
SALT

Reference Guide

SALT version 2.42

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2015 by Dyalog Limited
All rights reserved.

SALT Reference Guide

SALT version 2.42
Document Revision: 20150527_242

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties ofmerchantability or fitness for
any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
http://www.dyalog.com

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.
Array Editor is copyright of davidliebtag.com
UNIX® is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.
Windows® is a registered trademark ofMicrosoft Corporation in the United States and
other countries.
Oracle®, Javascript™ and Java™ are registered trademarks of Oracle and/or its affiliates.
Mac OS® and OS X® (operating system software) are trademarks of Apple Inc., registered
in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Contents

1 About This Document 1
1.1 Audience 1
1.2 Conventions 1

2 Introduction 3
2.1 History 3
2.2 The Benefits of SALT 3
2.3 SALT as a Source CodeManagement System 4

3 Using SALT 5
3.1 Installation 5
3.2 Configuration 5
3.3 Structure within Dyalog 6

3.3.1 Defining the SALT Environment Variable 6
3.4 File Format 8

3.4.1 .dyapp Files 8
3.4.2 .dyalog Files 9

3.5 Nameclasses 9
3.6 Tag Information 10
3.7 SALT Applications 10

3.7.1 Autostarting SALT Applications 10
3.8 Class Dependencies 11
3.9 File Comparison 13
3.10 Version Management 13

4 SALT Functions 15
4.1 Calling SALT Functions 16

4.1.1 Paths and Filenames 17
4.2 Boot Function 18

4.2.1 Syntax 18
4.2.2 Use 18

4.3 Compare Function 19
4.3.1 Syntax 19
4.3.2 Use 20

4.4 List Function 21
4.4.1 Syntax 22
4.4.2 Use 23

4.5 Load Function 24
4.5.1 Syntax 24
4.5.2 Use 25

SALT Reference Guide

revision20150527_242 i

4.6 New Function 27
4.6.1 Syntax 27
4.6.2 Use 27

4.7 Open Function 28
4.7.1 Syntax 28
4.7.2 Use 28

4.8 RemoveVersions Function 29
4.8.1 Syntax 29
4.8.2 Use 30

4.9 Save Function 30
4.9.1 Syntax 31
4.9.2 Use 32

4.10 Settings Function 33
4.10.1 Syntax 33
4.10.2 Use 34

4.10.2.1 Parameters 34
4.11 Snap Function 36

4.11.1 Syntax 37
4.11.2 Use 39

A Configuration Options 42
A.1 Configuration Dialog Box 43

B SALT Function Syntax Summary 44
C Example: SALT in Use 46
Index 51

SALT Reference Guide

revision20150527_242 ii

1 About This Document

This document is intended as an introduction to SALT and a reference guide for its
functions, their syntax, modifiers and modifier values.

Although the behaviour of SALT is independent of the operating system and whether a
classic/Unicode installation is used, some of the information in this document is operating
system-specific (for example, the location of global parameters). The differences between
this document and the SALT experience on a UNIX operating system are detailed in the
Dyalog for UNIX Installation and Configuration Guide and theDyalog for UNIX User
Guide.

1.1 Audience
It is assumed that the reader has a reasonable understanding of Dyalog and possesses
basic computer skills.

1.2 Conventions
Various icons are used in this document to emphasise specific material.

General note icons, and the type ofmaterial that they are used to emphasise, include:

Hints, tips, best practice and recommendations from Dyalog Ltd.

Information note highlighting material of particular significance or relevance.

Legacy information pertaining to behaviour in earlier releases of Dyalog or to
functionality that still exists but has been superseded and is no longer
recommended.

Warnings about actions that can impact the behaviour of Dyalog or have
unforeseen consequences.

revision20150527_242 1

SALT Reference Guide

Although the Dyalog programming language is identical on all platforms, differences do
exist in the way some functionality is implemented and in the tools and interfaces that are
available. A full list of the platforms on which Dyalog version 14.1 is supported is available
at www.dyalog.com/dyalog/current-platforms.htm. Within this document, differences in
behaviour between operating systems are identified with the following icons
(representing Mac OS, Linux, UNIX and Microsoft Windows respectively):

revision20150527_242 2

SALT Reference Guide

http://www.dyalog.com/dyalog/current-platforms.htm

2 Introduction

SALT – the Simple APL Library Toolkit – is a technology for storing variables, functions,
operators, namespaces and classes in a human-readable form in standard
operating-system text files. These files can subsequently bemanipulated using a
programming interface (API) or by a set of user commands.

User commands are separate from SALT but a group of them perform the same actions as
the SALT functions. For more information on user commands, see theDyalog User
Commands Reference Guide.

2.1 History
The first version of SALT was introduced with Dyalog version 11.0; this introduced scripts
representing entire namespaces and classes. Each script was saved as an individual file.
However, for many APL users the individual function is a more natural unit and SALT now
has the capacity to store scripts representing functions and variables. One of SALT's
function, Snap, also enables the construction of a directory structure corresponding to
the namespace structure of a workspace, where each file in the structure contains the
script of an APL object in the workspace.

2.2 The Benefits of SALT
With SALT, the source code (script) of each APL object is stored in a single Unicode (UTF-8)
text file – these files can subsequently be loaded into an APL session to recreate the code.
Multiple versions of each file can be created and managed locally, and third-party
distributed version control and source codemanagement systems can act as repositories
for them.

The common file format means that APL users can develop and share code in open source
libraries and the files (and their constituent APL source code) can bemanipulated by a
wide variety of industry standard tools. Each file can be transferred to any version of

revision20150527_242 3

SALT Reference Guide

Dyalog, easily imported into other APL systems, emailed to another user, viewed and
edited in a variety of editors or compared with other files (or versions of the same file)
using standard comparison tools.

SALT makes it straightforward to use codemanagement systems likeMicrosoft Visual
Studio, Apache Subversion or Git to manage APL source code. SALT is designed to allow
the use of these tools without changing the way in which many APL developers often
trace and edit code into existence. Whenever a SALTed function, class or namespace is
edited using the built-in Dyalog code editor, the changes can automatically be written
back to the external source file and then committed to the external repository at some
later stage, as appropriate; it is not necessary to bring the system back to a rest state to
save code changes.

2.3 SALT as a Source Code Management System
SALT's mechanism for storing and comparing multiple versions of the same source file
uses a simple file naming technique that inserts version numbers into the filenames.
Although this is sufficient for small projects, for larger projects Dyalog Ltd recommends
the use of external source codemanagement systems, for example, Git, Apache
Subversion, Concurrent Versions System (CVS) or Microsoft Visual Studio; these include
much more sophisticated mechanisms for managing branches, releases and conflict
resolution, essential when multiple people are working on the same project.

revision20150527_242 4

SALT Reference Guide

3 Using SALT

This chapter introduces some of the concepts that underpin SALT in Dyalog.

3.1 Installation
SALT is installed automatically with Dyalog.

3.2 Configuration
By default, opening a Dyalog session window activates SALT (after start-up, having SALT
active has no performance impact on Dyalog). However, if SALT needs to be disabled for
any reason then it can be. Disabling SALT has no impact on Dyalog other than the inability
to automatically save edited code, for example, user commands can still be run.

SALT can be enabled/disabled by enabling functions in the SALT workspace (a specific
workspace that should only be used for enabling/disabling SALT), specifically:

)LOAD SALT
enableSALT

or:
)LOAD SALT
disableSALT

respectively.

On theMicrosoft Windows operating system, SALT can also be enabled/disabled
through the Configuration dialog box – this allows additional configuration options
to be set at the same time (see Section A.1).

This document assumes that SALT is enabled.

revision20150527_242 5

SALT Reference Guide

3.3 Structure within Dyalog
Within [SALT] (by default, this is the [DYALOG]\SALT directory) are five sub-directories:

l the core directory contains SALT's source code
l the lib directory contains SALT utilities
l the spice directory contains basic user commands (for more information on user

commands, see theDyalog User Commands Reference Guide)
l the study directory contains code that is referenced in the Dyalog documentation

set
l the tools directory contains developer tools

The SALT directory can bemoved to a different location. However, in this situation an
environment variable called SALT must be created to inform Dyalog of the SALT
directory's new location (see Section 3.3.1).

The structure under the SALT directory must not bemodified and the five
sub-directories must not be renamed.

SALT comprises a series of programs stored in one class and three namespaces, all within
the system namespace ⎕SE. When SALT is enabled, the latest versions of the
SALTUtils.dyalog, SALT.dyalog, Parser.dyalog and Utils.dyalog files are loaded from the
[SALT]\core directory into ⎕SE – these files must not be removed if SALT is going to be
used.

3.3.1 Defining the SALT Environment Variable

If the SALT directory is moved to a different location (see Section 3.3) then an
environment variable called SALT must be created to inform Dyalog of the SALT
directory's new location.

Defining an environment variable is operating system-specific.

To define the SALT environment variable on Microsoft Windows (permanent method)

1. In theMicrosoft Windows menu, right-click on Computer and select Properties
from the drop-down menu.
The Systemwindow is displayed.

2. In the Control Panel Home pane, click Advanced system settings.
The System Properties window is displayed.

3. Navigate to the Advanced tab of the System Properties window.

revision20150527_242 6

SALT Reference Guide

4. Click Environment Variables....
The Environment Variables dialog box is displayed.

5. In theUser variables for <user> pane, click New....
TheNew User Variable dialog box is displayed.

6. In the Variable name field, enter SALT.
7. In the Variable value field, enter <full path>\<directory name>where the SALT

directory is now located.
8. Click OK to create the new environment variable and exit theNew User Variable

dialog box.
9. Click OK to exit the Environment Variables dialog box.
10. Click OK to exit the System Properties window.
11. Close the Systemwindow.

To define the SALT environment variable on Microsoft Windows (temporary method –
for session duration only)

1. Open the cmd.exe application.
2. At the command prompt, enter:

dyalog.exe SALT=[SALT]

where [SALT] is the new <full path>\<directory name> of the SALT directory.

