
The tool of thought for software solutions

 Dyalog
 Release Notes

Dyalog version 16.0

The tool of thought for software solutions

Dyalog
Release Notes

Version: 16.0

Dyalog Limited
email: support@dyalog.com

http://www.dyalog.com

iii

Contents

Chapter 1: Introduction 1
Key Features 1
System Requirements 5
Inter-operability 6
Announcements 10
Bug Fixes 13

Chapter 2:Miscellaneous 17
Dfn Error-Guards 17
IDE Enhancements 19
Other Changes 22

Chapter 3: LanguageReferenceChanges 25
Interval Index 28
Where 34
Nest 35
Partition 36
At 39
Stencil 43
Comma Separated Values 50
JSON 61

Chapter 4: I-BeamReferenceChanges 73
Continue Autosave 74
JSON Translate Name 75

Chapter 5:ObjectReferenceChanges 77
DevCaps 78
HasClearButton 79

Chapter 6:Non-Windows Specific Features 81
Summary 81

Index 83

Chapter 1: Introduction 1

Chapter 1:

Introduction

Key Features
Dyalog APL Version 16.0 provides the following new features, enhancements and
changes:

Performance Improvements
As part of the ongoing Performance Quality Assurance project1, Version 16.0
includes a considerable amount of research and development work designed to
substantially improve speed of execution2.

Language Enhancements
New Language Features

l New monadic ⍸ function. See Where on page 34.
l New dyadic ⍸ function. See Interval Index on page 28.
l New monadic ⊆ function. See Nest on page 35.
l New dyadic ⊆ function. See Partition on page 36. This function is
independent of ⎕ML, but is identical to dyadic ⊂ when 3≤⎕ML.

l New system function ⎕CSV. See Comma Separated Values on page 50.
l New system function ⎕JSON. See JSON on page 61. This provides
improved and extended functionality to the existing I-beam functions
7159⌶ and 7160⌶ which are deprecated. The JSON Name Mangling rules
have changed. See JSON Name Mangling on page 70 and JSON Translate
Name on page 75.

l New @ operator. See At on page 39.
l New ⌺ operator. See Stencil on page 43.

1http://www.dyalog.com/blog/2016/03/pqa/
2https://www.dyalog.com/dyalog/dyalog-versions/160/performance.htm

http://www.dyalog.com/blog/2016/03/pqa/
https://www.dyalog.com/dyalog/dyalog-versions/160/performance.htm

Chapter 1: Introduction 2

Enhancements
l Improvement to ⎕DR. You may now specify 0 as the first element of the left
argument, to mean convert "as is". See Language Reference Guide: Data
Representation (Dyadic).

l ⎕SIGNAL now returns a result, and calling ⎕SIGNAL 0 now causes error-
related system constants to be reset. See Changes to SIGNAL on page 22.

l Error guards (dfns) have been changed to use dynamic scope rules. See Dfn
Error-Guards on page 17.

l There is a new option for ⎕R and ⎕S. See UCP Option for R and S on
page 23.

l The default value for ⎕RL has been changed to (⍬ 1).
l Certain System Commands now take parameters. See System Command
Parameters on page 71.

l ⎕PROFILE 'start' has a new 'coverage' option that avoids the cost
(of memory) in counting the number of times lines of code are executed.

l Version 16.0 introduces trigger functions that apply to assigments to all
global variables in the same namespace. See Global Triggers on page 26.

IDE Enhancements
l Text searches in the Session and Editor are now performed using PCRE. See
PCRE for Text Searches on page 19.

l The Editor toolbar has two new option buttons. See Editor Toolbar on page
19.

l The edit boxes used in Session GUI components now have a clear button
button. Clicking this button clears the contents of the edit field.

l New Options/Configure dialog. See Configuration Dialog: Saved
Responses Tab on page 20.

GUI Enhancements
l There is a new HasClearButton property that applies to objects that have
edit boxes. See HasClearButton on page 79.

l The DevCaps property has a new, 4th, element which reports the DPI
scaling factor. See DevCaps on page 78.

Chapter 1: Introduction 3

Distributing Run-Time Components
UnderWindows, many of the Dyalog APL run-time components (.EXE and .DLL)
are linked dynamically with the Microsoft Universal C Runtime library (the UCRT)
which is supplied and installed as part of the normal Dyalog development
installation.

At execution time it is important that the Dyalog runtime components bind with a
version of the UCRT that is compatible with (i.e. the same as or newer than) the one
with which they were built.

Windows 10
If the end-user of the Dyalog application is known to be running Windows 10, the
Dyalog application will pick up the system-wide UCRT which is part ofWindows
10. There is therefore no need to include the UCRT with a Dyalog run-time
application.

Other Versions of Windows
The UCRT is not supplied with versions ofWindows prior to Windows 10. On these
platforms, it is therefore necessary to install the UCRT as part of the installation of
the Dyalog run-time application. There are two ways to achieve this which are
referred to herein as the VCRedist installation and App-local installation. Dyalog
recommends the former.

Chapter 1: Introduction 4

VCRedist Installation (Recommended)
The VCRedist package, which includes the UCRT, is supplied with the Dyalog
development package.

Simply copy the vc_redistx86.exe (32-bit version) or vc_redistx64.exe
(64-bit version) program from the Dyalog development package into your own
installation package and execute it as part of the installation of your Dyalog run-time
application. This installs the UCRT into a shared Windows location; in effect the
UCRT becomes part of the Windows system. The installation therefore requires
Administrator privileges.

App-local Installation
An alternative is to install the UCRT components into the same directory as your
Dyalog run-time application. There are two ways to obtain these files.

Either:
Install the Dyalog development package (ideally onto a separate
system just for this purpose) without administrator rights. This will
perform an App-local installation of Dyalog itself. Then copy the
UCRT files into your installation package. These files are:

l those beginning with api-ms*
l ucrtbase.dll
l vcruntime140.dll

Or:
Download and install the Windows 10 SDK from:
https://developer.microsoft.com/en-us/windows/downloads/windows-
10-sdk, and follow the instructions in the link
below.
https://blogs.msdn.microsoft.com/vcblog/2015/03/03/introducing-
the-universal-crt

Finally, modify your installer to add these files to the same folder as your Dyalog
run-time application.

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://blogs.msdn.microsoft.com/vcblog/2015/03/03/introducing-the-universal-crt
https://blogs.msdn.microsoft.com/vcblog/2015/03/03/introducing-the-universal-crt

Chapter 1: Introduction 5

System Requirements
Microsoft Windows
Dyalog APL Version 16.0 is supported on versions ofWindows fromMicrosoft
Windows 7 up to and including Microsoft Windows 10 and Microsoft Windows
Server 2016.

Microsoft .NET Interface
Dyalog APL Version 16.0 .NET Interface requires Version 4.0 or greater of the
Microsoft .NET Framework. It does not operate with earlier versions of .NET.

For full Data Binding support (including support for the
INotifyCollectionChanged interface1), and Syncfusion, Version 16.0
requires .NET Version 4.5.

The examples provided in the sub-directory Samples/asp.net require that IIS is
installed. If IIS and ASP.NET are not present, the asp.net sub-directory will not be
installed during the Dyalog installation.

AIX
For AIX, Version 16.0 requires AIX 7.2 or higher, and a POWER7 chip or higher.

Raspberry Pi
On the Raspberry Pi, Dyalog 32-bit Unicode supports Raspbian Jessie or Stretch.

Non-Pi Linux
For non-Pi Linux, Version 16.0 exists only as 64-bit interpreters - there are no 32-bit
versions. It is built on RedHat 6, and runs on all recent distributions, including
Ubuntu 14.01 and openSUSE 13.2. Contact Dyalog for information about other
platforms.

macOS/Mac OS X
Version 16.0 requires Mac OSX Yosemite or El Capitain or macOS Sierra. The target
Mac must have been introduced in 2010 or later.

1This interface is used by Dyalog to notify a data consumer when the contents of a variable, that is
data bound as a list of items, changes.

Chapter 1: Introduction 6

Inter-operability
Introduction
Workspaces and component files are stored on disk in a binary format (illegible to
text editors). This format differs between machine architectures and among versions
of Dyalog. For example, a file component written by a PC may well have an internal
format that is different from one written by a UNIX machine. Similarly, a workspace
saved fromDyalog Version 16.0 will differ internally from one saved by a previous
version of Dyalog APL.

It is convenient for versions of Dyalog APL running on different platforms to be able
to interoperate by sharing workspaces and component files. FromVersion 11.0,
component files and workspaces can generally be shared between Dyalog
interpreters running on different platforms. However, this is not always possible, for
example:

l Component files created by Version 10.1 can often not be shared across
platforms, even when used by later versions.

l Small-span (32-bit) component files become read-only when opened on a
different architecture from that on which they were created.

Note however that the system function ⎕FCOPY can be used to make a logically
identical copy of an old file, but the copy will be fully inter-operable.

The following sections describe other limitations in inter-operability:

Code and ⎕ORs
Code that is saved in workspaces, or embedded within ⎕ORs stored in component
files, can only be read by the Dyalog version which saved them and later versions of
the interpreter. In the case of workspaces, a load (or copy) into an older version
would fail with the message:

this WS requires a later version of the interpreter.

Every time a ⎕OR object is read by a version later than that which created it, time
may be spent in converting the internal representation into the latest form. Dyalog
recommends that ⎕ORs should not be used as a mechanism for sharing code or objects
between different versions of APL.

Chapter 1: Introduction 7

"Ordinary" Arrays
With the exception of the Unicode restrictions described in the following
paragraphs, Dyalog APL provides inter-operability for arrays that only contain
(nested) character and numeric data. Such arrays can be stored in component files - or
transmitted using TCPSocket objects and Conga connections, and shared between
all versions and across all platforms.

As mentioned in the introduction, full cross-platform interoperability of component
files is only available for large-span component files.

Null Items (⎕NULL)
⎕NULLs created in Version 16.0 can be brought into Versions 14.0, 14.1 and 15.0
provided that the interpreters have been patched to revision 29846 or higher.
Attempts to bring ⎕NULL into earlier versions of Dyalog APL or lower revisions of
the aforementioned versions will fail with a DOMAIN ERROR: Array is from
a later version of APL.

Object Representations (⎕OR)
An attempt to ⎕FREAD a component containing a ⎕OR that was created by a later
version of Dyalog APL will generate DOMAIN ERROR: Array is from a
later version of APL. This also applies to APL objects passed via Conga or
TCPSockets, or objects that have been serialised using 220⌶ .

32 vs. 64-bit Component Files
It is no longer possible to create small-span (32-bit) files; however it is still currently
possible to read and write small span files. Setting the second item of the right
argument of ⎕FCREATE to anything other than 64 will generate a DOMAIN ERROR.

Note that small-span (32-bit-addressing) component files cannot contain Unicode
data. Unicode editions of Dyalog APL can only write character data which would be
readable by a Classic edition (consisting of elements of ⎕AV).

External Variables
External variables are implemented as small-span (32-bit-addressing) component
files, and are subject to the same restrictions as these files. External variables are
unlikely to be developed further; Dyalog recommends that applications which use
them should switch to using mapped files or traditional component files. Please
contact Dyalog if you need further advice on this topic.

Chapter 1: Introduction 8

32 vs. 64-bit Interpreters
FromDyalog APL Version 11.0 onwards, there are two separate versions of programs
for 32-bit and 64-bit machine architectures (the 32-bit versions will also run on 64-
bit machines running 64-bit operating systems). There is complete inter-operability
between 32- and 64-bit interpreters, except that 32-bit interpreters are unable to work
with arrays or workspaces greater than 2GB in size.

Note however that underWindows a 32-bit version of Dyalog APL may only access
32-bit DLLs, and a 64-bit version of Dyalog APL may only access 64-bit DLLs. This
is a Windows restriction.

