
The tool of thought for expert programming

Dyalog
Experimental Functionality

Compiler
Version 14.0

Dyalog Limited

Minchens Court, Minchens Lane

Bramley, Hampshire

RG26 5BH

United Kingdom

tel: +44(0)1256 830030

fax: +44 (0)1256 830031

email: support@dyalog.com

http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited

Copyright  1982-2014

mailto:support@dyalog.com

Dyalog is a trademark of Dyalog Limited

Copyright  1982 - 2014 by Dyalog Limited.

All rights reserved.

Version 14.0

Revision: 20140624_140

No part of this publication may be reproduced in any form by any means without the prior written permission of Dyalog

Limited, Minchens Court, Minchens Lane, Bramley, Hampshire, RG26 5BH, United Kingdom.

Dyalog Limited makes no representations or warranties with respect to the contents hereof and specifically disclaims any

implied warranties of merchantability or fitness for any particular purpose. Dyalog Limited reserves the right to revise this

publication without notification.

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The Open Group.

Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

All other trademarks and copyrights are acknowledged.

Contents

1 ABOUT THIS DOCUMENT . 1
1.1 Audience ... 1

2 INTRODUCTION . 2
2.1 Optimisations .. 2

 Constant Folding .. 2 2.1.1
 Eliminating Local Names .. 3 2.1.2
 Flexible Idiom Recognition ... 3 2.1.3

2.2 Future Work .. 3

 Common Sub-expression Elimination .. 3 2.2.1
 Loop Folding ... 3 2.2.2

2.3 Changes to Behaviour of Functions when Compiled .. 4

 Thread Switching ... 4 2.3.1
 Error Trapping .. 4 2.3.2
 Visible Names... 4 2.3.3

3 BASIC USAGE . 5

4 RESTRICTIONS . 6
4.1 Summary ... 7

5 COMPILING OPERATORS . 8

6 LANGUA GE REFERENCE – 400⌶ . 9
6.1 Control Automatic Compilation (X = 0) ... 9

6.2 Query Compilation State (X = 1) .. 9

6.3 Compile (X = 2) .. 10

6.4 Discard Compiled Form (X = 3) .. 10

APPENDIX A EXAMPLES . 11
A.1 Basic Usage ... 11

A.2 Speed Tests ... 11

 Dyalog Experimental Functionality – Compiler

1 About This Document

This document is intended as an introduction to the compiler that is introduced with
Dyalog version 14.0 for the purpose of improving the performance of defined
functions and operators.

The functionality and behaviour of the compiler has not yet been finalised and is
subject to change by Dyalog Ltd. at any time.

The compiler should be considered experimental; users are encouraged to
experiment with it and provide feedback to Dyalog Ltd. regarding the benefits and
shortcomings of the current features to help prioritise further work. Users should be
aware that the features of the compiler may change significantly based on feedback.

1.1 Audience

It is assumed that the reader has a reasonable understanding of Dyalog.

 Dyalog Experimental Functionality – Compiler 2

2 Introduction

When the APL interpreter executes a user-defined function, it spends most of its
time performing two separate actions:

 Parsing the APL syntax ("interpreter overhead")

 Executing individual primitive functions

The compiler is designed to reduce the time spent on the first of these two actions,
the interpreter overhead, by converting the APL source code into a bytecode form
that is more efficient to execute.

At this release, the compiler is restricted to working only on functions and operators
that are written in a purely functional style; that is, functions and operators that:

 do not rely on any global or semi-global variables

 do not have any side effects.

 apply some calculations to their arguments and return a result

While dfns encourage this style of programming, it is also possible to write purely
functional traditional functions.

The biggest performance gains are achieved when the compiler is used on functions
that are applied to simple scalars or small array arguments. If the arguments are
large arrays, then the interpreter spends most of its time executing the primitive
functions; this means that the benefit of reducing the interpreter overhead is less
significant.

2.1 Optimisations

In addition to reducing interpreter overhead, the compiler can also perform certain
optimisations on the APL code. In Dyalog version 14.0 these include:

 constant folding (see Section 2.1.1)

 eliminating local names (see Section 2.1.2)

 flexible idiom recognition (see Section 2.1.3)

 Constant Folding 2.1.1

When a primitive function is applied to constant arguments, the compiler attempts
to evaluate the entire expression at compile time, thereby saving time when the
function is executed. For example:

encode←{(⎕A,⎕D)⍳⍵} ⍝ ⎕A,⎕D is evaluated at compile time

However, the compiler cannot always successfully evaluate every expression. For
example, the compiler cannot evaluate primitive functions that depend on system
variables:

 Dyalog Experimental Functionality – Compiler 3

numbers←{⍳7} ⍝ compiler cannot evaluate ⍳7 as it does not
 ⍝ know what value ⎕IO will have

NOTE: Constants will only be retained if they are reasonably small. The limit is
typically around 1,000 items for a simple array.

