

 The tool of thought for expert
programming

Dyalog MiServer

Reference Guide
MiServer Version 2.0

Dyalog Limited

Minchens Court, Minchens Lane

Bramley, Hampshire

RG26 5BH

United Kingdom

tel: +44(0)1256 830030

fax: +44 (0)1256 830031

email: support@dyalog.com

http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited
Copyright  1982-2014

mailto:support@dyalog.com

Dyalog is a trademark of Dyalog Limited

Copyright  1982 - 2014 by Dyalog Limited.

All rights reserved.

Version 2.0

Revision: 20140605_20

No part of this publication may be reproduced in any form by any means without the prior written permission of Dyalog Limited,

Minchens Court, Minchens Lane, Bramley, Hampshire, RG26 5BH, United Kingdom.

Dyalog Limited makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied

warranties of merchantability or fitness for any particular purpose. Dyalog Limited reserves the right to revise this publication

without notification.

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The Open Group.

Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

All other trademarks and copyrights are acknowledged.

 iii

Contents

AN APL WINDOW TO THE INTERNET ... 1
1.1 Web Server Fundamentals .. 1
1.2 Introducing MiServer .. 1
1.3 Why MiServer? .. 3

MISERVER ARCHITECTURE ... 4
2.1 Web Servers and Sites and Pages, Oh My! ... 4

MiServer Core Functionality .. 4
MiSites ... 4
MiServer Skins ... 5
MiPages ... 5
MiPage Templates ... 5

2.2 What you’ll need to know to build MiSites ... 5
A Bit of OO ... 5
An HTML Survival Guide .. 6
XHTML ... 8
Scripted files .. 9

2.3 Directory Structures .. 10
MiServer .. 10
A Sample MiSite ... 12

GETTING STARTED ... 13
3.1 Installing and Running MiServer ... 13

Prerequisites .. 13
Installation ... 13

3.2 Configuration .. 14
Server Configuration .. 14
Server.xml Parameters .. 14
Other Configuration Files ... 15

3.4 MiServer Basics ... 16
3.5 Creating a New MiSite .. 17

Initialize your New MiSite .. 17
YOUR FIRST MIPAGES .. 18

4.1 MiPages .. 18
Requirements of a MiPage .. 18

4.2 Building Your First MiPage .. 18
Building a basic page .. 18

4.3 Introduction to Templates... 20
4.4 Getting Dynamic ... 20

Reverse.dyalog ... 21
Getting Information from the Browser .. 22
Forms: Quick and Dirty .. 23
Preserving Data Past the Pageload .. 23

4.4 Going Further .. 23

 Contents

iv

BRINGING THE PIECES TOGETHER – THE MISITE ...25
5.1 Planning Your Site ..25

So where do all my MiPages go? ... 25
5.2 The Default Page ...26
5.3 Error Pages ..26

UTILITIES FOR BUILDING MIPAGE CONTENT ..27
6.1 The Utilities Library ..27
6.2 Utilities ..27

General Notes .. 27
HTML Utilities .. 27
JQuery Utilities .. 28
Base64 ... 28
JSON .. 28

GETTING STYLISH ...29
6.1 Styles ...29

Style Basics .. 29
6.2 In-Line Styles ..31
6.3 Cascading Style Sheets ..32

Internal CSS ... 32
External CSS ... 33

6.4 Ideas for Using Style Sheets in MiPages ..34
UNDER THE COVERS ..35

7.1 Going Deeper ...35
7.2 Browser to Server Communication ..35

GET and POST HTTP Requests ... 35
Getting Data to the Server ... 36
Forms and the Post Method .. 36
Submitting a Form ... 38

7.3 How MiServer Gets Client Data: HTTPRequest ...38
MISERVER SKINS ..39

8.1 Customizing your MiServer ..39
8.2 MiServer Skins: Spicing up the MildServer class ..39

Session Handling .. 39
HTML Wrapping ... 40
Error Handling ... 40
Logging .. 40
Cleanup .. 40
Idle Behavior .. 41
A MiServer Skin: DemoServer.dyalog ... 42

EXTENSIONS ..44
9.1 Extensions ..44
9.2 SimpleSessions - A Session Handling Extension ..44

Cookies .. 44
Using Cookies and In-Session Data Storage: An Example .. 45

9.3 SimpleAuth – An Access Control Extension ...46
9.4 Lumberjack – An HTTP Request Logging Extension ...48

USING RELATIONAL DATABASES IN A MISITE ...50

 Contents v

10.1 Using External Data Sources ... 50
10.2 Relational Databases .. 50

Interacting with Relational Databases ... 50
Setting up Datasources.xml ... 51
SQL.ConnectTo and SQL.Do ... 51

10.3 Displaying Data in your MiPage .. 53
Displaying Tables ... 53
Advanced Tables .. 54

IMPROVING YOUR UI WITH JQUERY ... 55
11.1 jQuery and jQueryUI ... 55
11.2 The MiServer–jQuery Interface ... 56
JQUI.Accordion .. 56
JQUI.DatePicker ... 57
JQUI.Dialog ... 57
JQO.jsTree ... 58
JQO.TableSorter ... 58
JQUI.Tabs .. 59
JQO.Treeview... 59

11.3 APLJax: Changing Page Content Without A Load ... 60
The APLJax Method ... 60
Currently Implemented AJAX Interactions ... 60

11.5 A More General AJAX Solution - JQ.On ... 62
Building the JQ.On step by step ... 64

11.6 The jqpars Attribute .. 70
APPENDIX A: HTML AND HTMLINPUT ... 72

A.1 HTML Namespace Function Reference ... 72
A.2 HTMLInput Namespace Function Reference ... 73

APPENDIX B: BASE64 ENCODING .. 86
B.1 Base64 Namespace Function Reference .. 86

APPENDIX C: JQ, JQUI, AND JQO .. 88
C.1 JQ Namespace Function Reference ... 89
C.2 JQUI Namespace Function Reference ... 92
C.3 JQO Namespace Function Reference .. 97

APPENDIX D: SQL .. 99
D.1 SQL Namespace Function Reference ... 99

APPENDIX E: HTTPREQUEST REFERENCE .. 101
E.1 The Request Object ... 101
E.2 Parsing the HTTP Request ... 101
E.3 Namespaces .. 102
E.4 Functions ... 103

APPENDIX F: ADDING A JQUERY WIDGET ... 107
F.1 Identify a JQuery widget ... 107

Install Files ... 107
F.2 Writing the Code for your Widget ... 108
F.3 Building your Widget ... 110
F.4 Stepping through the Code ... 111

APPENDIX G: ADDITIONAL FEATURES ... 115

 Contents

vi

G.1 Additional Features and the problems they solve .. 115
G.2 Extending MiServer’s Reach - Virtual Directories ... 115
G.3 Simplifying Script and Style Calls - Resource Mapping ... 116
G.4 Reducing Requests for Static Resources - HTTP Caching .. 117
G.5 HTTP Content Encoding and Compression Schemes .. 117
G.7 Identifying Content Types .. 118

APPENDIX H: SERVER.XML SETTINGS ... 119
H.1 General Configuration Settings .. 119
H.2 Error Trapping / Debugging Configuration Parameters ... 123

APPENDIX I: THE FUTURE OF MISERVER .. 125
I.1 The MiServer Project ... 125

 1

C H A P T E R 1

An APL Window to the Internet

1.1 Web Server Fundamentals

Since you’re reading this document, it’s probably safe to assume that you’ve used a web

browser to access web pages before. You probably know that a web page is a resource

residing somewhere on a computer. When you enter a web address (URL) into your

browser’s address field, your browser sends a request for that resource to the computer

on which the resource should be stored. A process on that computer, called a web

server, listens for requests, interprets them, tries to locate the requested resource and

finally returns it to the browser.

More specifically, a web server is a process that listens to a TCP/IP port for incoming

connection requests. Once a connection has been established between the web server

and a client, typically a web browser, communication begins between them according to

a set of standards called the Hypertext Transfer Protocol (HTTP). When the server

receives a request for a resource, it performs a number of preparations on that resource

for transmission, responds back to the browser, and closes the connection. If all goes

well, the browser displays a web page.

Today’s servers often have a number of other useful capabilities. Servers can track

individual clients through the use of sessions and cookies, saving data between requests.

This supports features like shopping carts and multi-part forms. Many servers also

support interactions with databases, user authentication, and resource specific access

restrictions.

1.2 Introducing MiServer
MiServer is an open source web server implemented in Dyalog APL which brings the

power of APL to the web. It contains both web server components and web content

development utilities designed to facilitate what has become the project’s credo.

“Anyone who can write an APL function should be able to turn it into hosted web

content, without using any components that are not included in a standard installation of

Dyalog APL.” MiServer’s users can develop web content without having to learn much

about the underlying nuances of web page implementation. However, the full breadth of

HTML, JavaScript and related technologies remain at the developer’s disposal.

 MiServer

2

MiServer began with Stefano Lanzavecchia’s “WildServer,” a more complex and more

object-oriented web server than what MiServer was to become. Morten Kromberg took

WildServer and “watered it down,” making it easier for mere mortals to use. This was

the “MildServer.” Most recently APL Tools Group was charged with extending and

enhancing the project. They added features and interfaces, transforming it into the

MiServer.

One note, the term “MiServer” is used in a number of contexts, including:

 The MiServer Project, an open source initiative involving MiServer (for more

information see Appendix H)

 A MiServer Skin, which overrides some of the base functionality of the

MildServer class

 MiServer 3

1.3 Why MiServer?
There are a number of circumstances where you may want to use MiServer.

 APL is your preferred development environment

 You want to host your existing APL functionality on a web page

 You want to use a web browser as a user interface

 You want to merge APL with the array of tools available to web developers

 You want to integrate almost any Dyalog APL utility with your web content.

Including:

 SQAPL: which provides access to any ODBC-compliant database

 SAWS: which consumes and provides web services

 SharpPlot: a business graphics package included with Dyalog APL

MiServer is a stable web content delivery environment. We expect to add new features,

both internally and in collaboration with the APL community. However, a more

“industrial” web server such as Microsoft IIS, Apache, or IBM WebSphere may have

features that are currently not present in MiServer. You may opt to use one of these

servers in one of these following situations:

 You need to use a third party technology like Adobe ColdFusion

 You need to use technology that integrates with a specific web server

 You desire to also host other server protocols, FTP for instance. Conga,

Dyalog’s TCP/IP communications tool, can be used to develop this capability,

but extensions that allow for this have not yet been integrated with MiServer

An alternative for delivering APL functionality via the web is through ASP.NET as

described in the Dyalog .NET Interface Guide. Finally, it should be noted that it is

possible to use the MiServer to deliver content which passes through a commercial web

server framework like IIS or Apache, allowing you to combine the lightweight

flexibility of APL with management and security features of the commercial web

frameworks.

 MiServer

4

C H A P T E R 2

MiServer Architecture

2.1 Web Servers and Sites and Pages, Oh My!
Browsers request resources, which can be almost any file type. If this resource is

rendered as a user interface in the browser, the resource is called a web page. When you

type a URL into a browser’s address bar, you are issuing a request to access a resource

on a computer somewhere. A URL, like http://www.dyalog.com, references the

root of a directory of a collection of such resources, called a website. A website can be

as simple as a single file in a folder or can be an expansive collection of content and

functionality to process and format that content. As discussed in Chapter 1, a web

server, like MiServer, hosts websites and makes them available for requests.

MiServer Core Functionality
MiServer ’s architecture is implemented across a number of files and requires a specific

directory structure, described in section 2.3.

The files representing the core functionality are found in the ServerRoot1/Core/

directory. In general, it should not be necessary to modify any of these files, which

include:

 The MildServer class – this class implements the core functionality of the

server

 The HTTPRequest class – this class parses the HTTP request and generates

the HTTP response

 The Boot namespace – this namespace contains functionality to start and stop

a MiServer

 The MildPage class – this serves as the base class for all MiPages

MiSites
A MiSite is a directory with a specific structure that MiServer can host as a web site.

This directory, outlined in section 2.3, must include several specific scripted classes and

1 ServerRoot is used to refer to the directory where you have installed MiServer. Most examples in this document

use C:\MiServer\ as the ServerRoot.

http://www.dyalog.com/

 MiServer 5

XML documents which MiServer requires for minimal operation. Additionally, any

other files can be contained in the directory, so long as they do not cause name conflicts

with the required files. A sample MiSite, Demo, has been included with MiServer.

MiServer Skins
The MildServer class implements basic server functionality but you may wish to

implement additional behaviors. MiServer makes this easy to implement by exploiting

its object oriented nature. The MildServer class contains several overridable

methods which can be overridden in a class derived from MildServer. This scripted

class, called a MiServer Skin, can implement behavior specific to your MiSite, such as

usage logging, idle activities and error handling.

MiPages
A MiPage is a scripted class used to create a web page. When requested by a browser, a

MiPage runs APL code to generate content, usually Hypertext Markup Language

(HTML), which is sent back to the requesting browser.

MiPage Templates
 Each MiPage can generate a complete HTML document. However, you may find that

some or all of your web pages require common HTML or scripts, especially if you want

to give your MiSite a consistent look and feel. A MiPage template is a class, derived

from the MildPage base class which can additionally process the HTML generated by

a MiPage. You can have any number of these templates in your site and can switch

between them by changing the template from which a MiPage is derived.

2.2 What you’ll need to know to build MiSites
While we would like you to be able to put websites together with only your knowledge

of APL, there are some additional concepts which you will need to be familiar with,

including:

 A very basic understanding Object Oriented programming concepts

 A basic understanding of Hypertext Markup Language (HTML)

 How to manage and edit APL scripted files

A Bit of OO
Object oriented (OO) programming is a programming paradigm centered on structures

called objects. Objects are independent instances of a class, an object blueprint which

describes a set of related functions and/or data. Each object can contain unique data.

A class may derive from another class, referred to as a base class. The derived class

acquires the methods, fields and properties of its base class on top of its own. In OO

speak, this is called inheritance. A base class may specify a method as overridable,

 MiServer

6

which means that a derived class can define its own behavior for a method of the same

name.

The elements of OO programming will not be unfamiliar to an APLer, but use different

terminology. Functions are called methods. Variables are called either fields or

properties. There are additional attributes that are specific to the OO versions of these

elements not described here.

For more information on OO, check out the Introduction to OO in the Language Help of

Dyalog APL and Introduction to Object Oriented Programming for APL Programmers

found in the documentation supplied with Dyalog APL or at http://docs.dyalog.com.

An HTML Survival Guide
Hypertext Markup Language (HTML) is the fundamental building block of web

content. It ‘marks up’ a document with identifiers that tell browsers how to treat each

piece of content. The identifying marks, called tags, are words surrounded by angle

brackets (< >). Most tags work in pairs, surrounding content with an opening and

closing tag.

Opening tag → Content affected by span tags.

 ← Closing tag

Any content contained within tags are affected by it. In the below example, the <i> tag

identifies its contained text as to be italicized.

 <i>The Quick Brown Fox</i>

The Quick Brown Fox

 The <i>Quick</i> Brown Fox

The Quick Brown Fox

Tags often affect the content of all other tags inside themselves, although they do not

always pass on all of their attributes.

 <i>The <u>Quick</u> Brown Fox</i>

The Quick Brown Fox

 MiServer 7

Here are a few tags that you might find useful.

Example Tags Description

<html> </html> These must wrap all HTML documents

<head> </head> Wraps around the header section of the

document that deals with preparations

for page load and resource loading

<body> </body> Wraps all HTML that is marked for

visual representation on the page

 Inserts a line break

Dyalog

Creates a hyperlink with the text

surrounded by the tags

<div> </div> A tag that has no meaning on its own, a

division allows you to specify a space

in the document

 Displays an image

Item1

Item2

An unordered list and its list items

Most HTML documents follow a similar structure, outlined below.

<html>
 <head>
The head tags contain formatting information that affects

the page but is not directly visible. This can be
used to reference style sheets, set title tags and
meta-information, and much more.

 </head>
 <body>
The body tags contain content that can be visible to the

user. Most of the tags used in this section affect,
categorize or contain the visible representation,
but there are cases where this is not true.

 </body>
</html>

An opening HTML tag can also contain a number of ‘attributes.’ These attributes

convey additional information about the tag. Some attributes like 'id' or 'class' are

common to all tags, while others like 'href' may be specific to a single tag. Attributes

are specified with the following syntax:

<tag attributename="attributevalue">Contents</tag>

 MiServer

8

A few useful attributes:

Attributes Description

id An identifier for a unique HTML element that allows the

element to be selected by other technologies (CSS,

JavaScript, etc…)

class An identifier that associates an HTML element with a

group of elements, allowing that element to be selected by

other technologies as part of that group.

style Inserts styles

href Specifies the link destination of an <a> tag

Comprehensive information about tags, attributes and HTML best practices can be

found at the W3 Schools at http://www.w3schools.com.

XHTML
There is a huge amount of slightly "incorrect" HTML in web pages which is still used

today (for example, elements with opening tags but no corresponding closing tag).

Browsers have been extremely tolerant, doing their best to render bad HTML

“reasonably” but often differently from one browser to the next. This code is often

difficult to read, and difficult for programs to parse.

To deal with these issues, HTML 4.01 was blended with Extensible Markup Language,

or XML, to create Extensible Hypertext Markup Language, or XHTML. This set of

more stringent standards is designed to standardize the writing of HTML and allow it to

be parsed by existing XML parsing programs.

For HTML to be considered XHTML its elements must:

 be properly nested

 always be closed

 be in lowercase

 have one root element

If at all possible, the use of XHTML is highly recommended. To assist you in this, all

the HTML generating utilities packaged with MiServer should conform to the XHTML

standards.

 MiServer 9

Scripted files
All of the classes and namespaces that compose MiServer, save the workspace itself,

are kept on UTF-8 encoded files with a .dyalog extension. This allows code to be

modular and easy to edit. It provides a mechanism for APL users to develop and share

code, which aligns nicely with the goal of MiServer as an open source project. Also,

any of these scripted files can be edited both from inside an APL session and from a

text editor.

 MiServer

10

2.3 Directory Structures

MiServer
This is the basic directory structure required for MiServer. The files are divided into

several sections based on their function, specifically:

 Core – the required components of the server

 Extensions – APL Extensions to server functionality

 Documentation

 Error Pages – html pages which can serve as responses

 Utils – Utility namespaces loaded on server start

 Plugins – Third party extensions

An installation of MiServer also includes a demonstration MiSite (Demo) which is not

included in the following chart, as it is not a required part of the server directory

structure.

Also not included is a complete listing of the contents of the Plugins directory.

Directory or File Description

C:\MiServer\ The root directory of MiServer (SiteRoot) – can be any folder

 mserver.dws The MiServer workspace

 Core\ Contains the core components of MiServer

 Boot.dyalog Namespace containing functions to start and stop MiServer

 HTTPRequest.dyalog Class which encapsulates all information for an HTTP

request

 MiPage.dyalog Class which serves as a base class for all MiPages

 MildServer.dyalog Class which implements the MiServer core and serves as a

base class for all MiServer Skins.

 ContentTypes.xml Configuration file containing the associations between file

extension and HTTP contenttype header value

 Extensions\ Folder for extensions to MiServer to implement additional

functionality

 SimpleAuth.dyalog Implements basic HTTP authentication

 SimpleSessions.dyalog Implements stateful interaction using sessions

 ContentEncoder.dyalog An interface for implementing content encoding schemes,

like HTTP compression

 deflate.dyalog Implements the default compression style

 MiServer 11

 Lumberjack.dyalog Logs HTTP requests

 Documentation\ Documentation associated with the MiServer

 MiServer User

Guide.pdf

This document

 Included Plugins.pdf A list of the third party plugins distributed with MiServer

 ErrorPages\ The pages sent to the browser to display information about

errors

 PlugIns\ Third party plug ins

 JQuery\ Files associated with the JQuery JavaScript library

 Utils\ Utility classes and namespaces

 Base64.dyalog Functions for encoding and decoding messages in base 64

 Dates.dyalog Functions dealing with dates

 DrA.dyalog Error logging functions

 Files.dyalog Functions to manipulate files

 HTML.dyalog Functions to assist in the creation of HTML

 HTMLInput.dyalog Functions to assist in the creation of HTML, focused on form

and input objects

 JQ.dyalog Functions that integrate your MiPages with the JQuery

JavaScript library

 JQUI.dyalog Functions that integrate your MiPages with the JQueryUI

JavaScript library

 JQO.dyalog Functions which integrate your MiPages with third party

JQuery scripts

 SQL.dyalog Functions that integrate your MiPages with the database

interactions of SQAPL

 SMTPMail.dyalog For sending mail messages via SMTP

 Strings.dyalog Functions for the handling of strings

 XML.dyalog Functions to convert XML into namespaces and vice versa

 MiServer

12

A Sample MiSite
A MiSite has a required directory structure, outlined below. While the exclusion of

some of the below files may not crash MiServer, they should be considered the required

as well.

Directory or File Description

C:\MiServer\Demo\ The root of the Demo site. A MiSite can be installed in any

directory and need not necessarily be installed in a directory

under MiServer

 Admin\ Contains .dyalog files that control configuration settings

 Code\ Contains code to implement behavior specific to this MiSite.

This folder will contain MiServer Skins should you choose to

implement them

 Templates\ Contains all MiPage templates should you choose to

implement them

 Config\ Contains XML files used for site specific configuration

 DrA\ Contains error logs

 Scripts\ Contains user created and third party scripts

 Styles\ Contains cascading stylesheets and other resources that affect

the look of your website

 error.css Cascading style sheet for error pages generated by the DrA

error handling utility

 TempFiles\ Contains temporary MiServer files

 Index.dyalog The default page that is loaded if no page is otherwise

specified

 MiServer 13

C H A P T E R 3

Getting Started

3.1 Installing and Running MiServer

Prerequisites
MiServer requires:

 The Windows or Linux edition of Dyalog APL version 12.1 or later

 At least version 2.2 of Conga, Dyalog’s TCP/IP communications tool

Installation
The supported installation of MiServer should be available at

http://tools.dyalog.com. Download the files and unzip them into any

directory. In all following demonstrations, MiServer is assumed to have been installed

in C:\MiServer (represented by SiteRoot).

http://tools.dyalog.com/

 MiServer

14

3.2 Configuration

Server Configuration
When a MiServer is booted, it must at a minimum find the site configuration file

server.xml in the directory SiteRoot\Config\. This configuration file is used

to fill generate variables in #.Boot.ms.Config, which are referenced in various

places in the MiServer architecture.

MiServer only references Server.xml at start up, so any changes to the server

configuration will not be applied until the server is restarted. The xml file is text, so

edits can be made to an XML file from most text editors. Additionally, you may add

your own tags and values to this list to generate custom configuration settings that will

be accessible by your MiPages.

Server.xml Parameters
Note: This table only gives an overview of each of the parameters. For a detailed

discussion of each parameter, please see Appendix G.

Parameter Example Explanation

Name MiServer Demo The name of the MiSite

ClassName DemoServer Valid: MildServer or the class name of a

MiServer Skin which is in SiteRoot/Code/

Lang en The language encoding of the majority of content on

the site. This is primarily used by websites to

determine dictionary and voice settings

Port 8080 The port on which the server will listen for

incoming connections

NOTE: Port 80 is the default port number used by

HTTP servers. If you don't already have a web

server installed you might want to use 80 to avoid

having to specify a port number when browsing the

site. This may require additional permissions

SessionHandler SimpleSessions The name of the class which will handle sessions

Authentication SimpleAuth The name of the class which will handle

authentication

 MiServer 15

Other Configuration Files

Logger LumberJack The name of the class which will handle server

logging

UseContentEncoding 1 1 or 0 - use the content encodings specified in

SupportedEncodings

SupportedEncodings deflate The names of the classes that use the

ContentEncoder interface, separated by

commas in the order of usage preference

LogMessageLevel ¯1 Determines which log messages are displayed. See

Section 3.4

DefaultPage index.dyalog The file name of the resource to return if no page

name is given by the browser

HttpCacheTime 2 The server can send information with your content

that cues browsers to cache resources and refer to

them locally

Valid: 0=Off or the length of time (in minutes) a

resource should be cached

Note: This setting can cause issues during

development if resources are frequently changed

IdleTimeOut 0 Valid: 0=Off or a number (in minutes)

Amount of time before the server triggers idle state

behaviors

UserID UNIX Only – User ID to switch to after MiServer

allocates a port

TrapErrors 0 Valid: 1=Trap and Log errors, 0=Crash

Debug 2 Valid: 0=No Debug Info, 1=Debug Info, 2=Allow

Editing

MailMethod NONE Valid: SMTP,NET,NONE

MailRecipient Email address to which SMTP mail will be sent

SMTP_Gateway Address for the SMTP server, if using SMTP to

send emails

 MiServer

16

Depending on the extensions, plugins or utilities being used by your MiSite, MiServer

may require additional configuration files to host a MiSite. Depending on the nature of

the code using the code requiring the file, there could be any number of consequences

related to not including a file.

 The Demo MiSite includes several more, which configure a few extensions advanced

options:

 Access.xml (See Section 8.6)

 Users.xml (See Section 8.6)

 Datasources.xml (See Chapter 7)

 Resources.xml (See Appendix F)

 Virtual.xml (See Appendix F)

3.4 MiServer Basics
Load the MiServer workspace.

)load C:\MiServer\mserver.dws

C:\MiServer\mserver saved Tue Sep 20 12:07:45 2011
 Start 'Demo' ⍝ Run the demo

There are three functions in the root of the workspace which provide basic control over

MiServer:

 #.Start – Starts a MiServer

o takes a MiSite directory path as the right argument, as a full path or a

path relative to the ServerRoot
 Start 'Demo'
MiServer started on port: 8080

 #.Stop – Shuts off the currently running MiServer
 Stop
MiServer stopped.

 #.Restart – Stops and starts the currently running MiServer
 Restart
MildServer stopped.
MiServer started on port: 8080

Start the Demo. Since it is configured with the default Server.xml file, it listens on

port 8080 for HTTP requests. The server will fail if another program is using its

configured port. If you have a firewall installed you may need to grant Dyalog APL

internet access.

When the server has booted, open your web browser of choice and enter

http://localhost:8080. This directs the browser toward your own computer,

targeting port 8080.

 MiServer 17

You should see the following page:

Take a few minutes and click through the links on the bottom half of the index page.

They lead to other MiPages which demonstrate various MiServer capabilities.

When you are done, run #.Stop.

3.5 Creating a New MiSite
The easiest way to create a new MiSite is to take an existing one and modifying it to

suit your needs. Copy the entire ServerRoot\Demo directory to another directory on

your computer, renaming the root folder as you choose.

Anytime we reference or make changes to a MiSite from now on, we will assume it to

be in C:\MyMiSite.

Initialize your New MiSite
Start a MiServer on this directory. First, load MiServer:

)Load C:\MiServer/mserver.dws
C:\MiServer\mserver saved Mon Sep 12 16:07:54 2011
 Start 'Demo' ⍝ Run the demo

Then use #.Start to initialize your MiSite:

 Start 'C:\MyMiSite'
MiServer started on port: 8080

 MiServer

18

C H A P T E R 4

Your First MiPages

4.1 MiPages
MiPages are the building blocks of a MiSite. They are the resources that will use APL

to make content. When requested by a browser, a MiPage is typically responsible for

putting together data, which is usually HTML. It then hands that data off to MiServer to

be sent to the browser.

Requirements of a MiPage
A MiPage is an APL class contained in a .dyalog scripted file. The class must:

 be specified as derived from the base class MildPage or a MiPage template

 contain a method named Render which must be:

o public

o monadic

o passed the request object

o and is required to pass a character string containing valid HTML to

the function req.Return

4.2 Building Your First MiPage

Building a basic page
When requested, this first MiPage displays everyone’s favourite test message, “Hello

World”. In the example below, we will build this MiPage from within the editor and

save it as a .dyalog file in the root directory of the site.

In the session, type:

)ed helloworld

In the editor window, enter this text:

:Class helloworld : MildPage

 MiServer 19

∇ Render req
 :Access Public
 req.Return 'Hello World!'
∇

:EndClass

Save the class as a scripted file using the SALT utility:

]Save helloworld C:\MyMiSite/

Making sure the MyMiSite server is running, open a web browser and type

http://localhost:8080/helloworld into your address bar. You should see

something like this:

You can see that the character vector found its way to the browser. Any simple

character vector passed to req.Return will be returned to the browser and

interpreted as HTML. That said, the MiPage could instead produce a message wrapped

in headline tags:

:Class helloworld : MildPage

∇ Render req
 :Access Public
 req.Return '<h1>Hello World!</h1>'
∇

:EndClass

The above displays as:

http://localhost:8080/helloworld

 MiServer

20

4.3 Introduction to Templates
The previous examples return HTML but do not look much like a web site. We already

have seen the demo site, which does looks quite a bit more like one. To use the styling

of the rest of the demo, take the previous example and set its base class to MiPage.

:Class helloworld : MiPage

The demo site includes a template called MiPage.dyalog in its Code/Templates

directory. It contains a class which additionally processes the HTML passed to

req.Return and finishes building the HTML that will be sent to browsers. When we

changed the base class, we applied that template to the code, which will make the page

look like the following when requested:

If you select a template that does not exist or is not working properly, the MiPage will

not be displayed.

4.4 Getting Dynamic
MiPages are APL code, and can consume and manipulate data. This data can come

from anywhere APL can access, most pertinently from the client’s browser. We will get

into the nuts and bolts of that interaction in a few chapters, right now we are going to

get the need to know answers for how to build MiPages that talk with browsers.

 MiServer 21

Note: You should familiarize yourself with the HTMLInput namespace. The MiPage

below uses it for communicating between the server and the browser. Appendix A has a

function reference for this namespace.

Reverse.dyalog
This first example of a ‘dynamic’ MiPage will be simple and APL idiomatic. There will

be a field to enter a word. If there are characters in the field and the button underneath it

is pressed, the page will refresh and the field will contain the characters in reverse

order.

This MiPage already exists in the demo site. Since MyMiSite is a copy of that demo,

reverse.dyalog is in the SiteRoot2 directory.

The MiPage has been copied in below:

Reverse.dyalog

:Class Reverse : MiPage

:Include #.HTMLInput ⍝ Useful functions for creating
 ⍝ HTML pages

:Field Public Text←'' ⍝ Name of edit field
:Field Public Action←'' ⍝ All action buttons have this name

 ∇ Render req;html
 :Access Public

 DoAction ⍝ If a button was pressed, deal
 ⍝ with it

 html←'
Enter Text: '
 html,←'Text'Edit Text ⍝ An "Edit" called "Text"
 ⍝ containing the Text
 html,←'

'
 html,←'Action'Submit'Reverse' ⍝ A button named 'Action'
 ⍝ with Caption 'Reverse'
 html,←'Action'Submit'Clear' ⍝ ... another button named 'Action’

 html←req('post'Form)html ⍝ Put a 'submit' form around it

 html,←'a href="/"'Enclose'Home' ⍝ A link back to the index page

 req.Return html
 ∇

 ∇ DoAction
 :Select Action
 :Case 'Clear' ⋄ Text←''
 :Case 'Reverse' ⋄ Text←⌽Text

2 SiteRoot is used to refer to the directory where you have installed your MiSite. Most examples in this document

use C:\MyMiSite\ as the SiteRoot

 MiServer

22

 :EndSelect
 ∇

:EndClass

 Reverse is derived from the MiPage template., containing two methods, Render

and DoAction.

 Render generates the page’s HTML

 DoAction:

o handles the data passed from the client to the browser

o selects an action depending on the button pushed

Put http://localhost:8080/reverse?Name=Beethoven into the URL line

of your browser:

Click the “Reverse” button:

Getting Information from the Browser
If you enter text into the text field and click the ‘Reverse’ button, the value changes as

we might expect it to. The text reverses. If you pay careful attention, you will notice

that the page reloaded after you clicked the button. As you may have figured out from

looking at the class, the value of the text type input element is passed to the Text field.

The Render method is called and those values change the way the HTML is

constructed.

Remember that HTMLInput contains functions that generate HTML, a number of

which are associated with transferring data between the browser and the server. For all

those that generate input elements, you can pass the name of a public field as the left

argument. When the data is returned by a form submission (described immediately

following this), it automatically fills that field with the value of the input element.

 'Text' #.HTMLInput.Edit Text
<input type="text" size="" id="Text" name="Text" value="VALUEOFText" />

http://localhost:8080/reverse?Name=Beethoven

 MiServer 23

Forms: Quick and Dirty
A little more structure is required to get client data back to the server. You will need to

wrap your input elements in a form, which is described in detail in Chapter 6. Right

now, know that input elements on a page must be contained within a <form> tag to be

‘valid’ to have their values sent to the server. HTMLInput.Form wraps HTML within

such a tag.

If you are not doing anything particularly tricky and can receive the values of all your

HTML elements that pass value, simply to pass the variable that contains your HTML

through HTMLInput.Form immediately prior to passing it to req.Return. Use the

syntax below (notice that Form is a user defined operator):

req.Return req('post'Form)CharacterVectorOfYourHTML

Once the page is loaded, the client must trigger a new request that contains the form

data, called a form submission. The aptly named ‘submit button’ is a basic way to do

that. There are two different submit buttons on the example page, each generated with

HTMLInput.Submit, which takes the name attribute as a left argument and the value

attribute as the right argument. The value that is passed to the server during submission

is the text on the button.

Because only the value of the pressed submit button is sent to the server, it is a common

practice to give each submit button the same name and use a :Select test to

determine which was pressed.

Preserving Data Past the Pageload
You may have noticed that while you can communicate with the server, the fields that

may populate your pages are reset on every load. The Reverse example operates like

this. The word passed to the server is not stored, but used to generate the new page.

You can also save data by defining a variable in the req.Session.State

namespace. As described in Section 8.5, MiServer can identify requests from the same

source and makes a unique copy of the namespace available to each user.

However, once the session ends, this data will be lost.

req.Session.State.ProductNumbers ← '1023' '0012' '3104'

4.4 Going Further
Now that you understand how to communicate between a MiPage and a browser, you

can use your knowledge of APL and your growing understanding of HTML to build a

wide array of content. What follows are specific concerns you will have when

 MiServer

24

implementing your MiSite, instructions for server features, utilities you can use to build

more interesting MiPages and an increasingly in-depth look at building web content.

 MiServer 25

C H A P T E R 5

Bringing the Pieces Together – The MiSite

5.1 Planning Your Site
At its heart, a MiSite is a directory structure with a few key files. It must include:

 the directories listed in the chart in section 2.3

 a properly configured Server.xml file in the Config directory

 a default page in the root directory, properly named as per the configuration

setting DefaultPage

With these requirements met, MiServer can run and serve the MiSite.

There are extensions to MiServer and utilities which require their own configuration on

the site level. All of these must be found in the Config directory. Currently, those

include:

 Access.xml – used by SimpleAuth (See Section 8.6)

 Users.xml – also used by SimpleAuth (See Section 8.6)

 Databases.xml – used by SQA (See Chapter 7)

 Resources.xml – used by MiServer to create resource mappings (See

Appendix F)

 Virtual.xml – used by MiServer to define virtual resource (See Appendix

F)

Also there are other files which MiServer will only be able to use if there are in certain

places:

 MiServer Skins must be found in SiteRoot/Code/

 MiSite Templates must be found in SiteRoot/Code/Templates/

So where do all my MiPages go?
Any other files or directories you would like to add to the MiSite will not interfere with

MiServer. However, if you are using an extension that adds user authorization

requirements to some or all of your site, like SimpleAuth, clients may not be able to

access those files without proper credentials.

 MiServer

26

5.2 The Default Page
Most frequently, when first surfing to a website, users do not request a specific resource

but instead request the root directory of the site. When the root is requested, web servers

look to see if there is a default page specified. You have already experienced this with

MiServer when serving the demo MiSite and navigating to

http://localhost:8080. The resource that comes up in your browser is actually

a file named index.dyalog.

The DefaultPage parameter of Server.xml contains the filename which

MiServer will attempt to serve any time the root directory or a subdirectory is

requested. If that resource is not present, MiServer will return a 404 - File Not Found

error page.

This setting affects the default page name for every directory. If you plan on having

multiple directories of resources which can be accessed my navigating to the path, each

default page will need to be named the same.

5.3 Error Pages
When a web site cannot return a resource, its server customarily returns an error page to

the client. Like the dreaded 404 page, there are several common status codes which

communicate the state of the response and the types of errors. A list of these codes can

be found at the W3 schools website:
http://www.w3schools.com/tags/ref_httpmessages.asp

At several points throughout the MiServer architecture, errors are trapped and the status

code is passed to req.Fail. MiServer will send error pages to client for errors in for

following four categories:

 401 – Unauthorized Access

 404 – File Not Found

 500 – Internal Server Error

 501 – Header values specify a method that is not implemented

If SiteRoot/ErrorPages contains an HTML page named after one of these errors

(i.e. 404.html) that file will served as the response when its corresponding error is

triggered.

http://localhost:8080/
http://www.w3schools.com/tags/ref_httpmessages.asp

 MiServer 27

C H A P T E R 6

Utilities for Building MiPage Content

6.1 The Utilities Library
One of the goals of the MiServer project is to provide users with tools to build web

pages using APL like syntax. There are several To facilitate this, several utility

namespaces are included which cover things that are commonly used to build web

pages.

When the Start or Load commands are used, any Dyalog scripted file in the /Utils/

folder of the server directory is loaded into the root of the workspace. This means that

users can develop their own tools and easily load them.

These include:

HTML HTMLInput JQ

JQO JQM JSON

SQL JQUI XML

Base64

6.2 Utilities

General Notes
The following entries are descriptions of the utility files included with MiServer. Unless

otherwise noted, the following utilities are cross platform.

HTML Utilities

HTML

This namespace contains simple cover functions for building HTML tags which wrap

around character strings. Since it is based on a simple common structure, it is easily

extensible. For more information, see APPENDIX A.

HTMLInput

 MiServer

28

HTMLInput was originally designed to build HTML forms. It has since expanded to

become our most sophisticated HTML building toolset, and is relied on heavily for

many of the examples you see in this manual.

JQuery Utilities

JQ

JQ is a namespace which contains basic functions for building JQuery scripts in a

MiPage, as well as utility functions for building other JQuery covers.

JQUI

JQueryUI is an extension to the JQuery library which builds user interface ‘widgets,’

such as calendars, dialog boxes and tabbed content containers. JQUI provides basic

access to these widgets.

JQO

In addition to functions in the standard JQuery libraries, there are thousands of

additional ‘plugin’ JQuery scripts. This namespace is a repository for those plugins

which we found useful enough to include in the standard distribution of MiServer.

Base64
Base64 is an encoding scheme used to represent binary data as an ASCII string for

transmission via HTTP request. It was developed as a way of encoding binary data sent

through email although its usage is more general in today’s environment. This

namespace contains functions which both encode and decode text as Base64.

JSON
JavaScript Notation Format, or JSON, is a data-interchange format which is used to
transmit data to and from JavaScript. This namespace contains functions which
converts JSON, as a character vector, to and from any of 3 forms:

 APL

 XML

 Namespace

 Both the APL and XML forms are 100% lossless, which means that:

 json ≡ APLtoJSON JSONtoAPL json and

 json ≡ XMLtoJSON JSONtoXML json

The namespace representation may lose data when an object name contains characters

that are not valid in APL names.

 MiServer 29

C H A P T E R 6

Getting Stylish

6.1 Styles
Up until now, we have focused on a MiSite’s functionality, but presentation can be an

important factor in a MiPage’s usefulness. HTML says little about how the page will be

visually represented. Browsers apply a number of properties, also called styles, to the

HTML which inform the way the browser will display the content.

Styles control the look and feel of every HTML element with a visual representation.

There are dozens of types of styles, including ones that affect:

 The font

 A page’s background color

 The thickness of lines in a table

 The way a text is processed by accessibility programs that read web pages to

visually impaired users.

This section will explore a number of ways to control the styles in your MiPage, and

will look at creating a consistent look and feel for your MiSite.

Style Basics
There are three main ways to exercise additional control over the look and feel of your

website:

 Using the style attribute within a tag

 Inserting a “cascading style sheet” (CSS) within the <head> tags of an

HTML page

 Linking an external CSS document to an HTML page

A style has two parts:

 Selectors – one or more reference to possible HTML elements

 Declarations - one or more property-value pairs.

If two styles affect the same property on the same element, the last style furthest down

the page is the value used when the page renders.

 MiServer

30

Selectors
When not inserting styles directly into a tag, you must identify the HTML elements

which will be affected by a set of declarations. Selectors are references to possible

HTML element names or attributes. If elements that match a selector’s specifications

exist, then the declarations associated with that selector will be applied to those HTML

elements. If they do not exist, the declarations are simply not applied to anything

Each different type of selector requires a particular syntax. A few examples of selector

syntaxes include:

Syntax Description Example

TagName A tag selector

This selector affects each instance of a

particular tag.

h1 – selects all <h1> tags

<h1>Title</h1>

.ClassName A class selector

Preceded by a period, this selector

affects each instance of the named

class.

.tree – selects all HTML

elements have the attribute

“class” containing the value

“tree.” Classes are used to

describe multiple elements.

Tree

#IdName An id selector

Preceded by a hash, this selector

selects the page element with the

named id attribute.

#table – selects the page

element with the attribute

“id” containing the value

“table”. The id attribute is

intended to refer to a

specific element and it is

recommended that each

element id being unique.

<div id=“table”>

Table</div>

A few notes on selectors:

 Each of these selectors can be combined with other selectors to pinpoint more

specific elements. For example: h1.note {color:red;} – applies to all

<h1 class="note"> tags

 Multiple selectors can be used at once, applying a set of declarations to each

selector. For example: h1 h2 h3 h4 {textdecoration:none;} –

applies its declaration to the <h1>, <h2>, <h3> and <h4> tags

 MiServer 31

Declarations

Declarations are the ‘what to do’ of the style. Each declaration sets the value of one or

more ‘properties.’ There are dozens of these properties, many of which have a unique

set of valid answers. Declarations consist of one or more property value pairs, where a

colon separates the properties and values of each pair and each pair ends in a semi-

colon. Below are examples of a few properties and valid declarations. A more complete

list can be found at http://www.w3schools.com/cssref/default.asp.

Property Description Example Declaration

color Specifies the color of the text color: blue;

text-

align

Specifies the justification of the text (left,

right or center)

text-align:

center;

float Specifies if an element is ‘floating’ and

what direction that will be in

float: left;

margin Specifies the distance between the border

of the HTML element and other elements

margin: 0 auto;

padding Specifies the distance between the border

of the HTML element and content within

that element

padding: 10px;

6.2 In-Line Styles
While not generally recommended, you can insert styles directly into a tag, via the

style attribute. This bypasses the need for a selector, as it will affect that tag, and its

contents, alone.

 'style' 'color:red;' #.HTML.div 'This text will be red'
<div style="color:red;">This text will be red</div>

 'style' 'background-color:blue;' #.HTML.div 'My background is blue'
<div style="background-color:blue;">My background is blue</div>

http://www.w3schools.com/cssref/default.asp

 MiServer

32

6.3 Cascading Style Sheets
Cascading Style Sheets (CSS) are collections of styles, called rules, which affect an

entire page. Each rule has two parts:

selector { property: value; property: value ; }

or

selector {
 property: value;
 property: value ;
}

Associating CSS with a web page

There are two ways to associate a style sheet with your web page.

 Internal Style Sheets – CSS is within the head tags

 External Style Sheets – CSS is on a separate file that your page

Internal CSS
CSS can be placed in a page’s <head> tags by wrapping the entire style sheet within

<style type="text/css"></style> tags.

Styles Formatted for the <head> Tag

 <style type="text/css">

 body { color: blue; }

 #Content { opacity:0.7; }

 .center { text-align: center; }

 </style>

Example: An HTML Page with Internal CSS

<html>

 <head>

 <style type="text/css">

 body { background-color:lightgray; }

 .big { font-size:200%; }

 </style>

 </head>

 <body>

 Styling documents is easy and <span

class="big">fun.

 </body>

</html>

 MiServer 33

External CSS
The industry standard is to keep the CSS in external documents linked to your page.

External CSS files allow you to tweak CSS between page loads and even swap whole

CSS files for others, which is useful for accessibility concerns. Moreover, you can have

a standard set of styles that affects an entire site, creating a consistent look and feel.

Simply gather your styles onto a text file and save it with a .css extension. Then,

associate that style sheet with your webpage by placing a <link

rel="stylesheet" type="text/css" /> tag within the <head> tags. The

<link> tag must point to the location of your style sheet using the href attribute. The

below tag is referencing the style sheet SiteRoot/Styles/Style.css.

<link href="/Styles/style.css" rel="stylesheet" type="text/css">

Let’s take another look at the internal CSS example formatted as external CSS. The

below example will produce the same browser representation as above.

Example:

SiteRoot/Styles/style.css

body {

background-color:lightgray ;

}

.big {

font-size:200% ;

}

An HTML page with External CSS

<html>

 <head>

 <link href="/Styles/style.css" rel="stylesheet"

type="text/css">

 </head>

 <body>

 Styling documents is easy and <span

class="big">fun.

 </body>

</html>

 MiServer

34

6.4 Ideas for Using Style Sheets in MiPages
By default, DemoServer.Wrap (MildServer.Wrap was discussed in section 4.3)

associates each MiPage with SiteRoot/Styles/style.css. This file contains

some basic formatting and browser compatibility styles, as well as the styles that

produce the theme you see among the demo site’s pages.

 If you have a different style sheet you would like to associate with the site, you can do

one of three things.

 Replace style.css with another file of the same name

 Change the base style sheet path in DemoServer.Wrap

 Pass the file path of a new style sheet to the Style method of the request

object (req.Style). This appends the link for a new style sheet with that

path after the style.css link

 MiServer 35

C H A P T E R 7

Under the Covers

7.1 Going Deeper
By this point, you should already know how to construct basic MiSites and MiPages.

You can generate basic text pages or pages which communicate with the server.

However, there is a lot going on behind the scenes, specifically regarding server-

browser communication. Also, this chapter will look at another MiServer resource,

HTTPRequest, which is responsible for gathering the request sent by the browser,

parsing it into useful chunks and generating the response.

7.2 Browser to Server Communication

GET and POST HTTP Requests
In general, browsers communicate with web servers by sending HTTP requests for

resources. Data must be sent the same way, along with a request. To allow for different

types of communication, there are a few different HTTP request structures. Currently,

MiServer only supports GET and POST requests.

 GET requests are the most common form of HTTP request. These are

generated when an URL is entered into an address bar or a link is clicked. It is

possible to encode data along with the URL as name-value pairs. As the data is

visible in the URL bar, it is generally considered less secure.

 POST requests are generally used by “forms”, and contain name value-pairs in

the body of the request. Since the data transfer happens in the background, this

method is generally considered more secure.

An example that captures the interactions of HTTP requests of different types is

included with the Demo Server, in Demo/Admin/httprequest.dyalog. If you

have default server settings, this folder will require user authentication to be accessed

by your browser. If a username and password are requested and you have not yet set up

the SimpleAuth extension, the default administrator username and password are

‘admin’ and ‘admin.’.

 MiServer

36

Getting Data to the Server

The GET Request and Data Encoded URLs

Whenever you put a URL in an address bar and access a page, you are sending a GET

HTTP request. Along with the resource path, data can be passed with this request as

well, in the form of name value pairs. These pairs are appended to the end of the

resource path after a question mark. Names and values are separated by equal signs and

pairs are separated by ampersands.

Examples:

http://localhost:8080/reverse?Name=Beethoven

http://localhost:8080/reverse?Name=Beethoven&Action=Submit

These values are sent to the page for the server and associated scripts to use.

Since there are characters that have special significance in the address field (“/” or “:”

for example), values that include those special characters that would affect the parsing

of the URL. To have a faithful representation of the data, URL can be encoded to

represent these symbols by a percent symbol followed by a two digit hexadecimal

number representing the Unicode code point of the symbol. Thus “/” is represented as

%2F and the “:” as %3A. This is true for most characters, with few exceptions. The

very common space character is one of those exceptions, in that in addition to being

represented by %20, it can also be represented by an unencoded “+” symbol.

An HTMLInput.Enclose function generating that page link:

 text ← 'Reverse Page with Beethoven in the Edit Field'
 'a href="http://localhost:8080/reverse?Name=Beethoven"'
HTMLInput.Enclose text

Reverse Page with
Beethoven in the Edit Field

When the request is sent, data in the URL line can be found in the Arguments HTTP

header element. req.Arguments contains an N x 2 matrix of the pairs, where N is

the number of pairs.

Forms and the Post Method
An HTTP POST request is another way to send data back to the server. It can be

triggered by a form element, a section of an HTML document surrounded by <form>

tags. A form is designed to contain input elements and a control which initiates the

submission of a request containing the data of those input elements.

http://localhost:8080/reverse?Name=Beethoven
http://localhost:8080/reverse?Name=Beethoven

 MiServer 37

The form tags specify the resource requested upon submission

(action="/reverse.dyalog"), the type of HTTP request (method="post")

and the content encoding type, which needs to be specified but you fortunately do not

need to understand (enctype="multipart/form-data").

Form from Reverse.dyalog page source

<form action="/reverse.dyalog" method="post" enctype="multipart/form-

data">

Enter Text:

 <input type=text size=10 id="Name" name="Name" value="Beethoven">

 <input type="submit" name="Action" value="Reverse" >

 <input type="submit" name="Action" value="Clear" >

</form>

Input objects

HTML has a number of tags that are recognized as data when within a form during

submission. Each of these tags has the attributes name and value, which populate the

data portion of the submission. Some of these elements are used to allow for users to

submit data to the server. These include, but are not limited to, the <textarea> tag,

the <select> tag and variations of the <input> tag.

While describing the complete functionality of these tags is outside the scope of this

manual, we will make use of the text and submit types of the <input> tag.

In the case of the <input> tag, the type attribute allows developers to select from a

number of different types of input controls, like text boxes, check boxes or buttons.

When type="text" the <input> tag renders as an editable text box. When

type="submit", the tag renders as a button.

A text box with the text “Beethoven”

 'Name' HTMLInput.Edit 'Beethoven'
<input type=text size=10 id="Name" name="Name" value="Beethoven" >

A submit button with the text “Reverse”

 'Action' HTMLInput.Submit 'Reverse'
<input type="submit" name="Action" value="Reverse">

 MiServer

38

Submitting a Form
When clicked, a submit button within a form will initiate a HTTP request described by

the form tags. The browser then gathers the data of all elements that are ‘valid’ for

submission. A valid submission has a control name, which is usually its name attribute,

is paired with the current value of the element. These are gathered by the browser and

sent via the HTTP request.

7.3 How MiServer Gets Client Data: HTTPRequest
When MiServer receives a resource request, it creates a new instance of the class

HTTPRequest. This class parses the information contained in the request into a

number of fields. The request object is then passed to the MiPage and used to format the

response.

There are three places that data encoded in the request may be found, depending on how

it was passed to MiServer: (Remember, the request object is always passed to the

Render method of a MiPage as the right argument req.)

 req.Data - an N x 2 array of the pairs sent within the body of a POST

request

 reg.Arguments - an N x 2array of the pairs encoded in the URL

 Similarly named public fields - If a MiPage contains a public field with the

same name as the first element of a name-value pair in req.Data or

req.Arguments, that field will be set to the value of that pair. For example,

Reverse.dyalog produces an <input> tag with Text is its name

attribute. When the server receives the value of that input tag, it sets the public

field Text to the element’s value before calling the Render method

HTTPRequest also constructs the HTTP response. A character vector of HTML is

passed to req.Return at the end of the Render method which stores it in

req.Response.HTML. A reference for the HTTPRequest class is available in

Appendix G.

 MiServer 39

C H A P T E R 8

MiServer Skins

8.1 Customizing your MiServer
An installation of MiServer can host multiple sites, each with completely different

behaviors. To accomplish this, MiServer is fully editable and designed with extension

in mind. Almost every component of the MiServer is stored as a .dyalog scripted file,

meaning that core files and user generated files alike can be modified both in the

Dyalog session and from most text editors.

While we encourage everyone to explore the core files, it is likely that you will be using

the core capacities for server function with some site specific behavior modifications.

As we have seen with MiPages, the object oriented nature of MiServer will come in

handy for this with the ‘MiServer skin’ a class derived from the MildServer class.

We will look at the development and implementation of a MiServer skin.

8.2 MiServer Skins: Spicing up the MildServer

class
The MildServer base class contains the core server functionality. You can set the

ClassName parameter within Server.xml to MildServer to use its server

behaviors but as the name suggests, it is a ‘mild’ version of the server has only very

basic functionality.

More complex, and frankly more useful, servers require a bit of forethought and the use

of a class derived from the MildServer base class. This is called the MiServer ‘skin’.

The skin can override one or more methods in MildServer, which modifies the

behavior of your server without touching the core code.

The following sections are descriptions of the overridable methods, including the

behaviors in the MiServer skin, DemoServer.

Session Handling
If session handling is enabled, as described in chapter 8, onSessionStart should

perform any processing necessary when a new session is created. Similarly,

 MiServer

40

onSessionEnd should perform any processing when a session ends. The session

handler packaged with MiServer, SimpleSessions, calls these functions.

DemoServer.onSessionStart and DemoServer.onSessionEnd simply

produce log entries.

HTML Wrapping
MildServer.Wrap takes the HTTP request object after it has passed through the

MildPage and performs final processing on the response. While it is possible to set up a

MiSite so that each page generates the entire HTML document, Wrap can be used to

implement a consistent look and feel across all pages of your MiSite.

DemoServer.Wrap takes the HTML which was passed to the request object at the

end of the MiPage’s Render method and wraps it with the body tags of an HTML

template, as well as creates a common, but overridable <head> tag structure that

associates all its MiPages with the default style sheet.

Error Handling
MildServer.Error allows for custom, server error trapping behaviors.

DemoServer.Error logs errors and posts a server-side error message to the

browser.

Logging
MildServer.Log is a function for capturing and organizing log messages.

Several methods in the MiServer architecture pass their status messages to Log, along

with a number indicating the type of message. MildServer.Log posts these

messages to the session, and has a configuration parameter in Server.xml,

LogMessageLevel, which determines which logs are displayed.

This parameter is either set to 0 for no messages, ¯1 for all messages, or the sum of

some or all of the following five message levels, indicating which are displayed:

 1 - error/important

 2 - warning

 4 - informational

 8 - transaction (GET/POST)

 16 – compression related

Cleanup

 MiServer 41

MildServer.Cleanup is called in the MildServer class destructor. Depending

on the functionality of your website, there may be operations you need to perform as the

server shuts down, such as untying files, disengaging from a database or even shutting

down programs that were started to assist the server.

Idle Behavior
MildServer.OnIdle is designed to allow the server to respond to sessions which

have been idle. After a period of minutes, set by the Server.xml parameter

IdleTime, OnIdle is called. This is useful for conserving server resources.

 MiServer

42

A MiServer Skin: DemoServer.dyalog
Below is the example server included in SeverRoot/Demo/Code. Notice that it

does not override MildServer.Error, deferring to the behavior in the base class.

:Class DemoServer : MildServer

 NL←⎕UCS 13 10

 :Include #.HTMLInput

 ∇ make args;file
 :Access Public
 :Implements Constructor :Base args
 :If #.Files.Exists file←Root,'/config/DataSources.xml'
 Datasources←(#.XML.ToNS #.Files.GetText file).Datasources
 :If 0=#.⎕NC'SQA'
 'SQA'#.⎕CY'SQAPL' ⍝ retrieve SQA if needed
 :EndIf
 :EndIf
 ∇

 ∇ onSessionEnd session;msg
 :Access Public Override
 :With session
 msg←'End of session ',(⍕ID),': User=',User,'; Last active:

',,#.Dates.TSFmtNice LastActive
 :EndWith
 4 Log msg
 ∇

 ∇ onSessionStart req
 :Access Public Override
 4 Log'New session ',(⍕req.Session.ID),' started to process

',req.Page
 ∇

 ∇ level Log msg;report
 :Access Public Override
 report←Config.LogMessageLevel ⍝ report levels specified in config

(use 0 for no reporting, ¯1 for all)
 :If report bit level
 ⎕←msg
 :EndIf
 ∇

 bit←{⎕IO←0 ⍝ used by Log
 0=⍺:0 ⍝ all bits turned off
 ¯1=⍺:1 ⍝ all bits turned on
 (⌈2⍟⍵)⊃⌽((1+⍵)⍴2)⊤⍺}

:EndClass

 MiServer 43

 MiServer

44

C H A P T E R 9

Extensions

9.1 Extensions
MiServer Extensions are classes or namespaces which are used to extend the

functionality of MiServer. Extensions often require infrastructure within MiServer to

function. These hooks into the server are generalized, however, to allow new extensions

to be easily developed and swapped in. Extensions are stored as scripted files in

ServerRoot/Extensions and do not have a specific format.

MiServer ships with the following extensions:

 SimpleSessions.dyalog – implements and handles sessions
 SimpleAuth.dyalog – implements authentication for user access
 ContentEncoder.dyalog – provides a framework for content encoding

extensions
o deflate.dyalog – implements the ‘deflate’ encoding, a common

encoding/compression scheme
 Lumberjack.dyalog – logs HTTP requests

9.2 SimpleSessions - A Session Handling

Extension
The HTTP protocol specifies that HTTP requests and responses are ‘stateless.’ Servers

treat each request as if it came from a unique client. Information must be imbedded in

requests and responses that allow for web servers to recognize patterns in requests and

identify users. These patterns, called sessions, provide a context for data to persist over

multiple page loads. Sessions are ideal for sites that require users to identify themselves

with a name and password or that have information that must be available during an

entire visit, like a shopping cart.

SimpleSessions is a basic extension to MiServer that identifies and handles

sessions.

Cookies

 MiServer 45

SimpleSessions uses a mechanism called a ‘cookie’ to identify a unique session. A

cookie is an item of data that a browser is instructed to include in the ‘Cookies’ header

of the HTTP request. A cookie has the following attributes:

 The name of the cookie

 The value of the cookie

 Which site and site paths the cookie will be sent with the HTTP request

 The amount of time that the cookie will “persist,” after which it will be deleted

SimpleSessions checks to see if the HTTP request contains a cookie named

‘Session.’ If does not, it commands the browser to create one and with a randomly

generated “id” that is associated with a new session. This session will be recognized

until it times out (by default, after 10 minutes).

If the extension finds a ‘Session’ cookie, it compares the cookie’s value to the list of

values associated with sessions which have not yet timed out. If it finds a match, the

session’s timeout clock is reset and the session data is copied to the req.Session

namespace.

Using Cookies in Your MiPages

Cookies can persist for months, maintaining a user’s data even after weeks of inactivity

on a site. This means data can last through server and client disconnections or crashes.

The request object contains methods that edit the HTTP response to include instructions

for setting and deleting cookies, as well as a function for retrieving cookie values:

 req.SetCookie – Adds a set-cookie header to the HTTP response.

This includes the cookie’s name, value, the request paths on which the cookie

will be sent and the cookie’s expiration date

 req.DelCookie – tells the browser to delete a cookie by name

 req.GetCookie – returns the value of a cookie

Using Cookies and In-Session Data Storage: An
Example
The following MiPage demonstrates storing and retrieving information from cookies

and session variables.

:Class CookieSessionVarExample: MildPage
 :Include #.HTMLInput

 :Field Public Action← ''
 :Field Public Text←''
 :Field Private Display←''

 ∇ Render req;html
 ⍝ The MiPage contains:
 ⍝ A header which will display content when appropriate
 ⍝ An edit field for entering text

 MiServer

46

 ⍝ Several self explanitory submit buttons

 :Access Public

 DoAction

 html←2 BRA'h1'Enclose'Display: ',Display
 html,←BRA'Text'Edit''
 html,←BRA'Action'Submit'Display Field Text'
 html,←BRA'Action'Submit'Save Text to Session Variable '
 html,←BRA'Action'Submit'Display Session Variable Data'
 html,←BRA'Action'Submit'Save Text to Cookie'
 html,←BRA'Action'Submit'Display Cookie Data'
 html,←BRA'Action'Submit'Reset Data'
 html←('post'Form)html

 req.Return html
 ∇

 ∇ DoAction
 ⍝ If the Session variable does not exist, create one.
 :If 0=req.Session.State.⎕NC'DataToDisplay'
 req.Session.State.DataToDisplay←''
 :EndIf

 :Select Action
 :Case 'Display Field Text'
 Display←Text
 :Case 'Save Text to Session Variable'
 req.Session.State.DataToDisplay←Text
 :Case 'Display Session Variable Data'
 Display←req.Session.State.DataToDisplay
 :Case 'Save Text to Cookie'
 req.SetCookie'TestCookie'(Text)'/svc' 1
 :Case 'Display Cookie Data'
 Display←req.GetCookie'TestCookie'
 :Case 'Reset Data'
 Text←''
 req.DelCookie'TestCookie'
 req.Session.State.DataToDisplay←Text
 :EndSelect
 ∇

:EndClass

9.3 SimpleAuth – An Access Control Extension

SimpleAuth.dyalog is a simple access control extension which can restrict access

to site resources based on user credentials. The configuration file Access.xml can be

found in the SiteRoot\Config\ directory. Each Folder element contains a path

element and a group element. The path determines the path of the directory being

 MiServer 47

restricted. The Groups element is a comma separated list of all the user groups

allowed access to that directory. “**” is the wildcard for either element.

A Sample Access.xml

<Access>

 <Folder>

 <Path>/Admin</Path>

 <Groups>admin</Groups>

 </Folder>

 <Folder>

 <Path>/LocationOfTheFellowship</Path>

 <Groups>admin, fellowship</Groups>

 </Folder>

 <Folder>

 <Path>/Mordor</Path>

 <Groups>admin, management, ringbearer</Groups>

 <Folder>

 <Path>**</Path>

 <Groups>**</Groups>

 </Folder>

</Access>

When a browser requests a resource from a restricted directory, the client is prompted to

enter a username and password. If the credentials match a user defined in the

configuration file, SiteRoot\Config\Users.xml, those user’s credentials are

added to the session. Each user is associated with one or more groups, noted in the

Groups element of their Users.xml entry. If the user is associated with one of the

groups with access to the directory, the page loads as normal. Otherwise, an access error

page is displayed.

A Sample Users.xml

<Users>

 <User>

 <ID>gandalf</ID>

 <Pass>youshallnotguessmypassword</Pass>

 <Groups>admin, fellowship</Groups>

 </User>

 <User>

 <ID>fbaggins</ID>

 <Pass>goonwithoutmesam</Pass>

 <Groups>ringbearer, fellowship</Groups>

 </User>

 <ID>gimli</ID>

 <Pass>shortiscute</Pass>

 <Group>fellowship</Group>

 MiServer

48

 </User>

 <User>

 <ID>Gollum</ID>

 <Pass>precious</Pass>

 <Group>ringbearer</Group>

 </User>

 <User>

 <ID>sauron</ID>

 <Pass>allseeingeye</Pass>

 <Group>management</Group>

 </User>

</Users>

Please be aware that SimpleAuth stores passwords in plain text in an XML file.

9.4 Lumberjack – An HTTP Request Logging
Extension

Lumberjack is a logging extension packaged with MiServer, which provides basic

logging of resource requests. A log record is made for every HTTP request. The data

logs can be used to analyze web site usage, profile resources usage, and detect

suspicious patterns of activity.

A sample Lumberjack log

127.0.0.1:49330 - [08/Jun/2012:22:23:58 +0000] "get

/index.dyalog" 200 164 3879 1638

Each log consists of the following. If an element does not have a value, it is returned as

a dash:

1. <IP address>:<Port> – ex. 127.0.0.1:49330

2. <User ID>

3. [<Timestamp in UTC>] – ex. [08/Jun/2012:22:23:58 +0000]

4. "<HTTP command> <Resource>" – ex. "get /index.dyalog"

5. <HTTP status code> – ex. 200 – see the w3

6. <Time to send response> – in milliseconds – ex. 164

7. <Size of response before compression> – in bytes – ex. 3879

8. <Size of response after compression> – in bytes – ex. 1638

Lumberjack works in conjunction with the configuration file, Lumberjack.xml, which

must be in your site’s Config directory. Four parameters can be set in the file:

 active

 directory

 interval

 prefix

 MiServer 49

If the active parameter is set to 1, Lumberjack starts with the server. It works by

recording a log for each HTTP request. These requests are then written to a log file, one

of which is created each day, in a directory specified by the directory parameter.

These paths can be made relative by prepending them with %ServerRoot% or

%SiteRoot%.

To save server resources, these logs are cached and then written to the log file at an

interval specified in seconds by the interval parameter. Note that in the event of a

server crash, any cached logs will be lost.

When Lumberjack writes a log, the file is named with the following format:

YYYYMMDD.txt. If the prefix parameter has a value, it is prepended to the

filename. For example, if the value of the prefix parameter was “misite” a log

made on 8 July, 2012 would be named misite20120708.txt. If you have several

MiServers writing Lumberjack logs to the same directory, you would be well advised

to specify a unique prefix for each server.

A sample Lumberjack.xml

<Lumberjack>

 <active>1</active> <!-- 1 for yes, 0 for no -->

 <directory>%ServerRoot%/ServerData</directory>

 <interval>10</interval> <!-- in seconds -->

 <prefix>misite</prefix>

</Lumberjack>

 MiServer

50

C H A P T E R 10

Using Relational Databases in a MiSite

10.1 Using External Data Sources
Many webpages display data which comes from an outside source. Displaying today’s

weather forecast or showing you the value your retirement portfolio requires that

communication between the page and a database of some kind. The page will obtain

data, possibly manipulate it, format it using HTML and present it to the client (and

perhaps allow the user to update the information).

This data can come from a variety of sources including:

 Text Files

 Dyalog Component Files

 Relational Databases

 CSV Files

 Excel Spreadsheets

10.2 Relational Databases
A data driven website needs someplace to store its data. Often, this is in a relational

database, such as MySQL, Microsoft Access, IBM DB2, Microsoft SQL Server or

Oracle.

Interacting with Relational Databases
Open DataBase Connectivity (ODBC) is a cross platform, language independent

interface and is the most widely used standard through which programs interact with

databases. SQAPL is Dyalog’s ODBC interface which provides access from Dyalog

APL to any ODBC compliant database. It is a standard component of Dyalog APL

under Windows and is available as an option on other platforms.

MiServer contains SQL, a namespace of utility functions that simplifies SQAPL

integration.

 MiServer 51

Setting up Datasources.xml
SQL requires an XML configuration file called Datasource.xml, contained in the

SiteRoot/Config/ directory. The file contains 0 or more Datasource elements

which are information used by SQL to identify and connect to ODBC data sources.

Each Datasource element can be defined by five possible elements:

 Name – The name used within MiServer to refer the datasource

 DriverOptions – SQL driver options

 DSN – Database Source Name

 User – User name for authentication in the database

 Pwd - Password for authentication in the database, although we do not

recommend keeping your password in a text file on your computer

In order to use SQL, you need to define one or more datasources. The Name element is

required, along with a way to locate the database. The location information can kept

either as a Database Source Name (DSN) as defined in your computer’s datasource

administrator in the DSN element, or you can specify how connect to the database if it

is a DSN-less connection in the DriverOptions element.

If these concepts are unfamiliar to you, please read the SQAPL manual, which you can

find at http://docs.dyalog.com. The datasources.xml file included with

the Demo server can be found below, including two properly defined datasources:

Datasources.xml

<Datasources>
 <Datasource>
 <Name>ZipCodes</Name>
 <DriverOptions>DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};

DBQ=c:\MiServer\dyalog2011\data\zipcodes.accdb;ExtendedAnsiSQL=1
;MaxBufferSize=2048;</DriverOptions>

 </Datasource>
 <Datasource>
 <Name>SQRTest</Name>
 <DSN>SQRTest</DSN>
 </Datasource>
</Datasources>

When Boot initializes MiServer, it looks for data sources defined in

Datasources.xml. If there are any sources defined, and the SQA namespace does

not already exist, it copies in and initializes SQAPL.

SQL.ConnectTo and SQL.Do
Once a datasource reference has been established, the SQL namespace makes use of

them to bring data to your page.

 MiServer

52

SQL.Do is a cover function for SQAPL.Do, which executes SQAPL queries. SQL.Do

connects to the referenced datasource, performs a query and then closes the connection.

When Do queries for data, it returns a namespace, which contains the variables

Columns, Data and ReturnCode.

 Columns are the column names of the query’s result

 Data is an N × M matrix of data returned as a result of the query

 ReturnCode will be 0 if the query was successful, all other results being

error numbers described in the SQAPL manual

You can also use other functions from SQAPL directly and still use

Datasources.xml to define your sources. SQL.ConnectTo initiates a database

connection, taking the Name element of a Datasource element as its right argument.

After the connection has been established, you are free to use SQAPL as you please.

The SQL namespace function reference is in Appendix C.

Example:

:Class SQLdemo : MiPage

 :Include #.HTMLInput
 :Include #.SQL

 :Field Public state←''
 :Field States

 ∇ Render req;HTML;form;data;chunk
 :Access Public
 html←'h2'Enclose'SQAPL/JQuery Demonstration'
 :If 0∊⍴States
 html,←BRA'h3'Enclose'ZipCodes database is not available!

Sorry...'
 :Else
 chunk←BRA'h3'Enclose'Zip Codes by State'
 form←'Select State: ','state'DropDown States

state'autofocus="autofocus" onChange="this.form.submit()"'
 chunk,←'action="#"'('post'Form)form
 :If state≢''
 data←Do'ZipCodes' 'select * from ZipCodes where StateAbbr

= :a<C2: order by Zipcode' state
 :If 0=data.ReturnCode
 chunk,←req

#.JQ.TableSorter'tab1'(data.Columns⍪data.Data)'' 1
 :Else
 chunk←'h3'Enclose'Database query failed? RC =

',⍕data.ReturnCode
 :EndIf
 :EndIf
 html,←chunk
 :EndIf
 req.Return html
 ∇

 MiServer 53

 ∇ Init;data
 :Implements constructor :base
 :Access public
 States←''
 data←Do'ZipCodes' 'select * from States order by StateName'
 :If data.ReturnCode=0
 States←'' ''⍪data.Data
 :EndIf
 ∇

:EndClass

10.3 Displaying Data in your MiPage
Using data received from the browser is simple. Remember that you can collect data

from:

 Public fields the named the same as the id attribute of input elements that are

‘valid’ for submission

 req.Data - if the HTTP post method was used to send data in the body of

the HTTP request

 req.Arguments - if data was encoded in the URL

Since data passed through the HTTP request is received as character vectors, populated

fields can often simply be added to a vector of HTML.

html ← 'Here is the data from the Text field: ', Text

Displaying Tables
If the shape of your data is little more complex, you may think about organizing it as a

grid. HTMLInput.Table is used to display a simple matrix of data by enclosing the

data within a <table> tag structure. The first elemaent of the right argument passed to

HTMLInput.Table is a matrix of no greater than depth 2. Please see this function’s

reference entry in Appendix A for more information.

:Class table : MildPage

 :Include #.HTMLInput

 ∇ Render req;tabledata;html
 :Access Public
 tabledata←4 2⍴'Names' 'Ages' 'Frodo' 33 'Gollum' 589 'Gandalf'

'~2000'
 html←Table tabledata '' '' '' 1
 req.Return html
 ∇

:EndClass

 MiServer

54

Here’s what this might look like with the below styling applied:

 CellAtts ← 'style="padding:10px;border: 1px solid black;background-
color:white;"'
 HeaderAtts ← 'style="padding:10px;border: 1px solid
black;background-color:gray;font-weight:bold;"'
html←Table tabledata '' CellAtts HeaderAtts 1

If we were a bit smarter about that, we would add an id attribute (the optional left

argument of the function) and give the headers and cells classes to be referenced by a

CSS document.

 html←’Ages’ Table tabledata '' 'class="cell"' 'class="header"' 1

Then we append the below text to a CSS document that is associated with the page.

#Ages.cell{
padding:10px;
border: 1px solid black;
background-color:white ;
}

#Ages.header{
padding:10px;
border: 1px solid black;
background-color:gray ;
}

And we get the same result, only with more manageable styling and cleaner code.

Advanced Tables
If you are dealing with large chunks of data, you may benefit from a table that

incorporates sorting and pagination. You may be interested to look at

JQUI.TableSorter which is described with examples in the next chapter.

 MiServer 55

C H A P T E R 11

Improving your UI with jQuery

11.1 jQuery and jQueryUI
When web designers do something that makes their website ‘sexy’ they are usually

talking about one of a handful of tools, JavaScript being one of the most popular.

JavaScript is a scripting language that is compatible with most browsers. As a client

side scripting language, it works by having its code executed by the browser instead of

by the server. This allows pages to change without having to send a submission.

It is used in many corners of the web, creating dynamic user experiences, adding visual

effects and animations and even supporting server side business logic by processing or

validating data before it is sent back in a request.

However, JavaScript is a complete and at

times obtuse language. To make it more

accessible for the average web developer,

a number of JavaScript libraries came

about, with jQuery having come out on

top as the most widely used. jQuery is a

comprehensive, open source JavaScript

library that provides extensive control

over the document object model (DOM). jQuery became the foundation of our client

side scripting because it is free to use and develop, has a large user base and is

relatively easy to learn.

Most of the following functions use jQueryUI, a library that contains a number of

plugins to the jQuery library which affect the user interface. It can be used to create

effects and animations but also comes with a number of prebuilt, easily insertable code

snippets called widgets. jQueryUI makes it easy to develop sophisticated user

interactions. It is a powerful library and frankly it’s really cool.

Also, one of the benefits of such a large user base is the number of community

developed plugins in addition to the official jQuery releases. Many of these are well

documented and have the backing of an active user community.

The Document Object Model, or

DOM, is the tree-like representation

of the HTML elements in a web page,

in the form of nested objects.

JavaScript can manipulate this

structure, modifying the position of

an object within the DOM.

 MiServer

56

For more information about jQuery and jQueryUI, visit http://www.jquery.com

and http://www.jqueryui.com.

11.2 The MiServer–jQuery Interface
We developed a few functions to integrate jQuery into your MiPages, designed to allow

for basic implementation with a minimal understanding of JavaScript. However, they

are not comprehensives interfaces, and the optional parameters that can be passed to

jQuery will need to structured as described in the next section.

There are three namespaces which contain these widgets:

 JQ – interfaces to the jQuery library

 JQUI – interfaces to jQueryUI widgets

 JQO – interfaces to third party jQuery plugins

The following is a description of the more useful widgets and functions of JQUI and

JQO. For a complete reference of these namespaces, see Appendix B.

JQUI.Accordion
This widget takes multiple sections of HTML and condenses them into a single object.

It has a number of tabs which are clicked through to change the content selections. In

the default configuration, the tabs appear to slide to make way for the new content.

content←2⍴⊂''
content[1]←⊂'Here is the First Page'
content[2]←⊂'Here is the Second Page'
headers←'The First Page' 'The Second Page'
jqueryPars←'fillSpace: true'
accordion← req #.JQ.Accordion'myaccordion' headers content jqueryPars
html←'style' 'width:200px; height:200px;'#.HTML.div accordion

http://www.jquery.com/
http://www.jqueryui.com/

 MiServer 57

JQUI.DatePicker
This widget is a text input box that pops up a calendar when selected. When a date is

selected from the calendar, the value is placed in the text box.

dateID←'mydate1'
editPars←'' 30
jqpars←'changeMonth: true,changeYear: true,dateFormat: "DD, d MM yy"'
html←req #.JQ.DatePicker dateID editPars jqpars

JQUI.Dialog
This widget creates a ‘pop up window’ from the contents of a <div> tag element. It

does not open a new browser window with the contents, but the default configuration

creates a draggable box with a title and an exit button in the upper right hand corner.

This box can also be modal as seen in the example below.

title←'You Shall Not Pass!'
contents←'Unless you click the x or another window.'
jqpars←'modal:true'
html←req #.JQ.Dialog 'dialog' title contents jqpars

 MiServer

58

JQO.jsTree
This widget is takes a number of items and, based on the nesting levels described in the

second parameter, represents the data as a collapsible tree.

Please note that an item cannot be more than one level deeper than the preceding item.

Also, while the initial level is arbitrary, no item may ever be less deep than the first

item.

levels←1 2 2 1
items←'item'∘,¨⍕¨⍳⍴levels
html←req #.JQO.jsTree 'tree' levels items

JQO.TableSorter
This widget is a table that is sortable by column with optional pagination. It is possible

to sort multiple columns hierarchically, by selecting one to sort then selecting the next.

The second column will be sorted in the context of the first.

If the pagination plugin is active, then any items over ten will be hidden on a different

‘page.’ The user can change pages and select the number of items per page.

data←4 2⍴'Names' 'Ages' 'Frodo' 33 'Gollum' 589 'Gandalf' '2000'
tableID←'mytable'
tablePars←(data'' '' '' 1)
jqpars←''
html←req #.JQ.TableSorter tableID tablePars jqpars

 MiServer 59

JQUI.Tabs
This widget presents multiple sections of content as a single object that can be

navigated by a list of ‘tabbed’ heading across the top of the object. You may notice that

this bears some resemblance to the properties dialogs used by Windows programs.

If instead of HTML a path is passed as one of the tab contents, Tabs will load the

contents of that resource into the active tab.

id←'tabs'
tabnames←'tab1' 'tabs'
content←'contents of tab 1' 'HTML/tab2.html'
jqpars←''
html←req #.JQ.Tabs id tabnames content jqpars
req.Return 'div style="width:150px;"' #.HTMLInput.Enclose html

JQO.Treeview
This widget is takes a number of items and, based on the nesting levels described in the

second parameter, represents the data as a collapsible tree.

Please note that an item cannot be more than one level deeper than the preceding item.

Also, while the initial level is arbitrary, no item may ever be less deep than the first

item.

levels←1 2 2 1
items←'item'∘,¨⍕¨⍳⍴levels
html←req #.JQO.treeview 'tree' levels items

 MiServer

60

11.3 APLJax: Changing Page Content Without A Load
In the early days of the web, each page request would get all the HTML to build the

page each time. If a page had to change depending on user input, the client needed to

submit a form and rebuild the whole page. Now, client side languages can

communicate with the server outside a form submission and can update parts of a page

without reloading the whole thing. The combination of web technologies that gets this

done is called Asyncronous JavaScript And XML, or AJAX.

The APLJax Method
AJAX allows the server to handle processing and update page content in between whole

page loads. This is achieved through a slightly different kind of HTTP request, called an

XMLHTTP request. MiServer identifies these requests and updates req.IsAPLJax, a

Boolean indicating whether it is or is not an AJAX request. If this is true, MiServer will

then attempt to call the method APLJax in your MiPage.

APLJax is constructed just like the Render method. It is:

 monadic

 public

 passed the request object

∇ APLJax req
:Access Public
⍝ Your Response
∇

If this method is called, req.NoWrap becomes true, and the HTML passed to

req.Return does not have the template applied to it.

If this method does not exist, Render will be called as normal. You could consider a

control structure using req.IsAPLJax if you decide to not use the APLJax method.

Our examples will explore both choices.

Currently Implemented AJAX Interactions
We have built the first few functions which bring this capability to MiServer.

Eventually, we plan on having a suite of tools, much like HTMLInput which help you

to integrate AJAX into your MiPages, which we will call APLJax. For now, we have a

few examples to put you in the right direction for building your own.

The Drag and Drop Interaction

jQueryUI also includes a function which allow HTML elements to be clicked and

dragged across the screen, as well as a function which allows elements to respond to

having a ‘draggable’ element dropped on them, for which JQUI.Draggable and

JQUI.Droppable are cover functions. In our first example, we will create a MiPage

 MiServer 61

that uses AJAX to dynamically update some HTML in response to a draggable element

being dropped on a droppable element.

:Class DragDropAPLJax : MiPage

 :Include #.HTMLInput

 :Field Public drag←'No Selection'

 ∇ Render req;html;Drags;Drops;output;script;dragsel;dropid;outputsel
 :Access Public

 :If ~req.IsAPLJax

req.IsAPLJax is 1 if the HTTP request is an AJAX request.

 Drags←'h1 id="1" class="drag"' Enclose 'Drag - 1'
 Drags,←'h1 id="2" class="drag"' Enclose 'Drag - 2'
 Drops←'h2 id="drop"' Enclose 'Drop On Me'
 Output←⊃Enclose / 'div id="output"' 'h1' drag

If it is a normal request, build the HTML for the page.

 dragsel←'.drag'
 Script←req #.JQUI.Draggable dragsel

Build the script for the draggable elements with JQUI.Draggable (See Appendix B

for a complete reference). This function:

 Applies jQueryUI’s draggable behavior to a specified HTML element or

elements, enabling them to be moved by a mouse click and drag

 Clones the draggable element during the drag, which disappears when dropped

 dropid←'drop'
 outputsel←'#output'
 Script,←req #.JQUI.Droppable dropid dragsel outputsel

Build the script for the droppable elements with JQUI.Droppable (See Appendix B

for a complete reference). This function:

 Applies jQueryUI’s droppable behavior to a specified HTML element or

elements, allowing them to respond to draggable elements being ‘dropped’ on

them.

 The function will only react to the elements which include the selector listed in

its second argument

 During a drop, an AJAX request is cued. The id of the dropped element is

passed back to the server in the body of the request as the value of the name

‘drag.’ It is interpreted by MiServer as form-data, and is treated as such,

populating req.Data and similarly named public fields.

 html←Drags,Drops,Output,Script
 :Else
 html←'h1' Enclose 'You dragged ',drag

 MiServer

62

 req.Response.NoWrap←1

If the request is an AJAX request, send back HTML to be placed in <div

id=“output”></div> tag. Since this is not the HTML for the whole page, we set

req.Response.NoWrap to 1 so the server will not wrap it in the page template.

When the browser receives the HTML, it will update the tag.

 :EndIf
 req.Return html
 ∇

:EndClass

Sortable Lists

JQUI.Sortable allows users to click and drag list items, reordering them or even moving

them between several lists. If set to callback to the server, it reports the new indices

with an AJAX request.

list1←'To Do' 'Wash Car' 'Vacuum' 'Laundry' 'Cut Grass' 'Clean Garage'
list2←'Done' 'Go Fishing'
useHdrs←1
listIDs←'s1' 's2'
listContent ← list1 list2
jqpars←''
chain←''
callback←1
html←req #.JQ.Sortable useHdrs listIDs listContent jqpars chain callback

Below are the fields populated by the serialized data. In this example, the third element

of list s1 is now the second element of list s2:

 s1
s1[]=1&s1[]=2&s1[]=4&s1[]=5
 s2
s2[]=1&s1[]=3

11.5 A More General AJAX Solution - JQ.On
For a more general solution for working with AJAX, we present JQ.On, a cover for the

JQuery function .on(). On allows you to identify an event, like a keypress or a mouse

 MiServer 63

click on an element, which triggers an AJAX request. This request may contain data

and the response may update a page element or execute jQuery functions.

To illustrate this, we will build an example which when a button is pressed, takes the

text from a text edit field, and then displays that text by placing it within another

element in the body.

First, we build the MiPage with the HTML infrastructure. It contains a button, a text

field and a <div> containing the text ‘Start’.

:Class OnExample : MiPage
:Include #.HTMLInput

:Field Public Text←'Start'

∇ Render req
 :Access Public
 html←BRA 'Text' Edit Text
 html,←BRA 'button' Button 'Click Me'
 html,←'div id="display"' Enclose Text
 ⍝ Where JQ.On code will go
 req.Return html
∇
:EndClass

At this point the page is inert. There is no form to facilitate communication with the

server. This will be the job of JQ.On, which will establish the condition that initiates a

request, what data is sent back and what page element will be changed by the response.

When the button is clicked, it will send the value of the text field to the server. Once the

text is processed, it will then update the contents of the <div> with the attribute

id="display".

⍝ Where JQ.On code will go
selector←'#button' ⍝ When the button…
event←'click' ⍝ is clicked…
data←('Text' '#Text' 'attr' 'value') ⍝ get text from

textbox…
update←'#display' ⍝ and update display with the response
html,←req JQ.On selector event data update

When this request is triggered, it will send up to three name value pairs in its body:

 event – the event specified in the second parameter

 what – if the element which triggers the request has an id attribute, that id is

passed as the value of this name. If one does not exist, what is not passed.

 The variable set in the first parameter of the data parameter – in this case

Text – this will be the name of the data generated by the data parameter

Keep these in mind to avoid name conflicts.

Notice that we have already included a field to handle the data passed in the Text

variable.

 MiServer

64

Finally we need to respond to the AJAX request with the APLJax method.
∇ APLJax req
 :Access Public
We generate some HTML (or JSON as described later)…

 html←'p' Enclose Text
…and send the response
 req.Return html
∇

The Completed Example

:Class OnExample : MiPage
:Include #.HTMLInput

:Field Public Text←''

∇ Render req;html;selector;event;data;update
 :Access Public
 html←BRA 'Text' Edit Text ⍝ Build the HTML
 html,←BRA 'button' Button 'Click Me'
 html,←'div id="display"' Enclose Text

 ⍝ Begin building JQ.On
 selector←'#button' ⍝ When the button
 event←'click' ⍝ is pushed
 data←('Text' '#Text' 'attr' 'value') ⍝ get text from textbox
 update←'#display' ⍝ and update #display with the response
 html,←req JQ.On selector event data update
 req.Return html
∇

∇ APLJax req;html
 :Access Public
 html←'p' Enclose Text ⍝ wrap the text in <p> tags
 req.Return html
∇
:EndClass

Building the JQ.On step by step
On identifies a page element or elements which will generate an XMLHTTP request

when a particular jQuery event occurs. That request can contain data and can update a

page element or elements. The following section will examine each parameter.

JQ.On takes parameters as such:

{req} JQ.On selector event data update
 where data is variable selector type parameter

 MiServer 65

Select the element(s) to bind the event

The first parameter, selector, determines which element or elements on your

webpage . There are two options:

 Direct events – events which are directly bound to elements

o Specified by a character vector, denoting the selector. The selector

must be preceded by the appropriate symbol.

o These events are only bound to HTML elements that are present when

the page loads, meaning that dynamically generated HTML content

will not trigger direct events

o More efficient for events that will be bound to one or a few elements

 Delegated events – events which are bound to a parent element which monitor

its children rather than attaching an event to every child. When the appropriate

event is performed by a selected child, the script is ‘delegated’ to that child

o Specified by a two element vector of selectors, the first being the

containing HTML element, the second being the element inside of it

that will trigger the event

o Supports dynamic content. The HTML element which triggers a

delegated event can be created after the page has been loaded.

o This is more efficient when there are many page items which have the

same event associated with them.

Select the event to be bound

The second parameter, event, is a character vector specifying the JQuery event object

which will trigger the request. There are a quite a few predefined events, which cover

just about every conceivable interaction a user can have with a web page. A more

complete listing can be found on the jQuery website at:
http://api.jquery.com/category/events/

Several of these are listed below.

Event Name Description

click The mouse is clicked

dblclick The mouse is double clicked

hover The cursor hovers over the elements space on the page

keydown A key is pushed down

keypress A key is pushed and it comes up

keyup A key comes up

submit A submit action is initiated

select A selectable element (such as a text edit field) is selected

scroll An item that can be scrolled is scrolled

http://api.jquery.com/category/events/

 MiServer

66

resize An element is resized

mousedown A mouse button is depressed

mouseenter The cursor enters the space occupied by an elemnt

mouseleave The cursor leaves the space occupied by an element

mousemove The cursor moves within the space occupied by an element

mouseup The mouse button is released

It is also possible to implement your own events, but that is outside the scope of this

chapter.

Gather data

The third parameter, data, is either empty to return no data or a vector of vectors

which specifies the data from the page to be sent as a name value pair in the body of the

request. There are several sources of data, from the HTML contained by an element, to

an element’s attributes to CSS properties. We use five different commands, outlined

below, to select different the types. This makes the syntax of this parameter a bit more

complicated, as different types may or may not require an additional parameter. In any

case, the general format of data is:

 If the data is being collected from the element which initiates the request
data ← variable type {parameter}

 If the data is being collected from a different element
data ← variable selector type {parameter}

Element

variable the name that the data will be passed back as the value of, to be

available to public fields of the same name and req.Data

selector the element from which the data will come. It must be a single element.

As noted above, if this is not specified the data will be collected from

the element that has initiated the request

type the type of data to be acquired, described below

parameter some types of data require parameters as described below

Type What will be returned Parameter

html all the HTML contained by the

element

none

serialize any data which can be serialized in

the element

none

css returns the value of a css property css property

attr returns the value of an HTML html attribute

 MiServer 67

attribute – can be a non-standard

attribute

is tests the element against a JQuery

selector and returns true or false

JQuery selector, see note below

JQuery selectors and .is()

JQ.On incorporates the .is() function, which can test whether elements would be

selected by a particular selector. For example, we have a number of elements with a

particular class and would like to know if the element we have selected is a list item.

html,←#.JQ.On '.class' 'click' ('data' 'is' 'li') ''

When an element with the class ‘class’ is clicked, it send a request to the server

containing the name value pair “data=true” or “data=false” depending on

whether the element is a list item.

Note that the parameters are selectors, but an expanded list from the selectors we

learned about in Chapter 6. jQuery has introduced selectors that can test for certain

states. For example :contains('Frodo') would select all elements which contain

the text ‘Frodo’. Note that this will not however select input elements which have the

text string entered into them, as that text is actually the value of the value attribute of

that tag.

While delving into the nuances of jQuery selectors is outside the scope of this text, you

can learn about them here:

http://api.jquery.com/category/selectors/

Note: the selector :checked would do well in your tool box, as it returns true or false

to the checked status of a checkbox or radio button.

Updating you page and a first look at JSON

Once you have received the request from your page, you may want to respond in such a

way that it affects the look of the page. This could be as sweeping as changing the

entire contents of the <body> tags or as subtle as adding some HTML to an existing

element without disturbing the rest of its contents.

The last parameter, update, controls this. If a selector is specified in it, then the

XMLHTTP response will replace the contents of the specified HTML element with the

contents of the body of the request, the character vector passed to req.Return.

Again, if req.Response.NoWrap is not true, the response will be wrapped in the

template and likely you will not like the result. It is reset to false on every request.

If the parameter is left empty, we have a few more options. Instead of expecting HTML,

script will be inserted in your MiPage which looks for JavaScript Object Notation

http://api.jquery.com/category/selectors/

 MiServer

68

(JSON) to pass to it one of a number of commands. JSON is a data interchange format

used to pass easily writeable data structures to JavaScript. Take a stop by

http://www.json.org to learn more.

MiServer has the utility namespace #.JSON which contains a number of functions for

converting data between APL, XML and JSON. While this is not yet documented here,

expect that a future update will include a comprehensive guide to this namespace. For

right now, we need only concern ourselves with #.JSON.fromNVP, which takes

name value pairs and constructs JSON from them.

That said, there are four commands that can be passed back:

 execute – which immediate executes the JavaScript passed as its value

 #.JSON.fromNVP ('execute' JavaScript)

Note the format from the upcoming example:

Html←#.JSON.fromNVP('execute'('alert("You clicked ',what,'")'))

 replace – which replaces the content of an HTML element

 append – which adds new content to the end of an HTML element

 prepend – which adds new content to the front of an HTML element

These three share a syntax:

 command←'replace' ⍝ could be 'append' or 'prepend'
 selector←'#mydiv'
 content←'One does not simply walk into Mordor'
 #.JSON.fromNVP (command selector)('data' content)
{"data":"One does not simply walk into Mordor","replace":"#mydiv"}

http://www.json.org/

 MiServer 69

An example implementation of a JSON controlled JQ.On
:Class JSonControlledJQON : MiPage
 ⎕ML←1
 :Include #.HTMLInput
 :field count←0
 :field public event
 :field public what

 ∇ Render req;html
 :Access Public
 html←'h2'Enclose'JQ.On testing'
 html,←2 BRA'mybutton'Button'Press Me'
 html,←'div id="mydiv"'Enclose'Starting content'
 html,←req #.JQ.On'#mybutton' 'click'
 req.Return html
 ∇
 ∇ APLJax req;html
 :Access Public
 :Select 4|count
 :Case 0
 html←#.JSON.fromNVP('execute'('alert("You clicked ',what,'")'))
 :Case 1
 html←#.JSON.fromNVP('replace' '#mydiv')('data' 'This is my new

content')
 :Case 2
 html←#.JSON.fromNVP('append' '#mydiv')('data' ' and This is my

appended content')
 :Case 3
 html←#.JSON.fromNVP('prepend' '#mydiv')('data' 'This is my

prepended content and ')
 :EndSelect
 count+←1
 req.Return html
 ∇

:EndClass

 MiServer

70

11.6 The jqpars Attribute
Each jQuery function has a number of additional parameters which can be passed to

them to modify their functionality. For the most part, the functions we have provided in

JQ, JQUI and JQO represent the default functionality of the function they are covering,

with some exceptions.

Each JQ* namespace function has been equipped with an argument called jqpars,

which takes a character string of properly formatted JQuery parameters and places them

in the appropriate section of the function call. Since there is no additional processing on

this argument, the parameters must be passed as if they were going to be typed directly

into the function.

We will follow the process of identifying and adding those parameters. For the purpose

of this example, we will make a dialog box with modal behavior, disabling the other

items on the page.

The example below is the function for a dialog box with the last parameter, jqpars,

set to default with ''. On page load, the code produced by the below function will pop up

a dialog box containing the text ‘Some Content’.

 JQUI.Dialog 'objectid' 'Title' 'SomeContent' ''
<div id="objectid" title="Title">Some Content</div>
<script type="text/javascript">

/* <![CDATA[*/

$(function(){$("#objectid").dialog({});});

/*]]> */

</script>

First we will look through the documentation on the function, found at

http://jqueryui.com/demos/dialog/ there is a list of the options.

There happens to be an option called ‘modal’ which adds the behavior we were looking

for. It is described as a ‘Boolean’ with a default value of ‘false.’ Clicking it reveals a

number of examples, including the following:

Code examples

Initialize a dialog with the modal option specified.
$(".selector").dialog({ modal: true });

So by setting the fourth parameter, jqpars, to 'modal:true' the dialog box

displays modally.

 JQUI.Dialog 'objectid' 'Title' 'SomeContent' 'modal:true'

http://jqueryui.com/demos/dialog/

 MiServer 71

<div id="objectid" title="Title">SomeContent</div>
<script type="text/javascript">

/* <![CDATA[*/

$(function(){$("#objectid").dialog({modal:true});});

/*]]> */

</script>

There are several additional parameters for each function in the JQ* namespaces. Feel

free to take a look through the documentation for the jQuery calls themselves, links to

which are included in the function’s reference in Appendix B.

 MiServer

72

Appendix A: HTML and HTMLInput

The following workspaces are designed to help you build HTML in MiPages with some

APL-like syntax.

A.1 HTML Namespace Function Reference

HTML.* Insert HTML Tags

 html ← {attrs} HTML.fn innerhtml

attrs The optional left argument contains any additional attributes

for the HTML tags. These can be passed as either an N × 2

matrix of attribute-value pairs, a character vector or as a

vector of vectors where each element contains two character

vectors representing the name and value and a vector of

vectors of depth 2 of alternating name values

fn The function which produces a tag of the same name

 The currently implemented functions are:

a div h1 head ul p
b font h2 html li pre
body form h3 input link span

attributes Any additional attributes to be placed in the opening tag

(default is '')

 HTML.h1 'Title'
<h1>Title</h1>

 'type' 'post' HTML.form 'Things in the Form'
<form type="post">Things in the Form</form>

 'id' 'bat' 'class' 'flying'HTML.div 'content'
<div id="bat" class="flying">content</div>

 (2 2⍴'id' 'bat' 'class' 'flying')HTML.div'content'
<div id="bat" class="flying">content</div>

 MiServer 73

A.2 HTMLInput Namespace Function Reference

Background
The HTMLInput namespace contains a number of more complex functions that create

HTML. Originally, this namespace was designed to make working with the dynamic

functionality of the <input> tag more APL-like, but has since expanded to include a

number of other functions.

HTMLInput.APLToHTML Convert APL Code to HTML

HTMLInput.APLToHTML preserves the formatting of APL code passed to it. It

inserts space ‘exit symbols’ into every space, wraps the code in <pre> tags to preserve

character turns, and sets the font to APL385 Unicode.

html←APLToHTML apl

apl A character vector of APL code

 ⎕vr 'foo'
 ∇ r←foo goo
[1] r←1
[2] :If goo
[3] r←2
[4] :EndIf
 ∇

 HTMLInput.APLToHTML ⎕vr 'foo'
<pre style="font-family:APL385

Unicode">
 ∇ r←foo goo

[1] r←1
[2] :If goo
[3] r←2
[4] :EndIf
 ∇</pre>

 MiServer

74

HTMLInput.BRA Insert
 Tag after HTML

HTMLInput.BRA concatenates one or more
 tags to the end of the right

argument.
 tags are read by browsers as line breaks.

html ← {n} BRA html

n The number of tags to insert (default is1)

html HTML to insert break tags after

 'x',(HTMLInput.BRA'y'),'z'
xy

z

HTMLInput.BR Insert
 Tag Before HTML

HTMLInput.BR concatenates one or more
 tags to the beginning of the right

argument.
 tags are read by browsers as line breaks.

html ← {n} BR html

n The number of break tags to insert (default is1)

html HTML to insert break tags before

 'x',(HTMLInput.BR'y'),'z'
x

yz

HTMLInput.Button HTML Button

HTMLInput.Button generates an <input> tag with the type="button"
attribute. This renders as a rectangular pushable button. This element has no function on

its own and requires additional scripting to make use of it.

html ← name Button pars

where pars is value {attributes}

name The value of the name attribute

value The value of the value attribute, displayed as text on the

 MiServer 75

button

attributes Any additional attributes to be placed in the tag.