To define the SALT environment variable on UNIX (temporary method – for session
duration only)

1. Open a shell.
2. At the command prompt, enter:

SALT=[SALT] dyalog

where [SALT] is the new <full path>\<directory name> of the SALT directory.

To define the SALT environment variable on Mac OS (temporary method – for session
duration only)

1. Open the $HOME/.dyalog/dyalog.config file in your preferred text editor.
2. Add the following:

revision20150527_242 7

SALT Reference Guide

SALT=[SALT]

where [SALT] is the new <full path>\<directory name> of the SALT directory.

3.4 File Format
SALT works with any files, but files with the following extensions are of particular interest:

l .dyapp – see Section 3.4.1.
l .dyalog – see Section 3.4.2.

If an extension is not specified when using SALT to save a script file, then .dyalog is
appended.

By default, Dyalog opens files with the .dyapp extension using dyalog.exe and files
with the .dyalog extension using theMicrosoft Windows Notepad program.

Files with these extensions are Unicode text files that use UTF-8 character encoding. This
means that they can store any text that uses Unicode characters. This format includes
most of the world's languages and the Dyalog character set, and is supported by many
software applications. By using text files as a storagemechanism, SALT and other tools
written using Dyalog can be combined with industry-standard tools for source code
management.

APL objects that have been saved using SALT (that is, by calling either the Save or
the Snap function – see Section 4.9 and Section 4.11 respectively) are referred to as
SALTed.

3.4.1 .dyapp Files

Files with the .dyapp extension comprise a .dyapp script, each line of which is either a
Load instruction, a Target instruction or a Run instruction:

l Load instructions specify the full path and filename of the file to be loaded
l Target instructions change the target environment
l Run instructions specify the name of themethod to run

The .dyapp script must include at least one Run command.

For example, a .dyapp file could consist of the following lines:
Target #
Load study\files\ComponentFile

revision20150527_242 8

SALT Reference Guide

Load study\files\KeyedFile
Load MyApp
Run MyApp.Main

Files with the .dyapp extension can also contain a niladic or monadic function;
double-clicking on these files allows bootstrap loading of a Dyalog application.

Starting a .dyapp file that has been created by the user runs that file in a clear workspace.
If the .dyapp file has been created by the Snap SALT function then it runs in a workspace
with the same name as the workspace from which it was created. For more information
on the Snap function, see Section 4.11.

3.4.2 .dyalog Files

Files with the .dyalog extension contain the source for a single APL object (that is,
variable, function, operator, interface, namespace or class) – SALT identifies the content
from the initial characters of the file (for more information on source files, including
declaration statements and permitted constructs, see theDyalog Programmer's
Reference Guide).

3.5 Nameclasses
Nameclasses that can bemanipulated using SALT functions comprise:

l nameclass 2 (arrays) – 2.1 (variables)
l nameclass 3 (functions) – 3.1 (tradfns), 3.2 (dfns)
l nameclass 4 (operators) – 4.1 (tradops), 4.2 (dops)
l nameclass 9 (namespaces) – 9.1 (namespaces), 9.4 (classes), 9.5 (interfaces)

The source code for each APL object is stored in a single Unicode text file with a default file
extension of .dyalog. SALT also supports the loading and starting of applications from an
application file with an extension of .dyapp.

revision20150527_242 9

SALT Reference Guide

3.6 Tag Information
When SALT first saves an APL object, it applies a tag to that object; subsequent saves of
the SALTed object update the information contained in the tag. Tag information includes
the source filename, the version number (if applicable) and the last write time of the file
when it was loaded (which is used to prevent accidental updates of the same version by
two different users or from two different sessions). This tag information is recorded in
different locations depending on the nameclass:

l for nameclass 2 (variables) the tag information is recorded in a special namespace
under # called SALT_Var_Data. This comprises a table with one row pertaining to
each variable maintained in SALT.

l for nameclass 3 (functions) and nameclass 4 (operators) the tag information is
recorded in a special comment that is appended to the code.

l for nameclass 9 (namespaces) the tag information is recorded in variables within a
special namespace named SALT_Data. No tag information is recorded for
non-scripted namespaces.

The namespace names SALT_Data and SALT_Var_Data are reserved for this
purpose – no user-defined namespace should use these names.

SALT uses the information stored in the tag to determine where to save any changes to
the object, whether a new version is required and whether the original file has been
modified externally since it was loaded.

Tags should never be touched – removing or altering a tag can cause SALT to
behave unpredictably or fail.

3.7 SALT Applications
This section is specific to theMicrosoft Windows operating system.

In addition to managing individual source code files, SALT can load and run applications
that are defined by files with an extension of .dyapp (for information on the format of
.dyapp files, see Section 3.4.1). SALT starts these applications in Dyalog.

3.7.1 Autostarting SALT Applications

By default, every Dyalog session opens with a clear workspace – this default can be
changed by adding DYAPP="<path and name of a .dyapp file>" to the
command line that starts Dyalog. In this situation, SALT calls the Boot function (see Section

revision20150527_242 10

SALT Reference Guide

4.2) on the specified .dyapp file.

To specify a .dyapp file in the command line

1. Right-click on the Dyalog icon and select Properties from the pop-up menu that is
displayed.
The Properties dialog box is displayed.

2. In the Shortcut tab of the Properties dialog box, add DYAPP="<path and name
of a .dyapp file>" to the end of the path specified in the Target field.

3. Click OK to close the Properties dialog box.
Opening Dyalog from the icon now automatically loads and runs the specified
.dyapp file.

This means that a .dyapp file can be used to auto-start (load and run) Dyalog applications
that are based on SALT.

Once an application has been started in this way, additional source code can be
added using the ⎕CY system function or other mechanisms; it is not necessary for
SALT to be used to include additional source code.

3.8 Class Dependencies
Classes can be defined in a hierarchical structure. A single script file but does not have to
contain a complete class hierarchy, but can be limited to a single class with zero or more
dependencies. This means that a single script file can include a class that has
dependencies on another class without the class on which it is dependent being present
in the file.

However, SALT cannot successfully load a file that includes dependencies on another
class/namespace unless the depended-on class/namespace is already present in the
namespace that the file is being loaded to.

revision20150527_242 11

SALT Reference Guide

SALT does not perform any dependency analysis, therefore to ensure that the necessary
base class/namespace is loaded before a dependent class/namespace, SALT must be
instructed to load the pertinent script file to fulfil the class's/namespace's dependency
criteria. This is done by adding a statement in the dependent class's/namespace's script
file that takes the following format:
⍝∇:require path/filename.dyalog

where path/filename.dyalog is the full path and filename of the script file containing
the necessary base class/namespace.

Although this is defined as a comment, SALT follows the path and loads the specified file,
thereby satisfying the dependency. This instruction should be included whenever a
dependent class is present in a script file – SALT can progress through multiple files and
instructions.

The path can be set to = if the file is in the same directory as the script calling it.

EXAMPLE

Class D is derived from base class B. In the .dyalog script file that defines class D, this
relationship is specified in the initial statement as:
:Class D : B
...
:EndClass

Classes B and D both exist in the current workspace; this means that, when class D is
edited, the reference to class B is found immediately.

SALT is used to store classes B and D as text files.

If an attempt is made to load class D in a clear workspace, then the attempt will be
unsuccessful – class D cannot be created because base class B is not present in the clear
workspace (class B must be loaded before class D can be loaded).

To instruct SALT that class B is required and must be loaded whenever class D is needed,
the following line should be added anywhere within class D's declaration:
⍝∇:require <full path to class B file>/<class B file>.dyalog

If B is located in the same directory as class D, then the path to class B can be replaced
with = in this line, that is:
⍝∇:require =/<class B file>.dyalog

The .dyalog script file that defines class D is, therefore, specified as:
:Class D : B
⍝∇:require =/<class B file>.dyalog

revision20150527_242 12

SALT Reference Guide

...
:EndClass

In this situation, class D and class B can both bemoved to a different directory without
having to change the .dyalog script file that defines class D.

3.9 File Comparison
SALT has an integral comparison tool that can identify the differences between two
different versions of the same script file (or two different script files) and display the
results in the active workspace. However, any Unicode-capable file comparison tool that
can be launched using a command which takes as its arguments the name of the two files
to be compared can be used instead.

To change the file comparison tool used by SALT, call the Settings SALT function (see Section
4.10). For example:

⎕SE.SALT.Settings 'compare path/filename of tool'

To perform a comparison, SALT appends the names of the files to be compared and calls
the specified comparison tool. If this tool is not available, then the task will fail.

3.10 Version Management
By default, SALT maps an APL object to a single file – any changemade to the APL object is
saved by overwriting that file. However, SALT allows versioning to be applied to files.
Versioning is switched on for a file by including the -versionmodifier, optionally with a
numerical modifier value, when saving that file (see Section 4.9). In this situation, SALT
saves the file with the specified name and adds a version number immediately before the
.dyalog extension, for example,MyClass.3.dyalog. The List SALT function shows this
number in [], for example, [3] (see Section 4.4).

Each time that an APL object within a versioned file is changed, SALT creates a new file
with an incremented number. Over time, this can result in a large number of superfluous
files – the RemoveVersions SALT function can be used to delete a specified range of
these (see Section 4.8).

If a SALTed function is updated or created in any way other than through the editor
(for example, using ⎕FX or creating a single-line dfn or dop by direct assignment),
then SALT does not create a new version of the file.

revision20150527_242 13

SALT Reference Guide

Once versioning has been switched on for a file, it remains switched on until specifically
switched off. To switch off versioning and return to a single instance of the file, the
RemoveVersions SALT function must be called with the -allmodifier and without the
-collapsemodifier (see Section 4.8); this removes the version number from the latest
(highest numbered) file and deletes all other versions of that file.

revision20150527_242 14

SALT Reference Guide

4 SALT Functions

SALT provides a set of useful functionality through the functions summarised in Table 4-1.