 Eliminating Local Names 2.1.2

Every assignment to a local name incurs a measurable overhead, especially within a
dfn. The compiler discards all local names as part of its normal operation, so this
overhead is eliminated in compiled code.

 Flexible Idiom Recognition 2.1.3

The Dyalog interpreter recognises idioms as specific sequences of characters, for
example, 0=⍴⍴x. The compiler recognises the same idioms but in a more flexible
way, enabling it to cope with syntactic variations. This means that expressions can
be identified as idioms (and processed as such) even if:

 parts of the expression are named (as long as there are no other uses of
the same name), for example, s←⍴x ⋄ 0=⍴s

 redundant parentheses are added, for example, 0=(⍴⍴x)

 the arguments to commutative functions are swapped, for example,
(⍴⍴x)=0

In these situations, the compiler's optimisations transform the expression into one
that matches an idiom. For example, (≢⍬)=⍴⍴x is recognised as being the same as
the idiom 0=⍴⍴x because the expression ≢⍬ is evaluated to 0 at compile time.

2.2 Future Work

Over the next several releases, the compiler will be enhanced to include additional
optimisations. Planned extensions include:

 common sub-expression elimination (see Section 2.2.1)

 loop folding (see Section 2.2.2)

 Common Sub-expression Elimination 2.2.1

The compiler should be able to combine duplicated expressions. For example:

foo←{(⍵+1)+÷⍵+1}

should be combined into the equivalent of this:

foo←{
 t←⍵+1
 t+÷t
}

except without any overhead for introducing the local name (see Section 2.1.2).

 Loop Folding 2.2.2

The compiler should allow more efficient execution of expressions such as A+B×C
where the arguments are large arrays. Currently the interpreter has to evaluate B×C
first, generating a large temporary result T, then evaluate A+T and finally discard T.

 Dyalog Experimental Functionality – Compiler 4

The compiler should recognise the whole of the expression A+B×C before it starts
evaluating it, which will enable a more efficient execution that does not have to
generate a large temporary result.

2.3 Changes to Behaviour of Functions when Compiled

In Dyalog version 14.0, the same run-time engine is used by both compiled functions
and interpreted functions when executing primitive functions. However, a small
number of behavioural changes occur when functions are compiled.

 Thread Switching 2.3.1

Thread switching will not occur between lines of code after a function has been
compiled. However, it can still occur at the start of the function before the first line
is executed.

 Error Trapping 2.3.2

Compiled functions cannot be suspended. Errors occurring within compiled
functions are signalled back to the calling environment (in the same way as if
⎕SIGNAL had been used inside the function).

Similarly, when an error in a compiled function is handled by an Execute trap, the
APL expression specified in the trap will be executed in the calling environment and
will not be able to see any of the compiled function's local names.

 Visible Names 2.3.3

When a user-defined operator is compiled, its local names are eliminated. As a
result, the names are no longer visible to any sub-functions that it calls.

 Dyalog Experimental Functionality – Compiler 5

3 Basic Usage

Every defined function in a workspace can have a compiled bytecode form. This
bytecode is saved and loaded as part of the workspace, and will be copied along
with the function on ⎕CY or)COPY or the ⎕OR of a compiled function.

To query whether a function foo has been successfully compiled, enter:

 1(400⌶)'foo'

This returns a Boolean value of 1 if the compilation has been performed.

To compile a function foo, enter:

 2(400⌶)'foo'

This returns a matrix of diagnostic information. If the matrix has zero rows then the
function was compiled successfully. Otherwise each row of the matrix describes a
problem that prevented the compiler from compiling the function.

When a function is executed, Dyalog automatically executes any compiled code for
the function. If none is available, then the function is executed using the traditional
APL parser.

In summary:

 ⎕FX'r←foo y' ... ⍝ define foo

 foo 99 ⍝ execute the uncompiled code

 2(400⌶)'foo' ⍝ compile it

 foo 99 ⍝ execute the compiled code

For full details on the syntax of 400⌶, see Chapter 6.

 Dyalog Experimental Functionality – Compiler 6

4 Restrictions

There are several restrictions when using the compiler, some of which will be
removed in later versions.

RESTRICTION 1:
A function that uses global or semi-global names cannot be compiled.

To compile a function, the compiler needs to be able to determine the name class of
every name used in that function so that it knows whether it refers to an array, a
function or an operator. For local names, the compiler can work this out, because it
can see the definition of the name:

sum←{
 f←+ ⍝ compiler sees this definition...
 f/⍵ ⍝ ... so knows that f is a function here
}

However, for global names the compiler does not look beyond the definition of the
function currently being compiled, so it cannot determine their name class:

sum←{
 f/⍵ ⍝ could be +/⍵, or 2/⍵, etc.
}

RESTRICTION 2:
A function that uses the dot syntax for namespace references cannot be compiled.

The compiler cannot currently determine the name class of a name when the dot
syntax is used to refer to names inside arbitrary namespaces:

sum←{
 ⍺.f / ⍵ ⍝ ⍺.f could be an array or a function
}

RESTRICTION 3:
A function that calls system functions which refer to values by name or create new
named values cannot be compiled.

Compiled functions can use local names but, as part of the compilation process, the
compiler discards these names, so they do not appear in the compiled bytecode. For
this reason, system functions that refer to values by name, or create new named
values, are prohibited:

foo←{
 a←⍺+⍵ ⍝ local name 'a' is discarded by compiler
 r←⎕NL 2 ⍝ ⎕NL is prohibited as it needs to see 'a'
 'a'⎕NS'' ⍝ ⎕NS is prohibited as it redefines 'a'
}

 Dyalog Experimental Functionality – Compiler 7

RESTRICTION 4:
A function that includes the Execute function (⍎) cannot be compiled.

The compiler prohibits the use of Execute (⍎) because it could have arbitrary side
effects unknown to the compiler.

RESTRICTION 5:
A function that includes control structures cannot be compiled.

The initial release of the compiler is targeted towards dfns, so support for tradfns is
limited. In particular, control structures cannot be compiled:

∇ r←foo y
 r←3
 :If y=0 ⍝ prohibited
 r←9
 :End
∇

RESTRICTION 6:
A function cannot be compiled if it includes any of the following language features:

 indexed assignment

 selective assignment

 dfn error guards

 function trains

4.1 Summary

A function cannot be compiled if it:

 uses global or semi-global names

 uses the dot syntax between user-defined names

 calls a system function that refers to values by name or creates new named
values

 includes the Execute function (⍎)

 includes control structures

 includes indexed/selective assignment

 includes dfn error guards or localises ⎕TRAP

 includes function trains

 Dyalog Experimental Functionality – Compiler 8

5 Compiling Operators

When compiling a defined function or operator, the compiler needs to know
the name class of every name that is used. This presents a problem for defined
operators, because the name class of the operands is not known:

op←{
 ⍺⍺ / ⍵ ⍝ ⍺⍺ could be an array or a function
}

When an operator is compiled using 2(400⌶)Y, the compiler assumes that the
operands are functions. If the compiled operator is subsequently called with an
array operand, then the compiled version is not used and the interpreter uses
the parser instead (this restriction is expected to be removed in the future,
when it should be possible to declare the types of names used by a function or
operator).

To work around this, the compiler can be run in a mode where it will attempt to
compile a defined operator the first time it is applied to some arguments; at
this point the compiler can see exactly what the operands are. If the
compilation is successful, then the compiler will record the name class of the
operands along with the compiled bytecode. When the operator is applied
again, the compiled bytecode will only be executed if the operands still have
the same name class as they did the first time the operator was applied (if the
name class of an operand has changed, then the compiled bytecode will not be
used and the operator will be interpreted).

Continuing the example above:

 400⌶2 ⍝ enable auto compilation of operators

 +op 1 2 3 4 ⍝ op is compiled assuming fn operand
10

 400⌶0 ⍝ disable auto compilation

 ×op 1 2 3 4 ⍝ execute compiled bytecode again
24

 1 2 3 4 op 1 2 3 4 ⍝ operand is array; fall back
 to interpreter
1 2 2 3 3 3 4 4 4 4

 Dyalog Experimental Functionality – Compiler 9

6 Language Reference – 400⌶

The compiler is controlled with 400⌶. The syntax for this I-beam is:

R←{X}(400⌶)Y

In this syntax, X must be one of the following values:

 0 – Set automatic compilation options (default)

 1 – Determine whether the function/operator Y has been successfully
compiled

 2 – Compile the function/operator Y

 3 – Uncompile the function/operator Y

The nature of Y and R depend on the value of X.

