
The tool of thought for expert programming

Dyalog™ for UNIX

Dyalog APL for UNIX
User Guide

Version: 14.0

Dyalog Limited
email: support@dyalog.com

http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2014 by Dyalog Limited

All rights reserved.

Version: 14.0

Revision: 20150120

Nopart of this publicationmay be reproduced in any form by any means without the prior written per-
mission of Dyalog Limited.

Dyalog Limitedmakes no representations or warranties with respect to the contents hereof and spe-
cifically disclaims any impliedwarranties of merchantability or fitness for any particular purpose.
Dyalog Limited reserves the right to revise this publicationwithout notification.

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The OpenGroup.

Windows, Windows Vista, Visual Basic andExcel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Array Editor is copyright of davidliebtag.com

All other trademarks and copyrights are acknowledged.

iii

Contents

Overview 1
Entering Characters 3
Entering the Key Character 3
Entering Commands 4
The Different Types of Input Windows 5
Driving the Dyalog APL tty version 6
Starting APL 14
Configuring the Editor 17
File permissions and FSTAC 19

SH, exit codes and stderr 22
BuildID 23
Appendix A: Table of keycodes and keystrokes using a terminal emulator under Linux GUIs 25
Appendix B: Table of keycodes and keystrokes for PuTTY 28
Appendix C: Unused keycodes 31

Index 33

1

Overview
Dyalog APL was originally written for use with serially attached character based ter-
minals, which had a fixed-sized viewing window, and a limited number of key-
strokes.

This tty version is now usually run using either a terminal window in a GUI-based
windows manager, or a terminal emulation application such as PuTTY. Although
these allow for a greater range of keystrokes, and for the resizing of the terminal win-
dow in which Dyalog APL is running, they still emulate the original ASCII ter-
minals, so the same techniques for controlling the display still apply.

It is possible to support most terminals or terminal emulators with the Dyalog APL
tty version, and it is possible for any user to define their own input translate table so
that the keystrokes to enter commands or characters can be unique to their envir-
onment (similarly the output translate table defines the colour scheme etc). As such,
this document does not in general refer to the actual keystrokes which are used to con-
trol Dyalog APL, but rather the keycodes to which keystrokes are mapped.

Indeed, much of the interface to Dyalog APL can be customised; this manual is writ-
ten assuming that no changes have been made to the default configuration.

Appendix A lists the mapping between keystrokes and keycodes for all commands
used when running under a terminal emulator/console under Linux; Appendix B lists
the keystrokes and keycodes used when running PuTTY, a windows terminal emu-
lator. Some keycodes are not relevant to the current tty versions of Dyalog APL; they
may have been used in previous tty versions, or used in versions no longer supported,
or are used in GUI-based versions of Dyalog APL. They are listed for completeness in
Appendix C, but attempting to make use of them may lead to unexpected and/or
undesirable results.

The keyboard is used for two purposes: to enter text and to enter commands. In clas-
sic editions text is limited to characters defined in ⎕AV, in Unicode editions text can
consist of any valid Unicode character. The main issue which has to be resolved is
how to locate these characters and commands on the keyboard in such a way that
they can be entered in a consistent manner, and without conflicts with other char-
acters or functionality.

Given that the number of different characters and commands far exceeds the number
of keys on a keyboard, different methods are supported for allowing one key to be
used for more than one character or command. There are three methods that can be
used, and that can be combined:

1. Use a metakey with the keystroke. The metakey is held down at the same
time as the key to be pressed. Examples of metakeys are the Shift key, the
Control (Ctrl) key and the Windows Key (WindowsKey).

2

2. Define multiple modes for the keyboard. Certain keystrokes are reserved for
swapping between modes; the effect of hitting any other key differs depend-
ing on the current mode. This was extensively used for earlier versions of
Dyalog APL, which used Ctrl-o and Ctrl-n to swap between ASCII and APL
entry modes.

3. Define multiple temporary modes for the keyboard, those modes last for one
keystroke only. This is used for entering many commands in the tty version.

3

Entering Characters
It is necessary to select a metakey which is to be used to enter characters. In this doc-
ument this metakey is represented by the string “APL”. In a terminal window under a
Linux GUI Dyalog recommends using the Windows key as the metakey to generate
APL characters; with PuTTY and the Unicode IME the Control key is used (similarly
to the Windows Unicode edtion of Dyalog APL). So for example, in a terminal win-
dow <WindowsKey><a>generates an ⍺; when using PuTTY the same APL character
is entered by using <Ctrl><a>. [Note that under PuTTY, Ctrl-xcv are reserved for the
operating system; we shall see later that Ctrl-x is used for another purpose. Rather
than <Ctrl>xcv you must use <Shift+Ctrl>xcv.]

Linux Window managers are is a state of flux, so it is best to look at the following art-
icle on the Dyalog Forum for the latest information about keyboard configuration:

http://forums.dyalog.com/viewtopic.php?f=20&t=210

Entering the Key Character
As of May 2014 it is not possible by default to enter the Key character as a single
key-chord under windows managers under Linux; the updated keyboard mapping
file is not yet included in Linux distributions.

Dyalog expects that future Linux distributions will have an updated mapping file,
but until that time, and for existing versions of Linux distributions the methods avail-
able are:

l Update the mapping file. See below for more details
l Define the Compose key and enter Key by pressing Compose Quad Equals

or Compose Equals Quad
l In APL, use APL i to swap into overstrike mode, enter Quad <Cursor left>
Equals or Equals <Cursor Left> Quad and use APL i to swap back to insert
mode

To update the mapping file:

Edit /usr/share/X11/xkb/symbols/apl: line 404 (or near by) currently reads

key <AC08> { [apostrophe,] };

Replace this with

key <AC08> { [apostrophe,U2338] }; // quote, key

Logout and log back in again.

4

Entering Commands
Commands are either entered using the keys on the keyboard in conjunction with 0
or more metakeys, or when using the keyboard in different modes. A separate key-
stroke is used to move from one mode to the next; by default this is defined to be
Ctrl-x. When Dyalog APL is started, you are in mode 0. With the exception of
Move/Resize in the editor/tracer, all mode changes are effective for one keystroke
only.

Example:
l assume that you have just started APL
l assume that the WindowsKey is used to enter APL characters
l <>represents one keystroke, so <Ctrl+x><p> means: hit Ctrl+x then p

Keystrokes entered
How
described in
documentation

Outcome in Dyalog APL session

<p> p p appears in the session

<Shift+p> P P appears in the session

<WindowKey+p> APL p * appears in the session

<WindowsKey+Shift+p> APL P ⍣ appears in the session

<Ctrl+x><p> