
The tool of thought for expert programming

Dyalog SALT

Reference Guide
SALT Version 2.40

Dyalog Limited

Minchens Court, Minchens Lane

Bramley, Hampshire

RG26 5BH

United Kingdom

tel: +44(0)1256 830030

fax: +44 (0)1256 830031

email: support@dyalog.com

http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited
Copyright  1982-2014

mailto:support@dyalog.com

Dyalog is a trademark of Dyalog Limited

Copyright  1982 - 2014 by Dyalog Limited.

All rights reserved.

Version 2.40

Revision: 20140617_240

No part of this publication may be reproduced in any form by any means without the prior written permission of Dyalog

Limited, Minchens Court, Minchens Lane, Bramley, Hampshire, RG26 5BH, United Kingdom.

Dyalog Limited makes no representations or warranties with respect to the contents hereof and specifically disclaims any

implied warranties of merchantability or fitness for any particular purpose. Dyalog Limited reserves the right to revise this

publication without notification.

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The Open Group.

Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

All other trademarks and copyrights are acknowledged.

Contents

1 ABOUT THIS DOCUMENT . 1
1.1 Audience ... 1

2 INTRODUCTION . 2
2.1 History ... 2

2.2 The Benefits of SALT.. 2

2.3 SALT as a Source Code Management System ... 3

3 USING SALT . 4
3.1 Installation .. 4

3.2 Configuration .. 4

3.3 Structure within Dyalog .. 4

3.4 File Format .. 5

3.4.1 .dyapp Files .. 6
3.4.2 .dyalog Files ... 6

3.5 Nameclasses .. 7

3.6 Tag Information ... 7

3.7 SALT Applications .. 7

3.7.1 Autostarting SALT Applications .. 7
3.8 Class Dependencies ... 8

3.8.1 Example ... 9
3.9 File Comparison... 9

3.10 Version Management .. 10

4 SALT FUNCTIONS . 11
4.1 Calling SALT Functions ... 12

4.1.1 Paths and Filenames .. 12
4.2 Boot ... 13

4.2.1 Syntax... 14
4.2.2 Use ... 14

4.3 Compare .. 14

4.3.1 Syntax... 15
4.3.2 Use ... 16

4.4 List ... 16

4.4.1 Syntax... 17
4.4.2 Use ... 17

4.5 Load ... 19

4.5.1 Syntax... 19
4.5.2 Use ... 20

4.6 New ... 21

4.6.1 Syntax... 21
4.6.2 Use ... 21

4.7 Open .. 22

4.7.1 Syntax... 22
4.7.2 Use ... 22

4.8 RemoveVersions ... 22

4.8.1 Syntax... 23
4.8.2 Use ... 23

4.9 Save ... 24

4.9.1 Syntax... 24
4.9.2 Use ... 25

4.10 Settings .. 26

4.10.1 Syntax... 26
4.10.2 Use ... 26

4.11 Snap... 29

4.11.1 Syntax... 29
4.11.2 Use ... 31

APPENDIX B CONFIGURATION OPTION S . 34

APPENDIX C SALT FUNCTIONS' SYNT AX . 38

 Dyalog SALT Reference Guide

1 About This Document

This document is intended as an introduction to SALT and a reference guide for its
functions, their syntax, modifiers and modifier values.

Although the behaviour of SALT is independent of the operating system and
whether a classic/Unicode installation is used, some of the information in this
document is operating system-specific (for example, the location of global
parameters). The differences between this document and the SALT experience on a
UNIX operating system are detailed in the Dyalog for UNIX Installation and
Configuration Guide and the Dyalog for UNIX User Guide.

1.1 Audience

It is assumed that the reader has a reasonable understanding of Dyalog and
possesses basic computer skills.

 Dyalog SALT Reference Guide 2

2 Introduction

SALT – the Simple APL Library Toolkit – is a technology for storing variables,
functions, operators, namespaces and classes in a human-readable form in standard
operating-system text files. These files can subsequently be manipulated using a
programming interface (API) or by a set of user commands.

User commands are separate from SALT but a group of them perform the same
actions as the SALT functions. For more information on user commands, see the
Dyalog User Commands Reference Guide.

2.1 History

The first version of SALT was introduced with Dyalog version 11.0; this introduced
scripts representing entire namespaces and classes. Each script was saved as an
individual file. However, for many APL users the individual function is a more natural
unit and SALT now has the capacity to store scripts representing functions and
variables. One of SALT's function, Snap, also enables the construction of a directory
structure corresponding to the namespace structure of a workspace, where each file
in the structure contains the script of an APL object in the workspace.

2.2 The Benefits of SALT

With SALT, the source code (script) of each APL object is stored in a single Unicode
(UTF-8) text file – these files can subsequently be loaded into an APL session to
recreate the code. Multiple versions of each file can be created and managed
locally, and third-party distributed version control and source code management
systems can act as repositories for them.

The common file format means that APL users can develop and share code in open
source libraries and the files (and their constituent APL source code) can be
manipulated by a wide variety of industry-standard tools. Each file can be
transferred to any version of Dyalog, easily imported into other APL systems,
emailed to another user, viewed and edited in a variety of editors or compared with
other files (or versions of the same file) using standard comparison tools.

SALT makes it straightforward to use code management systems like Microsoft
Visual Studio, Apache Subversion or Git to manage APL source code. SALT is
designed to allow the use of these tools without changing the way in which many
APL developers often trace and edit code into existence. Whenever a SALTed
function, class or namespace is edited using the built-in Dyalog code editor, the
changes can automatically be written back to the external source file and then
committed to the external repository at some later stage, as appropriate; it is not
necessary to bring the system back to a rest state to save code changes.

 Dyalog SALT Reference Guide 3

2.3 SALT as a Source Code Management System

SALT's mechanism for storing and comparing multiple versions of the same source
file uses a simple file naming technique that inserts version numbers into the
filenames. Although this is sufficient for small projects, for larger projects Dyalog
recommends the use of external source code management systems, for example,
Git, Apache Subversion, Concurrent Versions System (CVS) or Microsoft Visual
Studio; these include much more sophisticated mechanisms for managing branches,
releases and conflict resolution, essential when multiple people are working on the
same project.

 Dyalog SALT Reference Guide 4

3 Using SALT

This chapter introduces some of the concepts that underpin SALT in Dyalog.

3.1 Installation

SALT is installed automatically with Dyalog.

3.2 Configuration

By default, opening a Dyalog session window activates SALT (after start-up, having
SALT active has no performance impact on Dyalog). However, if SALT needs to be
disabled for any reason then it can be. Disabling SALT has no impact on Dyalog other
than the inability to automatically save edited code, for example, user commands
can still be run.

To determine whether SALT is enabled, check whether the class ⎕SE.SALT exists.

SALT can be enabled/disabled by enabling functions in the SALT workspace (a
specific workspace that should only be used for enabling/disabling SALT),
specifically:

)LOAD SALT
 enableSALT

or

)LOAD SALT
 disableSALT

respectively. Another way of enabling/disabling SALT is through the Configuration
dialog box – this allows additional configuration options to be set at the same time
(see Section A.2). Alternatively, configuration settings can be amended using the
Settings SALT function (see Section 4.10) or through the Microsoft Windows
Registry (see Section A.1).

This document assumes that SALT is enabled.

3.3 Structure within Dyalog

Within the <path to Dyalog>\SALT directory are five sub-directories:

 the core directory contains SALT's source code

 the lib directory contains SALT utilities

 the spice directory contains basic user commands (for more information on
user commands, see the Dyalog User Commands Reference Guide)

 the study directory contains code that is referenced in the Dyalog
documentation set

 the tools directory contains developer tools

 Dyalog SALT Reference Guide 5

The SALT directory can be renamed and/or moved to a different location. However,
in this situation an environment variable called SALT must be created to inform
Dyalog of the SALT directory's new name/location.

The structure under the SALT directory must not be modified, for example, the five
sub-directories must not be renamed.

To define the SALT environment variable:

1. In the Microsoft Windows menu, right-click on Computer and select
Properties from the drop-down menu.

The System window is displayed.

2. In the Control Panel Home pane, click Advanced system settings.

The System Properties window is displayed.

3. Navigate to the Advanced tab of the System Properties window.

4. Click Environment Variables....

The Environment Variables dialog box is displayed.

5. In the User variables for <user> pane, click New....

The New User Variable dialog box is displayed.

6. In the Variable name field, enter SALT.

7. In the Variable value field, enter <full path>\<directory name>.

8. Click OK to create the new environment variable and exit the New User

Variable dialog box.

9. Click OK to exit the Environment Variables dialog box.

10. Click OK to exit the System Properties window.

11. Close the System window.

SALT comprises a series of functions stored in one class and three namespaces, all
within the system namespace ⎕SE. When SALT is enabled, the latest versions of the
SALTUtils.dyalog, SALT.dyalog, Parser.dyalog and Utils.dyalog files are loaded from
the <path to Dyalog>\SALT\core directory into ⎕SE – these files must not be
removed if SALT is going to be used.

3.4 File Format

SALT works with any files, but files with the following extensions are of particular
interest:

 .dyapp – see Section 3.4.1.

 Dyalog SALT Reference Guide 6

 .dyalog – see Section 3.4.2.

If an extension is not specified when using SALT to save a script file, then .dyalog is
appended.

