
after the class name. The value of JUSING (possibly set by :Using)isused to
locate Interface names.

If you specify that your class implements a certain Interface, you must provide
all of the members (methods, properties, and so forth) defined for that Interface.
However, some Interfaces are only marker Interfaces and do not actually specify any
members.

An example is the TemperatureControlCt12 custom control described in
Chapter 10, which derives from System.Web.UI.Control. The first line of this
class definition reads:

134

.NET Interface Guide

:Class TemperatureConverterCtl2: System.Web.UI.Control,
System.Web.UI.IPostBackDataHandler,
System.Web.UI.IPostBackEventHandler

Following the colon, the first name is the base class. Following the (optional) base
class name is the list of interfaces which are implemented. The
TemperatureControlCtl2 custom control implements two interfaces named
IPostBackDataHandler and IPostBackEventHandler. These interfaces
are required for a custom control that intends to render the HTML for its own form
elements in a Web page. These interfaces define certain methods that get called at the
appropriate time by the page framework when a Web page is constructed for the
browser. It is therefore essential that the class implements all the methods specified
by the interface, even if they do nothing.

The base class, System.Web.UI.Control,defines an optional Interface called
INamingContainer. A class based on Control that implements
INamingContainer specifies that its child controls are to be assigned unique ID
attributes within an entire application. This is a marker interface with no methods or
properties defined for it.

See these examples in Chapter 10 for further details.

135

Chapter 6:

Dyalog APL and IIS

Introduction

Microsoft Internet Information Services (IIS) is a comprehensive Web Server software
package that allows you to publish information on your Intranet, or on the World
Wide Web. IIS is included with Professional and Server versions of all recent
Windows operating systems; all you need add is a network connection to run your
own Web site.

IIS includes Active Server Page (ASP) technology. The basic idea of ASP is to permit
web pages to be created dynamically by the web server. An ASP file is a character
file that contains a mixture of HTML and scripts. When IIS receives a request for an
ASP file, it executes the server-side scripts contained in the file to build the Web
page that is to be sent to the browser. In addition to server-side scripts, ASP files can
contain HTML (including related client-side scripts) as well as calls to components
that can perform a variety of tasks such as database lookup, calculations, and
business logic.

Basically, each script inside an ASP page generates a stream of HTML. The server
runs the scripts and assembles the resulting HTML into a single stream (Web page)
that is sent to the browser.

ASP.NET is a new version of ASP and is based upon the Microsoft NET Framework
technology. It offers significantly better performance and a host of new features
including support for Web Services.

136

.NET Interface Guide

IS Installation Dependency

During installation, Dyalog registers itself with ASP.NET as an

ASP.NET programming language. Among other things, this allows ASP.NET web
pages to be written in Dyalog. The Dyalog installation program also registers the
Dyalog asp.net sample applications as IIS Virtual Directories.

It is not practical for the Dyalog setup . exe to perform these tasks unless IIS and
ASP.NET are already installed. Furthermore, unless IIS and ASP.NET are already
installed and activated on the system, the Dyalog sub-directory
Samples/asp.net will not even be copied onto the system, because the samples
it contains would be inoperable.

If1IS is installed after Dyalog, it is necessary to de-install and then re-install Dyalog

to enable the registration of Dyalog as an ASP.NET Programming language to occur,
and forthe Samples/asp.net sub-directory to be copied onto the system and the
samples registered as IIS Virtual Directories.

IS Applications, Virtual Directories, Application

Pools

IIS supports the concept of an Application. An application is a logically separate
service or web site. IIS can run any number of Applications concurrently. The files
associated with an application are stored in a physical directory on disk, which is
linked to an IIS Virtual Directory. The name of the Virtual Directory is the name of
the Application or Web Site.

The Dyalog APL distribution contains a directory named
Dyalog\Samples\asp.net and a set of sub-directories each of which contains a
sample application.

During the installation of Dyalog APL, these are automatically registered as IIS
Virtual Directories, under a common root. The name of the root begins
dyalog.net followed by the Dyalog Version number, the edition (Unicode or
classic), and the architecture (32-bit or 64-bit). For example,
dyalog.net.15.0.unicode. 64 I. The name of the root application is referred
to henceforth as dyalog.net.

IIS applications run in application pools. An application pool is a group of one or
more URLs that are served by the same worker process or set of worker processes
which are separate from the worker process that services another application pool.
This mechanism isolates applications from one another, providing resilience should
any one application fail.

IVersions of Dyalog APL prior to Version 11.0 created Virtual Directories under apl . net.

Chapter 6: Dyalog APL and IIS 137

138 .NET Interface Guide

Each dyalog.net application is associated with an application pool named
Dyalog APL xx (NET v4.0 Classicl), where xx is 32 or 64) which is created if
required during installation.

When you want to run the Web Services and Web Page examples, you do so by
specifying the URL http://localhost/dyalog.net.xxxx/

These samples can be easily found by selecting the Documentation Centre menu
item from the Help menu on the Dyalog session, and scrolling down to the Tutorials
section.

IThe term NET v4.0 Classic refers to the name of a standard application pool on which it is based,
and has nothing to do with the Classic variant of Dyalog.

Chapter 6: Dyalog APL and IIS 139

Internet Services Manager

As its name suggests, Internet Services Manager is a tool for managing IIS. If you are
developing Web Pages and/or Web Services, you will be using this tool a lot, and it
makes sense to add it as a shortcut on your desktop.

To do this, open Control Panel, then open Administrative Tools, right-click Internet
Information Services (IIS) Manager, and select Send To Desktop (create shortcut).

The dyalog.net Application

Following a successful installation of Dyalog APL, the dyalog.net Application
should appear in Internet Services Manager as shown below.

E Internet Information Services (IIS) Manager

e P HP » Sites » DefaultWebSite » dyalog.net.150.unicode.sd » by e

File View Help

re 9 /dyalog.net.15.0.unicode.64 Content 3
Lal] 15, & “dyalog.net.15.0.unicode.64" Tasks
93 HP (HP\Pet
| “1.(&\ \‘ :j pool B - % Go - G Show Al | Group by: - ppicat:o
ik Appication Fools [Switch to Features
v 8] Sites Name Type
~ € Default Web Site S| actfns File Folder B Explore
| aspnet_client = bin File Folder Edit Per
(¥ dyalog.net15.0.unicode 64 | data File Folder @ Add
"l epidemic File Folder B Add Virtual Directory...
3 A
P golf Application Manage Application A
_lloan File Folder
I spider File Folder Browse
(P temp Application Advanced Settings...
(& tutorial Application e
B Refresh
Slwap File Folder v,
B websenvices Application FeT
&P DYALOG.NET Unicode 15.0 Tuterial.url Internet Shortcut @ Hep
™ dyalog_logo.gif GIF File
€ indechtm Chrome HTML Document
“Jlweb.config CONFIG File
< >
[]] Features View
Ready L=l

Note that the go1f, temp and webservices sub-directories in the dyalog.net
application represent separate IIS applications.

140 .NET Interface Guide

The dyalog Application Pool will appear in the list of Applications Pools as shown

below.

™E Intemet Informatior

[L} » HP » Application Pools

File View Help

Ready

‘Connections
7 QQ’ Application Pools -
= 8 A lication Pool.
< S
V% H; (HP\Pete) This page lets you view and manage the list of application peals on the server, Application pools are asseciated with worker SetRpelicat o
] Application Pools processes, contain one or and among iff Application Poo Tasks
(8] Sites D e
~ & Default Web Site Filter: + W Go - G Show All | Group by: No Greuping [4 Sta
. op
> -] aspnet client Status MNETCLRV.. Managed Pipel.. Identity Applications py
5 < dyalog.net15.0.unicode.6t & Recycle..
Stated 2.0 Integrated ApplicationPoolldentity 0 - -
Edit Application Pool
Started 2.0 Classic ApplicationPoolldentity 0 B bacs
Started w0 Integrated ApplicationPoolldentity 0 RN
Stoted V4D Classic ApplicationPoolldentity 0 Recreiis
5 Stated v40 Integrated ApplicationPoalldentity 0 GimmEs S
D ASP.NET v40 Classic Started V40 Clessic ApplicationPoolldentity 0 (s
2 Classic NET AppPool Started 2.0 Clessic ApplicationPoolldentity 0 X Remove
3 DefaultAppPool Started w40 Integrated ApplicationPoolldentity 4
{2 Byaiog APL B4 (NET V4D Ciassic] Started VAD Ciassic Applicationpoolidentity 6
< >
Features View Content View

9

The Advanced Settings of the dyalog.net Application are shown below.

Advanced Settings

v (General)
Application Pool
Physical Path
Physical Path Credentials
Physical Path Credentials Logon Type ClearText
Preload Enabled False
/dyalog.net.15.0.unicode.64
v Behavior

Enabled Protocols

Dyalog APL 64 (.NET v4.0 Classic)

http

C:\Program Files\Dyalog\Dyalog APL-64 15.0 Unicode\Samples\asp.net

Virtual Path
[path] URL path fer the application.

QK

Cancel

141

Chapter 7:

Writing Web Services

Introduction

A Web Service can be thought of as a Remote Procedure Call. However, it is a
remote procedure call that can be made over the Internet using character-based
messages.

Web Services are implemented using Simple Object Access Protocol (SOAP),
Extensible Mark-up Language (XML) and Hypertext Transfer Protocol (HTTP). Web
Services do not require proprietary network protocols or software. Web Service calls
and responses can successfully be transmitted over the Internet without the need to
specially configure firewalls.

A Web Service is a class that may be called by any program running on the
computer, any program running on a computer on the same LAN, or any program
running on any computer on the internet.

Web Services are hosted (i.e. executed) by ASP.NET running under Microsoft IIS.
Any one Web Service sits on a single server computer and runs there under
ASP.NET/IIS. The messages that invoke the Web Service, pass its arguments, and
return its results, utilise standard HTTP/SOAP/XML protocols.

A Web Service consists of a single text script file, with the extension . asmx, in an
IIS Virtual Directory on the server computer.

A Web Service may expose a number of Methods and Properties. Methods may be
called synchronously (the calling process waits for the result) or asynchronously (the
calling process invokes the method, continues for a bit, and then subsequently
checks for the result of the previous call).

142

.NET Interface Guide

Web Service (.asmx) Scripts

Web Services may be written in a variety of languages, including APLScript, the
scripting version of Dyalog APL. See APLScript on page 241.

The first statement in the script file declares the language and the name of the service.
For example, the following statement declares a Dyalog APL Web Service named
GolfService.

<%@ WebService Language="Dyalog" Class="GolfService" %>

Note that Language="Dyalog" is specifically connected to the Dyalog APL
script compiler through the application's web.config file or through the global
ASP.NET system file Machine. config. Note that versions of Dyalog prior to
11.0 used Language="APL".

The syntax ofthis first line is common to all Web Services, regardless of the
language in which they are written.

A Dyalog APL Web Service script starts with a : Class statement and ends with an
:EndClass statement. These statements are directives used by the Dyalog APL
script compiler and are specific to Dyalog APL.

The : Cl ass statement declares the name of the Class (which must be the same as
the name declared in the WebService statement) and the Base Class from which it
inherits, which is normally System.Web.Services.WebService.

:Class GolfService: System.Web.Services.WebService

Following the : Class statement, there may appear any number of APL expressions

and function bodies. Following these there must be a : EndClass statement.

Internal sub-classes (nested classes) may also be defined within the main : Class
:EndClass block.

Because the functions usually take arguments and return results whose types must be
known, the statement

:Using System

must almost always appear immediately after the : Cl ass statement to locate them.

Chapter 7: Writing Web Services 143

Compilation

When the Web Service, specified by the . asmx file, is called for the first time,
ASP.NET invokes the appropriate language compiler (in this case, the Dyalog APL
Script compiler) whose job is to produce an Assembly that defines and describes a
class. When the Web Service is used subsequently, the request is satisfied by creating
and using an instance of the class. However, ASP.NET detects ifthe . asmx script
has been modified, and recompiles it in this case.

The Dyalog APL Script compiler creates a DLL containing a workspace, which itself
contains the Web Service class. The class contains all the functions, which are
defined within the script, together with any variables that were established by
expressions in the script. A single function comprises all the statements enclosed
within a pair of del (V) symbols.

For example, the following script would define a class, instances of which would run
using [DML+«2, containing a single function FOO and a variable X.

:Class MyClass
OML<2
X<10
V Z<FOO Y
L<Y+X
v
:EndClass

Note that all expressions in the class script are executed by the script compiler when
it creates the assembly. They are not executed when the Web Service is invoked.

If your script contains a [JCY statement, it will be executed by the compiler when
establishing the class. This may be used to import functions from other workspaces
and obviate the need to include them in the . asmx file.

144

.NET Interface Guide

Exporting Methods

Your Web Service will be of no use unless it exports at least one method. To export a
function as a method, you must include declaration statements. Such declarations
may be supplied anywhere within the function body, but it is recommended that they
appear together as the first block of statements in your code. All declaration
statements begin with the colon (:) character and the following declaration
statements are supported:

:Access WebMethod
This statement causes the function to be exported as a method and must be present.
:Signature type « fnname type namel, type name2,

This statement declares the data type of the result and the arguments of the method
where type may specify any valid .NET type that is supported by Web Services.
Note that the assignment arrow (<) is necessary if the function returns a result.

The declaration of each parameter of the method is separated from the next by a
comma. Each name may be any ASCII character string. Note that names are optional.

Add1

V R«<Add1l args
:Access WebMethod
:Signature Int32«Add Int32 argl,Int32 arg2
R«+/args

v

The Add1 function defined above is exported as a method named Add, that takes
exactly (and only) two parameters of type Int 32 and returns a result of type Int32.
Armed with this definition, which is recorded in the metadata associated with the
class, the .NET Framework guarantees that the method will only be called in this
way.

Add2

V R«Add2 arg
:Access WebMethod
:Signature Double«Add Double[] argl
R«+/arg

v

The Add2 function defined above is exported as a method that takes an array of
Double and returns a result of type Double. Depending on the type of the
arguments provided when the method is invoked, NET and Dyalog APL will call
Add1 or Add2 - or generate an exception if the argument does not match any of the
signatures.

Chapter 7: Writing Web Services 145

Web Service Data Types

In principle, Web Services are designed to support most, if not all, of the data types
supported by the NET Framework, and to support any new .NET classes that you
choose to define.

In practice, the current set of data types supported by Web Services is somewhat
restricted; in particular:

o Multi-dimensional arrays are not supported; only vectors.
o Arbitrary nested arrays are not supported.

However, despite these restrictions, it is possible to build effective Web Services, as
you will see in the following examples.

Execution

When your Web Service (or Page) is invoked, ASP.NET requests an instance of the
corresponding Class from the Assembly (DLL) that was created when it was
compiled. The first time this happens for any Dyalog APL Web Service or Web Page,
the Dyalog APL dynamic link library is loaded into the ASP.NET host process and
the namespace corresponding to your Web Service class is) COPYed from the
Assembly. The Dyalog APL dynamic link library then delivers an instance of this
namespace to the client (calling) process. See Introduction on page 261 for further
details.

In general, every call on a method in a Web Service causes a new instance of the
Web Server class to be created. If you need to maintain/update variables between
calls, you need to write them to permanent storage.

Ifa client invokes a different Dyalog APL Web Service or Web Page, its class is

)COPYed from its Assembly into the workspace managed by the Dyalog APL
dynamic link library. When you export a class, you can select one of three Isolation
Modes:

1. Each host process has a single workspace
2. Each AppDomain has its own workspace
3. Each Assembly has its own workspace

In this context, "workspace" is synonymous with "Dyalog APL process": Each
workspace is managed by a separate process running dyalog.dll. Under option 1, all
Dyalog APL Web Services (and Web Pages) hosted by the IIS host process share the
same workspace when they are invoked.

The isolation mode selected has implications for the way that you access and manage
global resources such as component files. Finer isolation modes may be implemented
in future versions of Dyalog APL.

146 .NET Interface Guide

Global.asax, Application and Session Objects

When a Web Service runs, it has access to the Application and Session objects.
These are objects provided by ASP.NET through which you can manage the
execution of the Web Service. ASP.NET creates an Application object when it first
starts the Application, i.e. when any client requests any Web Service or Web Page
stored in the same IIS Virtual Directory. It also creates a Session object for each client
process.

When the first request comes in for an ASP.NET application, ASP.NET checks for an
optional file named global . asax, and ifit is there it compiles it. The application's
global.asax instance is then used to apply application events.

global.asax typically defines callback functions to be executed on the various
Applicationand Session events,suchasApplication Start,
Application End, Session Start,Session_ Endand so forth.

Dyalog APL allows you to use APL functions in the global . asax script. This
allows you to initialise your APL application when it is first invoked, and to close it
down cleanly when it is terminated.

For example, you can use global . asax to tie a component file on start-up, and
untie it on termination.

Chapter 7: Writing Web Services 147

Sample Web Service: EG1

The first APLExample sample is supplied in
samples\asp.net\webservices\egl.asmx which is mapped via an IIS
Virtual Directory to the URL:

http://localhost/dyalog.net.15.0.unicode.32/webservices/egl.asmx

<%@ WebService Language="Dyalog" Class="APLExample" %>

:Class APLEXample: System.Web.Services.WebService
:Using System

V R«<Add args
:Access WebMethod
:Signature Int32«Add Int32 argl,Int32 arg2
R«+/args

v

tEndClass

The Add function defined above is exported as a method that takes exactly (and
only) two parameters of type Int 32 and returns a result of type Int32.

Line [3] could in fact be coded as:
R«args[1]+args[2]

because .NET guarantees that a client can only call the method by providing two 32-
bit integers as parameters.

Testing APLExample from a Browser

If you connect to a URL that represents a Web Service, the browser displays a page
that provides information about the service and the methods that it contains. In
certain cases, but by no means all, the page also contains form fields that let you
invoke a method from the browser.

The screen shot below shows the page displayed by Google Chrome when it is
pointed at egl . asmx. It shows that the Web Service is called APLExample, and
that it exports a single method called Add. Furthermore, the Add method takes two
parameters of type int, named arg/ and arg?2.

148

.NET Interface Guide

[APLExample Web Service X

&« C | @ localhost/dyalog.net.15.0.unicode.32/webservices/egl.asmx?op=Add ¥r :
yalog g P

APLExample

Click here for a complete list of operations.

Add
Test

To test the operation using the HTTP POST protocol, click the 'ITnvoke' button.
Parameter Value

argl: 23

arg2: 19 |

Invoke

The following screen shot shows the result of entering the values 23 and 19 into the
form fields and then pressing the Invoke button.

In this case, the method returns an int value 42.

[APLExample Web Service X [localhost/dyalog.net.15.0 X

C | @ localhost/dyalog.net.15.0.unicode.32/webservices/eg1.asmx/Add ¥

sas

This XML file does not appear to have any stvle information associated with 1t. The
document tree 1s shown below.

<int xmlns="http://tempuri.org/">42</int>

It is important to understand what is happening here.

Accessed in this way from a browser, a Web Service appears to be behaving like a
Web Server; this is not the case.

It is simply that the browser detects that the target URL is a Web Service, and
invokes an ASP+ page named DefaultSdlHelpGenerator.aspx that inspects
the compiled class and returns an HTML view of'the Web service.

Chapter 7: Writing Web Services 149

Sample Web Service: LoanService

The LoanService sample is supplied in
Dyalog\Samples\asp.net\Loan\Loan.asmx, which is mapped via an IIS
Virtual Directory to the URL:

http://localhost/dyalog.net.15.0.unicode.32/Loan/Loan.asmx

This APLScript sample defines a class named LoanService that is based upon
System.Web.Services.WebService. The LoanService class defines a
sub-class called LoanResult and a method called CalcPayments.

<%@ WebService Language="Dyalog" Class="LoanService" %>
:Class LoanService: System.Web.Services.WebService
:Using System
:Class LoanResult
:Access public
:Field Public Int32[] Periods
:Field Public Double[] InterestRates
:Field Public Double[] Payments
:EndClass

V R«<CalcPayments X;LoanAmt;LenMax;LenMin;IntrMax;
IntrMin;PERIODS ; INTEREST ;NI ;NM
[1] :Access WebMethod
[2] :Signature LoanResult<«CalcPayments Int32 LoanAmt,
Int32 LenMax,Int32 LenMin,
Int32 IntrMax,Int32 IntrMin

[3]

[4] @ Calculates loan repayments

[5] A Argument X specifies:

[6] ~n LoanAmt Loan amount

[7] =~ LenMax Maximum loan period

[8] =~ LenMin Minimum loan period

[9] =~ IntrMax Maximum interest rate
[10] n IntrMin Minimum interest rate
[11]

[12] LoanAmt LenMax LenMin IntrMax IntrMin<X
[13] R<[INEW LoanResult

[14] R.Periods« 1+LenMin+11+LenMax-LenMin
[15] R.InterestRates«0.5x 1+(2xIntrMin)+11+2x

IntrMax-IntrMin
[16] NI«pINTEREST«R.InterestRates+100x12
[17] NM«<pPERIODS«R.Periodsx12
[18] R.Payments<, (LoanAmt)x((NI,NM)pNM/INTEREST)+
1-1+(1+INTEREST)o.*xPERIODS
\'4
:EndClass

150

.NET Interface Guide

CalcPayments takes five integer parameters (see comments for their descriptions)
and returns an object of type LoanResult.

Note that the block of APLScript that defines the sub-class LoanResult must
reside between the : Class and : EndCl ass statements of the main class,
LoanService. You may define any number of internal classes in this way.

The LoanResult class is made up only of Fields and it does not export any
methods or properties. Furthermore, there are no constructor methods defined and it
relies solely on its default constructor that is inherited from its base class,
System.Object. The default constructor is called without any parameters and in
fact does nothing except to create an instance of the class. In particular, the fields it
contains initialised to zero. In this case, that is sufficient, as all the fields will be
filled in explicitly later.

:Class LoanResult

:Access public
:Field Public Int32[] Periods
:Field Public Double[] InterestRates
:Field Public Double[] Payments

:EndClass

The : Class statement starts the definition of a new class and specifies its name. The
:EndClass statement terminates it definition.

The three : Fie ld declaration statements specify the names and data types of three
public fields. The Pub L i ¢ attributes are necessary to make the fields visible to
methods within the LoanService class as a whole, as well as to external clients.

The Periods field is defined to be an array of integers; the InterestRates field
an array of Double. Both these arrays are 1-dimensional, i.e. vectors. These will
contain the numbers of years, and the different interest rates, to which the repayments
matrix applies.

Notice however that Payments is also defined to be 1-dimensional when in fact it
is, more naturally, a 2-dimesional matrix. The reason for this is that, currently, Web
Services do not support multi-dimensional arrays. This is a NET restriction and not a
Dyalog restriction.

CalcPayments([13] getsanew instance ofthe LoanResul t class by doing
[ONew LoanResult.Itthen assigns values to each of the three fields in lines [14],
[15] and [18].

Chapter 7: Writing Web Services 151

Testing LoanService from a Browser

Like the methods exported by the APLEXample Web Services described above, the
CalcPayments method exported by LoanService is callable from a browser
and the page that is displayed when you point a browser at it is shown below.

[LoanService Web Service X

&« C | @ localhost/dyalog.net.15.0.unicode.32/loan/loan.asmx?op=Ca

LoanService

Click here for a complete list of operations.

CalcPayments

Test

To test the operation using the HTTP POST protocol, click the 'Invoke' button.
Parameter Value

LoanAmt: 100000

LenMax: 12

LenMin: 10
IntriMax: 3
IntrMin: 1 |

Invoke

To test the CalcPayments method, you can enter numbers into the form fields in
this page, as shown in the screen shot above, and then press the Invoke button. The
result of the method is then displayed in a separate window as illustrated below.

Notice that the result is described using XML, which is in fact the very language
used to invoke a Web Service and return its result.

You can see that the result is of type LoanResult, and it contains 3 fields named
Payments, InterestRates and Periods. This information was derived by our
definition ofthe LoanResult class in the APLScript file.

Asyou can see, the InterestRates field shows that it contains a vector of
floating-point values (double) from the minimum rate to the maximum rate that we
specified on the input form. This time, the increment is 0.5.

Similarly, the Payments field contains the calculated repayment values.