6.1 Control Automatic Compilation (X = 0)

R←0(400⌶)Y ⍝ control automatic compilation of fns

When X is 0, Y must be one of the following values:

 0 – Disable automatic compilation (initial setting)

 1 – Compile functions when they are fixed (with ⎕FX or from the
 function editor)

 2 – Compile operators the first time they are executed

 3 – Compile functions when they are fixed (with ⎕FX or from the
 function editor) and compile operators the first time they are
 executed

The result R is the previous value of Y.

The automatic compilation setting is maintained within the workspace, and is
saved and loaded with the workspace.

6.2 Query Compilation State (X = 1)

R←1(400⌶)Y ⍝ query compilation of function/operator Y

Y must be a character vector, matrix or vector of vectors specifying the name of
a function or operator or a list of such names.

The result R is a Boolean scalar or vector, with a value of 1 if the
function/operator has been successfully compiled and a value of 0 if it has not.

 Dyalog Experimental Functionality – Compiler 10

6.3 Compile (X = 2)

R←2(400⌶)Y ⍝ compile function/operator(s) Y

Y must be a character vector, matrix or vector of vectors specifying the name of
a function or operator or a list of such names that should be compiled.

The result R is a matrix of diagnostic information or, if Y was either a matrix or a
vector of vectors, a vector of such matrices. Each row of the matrix describes a
problem that caused the compilation to fail, with four columns corresponding
to:

 the APL error number

 the line number in the function/operator

 the column number (currently always 0)

 the error message

If the matrix has zero rows then the compilation was successful.

If this mechanism is used to compile operators, then the compiled bytecode
will assume that the operator's operands are functions rather than arrays. At
run time, the operands will be checked – if they are functions then the
compiled bytecode will be used, otherwise the operator will be interpreted.

6.4 Discard Compiled Form (X = 3)

R←3(400⌶)Y ⍝ uncompile function/operator(s) Y

If Y is empty, then discard any compiled bytecode for all functions and
operators in the workspace.

If Y is a character vector, matrix or vector of vectors specifying the name of a
function or operator or a list of such names, then discard any compiled
bytecode for them.

R is always 0.

 Dyalog Experimental Functionality – Compiler 11

Appendix A Examples

 iscompiled←1∘(400⌶) ⍝ name some useful I-beams
 compile ←2∘(400⌶)
 uncompile ←3∘(400⌶)

A.1 Basic Usage

 mean←{(+⌿⍵)÷≢⍵} ⍝ define a simple function
 mean 1 2 3 4 ⍝ and test it
2.5

 iscompiled'mean' ⍝ it's not compiled yet
0

 compile'mean' ⍝ compile it
 iscompiled'mean' ⍝ (yes, that worked)
1

 mean 1 2 3 4 ⍝ check it still works
2.5

A.2 Speed Tests

)copy dfns ⍝ load some useful functions
dfns saved Mon Apr 28 08:55:24 2014

 ⎕CR'easter'
easter←{ ⍝ Easter Sunday in year ⍵
 G←1+19|⍵ ⍝ year "golden number"
 C←1+⌊⍵÷100 ⍝ Century: eg 1984 → 20th

 X←¯12+⌊C×3÷4 ⍝ yrs in which leap yr omitted
 Z←¯5+⌊(5+8×C)÷25 ⍝ synch Easter & moon's orbit

 S←(⌊(5×⍵)÷4)-X+10 ⍝ find Sunday
 E←30|(11×G)+20+Z-X ⍝ Epact
 F←E+(E=24)∨(E=25)∧G>11 ⍝ (when full moon occurs)

 N←(30×F>23)+44-F ⍝ find full moon
 N←N+7-7|S+N ⍝ advance to Sunday

 M←3+N>31 ⍝ month: March or April
 D←N-31×N>31 ⍝ day within month
 ↑10000 100 1+.×⍵ M D ⍝ yyyymmdd

}

 cmpx'easter 2014' ⍝ run time of 6.6 μs...
6.6E¯6

 Dyalog Experimental Functionality – Compiler 12

 compile'easter' ⍝ ...is reduced by compiler...
 cmpx'easter 2014' ⍝ ...to 4.3 μs
4.3E¯6