Unicode vs. Classic Editions
Two editions are available. Unicode editions work with the entire Unicode character
set. Classic editions (a term which includes versions prior to 12.0) are limited to the
256 characters defined in the atomic vector, ⎕AV).

Component files have a Unicode property. When this is enabled, all characters will
be written as Unicode data to the file. The Unicode property is always off for small-
span (32-bit addressing) files, as these cannot contain Unicode data. For large-span
(64-bit addressing) component files, the Unicode property is set on by Unicode
Editions and off by Classic Editions, by default. The Unicode property can
subsequently be toggled on and off using ⎕FPROPS.

When a Unicode edition writes to a component file that cannot contain Unicode
data, character data is mapped using ⎕AVU; it can therefore be read without problems
by Classic editions.

A TRANSLATION ERROR will occur if a Unicode edition writes to a non-Unicode
component file (that is either a 32-bit file, or a 64-bit file when the Unicode property
is currently off) if the data being written contains characters that are not in ⎕AVU.

Likewise, a Classic edition will issue a TRANSLATION ERROR if it attempts to read
a component containing Unicode data that is not in ⎕AVU from a component file.

A TRANSLATION ERROR will also be issued when a Classic edition)LOADs or
)COPYs a workspace containing Unicode data that cannot be mapped to ⎕AV using
the ⎕AVU in the recipient workspace.

Chapter 1: Introduction 9

TCPSocket objects have an APL property that corresponds to the Unicode property
of a file, if this is set to Classic (the default) the data in the socket will be restricted
to ⎕AV, if Unicode it will contain Unicode character data. As a result,
TRANSLATION ERRORs can occur on transmission or reception in the same way as
when updating or reading a file component.

The symbols ⊆, ⍸, ⍤, ⍠, ⌸ and ⌺ used for the Nest (Interval Index) and Where
(Partition) functions, the Rank, Variant, Key and Stencil operators respectively are
available only in the Unicode edition. In the Classic edition, these symbols are
replaced by ⎕U2286, ⎕U2378, ⎕U2364, ⎕U2360, ⎕U2338 and ⎕U233A
respectively. In both Unicode and Classic editions Variant may be represented by
⎕OPT.

Very large array components
An attempt to read a component greater than 2GB in 32-bit interpreters will result in
a WS FULL.

TCPSockets and Conga
TCPSockets and Conga can be used to communicate between differing versions of
Dyalog APL and are subject to similar limitations to those described above for
component files.

Auxiliary Processors
A Dyalog APL process is restricted to starting an AP of exactly the same architecture
from the same operating system. In other words, the APmust share the same word-
width and byte-ordering as its interpreter process.

Session Files
Session (.dse) files can only be used on the platform on which they were created and
saved.

Chapter 1: Introduction 10

Announcements
Withdrawal of Support for Version 14.0
The supported Versions of Dyalog APL are now Version 16.0, 15.0 and 14.1.
Version 14.0 and earlier are no longer supported.

Planned Operating System Requirements for the next version
Dyalog Ltd expects that the next version of Dyalog will require the following
minimum platform requirements:

Operating System Version

Microsoft Windows Windows 7 or Server 2008

AIX 7.1 on POWER 7

Linux RedHat/Centos 6 or equivalent

OS X OS X Yosemite 10.10.x

Raspberry Pi Raspbian Jessie or above

Further information will appear on the Forums as and when available.

Planned Hardware Requirements for next version
The same as Dyalog 16.0.

Withdrawal of ability to disable Native Look and Feel
In versions 15.0 and 16.0 Native Look and Feel (NLF)is enabled by default but it is
possible to disable it. Dyalog expects that the ability to disable NLF will be removed
from the next major release of Dyalog APL. Not only do non-NLF applications look
more and more dissimilar to "standard" applications, but it is becoming increasingly
impractical to support non-NLF code in the interpreter.

Deprecation of small-span component files
Dyalog intends that version 16.0 will be the last that will be able to write to small-
span component files.

Since Version 10.1, Dyalog APL has supported large-span (64-bit) component files,
and since Version 12.0 ⎕FCREATE has created these by default. FromVersion 14.0
onwards it has not possible to create small-span component files, although you may
still continue to read and write components on existing small-span component files.

Chapter 1: Introduction 11

Dyalog recommends that you convert any existing small-span component files to
large-span files using ⎕FCOPY. ⎕FCOPY will create a large-span copy even if the file
being copied is small-span. You may use the user command]File.tolarge to
locate existing small-span files and convert them to the large-span architecture.

Deprecation of JSON I-Beam Functions
7159⌶ and 7160⌶ are replaced by ⎕JSON and 7161⌶ has been found to be not
required. These three I-beam functions are deprecated (and no longer documented)
and will be removed in the next major release. 7162⌶ continues to be supported.

math.dws
The utility math.dws and its associated files fftw.dll and lapack.dll have
been removed and are not part of 16.0.

More recent versions of these files for both 32 and 64 bit Windows are now available
from github.com/dyalog/math, although math.dws has been replaced with
math.dyalog. You can download a zip file forWindows, and it would be possible
to download the source and compile the shared libraries for any platform as long as
there is a Fortran compiler as well as a C compiler installed on the system.

Withdrawal of the default_rl parameter
16.0 no longer checks for the value of default_rl; it no longer appears in the
Configure Box, nor appears in the registry. If set as an environment variable, Dyalog
ignores its value.

Withdrawal of 16807⌶
As announced in the Dyalog Version 15.0 Release Notes, 16807⌶ has been
withdrawn from 16.0.

A simple replacement for "16807⌶1" is "⎕RL←⍬ 1" (or "⎕RL←0 1" if you need to
be able to generate repeatable sequences of "random" numbers).

Note that, since 14.0, random number generator 1 is the default in a CLEAR WS so
you may not need to perform these steps unless the workspace was created in a
version earlier than 14.0.

Conga and Windows
Conga 3 requires Windows Vista or higher, orWindows Server 2008 or higher. Note
that this is now also true of Conga 2.6 and higher.

RIDE DLLs/shared libraries

Chapter 1: Introduction 12

In previous versions of Dyalog separate DLLs/shared libraries were supplied for
Conga and for RIDE. In Version 16.0 the two sets of shared libraries/DLLs have been
merged; the Conga libraries are required for RIDE to function.

Chapter 1: Introduction 13

Bug Fixes
A number of bug fixes implemented in Version 16.0 may change the way that
existing code operates and are therefore documented in this section.

Namespace serialisation (14144)
Version 16.0 is stricter than 15.0 about serialising namespaces. "Serialising" happens
every time you write a namespace to a component file or send it over a socket. (There
is also an explicit "Serialise/Deserialise Array" I-beam, 220⌶.)

In 16.0, when you serialise a namespace A it can only refer to other namespaces that
are children of itself. If it contains a ref to some other namespace (e.g. a parent or
sibling of A) then you will get an error:

A←⎕NS'' ⍝ Create two sibling namespaces
⍝ (both are children of #)

B←⎕NS''
A.x←B ⍝ Create a ref from A to B
{}1(220⌶)A ⍝ Try to serialise A

DOMAIN ERROR: Namespace is not self contained

15.0 allowed you to serialise non-self-contained namespaces like A, but was
inconsistent about where it would recreate the namespaces when you deserialised
them (e.g. when reading the namespace back from a component file); typically B
would be recreated as a child of A, thus breaking the original namespace hierarchy.

Control Structure Parameters (13633)
Prior to 16.0, parameters supplied to control structure expressions that do not expect
a parameter were ignored. From 16.0 onwards any control structure that should not
have a parametermust not have a parameter. For example, the expression:

:Continue 88

now generates a SYNTAX ERROR; whereas previously the unwanted parameter 88
was ignored.

Dfn Localisation Issue (7945)
There was a dfn bug whereby in executing an expression such as f←{(⍴)var←⍵},
where a simple assignment is immediately preceded by a function in parentheses, the
system failed to localise var, so it would be established as a global variable.

The fix for this issue causes some dfns, that previously appeared to work, to fail. For
example:

foo←+ ⍝ foo is defined as any function
f←{(left argument expression)foo var←⍵}

Chapter 1: Introduction 14

15.0 behaviour:
The expression f 0 would assign ⍵ to var and then apply foo dyadically.
However, the system failed to localise var, but instead established it as a spurious
global variable. And this isn't how dfns are supposed to work anyway; an expression
like foo var←⍵ is supposed to assign to both foo and var, regardless of
how/whether they were previously defined.

16.0 behaviour:
The expression generates a SYNTAX ERROR or LENGTH ERROR. The fix is to
rewrite the expression in one of these two ways, according to taste:

f←{(left argument expression)foo ⊢ var←⍵} ⍝ add ⊢
f←{(left argument expression)foo (var←⍵)} ⍝ add parens

Chapter 1: Introduction 15

Invalid Control Structure Syntax
Invalid control structure, such as in the following example, now generates a SYNTAX
ERROR as it should. In previous versions it was wrongly accepted.

∇ foo;a;b
[1] a←b←1
[2] :If a :AndIf b
[3] 'a and b are true'
[4] :EndIf
[5] ∇

∇

Scope of System Variables
The scope of system variables ⎕DCT and ⎕FR has been changed fromworkspace
scope to namespace scope.

Chapter 1: Introduction 16

Chapter 2: Miscellaneous 17

Chapter 2: Miscellaneous

Dfn Error-Guards
Prior to Version 16.0, in common with regular names, error-guards used "lexical
scope" rules. This meant that when an error occurred, the interpreter would look
outwards through enclosing nesting levels to find an appropriate error-guard. In
particular, a function could not set an error-guard for a called function unless the
called function was nested within the calling function.

With Version 16.0, error-guards have been changed to use "dynamic scope" rules.
This means that when an error occurs, the interpreter looks back along the calling
stack to find an appropriate error-guard: a calling function can set an error-guard for a
called function, irrespective of their relative nesting levels.

main←{ ⍝ from V16:
0::'error' ⍝ this error-guard will catch ...
sub ⍵

}

sub←{÷0} ⍝ ... this error

Here is an example of a piece of code that will behave differently in Version 16.0:

{
11::'old behaviour'
{

÷0
}{

11::'new behaviour'
⍺⍺ ⍵

}⍵
}

Note:
Following the setting of an error-guard, subsequent function calls will disable tail
call optimisation:

{
22::'Oops!' ⍝ this error-guard means that ...
tie←⍵ ⎕ftie 0
subfn tie ⍝ ... tail call not optimised

}

Chapter 2: Miscellaneous 18

One way to maintain the tail call optimisation in the presence of an error-guard is to
isolate it within an inner function:

{
tie←{

22::0 ⍝ error-guard local to inner fn
⍵ ⎕ftie 0

}⍵
tie=0:'Oops!'
subfn tie ⍝ ... so this is a tail call

}

Chapter 2: Miscellaneous 19

IDE Enhancements
PCRE for Text Searches
Text searches in theWorkspace Search Tool and Find/Replace dialogs are now
performed using PCRE. If the Use Regular Expressions box is checked, the full range
of regular expressions provided by PCRE are available for use.

See Language Reference Guide: Appendix A. This is the same mechanism as used by
⎕R and ⎕S.

Editor Toolbar
The Editor and Tracer toolbar contains two new option buttons which affect how
searches are performed in the Edit window.

Button Description

Match whole word
Specifies whether or not the search matches a whole
word

Use Regular
Expressions

Specifies whether or not the search uses PCRE regular
expressions

Clear Button
Where appropriate, an (clear) button has been added to edit boxes in the Session
dialog boxes. Clicking the button clears the data in the field.

Chapter 2: Miscellaneous 20

Configuration Dialog: Saved Responses Tab
There is now a Saved Responses tab on the Configuration Dialog. This was actually
added in Version 15.0 but after the completion of the documentation.

The Saved Responses tab of the Configuration dialog is used to remove preferences
that the user has previously established.

In the example illustrated above, the user has at some point chosen to save a text file
with a .h extension as text in the workspace and, by checking the option Save this
response for all files with a ".h" extension, saved this as a preference for all such text
files. Similarly, the user has checked the option Do not show this message again
when responding to the warning dialog Saving as text will

If the user wishes to reverse these decisions, even temporarily, it is necessary to select
the corresponding option /preference name(s) and click Delete. The names are
intended to be self-explanatory and are not listed here.

Chapter 2: Miscellaneous 21

Chapter 2: Miscellaneous 22

Other Changes
)LIB
UnderWindows, the names of directories listed by)LIB were displayed in upper-
case. This has been changed and)LIB now reports the names of directories as they
are displayed by the Operating System.

MAXWS
With the exception of the Raspberry Pi, the default value ofMAXWS has increased
from 64Mb to 256Mb.

CONTINUE workspace
The handling of the continue workspace has been changed as follows:

l By default the automatic saving of a CONTINUE workspace (such as when a
run-time violation occurs) is disabled. There is a new I-Beam function to
control the autosave of a CONTINUE workspace; i.e. other than when
directed to do so by the)CONTINUE system command. See Continue
Autosave on page 74.
Note that Dyalog will not introduce a configuration parameter to mimic the
setting of 2704⌶; this is considered a security issue and therefore is one
that must be under APL program control.

l Dyalog no longer loads a CONTINUE workspace automatically on start-up.
The only way a CONTINUE workspace may be loaded is by using
)LOAD or ⎕LOAD or by specifying continue.dws on the command line

Command Line option
The -F flag has been removed as a command-line option for starting Dyalog. It has
been ignored since Version 14.0.

Changes to ⎕SIGNAL
⎕SIGNAL now returns a shy result which is the same as the right argument.

⎕SIGNAL 0 is a special case of ⎕SIGNAL, and results in ⎕DM, ⎕EN, ⎕DMX and
⎕EXCEPTION being reset.

⎕SIGNAL 0 is the only form of ⎕SIGNAL that can be used to reset the
aforementioned system variables; including a left argument or using a name/value
pair right argument of ⎕SIGNAL will result in a DOMAIN ERROR.

Chapter 2: Miscellaneous 23

Shy Result for ⎕PROFILE
⎕PROFILE'start', 'stop', 'clear' and 'calibrate' now return shy
results.

UCP Option for ⎕R and ⎕S
There is a new UCP variant option for ⎕R and ⎕S which is either 0 or 1.

This affects the way PCRE that processes \B, \b, \D, \d, \S, \s, \W, \w, and some of the
POSIX character classes.

If UCP is 0 (the default), only ASCII characters are recognized. If UCP is 1, Unicode
properties are used instead to classify characters.

Examples
By default, the character ø (which is not an ASCII character) is considered to be a
"non-word" character, so:

('\w'⎕S'\0')'Bjørn' ⍝ identify "word" characters
B j r n

('\W'⎕S'\0')'Bjørn' ⍝ non-word" characters
ø

When UCP is set to 1, Unicode characters are matched as "word" characters (\w) too.

('\w'⎕S'\0' ⍠'UCP' 1)'Bjørn'
B j ø r n

System Error Dialog Box
The System Error Dialog box has changed and the option Generate complete image
core has been replaced by Create a process dump file. See Programming Reference
Guide: System Error Dialog Box.

Copy, Cut and Paste Options
The configuration option Use Ctrl-X,C,V for clipboard option has been moved from
the interpreter to the IME. See UI Guide: Configuration Dialog, Unicode Input Tab.

Chapter 2: Miscellaneous 24

Changes to German locale files
Session files and Classic input translate tables for the German locale have been
renamed so that they are now referred to as "DE" rather than "GR". The BuildSe
workspace has been updated to reflect these changes.

Changes to French keyboard layout in the IME
The French keyboard supplied with the IME has been changed so that it now has the
same APL character overlay as other languages (for example, ⍺ appears on the "q"
key rather than the "a" key). The previous version appears in the aplkeys subdirectory
of the IME installation directory as fr-FR_legacy.din.

F1 Help
UnderWindows, F1 help is now case-insensitive, so if you place the cursor on a
string such as size and press function key F1, you will obtain the help topic for the
Size property.

Similarly, if you have a default Session (with Use online help for non-Dyalog topics
checked, and the URL set to http://social.msdn.microsoft.com/Search/en-
US?query=%s) typing com and pressing F1 will launch the appropriate msdn page
with "com" as the search string.

Native File Functions and APLX
The native file functions ⎕NREAD and ⎕NREPLACE have been enhanced for
compatibility with APLX. Specifically, the current file position may be specified by
the value ¯1. This enhancement was added to Version 15.0.

Chapter 3: Language Reference Changes 25

Chapter 3:

Language Reference Changes

Language Changes
The following table summarises the main changes to language features in Version
16.0.

Function Description Change

⍸ (monadic) Where New function

⍸ (dyadic) Interval Index New function

⊆ (monadic) Nest New function

⊆ (dyadic) Partition Equivalent to dyadic ⊂ but
independent of ⎕ML

@ At New operator

⌺ Stencil New operator

⎕CSV
Comma
Separated
Values

New system function

⎕JSON
JSON Import
and Export

New system function. Replaces 7159⌶
and 7160⌶

⎕R and ⎕S New UCP option

dfns & dops Error Guards Error guards have been changed to use
dynamic scope rule

⎕RL New default The default value for ⎕RL has been
changed to ⍬ 1

⎕SIGNAL
⎕SIGNAL 0 causes error-related
system constant to be reset;
⎕SIGNAL now returns a shy result

Trigger * See Global Triggers on page 26.

Chapter 3: Language Reference Changes 26

Global Triggers
Version 16.0 provides an enhancement for Triggers that allows a single function to
trigger on any assignment to a global variable in the same namespace.

This is implemented by the function declaration statement:

:Implements Trigger *

Example:
∇ foo args

[1] :Implements Trigger *
[2] args.Name,' is: ',⍎args.Name

∇
a←⍳10

a is: 1 2 3 4 5 6 7 8 9 10
a[3]←⊂'pete'

a is: 1 2 pete 4 5 6 7 8 9 10
a b←10 'pete'

a is: 10
b is: pete

Notes:
l like other Triggers, only the most recently fixed global trigger function will
apply and be called on assignment to a global variable.

l global triggers do not apply to local names nor to semi-globals (names
which are localised further up the stack).

l in the case of a global trigger, the argument to the trigger function (an
instance of the internal class TriggerArguments) contains the single
member Name. This may be extended in the future.

l an assignment to a global variable will fire both its specific trigger (if
defined) and the global trigger. However, the order of execution is
undefined.

Chapter 3: Language Reference Changes 27

Further Example
A potential use for a global trigger is to detect the unintended creation of global
variables due to localisation omissions. Note however that the timing of the
activation of the Trigger is unpredictable. In this example, the trigger for the
assignment to b activates after funtion hoo has exited. When Threads are involved,
timing becomes even less predictable.

∇ CatchGlobals arg
[1] ⍝ Displays a warning when a global is assigned
[2] :Implements Trigger *
[3] '*** assigment to global variable: ',

arg.Name,' from ',1↓⎕SI
∇
∇ foo

[1] goo
∇
∇ goo

[1] hoo
∇
∇ hoo

[1] a←10
[2] b←a

∇
foo

*** assigment to global variable: a from hoo goo foo
*** assigment to global variable: b from goo foo

Chapter 3: Language Reference Changes 28

Interval Index R←X⍸Y

Classic Edition: the symbol ⍸ (Iota Underbar) is not available in Classic Edition, and
Nest is instead represented by ⎕U2378.

X is an ordered non-scalar homogeneous array that represent a set of intervals or
ranges.

Note that the ith interval starts at X[i], then includes all subsequent values up to
but not including X[i+1].

For example, if X is (1 3 5) it defines 4 intervals numbered 0 to 3 as follows.

0 less than 1 <1

1 between 1 and 3 (≥1)∧(<3)

2 between 3 and 5 (≥3)∧(<5)

3 greater than or equal to 5 ≥5

If X is 'AEIOU' it defines 6 intervals numbered 0 to 5 as follows:

0 before A ⎕UCS[0,⍳64]

1 between A and E ABCD

2 between E and I EFGH

3 between I and O IJKLMN

4 between O and U OPQREST

5 U and after UVWXYZ...

Y is an array of the same type (numeric or character) as X.

The result R is an integer array that identifies into which interval the corresponding
value in Y falls.

Like dyadic ⍳ (see Index Of on page 1), Interval Index works with major cells. For a
vector these are its elements; for a matrix its rows, and so forth.

Interval Index does not currently support complex numbers or nested arrays.

X and Y are compared using the same logic as monadic ⍋ (see Grade Up (Monadic)
on page 1) which is independent of ⎕CT and ⎕DCT.

⎕IO is an implicit arguments of Interval Index. In all the following examples, ⎕IO is
1.

Chapter 3: Language Reference Changes 29

Examples
10 20 30⍸11 1 31 21

1 0 3 2

In the above example:

l 11 is between X[1] and X[2] so the answer is 1.
l 1 is less than X[1] so the answer is 0
l 31 is greater than X[⍴X] so the answer is 3
l 21 is between X[2] and X[3] so the answer is 2.

'AEIOU' ⍸ 'DYALOG'
1 5 1 3 4 2

And in the alphabetic example above:

l "D" is between X[1] and X[2], so the answer is 1
l "Y" is after X[⍴X] so the answer is 5
l "A" is between X[1] and X[2], so the answer is 1
l as so on ...

Example (Classification)
Commercially, olive oil is graded as follows:

l if its acidity is less than 0.8%, as "Extra Virgin"
l if its acidity is less than 2%, as "Virgin"
l if its acidity is less than 3.3%, as "Ordinary"
l otherwise, as "Lampante"

grades←'Extra Virgin' 'Virgin' 'Ordinary' 'Lampante'
acidity←0.8 2 3.3

samples←1.3 1.9 0.7 4 .6 3.2
acidity⍸samples

1 1 0 3 0 2
samples,⍪grades[1+acidity⍸samples]

┌───┬────────────┐
│1.3│Virgin │
├───┼────────────┤
│1.9│Virgin │
├───┼────────────┤
│0.7│Extra Virgin│
├───┼────────────┤
│4 │Lampante │
├───┼────────────┤
│0.6│Extra Virgin│
├───┼────────────┤
│3.2│Ordinary │
└───┴────────────┘

Chapter 3: Language Reference Changes 30

Example (Data Consolidation by Interval)
x represents some data sampled in chronological order at timestamps t.

⍴x
200000

x
3984300 2020650 819000 1677100 3959200 2177250 3431800
...

⍴t
200000 3

(10↑t) (¯10↑t)
┌─────┬────────┐
│0 0 0│23 59 54│
│0 0 0│23 59 55│
│0 0 0│23 59 56│
│0 0 0│23 59 56│
│0 0 0│23 59 58│
│0 0 2│23 59 58│
│0 0 3│23 59 59│
│0 0 3│23 59 59│
│0 0 4│23 59 59│
│0 0 5│23 59 59│
└─────┴────────┘

u represents timestamps for 5-minute intervals:

⍴u
288 3

(10↑u) (¯10↑u)
┌──────┬───────┐
│0 0 0│23 10 0│
│0 5 0│23 15 0│
│0 10 0│23 20 0│
│0 15 0│23 25 0│
│0 20 0│23 30 0│
│0 25 0│23 35 0│
│0 30 0│23 40 0│
│0 35 0│23 45 0│
│0 40 0│23 50 0│
│0 45 0│23 55 0│
└──────┴───────┘

Chapter 3: Language Reference Changes 31

Therefore, the expression (u⍸t){+/⍵}⌸x summarises x in 5-minute intervals.

u ⍸ t
1 1 1 1 1 1 1 1 1 1 ... 288 288 288 288 288 288

(u⍸t) {+/⍵}⌸ x
1339083050 1365108650 1541944750 1393476000 1454347100
...

(u⍸t) {(⍺⌷u),+/⍵}⌸ x
0 0 0 1339083050
0 5 0 1365108650
0 10 0 1541944750
0 15 0 1393476000

...
23 45 0 1388823150
23 50 0 1453472350
23 55 0 1492078850

Chapter 3: Language Reference Changes 32

Higher-Rank Left Argument
If X is a higher rank array, the function compares sub-arrays in Y with the major cells
of X, where a major cell is a sub-array on the leading dimension of X with shape
1↓⍴X. In this case, the shape of the result R is (1-⍴⍴X)↓⍴Y.

Example
x ← ↑ 'Fi' 'Jay' 'John' 'Morten' 'Roger'
x

Fi
Jay
John
Morten
Roger

⍴x
5 6

y ← x ⍪ ↑ 'JD' 'Jd' 'Geoff' 'Alpha' 'Omega' 'Zeus
'

y
Fi
Jay
John
Morten
Roger
JD
Jd
Geoff
Alpha
Omega
Zeus

x ⍸ y
1 2 3 4 5 1 2 1 0 4 5

y ,⍪ x⍸y
Fi 1
Jay 2
John 3
Morten 4
Roger 5
JD 1
Jd 2
Geoff 1
Alpha 0
Omega 4
Zeus 5

Chapter 3: Language Reference Changes 33

Further Example
⍴x

5 6
⍴y

3 3 6
x

Fi
Jay
John
Morten
Roger

y
Fi
Jay
John

Morten
Roger
JD

Jd
Geoff
Alpha

x⍸y
1 2 3
4 5 1
2 1 0

Note that if (∧/Y∊X) and X is sorted and ⎕CT=0 ,then x⍸y is the same as x⍳y.

Chapter 3: Language Reference Changes 34

Where R←⍸Y

Classic Edition: the symbol ⍸ (Iota Underbar) is not available in Classic Edition, and
Where is instead represented by ⎕U2378.

Ymust be a simple Boolean array.

R is a vector of the indices of all the 1s in Y. If Y is all zeros, R is an empty vector.

⎕IO is an implicit argument ofWhere.

Examples
⎕IO

1
⍸ 1 0 1 0 0 0 0 1 0

1 3 8

⍸'e'='Pete'
2 4

3 4⍴0 1 1
0 1 1 0
1 1 0 1
1 0 1 1

⍸ 3 4⍴0 1 1
┌───┬───┬───┬───┬───┬───┬───┬───┐
│1 2│1 3│2 1│2 2│2 4│3 1│3 3│3 4│
└───┴───┴───┴───┴───┴───┴───┴───┘

⍸2 3 4⍴0 0 0 0 1
┌─────┬─────┬─────┬─────┐
│1 2 1│1 3 2│2 1 3│2 2 4│
└─────┴─────┴─────┴─────┘

⍸3 1 4 2
DOMAIN ERROR

⍸3 1 4 2
∧

Chapter 3: Language Reference Changes 35

Nest R←⊆Y

Classic Edition: the symbol ⊆ (Left Shoe Underbar) is not available in Classic
Edition, and Nest is instead represented by ⎕U2286.

Ymay be any array.

If Y is simple, R is a scalar array whose item is the array Y. If Y is a simple scalar or is
already nested, R is Y unchanged.

Examples
⊆1 2 3

┌─────┐
│1 2 3│
└─────┘

⊆ 1 (1 2 3)
┌─┬─────┐
│1│1 2 3│
└─┴─────┘

⊆'Dyalog'
┌──────┐
│Dyalog│
└──────┘

⊆'Dyalog' 'APL'
┌──────┬───┐
│Dyalog│APL│
└──────┴───┘

Chapter 3: Language Reference Changes 36

Partition R←X⊆[K]Y

Classic Edition: the symbol ⊆ (Left Shoe Underbar) is not available in Classic
Edition, and Partition is instead represented by ⎕U2286.

Ymay be any non-scalar array.

Xmust be a simple scalar or vector of non-negative integers.

The axis specification is optional. If present, it must be a simple integer scalar or one
element array representing an axis of Y. If absent, the last axis is implied.

R is an array of the elements of Y partitioned according to X.

A new partition is started in the result whenever the corresponding element in X is
greater than the previous one. Items in Y corresponding to 0s in X are not included in
the result.

Note that if ⎕ML≥3, the symbol ⊂means the same as ⊆.

Examples
⎕ML←3

]display 1 1 1 2 2 3 3 3⊆'NOWISTHE'
┌→─────────────────┐
│ ┌→──┐ ┌→─┐ ┌→──┐ │
│ │NOW│ │IS│ │THE│ │
│ └───┘ └──┘ └───┘ │
└∊─────────────────┘

]display 1 1 1 0 0 3 3 3⊆'NOWISTHE'
┌→────────────┐
│ ┌→──┐ ┌→──┐ │
│ │NOW│ │THE│ │
│ └───┘ └───┘ │
└∊────────────┘

TEXT←' NOW IS THE TIME '
]display (' '≠TEXT)⊂TEXT

┌→────────────────────────┐
│ ┌→──┐ ┌→─┐ ┌→──┐ ┌→───┐ │
│ │NOW│ │IS│ │THE│ │TIME│ │
│ └───┘ └──┘ └───┘ └────┘ │
└∊────────────────────────┘

Chapter 3: Language Reference Changes 37

]display CMAT←⎕FMT(' ',ROWS),COLS⍪NMAT
┌→─────────────────────────┐
↓ Jan Feb Mar │
│ Cakes 0 100 150 │
│ Biscuits 0 0 350 │
│ Buns 0 1000 500 │
└──────────────────────────┘

]display (∨⌿' '≠CMAT)⊆CMAT ⍝ Split at blank cols.
┌→──────────────────────────────┐
↓ ┌→───────┐ ┌→──┐ ┌→───┐ ┌→──┐ │
│ │ │ │Jan│ │ Feb│ │Mar│ │
│ └────────┘ └───┘ └────┘ └───┘ │
│ ┌→───────┐ ┌→──┐ ┌→───┐ ┌→──┐ │
│ │Cakes │ │ 0│ │ 100│ │150│ │
│ └────────┘ └───┘ └────┘ └───┘ │
│ ┌→───────┐ ┌→──┐ ┌→───┐ ┌→──┐ │
│ │Biscuits│ │ 0│ │ 0│ │350│ │
│ └────────┘ └───┘ └────┘ └───┘ │
│ ┌→───────┐ ┌→──┐ ┌→───┐ ┌→──┐ │
│ │Buns │ │ 0│ │1000│ │500│ │
│ └────────┘ └───┘ └────┘ └───┘ │
└∊──────────────────────────────┘

]display N←4 4⍴⍳16
┌→──────────┐
↓ 1 2 3 4│
│ 5 6 7 8│
│ 9 10 11 12│
│13 14 15 16│
└~──────────┘

]display 1 1 0 1⊆N
┌→─────────────┐
↓ ┌→──┐ ┌→┐ │
│ │1 2│ │4│ │
│ └~──┘ └~┘ │
│ ┌→──┐ ┌→┐ │
│ │5 6│ │8│ │
│ └~──┘ └~┘ │
│ ┌→───┐ ┌→─┐ │
│ │9 10│ │12│ │
│ └~───┘ └~─┘ │
│ ┌→────┐ ┌→─┐ │
│ │13 14│ │16│ │
│ └~────┘ └~─┘ │
└∊─────────────┘

Chapter 3: Language Reference Changes 38

]display 1 1 0 1⊆[1]N
┌→────────────────────────┐
↓ ┌→──┐ ┌→──┐ ┌→──┐ ┌→──┐ │
│ │1 5│ │2 6│ │3 7│ │4 8│ │
│ └~──┘ └~──┘ └~──┘ └~──┘ │
│ ┌→─┐ ┌→─┐ ┌→─┐ ┌→─┐ │
│ │13│ │14│ │15│ │16│ │
│ └~─┘ └~─┘ └~─┘ └~─┘ │
└∊────────────────────────┘

Chapter 3: Language Reference Changes 39

At R←{X}(f@g)Y

This operator substitutes selected items in Y with new values or applies a function to
modify selected items in Y.

The right operand g identifies which items of array Y are to be substituted or
modified. It is either:

l an array that specifies a set of indices in Y. If g is a simple scalar or vector,
it selects major cells in Y. If nested, it specifies indices for Choose or Reach
indexing.

l or a function that when applied to Y returns a Boolean array of the same
shape as Y (a mask) in which a 1 indicates that the corresponding item of Y
is to be substituted or modified. Note that the ravel of the mask selects from
the ravel of the right argument's index array.

The left operand f is either:

l an array that contains values to replace those items in Y identified by g
l or a function to be applied to those items, the result of which is used to
replace them. If this function is dyadic, its left argument is the array X. Note
that the function is applied to the sub-array of Y selected by gas a whole
and not to each item separately.

The result R is the same as Y but with the items specified by g substituted or modified
by f.

Chapter 3: Language Reference Changes 40

Examples (array @ array)
Replace the 2nd and 4th items of ⍳5:

(10 20@2 4)⍳5 ⍝ 1
1 10 3 20 5

10 20@2 4⍳5
1 10 3 20 5

Replace the 2nd and 4th items of nested vector with ⍬:

(⊂⍬)@2 4 ⍳¨⍳5
┌─┬┬─────┬┬─────────┐
│1││1 2 3││1 2 3 4 5│
└─┴┴─────┴┴─────────┘

Replace the 2nd and 4th rows (major cells) of a matrix:

(2 3⍴10 20)(@2 4)4 3⍴⍳12
1 2 3

10 20 10
7 8 9

20 10 20

Replace first and last elements with 0 using Choose Indexing:

(0@(1 1)(4 3))4 3⍴⍳12
0 2 3
4 5 6
7 8 9

10 11 0

1Note that the expression does not require parentheses because without them, the array 2 4 binds
anyway to the @ operator rather than to the ⍳ function.

Chapter 3: Language Reference Changes 41

Replace nested items using Reach Indexing:

G
┌───────┬───────┬───────┐
│┌───┬─┐│┌───┬─┐│┌───┬─┐│
││ABC│1│││DEF│2│││GHI│3││
│└───┴─┘│└───┴─┘│└───┴─┘│
├───────┼───────┼───────┤
│┌───┬─┐│┌───┬─┐│┌───┬─┐│
││JKL│4│││MNO│5│││PQR│6││
│└───┴─┘│└───┴─┘│└───┴─┘│
└───────┴───────┴───────┘

G[((1 2)1)((2 3)2)]
┌───┬─┐
│DEF│6│
└───┴─┘

('' '*' @((1 2)1)((2 3)2)) G
┌───────┬───────┬───────┐
│┌───┬─┐│┌┬─┐ │┌───┬─┐│
││ABC│1││││2│ ││GHI│3││
│└───┴─┘│└┴─┘ │└───┴─┘│
├───────┼───────┼───────┤
│┌───┬─┐│┌───┬─┐│┌───┬─┐│
││JKL│4│││MNO│5│││PQR│*││
│└───┴─┘│└───┴─┘│└───┴─┘│
└───────┴───────┴───────┘

Examples (function@ array)
Replace the 2nd and 4th items of ⍳5 with their reciprocals:

÷@2 4 ⍳5
1 0.5 3 0.25 5

Replace the 2nd and 4th items of ⍳5 with their reversal

⌽@2 4 ⍳5
1 4 3 2 5

Multiply the 2nd and 4th items of ⍳5 by 10:

10×@2 4⍳5
1 20 3 40 5

Replace the 2nd and 4th items by their totals:

+/¨@2 4 ⍳¨⍳5
┌─┬─┬─────┬──┬─────────┐
│1│3│1 2 3│10│1 2 3 4 5│
└─┴─┴─────┴──┴─────────┘

Chapter 3: Language Reference Changes 42

Replace the 2nd and 4th rows (major cells) of a matrix with their accumulatives:

(+\@2 4)4 3⍴⍳12
1 2 3
4 9 15
7 8 9

10 21 33

Examples (array @ function)
Replace odd elements with 0:

0@(2∘|)⍳5
0 2 0 4 0

Replace multiples of 3 (note that masked items are substituted in ravel order):

'abcde'@(0=3|⊢) 4 4⍴⍳16
1 2 a 4
5 b 7 8
c 10 11 d

13 14 e 16

Examples (function@ function)
Replace odd elements with their reciprocals:

÷@(2∘|)⍳5
1 2 0.3333333333 4 0.2

Replace odd items of ⍳5 with themselves reversed:

⌽@(2∘|)⍳5
5 2 3 4 1

Chapter 3: Language Reference Changes 43

Stencil R←(f⌺g)Y

Classic Edition: the symbol ⌺ is not available in Classic Edition, and the Stencil
operator is instead represented by ⎕U233a.

Stencil is used in image processing, artificial neural networks, computational fluid
dynamics, cellular automata, and many other fields of application. The computation
is sometimes referred to as tessellation, moving window, or stencil code1. This
operator applies the left operand function f to a series of (possibly overlapping)
rectangles in the array Y.

In general, the right operand g is a 2- row matrix of positive non-zero integers with
up to ⍴⍴Y columns. The first row contains the rectangle sizes, the second row the
movements i.e. how much to move the rectangle in each step. If g is a scalar or vector
it specifies the rectangle size and the movement defaults to 1.

The predominant case uses a rectangle size which is odd and a movement of 1.

Rectangles are centred on successive elements of Y and (unless the rectangle size is
1), padded with fill elements.

The first rectangle is centred on the first element of Y preceded by the appropriate
number of fill elements. Subsequent rectangles are centred on subsequent elements of
Y according to the size of the movement, and padded before or after as appropriate.
When the movement is 1, each element of Y in its turn is the middle of a rectangle.

f is invoked dyadically with a vector left argument indicating for each axis the
number of fill elements and on what side; positive values mean that the padding
precedes the array values, negative values mean that the padding follows the array
values.

1See https://en.wikipedia.org/wiki/Stencil_code

Chapter 3: Language Reference Changes 44

Example
{⊂⍺ ⍵}⌺3 3⊢3 3⍴⍳12

┌────────────┬────────────┬─────────────┐
│┌───┬─────┐ │┌───┬─────┐ │┌────┬─────┐ │
││1 1│0 0 0│ ││1 0│0 0 0│ ││1 ¯1│0 0 0│ │
││ │0 1 2│ ││ │1 2 3│ ││ │2 3 0│ │
││ │0 4 5│ ││ │4 5 6│ ││ │5 6 0│ │
│└───┴─────┘ │└───┴─────┘ │└────┴─────┘ │
├────────────┼────────────┼─────────────┤
│┌───┬─────┐ │┌───┬─────┐ │┌────┬─────┐ │
││0 1│0 1 2│ ││0 0│1 2 3│ ││0 ¯1│2 3 0│ │
││ │0 4 5│ ││ │4 5 6│ ││ │5 6 0│ │
││ │0 7 8│ ││ │7 8 9│ ││ │8 9 0│ │
│└───┴─────┘ │└───┴─────┘ │└────┴─────┘ │
├────────────┼────────────┼─────────────┤
│┌────┬─────┐│┌────┬─────┐│┌─────┬─────┐│
││¯1 1│0 4 5│││¯1 0│4 5 6│││¯1 ¯1│5 6 0││
││ │0 7 8│││ │7 8 9│││ │8 9 0││
││ │0 0 0│││ │0 0 0│││ │0 0 0││
│└────┴─────┘│└────┴─────┘│└─────┴─────┘│
└────────────┴────────────┴─────────────┘

{+/,⍵}⌺3 3⊢3 3⍴⍳12
12 21 16
27 45 33
24 39 28

In the first expression above, the left operand function {⊂⍺ ⍵} simply displays its
left and right arguments to illustrate the mechanics of the operation. The right
operand (3 3) specifies that each rectangle contains 3 rows and 3 columns, and the
movement is 1.

In order for the first element of Y (1) to be centred, the first rectangle is padded with a
row above and a column to the left, as indicated by the left argument (1 1) to the
function.

Another way to think about the way Stencil operates is that it portions the array into
sections or neighbourhoods in which elements can be analysed with respect to their
immediate neighbours. Stencil has uses in image processing applications.

Chapter 3: Language Reference Changes 45

Examples
{⊂⍺ ⍵}⌺(3 3,[.5]2)⊢3 3⍴⍳12

┌────────────┬─────────────┐
│┌───┬─────┐ │┌────┬─────┐ │
││1 1│0 0 0│ ││1 ¯1│0 0 0│ │
││ │0 1 2│ ││ │2 3 0│ │
││ │0 4 5│ ││ │5 6 0│ │
│└───┴─────┘ │└────┴─────┘ │
├────────────┼─────────────┤
│┌────┬─────┐│┌─────┬─────┐│
││¯1 1│0 4 5│││¯1 ¯1│5 6 0││
││ │0 7 8│││ │8 9 0││
││ │0 0 0│││ │0 0 0││
│└────┴─────┘│└─────┴─────┘│
└────────────┴─────────────┘

{⊂⍺ ⍵}⌺(3 3,[.5]3)⊢3 3⍴⍳12
┌───────────┐
│┌───┬─────┐│
││1 1│0 0 0││
││ │0 1 2││
││ │0 4 5││
│└───┴─────┘│
└───────────┘

Chapter 3: Language Reference Changes 46

⊢ A←5 5⍴0 0 1 0 0, 0 1 2 1 0, 1 2 3 2 1, 0 1 2 1 0
0 0 1 0 0
0 1 2 1 0
1 2 3 2 1
0 1 2 1 0
0 0 1 0 0

⊢ y←1=?10 10⍴4
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0
1 0 0 0 1 1 0 0 0 1
1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 0 1 0 0 1 1 0 0 1
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 1 1 0

{+/,A×⍵}⌺(⍴A) ⊢y
0 0 1 0 0 1 0 1 2 3
1 1 2 1 2 3 1 0 1 3
4 4 3 4 6 6 3 1 1 3
6 6 5 4 7 7 4 2 2 3
8 6 5 3 5 6 2 0 1 3
6 5 4 3 5 6 5 2 1 3
5 5 4 4 6 7 8 7 4 3
3 2 2 1 4 7 8 7 5 3
3 1 1 1 3 5 6 6 4 2
3 2 2 3 5 6 7 7 5 3

You can see that the result identifies where there are clusters in y.

Chapter 3: Language Reference Changes 47

Examples (odd rectangle, movement not 1)
If the movement is greater than one, corresponding portions are skipped as shown
below.

{⊂⍵}⌺(⍪3 2) ⍳8
┌─────┬─────┬─────┬─────┐
│0 1 2│2 3 4│4 5 6│6 7 8│
└─────┴─────┴─────┴─────┘

{(¯2↑⍕⍺),' f ',⍕⍵}⌺(⍪3 2) ⍳8
1 f 0 1 2
0 f 2 3 4
0 f 4 5 6
0 f 6 7 8

⍝ ↑ middle

{⊂⍵}⌺(⍪5 2) ⍳9
┌─────────┬─────────┬─────────┬─────────┬─────────┐
│0 0 1 2 3│1 2 3 4 5│3 4 5 6 7│5 6 7 8 9│7 8 9 0 0│
└─────────┴─────────┴─────────┴─────────┴─────────┘

{(¯2↑⍕⍺),' f ',⍕⍵}⌺(⍪5 2) ⍳9
2 f 0 0 1 2 3
0 f 1 2 3 4 5
0 f 3 4 5 6 7
0 f 5 6 7 8 9

¯2 f 7 8 9 0 0
⍝ ↑ middle

Chapter 3: Language Reference Changes 48

Even Rectangle Size
For even rectangle sizes, the "middle" consists of two elements which are moved
according to the movement parameter (equal to 1 in these examples).

Examples
⎕←s←{⊂⍵}⌺ 2 ⍳8

┌───┬───┬───┬───┬───┬───┬───┐
│1 2│2 3│3 4│4 5│5 6│6 7│7 8│
└───┴───┴───┴───┴───┴───┴───┘

{(¯2↑⍕⍺),' f ',⍕⍵}⌺ 2⍳8
0 f 1 2
0 f 2 3
0 f 3 4
0 f 4 5
0 f 5 6
0 f 6 7
0 f 7 8

⍝ ↑ ↑ middle

⎕←s←{⊂⍵}⌺ 4⍳8
┌───────┬───────┬───────┬───────┬───────┬───────┬───────┐
│0 1 2 3│1 2 3 4│2 3 4 5│3 4 5 6│4 5 6 7│5 6 7 8│6 7 8 0│
└───────┴───────┴───────┴───────┴───────┴───────┴───────┘

⍴s
7

{(¯2↑⍕⍺),' f ',⍕⍵}⌺ 4⍳8
1 f 0 1 2 3
0 f 1 2 3 4
0 f 2 3 4 5
0 f 3 4 5 6
0 f 4 5 6 7
0 f 5 6 7 8

¯1 f 6 7 8 0
⍝ ↑ ↑ middle

Chapter 3: Language Reference Changes 49

Examples (even rectangle, movement not 1)
{⊂⍵}⌺(⍪4 2) ⍳8

┌───────┬───────┬───────┬───────┐
│0 1 2 3│2 3 4 5│4 5 6 7│6 7 8 0│
└───────┴───────┴───────┴───────┘

{(¯2↑⍕⍺),' f ',⍕⍵}⌺(⍪4 2) ⍳8
1 f 0 1 2 3
0 f 2 3 4 5
0 f 4 5 6 7

¯1 f 6 7 8 0
⍝ ↑ ↑ middle

{⊂⍵}⌺(⍪6 2) ⍳8
┌───────────┬───────────┬───────────┬───────────┐
│0 0 1 2 3 4│1 2 3 4 5 6│3 4 5 6 7 8│5 6 7 8 0 0│
└───────────┴───────────┴───────────┴───────────┘

{(⍕⍺),' f ',⍕⍵}⌺(⍪6 2) ⍳8
2 f 0 0 1 2 3 4
0 f 1 2 3 4 5 6
0 f 3 4 5 6 7 8
¯2 f 5 6 7 8 0 0
⍝ ↑ ↑ middle

Chapter 3: Language Reference Changes 50

Comma Separated Values {R}←{X} ⎕CSV Y

This function imports and exports Comma Separated Value (CSV) data.

Monadic ⎕CSV imports data from a CSV file or converts data from CSV format to an
internal format. Dyadic ⎕CSV exports data to a CSV file or converts data from
internal format to a CSV format.

Internal Format
Arrays that result from importing CSV data or arrays that are suitable for exporting as
CSV data are represented by 3 possible structures:

l A table (a matrix whose elements are character vectors or scalars, or
numbers).

l A vector, each of whose items contain field (column) values. Character field
values are character matrices; numeric field values are numeric vectors.

l A vector, each of whose items contain field (column) values. Character field
values are vectors of character vectors; numeric field values are numeric
vectors.

Note that when importing CSV data, all fields are assumed to be character fields
unless otherwise specified (see Column Types below). A field that contains only
"numbers" will not be converted to numeric data unless specified as being numeric.

Monadic ⎕CSV
R←⎕CSV Y

Y is an array that specifies just the source of the CSV data (see below) or a 1,2,3 or 4-
element vector containing:

[1] Source of CSV Data

[2] Description of the CSV data

[3] Column Types

[4] Header Row Indicator

Source - may be one of:

l a character vector or scalar containing a file name
l a native tie number
l a character vector or scalar containing CSV data with embedded newline
characters. To avoid this source being interpreted as a file name, Y[2] must
be specified as 'S'.

l a vector of character vectors and/or scalars containing CSV data with
implicit newlines after each character vector or scalar

Chapter 3: Language Reference Changes 51

Description may be one of:

l a character vector specifying the file encoding such as 'UTF-8'. This
applies when Y[1] is a file name or tie number. If omitted or empty, the
file encoding is deduced (see below).

l a character scalar 'S' (simple) or 'N' (nested). This applies when Y[1] is
a character array containing CSV data. The default is 'N'.

Column Types

This is a scalar numeric code or vector of numeric codes that specifies the field types
from the list below. IfColumn Types is zilde or omitted, the default is 1 (all fields are
character).

0 The field is ignored.

1 The field contains character data.

2
The field is to be interpreted as being numeric. Empty cells and cells
which cannot be converted to numeric values are not tolerated and cause
an error to be signalled.

3
The field is to be interpreted as being numeric but invalid numeric vales
are tolerated. Empty fields and fields which cannot be converted to
numeric values are replaced with the Fill variant option (default 0).

4

The field is to be interpreted numeric data but invalid numeric data is
tolerated. Empty fields and fields which cannot be converted to numeric
values are returned instead as character data; this type is disallowed when
variant option Invert is set to 1.

Note that ifColumn Types is specified by a scalar 4, all numeric data in all fields will
be converted to numbers.

Header Row Indicator

This is a Boolean value (default 0) to specify whether or not the first record in a
CSV file is a list of column labels. IfHeader Row Indicator is 1, the first record (the
header row) is treated differently from other records. It is assumed to contain
character data (labels) regardless of Y[3] and is returned separately in the result.

Chapter 3: Language Reference Changes 52

Variant options
The following variant options are accepted:

Name Meaning Default

Invert 0, 1 or 2 (see below) 0

Separator The field separator, any single character. If Widths is
other than ⍬, Separator is ignored. ','

Widths
A vector of numeric values describing the width (in
characters) of the corresponding columns in the CSV
source, or ⍬ for variable width delimited fields

⍬

Decimal The decimal mark in numeric fields - one of '.' or ',' '.'

Thousands
The thousands separator in numeric fields, which may
be specified as an empty character vector (meaning no
separator is defined) or a character scalar

''

Trim
A Boolean specifying whether undelimited/unescaped
whitespace is trimmed at the beginning and end of
fields

1

Ragged A Boolean specifying whether records with varying
numbers of fields are allowed; see notes below 0

Fill The numeric value substituted for invalid numeric data
in columns of type 3 0

Records
The maximum number of records to process or 0 for no
limit. This applies only to a file specified by a tie
number.

0

Other options defined for export are also accepted but ignored.

Chapter 3: Language Reference Changes 53

Invert
This option specifies how the CSV data should be returned as follows:

0
A table (a matrix whose elements are character vectors or scalars or
numbers).

1
A vector, each of whose items contain field (column) values. Character
field values are character matrices; numeric field values are numeric
vectors.

2
A vector, each of whose items contain field (column) values. Character
field values are vectors of character vectors; numeric field values are
numeric vectors.

The result R contains the imported data.

If Y[4] does not specify that the data contains a header then R contains the entire
data in the form specified by the Invert variant option.

If Y[4] does specify that the data contains a header then R is a 2-element vector
where:

l R[1] is the imported data excluding the header.
l R[2] is a vector of character vectors containing the header record.

Examples

Chapter 3: Language Reference Changes 54

⊃⎕NGET CSVFile←'c:\Dyalog16.0\sales.csv'
┌→───┐
│Product,Sales │
│ Widgets,1912 │
│ Gimlets,205 │
│ Dingbats,189│
│ │
└──┘

⎕CSV CSVFile
┌→───────────────────┐
↓ ┌→──────┐ ┌→────┐ │
│ │Product│ │Sales│ │
│ └───────┘ └─────┘ │
│ ┌→──────┐ ┌→───┐ │
│ │Widgets│ │1912│ │
│ └───────┘ └────┘ │
│ ┌→──────┐ ┌→──┐ │
│ │Gimlets│ │205│ │
│ └───────┘ └───┘ │
│ ┌→───────┐ ┌→──┐ │
│ │Dingbats│ │189│ │
│ └────────┘ └───┘ │
└∊───────────────────┘

⎕CSV CSVFile'' ⍬ 1 ⍝ Header row
┌→──┐
│ ┌→──────────────────┐ ┌→──────────────────┐ │
│ ↓ ┌→──────┐ ┌→───┐ │ │ ┌→──────┐ ┌→────┐ │ │
│ │ │Widgets│ │1912│ │ │ │Product│ │Sales│ │ │
│ │ └───────┘ └────┘ │ │ └───────┘ └─────┘ │ │
│ │ ┌→──────┐ ┌→──┐ │ └∊──────────────────┘ │
│ │ │Gimlets│ │205│ │ │
│ │ └───────┘ └───┘ │ │
│ │ ┌→───────┐ ┌→──┐ │ │
│ │ │Dingbats│ │189│ │ │
│ │ └────────┘ └───┘ │ │
│ └∊──────────────────┘ │
└∊──┘

Chapter 3: Language Reference Changes 55

⎕CSV CSVFile''(1 2)1 ⍝ Fields are Char,Num
┌→──┐
│ ┌→────────────────┐ ┌→──────────────────┐ │
│ ↓ ┌→──────┐ │ │ ┌→──────┐ ┌→────┐ │ │
│ │ │Widgets│ 1912 │ │ │Product│ │Sales│ │ │
│ │ └───────┘ │ │ └───────┘ └─────┘ │ │
│ │ ┌→──────┐ │ └∊──────────────────┘ │
│ │ │Gimlets│ 205 │ │
│ │ └───────┘ │ │
│ │ ┌→───────┐ │ │
│ │ │Dingbats│ 189 │ │
│ │ └────────┘ │ │
│ └∊────────────────┘ │
└∊──┘

(⎕CSV⍠'Invert' 1)CSVFile'' (1 2) 1 ⍝ Invert 1
┌→──┐
│ ┌→──────────────────────────┐ ┌→──────────────────┐ │
│ │ ┌→───────┐ ┌→───────────┐ │ │ ┌→──────┐ ┌→────┐ │ │
│ │ ↓Widgets │ │1912 205 189│ │ │ │Product│ │Sales│ │ │
│ │ │Gimlets │ └~───────────┘ │ │ └───────┘ └─────┘ │ │
│ │ │Dingbats│ │ └∊──────────────────┘ │
│ │ └────────┘ │ │
│ └∊──────────────────────────┘ │
└∊──┘

⊃(⎕CSV⍠'Invert' 2)CSVFile'' (1 2) 1 ⍝ Invert 2
┌→──┐
│ ┌→───────────────────────────────┐ ┌→───────────┐ │
│ │ ┌→──────┐ ┌→──────┐ ┌→───────┐ │ │1912 205 189│ │
│ │ │Widgets│ │Gimlets│ │Dingbats│ │ └~───────────┘ │
│ │ └───────┘ └───────┘ └────────┘ │ │
│ └∊───────────────────────────────┘ │
└∊──┘

Notes
l When Y specifies just the source of the CSV data, it does not need to be
enclosed or ravelled to create a 1-element vector.

l Y[2], the description of the source, distinguishes an otherwise ambiguous
character vector source (which could contain either CSV data or a file
name). The other source forms are unambiguous but the description, when
given, must still match the given source type.

l Tab-separated fields may be imported by specifying 'Separator'
(⎕UCS 9).

l Fields containing embedded new lines are supported (they must, of course,
appear in quotes). On import, line endings are always converted to a single
line feed character.

Chapter 3: Language Reference Changes 56

l If Ragged is not set then all records must have the same number of fields
(character delimited format) or same number of characters (fixed width field
format).

l If Ragged is set:
o The expected number of columns must be specified using the Widths

variant option and/or the column types in Y[3].
o In character delimited format, all processed records are implicitly

extended or truncated as required so that they contain the expected
number of fields; implicitly added fields will be empty.

o In fixed width format, all processed records are implicitly extended
with spaces or truncated as required so that they contain as many
characters as are specified in the Widths option declaration.

File handling
Data may be read from a named file or a tied native file. A tied native files may be
read in sections by repeatedly invoking ⎕CSV for a specified maximum number of
records (specified by the Records variant) until no more data is read. A named file is
read by ⎕CSV in its entirety regardless of the Records option.

In all cases the files must contain text using one of the supported encodings. The
method used to determine the file encoding is as follows:

l If a Byte Order Mark (BOM) is encountered at the start of the file, it is used
regardless of Y[2] (if specified). Note, however, that the BOM can only be
encountered if the file is read from the start - specifically, if a native file is
read in sections, any BOM present will only be encountered when the first
section is read.

l Otherwise, the file will be read and decoded according to the file encoding
in Y[2] if specified.

l Otherwise:
o Native files will be decoded as if 'UTF-8' had been specified.
o Files specified by name will be examined and the likely file encoding

will be deduced using the same heuristics performed by ⎕NGET.

Note also:
l Native files are read from the current file position. On successful
completion, the file position will be at the first unprocessed character (end
of file if the Records variant option is not specified). If an error is signalled
the file position is undefined.

l The result does not report the file encoding or line ending type as it does
with ⎕NGET. If this information is required then it must be obtained by
other means.

Chapter 3: Language Reference Changes 57

Dyadic ⎕CSV
{R}←X ⎕CSV Y

The left argument X is either:

l a matrix or a vector of vectors/matrices containing the data to be converted
to CSV format.

l or a 2-element vector containing a matrix or vector of vectors/matrices
containing the data to be converted to CSV format, and a vector of character
vectors containing the header record.

Y is a 1 or 2-element vector containing:

[1] Destination of CSV Data (see below)

[2] Description of the CSV data (see below)

Destination - may be one of:

l a character vector or scalar containing a file name
l a native tie number
l an empty character vector, indicating that the CSV data is to be returned in
the result R

Description may be:

l a character vector specifying the file encoding such as 'UTF-8'. This
applies when Y[1] is a file name or tie number. If omitted or empty, the
file encoding defaults to 'UTF-8'.

l a character scalar 'S' (simple) or 'N' (nested). This applies when Y[1] is
empty. The default is 'S'.

Chapter 3: Language Reference Changes 58

Variant options
The following variant options are accepted:

Name Meaning Default

Overwrite
a Boolean which specifies, when creating a
named file which already exists, whether to
overwrite it (1) or signal an error (0)

0

Separator the field separator, any single character. If
Widths is other than ⍬, Separator is ignored. ','

Widths

a vector of numeric values describing the width
(in characters) of the corresponding columns in
the CSV source, or ⍬ for variable width
delimited fields

⍬

Decimal the decimal mark in numeric fields - one of '.'
or ',' '.'

Thousands

the thousands separator in numeric fields, which
may be specified as an empty character vector
(meaning no separator is defined) or a character
scalar

''

Trim
a Boolean specifying whether whitespace is
trimmed at the beginning and end of character
fields

1

LineEnding the line ending sequence

(13 10) on
Windows; 10
on other
platforms

Other options defined for import are also accepted but ignored.

If Y specifies that the CSV data is written to a file then R is the number of bytes (not
characters) written, and is shy.

Otherwise, R is the CSV data in the format specified in Y, and is not shy.

Chapter 3: Language Reference Changes 59

Examples
CSVFile←'c:\Dyalog16.0\sales.csv'
⎕←DATA HDR←⎕CSV CSVFile''(1 2)1

┌→──┐
│ ┌→────────────────┐ ┌→──────────────────┐ │
│ ↓ ┌→──────┐ │ │ ┌→──────┐ ┌→────┐ │ │
│ │ │Widgets│ 1912 │ │ │Product│ │Sales│ │ │
│ │ └───────┘ │ │ └───────┘ └─────┘ │ │
│ │ ┌→──────┐ │ └∊──────────────────┘ │
│ │ │Gimlets│ 205 │ │
│ │ └───────┘ │ │
│ │ ┌→───────┐ │ │
│ │ │Dingbats│ 189 │ │
│ │ └────────┘ │ │
│ └∊────────────────┘ │
└∊──┘

DATA⍪←'Gizmos' 23
DATA HDR ⎕CSV''

┌→────────────┐
│Product,Sales│
│ │
│Widgets,1912 │
│ │
│Gimlets,205 │
│ │
│Dingbats,189 │
│ │
│Gizmos,23 │
│ │
│ │
└─────────────┘

CSVFile1←'c:\Dyalog16.0\sales1.csv'
⎕←DATA HDR ⎕CSV CSVFile1

67
DATA⍪←'Gimbals' 123
⎕←DATA HDR ⎕CSV CSVFile1

FILE NAME ERROR: Unable to create file ("The file
exists.")

⎕←DATA HDR ⎕CSV CSVFile1
∧
⎕←DATA HDR(⎕CSV⍠'Overwrite' 1)CSVFile1

80

Chapter 3: Language Reference Changes 60

Notes
l When Y contains only the destination of the CSV data (i.e. omits the
description in its second element) it does not have to be enclosed to form a
single element vector.

l Native files are written from the current file position. On successful
completion, the file position will be at the end of the written data. If an
error is signalled the amount of data written is undefined.

l If the file encoding specifies that a BOM is required and output is to a
native file, it will only be written if the file position is initially at 0 - that
is, the start of the file is being written.

l When fixed width fields are written, character data shorter than the specified
width is padded with spaces to the right and character data longer than the
specified width signals an error. Numeric data is converted to character data
as far as possible so that it fits into the specified width. If this is not
possible, an error is signalled.

l Tab-separated fields may be exported by specifying 'Separator'
(⎕UCS 9).

l Fields containing a single embedded new line are supported. On export, line
feed characters are mapped back to the defined line ending sequence.

Chapter 3: Language Reference Changes 61

JSON R←{X}⎕JSON Y

This function imports and exports data in JavaScript Object Notation (JSON) Data
Interchange Format1.

If specified, Xmust be a numeric scalar with the value 0 (import JSON) or 1 (export
JSON). If X is not specified and Y is a character array, X is assumed to be 0 (import);
otherwise it is assumed to be 1 (export).

Other options for ⎕JSON are Format and Compact which are specified using the
Variant operator ⍠. The Principle Option is Format.

JSON Import (X is 0)
Y is a character vector or matrix in JSON format. There is an implied newline
character between each row of a matrix.

The content of the result R depends upon the Format variant which may be 'D'
(the default) or 'M'.

If Format is 'D' (which stands for "data") the JSON described by Y is converted to
APL object(s) and R is an array or a namespace containing arrays and sub-
namespaces.

l JSON objects are created as APL namespaces.
l JSON null is converted to the enclosed character vector ⊂'null'.
l JSON true is converted to the enclosed character vector ⊂'true'
l JSON false is converted to the enclosed character vector ⊂'false'.
l If the JSON source contains object names which are not valid APL names
they are converted to APL objects with mangled names. See JSON Name
Mangling on page 70. 7162⌶ can be used to obtain the original name. See
JSON Translate Name on page 75.

1IETF RFC 7159 - The JavaScript Object Notation (JSON) Data Interchange Format - is a widely
supported, text based data interchange format for the portable representation of structured data; any
application which conforms to the standard may exchange data with any other.

Chapter 3: Language Reference Changes 62

If Format is 'M' (which stands for "matrix") the result R is a matrix whose columns
contain the following:

[;1] depth

[;2] name (for JSON object members)

[;3] value

[;4] JSON type (integer: see below)

l The representation of null, true and false are the same as for Format 'D'.
l Object names are reported as specified in the JSON text; they are not
mangled as they are for Format 'D'.

JSON types are as follows:

Type Description

1 Object

2 Array

3 Numeric

4 String

5 Null

6 Boolean (true / false)

7 JavaScript Object (export only)

Table 1: JSON data types

Duplicate Names
The JSON standard says that members of a JSON object should have unique names
and that different implementations behave differently when there are duplicates.
Dyalog handles duplicate names as follows:

l No error is generated
l For Format 'D', the last member encountered is used and all previous
members with the same name are discarded

l For Format 'M' all duplicate members are recorded in the result matrix

Chapter 3: Language Reference Changes 63

Examples
⍴JSON

18 19
JSON

{
"a": {

"b": [
"string 1",
"string 2"

],
"c": true,
"d": {

"e": false,
"f⍺": [

"string 3",
123,
1000.2,
null

]
}

}
}

Chapter 3: Language Reference Changes 64

Import as Data (Format 'D')
j←⎕JSON JSON
j

#.[JSON object]
j.⎕NL 9

a
j.a.⎕NL 2

b
c

j.a.b
┌────────┬────────┐
│string 1│string 2│
└────────┴────────┘

j.a.c
┌────┐
│true│
└────┘

j.a.⎕NL 9
d

j.a.d.⎕NL 2 ⍝ Note that f⍺ is an invalid APL name
e
⍙f⍙9082⍙

j.a.d.e
┌─────┐
│false│
└─────┘

j.a.d.⍙f⍙9082⍙
┌────────┬───┬──────┬──────┐
│string 3│123│1000.2│┌────┐│
│ │ │ ││null││
│ │ │ │└────┘│
└────────┴───┴──────┴──────┘

Chapter 3: Language Reference Changes 65

Import as Matrix (Format 'M')
(⎕JSON⍠'M')JSON

┌─┬──┬────────┬─┐
│0│ │ │1│
├─┼──┼────────┼─┤
│1│a │ │1│
├─┼──┼────────┼─┤
│2│b │ │2│
├─┼──┼────────┼─┤
│3│ │string 1│4│
├─┼──┼────────┼─┤
│3│ │string 2│4│
├─┼──┼────────┼─┤
│2│c │┌────┐ │6│
│ │ ││true│ │ │
│ │ │└────┘ │ │
├─┼──┼────────┼─┤
│2│d │ │1│
├─┼──┼────────┼─┤
│3│e │┌─────┐ │6│
│ │ ││false│ │ │
│ │ │└─────┘ │ │
├─┼──┼────────┼─┤
│3│f⍺│ │2│
├─┼──┼────────┼─┤
│4│ │string 3│4│
├─┼──┼────────┼─┤
│4│ │123 │3│
├─┼──┼────────┼─┤
│4│ │1000.2 │3│
├─┼──┼────────┼─┤
│4│ │┌────┐ │5│
│ │ ││null│ │ │
│ │ │└────┘ │ │
└─┴──┴────────┴─┘

Chapter 3: Language Reference Changes 66

JSON Export (X is 1)
Y is the data to be exported as JSON and may be an array, a namespace or a matrix
representation of JSON such as would have been produced by JSON Import with
Format 'M'. Y is interpreted according to the Format variant which may be 'D'
(the default) or 'M'.

⎕JSON will signal DOMAIN ERROR if Y is incompatible with the specified (or
implied) value of Format.

If Format is M, the data values in Y[;3]must correspond precisely with the JSON
types specified in Y[;4]as specified in the following table.

Y[;4] (Type) Y[;3] (Value)

1 Empty array

2 Empty array

3 Numeric scalar

4 Character vector

5 Null

6 Enclosed character vector

7 Enclose character vector

R is a character vector whose content depends upon the value of the Compact
variant.

If Compact is 0, the JSON text is padded with spaces and new lines for readability.

If Compact is 1 (the default) the JSON text is compacted into its minimal form.

The name of any namespace member that begins with ⍙ and otherwise conforms to
the conversion format used for JSON object names will be demangled.

Chapter 3: Language Reference Changes 67

Example
j ⍝ See above

#.[JSON object]
⍴JS←1 ⎕JSON j

94
JS

{"a":{"b":["string 1","string 2"],"c":true,"d":
{"e":false,"f⍺":["string 3",123,1000.2,null]}}}

1(⎕JSON⍠'Compact' 0) j
{

"a": {
"b": [

"string 1",
"string 2"

],
"c": true,
"d": {

"e": false,
"f⍺": [

"string 3",
123,
1000.2,
null

]
}

}
}

If there are any mis-matches between the values in Y[;3] and the types in Y[;4],
⎕JSON will signal DOMAIN ERROR and report the first row where there is a mis-
match (⎕IO sensitive) as illustrated in the following example.

Example
M←(⎕JSON⍠'Format' 'M')'{"values": [75, 300]}'
M

┌─┬──────┬───┬─┐
│0│ │ │1│
├─┼──────┼───┼─┤
│1│values│ │2│
├─┼──────┼───┼─┤
│2│ │75 │3│
├─┼──────┼───┼─┤
│2│ │300│3│
└─┴──────┴───┴─┘

Chapter 3: Language Reference Changes 68

M[3;3]←⊂'75' ⍝ character not numeric

M ⍝ but looks the same as before
┌─┬──────┬───┬─┐
│0│ │ │1│
├─┼──────┼───┼─┤
│1│values│ │2│
├─┼──────┼───┼─┤
│2│ │75 │3│
├─┼──────┼───┼─┤
│2│ │300│3│
└─┴──────┴───┴─┘

1 (⎕JSON⍠ 'Format' 'M')M
DOMAIN ERROR: Value does not match the specified type in
row 3

1(⎕JSON⍠'Format' 'M')M
∧

Javascript Objects
The following example illustrates how Javascript objects may be exported.

In the example, the object is a Javascript function which is specified by the contents
of an enclode character vector. Not that in this case Dyalog performs no validation of
the code itself.

Example
'Slider' ⎕NS ''
Slider.range←⊂'true' ⍝ Note the ⊂
Slider.min←0
Slider.max←500
Slider.values←75 300

fn1←' function(event, ui) {'
fn2←'$("#amount").val("$" + ui.values[0] +'
fn2,←' " - $" + ui.values[1]);}'

Slider.slide←,/fn1 fn2 ⍝ Enclosed character vec

⍴JS←1 ⎕JSON Slider
159

JS
{"max":500,"min":0,"range":true,"slide": function(event,
ui) {$(\"#amount\").val(\"$\" + ui.values[0] + \" -
$\" + ui.values[1]);},"values":[75,300]}

Chapter 3: Language Reference Changes 69

Restrictions and Limitations
The JSON standard describes a limited set of data types and JSON does not provide a
general APL import/export mechanism. In particular:

Not all APL arrays are representable in JSON.
For example, arrays with more than one dimension cannot be represented in JSON.
Of course, this does mean that applications using JSON are unlikely to use such
objects; you probably will need rearrange your data into the format that is expected
by the receiving application. In the case of a 2-dimensional matrix, a split will give
you a vector of tuples that a JSON application is likely to expect:

⎕JSON 3 4⍴⍳12
DOMAIN ERROR: Array unsupported by JSON

⎕JSON 3 4⍴⍳12
∧
⎕JSON ↓3 4⍴⍳12

[[1,2,3,4],[5,6,7,8],[9,10,11,12]]

Not all JSON types have exact APL equivalents
The JSON standard includes Boolean values true and false which are distinct from
numeric values 1 and 0, and have no direct APL equivalent.