Finally the Periods field, contains a vector of integers from the minimum period to
the maximum period that we specified on the input form, in increments of 1.

152

.NET Interface Guide

[4 LoanService Web Service X [localhost/dyalog.net.15.0 X

c | @ localhost/dyalog.net.15.0.unicede. 32/ loan/loan.asmx/CalcPayments w

This XML file does not appear to have any style information associated with it. The document
tree 15 shown below.

¥ <LoanResult xmlns:xsi="http://waw.w3.org/2001/XMLSchema-instance”
xmlns:xsd="http://www.w3.org/2001/XMLSchema” xmlns="http://tempuri.org/">
¥<InterestRates>
<double>1l</double>
<double>1.5¢</doublex>
<double>2</double>
<double>2.5<¢/double>
<double>3</double>
</InterestRates:
¥ <Payments>
<double>876.841213781641<,/double>
<double>80@.32145394954341 < /double>
<double>737.23320941488917</double>
<double>897.914997950831632< /double>
<double>822.266042599729< /double>
<double>759.251281138578%2</double>
<double>%2@,1345384255726+«/double>
<double>844,59078506699518< /double>
<double>781.68369185089932</double>
<double>%42.69901783959488< /double>
<double>867.29464385512761</double>
<double>804.52938388979788 < /double>
<double>965. 68744698391056¢<,/double>
<double>89@.37635433798873</double>
<double>827.786689448051%<« /double>
</Payments>
¥<Periods>
<intrl@</int>
<int»11</int>
<int»12</int>
< /Periocds:
¢</LoanResult>

Chapter 7: Writing Web Services 153

Sample Web Service: GolfService

GolfService isan example Web Service that resides in the directory
samples\asp.net\Golf and is associated with the IIS Virtual Directory
dyalog.net/Golf. This example makes extensive use of internal classes to
define data structures that are appropriate for a client application, such as C# or VB.

The directory contains a global . asax script, which is used to initialise the
application.

The Golf Web Service example manages the reservation of tee-times at golf courses.
All the data is held in a component file called GolfData .dct. This file may be
initialised using the function Gol f . INITFILE in the workspace
samples\asp.net\webservices\webservices.dws. You may need to
alter the file path first.

Each golf course managed by the application has a unique code (integer) and a name
(string). This is handled by defining a class (structure) called GolfCourse with two
fields, Code and Name.

GolfService provides 3 methods:

GetCourses ()

Retumns a list of Golf Courses (CourseCode and CourseName). The
result of this method is an array of Gol fCourse objects.

GetStartingSheet (CourseCode, Date)

Returns the starting sheet for a specified golf course on a given day. A
starting sheet is a list of starting times with a list of the golfers booked
to start their round at that time. The result of this method is a
StartingSheet object.

MakeBooking (CourseCode, TeeTime, GimmeNearest,
Namel, Name?2, Name3, Name4))

Requests a tee reservation at the course specified by CourseCode.
TeeTime isa DateTime object that specifies the requested date and
time. GimmeNearest is Boolean. If 1, requests the nearest tee-time
to that specified; if 0, requests only the specified tee-time. Name1-4
are strings specifying up to 4 players. Note that all parameters are
required. The result of this method is a Booking object.

154

.NET Interface Guide

GolfService: Global.asax

<script language="Dyalog" runat=server>

V Application_Start;GOLFID
:Access Public
GOLFID<«'c:\Dyalog\samples\asp.net\golf\GolfData' [OFTIE 01
Application[c'GOLFID']«GOLFID

v

vV Application_End;GOLFID
:Access Public
:Trap 6
GOLFID+Application[<'GOLFID']
OFUNTIE GOLFID
:EndTrap
v
</script>

The Application_Start function is called when the GolfService Web
Service is invoked for the first time. It ties the Gol fData component file then stores
the tie number in a new Item called GOLFID in the Application object. This item is
then subsequently available to methods in the Gol fService for the duration of the
application.

The App lication_End function is invoked when the GolfService Web
Service terminates. It unties the Gol fData component file.

This example may be considered slightly weak in that the location of the data file is
hard-coded in the application's Global . asax file. An alternative is to store this
information in the <appsettings> section of the appropriate web . config file
orin the global machine. config file. This is preferable if the resource (in this
case a file name) is to be accessed from more than one script. For further information
on ASP.NET config files, see the documentation for the NET Framework SDK.

Note that the GolfData file may be initialised using the function
Golf.INITFILE inthe
samples\asp.net\webservices\webservices.dws workspace. The
function will prompt you for the path of the file, initialize it and update the
Global.asax file accordingly.

1This file needs to be located where it can be modified.

Chapter 7: Writing Web Services 155

GolfService: GolfCourse class

The GolfCourse class is effectively a structure with two fields named Code and
Name. Code is an integer code that provides a shorthand way to refer to a specific
golf course; Name is a String containing its full name.

:Class GolfCourse
tAccess Public
:Field Public Int32 Code
:Field Public String Name

V ctor args
:Implements Constructor
:Access public
:Signature fn Int32, String
Code Name<«args

V ctor_def
:Implements Constructor
:Access public
ctor 71 "'
v
:EndClass

The GolfCourse class provides two constructors. The first, named ctor_def,
takes no arguments and therefore overrides the default constructor that is inherited
from System.Object. ctor_def calls ctor to initialise the instance with a

Code of ~1 and an empty Name.

The constructor named ctor accepts two parameters named CourseCode (an
integer) and CourseName (a string), and simply assigns these values into the
corresponding fields.

Therefore, valid ways to create an instance ofa Gol fCourse are:

GC<[INEW GolfCourse
GC.(Code Name)<«1 'St Andrews'

Or, more simply
GC<[INEW GolfCourse (1 'St Andrews')

Note that the names of the constructor functions are not visible outside the class.
Constructors are identified by their signatures (basically, the : Implements
Constructor statement) and not by their names.

156

.NET Interface Guide

GolfService: Slot class

The S1ot class is effectively a structure with two fields named Time and Players.
Time is a DateTime object that represents a time that can be reserved on the first
tee. Players is an array of (up to 4) strings that contains the names of the golfers
who have reserved to start their round of golf at that time.

:Class Slot
tAccess Public
:Field Public DateTime Time
:Field Public String[] Players

V ctorl arg
:Implements Constructor
:Access public
:Signature fn DateTime
Time<«arg
Players« QOpc''

V ctor2 args
:Implements Constructor
:Access public
:Signature fn DateTime, String[]
Time Players<«args

V ctor_def
:Implements Constructor
:Access public
v
:EndClass

This class provides two constructor functions named ctor1 and ctor2. However,
for internal reasons, if a class defines any constructor functions, it is currently
necessary to provide a dummy default constructor (the form of the constructor that
takes no parameters); hence ctor_def.

The constructor ctor1 accepts a single DateTime parameter, which it assigns to
the Time, field, and initialises the P1ayers field to an empty array.

The constructor ctor2 accepts two arguments, a specified tee time, and an array of
strings that contains golfers' names. It assigns these parameters to Time and
Players respectively.

Chapter 7: Writing Web Services 157

GolfService: Booking class

The Booking class represents the result of the MakeBooking method. It contains 4
fields named OK, Course, TeeTime and Message.

OK is Boolean and indicates whether or not the attempt to make a reservation was
successful. If OK is false (0), the Message field (a string) indicates the reason for
failure.

IfOK is true (1) the Course field contains an instance ofa GolfCourse object,
and the TeeTime field contains an instance ofa S1ot object. Together, these
objects identify the reserved golf course and starting slot. The latter specifies both
the starting time, and the names of all the golfers who have been allocated that
starting time and who will therefore play together.

:Class Booking
:Access Public
:Field Public Boolean OK
:Field Public GolfCourse Course
:Field Public Slot TeeTime
:Field Public String Message

V ctor args
:Implements Constructor
:Access public
:Signature fn Boolean, GolfCourse, Slot, String
OK Course TeeTime Message<«args

V ctor_def
tAccess public
:Implements Constructor
v
:EndClass

This class provides a single constructor method, which must be called with values for
all four fields.

158 .NET Interface Guide

GolfService: StartingSheet class

The StartingSheet class represents the result of the GetStartingSheet
method. It contains 5 fields named OK, Course, Date, Slots and Message. OK is
Boolean and indicates whether or not a starting sheet is available for the specified
course and date.

If OK is false (0), the Message field (a string) indicates the reason for failure.

IfOK is true (1) the Course field contains an instance ofa GolfCourse object, the
Date field contains the date in question, and the S1ots field contains an array of
Slot objects. Each S1ot object specifies a starting time and the names of golfers
who are booked to play at that time.

:Class StartingSheet
:Access Public
:Field Public Boolean OK
:Field Public GolfCourse Course
:Field Public DateTime Date
:Field Public Slot[] Slots
:Field Public String Message

V ctor args
:Implements Constructor
:Access public
:Signature fn Boolean, GolfCourse, DateTime
OK Course Date<«args

V ctor_def
:Implements Constructor
:Access public

\'4
:EndClass

Like the Booking class, the StartingSheet class provides a single constructor
method. In this case, the constructor is called with values for just 3 of the fields; the
values of the other fields are expected to be assigned later.

Chapter 7: Writing Web Services 159

GolfService: GetCourses function

V R«<GetCourses; COURSECODES ; COURSES; INDEX;GOLFID

[1] A
[2] :Access WebMethod
[3] :Signature GolfCourse[]«fn

[5] GOLFID«Application[<'GOLFID']

[6] COURSECODES COURSES INDEX<[JFREAD GOLFID 1

[7] R<[INEW 'GolfCourse, 'c " {§tCOURSECODES COURSES
\

The GetCourses function retrieves the tie number of the Gol fData component
file from the Application object and reads its first component.

The function then creates a Gol fCourse object for each of the courses recorded on
the file, and returns the array of Gol fCourse objects as its result.

GolfService: GetStartingSheet function

The GetStartingSheet function retrieves the tie number of the GolfData
component file from the Application object and reads its first component. Line
[10] creates an instance ofa StartingSheet object and uses it to initialise the
result R. The value of the OK field is set to zero to indicate failure.

It then validates the requested CourseCode. If invalid, it simply sets the Message
field in the result and returns it. Similarly, it checks to see if there is a starting sheet
on file for the requested date. If not, it sets the Message field to indicate this, and
returns.

Note that line [15] extracts the Year, Month and Day properties from the requested
tee time, a DateTime object, and converts them to an IDN. This is used to index the
component containing the starting sheet for that day.

160 .NET Interface Guide

V R<GetStartingSheet ARGS;CODE ;COURSE;DATE;GOLFID;
COURSECODES ; COURSES ; INDEX ; COURSEI ; IDN;DATES ; COMPS 5
IDATE; TEETIMES;GOLFERS;I;T

A

:Access WebMethod

:Signature StartingSheet«fn Int32 CCode,
DateTime Date

WN —~

FWNPFPOOWONOOOAFWNRPEF OLILJILILILIL T

CODE DATE<«ARGS

GOLFID«Application[c'GOLFID']

COURSECODES COURSES INDEX<«[JFREAD GOLFID 1
COURSEI«~COURSECODES1CODE

COURSE<«[INEW GolfCourse (CODE(COURSEI-COURSES,c''))

[W W W s W W W W W W s W W W W e W s W W W W W | M

4
5

6

7

8

9

10] R<[JNEW StartingSheet (0 COURSE DATE)

11] :If COURSEI>pCOURSECODES

121] R.Message<«'Invalid course code'

13] :Return

14] tEndIf

15] IDN«<2 [ONQ'.' 'DateToIDN',DATE.(Year Month Day)
16] DATES COMPS<[JFREAD GOLFID,COURSEI-INDEX

17] IDATE<DATES1IDN

18] :If IDATE>pDATES

19] R.Message«'No Starting Sheet available'
20] :Return

21] :EndIf

22] TEETIMES GOLFERS<«[JFREAD GOLFID,IDATE>COMPS
23] R.OK<«1

24]

T+[NEW 'DateTime, ¢ (<DATE.(Year Month Day)),”
3t74[1]24 60TTEETIMES

[25] R.Slots<[INEW'Slot, c"T,oc " yGOLFERS

v

Line[23] sets the OK field of the result to 1 (success).
Line[24] converts the stored tee times (in minutes) to DateTime objects.

Line[25] combines the tee times and golfers into a vector of 2-element arrays, and
creates a S1ot object for each of them. The result is assigned to the S1ots field of
the result R.

Chapter 7: Writing Web Services 161

GolfService: MakeBooking function

The MakeBooking function checks that the requested tee-time is available, for the
specified number of players and updates the starting sheet accordingly. The result of
the function is a Booking object.

MakeBooking first retrieves the tie number of the Gol £Data component file from
the Application object and reads its first component.

Lines[13 14] create instances of GolfCourse and S1ot objects, which at this stage
are not validated. Line[15] then initialises the result R, a Booking object, which
includes these instances. At this stage, R . OK is 0 indicating failure.

Line[16] validates the requested CourseCode, and, if invalid, simply sets
R.Message and returns.

Similarly, lines [20 23] check that the requested tee time is within the next 30 days
from now. If not, the function assigns the appropriate error message to R .Message
and returns. Note that these two statements employ the APL primitive function >
(rather that the op GreaterThan method) to compare the requested tee time (a
DateTime object) with a new DateTime object that represents now and now+30
days respectively.

Notice that line[24] uses the AddDays method to create a new DateTime object
that represents now + 30 days. An alternative expression, to get now+30 days is:

TEETIME.Now+[NEW TimeSpan (30 0 0 0)

Lines[28-47] are concerned with retrieving the appropriate component from the file,
initialising it or re-using an old one, if it is not present. Each component represents
the starting sheet for a particular course on a particular day.

Lines[48-63] check whether or not the requested slot is available (for the specified
number of golfers). If not it returns an error message as before or, if GimmeNearest
is 1 (true), it attempts to allocate the slot closest to the requested time.

If an appropriate slot is found, Lines[72 73] update the S1ot object with the
assigned time and names of the golfers. Line[74] then inserts the modified S1ot
object into the result, and sets the OK field to 1 (true) to indicate success.

162 .NET Interface Guide

vV R<MakeBooking ARGS;CODE ;COURSE ;SLOT;TEETIME ;GOLFID;
COURSECODES ; COURSES ; INDEX; COURSETI ; IDN;
DATES ; COMPS ; IDATE ; TEETIMES ; GOLFERS;
OLD;COMP ; HOURS ;MINUTES ; NEAREST ; TIME;
NAMES ; FREE; FREETIMES;I;J;DIFF
[1] =
[2] :Access WebMethod
[3] :Signature Booking«Int32 CourseCode,
DateTime TeeTime,
Boolean GimmeNearest,
String Namel,
String Name2,
String Name3,
String Namel

[6] A If GimmeNearest=0, books (or fails) for specified time
[7] A If GimmeNearest=1, books (or fails) for nearest to
specified time

[9] CODE TEETIME NEAREST<«3tARGS

[10] GOLFID«Application[c'GOLFID']

[11] COURSECODES COURSES INDEX<[JFREAD GOLFID 1

[12] COURSEI+~COURSECODES1CODE

[13] COURSE<[INEW GolfCourse,cCODE (COURSEI>COURSES,c'")

[14] SLOT<[INEW Slot TEETIME

[15] R<[JNEW Booking (0 COURSE SLOT '')

[16] :If COURSEI>pCOURSECODES

[17] R.Message«'Invalid course code'

[18] :Return

[19] tEndIf

[20] :If TEETIME.Now>TEETIME

[21] R.Message«'Requested tee-time is in the past'’

[22] :Return

[23] :EndIf

[24] :If TEETIME>TEETIME.Now.AddDays 30

[25] R.Message«'Requested tee-time is more than
30 days from now'

[26] :Return
[27] :EndIf
[28] IDN«2 [ONQ'.' 'DateToIDN',TEETIME.(Year Month Day)

[29] DATES COMPS<[JFREAD GOLFID,COURSEI->INDEX
[30] IDATE«DATEStIDN
[31] :If IDATE>pDATES

[32] TEETIMES«(60x7)+10x"1+11+8x6
A 10 minute intervals, 07:00 to 15:00
[33] GOLFERS+((pTEETIMES),4)pc""
A up to 4 golfers allowed per tee time
[34] :If 0=0LD+>(DATES<
2 ONQ'."' 'DateToIDN',3t[TS)/1pDATES
[35] COMP«+(TEETIMES GOLFERS)OFAPPEND GOLFID

[36] DATES,<IDN
[37] COMPS,«COMP

[38] (DATES COMPS)OFREPLACE GOLFID,COURSEISINDEX
[39]

Chapter 7: Writing Web Services

163

:Else
DATES[OLD]<«IDN
(TEETIMES GOLFERS)FREPLACE
GOLFID,COMP«OLD>COMPS
DATES COMPS [OFREPLACE GOLFID,COURSEI-INDEX
tEndIf
:Else
COMP<IDATE>COMPS
TEETIMES GOLFERS<+[JFREAD GOLFID COMP
:EndIf
HOURS MINUTES<«TEETIME. (Hour Minute)
NAMES<«(3+ARGS)~8"'"'
TIME«60LHOURS MINUTES
TIME«10x|0.5+TIME+10 A Round to nearest
10-minute interval
:If ~NEAREST
I<«TEETIMES1TIME
:If I>pTEETIMES
:0rIf (pNAMES)>>,/+/0=p GOLFERS[I;]
R.Message«'Not available'
:Return
tEndIf
:Else
:If ~v/FREE<(pNAMES)<>,/+/0=p"GOLFERS
R.Message«'Not available'
:Return
:EndIf
FREETIMES«(FREEXTEETIMES)+32767x~FREE
DIFF«|FREETIMES-TIME
I<DIFF1|l/DIFF
tEndIf
J«(>,/0=p "GOLFERS[I;])/14
GOLFERS[I;(pNAMES)tJ]J«NAMES
(TEETIMES GOLFERS)[JFREPLACE GOLFID COMP
TEETIME<[INEW DateTime,cTEETIME.(Year Month Day),
3t24 60TI-TEETIMES
SLOT.Time«TEETIME
SLOT.Players<«(=,/0<p"GOLFERS[I;])/GOLFERS[I;]
R.(OK TeeTime)«1l SLOT

164

.NET Interface Guide

Testing GolfService from a Browser
If you point your browser at the URL:
http://localhost/dyalog.net.15.0.unicode.32/Golf/Golf.asmx

GolfService will be compiled and ASP.NET will fabricate a page about it for the
browser to display as shown below.

The three methods exposed by GolfService are listed.

[GolfService Web Service X

& C | @ localhost/dyalog.net.15.0.unicode.32/golf/golf.asmx ¥

GolfService

The following operations are supported. For a formal definition, please review the
Service Description.

CTTY

« GetCourses

» GetStartingSheet
+ MakeBooking

Invoking the GetCourses method generates the following output.

Notice that the data type of the result is ArrayOfGol fCourse, and the data type
of'each element of the result is Gol fCourse. Furthermore, the public fields defined
for the GolfCourse object are clearly named.

All this information is derived from the declarations in the Golf . asmx script.

As supplied, the Gol fData component file contains only 3 golf courses as shown
below.

Chapter 7: Writing Web Services 165

[GolfService Web Service X [localhost/dyalog.net.15.0 X

C | @ localhost/dyalog.net.15.0.unicode.32/golf/golf.asmx/GetCourses ¥f

wss

This XML file does not appear to have any style information associated with 1t. The
document tree 15 shown below.

v <Array0fGolfCourse xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance”
xmlns:wsd="http:/ /www.w3.org/2001/XMLSchema” xmlns="http://tempuri.org/">
v <GolfCourse:

<Code>1</Code>
<Name>5t Andrews</Name:
<«/GolfCourses
¥ <GolfCourse:>
«Code>2</Code>
<Name >Hindhead</Name>
</GolfCourse>
v <GolfCourse:
«Code>3</Code>
<Name>Basingstoke</Name:>
</GolfCourse:
</arrayofGolfCourse:

ASP.NET generates a Form containing fields that allow the user to invoke the
MakeBookings method as shown below.

Notice the way a DateTime value is specified. Note too that the GimmeNearest
parameter is Boolean, so you must enter "True"" or "False". IfyouenterOor 1,
it will cause an error and the application will refuse to try to call MakeBookings
because you have specified the wrong type for a parameter.

When you try this yourself, remember to enter a date that is within the next 30 days,
and a time between 07:00 and 15:00. Alternatively, you may wish to experiment
with invalid data to check the error handling.

166

.NET Interface Guide

[GolfService Web Service X

& C | @ localhost/dyalog.net.15.0.unicode.32/golf/golf.asmx?op=MakeBooking ¥ | 2

GolfService

Click here for a complete list of operations.

MakeBooking
Test
To test the operation using the HTTP POST protocol, click the 'Invoke' button.
Parameter Value
CourseCode: 3
TeeTime: 2016/10/23

GimmeMNearest: | True

Namel: T.Woods

Name2: E.Hogan

MName3: F.Donnelly |
MNamed:

Invoke

The result of invoking MakeBooking with this data is shown below.

Notice how all the information about the Booking object structure, including the
structure of the sub-objects, is provided.

Chapter 7: Writing Web Services 167

[GolfService Web Service X [3 localhost/dyalog.net.15.0 %

C | © localhost/dyalog.net.15.0.unicode.32/golf/golf.asmx/MakeBooking W ok

This XML file does not appear to have any style information associated with it. The
document tree 15 shown below.

¥ <Booking xmlns:xsi="http://www.w3.0rg/2881/XML5chema-instance”
wmlns:xsd="http://www.w3.org/2001/XML5chema” xmlns="http://tempuri.org/">
¥ <Course>
<Code>3</Code>
<Name>Basingstoke</Name>
</Course>
<Message/ >
<OK>true</oK>
v <TeeTime>
¥ <Players>
<string>T.Woods</string>
<string»B.Hogan</string:
<string»P.Donnelly</string>
</Players>
<Time>2016-18-23TA7:80:00</Time>
</TeeTime:
</Boocking>

The following picture shows data suitable for invoking the GetStartingSheet
method.

If you try this for yourself, choose a course and date on which you have made at least
one successful booking.

[GolfService Web Service

& C | ® localhost/dyalog.net.15.0.unicode.32/golf/golf.asmx?op=GetStartingSheet ¥ |

GolfService :

Click here for a complete list of operations.

GetStartingSheet

Test

To test the operation using the HTTP POST protocol, click the 'Invoke' button.
Parameter Value

CourseCode: |3

Date: |2016/10/23 |

Invoke

168

.NET Interface Guide

Finally, the result ofthe GetStartingSheet function is illustrated below.

The output clearly shows that the result,a StartingSheet object, contains an

array of S1ot objects, each of which contains a Time field and a Players field.

[GolfService Web Service X [3 localhost/dyalog.net.15.0 %

C | ® localhost/dyalog.net.15.0.unicode.32/golf/golf.asmx/GetStartingSheet w

This XML file does not appear to have any style information associated with 1t. The document
tree 15 shown below:

v <StartingSheet xmlns:xsi="http://www.w3.org/20@1/XML5chema-instance”
wxmlns:xsd="http://www.w2.0org/2001/XMLSchema"” xmlns="http://tempuri.org/">
¥ <Course>

<Code>3</Code>
<Namz>Basingstoke</Name>
</Courses
<Date>2016-19-23T20:00:08</Date>
<OK>true</OK>
v<Slots>
v<slot>
¥ <Players>
<string>T.Woods</string>
<string»B.Hogan</string>
<string>P.Donnelly</string>
<string/>
</Players:>
<Time»2016-18-23TG7:00:08</Tims>
</5lots
v<slot>
¥ {Players>
<string/>
<string/>
<string/>
<string/>
</Players:>
<Time»2016-18-23T67:10:08</Tims>
</5lot>»

Chapter 7: Writing Web Services 169

Using GolfService from C#

The csharp sub-directory in samples\asp.net\golf contains sample files for
accessing the GolfService Web Service from C#. The C# source code in
Golf.cs isshown below.

using System;
class MainClass {

static void Main (String[] args)
{
GolfService golf = new GolfService();
int nArgs = args.Length;
Booking booking;

booking=golf.MakeBooking (

/* Course Code */ 1,

/* Desired Tee Time */ DateTime.Parse(args[0]),

/* nearest is OK */ true,

/* player 1 */ (nArgs > 1) ? args[1l] ",
/* player 2 */ (nArgs > 2) ? argsl[2] : "",
/* player 3 */ (nArgs > 3) ? args[3] : "",
/* player 4 */ (nArgs > 4) ? args([4] "

)i

Console.WritelLine (booking.OK) ;
Console.WritelLine (booking.TeeTime.Time.ToString()) ;
foreach (String player in booking.TeeTime.Players)
Console.WriteLine (player) ;
}
}

The following example shows how you may run the C# program golf.exe froma
Command Prompt window. Please remember to specify a reasonable date and time
rather than the one used in this example.

csharp>golf 2006-08-07T08:00:00 T.Woods A.Palmer P.Donnelly
True

25/08/2008 08:00:00

T.Woods

A.Palmer

P.Donnelly

csharp>

170

.NET Interface Guide

Sample Web Service: EG2

In all the previous examples, we have relied upon ASP.NET to compile the
APLScript into a .NET class prior to running it. This sample illustrates how you
can make a .NET class yourself.

