DYALOC

The tool of thought for expert programming

Dyalog .NET Interface Guide

Version 14.1

A

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2015 by Dyalog Limited

All rights reserved.

Version: 14.1

Revision: 1585 dated 20230217

No part of this publication may be reproduced in any form by any means without the prior written per-

mission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents hereof and spe-
cifically disclaims any implied warranties of merchantability or fitness for any particular purpose.

Dyalog Limited reserves the right to revise this publication without notification.

email: support@dyalog.com
http://www.dyalog.com

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The Open Group.

Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Mac OS® and OS X® (operating system software) are trademarks of Apple Inc., registered in the U.S.

and other countries.
Array Editor is copyright of davidliebtag.com

All other trademarks and copyrights are acknowledged.

Contents

Chapter1: OVerVieW . 1
IntrodUCtion ... 1
PrereqUISIteS - 3
Files Installed with Dyalog 4
Configuring the NET Framework 5
Chapter2: Accessing.NETClasses 7
Introduction il 7
Locating .NET Classes and Assemblies 7
Using NET Classes ...l 10
Browsing NET Classes 14
Advanced Techniques il 24
More EXamples ... 30
EUM e atiONS | . 34
Handling Pointers with Dyalog. ByRef 35
Chapter 3: UsingWindows.Forms 39
IntroduCtion ... 39
Creating GUI Objects o . 39
Object Hierarchy 40
Positioning and Sizing Forms and Controls 40
Modal Dialog BOXES 40
Non-Modal Forms 45
Chapter 4: Windows Presentation Foundation 47
Temperature Converter Tutorial 48
Data Binding ... 67
Syncfusion Libraries 98
Chapter 5: Writing NET ClassesinDyalog APL 103
Introduction ... 103
Assemblies, Namespaces and Classes i 103
Example 1 . 104
EXample 2 .. 109

EXxample 2a .. 112

EXample 3 L 114
EXample 4 L 117
EXample 5 L 121
I eI aCeS . 125
Chapter 6: Dyalog APLandllS 127
Introduction 127
IS Applications and Virtual Directories il 128
Internet Services Manager o oo 129
Chapter 7: Writing Web Services 137
IntrodUCtiON . 137
Web Service (.aSmX) SCIIPLSt 138
Compilation 139
Exporting Methods 140
Web Service Data TyPeso 141
EX Ut 0N . 141
Global.asax, Application and Session Objects i, 142
Sample Web Service: EGl 143
Sample Web Service: LoanServiceo oo 146
Sample Web Service: GolfService 151
Sample Web Service: EG2 169
Chapter 8: CallingWeb Services 175
Introduction ..ol 175
The MakeProxy function 175
Using LoanService from Dyalog APL 176
Using GolfService from Dyalog APL . . . 177
Exploring Web Services 181
Asynchronous UsSe 183
Chapter9: Writing ASP.NETWebPages 187
Introduction 187
Yourfirst APL Web Page 188
The Page Load Event i 193
Code Behind 196
Workspace Behind 199
Chapter 10: Writing Custom Controls for ASP.NET 217
IntrodUCtiON . 217

The SimpleCtl Control 218

The TemperatureConverterCtll Control 222
The TemperatureConverterCtl2 Control 227
The TemperatureConverterCtl3 Control 234
Chapter 11: APLSCIIPt . 239
IntroductioN . 239
The APLScript Compiler ... il 240
Creating an APLScript File 242
Copying code from the Dyalog Session 243
General principles of APLScript - 244
Creating Programs (.exe) with APLScript 245
Creating .NET Classes with APLScript i, 248
Creating ASP.NET Classes with APLScript 255
Chapter 12: Visual Studio Integration 259
IntrodUCtiON _ il 259
Hello World Example 259
Using an Existing WorksSpace o oo 264
Chapter 13: ImplementationDetails 267
I rOdUCtiON . 267
Isolation MoOde ... 268
Structure ofthe Active Workspace 269
Treadin g 272
Debugging an APLINET Class 274

Chapter 1:

Overview

Introduction

This manual describes the Dyalog APL interface to the Microsoft .NET Framework.
This document does not attempt to explain the features of the NET Framework,
except in terms of their APL interfaces. For information concerning the .NET Frame-
work, see the documentation, articles and help files, which are available from
Microsoft and other sources.

The NET interface features include:

e The ability to create and use objects that are instances of .NET Classes

e The ability to define new .NET Classes in Dyalog APL that can then be
used from other NET languages such as C# and VB.NET.

e The ability to write Web Services in Dyalog APL.

e The ability to write ASP.NET web pages in Dyalog APL

Dyalog APL/W .NET Interface Guide

.NET Classes

The .NET Framework defines a so-called Common Type System. This provides a set
of data types, permitted values, and permitted operations. All cooperating languages
are supposed to use these types so that operations and values can be checked (by the
Common Language Runtime) at run time. The NET Framework provides its own
built-in class library that provides all the primitive data types, together with higher-
level classes that perform useful operations.

Dyalog APL allows you to create and use instances of .NET Classes, thereby gaining
access to a huge amount of component technology that is provided by the NET
Framework.

It is also possible to create Class Libraries (Assemblies) in Dyalog APL. This allows
you to export APL technology packaged as NET Classes, which can then be used
from other NET programming languages such as C# and Visual Basic.

The ability to create and use classes in Dyalog APL also provides you with the pos-
sibility to design APL applications built in terms of APL (and non-APL) com-
ponents. Such an approach can provide benefits in terms of reliability, software
management and re-usage, and maintenance.

GUI Programming with System.Windows.Forms

One of the most important .NET class libraries is called

System.Windows .Forms, which is designed to support traditional Windows
GUI programming. Visual Studio .NET, which is used to develop GUI applications
in Visual Basic and C#, produces code that uses System.Windows.Forms.
Dyalog APL allows you to use System.Windows . Forms, instead of (and in some
cases, in conjunction with) the built-in Dyalog APL GUI objects such as the Dyalog
APL Grid, to program the Graphical User Interface.

Web Services

Web Services are programmable components that can be called by different applic-
ations. Web Services have the same goal as COM, but are technically platform inde-
pendent and use HTTP as the communications protocol with an application. A Web
Service can be used either internally by a single application or exposed externally
over the Internet for use by any number of applications.

Chapter 1: Overview 3

ASP.NET and WebForms

ASP.NET is a new version of Microsoft Active Server Page technology that makes it
easier to develop and deploy dynamic Web applications. To supplement ASP.NET,
there are some important new .NET class libraries, including WebForms which allow
you to build browser-based user interfaces using the same object-oriented mechanism
as you use Windows . Forms for the Windows GUI. The use of these component lib-
raries replaces basic HTML programming.

ASP.NET pages are server-side scripts, that are usually written in C# or Visual Basic.
However, you can also employ Dyalog APL directly as a scripting language
(APLScript) to write ASP.NET web pages. In addition, you can call Dyalog APL
workspaces directly from ASP.NET pages, and write custom server-side controls that
can be incorporated into ASP.NET pages.

These features give you a wide range of possibilities for using Dyalog APL to build
browser-based applications for the Intemet, or for your corporate Intranet.

Prerequisites

Dyalog APL Version 14.1 NET Interface requires Version 2.x or greater of the
Microsoft NET Framework. It does not operate with .NET Version 1.0.

For Windows Presentation Foundation (WPF) and basic Data Binding, Version 14.1
requires NET Version 4.0.

For full Data Binding support (including supportt for the
INotifyCollectionChanged interfacel), and Syncfusion, Version 14.1
requires .NET Version 4.5.

IThis interface is used by Dyalog to notify a data consumer when the contents of a variable, that is
data bound as a list of items, changes.

Dyalog APL/W .NET Interface Guide

Files Installed with Dyalog

NET Interface Components

The components used to support the NET interface are summarised below. Different
versions of each component are supplied according to the target platform. There are:

developer/debug and runtime versions
32-bit and 64-bit versions
Classic and Unicode Edition versions

For a list of these different versions and their corresponding file names, See User
Guide, Chapter 1.

The Bridge DLL. This is the interface library through which all calls
between Dyalog APL and the NET Framework are processed

The DyalogProvider DLL. This DLL performs the initial processing of an
APLScript.

The APLScript Compiler. This is itself written in Dyalog APL and packaged
as an executable.

The DyalogNet DLL; a subsidiary library

The Dyalog DLL. This is the engine that executes all APL code that is hos-
ted by and called from another .NET application.

The dyalogdata4.5.d11 provides advanced support for Data Binding
and Syncfusion. In particular it provides the
INotifyCollectionChanged interface which is required to support
data binding of collections and lists. This DLL requires .NET Version 4.5
and is not used unless .NET 4.5 is enabled.

Code Samples

The samples subdirectory contains several sub-directories relating to the NET
interface:

aplclasses; a sub-directory that contains examples of NET classes writ-
ten in APL.

aplscript; a sub-directory that contains APLScript examples.

asp.net; a sub-directory that is mapped to the IIS Virtual Directory
dyalog.net, and contains various sample APL Web applications.
winforms; a sub-directory that contains sample applications that use the
System.Windows.Forms GUI classses.

Chapter 1: Overview 5

Configuring the .NET Framework

If you have more than one version of the NET Framework installed, you may select
which version APL uses from the .NET Framework tab of the Configuration dialog.

ﬁ Dyalog APL/W-64 Configuration l PR x
General] Unicode Input] Keyboard Shortcuts] Workspace] Help / DMX] Windows] Session] Log]
Trace/Edit] Auto Complete] SALT] |ser Commands] Ohject Syntax NET Framework

v Specify MET Yersion

<]

config file contents:

<configuration: -
<startup uzel egacy ZRuntimedictivationPolicy="trug'">
<zuppartedRuntime version=""v4.0"/»
< ftartup>
Lruntimes
<MetFx40_|egacySecuntyPolicy enabled="true""/>
LAuntime:
< fconfiguration:

oK | Cancel

Dyalog APL/W .NET Interface Guide

This dialog box allows you to specify which version of the .NET Framework you
want to use with Dyalog APL.

If Specify .NET Version is selected, APL will display the versions of the NET Frame-
work that are installed in the combo box below.

Choose the version you require and click OK.

Unlike the other configuration dialogs, which typically set values in the Registry,
this dialog creates a configuration file dyalog.exe.config in the same directory
as the Dyalog APL program. Note the following:

e Any existing dyalog.exe.config file will simply be overwritten, los-
ing any changes that the file might contain.

e For NET Version 2 (the default for Dyalog APL), no configuration file is
required; if you select Version 2 having previously selected Version 4, the
file will be deleted.

e With default privileges, the dyalog.exe.config file will be put in the
Windows VirtualStore; Dyalog recommends changing this option in an
APL which has elevated privileges (right click on the Dyalog APL shortcut
and select "Run as Administrator").

The dialog box shows the contents of this file as illustrated above.

Chapter 2:

Accessing .NET Classes

Introduction

NET classes are implemented as part of the Common Type System. The Type System
provides the rules by which different languages can interact with one another. Types
include interfaces, value types and classes. The .NET Framework provides built-in
primitive types plus higher-level types that are useful in building applications.

A Class is a kind of Type (as distinct from interfaces and value types) that encap-
sulates a particular set of methods, events and properties. The word object is usually
used to refer to an instance of a class. An object is typically created by calling the sys-
tem function (ONEW, with the class as the first element of the argument.

Classes support inheritance in the sense that every class (but one) is based upon
another so-called Base Class.

An assembly is a file that contains all of the code and metadata for one or more
classes. Assemblies can be dynamic (created in memory on-the-fly) or static (files on
disk). For the purposes of this document, the term Assembly refers to a file (usually
with a .DLL extension) on disk.

Locating .NET Classes and Assemblies

Unlike COM objects, which are referenced via the Windows Registry, .NET assem-
blies and the classes they contain, are generally self-contained independent entities
(they can be based upon classes in other assemblies). In simple terms, you can install
a class on your system by copying the assembly file onto your hard disk and you can
de-install it by erasing the file.

Although classes are arranged physically into assemblies, they are also arranged
logically into namespaces. These have nothing to do with Dyalog APL namespaces
and, to avoid confusion, are henceforth referred to in this document as NET
namespaces.

Dyalog APL/W .NET Interface Guide

Often, a single NET namespace maps onto a single assembly and usually, the name
ofthe NET namespace and the name of its assembly file are the same; for example,
the .NET namespace System.Windows.Forms is contained in an assembly
named System.Windows.Forms.dll.

However, it is possible for a NET Namespace to be implemented by more than one
assembly; there is not a one-to-one-mapping between .NET Namespaces and assem-
blies. Indeed, the main top-level .NET Namespace, System, is spread over a number
of different assembly files.

Within a single .NET Namespace there can be any number of classes, but each has its
own unique name. The full name of a class is the name of'the class itself, prefixed by
the name of the .NET namespace and a dot. For example, the full name of the
DateTime class in the NET namespace Systemis System.DateTime.

There can be any number of different versions of an assembly installed on your com-
puter, and there can be several NET namespaces with the same name, implemented
in different sets of assembly files; for example, written by different authors.

To use a .NET Class, it is necessary to tell the system to load the assembly (d11)in
which it is defined. In many languages (including C#) this is done by supplying the
names of the assemblies or the pathnames of the assembly files as a compiler dir-
ective.

Secondly, to avoid the verbosity of programmers having to always refer to full class
names, the C# and Visual Basic languages allow the .NET namespace prefix to be
elided. In this case, the programmer must declare a list of NET namespaces with
Using (C#) and Imports (Visual Basic) declaration statements. This list is then
used to resolve unqualified class names referred to in the code.

In either language, when the compiler encounters the unqualified name of a class, it
searches the specified .NET namespaces for that class.

In Dyalog APL, this mechanism is implemented by the JUSING system variable.
[JUSING performs the same two tasks that Using/Imports declarations and com-
piler directives provide in C# and Visual Basic; namely to give a list of NET
namespaces to be searched for unqualified class names, and to specify the assemblies
which are to be loaded.

[USING is a vector of character vectors each element of which contains 1 or 2
comma-delimited strings. The first string specifies the name of a NET namespace;
the second specifies the pathname of an assembly file. This may be a full pathname
or a relative one, but must include the file extension (. d11). If just the file name is
specified, it is assumed to be located in the standard .NET Framework directory that
was specified when the .NET Framework was installed (e.g. C:\win-
dows\Microsoft. NET\Framework\v2.0.50727)

Chapter 2: Accessing .NET Classes 9

It is convenient to treat .NET namespaces and assemblies in pairs. For example:

QUSING<«'System,mscorlib.dll’
JUSING,«c'System.Windows.Forms,System.Windows.Forms.dll
OQUSING,«c'System.Drawing,System.Drawing.dll’

Note that because Dyalog APL automatically loads mscorlib.d11 (which con-
tains the most commonly used classes in the System Namespace), it is not actually
necessary to specify it explicitly in JUSING.

Note that JUSING has Namespace scope, i.e. each Dyalog APL Namespace, Class or
Instance has its own value of JUSING that is initially inherited from its parent space
but which may be separately modified. JUS ING may also be localised in a function
header, so that different functions can declare different search paths for NET
namespaces/assemblies.

Within a Class script, you may instead employ one or more : Us i ng statements to
specify the NET search path. Each of these statements is equivalent to appending an
enclosed character vector to JUSING.

:Using System,mscorlib.dll
tUsing System.Windows.Forms,System.Windows.Forms.dll
:Using System.Drawing,System.Drawing.dll

Classes also inherit from the namespace they are contained in. The statement
:Using

Is equivalent to
OUSING<«0pc""'

...and allows a class to clear the inherited value before appending to JUSING, or to
state that no .NET assemblies should be loaded. IfJUSING is empty, APL will not
search for .NET classes in order to resolve names which would otherwise give a
VALUE ERROR.

Note that assigning a simple character vector to JUSING is equivalent to setting it to
the enclose of that vector. The statement (QUSING<«"' ") does not empty [QUSING, it
sets it to a single empty element, which gives accesstomscorlib.dl | and the
Bridge DLL without a namespace prefix. The equivalent isa : Us i ng statement fol-
lowed by a comma separator but no namespace prefix and no assembly name:

:Using ,

10

Dyalog APL/W .NET Interface Guide

Using .NET Classes

To create a Dyalog APL object as an instance of a NET class, you use the [INEW sys-
tem function. The ONEW system function is monadic. It takes a 1 or 2-element argu-
ment, the first element being a class.