An example including calls to all SALT's functions is described in Appendix C.

Function Description

Boot
Executes a script file or loads and initialises an application using a
script instead of a saved workspace.

Compare
Compares two versions of an APL object or two different APL
objects.

List Lists the files and/or directories in a specified location.

Load Loads an APL object from a file.

New
Instantiates an object from a class without naming the class in the
workspace.

Open

Opens directories and files using the appropriate program.

The Open function only works on theMicrosoft Windows
operating system.

RemoveVersions Deletes a version (or range of versions) of a versioned file.

Save Saves an APL object to a file.

Settings Changes session/external repository settings.

Snap Saves all the new and modified APL objects in a workspace to files.

Table 4-1: SALT Functions

This chapter details these functions, their syntax, modifiers and modifier values.

SALT Reference Guide

revision20150527_242 15

4.1 Calling SALT Functions
SALT functions are called with the following syntax:
⎕SE.SALT.<function> <-modifiers/arguments>

Within this syntax, SALT and <function> are case sensitive but ⎕SE and
<-modifiers/arguments> are not.

Modifiers and their associated modifier values must be separated by the = character, for
example -version=3 or -format=APL. Amodifier that cannot have a modifier value
but can only be present or absent is sometimes referred to as a flag.

When multiple modifiers are included in a SALT function call, the order in which they are
specified is irrelevant.

When including a modifier, the name of themodifier does not always need to be entered
in full – as long as enough of themodifier's name is entered for it to be interpreted
unambiguously. For example, if a function has a modifier called -version and does not
have any other modifiers starting with the letter v then the function can be successfully
called with modifiers -version , -vers, -v and so on.

Although functions can be successfully called with abbreviated modifiers, good
practice dictates that function calls within programs should always use the full
name of themodifier – this future-proofs the calling code against enhancements
that might otherwise result in ambiguity.

The notation used when describing the syntax for a SALT function in this document is as
follows:

l square brackets [] indicate an optional modifier
l curly braces {} indicate a mandatory modifier
l a vertical line | separates mutually exclusivemodifiers
l italic text indicates an element that must be populated by the user

Calling any SALT function with an argument of '?' returns a list of all available modifiers
for that function. The Load and RemoveVersions functions return shy results, so a ⊢
should also be included before ⎕SE to view the list of all available modifiers, for example,
⊢⎕SE.SALT.Load '?'.

SALT Reference Guide

revision20150527_242 16

4.1.1 Paths and Filenames

Most SALT functions require the file on which they are to act to be specified by providing a
path and filename. The path can either be an absolute path or a relative path following a
specific convention:

l .\<relative path starting from the current directory>

To identify the current directory, enter the]CD user command – the value
returned is the absolute path to the current directory and can be replaced in your
absolute path by ..
For example, if]CD returns a value of c:\Users\Andy, then . is
c:\Users\Andy.

l ..\<relative path starting from the directory that is the
parent of the current directory>

To identify the directory that is the parent of the current directory, enter the]CD
user command – the value returned is the absolute path to the current directory.
This, when truncated by one level, can be replaced in your absolute path by ...
For example, if]CD returns a value of c:\Users\Andy, then .. is c:\Users.

l [ws]\<relative path starting from the directory containing
the active workspace>

A previous convention that used ⍵\ instead of [ws]\ has been deprecated;
although still supported in this version of SALT, support will be removed in a
later version and Dyalog Ltd does not encourage its use.

To identify the directory containing the active workspace, enter the)WSID system
command – the value returned is the absolute path and name of the active
workspace, the path component of which can be replaced in your absolute path by
[ws]\.
For example, if)WSID returns a value of c:\Users\Vince\myworkspace, then
[ws] is c:\Users\Vince.

If)WSID returns a value that does not have a path (that is, only the name of
the workspace is returned), then [ws]\ acts in the sameway as .\.

l <relative path starting from the first directory named in the
workdir session parameter> (for details of this session parameter, see Section
4.10.2.1)
To identify the first directory named in theworkdir session parameter, enter the
⎕SE.SALT.Settings 'workdir' function call.

SALT Reference Guide

revision20150527_242 17

When specifying a path as an argument:
l SALT accepts either \ or / as the separator character.
l if the path (or filename) contains space characters, then the entire path and

filename should be enclosed within single or double quotation marks.

If no extension is specified for a filename, then the file is assumed to be a .dyalog file
(except with the Boot SALT function, when it is assumed to be a .dyapp file).

4.2 Boot Function
The Boot function either executes a .dyalog script file containing a function or uses a
.dyapp file to describe the loading and initialisation of an application instead of a saved
workspace.

If a .dyalog script file is used then it can only comprise a single niladic or monadic
traditional function.

The Boot function does not return any results although the executed function might; in
this situation the result returned by the executed function is ignored.

4.2.1 Syntax

for a .dyapp file:
⎕SE.SALT.Boot '{path/filename}[.dyapp]'

for a .dyalog file:
⎕SE.SALT.Boot '{path/filename} {.dyalog} [-xload]' ['argument']

where:
l path/filename is the full path and filename (without an extension) of the script

file to load and initialise.
l -xload prevents the information recorded by ⎕LX from being executed when

recreating a workspace.
l argument is the right hand argument to supply to themonadic function in the

.dyalog script file.

4.2.2 Use

When the Boot function is called to execute a .dyalog script file containing a function, the
function could be a monadic traditional function. In this situation the function requires a
right argument before it can be executed. For example:
⎕SE.SALT.Boot 'c:\longpath\myFn.dyalog' 'ABC'

SALT Reference Guide

revision20150527_242 18

The Boot function passes the value 'ABC' as a right argument to the function resulting
from the load of themyFn.dyalog file. No result is required, so any returned value is
discarded. If the function within themyFn.dyalog file does not take an argument then the
specified argument is ignored.

In practice, the Boot function is often used in conjunction with the Snap function (see Section
4.11). In this situation the code includes a statement to execute ⎕LX. To prevent ⎕LX from
executing, themodifier -xloadmust be specified.

4.3 Compare Function
Knowledge of the differences between two different versions of the same file or between
two similar but distinct files can be a useful analytical tool. The Compare function can be
called to perform either of these comparisons as long as the specified files are scripted.

SALT's integral comparison tool can be used to perform the analysis or a comparison tool
of the user's choice can be specified instead. If SALT's integral comparison tool is used,
then the output produced states the APL objects compared and emphasises the lines of
text that differ between the two files. An example output generated using SALT's integral
comparison tool is shown in Figure 4-1.

Figure 4-1: Example output from SALT's integral comparison tool

4.3.1 Syntax
⎕SE.SALT.Compare '{path/filename} [-version{=vers}] [-using
{=program}] [-permanent] [-window{=lines}] [-trim] [-symbols
{=symbols}]'

SALT Reference Guide

revision20150527_242 19

where:
l path/filename specifies the full path and filename of the versioned APL object

whose versions are to be compared. If two different APL objects are to be
compared, then the full path and filename of each APL object should be specified
separated by a space character.

l -versionmust have a modifier value (vers) that specifies the versions of the file
that are to be compared:

o a modifier value of n compares the previous version (that is n-1) with version
n

o a modifier value of n1 n2 compares version n1with version n2
o a modifier value of ws compares the version currently in the active

workspace with the latest saved version
o a modifier value of ws n compares the version currently in the active

workspace with version n
If this modifier is not included then the two most recent (highest numbered)
versions of the file are compared.

l -usingmust have a modifier value (program) that specifies the full path of the
program to use to perform the comparison. If this modifier is not specified then
SALT performs the comparison using the comparison tool named in the compare
session parameter (for details of this session parameter, see Section 4.10.2.1).

l -permanent changes the program named in the compare session parameter to
be the program specified by the -usingmodifier.

l -windowmust have a modifier value (lines) that specifies the number of lines of
code from the script to display in the results of the comparison before and after
each line of the script that has been changed. If this modifier is not specified then
the default value of 2 is used. Only relevant if SALT's integral comparison tool is
being used.

l -trim removes leading and trailing spaces from each line of the script prior to
performing the comparison. Only relevant if SALT's integral comparison tool is
being used.

l -symbolsmust have a modifier value (symbols) that specifies the two symbols to
use in the results of the comparison to indicate whether a line has been deleted or
inserted (by default these are - and + respectively). Must be used with a modifier
value comprising the deletion indicator followed by the addition indicator without
a separating space, for example, -+. Only relevant if SALT's integral comparison
tool is being used.

4.3.2 Use

When specifying the -versionmodifier, a modifier value of n1 n2 compares version n1
with version n2. If n is a negative number then it is subtracted from the highest version
number. For example, if there are 5 versions of the specified file, then -version=1 ¯3

SALT Reference Guide

revision20150527_242 20

compares version 1with version 2.

The -versionmodifier can also be used when two different files are compared. In this
situation, a modifier value that specifies one version number results in that version of
each of the files being compared. For example:
⎕SE.SALT.Compare '\firstpath\firstfile.dyalog
\secondpath\secondfile.dyalog –version=3'

This compares firstfile.3.dyalogwith secondfile.3.dyalog. However, if themodifier value
specifies two version numbers, then the first version number is applied to the first
specified APL object and the second version number is applied to the second specified
APL object – these two files are then compared. For example:
⎕SE.SALT.Compare '\firstpath\firstfile.dyalog
\secondpath\secondfile.dyalog –version=3 7'

To perform a comparison using (for example) Beyond Compare (a comparison tool
available from http://www.scootersoftware.com/download.php) rather than SALT's
integral comparison tool, specify the location and executable name for your Beyond
Compare installation; make this the permanent comparison tool by including the
-permanentmodifier in the call. For example:
⎕SE.SALT.Compare '[ws]\classes\firstclass.dyalog
-using="c:\Program Files\BC\BC2.exe" -permanent'

If the first element of -version is ws then the contents of the specified object in the
active workspace are compared with the latest saved version of the file containing that
object. For example:
⎕SE.SALT.Compare 'NS –version=ws'

This identifies the changes made to namespace NS since it was last saved. It is not
necessary to specify a path to the object being compared as SALT uses the tag
information on the object to locate the file (see Section 3.6).

4.4 List Function
The directories and .dyalog files under a specified directory can be listed using the List
function. By default, a single path leading to a directory name returns the following
information for the directories and .dyalog files in the specified location:

l type (<DIR> for directories, blank for .dyalog files)
l name
l version (the number of versions of the file) – files only
l size (in bytes) – files only
l date of last update

SALT Reference Guide

revision20150527_242 21

http://www.scootersoftware.com/download.php

The same information is returned if the path leads to a .dyalog file, but relates to that file
only.

This information can be filtered or amended using modifiers.

4.4.1 Syntax
⎕SE.SALT.List '[directory|.dyalog file] [-folders] [-versions]
[-extension[=ext]] [-full[=value]] [-recursive] [-raw] [-type]'

where:
l directory|.dyalog file specifies either the full path to the directory whose

contents are to be listed or the .dyalog file whose versions are to be listed. If no
path is specified then the first directory named in theworkdir session parameter is
used (for details of this session parameter, see Section 4.10.2.1). If the path
specifies a .dyalog file then the extension does not have to be included.

l -folders restricts the list to directories.
l -versions displays each item's version number in the list. If this modifier is not

specified, then versioned files are indicated by having the total number of versions
displayed in the version column.

l -extension can have a modifier value (ext) that restricts the files included in the
list to files with the extension specified by themodifier value. If no modifier value is
specified or themodifier value is * then all the files are listed with their extension
displayed. Unless this modifier is specified, no extensions are displayed in the list.
Only one extension can be specified. Wildcards cannot be used.

l -full can have a modifier value (value) that specifies the pathname origin for
each item's Name information in the list:

o a modifier value of 1 (or no modifier value) displays the full pathname from
the specified directory.

o a modifier value of 2 displays the full pathname from root.
l -recursive expands the list to include all directories and files within the specified

directory recursively.
l -raw removes the titles and automatic formatting from all items in the list, thereby

making it easier for APL functions to process the returned data.
l -type displays the type of each .dyalog file. SALT examines a file's script to identify

its content from the start and end statements, determining whether it comprises a
variable, function, operator, interface, namespace or class – if SALT cannot identify
the type, then a value of Fn is reported. Although this information can be useful,
the -typemodifier adversely impacts performance.

For more information on scripted files, including declaration statements and
permitted constructs, see theDyalog Programmer's Reference Guide.

SALT Reference Guide

revision20150527_242 22

4.4.2 Use

Calling the List function without an argument returns a list of all the top-level directories
and .dyalog files within the first directory named in theworkdir session parameter (for
details of this session parameter, see Section 4.10.2.1). For example:
⎕SE.SALT.List ''

Type Name Versions Size Last Update
<DIR> core 2013/04/22 16:02:34
<DIR> lib 2013/04/22 16:02:34
<DIR> spice 2013/04/22 16:02:34
<DIR> study 2013/04/22 16:02:34
<DIR> tools 2013/04/22 16:02:34

This is the content of the SALT directory itself. For more information on this content,
modifiers must be specified. The -recursivemodifier can be included in the call to
provide details of the content of each directory and the -typemodifier can be included
to identify the type of APL object in each .dyalog file, for example:
⎕SE.SALT.List '-recursive -type'

Type Name Versions Size Last Update
<DIR> core 2013/04/22 16:02:34
Cl core\Parser 11442 2013/01/30 17:15:20
Cl core\SALT 61386 2013/01/30 17:15:20
Ns core\SALTUtils 64605 2013/01/30 17:15:20
...
...
Cl tools\special\asymmetric 8234 2013/01/30 17:15:18
Ns tools\special\crTools 1163 2013/01/30 17:15:18
Cl tools\special\symmetric 7446 2013/01/30 17:15:18

Other modifiers, such as -folders and -raw, can change the filters applied to the list
and how it is presented. Two of themodifiers that can be specified with the Load function
can takemodifier values. The -fullmodifier specifies the pathname origin for each
item's Name information in the list – setting this to 2 (when no value is supplied it is
assumed to be 1)means that the full pathname from root is displayed instead of the full
pathname from the specified directory. For example:
⎕SE.SALT.List '-full=2'

This changes the Name information in the list from core, lib, spice, study and tools
(see first example output) to:
C:\Program Files\Dyalog\Dyalog APL 13.2 Unicode\SALT\core
C:\Program Files\Dyalog\Dyalog APL 13.2 Unicode\SALT\lib
C:\Program Files\Dyalog\Dyalog APL 13.2 Unicode\SALT\spice

SALT Reference Guide

revision20150527_242 23

C:\Program Files\Dyalog\Dyalog APL 13.2 Unicode\SALT\study
C:\Program Files\Dyalog\Dyalog APL 13.2 Unicode\SALT\tools

The -extensionmodifier can be specified without a modifier value to include all files in
the list with their extensions displayed (effectively, a directory listing). Alternatively, a
modifier value of a specific extension can be included to restrict the files included in the list
to those that match the specified extension. For example:
⎕SE.SALT.List '\project\test -extension'

Type Name Versions Size Last Update
first.dyalog 19130 2013/01/30 17:16:31
process.docx 14632 2013/01/30 17:16:31
review.docx 75776 2013/01/30 17:16:31
Dyalog.flprj 359 2013/01/30 17:16:31

<DIR> images 11731 2013/01/30 17:16:31

⎕SE.SALT.List '\project\test –extension=docx'

Type Name Versions Size Last Update
process 14632 2013/01/30 17:16:31
review 75776 2013/01/30 17:16:31

<DIR> images 11731 2013/01/30 17:16:31

4.5 Load Function
The Load function can be called to load the latest (highest numbered) version of an APL
object into the namespace that the Load function is called from, irrespective of whether
the APL object is SALTed. By default, the Load function maintains the link between the
loaded APL object and its source and assigns the loaded APL object a tag. Various
modifiers can be specified to qualify this functionality.

Depending on the nameclass of the APL object loaded, the Load function returns a shy
result of:

l a reference to the loaded namespace(s)/class
l the name of the function/variable/operator loaded

4.5.1 Syntax
⎕SE.SALT.Load '{path/name} [-target{=namespace}] [-noname]
[-disperse[=objects]|-nolink] [-protect] [-version{=vers}]
[-source[=no]]'

SALT Reference Guide

revision20150527_242 24

where:
l path/name specifies either the full path and name of the file to load or the full

path and single pattern that identifies the APL objects to load (a single pattern can
result in multiple APL objects being loaded).

l -targetmust have a modifier value (namespace) that specifies the full path and
name of the appropriate namespace into which the APL object should be loaded. If
this modifier is not specified then the APL object is loaded into the namespace that
the Load function is called from. If the specified namespace does not exist (or is
not a namespace), then the function call fails.

l -noname prevents a tag from being created for the APL object being loaded.
l -disperse imports the APL objects within the specified file directly into the target

namespace rather than importing the namespace contained by the specified file.
When used without a modifier value, all objects in the specified namespace are
imported into the target namespace along with the values of the system variables
⎕CT, ⎕FR, ⎕IO, ⎕ML, PP and ⎕WX. If only a subset of the APL objects in the specified
file are required, then themodifier value (objects) can be included to state which
APL object or APL objects (separated with the , character) are required. If this
modifier is specified then a shy message is returned by the Load function
indicating the number of APL objects successfully loaded. Only relevant if the file
loaded contains a namespace.

l -nolink removes the link between a loaded APL object and its source file. Using
this modifier prevents SALT from managing the source for the APL object after
loading it into the workspace – changes to the APL object will not be automatically
saved until either the Save or Snap function has been called to save the APL object
again.

l -protect prevents the specified APL object from being loaded if an APL object of
that name is already defined in the namespace that the APL object is being loaded
into. This modifier protects existing APL objects from being redefined.

l -versionmust have a modifier value (vers) that specifies the version to load.
Only relevant if a version other than the latest version is required.

l -source returns the specified namespace as a nested vector instead of defining it
in the workspace. If a modifier value of no is included, then a non-scripted version
of the scripted namespace is loaded. Only relevant if the file loaded contains a
namespace.

4.5.2 Use

The Load function takes either a filename or a filename pattern as its argument and
retrieves the APL object defined in the specified path/file or all APL objects defined in files
that match the specified filename pattern in the specified path. For example, the function
call:
⎕SE.SALT.Load 'study\files\ComponentFile'

SALT Reference Guide

revision20150527_242 25

loads the APL object defined in the ComponentFile file (containing a class) from the
study\files directory into the namespace, and the function call:
⎕SE.SALT.Load '\myutils\gui*'

loads all the APL objects that are defined in files with names starting with GUI in the
\myutils directory into the current namespace. This works recursively – if \myutils
contains other directories that include files with names starting with GUI then the APL
objects in those files will also be loaded.

If the APL object should be loaded into a namespace other than the namespace that the
Load function is called from, then themodifier -targetmust be used with a modifier
value that defines the destination namespace. For example:
⎕SE.SALT.Load 'study\files\ComponentFile -target=MyFiles'

loads the APL object defined in the ComponentFile file from the study\files directory into
theMyFiles namespace within the current namespace (a relative path was specified).

By default, the loaded APL object is assigned a tag pertaining to its original APL object. To
instantiate a class in the ComponentFile file in the study\files directory using the
argument c:\temp\cfilewithout naming the ComponentFile class in the namespace,
either the Load function or the New function can be called. The following statement
performs this action by calling the Load function:
⎕NEW (⎕SE.SALT.Load 'study\files\ComponentFile -NoName')
'c:\temp\cfile'

Alternatively, the following statement performs this action in one step rather than two by
calling the New function (see Section 4.6):

⎕SE.SALT.New 'study\files\ComponentFile' 'c:\temp\cfile'

An APL object can be a namespace containing other APL objects, only a subset of which
should be loaded. In this situation, the -dispersemodifier can specify exactly which APL
objects should be extracted from the specified file and loaded into the target namespace.
For example, if a namespace in fileNS1 contains APL objects called Obj1, Obj2, Obj3,
Obj4, Obj5 and Obj6, then the following command would bring the APL objects with even
numbers in their names into the current namespace:
⎕SE.SALT.Load 'study\files\NS1 -disperse=Obj2,Obj4,Obj6'

If the -dispersemodifier is not used, then the -nolinkmodifier can be specified (these
modifiers aremutually exclusive). This removes the link between a loaded APL object and
its source file (the tag), thereby preventing SALT from managing the source for the APL

SALT Reference Guide

revision20150527_242 26

object after loading it into the workspace. It has the effect that editing the APL object
does not result in automatic saves; either the Save or Snap function has to be called to
save the APL object again.

4.6 New Function
When instantiating an object from a class (object oriented programming), it can be
beneficial to avoid naming the class in the namespace; this avoids potential name clashes.
Although this can be achieved by calling the Load function within the ⎕NEW system
function (see Section 4.5), it is more computationally efficient to call the New function.

The New function returns an instance of the class, for example, #.[classname].

4.6.1 Syntax
⎕SE.SALT.New '{path/filename}[.ext] [-version{=vers}]' ['arg|
(args)']

where:
l path/filename is the full path and filename of the class to instantiate.
l -versionmust have a modifier value (vers) that specifies the version number of

the .dyalog file to instantiate the object from. If no version number is specified and
the file containing the class to instantiate is a versioned file, then the latest (highest
numbered) version is used.

l arg specifies any arguments needed to instantiate the class (in object oriented
terminology this specifies the arguments that are passed to the constructor of the
class). If more than one argument is required, then the list of arguments must be
contained within parentheses.

4.6.2 Use

To instantiate a class in the ComponentFile file in the study\files directory using the
argument c:\temp\cfilewithout naming the ComponentFile class in the namespace,
either the Load function or the New function can be called. The following statement
performs this action by calling the Load function (see Section 4.5):
⎕NEW (⎕SE.SALT.Load 'study\files\ComponentFile -NoName')
'c:\temp\cfile'

Alternatively, the following statement performs this action in one step rather than two by
calling the New function:

⎕SE.SALT.New 'study\files\ComponentFile' 'c:\temp\cfile'

SALT Reference Guide

revision20150527_242 27

4.7 Open Function
This SALT function only works on theMicrosoft Windows operating system.

Files and directories can be opened using the SALT Open function. The precise action
taken and the program used depends on the specific file/directory.

Files are opened using the program specified as the editing tool in the global/session
parameter (that is, the editor parameter – see Section 4.10.2.1) although this can be
overwritten using the Open function's -usingmodifier.

If the -usingmodifier is not specified, then:
l directories are opened using theMicrosoft Windows Explorer program
l .dyalog files are opened using theMicrosoft Windows Notepad program (if a

filename extension is not specified then the file is assumed to be a .dyalog file)
l files with other extensions, including files that are external to Dyalog, are opened

using the appropriate program (for example, files with the .xlsx extension are
opened in Microsoft Excel)

4.7.1 Syntax
⎕SE.SALT.Open '{path}[filename] [-using{=program}] [-permanent]'

where:
l path/filename specifies the path to the directory or file to be opened – for a file

its name and extension must also be specified.
l -usingmust have a modifier value (program) that specifies the full path of the

program with which the file should be opened. Only relevant when a file is
specified.

l -permanent changes the program that is always used to open the file to be the
program specified by the -usingmodifier. Only relevant when a file is specified.

4.7.2 Use

The Open function recognises .dcf files as Dyalog component files; calling the Open
function on a .dcf file performs an exclusive file tie (that is, ⎕FTIE) on the file and returns
the file tie number. In this situation, no modifiers can be specified.

SALT Reference Guide

revision20150527_242 28

4.8 RemoveVersions Function
Editing an APL object that has been saved within a versioned file results in SALT saving a
new version of the file (unless specifically instructed not to). This can result in numerous
file versions being created. Once a stable version of the file has been achieved, these
superfluous versions can be deleted using the RemoveVersions function.

The RemoveVersions function returns the number of versions that have been deleted.

4.8.1 Syntax
⎕SE.SALT.RemoveVersions '{path/filename}[.ext] [-version{=vers}
|-all] [-collapse] [-noprompt]'

where:
l path/filename specifies the full path and filename (without the version number)

of the versioned file that has superfluous versions.
l extension indicates the file's entension. If no extension is specified then an

extension of .dyalog is assumed.
l -versionmust have a modifier value (vers) that specifies the version or range of

versions to delete:
o n only version n is deleted
o >n all versions higher than n are deleted
o <n all versions lower than n are deleted
o n-m all versions in the range n to m (inclusive) are deleted

l -all removes all versions except the latest version.
l -collapse renumbers the latest version of the file with the lowest available

version number following the specified deletion. Only relevant in either of the
following situations:

o all versions except the latest one are deleted, either by specifying the
-versionmodifer with a modifier value of =>0 or by specifying the -all
modifier.

o trailing versions except the last one are deleted by specifying the -version
modifer with a modifier value of =>N – in this situation the remaining file is
assigned the lowest available version number and versioning resumes from
this number.

If all the versions are removed (either by specifying the -allmodifier or by
specifying -version=>0) but the -collapsemodifier is not specified,
then this has the effect of switching off versioning for the file.

l -noprompt implicitly accepts all the changes that the call to the RemoveVersions
function makes – omitting this modifier means that the user is prompted to
confirm the deletion.

SALT Reference Guide

revision20150527_242 29

4.8.2 Use

Inclusion of the -versionmodifier with the -rangemodifier value deletes a specified
version (or range of versions) of that file. In this situation, SALT deletes all versions of the
file within the specified range. For example:
⎕SE.SALT.RemoveVersions 'path/MyClass -version=<5'

deletes all versions of theMyClass.dyalog file that have a version number less than 5. If
there were only five versions of theMyClass.dyalog prior to the deletion, then the single
remaining file retains its name ofMyClass.5.dyalog. To rename this file so that it has a
version number of 1, the -collapsemodifier can be specified:
⎕SE.SALT.RemoveVersions 'path/MyClass -version=>0 -collapse'

The single remaining file is now calledMyClass.1.dyalog – versioning is still switched on
for this file, so the next time it is saved a newMyClass.2.dyalog version is created.

If the -allmodifier had been specified instead of the -versionmodifier then specifying
the -collapsemodifier has the same effect as when specifying -version to remove all
versions except the latest one, that is:
⎕SE.SALT.RemoveVersions 'path/MyClass -all -collapse'

results in a single remaining file calledMyClass.1.dyalog – versioning is still switched on
for this file, so the next time it is saved a newMyClass.2.dyalog version is created.
However, if the -collapsemodifier is not specified with the -allmodifier (or with the
-version=>0modifier) then the version number is removed from the single remaining
file and versioning is switched off.

4.9 Save Function
When an APL object is ready to be saved, the Save function can be called to save it in a
native text file.

The Save function cannot save APL objects of certain nameclasses – for a list of the
types of nameclass that can be saved see Section 3.5.

The first time that an APL object is saved, the location must be specified. If the APL object
has already been saved by calling the Save/Snap function, then subsequent saves of that
APL object do not need to specify a location – by default, it is saved in the same location
as it was previously (SALT achieves this using the APL object's tag information). If a
different location is specified and the file is versioned, then a new version number must

SALT Reference Guide

revision20150527_242 30

be specified for versioning to continue. For non-scripted namespaces a location must be
specified every time the Save function is called as SALT cannot retain tag information on
non-scripted APL objects.

When saving a SALTed file, Dyalog Ltd recommends that the chosen filename is
restricted to alphanumeric characters as non-alphanumeric characters can cause
issues on some operating systems.

The Save function returns the full path and name of the file that it saves.

When defining an APL object, it is good practice to define any system settings that
could affect the object (for example, ⎕IO and ⎕ML) at the start of the script. If this is
not done then the script picks up these values from the environment, which could
result in unexpected behaviour.

4.9.1 Syntax
⎕SE.SALT.Save '{objectname} [path/filename][.extension] [-version
[=vers]] [-convert] [-banner{=top}][-noprompt] [-makedir] [-format
[=APL|XML]]'

where:
l objectname is the name of the APL object that is to be saved.
l path/filename is the full path and filename (without an extension) under which

to save the script file. If the file has previously been saved through SALT, then this
can be omitted; in this situation the file will be saved to the same location as before
by default.

l extension indicates the file's entension. If no extension is specified then an
extension of .dyalog is assumed.

l -version turns on versioning for the file (see Section 3.10). Optionally it can take
a modifier value (vers) that identifies a specific version number to use (this is
included in the file's name) – if this modifier value is not included then a value one
greater than the highest value currently saved is used.

l -convert retains the scripted format given to a previously unscripted namespace
by SALT. Only relevant when saving a previously unscripted namespace.

l -banner adds a banner to the top of a namespace when it is saved, irrespective of
whether -convert is specified. Must have a modifier value (top) that either
specifies the text to use or executes (⍎) a variable containing the text to use. Only
relevant when saving unscripted namespaces.

l -noprompt specifies that SALT is not to prompt the user for confirmation before
saving the file each time its content is amended. Specifying this modifier means
that the file (or a new version of the file is versioning is on) will be saved

SALT Reference Guide

revision20150527_242 31

automatically every time the content is amended. This modifier can be specified
with unversioned or versioned files.

l -makedir creates any necessary directories to satisfy the specified path.
l -format identifies the format in which to save the APL object. By default, APL

objects are saved in XML format, but a modifier value (APL) can be specified to
save the APL object in APL format.