For this example, the Web Service script, which is supplied in the file
samples\asp.net\webservices\eg2.asmx (mapped via an IIS Virtual
Directory to the URL
http://localhost/dyalog.net/webservices/eg2.asmx) isreduced to
a single statement that merely invokes the pre-defined class called
APLServices.Example.

The entire file, viewed in Notepad, is shown below.

[] egd.asmx - Motepad

File Edit Format View Help

<@ WebService Class="APLServices.Example"” %>

Given this instruction, ASP.NET will locate the APL.Services.Example Web
Service by searching the bin sub-directory for assemblies. Therefore, to make this
work, we have only to create a NET assembly in
samples\asp.net\aplservices\bin. The assembly should contain a NET
Namespace named APLServices, which in turn defines a class named Example.

The procedure for creating .NET classes and assemblies in Dyalog APL was
discussed in Writing .NET Classes in Dyalog APL on page 105. Making a
WebService class is done in exactly the same way.

Note that the sub-directory samples\asp.net\aplservices\bin already
contains copies of the dependant Dyalog DLLs that are required to execute the code.

Chapter 7: Writing Web Services 171

Start Dyalog as Administrator. This is essential both to allow you to create an
assembly.

Starting with a CLEAR WS, create a namespace called APLServices. This will act
as the container corresponding to a NET Namespace in the assembly.

JNS APLServices
#.APLServices

Within APLServices, create a class called Examp L e that inherits from
System.Web.Services.WebService. This is the Web Service class.

)CS APLServices
#.APLServices
JED oExample

:Class Example: WebService
:Using System
:Using System.Web.Services,System.Web.Services.dll
V R<Add arg
tAccess webmethod
:Signature Int32«Add Int32 argl, Int32 arg2
R«+/arg

\'4
:EndClass

Within APLServices.Example, we have a function called Add that will
represent the single method to be exported by this Web Service.

Fix the class, then click File/Save As ... in the Session menubar and save the
workspace in samples\asp.net\aplwebservices\bin.

C:\Program Files\Dyalog\Dyalog APL 15.0
Unicode\Samples\asp.net\webservices\bin\eg2.dws saved Mon
Sep 26 15:31:56 2016

Select the Export... item from the Session File menu, and save the assembly as
eg2.d11 in the same directory, i.e. samples\asp.net\webservices\bin.

172 .NET Interface Guide

B Create bound file

Savein: I bin j 4= I‘::F B

i MName Date modified Type

Quick acoess bridge150-64_unicode.dll 28/07/2016 1&1 Applfcat!c

dyalognet.dll 28/07/2016 18:11 Applicatic

Val dyalogprovider.dil 28/07/2016 1811 Applicatic

Desktop eg2.dll 26,/08/2016 15:24 Applicatic

"

Libraries
This PC
Metwork

<

>

File name: Iet_il2 2 ﬂl
Saveastype: | Microsoft NET Assembly (") =] Cencdl |

™ Burtime application [~ Use External Workspace I SignAssembly I Delay Sion yersion |

F.ey File: I Browze |

Command Line: I

|zolation Made: IEach host process haz a zingle work zpace LI

When you click Save, the Status Window displays the following information to
confirm that the assembly has been created correctly.

B Status = O
File Options

Declered Assembly eg?
Declared Module eg? in file C:\Program Files\Dyalog\Dyalog APL-6% 15.0 Unicode\Samples\asp.net\webservices\bin\eg2.dll
Declared Type APLServices.Example
Compiling WebMethod *Add”
Parameter type "Int32" reselved to System.Int32
Paremeter type "Int32" resolved to System.Int32
Result type "Int32" resolved to System.Int32
Compiled WebMethod "Add"
Emitted Type APLServices.Example
Emitted Assembly to file "C:\Progrem Files\Dyalog\Dyalog APL-64 15.0 Unicode\Samples\asp.net\vebservices\bin\eg2.dlL"

Close

Chapter 7: Writing Web Services 173

Testing EG2 from a Browser

If you point your browser at the URL:
http://localhost/dyalog.net.15.0.unicode.32/webservices/eg2.asmx

ASP.NET will fabricate a page about it for the browser to display as shown below.

The Add method exposed by APLServices.Example is shown, together with a
Form from which you can invoke it.

[Example Web Service x

<« C | @ localhost/dyalog.net.15.0.unicode.

Click here for a complete list of operations.

vebservic

sfeg2.asmxfop=Add ¥

Add

Test

To test the operation using the HTTP POST protocol, click the 'Invoke’ button.
Parameter Value

argl: 123

arg2: 458 |

Invoke .

If you enter the numbers 123 and 456 in the fields provided, then press Invoke, the
method will be called and the result displayed as shown below.

' [Example Web Service x I [localhost/dyalog.net.15.0 x ! “

C | @ localhost/dyalog.net.15.0.unicode.32/webservices/eg2.asmx/Add w

This XML file does not appear to have any style information associated with 1t. The
document tree 15 shown below.

<int xmlns="http://tempuri.org/">579</int>

174 .NET Interface Guide

175

Chapter 8:

Calling Web Services

Introduction

In order to call a Web Service, you need a "proxy class" on the client, which exposes
the same methods and properties as the web service. The proxy creates the illusion
that the web service is present on the client. Client applications create instances of
the proxy class, which in turn communicate with the Web Service via IIS, using
TCP/IP and HTTP/XML protocols.

Microsoft provides a utility called WSDL . EXE that queries the metadata (Web
Service Definition Language) of a Web Service and generate C# source code for a
matching proxy class.

The MakeProxy function

The MakeProxy function is provided in the supplied workspace
samples\asp.net\webservices\webservices.dws.

MakeProxy is monadic and its argument specifies the URL of the Web Service to
which you want to connect. For example, the following expressions uses
MakeProxy to connect to the LoanService sample Web Service provided with
Dyalog NET:

MakeProxy'http://localhost/dyalog.net/Loan/Loan.asmx’

MakeProxy runs the Microsoft utility WSDL . EXE passing the name of your URL to
it as an argument. The utility then creates a C# source code file in your current
directory that contains the code necessary to create a proxy class. The name of the C#
file is the name of the Web Service (as declared in its header line) followed by the
extension .cs.

MakeProxy then calls the C# compiler to compile this file, creating an assembly
with the same name, but with a .dll extension, in your current directory. This
assembly contains a .NET class of the same name.

176

.NET Interface Guide

MakeProxy attempts to determine the correct path for WSDL . EXE and CSC . EXE,
but future versions of Microsoft. NET or Visual Studio require changes, in which case
you will have to modify this function to locate these tools.

Using LoanService from Dyalog APL

For example, the above call to MakeProxy will create a C# source code file called
LoanService.cs,and an assembly called LoanService.dll in your current
directory. The name of the proxy class in LoanService.dll is LoanService.

You use this proxy class in exactly the same way that you use any .NET class. For
example:

JUSING <«,<c',.\LoanService.dll'

LN«<[INEW LoanService

LN.CalcPayments 100000 20 10 15 2
LoanResult

Notice that, as expected, the result of CalcPayments is an object of type
LoanResult. For convenience, we will assign this to LR and then reference its
fields:

LR«<LN.CalcPayments 100000 20 10 15 2

LR.Periods
10 11 12 13 14 15 16 17 18 19 20

LR.InterestRates
22.533.5445565.566.577.588.599.510 10.5

LR.(((pInterestRates),pPeriods)pPayments)
920.1345384% 844 .5907851 781.6836919 728.4970675 682.947

The Payments field is, of course, a vector because it was defined that way.
However, as can be seen above, it is easy to give it the "right" shape.

When you execute the CalcPayments method in the proxy class, the class
transforms and packages up your arguments into an appropriate SOAP/XML stream
and sends them, using TCP/IP, to the URL that represents the Web Service wherever
that URL is on the internet or your Intranet. It then decodes the SOAP/XML that
comes back, and returns the response as the result of the method.

Note that, depending upon the speed of your connection, and the logical distance
away of the Web Service itself, calling a Web Service method can take a significant
amount of time; regardless of how much time it actually takes to execute on its
server.

Chapter 8: Calling Web Services 177

Using GolfService from Dyalog APL

The workspace samples\asp.net\webservices\webservices contains
functions that present a GUI interface to the Gol fService web service.

The GOLF function accesses GolfService through a proxy class. GOLF is called
with an argument of 0 or 1. Use 1 to force GOLF to create or rebuild the proxy class,
which it does by calling MakeProxy. You must use an argument of 1 the first time
you call GOLF, orifyou ever change the GolfService APL code.

Note that you cannot make the proxy for GolfService unless the Web Server
class has been compiled on the server. At present, the only way to trigger the
compilation of golf.asmx into a Web Service is to visit the page once using Internet
Explorer as described in the previous chapter.

The first few lines of the function are listed below. If the argument is 1, line[2] makes
the proxy class GolfService.DLL in the current directory; if not it is assumed to
be there already. Line[6] defines JUSING to use it, and Line[7] creates a new
instance which is assigned to GS. Line[8] calls the GetCourses method, which
returns a vector of Gol fCourse objects. Notice how namespace reference array
expansion is used to extract the course codes and names from the Code and Name
fields respectively.

V GOLF FORCE;F;DLL;COURSES;COURSECODES;N;GS;[JUSING
] :If FORCE#0

] DLL<«<MakeProxy
‘http://localhost/dyalog.net/golf/golf.asmx’
] :Else

] DLL«'.\GolfService.dll"'

] :EndIf

] JUSING<«'System'(',"',DLL)

] GS<[INEW GolfService

] COURSECODES COURSES<«{®tGS.GetCourses.(Code Name)

Lo N e N e N e N e B e | Lo N |

The following screen shot illustrates the user interface provided by GOLF. In this
example, the user has typed the names of two golfers (one rather more famous than
the other - at least in APL circles) and then presses the Book it! button.

178 .NET Interface Guide

W Dyalog APL Tee Reservation Service

Select a Course | St Andrews |
Date & Time |21/06/2016 ~| [o70000 =

Player 1 |Rory Mcliroy

Player 2 |Peter Donnely

Player 3 |

Player 4 |

[v Give me the nearest slot if my chosen time is unavailable

Boolk: it! | Starting Sheet Cancel

This action fires the BOOK callback function which is shown below.

v BOOK;CCODE; YMD;HOURsMINUTES;FLAG; NAMES ; BOOKING;M
CCODE<«>F.COURSE.SelItems/COURSECODES
YMD<«3tF.DATE. (IDNToDate>DateTime)

HOUR MINUTES<«2114F.TIME.DateTime
FLAG«<1=F.Nearest.State
NAMES<«F.(Namel Name2 Name3 Namek).Text
BOOKING<«GS.MakeBooking CCODE
(ONEW DateTime (YMD,HOUR MINUTES 0)),FLAG,NAMES
'M'OWC'MsgBox '
:If BOOKING.OK
M.Text«'Tee reserved for
',724>,/BOOKING.TeeTime.Players, ', '
M.Text,«' at ',BOOKING.Course.Name
M.Text,«' on ',BOOKING.TeeTime.Time.
(ToLongDateString,' at ',ToShortTimeString)
tElse
M.Text<«BOOKING. (Course.Name,"'"',
TeeTime.Time.(ToLongDateString,
' at ',ToShortTimeString),' ',Message)
:EndIf
DDQlMl
\'4

O 00 CCUIF WN —~
[S S R T Y Y S Y J Y

-

e L L T e Ve Ve BN e T T Yo T T |
= O

[N
w N
—a —

M
[N
o F
—a

Chapter 8: Calling Web Services 179

Line[6] calls the MakeBooking method of the GS object, passing it the data entered
by the user. The result, a Booking object, is assigned to BOOKING. Line[8] checks
its OK field to tell whether or not the reservation was successful. If so, lines[9-11]
display the message box illustrated below.

Notice how the various fields are extracted and notice how the
ToLongDateStringand ToShortTime String methods are employed.

Tee reserved for Rory Mcllroy, Peter Donnelly at 5t Andrews on 21 June 2016 at
07:00

oK

Pressing the Starting Sheet button runs the SS callback listed below.

V SS;CCODE ;YMD;M;SHEET ;OK ; COURSE ; TEETIME ; S;DATA;N
s TIMES
[1] CCODE<>F .COURSE.SelItems/COURSECODES
[2] YMD«31F .DATE. (IDNToDateoDateTime)
[3] SHEET«GS.GetStartingSheet CCODE([ODNEW DateTime YMD)
[4] :If SHEET.OK

[5] DATA«<t(SHEET.Slots).Players
[6] TIMES«(SHEET.Slots).Time
[7] 'S'OWC'Form'('Starting Sheet for ',

SHEET.Course.Name,"' ',
SHEET.Date.TolLongDateString)
('Coord' 'Pixel')('Size' 400 480)

[8] 'S.G'[OWC'Grid'DATA(O 0)(S.Size)

[9] S.G.RowTitles«TIMES.ToShortTimeString

[10] S.G.ColTitles«'Player 1' 'Player 2'
‘Player 3' 'Player 4'

[11] S.G.TitleWidth«60

[12] OoQ's'

[13] tElse

[14] '‘M'OWC'MsgBox ' ('Starting Sheet for ',

SHEET.Course.Name,' ',
SHEET.Date.ToLongDateString)
('Style' 'Error')

[15] M.Text«SHEET.Message
[16] OpoQ'M'
[17] tEndIf

v

180 .NET Interface Guide

Line[3] calls the Get StartingSheet method ofthe GS object. The result, a
StartingSheet object, is assigned to SHEET. Line[4] checks its OK field to see if
the call succeeded. If so, lines[5-12] display the result in a Grid, which is illustrated
below.

Player 1 Player 2 Player 3 Player 4 A
0700 Rory Mellroy Peter Donnely
0710
07:20
07:30
07:40 W

Chapter 8: Calling Web Services 181

Exploring Web Services

You can use the Workspace Explorer to browse the proxy class associated with a
Web Service, in exactly the same way that you can browse any other NET

Assembly. The following screen shots show the Metadata for LoanService,
loaded from the LoanService.d11 proxy.

Remember, LoanService was written in APLScript, but it appears and behaves
just like any other .NET class.

The first picture displays the structure of the LoanResult class.

o) CADyalog15.0M\WEBSERVICES.dws Exploring []

File Edit Options View Tools
BBXQE| cF eldlal s

Workspace Tree

- #

Sfil Typelikbs
Eg MetaData
EE] Loaded Metadata
Eg LoanService
Eg Modules
Eg C:\Users\Pete\Desktop\loanService.dll
Eg Namespaces
E‘Q [Unnamed]
Eg Classes

E] CalcPaymentsCompletedEventArgs

g CalcPaymentsCompletediventHandler

59 LoanResult
g Base Class
g Constructors
B Fields
g (Private)interestRatesField : System.Double[]
E] (Private)paymentsField : System.Double[]
[- g (Private)periodsField : System.Int32[]
{2 Methods
g Properties
[]...g LoanService

22 ohject(s). 62.44Mb free, 112320 bytes used (0 bytes selected)

The second picture shows the methods exposed by LoanService. In addition to

CalcPayments, which was written in APLScript, there are a large number of
other methods, which have been inherited from the base class.

182

.NET Interface Guide

\WEBSERVICES.dws Ex|

plaring []

File Edit Options View Teols
BB XQG

o EEEE 56

Workspace Tree

£

=t g LoanService

g Base Class
g Constructors

=-] Methods

----- 9 (Private)Boolean
----- 9 (Private)Boolean
----- 9 (Private)Boolean
----- 9 (Private)Boolean
..... g (Private)Boolean
..... g (Private)IntPtr
..... € (Private)System.
..... € (Private)System.
..... € (Private)System.
..... E) (Private)System.
..... @) (Private)System.
..... @) (Private)System.
..... @) (Private)System.
..... @) (Private)System.
.....) (Private)System.
.....) (Private)System.

CanCastToXmlType(System.String, System.String)

get_CanRaiseEvents()

get_CanRaiseEventsInternal()

get_DesignMode()

IsInstanceOfType(System.Type)

GetComIUnknown{Boolean)

Collections.Hashtable get_AsyncInvokes()

ComponentModel .EventHandlerlist get_Events()

IAsyncResult BeginInvoke(System.String, System.Objec

IAsyncResult BeginSend(System.Uri, System.Web.Serwvic

MarshalByRefObject MemberwiseClone(Boolean)

Net.WebRequest get_PendingSyncRequest()

Net.WebRequest GetWebRequest(System.Uri)

Net.WebResponse EndSend(System.ITAsyncResult, System.

Net.WebResponse GetWebResponse(System.Net.WebRequesi

Net.WebResponse GetWebResponse(System.Net.WebRequesi,,
>

|22 object(s). 62.44Mb free.

|1 12320 bytes used (0 bytes selected)]

Chapter 8: Calling Web Services 183

Asynchronous Use

Web Services provide both synchronous (client calls the function and waits fora
result) and asynchronous operation.

Each method is exposed as a function with the same name (the synchronous version)
together with a pair of functions with that name prefixed with Begin and End
respectively.

The Beginxxx functions take two additional parameters; a delegate class that
represents a callback function and a state parameter.

To initiate the call, you execute the Beginxxx method using the standard
parameters followed by two objects. The first is an object of type
System.AsyncCallback that represents an asynchronous callback, i.e. a
callback to be invoked when the asynchronous call is complete. The second is an
object which is used to supply extra information. We will see how callbacks are used
later in this section. If you are not using a callback, these items should be null object
references. You can specify a reference to a null object using the expression

(ONS' '). Forexample, using the LoanService sample as above:

A<LN.BeginCalcPayments 10000 16 10 12
9(ONS' ") (ONS' ")

The result is an object of type WebClientAsynchResult.

A
System.IAsyncResult [JCLASS
System.Web.Services.Protocols.WebClientAsyncResult

Then, some time later, you call the Endxxx method with this object as a parameter.
For example:

LN.EndCalcPayments A
LoanResult

You can execute several asynchronous calls in parallel:

Al<LN.BeginCalcPayments 20000 20 10 15

7(ONS' ") (ONS" ")
A2<LN.BeginCalcPayments 30000 10 8 12

3(ONs' ") (ONs*' ")

LN.EndCalcPayments Al
LoanResult

LN.EndCalcPayments A2
LoanResult

184 .NET Interface Guide

Using a callback

The simple approach described above is not always practical. If it can take a
significant amount of time for the web service to respond, you may prefer to have the
system notify you, via a callback function, when the result from the method is
available.

The example function TestAsynclLoan in the workspace
samples\asp.net\webservices\webservices.dws illustrates how you
can do this. It is somewhat artificial, but hopefully explains the mechanism that is
involved.

TestAsyncLoan itselfis just a convenience function that calls AsyncLoan with
suitable arguments. TestAsynclLoan takes an argument of 1 or 0 that determines
whether or not a Proxy class for LoanService is to be built.

V TestAsyncLoan MAKEPROXY
[1] (sMAKEPROXY),"' AsyncLoan 10000 10 8 5 3'
[2] MAKEPROXY AsyncLoan 10000 10 8 5 3

v

The AsynclLoan function and its callback function GetLoanResult are more
interesting.

v {MAKEPROXY}AsyncLoan ARGS;DLL;SINK;LN;AS;AR
:If 2#[INC'MAKEPROXY' ¢ MAKEPROXY<«0 ¢ :EndIf
:If MAKEPROXY
DLL+MakeProxy'http://localhost/dyalog.net/loan/
loan.asmx'

Lo N e N e |
WN +—~

FWNF OLILILIL LI [T

e e e

tElse

DLL«'.\LoanService.dll'
:EndIf
OUSING<'System'("',',DLL)
LN<[INEW LoanService
AS<[INEW System.AsyncCal lback,<[JOR'GetLoanResult'
AR«<LN.BeginCalcPayments ARGS,AS,LN
"AsyncLoan waits for async call to complete'
:While 0=AR.IsCompleted

D(_I.I
:EndWhile

L N s N s N s N s N s B s N s N e N s N e |
== e = \0 00N OoN0F

V GetLoanResult arg;OBJ;LR;RSLT
[1] 'GetLoanResult callback fires ...'
[2] OBJ«arg.AsyncState
[3] LR«OBJ.EndCalcPayments arg
[4] RSLT<LR.(((pPeriods),(pInterestRates))pPayments)
[5] RSLT«((c''),LR.Periods),(LR.InterestRates),[1]RSLT
[6] 'Result is'
[7] 0«RSLT

Chapter 8: Calling Web Services 185

The effect of running TestAsynclLoan is as follows:

TestAsyncLoan 0
0 AsyncLoan 10000 10 8 4 3

...AsynclLoan waits for async call to complete...
...GetLoanResult callback fires

...Result is

3 3.5 4
8 117.2957193 105.7694035 96.5607447
9 119.5805173 108.0741442 98.88586746
121.892753 110.409689 101.2451382

AsynclLoan[8] creates a new instance of the LoanService class called LN. The
next line creates an object of type System.AsyncCallback named AS. This
object, which is termed a delegate, identifies the callback function that is to be
invoked when the asynchronous call to CalcPayments is complete. In this case,
the name of the callback function is GetLoanResult. Note that [JOR is necessary
because the AsyncCallback constructor must be called with a parameter of type
System.Object. Theline AsyncLoan[10] calls BeginCalcPayments with
the parameters for CalcPayments, followed by references to AS (which identifies
the callback) and LN, which identifies the object in question. The latter will turn up
in the argument supplied to the GetLoanResul t callback. Lines[12-14] loop,
displaying dots, until the asynchronous call is complete. GetLoanResul t will be
invoked during or immediately after this loop, and will be executed in a different
APL thread.

When the GetLoanResul t callback is invoked, its argument arg is an object of
type System.Web.Services.Protocols.WebClientAsyncResult. Itis
in fact a reference to the same object AR that was the result returned by
BeginCalcPayments.

This object has an AsyncState property that references the LoanService object
LN that we passed as the final parameter to BeginCalcPayments.
GetLoanResult[2] retrieves this object and assigns it to OBJ.
GetLoanResult[3] callsthe EndCalcPayments method, passing it arg as
the AsyncResult parameter as before. The resulting LoanResult object is then
formatted and displayed.

186 .NET Interface Guide

187

Chapter 9:

Writing ASP.NET Web Pages

Introduction

Under Microsoft IIS, a static web page is defined by a simple text file with the
extension .htm or .html that contains simple HTML. When a browser requests such a
page, IIS simply reads it and sends its content back to the client. The contents ofa
static web page are constant and, until somebody changes it, the page appears the
same to all users at all times.

A dynamic web page is represented by a simple text file with the extension .aspx.
Such a file may contain a mixture of (static) HTML, ASP.NET objects and a server-
side script. ASP.NET objects are built-in .NET classes that generate HTML when the
page is processed. Scripts contain functions and subroutines that are invoked by
events (such as the Page Load event) or by user interaction.

Typically, a script will generate HTML dynamically, when the page is loaded. For
example, a script could perform a database operation and return an HTML table
containing a list of products and prices. A script may also contain code to process
user interaction, for example to process the contents of a Form that is filled in and
then submitted by the user. These scripts are referred to as server-side scripts because
they are executed on the server. The browser sees only the results produced by the
scripts and not the scripts themselves. Code in a server-side script always involves
the generation of a new page by the server for display in the browser.