By default, Dyalog opens files with the .dyapp extension using dyalog.exe and files
with the .dyalog extension using a plain text editor (on Microsoft Windows, this is
the Microsoft Windows Notepad program).

Files with these extensions are Unicode text files that use UTF-8 character encoding.
This means that they can store any text that uses Unicode characters. This format
includes most of the world's languages and the Dyalog character set, and is
supported by many software applications. By using text files as a storage
mechanism, SALT and other tools written using Dyalog can be combined with
industry-standard tools for source code management.

APL objects that have been saved using SALT (that is, by calling either the Save or
the Snap function – see Sections 4.9 and 4.11 respectively) are referred to as
SALTed.

3.4.1 .dyapp Files

Files with the .dyapp extension comprise a .dyapp script, each line of which is either

a Load instruction, a Target instruction or a Run instruction:

 Load instructions specify the full path and filename of the file to be loaded

 Target instructions change the target environment

 Run instructions specify the name of the method to run

The .dyapp script must include at least one Run command.

For example, a .dyapp file could consist of the following lines:

Target #

Load study\files\ComponentFile

Load study\files\KeyedFile

Load MyApp

Run MyApp.Main

Files with the .dyapp extension can also contain a niladic or monadic function;
double-clicking on these files allows bootstrap loading of a Dyalog application.

Starting a .dyapp file that has been created by the user runs that file in a clear
workspace. If the .dyapp file has been created by the Snap SALT function then it
runs in a workspace with the same name as the workspace from which it was
created. For more information on the Snap SALT function, see Section 4.11.

3.4.2 .dyalog Files

Files with the .dyalog extension contain the source for a single APL object (that is,
variable, function, operator, interface, namespace or class) – SALT identifies the
content from the initial characters of the file (for more information on source files,
including declaration statements and permitted constructs, see the Dyalog
Programmer's Reference Guide).

 Dyalog SALT Reference Guide 7

3.5 Nameclasses

Nameclasses that can be manipulated using SALT functions comprise:

 nameclass 2 (arrays) – 2.1 (variables)

 nameclass 3 (functions) – 3.1 (tradfns), 3.2 (dfns)

 nameclass 4 (operators) – 4.1 (tradops), 4.2 (dops)

 nameclass 9 (namespaces) – 9.1 (namespaces), 9.4 (classes), 9.5
(interfaces)

The source code for each APL object is stored in a single Unicode text file with a
default file extension of .dyalog. SALT also supports the loading and starting of
applications from an application file with an extension of .dyapp.

3.6 Tag Information

When SALT loads an APL object, it tags that APL object with the source filename, the
version number (if applicable) and the last write time of the file when it was loaded
(which is used to prevent accidental updates of the same version by two different
users or from two different sessions). This tag information is recorded in different
locations depending on the nameclass:

 for nameclass 2 (variables) the tag information is recorded in a special
namespace under # called SALT_Var_Data. This comprises a table with one
row pertaining to each variable maintained in SALT.

 for nameclass 3 (functions) and nameclass 4 (operators) the tag
information is recorded in a special comment that is appended to the code.

 for nameclass 9 (namespaces) the tag information is recorded in variables
within a special namespace named SALT_Data. No tag information is
recorded for non-scripted namespaces.

The namespace names SALT_Data and SALT_Var_Data are reserved for this purpose
– no user-defined namespace should use these names.

3.7 SALT Applications

In addition to managing individual source code files, SALT can load and run
applications that are defined by files with an extension of .dyapp (for information
on the format of .dyapp files, see Section 3.4.1). SALT starts these applications in
Dyalog.

3.7.1 Autostarting SALT Applications

By default, every Dyalog session opens with a clear workspace – this default can be
changed by adding DYAPP="<path and name of a .dyapp file>" to

the command line that starts Dyalog. In this situation, SALT calls the Boot function
(see Section 4.2) on the specified .dyapp file.

To specify a .dyapp file in the command line:

1. Right-click on the Dyalog icon and select Properties from the pop-up menu
that is displayed.

The Properties dialog box is displayed.

 Dyalog SALT Reference Guide 8

2. In the shortcut tab of the Properties dialog box, add DYAPP="<path
and name of a .dyapp file>" to the end of the path specified in

the Target field.

3. Click OK to close the Properties dialog box.

Opening Dyalog from the icon now automatically loads and runs the
specified .dyapp file.

This means that a .dyapp file can be used to auto-start (load and run) Dyalog
applications that are based on SALT.

Once an application has been started in this way, additional source code can be
added using the ⎕CY system function or other mechanisms; it is not necessary for
SALT to be used to include additional source code.

3.8 Class Dependencies

Classes can be defined in a hierarchical structure. A single script file but does not
have to contain a complete class hierarchy, but can be limited to a single class with
zero or more dependencies. This means that a single script file can include a class
that has dependencies on another class without the class on which it is dependent
being present in the file.

However, SALT cannot successfully load a file that includes dependencies on
another class/namespace unless the depended-on class/namespace is already
present in the namespace that the file is being loaded to.

SALT does not perform any dependency analysis, therefore to ensure that the
necessary base class/namespace is loaded before a dependent class/namespace,
SALT must be instructed to load the pertinent script file to fulfil the
class's/namespace's dependency criteria. This is done by adding a statement in the
dependent class's/namespace's script file that takes the following format:

⍝∇:require path/filename.dyalog

where path/filename.dyalog is the full path and filename of the script file
containing the necessary base class/namespace.

Although this is defined as a comment, SALT follows the path and loads the specified
file, thereby satisfying the dependency. This instruction should be included
whenever a dependent class is present in a script file – SALT can progress through
multiple files and instructions.

The path can be set to = if the file is in the same directory as the script calling it.

 Dyalog SALT Reference Guide 9

3.8.1 Example

Class D is derived from base class B. In the .dyalog script file that defines class D, this
relationship is specified in the initial statement as:

:Class D : B
…
:endclass

Classes B and D both exist in the current workspace; this means that, when class D is
edited, the reference to class B is found immediately.

SALT is used to store classes B and D as text files.

If an attempt is made to load class D in a clear workspace, then the attempt will be
unsuccessful – class D cannot be created because base class B is not present in the
clear workspace (class B must be loaded before class D can be loaded).

To instruct SALT that class B is required and must be loaded whenever class D is
needed, the following line should be added anywhere within class D's declaration:

⍝∇:require <full path to class B file>/<class B
file>.dyalog

If B is located in the same directory as class D, then the path to class B can be
replaced with = in this line, that is:

⍝∇:require =/<class B file>.dyalog

The .dyalog script file that defines class D is, therefore, specified as:

:Class D : B
⍝∇:require =/<class B file>.dyalog
…
:endclass

In this situation, class D and class B can both be moved to a different directory
without having to change the .dyalog script file that defines class D.

3.9 File Comparison

SALT has an integral comparison tool that can identify the differences between two
different versions of the same script file (or two different script files) and display the
results in the active workspace. However, any Unicode-capable file comparison tool
that can be launched using a command which takes as its arguments the name of
the two files to be compared can be used instead.

To change the file comparison tool used by SALT, call the Settings SALT function
(see Section 4.10). For example:

⎕SE.SALT.Settings 'compare path/filename of tool'

To perform a comparison, SALT appends the names of the files to be compared and
calls the specified comparison tool. If this tool is not available, then the task will fail.

 Dyalog SALT Reference Guide 10

3.10 Version Management

By default, SALT maps an APL object to a single file – any change made to the APL
object is saved by overwriting that file. However, SALT allows versioning to be
applied to files. Versioning is switched on for a file by including the –version
modifier, optionally with a numerical modifier value, when saving that file (see
Section 4.9). In this situation, SALT saves the file with the specified name and adds a
version number immediately before the .dyalog extension, for example,
MyClass.3.dyalog. The List SALT function shows this number in [], for example,
[3] (see Section 4.4).

Each time that an APL object within a versioned file is changed, SALT creates a new
file with an incremented number. Over time, this can result in a large number of
superfluous files – the RemoveVersions SALT function can be used to delete a
specified range of these (see Section 4.8).

If a SALTed function is updated or created in any way other than through the editor
(for example, using ⎕FX or creating a single-line dfn or dop by direct assignment),
then SALT does not create a new version of the file.

Once versioning has been switched on for a file, it remains switched on until
specifically switched off. To switch off versioning and return to a single instance of
the file, the RemoveVersions SALT function must be called with the –all
modifier and without the –collapse modifier (see Section 4.8); this removes the
version number from the latest (highest numbered) file and deletes all other
versions of that file.

 Dyalog SALT Reference Guide 11

4 SALT Functions

SALT provides a set of useful functionality through the functions summarised in
Table 1.

An example including calls to all SALT's functions is described in Appendix D.

Table 1. SALT Functions

Function Description

Boot Executes a script file or loads and initialises an application
using a script instead of a saved workspace

Compare Compares two versions of an APL object or two different
APL objects

List Lists the files and/or directories in a specified location

Load Loads an APL object from a file

New Instantiates an object from a class without naming the class
in the workspace

Open Opens directories and files using the appropriate program

RemoveVersions Deletes a version (or range of versions) of a versioned file

Save Saves an APL object to a file

Settings Changes session/registry settings

Snap Saves all the new and modified APL objects in a workspace
to files

This chapter details these primitive functions, their syntax, modifiers and modifier
values.

 Dyalog SALT Reference Guide 12

4.1 Calling SALT Functions

SALT functions are called with the following syntax:

⎕SE.SALT.<function> <-modifiers/arguments>

Within this syntax, SALT and <function> are case sensitive but ⎕SE and
<-modifiers/arguments> are not.

Modifiers and their associated modifier values must be separated by the =
character, for example –version=3 or –format=APL. A modifier that cannot
have a modifier value but can only be present or absent is sometimes referred to as
a flag.

When multiple modifiers are included in a SALT function call, the order in which
they are specified is irrelevant.

When including a modifier, the name of the modifier does not always need to be
entered in full – as long as enough of the modifier's name is entered for it to be
interpreted unambiguously. For example, if a function has a modifier
called -version and does not have any other modifiers starting with the letter v
then the function can be successfully called with modifiers -version , -vers, -v
and so on.

Although functions can be successfully called with abbreviated modifiers, good
practice dictates that function calls within programs should always use the full name
of the modifier – this future-proofs the calling code against enhancements that
might otherwise result in ambiguity.

The notation used when describing the syntax for each of the functions in this
chapter is as follows:

 square brackets [] indicate an optional modifier

 curly braces {} indicate a mandatory modifier

 a vertical line | separates mutually exclusive modifiers

 italic text indicates an element that must be populated by the user

Calling any SALT function with an argument of '?' returns a list of all available
modifiers for that function. The Load and RemoveVersions functions return shy
results, so a ⊢ should also be included before ⎕SE to view the list of all available
modifiers, for example, ⊢⎕SE.SALT.Load '?'.

4.1.1 Paths and Filenames

Most SALT functions require the file on which they are to act to be specified by
providing a path and filename. The path can either be an absolute path or a relative
path following a specific convention:

 .\<relative path starting from the current directory>

To identify the current directory, enter the]CD user command – the value
returned is the absolute path to the current directory and can be replaced in
your absolute path by ..

 Dyalog SALT Reference Guide 13

For example, if]CD returns a value of c:\Users\Andy, then . is
c:\Users\Andy

 ..\<relative path starting from the directory that is the parent of the current
directory>

To identify the directory that is the parent of the current directory, enter
the]CD user command – the value returned is the absolute path to the current
directory. This, when truncated by one level, can be replaced in your absolute
path by ...

For example, if]CD returns a value of c:\Users\Andy, then .. is
c:\Users

 [ws]\<relative path starting from the directory containing the active
workspace>

A previous convention that used ⍵\ instead of [ws]\ has been deprecated;
although still supported in this version of SALT, support will be removed in a later
version and Dyalog does not encourage its use.

To identify the directory containing the active workspace, enter the)WSID
system command – the value returned is the absolute path and name of the
active workspace, the path component of which can be replaced in your absolute
path by [ws]\.

For example, if)WSID returns a value of c:\Users\Vince\myworkspace,
then [ws] is c:\Users\Vince

If)WSID returns a value that does not have a path (that is, only the name of the
workspace is returned), then [ws]\ acts in the same way as .\.

 <relative path starting from the first directory named in the workdir session
parameter (for details of this session parameter, see Section 4.10.2.1)>

To identify the first directory named in the workdir session parameter, enter the
⎕SE.SALT.Settings 'workdir' function call.

When specifying a path as an argument:

 SALT accepts either \ or / as the separator character

 if the path (or filename) contains space characters, then the entire path
and filename should be enclosed within single or double quotation marks

If no extension is specified for a filename, then the file is assumed to be a .dyalog
file (except with the Boot SALT function, when it is assumed to be a .dyapp file).

4.2 Boot

The Boot function either executes a .dyalog script file containing a function or uses
a .dyapp file to describe the loading and initialisation of an application instead of a
saved workspace.

 Dyalog SALT Reference Guide 14

If a .dyalog script file is used then it can only comprise a single niladic or monadic
traditional functions.

The Boot function does not return any results although the executed function
might; in this situation the result returned by the executed function is ignored.

4.2.1 Syntax

for a .dyapp file: ⎕SE.SALT.Boot '{path/filename}[.dyapp]'

for a .dyalog file: ⎕SE.SALT.Boot '{path/filename}
{.dyalog} [-xload]' ['argument']

where:

 path/filename is the full path and filename (without an extension) of
the script file to load and initialise.

 -xload prevents the information recorded by ⎕LX from being executed
when recreating a workspace.

 argument is the right hand argument to supply to the monadic function
in the .dyalog script file.

4.2.2 Use

When the Boot function is called to execute a .dyalog script file containing a
function, the function could be a monadic traditional function. In this situation the
function requires a right argument before it can be executed. For example:

⎕SE.SALT.Boot 'c:\longpath\myFn.dyalog' 'ABC'

The Boot function passes the value 'ABC' as a right argument to the function
resulting from the load of the myFn.dyalog. No result is required, so any returned
value is discarded. If the function within the myFn.dyalog file does not take an
argument then the specified argument is ignored.

In practice, the Boot function is often used in conjunction with the Snap function
(see Section 4.11). In this situation the code includes a statement to execute ⎕LX.
To prevent ⎕LX from executing, the modifier –xload must be specified.

4.3 Compare

Knowledge of the differences between two different versions of the same file or
between two similar but distinct files can be a useful analytical tool. The Compare
function can be called to perform either of these comparisons as long as the
specified files are scripted.

SALT's integral comparison tool can be used to perform the analysis or a comparison
tool of the user's choice can be specified instead. If SALT's integral comparison tool
is used, then the output produced states the APL objects compared and emphasises
the lines of text that differ between the two files. An example output generated
using SALT's integral comparison tool is shown in Figure 1.

 Dyalog SALT Reference Guide 15

Figure 1. Example output from SALT's integral comparison tool

4.3.1 Syntax

⎕SE.SALT.Compare '{path/filename} [-version{=vers}]
[-using{=program}] [-permanent] [-window{=lines}] [-trim]
[-symbols{=symbols}]'

where:

 path/filename specifies the full path and filename of the versioned
APL object whose versions are to be compared. If two different APL objects
are to be compared, then the full path and filename of each APL object
should be specified separated by a space character.

 -version must have a modifier value (vers) that specifies the versions
of the file that are to be compared:

o a modifier value of n compares the previous version (that is n-1)
with version n

o a modifier value of n1 n2 compares version n1 with version n2
o a modifier value of ws compares the version currently in the

active workspace with the latest saved version
o a modifier value of ws n compares the version currently in the

active workspace with version n
If this modifier is not included then the two most recent (highest
numbered) versions of the file are compared.

 -using must have a modifier value (program) that specifies the full path
of the program to use to perform the comparison. If this modifier is not
specified then SALT performs the comparison using the comparison tool
named in the compare session parameter (for details of this session
parameter, see Section 4.10.2.1).

 -permanent changes the program named in the compare session
parameter to be the program specified by the –using modifier.

 -window must have a modifier value (lines) that specifies the number
of lines of code from the script to display in the results of the comparison
before and after each line of the script that has been changed. If this
modifier is not specified then the default value of 2 is used. Only relevant if
SALT's integral comparison tool is being used.

 -trim removes leading and trailing spaces from each line of the script
prior to performing the comparison. Only relevant if SALT's integral
comparison tool is being used.

 Dyalog SALT Reference Guide 16

 -symbols must have a modifier value (symbols) that specifies the two
symbols to use in the results of the comparison to indicate whether a line
has been deleted or inserted (by default these are - and + respectively).
Must be used with a modifier value comprising the deletion indicator
followed by the addition indicator without a separating space, for example,
-+. Only relevant if SALT's integral comparison tool is being used.

4.3.2 Use

When specifying the –version modifier, a modifier value of n1 n2 compares
version n1 with version n2. If n is a negative number then it is subtracted from the
highest version number. For example, if there are 5 versions of the specified file,
then -version=1 ¯3 compares version 1 with version 2.

The –version modifier can also be used when two different files are compared. In
this situation, a modifier value that specifies one version number results in that
version of each of the files being compared. For example:

⎕SE.SALT.Compare '\firstpath\firstfile.dyalog
\secondpath\secondfile.dyalog –version=3'

This compares firstfile.3.dyalog with secondfile.3.dyalog. However, if the modifier
value specifies two version numbers, then the first version number is applied to the
first specified APL object and the second version number is applied to the second
specified APL object – these two files are then compared. For example:

⎕SE.SALT.Compare '\firstpath\firstfile.dyalog
\secondpath\secondfile.dyalog –version=3 7'

To perform a comparison using (for example) Beyond Compare (a comparison tool
available from http://www.scootersoftware.com/download.php) rather than SALT's
integral comparison tool, specify the location and executable name for your Beyond
Compare installation; make this the permanent comparison tool by including
the -permanent modifier in the call. For example:

⎕SE.SALT.Compare '[ws]\classes\firstclass.dyalog
–using="c:\Program Files\BC\BC2.exe" -permanent'

4.4 List

The directories and .dyalog files under a specified directory can be listed using the
List function. By default, a single path leading to a directory name returns the
following information for the directories and .dyalog files in the specified location:

 type (<DIR> for directories, blank for .dyalog files)

 name

 version (the number of versions of the file) – files only

 size (in bytes) – files only

 date of last update

The same information is returned if the path leads to a .dyalog file, but relates to
that file only.

This information can be filtered or amended using modifiers.

http://www.scootersoftware.com/download.php

 Dyalog SALT Reference Guide 17

4.4.1 Syntax

⎕SE.SALT.List '[directory|.dyalog file] [-folders]
[-versions] [-extension[=ext]] [-full[=value]]
[-recursive] [-raw] [-type]'

where:

 directory|.dyalog file specifies either the full path to the
directory whose contents are to be listed or the .dyalog file whose versions
are to be listed. If no path is specified then the first directory named in the
workdir session parameter is used (for details of this session parameter,
see Section 4.10.2.1). If the path specifies a .dyalog file then the extension
does not have to be included.

 -folders restricts the list to directories.

 -versions displays each item's version number in the list. If this modifier
is not specified, then versioned files are indicated by having the total
number of versions displayed in the version column.

 -extension can have a modifier value (ext) that restricts the files
included in the list to files with the extension specified by the modifier
value. If no modifier value is specified or the modifier value is * then all the
files are listed with their extension displayed. Unless this modifier is
specified, no extensions are displayed in the list. Only one extension can be
specified. Wildcards cannot be used.

 -full can have a modifier value (value) that specifies the pathname
origin for each item's Name information in the list:

o a modifier value of 1 (or no modifier value) displays the full
pathname from the specified directory.

o a modifier value of 2 displays the full pathname from root.

 -recursive expands the list to include all directories and files within the
specified directory recursively.

 -raw removes the titles and automatic formatting from all items in the list,
thereby making it easier for APL functions to process the returned data.

 -type displays the type of each .dyalog file. SALT examines a file's script
to identify its content from the start and end statements, determining
whether it comprises a variable, function, operator, interface, namespace

or class – if SALT cannot identify the type, then a value of Fn is reported.
Although this information can be useful, the –type modifier adversely
impacts performance.

For more information on scripted files, including declaration statements and
permitted constructs, see the Dyalog Programmer's Reference Guide.

4.4.2 Use

Calling the List function without an argument returns a list of all the top-level
directories and .dyalog files within the first directory named in the workdir session
parameter (for details of this session parameter, see Section 4.10.2.1). For example:

⎕SE.SALT.List ''

Type Name Versions Size Last Update

<DIR> core 2013/04/22 16:02:34

<DIR> lib 2013/04/22 16:02:34

<DIR> spice 2013/04/22 16:02:34

 Dyalog SALT Reference Guide 18

<DIR> study 2013/04/22 16:02:34

<DIR> tools 2013/04/22 16:02:34

This is the content of the SALT directory itself. For more information on this content,
modifiers must be specified. The -recursive modifier can be included in the call
to provide details of the content of each directory and the -type modifier can be
included to identify the type of APL object in each .dyalog file, for example:

⎕SE.SALT.List '-recursive -type'

Type Name Versions Size Last Update

<DIR> core 2013/04/22 16:02:34

Cl core\Parser 11442 2013/01/30 17:15:20

Cl core\SALT 61386 2013/01/30 17:15:20

Ns core\SALTUtils 64605 2013/01/30 17:15:20

…

…

Cl tools\special\asymmetric 8234 2013/01/30 17:15:18

Ns tools\special\crTools 1163 2013/01/30 17:15:18

Cl tools\special\symmetric 7446 2013/01/30 17:15:18

Other modifiers, such as –folders and –raw, can change the filters applied to the
list and how it is presented. Two of the modifiers that can be specified with the
Load function can take modifier values. The -full modifier specifies the
pathname origin for each item's Name information in the list – setting this to 2
(when no value is supplied it is assumed to be 1) means that the full pathname from
root is displayed instead of the full pathname from the specified directory. For
example:

⎕SE.SALT.List '–full=2'

This changes the Name information in the list from core, lib, spice, study and
tools (see first example output) to:

C:\Program Files\Dyalog\Dyalog APL 13.2 Unicode\SALT\core

C:\Program Files\Dyalog\Dyalog APL 13.2 Unicode\SALT\lib

C:\Program Files\Dyalog\Dyalog APL 13.2 Unicode\SALT\spice

C:\Program Files\Dyalog\Dyalog APL 13.2 Unicode\SALT\study

C:\Program Files\Dyalog\Dyalog APL 13.2 Unicode\SALT\tools

The -extension modifier can be specified without a modifier value to include all
files in the list with their extensions displayed (effectively, a directory listing).
Alternatively, a modifier value of a specific extension can be included to restrict the
files included in the list to those that match the specified extension. For example:

⎕SE.SALT.List '\project\test -extension'

Type Name Versions Size Last Update

 first.dyalog 19130 2013/01/30 17:16:31

 process.docx 14632 2013/01/30 17:16:31

 review.docx 75776 2013/01/30 17:16:31

 Dyalog.flprj 359 2013/01/30 17:16:31

<DIR> images 11731 2013/01/30 17:16:31

⎕SE.SALT.List '\project\test –extension=docx'

Type Name Versions Size Last Update

 process 14632 2013/01/30 17:16:31

 review 75776 2013/01/30 17:16:31

<DIR> images 11731 2013/01/30 17:16:31

 Dyalog SALT Reference Guide 19

4.5 Load

The Load function can be called to load the latest (highest numbered) version of an
APL object into the namespace that the Load function is called from. By default,
the Load function maintains the link between the loaded APL object and its source
and assigns the loaded APL object a global name. Various modifiers can be specified
to qualify this functionality.

Depending on the nameclass of the APL object loaded, the Load function returns a
shy result of:

 a reference to the loaded namespace(s)/class

 the name of the function/variable/operator loaded

4.5.1 Syntax

⎕SE.SALT.Load '{path/name} [-target{=namespace}]
[-noname] [-disperse[=objects]|-nolink] [-protect]
[-version{=vers}] [-source[=no]]'

where:

 path/name specifies either the full path and name of the file to load or
the full path and single pattern that identifies the APL objects to load (a
single pattern can result in multiple APL objects being loaded).

 -target must have a modifier value (namespace) that specifies the full
path and name of the appropriate namespace into which the APL object
should be loaded. If this modifier is not specified then the APL object is
loaded into the namespace that the Load function is called from. If the
specified namespace does not exist (or is not a namespace), then the
function call fails.

 -noname prevents a global name from being created in the namespace for
the APL object being loaded.

 -disperse imports the APL objects within the specified file directly into
the target namespace rather than importing the namespace contained by
the specified file. When used without a modifier value, all objects in the
specified namespace are imported into the target namespace along with
the values of the system variables ⎕CT, ⎕FR, ⎕IO, ⎕ML, ⎕PP and ⎕WX.
If only a subset of the APL objects in the specified file are required, then
the modifier value (objects) can be included to state which APL object or
APL objects (separated with the , character) are required. If this modifier is
specified then a shy message is returned by the Load function indicating
the number of APL objects successfully loaded. Only relevant if the file
loaded contains a namespace.

 -nolink removes the link between a loaded APL object and its source file.
Using this modifier prevents SALT from managing the source for the APL
object after loading it into the workspace – changes to the APL object will
not be automatically saved until either the Save or Snap function has
been called to save the APL object again.

 -protect prevents the specified APL object from being loaded if an APL
object of that name is already defined in the namespace that the APL
object is being loaded into. This modifier protects existing APL objects from
being redefined.

 -version must have a modifier value (vers) that specifies the version
to load. Only relevant if a version other than the latest version is required.

 Dyalog SALT Reference Guide 20

 -source returns the specified namespace as a nested vector instead of
defining it in the workspace. If a modifier value of no is included, then a
non-scripted version of the scripted namespace is loaded. Only relevant if
the file loaded contains a namespace.

4.5.2 Use

The Load function takes either a filename or a filename pattern as its argument
and retrieves the APL object defined in the specified path/file or all APL objects
defined in files that match the specified filename pattern in the specified path. For
example, the function call:

⎕SE.SALT.Load 'study\files\ComponentFile'

loads the APL object defined in the ComponentFile file (containing a class) from the
study\files directory into the namespace, and the function call:

⎕SE.SALT.Load '\myutils\gui*'

loads all the APL objects that are defined in files with names starting with GUI in the
\myutils directory into the current namespace.

If the APL object should be loaded into a namespace other than the namespace that
the Load function is called from, then the modifier -target must be used with a
modifier value that defines the destination namespace. For example:

⎕SE.SALT.Load 'study\files\ComponentFile -Target=MyFiles'

loads the APL object defined in the ComponentFile file from the study\files
directory into the MyFiles namespace within the current namespace (a relative path
was specified).

By default, the loaded APL object is assigned a global name pertaining to its original
APL object. To instantiate a class in the ComponentFile file in the study\files
directory using the argument c:\temp\cfile without naming the
ComponentFile class in the namespace, either the Load function or the New
function can be called. The following statement performs this action by calling the
Load function:

⎕NEW (⎕SE.SALT.Load 'study\files\ComponentFile -NoName')
'c:\temp\cfile'

Alternatively, the following statement performs this action in one step rather than
two by calling the New function (see Section 4.6):

⎕SE.SALT.New 'study\files\ComponentFile' 'c:\temp\cfile'

An APL object can be a namespace containing other APL objects, only a subset of
which should be loaded. In this situation, the –disperse modifier can specify
exactly which APL objects should be extracted from the specified file and loaded
into the target namespace. For example, if a namespace in file NS1 contains APL
objects called Obj1, Obj2, Obj3, Obj4, Obj5 and Obj6, then the following command
would bring the APL objects with even numbers in their names into the current
namespace:

⎕SE.SALT.Load 'study\files\NS1 –disperse=Obj2,Obj4,Obj6'

 Dyalog SALT Reference Guide 21

If the –disperse modifier is not used, then the –nolink modifier can be
specified (these modifiers are mutually exclusive). This removes the link between a
loaded APL object and its source file, thereby preventing SALT from managing the
source for the APL object after loading it into the workspace. It has the effect that
editing the APL object does not result in automatic saves; either the Save or Snap
function has to be called to save the APL object again.

4.6 New

When instantiating an object from a class (object oriented programming), it can be
beneficial to avoid naming the class in the namespace; this avoids potential name
clashes. Although this can be achieved by calling the Load function within the ⎕NEW
system function (see Section 4.6.2), it is more computationally efficient to call the
New function.

The New function returns an instance of the class, for example, #.[classname]

4.6.1 Syntax

⎕SE.SALT.New '{path/filename} [-version{=vers}]'
['arg|(args)']

where:

 path/filename is the full path and filename of the class to instantiate.

 -version must have a modifier value (vers) that specifies the version
number of the .dyalog file to instantiate the object from. If no version
number is specified and the file containing the class to instantiate is a
versioned file, then the latest (highest numbered) version is used.

 arg specifies any arguments needed to instantiate the class (in object
oriented terminology this specifies the arguments that are passed to the
constructor of the class). If more than one argument is required, then the
list of arguments must be contained within parentheses.

4.6.2 Use

To instantiate an object from the ComponentFile class in the study\files directory
using the argument c:\temp\cfile without naming the ComponentFile class in
the namespace, either the Load function or the New function can be called. The
following statement performs this action by calling the Load function (see Section
4.6):

⎕NEW (⎕SE.SALT.Load 'study\files\ComponentFile -NoName')
'c:\temp\cfile'

Alternatively, the following statement performs this action in one step rather than
two by calling the New function:

⎕SE.SALT.New 'study\files\ComponentFile' 'c:\temp\cfile'

 Dyalog SALT Reference Guide 22

4.7 Open

Both .dyalog files and directories can be opened using SALT. The default program
used for this depends on whether a .dyalog file or directory is specified:

 .dyalog files are opened using the Microsoft Windows Notepad program

 directories are opened using the Microsoft Windows Explorer program

These default programs can be overwritten using the Open function's modifiers.

Other files, including files that are external to Dyalog, can be opened using the Open
function; SALT recognises the file's extension and opens the file with the appropriate
program.

4.7.1 Syntax

⎕SE.SALT.Open '{path}[filename] [–using{=program}]
[-permanent]'

where:

 path/filename specifies the path to the directory or file to be opened –
for a file its name and extension must also be specified.

 -using must have a modifier value (program) that specifies the full path
of the program with which the file should be opened. Only relevant when a
file is specified.

 -permanent changes the program that is always used to open the file to
be the program specified by the –using modifier. Only relevant when a
file is specified.

4.7.2 Use

The Open function recognises .dcf files as Dyalog component files; calling the Open
function on a .dcf file performs an exclusive file tie (that is, ⎕FTIE) on the file and
returns the file tie number. In this situation, no modifiers can be specified.

For a file that is external to Dyalog (for example, .xls), assigning the –using
modifier a modifier value of apl performs a native file tie (that is, ⎕NTIE) on the
file instead of opening it with the appropriate program and returns the file tie
number with which the stream of bits representing the content of the file can be
read from Dyalog.

4.8 RemoveVersions

Editing an APL object that has been saved within a versioned file results in SALT
saving a new version of the file (unless specifically instructed not to). This can result
in numerous file versions being created. Once a stable version of the file has been
achieved, these superfluous versions can be deleted using the RemoveVersions
function.

The RemoveVersions function returns the number of versions that have been
deleted.

 Dyalog SALT Reference Guide 23

4.8.1 Syntax

⎕SE.SALT.RemoveVersions '{path/filename}[.extension]
[-version{=vers}|-all] [-collapse] [-noprompt]'

where:

 path/filename specifies the full path and filename (without the version
number) of the versioned file that has superfluous versions.

 extension indicates the file's entension. If no extension is specified then
an extension of .dyalog is used.

 -version must have a modifier value (vers) that specifies the version
or range of versions to delete:

o n only version n is deleted
o >n all versions higher than n are deleted
o <n all versions lower than n are deleted
o n-m all versions in the range n to m (inclusive) are deleted

 -all removes all versions except the latest version.

 -collapse renumbers the latest version of the file with the lowest
available version number following the specified deletion. Only relevant in
either of the following situations:

o all versions except the latest one are deleted, either by specifying
the –version modifer with a modifier value of =>0 or by
specifiying the –all modifier

o trailing versions except the last one are deleted by specifying the
–version modifer with a modifier value of =>N – in this
situation the remaining file is assigned the lowest available version
number and versioning resumes from this number.

If all the versions are removed (either by specifying the -all modifier or
by specifying –version=>0) but the –collapse modifier is not
specified, then this has the effect of switching off versioning for the file.

 -noprompt implicitly accepts all the changes that the call to the
RemoveVersions function makes – omitting this modifier means that
the user is prompted to confirm the deletion.

4.8.2 Use

Inclusion of the –version modifier with the range modifier value deletes a
specified version (or range of versions) of that file. In this situation, SALT deletes all
versions of the file within the specified range. For example:

⎕SE.SALT.RemoveVersions 'path/MyClass –version=<5'

deletes all versions of the MyClass.dyalog file that have a version number less than
5. If there were only five versions of the MyClass.dyalog prior to the deletion, then
the single remaining file retains its name of MyClass.5.dyalog. To rename this file so
that it has a version number of 1, the –collapse modifier can be specified:

⎕SE.SALT.RemoveVersions 'path/MyClass -version=>0
-collapse'

The single remaining file is now called MyClass.1.dyalog – versioning is still switched
on for this file, so the next time it is saved a new MyClass.2.dyalog version is
created.

 Dyalog SALT Reference Guide 24

If the –all modifier had been specified instead of the –version modifier then
specifying the –collapse modifier has the same effect as when
specifying -version to remove all versions except the latest one, that is:

⎕SE.SALT.RemoveVersions 'path/MyClass –all –collapse'

results in a single remaining file called MyClass.1.dyalog – versioning is still switched
on for this file, so the next time it is saved a new MyClass.2.dyalog version is
created. However, if the –collapse modifier is not specified with the –all
modifier (or with the –version=>0 modifier) then the version number is removed
from the single remaining file and versioning is switched off.

4.9 Save

When an APL object is ready to be saved, the Save function can be called to save it
in a native text file.

Save cannot save APL objects of certain nameclasses – for a list of the types of
nameclass that can be saved see Section 3.5.

The first time that an APL object is saved, the location must be specified. If the APL
object has already been saved by calling the Save/Snap function, then subsequent
saves of that APL object do not need to specify a location – by default, it is saved in
the same location as it was previously (SALT achieves this using the APL object's tag
information). If a different location is specified and the file is versioned, then a new
version number must be specified for versioning to continue. For non-scripted
namespaces a location must be specified every time the Save function is called as
SALT cannot retain tag information on non-scripted APL objects.

When saving a SALTed file, Dyalog recommends that the chosen filename is
restricted to alphanumeric characters as non-alphanumeric characters can cause
issues on some operating systems.

The Save function returns the full path and name of the file that it saves.

When defining an APL object, it is good practice to define any system settings that
could affect the object (for example, ⎕IO and ⎕ML) at the start of the script. If this
is not done then the script picks up these values from the environment, which could
result in unexpected behaviour.

4.9.1 Syntax

⎕SE.SALT.Save '{objectname} [path/filename][.extension]
[-version[=vers]] [-convert] [-banner{=top}] [-noprompt]
[-makedir] [-format[=APL|XML]]'

where:

 objectname is the name of the APL object that is to be saved.

 path/filename is the full path and filename (without an extension)
under which to save the script file. If the file has previously been saved
through SALT, then this can be omitted; in this situation the file will be
saved to the same location as before by default.

 extension indicates the file's entension. If no extension is specified then
an extension of .dyalog is used.

 Dyalog SALT Reference Guide 25

 -version turns on versioning for the file (see Section 3.10). Optionally it
can take a modifier value (vers) that identifies a specific version number
to use (this is included in the file's name) – if this modifier value is not
included then a value one greater than the highest value currently saved is
used.

 -convert retains the scripted format given to a previously unscripted
namespace by SALT. Only relevant when saving a previously unscripted
namespace.

 -banner adds a banner to the top of a namespace when it is saved,
irrespective of whether –convert is specified. Must have a modifier
value (top) that either specifies the text to use or executes (⍎) a variable
containing the text to use. Only relevant when saving unscripted
namespaces.

 -noprompt specifies that SALT is not to prompt the user for confirmation
before saving the file each time its content is amended. Specifying this
modifier means that the file (or a new version of the file is versioning is on)
will be saved automatically every time the content is amended. This
modifier can be specified with unversioned or versioned files.