Ifthe argument is a scalar or a 1-element vector, an instance of the class is created
using the constructor that takes NO argument.

If the argument is a 2-element vector, an instance of the class is created using the con-
structor whose argument matches the disclosed second element.

For example, to create a DateTime object whose value is the 30t April 2008:

OQUSING«'System'

mydt<[ONEW DateTime (2008 4 30)

The result of [ONEW is an reference to the newly created instance:

[ONC <c'mydt'
9.2

If you format a reference to a NET Object, APL calls its ToString method to
obtain a useful description or identification of the object. This topic is discussed in
more detail later in this chapter.

mydt
30/04/2008 00:00:00

If you want to use fully qualified class names instead, one of the elements of
[USING must be an empty vector. For example:

QUSING«,c""'

mydt<[INEW System.DateTime (2008 4 30)

When creating an instance of the DateTime class, you are required to provide an
argument with two elements: (the class and the constructor argument, in our case a
3-element vector representing the date). Many classes provide a default constructor
which takes no arguments. From Dyalog APL, the default constructor is called by
calling [INEW with only a reference to the class in the argument. For example, to
obtain a default But ton object, we only need to write:

mybtn<[JNEW Button

Chapter 2: Accessing .NET Classes 11

The above statement assumes that you have defined JUSING correctly; there must be
areference to System.Windows.Forms.dl |, and a namespace prefix which
allows the name But ton to be recognised as
System.Windows.Forms.Button.

The mechanism by which APL associates the class name with a class in a NET
namespace is described below.

Constructors and Overloading

Each NET Class has one or more constructor methods. A constructor is a method
which is called to initialise an instance of the Class. Typically, a Class will support
several constructor methods - each with a different set of parameters. For example,
System.DateTime supports a constructor that takes three Int 32 parameters
(year, month, day), another that takes six Int 32 parameters (year, month, day, hour,
minute, second), and so forth. These different constructor methods are not dis-
tinguished by having different names but by the different sets of parameters they
accept.

This concept, which is known as overloading, may seem somewhat alien to the APL
programmer. After all, we are used to defining functions that accept a whole range of
different arguments. However, type checking, which is fundamental to the .NET
Framework, requires that a method is called with the correct number of parameters,
and that each parameter is of a predefined type. Overloading solves this issue.

When you create an instance of a class in C#, you do so using the new operator. This
is automatically mapped to the appropriate constructor method by matching the para-
meters you supply to the various forms of the constructor. A similar mechanism is
implemented in Dyalog APL using the ONEW system function.

How the [JNEW System Function is implemented
When APL executes an expression such as:
mydt<[JNEW DateTime (2008 4 30)
the following logic is used to resolve the reference to DateTime correctly.

The first time that APL encounters a reference to a non-existent name (i.e. a name that
would otherwise generate a VALUE ERROR), it searches the .NET namespaces/assem-
blies specified by JUSING fora NET class of that name. If found, the name (in this
case DateTime)isrecorded in the APL symbol table with a name class 0 9.6 and is
associated with the corresponding NET namespace. If not, VALUE ERROR is repor-
ted as usual. Note that this search ONLY takes place if JUSING has been assigned a
value.

12

Dyalog APL/W .NET Interface Guide

Subsequent references to that symbol (in this case DateTime) are resolved directly
and do not involve any assembly searching.

If you use ONEW with only a class as argument, APL will attempt to call the version
of'its constructor that is defined to take no arguments. If no such version of the con-
structor exists, the call will fail witha LENGTH ERROR.

Otherwise, if you use [INEW with a class as argument and a second element, APL will
call the version of the constructor whose parameters match the second element you
have supplied to ONEW. Ifno such version of the constructor exists, the call will fail
witha LENGTH ERROR.

Displaying a .NET Object

When you display a reference to a .NET object, APL calls the object's ToString
method and displays the result. All objects provide a ToString method because all
objects ultimately inherit from the NET class System.Object. Many NET
classes will provide their own ToString that overrides the one inherited from
System.Object, and return a useful description or identifier for the object in ques-
tion. ToString usually supports a range of calling parameters, but APL always
calls the version of ToString that is defined to take no calling parameters. Mon-
adic format (3) and monadic JFMT have been extended to provide the same result,
and provides a quick shorthand method to call ToString in this way. The default
ToString supplied by System.Object returns the name of the object’s Type.
This can be changed using the system function [JDF. For example,

z<[IJNEW DateTime OTS
z. ([IDF (sDayOfWeek),, " 'G< 99:99>'[JFMT 1001Hour Minute)

Z
Saturday 09:17

Note that if you want to check the type of an object, this can be obtained using the
GetType method, which is supported by all NET objects.

Chapter 2: Accessing .NET Classes 13

Disposing of .NET Objects

NET objects are managed by the NET Common Language Runtime (CLR). The
CLR allocates memory for an object when it is created, and de-allocates this memory
when it is no longer required.

When the (last) reference from Dyalog APL to a NET object is expunged by [JEX or
by localisation, the system marks the object as unused, leaving it to the CLR to de-
allocate the memory that it had previously allocated to it, when appropriate. Note
that even though Dyalog has de-referenced the APL name, the object could poten-
tially still be referenced by another .NET class.

De-allocated memory may not actually be re-used immediately and may indeed
never be re-used, depending upon the algorithms used by the CLR garbage disposal.

Furthermore, a NET object may allocate unmanaged resources (such as window
handles) which are not automatically released by the CLR.

To allow the programmer to control the freeing of resources associated with NET
objects in a standard way, objects implement the IDi sposable interface which
provides a Dispose () method. The C# language provides a using control struc-
ture that automates the freeing of resources. Crucially, it does so however the flow of
execution exits the control structure, even as a result of error handling. This obviates
the need for the programmer to call Dispose () explicitly wherever it may be
required.

This programming convenience is provide in Dyalog APL by the
:Disposable ... :EndDisposable control structure. For further inform-
ation, see Language Reference: Disposable Statement.

14 Dyalog APL/W .NET Interface Guide

Browsing .NET Classes

Microsoft supplies a tool for browsing .NET Class libraries called TLDASM. EXEL

As a convenience, the Dyalog APL Workspace Explorer has been extended to per-
form a similar task as TLDASM so that you can gain access to the information within
the context of the APL environment.

The information that describes NET classes, which is known as its Metadata, is part
of'the definition of the class and is stored with it. This Metadata corresponds to Type
Information in COM, which is typically stored in a separate Type Library.

I TLDASM.EXE can be found in the NET SDK and is distributed with Visual Studio

Chapter 2: Accessing .NET Classes 15

To gain information about one or more .NET Classes, open the Workspace Explorer,
right click the Metadata folder, and choose Load.

rm Exploring CLEAR WS [#] I'_Hglﬁ1

File Edit Wiew Columns Tools
PEBXQE |DEEE 46 el
Workspace Tree Contents of MetaData

ERL.
=) OSE

Bt MetaData
&Y Typelibs

This brings up the Browse .NET Assembly dialog box as shown below. Navigate to
the .NET assembly of your choice, and click Open.

~
@ Browse .NET Assembly M
@'_J'| || « MicrosoftNET » Framework6d » v20.50727 » ~ | 42 || search v20.50727 o]
Organize MNew folder === Sl @
.. Program Files = MName Date modified Type i
i P Fil = e
S (%) Microsoft.Vsa.dll 21/03/2014 00:50 Application extens...
WP Dat = - P
rogramliata %] MmcAspEst.dll 04,/03/2014 07:58 Application extens...
|/ RaspberryPi = T
eI %] mscordacwhs.dll 09/07/2014 01:21 Application extens...
i Recovery %] mscordbe.dil 21/03/201400:50 Application extens...
W SWSETUP = . P
%) mscordbi.dll Application extens...
J SR] mscorie.dll 19/06/201401:23 Application extens... | |
L. SYSTEM.SAY s " — E
U (%) mscorjit.dll 05/10/2012 13:52 Application extens... |7
o Lsers] mscorld.dil 21/03/2014 00:50 Application extens... —
N b = - P
WEDCam |.ﬁ. mscorlib.dll 09,/07/2014 01:21 Application extens...
., Wind
j o 2o 1 %] mscorpedll 2171172010 05:23 Application extens...
HP_RECOVERY (L
= ((%) mscorpjt.dIl 21/03/2014 00:50 Application extens...
Mi ft Offi
& Microsolt Uifiee %) mscorre.dil 21/03/201400:50 Application extens...
G 3 %] mscorsec.dll 21/03/2014 00:50 Application extens...
MNetwork
“i o @] mscorsn.di 21/03/201400:50 Application extens...
1M DG4 CC4000000
Lo %) mscorsve.dll 21/03/2014 00:50 Application extens... -
M Hp [e 1 | %
File name: mscorlib.dll v | .NET Assemblies (*.dil) -
[Open |v] ’ Cancel]
L

16 Dyalog APL/W .NET Interface Guide

Note that the NET Classes provided with the .NET Framework are typically located
in C: \WINDOWS\Microsoft.NET\Framework\v2.0.50215. The last
named folder is the Version number.

The most commonly used classes of the NET Namespace System are stored in this
directory in an Assembly named mscorlib.dl1, along with a number of other fun-
damental .NET Namespaces.

The result of opening this Assembly is illustrated in the following screen shot. The
somewhat complex tree structure that is shown in the Workspace Explorer merely
reflects the structure of the Metadata itself.

1| Exploring CLEAR WS [#] g@

File Edit Wiew Columns Tools

$ X QW | ([E0me e
wWorkspace Tree
=Bt mscorlib A
--Jigt Modules
St G AWINDOWSSMicrosoft. NETSYFrameworksy2.0.50215mscorlib.dl| |
--fEt Namespaces

+-JEt [Unnamed]
#-0ift Microsoft.Win32
- fift Microsoft.Win32.5afeHandles
+ fEt System
+-JE System.Collections
+-fift System.Collections.Beneric
- fift System.Collections.0bjectMadel
+ fft System.Configuration.Assemblies

+-fE System.Deployment. Internal

+-fEt System.Deployment. Internal.lsolation

+-fift System.Diagnostics

+ fift System.Diagnostics.CodeAnalysis

+-fE System.Diagnostics.SymbolStare

+-fift System.Globalizatian

+-f#t System. [0 v

Chapter 2: Accessing .NET Classes 17

Opening the System/ Classes sub-folder causes the Explorer to display the list of
classes contained in the NET Namespace System as shown in the picture below.

' | Exploring CLEAR WS [#] g@]“

File Edit wiew Columns Tools

PBRXQE (@0 mEE (56 el

Warkspace Tree
ot System [A]
E]ﬁrﬂlasses =
Tigt Sy=tem. _AppDomain
Tt System.AccessViolationException
fift System.Action’t
it System.ActivationContext
Tt System.Activator
Tt System.AppDomain
fift System.AppDomain+EvidenceCollectiaon
it System.Applomainlnitializer
Tt System.AppDomainlnitializerInfo+ltemInfo
Tt System.AppDomainManager
Bt System.ApplomainSetup [V]
(<] | i (#]

18

Dyalog APL/W .NET Interface Guide

The Constructors folder shows you the list of all of the valid constructors and their
parameter sets with which you may create a new instance of the Class by calling
New. The constructors are those named .cfor; you may ignore the one named .cctor,
(the class constructor) and any labelled as Private.

For example, you can deduce that DateTime . New may be called with three
numeric (Int32) parameters, or six numeric (Int32) parameters, and so forth. There
are in fact seven different ways that you can create an instance ofa DateTime.

4 Exploring CLEAR WS [#] -Joks

File Edit Yiew Columns Tools

$ R XQE o |E0mE [38so

‘Workspace Tree Conkenty
—-Jét System.DateTime ‘\
+ JEt Baze Class
—-Fét Consztructors

gt (PrivatelVoid .cctor()
et (Private)VWoid .ctor(Int6l, System.DateTimeKind, Baaolean)
gt (PrivatelVoid .ctor(System.Runtime.Serialization.Serializatior
et (PrivatelWoid .ctor(UIntel)
Jét Void .ector(Int32, Int32, Int32)
5t Void .etar(Int32, Int32, Int32, Int32, Int32, Int32)
et Void Lctar(Int32, Int3Z2, Int32, Int32, Int32, Int32, Int3Z]
&t Yoid .ctor(Int32, Int32, Int32, Int32, Int32, Int32, Int32, Sy
Mgt Void .ctor(Int32, Int32, Int32, Int32, Int32, Int32, Int32, S5
Mgt Void .ctor(Int32, Int32, Int32, Int32, Int32, Int32, Int32, S5,
et Yoid .ctor(Int32, Int32, Int32, Int32, Int32, Int32, System.D:
gt Moid Letar(Int32, Int32, Int32, Int32, Int32, Int32, System.Gl
5t Void .otar(Int32, Int32, Int32, System.Globalization.Calendar)
Mgt Void .ctor(Intél)
et Yoid .ctor(Intél, System.DateTimekind)
w HEt Fields
+- Mgt Methods |
+ . J#t Properties id
4 >

For example, the following statement may be used to create a new instance of
DateTime (09:30 in the morning on 30t April 2001):

mydt<[INEW DateTime (2001 4 30 9 30 0)

mydt
30/04/2001 09:30:00

Chapter 2: Accessing .NET Classes 19

The Properties folder provides a list of the properties supported by the Class. It
shows the name of the property followed by its data type. For example, the
DayOfYear property is defined to be of type Int32.

réﬂ Exploring CLEAR WS [#] g@1

File Edit Yew Columns Toals
P RXQE| ~|[EEEE |56 el o

\workspace Tree

=Bt System.DateTime [h]
]ﬁ'Base Class
]ﬁ'ﬂunstructors
w0t Fields
]ﬁ‘?’rMethDds
=-ft Properties
f&t (Private)Internalkind @ System.UIntgl
fét (Private)lInternalTicks @ System.Intil=
%t Date : System.DateTime
%t Day : System.Int32
]ﬁtDayOFHeek !oSystem. DayQfWeek
%t DayOffear @ System.Int32
Bt Hour @ System. Int32
Bt Kind : System.DateTimeKind
Tt Millisecond & System.Int32
Ht Minute : System. Int32
%t Month @ System.Int32
Tt Mow : System.DateTime
%t Second : System.Int32
Tt Ticks @ System.Intél
Bt TimeOfDay : System.TimeSpan
%t Today @ System.DateTime
Tt UtcHow : System.DateTime
%t Year @ System.Int3Z [v]

(<] | i | (2]

You can query a property by direct reference:

mydt.DayOfWeek
Monday

20

Dyalog APL/W .NET Interface Guide

Notice too that the data types of some properties are not simple data types, but

Classes in their own right. For example, the data type of the Now property is itself
System.DateTime. This means that when you reference the Now property, you
get back an object that represents an instance of the System. DateTime object:

mydt.Now
07/11/2001 11:30:48
aTs
2001 11 7 11 30 48 O

The Methods folder lists the methods supported by the Class. The Explorer shows the
data type of the result of the method, followed by the name of the method and the
types of its arguments. For example, the IsLeapYear method takes an Int32 para-
meter (year) and returns a Boolean result.

mydt.IsLeapYear 2000

1] Exploring CLEAR WS [#] M=%
File Edit “iew Columns Tools
18X Q| | [E0mE [sl ol
Workspace Tree
gt (PrivatelVoid Finalizel() Ai

Fet (PrivatelYoid System.Runtime.Serialization.ISerializa
fet Boolean Equals(System.DateTime)

fiet Boolean Equals(System.DateTime, System.DateTime)

fet Boolean Equals(System.Object)

figt Boolean IsDaylightSawingTimel)

TietiBoolean IsLeapYear(Int32) !

fiet Boolean op_Equality(System.DateTime, System.DateTime]
figt Boolean op_GreaterThan(System.DateTime, System.DateTi
figt Boolean op_GreaterThanOrEqual (System.DateTime, System
figt Boolean op_Inequality(System.DateTime, System.DateTim
fiet Boolean op_LessThan(System.DateTime, System.DateTime]
figt Boolean op_LessThanOrEqual (System.DateTime, System.Da
figt Boolean TryParsel(System.String, System.DateTime ByRef
figt Boolean TryParse(System.String, System.IFormatProvide

figt Boolean TryParseExact(System.String, System.5tring, S
figt Boolean TryParseExact(System.String, System.Stringl],

 digt Double ToOQADate() ,V:
< >

Chapter 2: Accessing .NET Classes 21

Many of the reported objects are listed as Private, which means they are inaccessible
to users of the class — you are not able to call them or inspect their value. For more
information about classes, see the chapter on Object Oriented Programming in the
Dyalog APL Language Reference Manual.

B Exploring CLEAR WS [#] M=E3

File Edit Wiew Columns Toaols

PRxA® »/(REES (4080

Workspace Tree

Bt (PrivatelUoid Finalize() L

Rt (PrivatelUoid Syustem.Runtime.Serial ization. ISeric

H&t Boolean EqualsCiustem.DateT ime)

H&t Boolean EqualsCiustem.DateTime, Sustem.Datel ime)

H&t Boolean EqualsCiustem.Object?)

H&t Boolean IsDaul ightsavingT imel2

H&t Boolean IsLeapyearCIntiz)

H&t Boolean op EqualitulSuystem.DateTime, Sustem.Datel

f&t Bonlean op_GreaterThanCSystem.DateTime, Sustem.De

f&t Bonlean op_GreaterThanOrEqual CSystem.DateT ime, 5L

f&t Bonlean op_InequalituCsystem.DateT ime, Sustem.Dad

f&t Bonlean op _LessThanCSystem.DateT ime, Sustem.Datel

f&t Bonlean op_LessThanOrEqualCsustem.DateTime, Suste

%ét Boolean TryParselsustem.5tring, Sustem.DateTime E

%ét Boolean TryParselsustem.5tring, Sustem.IFormatPrc

%ét Boolean TruParseExact(Sustem.String, Sustem.Strir

%ét Boolean TruParseExact(Sustem.String, Sustem.Strir

%ét Double ToDADate(d

Hét [nt3z Comparelsustem.DateTime, Sustem.DateTimel
< >

1 objeckis). 53.9Mb (56518472 bytes) free,

22 Dyalog APL/W .NET Interface Guide

Value Tips for External Functions

Value Tips can also be used to investigate the syntax of external functions. If you
hover over the name of an external function, the Value Tip displays its Function Sig-
nature.

For example, in the example below, the mouse is hovered over the external function
dt.AddMonths and shows that it requires a single integer as its argument.

B CLEAR WS - Dyalog APL/W-64 - o
File Edit View Windows Session Log Action Options Tooels Threads Help

ws [0 = % & &) | obiect B B B v b B @ F|[Tool & () (-] 3 || Edit || Session

Language Bar =13 ill
[~ [Ble[t]| [1P[Ls[rs[] [=lelel<P[2[=l7] [Ia[%[5] [t+]=[-[0lale] [rle]v]] & | mi
Dyalog APL/W-64% Version 14%.0.20138 ~

Serial Mo : 000042

Unicode Edition

Non-commercial License

Thu Feb 06 1b:44:35 2014

clear ws
OUSING~'System’
dt+DateTime.Now
dt.MethodlList

Add AddDays AddHours AddMilliseconds AddMinutes AddMonths AddSeco
nMonth Equals FromBinary FromFileTime FromFileTimelUte FromQAD
TypeCode IsDaylightSavingTime IsleapYear Parse ParseExact Ref
ileTime ToFileTimeUtc TolocalTime TolongDateString TolongTime$S
ing ToString TolUniversalTime TryParse TryParseExact
dt.AddMeonth

System.DateTime AddMenths{Int32)

< >
Function Signature
Debugger gl x|

Ready... Ins NUM

Editar

Curlbj: [System.DateTime].AddMor |&:1 Opa:0 |OTRAP |OSI:0 (OIO:1 (OML:1

Chapter 2: Accessing .NET Classes 23

Should the external function provide more than one signature, they are all shown in
the Value Tip as illustrated below. Here the function ToString has four different
overloads.

B CLEAR WS ([System.DateTime])- Dyalog APL/W-64 > =

File Edit View Windows Session Log Action Options Teols Threads Help
|ws O & 0 bl 2] |[Obiect B B 5 V B bu b2 @ 15 | |Tool O G B 3 ||Edt || Session

Language Bar P =] 1 ﬁ
L[[e[Bleft]2] [1TI[sfr]s[-] [=lfel<[>[=l#] [v[s[2[F] [t[+]=[-]0]a]¥] [rle]v]] & | m
Unicode Edition A
Non-commercial License
Thu Feb 06 14:3%:44% 201%
clear ws

OUSING='System’
dt+DateTime.Now
Jes dt
|#.[System.DateTime]
YMETHODS
Add AddDays AddHours AddMilliseconds AddMinutes
AddMonths AddSeconds AddTicks AddYears Compare
CompareTo DaysInMonth Equals FromBinary FromFileTime
FromFileTimeUte FromOADate GetDateTimeFormats GetHashCode
GetType GetTypeCode IsDaylightSavingTime IslLeapYear Parse
ParseExact ReferenceEquals SpecifyKind Subtract ToBinary
ToFileTime ToFileTimelte TolLocalTime TolLongDateString
TolLongTimeString ToOADate ToShortDateString
ToShortTimeString ToString TolniversalTime TrvParse
TryParseExact System.String ToString()
System.5tring ToString(System.String)
System.5tring ToString(System.IFormatProvider)
System.String ToString(System.String, System.IFc

Debugger

J|Ready... Function Signature |

J|Cur0hj: |&:1 |ObQ=0 [OTRAPLSI:0 |OI0:1 [ML:1

24

Dyalog APL/W .NET Interface Guide

Advanced Techniques

Shared Members

Certain .NET Classes provide methods, fields and properties, that can be called dir-
ectly without the need to create an instance of the Class first. These members are
known as shared, because they have the same definition for the class and for any
instance of the class.

The methods Now and IsLeapYear exported by System.DateTime fall into this cat-
egory. For example:

OJUSING«,c'System'

DateTime.Now
07/11/2008 11:30:48

DateTime.IsLeapYear 2000
1

APL language extensions for .NET objects

The .NET Framework provides a set of standard operators (methods) that are sup-
ported by certain classes. These operators include methods to compare two .NET
objects and methods to add and subtract objects.

In the case of the DateTime Class, there are operators to compare two DateTime
objects. For example:

DT1+[INEW DateTime (2008 4 30)
DT2«+[INEW DateTime (2008 1 1)

A Is DT1 equal to DT2 ?
DateTime.op_Equality DT1 DT2
0

The op Additionand op Subtraction operators add and subtract
TimeSpan objects to DateTime objects. For example:

DT3«DateTime.Now
DT3
07/11/2008 11:33:45

TS<(NEW TimeSpan (1 1 1)
TS
01:01:01

Chapter 2: Accessing .NET Classes 25

DateTime.op_Addition DT3 TS
07/11/2008 12:34:46

DateTime.op_Subtraction DT3 TS
07/11/2008 10:32:44

The corresponding APL primitive functions have been extended to accept .NET
objects as arguments and simply call these standard .NET methods internally. The
methods and the corresponding APL primitives are shown in the table below.

NET Method APL Primitive Function

op_Addition +

op_Subtraction -

op_Multiply x

op_Division +

op_Equality =

op_Inequality #

op_LessThan <

op_LessThanOrEqual

IA

op_GreaterThan >

op_GreaterThanOrEqual >

So instead of calling the appropriate NET method to compare two objects, you can
use the familiar APL primitive instead. For example:

DT1=DT2
0
DT1>DT2
1
DT3+TS
07/11/2008 12:34:46
DT3-TS

07/11/2008 10:32:44

Apart from being easier to use, the primitive functions automatically handle arrays
and support scalar extension; for example:

DT1>DT2 DT3
10

26

Dyalog APL/W .NET Interface Guide

In addition, the monadic form of Grade Up (4) and Grade Down (¥), and the Min-
imum (|) and Maximum ([') primitive functions have been extended to work on
arrays of references to NET objects. Note that the argument(s) must be a homo-
geneous set of references to objects of the same .NET class, and in the case of Grade
Up and Grade Down, the argument must be a vector. For example:

ADT1 DT2 DT3
213

L/DT1 DT2 DT3
01/01/2008 00:00:00

Exceptions

When a NET object generates an error, it does so by throwing an exception. An
exception is in fact a NET class whose ultimate base class is System.Exception.

The system constant [JEXCEPTION returns a reference to the most recently generated
exception object.

For example, if you attempt to create an instance of a DateTime object with a year
that is outside its range, the constructor throws an exception. This causes APL to
report a (trappable) EXCEPTION error (error number 90) and access to the exception
object is provided by JEXCEPTION.

[JUSING«'System'

DT<«[NEW DateTime (100000 0 0)
EXCEPTION

DT<«[JNEW DateTime (100000 0 0)

JEN
90

[JJEXCEPTION.Message
Year, Month, and Day parameters describe an unrepresentab
le DateTime.

JEXCEPTION.Source
mscorlib

[JEXCEPTION.StackTrace
at System.DateTime.DateToTicks(Int32 year,
Int32 month,
Int32 day)

at System.DateTime..ctor(Int32 year,
Int32 month,
Int32 day)

Chapter 2: Accessing .NET Classes 27

Specifying Overloads and Casts

Ifa NET function is overloaded in terms of the types of arguments it accepts, Dyalog
APL chooses which overload to call depending upon the data types of the arguments
passed to it. For example, if a NET function foo () is declared to take a single argu-
ment either of type int or of type double APL would call the first version if you
called it with an integer value and the second version if you called it with a non-
integer value.

In some circumstances it may be desirable to override this mechanism and explicitly
specify which overload to use.

A second requirement is to be able to specify to what .NET types APL should coerce
arrays before calling a NET function. For example, if a parameter to a .NET function
is declared as type System.Object, it might be necessary to force the APL argu-
ment to be cast to a particular zype of Object before the function is called.

Both these requirements are met by calling the function via the Variant operator [i.
There are two options, OverloadTypes (the Principle Option) and CastToTypes.
Each option takes an array of refs to .NET types, the same length as the number of
parameters to the function.

OverloadTypes Examples

To force APL to call the double version of function foo () regardless of the type of
the argument val:

(foo EI('OverloadTypes'Double))val
or more simply:
(foo [IDouble)val
Note that Doub L e is a refto the NET type System.Double.

JUSING«'System'
Double
(System.Double)

Taking this a stage further, suppose that foo () is defined with 5 overloads as fol-
lows:

foo ()
foo(int 1)
double d)

foo (double d, int i)

(
(i
foo (
(
foo (double[] d)

The following statements will call the niladic, double, (double, int) and double[]
overloads respectively.

28 Dyalog APL/W .NET Interface Guide

(foo [(<8)) @ A niladic
(foo [l Double) 1 A double
(foo [l(<Double Int32))1 1 A double,int

(foo [(Type.GetType c'System.Double[]'))cl 1 @A double[]

Note that in the niladic case, an enclosed empty vector is used to represent a null ref-
erence to a .NET type.

CastToTypes Example

The .NET function Array.SetValue () setsthe value ofa specified element (or
elements) of an array. The first argument, the new value, is declared as
System.ObJject, but the value supplied must correspond to the type ofthe Array
in question. APL has no means to know what this is and will therefore pass the value
as is, 1.e. in whatever internal format it happens to be at the time. For example:

[JUSING«'System'

A create a Boolean array with 2 elements
BA«Array.CreateInstance Boolean 2
BA.GetValue 0 n get the Oth element

A attempt to set the Oth element to 1 (AKA true)

BA.SetValue 1 0
EXCEPTION: Cannot widen from source type to target type
either because the source type is a not a primitive type
or the conversion cannot be accomplished.
test[5] BA.SetValue 1 0

A

The above expression failed because APL passed the first argument 1 ,unchanged
from its current internal representation, as a 1-byte integer which does not fit into a
Boolean element.

To rectify the situation, APL must be told to cast the argument to a Boolean as fol-
lows:

(BA.SetValue [l ('CastToTypes'(Boolean Int32)))1 0
BA.GetValue 0 n get the Oth element

Chapter 2: Accessing .NET Classes 29

Overloaded Constructors

If a class provides constructor overloads, a similar mechanism is used to specify
which of the constructors is to be used when an instance of the class is created using
ONEW.

For example, ifMyClass isa .NET class with an overloaded constructor, and one of
its constructors is defined to take two parameters; a double and an int, the fol-
lowing statement would create an instance of the class by calling that specific con-
structor overload:

(ONEW [(<Double Int32)) MyClass (1 1)

30

Dyalog APL/W .NET Interface Guide

More Examples

Directory and File Manipulation

The .NET Namespace System. IO (also in the Assembly mscorlib.dl1l)
provides some useful facilities for manipulating files. For example, you can create a
DirectoryInfo object associated with a particular directory on your computer,
call its GetFiles method to obtain a list of files, and then get their Name and
CreationTime properties.

[JUSING<,c'System.IO'
d<[INEW DirectoryInfo (c'C:\Dyalog')

d is an instance of the Directory Class, corresponding to the directory
c: \Dyalogl.

d
C:\Dyalog

The GetFiles method returns a list of files; actually, FileInfo objects, that rep-
resent each of the files in the directory: Its optional argument specifies a filter; for
example:

d.GetFiles c'x,exe'
evalstub.exe exestub.exe dyalog.exe dyalogrt.exe

The Name property returns the name of the file associated with the File object:

(d.GetFiles c'x.,exe').Name
evalstub.exe exestub.exe dyalog.exe dyalogrt.exe

And the CreationTime property returns its creation time, which isa DateTime
object:

(d.GetFiles c'x.exe').CreationTime

01/04/2004 09:37:01 01/04/2004 09:37:01 08/06/2004 ...

Ifyou call GetFiles without an argument (in APL, with an argument of 8), it
returns a complete list of files:

files«d.GetFiles @&

IIn this document, we will refer to the location where Dyalog APL is installed as C:\Dyalog. Your
installation of Dyalog APL may be in a different folder or even on a different drive but the
examples should work just the same it you replace C:\Dyalog by your folder name

Chapter 2: Accessing .NET Classes 31

Taking advantage of namespace reference array expansion, an expression to display
file names and their creation times is as follows.

files,[1.5]files.CreationTime

relnotes.hlp 03/02/200% 11:47:02
relnotes.cnt 03/02/2004 11:47:02
def_uk.dse 22/03/2004 12:13:31
DIALOGS.HLP 22/03/2004 12:13:31
dyares32.dll 22/03/2004 12:13:40

Sending an email
The .NET Namespace System.Web.Mail provides objects for handing email.

You can create a new email message as an instance of the Mai1Message class, set
its various properties, and then send it using the SmtpMail class.

Please note that these examples will only work if your computer is configured to
allow you to send email in this way.

QUSING«'System.Web.Mail,System.Web.dLl'
m<[OJNEW MailMessage

m.From<«'tony.blair@uk.gov'
m.To«'sales@dyalog.com'

m.Subject<«'order'

m.Body<«'Send me 100 copies of Dyalog APL now'

SmtpMail.Send m

However, note that the Send method of the SmtpMail object is overloaded and
may be called with a single parameter of type
System.Web.Mail.MailMessage as above, or four parameters of type
System.String:

So instead, you can just say:

SmtpMail.Send 'tony.blair@uk.gov'
‘sales@dyalog.com’
‘order'
'Send me the goods'

32

Dyalog APL/W .NET Interface Guide

Web Scraping

The .NET Framework provides a whole range of classes for accessing the internet
from a program. The following example illustrates how you can read the contents of
a web page. It is complicated, but realistic, in that it includes code to cater for a fire-
wall/proxy connection to the internet. It is only 9 lines of APL code, but each line
requires careful explanation.

First we need to define JUSING so that it specifies all of the NET Namespaces and
Assemblies that we require.

JUSING<«'System,System.dll' 'System.NET' 'System.IO'

The WebRequest class in the .NET Namespace System.NET implements the
NET Framework's request/response model for accessing data from the Internet. In
this example we create a WebRequest object associated with the URI
http://www.cdnow.com. Note that WebRequest is an example of a static
class. You don't make instances ofit; you just use its methods.

wrg«<WebRequest.Create c'http://www.cdnow.com'

In fact (and somewhat confusingly) if the URI specifies a scheme of "http://" or
"https://", you get back an object of type Ht t pWebRequest rather than a plain and
simple WebRequest. So, at this stage, wrq is an Ht tpiWebRequest object.

wrq
System.NET.HttpWebRequest

This class has a Proxy property through which you specify the proxy information
for a request made through a firewall. The value assigned to the Proxy property has
to be an object of type System.NET .WebProxy. So first we must create a new
WebProxy object specifying the hostname and port number for the firewall. You
will need to change this statement to suit your own internet configuration (it may
even not be necessary to do this).

PX<(NEW WebProxy(c'http://dyagate.dyadic.com:8080")
PX
System.NET.WebProxy

Having set up the WebProxy object as required, we then assign it to the Proxy
property of the Ht tpRequest object wrq.

wrq.Proxy<«PX

Chapter 2: Accessing .NET Classes 33

The Ht tpRequest class has a GetResponse method that returns a response from
an internet resource. No it's not HTML (yet), the result is an object of type
System.NET.HttpWebResponse.

wr<wrqg.GetResponse
wr
System.NET.HttpWebResponse

The Ht tpWebResponse class has a GetResponseStream method whose result
isoftype System.NET.ConnectStream. This object, whose base class is
System.IO.Stream,provides methods to read and write data both synchronously
and asynchronously from a data source, which in this case is physically connected to
a TCP/IP socket.

str<wr.GetResponseStream
str
System.NET.ConnectStream

However, there is yet another step to consider. The St ream class is designed for
byte input and output; what we need is a class that reads characters in a byte stream
using a particular encoding. This is a job forthe System.IO.StreamReader
class. Given a St ream object, you can create a new instance ofa StreamReader
by passing it the St ream as a parameter.

rdr<[ONEW StreamReader str
rdr
System.IO.StreamReader

Finally, we can use the ReadToEnd method of the St reamReader to get the con-
tents of the page.

s«rdr.ReadToEnd
ps
45242
Note that to avoid running out of connections, it is necessary to close the Stream:

str.Close

34

Dyalog APL/W .NET Interface Guide

Enumerations

An enumeration is a set of named constants that may apply to a particular operation.
For example, when you open a file you typically want to specify whether the file is
to be opened for reading, for writing, or for both. A method that opens a file will take
a parameter that allows you to specify this. If this is implemented using an enu-
merated constant, the parameter may be one of a specific set of (typically) integer val-
ues; for example, 1=read, 2=write, 3=both read and write. However, to avoid using
meaningless numbers in code, it is conventional to use names to represent particular
values. These are known as enumerated constants or, more simply, as enums.

In the NET Framework, enums are implemented as classes that inherit from the base
class System.Enum. The class as a whole represents a set of enumerated constants;
each of the constants themselves is represented by a static field within the class.

The next chapter deals with the use of System.Windows . Forms to create and
manipulate the user interface. The classes in this NET Namespace use enums extens-
ively.

For example, there is a class named
System.Windows.Forms.FormBorderStyle that contains a set of static
fields named None, FixedDialog, Sizeable, and so forth. These fields have spe-
cific integer values, but the values themselves are of no interest to the programmer.

Typically, you use an enumerated constant as a parameter to a method or to specify
the value of a property. For example, to create a Form with a particular border style,
you would set its BorderStyle property to one of the members of the
FormBorderStyle class, viz.

[JUSING+«'System'
JUSING,«c'System.Windows.Forms,system.windows.forms.dl

l 1

f1«<[INEW Form

f1.BorderStyle«FormBorderStyle.FixedDialog

FormBorderStyle.INL "2 a List enum members

Fixed3D FixedDialog FixedSingle FixedToolWindow None

Sizable SizableToolWindow

Chapter 2: Accessing .NET Classes 35

An enum has a value, which you may use in place of the enum itself when such
usage is unambiguous. For example, the FormBorderStyle.Fixed3D enum has
an underlying value is 2:

Convert.ToInt32 FormBorderStyle.Fixed3D
2

You could set the border style of the Form f1 to FormBorderStyle.Fixed3D
with the expression:

fl1.BorderStyle<«2

However, this practice is not recommended. Not only does it make your code less
clear, but also if a value for a property or a parameter to a method may be one of sev-
eral different enum types, APL cannot tell which is expected and the call will fail.

For example, when the constructor for System.Drawing. Font is called with 3
parameters, the 3" parameter may be eithera FontStyle enumora
GraphicsUnit enum. If you were to call Font with a 3™ parameter of 1, APL can-
not tell whether this refersto a FontStyle enum, ora GraphicsUnit enum, and
the call will fail.

Handling Pointers with Dyalog.ByRef

Certain NET methods take parameters that are pointers.

An example is the Di vRem method that is provided by the System.Math class.
This method performs an integer division, returning the quotient as its result, and the
remainder in an address specified as a pointer by the calling program.

APL does not have a mechanism for dealing with pointers, so Dyalog provides a
.NET class for this purpose. This is the Dyalog.ByRef class, which is a provided
by an Assembly that is loaded automatically by the Dyalog APL program.

Firstly, to gain access to the Dyalog .NET Namespace, it must be specified by
OUSING. Note that you need not specify the Assembly (DLL) from which it is
obtained (the Bridge DLL), because (like mscorlib.d11)itis automatically
loaded by when APL starts.

JUSING<«'System' 'Dyalog’

The Dyalog.ByRef class represents a pointer to an object of type
System.Object. It has a number of constructors, some of which are used intern-
ally by APL itself. You only need to be concermned about two of them; the one that
takes no parameters, and the one that takes a single parameter of type
System.Object. The former is used to create an empty pointer; the latter to create
a pointer to an object or some data.

36

Dyalog APL/W .NET Interface Guide

For example, to create a empty pointer:
ptri<[INEW ByRef
Or, to create pointers to specific values,

ptr2<[NEW ByRef 0
ptr‘3<—|:|NEW ByRef (c110)
ptri4«<[ONEW ByRef ([INEW DateTime (2000 4 30))

Notice that a single parameter is required, so you must enclose it if it is an array with
several elements. Alternatively, the parameter may be a NET object.

The ByRef class has a single property called Value.

ptr2.Value
0
ptr3.Value
12345678910
ptri&.Value

30/04/2000 00:00:00

Note that if you reference the Value property without first setting it, you get a
VALUE ERROR.

ptri.Value

VALUE ERROR
ptri.Value
A

Returning to the example, we recall that the Di vRem method takes 3 parameters:

1. the numerator

2. the denominator

3. apointer to an address into which the method will write the remainder after
performing the division.

remptr«<(JNEW ByRef

remptr.Value
VALUE ERROR

remptr.Value

A

Math.DivRem 311 99 remptr

remptr.Value
14

Chapter 2: Accessing .NET Classes 37

In some cases a NET method may take a parameter that is an Array and the method
expects to fill in the array with appropriate values. In APL there is no syntax to allow
a parameter to a function to be modified in this way. However, we can use the
Dyalog.ByRef class to call this method. For example, the
System.IO.FileStream class contains a Read method that populates its first
argument with the bytes in the file.

Ousing«'System.I0' 'Dyalog' 'System'
fs«[INEW FileStream ('c:\tmp\jd.txt' FileMode.Open)
fs.Length
25
fs.Read(arg<«[JNEW ByRef,cc25p0)0 25
25
arg.Value
io4 101 108 108 111 32 102 114 111 109 32 106 111 104 110
32 100 97 105 110 116 114 101 101 10

38 Dyalog APL/W .NET Interface Guide

39

Chapter 3:

Using Windows.Forms

Introduction

System.Windows .Forms is a NET namespace that provides a set of classes for
creating the Graphical User Interface for Windows applications.

As an alternative to the built-in Dyalog GUI, Windows Forms has been superseded
by Windows Presentation Foundation which is described in the next Chapter. This
section is included to support existing Dyalog applications that make use of Win-
dows Forms.

Unless otherwise specified, all the examples described in this Chapter may be found
in the samples\winforms\winforms.dws workspace.

Creating GUI Objects

GUI objects are represented by .NET classes in the NET Namespace
System.Windows.Forms. In general, these classes correspond closely to the GUI
objects provided by Dyalog APL, which are themselves based upon the Windows
APIL

For example, to create a form containing a button and an edit field, you would create
instances of the Form, Button and TextBox classes.

40

Dyalog APL/W .NET Interface Guide

Object Hierarchy

The most striking difference between the Windows . Forms GUI and the Dyalog
GUTI s that in Windows . Forms the container hierarchy represented by forms,
group boxes, and controls is not represented by an object hierarchy. Instead, objects
that represent GUI controls are created stand-alone (i.e. without a parent) and then
associated with a container, such as a Form, by calling the Add method of the par-
ent’s Controls collection. Notice too that Windows . Forms objects are associated
with APL symbols that are namespace references, but Windows . Forms objects do
not have implicit names.

Positioning and Sizing Forms and Controls

The position of a form or a control is specified by its Location property, which is
measured relative to the top left corner of the client area of'its container.

Location hasadatatype of System.Drawing.Point.To set Location,you
must first create an object of type System.Drawing.Point then assign that
object to Location.

Similarly, the size of an object is determined by its Size property, which has a data
type of System.Drawing. Size. This time, you must create a
System.Drawing.Size object before assigning it to the Size property of the
control or form.

Objects also have Top (Y) and Left (X) properties that may be specified or
referenced independently. These accept simple numeric values.

The position of a Form may instead be determined by its DeskTopLocation prop-
erty, which is specified relative to the taskbar. Another alternative is to set the
StartPosition property whose default setting is
WindowsDefaultLocation, which represents a computed best location.

Modal Dialog Boxes

Dialog Boxes are displayed modally to prevent the user from performing tasks out-
side of the dialog box.

To create a modal dialog box, you create a Form, set its BorderStyle property to
FixedDialog,setits ControlBox,MinimizeBox and MaximizeBox prop-
erties to false, and display it using ShowDialog.

Chapter 3: Using Windows.Forms 41

A modal dialog box hasa DialogResult property that is set when the Form is
closed, or when the user presses OK or Cancel. The value of this property is returned
by the ShowDialog method, so the simplest way to handle user actions is to check
the result of ShowDialog and proceed accordingly. Example 1 illustrates a simple
modal dialog box.

Example 1

Function EG1 illustrates how to create and use a simple modal dialog box. Much of
the function is self-explanatory, but the following points are noteworthy.

EG1[1-2] setJUSING to include the NET Namespaces
System.Windows.Forms and System.Drawing.

EG1[6,8,9] create a Form and two Button objects. As yet, they are uncon-
nected. The constructor for both classes is defined to take no arguments, so the INEW
system function is only called with a class argument.

EG1[14] shows how the Location property is set by first creating a new Point
object with a specific pair of (x and y) values.

EG1[18] computes the values for the Point object forbutton2.Location,
from the values ofthe Left, Height and Top properties of but ton1; thus pos-
itioning but ton?2 relative to but tonl.

V EG1l;formi;buttoni;button2;true;false;[JUSING;Z
[1] [JUSING«,c'System.Windows.Forms,
System.Windows.Forms.dl L'
[2] QUSING,«c'System.Drawing,System.Drawing.dll"’
[3] true false«l 0

[4]

[5] A Create a new instance of the form.

[6] form1<[ONEW Form

[7] A Create two buttons to use as the accept and cancel btns

[8] button1<«[JNEW Button
[9] button2<«[JNEW Button

[10]
[11] A Set the text of buttonil to "OK".
[12] buttonl.Text<«'OK'
[13] A Set the position of the button on the form.
[14] buttoni.Location<[JNEW Point,c10 10
[15] A Set the text of button2 to "Cancel".
[16] button2.Text<«'Cancel’
[17] A Set the position of the button relative to buttont.
[18] button2.Location<[INEW Point,
cbuttoni.Left buttoni.(Height+Top+10)

42

Dyalog APL/W .NET Interface Guide

EG1[21,23] setsthe DialogResult property of buttonl and button? to
DialogResult.OKand DialogResult.Cancel respectively. Note that
DialogResult is an enumeration with a predefined set of member values.

Similarly, EG1[32] defines the BorderStyle property of the form using the
FormBorderStyle enumeration.

EG1[38 40] defines the AcceptButton and CancelButton properties of the
Formto button1 and but ton2 respectively. These have the same effect as the
Dyalog GUI Default and Cancel properties.

EG1[42] setsthe StartPosition ofthe Form to be centre screen. Once again
this is specified using an enumeration; FormStartPosition

[20] @ Make buttonl's dialog result OK.

[21] buttonl.DialogResult«DialogResult.OK
[22] a Make button2's dialog result Cancel.
[23] button2.DialogResult«DialogResult.Cancel
[24]

[25]

[26] A Set the title bar text of the form.
[27] forml.Text«'My Dialog Box'

[28] A Display a help button on the form.
[29] formi.HelpButton<«true

[30]

[31] A Define the border style of the form to that of a
dialog box.

[32] formi.BorderStyle«FormBorderStyle.FixedDialog

[33] A Set the MaximizeBox to false to remove the

maximize box.
[34] forml.MaximizeBox«false
[35] A Set the MinimizeBox to false to remove the
minimize box.
[36] forml.MinimizeBox«false
[37] A Set the accept button of the form to buttont.
[38] forml.AcceptButton«buttonil
[39] A Set the cancel button of the form to button2.
[40] formi.CancelButton<button2
[41] A Set the start position of the form to the centre
of the screen.
[42] formi.StartPosition«FormStartPosition.CenterScreen

EG1[45 46] associate the buttons with the Form. The Controls property of the
Form returns an object of type Form.ControlCollection. This class has an
Add method that is used to add a control to the collection of controls that are owned
by the Form.

Chapter 3: Using Windows.Forms 43

EG1[50] calls the ShowDialog method (with no argument; hence the 8). The res-
ult is an object of type Form.DialogResult, which is an enumeration.

EG1[52] compares the result returned by ShowDialog with the enumeration mem-
ber DialogResult.OK (note that the primitive function = has been extended to
compare objects).

[44] A Add buttonl to the form.

[45] formil.Controls.Add buttoni

[46] A Add button2 to the form.

[47] formi.Controls.Add button2

[48]

[49] A Display the form as a modal dialog box.

[50] Z«forml.ShowDialog &

[51] A Determine if the OK button was clicked on the

dialog box.
[52] :If Z=DialogResult.OK
[53] A Display a message box saying that the OK
button was clicked.
[54%] Z«MessageBox.Showc'The OK button on the form
was clicked.'
[55] :Else
[56] A Display a message box saying that the Cancel
button was clicked.
[57] Z+MessageBox.Showc'The Cancel button on the

form was clicked.'
[58] :EndIf
v

Warning: The use of modal forms in .NET can lead to problematic situations while
debugging. As the control is passed to .NET the APL interpreter cannot regain con-
trol in the event of an unforeseen error. It is advisable to change the code to some-
thing like the following until the code is fully tested:

[52] formil.Visible«1
[53] :While forml.Visible ¢ :endwhile

44

Dyalog APL/W .NET Interface Guide

Example 2

Functions EG2 and EG2A illustrate how the Each operator (") and the extended
namespace reference syntax in Dyalog APL may be used to produce more succinct,
and no less readable, code.

[22]
[23]
[24]
[25]

v

v

EG2;formil;labell;textBox1;true;false;[JUSING;Z
(QUSING«,c'System.Windows.Forms,

System.Windows.Forms.dll'
OUSING,«c'System.Drawing,System.Drawing.dll"'
true false«l O

A Create a new instance of the form.
formi«<[ONEW Form

textBox1<[INEW TextBox
labe l1<[INEW Label

A Initialize the controls and their bounds.
labell.Text«'First Name'
labell.Location<[DNEW Point (48 48)
labell.Size<[INEW Size (104 16)
textBox1.Text«""

textBox1.Location<[JNEW Point (48 64)
textBox1.Size<[JNEW Size (104 16)

A Add the TextBox control to the form's control
collection.

formi.Controls.Add textBox1

A Add the Label control to the form's control
collection.

formi.Controls.Add labell

A Display the form as a modal dialog box.
Z«<forml.ShowDialog &

EG2A[7] takes advantage of the fact that .NET classes are namespaces, so the expres-
sion Form TextBox Label isa vector of namespace refs, and the expression
[ONEW 'Form TextBox Label runstheINEW system function on each of them.