The first time ASP.NET processes a NET web page, it compiles the entire page into a
NET Assembly. Subsequently, it calls the code in the assembly directly. The
language used to compile the page is defined in the <script> section, which is
typically defined at the top of the page. If the <script> section is omitted, or if it fails
to explicitly specify the language attribute, the page is compiled using the default
scripting language. This is configurable, but is typically VB or C#.

188

.NET Interface Guide

This Chapter is made up almost entirely of examples, the source code of which is
supplied in the samples\asp.net directory and the sub-directories it contains. This
directory is mapped as an IIS Virtual Directory named dyalog.net, so you may
execute the examples by specifying the URL
http://localhost/dyalog.net/ followed by the name of the sub-directory
and page. You can get an overview of the samples by starting on the page
http://localhost/dyalog.net/index.htm and follow links from there.

To use APLScript effectively in Web Pages, you need to have a thorough
understanding of how ASP.NET works.

In the first example, an outline description ASP.NET technology is provided. For
further information, see the Microsoft NET Framework documentation and
Beginning ASP.NET using VB.NET, Wrox Press Ltd, ISBN 1861005040.

Chapter 9: Writing ASP.NET Web Pages 189

Your first APL Web Page

The first web page example is tutorial/introl.aspx, which is listed below.
This page displays a button whose text is reversed each time you press it.

Note that the example is intended to be run in the framework of the tutorial and
contains two lines of code (shown in italic) that refer to this framework and should
be ignored.

<Z@Register TagPrefix="tutorial" Namespace="Tutorial"
Assembly="tutorial" %>
<script language="Dyalog" runat="server">

VReverse args

:Access public

:Signature Reverse Object,EventArgs
(oargs).Text«d(2args).Text

v

</script>

<html>

<body>

<Form runat=server>
<asp:Button id="Pressme"
Text="Press Me"
runat="server"
OnClick="Reverse"
/>

</form>

<tutorial:index runat="server'"/>

</body>

</html>

In this example, the page language is defined in the <script> section to be
"Dyalog". This in turn is mapped to the APLScript compiler via information in
the application's web.config file or the global IIS configuration file,
machine.config

190

.NET Interface Guide

The page layout is described in the section between the <html> and </html> tags.
This page contains a Form in which there is a Button labelled (initially) "Press Me"

The Form and Button page elements may appear to be simple HTML, but in fact
there is more to them than meets the eye and they are actually both types of
ASP.NET intrinsic controls.

Firstly, the runat="server" attribute indicates that an HTML element should be
parsed and treated as an HTML server control. Instead of being handled as pure text
that is to be transmitted to the browser "as is", an HTML server control is effectively
compiled into statements that then generate HTML when executed. Furthermore, an
HTML server control can be accessed programmatically by code in the Script,
whereas a pure HTML element cannot. On its own, runat="server" identifies
the HTML element as a so-called basic intrinsic control.

When you add runat="server" to a Form, ASP.NET automatically adds other
attributes that cause the values of'its controls to be POSTed back to the same page. In
addition, ASP.NET adds a HIDDEN control to the form and stores state information
in it. This means that when the page is reloaded into the browser the state and
contents of some or all of its controls can be maintained, without the need for you to
write additional code.

The asp: prefix for the Button, identifies the control as a special ASP.NET intrinsic
control. These are fully-fledged .NET Classes in the NET Namespace
System.Web.UI.WebControls that expose properties corresponding to the
standard attributes that are available for the equivalent HTML element. You
manipulate the control as an object, while it, at runtime, emits HTML that is inserted
into the page.

At this point, it is instructive to study what happens when the page is first loaded
and the appearance of the page is illustrated below.

[Attaching an APL functic X

&« C | @ localhost/dyalog.net.15.0.unicode.32/tutorial/intro1.aspx r

=3

introl: Your first APL Web Page

Press Me

Chapter 9: Writing ASP.NET Web Pages 191

The HTML that is transmitted to the browser is:

<html>
<body>

<form name="ctrll" method="post" action="introl.aspx"
id="ctrll">
<input type="hidden" name="_ VIEWSTATE"
value="YTB6NTQ30Dg0OMjcyX19feA==5725bd57" />

<input type="submit" name="Pressme" value="Press Me"
id="Pressme" />
</form>
</body>
</html>

Firstly, notice that, as expected, the contents of the <script> section are not
present. Secondly, because the Form and Button are intrinsic controls, ASP.NET has
added certain attributes to the HTML that were not specified in the source code.

The Button now has the added attribute input type="submit", which means
that pressing the Button causes the contents of the Form to be transmitted back to the
sever.

The Form now has method="post" and action="introl.aspx" attributes,
which means that, when the Form is submitted, the data is POSTed back to
introl.aspx,the page that generated the HTML in the first place.

So when the user presses the button, the browser sends back a POST statement, with
the contents of the Form, including the value of the HIDDEN field, requesting the
browser to load introl.aspx.

In the server, ASP.NET reloads the page and processes it again. In fact, because of the
stateless nature of HTTP, the server does not know that it is reprocessing the same
page, except that it is being executed by a POST command with the hidden data
embedded in the Form that it put there the first time around. This is the mechanism
by which ASP.NET remembers the state of a page from one invocation to another.

This time, because a POST back is loading the page, and because the Pressme
button caused the POST, ASP.NET executes the function associated with its
onClick attribute, namely the APLScript function Reverse.

When it is called, the argument supplied to Reverse contains two items. The first of
these is an object that represents the control that generated the onC11ck event; the
second is an object that represents the event itself. In fact, Reverse and its
argument are very similar to a standard Dyalog APL callback function.

192

.NET Interface Guide

VReverse args

:Access public

:Signature Reverse Object,EventArgs
(2args).Text«d(2args).Text

v

The code in the Reverse function is simple. The expression (?args)isa
namespace reference (ref) to the Button, and (2args).Text refers to its Text property
whose value is reversed. Note that Reverse could just as easily refer to the Button
by name, and use Pressme. Text instead.

After pressing the button, the page is redisplayed as shown below:

[Attaching an APL functic X

&« c © localhost/dyalog.net.15.0.unicode.32//tutorial/intro1.aspx ir :
introl: Your first APL Web Page
el sserP

This time, the HTML generated by introl.aspxis:

<html>
<body>

<form name="ctrll" method="post" action="introl.aspx"
id="ctrll">
<input type="hidden" name="_VIEWSTATE"
value="YTB6NTQ30DgOMjcyX2Ewel90ejV6eMXhfYTB6X2h6NXoxeF9hMHph
MHpoelR1XHhOX2VNIHNzZXJQeF9feF9feHhfeHhfeF9feA==45acf576"

/>

<input type="submit" name="Pressme" value="eM sserP"
id="Pressme" />
</form>
</body>
</html>

Retumning to the Reverse function, note that the declaration statements at the top
ofthe function are essential to make it callable in this context.

Chapter 9: Writing ASP.NET Web Pages 193

VReverse args

:Access public

:Signature Reverse Object,EventArgs
(oargs).Text«d(2args).Text

v

Firstly the Reverse function must be declared as a public member of the script. This
is achieved with the statement.

:Access Public

Secondly, the NET runtime will only call the function if it possesses the correct
signature, which is derived from its parameters and their types.

The required signature for a method connected to an event, such as the OnClick
event of a Button, is that it takes two parameters; the first of which is of type
System.Object and the second is of type System.EventArgs. The Reverse
function declares its parameters with the statements:

:Signature Reverse Object,EventArgs

Note that the parameter declarations do not include the System prefix. This is
because when the script is compiled the names are resolved using the current value of
OUSING. When the APLScript is compiled, the default value for JUSING is
automatically defined to contain System along with most of the other namespaces
that will be used when writing web pages

(Strictly speaking, the first argument is expected to be of type
System.Web.UI.WebControls.Button,but as this type inherits ultimately
from System.Object the function signature is satisfied.)

Note that ifthe Reverse function is defined with a signature that does not match
that expected signature for the OnClick callback, the function will not be run.

Furthermore, if the function associated with the OnClick statement is not defined as a
public method in the APLScript the page will appear to compile but the
Reverse function will not get executed.

Note that unlike Web Services, there is no requirement fora :Class or
:EndClass statement in the script. This is because a file with an . aspx extension
implicitly generates a class that inherits from System.Web.UI.Page.

194 .NET Interface Guide

The Page_Load Event

Intro3.aspx illustrates how you can dynamically initialise the contents of a Web
Page using the Page Load event. This example also introduces another type of Web
Control, the DropDownList object.

<Z@Register TagPrefix="tutorial" Namespace="Tutorial"
Assembly="tutorial" 7>
<script language="Dyalog" runat="server">

VPage_Load

:Access Public
list.Items.Add c'Apples'
list.Items.Add <'Oranges’
list.Items.Add c<'Bananas'
v

vSelect (obj ev)

:Access Public

:Signature Select Object obj, EventArgs ev
out.Text«'You selected ',list.SelectedItem.Text
\'4

</script>

<html>

<head>

<title>Initialising the contents of the Page using the
Page_Load method</title>

<link rel="stylesheet" type="text/css" href="apl.css">
</head>

<body>
<h1>intro3: The Page_Load method</h1>
<form runat="server">
<asp:DropDownList id="list" runat="server"/>
<p>
<asp:Label id="out" runat="server" />
</p>
<asp:Button id="btn"
Text="Submit"
runat="server"
OnClick="Select"/>
</form>
<tutorial:index runat="server"/>
</body>
</html>

Chapter 9: Writing ASP.NET Web Pages 195

When an ASP.NET web page is loaded, it generates a Page Load event. You can
use this event to perform initialisation simply by defining a public function called
Page_Loadin your APLScript. This function will automatically be called every
time the page is loaded. The Page_Load function should be niladic.

Note that, if the page employs the technique illustrated in Introl . aspx, whereby
the page is continually POSTed back to itself by user interaction, your Page_Load
function will be run every time the page is loaded and you may not wish to repeat
the initialisation every time. Fortunately, you can distinguish between the initial
load, and a subsequent load caused by the post back, using the IsPostBack
property. This property is inherited from the System.Web.UI. Page class, which
is the base class for any . aspx page.

The Page_Load function in this example checks the value of IsPostBack. If0
(the page is being loaded for the first time) it initialises the contents ofthe list
object, adding 3 items "Apples", "Oranges" and "Bananas". The explanation for the
statement:

list.Items.Add <'...'

is that the DropDownList WebControl has an Ttems property that is a collection
of ListItem objects. The collection implements an Add function that takes a
String Argument that can be used to add an item to the list.

Notice that the name of the object List is defined by the id="11st" attribute of
the DropDownList control that is defined in the page layout section of the page.

[Initialising the contents - X

&« C | @ localhest/dyalog.net.15.0.unicode.32/tutorial/intro3.aspx ¥

intro3: The Page_Load method

Apples ¥

Submit

In this example, the page is processed by a POST back caused by pressing the
Submi t button. As it stands, changing the selection in the L i st object does not
cause the text in the out object to be changed; you have to press the Submi t
button first.

196 .NET Interface Guide

[Initialising the contents © X

&« c © localhost/dyalog.net.15.0.unicode.32/ftutornial/intro3.aspx o

intro3: The Page_Load method

Bananas ¥

You selected Bananas

Submit

However, you can make this happen automatically by adding the following
attributes to the L ist object (see intro4.aspx):

AutoPostback="true"
OnSelectedIndexChanged="Select"/>

AutoPostback causes the object to generate HTML that will provoke a post back
whenever the selection is changed. When it does so, the
OnSelectedIndexChanged event will be generated in the server-side script
which in turn will call Se lect, which in turn will cause the text in the out object to
change.

Note that this technique, which can be used with most of the ASP.NET controls
including CheckBox, RadioButton and TextBox controls, relies on a round trip to
the server every time the value of the control changes. It will not perform well except
on a fast connection to a lightly loaded server.

Chapter 9: Writing ASP.NET Web Pages 197

Code Behind

It is often desirable to separate the code content of a page completely from the
HTML and other text, layout or graphical information by placing it in a separate file.
In ASP.NET parlance, this technique is known as code behind.

The intro5.aspx example illustrates this technique.

<%@Page Language="Dyalog"
Inherits="FruitSelection"
src="fruit.apl" %>
<%@Register TagPrefix="tutorial" Namespace="Tutorial"
Assembly="tutorial" %>
<html>
<head>
<title>Code behind: separating your code from the page
layout</title>
<link rel="stylesheet" type="text/css" href="apl.css">
</head>
<body>
<hl>intro5: Code Behind</hl>
<p>This example illustrates how you can separate your code from
the page layout.</p>
<form runat="server" >
<asp:DropDownList id="1list"
runat="server"
autopostback="true"
OnSelectedIndexChanged="Select"/>
<p>
<asp:Label id="out" runat="server" /></p>
</form>
</body>
<tutorial:index runat="server'"/>
</html>

The statement

%@Page Language="Dyalog" Inherits="FruitSelection"
src="fruit.apl" %>

says that this page, when compiled, should inherit from a class called
FruitSelection. Furthermore, the FruitSelection class is written in the
"Dyalog" language, and its source code resides in a file called fruit.apl.
FruitSelection is effectively the base class for the . aspx page.

In this case, fruit.apl is simply another text file containing the APLScript
code and is shown below.

198

.NET Interface Guide

:Class FruitSelection: System.Web.UI.Page
:Using System

VPage_Load

:Access Public

:if 0=IsPostBack
list.Items.Add <'Pears'
list.Items.Add <'Nectarines'
list.Items.Add <c'Strawberries'

tendif

\'

VSelect args

:Access public

:Signature Select Object,EventArgs
out.Text«'You selected ',list.SelectedItem.Text
\'4

:EndClass

The first thing to notice is that the file requires :Class and :EndClass
statements. These are required to tell the APLScript compiler the name of the class
being defined, and the name of'its base class. When the source codeisina .aspx
file, this information is provided automatically by the APLScript compiler.

The name of'the class, in this case FruitSelection, must be the same name as is
referenced in the . aspx web page file itself (intro5. aspx). The base class must
be System.Web.UI.Page

The body of the script is just the same as the script section from the previous
example. Only the names of the fruit have been changed so that it is clear which
example is being executed.

Chapter 9: Writing ASP.NET Web Pages 199

[Code behind: separatinc X

& C | @ localhost/dyalog.net.15.0.unicode.32/tutorial/intro5.aspx ¥ | :

-

intro5: Code Behind

This example illustrates how you can separate your code from
the page layout.

|Pears v

[Code behind: separating X

&« & | (@ lacalhost/dyalog.net.15.0.unicode.32/tutorial/intro5.aspx T | :

-

intro5: Code Behind

This example illustrates how you can separate your code from
the page layout.

| Strawberries ¥ |

You selected Strawberries

200

.NET Interface Guide

Workspace Behind

The previous section discussed how APL logic can be separated from page layout, by
placing it in a separate APLScript file which is referred to from the . aspx web page.
It is also possible to have the code reside in a separate workspace. This allows you to
develop web pages using a traditional workspace approach, and it is probably the
quickest way to give an HTML front-end to an existing Dyalog APL application.

In the previous example, you saw that the fruit.apl file defined a new class
called FruitSelection that inherits from System.Web.UI. Page. This class
contains a Page_L oad function that (by virtue of its name) overrides the Page
Load method of the underlying base class and will be called every time the web
page is loaded or posted back. The Page_Load function takes whatever action is
required; for example, initialisation. The class also contained a callback function to
perform some action when the user pressed a button.

A similar technique is employed when the code behind the web page is implemented
in a separate workspace. The workspace should contain a class that inherits from
System.Web.UI.Page. This class may contain a Page_Load function that will
be invoked every time the corresponding web page is loaded, and as many callback
functions as are required to provide the application logic. The workspace is hooked
up to one or more web pages by the Inherits="<classname>" and
src="<workspace>" declarations in the Page directive statement that appears at
the beginning of the web page script.

The ACTFENS sub-directory in samples\asp.net contains some examples of
Dyalog APL systems that have been converted to run as Web applications using this
technique.

Dyalog is grateful to David Hughes who provided the original workspaces and
advised on their conversion.

The two workspaces are named ACTFNS . DWS and PROJ . DWS. The original code
used the Dyalog APL GUI to display an input Form, collect and validate the user's
input, and calculate and display the results. The original logic supported field level
validation and results were immediately recalculated whenever any field was
changed. With some exceptions, this has been changed so that the user must press a
button to tell the system to recalculate the results. This approach is more appropriate
in an Internet application, especially when connection speed is low. Apart from this
change, the applications run more-or-less as originally designed.

Chapter 9: Writing ASP.NET Web Pages 201

actfns.htm

sla_tab.aspx

sla_disp.asp

proj.aspx

ACTFNS.DWS

l

proj_xo<.asp

l

PROJ. DWS

The diagram above illustrates the structure of the web application and the various
files involved. The starting page, actfns.htm, simply provides a menu of choices
which link to various . aspx web pages. These pages in turn are linked to one of the
two workspaces via the src="" declaration

202 .NET Interface Guide

[Dyalog.MET Actuarial Ex= X

<« | ® localhost/dyalog.net. 15.0.unicode.32/actfns/actfns.htm ¥t
b =

Dyalog.NET Actuarial Examples

Tabulate single life assurance and annuity values
Display single life assurance and annuity values
Projected Value Quotations

Copynight © 2001 D.G. Hughes

The actfns.htm start page offers 3 application choices

Chapter 9: Writing ASP.NET Web Pages 203

[ACTFNS Example

&« C | @ localhost/dyalog.net.15.0.unicode.32/actfns/sla_tab.aspx
yalog F

Single Life Assurance and Annuity Values

Nortality Table A1967-70(2)select ¥

Mortalily Tables Interest Rate 3.25

® UK Assured Lives Initial Age 30
UK Immediate Annuitant Endowment Term 10
UK Pension Annuitant

Initial Duration 0

Back Calculate

Table Format ® Age x, durs t-t+10 © Ages x - x+10, durt

iy}t Apget Apgptnt Apptnt
237359 0.252864 86708 0.252864
23.4851 0.260758 7.9236 0.260758
232292 0268813 TA527 0268813
229677 0.277045 6.3571 0277045
22,6984 0.285521 5.5353 0.285521
224214 0294243 46864 0294243
221365 0.303210 3.8005 0.303210
21.8439 0.312420 29035 0.312420
215436 0321872 19674 0321872
21.2357 0.331565 1.0000 0.331565
209202 0.341494 0.0000 0.341494

The result of choosing Tabulate single life insurance and annuity values

When you choose the first option, the system loads s1la_tab.aspx. This defines
the screen layout in terms of ASP.NET controls, including the DataGrid control for
tabulating the results. The sla_tab.aspx script contains the declarations
Inherits="actuarial" src="actfns.dws",so ASPNET loadsthe
actuarial class from this workspace (via a call to Dyalog APL). When the page is
loaded, it generates a Page Load event, which in turn calls its Page Load
method. This populates the ASP controls with data, and the resulting web page is
displayed. The mechanism is described below.

For further details, see the sla_tab.aspx script and ACTFNS . DWS workspace.

204

.NET Interface Guide

Converting an Existing Workspace

The steps involved in converting the workspaces were as follows:

1.

Replace the Dyalog APL GUI with the equivalent HTML Forms, which are
defined in one or more separate .aspx web pages. To retain consistency, it
is helpful to give the ASP controls the same names as the original GUI
controls, which they are replacing.

Attach the names of APL callback functions to the appropriate ASP
controls; essentially, any controls that will be involved in a postback
operation, such as the Submit button.

Starting with a CLEAR WS, create a Class that represents a .NET class
based upon System.Web.UI.Page. For example, in converting the
ACTFNS workspace, we started by creating the class:

Jedit oactuarial

then defining JUSING as follows:

:Using System

tUsing System.Web.UI,system.web.dll
:Using System.Web.UI.WebControls
:Using System.Web.UI.HtmlControls
:Using System.Data,system.data.dll

The name you choose for this class will replace classname in the
Inherits="classname" declaration in the . aspx web page(s) that call
it.

Create a namespace, change into it, and copy the workspace to be
converted; in this case, the starting point was a workspace named DH
ACTFNS:

JNS actuarial_utils

)CS actuarial_utils
#.actuarial_utils

)COPY DH_ACTFNS
DH_ACTFNS saved

Modify the code as appropriate, inserting a Page_Load function and
whatever callback functions that are required.
Make sure the class 'actuarial' has an :Include actuarial utils statement

Chapter 9: Writing ASP.NET Web Pages 205

The Page_Load function

The Page_L oad function must be declared as :Access Public. Page Load must be
spelled correctly as it is this name that causes the function to supersede the base class
Page Load method of the same name.

For example, the Page Load function ofthe actuarial classin ACTFNS.DWS is
shown below:

V Page_Load;INT;AGE;DUR; TERM; TAB_DURS;MPC1;INT1;INT2;
INTY;RUN_OPTION;OPT
:Access public
:Signature Page_Load
A Overrides Page_Load method of Page class
A Called when Page is loaded or re-loaded after postback
A Initialise fields and calculate on initial load only
:If 0=IsPostBack
RUN_OPTION<«GET_RUN_OPTION
:Select RUN_OPTION
:Case 1
EINT.Text«sINT«3.25
EAGE.Text«sAGE«30
EDUR.Text«sDUR<0
ETRM.Text«sTERM«10
TA.Checked«TAB_DURS«1
CHANGE_TABLES &
:Case 2
CPLAN.Items.Clear
:For OPT :In 4>0PTSPLAN
CPLAN.Items.Add{82€[DR 1pw:cw ¢ w}DETRAIL OPT
:EndFor
EMPC1.Text«sMPC1«100
EINT1.Text«sINT1«3.25
EINT2.Text«sINT2«3.25
EINTY.Text«sINTY«99
EAGE.Text«sAGE<30
EDUR.Text«sDUR«0
ETRM.Text<«'N/A"'
CHANGE_TABLES &
:EndSelect
:EndIf
v

If exported correctly, Page_Load will be called every time the calling web page is
loaded. This occurs when the page is loaded for the first time, and whenever the page
is submitted back to the web server by the browser (postback). A postback will occur
whenever a callback function is involved, and potentially at other times.

206

.NET Interface Guide

The Page_Load function may determine whether it is being invoked by a first time
load, or by a postback, from the value ofthe IsPostBack property. Thisisa
property that it inherits from its base class System.Web.UI.Page.

The Page_Load example shown above uses this property to control the
initialisation of the controls in the calling web page. The names EINT, EAGE, EDUR
and so forth refer to names of controls in the calling web page. When Page_Load is
executed, the actuarial object is associated with the web page itself, and so the
names of all its controls are visible as sub-objects within it.

Note that the actuarial classisused by two different web pages, and the function
GET_RUN_OPTION function determines which of these are involved. (It does so by
detecting the presence or otherwise of a particular control on the page).

Callback functions

The actuarial class in ACTENS.DWS provides four callback functions named CALC_
FSLTAB_RESULTS,CALC_FSL_RESULTS, CHANGE_TABLES and CHANGE _
TABLE_FORMAT. The first two of these functions are attached as callbacks to the
Calculate button in each of two separate web pages sla_tab.aspxand sla
disp.aspx. Forexample, the statement that defines the buttonin sla_tab.aspx
is:

<asp:Button id=Buttonl runat="server" Text="Calculate"
onClick="CALC FSLTAB RESULTS"></asp:Button>

The third callback, CHANGE_TABLES, is called by sla tab.aspx when the user
selects a different set of Mortality Tables from the three provided. CHANGE _TABLE _
FORMAT is called when the user clicks either of the two radio buttons that select how
the output is to be displayed.

Like the Page_Load function, callback functions must be declared as being Public
methods. This is done using the :4ccess statement.

In addition, and this is essential, APL callback functions must be declared to have
the correct signature expected of NET callback functions. This means that they must
be monadic, and their argument must be declared to be a 2-element nested array
containing two .NET objects; the object that generated the event, and an object that
represents the arguments to the event.

Specifically, these parameters must be of type System.Object and
System.EventArgs respectively. However, as our JUSING contains System, it
is not necessary to include the System prefix.