 -makedir creates any necessary directories to satisfy the specified path.

 -format identifies the format in which to save the APL object. By default,
APL objects are saved in XML format, but a modifier value (APL) can be
specified to save the APL object in APL format.

An alternative syntax for the Save function is maintained for backwards
compatibility purposes but should not be used for new functions – it is scheduled
for removal at a future release:

⎕SE.SALT.Save [reference] '[path/filename][.extension]
[-version] [-convert] [-banner] [-noprompt] [-makedir]
[-format]'

where reference is the APL object reference – this is mandatory if the
namespace being saved does not have a name. Only relevant for nameclass 9 APL
objects.

4.9.2 Use

Inclusion of the –version modifier when saving a file turns on versioning for that
file. In this situation, SALT saves the file as a new file with the specified name and
adds a version number immediately before the .dyalog extension – if the modifier
value number is included then the number specified becomes the version number,
otherwise 1 is used. For example:

⎕SE.SALT.Save 'MyClass path\MyClassDir –version=3'

saves the APL object in the specified path as a script file called MyClass.3.dyalog. If
a file of that name already exists and the -noprompt modifier has not been
specified then SALT will ask for confirmation to overwrite the file; if -noprompt
has been specified then the file will be overwritten automatically.

When saving an unscripted namespace, the Save function constructs a temporary
script that is discarded after the namespace has been saved (unless the –convert
modifier is specified). This script is used to save the namespace as a scripted
namespace. Specifying the –convert modifier retains the constructed script; this

 Dyalog SALT Reference Guide 26

means that SALT can identify (and save) subsequent changes made to the
namespace through the editor.

The –banner modifier adds the specified text to the top of the converted
namespace when saving it. For a single line banner, the text can be entered directly
as a modifier value, for example, -banner=text. If the required banner text is
multiple lines in length then it must be defined as a variable and the modifier value
must be set to execute that variable. For example, a variable called TITLE can be
defined in the workspace and assigned to be:

* Copyright ABC XYZ *
* 2000 - 2013 *

Setting the modifier –banner=⍎TITLE makes the defined text block appear at
the top of the namespace in the file.

If the APL object being saved is a variable, then the format in which it is saved can
be a valid consideration. Serialising variables using the APL format can result in
executable expressions that exceed Dyalog's limit for executing an APL statement,
especially if the variable comprises a nested array. As an alternative in this situation,
the XML format can be used. Changing from the default XML format to APL format is
achieved by specifying the -format modifier with the APL modifier value.

4.10 Settings

Some of SALT's functions take values from global parameters. These are retrieved
from the Microsoft Windows Registry and loaded into SALT at the start of a Dyalog
session. They remain active for the session unless they are modified – one way in
which they can be modified is by calling the Settings function (for other ways to
modify these parameters see Appendix B).

4.10.1 Syntax

⎕SE.SALT.Settings '[parameter] [value] [-reset]
[-permanent]'

where:

 parameter specifies the session parameter to retrieve/update (see
Section 4.10.2.1).

 value specifies a value for the session parameter.

 -reset reloads the values from the Microsoft Windows Registry,
replacing the session parameter values with the global parameter values.

 -permanent saves the values of the session parameters to the Microsoft
Windows Registry, replacing the global parameter values.

4.10.2 Use

Calling the Settings function without any arguments or modifiers returns a list of
all the session parameters and their current values. For example:

⎕SE.SALT.Settings ''

Calling the Settings function with a single argument (one parameter only)
returns the current session value for that parameter.

 Dyalog SALT Reference Guide 27

A session parameter can be modified by calling the Settings function with a
single argument that comprises a parameter and a value. For example:

⎕SE.SALT.Settings 'editor \myprogs\vi.exe'

This modified session parameter is active throughout the Dyalog session but is not
saved for subsequent Dyalog sessions unless the value is propagated to the global
parameter in the Microsoft Windows Registry by specifying the -permanent
modifier. For example:

⎕SE.SALT.Settings 'editor -permanent'

Alternatively, if the value is found to be inferior to the default value, then the
session parameter can be replaced with the global parameter using the –reset
modifier. For example:

⎕SE.SALT.Settings 'editor -reset'

4.10.2.1 Parameters

The possible session parameters are:

 cmddir – specifies the full path to the directory (or list of directories) from
which to retrieve user commands. If multiple directories are specified, then
SALT searches them in order and retrieves the first user command it finds
with the specified name.

Multiple directories are specified using the ∘ character as a
separator (; is also accepted as a separator for legacy
reasons).

Multiple directories are specified using the ∘ character as a
separator.

To add a new directory to the list of directories, precede its path with a ,
character. For example:
⎕SE.SALT.Settings 'cmddir ,\ucmd1\c1'
This adds the new directory to the start of the list of directories and it
becomes the default location for fetching user commands.
To remove a directory from the list of directories, precede its path with a ~
character. For example:
⎕SE.SALT.Settings 'cmddir ~\ucmd1\c1'

 compare – states the full path to the comparison program to use.

 debug – specifies the level of debugging that SALT should use. Possible
values are:

o 0 : no debugging and report errors in the environment
o >0 : stop if an error is encountered

 editor – states the full path to the editing tool to use.

 Dyalog SALT Reference Guide 28

 edprompt – specifies the frequency at which a user is prompted for
confirmation to overwrite the file when modifying a script or remove a file
when deleting versions. Possible values are:

o 0 or n : the user is never prompted for confirmation
o 1 or y: the user is prompted for confirmation each time a script is

modified or a version is deleted

 mapprimitives – specifies whether the key function (⌸), variant (⍠) and
rank operator (⍤) glyphs are automatically translated from Unicode into
their ⎕Uxxxx form classic mode equivalents when loading/saving scripts.
Possible values are:

o 0 : do not translate the glyphs – the APL interpreter will fail if
these Unicode glyphs are present in a script in classic mode or if
their ⎕Uxxxx form is used in a Unicode environment.

o 1 : automatically translate the glyphs, making code fully portable
between Unicode and classic versions of Dyalog.

 newcmd – specifies when new user commands become effective in the
user interface. Possible values are:

o auto : new commands are detected automatically
o manual : new commands do not become effective until the user

command]URESET is run. For more information on user
commands, see the Dyalog User Commands Reference Guide.

 track – specifies the element tracking mechanism to use. By default, this
session parameter is empty. Possible values are:

o atinfo : retrieves the function, user and timestamp information (as
recorded by the monadic system function ⎕AT) pertaining to the
last time that the function was saved. The information is
reinstated when a function is loaded into the workspace by SALT.
Can only be used for traditional functions and operators.

 varfmt – specifies the format in which variables are saved. Possible values
are:

o APL
o XML

 workdir – specifies the full path to the directory (or list of directories) from
which to retrieve files. If multiple directories are specified, then SALT
searches them in order and retrieves the first file it finds with the specified
name.

Multiple directories are specified using the ∘ character as a
separator (; is also accepted as a separator for legacy
reasons).

Multiple directories are specified using the ∘ character as a
separator.

To add a new directory to the list of directories, precede its path with a ,
character. For example:
⎕SE.SALT.Settings 'workdir ,\proj\p1'
This adds the new directory to the start of the list of directories and it
becomes the default location for storing files.
To remove a directory from the list of directories, precede its path with a ~
character. For example:

 Dyalog SALT Reference Guide 29

⎕SE.SALT.Settings 'workdir ~\proj\p1'

SALT's files are always assumed to be in [SALT] (by default, this is [DYALOG]/SALT)
even if that directory is not explicitly included in the list of working directories (that
is, workdir).

4.11 Snap

Although the Save function enables individual APL objects to be saved, saving all
the APL objects in a workspace using the Save function would be a repetitive
process. Instead, the Snap function can be called to perform a bulk save of every
APL object in the workspace in individual files – all new APL objects are saved to the
specified directory and all modified APL objects are saved to the appropriate
location.

Snap cannot save APL objects of certain nameclasses – for a list of the nameclasses
that can be saved see Section 3.5.

To do this, the Snap function identifies all APL objects that need to be saved. It
then determines which ones have been modified and which ones are new by
reviewing the special tag associated with each APL object (see Section 3.6 for tag
information). If an APL object needs to be saved, or if SALT cannot determine if an
APL object needs to be saved (for example, a non-scripted namespaces), then the
Snap function calls the Save function to save that APL object (see Section 4.9 for
Save function information).

When saving a SALTed file, Dyalog recommends that the chosen filename is
restricted to alphanumeric characters as non-alphanumeric characters can cause
issues on some operating systems.

The Snap function returns a list of the names of the APL objects that have been
successfully saved. If the Snap function stops for any reason, then everything in the
same Snap call that has already been saved remains saved and a list of the names
of the APL objects that have been successfully saved is returned.

When defining an APL object, it is good practice to define any system settings that
could affect the object (for example, ⎕IO and ⎕ML) at the start of the script. If this
is not done then the script picks up these values from the environment, which could
result in unexpected behaviour.