(default is '')

 'Btn' HTMLInput.Button 'Click Me'
<input type="button" id="Btn" name="Btn" value="Click
Me" />

HTMLInput.Checkbox HTML Checkbox

HTMLInput.Checkbox generates an <input> tag with the type="checkbox"
attribute. This renders as a square, selectable box.

html ← name Checkbox pars

where pars is {checked} {attributes}

name The value of the name and id attributes

checked This sets the checked status of the checkbox (default 0). If

1, the checkbox is checked

attributes Any additional attributes to be placed in the opening tag

(default is '')

 'checkId' HTMLInput.CheckBox 0
<input type="checkbox" id="checkId" name="checkId" />

 'checkId' HTMLInput.CheckBox 1
<input type="checkbox" id="checkId" name="checkId"

checked="1" />

HTMLInput.DropDown HTML Dropdown Menu

HTMLInput.DropDown generates a <select> tag that wraps a number of

<option> tags, which in turn wrap character vectors. This renders as textbox with a

button on it that lists all of the options. The textbox will auto-fill with the vectors

contained in the options as dictionary elements.

html ← name DropDown pars

where pars is items {value} {attributes} {sort}

 MiServer

76

name The value of the name and id attributes.

items An n element vector of the items to be selected from in the

dropdown menu. (default is 'Item1' 'Item2')

value The value to be displayed when the dropdown box is

generated. (default is 'Item1')

attributes Any additional attributes to be placed in the opening tag.

(default is '')

sort 1 or 0 (the default)

If 1, and value matches one element of the items, will place

the selected tag within the item and move it to the front of

the list

 items←'Item 1' 'Item 2' 'Item 3'
 'DDown' HTMLInput.DropDown items 'Item 2' '' 1
<select id="DDown" name="DDown">

<option value="Item 2" selected="selected">Item 2</option>

<option value="Item 1">Item 1</option>

<option value="Item 3">Item 3</option>

</select>

HTMLInput.Edit HTML Text Field

HTMLInput.Edit generates an <input> tag with the type="text" attribute. This

renders as an editable text box, similar to the Edit object of the Dyalog APL GUI.

html ← name Edit pars

where pars is {value} {size} {attributes}

name The value of the name and id attributes

value The text to be displayed in the element (default is '')

size The maximum character count of the text box (default is ⍬)

attributes Any additional attributes to be placed in the opening tag

(default is '')

 'theId' HTMLInput.Edit 'SomeText' 20
<input type="text" size="20" id="theId" name="theId"

value="SomeText" />

 MiServer 77

HTMLInput.Enclose Wrap HTML with Tag

HTMLInput.Enclose wraps the right argument with HTML tags defined by the left

argument.

html ← attribute Enclose innerHTML

attribute The tag that will be enclosing the HTML. This can include

any number of additional attributes

innerHTML A character vector of HTML to be wrapped by the tags

 'h1' HTMLInput.Enclose 'A Title'
<h1>A Title</h1>

 'h1 id="tree"' HTMLInput.Enclose 'A Title'
<h1 id="tree">A Title</h1>

HTMLInput.File HTML File Upload Button

HTMLInput.File generates a file type <input> tag. This tag is generates a button

with the text ‘Upload Files’ on it. When pressed, a file browser appears and a file can be

selected. Next to the button is text that either says ‘No File Selected’ or the name of the

selected file.

When a tag is submitted with a binary file, it returns a two element result, the name of

the file and the data of the file.

Filename data ← name File pars

where pars is size {value} {attributes}

name The value of the name attribute and the id attribute

size The maximum character count of the file box

value A character string that will be displayed in the text field

attributes Any additional attributes to be placed in the opening tag

(default is '')

 'Upload' HTMLInput.File '40'

 MiServer

78

<input type="file" size="" id="Upload" name="Upload"
value="40" />

Note:

This tag is not evenly supported by all browsers.

Usage Example:
:Class Upload : MildPage

 :Include #.HTMLInput

 :Field Public Action←'' ⍝ Action button
 :Field Public Upload←'' ⍝ File Upload?

 ∇ Render req;html
 :Access Public
 DoAction
 html←'Upload' File '40'
 html,←'Action' Submit 'Upload'
 html←req('post'Form)html
 req.Return html
 ∇

 ∇ DoAction;ftype
 :If 0≠⍴Upload
 file data←Upload
 :AndIf 0≠⍴file←(1-⌊/(⌽file)⍳'\/')↑file
 ftype←v (#.Strings.lc ¯4↑file)
 (tn file)← ftype #.Files.CreateTemp

req.Server.TempFolder
 data ⎕NAPPEND tn
 ⎕NUNTIE tn
 :EndIf
 ∇

:EndClass

HTMLInput.Form Insert HTML Form

HTMLInput.Form wraps a section of HTML in <form> tags. Form tags are used in

conjunction with a submit action to generate an HTTP request for a resource. These tags

wrap a portion of an HTML document that often contains elements that can return

name/value pairs to the server, which can be used to additionally process the request.

<form> tags signify the data that will be contained in the leading line of the HTTP

request, including the type of HTTP request, what resource will be requested and which

HTTP method will be used.

 MiServer 79

html ← {atts} (method Form) innerHTML

method The type of HTTP request to be sent. A form can only use

the GET or POST HTTP request types

atts Any additional attributes to be placed in the opening tag

(default is '')

innerHTML A character string of the HTML to be wrapped by the tag

 …
 html←'Text' HTMLInput.Edit Text
 html,←'Action'Submit'Submit'
 html←req('post'Form)html
 …

<form action="/reverse.dyalog" method="post"

enctype="multipart/form-data">
<h2>Reverse Text Example</h2>

Enter Text:
<input type="text" size="" id="Name" name="Name" value=""

/>

<input type="submit" id="Action" name="Action"

value="Reverse" />
<input type="submit" id="Action" name="Action"

value="Clear" />
</form>

Note:

When using the “POST” method, HTMLInput.Form adds

‘enctype=“multipart/form-data”’ to the leading form tag.

HTMLInput.Hidden HTML Hidden Field

HTMLInput.Hidden inserts a hidden type <input> tag into your MiPage. These

tags are useful for storing information that you do not want the user to see between

requests. One common technique is to use hidden type <input> tags is to preserve

information between requests.

html ← name Hidden pars

where pars is {value} {attributes}

name The value of the name and id attributes

value The value(s) of the value attribute

attributes Any additional attributes to be placed in the opening tag

 MiServer

80

(default is '')

 'HideMe' HTMLInput.Hidden 'Data the user cannot see'
<input type="hidden" id="HideMe" name="HideMe" value="Data

the user cannot see" />

HTMLInput.JS Insert JavaScript

HTMLInput.JS wraps the right argument with tags and JavaScript syntax as if it was

a line of JavaScript.

html ← JS script

script A character vector of JavaScript

 jscript←'document.write("<h1>This is a

heading</h1>");'
 HTMLInput.JS jscript
<script type="text/javascript">

/* <![CDATA[*/

document.write("<h1>This is a heading</h1>");

/*]]> */

</script>

HTMLInput.List Ordered and Unordered Lists

HTMLInput.List creates ordered (numbered) or unordered (bulleted) lists. The

function wraps list items in tags and all of the items with or tags.

html ← {name} List pars

where pars is items {ordered}

name A value of the id attribute of the or tag

items A vector of list items

ordered 0, the default, or 1 – If 1, the list will be ordered

 'List' HTMLInput.List 'apple' 'ball' 'cactus'
<ul id="List">apple
ball
cactus

 MiServer 81

 'List' HTMLInput.List ('apple' 'ball' 'cactus') 1
<ol id="List">apple
ball
cactus

HTMLInput.MultiEdit HTML Multiple Row Text Field

HTMLInput.MultiEdit creates a multi-row/column text editing field. This is

returned to the server as a character vector with preserved character turns. In that sense,

it must be modified or enclosed in <pre> tags to maintain formatting.

html ← name MultiEdit pars

where pars is (rows cols) {values} {attributes}

name The value of the name and id attributes

rows Rows of text field, in characters (default is 10)

cols Columns of text field, in characters (default is 40)

value Text displayed in the text field (default is '')

attributes Any additional attributes to be placed in the tag

(default is '')

 'TArea' HTMLInput.MultiEdit (10 10) 'Content'
<textarea id="TArea" name="TArea" rows="10" cols="10">

Content

</textarea>

HTMLInput.Password HTML Password Field

HTMLInput.Password creates a password type <input> tag. It is similar to the

text type <input> tag, except that it displays only hashes to the user. This is ideal for

entering passwords, as its name suggests.

html ← name Password pars

where pars is {size} {value} {attributes}

name The value of the name and id attributes

 MiServer

82

size The maximum character count of the password box

value The text value of the password box (default is '')

attributes Any additional attributes to be placed in the opening tag

(default is '')

 'theId' HTMLInput.Password 'Y0urP4ssw0rd' 20
<input type="password" size="20" id="theId" name="theId"

value="Y0urP4ssw0rd" />

Note:

Be aware that the data sent by this input type is not encoded by default, and sending the

information via a GET HTTP request will display the password in the URL bar.

HTMLInput.RadioButton HTML Radio Button

HTMLInput.Radio inserts a radio type <input> tag, which produces a radio

button.

html ← name RadioButton pars

where pars is {checked} {value} {attributes}

name the value of the name and id attributes

checked 0, the default, or 1

if 1, the button is checked

value the value of the value attribute (default is name)

attributes any additional attributes to be placed in the opening tag

(default is '')

 'HideMe'HTMLInput.RadioButton ''
<input type="radio" id="HideMe" name="HideMe"

value="HideMe" />

Note:

Only one radio button can be selected by the user in each form. However, if multiple

radio buttons are created with their checked attribute set to one and the user does not

make a radio button selection before form submission, multiple radio buttons will pass a

checked value.

 MiServer 83

HTMLInput.SP Insert Spaces Before HTML

HTMLInput.SP inserts encoded spaces into HTML that are preserved by the browser.

html←{n} SP html

n the number of spaces to insert (default is1)

html HTML to insert spaces before

 HTMLInput.SP 'Some HTML'
 Some HTML

HTMLInput.Submit HTML Submit Button

HTMLInput.Submit creates a submit type <input> tag. This renders as a button

which, when placed inside <form> tags and clicked, initiates an HTTP request defined

by the form.

html ← name Submit pars

where pars is value {attributes}

name The value of the name attribute

value The value of the value attribute, displayed as text on the

button. Determines button size (default is 'Push Me!')

attributes Any additional attributes to be placed in the tag (default is '')

 'Submit' HTMLInput.Submit 'Click Me'
<input type="submit" id="Submit" name="Submit"

value="Click Me" />

HTMLInput.Table Enclose Array in HTML Table

HTMLInput.Table formats vectors and matrices with a maximum depth of 2 with

the tags associated with the <table> HTML elements.

html ← {name} Table pars

where pars is data {table_atts } {cell_attribs}

{header_attribs} {header_rows} {cell_ids}

name the value of the name and id attributes.

 MiServer

84

data a matrix with no more than a depth of 2. (default is 'data')

table_atts attributes to be placed in the leading ‘table’ tag (default is '')

cell_attribs

attributes to be placed in the cells of the table outside of the

header. (default is '')

header_attribs attributes to be placed in the table’s header rows.

(default is '')

header_rows number of rows that will be marked as the table’s header.

(default is ⍬)

cell_ids if 1 (default is 0), individual ids will be generated based on

the indices of each cell in the style of r#c# - r for row.

Note: Example formatted for ease of reading

 data←(3 3⍴('hdr'∘,¨⊃,/⍕¨⍳3),'cell'∘,¨⊃,/⍕¨⍳6)
 HTMLInput.Table data '' '' '' 1 1

<table>
 <thead>
 <tr>
 <th>header1</th>
 <th>header2</th>
 <th>header3</th>
 </tr>
 </thead>
 <tr>
 <td id="r2c1">cell1</td>
 <td id="r2c2">cell2</td>
 <td id="r2c3">cell3</td>
 </tr>
 <tr>
 <td id="r3c1">cell4</td>
 <td id="r3c2">cell5</td>
 <td id="r3c3">cell6</td>
 </tr>
</table>

 MiServer 85

HTMLInput.TextToHTML Insert
 for Each CR

HTMLInput.TextToHTML preserves the lines of text passed to by replacing each

character turn in the text with a
 tag as well as inserting one at the end of the

text.

html ← TextToHTML text

text Character string of text

 text←'hello',(⎕UCS 13 10),'world'
 HTMLInput.TextToHTML text
hello

world

 MiServer

86

Appendix B: Base64 encoding

Base64 is an algorithm for converting binary data into ASCII strings for transfer via an

HTTP Request. This encoding was originally designed as a way to encode emails,

although server side languages may be able to encode data with this algorithm as well.

Functions which decode it are a common fixture of server languages, like PHP and

ASP.Net.

B.1 Base64 Namespace Function Reference

Base64.Decode Encode Data as Base64

Base64.Decode takes a string of text which has been encoded with the Base64

algorithm and decodes it.

rc←Encode txt

txt data which has been encoded with the Base64 algorithm

Note:

The output of this function is text representing the Unicode position of each 8bit section

of the converted binary. As a result, if the original text contains characters which are 16

bit or higher, the output will not faithfully represent the encoded data. Instead, the text

will need be additionally decoded like any normal byte stream of data in that character

set.

For example:

When using the UTF-8 Charset, ⍴2 is represented as 4o20Mg==.

 Base64.Decode '4o20Mg=='
â•´2
 ⍝ the output does not match the original
 ⍝ convert to a byte stream
 ⎕UCS 'â•´2'
226 141 180 50
 ⍝ Since the UTF-8 Charset was used to encode the
 ⍝ original data, reencode the byte stream as UTF-8
 'UTF-8' ⎕UCS 226 141 180 50
⍴2
 'UTF-8' ⎕UCS ⎕UCS Base64.Decode '4o20Mg=='
⍴2

 MiServer 87

Base64.Encode Decode Base64 Encoded Data

Base64.Encode takes a character string and applies the Base64 encoding algorithm

to that text. Currently, this function only supports text strings which contains characters

with Unicode positions no higher than 256. Attempts to use unsupported characters will

result in a TRANSLATION ERROR.

rc ← Encode txt

txt a character string

 Base64.Encode 'apple'
YXBwbGU=
 Base64.Encode '⍴2'
TRANSLATION ERROR
 Base64.Encode'⍴2'
 ∧

 MiServer

88

Appendix C: JQ, JQUI, and JQO

Background
jQuery is a JavaScript library which contains many commonly used scripts. JQ, JQUI

and JQO are a namespaces designed to simplify jQuery integration into your MiPages.

 JQ – interfaces with the jQuery library

 JQUI – interfaces with jQueryUI plugins

 JQO – interfaces with third party jQuery plugins

These three namespaces have implemented only a few of the vast menagerie of jQuery

plugins and widgets, but can be considered an example of how to integrate jQuery

functionality in an APL environment.

Location of Scripts and style sheets

With the exception of JQ.JQueryfn, each of the following functions calls a function

from a jQuery library or plugin. Each of the functions links the appropriate resources to

the HTML page with the resource mapping feature. The resources for all of the included

plugins can be found in ServerRoot/Plugins/.

If you need to modify the location of the scripts and style sheets, refer to the Resource

Mapping and Virtual Directories references in Appendix F.

Note:

Each of the following functions that have a user interface component has an example of

implementation and a screen shot in Section 10.2.

 MiServer 89

C.1 JQ Namespace Function Reference
Currently, this namespace contains a single pertinent function. JQueryfn is used in

every other function to build the script:

JQ.JQueryfn Build JQuery call

JQ.JQueryfn generates a JQuery call wrapped in <script

type="text/javascript"> tags and an XML CDATA section, which marks the

function as not-to-be-parsed character data.

html ← JQueryfn pars

where pars is JQueryFunName HTMLsel {JQueryFunPars}

{JQueryFunChain}

 JQ.JQueryfn 'tablesorter' 'table' '' ''
<script type="text/javascript">

/* <![CDATA[*/

$(function(){$("#table").tablesorter({});});

/*]]> */

</script>

JQueryFunName The name of the JQuery function (default is '')

HTMLsel The selector of the HTML element or elements affected by

the JQuery widget (default is '')

Note the following syntax:

 Character strings will have a ‘#’ appended to the

beginning of the string, identifying the first element

as the value of an ‘id’ attribute

 Character strings enclosed in double quotes will be

passed without appending anything to their front

JQueryFunPars The parameters passed to the JQuery function (default is '')

JQueryFunChain The code for any chained functions (default is '')

 MiServer

90

JQ.On Binds JQuery Event

JQ.On binds a JQuery event handler to an element and gives the user a means to

respond to that event via AJAX requests. While this function is described below, its

implementation contains complexities not described below. You are encouraged to read

section 10.6, which takes an in depth look at this function.

html ← {req} On pars

where pars is selector events data update
 where data is dvariable dselector dtype dparameter

req the request object. Required for compatibility with Internet Explorer

selector the element or elements on which the event will be bound. This

parameter is either a character vector, to specify a direct binding or a

two element vector specifying a delegated binding.

event the jQuery event which will trigger the request. A list of valid events

can be found here:

data either empty passing no data or a vector of parameters as described

above and detailed below.

update either a selector, signifying the HTML element which will have its

contents replaced by the body of the response, or empty which sets up

a handler to take a JSON structure (see note below for syntax)

Parameters

of Data

Description

dvariable the name that the data will be passed back as the value of, to be

available to public fields of the same name and req.Data

dselector the element from which the data will come. It must be a single

element. As noted above, if this is not specified the data will be

collected from the element that has initiated the request

dtype the type of data to be acquired, described below

dparameter some types of data require parameters as described below

Type What will be returned Parameter

html all the HTML contained by the

element

none

 MiServer 91

Note: If a target is not specified by the update parameter, JavaScript is added to the

page which can respond to a few specific JSON structures. There are four supported

commands:

 execute – which executes some JavaScript

 script←'alert("You clicked the button")'
 #.JSON.fromNVP('execute' script)
{"execute":"alert(\"You clicked the button\")"}

 replace – replaces the contents of an HTML element

 append – adds to the end of an HTML element

 prepend – adds to the beginning of an HTML element

 command←'replace' ⍝ could be 'append' or 'prepend'
 selector←'#mydiv'
 content←'One does not simply walk into Mordor'
 #.JSON.fromNVP (command selector)('data' content)
{"data":"One does not simply walk into Mordor","replace":"#mydiv"}

serialize any data which can be serialized in

the element

none

css returns the value of a css property css property

attr returns the value of an HTML

attribute – can be a non-standard

attribute

html attribute

is tests the element against a JQuery

selector and returns true or false

JQuery selector

 MiServer

92

C.2 JQUI Namespace Function Reference
The following functions use the jQuery library and official jQueryUI plugins. Chapter

10 contains simple examples for each of the following and screen shots of the widgets

in action.

JQUI.Accordion jQuery Accordion Widget

JQ.Accordion renders as an object with a number of collapsible content blocks that

when collapsed show only their headings. It creates a <div> containers that contains a

number of <div> containers each preceded by a header element.

Additional parameters can be found at http://jqueryui.com/demos/

accordion/.

html ← {req} Accordion pars

where pars is id {hdrs} {content} {jqpars}

req The HTTPRequest object

id The id attribute for the Accordion

hdrs An n-element array of header names for each Accordion

folder

content An n-element array of content for each accordion folder

jqpars Additional Accordion JQuery parameters

JQUI.DatePicker jQuery DatePicker Widget

JQ.DatePicker creates a text type input box which, when clicked, pops up a dialog

containing a calendar. A date selected from this is entered into the input box.

Additional parameters can be found at http://jqueryui.com/demos/

datepicker/.

html ← {req} DatePicker pars

where pars is id {editpars} {jqpars}

req the HTTPRequest object

id the id for the DatePicker

http://jqueryui.com/demos/%20accordion/
http://jqueryui.com/demos/%20accordion/
http://jqueryui.com/demos/%20datepicker/
http://jqueryui.com/demos/%20datepicker/

 MiServer 93

editpars the Parameters for the text field (see HTMLInput.Edit)

jqpars additional DatePicker parameters

JQUI.Dialog jQuery Dialog Widget

JQ.Dialog creates a pop up within the browser that resembles a system dialog. By

default, this box has a title and can hold any HTML contents. It is draggable, resizable

and pops up when the screen is loaded.