Chapter 9: Writing ASP.NET Web Pages 207

For example, the statements for the function CALC_FSLTAB_RESULTS is shown
below:

tAccess Public
:Signature CALC_FSLTAB_RESULTS Object obj, EventArgs ev

Validation functions

In a Dyalog APL web page application, there are basically two approaches to
validation. You can handle it entirely yourself or you can exploit the various
validation controls that come with ASP.NET. The sample application uses the latter
approach by way of illustration. For example:

<asp:TextBox id=EINT runat="server"></asp:TextBox>
<asp:RequiredFieldValidator id="REVINT"
ControlToValidate="EINT"
ErrorMessage="Interest Rate must be a number
between 0 and 20"
Text:"* "
runat="server"/></td>

These ASP.NET statements associate a RequiredFieldvalidator named
RFVINT with the EINT field, the field used to enter Interest Rate. If the user leaves
this field blank, the system will automatically generate the specified error message.
The page defines a separate ValidationSummary control as follows:

<asp:ValidationSummary id="Summaryl"
HeaderText="Please enter a value in the following
fields"
Font-Size="smaller"
ShowSummary="false"
ShowMessageBox="true"
EnableClientScript="true"
runat="server"/>

The ValidationSummary control collects error messages from all the other
validation controls on the page, and displays them together. In this case, a pop-up
message box is used. One advantage of this approach is that this type of validation
can be carried out client-side by local JavaScript that is generated automatically on
the server and incorporated in the HTML that is sent to the browser.

Logical field validation for this page is carried out on the server by APL functions
that are attached to CustomvValidator controls. For example:

208

.NET Interface Guide

<asp:CustomValidator id="CustomValidator INT"
OnServerValidate="VALIDATE INT"
ControlToValidate="EINT"
Display="Dynamic"
ErrorMessage="Interest Rate must be a number between
0 and 20"
runat="server"/>

These ASP.NET statements associate a CustomValidator control named
CustomValidator INT with the Interest Rate field EINT. The statement
OnServerValidate="VALIDATE INT" specifiesthat VALIDATE_INT isthe
validation function for the CustomValidator INT object.

The VALIDATE_INT function and its NET Properties page are shown below.
V VALIDATE_INT MSG;source;args

[1] A Validates Interest Rate

[2] :Access Public

[3] :Signature VALIDATE_INT Object source,
ServerValidateEventArgs args

(4] source args<«MSG

[5] :Trap O

[6] INT«Convert.ToDouble args.Value

[7] :Else

[8] args.IsValid«0

[9] :Return

[10] :EndTrap

[11] args.IsValid«(0<INT)~202INT

v

To make the VALIDATE_INT function available to the calling web page, it is
exported as a method. Its calling signature, namely that it takes two parameters of
type System.Object and
System.Web.UI.WebControls.ServerValidateEventArgs
respectively, identifies it as a validation function. All these factors are essential in
making it recognizable and callable.

VALIDATE_INT[4] assigns its (2-element) argument to source and args
respectively. Both are namespace references to .NET objects. source is the object
that fired the event (CustomValidator INT). args is an object that represents the
event. Its Value property returns the text in the control being validated, in this case
the control named EINT]I.

VALIDATE_INT[6] converts the text in the EINT control to a number, using the
ToDouble method ofthe System.Convert class. You could of course use JVF I,
but the Convert methods automatically cater for National Language numerical
formats. This statement is executed within a : Trap control structure because the
method will generate a .NET exception if the data in the field is not a valid number.

Chapter 9: Writing ASP.NET Web Pages 209

VALIDATE_INT[8 11] setthe Isvalid property ofthe
ServerValidateEventArgs object args to 0 or 1 accordingly. This also sets
the Isvalid property of the validation control represented by source. The system
will automatically display the error message associated with any validation control
whose IsValid property is 0. Furthermore, the page itselfhas an Tsvalid
property, which is the logical-and of all the IsvValid properties of all the validation
controls on the page. This is used later by the calculation function CALC_FSLTAB_
VALUES.

In this case, the validation function stores the numeric value of the control in a
variable INT, which will subsequently be used by the calculation functions.

When the page is posted back to the server, ASP.NET executes its own built-in
validation controls and then calls the functions associated with the
CustomValidator controls, in the order they are defined on the page. In addition
to the VALIDATE_INT function, there are eight other custom validation functions.
Three of these, which validate the Initial Age, Endowment Term and Initial Duration
fields, are listed below. Note that all ofthe VALIDATE_xxx functions have the
same .NET signature as VALIDATE _INT.

V VALIDATE_AGE MSG;sources;args
A Validates Age
tAccess Public
:Signature VALIDATE_AGE Object source,
ServerValidateEventArgs args
source args<«MSG
:Trap O
AGE<Convert.ToInt32 args.Value
:Else
args.IsValid<«0
:Return
] :EndTrap
] args.IsValid«(10<AGE)~802AGE

WN —

[L L T U T Yo W | —ee
== \O0~NO 01 F
O —e

v

VALIDATE_AGE issimilarto VALIDATE_INT, except that, because it expects an
integer value, it uses the ToInt 32 method instead of the ToDouble method.

VALIDATE_TERM, which validates the Endowment Term field, is slightly more
interesting because there are two levels of checking involved. The first check that the
user has entered an integer number, is performed by lines [10-15] in the same way as
in the previous examples, using the ToInt 32 method ofthe System.Convert
class within a : Trap control structure. However, validation of the Endowment Term
field depends upon the value of another field, namely Initial Age.

210 .NET Interface Guide

Not only must the user enter an integer, but also its value must be between 10 and
(90-AGE) where AGE is the value in the /nitial Age field. However, if the user has
entered an incorrect value in the Initial Age field, this, the second level of validation
cannot be performed.

V VALIDATE_TERM MSG;source;args
] A Validates Endowment Term
] tAccess Public
] :Signature VALIDATE_TERM Object source,
ServerValidateEventArgs args
] source args<«MSG
] :If A/(RFVAGE CustomValidator_AGE).IsValid
] source.ErrorMessage<«'Endowment Term must
be an integer between 10 and ',(%90-AGE),

" (90-Age)'
[7] :Else
[8] source.ErrorMessage<«'Endowment Term must
be an integer between 10 and (90-Age)'
[9] tEndIf
[10] :Trap O
[11] TERM<«Convert.ToInt32 args.Value
[12] :Else
[13] args.IsValid«0
[14] :Return

[15] :EndTrap

[16] :If ~/(RFVAGE CustomValidator_AGE).IsValid
[17] args.IsValid«(TERM210)ATERM<90-AGE
[18] tEndIf

Chapter 9: Writing ASP.NET Web Pages 211

At this stage it is worth reviewing the sequence of events that occurs when a user
action in the browser causes a postback to the server.

1.

The page, including all the contents of its fields, is sent back to the
ASP.NET server using an http POST command.

The postback causes the creation of a new instance of the page; which is
represented by a new clone of the actuarial namespace.

The creation of a new page instance raises the Page Load event which in
turn invokes the Page Load method associated with the Page class, or an
override method is one is specified. In this case, it calls our Page_Load
function in the newly cloned instance of the actuarial namespace. The
Page_Load function typically deals with initialisation, such as opening a
component file or establishing a connection to a data source. In this case, it
does nothing on a postback.

Because the Calculate button was pressed (see Forcing Validation), each of
the CustomValidator controls on the page raises an
OnServerValidate event, which in turn calls the associated function in
the current instance of the page. These events occur in the order the controls
are defined within the page. Note that built-in validation controls,
including any RequiredFieldvalidator controls, are invoked first,
potentially in the browser prior to the postback.

Because the Calculate button was pressed (see Forcing Validation), each
of the CustomValidator controls on the page raises an
OnServerValidate event, which in turn calls the associated function in
the current instance of the page. These events occur in the order the controls
are defined within the page. Note that built-in validation controls,
including any RequiredFieldvValidator controls, are invoked first,
potentially in the browser prior to the postback.

The control that caused the postback raises an appropriate event, which in
turn fires the associated callback function.

After all the control events have been raised and processed the Page
UnLoad event is raised and the associated function (if any) is invoked. This
function is a good place to implement termination code, such as closing a
component file or data source.

The instance of the page is destroyed. Any global variables in the
namespace that were defined by the Page Load function, the validation
functions and the callback function are lost because the clone of the
actuarial namespace disappears.

212

.NET Interface Guide

This means that within the life of the cloned instance of the actuarial namespace, the
system runs our Page_Load function followed by VALIDATE _INT, followed by
VALIDATE_AGE,VALIDATE_TERM, VALIDATE_DUR etc. and finally by CALC_
FSLTAB_RESULTS. These functions take their input from the values passed in their
arguments (as in the case ofthe VALIDATE _xxx functions) or from the properties of
any of the controls on the Page. They perform output by modifying these properties,
or by invoking standard methods on the Page.

Notice that, if successful, the VALIDATE_INT function set up a global variable
(strictly speaking, only global within the current instance of the actuarial namespace)
called INT that contains the value in the Interest Rate field. Similarly, VALIDATE _
AGE defines a variable called AGE. These variables are subsequently available for use
by the calculation function.

This technique, of having each validation function define a variable for its associated
field, saves repeating the conversion work in the calculation routine CALC_
FSLTAB_RESULTS that will be called when the validation is complete. It also saves
repeating the conversion work in a validation routine that needs to know the value
of'a previously validated field.

Returning to the explanation of VALIDATE_TERM, line [16] checks to see that both
the RequiredFieldValidator and CustomValidator controls forthe
Initial Age field register that the value in the field is valid, before attempting to
perform the second stage of the validation which depends upon AGE. Note that AGE
must exist (and be a reasonable value) if CustomValidator AGE.IsValidis
true. Notice too that it is insufficient just to check the CustomvValidator control,
because its validation function will not be invoked (and the control will register that
the field is valid) if the field is empty.

Line [5] uses similar logic to set up an appropriate error message, which is assigned
to the ErrorMessage property of the corresponding CustomvValidator
control, represented by source.

VALIDATE_DUR, which validates the Initial Duration field, uses similar logic to
check that the value in the Endowment Term field is correct and that TERM, on which
it depends, is therefore defined. In addition, in line [8] it refers to the Checked
property of the RadioButton controls named TA and TB respectively.

Chapter 9: Writing ASP.NET Web Pages 213

V VALIDATE_DUR MSG;source;args;DT

[1] A Validates Initial Duration
[2] :Access Public
[3] :Signature VALIDATE_DUR Object source,
ServerValidateEventArgs args
[4] source args<«MSG
[5] :If 2=GET_RUN_OPTION
[6] DT«1
[7] :Else
[8] DT«+/10 1x(TA TB).Checked
[9] :EndIf
[10] :If ~/(RFVTRM CustomValidator_TERM).IsValid
[11] source.ErrorMessage«'Initial Duration must be an
integer between 0 and ', (sTERM-DT),
' (TERM-', (3DT),")"'
[12] :Else
[13] source.ErrorMessage«'Initial Duration must be an
integer between 0 and (Term-',(sDT),"')"
[14] :EndIf
[15] :Trap O
[16] DUR<«Convert.ToInt32 args.Value
[17] :Else
[18] args.IsValid«0
[19] :Return
[20] :EndTrap
[24] :If ~/(RFVTRM CustomValidator_TERM).IsValid
[22] args.IsValid«<(0<DUR)ADUR<TERM-DT
[23] :EndIf

v

Forcing Validation

Validation controls are automatically invoked when the user activates a Button
control, but not when other postbacks occur. For example, when the user selects a
different Mortality Table (represented by a RadioButtonList control), the page
calls the CHANGE_TABLES function.

<asp:RadioButtonList id=MT runat="server"
RepeatDirection="Vertical" RepeatRows="3" tabIndex=1
onSelectedIndexChanged="CHANGE TABLES"
AutoPostBack="true">
<asp:ListItem Value="UK Assured Lives">
Selected="True">UK Assured Lives</asp:ListItem>
<asp:ListItem Value="UK Immediate Annuitant">
UK Immediate Annuitant</asp:ListItem>
<asp:ListItem Value="UK Pension Annuitant">
UK Pension Annuitant</asp:ListItem>
</asp:RadioButtonList>

214 .NET Interface Guide

A RadioButtonList control does not cause validation to occur, so this must be
done explicitly. This is easily achieved by calling the Validate method of the
Page itself as shown in CHANGE_TABLES[11] below.

V CHANGE_TABLES ARGS;TableNames;TableName;OPTSMORT;
MORT_OPTION;RUN_OPTION
[1] :Access public
[2] :Signature CHANGE_TABLES Object obj, EventArgs ev
[3] RUN_OPTION«GET_RUN_OPTION
(4] MORT_OPTION<«1+MT.SelectedIndex
[5] OPTSMORT«MORT_OPTION>OPTSMORT_ASS OPTSMORT_ANNI
OPTSMORT_ANNP
[6] TableNames<«>0OPTSMORT A Assured lives/term
assurance tables
[7] TableNames<«{ (2=[OJNC 0 143>0PTSMORT)#TableNames
[8] TableNames<«TableNames~""' '
[9] CMTAB.Items.Clear

[10] :For TableName :In TableNames

[11] CMTAB.Items.Add TableName

[12] :EndFor

[13] Page.Validate A Force page validation
[14] :Select RUN_OPTION

[15] :Case 1

[16] CALC_FSLTAB_RESULTS &

[17] :Case 2

[18] CALC_FSL_RESULTS 6

[19] :EndSelect

v

Chapter 9: Writing ASP.NET Web Pages 215

Calculating and Displaying Results

The function CALC_FSLTAB_RESULTS, which for brevity is only partially shown
below, isused by the sla_ tab.aspx page to calculate and display results.

V CALC_FSLTAB_RESULTS ARGS;X;ULT;MORTOPT;QTAB;TABLE;
TAB_DURS;RUN_OPTION;MORT_OPTION;UNIX;DOS;
CURRENTDATE ; CURRENTTIME ;OPTSMORT ; TABLES;MSG;data

[1] :If IsValid A Is page valid ?
[6] MORT_OPTION«1+MT.SelectedIndex
[7] OPTSMORT«MORT_OPTION>OPTSMORT_ASS

OPTSMORT_ANNI
OPTSMORT_ANNP

[8]

[9] TABLES«{43>0PTSMORT

[10] MORTOPT<(pTABLES)p0

[11] MORTOPT[1+CMTAB.SelectedIndex]«1

[12] TABLE«>MORTOPT/TABLES

[15] TAB_DURS<«TA.Checked

[41] FSLT«((pX)p(3 0)(3 0)(3 0)(11 4)(11 6)(12 &)
(11 6)(8 0))3 X

[42] FSLT«FSLT~"" '

[43] :With data<[INEW DataTable

[44] cols<«Columns.Add e ##.FSL_HEADER

[45] {

[46] row<NewRow &

[47] row.ItemArray<«w

[48] Rows.Add row

[49] YUV##LOFSLT

[50] :EndWith

[51] fsl.DataSource<[JNEW DataView data

[52] fsl.DataBind

[53] fsl.Visible«l

[54] :Else

[55] fsl.Visible<«0

[56] :EndIf

216 .NET Interface Guide

The results of the calculation are displayed in a DataGrid object named fs1. This is
defined within the sla tab.aspx page as follows:

<asp:DataGrid id="fsl" runat="server" Width="700"
AllowPaging="false" BorderColor="black" CellPadding="3"
CellSpacing="0" Font-Size="9pt" PageSize="10">
<ItemStyle HorizontalAlign="right" Width="100">
</ItemStyle>
<HeaderStyle HorizontalAlign="center"
Font-Size="12pt" Font-Bold="true" BackColor="#17748A"
ForeColor="#FFFFFF"></HeaderStyle>
</asp:DataGrid>

CALC_FSLTAB_RESULTS[1] checks to see if the user input is valid. Ifnot, [55]
hides the DataGrid object fsl so that no results are displayed in the page. The
display of error messages is handled separately, and automatically, by the
ValidationSummary control on the page.

CALC_FSLTAB[11 15] obtain the values of the CMTAB (DropDownList)and
TA (RadioButton)controls on the page.

CALC_FSLTAB[43-53] store the calculated data table FSLT in the DataGrid
fsl.

217

Chapter 10:

Writing Custom Controls for ASP.NET

Introduction

The previous chapter showed how you can build ASP.NET Web Pages by
combining APL code with the Web Controls provided in the NET Namespace
System.Web.UI.WebControls. These controls are in fact just ordinary .NET
classes. In particular, they are extensible components that can be used to develop
more complex controls that encapsulate additional functionality.

This chapter describes how you can go about building custom server-side controls,
for deployment in ASP.NET Web Pages.

A custom control is simply a .NET class that inherits from the Control class in the
NET Namespace System.Web.UI, orinherits from a higher class that is itself
based upon the Control class. Like any other .NET class, a custom control is
implemented in an assembly, physically as a DLL file. This chapter explores three
different ways to implement a custom control.

The Control class provides a Render method whose job is to generate the HTML
that defines appearance of the control. The first example, the SimpleCt1 control,
overrides the Render method to display a simple string "Hello World" in the
browser.

The TemperatureConverterCtll control is an example of a compositional
control, i.e. one that is composed of other standard controls packaged with special
functionality. The TemperatureConverterCt12 control, uses the basic
approach ofthe SimpleCtl control, but provides the same functionality as
TemperatureConverterCtll. The TemperatureConverterCtl3 control
illustrates how to generate events for the hosting page to catch and process.

218

.NET Interface Guide

These examples, which are based upon a series of articles called Advanced ASP.NET
Server-Side Controls by George Shepherd that appeared in the msdn magazine
(October 2000, January 2001 and March 2001 issues), are implemented as Dyalog
classes in a namespace called DyalogSamp les in the workspace
samples\asp.net\temp\bin\temp.dws. The corresponding NET
Assembly samples\asp.net\temp\bin\temp.dl1l was generated from this
workspace.

JLOAD "C:\Program Files (x86)\Dyalog\Dyalog APL
15.0 Unicode\Samples\asp.net\temp\bin\temp.dws"

C:\Program Files (x86)\Dyalog\Dyalog APL 15.0
Unicode\Samples\asp.net\temp\bin\temp.dws saved Tue Nov
22 15:04:11 2016

)obs
DyalogSamples
)cs DyalogSamples
#.DyalogSamples
)Classes
SimpleCtl TemperatureConverterCtl1!
TemperatureConverterCtl2 TemperatureConverterCtl3

Chapter 10: Writing Custom Controls for ASP.NET 219

The SimpleCtl Control

The SimpleCtl Classis illustrated below:

:Class SimpleCtl: Control

tAccess public

:Using System

:Using System.Collections.Specialized,System.dll
:Using System.Web,System.Web.dll

:Using System.Web.UI

:Using System.Web.UI.WebControls

:Using System.Web.UI.HtmlControls

V Render output;HTML
tAccess public override
:Signature Render HtmlTextWriter output
HTML«'<h3>Hel lo World</h3>'
output.WriteLinecHTML

v

:EndClass A SimpleCtl

The Render function supercedes (see Programming Reference Guide: Access
Statement) the Render method that Simp leCt L has inherited from its base class,
System.Web.UI.Control.

The Render method defined by the System.Web.UI.Control base class is
void and takes a parameter of type Htm1TextWriter. When the SimpleCtl
control is referenced in a Web Page, ASP.NET creates an instance of it and calls its
Render method because it isa Control and is expected to have one. Moreover,
ASP.NET supplies an object of type Htm1TextWriter as its parameter. You do
not need to worry where this object came from, or what it actually represents. You
need only know that an Htm1TextWriter provides a method called WriteLine
that may be used to output a text string to the browser. The mechanics of how this
actually happens are handled by the Htm1TextWriter object itself.

In APL terms, the argument to our Render function, out put, will be a namespace
reference, and the function can simply call its WriteLine method with a character
vector argument. This argument can contain any valid HTML string and defines the
appearance ofthe SimpleCt1 control.

Using the : Signature statement, the Render function is defined to have the
same syntax as the method it overrides, i.e. it does not return a result void and takes
a single parameter of type Htm1TextWriter. Note that to successfully replace the
base class method, the Render function must have exactly this -Signature.

220

.NET Interface Guide

Using SimpleCtl

Our SimpleCtl control may now be included in any NET Web Page from which
temp.dll isaccessible. The file samples\asp.net\temp\Simple.aspx is
simply an example. The fact that this control is written in Dyalog APL is immaterial.

<%@ Register TagPrefix="Dyalog"
Namespace="DyalogSamples" Assembly="temp" %>

<html>
<body>
<Dyalog:SimpleCtl runat=server/>
</body>
</html>

The first line of the script specifies that any controls referenced later in the script that
are prefixed by Dyalog:, refer to custom controls in the NET Namespace called
DyalogSamples which is located in the Assembly temp.d11 inthe bin
subdirectory.

[localhost/dyalog.net.15.0 X

&« | @ localhost/dyalog.net.15.0.unicede.32/temp/simple.aspx T | &

Hello World

Chapter 10: Writing Custom Controls for ASP.NET 221

The TemperatureConverterCtl1 Control

The TemperatureConverterCtll control is an example of a compositional
control, i.e. a server-side custom control that is composed of other standard controls.

In this example, The TemperatureConverterCtl1 control gathers together two
textboxes and two push buttons into a single component as illustrated below. Type a
number into the Centigrade box, click the Centigrade To Fahrenheit button, and the
control converts accordingly. If you click the Fahrenheit To Centigrade button, the

reverse conversion is performed.

[lecalhost/dyalog.net.15.0 X

< C | @ localhost/dyalog.net.15.0.unicode.32/temp/templ.aspx ¥ | *

Temperature Control
Fahrenheit: 35

Centigrade: 30

| Fahrenheit To Centigrade | Centigrade To Fahrenheit |

The TemperatureConverterCtl1 control contains other standard controls as
child controls. A control that acts as a container must implement an interface called

INamingContainer.

This interface does not in fact require any methods; it merely acts as a marker. So the
: Class statement specifies that it provides this interface:

:Class TemperatureConverterCtlil: Control,
System.Web.UI.INamingContainer

222 .NET Interface Guide

Child Controls

Whenever ASP.NET initialises a Control, it callsits CreateChildControls
method. The default CreateChildControls method does nothing). So we
simply define a function called CreateChi ldControls with the appropriate
public interface (no arguments and no result) as shown below.

V CreateChildControls

[1] :Access Public override

[2] :Signature CreateChildControls

[3]

[u] Controls.Add [ONEW LiteralControl,cc'<h3>Fahrenheit: '
[5] m_FahrenheitTextBox«[INEW TextBox

[6] m_FahrenheitTextBox.Text«,'0’

[7] Controls.Add m_FahrenheitTextBox

[8] Controls.Add [ONEW LiteralControl,cc'</h3>"

[9]

[10] Controls.Add [NEW LiteralControl,cc'<h3>Centigrade: '
[11] m_CentigradeTextBox<«[INEW TextBox

[12] m_CentigradeTextBox.Text«,'0"

[13] Controls.Add m_CentigradeTextBox

[14] Controls.Add [ONEW LiteralControl,cc'</h3>"

[15]

[16] F2CButton<[JNEW Button

[17] F2CButton.Text«'Fahrenheit To Centigrade’
[18] F2CButton.onClick«[JOR'F2CConvertBtn_Click'
[19] Controls.Add F2CButton

[20]

[21] C2FButton<[IJNEW Button

[22] C2FButton.Text«'Centigrade To Fahrenheit'
[23] C2FButton.onCLlick<[JOR'C2FConvertBtn_Click'
[24] Controls.Add C2FButton

v

Line[4] creates an instance ofa LiteralControl (alabel) containing the text
"Fahrenheit" with an HTML tag "<h3>". Controls is a property of the Control
class (from which TemperatureConverterCtl1 inherits) that returns a
ControlCollection object This hasan Add method whose job is to add the
specified control to the list of child controls managed by the object.

Lines[5-6] create a TextBox child control containing the text "0", and Line[7] adds
it to the child control list.

Line[8] adds a second LiteralControl to terminate the "<H3>" tag.

Lines [10-14] do the same for Centigrade.

Chapter 10: Writing Custom Controls for ASP.NET 223

Lines[16-17] create a But ton control labelled "Fahrenheit To Centigrade". Line[18]
associates the callback function F2CConvertBtn_CLlick with the button's
onClick event. Note that it is necessary to assign the [JOR of the function rather
than its name. Line[19] adds the button to the list of child controls.

Lines[21-24] create a Centigrade button in the same way.

This function is run every time the page is loaded; however in a postback situation,
other code steps in to modify the values in the textboxes, as we shall see.