An alternative syntax for the Save function is maintained for backwards
compatibility purposes but should not be used for new functions – it is scheduled
for removal at a future release:

⎕SE.SALT.Save [reference] '[path/filename][.extension]
[-version] [-convert] [-banner] [-noprompt] [-makedir]
[-format]'

where reference is the APL object reference – this is mandatory if the namespace
being saved does not have a name. Only relevant for nameclass 9 APL objects.

4.9.2 Use

Inclusion of the -versionmodifier when saving a file turns on versioning for that file. In
this situation, SALT saves the file as a new file with the specified name and adds a version
number immediately before the .dyalog extension – if themodifier value number is
included then the number specified becomes the version number, otherwise 1 is used.
For example:
⎕SE.SALT.Save 'MyClass path\MyClassDir -version=3'

saves the APL object in the specified path as a script file calledMyClass.3.dyalog. If a file of
that name already exists and the -nopromptmodifier has not been specified then SALT
will ask for confirmation to overwrite the file; if -noprompt has been specified then the
file will be overwritten automatically.

When saving an unscripted namespace, the Save function constructs a temporary script
that is discarded after the namespace has been saved (unless the -convertmodifier is
specified). This script is used to save the namespace as a scripted namespace. Specifying
the -convertmodifier retains the constructed script; this means that SALT can identify
(and save) subsequent changes made to the namespace through the editor.

The -bannermodifier adds the specified text to the top of the converted namespace
when saving it. For a single line banner, the text can be entered directly as a modifier
value, for example, -banner=text. If the required banner text is multiple lines in length

SALT Reference Guide

revision20150527_242 32

then it must be defined as a variable and themodifier valuemust be set to execute that
variable. For example, a variable called TITLE can be defined in the workspace and
assigned to be:

* Copyright ABC XYZ *
* 2000 - 2013 *

Setting themodifier -banner=⍎TITLEmakes the defined text block appear at the top of
the namespace in the file.

If the APL object being saved is a variable, then the format in which it is saved can be a
valid consideration. Serialising variables using the APL format can result in executable
expressions that exceed Dyalog's limit for executing an APL statement, especially if the
variable comprises a nested array. As an alternative in this situation, the XML format can
be used. Changing from the default XML format to APL format is achieved by specifying
the -formatmodifier with the APLmodifier value.

4.10 Settings Function
Some of SALT's functions take values from global parameters. These are retrieved from
the external repository and loaded into SALT at the start of a Dyalog session. They remain
active for the session unless they aremodified by calling the Settings function.

The external repository stores configuration settings and options and is
operating-system-dependent:

l On Microsoft Windows, it is the registry (global functions can also be
modified in the Configuration dialog box – see Appendix A).

l On UNIX it is the $HOME/.dyalog/SALT.settings file.
l On Mac OS it is theUsers/<name>/.dyalog/SALT.settings file (only created

the first time a settings change is made).

4.10.1 Syntax
⎕SE.SALT.Settings '[parameter] [value] [-reset] [-permanent]'

where:
l parameter specifies the session parameter to retrieve/update (see Section

4.10.2.1).
l value specifies a value for the session parameter.
l -reset reloads the values from the external repository, replacing the session

parameter values with the global parameter values.

SALT Reference Guide

revision20150527_242 33

l -permanent saves the values of the session parameters to the external
repository, replacing the global parameter values.

4.10.2 Use

Calling the Settings function without any arguments or modifiers returns a list of all the
session parameters and their current values. For example:
⎕SE.SALT.Settings ''

Calling the Settings function with a single argument (one parameter only) returns the
current session value for that parameter.

A session parameter can bemodified by calling the Settings function with a single
argument that comprises a parameter and a value. For example:
⎕SE.SALT.Settings 'editor \myprogs\vi.exe'

This modified session parameter is active throughout the Dyalog session but is not saved
for subsequent Dyalog sessions unless the value is propagated to the global parameter in
the external repository by specifying the -permanentmodifier. For example:
⎕SE.SALT.Settings 'editor -permanent'

Alternatively, if the value is found to be inferior to the default value, then the session
parameter can be replaced with the global parameter using the -resetmodifier. For
example:
⎕SE.SALT.Settings 'editor -reset'

4.10.2.1 Parameters

The possible session parameters are:
l cmddir – specifies the full path to the directory (or list of directories; multiple

directories are specified using the ∘ character as a separator) from which to retrieve
user commands. If multiple directories are specified, then SALT searches them in
order and retrieves the first user command it finds with the specified name.

Earlier versions of Dyalog allowed the use of the ; character as a separator
on theMicrosoft Windows operating system – this has been superseded by
the ∘ character and should no longer be used.

To add a new directory to the list of directories, precede its path with a comma (,)
character. For example:
⎕SE.SALT.Settings 'cmddir ,\ucmd1\c1'

SALT Reference Guide

revision20150527_242 34

This adds the new directory to the start of the list of directories and it becomes the
default location for fetching user commands.

To remove a directory from the list of directories, precede its path with a tilde (~)
character. For example:
⎕SE.SALT.Settings 'cmddir ~\ucmd1\c1'

l compare – states the full path to the comparison program to use.
l debug – specifies the level of debugging that SALT should use. Possible values are:

o 0 : no debugging and report errors in the environment
o >0 : stop if an error is encountered

l editor – states the full path to the editing tool to use.
l edprompt – specifies whether a user is prompted for confirmation to overwrite the

file when modifying a script or remove a file when deleting versions. Possible values
are:

o 0 or n : the user is never prompted for confirmation
o 1 or y: the user is prompted for confirmation each time a script is modified

or a version is deleted
l mapprimitives – specifies whether the key function (⌸), variant (⍠) and rank

operator (⍤) glyphs are automatically translated from Unicode into their ⎕Uxxxx
form classic mode equivalents when loading/saving scripts. Possible values are:

o 0 : do not translate the glyphs – the APL interpreter will fail if these Unicode
glyphs are present in a script in classic mode or if their ⎕Uxxxx form is used
in a Unicode environment.

o 1 : automatically translate the glyphs, making code fully portable between
Unicode and classic versions of Dyalog. This is the default value.

l newcmd – specifies when new user commands become effective in the user
interface. Possible values are:

o auto : new user commands are detected automatically
o manual : new user commands do not become effective until the user

command]UReset is run. For more information on user commands, see
theUser Commands Reference Guide.

l track – specifies the element tracking mechanism to use. By default, this session
parameter is empty. Possible values are:

o atinfo : retrieves the function, user and timestamp information (as recorded
by themonadic system function ⎕AT) pertaining to the last time that the
function was saved. The information is reinstated when a function is loaded
into the workspace by SALT. Can only be used for traditional functions and
operators.

l varfmt – specifies the format in which variables are saved. Possible values are:
o APL
o XML : this is the default value.

SALT Reference Guide

revision20150527_242 35

l workdir – specifies the full path to the directory (or list of directories; multiple
directories are specified using the ∘ character as a separator) from which to retrieve
files. If multiple directories are specified, then SALT searches them in order and
retrieves the first file it finds with the specified name.

Earlier versions of Dyalog allowed the use of the ; character as a separator
on theMicrosoft Windows operating system – this has been superseded by
the ∘ character and should no longer be used.

To add a new directory to the list of directories, precede its path with a , character.
For example:
⎕SE.SALT.Settings 'workdir ,\proj\p1'

This adds the new directory to the start of the list of directories and it becomes the
default location for storing files.

To remove a directory from the list of directories, precede its path with a ~
character. For example:
⎕SE.SALT.Settings 'workdir ~\proj\p1'

SALT's files are always assumed to be in [SALT] (by default, this is [DYALOG]/SALT)
even if that directory is not explicitly included in the list of working directories (that
is, workdir).

4.11 Snap Function
Although the Save function enables individual APL objects to be saved, saving all the APL
objects in a workspace using the Save function would be a repetitive process. Instead,
the Snap function can be called to perform a bulk save of every APL object in the
workspace in individual files – all newAPL objects are saved to the specified directory and
all modified APL objects are saved to the appropriate location.

The Snap function cannot save APL objects of certain nameclasses – for a list of the
types of nameclass that can be saved see Section 3.5.

To do this, the Snap function identifies all APL objects that need to be saved. It then
determines which ones have been modified and which ones are new by reviewing the
special tag associated with each APL object (see Section 3.6 for tag information). If an APL
object needs to be saved, or if SALT cannot determine if an APL object needs to be saved
(for example, a non-scripted namespaces), then the Snap function calls the Save function
to save that APL object (see Section 4.9 for Save function information).

SALT Reference Guide

revision20150527_242 36

When saving a SALTed file, Dyalog Ltd recommends that the chosen filename is
restricted to alphanumeric characters as non-alphanumeric characters can cause
issues on some operating systems.

The Snap function returns a list of the names of the APL objects that have been
successfully saved. If the Snap function stops for any reason, then everything in the same
Snap call that has already been saved remains saved and a list of the names of the APL
objects that have been successfully saved is returned.

When defining an APL object, it is good practice to define any system settings that
could affect the object (for example, ⎕IO and ⎕ML) at the start of the script. If this is
not done then the script picks up these values from the environment, which could
result in unexpected behaviour.

4.11.1 Syntax
⎕SE.SALT.Snap '[fullpath] [-class{=nameclass}] [-convert] [-banner
{=top}] [-fileprefix{=prefix}] [-loadfn[=path]] [-nosource]
[-noprompt] [-makedir] [-show[=details]] [-patterns{=string}] [-∆⍙
{=chars}] [-version[=vers]] [-format[=APL|XML]]'

where:
l fullpath specifies the full path under which to save the new script files (modified

versions of previously saved files are saved in their original location). If a full path is
not included, then the first directory named in theworkdir session parameter is
used (for details of this session parameter, see Section 4.10.2.1).