Similarly, EG2A[10 11 12] combine the use of extended namespace reference and
the Each operator to set the Text, Location and Size properties in several
objects together.

Chapter 3: Using Windows.Forms 45

V EG2A;forml;labell;textBox1;true;false;[JUSING;Z
[1] A Compact version of EG2 taking advantage of ref
syntax and ”
[2] [JUSING<«'System.Windows.Forms,System.Windows.Forms.dll'
[3] QUSING,«c'System.Drawing,System.Drawing.dll'
[4] true false«l 0

[5]

[6] A Create a new instance of the form, TextBox and Label.
[7] (form1l textBox1 labell)<«[INEW 'Form TextBox Label

[8]

[9] A Initialize the controls and their bounds.

[10] (labell textBox1).Text«'First Name' ''
[11] (labell textBox1).Location<[INEW 'Point, (48 48) (48 64)
[12] (labell textBox1).Size<«[INEW 'Size, (104 16) (104 16)

[14] A Add the Label and TextBox controls to the form's
control collection.
[15] forml.Controls.AddRangeclabell textBox1

]
17] A Display the form as a modal dialog box.
] Z«formi.ShowDialog &

Non-Modal Forms

Non-modal Forms are displayed using the Run method of the
System.Windows.Forms.Application object. This method is designed to be
called once, and only once, during the life of an application and this poses problems
during APL development. Fortunately, it turns out that, in practice, the restriction is
that Application.Run may only be run once on a single system thread.
However, it may be run successively on different system threads. During devel-
opment, you may therefore test a function that calls Application.Run, by run-
ning it on a new APL thread using Spawn (&). See Chapter 13 for further details.

DataGrid Examples

Three functions in the samples\winforms\winforms.dws workspace provide
examples of non-modal Forms. These examples also illustrate the use of the
WinForms.DataGrid class.

Function Grid1 is an APL translation of the example given in the help file for the
DataGrid class in the .NET SDK Betal. The original code has been slightly modified
to work with the current version of the SDK.

Function Grid2 is an APL translation of the example given in the help file for the
DataGrid class in the .NET SDK Beta2.

46

Dyalog APL/W .NET Interface Guide

Function Grid is an APL translation of the example given in the file:

C:\Program Files\Microsoft.NET\SDK\v1l.1\...
QuickStart\winforms\samples\Data\Grid\vb\Grid.vb

This example uses Microsoft SQL Server 2000 to extract sample data from the sample
NorthWind database. To run this example, you must have SQL Server running and
you must modify function Grid_Load to specify the name of your server.

GDIPLUS Workspace

The samples\winforms\gdiplus.dws workspace contains a sample that
demonstrates the use of non-rectangular Forms. It is a direct translation into APL
from a C# sample (WinForms-Graphics-GDIPlusShape) that was distributed on the
Visual Studio .NET Beta 2 Resource CD.

TETRIS Workspace

The samples\winforms\tetris.dws workspace contains a sample that
demonstrates the use of graphics. It is a direct translation into APL from a C# sample
(WinForms-Graphics-Tetris) that was distributed on the Visual Studio .NET Beta 2
Resource CD.

WEBSERVICES Workspace

An example of a non-modal Form is provided by the WFGOLF function in the
samples\asp.net\webservices\webservices.dws workspace. This
function performs exactly the same task as the GOLF function in the same workspace,
but it uses Windows.Forms instead of the built-in Dyalog GUL

WFGOLF, and its callback functions WFBOOK and WF SS perform exactly the same
task, with almost identical dialog box appearance, of GOLF and its callbacks BOOK
and SS that are described in Chapter 7.

Note that when you run WFGOLF or GOLF for the first time, you must supply an argu-
ment of 1 to force the creation of the proxy class for the Gol fService web service.

Chapter 4: Windows Presentation Foundation 47

Chapter 4:

Windows Presentation Foundation

Introduction

Windows Presentation Foundation is a graphical system that includes a pro-
grammable Graphical User Interface. It is supplied as a set of Microsoft NET assem-
blies and is supported on all current Windows platforms.

The WPF GUI is in many ways more sophisticated and powerful than either Dyalog
APL's own built-in GUI or the GUI provided by Windows Forms.

Like any other set of NET classes, WFP can be integrated into Dyalog APL applic-
ations via the .NET interface. Dyalog APL users may therefore develop

GUI applications that are based upon WPF as an alternative to the built-in Dyalog
GUI or Windows Forms.

Quite apart from its advanced GUI capabilities, WPF supports data binding. This is a
complex subject, but putting it very simply, data binding allows a property of a user-
interface object (such as the Text property ofa TextBox object) to be bound to
some data. When the data changes, the bound property of the object changes and
vice versa.

Dyalog APL Version 14 includes a data binding function (20151 1) which supports
data binding to APL arrays and namespaces.

A WPF GUI can be built dynamically by creating a set of component objects (using
ONEW) in a similar way to the Dyalog APL GUI and Windows Forms. However, the
same user-interface can instead be specified statically using XAML, a text markup
system that describes the GUI using XML. Along with data binding, this feature
allows the application logic and the user-interface to be developed and maintained
separately.

The examples described in this section are provided in the workspace
WPFINtro.dws

I This function may remain as an i-beam or be replaced by one or more system functions in a future
Version of Dyalog APL.

48

Dyalog APL/W .NET Interface Guide

Temperature Converter Tutorial

This tutorial illustrates how to go about developing a simple WPF application in
Dyalog APL. It is functionally identical to the GUI tutorial example that illustrates
how to develop a GUI application using the built-in Dyaog APL Grahical user Inter-
face. See Interface Guide: GUI Tutorial.

Like the GUI Tutorial, this is necessarily an elementary example, but illustrates the
principles that are involved. The example is a simple Temperature Converter.

The user may enter a temperature value in either Fahrenheit or Centigrade and have it
converted to the other scale.

No attempt has been made to update the WPF example, in terms of its user-interface,
from the original version which was developed for Windows 3. This allows a direct
comparison to be made between using the WPF and using the built-in Dyalog GUI.

There are two versions provided. The first uses XAML to describe the user-interface
with code to drive it. The second version is written entirely in APL code. The two
versions of this example may be found in WPFINtro.dws in the namespaces
UsingXAML and UsingCode respectively.

Using XAML

The functions and data for this example are provided in the workspace
WPFINtro.dws in the namespace WPF .Us ingXAML. To run the example:

JLOAD wpfintro
WPF .UsingXAML.TempConverter

Arguably the easiest way to create a WPF GUI is to define it using XAML. The
XAML defines the structure, layout and appearance of the user-interface in a very
concise manner. It is still necessary to write code to display the XAML and to
respond to user actions, but the amount of code involved is minimal.

Chapter 4: Windows Presentation Foundation 49

The XAML for the Temperature Converter is shown below.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentatio
n"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="WPF Temperature Converter"
SizeToContent="WidthandHeight">
<DockPanel LastChildFill="False">
<Menu DockPanel.Dock="Top">
<Menultem Header=" Scale">
<Menultem Name="mnuFahrenheit" Header=" Fahrenheit"
IsCheckable="True" IsChecked="True"/>
<Menultem Name="mnuCentigrade" Header=" Centigrade"
IsCheckable="True"/>
</Menultem>
</Menu>
<Grid Width="230" Margin="40,10,10,10">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition Width="80"/>
<ColumnDefinition Width="60"/>
</Grid.ColumnDefinitions>
<Label Grid.Row="0" Grid.Column="0" Content="Fahrenheit"/>
<Label Grid.Row="1" Grid.Column="0" Content="Centigrade"/>
<TextBox Name="txtFahrenheit" Grid.Row="0" Grid.Column="1"
Margin="5"/>
<TextBox Name="txtCentigrade" Grid.Row="1" Grid.Column="1"
Margin="5"/>
<Button Name="btnF2C" Grid.Row="0" Grid.Column="2"
Content="F>C" Margin="5"/>
<Button Name="btnC2F" Grid.Row="1" Grid.Column="2"
Content="C>F" Margin="5"/>
<Button Name="btnQuit" Grid.Row="2" Grid.Column="1"
Content="Quit" Margin="5"/>
</Grid>
<ScrollBar Name="scrTemp" DockPanel.Dock="Right" Width="20"
Orientation="Vertical" Minimum="1" Maximum="213">
</ScrollBar>
</DockPanel>
</Window>

50

Dyalog APL/W .NET Interface Guide

rﬁ WPF Temperature Converter l — | (=] |ﬁl

Scale

Fahrenheit | F=(C |
Centigrade C>F |
Quit |

The window defined by this XAML is illustrated in the screen image shown above.
Let us examine the XAML, component by component.

Parent and Child Controls

First, notice how the structure of the GUI is defined by enclosing the child com-
ponents inside the opening and closing tags of'its parent. So:

<Window
<DockPanel>

</DockPanel>
</Window>

specifies a Window control that contains a DockPanel control.

Similarly,
<Menu>
<Menultem ... >
<Menultem ... />
<Menultem ... />
</Menultem>
</Menu>

defines a Menu that contains a MenuT tem, that itself contains two other MenuItem
objects.

Named and Un-named Controls

Secondly, notice that certain objects are named whereas others are not. For example:
TextBox Name="mnuFahrenheit defines a TextBox namedtxtFahenheit,
whereas <Dockpanel ...> defines an unnamed DockPanel object.

Chapter 4: Windows Presentation Foundation 51

Objects are given names so that they can be referenced from the code that displays
content in the user-interface or handles the user actions. In this case, the code will
read the content of the txtFahrenheit TextBox but has no need to reference the
DockPanel.

The Main Window

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentatio
n"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"

Title="WPF Temperature Converter"
SizeToContent="WidthandHeight">

;)Window>
This extract of XAML defines a Window control; a top-level window that is equi-
valent to a Dyalog APL GUI Form.

The xmins attributes define the XML namespaces (effectively the vocabulary of the
xml scheme) and are mandatory in an XAML document.

The name of the TextBox is Temp, and its caption is WFP Temperature Converter.
The SizeToContent property is set to "WidthandHeight" , which causes the
TextBox to automatically size itselfto fit its content in both horizontal and vertical
directions.

The DockPanel

<DockPanel LastChildFill="False">
</DockPanel>

WPF provides a number of layout controls. These are containers whose only purpose
is to arrange child controls in a particular way, and to dictate how they are re-
arranged when the parent window is resized. The DockPanel is one of the simplest
of'the WPF layout controls.

In this case, the DockPanel is controlling 3 child windows a Menu, a Grid and a
ScrollBar.

The attachment of a particular child control is specified by setting its

DockPanel . Dock property. By default, the last control added to a DockPanel is
stretched to fill the remaining space when the window is expanded. In this case, the
requirement is for a fixed-width scrollbar attached to the right edge, so the default is
overriden by setting the LastChi1dFi11 property to "False".

52 Dyalog APL/W .NET Interface Guide

The Menu

<Menu DockPanel.Dock="Top">
<Menultem Header="_Scale">
<Menultem Name="mnuFahrenheit" Header=" Fahrenheit"
IsCheckable="True" IsChecked="True"/>
<Menultem Name="mnuCentigrade" Header=" Centigrade"
IsCheckable="True"/>
</Menultem>
</Menu>

ﬁ WPF Temperature Converter =NRN X

Scale |

v Fahrenheit 1 E| =

Centigrade |
B o Lller=Is e CF |

Quit |

The above extract from the XAML defines a Menu. Setting Dock to "Top" causes the
Menu as a whole to be docked, so that it appears like a menubar, along the top of the
DockPanel. The Menu contains a single MenuItem labelled Scale which itself
contains two sub-items labelled Fahrenheit and Centigrade respectively. The
IsCheckable property specifies whether or not the user can check the MenuItem,
and the TsChecked property sets and reports its checked state. The underscore char-
acters (e.g. asin "_Scale") identify the following character as a keyboard shortcut.

The Grid

<Grid Width="230" Margin="40,10,10,10">

;}érid>
The Grid object is another WPF layout control that organises other controls in rows
and columns. Here, the XAML defines a Grid with a width 0f 230; a left margin if

40, and a top, right and bottom margin of 10. As there is no explicit unit specified,
the system uses the default device-independent unit (px) of 1/96t inch.

Chapter 4: Windows Presentation Foundation 53

The rows and columns of a Grid are defined by collections of RowDefinition
and ColumnDefinition objects.

Here the XAML specifies that the Grid contains 3 rows, each of which has a
Height set to "Auto" which means that its height depends upon the height ofits
content.

<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>

</Grid.RowDefinitions>

Similarly, there are 3 columns. The first column (which will contain labels) takes its
width from its content, i.e. it will be just wide enough to display the longest label.
The other columns for the edit boxes and buttons are specified to be 80px and 60px
wide respectively. In this case, the content (TextBox and Button objects) will
take their widths from that of the column.

<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"/>
<ColumnDefinition Width="80"/>
<ColumnDefinition Width="60"/>

</Grid.ColumnDefinitions>

The Label Objects(Column 1)

<Label Grid.Row="0" Grid.Column="0" Content="Fahrenheit"/>
<Label Grid.Row="1" Grid.Column="0" Content="Centigrade"/>

Here the XAML specifies Label objects Fahrenheit and Centigrade. Because they
are defined within the <Grid> ...</Grid> tags, they are child objects of the
Grid. In addition it is necessary to specify in which cells they are displayed using
their Grid.Row and Grid.Column properties. Note that the cell coordinates have
Zero origin.

The TextBox Objects(Column 2)

<TextBox Name="txtFahrenheit" Grid.Row="0" Grid.Column="1"
Margin="5"/>
<TextBox Name="txtCentigrade" Grid.Row="1" Grid.Column="1"
Margin="5"/>

The XAML specifies two TextBox objects named txtFahrenheit and txtCentigrade
respectively. Setting Margin to "5" means that a margin of 5px is applied around
each edge; otherwise the text boxes would occupy the entire width of the column
(80px). The effective width of each TextBox will therefore be 70px (80-2x5).

54

Dyalog APL/W .NET Interface Guide

The Button Objects (Column 3)

<Button Name="btnF2C" Grid.Row="0" Grid.Column="2"
Content="F>C" Margin="5"/>
<Button Name="btnC2F" Grid.Row="1" Grid.Column="2"
Content="C>F" Margin="5"/>
<Button Name="btnQuit" Grid.Row="2" Grid.Column="1"
Content="Quit" Margin="5"/>

The XAML specifies three named Button controls. Note that the caption on a
Button is specified by its Content property.

The ScrollBar Object

This example uses a ScrollBar which the user may scroll to input a value, either
in Fahrenheit or Centigrade depending upon which of the two menu items
(Fahrenheit or Centigrade) is checked.!

<ScrollBar Name="scrTemp" DockPanel.Dock="Right" Width="20"
Orientation="Vertical" Minimum="1" Maximum="213">
</ScrollBar>

This XAML snippet defines a Scrol1Bar named scrTemp.

Setting DockPanel . Dock to "Right" means that it will be docked (aligned) on the
right edge of the DockPanel. It will be a vertical scrollbar, have a fixed width of
20px and a default height. The range ofthe Scrol1Bar is defined by its Minimum
and Max imum properties which are set so that the Scrol1Bar will specify a value
in Fahrenheit.

Note that in order to cause the Scrol1Bar to be docked (aligned) along the right
edge ofthe DockPanel itis necessary to set LastChildFil1l to "False" (for the
DockPanel)and Dock to "Right" (for the Scrol1Bar), because the value of
LastChildFill (default "True") overrides the Dock value of the last defined
child of the DockPanel.

Note

The XAML that defines this user-interface is at the same time both simple and com-
plex. It is simple because (in this case) it is readily understood. It is complex because
in order to write it, the user-interface designer must understand precisely how the vari-
ous controls and their properties behave and work together. For these details, you
should refer to the appropriate documentation and check out the large number of
examples published on the internet.

IA scrollBar is not the ideal choice of control for this type of user interation, but this example
is designed to look and behave like the original Dyalog GUI example, which was written for the
original version of Dyalog APL for Windows.

Chapter 4: Windows Presentation Foundation 55

The Code to display the XAML

The function TempConverter shown below contains the code needed to display
and operate the user interface whose layout is defined by the XAML described
above.

vV TempConverter;stri;xml;win;txtFahrenheit;txtCentigrade;
mnuFahrenheit;mnuCentigrade;btnF2C;
btnC2F;btnQuit;scrTemp;sink

[1] JUSING<«'System'

[2] OUSING,«c'System.IO"

[3] OUSING,«c'System.Windows.Markup'

[4] JQUSING,«c'System.Xml,system.xml.dl L'

[5] [JUSING,«c'System.Windows.Controls.Primitives,
WPF/PresentationFramework.dll'

[7] str<[JNEW StringReader (cXAML)
[8] xml<[ONEW XmlTextReader str
[9] win<XamlReader.Load xml

[10]

[11] txtFahrenheit«win.FindNamec'txtFahrenheit'

[12] txtCentigrade«win.FindNamec'txtCentigrade'

[13] mnufFahrenheit<«win.FindNamec 'mnufFahrenheit'

[14] mnuFahrenheit.onClick<'SET_F'

[15] mnuCentigrade«win.FindNamec'mnuCentigrade'’

[16] mnuCentigrade.onClick«'SET_C'

[17] (btnF2C«win.FindNamec'btnF2C').onClick«'f2c'
[18] (btnC2F«win.FindNamec'btnC2F').onClick«'c2f"'
[19] (btnQuit«win.FindNamec'btnQuit').onClick<'Quit'
[20] (scrTemp«win.FindNamec'scrTemp').onScroll«'F2C'
[21] sink«win.ShowDialog

v

The variable XAML (a character vector) contains the XAML described previously.

Note that apart from the names given to the objects by the XAML and used by the
function, the XAML and the code are independent.

TempConverter[7-8] create an Xam1Reader object from the character vector
via StringReader and XmlTextReader objects.

[7] str<[INEW StringReader (cXAML)
[8] xml<[ONEW XmlTextReader str

TempConverter[9] instantiates the XAML content by calling its Load method,
which returns a reference w1 n to the top-level control (in this case a Window)
defined therein. The Window is not yet visible.

[9] win<XamlReader.Load xml

56

Dyalog APL/W .NET Interface Guide

Earlier, it was explained that objects defined bt the XAML must be named in order
that they can be referenced (used) by the code. The mechanism to achieve this is to
call the FindName method of the Window, which returns a reference to the spe-
cified (named) object. So these statements:

[11] txtFahrenheit«win.FindNamec'txtFahrenheit'
[12] txtCentigrade«win.FindNamec'txtCentigrade'

obtain refs (in this case named txtFahrenheit and txtCentigrade)to objects
named txtFahrenheit and txtCentigrade. It is convenient (but not essential) to use the
same name for the ref as is used for the control.

Most of the remaining statements obtain refs to the MenuItem, Button and
ScrollBar objects and attach callback functions to their Click and Scroll
events respectively.

[13] mnufFahrenheit<win.FindNamec'mnuFahrenheit'

[14] mnufFahrenheit.onClick«'SET_F'

[15] mnuCentigrade<«win.FindNamec 'mnuCentigrade’

[16] mnuCentigrade.onClick«'SET_C'

[17] (btnF2C«win.FindNamec'btnF2C"').onClick<«'f2c'
[18] (btnC2F«win.FindNamec'btnC2F').onClick<«'c2f'
[19] (btnQuit«win.FindNamec'btnQuit').onClick«'Quit'
[20] (scrTemp«win.FindNamec'scrTemp').onScroll«'F2C'

Finally the code displays the Window and hands it over to the user by calling the
ShowDialog method ofthe top-level Window.

[21] sink<win.ShowDialog

ShowDialog displays the Window modally; i.e. until it is closed, the user may
interact only with that Window. It is equivalent to IDQ winorwin.Wait in the
Dyalog built-in GUIL

The CallBack Functions

The callback functions are named as they are in the basic Dyalog GUI example and
are remarkably similar. See Interface Guide: GUI Tutorial.

Callback function f2c which is attached to the C1ick event ofthe btnF2C button
(labelled F>C) reads the character string in the txtFahrenheit TextBox, con-
verts it to a number using Text2Num, calculates the equivalent in centigrade and
then displays the result in the txtCentigrade TextBox.

Chapter 4: Windows Presentation Foundation 57

vV f2c;value
[1] A Callback to convert Fahrenheit to Centigrade

[2] :If 1=p,value«Text2Num txtFahrenheit.Text
[3] txtCentigrade.Text«2s(value-32)x5+9
[4] :Else
[5] txtCentigrade.Text«'invalid'
[6] :EndIf

\'4

For completeness, the Tex t 2Num function is shown below. Note that if the user
enters an invalid number, Tex t 2Num returns an an empty vector, and the callback
displays the text invalid instead.

V num«Text2Num txt;val
[1] val num<[JVFI txt
[2] num<val/num

\4

The c2f function converts from Centigrade to Fahrenheit when the user presses the
button labelled C>F.

V c2f;value
[1] A Callback to convert Centigrade to Fahrenheit

[2] :If 1=p,value«Text2Num txtCentigrade.Text
[3] txtFahrenheit.Text«2332+value+5<9
[4] :Else
[5] txtFahrenheit.Text«'invalid'
[6] :EndIf
\'4

The callbacks F2C and C2F, one of which at a time is attached to the Scroll event
ofthe ScrollBar object are shown below. The argument Ms g contains two items,
namely:

[1] [Object |a refto the ScrollBar object

a ref to an object of type

[2] | Object System.Windows.Controls.Primitives.ScrollEventArgs

In this case the code uses the NewValue property of the ScrollEventArgs object. An
alternative would be to refer to the Value property ofthe Scrol1lBar object

V F2C Msg;C;Fjval
[1] A Callback for Fahrenheit input via scrollbar
[2] txtFahrenheit.Text«2sval«213-(2>5Msg).NewValue
[3] txtCentigrade.Text«2s(val-32)x5+9

\'4

58

Dyalog APL/W .NET Interface Guide

vV C2F Msg;C;F;val
[1] A Callback for Centigrade input via scrollbar
[2] txtCentigrade.Text«2sval«101-(2>5Msg).NewValue
[3] txtFahrenheit.Text«2332+val+5+9

\'4

The callbacks SET_F and SET_C which are attached to the C11ick events of the
two Menultem objects are shown below.

v SET_F
[1] A Sets the scrollbar to work in Fahrenheit
[2] scrTemp. (Minimum Maximum)<«1l 213

[3] scrTemp.onScroll«'F2C'
[4] mnuFahrenheit.IsChecked«1
[5] mnuCentigrade.IsChecked<«0

\'4

v SET_C
[1] A Sets the scrollbar to work in Centigrade
[2] scrTemp. (Minimum Maximum)<«1l 101

[3] scrTemp.onScrol l«'C2F"'

(4] mnuCentigrade.IsChecked+«1

[5] mnuFahrenheit.IsChecked<«0
\'

Finally, the callback function Quit which is attached to the C1ick event on the
Quit button, simply calls the C1ose method ofthe Window:

V Quit arg
[1] win.Close
\'4

Notice that unlike its equivalent in the Dyalog GUI, it is not appropriate to close the
Window using the expression JEX 'win'. This would expunge the refto the Win-
dow but have no effect on the Window itself.

Using Code

The functions for this example are provided in the workspace WPFINtro.dws in
the namespace WPF .UsingCode. To run the example:

JLOAD WPFINtro
WPF .UsingCode.TempConverter

The following function TempConverter performs exactly the same task of defin-
ing and manipulating the user-interface for the Temperature Converter example using
XAML which was discussed previously.

The callback functions it uses are identical.

Chapter 4: Windows Presentation Foundation

59

[1]
(2]

3]
(4]
(5]

6]

(7]

8l

[91]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]

v TempConverter;[JUSING;win;dpsmnusmnufFahrenheit;
mnuCentigrade;gr;tn;rdl;rd2;rd3;
rcis;rc2;rc3;l1;12;txtFahrenheit;
txtCentigrade;btnF2C;btnC2F;
btnQuit;sink;mnuScale;scrTemp

JUSING«,c'System.Windows.Controls,
WPF/PresentationFramework.dll'
JUSING,«c'System.Windows.Controls.Primitives,
WPF/PresentationFramework.dll'
QUSING,«c'System.Windows,
WPF/PresentationFramework.dll'
JUSING,«c'System.Windows,
WPF/PresentationCore.dl '

win<[JNEW Window
win.SizeToContent«SizeToContent.WidthAndHeight
win.Title«'WPF Temperature Converter'

dp<[INEW DockPanel
dp.LastChildFill<0

mnu<[INEW Menu

mnuScale<[INEW Menultem
mnuScale.Header<«'_Scale'
sink«mnu.Items.Add mnuScale

mnuFahrenheit<«[JNEW Menultem
mnuFahrenheit.Header<«'Fahrenheit'
mnufFahrenheit.IsCheckable«1
mnuFahrenheit.IsChecked<«1
mnuFahrenheit.onClick«'SET_F'
sink«mnuScale.Items.Add mnuFahrenheit

mnuCentigrade«[JNEW MenuItem
mnuCentigrade.Header<«'_Centigrade'
mnuCentigrade.IsCheckable<«1
mnuCentigrade.IsChecked<«0
mnuCentigrade.onClick«'SET_C'
sink<mnuScale.Items.Add mnuCentigrade

sink«dp.Children.Add mnu
dp.SetDock mnu Dock.Top

gr<[INEW Grid
gr.Width«230
gr.Margin<[NEW Thickness(40 10 10 10)

rdi<[OJNEW RowDefinition
rdl.Height«GridLength.Auto

60 Dyalog APL/W .NET Interface Guide

[43] rd2<[NEW RowDefinition
[44] rd2.Height«GridLength.Auto

[45] rd3<[JNEW RowDefinition

[46] rd3.Height«GridLength.Auto

[47] gr.RowDefinitions.Add ' rdl rd2 rd3
(48]

[49] rcl<[INEW ColumnDefinition

[50] rcl.Width<GridlLength.Auto

[51] rc2<[NEW ColumnDefinition

[52] rc2.Width<[JNEW GridLength 80

[53] rc3<[JNEW ColumnDefinition

[54] rc3.Width<[INEW GridLength 60

[55] gr.ColumnDefinitions.Add 'rcl rc2 rc3
[56]

[57] L1<[INEW Label

[58] l1.Content«'Fahrenheit’

[59] sink<gr.Children.Add L1

[60] gr.SetRow L1 0

[61] gr.SetColumn L1 0

[62]

[63] L2«<[JNEW Label

[64] L2.Content<«'Centigrade'’

[65] sink<gr.Children.Add L2

[66] gr.SetRow 12 1

[67] gr.SetColumn L2 0

[68]

[69] txtFahrenheit<«[JNEW TextBox

[70] txtFahrenheit.Margin<[INEW Thickness 5
[71] sink<gr.Children.Add txtFahrenheit
[72] gr.SetRow txtFahrenheit O

[73] gr.SetColumn txtFahrenheit 1

[74]

[75] txtCentigrade<[INEW TextBox

[76] txtCentigrade.Margin<[INEW Thickness 5
[77] sink<gr.Children.Add txtCentigrade
[78] gr.SetRow txtCentigrade 1

[79] gr.SetColumn txtCentigrade 1

[80]

[81] btnF2C<[NEW Button

[82] btnF2C.Content«'F>C'

[83] btnF2C.Margin<[INEW Thickness 5
[84] btnF2C.onClick<«"'f2c'

[85] sink<gr.Children.Add btnF2C

[86] gr.SetRow btnF2C 0

[87] gr.SetColumn btnF2C 2

[88]

[89] btnC2F<[ONEW Button

[90] btnC2F.Content«'C>F'

[91] btnC2F .Margin<[INEW Thickness 5
[92] btnC2F.onClick<«'c2f'

[93] sink<gr.Children.Add btnC2F

Chapter 4: Windows Presentation Foundation

6

[o4]

[95]

[96]

[97]

(98]

[99]

[100]
[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
[110]
[111]
[112]
[113]
[114]
[115]
[116]
[117]
[118]
[119]

gr.SetRow btnC2F 1
gr.SetColumn btnC2F 2

btnQuit<«[NEW Button
btnQuit.Content<«'Quit'
btnQuit.Margin<[NEW Thickness 5
btnQuit.onClick<«'Quit"'
sink«gr.Children.Add btnQuit
gr.SetRow btnQuit 2
gr.SetColumn btnQuit 1

sink«dp.Children.Add gr

scrTemp<«[IJNEW ScrollBar

scrTemp.Width«<20
scrTemp.Orientation<Orientation.Vertical
scrTemp.Minimum<«<1

scrTemp.Maximum«213
scrTemp.onScroll«'F2C'

sink«dp.Children.Add scrTemp
dp.SetDock scrTemp Dock.Right

win.Content«dp

sink«<win.ShowDialog

62

Dyalog APL/W .NET Interface Guide

Although this approach appears at first sight to be considerably more verbose than
using XAML (a 120-line function compared with a 21-line function and a 44-line
block of XAML) each line of code performs only one very simple task, and no
attempt has been made to write utility functions to perform the same task for similar
controls, as might be done in a real application.

As before, let us examine the code line-by-line.

TempConverter[2-5] define JUSING so that the appropriate .NET assemplies
are on the search-path. Note that the Scrol1Bar control is in
System.Windows.Controls.Primitives and not
System.Windows.Controls like the others.

[2] JUSING«,c'System.Windows.Controls,
WPF/PresentationfFramework.dll'

[3] JUSING,«c'System.Windows.Controls.Primitives,
WPF/PresentationfFramework.dll'

(4] JUSING,«c'System.Windows,
WPF/PresentationfFramework.dll'

[5] JUSING,«c'System.Windows,
WPF/PresentationCore.dll

TempConverter[8-9] creates a Window and sets its SizeToContent and
Title properties as in the XAML example. Notice however that whereas using
XAML the string SizeToContent="WidthandHeight" is sufficient, when
using code it is necessary to get theType right. In this case, the SizeToContent
property must be set to a specific member (in this case WidthAndHeight) ofthe
System.Windows.SizeToContent enumeration. Other members of this Type
are Width, Height and Manual (the default).

[7] win<[IJNEW Window
[8] win.SizeToContent<«SizeToContent.WidthAndHeight
[9] win.Title«'WPF Temperature Converter'

TempConverter[11-12] create a DockPanel control ansd set its
LastChildFill property to 0. In this case the APL value 0 is used instead of the
string "False" in XAML.

[11] dp<[ONEW DockPanel
[12] dp.LastChildFill<«0

TempConverter[14] creates a Menu control.

[14] mnu<NEW Menu

Chapter 4: Windows Presentation Foundation 63

TempConverter[16-18] create a MenuItem control with the caption Scale,
and then add the control to the Items collection of the main Menu using its Add
method. This illustrates one significant difference between using XAML and code.
In XAML, the parent/child relationships between controls are defined by the struc-
ture and order of the XML. Using code, child controls must be explicitly added to
the appropriate list of child controls managed by the parent.

[16] mnuScale<«[JNEW MenuItem
[17] mnuScale.Header<'_Scale'
[18] sink<mnu.Items.Add mnuScale

TempConverter[20-25] create a MenuItem control labelled Fahrenheit. The
IsCheckable and IsChecked properties are set to 1, which is equivalent to
"True" in XAML. The callback function SET_F is assigned to the C1ick event
exactly as in the XAML version of this example. The last line in this section makes
the Fahrenheit MenulItem a child of the Scale MenuItem.

[20] mnuFahrenheit<«[JNEW MenuIltem

[21] mnuFahrenheit.Header<«'Fahrenheit'
[22] mnuFahrenheit.IsCheckable<«1

[23] mnuFahrenheit.IsChecked+«1

[24] mnuFahrenheit.onClick«'SET_F'

[25] sink<mnuScale.Items.Add mnuFahrenheit

The code used to create the Centigrade MenuTl tem is more or less the same.

TempConverter[34-35] adds the top-level Menu to the DockPanel. Note that
in the case of a DockPanel, the list of its child controls is represented by its
Children property. Furthermore, to define how it is docked this is done, using
code, by the SetDock method ofthe DockPanel. This contrasts with the way
this is achieved using XAML (DockPanel.Dock="Top"). Note too that the argu-
ment to SetDock is not just a simple string as in XAML, but a member of the
System.Windows.Controls.Dock enumeration.

[34] sink«dp.Children.Add mnu
[35] dp.SetDock mnu Dock.Top

TempConverter[37-39] create the Grid control. Its Width property will
accept a simple numeric value, but its Margin property must be given an instance of
a System.Windows.Thickness structure. In this case, the ThickNess con-
structor is given a 4-element numeric vector that specifies its Left, Top, Right
and Bottom members respectively.

[37] gr<[INEW Grid
[38] gr.Width<230
[39] gr.Margin<[INEW Thickness(40 10 10 10)

64 Dyalog APL/W .NET Interface Guide

TempConverter[41-47] create instances of 3 RowDefinition classes and
add them to the RowDefinitions collection ofthe Grid. Note that whereas in
XAML the Height can be specified as a string, using code it is necessary once
again to use the correct Type. In this case, Height must be specified by a member of
the System.Windows.GridLength structure.

[41] rd1<[ONEW RowDefinition

[42] rdi.Height<«GridLength.Auto

[43] rd2<[JNEW RowDefinition

[44] rd2.Height«GridLength.Auto

[45] rd3<[ONEW RowDefinition

[46] rd3.Height«GridLength.Auto

[47] gr.RowDefinitions.Add ' rdl rd2 rd3

Similarly, TempConverter[49-55] create instances of 3 ColumnDefinition
classes and add them to the ColumnDefinitions collection ofthe Grid. Note
that The Width property will not accept a simple numeric value, it must be a mem-
ber ofthe GridLength structure. To set the Width to 80, it is necessary first to cre-
ate an instance of a GridLength structure giving this value as the argument to its
constructor.

[49] rc1<[NEW ColumnDefinition

[50] rcl.Width<GridlLength.Auto

[51] rc2<[INEW ColumnDefinition

[52] rc2.Width<[INEW GridLength 80

[53] rc3<[NEW ColumnDefinition

[54] rc3.Width<[INEW GridLength 60

[55] gr.ColumnDefinitions.Add'rcl rc2 rc3

TempConverter[57-61] create a Label control with the caption Fahrenheit.
To display the Label in a Grid it is necessary to first add it to the Children col-
lection ofthe Grid, and then set its position in the Grid using its SetRow and
SetColumn methods. Similar code is used to create and position the second
Label.

[57] L1<[INEW Label

[58] l1.Content«'Fahrenheit’
[59] sink<gr.Children.Add L1
[60] gr.SetRow L1 0O

[61] gr.SetColumn L1 0

Chapter 4: Windows Presentation Foundation 65

TempConverter[69-73] create and position a TextBox control, in the same
way as the Label controls. Notice that in this case, the constructor for the Thickness
structure is given a single value that specifies all four of its Left, Top, Right and
Bottom members.

[69] txtFahrenheit<«[JNEW TextBox

[70] txtFahrenheit.Margin<[ONEW Thickness 5
[71] sink<gr.Children.Add txtFahrenheit
[72] gr.SetRow txtFahrenheit O

[73] gr.SetColumn txtFahrenheit 1

TempConverter[81-87] create and position a But ton control. The callback
function f 2c is attached to the C1ick event in the same way as in the XAML ver-
sion of this example.

[81] btnF2C«[INEW Button

[82] btnF2C.Content<«'F>C'

[83] btnF2C.Margin<[INEW Thickness 5
[84] btnF2C.onClick<«'f2c'

[85] sink<gr.Children.Add btnF2C
[86] gr.SetRow btnF2C 0

[87] gr.SetColumn btnfF2C 2

TempConverter[105] adds the Grid to the list of Children to be managed by
the DockControl.

[105] sink«dp.Children.Add gr

TempConverter[107-112] create a Scrol1Bar control. Its Width, Minimum
and Max imum properties all accept simple numeric values. However, its
Orientation property must be set to a member of the
System.Windows.Controls.Orientation enumeration.

[107] scrTemp<«[NEW ScrollBar

[108] scrTemp.Width«20

[109] scrTemp.Orientation«Orientation.Vertical
[110] scrTemp.Minimum<«1

[111] scrTemp.Maximum<213

[112] scrTemp.onScroll«'F2C'

TempConverter[114-115] add the ScrollBar to the list of Chi1dren man-
aged by the DockPanel, and use its Set Dock method to cause it to be right-
aligned.

[114] sink«dp.Children.Add scrTemp
[115] dp.SetDock scrTemp Dock.Right

66 Dyalog APL/W .NET Interface Guide

Finally, the DockPanel is assigned to the Content property of the Window, and
the Window displayed as in the XAML version of this example. Note that a Window
may contain just one control.

[117] win.Content<«dp
[118]
[119] sink<win.ShowDialog

Chapter 4: Windows Presentation Foundation 67

Data Binding

This section provides some simple examples of WPF data binding using Dyalog
APL. Each example builds upon the one before, so it is advisable to read them in
order.

Example 1

This example illustrates data binding using XAML to specify the user-interface
coupled with an APL function to drive it and handle the data binding.

B Data Binding (Text) (oo o=l I

Hello World ‘

The XAML

The XAML shown below, describes a Window containing a TextBox.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentatio
n"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"
Title="Data Binding (Text)"
SizeToContent="WidthandHeight">
<TextBox Name="txt" Width="300" Margin="5"
Text="{Binding txtSource,Mode=TwoWay,
UpdateSourceTrigger=PropertyChanged}" />
</Window>

It contains a data binding expressions, namely:

Text="{Binding txtSource,Mode=TwoWay,
UpdateSourceTrigger=PropertyChanged}"

This specifies that the Text property of the TextBox is bound to a value in the
Binding Source (which has yet to be defined) whose path is txt Source. The bind-
ing mode is set to TwoWay which means that any change in the TextBox will be
reflected in a new value in the Binding Source, and vice-versa. The value in the Bind-
ing Source will be updated when the property (in this case the Text Property)
changes.

68

Dyalog APL/W .NET Interface Guide

The APL Code
The function Text which generates this example is shown below.

The argument tx t is the text to be displayed initially in the TextBox. Note that the
variable XAML_Text contains the XAML that describes the user-interface listed
above.

Vv Text txt;0JUSING;str;xml;win
[1] [JUSING,«,c'System.Windows.Controls,
WPF/PresentationfFramework.dll'
[2] win<LoadXAML XAML_Text
[3] win.txtBox<win.FindNamec'txt'
(4]
[5] JEX'txtSource'
[6] txtSource«txt
[7] win.txtBox.DataContext«2015I'txtSource'
[8]
[9] win.Show
v

The utility function LoadXAML incorporates the 3 lines of code, used to create a
WPF window from XAML, that were coded in-line in previous examples in this
chapter.

V win<LoadXAML xaml ;[JJUSING;str;xml

[1] JUSING<«'System.IO'

[2] QUSING,«c'System.Windows.Markup'

[3] [JUSING,«c'System.Xml,system.xml.dl L'

[4] JUSING,«c'System.Windows.Controls,
WPF/PresentationfFramework.dll'

[5] str<[NEW StringReader(examl)

[6] xml<[ONEW XmlTextReader str

[7] win«XamlReader.Load xml

v
Text[1] defines the NET search path needed to access the WPF controls.

[1] JUSING,«,c'System.Windows.Controls,
WPF/PresentationfFramework.dll'

Text[2-3] uses the utility function LoadXAML to load a WPF user-interface from
the XAML and then uses the FindName method to obtain a reference to the object
named #xt.

[2] win«LoadXAML XAML
[3] win.txtBox«win.FindNamec'txt'

Chapter 4: Windows Presentation Foundation 69

Text[5-6] initialise a new global variable named txtSource to the value of the
argument. When using a global variable as a data binding source, it is generally
advisable to establish a new variable by first expunging it.

[5] OEX'txtSource'
[6] txtSource«txt

Text[7]creates a Binding Source object using 201 5T and assigns it to the
DataContext property of the TextBox object. Because it is a character vector,
the exported Type for the bound variable txtSourceis System.String which
is appropriate for the Text property ofa TextBox.

[7] win.txtBox.DataContext«2015I'txtSource'

Text[9] displays the Window. Note that although the APL local variable win
goes out of scope when the function terminates, the Window remains visible until
the user has closed it.

[9] win.Show

Testing the Data Binding
The following expressions may be used to explore the effect of data binding.

JLOAD wpfintro
)CS DataBinding.Text

Text 'Hello World'

) Data Binding (Text) (onlo (5 e

‘ Hello World ‘

txtSource«¢txtSource

B Data Binding (Text) (nou o=l

‘ diroW olleH ‘

IThis is because its binding type (the exported type of the data bound variable) is stored in the
workspace along with its value, and the binding type (were it to be incorrect) may not be changed
once it has been established.

70

Dyalog APL/W .NET Interface Guide

Typing into the TextBox changes the value of the bound variable.

55 Data Binding (Text) e B

What is in titSource now? |

txtSource
What is in txtSource now?

Example 2

This example illustrates the use of the optional left argument to 201 5T to specify the
data type used to export the value of the bound variable.

5 Data Binding (Text) (e o[o)

Hello World |

The XAML

The XAML shown below, describes the same Window containing a TextBox as
before.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentatio
nll
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"

Title="Data Binding (FontSize)"
SizeToContent="WidthandHeight">

<TextBox Name="txt" Text="Hello World" Width="300"
Margin="5"
FontSize="{Binding sizeSource,Mode=OneWay}"/>

</Window>

This time, the data binding expression is:

FontSize="{Binding sizeSource,Mode=OneWay}"/>

This specifies that the FontSize property of the TextBox is bound to a value in
the Binding Source (which has yet to be defined) whose path is sizeSource. The
binding mode is set to OneWay which means that the Font Size property depends
on the data value but not vice versa. Were the FontSize to change for any external
reason (which is admittedly unlikely in the case of FontSize), it would not alter
the value in sizeSource to which it is bound.

Chapter 4: Windows Presentation Foundation 7

The APL Code

The function FontS1i ze is almost identical to the function Text which is described
in Example 1.

V FontSize size;[QUSING;win

[1] OUSING<«'System'

[2] JUSING,«c'System.Windows.Controls,
WPF/PresentationFramework.dll'

[3] win<LoadXAML XAML

[4] win.txtBox«win.FindNamec'txt'

[5]

[6] OEX'sizeSource'

[7] sizeSource<«size

[8] win.txtBox.DataContext«Int32(2015I) " 'sizeSource’

[9]

[10] win.Show

v

The key difference isin FontSize[8]. Here the left argument of (20151T) is
Int32. This means that the exported Type of the variable sizeSource will be
Int32. This Type (a 32-bit integer) is required by the FontSize property ofa
TextBox; no other Type will do. If this were omitted, APL would export the value
of'the variable using a Type dependent on its internal format (most likely Int16)
and the binding would fail.

[8] win.txtBox.DataContext«Int32(2015I) " 'sizeSource’

Testing the Data Binding

)JLOAD wpfintro
)CS DataBinding.FontSize

FontSize 12

fB Data Binding (FontSize) (oulsEl| R

Hello World ‘

sizeSource
12
sizeSource<«30

{5 Data Binding (FontSize) (oul sl R

‘ Hello World

72 Dyalog APL/W .NET Interface Guide

Example 3

This example, uses APL code to both build the user-interface (instead of using
XAML) and handle the data binding. In this case both the Text and the FontSize
properties are bound to APL variables. The function is shown below:

V TextFontSize(txt size);JUSING;win;sink

OUSING<«'System'
OQUSING,«,c'System.Windows.Controls,
WPF/PresentationfFramework.dll'
OUSING,«c'System.Windows.Controls.Primitives,
WPF/PresentationFramework.dll'
OJUSING,«c'System.Windows,
WPF/PresentationFramework.dll'
OQUSING,«c'System.Windows,
WPF/PresentationCore.dll'

A Create a Window, DockPanel and TextBox
win<[NEW Window
win.SizeToContent«SizeToContent.WidthAndHeight
win.Title«'Data Binding (Text and FontSize)'
win.txtBox<«[INEW TextBox
win.txtBox.Width«350
win.Content«win.txtBox

A Define data binding from variable "txtSource"
A to the Text property of TextBox win.txtBox
OEX'txtSource'
txtSource«txt
win.txtbinding<«[ONEW Data.Binding(c'txtSource')
win.txtbinding.Source«20151'txtSource’
win.txtbinding.Mode<«Data.BindingMode.TwoWay
win.txtbinding.UpdateSourceTrigger<«
Data.UpdateSourceTrigger.PropertyChanged
sink<win.txtBox.SetBinding
TextBox.TextProperty win.txtbinding

A Define data binding from variable "sizeSource"
A to the FontSize property of TextBox win.txtBox
OEX'sizeSource'

sizeSource«size

win.fntbinding<«[NEW Data.Binding(c'sizeSource')
win.fntbinding.Source«Int32(2015I) 'sizeSource’
win.fntbinding.Mode<Data.BindingMode.OneWay
sink<win.txtBox.SetBinding

TextBox.FontSizeProperty win.fntbinding

win.Show

Chapter 4: Windows Presentation Foundation 73

Apart from the code that creates the controls, the only material difference between
this and the previous examples is the way that the bindings are handled.

In code (as opposed to using XAML) this is done using explicit Binding objects1
The code for binding the Text property to the txt Source variable is as follows:

[19] win.txtbinding<[INEW Data.Binding(c'txtSource')
[20] win.txtbinding.Source«20151'txtSource’
[21] win.txtbinding.Mode<«Data.BindingMode.TwoWay
[22] win.txtbinding.UpdateSourceTrigger+
Data.UpdateSourceTrigger.PropertyChanged
[23] sink<win.txtBox.SetBinding
TextBox.TextProperty win.txtbinding

Line [19] creates a Binding object, passing the constructor the the name ofthe APL
variable txtSource as the Path to the binding value.

[19] win.txtbinding<[ONEW Data.Binding(c'txtSource')

Line [20] creates a Binding Source object using 20151 as before, but this time
assigns it to the Source property of the Binding object.

[20] win.txtbinding.Source«20151'txtSource’

Line [21] sets the Mode property of the Binding object to TwoWay (a field of the
BindingMode Type). As in Example 1, this specifies two-way binding.

[21] win.txtbinding.Mode<«Data.BindingMode.TwoWay

Line [22] sets the UpdateSourceTrigger property of the Binding object to
PropertyChanged (a field of the UpdateSourceTrigger Type). This causes
the value in the Binding Source (in this case t xt Source) to be changed whenever
the property (in this case the Text property) of the TextBox changes. This will
occur on every keystroke.

[22] win.txtbinding.UpdateSourceTrigger<«
Data.UpdateSourceTrigger.PropertyChanged

(Note that the three types Binding, BindingMode and
UpdateSourceTrigger are located in System.Windows .Data)

The code that establishes the binding between the sizeSource variable and the
FontSize property is very similar.

1Binding objects are implicit in all binding operations, but are created declaratively when using
XAML.

74

Dyalog APL/W .NET Interface Guide

[29] win.fntbinding<[INEW Data.Binding(c'sizeSource')

[30] win.fntbinding.Source«Int32(20151) 'sizeSource’

[31] win.fntbinding.Mode<Data.BindingMode.OneWay

[32] sink<win.txtBox.SetBinding
TextBox.FontSizeProperty win.fntbinding

Note however that (as in Example 2) the left-argument to (2015I) specifies that the
exported data type ofthe sizeSource variable isto be Int32.
Testing the Data Binding

JLOAD wpfintro
)CS DataBinding.TextFontSizeCode

TextFontSize 'Hello World' 30

{5 Data Binding (Text and FontSize) (e o(El: eS|

‘Hello World ‘

txtSource sizeSource«($ptxtSource) 18

£ Data Binding (Text and FontSize) (e o(El: eS|
‘ diroW olleH |

As in previous examples, when the user changes the text, the new text appears in
txtSource.

5 Data Binding (Text and FantSize}l = | 5 -

Learn to play the bouzouki! |

txtSource
Learn to play the bouzouki!

Note

It is perhaps worth mentioning that if you want to bind two properties of the same
object to two APL variables, it has to be done by writing code as shown in this
example, using two separate Binding Source objects. This is because using XAML
you may only associate a single Binding Source to an object.

However, this minor restriction is easily surmounted by using an APL namespace as
a Binding Source as illustrated in the next Example.

Chapter 4: Windows Presentation Foundation 75

Example 4

This example uses XAML to specify the user-interface and the main components of
the data binding.