Additional parameters can be found at
http://jqueryui.com/demos/dialog/.

html ← {req} Dialog pars

where pars is id {title} {innerHTML} {jqpars}

req The HTTPRequest object

id The id attribute of the Dialog

title The title for the Dialog window

innerHTML The HTML displayed in the body of the Dialog window

jqpars additional dialog parameters

JQUI.Draggable jQueryUI Dialog Widget

JQ.Draggable identifies the element or elements in your HTML document which

can be clicked and dragged across the screen. While the default parameters of the

jQueryUI function allow the widget itself to be dragged across the screen, we have

applied the ‘clone’ parameter to it. This will spawn a clone of the draggble object that

will be moved around with the mouse and disappear when the mouse button is released.

These parameters can be discarded by making any changes to the jqpars argument.

Additional parameters can be found at
http://jqueryui.com/demos/draggable/.

html ← {req} Draggable pars

where pars is id {jqpars}

req the HTTPRequest object

id the selector(s) (generally ids) for the item to be dragged

http://jqueryui.com/demos/dialog/
http://jqueryui.com/demos/draggable/

 MiServer

94

jqpars additional Draggable parameters

JQUI.Droppable jQueryUI Droppable Widget

JQ.Droppable identifies an element of your HTML page that will respond to

droppable objects being dragged on top of them and released.

In this implementation of Droppable, selectors are specified to indicated which

droppable elements will trigger a response. When one such element is dropped on top of

the droppable element, an AJAX request is sent to the server contain the name-value

pair Drag-(the id of the dropped element) in the Data header .

Additional parameters can be found at
http://jqueryui.com/demos/droppable/.

html ← {req} Droppable pars

where pars is id accept {update} {jqpars}

req the HTTPRequest object

id the id attribute of the Droppable element

accept the selector(s) which identify the Draggable elements which

will affect this particular Droppable

update the selector(s) of the elements which will be updated by the

response to the request triggered by a drop. If empty, no

element will be updated (default is '')

jqpars additional Droppable parameters. Any input will override

the current parameters, which include those responsible for

the callback and the update

JQUI.Sortable Sortable List Widget

JQ.Sortable renders one or more vectors of items as a number of lists which have

list items that can be dragged to different positions within their list and between

different lists contained by the generated container element.

This implementation of Sortable includes an option to post the new list positions back

to the server with an AJAX request.

Additional parameters can be found at

http://jqueryui.com/demos/sortable/.

html ← {req} Sortable pars

http://jqueryui.com/demos/droppable/
http://jqueryui.com/demos/sortable/

 MiServer 95

where pars is usehd ids lists {styles} {jqpars} {chain}

{callback}

req the HTTPRequest object

usehd 0 or 1 – If true, the first item in each list is no longer

sortable, for use as a header

ids a vector of ids, one for each list

lists a list of items or a vector of lists of items. Can contain

HTML

styles a two element vector of vectors of name value pairs adding

styles to the entire list and the list items respectively.

jqpars additional Sortable parameters

chain any jQuery to be chained onto the call

callback 0 or 1 – If true sends an AJAX request back to the server

with the serialized data from the list.

Note:

The callback parameter will return an XMLHTTP request with the updated indices

every time the lists are modified.

Below is the data in public fields named after the serialized lists. In the below example,

the third element of list s1 is now the first element of list s2:
 s1
s1[]=1&s1[]=2&s1[]=4&s1[]=5
 s2
s1[]=3&s2[]=1

JQUI.Tabs jQuery Tab Widget

JQ.Tabs renders as an object with a list of selectable titles across the top. When a title

is clicked, its associated content comes into focus.

Additional parameters can be found at http://jqueryui.com/demos/tabs/.

html ← {req} Tabs (id tabnames content jqpars)

req the HTTPRequest object

id the id attribute of the tabs

tabnames n-element vector of charvec of names to appear on the tabe

content n-element vector of charvecs with the HTML content for

http://jqueryui.com/demos/tabs/

 MiServer

96

each tab or a URI that specifies which file in the server is

dynamically loaded as the tabs content when the tab is active

jqpars additional Tabs parameters

Note:
A tab’s content can either be a character vector of HTML, or a URI directing to a
local resource, such as 'HTML/file.html'.

 MiServer 97

C.3 JQO Namespace Function Reference
The following functions require third party plugins.

JQO.jsTree Tree View Widget Using jsTree Plugin

JQO.jsTree renders data as a collapsible tree.

Additional parameters for this can be found at
http://www.jstree.com/documentation.

html ← {req} jsTree pars

where pars is id items levels {jqpars}

req the HTTPRequest object

id the id attribute of the list (default is '')

items a vector of items. These can include HTML. (default is ⍬)

levels a vector of numbers of the same length as items. These

numbers represent the depth of the data and affect how the

items are nested.

jqpars additional jsTree parameters (default is '')

Note:
There are a few rules to properly format the levels argument:

 The first item is considered to be at the base level of nesting. The level number

used to signify the base level can be any integer. No other items can have a

lower level number than it

 The higher a number, the more nested the data. An item cannot be more than

one level higher than the preceding item

 An item can be any number of levels lower than its preceding item down to the

base level

JQO.TableSorter jQuery TableSorter Widget

JQO.TableSorter creates a sortable table with optional pagination. It is based on

#.HTMLInput.Table.

Additional parameters for this can be found at
http://tablesorter.com/docs/.

html ← {req} TableSorter pars

http://www.jstree.com/documentation
http://tablesorter.com/docs/

 MiServer

98

where pars is id tablepars {jqpars} {pager}

req the HTTPRequest object

id the id attribute of the table (default is '')

tablepars the data and parameters for the table (see

HTMLInput.Table) (default is ⍬)

jqpars additional TableSorter parameters (default is '')

pager 0, the default, or 1

the use of the Pager plugin, which adds pagination to the

table

JQO.TreeView Tree View Widget Using TreeView Plugin

JQO.TreeView renders data as a collapsible tree.

Additional parameters for this can be found at
http://bassistance.de/jquery-plugins/jquery-plugin-

treeview/.

html ← {req} TreeView pars

where pars is id items levels {jqpars}

req the HTTPRequest object

id the id attribute of the list (default is '')

items a vector of items. These can include HTML. (default is ⍬)

levels a vector of numbers of the same length as items. These

numbers represent the depth of the data and affect how the

items are nested.

jqpars additional TreeView parameters (default is '')

Note:
There are a few rules to properly format the levels argument:

 The first item is considered to be at the base level of nesting. The level number

used to signify the base level can be any integer. No other items can have a

lower level number than it

 The higher a number, the more nested the data. An item cannot be more than

one level higher than the preceding item

 An item can be any number of levels lower than its preceding item down to the

base level

http://bassistance.de/jquery-plugins/jquery-plugin-treeview/
http://bassistance.de/jquery-plugins/jquery-plugin-treeview/

 MiServer 99

Appendix D: SQL

Background
SQL is a namespace designed to simply integrate SQAPL, Dyalog’s ODBC compliant

database interaction tool, with your MiSite. The following functions require a properly

formatted Datasources.xml file, as described in Chapter 8.

D.1 SQL Namespace Function Reference

SQL.ConnectTo Connect to a Datasource

SQL.ConnectTo opens a connection with a datasource specified in

Datasources.xml.

r ← ConnectTo database

database the name the datasource, from the name element of one of

the datasources described in Datasources.xml

 SQL.ConnectTo 'DoesNotExist'
601 Datasource "DoesNotExist" not found

Note:

 If the function opens a connection, it returns a two element vector (0

NameOfConnection).

 If it fails, it returns a three element vector, consisting of a return code, an

empty vector and an error message.

SQL.Do Connect to and Query a Datasource

Similar to the Do function found in SQA, SQL.Do prepares, executes and returns the

result of a SQL statement. Unlike SQA.Do, which is supplied a connection, SQL.Do is

supplied a datasource name specified in Datasources.XML. It then queries the

datasource and closes the connection.

r ← Do database sqlstmt [bindvars]

database the name the datasource, from the name element of one of

the datasources described in Datasources.xml

sqlstmt the SQL statement to be executed

 MiServer

100

bindvars data for bind variables, if any

Note:

SQL.Do returns a namespace containing three variables:

ReturnCode 0 if successful. An error code reference can be found in the

SQAPL manual.

Data the matrix of data returned

Columns a vector of column names

Excerpt from sqldemo.dyalog

data←#.SQL.Do'ZipCodes' 'select * from ZipCodes where

StateAbbr = :a<C2: order by Zipcode'state

Note:

SQL.Do, unlike SQA.Do, always fetches all of the data and has no block mode.

SQL.CloseAll Close All SQAPL Connections

SQL.CloseAll closes all SQAPL connections in your session. This is not

recommended for use within MiPages, instead it is useful for server shutdown.

r ← CloseAll

 MiServer 101

Appendix E: HTTPRequest Reference

E.1 The Request Object
An instance of the HTTPRequest class is generated at each HTTP request. The

request object has two purposes:

 To contain the HTTP request and parse it into a number of fields

 To contain the HTTP response as it is being built

The request object also contains a number of methods for querying information from

the HTTP request and adding information to the HTTP response.

E.2 Parsing the HTTP Request

Each HTTP request is parsed and the information that it contains is distributed among

the following fields:

Input The request line of the HTTP request. This includes the type of request,

the resource to be requested and the version of the HTTP being used to

format the request

Headers All the headers of the HTTP request

Command The type of request (post or get)

Page The name of the requested resource

Arguments Any name-value pairs passed within the URL are stored in this field as

a 2 × N matrix of name-value pairs

PeerCert When using secure communications, the certificate presented by the

client

Data When a post request is encoded with data, the data gets stored in this

field as a 2 × N matrix of name-value pairs

Cookies A list of the cookies transmitted by the browser

 MiServer

102

E.3 Namespaces

HTTPRequest.Session Persistent Session Data

Notable Content

State A namespace that persists between page loads in a session. Store session

specific variables here

HTTPRequest.Server Stores Server Settings

Notable Content

Config A namespace of variables generated from the elements of

SiteRoot/Config/server.xml

HTTPRequest.Response Stores the HTTP Response

Notable Content

HTML A variable that contains the all HTML, save that found in the <head>

tag structure.

HTMLHead A variable containing the HTML between the <head> tags

Status The HTTP status code to be returned to the browser

StatusText The HTTP status message to be returned to the browser

NoWrap A Boolean value. If true, the content passed to req.Return will not

be passed to MildPage.Wrap.

 MiServer 103

E.4 Functions

HTTPRequest.Return Set Response HTML/Header

HTTPRequest.Return sets req.Response.HTML to the right argument and

appends the header-value pairs of the left argument to

HTTPRequest.Response.Headers. This function is frequently used at the end of

a MiPage’s Render method.

{hdrs} Return html

HTTPRequest.ReturnFile Set Response to Return a File

HTTPRequest.ReturnFile is called by MiServer when the request specifies a file

that does not have the .dyalog extension. It flags HTTPRequest.Response.HTML

to the right argument and appends the header-value pairs of the left argument to

HTTPRequest.Response.Headers.

It also sets HTTPRequest.Response.File to 1, which cues MiServer to treat the

contents of HTTPRequest.Response.HTML as the path of the file that

{hdrs} ReturnFile html

Note:

This function is called by MiServer when the request specifies a file that does not have

the default extension (.dyalog).

HTTPRequest.GetHeader Retrieve Header Value

The HTTP request can be sent with any number of headers, each of which can be

queried by HTTPRequest.GetHeader. If the right argument is the name of a

header, the value of that header is returned.

hdrs A character vector to be added to the HTTP headers in the

response

html The character vector of HTML

hdrs A two element vector or N×2 array of name value pairs to be

appended into the req.Response.Headers

html The character vector of HTML to be appended to

req.Response.HTML

 MiServer

104

value ← GetHeader header

HTTPRequest.GetCookie Retrieve Cookie Value

A cookie on a client’s machine will have its name and value passed in the HTTP

Request header ‘Cookies,’ if the browser has allowed cookies and the cookie’s path

matches the path of the request. HTTPRequest.GetCookie returns the value of a

cookie with a name that matches its right argument. If such a cookie does not exist, it

returns an empty result.

value ← GetCookie name

name The name of the cookie

Note:

Remember that the value of a cookie will not be available until it is returned by a new

HTTP request.

HTTPRequest.SetCookie Set a Cookie

HTTPRequest.SetCookie appends a set-cookie command to the HTTP response

header, with the name, value, path and deletion date of the cookie. If the client’s

browser set to disallow cookies, this will not have an effect.

SetCookie {name value path keep}

name The name of the cookie. (default is 'CookieName')

value The value that will be passed with the cookie. (default is

'CookieValue')

path The path with which the cookie will be associated. (default

is '/')

keep The number of days the cookie should remain on the client

machine. (default is 30)

Note:

Cookies can be overridden without first deleting them.

For a comprehensive example, see section 7.2

header A character vector representing a header in the HTTP

request

 MiServer 105

HTTPRequest.DelCookie Delete a Cookie

HTTPRequest.DelCookie sends a set-cookie request, setting the value of the

cookie to nothing and setting its deletion date to days before the current date. This

effectively deletes the cookie from the client machine.

DelCookie ctl

name The name of the cookie. (default is 'CookieName')

path The path with which the cookie is associated. (default is '/')

Note:

For a comprehensive example, see section 7.2

HTTPRequest.Script Insert Script in <head> Tags

HTTPRequest.Script appends a <script> tag to

HTTPRequest.Response.HTMLHead the contents of which are enlisted and

enclosed in the page <head> tags.

{atts} Script x

 'src="JQuery/jquery.js"' aa.Script ''
 aa.Response.HTMLHead
<script src="JQuery/jquery.js"

type="text/javascript"></script>

HTTPRequest.Style Insert CSS Link

HTTPRequest.Style associates a style sheet with your page. It creates a <link>

tag with the rel="stylesheet" and type="text/css" attributes and places

the style file location in an href="" attribute. This is appended to

HTTPRequest.Response.HTMLHead, which is the content placed between the

<head> tags of the page.

atts The HTML attributes to be placed in the script tag. If a type

attribute is not included in the list of tags,

'type="text/javascript"' is inserted

x The character vector of the script

 MiServer

106

Style file

file The file path of a cascading style sheet

HTTPRequest.Title Add a Page Title

HTTPRequest.Title wraps the supplied character vector in <title> tags and

appends it to HTTPRequest.Response.HTMLHead the contents of which are

enlisted and enclosed in the page <head> tags. This sets the title of the page that

appears at the top of the browser.

Title x

x A character vector

 aa.Title 'Example'
 aa.Response.HTMLHead
<title>Example</title>

HTTPRequest.Meta Add a Page Title

HTTPRequest.Meta inserts meta tags into the <head> tags your page. Meta tags

are used to categorize page content and provide keywords for indexing by search

engines.

Meta attrs

attrs Attributes for the meta tag

 aa.Meta 'name="description" content="Example"'
 aa.Response.HTMLHead
<meta name="description" content="Example"' />

HTTPRequest.Use Use a Resource Mapping

HTTPRequest.Use inserts <script> and <style> tags into the <head> tags of

your page which are mapped to a name in the Resources.xml configuration file.

Use name

name Name of a resource mapping defined in Resources.xml

 MiServer 107

Appendix F: Adding a JQuery Widget

Background

Adding a new JQuery widget to MiServer, involves integrating script files, possibly

style sheets, and building the HTML required to support the widget. The JQ namespace

contains a number of functions which support JQuery widgets. These functions only

provide access to a small subset of what JQuery can do, but it is hoped that some of the

more technically savvy MiServer users will take the trouble to learn how to add more

JQ functions.

Adding support for a widget requires enough knowledge of JQuery and HTML to:

 Understand your JQuery function’s documentation

 Choose an appropriate HTML element to generate with your function

 Write any JQuery parameters that you want use to modify your JQuery

function

F.1 Identify a JQuery widget
There are many JQuery based utilities that implement a wide variety of behaviors.

Some common terms for these include widgets, plugins, interactions, and events. For

the purposes of this documentation, we are going to call all of these widgets. There are

many to choose from, some of which are listed on http://plugins.jquery.com. If you are

looking ideas, http://www.jqueryui.com hosts a number of well documented widgets

with demos and sample code.

To illustrate the development of a widget, we decided to implement a collapsible tree.

We wanted a widget that:

 Is visually appealing

 Can represent the tree data as an XHTML structure

 Has interesting optional implementations for later development

A search for JQuery tree led us to plugins.jquery.com which listed three pages of

results. We investigated a number of them and selected the jsTree widget, found at

http://www.jstree.com, as the one that best met our criteria.

One additional thing to consider in the selection of a widget is its type of licensing.

Most plugins include documentation regarding licensing and reuse. In jsTree’s case, it

is licensed under the terms of the GNU General Public License (GPL) version 2 or the

MIT license. This means it is free to use, modify and redistribute.

Install Files
Each JQuery plugin requires one or more files to work. These might include:

http://plugins.jquery.com/
http://www.jqueryui.com/
http://www.jstree.com/

 MiServer

108

 The core JQuery library

 Additional script libraries, like the JQueryUI plugin

 Style sheets

 Other files

The documentation on your widget should let you know what files to download and

where to get them from.

MiServer has a server level folder to store your widget’s files,

ServerRoot/Plugins/JQuery. To make the widget available to your MiSite, its

files need to be copied into SiteRoot/Scripts. If a plugin requires multiple files

or subdirectories, put them in a containing folder, like

SiteRoot/Scripts/jsTree.

All JQuery utilities require the core JQuery library (jquery.js), which is included in

Server/Plugins. By default, jsTree requires its own script file

(jquery.jstree.js), a style sheet and several image files. jsTree has a number of

optional features that require additional files. Since we are only using the base

functionality, in this example there is no need to include them.

It is generally a good idea to keep the directory structure supplied with a plugin intact.

The plugin may expect files to be in certain relative locations.

Create a Utility File

To avoid potential conflicts with the Dyalog-supplied scripts, you should create your

own scripted utility file to contain your code. Locating this file in

ServerRoot/Utils will ensure that it is loaded when MiServer is started.

)ed ⍟MyWidgets
]save MyWidgets ‘C:\MiServer\Utils’

F.2 Writing the Code for your Widget
Now it is time to build the APL function that creates the HTML and JQuery scripts for

your plugin.

It is useful to have an example to build from. Many JQuery plugins have demo pages

that include source code.

jsTree uses a <div> where it builds and displays the tree. The tree data can come from

a number of sources, one of which being an HTML hierarchical unordered list, an

 tag structure, contained within the <div>.

The basic rules for HTML unordered lists:

 Each list item is wrapped in tags

 All list items are contained with tags

 MiServer 109

The jsTree widget requires a specific format for the list, and gives the below example of

the required syntax in its documentation:

 Node title
 <!-- UL node only needed for children - omit if there

are no children -->

 <!-- Children LI nodes here -->

There are nuances that may not be readily clear from this brief example. These include:

 Each list item must be wrapped with <a> tags

 Children are designated by lists contained with the tags of a

parent list element

 The entire list must be wrapped by tags and then placed within the

jsTree <div>

However, the source code provided additional insight. Here is an excerpt:

<head>
 <script type="text/javascript"

src="http://static.jstree.com/v.1.0pre/jquery.js"> </script>
 <link type="text/css"

href="http://static.jstree.com/v.1.0pre/_docs/syntax/style.css"/
>

 <script type="text/javascript" src="
http://static.jstree.com/v.1.0pre/jquery.jstree.js"></script>

</head>

<body>
 <div id="demo1" class="demo" style="height:100px;">

 <li id="phtml_1">
 Root node 1

 <li id="phtml_2">
 Child node 1

 <li id="phtml_3">
 Child node 2

 <li id="phtml_4">
 Root node 2

 </div>
 <script type="text/javascript" class="source below">
 $(function () {

http://static.jstree.com/v.1.0pre/jquery.jstree.js
http://www.jstree.com/demo
http://www.jstree.com/demo
http://www.jstree.com/demo
http://www.jstree.com/demo

 MiServer

110

 $("#demo1").jstree({ });
 });
 </script>
</body>

This view of the code much more clearly demonstrates the list syntax expected by
jsTree.