If this modifier is not included and the first directory named in theworkdir
session parameter is the [SALT] directory, then the Snap function will
generate an error message and neither the new nor themodified files will be
saved. This is to prevent the creation of extraneous files in the SALT
directory.

l -class selects APL objects of the nameclass or nameclasses specified by the
mandatory modifier value (nameclass). Themodifier value can be 2 (variables), 3
(functions), 4 (operators) or 9 (namespaces) – finer granularity values are also
accepted (see Section 3.5 for information on valid nameclasses and subclasses).
Multiple nameclasses can be included using the space character as a separator.
Specific nameclasses/subclasses can be excluded by using the ~ prefix.

l -convert retains the scripted format given to a previously unscripted namespace
by SALT. Only relevant when saving a previously unscripted namespace. Specifying
this modifier means that the -bannermodifier can, optionally, be included.

SALT Reference Guide

revision20150527_242 37

l -banner adds a banner to the top of a namespace when it is converted from an
unscripted namespace and saved as a scripted namespace. Must have a modifier
value (top) that either specifies the text to use or executes (⍎) a variable containing
the text to use. Only relevant if the -convertmodifier is also included in the Snap
function call.

l -fileprefixmust have a modifier value (prefix) that specifies the string with
which to prefix to APL object names when saving them to file (by default the
filenames used are the same as each APL object's name followed by .dyalog).

l -loadfn generates a <load_ws> function that, when executed, redefines every
APL object in the current workspace and runs the ⎕LX for the workspace. By
default, the function is called load_ws.dyalog and it is stored in the same location
as the new script files. Optionally, a modifier value (path) can be specified that
identifies the full path to a different directory or .dyalog file in which to store the
<load_ws> function. Specifying this modifier means that the -nosourcemodifier
can, optionally, be included.

l -nosource instructs SALT that the <load_ws> function being created should
exclude scripts from namespaces when used to recreate a workspace. Only
relevant if the -loadfn modifier is also included in the Snap function call.

l -noprompt specifies that SALT is not to prompt the user for confirmation before
saving the file each time its content is amended. Specifying this modifier means
that the file (or a new version of the file is versioning is on) will be saved
automatically every time the content is amended. This modifier can be specified
with unversioned or versioned files.

l -makedir creates any necessary directories to satisfy the specified path.
l -show does not save any APL objects but returns a list of the APL objects that

would be saved by calling the Snap function with the specified modifiers.
Optionally, can include themodifier value details to display the full path for each
APL object that would be saved.

l -patterns only selects APL objects of the specified pattern. Must have a modifier
value (string) that is an APL object name and can contain the wildcard *, for
example, a modifier value of GUI*would select all APL objects with names starting
with GUI. Themodifier value can includemultiple APL object names separated by
the space character – each APL object name can includemultiple wildcards.
Specific patterns can be excluded by using the ~ prefix.

l -version turns on versioning for the file (see Section 3.10). Optionally it can take
a modifier value (vers) to identify a specific version number to include in the file's
name – if this modifier value is not included then a value of 1 is used. If a modifier
value is specified then this number is used as the version number for all the APL
objects being saved.

l -format identifies the format in which to save the APL object. By default APL
objects are saved in XML format, but a modifier value (APL) can be specified to
save the APL object in APL format.

SALT Reference Guide

revision20150527_242 38

l -∆⍙must have a modifier value (chars) that specifies the two characters to use in
filenames instead of the ∆ and ⍙ in the APL object's name. By default, % and = are
used.

4.11.2 Use

Each newAPL object is saved with the filename <objectname>.dyalog, where the name of
the file is the same as the APL object's name but converted to lower case letters. Any
letter that has an accent in the APL object's namewill not have the accent in the file's
name. Any ∆ or ⍙ character in the APL object's namewill be replaced by % and =
respectively unless alternative characters have been specified using the -∆⍙modifier.

If the -convertmodifier is specified, then the Snap function saves an unscripted
namespace by converting it into a scripted namespace (replacing the unscripted version
in the workspace with the scripted one) and then tracking changes made to it. If the
-convertmodifier is not specified, then the Snap function creates a directory in the
specified location and gives it the same name as the unscripted namespace. The APL
objects within the unscripted namespace are then saved in individual (scripted) files in
this directory.

The treatment of unscripted namespaces is the only way in which the Save and
Snap functions differ when saving APL objects.

With the -convertmodifier specified:
l Save function: saves as scripted namespace and tracks changes
l Snap function: saves as scripted namespace and tracks changes

Without the -convertmodifier specified:
l Save function: saves as scripted namespace but cannot track changes
l Snap function: saves as directory containing files for individual APL objects

The -bannermodifier adds the specified text to the top of the namespace when saving it.
For a single line banner, the text can be entered directly as a modifier value, for example,
-banner=text. If the required banner text is multiple lines in length then it must be
defined as a variable and themodifier valuemust be set to execute that variable. For
example, a variable called TITLE can be defined in the workspace and assigned to be:

* Copyright ABC XYZ *
* 2000 - 2013 *

Setting themodifier -banner=⍎TITLEmakes the defined text block appear at the top of
the namespace in the file.

SALT Reference Guide

revision20150527_242 39

Multiple newAPL objects could have the same filename, for example, if a namespace
contains a new class called FOO and a new function called foo, then the Snap function
would try to assign each the filename foo.dyalog. To avoid this contention, the Snap
function includes numbers preceded by a dash in the filenames:

l version numbering example:myclass.3.dyalog
l Snap function numbering example:myclass-1.dyalog
l both:myclass-1.3.dyalog

A prefix can be applied to the names of all the new files by specifying the required prefix as
a modifier value of the -fileprefixmodifier. If the prefix should only be applied to a
subset of the new files, then those files should be saved first using an appropriate
pattern/class. For example:
⎕SE.SALT.Snap '\ws\utils -patterns=GUI* -fileprefix=Win'

This saves all the newAPL objects that have names starting with 'GUI' to files starting with
'Win', therefore the function GUImenu is saved in the \ws\utils directory as a file called
Winguimenu.dyalog. If the requirement was that all APL objects except dfns should be
prefixed with 'nonDFN', then the function call could have been:
⎕SE.SALT.Snap '\ws\utils -class=~3.2 -fileprefix=nonDFN'

Specifying the -loadfnmodifier creates a new <load_ws> script file called (by default)
load_ws.dyalog. When executed, this script redefines every APL object in the current
workspace and runs the ⎕LX for the workspace. Amodifier value can be included to
define a different location/name for the load_ws.dyalog file, although the file must have
the extension .dyapp or .dyalog. For example:
⎕SE.SALT.Snap '\ws\utils -loadfn'

creates a file called load_ws.dyalog in the same directory as the other new files created by
the Snap function call (that is, \ws\utils), whereas:
⎕SE.SALT.Snap '\ws\utils -loadfn=\ws\ldscpts\ldit.dyalog'

creates a file called ldit.dyalog in the \ws\ldscpts directory.

The script created by the -loadfnmodifier can be used with the Boot function to
automatically start Dyalog with the workspace and all its constituent APL objects
loaded. For more information on the Boot function, see Section 4.2.

Inclusion of the -versionmodifier turns on versioning for all files included in the Snap
function. In this situation, SALT saves each file as a new file with a version number
immediately before the .dyalog extension – if themodifier value number is included then
the number specified becomes the version number, otherwise 1 is used. For example:
⎕SE.SALT.Snap '\ws\utils -version=3'

SALT Reference Guide

revision20150527_242 40

saves each APL object as a script file called <objectname>.3.dyalog. If a file of that name
already exists and the -nopromptmodifier has not been specified then SALT will ask for
confirmation to overwrite the file; if -noprompt has been specified then the file will be
overwritten automatically.

If the APL object being saved is a variable, then the format in which it is saved can be a
valid consideration. Serialising variables using the APL format can result in executable
expressions that exceed Dyalog's limit for executing an APL statement, especially if the
variable comprises a nested array. As an alternative in this situation, the XML format can
be used. Changing from the default XML format to APL format is achieved by specifying
the -formatmodifier with the APLmodifier value.

SALT Reference Guide

revision20150527_242 41

A Configuration Options

The global parameters that SALT takes as session parameters can be amended by defining
new values through the Settings SALT function (see Section 4.10).

In theMicrosoft Windows operating system, these values can also be amended in
the Session window's Configuration dialog box (see Section A.1).

Table A-1 details the configuration options that are available.

Although the values can also be amended by editing the external repository strings
directly, Dyalog Ltd does not recommend this method.

Settings Function
Parameter Name

Configuration Dialog
Box Field

Enable/disable SALT n/a Enable SALT check
box

User command location cmddir UMCD tab

Comparison program compare Compare command
line

Debugging level debug n/a

Editing tool editor Editor command
line

Frequency of overwrite prompts edprompt n/a

Mapping of primitives to ⎕xxxx
for classic users

mapprimitives n/a

New user command detection newcmd n/a

Table A-1: Configuration options for global/session parameter values

revision20150527_242 42

SALT Reference Guide

Settings Function
Parameter Name

Configuration Dialog
Box Field

Element tracking mechanism track n/a

Variable storage format varfmt n/a

SALT file location workdir Source folders

Table A-1: Configuration options for global/session parameter values (continued)

A.1 Configuration Dialog Box
The Configuration dialog box is only available when using theMicrosoft Windows
operating system.

To amend the options in the Configuration dialog box

1. In the Dyalog session window, select Options > Configure....
The Configuration dialog box is displayed.

2. In the SALT tab of the Configuration dialog box, amend the required settings.
3. Click OK to save your changes and return to the session window.

The amendments take effect immediately.