The XAML

The XAML is much the same as in Example 1 and 2 except that it connects two prop-
erties Text and FontSize ofthe same TextBox to two Paths txtSource and
sizeSource.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentatio
n"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Name="Temp"

Title="Data Binding (Text and FontSize)"
SizeToContent="WidthandHeight">

<TextBox Name="txt" Width="350" Margin="5"
Text="{Binding txtSource,Mode=TwoWay,
UpdateSourceTrigger=PropertyChanged}"
FontSize="{Binding sizeSource,Mode=OneWay}"/>

</Window>

76

Dyalog APL/W .NET Interface Guide

The APL Code
The function TextFontSize is shown below.

vV TextFontSize(txt size);JUSING;win;options

[1] [JUSING«'System'

[2] [JUSING,«c'System.Windows,
WPF/PresentationfFramework.dll'

[3]

[4] win«LoadXAML XAML

[5]

[6] src<«[NS "'

[7] src.(txtSource sizeSource)«txt size

[8] options+«2 2p'txtSource'String'sizeSource'Int32

[9]

[10] win.DataContext<«options(20151) ' 'src'

[11]

[12] win.Show

v

Lines [6-7] create a new namespace src containg two variables txtSource and
sizeSource which are initialised to the arguments of the function.

[6] src<«[NS"'"'
[7] src.(txtSource sizeSource)<«txt size

Line [8] creates a local variable named options which will be used as the left argu-
ment 0f 20151). It is a 2-column matrix. The first column is a list of the names ofthe
variables which are to be exported by the namespace when used as a Binding Source.
The second column specifies their data types.

[8] options+«2 2p'txtSource'String'sizeSource'Int32

Line [10] creates a Binding Source object from the namespace src and a left argu-
ment options and assigns it to the DataContext property of the Window win.

[10] win.DataContext«options(20151I) 'src'

An alternative would be to assign it to the DataContext property of the TextBox
object, but this would require one further line of code to identify it. The reason this
works is that the DataContext property of a TextBox (and many other controls) is
inherited from its parent Window. This feature allows a single Binding Source
namespace to be used to specify data bindings between its component variables and
any number of properties of any number of controls in the same Window.

Chapter 4: Windows Presentation Foundation 77

As shown before, the left argument of 201 5T) is optional. Without it, the
namespace would export all its variables using default binding types. In this case,
because the binding type of sizeSource must be specifed as Int32, it is neces-
sary to use a left argument, which means specifying all the variables involved.

Testing the Data Binding

JLOAD wpfintro
)CS DataBinding.TextFontSizeXAML

DB_Text_FontSize_XAML'Hello World' 30

{5 Data Binding (Text and FontSize) (el sl e

‘Hello World ‘

src.(txtSource sizeSource«(ptxtSource) 18)

{5 Data Binding (Text and FontSize) (el sl e
‘ diroW olleH ‘

As in previous examples, when the user changes the text, the new text appears in
txtSource.

b Data Binding (Text and FcntSize}I. T

Learn to play the bouzouki! ‘

src.txtSource
Learn to play the bouzouki!

Example 5

WPF data binding provides the means to bind controls that display lists of items,
such as the ListBox, ListView, and TreeView controls, to collections of data.
These controls are all based upon the TtemsControl class. To bind an
ItemsControl to acollection object, you use its ITtemsSource property.

If the right argument of 2015I names a variable, or a namespace containing a vari-
able, that is a vector other than a simple character vector, it returns a Binding Source
object that provides the necessary interfaces to bind the variable as a collection to
the TtemSource property ofan TtemsControl.

78

Dyalog APL/W .NET Interface Guide

The APL variable will normally contain a vector of character vectors, because most
ItemsControl objects deal with collections of strings. However, any APL vector
other than a simple character vector will be treated in this way.

This example illustrates binding between a variable containing a vector of character
vectors, to the items of a ListBox.

Incidentally, the TtemsSource property overrides the Items collection as a
means to specify the content of the ITtemsControl. When the ITtemsSource
property is set, the Items collection becomes read-only and of fixed-size. Note that
the TtemsSource property supports OneWay binding by default.

The XAML

The variable XAML_F i lteredList, shown below, contains XAML to specify a
Window containing a StackPanel. The StackPanel control is a WPF layout
control that organises child controls in a single line, by default vertically. In this
example, the StackPanel contains a TextBox and, below it,a WrapPanel, and
below that a TextBlock. The WrapPanel is also a layout control that organises
its child controls sequentially from left to right. The WrapPanel contains two
ListBox controls.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentat
ion"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Filtered List Example"
SizeToContent="WidthAndHeight"
Topmost="true">
<StackPanel>
<TextBox Name="filter" Margin="5"
Text="{Binding Filter,Mode=TwoWay,
UpdateSourceTrigger=PropertyChanged}" />
<WrapPanel>
<ListBox Name="all" Width="135" Height="440"
Margin="5" ItemsSource="{Binding DyalogNames}"/>
<ListBox Name="filtered" Width="135" Height="440"
Margin="5" ItemsSource="{Binding FilteredList}"/>
</WrapPanel>
<TextBlock Text="Dyalog WPF Demo" Margin="5"/>
</StackPanel>
</Window>

Chapter 4: Windows Presentation Foundation 79

The Code

V FilteredList;MySource;win;sink

MySource<[INS"'"'

MySource.Filter<«
MySource.FilteredList«0pc'
MySource.DyalogNames«DyalogNames

win<LoadXAML XAML_FilteredList

win.DataContext«20151'MySource’

(win.FindNamec'filter').onTextChanged«
'FilteredList_TextChanged'

— [U W W Vo W Ve U o |
VONOUOILF WN +—~
[S S S S S S S '

10] sink«win.ShowDialog
v

Like the previous example, this example uses a namespace My Sour ce containing
the bound variables Filter,FilteredList and DyalogNames.

FilteredList[8] creates a Binding Source object and assigns it to the
DataContext property of the Window win.

[8] win.DataContext«2015I'MySource’

The DataContext property is inherited by all child controls, so they all share the
same Binding Source. Their different Paths to different values in the Binding
Source are specified in the XAML as follows.

The Text property of the TextBox named filter is bound to the variable Filter
by the expression Text="{Binding Filter, ...

<TextBox Name="filter" Margin="5"
Text="{Binding Filter,Mode=TwoWay,

The TtemsSource property of the ListBox named a// is bound to the variable
DyalogNames by the expression TtemsSource="{Binding DyalogNames}

<ListBox Name="all" Width="135" Height="440"
Margin="5" ItemsSource="{Binding DyalogNames}"/>

Thirdly, the TtemsSource property of the ListBox named filtered is bound to
the variable Fi lteredList by the expression ItemsSource="{Binding
FilteredList}"

<ListBox Name="filtered" Width="135" Height="440"
Margin="5" ItemsSource="{Binding FilteredList}"/>

80 Dyalog APL/W .NET Interface Guide

Testing the Data Binding
FilteredList

| Filtered List Example - [

Andy Shiers

Fiona Smith
Richard Smith
Jay Foad
Jonathan Manktelow
Bjarn Christensen
John Schaoles
Vibeke Ulmann
Jason Rivers

Liam Flanagan
Karen Shaw

Pat Buteux

John Daintree
Erian Becker
Reger Hui
Meorten Kromberg
Gitte Christensen
Dan Baronet

Micolas Delcros

Dyalog WPF Demo

Ifthe user types a single character, in this case "e", into the TextBox, this fires a
TextChanged event which in turn fires the callback function shown below:

vV FilteredList_TextChanged a;hits
[1] hits«(cMySource.Filter){v/aew} 'DyalogNames
[2] MySource.FilteredList«hits/DyalogNames

\'4

Chapter 4: Windows Presentation Foundation 81

When the callback runs, the variable MySource.Fi lter, which is bound to the
Text property of the TextBox, will contain "e". The function calculates a mask
hits which identifies which members of the variable DyalogNames contain this
string. It then assigns that subset to the variable MySource.FilteredList. This
is bound to the ITtemsSource property of the right-hand Li stBox, so the result is

as follows:

B Filtered List Example

- N

e

Andy Shiers Andy Shiers

Fiona Smith Jonathan Manktelow
Richard Smith Bjarn Christensen
Jay Foad lohn Scholes

Jonathan Manktelow
Bjgrn Christensen
John Scholes
Vibeke Ulmann
Jason Rivers

Liam Flanagan
Karen Shaw

Pat Buteux

John Daintree
Brian Becker
Reger Hui
Marten Kromberg
Gitte Christensen
Dan Baronet

Micalas Delcros

Dyalog WPF Demao

Wibeke Ulmann
Jason Rivers
Karen Shaw

Pat Buteux

John Daintree
Brian Becker
Reger Hui
Marten Kromberg
Gitte Christensen
Dan Baronet

Micalas Delcros

82 Dyalog APL/W .NET Interface Guide

Similarly, typing "er" into the TexBox reduces the number of hits as shown below:

| Filtered List Example - [

ler |

Andy Shiers Andy Shiers

Fiona Smith lason Rivers
Richard Smith Erian Becker

Jay Foad Reoger Hui
Jonathan Manktelow Morten Kromberg

Bjarn Christensen
John Schaoles
Vibeke Ulmann
Jason Rivers

Liam Flanagan
Karen Shaw

Pat Buteux

John Daintree
Brian Becker
Reger Hui
Marten Kromberg
Gitte Christensen
Dan Baronet

Micolas Delcros

Dyalog WPF Demo

Chapter 4: Windows Presentation Foundation 83

Example 6

This example illustrates data binding using a vector of NET objects, in this case
DateTime objects.

The XAML

The XAML shown below, describes a Window containing a StackPanel, inside
which is a ListBox.

<Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentat

ion"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="NetObjects (DateTime) Example"
SizeToContent="WidthAndHeight" >
<StackPanel>
<TextBlock Text="Dates of forthcoming Orthodox Easters"
FontSize="18" Margin="5"/>
<ListBox Name="EasterDates" Height="100"
Margin="5" />
</StackPanel>
</Window>
The APL Code

The function NetOb jects is shown below.

V NetObjects;[JUSING;win;dt
[1] JUSING«'System'
[2] win<LoadXAML XAML
[3] win.dates«win.FindNamec'EasterDates'
[4] dt<{0ONEW DateTime w} 'Easter
[5] win.dates.ItemsSource«20151'dt"'
[6] sink<win.ShowDialog

84

Dyalog APL/W .NET Interface Guide

NetObjects[3] uses FindName to obtain a refto the ListBox (defined in the
XAML) named EasterDates:

[3] win.dates«win.FindNamec'EasterDates'

The global variable Easter contains a vector of 3-element numeric vectors rep-
resenting the dates of forthcoming Orthodox Easter Sundays.

tEaster
2015 4 12
2016 5 1
2017 4 16
2018 4+ 8
2019 4 28
2020 4 19
2021 5 2
2022 4 24
2023 4 16
2024 5 5

NetObjects[4] creates a vector of DateTime objects from the global variable
Easter.

(4] dt<{[ONEW DateTime w} 'Easter

Then, NetObjects[5] creates a binding source object from this array and assigns it to
the ItemsSource property of the ListBox.

[5] win.dates.ItemsSource«20151'dt"

Testing the Data Binding

JLOAD wpfintro
DataBinding.NETObjects.NETObjects

rlED MetObjects (DateTime) Example l = | (=] |_ﬂh |

Dates of forthcoming Orthodox Easters

4/12/2015 -
3172016
4/16/2017
4/8/2018
4/28/2019
4/18/2020 N

Chapter 4: Windows Presentation Foundation 85

Example 7
This example illustrates data binding using a vector of namespaces.

Each row in the WPF DataGrid control is represented by an object, and each
column as a property of that object. Each row in the DataGrid is bound to an
object in the data source, and each column in the data grid is bound to a property of
the data object.

[§ DataGrid Example Lo | B)
Wine Price
Chateau Cancn-La-Gafferiere §105.39]| -
Chateau Cantenac $110.10
Chateau Cap-Le-Maourlin §156,53
Chateau Cardinal-Villemaurine 5150.46
Chateau Cassevert §134.56|
Chateau Chapelle-Madeleine 518446
Chateau Cote-Daugay-ex-Madeleine | $185.80
Chateau Coutet 519022 =
Chateau Cure-Bon-La-Madeleine $133.16
Chateau Faurie-de-Soutard §151.28
Chateau Fonplegade §195.43(
Clos Fourtet $189.00
Chateau Franc-Mayne §195.77
Chateau Franc-Pourret $130.77
Domaine du Grand-Faurie 513313
Chateau Grand-Mayne 515658
Chateau Grand-Ponet 5116.63
Chateau Grandes Murailles $150.82
Chateau Guadet-5aint-Julien 5147.74
Chateau GueyrotHaut-Cadet 5134.54
Chateau Haut-Pontet $154.64
Chateau Haut-Simard $182.55
Chateau Haut-Trimoulet $153.00| =

86 Dyalog APL/W .NET Interface Guide

The XAML

The XAML shown below, describes a Window containing a DockPanel, inside
which isa DataGrid.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentat
ion"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="DataGrid Example" Height="500"
SizeToContent="Width"
Topmost="true">
<DockPanel>
<DataGrid Name="DG1" ItemsSource="{Binding}"
AutoGenerateColumns="False" >
<DataGrid.Columns>
<DataGridTextColumn Header="Wine"
Binding="{Binding Name}"/>
<DataGridTextColumn Header="Price"
Binding="{Binding Price, StringFormat=C}" />
</DataGrid.Columns>
</DataGrid>
</DockPanel>
</Window>

The phrase TtemsSource="{Binding} " states that the content of the
DataGrid is bound to a data source, which in this case will be inherited from the
DataContext property of the parent Window.

Binding="{Binding Name}" specifies that the contents of the first column are
bound to a Path named Name in the data source.

Similarly, Binding="{Binding Price, StringFormat=C}" specifies that
the Path for the second column is Price (St ringFormat=C merely specifies the
default currency format).

The APL Code
The function Grid is shown below.

V Grid;JUSING;MySource;win
[1] JUSING+«'System'
[2] winelist<«[NS"(pWines)pc"'"'

[3] winelist.Name<Wines
(4] winelist.Price«0.01x10000+?(pWines)p10000
[5]

[6] win<LoadXAML XAML
[7] win.DataContext«2015I'winelist’
[8] win.Show

Chapter 4: Windows Presentation Foundation 87

The global variable Wines contains a vector of character vectors, each of which is
the name of a wine. Grid[2-4] creates wine Ll i st, a vector of namespaces, of the
same length, each of which contains two variables c Name and Price.

Testing the Data Binding

JLOAD wpfintro
)CS DataBinding.DataGrid

Grid

[£ DataGrid Example ESRE
Wine Price
Chateau Cancn-La-Gafferiere $105.39] «
Chateau Cantenac $110.10
Chateau Cap-Le-Maourlin 5156.53
Chateau Cardinal-Villemaurine §150.46
Chateau Cassevert 513456
Chateau Chapelle-Madeleine 518448
Chateau Cote-Daugay-ex-Madeleine [§185.80
Chateau Coutet $199.22| =
Chateau Cure-Bon-La-Madelsine 5133.16
Chateau Faurie-de-Soutard §151.28
Chateau Fonplegade §19543(
Clos Fourtet $189.00
Chateau Franc-Mayne §195.77
Chateau Franc-Pourret 5130.77
Domaine du Grand-Faurie §133.13
Chateau Grand-Mayne 5156.58
Chateau Grand-Ponet $116.63
Chateau Grandes Murailles §150.82
Chateau Guadet-5Saint-Julien $147.74
Chateau GueyrotHaut-Cadet 5154.54
Chateau Haut-Pontet $154.64
Chateau Haut-Simard 5182.55
Chateau Haut-Trimoulet §153.00| =

88 Dyalog APL/W .NET Interface Guide

Let's round the prices to the nearest $5.

winelist.Price<5x|0.5+winelist.Price+5

rﬁ DataGrid Example l =NN ﬁ,l
Wine Price
Chateau Cancn-La-Gafferiere $105.00(«
Chateau Cantenac $110.00
Chateau Cap-Le-Mourlin $155.00
Chateau Cardinal-Villemaurine $150.00
Chateau Cassevert $135.00(
Chateau Chapelle-Madeleine 5185.00
Chateau Cote-Daugay-ex-Madeleine | 5185.00
Chateau C