4.11.1 Syntax

⎕SE.SALT.Snap '[fullpath] [–class{=nameclass}] [–convert]
[-banner{=top}] [–fileprefix{=prefix}] [-loadfn[=path]]
[-nosource] [–noprompt] [-makedir] [-show[=details]]
[-patterns{=string}] [-version[=vers]] [-∆⍙{=chars}]
[-format[=APL|XML]]'

where:

 fullpath specifies the full path under which to save the new script files
(modified versions of previously saved files are saved in their original
location). If a full path is not included, then the first directory named in the
workdir session parameter is used (for details of this session parameter,
see Section 4.10.2.1).

 Dyalog SALT Reference Guide 30

If this modifier is not included and the first directory named in the workdir
session parameter is the <path to Dyalog>\SALT directory, then the Snap
function will generate an error message and neither the new nor the
modified files will be saved. This is to prevent the creation of extraneous
files in the SALT directory.

 -class selects APL objects of the nameclass or nameclasses specified by
the mandatory modifier value (nameclass). The modifier value can be 2
(variables), 3 (functions), 4 (operators) or 9 (namespaces) – finer
granularity values are also accepted (see Section 3.5 for information on
valid nameclasses and subclasses). Multiple nameclasses can be included
using the space character as a separator.

Specific nameclasses/subclasses can be excluded by using the ~ prefix.

 -convert retains the scripted format given to a previously unscripted
namespace by SALT. Only relevant when saving a previously unscripted
namespace. Specifying this modifier means that the –banner modifier
can, optionally, be included.

 -banner adds a banner to the top of a namespace when it is converted
from an unscripted namespace and saved as a scripted namespace. Must
have a modifier value (top) that either specifies the text to use or executes
(⍎) a variable containing the text to use. Only relevant if the –convert
modifier is also included in the Snap function.

 -fileprefix must have a modifier value (prefix) that specifies the
string with which to prefix to APL object names when saving them to file
(by default the filenames used are the same as each APL object's name
followed by .dyalog).

 -loadfn generates a <load_ws> function that, when executed, redefines
every APL object in the current workspace and runs the ⎕LX for the
workspace. By default, the function is called load_ws.dyalog and it is
stored in the same location as the new script files. Optionally, a modifier
value (path) can be specified that identifies the full path to a different
directory or .dyalog file in which to store the <load_ws> function.
Specifying this modifier means that the -nosource modifier can,
optionally, be included.

 -nosource instructs SALT that the <load_ws> function being created
should exclude scripts from namespaces when used to recreate a
workspace. Only relevant if the –loadfn modifier is also included in the
Snap function call.

 -noprompt specifies that SALT is not to prompt the user for confirmation
before saving the file each time its content is amended. Specifying this
modifier means that the file (or a new version of the file is versioning is on)
will be saved automatically every time the content is amended. This
modifier can be specified with unversioned or versioned files.

 -makedir creates any necessary directories to satisfy the specified path.

 -show does not save any APL objects but returns a list of the APL objects
that would be saved by calling the Snap function with the specified
modifiers. Optionally, can include the modifier value details to display
the full path for each APL object that would be saved.

 -patterns only selects APL objects of the specified pattern. Must have a
modifier value (string) that is an APL object name and can contain the
wildcard *, for example, a modifier value of GUI* would select all APL
objects with names starting with GUI. The modifier value can include

 Dyalog SALT Reference Guide 31

multiple APL object names separated by the space character – each APL
object name can include multiple wildcards.

Specific patterns can be excluded by using the ~ prefix.

 -version turns on versioning for the file (see Section 3.10). Optionally it
can take the modifier value (vers) to identify a specific version number to
include in the file's name – if this modifier value is not included then a
value of 1 is used. If a modifier value is specified then this number is used
as the version number for all the APL objects being saved.

 -format identifies the format in which to save the APL object. By default
APL objects are saved in XML format, but a modifier value (APL) can be
specified to save the APL object in APL format.

 -∆⍙ must have a modifier value (chars) that specifies the two characters
to use in filenames instead of the ∆ and ⍙ in the APL object's name. By
default, % and = are used.

4.11.2 Use

Each new APL object is saved with the filename <objectname>.dyalog, where the
name of the file is the same as the APL object's name but converted to lower case
letters. Any letter that has an accent in the APL object's name will not have the
accent in the file's name. Any ∆ or ⍙ character in the APL object's name will be
replaced by % and = respectively unless alternative characters have been specified
using the -∆⍙ modifier.

If the –convert modifier is specified, then the Snap function saves an unscripted
namespace by converting it into a scripted namespace (replacing the unscripted
version in the workspace with the scripted one) and then tracking changes made to
it. If the –convert modifier is not specified, then the Snap function creates a
directory in the specified location and gives it the same name as the unscripted
namespace. The APL objects within the unscripted namespace are then saved in
individual (scripted) files in this directory.

The treatment of unscripted namespaces is the only way in which the Save and
Snap functions differ when saving APL objects.

With the –convert modifier specified:

 Save function: saves as scripted namespace and tracks changes

 Snap function: saves as scripted namespace and tracks changes

Without the –convert modifier specified:

 Save function: saves as scripted namespace but cannot track changes

 Snap function: saves as directory containing files for individual APL objects

The –banner modifier adds the specified text to the top of the namespace when
saving it. For a single line banner, the text can be entered directly as a modifier
value, for example, -banner=text. If the required banner text is multiple lines in
length then it must be defined as a variable and the modifier value must be set to
execute that variable. For example, a variable called TITLE can be defined in the
workspace and assigned to be:

* Copyright ABC XYZ *
* 2000 - 2013 *

 Dyalog SALT Reference Guide 32

Setting the modifier –banner=⍎TITLE makes the defined text block appear at
the top of the namespace in the file.

Multiple new APL objects could have the same filename, for example, if a
namespace contains a new class called FOO and a new function called foo, then the
Snap function would try to assign each the filename foo.dyalog. To avoid this
contention, the Snap function includes numbers preceded by a dash in the
filenames:

 version numbering example: myclass.3.dyalog

 Snap function numbering example: myclass-1.dyalog

 both: myclass-1.3.dyalog

A prefix can be applied to the names of all the new files by specifying the required
prefix as a modifier value of the –fileprefix modifier. If the prefix should only
be applied to a subset of the new files, then those files should be saved first using
an appropriate pattern/class. For example:

⎕SE.SALT.Snap '\ws\utils -patterns=GUI* -fileprefix=Win'

This saves all the new APL objects that have names starting with 'GUI' to files
starting with 'Win', therefore the function GUImenu is saved in the \ws\utils
directory as a file called Winguimenu.dyalog. If the requirement was that all APL
objects except dfns should be prefixed with 'nonDFN', then the function call could
have been:

⎕SE.SALT.Snap '\ws\utils -class=~3.2 -fileprefix=nonDFN'

Specifying the -loadfn modifier creates a new <load_ws> script file called (by
default) load_ws.dyalog. When executed, this script redefines every APL object in
the current workspace and runs the ⎕LX for the workspace. A modifier value can be
included to define a different location/name for the load_ws.dyalog file, although
the file must have the extension .dyapp or .dyalog. For example:

⎕SE.SALT.Snap '\ws\utils –loadfn'

creates a file called load_ws.dyalog in the same directory as the other new files
created by the Snap function call (that is, \ws\utils), whereas:

⎕SE.SALT.Snap '\ws\utils -loadfn=\ws\ldscpts\ldit.dyalog'

creates a file called ldit.dyalog in the \ws\ldscpts directory.

The script created by the –loadfn modifier can be used with the Boot function to
automatically start Dyalog with the workspace and all its constituent APL objects
loaded. For more information on the Boot function, see Section 4.2.

Inclusion of the –version modifier turns on versioning for all files included in the
Snap function. In this situation, SALT saves each file as a new file with a version
number immediately before the .dyalog extension – if the modifier value number is
included then the number specified becomes the version number, otherwise 1 is
used. For example:

⎕SE.SALT.Snap '\ws\utils –version=3'

 Dyalog SALT Reference Guide 33

saves each APL object as a script file called <objectname>.3.dyalog. If a file of that
name already exists and the -noprompt modifier has not been specified then SALT
will ask for confirmation to overwrite the file; if -noprompt has been specified
then the file will be overwritten automatically.

If the APL object being saved is a variable, then the format in which it is saved can
be a valid consideration. Serialising variables using the APL format can result in
executable expressions that exceed Dyalog's limit for executing an APL statement,
especially if the variable comprises a nested array. As an alternative in this situation,
the XML format can be used. Changing from the default XML format to APL format is
achieved by specifying the -format modifier with the APL modifier value.

 Dyalog SALT Reference Guide 34

Appendix B Configuration Options

There are various methods by which the global parameters that SALT takes as
session parameters can be amended:

 defining new values through the Settings SALT function (see Section
4.10)

 amending the Microsoft Windows Registry strings (see Section A.1)

 amending the values in the session window's Configuration dialog box (see
Section A.2)

Table 2 details the configuration options that are available through each of these
methods.

Table 2. Configuration options available for global/session parameter values

 Settings Function
Parameter Name

Registry String
Name

Configuration
Dialog Box Field

Enable/disable SALT
N/A

AddSALT Enable Salt
check box

User Command
location

cmddir CommandFolder
UCMD tab

Comparison
program

compare CompareCMD Compare
command line

Debugging level debug N/A N/A

Editing tool editor N/A Editor
command line

Frequency of
overwrite prompts

edprompt N/A
N/A

New User Command
Detection

newcmd N/A
N/A

Element tracking
mechanism

track N/A
N/A

variable format varfmt N/A N/A

SALT file location workdir SourceFolder Source folders

 Dyalog SALT Reference Guide 35

A.1 Registry Strings

To amend the Microsoft Windows Registry strings:

1. In the Start Menu's Search field enter regedit.

A confirmation dialog box is displayed.

2. Click Yes.

The Registry Editor is displayed.

3. In the hierarchy, expand HKEY_CURRENT_USER until the SALT directory is
displayed. For example:
HKEY_CURRENT_USER\Software\Dyalog\Dyalog APL 14.0 Unicode\SALT

The registry settings for SALT are displayed.

4. Double-click on the name of the string to change.

The Edit String dialog box is displayed.

5. Set the value of the Value data as required.

6. Click OK to save your change and return to the Registry Editor.

The settings that can be amended in the Microsoft Windows Registry are:

 AddSALT – specifies whether SALT is enabled or disabled.
o 0 : SALT is disabled
o 1 : SALT is enabled

 CompareCMD – the full path to the comparison program to use.

 CommandFolder – the full path to the directory (or list of directories) from
which to retrieve user commands.

 SourceFolder – the full path to the directory (or list of directories) from
which to retrieve SALT files.

A.2 Configuration Dialog Box

To amend the options in the Configuration dialog box:

1. In the Dyalog session window, select Options > Configure…

The Configuration dialog box is displayed.

2. In the SALT tab of the Configuration dialog box, amend the required
settings.

3. Click OK to save your changes and return to the session window.

The amendments take effect immediately.

 Dyalog SALT Reference Guide 36

 Dyalog SALT Reference Guide 37

The settings that can be amended in the SALT tab of the Configuration dialog box
are:

 Enable Salt – select this check box to enable SALT or uncheck it to disable
SALT.

 Compare command line – the full path to the comparison program to use.

 Editor command line – the full path to the editing tool to use.

 Source folders – the full path to the directory (or list of directories) from
which to retrieve SALT files.

 Dyalog SALT Reference Guide 38

Appendix C SALT Functions' Syntax

Boot function syntax:

 for .dyapp files: ⎕SE.SALT.Boot '{path/filename}[.dyapp]'

 for .dyalog files: ⎕SE.SALT.Boot '{path/filename}
 {.dyalog} [-xload]' ['argument']

Compare function syntax:

 ⎕SE.SALT.Compare '{path/filename} [-version{=vers}]
 [-using{=program}] [-permanent] [-window{=lines}]
 [-trim] [-symbols{=symbols}]'

List function syntax:

 ⎕SE.SALT.List '[directory|.dyalog file] [-folders]
 [-versions] [-extension[=ext]] [-full[=value]]
 [-recursive] [-raw] [-type]'

Load function syntax:

 ⎕SE.SALT.Load '{path/name} [-target{=namespace}]
 [-noname] [-disperse[=objects]|-nolink] [-protect]
 [-version{=vers}] [-source[=no]]'

New function syntax:

 ⎕SE.SALT.New '{path/filename}[.ext] [-version{=vers}]'
 ['arg|(args)']

Open function syntax:

 ⎕SE.SALT.Open '{path}[filename] [–using{=program}]
 [-permanent]'

RemoveVersions function syntax:

 ⎕SE.SALT.RemoveVersions '{path/filename}[.ext]
 [-version{=vers}|-all] [-collapse] [-noprompt]'

Save function syntax:

 ⎕SE.SALT.Save '{objectname} [path/filename][.extension]
 [-version[=vers]] [-convert] [-banner{=top}][-noprompt]
 [-makedir] [-format[=APL|XML]]'

Settings function syntax:

 ⎕SE.SALT.Settings '[parameter] [value] [-reset]
 [-permanent]'

 Dyalog SALT Reference Guide 39

Snap function syntax:

 ⎕SE.SALT.Snap '[fullpath] [–class{=nameclass}]
 [-convert] [-banner{=top}] [–fileprefix{=prefix}]
 [-loadfn[=path]] [-nosource] [-noprompt] [-makedir]
 [-show[=details]] [-patterns{=string}] [-∆⍙{=chars}]
 [-version[=vers]] [-format[=APL|XML]]'

 Dyalog SALT Reference Guide 40

Appendix D Example SALT in Use

The example used throughout this appendix has been created as an illustration of
SALT's source code management capabilities and the flexibility of its functions. To
achieve this it does not necessarily follow an efficient workflow process or best
coding practice.

Three employees of a company are working on the same project. All have access to
the shared directory in which SALT saves APL objects.

John opens Dyalog and creates a function:
 ∇report
[1] doWork
 ∇

John saves the report function as version 1 in a new directory called project:
 ⎕SE.SALT.Save 'report \project\report -makedir –version'
\project\report.1.dyalog

Dan opens Dyalog and creates a namespace called utils within the root namespace:
)ns utils
#.utils

Dan retrieves the report function from the project directory and adds it into the
new utils namespace:
 +⎕SE.SALT.Load '\project\report -target=utils'
report

Dan creates and edits a class in the utils namespace:
)ed ○ utils.regex

Dan saves all changes in the utils workspace to the project directory:
 ⎕SE.SALT.Snap '\project'
#.utils.regex
Only the regex class is new, so that is the only APL object saved.

Dan checks the entire contents of the project directory:
 ⎕SE.SALT.List '\project –recursive'
Type Name Versions Size Last Update

 project\report 1 19 2013/06/07 15:12:19

<DIR> project\utils 2013/06/07 15:16:48

 project\utils\regex 31 2013/06/07 15:16:48

Brian opens Dyalog and does not want to be prompted when changes are made to
files that have been saved using SALT:
 ⎕SE.SALT.Settings 'edprompt no'
0
This confirms that no prompts will now be given.

 Dyalog SALT Reference Guide 41

Brian sets his working directory to the project directory:
 ⎕SE.SALT.Settings 'workdir \project'
\project

Brian looks at the report function:
 ⎕SE.SALT.Open 'report'
\project\report.dyalog
SALT opens \project\report.1.dyalog (the latest version of report.dyalog) with the
Microsoft Windows Notepad program.

Brian brings report.dyalog into his workspace, calling it r* as there are no other files
in the directory with a name starting with the letter r:
 ⎕SE.SALT.Load 'r*'
 report

 ⎕vr'report'
 ∇ report
[1] doWork
[2] ⍝∇⍣§\project\report.dyalog§1§ 2013 6 7 15 12 19 822
§aaaaúö§0
 ∇

Brian edits the report function in his workspace several times, which produces a
new file each time (as versioning is on).

John edits the report function. Upon completion the following message is displayed:

John was not previously aware that the file had been worked on since he saved it.
He clicks No and compares his version with the latest version:
 ⎕SE.SALT.Compare 'report -version=ws'
Comparing function <report> in the ws
 with the one in \project\report.4.dyalog

 [0] report
+ do some more Work
-[1] doWork for John
+ and again

As ⎕AT tracking is not turned on, John does not know who made the modification.
He talks to his teammates and finds out Brian made the modifications – they agree
that John should merge his changes with Brian’s changes using the editor. John does
this, but before SALT saves the new version the following message is displayed:

 Dyalog SALT Reference Guide 42

John clicks Yes and SALT saves report.5.dyalog.

John wants to clear up the unnecessary versions, so checks what exists:
 ⎕SE.SALT.List '\project -recursive –versions'
Type Name Version Size Last Update

 project\report [5] 21 2013/06/09 12:43:37

 project\report [4] 21 2013/06/08 22:32:30

 project\report [3] 21 2013/06/08 22:19:18

 project\report [2] 21 2013/06/08 22:13:05

 project\report [1] 19 2013/06/08 21:16:13

<DIR> project\utils 2013/06/08 21:17:57

 project\utils\regex 32 2013/06/08 21:17:56

John removes all but the latest version:
 ⎕SE.SALT.RemoveVersions \project\report -all –collapse

SALT prompts for confirmation of the removal:

John clicks Yes and SALT saves deletes version 1, 2, 3 and 4.
4 versions deleted.

John instantiates the regex class anonymously and checks what has become
available by doing this
 reg←⎕se.SALT.New '\project\utils\regex'
 reg.⎕nl-3
run
The run function is available (a method in object oriented programming).

John tests this function to check whether it works:
 reg.run
33
The returned value indicates that the run function is working correctly.

Dan clears his workspace and loads the contents of the project directory:
)clear
CLEAR WS
 ⎕SE.SALT.Load \project*
report #.utils.regex
SALT loads two files, the report function and the regex class in the utils namespace.

 Dyalog SALT Reference Guide 43

Dan creates a function to load the contents of the project directory:
 ⎕SE.SALT.Snap '\project -loadfn=projX.dyapp'
** WARNING: ⎕LX is empty

This warning tells Dan that although the projX.dyapp file will recreate the
workspace as it is now, nothing in the workspace will be executed as ⎕LX has not
been set.

Dan tests whether the projX.dyapp file works on a clear workspace:
)clear
CLEAR WS
 ⎕se.SALT.Boot '\project\projX.dyapp'
Loaded: report
Loaded: #.regex

As ⎕LX was empty, nothing is executed. However, the APL objects have been
successfully imported:
)fns
report
)classes
regex