The settings that can be amended in the SALT tab of the Configuration dialog box are:
l Enable Salt – select this check box to enable SALT or uncheck it to disable SALT.
l Compare command line – the full path to the comparison program to use.
l Editor command line – the full path to the editing tool to use.
l Source folders – the full path to the directory (or list of directories) from which to

retrieve SALT files.

revision20150527_242 43

SALT Reference Guide

B SALT Function Syntax Summary

Boot function syntax:

for .dyapp files:

⎕SE.SALT.Boot '{path/filename}[.dyapp]'

for .dyalog files:

⎕SE.SALT.Boot '{path/filename} {.dyalog} [-xload]' ['argument']

Compare function syntax:

⎕SE.SALT.Compare '{path/filename} [-version{=vers}] [-using
{=program}] [-permanent] [-window{=lines}] [-trim] [-symbols
{=symbols}]'

List function syntax:

⎕SE.SALT.List '[directory|.dyalog file] [-folders] [-versions]
[-extension[=ext]] [-full[=value]] [-recursive] [-raw] [-type]'

Load function syntax:

⎕SE.SALT.Load '{path/name} [-target{=namespace}] [-noname]
[-disperse[=objects]|-nolink] [-protect] [-version{=vers}]
[-source[=no]]'

SALT Reference Guide

revision20150527_242 44

New function syntax:

⎕SE.SALT.New '{path/filename}[.ext] [-version{=vers}]' ['arg|
(args)']

Open function syntax:

⎕SE.SALT.Open '{path}[filename] [-using{=program}] [-permanent]'

The Open function only works on theMicrosoft Windows operating system.

RemoveVersions function syntax:

⎕SE.SALT.RemoveVersions '{path/filename}[.ext] [-version{=vers}
|-all] [-collapse] [-noprompt]'

Save function syntax:

⎕SE.SALT.Save '{objectname} [path/filename][.extension] [-version
[=vers]] [-convert] [-banner{=top}][-noprompt] [-makedir] [-format
[=APL|XML]]'

Settings function syntax:

⎕SE.SALT.Settings '[parameter] [value] [-reset] [-permanent]'

Snap function syntax:

⎕SE.SALT.Snap '[fullpath] [-class{=nameclass}] [-convert] [-banner
{=top}] [-fileprefix{=prefix}] [-loadfn[=path]] [-nosource]
[-noprompt] [-makedir] [-show[=details]] [-patterns{=string}] [-∆⍙
{=chars}] [-version[=vers]] [-format[=APL|XML]]'

SALT Reference Guide

revision20150527_242 45

C Example: SALT in Use

This example has been created as an illustration of SALT's source code
management capabilities and the flexibility of its functions. To achieve this it does
not necessarily follow an efficient workflow process or best coding practice.

Three employees of a company are working on the same project. All have access to the
shared directory in which SALT saves APL objects.

John opens Dyalog and creates a function:
∇report

[1] doWork
∇

John saves the report function as version 1 in a new directory called project:
⎕SE.SALT.Save 'report \project\report -makedir -version'

\project\report.1.dyalog

Dan opens Dyalog and creates a namespace called utilswithin the root namespace:
)NS utils

#.utils

Dan retrieves the report function from the project directory and adds it into the new
utils namespace:

+⎕SE.SALT.Load '\project\report -target=utils'
report

Dan creates and edits a class in the utils namespace:
)ED ○utils.regex

Dan saves all changes in the utilsworkspace to the project directory:
⎕SE.SALT.Snap '\project'

#.utils.regex

Only the regex class is new, so that is the only APL object saved.

revision20150527_242 46

SALT Reference Guide

Dan checks the entire contents of the project directory:
⎕SE.SALT.List '\project -recursive'

Type Name Versions Size Last Update
project\report 1 19 2013/06/07 15:12:19

<DIR> project\utils 2013/06/07 15:16:48
project\utils\regex 31 2013/06/07 15:16:48

Brian opens Dyalog and does not want to be prompted when changes aremade to files
that have been saved using SALT:

⎕SE.SALT.Settings 'edprompt no'
0

This confirms that no prompts will now be given.

Brian sets his working directory to the project directory:
⎕SE.SALT.Settings 'workdir \project'

\project

Brian looks at the report function:
⎕SE.SALT.Open 'report'

\project\report.dyalog

SALT opens \project\report.1.dyalog (the latest version of report.dyalog) with the
Microsoft Windows Notepad program.

Brian brings report.dyalog into his workspace, calling the Load function with an
argument of r* as there are no other files in the directory with a name starting with the
letter r:

⎕SE.SALT.Load 'r*'
report

⎕VR'report'
∇ report

[1] doWork
[2] ⍝∇⍣§\project\report.dyalog§1§ 2013 6 7 15 12 19 822

§aaaaúö§0
∇

Brian edits the report function in his workspace several times, which produces a new file
each time (as versioning is on).

revision20150527_242 47

SALT Reference Guide

Meanwhile, John edits the report function. Upon completion the following message is
displayed:

Figure C-1: Changed function message

John was not previously aware that the file had been worked on since he saved it. He
clicks No and compares his version with the latest version:

⎕SE.SALT.Compare 'report -version=ws'
Comparing function <report> in the ws with the one in
\project\report.4.dyalog

[0] report
+ do some more Work
-[1] doWork for John
+ and again

As ⎕AT tracking is not turned on, John does not knowwho made themodification. He
talks to his teammates and finds out Brian made themodifications – they agree that John
should merge his changes with Brian’s changes using the editor. John does this, but
before SALT saves the new version the following message is displayed:

Figure C-2: Warning message when saving a superseded version

John clicks Yes and SALT saves report.5.dyalog.

John wants to clear up the unnecessary versions, so he checks what exists:
⎕SE.SALT.List '\project -recursive -versions'

revision20150527_242 48

SALT Reference Guide

Type Name Version Size Last Update
project\report [5] 21 2013/06/09 12:43:37
project\report [4] 21 2013/06/08 22:32:30
project\report [3] 21 2013/06/08 22:19:18
project\report [2] 21 2013/06/08 22:13:05
project\report [1] 19 2013/06/08 21:16:13

<DIR> project\utils 2013/06/08 21:17:57
project\utils\regex 32 2013/06/08 21:17:56

John removes all but the latest version:
⎕SE.SALT.RemoveVersions \project\report -all -collapse

SALT prompts for confirmation of the removal:

Figure C-3: Confirmation of version removal request

John clicks Yes and SALT deletes version 1, 2, 3 and 4.
4 versions deleted.

John instantiates the regex class anonymously and checks what has become available by
doing this:

reg←⎕SE.SALT.New '\project\utils\regex'
reg.⎕NL ¯3

run

The run function is available (amethod in object oriented programming).

John tests this function to check whether it works:
reg.run

33

The returned value indicates that the run function is working correctly.

Dan clears his workspace and loads the contents of the project directory:
)CLEAR

CLEAR WS

revision20150527_242 49

SALT Reference Guide

⎕SE.SALT.Load \project*
report #.utils.regex

SALT loads two files (the report function and the regex class) in the utils namespace.

Dan creates a function to load the contents of the project directory:
⎕SE.SALT.Snap '\project -loadfn=projX.dyapp'

** WARNING: ⎕LX is empty

This warning tells Dan that although the projX.dyapp file will recreate the workspace as it
is now, nothing in the workspace will be executed as ⎕LX has not been set.

Dan tests whether the projX.dyapp file works on a clear workspace:
)CLEAR

CLEAR WS

⎕SE.SALT.Boot '\project\projX.dyapp'
Loaded: report
Loaded: #.regex

As ⎕LXwas empty, nothing is executed. However, the APL objects have been successfully
imported:

)FNS
report

)CLASSES
regex

revision20150527_242 50

SALT Reference Guide

Index

.
.dyalog files 9
.dyapp files 8
Autostarting 10

B
Boot function 18

C
Compare function 19
Configuration 42

D
Directory structure 6

F
File extensions
.dyalog 9
.dyapp 8

File format 8

I
Installation 5

L
List function 21
Load function 24

N
New function 27

O
Open function 28

R
RemoveVersions function 29

S
SALT functions 15
Boot function 18
Compare function 19
List function 21
Load function 24
Modifiers 16
New function 27
Open function 28
RemoveVersions function 29
Save function 30
Settings function 33
Snap function 36

Save function 30
Session parameters 34
Configuration 42

Settings function 33
Snap function 36
Syntax 44

T
Tags 10

V
Version management 13

revision20150527_242 51

SALT Reference Guide

	1 About This Document
	1.1 Audience
	1.2 Conventions

	2 Introduction
	2.1 History
	2.2 The Benefits of SALT
	2.3 SALT as a Source Code Management System

	3 Using SALT
	3.1 Installation
	3.2 Configuration
	3.3 Structure within Dyalog
	3.3.1 Defining the SALT Environment Variable

	3.4 File Format
	3.4.1 .dyapp Files
	3.4.2 .dyalog Files

	3.5 Nameclasses
	3.6 Tag Information
	3.7 SALT Applications
	3.7.1 Autostarting SALT Applications

	3.8 Class Dependencies
	3.9 File Comparison
	3.10 Version Management

	4 SALT Functions
	4.1 Calling SALT Functions
	4.1.1 Paths and Filenames

	4.2 Boot Function
	4.2.1 Syntax
	4.2.2 Use

	4.3 Compare Function
	4.3.1 Syntax
	4.3.2 Use

	4.4 List Function
	4.4.1 Syntax
	4.4.2 Use

	4.5 Load Function
	4.5.1 Syntax
	4.5.2 Use

	4.6 New Function
	4.6.1 Syntax
	4.6.2 Use

	4.7 Open Function
	4.7.1 Syntax
	4.7.2 Use

	4.8 RemoveVersions Function
	4.8.1 Syntax
	4.8.2 Use

	4.9 Save Function
	4.9.1 Syntax
	4.9.2 Use

	4.10 Settings Function
	4.10.1 Syntax
	4.10.2 Use
	4.10.2.1 Parameters

	4.11 Snap Function
	4.11.1 Syntax
	4.11.2 Use

	A Configuration Options
	A.1 Configuration Dialog Box

	B SALT Function Syntax Summary
	C Example: SALT in Use
	Index