F.3 Building your Widget
Many JQuery widgets have a large number of options which implement various types of

behavior. Trying to encapsulate a consistent interface for all of these behaviors can be a

daunting task. With this in mind, it may be sensible to pick a few options that meet your

most common needs and build your cover function around them.

With this in mind, the example below does not attempt to implement the full scope of

jsTree’s functionality, but rather serves as an example and starting point for how this

can be accomplished.

MyWidgets.jsTree

∇ html←{req}jsTree

pars;id;levels;items;jqpars;diff;isparent;end;repeat;li;err
 ⍝ Uses the jsTree plugin to create a tree view from hierachical

data.
 ⍝ For more information on the jsTree plugin see

http://www.jstree.com
 ⍝
 ⍝ req - the request object (see HTTPRequest)
 ⍝ pars - id levels items jqpars
 ⍝ id - the id attribute of the tree container
 ⍝ levels - n-element vector indicating the 'depth' of each item
 ⍝ items - n-element vector with content for each item
 ⍝ jqpars - parameters for the jsTree widget

 pars←{2>|≡⍵:,⊂,⍵ ⋄ ⍵}pars
 id levels items jqpars←4↑pars,(⍴pars)↓''⍬'' '' ''
 :If 0∊⍴id ⋄ id←'tree' ⋄ :EndIf

 :If 9=⎕NC'req' ⍝ Add JQuery links if req passed as left argument
 #.JQ.IncludeJQuery req
 req.Style'/Scripts/jsTree/themes/classic/style.css'
 'src="/Scripts/jsTree/jquery.jstree.js"'req.Script''
 :EndIf

 diff←2-/levels,1↑,levels
 err←'A child item cannot be more than one level below its parent.'
 Err ⎕SIGNAL (¯1∨.>diff)/600

 isparent←0>diff ⍝ Which items are parents?
 end←0⌈diff ⍝ How many tags will be at the end of each

list item?

 MiServer 111

 repeat←{(⍵×⍴⍺)⍴⍺} ⍝ A function to apply those tags

 li←('<li id="'∘,¨((id,'_')∘,¨⍕¨⍳⍴levels)),¨⊂'">'
 html←li,¨items,¨('' '')[1+isparent]
 html←{⎕ML←1 ⋄ ∊⍵}html,¨('')∘repeat¨end
 html←NL,('div

id="',id,'"')#.HTMLInput.Enclose'ul'#.HTMLInput.Enclose html

 html,←#.JQ.JQueryfn'jstree'id jqpars
 ∇

F.4 Stepping through the Code
We chose to implement the jsTree plugin in a manner consistent with the functions in

the Dyalog-supplied JQ namespace.

Initialization

∇ html←{req}jsTree
pars;id;levels;items;jqpars;diff;isparent;end;repeat;li;err

 ⍝ Uses the jsTree plugin to create a tree view from hierachical
data.

 ⍝ For more information on the jsTree plugin see
http://www.jstree.com

 ⍝
 ⍝ req - the request object (see HTTPRequest)
 ⍝ pars - id levels items jqpars
 ⍝ id - the id attribute of the tree container
 ⍝ levels - n-element vector indicating the 'depth' of each item
 ⍝ items - n-element vector with content for each item
 ⍝ jqpars - parameters for the jsTree widget

 pars←{2>|≡⍵:,⊂,⍵ ⋄ ⍵}pars ⍝ If pars is simple, enclose
 id levels items jqpars←4↑pars,(⍴pars)↓'' ⍬ '' ''
 :If 0∊⍴id ⋄ id←'tree' ⋄ :EndIf ⍝ If no id, id is tree

jsTree takes up to four parameters, which if not defined are given a default value:

 The id of the container <div> tag (default is 'tree')

 The depth of each item – an n-element vector of level numbers (default is '')

 The content of each item – an n-element vector of character vectors (default is

'')

 The jsTree plugin parameters - since we are only using the default options for

jsTree, we will not need to pass this parameter (default is '')

Associating Scripts and Style Sheets

You need to include references to the necessary scripts and style sheets in order to make

the plugin work.

 MiServer

112

The JQ namespace has two functions that will include all the references for the core

JQuery library as well as the JQueryUI plugin. These are:

 JQ.IncludeJQuery – inserts a reference to the core JQuery library
 JQ.IncludeJQueryUI – inserts a reference to the core JQuery library, the

JQueryUI plugin and the JQueryUI CSS

Use req.Style and req.Script to insert references to any additional style sheets

or scripts, respectively (see the HTTPRequest reference for details).

 :If 9=⎕NC'req'
 #.JQ.IncludeJQuery req ⍝ Adds script link to JQuery core
 req.Style'/Scripts/jsTree/themes/classic/style.css'
 'src="/Scripts/jsTree/jquery.jstree.js"'req.Script''
 :EndIf

If the request object, req, has been passed as the left argument, references to the two

scripts and the style sheet the jsTree plugin requires will be included. If req is not

supplied, the references are not inserted and jsTree will simply return HTML. This is

useful for debugging.

Building the HTML

 diff←2-/levels,1↑,levels ⍝ The difference in level between items
 err←'A child item cannot be more than one level below its parent.'
 err ⎕SIGNAL (¯1∨.>diff)/600

Test the levels parameter. A hierarchical list cannot have an item that is more than

one level deeper than its preceding item.

 isparent←0>diff ⍝ Which items are parents?
 end←0⌈diff ⍝ How many tags will be at the end of each

list item?
 repeat←{(⍵×⍴⍺)⍴⍺}⍝ A function to assist in applying those

Identify the starts and ends of each level change.

 li←('<li id="'∘,¨((id,'_')∘,¨⍕¨⍳⍴levels)),¨⊂'">'

We build the opening tags for each item. Each tag has a unique id.

 html←li,¨items,¨('' '')[1+isparent]

Apply the appropriate closing tags and concatenate the opening tags to each item.

 html←{⎕ML←1 ⋄ ∊⍵}html,¨('')∘repeat¨end

Close all groups of children with tags.

 html←'ul'#.HTMLInput.Enclose html
 html←NL,('div id="',id,'"') #.HTMLInput.Enclose html

 MiServer 113

Enclose the list in a tag and a <div> with the supplied id attribute.

Append the function call

You need to add the JQuery function call that invokes your plugin. JQ.JQueryfn

builds the Javascript which calls your plugin with whatever parameters you have

supplied. The first two parameters are the name of the function as recognized by the

plugin’s script, in this case ‘jstree,’ and the id that the HTML element that the script

will affect. Finally, we pass a variable for additional options that are recognized by the

plugin.

 html,←#.JQ.JQueryfn'jstree'id jqpars

Testing Your Plugin

To test the function’s HTML output pass it all normal parameters except for the request

object.

If the HTML you have produced is XHTML compliant you can use ⎕XML to produce
nicely formatted output. You can validate this output against sample HTML source
code supplied by the plugin provider.

⎕XML ⎕XML MyWidgets.jsTree'tree'(1 2 2 1)('Item1' 'Item2' 'Item3'

'Item4')
<div id="tree">

 <li id="tree_1">
 Item1

 <li id="tree_2">
 Item2

 <li id="tree_3">
 Item3

 <li id="tree_4">
 Item4

</div>
<script type="text/javascript">/* */

$(function(){$("#tree").jstree({});});
 /* */
</script>

Add the Widget to a MiPage

 MiServer

114

Here we simply add the function in to our HTML. Notice that we are calling the
jstTree plugin with an additional option.

:Class jsTreePage : MiPage

 ∇ Render req;levels;items
 :Access Public
 levels← 1 2 2 3 3 4 3 3 1 1 2 3 4 5 6 1 2
 items←'item'∘,¨⍕¨⍳⍴levels
 jqpars←'core:{animation:0}'
 req.Return req #.MyWidgets.jsTree 'tree' levels
items jqpars
 ∇

:EndClass

 MiServer 115

Appendix G: Additional Features

G.1 Additional Features and the problems they solve
Features The issues which they address

Virtual Directories You have a directory outside the site directory from

which you would like to serve resources

Resource Mapping You have MiPages or client side script interface functions

which require various and sometimes overlapping scripts

and style sheets

HTTP Caching You have multiple static resources that are called

frequently by browsers, increasing load on server

HTTP Encoding

/Compression

You would like to implement data encoding schemes

Identifying

Content Types

You would like to identify the kind a file’s type to the

client browser

G.2 Extending MiServer’s Reach - Virtual Directories
Normally, a client browser cannot request files outside the served directory. However,

you may have good reason for wanting a directory outside of your MiSite which

browsers can access.

A virtual directory is a directory which can be accessed by a browser using an alias.

When the alias directory is requested, the path is interpreted on the server level as

another directory. While http://localhost:8080 might direct you to

C:\MyMiSite, http://localhost:8080/Plugins might be interpreted as

the directory C:\MiServer\Plugins.

This gives the client access to the entire directory. Access control for these directories

and their subdirectories can be controlled with the SimpleAuth extension.

Virtual directories are defined in Virtual.xml. Below is an excerpt of the one

included with the demo site.

<Virtual>

<!-- valid replacements are

 %ServerRoot% - MiServer root directory

 %SiteRoot% - web site root -->

 <directory>

http://localhost:8080/Plugins

 MiServer

116

 <alias>JQuery</alias>

 <path>%ServerRoot%\PlugIns\JQuery\</path>

 </directory>

</Virtual>

To create a new virtual directory, choose an alias and a path and append them to the file

using the above syntax. The path may be absolute or relative to either the SiteRoot

or the ServerRoot as described above.

G.3 Simplifying Script and Style Calls - Resource
Mapping

If one of your functions builds content which requires the use of a JavaScript library or

a style sheet, tags which specify file paths of those resources will need to be included in

the <head> element of your MiPage. This is easily accomplished with req.Script

and req.Style. However, if the name or location of the files may change overtime or

by machine, you will need to change the code.

MiServer solves this problem by keeping the path information in a configuration file

called Resources.xml. The file associates a set of scripts and stylesheets with a name

that can be passed to the method req.Uses. The specified resources will be appended

to the head element of the page. Duplicates will be removed.

Below is an excerpt of the Resources.xml file found in the Demo MiSite.

Note that all paths are relative to the SiteRoot. In the example below you might

notice something familiar from the last section. Each of the paths is using a virtual

directory.

<Resources>

 <resource>

 <name>JQuery</name>

 <script>/JQuery/jquery-latest.js</script>

 </resource>

 <resource>

 <name>JQueryUI</name>

 <uses>JQuery</uses>

 <script>/JQuery/JQueryUI/jquery-ui.js</script>

 <style>/JQuery/JQueryUI/Themes/redmond/jquery-

ui.css</style>

 </resource>

<Resources>

 MiServer 117

Each resource element must have:

 a name element

 any number of one or more of the following:

o a uses element – the name of another resource mapping which will

be also associated with the page

o a script element – the file path of a Javascript library

o a style element – the file path of a stylesheet

Again, to use a resource mapping, pass its name to req.Uses.

req.Uses 'JQueryUI'

G.4 Reducing Requests for Static Resources - HTTP
Caching

When your resources are requested by a browser, it takes some time to download. If you

are using static resources that will not change per download (i.e. scripts and style

sheets) you might consider marking those resources to be cached by the browser. If the

client’s browser settings permit, this will save the files on client machine memory to be

accessed locally instead of by server request.

Server.xml contains the setting HTTPCacheTime. It can be set to off, 0, or a

positive integer describing the number of minutes the resource is to be cached.

G.5 HTTP Content Encoding and Compression
Schemes

Content encoding is typically used to apply some lossless compression scheme to the

data that’s exchanged between the server and the browser.

A browser includes as part of its request for the resource an HTTP header called

Accept-Encoding, which lists the encoding schemes that it understands and

accepts. If the server supports one or more encoding schemes it can apply those

encoding schemes and return the encoded data back with an HTTP header Content-

Encoding which lists the applied encodings. The receiving browser decodes and

processes the data.

MiServer currently supports deflate compression, which is supported by all major

browsers.

The content encoding extension, ContentEncoder, has been designed to allow

additional content encoding schemes to be incorporated in the future, either by Dyalog

or the user community. If the user wants to implement an additional content encoding

 MiServer

118

scheme, MiServer has a defined interface found in the extensions folder with which

new content encoder classes can be defined. The details of such an implementation go

beyond the scope of this manual, however one may look at the code in the deflate

and MildServer classes to see how content encoding is implemented.

G.7 Identifying Content Types
When a browser requests a file from a server, it knows very little about that file. Servers

are expected to include in the response a heading which identifies the “Media Type”,

formally known as MIME types, so the browser can appropriately handle the file. More

information on and the official list of Media Types can be found on the Internet

Assigned Numbers Authority website, here:
http://www.iana.org/assignments/media-types/index.html

MiServer has a server level configuration file,

ServerRoot/Core/ContentTypes.xml, which identifies the file extensions

which will be associated with certain content types.

The following is an excerpt of the configuration file in the example MiSite. Note that

each Media Type is contained in a <content> element, which itself contains two

elements:

 <ext> - a comma separated list of one or more extensions which will be

associated with the type

 <type> - a Media Type as defined by the official IANA list

Excerpt from ContentTypes.xml

<ContentTypes>

 <content>

 <ext>htm,html</ext>

 <type>text/html</type>

 </content>

 <content>

 <ext>css</ext>

 <type>text/css</type>

 </content>

 <content>

 <ext>jpeg,jpg</ext>

 <type>image/jpeg</type>

 </content>

</ContentTypes>

http://www.iana.org/assignments/media-types/index.html

 MiServer 119

Appendix H: Server.xml Settings

H.1 General Configuration Settings
Note: All the configuration settings in Server.xml are loaded into the

#.Boot.ms.Config namespace as variables.

Name Name of the MiSite

Default: MiServer

This is the name of your MiSite. While it does nothing on its own, it can be used in your

MiPages or MiPage template to set the title of the page.

req.Title #.Boot.ms.Config.Name

ClassName Name of the Server Skin

Default: DemoServer

ClassName sets the name of the class found in a scripted file in SiteRoot/Core.

This is the MiServer Skin which the site will use.

MildServer may be entered here to use the base server functionality

Lang Language of the MiSite

Lang specifies your HTML Web Document language, using ISO 639 language codes. It

is a website design best practice, as it helps accessibility software to properly decode

your site for users with disabilities.

A few examples:

 en – English

 it – Italian

 nl – Dutch

 ru – Russian

 fr –French

Default: en

 MiServer

120

Port The Port MiServer Listens On

This number is the port on which MiServer will listen for incoming connections. Please

make sure that this port is unused by other programs on your computer, as that will

cause MiServer to crash.

Default: 8080

NOTE: Port 80 is the default port number used by HTTP servers. If you don't already

have a web server installed you might want to use 80 to avoid having to specify a port

number when browsing the site. This may require additional permissions

SessionHandler Identify Session Handler

Default: SimpleSessions

The name of a session handling class, found in one of the scripted files in

ServerRoot/Extensions which contains the session handling extension.

Currently, SimpleSessions is the only session handler available for MiServer.

Authentication Identify Authentication Handler

The name of a user authentication extension class. It must be found in one of the

scripted files in ServerRoot/Extensions.

Default: SimpleAuth

Logger Identify Server Logger

The name of the server logger extension class. It must be found in one of the scripted

files in ServerRoot/Extensions.

Default: LumberJack

 MiServer 121

UseContentEncoding Toggle Content Encoding

This configuration parameter toggles the use of content encoding. A valid content

encoding extension will need to be specified in the SupportedEncodings

parameter as well.

Default: 1

Valid:

 1 – Enable Content Encoding

 0 – Disable Content Encoding

SupportedEncodings Encodings MiServer Supports

The name of a class containing a valid content encoder. If an encoding scheme of the

same name is specified by the request in its Accepted-Encodings header, the

scheme will be used on all outgoing content with the exception of compressed images.

Default: deflate

LogMessageLevel Sever level logging

MiServer logs a number of events and statuses. Each of these logs is a message

identified by a level number. The default behavior of MiServer is to output these

messages to the session. This setting allows you to throttle which messages are

displayed.

Default: -1

Valid:

 -1 – all messages

 0 – no messages

 The sum of any of the below messages have only those types of messages

displayed

o 1 – Important/Error Messages

o 2 – Warnings

o 4 – Informational

o 8 – Transactional (Related to HTTP requests)

o 16 – Compression Related Messages

 MiServer

122

Default Page Resource Called When None Specified

If a client navigates to a directory on your server but does not specify a resource,

MiServer checks to see if there is a file whose name matches the text of this parameter.

You must specify a default page. This name will be the name looked for in each

directory.

Default: index.dyalog

HTTPCacheTime Sever level logging

Sets the time in minutes in which static resources (HTML pages, script libraries, style

sheets, etc.) cued to be cached on the client side. If the browser has caching turned off,

this will have no effect.

Default: 0

Valid:

 0 – Off

 A number of whole minutes

IdleTimeOut Time Until Idle Behavior

You may wish to have behaviors that trigger when the server has been idle for a period

of time. A value in IdleTimeOut sets the amount of time the server is idle before it

executes the method MildServer.Idle.

Default: 0

Valid:

 0 – Off

 A number of whole minutes

 MiServer 123

H.2 Error Trapping / Debugging Configuration
Parameters

The following parameters are associated with DrA, MiServer’s error trapping utility.

Any DrA behavior requires TrapErrors to be set to 1.

TrapErrors Trap Server Errors

This setting determines whether errors which occur during runtime are trapped and

logged by the DrA utility or cause the server to crash. This setting must be turned on for

any of the following settings to be pertinent.

If set to 1, DrA will generate error logs in component files, storing them in the /DrA

directory. Additionally, it can be set to email those logs.

Default: 0

Valid:

 0 – Crash

 1 – Trap and log errors with the DrA utility

Debug Set Debugging Behavior

Debug allows the data collected by DrA to be displayed in the browser, providing

diagnostic information for the developer. Debug can also be set to allowing live editing

of the resource through the browser.

If a MiPage generates an untrapped error, a diagnostic page is returned that can detail

the error and allows the page to be edited from the browser window.

Note: TrapErrors must be 1 for the following behaviors.

Default: 0

Valid:

 0 – No Debug Info

 1 – Debug Info – The DrA utility generates a diagnostic page which includes

information about the MiPage

 2 – Allow Editing – The diagnostic page includes a link which opens the

editpage

 MiServer

124

MailMethod Set Debugging Behavior

DrA can email log messages. The email can be sent in a number of ways, including via

SMTP server, the .Net interface and Outlook.

Default: NONE

Valid:

 NONE – Do not send the error messages/logs via email

 SMTP – Uses an SMTP server to send mail, requires a valid value for the

SMTPGateway parameter

 NET – Uses .Net to send the email

 OUTLOOK – Sends the email with Microsoft Outlook

Note: The NET and OUTLOOK values both require the .Net framework to be installed

MailRecipient Set Debugging Behavior

The email address to which DRA will send the log.

Default: No Default Value

SMTPGateway SMTP Address

The SMTP gateway which DrA will use to email log messages, if MailMethod is set

to SMTP.

Default: No Default Value

 MiServer 125

Appendix I: The Future of MiServer

I.1 The MiServer Project
The MiServer Project is an open source project to promote the development of

MiServer and serve as a community building exercise.

We want people to use, talk about, modify, experiment with, and extend MiServer.

When they do, would like them to share their extensions, widgets and any other

modifications with the community at large. The MiServer page at APLWiki at

http://www.APLWiki.com/MiServer will be a repository for community

contributed content, as well as where we will distribute the ‘official’ release of

MiServer. We will also publish MiServer in the Dyalog Library.

We are excited to see what we can build together.

http://www.aplwiki.com/