Fahrenheit and Centigrade Values

The TemperatureConverterCtll maintains two public properties named
CentigradeValue and FahrenheitValue, which may be accessed by a client
application. These properties are not exposed directly as variables, but are obtained
and set via property get (or accessor) and property set (or mutator) functions. (This is
recommended practice for C#, so the example shows how it is done in APL). In this
case, the values are simply stored in or obtained directly from the corresponding
textboxes set up by CreateChildControls.

:Property CentigradeValue
V C«get
:Access Public
:Signature Double«get_CentigradeValue
C<em_CentigradeTextBox.Text
v

vV set C
tAccess Public
:Signature set_CentigradeValue Double Value
m_CentigradeTextBox.Text«sC.NewValue

v
:EndProperty A CentigradeValue

224

.NET Interface Guide

Notice that the Get function uses ¢ to convert the text in the textbox to a numeric
value. Clearly something more robust would be called for in a real application

Similar functions to handle the Fahrenheit property are provided but are not
shown here.

Responding to Button presses

We have seen how APL callback functions have been attached to the onClick
events in the two buttons. The C2FconvertBtn_CLlick callback function simply
obtains the CentigradeValue property, converts it to Fahrenheit using C2F, and
then sets the FahrenheitValue property.

vV C2FConvertBtn_Click args
:Access Public
:Signature C2FConvertBtn_Click Object,EventArgs
FahrenheitValue«C2F CentigradeValue

v

vV f«C2F c
[1] f«32+cx1.8
v

vV F2CConvertBtn_Click args
:Access Public
:Signature F2CConvertBtn_Click Object ,EventArgs
CentigradeValue<«<F2C FahrenheitValue

v
V c«F2C f

[1] c<(f-32)+1.8
v

The F2CconvertBtn_CLlick callback function converts from Fahrenheit to
Centigrade. Note that the functions C2F and F2C areinternal functions that are
private to the control, and it is therefore not necessary to define public interfaces for
them.

Chapter 10: Writing Custom Controls for ASP.NET 225

Using the Control on the Page

The text of the script file samples\temp\templ.aspx is shown below. There is
really no difference between this example and the simple.aspx described earlier.

<%@ Register TagPrefix="Dyalog" Namespace="DyalogSamples"
Assembly="TEMP" %>

<html>

<body bgcolor="yellow">

<center>

<h3>Temperature

Control</h3>

<form runat=server>

<Dyalog:TemperatureConverterCtll id=TempCvtCtll runat=server/>
</form>

</center>

</body>

</html>

The HTML generated by the control at run-time is shown below. Notice that in place
of'the server-side control declaration in temp1l . aspx, there are two edit controls
with numerical values in them, and two push buttons to submit data entered on the
form to the server.

<html>

<body bgcolor="yellow">

<center>

<h3>Temperature
Control</h3>

<form name="ctrll" method="post" action="templ.aspx" id="ctrll">
<input type="hidden" name="_ VIEWSTATE"
value="YTB6MTc3MzAxNzYxNF9fX3g=03£01d88" />

<h3>Fahrenheit: <input name="TempCvtCtll:ctrll" type="text"
value="32" /></h3><h3>Centigrade: <input name="TempCvtCtll:ctrl4"
type="text" value="0" /></h3><input type="submit"
name="TempCvtCtll:ctrl6" value="Fahrenheit To Centigrade"
/><input type="submit" name="TempCvtCtll:ctrl7" value="Centigrade
To Fahrenheit" />

</form>

</center>
</body>
</html>

226 .NET Interface Guide

The TemperatureConverterCtl2 Control

The previous example showed how to compose an ASP.NET custom control from
other standard controls. This example shows how you can instead generate standard
form elements on the browser by rendering the HTML for them directly.

In the composite temperature control TemperatureConverterCtl1, discussed
previously, all the data transfers between the browser and the server, relating to the
standard child controls that it contains, are handled automatically by the controls
themselves. Rendered controls require a bit more programming because it is up to the
control developer to do the data transfer. The data transfer is managed through two
interfaces, namely IPostBackDataHandler and
IPostBackEventHandler. We will see how these interfaces are used later.

The :Class statement for TemperatureConverterCtl12 specifies that it
provides these interfaces.

:Class TemperatureConverterCtl2: Control,
System.Web.UI.IPostBackDataHandler,
System.Web.UI.IPostBackEventHandler

Chapter 10: Writing Custom Controls for ASP.NET 227

Fahrenheit and Centigrade Values

Like the previous TemperatureConverterCt11 control, the
TemperatureConverterCtl2 maintains two public properties named
CentigradeValue and FahrenheitValue using property get and property set
functions.

This time, the control manages the current temperature values in two internal
variables named _CentigradeValue and _FahrenheitValue, which we must
initialise.

_CentigradeValue<0

_FahrenheitValue<«0

The CentigradeValue's get function simply returns the current value of _
CentigradeValue.Its NET Properties are defined as shown so that it is exported
as a property get function for the CentigradeValue property, and returns a
Double.

V C«+get
:Access Public
:Signature Double<«get
C«<_CentigradeValue

v

The CentigradeValue's set function simply resets the value of _
CentigradeValue to that ofits argument. Its NET Properties are defined as
shown so that it is exported as a property set function for the Centigradevalue
property, and takes a Double.

vV set C

tAccess Public

:Signature set Double Value
_CentigradeValue«<C.NewValue
v

The property get and property set functions for the FahrenheitValue property
are similarly defined. The .signatures for these functions are similar to those for the
CentigradeValue functions and are not shown.

228 .NET Interface Guide

Rendering the Control

Like the SimpleCt1 example described earlier in this Chapter, the
TemperatureConverterCtl2 control has a Render function that generates
the HTML to represent its appearance, and in this case its behaviour too.

V Render output;C;F;BF;CF

[1] :Access Public override

[2] :Signature Render HtmlTextWriter output
[3]

(4]

F<'<h3>Fahrenheit <input name='
F,«UniqueID

F,«' id=FahrenheitValue type=text value='
F,«3_FahrenheitValue

F,«'></h3>"'

output.WritecF

]

] C+'<h3>Centigrade <input name='

] C,«UniquelD

] C,«' id=CentigradeValueKey type=text value='
] C,«s_CentigradeValue

] C,«'></h3>"

6] output.WritecC

[18] BF«'<input type=button value=FahrenheitToCentigrade '
[19] BF,«' onClick="jscript:'

[20] BF ,«Page.GetPostBackEventReference
OTHIS'FahrenheitToCentigrade'

[21] BF,«"'">'

[22] output.WritecBF

[23]

[24] CF«'<input type=button value=CentigradeToFahrenheit
[25] CF,«' onClick="jscript:'

[26] CF,«Page.GetPostBackEventReference
OTHIS'CentigradeToFahrenheit'

[27] CF,“IH>I

[28] output.WritecCF

[29]

[30] output.WriteLineec™""' '
' '
'

v

Aswe saw in the SimpleCtl example, the Render method will be called by
ASP.NET with a parameter that represents an Htm1TextWriter object. This is
represented by the APL local name output.

Lines[4-9] and lines [11-16] generate HTML that defines two text boxes in which the
user may enter the Fahrenheit and centigrade values respectively. Lines[9&16] use
the Write method ofthe Htm1TextWriter object to output the HTML.

Chapter 10: Writing Custom Controls for ASP.NET 229

Lines[5&12] obtain the fully qualified identifier for this particular instance of the
TemperatureConverterCtl?2 control from its UniqueID property. Thisisa
property, which it inherits from Control and is therefore also a property of the
current (APL) namespace.

Lines[18-22] and Lines[24-28] generate and output the HTML to represent the two
buttons that convert from Fahrenheit to Centigrade and from Centigrade to
Fahrenheit respectively.

Lines[19-20] and [25-26]generate HTML that wires the buttons up to JavaScript
handlers to be executed by the browser. The JavaScript simply causes the browser to
execute a postback, i.e. send the page contents back to the server.
GetPostBackEventReference is a (shared) method provided by the
System.Web.UI.Page class that generates a reference to a client-side script
function. In this case it is called with two parameters, an object that represents the
current instance of the TemperatureConverterCt12 control, and a string that
will be passed to the server to indicate the cause of the postback (i.e. which button
was pressed). The first parameter is a reference to the current object, which is returned
by the system function JTHIS.

The client-side script is itself generated, and inserted into the HTML stream
automatically.

To help to understand this process fully, it is instructive to examine the HTML that is
generated by these functions. We will do this a bit later in the Chapter.

230

.NET Interface Guide

Loading the Posted Data

Once the server-side control has rendered the HTML for the browser, the user is free
to type numbers into the text boxes and to press the buttons.

When the user presses a button, the browser runs the client-side JavaScript code that
in turn generates a postback to the server.

The :Class statement for TemperatureConverterCtl12 specifies that it
supports the TPostBackDataHandler interface. This interface must be
implemented by controls that want to receive postback data (i.e., the contents of
Form fields that the user may have entered or changed) IpostBackDataHandler
has two methods LoadPostData and RaisePostDataChangedEvent.
LoadPostData is automatically invoked when a postback occurs, and the
postback data is supplied as a parameter.

So when the postback occurs, the server reloads the original page and, because this is
a postback situation and our control has advertised the fact that it implements
IPostBackDataHandler, ASPNET invokes its LoadPostBack method. This
method is called with two parameters. The first is a key and the second is a collection
of name/value pairs. This contains the names of all the Form fields on the page (and
there may be others not directly associated with our custom control) and the values
they had when the user pressed the button. The key provides the means to extract the
relevant part of this collection. The LoadPostData function is shown below.

V R«<LoadPostData args;postDataKey;values;controlValues;new
[1] :Signature Boolean<IPostBackDataHandler.LoadPostData
String postDataKey,NameValueCollection values
[2] postDataKey values<«args

[3] controlValues«values[cpostDataKey]
[4] new<ParseControlValues controlValues
[5] R«<v/new=_FahrenheitValue _CentigradeValue
[6] _FahrenheitValue _CentigradeValue<new
v

Line[2] obtains the two parameters from the argument and Line[3] uses the key to
extract the appropriate data from the collection. ControlValues is a comma-
delimited string containing name/value pairs. The function
ParseControlValues simply extracts the values from this string, i.e. the
contents of the Fahrenheit and Centigrade text boxes.

Chapter 10: Writing Custom Controls for ASP.NET 231

Postback Events

The result of LoadPostData is Boolean and indicates whether or not any of the
values in a control have changed. If the result is True (1), ASP.NET will next call
the RaisePostDataChanged method. This method is called with no parameters
and merely signals that something has changed. The control knows what has
changed by comparing the old with the new, as in LoadPostData[5].

Finally, the page framework calls the Rai sePostBackEvent method, passing it a
string that identifies the page element that caused the post back.

The objective of these calls is to provide the control with the information it requires
to synchronise its internal state with its appearance in the browser.

In this case, we are not interested in which ofthe two text box values the user has
altered; what matters is which of the two buttons FarenheitToCentigrade or
CentigradeToFarenheit was pressed. Therefore, in this case, the control uses
RaisePostBackEvent ratherthan RaisePostDataChanged (orindeed,
LoadPostData itself, which is another option). The reason is that
RaisePostBackEvent receives the name of the button as its argument.

So in our case, the RaisePostDataChanged function does nothing.
Nevertheless, it is essential that the function is provided and essential that it supports
the correct public interface, namely that it takes no arguments are returns no result
(Void).

vV RaisePostDataChangedEvent
[1] :Access public
[2] :Signature RaisePostDataChangedEvent
[3] A Do nothing

v

The RaisePostBackEvent function simply switches on its argument, which is
the name of the button that the user pressed, and recalculates _CentigradeValue
or _FahrenheitValue accordingly.

V RaisePostBackEvent eventArgument

[1] tAccess public

[2] :Signature RaisePostBackEvent String eventArg
[3] :Select eventArgument

[4] :Case 'FahrenheitToCentigrade'’

[5] _CentigradeValue«F2C _FahrenheitValue

[6] :Case 'CentigradeTofahrenheit'

[7] _FahrenheitValue«C2F _CentigradeValue

[8] :EndSelect

232

.NET Interface Guide

Finally, the page framework calls the OnPreRender and Render functions again,
which generate new HTML for the browser.

Using the Control on a Page

So long as it has access to this DLL, our custom control may be accessed from any
ASP.NET Web Page, and a simple example is shown below.

<%@ Register TagPrefix="Dyalog" Namespace="DyalogSamples"
Assembly="TEMP" %>

<html>

<body bgcolor="yellow">

<center>

<h3>
Temperature Control</h3>

<h4>
Server-Side Noncompositional control</h4>

<form runat=server>
<Dyalog:TemperatureConverterCtl2 id=TempCvtCtl2
runat=server/>

</form>

</center>
</body>
</html>

The HTML that is generated by the control is illustrated below. Notice the presence
ofa JavaScript function named _ doPostBack. This is generated by the
RegisterPostBackScript method called fromthe OnPreRender function.
The code that wires the buttons to this function was generated by the
GetPostBackEventReference method called from the Render function.

Chapter 10: Writing Custom Controls for ASP.NET 233

<html>

<body bgcolor="yellow">

<center>

<h3>Temperature
Control</h3>

<h4>Server-Side
Noncompositional control</h4>

<form name="ctrll" method="post" action="temp2.aspx" id="ctrll">

<input type="hidden" name="__ EVENTTARGET" value="" />
<input type="hidden" name="_ EVENTARGUMENT" value="" />
<input type="hidden" name=" VIEWSTATE"

value="YTB6MTc3MzAxNzYxM19fX3g=9cfcfa5c" />

<script language="javascript">

<l=-
function doPostBack (eventTarget, eventArgument) ({
var theform = document.ctrll
theform. EVENTTARGET.value = eventTarget
theform. EVENTARGUMENT.value = eventArgument
theform.submit ()
}
/]==>
</script>

<h3>Fahrenheit <input name=TempCvtCtl2 id=FahrenheitValue
type=text value=0></h3><h3>Centigrade <input name=TempCvtCtl2
id=CentigradeValueKey type=text value=0></h3><input type=button
value=FahrenheitToCentigrade onClick="jscript: doPostBack
('TempCvtCtl2', 'FahrenheitToCentigrade') "><input type=button
value=CentigradeToFahrenheit onClick="jscript: doPostBack
('TempCvtCtl2', 'CentigradeToFahrenheit') ">

</form>
</center>

</body>
</html>

234 .NET Interface Guide

[% localhost/dyalog.net.15.0 X

& & |{D lacalhost/dyalog.net.15.0.unicode.32/temp/temp1.aspx 1'.'?| :

Temperature Control

Fahrenheit: 6 |

Centigrade: 30 |

| Fahrenheit To Centigrade | Centigrade To Fahrenheit |

Chapter 10: Writing Custom Controls for ASP.NET 235

The TemperatureConverterCtl3 Control

In the previous examples, events generated by control have been internal events, i.e.
events that have been detected and processed internally by the control itself.

A separate requirement is to be able to design a custom control that generates
external events, i.e. events that can be detected and handled by the page that is
hosting the control. This example illustrates how to do this.

The TemperatureConverterCtl3 namespace is a copy of TemperatureConverterCtl2
with a couple of changes.

The first change is that it describes an event that the control is going to generate.
This is done using [INQ inside TemperatureConverterCtl3 like this:

2 ONQ '' 'SetEventInfo' 'Export'
(('Double' 'Fahrenheit')
('Double' 'Centigrade'))

In this case, the name of the event is Export and it will report two parameters named
Fahrenheit and Centigrade which are both of data type Double.

236

.NET Interface Guide

This version of the control presents a slightly different appearance to the previous
one. The control itselfis wrapped up in an HTML Table, with the conversion buttons
arranged in a column. These buttons generate internal events that are caught and
handled by the control itself. The third row of the table contains an additional button
labelled Export which will generate the Export event when pressed. The Render
function is shown below.

vV Render output;TableRow;HTML;SET

[1] tAccess public override

[2] :Signature Render HtmlTextWriter output

[3] TableRow<«{

[4] HTML<'<tr><td>"',a,'</td><td><input name=',UniquelD
[5] HTML,«' id=',a,'Value type=text

[6] HTML,«'value=", (3w), '></td>"

[7] HTML,«'<td><input type=button value=Convert'
[8] HTML,«' onClick="jscript:"'

[9] HTML ,«(Page.GetPostBackEventReference OTHIS
a),'"></td></tr>'

[10] HTML

[11] }

[12]

[13] HTML<""'

[14] HTML<«'<table>'
[15] HTML,«'Fahrenheit'TableRow _FahrenheitValue
[16] HTML,<«'Centigrade'TableRow _CentigradeValue
[17]
[18] SET«'<tr><td><input type=button value=Export
[19] SET,«' onClick="jscript:'
[20] SET,«Page.GetPostBackEventReference [JTHIS'Export'
[21] SET,«'"></td></tr>"
[22] HTML,«SET, '</table>"
[23] output.WritecHTML

v

Notice that Render [18] causes the Export button to generate a Postback event
which will call RaisePostBackEvent with the argument ' Export'. Up to
now, this is just an internal event just like the events generated by the conversion
buttons

The RaisePostBackEvent propagates this event to the host page.

Chapter 10: Writing Custom Controls for ASP.NET 237

(1]

[2]
[3]
4]
[5]
(6]
[7]
(8]
[91]

vV RaisePostBackEvent eventArgument

v

:Signature IPostBackEventHandler.RaisePostBackEvent String
eventArg

:Select eventArgument
:Case 'Fahrenheit'

_CentigradeValue<«F2C _FahrenheitValue

:Case 'Centigrade’

_FahrenheitValue«C2F _CentigradeValue

:Case 'Export'

4 ONQ'' 'Export'_FahrenheitValue _CentigradeValue

:EndSelect

This is simply done by the third : Case statement, so that when the function is
invoked with the argument ' Export ', it fires an Export event. This is done by line
[8] using 4+ [INQ. The elements of the right argument are:

Specifies that the event is generated by this

[1] instance of the control

[2] '"Export'’ The name of the event to be generated

[3] |_FahrenheitValue |The value of the first parameter, Fahrenheit
[4] | Centigradevalue The value of the second parameter,

Centigrade

It is then up to the page that is hosting the control to respond to the event in
whatever way it deems appropriate.

238

.NET Interface Guide

Hosting the Control on a Page

The following example illustrates an ASP.NET web page that hosts the
TemperatureConverterCtl3 custom control and responds to its Export event. The
page uses a <script> written in APL, but it could just as easily be written in VB.NET.

<%@ Register TagPrefix="Dyalog" Namespace="DyalogSamples"
Assembly="TEMP"%>

<script language="Dyalog" runat="server">
V ExportCB args;sender;e

[1] sender e<args

[2] (Flab Clab).Text«s e.(Fahrenheit Centigrade)
v

</script>

<html>

<body>

<center>

<h3>Temperature Control
</h3>

<hi4>Generating Events
</hk>

<form runat=server>

<Dyalog:TemperatureConverterCtl3 id="TempcvtCtl3"
onExport="ExportCB"

runat=server/>

</form>

<p>Exported values are:</p>

<table>
<tr><td>Fahrenheit:</td>
<td><asp:Label id="Flab" Text="" runat="server"'>
</asp:Label></td>
</tr>
<tr><td>Centigrade:</td>
<td><asp:Label id="Clab" Text="" runat="server"'>
</asp:Label></td>
</tr>
</table>
</center>
</body>
</html>

In this example, the host page associates a callback function ExportCB with the
Export event The ExportCB callback function is defined within the
<script></script> section of the page. It simply sets the Text property of two Label
controls to display the parameters reported by the event.

Chapter 10: Writing Custom Controls for ASP.NET 239

The picture below illustrates what happens when you run the page. Notice that the
user can independently convert values between the two temperature scales and
export these values from the control, to the host page, by pressing the Export button.

[localhost/dyalog.net.15.0 X

& C | @ localhost/dyalog.net.15.0.unicode.32/temp/temp3.aspx ¥¥
Temperature Control

Generating Events

Fahrenheit 212 Convert
Centigrade 100 Convert
Export

Exported values are:

Fahrenheit: 212
Centigrade: 100

240 .NET Interface Guide

24

Chapter 11:

APLScript

Introduction

APLScript is a Dyalog APL scripting language. It was originally designed
specifically to program ASP.NET Web Pages and Web Services, but it has been
extended to be of more general use outside the Microsoft .NET environment.

APLScript is not workspace oriented (although you can call workspaces from it)
but is simply a character file containing function bodies and expressions.

APLScript files may be viewed and edited using any character-based editor which
supports Unicode text files, such as Notepad. APLScript files may also be edited
using Microsoft Word, although they must be saved as text files without any Word
formatting.

APLScript files employ Unicode encoding so you need a Unicode font with APL
symbols, such as APL385 Unicode, to view them. In order to type Dyalog APL
symbols into an APLScript file, you also need the Dyalog APL Input Method
Editor (IME), or other APL compatible keyboard.

If you choose to use the Dyalog APL IME it can be configured from the Dyalog
Configuration dialog. You may change the associated . DIN file and various other
options. See Installation & Configuration Guide: Unicode Input Tab.

There are basically three types of APLScript files that may be identified by three
different file extensions. APLScript files with the extension .aspx and . asmx
specify .NET classes that represent ASP.NET Web Pages and Web Services
respectively. APLScript files with the extension . apl may specify .NET classes or
may simply represent an APL application in a script format as opposed to a
workspace format. Such applications do not necessarily require the Microsoft NET
Framework.

242

.NET Interface Guide

The APLScript Compiler

APLScript files are compiled into executable code by the APLScript compiler whose

name is given in the table below.

Unicode Edition Classic Edition
32-Bit dyalogc unicode.exe dyalogc.exe
64-Bit [dyalogc64 unicode.exe dyalogc64.exe

This program is called automatically by ASP.NET when a client application
requests a Web Page (.aspx) or Web Service (.asmx) and in these circumstances

always generates the corresponding .NET class. However, the Script Compiler may

also be used to:

« Compile an APLScript into a workspace (. dws) that you may subsequently

run using dyalog.exe or dyalogrt.exe in the traditional manner.
Compile an APLScript into a .NET class (. d11) which may subsequently
be used by any other NET compatible host language such as C# or Visual
Basic.

Compile an APLScript into a native Windows executable program (. exe),
which may be run as a stand-alone executable. This program may be
distributed, along with the Dyalog APL runtime DLL, as a packaged
application, and does not require any of the additional support files and
registry entries that are typically needed by the Dyalog APL run-time
dyalogrt.exe. Note too that the Dyalog APL dynamic link library does
not use MAXWS but instead allocates workspace dynamically as required.
See the Dyalog for Microsoft Windows Installation and Configuration
Guide: Run-Time Applications and Components for further details.
Compile a Dyalog APL Workspace (.dws) into a native Windows
executable program, with the same characteristics and advantages described
above.

The Script is designed to be run from a command prompt. If in the 32-bit Classic
Edition you type dyalogc /? (to query its usage) the following output is
displayed:

Chapter 11: APLScript 243

Dyalog APLScript compiler 32 bit. Classic Mode. Version

13.1.12350.0

Copyright Dyalog Ltd 2012

dyalogc.exe command line options:

/?

/r:file
/o[ut]:file
/x:file
project file
/res:file
/icon:file
/q

/v

/s

/nonet

NET
/runtime
/1lx:expression
/t:library
/t:nativeexe
/t:workspace
/nomessages
creating

/console
/c
/unicode
intepreter
/wx:[0]1]3]

Usage

Add reference to assembly

Output file name

Read source files from Visual Studio.NET

Add resource to output file

File containing main program icon

Operate quietly

Verbose

Treat warnings as errors

Creates a binary that does not use Microsoft

Build a non-debuggable binary

Specify entry point (Latent Expression)
Build .NET library (.d1l1l)

Build native executable (.exe).
Build dyalog workspace (.dws)
Process does not use windows messages. Use when

Default

a process to run under IIS

Creates a console application

Creates a console application

Creates an application that runs in a Unicode

Sets WX for default code

244 .NET Interface Guide

Creating an APLScript File

Conceptually, the simplest way to create an APLScript file is with Notepad,
although you may use many other tools including Microsoft Visual Studio as
described in the next Chapter.

1.
2.

Start Notepad

Choose Format/Font from the Menu Bar and select an appropriate Unicode
font that contains APL symbols, such as APL 385 Unicode or Arial Unicode
MS.

Select an APL keyboard by clicking on your keyboard selector in the
System Tray. Note that this keyboard setting (and button) is associated only
with the current instance of Notepad. If you start another instance of
Notepad, or another editor, you will have to select the APL keyboard for it
separately and there will be two floating toolbars on your display.

Now type in your APL code. If you use a Ctrl keyboard, you will discover
that Ctrl+ keystrokes generate APL symbols For example, Ctrl+n generates
T.

Choose File/Save. When the Save As dialog appears, ensure that Encoding
is set to Unicode and Save as type: is set to All Files. Enter the name of the
file, adding the extension .asmx or .aspx, and then click Save. Note that you
have to save the .asmx file somewhere in an IIS Virtual Directory structure.

Chapter 11: APLScript 245

Copying code from the Dyalog Session

You may find it easier to write APL code using the Dyalog APL function or class
editor that is provided by the Dyalog APL Session. Or you may already have code in
a workspace that you want to copy into an APLScript file.

If so, you can transfer code from the Session into your APLScript editor (e.g.
Notepad) using the clipboard. Notice that because APLScript requires Unicode
encoding (for APL symbols), you must ensure that character data is written to the
clipboard in Unicode.

In the Unicode interpreter this is always done. In the Classic interpreter this is
controlled by a parameter called UnicodeToClipboard that specifies whether or not
data is transferred to and from the Windows clipboard as Unicode. This parameter
may be changed using the Trace/Edit page of the Configure dialog box.

If set (the default), APL text pasted to the clipboard from the Session is written as
Unicode and APL requests Unicode data back from the clipboard when it is required.
This makes it easy to transfer APL code between the Session and an APLScript
editor, which is using the Arial Unicode MS font.

In the Classic interpreter when pasting code into the Dyalog editor, there are two
menu items under the Edit menu, which allow you to explicitly select whether the
Unicode mapping should be used, or the old mapping which corresponds to the
Dyalog Std TT or Dyalog Alt TT fonts. You should use "Paste non-Unicode" when
transferring text from the on line help, or text copied from earlier versions of Dyalog
APL without the Unicode option.

Unless you explicitly want to have line numbers in your APLScript, the simplest
way to paste APL code from the Session into an APLScript text editor is as follows:

open the function in the function editor

select all the lines of code, or just the lines you want to copy

select Edit/Copy or press Ctrl+Ins

switch to your APLScript editor and select Edit/Paste or press Shift+Ins.
insert Del (V) symbols at the beginning and end of the function.

LR WLbe=

246

.NET Interface Guide

If you want to preserve line numbers (this is allowed, but not recommended in
APLScript files), you may use the following technique:

1. in the Session window, type a del (V) symbol followed by the name of the
function, followed by another del (V) and then press Enter. This causes the
function to be displayed, with line numbers, in the Session window.

2. select the function lines, including the surrounding Dels (V) and choose
Edit/Copy or press Ctrl+Insert.

3. switch to your APLScript editor and select Edit/Paste or press Shift+Ins.

General principles of APLScript

The layout ofan APLScript file differs according to whether the script defines a
Web Page, a Web Service, a .NET class, or an APL application that may have
nothing to do with the NET Framework. However, within the APLScript, the
code layout rules are basically the same.

An APLScript file contains a sequence of function bodies and executable statements
that assign values to variables. In addition, the file typically contains statements that
are directives to the APLScript compiler. If the script is a Web Page or Web Service,
it may also contain directives to ASP.NET. The former all start with a colon symbol
(:) in the manner of control structures. For example, the : Name s pace statement tells
the APLScript compiler to create, and change into, a new namespace. The

:EndNamespace statement terminates the definition of the contents of a
namespace and changes back from whence it came.

Assignment statements are used to set up system variables, such as [JML, IO,
[JUSING and arbitrary APL variables. For example:

OML<2
J10<0
JUSINGu«c'System.Data'

A<88
B«<'Hello World'

gcy'Myws'

These statements are extracted from the APLScript and executed by the compiler
in the order that they appear. It is important to recognise that they are executed at
compile time, and not at run-time, and may therefore only be used for initialisation.

Notice that it is acceptable to execute [JCY to bring in functions and variables from a
workspace that are to be incorporated into the code. This is especially useful to
import a set of utilities. Note also that it is possible to export these functions as
methods of .NET classes if the functions contain the appropriate colon statements.

Chapter 11: APLScript 247

The APLScript compiler will in fact execute any valid APL expression that you
include. However, the results may not be useful and may indeed simply terminate the

compiler. For example, it is not sensible to execute statements such as (JLOAD, or
0OoFF.

Function bodies are defined between opening and closing del (V) symbols. These are
fixed by the APLScript compiler using [F X. Line numbers and white space
formatting are ignored.

Creating Programs (.exe) with APLScript

The following examples, which illustrate how you can create an executable program
(. exe) direct from an APLScript file, may be found in the directory
samples\aplscript.

A simple GUl example

The following APLScript illustrates the simplest possible GUI application that
displays a message box containing the string "Hello World".

:Namespace N

OLX«<'N.RUN'

VRUN ;M

'M'OWC'MsgBox' 'A GUI exe' 'Hello World'
aoQ'M’

v

:EndNamespace

This example, which is saved in the file egl . apl, is compiled to a Windows
executable (. exe)using dyalogc.exe and run from the same command window
as shown below. Notice that it is essential to surround the code with : Namespace
/ :EndNamespace statements and to define a JL X either in the APLScript itself,
or as a parameter to the dyalogc command.

AWINDOWS\system32\cmd.exe
C:\Program Files-Dyalog-~Dyalog APL 11.8“Samplessaplscript>dyvalogec egl.apl I:
Dyaloy APLScript compiler. Version 11.8
Copyright Dyalog Ltd 2886

C:“Program Files“Dyalog~Dypalog APL 11 ._8~Samplessaplscriptregl

C:“\Program Filesz“Dyalog-Dyalog APL 11.8“Samples~aplscript>

248 .NET Interface Guide

a Ut exe ST

Hella \Warld

You can associate the . exe with a desktop icon, and it will run stand-alone, without
a Command Prompt window. Furthermore, any default APL output that would
normally be displayed in the session window will simply be ignored.

A simple console example

The following APLScript illustrates the simplest possible application that displays
the text "Hello World".

This example, which is saved in the file eg2 . ap1, is compiled to a Windows
executable (. exe) and run from a command window as shown below. Notice that
the /console flag is used to tell the APLScript compiler to create a console
application that runs from a command prompt. In this case, default APL output that
would normally be displayed in the session window turns up in the command
window from which the program was run.

:Namespace N
OLX<'N.RUN'
VRUN

‘Hello World'
v
:EndNamespace

Once more, it is essential to surround the code with
:Namespace/:EndNamespace statements and to define a[JL X either in the
APLScript itself, or as a parameter to the dyalogc command.

AWINDOWS\system32\emd.exe

C:~Program Files:Dyalog“Dyalog APL 11.8~Samples™aplzcript>dyalogc ~console eg2.a

1
Dyalog APLScript compiler. Uersion 11.8

Copyright Dyalog Ltd 2886

C:“Program Files“Dyalog“Dyalog APL 11.8~Samples“aplscript>eg2
Hello World

C:=“FProgram Files“Dyalog~Dyalog APL 11.8~Samplesaplscript>_

Chapter 11: APLScript 249

Defining Namespaces

Namespaces are specified in an APLScript using the : Namespace and
:EndNamespace statements. Although you may use NS and 0CS within
functions inside an APLScript, you should not use these system functions outside
function bodies. Note that such use is not prevented, but that the results will be
unpredictable.

:Namespace Name
introduces a new namespace called Name relative to the current space.
:EndNamespace

terminates the definition of the current namespace. Subsequent statements and
function bodies are processed in the context of the original space.

It is imperative that at least ONE namespace be specified.

All functions specified between the : Namespace and : EndNamespace
statements are fixed in that namespace. Similarly, all assignments define variables
inside that namespace.

The following example illustrates how APL namespace usage is handled in
APLScript. The program, contained in the file eg3.apl, is as follows:

:Namespace N
OLX<"'N.RUN'

VRUN
OPATH«'t'
NS.START
END

v
VR«CURSPACE
R<>[INSI

v

VEND
'Ending in ',CURSPACE
v

:NameSpace NS

VSTART

‘Starting in ',CURSPACE
v

:EndNameSpace
:EndNameSpace

250 .NET Interface Guide

Creating

This somewhat contrived example illustrates how a namespace is defined inside
another namespace using :NameSpace and : EndNamespace statements. The
namespace NS contains a single function called START, which is called from the
main function RUN.

Notice that JPATH is defined dynamically in function RUN. If it were defined
outside a function in a static statement in the script (say, after the statement that sets
0LX), it would not be honoured when the application was run.

This program is shown, compiled and run as a console application, below.

v CAWINDOWS\system32\emd.exe

Ci\PPogram Files~Dvalog~Dyalog APL ii1.@8~Samples~aplscript>dyalogc ~console eg3d.a

P
Dyalog APLScript compiler. Uersion 11.8
Copyright Dyalog Ltd 2086

C:~Program Files“~Dyalog~Dyalog APL ii1.@~Samplessaplscriptreg3
Gtarting in H#.H.HNS
Ending in #.N

C:“Program Files\DyalogsDyalog APL 11.@\Samples>a

NET Classes with APLScript

It is possible to define and use new .NET classes within an APLScript.

A classis defined by :Class and :EndClass statements. The methods provided
by the class are defined as function bodies enclosed within these statements. Please
see the Language Reference for a complete discussion of writing classes in Dyalog
APL. This chapter will only provide a brief introduction to the subject, aimed
specifically at APLScript.

Y ou may also define sub-classes or nested classes using nested : Class and
:EndClass statements.

:Class Name: Type

Declares a new class called Name, which is based upon the Base Class Type, which
may be any valid .NET Class.

:EndClass
Terminates a class definition block

A class specified in this way will automatically support the methods, properties and
events that it inherits from its Base Class, together with any new public methods that
you care to specify.

Chapter 11: APLScript 251

However, the new class only inherits a default constructor (which is called with no
parameters) and does not inherit all of the other private constructors from its Base
Class. You can define a method to be a constructor using the : Implements
Constructor declarative comment. Constructor overloading is supported and you
may define any number of different constructor functions in this way, but they must
have unique parameter sets for the system to distinguish between them.

You can create and use instances of a class by using the ONEW system function in
statements elsewhere in the APLScript.

Exporting Functions as Methods

Within a : Class definition block, you may define private functions and public
functions. A public function is one that is exposed as a method and may be called by
a client that creates an instance of your class. Public functions must have a section of
declaration statements. Other functions are purely internal to the class and are not
directly accessible by a client application.

The declaration statements for public functions perform the same task for an
APLScript that is performed using the NET Properties dialog box, or by executing
SetMethodInfo in the Dyalog APL Session, prior to creating a .NET assembly. The
following declaration statements may be used.

:Access Public

Specifies that the function is callable. This statement applies only to a .NET class or
to a Web Page and is not applicable to a Web Service.

:Access WebMethod

Specifies that the function is callable as a Web Method. This statement applies only
to a Web Service (.asmx). From version 11.0, the statement is equivalent to:

tAccess Public
:Attribute System.Web.Services.WebMethodAttribute

:Implements Constructor

Specifies that the function is a constructor for a new .NET class. This function must
appear between :Class and :EndClass statements and this applies only to a
Web Page (.aspx). See Defining Classes in APLScript for further details. A
constructor is called when you execute the New method in the class.

252

.NET Interface Guide

:Signature result«fn typel Namel, type2 Name2,..

Declares the result of the method to have a given data type, if any. It also declares
parameters to the method to have given data types and names. Namex is optional and
may be any well-formed name that identifies the parameter. This name will appear in
the metadata and is made available to a client application as information. It is
therefore sensible to choose meaningful names. The names you allocate to parameters
have no other meaning and are not associated with the names of local variables that
you may choose to receive them. However, it is not a bad idea to use the same local
names as the public names of your parameters.

A .NET Class example

The following APLScript illustrates how you may create a NET Class using
APLScript. The example class is the same as Example 1 in Chapter 5. The APLScript
code, saved in the file samples\aplclasses\aplclasses6.apl,isas
follows:

:Namespace APLClasses

:Class Primitives: Object
JUSING«,c'System'
:Access public

V R«IndexGen N

:Access Public

:Signature Int32[]«IndexGen Int32 number
R«1N

\'4

:EndClass

:EndNamespace

This APLScript code defines a namespace called APLClasses. This simply acts as
a container and is there to establish a NET namespace of the same name within the
resulting NET assembly. Within APLClasses is defined a .NET class called
Primitives whose base classis System.Object. This class has a single public
method named IndexGen, which takes a parameter called number whose data type
is Int 32, and returns an array of Int32 as its result.

The following command shows how aplclasses6.apl is compiled to a NET
Assembly using the /t:1library flag.

APLClasses>dyalogc /t:library aplclassesé6.apl

Dyalog APLScript compiler 32bit Classic Mode Version 13.0.8690.0
Copyright Dyalog Limited 2011

APLClasses>

Chapter 11: APLScript 253

The next picture shows a view of the resulting aplclasses6.dl1l using
ILDASM.

¥ C:\Program Files\Dyalog\Dyalog APL 11.0%S... E|@|E|
File Wiew Help

=4 CAProgram Filez\DyvaloghDyalog APL 11,045 ampleshaplclaszeshaplcl
B MAMNIFEST

=-|JE Primitives
b class public auto ans
& $Tolyalog: private static clagzs [bidge110]T oD valog
o Bide: private int32
B $nitializelnstanceFields © vaoid()
$lnitiaizeSharedFields © void()
B $ost_ids: int32])
.cchar: woid()
B ctor: wvoid])
B BazeConstructor : vaoid]]
B IndexGen : int32[][int32]

£ >
.azzembly aplclazzesh b
w

77 aplclassesé. Ul - IL DASM MmE[X]

File Wiew Help

P MAMNIFEST
=W APLClazses

=-|JE Primitives
b .clazs public auto ansi
& $ToDyalog : private static clazs [bridge]T aDyalog
o Fide : private ink3z2
B 1BazeConstructar : vaid()
.cchor : woid(]
B chor: wvoid()
B IndexGen : ink32[][int32)

.azzembly aplclazzesh [A]

254

.NET Interface Guide

This NET Class can be called from APL just like any other. For example:

JCLEAR
clear ws

JUSING«'APLClasses,Samples\APLClasses\
aplclassesé6.dll’
APL<[INEW Primitives
APL.IndexGen 10
1234567 89 10

Defining Properties

Properties are defined by :Property and :EndProperty statements. A property
pertains to the class in which it is defined.

:Property Name
V C«get
[1] tAccess public
[2] :Signature Double<«get
[3] Ce...
v

Declares a new property called Name whose data typeis System.Double. The
latter may be any valid NET type which can be located through JUSING.

:EndProperty
Terminates a property definition block

Within a : Property block, you must define the accessors of the property. The

accessors specify the code that is associated with referencing and assigning the value

ofthe property. No other function definitions or statements are allowed inside a
:Property block.

The accessor used to reference the value of the property is represented by a function
named get that is defined within the : Property block. The accessor used to
assign a value to the property is represented by a function named set that is defined
within the :Property block.

The get function is used to retrieve the value of the property and must be a niladic
result returning function. The data type of its result determines the Type of the
property. The set function is used to change the value of the property and must be a
monadic function with no result. The argument to the function will have a data type
Type specified by the : Signature statement. A property that containsa get
function but no set function is effectively a read-only property.

Chapter 11: APLScript 255

The following APLScript, saved in the file
samples\aplclasses\aplclasses?.apl, shows how a property called
IndexOrigin can be added to the previous example. Within the :Property
block there are two functions defined called get and set which are used to
reference and assign a new value respectively. These functions have the fixed names
and syntax specified for property get and property set functions as described above.

:Namespace APLClasses

:Class Primitives: Object
JUSING«+,c'System'
:Access public

V R«IndexGen N

tAccess Public

:Signature Int32[]«IndexGen Int32 number
R«1N

\4

:Property IndexOrigin
Vio«get
:Signature Int32«get Int32 number
jo«[JIO
v

Vset io
:Signature set Int32 number
:If i0e0 1
0I0<io
tEndIf
v
:EndProperty

tEndClass

:EndNamespace

256 .NET Interface Guide

The TLDASM view ofthe new aplclasses7.dl11, with the addition of an
IndexOrigin property, is illustrated below.

7 aplclasses7.dlL - IL DASM mEx]

File Wiew Help

P MAMNIFEST
=@ APLClazzes

=-|JE Frimitives
b class public auto ansi
& $ToDyalog : private static class [bndge]Tolyalog
o $ide : private int32
B $BaseConstructar : woid()
.cchar ; void]]
B ctor: vaid()
B IndexGen: int32[]lnt32)
B aet_IndexOrigin : ink32])
B et _|ndexOrigin ; woid(int32)
& IndexOrigin : int32()

.azzembly aplclazzes? i

For other examples of the use of property definitions, see The Component File
Solution in Chapter 11.

This NET Class can be called from APL just like any other. For example:

JCLEAR
clear ws

[JUSING«'APLClasses,Samples\APLClasses\
APLClasses7.DLL'
APL<[INEW Primitives
APL.IndexGen 10
1234567 89 10
APL.IndexOrigin

APL.IndexOrigin<«0
APL.IndexGen 10
0123456789

Chapter 11: APLScript 257

Indexers

An indexer is a property of a class that enables an instance of that class (an object) to
be indexed in the same way as an array, if the host language supports this feature.
Languages that support object indexing include C# and Visual Basic. Dyalog APL
does also allow indexing to be used on objects. This means that you can define an
APL class that exports an indexer and you can use the indexer from C#, Visual Basic
or Dyalog APL.

Indexers are defined in the same way as properties, between :Property Default
and :EndProperty statements. There may be only one indexer defined for a class.

Note: the :Property Default statement in Dyalog APL is closely modelled on
the indexer feature in C# and employs similar syntax. If you use ILDASM to browse
a NET class containing an indexer, you will see the indexer as the default property
of that class, which is how it is actually implemented.

Creating ASP.NET Classes with APLScript

As mentioned previously, the original purpose of APLScript was to provide the
ability to write ASP.NET Web Pages and Web Services in Dyalog APL. Both these
applications are based upon script files.

Web Page Layout

An ASP.NET Web Page typically consists of a mixture of HTML and code written in
a scripting language. The script code is separated from the HTML by being
embedded within <script> and </script> tags and normally appears in the <head>
</head> section of the page. Only one block of script is allowed in a page. The script
block normally consists of a collection of functions, which are invoked by some
event on the page, or on an element of the page.

APLScript code starts with a statement:
<script language="Dyalog" runat=server>
and finishes with:

</script>

Typically, the APLScript code consists of callback functions that are attached to
server-side events on the page.

For further information, see The web.config file on page 271.

258

.NET Interface Guide

Web Service Layout

The first line in a Web Service script must be a declaration statement such as:
<%@ WebService Language="Dyalog" Class="ServiceName" %>
where ServiceName is an arbitrary name that identifies your Web Service.

The next statement must be a : Cl ass statement that declares the name of the Web
Service and its Base Class from which it inherits. The base class will normally be
System.Web.Services.WebService. Forexample:

:Class ServiceName: System.Web.Services.WebService
The last line in the script must be:

:EndClass

Although it may appear awkward to have to specify the name of your Web Service
twice, this is necessary because the two statements are being processed quite
separately by different software components. The first statement is processed by
ASP.NET. When it sees Language="Dyalog", it then calls the Dyalog
APLScript compiler, passing it the remainder of the script file. The :Class
statement tells the APLScript compiler the name of the Web Service and its base
class. :Class and :EndClass statements are private directives to the
APLScript compilerand are not relevant to ASP.NET.

How APLScript is processed by ASP.NET

Like any other Web Page or Web Service, an APLScript file is processed by
ASPNET.

The first time ASP.NET processes a script file, it first performs a compilation process
whose output is a NET assembly. ASP.NET then calls the code in this assembly to
generate the HTML (for a Web Page) or to run a method (fora Web Service).

ASP.NET associates the compiled assembly with the script file, and only recompiles
it iffwhen it has changed.

ASP.NET does not itself compile a script; it delegates this task to a specialised
compiler that is associated with the language declared in the script. This association
is made either in the application's web.config file or in the global
machine.config file. Dyalog Installs a default web.config file which includes
these settings in the samples\asp.net folder.

The APLScript compileris itself written in Dyalog APL.

Chapter 11: APLScript 259

Although the compilation process takes some time, it is typically only performed
once, so the performance of an APLScript Web Service or Web Page is not
compromised. Once it has been compiled, ASP.NET redirects all subsequent requests
foran APLScript to its compiled assembly.

Please note that the use of the word compile in this process does not imply that your
APL code is actually compiled into Microsoft Intermediate Language (MSIL).
Although the process does in fact generate some MSIL, your APL code will still be
interpreted by the Dyalog APL DLL engine at run-time. The word compile is used
only to be consistent with the messages displayed by ASP.NET when it first
processes the script.

260 .NET Interface Guide

261

Chapter 12:

Implementation Details

Introduction

The Dyalog DLL is the Dyalog APL engine that hosts the execution of all NET
classes that have been written in Dyalog APL, including APL Web Pages and APL
Web Services. The Dyalog DLL provides the interface between client applications
(such as ASP.NET) and your APL code. It receives calls from client applications, and
executes the appropriate APL code. It also works the other way, providing the
interface between your APL code and any .NET classes that you may call.

The Development DLL (the full developer version of the Dyalog DLL) contains the
APL Session, Editor, Tracer and so forth, and may be used to develop and debug an
APL .NET class while it is executing. Note that to gain access to the various
workspace tools, such as the Workspace Explorer and the Search/Replace Dialog, the
corresponding DyaRes DLL must be present alongside (in the same directory as) the
Development DLL.

The Run-Time DLL (the re-distributable run-time version of the Dyalog DLL)
contains no debugging facilities.

For the names of these files corresponding to the version of Dyalog that you are
using, see Installation & Configuration Guide: Files and Directories.

262

.NET Interface Guide

Isolation Mode

For each application which uses a class written in Dyalog APL, at least one copy of
the development or run-time version of the Dyalog DLL will be started in order to
host and execute the appropriate APL code. Each of these engines will have an APL
workspace associated with it, and this workspace will contain classes and instances
of'these classes. The number of engines (and associated workspaces) which are
started will depend on the Isolation Mode which was selected when the APL
assemblies used by the application were generated. Isolation modes are:

« Each host process has a single workspace
« Each appdomain has its own workspace
« Each assembly has its own workspace

Note that, in this context, Microsoft Internet Information Services (IIS) is a single
application, even though it may be hosting a large number of different web pages.
Each ASP.NET application will be running in a separate AppDomain, a mechanism
used by .NET to provide isolation within an application. Other .NET applications
may also be divided into different AppDomains.

In other words, if you use the first option, ALL classes and instances used by any IIS
web page will be hosted in the same workspace and share a single copy of the
interpreter. The second option will start a new Dyalog engine for each ASP.NET
application; the final option an engine for each assembly containing APL classes.

Chapter 12: Implementation Details 263

Structure of the Active Workspace

Each engine which is started has a workspace associated with it that contains all the
APL objects it is currently hosting.

Unless the highest isolation mode, Each assembly has its own workspace has been
selected, the workspace will contain one or more namespaces associated with NET
AppDomains. When NET calls Dyalog APL to process an APL class, it specifies the
AppDomain in which it is to be executed. To maintain AppDomain isolation and
scope, Dyalog APL associates each different AppDomain with a namespace whose
name is that of the AppDomain, prefixed by AppDomain_.

Within each AppDoma i n_ namespace, there will be one or more namespaces
associated with the different Assemblies from which the APL classes have been
loaded. These namespaces are named by the Assembly name prefixed by
Assembly_.Ifthe APL class is a Web Page or a Web Service, the corresponding
Assembly is created dynamically when the page is first loaded. In this case, the name
of the Assembly itselfis manufactured by .NET. Below the Assemb Ll y_ namespace
is a namespace that corresponds to the .NET Namespace that represents the container
of your class. Ifthe APL class is a Web Page or Web Service, this namespace is called
ASP. Finally, the namespace tree ends with a namespace that represents the APL
class. This will have the same name as the class. In the case of a Web Page or Web
Service, this is the name of the . aspx or . asmx file.

Note that in the manufactured namespace names, characters that would be invalid
symbols in a namespace name are replaced by underscores.

The following picture shows the namespace tree that exists in the Dyalog DLL
workspace when the first example (see Example 1 on page 109) in the chapter
Writing .Net Classes is executed under Visual Studio. However, to cause the
suspension, an error has been introduced in the method IndexGen.

In this case, there is a single AppDomain involved whose name, DyApp vshost
exe is specified by .NET. APL has made a corresponding namespace called
AppDomain_DyApp_vshost_exe. Next, there is a namespace associated with
the Assembly aplclasses,named Assembly aplclasses.Beneath thisisa
namespace called APLClasses associated with the NET Namespace of the same
name. Finally, there is the APL Class called Primitives.

264 .NET Interface Guide

File Edit View Windows Session Log Action Options Tools Threads Help

ws 0 S 08 I] | ket BB S8 VBRI IR |[Tool [0 B M [Eot B (B o o || Sesson o5 [EEATE =
Language Bar x| ﬁ
o) P 2 5 A 2 2 O S S e 2 = e
aplclasses Exploring [# AppDomain_DyApp_vshost_exe Assembly_aplclasses APLClasses] =i
BERXQE | cf BEEE G e
Workspace Tree Contents of #.AppDomain_DyApp vshost exe.Assembly splclasses.AP
E-E ¥ Name Location | Type IDescription
-] AppDomain_DyApp_vshost_exe EDprimitives #.AppDomai... Class BaseType:System
El] Assembly_aplclasses
B3 APLClasses
LA primitives

e-{em) OSE

@4l Typelibs

E4f MetaData e >

1 object(s). 766.TMb free. |5523 bytes used (0 bytes selected)

Dyalog APL/W Version 15.0.27982 ~

Serial No : 000042
Unicode Edition
Tue Dec 13 14%:29:24% 2016
1:SYNTAX ERROR
IndexGen[3] =

N

}SI

[#. AppDomain_| DyApp_vshust_exe.Assembly_aplcLasses.APLClasses.[Primitives]] #.AppDomain_DyApp_vshost_e

IndexGen[S]*
MainClass.Main[]
System.AppDomain._nExecuteAssembly[]
System.AppDomain.ExecuteAssembly[]
Microsoft.VisualStudio.HostingProcess.HostProc.RunUsersAssembly[]
System.Threading.ThreadHelper.ThreadStart_Context[]
System.Threading.ExecutionContext.RunInternal[]
System.Threading.ExecutionContext.Run[]
System.Threading.ExecutionContext.Run[]
System.Threading.ThreadHelper.ThreadStart[]

&1 (system thread:8752)

< >
Debugger -lolx|
Tid:d Zl|IndexGen[3] %o
|
= =
STUM D> PEXNHE R
=0 #. AppDomain_D : :Class Primitives ~ ||
m-afi [Methods] :Using System
0 VR+IndexGen N —
saccess public o
:signature Int32[]+IndexGen Int32 -
k o
Re1N [
v vl s =
< > & 2
m =]
‘ Class Pos: 5/9,0 w w

[[Readr. . [ns um [[

| [curobj: &:2 [Dog:0 [DTRAP [OsI:0 [OIO:1 |OML:1

Notice that the State Indicator displays the entire .NET calling structure, and not just
the APL stack. In this case, the State Indicator shows that IndexGen was called
fromMainClass.Main, which combines the class and method names specified in
aplfns.cs. Note that NET calls are slightly indented.

Notice too that IndexGen has been started on APL thread 1 which, in this case, is
associated with system thread 8752. If the client application were to call IndexGen
on multiple system threads, this would be reflected by multiple APL threads in the
workspace. This topic is discussed in further detail below.

Chapter 12: Implementation Details 265

The possibility for the client to execute code in several instances of an object at the
same time requires that each executing instance is separated from all the others. Each
instance will be created as an unnamed object in the workspace, within the relevant
appdomain and assembly namespaces.

The picture below shows the workspace structure when the assembly was generated
with isolation mode set to Each assembly has its own workspace. In this case, the
AppDomain and Assembly structure is not created above the classes in the
workspace, so the workspace structure is somewhat simpler:

File Edit View Windows 3ession Log Action Options Tools Threads Help

Jws O 5 08 B 2 | Obiect BB T VB[R | Tool Q[) W [[Eat BRI B o o || Session (5 [(HEINDEE || 16
Language Bar x| ﬁ
[B Rl (R [EREEE [t[e]--I0]%] [:leloo[<]-] [L:Telelefs] [TFL[-[F] OEEE | o
aplclasses Exploring [#.APLClasses] Zlalx]
(EBRXQHE | BEEEE| ool
Workspace Tree Contents of #.APLClasses (Global Scope)
SEe Name [Location Type [Description
i B-[]APLClasses EOPrimitives #.APLClasses Class BaseType:System
LEd primitives

(g OSE
&Y TypeLibs
3 MeteData

1 object(s). 958.TMb free. ‘5523 bytes used (0 bytes selected)

Serial No : 000042 ~
Unicode Edition
Mon Dec 19 1%:18:07 2016
1:SYNTAX ERROR
IndexGen[3] =
I
151
[#.APLClasses.[Primitives]] #.APLClasses.Primitives.IndexGen[3]*
MainClass.Main[]
System.AppDomain._nExecuteAssembly[]
System.AppDomain.ExecuteAssembly[]
Microsoft.VisualStudio.HostingProcess.HostProc.RunlsersAssembly[]
System.Threading.ThreadHelper.ThreadStart_Context[]
System.Threading.ExecutionContext.RunInternal[]
System.Threading.ExecutionContext.Run[]
System.Threading.ExecutionContext.Run[]
- System.Threading.ThreadHelper.ThreadStart[]
&1 (system thread:9768)

Debugger =lalx]
Tid:1 | ﬂ IndexGen[3]#o
o
ST D PP XN A =1
B0 #.APLCLlasses. [[0]; [IvR~IndexGen N ~ ”
o &Y [Methods] |[1] :access public
[2] tsignature Int32[]-<IndexGen Int32 =
[31: | f 5
[4] : R<tN =
[51: :lv B
: :EndClass R Primitives =
v '
S .
< > b 2
] 5
| Class Pos: 5/9,0] L

= T

| [curobj: 8:2 [Doq:o [OTRAP [OSI:o |OT0:t |OML:1

266

.NET Interface Guide

Threading

The .NET Framework is inherently a multi-threaded environment. For example,
ASP.NET runs its own thread pool from which it allocates system threads to its
clients. Calls from ASP.NET into APL Web Pages and Web Services will typically
be made from different system threads. This means that APL will receive calls from
NET while it is processing a previous call. The situation is further complicated when
you write an APL Web Page that calls an APL Web Service, both of which may be
hosted by a single Dyalog DLL inside ASP.NET. In these circumstances, ASP.NET
may well allocate different system threads to the NET calls, which are made into the
two separate APL objects. Although in the first example (multiple clients) APL
could theoretically impose its own queuing mechanism for incoming calls, it cannot
do so in the second case without causing a deadlock situation.

It is important to remember that whether running as DY ALOG.EXE, or as the
Dyalog DLL, the Dyalog APL interpreter executes in a single system thread.
However, APL does provide the ability to run several APL threads at the same time.
Ifyou are unfamiliar with APL threads, see Language Reference, Chapter I for an
introduction to this topic.

To resolve this situation, Dyalog APL automatically allocates APL threads to NET
system threads and maintains a thread synchronisation table so that calls on the same
system thread are routed to the same APL thread, and vice versa. This is important
because a GUI object (cf. System.Winforms)is owned by the system thread that
created it and can only be accessed by that thread.

The way that system threads are allocated to APL threads differs between the case
where APL is running as the primary executable (DYALOG.EXE) orasa DLL
hosted by another program. The latter is actually the simpler of the two and will be
considered first.

DYALOG DLL Threading

In this case, all calls into the Dyalog DLL are initiated by Microsoft .NET.

When a NET system thread first needs to run an APL function, APL starts a new
APL thread for it, and executes the function in that APL thread. For example, if the
first call is a request to create a new instance of an APL .NET object, its constructor
function will be run in APL thread 1. An entry is made in the internal thread table
that associates the originating system thread with APL thread 1. When the
constructor function terminates, the APL thread is retained so that it is available fora
subsequent call on its associated system thread. In this respect, the automatically
created APL thread differs from an APL thread that was created using the spawn
operator & (See Language Reference).

Chapter 12: Implementation Details 267

When a subsequent call comes in, APL locates the originating system thread in its
internal thread table, and runs the appropriate APL function in the corresponding
APL thread. Once again, when the function terminates, the APL thread is retained for
future use. If a call comes in on a new system thread, a new APL thread is created.

Notice that under normal circumstances, APL thread 0 is never used in the Dyalog
DLL. It is only ever used if, during debugging, the APL programmer explicitly
changes to thread 0 by executing) TID 0 and then runs an expression.

Periodically, APL checks the existence of all of the system threads in the internal
thread table, and removes those entries that are no longer running. This prevents the
situation arising that all APL threads are in use.

DYALOG.EXE Threading

In these cases, all calls to Microsoft NET are initiated by Dyalog APL. However,
these calls may well result in calls being made back from NET into APL.

When you make a .NET call from APL thread 0, the .NET call is run on the same
system thread that is running APL itself.

When you make a .NET call from any other APL thread, the NET call is run on a
different system thread. Once again, the correspondence between the APL thread
number and the associated system thread is maintained (for the duration of the APL
thread) so that there are no thread/GUI ownership problems. Furthermore, APL
callbacks invoked by .NET calls back into APL will automatically be routed to the
appropriate APL thread. Notice that, unlike a call to a DLL via [INA, there is no way
to control whether or not the system uses a different system thread fora NET call. It
will always do so if called from an APL thread other than APL thread 0.

Thread Switching

Dyalog APL will potentially thread switch, i.e. switch execution from one APL
thread to another, at the start of any line of APL code. In addition, Dyalog APL will
potentially thread switch when a NET method is called or when a .NET property is
referenced or assigned a value. Ifthe .NET call accesses a relatively slow device,
such as a disk or the internet, this feature can improve overall throughput by
allowing other APL code while a .NET call is waiting. On a multi-processor
computer, APL may truly execute in parallel with the NET code.

Note that when running DYALOG.EXE, .NET calls made from APL thread 0 will
prevent any switching between APL threads. This is because the .NET code is being
executed in the same system thread as APL itself. If you want to use APL multi-
threading in conjunction with .NET calls, it is therefore advisable to perform all of
the NET calls from threads other than APL thread 0.

268

.NET Interface Guide

Debugging an APL.NET Class

All DYALOG.NET objects are executed by the Dyalog DLL. The full development
version of the Dyalog DLL contains all of the development and debug facilities of
the APL Session, including the Editors and Tracer. The run-time version contains no
debugging facilities at all. The choice of which version of the Dyalog DLL is used is
made when the assembly is exported from APL using the File|Export menu, or
compiled using dyalogc.exe.

Ifan APL NET object that is bound to the full development version generates an
untrapped APL error (such asa VALUE ERROR) and the client application is
configured so that it is allowed to interact with the desktop, the APL code will
suspend and the APL Session window will be displayed. Otherwise, it will throw an
exception.

Ifan APL NET object that is bound to the run-time version of the Dyalog DLL
generates an untrapped APL error it will throw an exception.

Specifying the DLL

There are a number of different ways that you choose to which of the two versions of
the Dyalog DLL your DYALOG.NET class will be bound. Note that the appropriate
DLL must be available when the class is subsequently invoked. If the DLL to which

the APL .NET class is bound is not present, it will throw an exception.

Ifyou build a .NET class from a workspace using the File/Export menu item, you use
the Runtime application checkbox. If Runtime application is unchecked, the NET
Class will be bound to the full development version. If Runtime application is
checked, the NET Class will be bound to the run-time version.

Ifyou build a .NET class using the APLScript compiler, it will by default be bound
to the full development version. If you specify the /runtime flag, it will be bound
to the run-time version.

If your APL .NET class is a Web Page or a Web Service, you specify to which of the
two DLLs it will be bound using the Debug attribute. This is specified in the
opening declaration statement in the . aspx, . asax or . asmx file. If the statement
specifies "Debug=true", the Web Page or Web Service will be bound to the full
development version. Ifit specifies "Debug=false", the Web Page or Web
Service will be bound to the run-time version.

If you omit the Debug= attribute in your Web page, the value will be determined
from the various .NET config files on your computer.

Chapter 12: Implementation Details 269

Forcing a suspension

If an APL error occurs in an APL NET object, a suspension will occur and the
Session will be available for debugging. But what if you want to force this to happen
so that you can Trace your code and see what is happening?

If your APL class is built directly from a workspace, you can force a suspension by
setting stops in your code before using Export to build the DLL. If your class is a
Web Page or Web Service where the code is contained in a workspace using the
workspace behind technique (See Chapter 8), you can set stops in this workspace
before you) SAVE it.

If your APL class is defined entirely in a Web Page, Web Service, or an APLScript
file, the only way to set a break point is to insert a line that sets a stop explicitly
using [JSTOP. It is essential that this line appears after the definition of the function
in the script. For example, to set a stop in the Intro\introl.aspx example
discussed in Chapter 8, the script section could be as follows:

<script language="dyalog" runat="server">

VRotate args
:Access Public
:Signature Reverse Object,EventArgs

(oargs).Text«¢Pressme.Text
v

3 JSTOP 'Rotate’
</script>
As an alternative, you can always insert a deliberate error into your code!

Finally, you can usually force a suspension by generating a Weak Interrupt. This is
done from the pop-up menu on the APL icon in the System Tray that is associated
with the full development version of the Dyalog DLL. Note that selecting Weak
Interrupt from this menu will not have an immediate effect, but it sets a flag that will
cause Dyalog APL to suspend when it next executes a line of APL code. You will
need to activate your object in some way, e.g. by calling a method, for this to occur.
Note that this technique may not work ifthe Dyalog DLL is busy because a thread
switch automatically resets the Weak Interrupt flag. In these circumstances, try again.

The run-time version of the Dyalog DLL does not display an icon in the System
Tray.

270

.NET Interface Guide

Using the Session, Editor and Tracer

When an DYALOG.NET object suspends execution, all other active APL .NET
objects bound to the full development version of the Dyalog DLL that are currently
being executed by the same client application will also suspend. Furthermore, all the
classes currently being hosted by the Dyalog DLL are visible to the APL developer
whether active (an instance is currently being executed) or not. Note that ifa client
application, such as ASP.NET, is also hosting APL .NET objects bound to the
runtime version of the Dyalog DLL, these objects will be hosted in a separate
workspace attached to the run-time version of the Dyalog DLL and will not be
visible to the developer.

Debugging a running DYALOG.NET object is substantially the same process as
debugging a stand-alone multi-threaded APL application. However, there are some
important things to remember.

Firstly, the namespace structure above your APL class should be treated as being
inviolate. There is nothing to prevent you from deleting namespaces, renaming
namespaces, or creating new ones in the workspace. However, you do so at your
peril!

Similarly, you should not alter, delete or rename any functions that have been
automatically generated on your behalfby the APLScript compiler. These functions
are also inviolate.

If execution in the Dyalog DLL is suspended, you may not execute) CLEAR or

JRESET. You may execute)OFF or JOFF, but if you do so, the client application
will terminate. If you attempt to close the APL Session window, you will be warmed
that this will terminate the client application and you may cancel the operation or
continue (and exit).

Ifyou fix a problem in a suspended function and then press Resume or Continue
(Tracer) or execute a branch, and the execution of the currently invoked method
succeeds, you will be left with an empty State Indicator (assuming that no other
threads are actively involved). The Dyalog DLL is at this stage idle, waiting for the
next client request and the State Indicator will be empty.

If, at this point, you close the APL Session window, a dialog box will give you the
option of terminating the (client) application, or simply hiding the APL Session
Window. If you execute)OF F or JOF F the client application will terminate.

Note that in the discussion above, a reference to terminating the client application
means that APL executes Application.Exit (). This may cause the application
to terminate cleanly (as with ASP.NET) or it may cause it to crash.

Chapter 12: Implementation Details 271

The web.config file

ASP.NET configuration parameters are defined in a file named web.config
located in or above the root directory of an ASP.NET application. Parameters defined
in these files supplement or override ASP.NET parameters which are defined system-
wide.

The web . config file provided with Dyalog is located in the Dyalog sub-directory
samples\asp.net and applies to all the examples residing in child directories of
this directory. If you create a Dyalog ASP.NET application elsewhere on your
system, you will need to copy this web . config into the application root directory.
The parameters defined in the Dyalog web . config file are described below.
Further details are provided in comments in the file.

DyalogBinDirectory
This specifies the full path to the Dyalog binaries (DLLs and script compiler).
dyalog (compiler)

This section defines an ASP.NET language named dyalog so that the expression
Language = "dyalog" in a script file associates that script with the Dyalog
APLScript compiler dyalogc.exe. Subsidiary parameters and keys for the dyalog

compiler are:
debu "true" (default) or "false" to bind the script to
g the Development DLL or the Run-time DLL
DyalogCompilerEncoding "classic" or "unicode"..
This is used to define options for the script
DyalogCompilerOptions compiler. For example, to set [JWX to 1 use
"fwx:1".
. . M "true" if i k
DyalogCompilerEmitPragmas bel}ls;(kl)e true” it you are using workspace

DyaloglsolationMode

This parameter specifies the isolation method. See Isolation Mode on page 262 for
further details.

DyalogCacheDirectory may be used to define the directory used to save the cached
files.

272 .NET Interface Guide

273

Index

NET classes 5
NET Classes
exploring 12
using 8
writing 105
.NET namespaces 5

A

Access:Constructor statement 251
accessors 254
ACTFNS workspace 200
Active Server Pages 135
adding .NET objects 22
APL language extensions
for NET objects 22
aplc.exe 242
APLScript 241
Access:Constructor statement 251

Access:Public statement 144,193,251

Access:WebMethod statement 251
Class statement 198,250,258
compiler 242,258

copying from workspaces 247
defining classes 250

defining properties 254

editing 244

EndClass statement 198,250,258
EndIndexer statement 257
EndNamespace statement 249
EndProperty statement 254
example of a NET Class 252

example of a console application 248

example of a GUI application 247
importing code 245

Indexer statement 257

layout 246

Namespace statement 249

ParameterList statement 193,252

Property statement 254

Returns statement 144,252

specifying namespaces 249

Web Page 257

Web Service 258
APLScript compiler 4
AppDomain 262
application 136,139
application pool 136
Application.Run method 43
Application End method 154
Application_Start method 154
ASP.NET.config files 154
assemblies

browsing 181

creating 106

exploring 12
AsyncCallback class 185
asynchronous use

ofa Web Service 183
AutoPostback property 196

B

base class 5,32,105-106,114, 142,150, 181,

195,197-198,250-252,258

bridge dll 4,7,33

BRIDGE.DLL 33

Browse NET Assembly dialog box 13
Button class 39,223

ByRefclass 33

C

C# 111,117,119,123,127,130-131
casts 25
CastToTypes 25
child controls
ofa custom control 222
class constructor 16

274 .NET Interface Guide

Class Methods 22
Class statement 198,250,258
code behind 197
Common Language Runtime 2
Common Operators 22
Common Type System 2,5
comparing .NET objects 22
compositional control 221
config files

for ASPNET 154
constructor 39,114
constructor methods 9
constructor overloading 125
Constructor statement 251
Constructors 9
Constructors folder 16
Control class 217
control structures

disposable 11
ControlCollection class 222
Convert class 33,208
CreateChildControls method 222
creating GUI objects 37
custom controls 217,221

D

data binding 45, 65
DataGrid class 216

examples 43
DataGrid control 203
debug 271
debugging 120
Directory class 28
disposable statement 11
DivRem method 33
DropDownList class 194
dyalog compiler 271
dyalog dll 4,106, 145,242,261,266-268
Dyalog namespace 33
DyalogBinDirectory 271
DyalogCacheDirectory 271
DyalogCompilerEmitPragmas 271
DyalogCompilerEncoding 271

DyalogCompilerOptions 271
DyaloglsolationMode 271
dyalognet dll 4
dyalogproviderdll 4

E

EndClass statement 198,250,258
enumeration 40-41

enumerations 32

ErrorMessage property 212
EventArgs class 206

exception 24,122

Exception class 24

Export 106, 114

F

File class 28

FileStream class 35

Font class 33

FontStyle class 33
Form.ControlCollection class 40
FormBorderStyle class 32,40
FormStartPosition class 40

G

GDIPlus workspace 44
GetPostBackEventReference method 229,232
GetType method 10
global.asax file 154
GOLF function 44,177
GolfService
calling from C# 169
testing from a browser 164
using from Dyalog APL 177
writing 153
GraphicsUnit class 33
GUI objects 37

H
hidden fields 191

Index 275

HtmlTextWriter class 228 manipulating files. 28
HttpWebRequest class 30 Math class 33
HttpWebResponse class 31 MAXWS parameter 242

Metadata 12, 14,181
method overloading 129

I method signature 193
IS 135 Methods folder 18
application 136, 139 Microsoft Internet Information Services 135
application pool 136 modal dialog box 38-39
installation 136
virtual directory 136, 141, 146-147, 149, N
170, 188,244
ILDASM 12,253,256-257 namespace reference array expansion 29,177
INamingContainer Interface 221 NET classes 12
Indexers 257 New method 16, 39,251
Input Method Editor (IME) 241 New system function 9
Interfaces 133 non-modal Forms 43
intrinsic controls 190-191 Notepad 241

IpostBackDataHandler Interface 230
[PostBackDataHandler Interface 226

IPostBackEventHandler Interface 226 0
Isolation Mode 262 object hierarchy 38
IsPostBack property 195,206 OnServerValidate event 211
IsValid property 209 Overloading 9

overloads 25
3 OverloadTypes 25

overriding 105
JavaScript 229,232

P
L
Page Load event 194,203
LiteralControl class 222 Page Load function 204-205
LoadPostData method 230 Page Load method 203
LoanService ParameterList statement 252
exploring 181 PATH:in APLScript 250
testing from a browser 151 Point class 38-39
using asynchronously 183 Pointers 33
using from Dyalog APL 176 positioning Forms and controls 38
writing 149 post back 191,205,223,230
post back events 231
M private 16,224

PROJ workspace 200

MailMessage class 29 properties

MakeProxy function 175,177 defining 223

276 .NET Interface Guide

property get function 227

property set function 227 U
Properties folder 17
proxy class 44,175-177
ProxyData class 30

Unicode 241

Unicode font 244

UnicodeToClipboard parameter 245
URIclass 30

R Using statement 7

USING system variable 6,30,39,133,193

RadioButton control 212 using XAML 46

RadioButtonList control 213-214
RaisePostBackEvent method 231

RaisePostDataChangedEvent method 230 \4
RegisterPostBackScript method 232 .
Render method 219,228, 232 Validate method 214

Validation

of ASP.NET web pages 207
ValidationSummary control 207,216
variant operator 25
virtual directory 136

RequiredFeildValidator control 207
RequiredFieldValidator control 211
Returns statement 252

runat attribute 190

S
W

Sending an email 29

server controls 190
signature statement 109, 144
Size class 38

sizing Forms and controls 38

Weak Interrupt

in dyalog101.dll 269
web pages

code behind 197

SmtpMail class 29 custom controls 217
State Indicator 264 ertmg 187

Stream class 31 web scraping 30
StreamReader class 31 Web Services 2
subtracting NET objects 22 asynchronous use 183

web.config 271
WEBSERVICES workspace 44,154,175,177
T WFGOLF function 44
Windows Presentation Foundation 45
Windows.Forms 37
WINFORMS workspace 37,43
Workspace Explorer
browsing assemblies 181
WPF tutorial 46
WSDL.EXE 175

TestAsyncLoan function 184
TETRIS workspace 44
TextBox class 222

thread switching 267
ToDouble method 208
ToInt32 method 209
ToString method §, 10

Index 277

X

XAML 46

278 .NET Interface Guide