To represent JSON true and false types this implementation adopts the convention of
using APL arrays ⊂'true' and ⊂'false' respectively. These arrays cannot
otherwise be represented in JSON and allow true and false to be uniquely identified.

Not all names are valid APL names.
The names of JSON object members which would not be valid for APL are modified.
See JSON Name Mangling below.

Chapter 3: Language Reference Changes 70

JSON Name Mangling
When Dyalog converts from JSON to APL data, and a member of a JSON object has
a name which is not a valid APL name, it is renamed.

Example:
In this example, the JSON describes an object containing two numeric items, one
named a (which is a valid APL name) and the other named 2a (which is not):

{"a": 1, "2a": 2}

When this JSON is imported as an APL namespace using ⎕JSON, Dyalog converts
the name 2a to a valid APL name. The name mangling algorithm creates a name
beginning with ⍙.

(⎕JSON'{"a": 1, "2a": 2}').⎕NL 2
a
⍙2a

When Dyalog exports JSON it performs the reverse name mangling, so:

1 ⎕JSON ⎕JSON'{"a": 1, "2a": 2}'
{"a":1,"2a":2}

Should you need to create and decode these names directly,7162⌶ provides the same
name mangling and un-mangling operations. See JSON Translate Name on page 75.

0(7162⌶)'2a'
⍙2a

1(7162⌶)'⍙2a'
2a

Chapter 3: Language Reference Changes 71

System Command Parameters
Certain system commands now accept parameters as shown in the table and examples
below.

System Command Description

)SAVE -force ws
force causes the specified file to be overwritten
when the name specified by ws differs from
⎕WSID.

)SI n -tid=tn

n restricts the display to the first or last n lines of
the full output.
-tid=tn specifies that the state indicator is to be
displayed only for thread number tn.

)RESET n Clears the top n suspensions on the stack.

State Indicator
foo

DOMAIN ERROR: Divide by zero
loo[1] 1÷0

∧
)SI

#.loo[1]*
#.hoo[1]
#.goo[1]
#.foo[1]

)SI 2
#.loo[1]*
#.hoo[1]

)SI ¯2
#.goo[1]
#.foo[1]

⎕←foo&¨10 10 10 10
┌→─────────┐
│9 10 11 12│
└~─────────┘

)si
· #.foo[1]
&9
· #.foo[1]
&10
· #.foo[1]
&11
· #.foo[1]
&12

)si -tid=11
#.foo[1]

Chapter 3: Language Reference Changes 72

Reset State Indicator
)reset
foo

DOMAIN ERROR: Divide by zero
loo[1] 1÷0

∧
foo

DOMAIN ERROR: Divide by zero
loo[1] 1÷0

∧

)si
#.loo[1]*
#.hoo[1]
#.goo[1]
#.foo[1]
#.loo[1]*
#.hoo[1]
#.goo[1]
#.foo[1]

)reset 3

)si
#.foo[1]*
#.loo[1]*
#.hoo[1]
#.goo[1]
#.foo[1]

Chapter 4: I-Beam Reference Changes 73

Chapter 4:

I-Beam Reference Changes

I-beam Changes
I-beam functionality changed fromVersion 16.0.

A Description Change

2704 See Continue Autosave on page 74. New
function

16807
Random Number Generator. See Withdrawal of
16807 on page 11. Removed

7159 Replaced by ⎕JSON. See JSON on page 61. Deprecated

7160 Replaced by ⎕JSON. See JSON on page 61. Deprecated

7161 JSON TrueFalse Deprecated

7162 See JSON Translate Name on page 75. Modified

Chapter 4: I-Beam Reference Changes 74

Continue Autosave {R}←2704⌶Y

This function enables or disables the automatic saving of a CONTINUE workspace
when Dyalog exits. By default this is disabled when Dyalog starts and must be
explicitly enabled using this function.

Y is an integer defined as follows:

Value Description

0 Disable the automatic saving of a CONTINUE workspace.

1
Enable the automatic saving of a CONTINUE workspace. This
setting applies only to the current session or until disabled by
2704⌶0.

The shy result R is the previous value of this setting.

Circumstances when Dyalog automatically saves a CONTINUE workspace include:

l a run-time violation. This is most frequently caused by an untrapped
APL error which causes Dyalog to return to session-input mode (i.e. an
application programming fault).

l a hang-up signal.

Chapter 4: I-Beam Reference Changes 75

JSON Translate Name R←X(7162⌶)Y

Converts between JSON names and APL names.

When ⎕JSON imports an entity from JSON text whose name would be an invalid
APL name, the function converts the invalid name into a valid APL name using a
name mangling algorithm.When ⎕JSON exports an APL namespace as JSON text,
the process is reversed.

This function performs the same name mangling allowing the programmer to identify
JSON entities as APL names, and vice-versa.

Y is a character vector or scalar.

X is a scalar numeric value which must be 1 or 0.

When X is 0, R is the name in Y converted, if necessary, so that it is a valid APL
name. It performs the same translation of JSON object names to APL names that is
performed when importing JSON.

When X is 1, R is the name in Y which, if mangled, is converted back to the original
form.. It performs the same translation of APL names to JSON object names that is
performed when exporting JSON.

Examples:
0(7162⌶)'2a'

⍙2a
1(7162⌶)'⍙2a'

2a

0(7162⌶)'foo'
foo

1(7162⌶)'foo'
foo

Note that the algorithm can be applied, even when mangling is not required. So:

1(7162⌶)'⍙97'
a

For further details, see JSON Name Mangling on page 70.

Chapter 4: I-Beam Reference Changes 76

Chapter 5: Object Reference Changes 77

Chapter 5:

Object Reference Changes

GUI Enhancements
The following table summarises the main changes to GUI features in Version 16.0.

Name Change

DevCaps Now returns 4 elements rather than 3

HasClearButton New property

Chapter 5: Object Reference Changes 78

DevCaps Property

Applies To: Printer, Root

Description

This property reports the device capabilities of the screen or printer. It is a 4-element
nested vector as follows:

[1] Height and Width:2-element numeric vector of device in pixels

[2] Height and Width:2-element numeric vector of device in mm

[3] Number of colours or ¯1

[4]
Windows scaling factor as a percentage (100=no scaling). This value
is the same as reported in the Display section of the Windows Control
Panel

This property is useful if you want to make objects of a specific physical size. For
example, to draw a 10mm square in a Form 'F' at (5,5):

Size ← 10× ⊃÷/2↑'.' ⎕WG 'DevCaps'
'F.R' ⎕WC 'Rect' (5 5) Size ('Coord' 'Pixel')

Notes
l the physical size reported for the screen is typically only a nominal size,
because, if you use a generic video driver, Windows has no way to tell
what size of screen is attached to your computer.

l The number of colours is reported only if the device has a colour depth of
no more than 8 bits per pixel. For devices with greater colour depths, ¯1 is
returned.

l new elements may be added to DevCaps in future releases.

Chapter 5: Object Reference Changes 79

HasClearButton Property

Applies To: ButtonEdit, Combo, ComboEx, Edit

Description

Specifies whether or not an button is displayed in the right-hand end of an edit box.
Clicking this button clears the text from the field.

Note that this feature only applies if Native Look and Feel (see page 1) is enabled.

HasClearButton is Boolean. 1 means that an button will be displayed; 0 (the
default) means that the button will not be shown. It may only be specified when the
object is created. If you subsequently attempt to change the value of HasClearButton,
the operation will fail with NONCE ERROR.

HasClearButton is only effective for Edit objects with Style Single; it is silently
ignored for other Styles of Edit objects.

Chapter 5: Object Reference Changes 80

Chapter 6: Non-Windows Specific Features 81

Chapter 6:

Non-Windows Specific Features

Summary
This section summarises the changes specific to Dyalog APL Version 16.0 on non-
Windows platforms. This list currently consists of:

l AIX
l Linux (including the Raspberry Pi)
l macOS/ Mac OS X

Hardware Requirements
AIX
For AIX, Version 16.0 requires AIX 7.2 or higher, and a POWER7 chip or higher.

Raspberry Pi
On the Raspberry Pi, Dyalog 32-bit Unicode supports Raspbian Jessie or Stretch.

Non-Pi Linux
For non-Pi Linux, Version 16.0 exists only as 64-bit interpreters - there are no 32-bit
versions. It is built on RedHat 6, and runs on all recent distributions, including
Ubuntu 14.01 and openSUSE 13.2. Contact Dyalog for information about other
platforms.

macOS/Mac OS X
Version 16.0 requires Mac OSX Yosemite or El Capitain or macOS Sierra. The target
Mac must have been introduced in 2010 or later.

Chapter 6: Non-Windows Specific Features 82

RIDE and Dyalog APL 16.0
Dyalog Version 16.0 supports RIDE 3 and RIDE 4 only; RIDE 2 is not supported.
Dyalog recommends that RIDE 4 is used in preference to RIDE 3. RIDE 4 can be
used with Version 15.0 too.

RIDE 4 is supported on Raspberry Pi models 2 and 3 only; models Zero and 1 are not
supported (the underlying libraries which RIDE is build on are not available for the
Pi Zero and 1). The Dyalog RIDE Reference Guide details how to configure the
APL session to support the underscored alphabet; contact support@dyalog.com if
you wish to be able to generate key-chords which result in the underscored alphabet
being entered into APL.

Note that on Linux and Pi, if RIDE 4 is installed after Dyalog 16.0 an extra icon will
be added to the window manager's start menu which will start Dyalog with a
RIDE front end.

Linux Window Managers and APL characters
If your Linux window manager does not include support for APL characters (Gnome
is an example), then the first time that you run Dyalog having started the window
manager afresh, you must run

$ dyalog -kbd

Subsequent invocations of dyalog should not require this flag.

Location of configuration and log files
In Dyalog 16.0 the location of various configuration and log files has been changed
so that they are all put in one directory. See the UNIX Installation and Configuration
Guide for more information.

SQAPL on macOS
Dyalog 16.0 for macOS includes support for SQAPL. However, it is necessary to
install iODBC and suitable drivers for your database before SQAPL can work. The
SQL Interface Guide describes the steps that are typically necessary to get
SQAPL connected to a MySQL database.

4000⌶ and 4002⌶
4000⌶ (Fork process) and 4002⌶ (Reap processes) have been withdrawn on all
platforms except AIX. This is due to limitations imposed by the HTMLRenderer,
and due to problems in the interaction of forking processes and using RIDE.

Index 83

Index

A

APLX 24
at operator 39

B

Bug Fixes 13

C

Changes to French IME layout 24
Classic Edition 28, 34-36, 43
comma separated values 50
continue workspace 22

D

DevCaps 78
dyadic primitive functions

interval index 28
partition 36

dyadic primitive operators
at 39
replace 23
search 23
stencil 43

F

F1 24
F1 help 24

G

global trigger 26

H

HasClearButton 79

I

i-beam
JSON translate name 75

Interoperability 6
interval index function 28

J

json 61
JSON 11
JSON name mangling 70
JSON translate name 75

K

Key Features 1
key operator 9

M

major cell 32
math 11
MAXWS parameter 22
Miscellaneous Enhancements 17
monadic primitive functions

nest 35
where 34

N

Native Look and Feel 10
nest 9
nest function 35

P

partition function 36
primitive operators

at 39

Index 84

replace 23
search 23
stencil 43

Principal option 61
profile application 23
Properties

DevCaps 78
HasClearButton 79

R

rank operator 9
Rename German Files 24
replace operator 23

S

search operator 23
signal event 22
stencil operator 9, 43
system error dialog 23
System Requirements 5

T

tolarge User Command 11
triggers

global 26

U

Universal CRT 3
User Commands

to64 11

V

variant operator 9, 61

W

where 9
where function 34
workspace library 22

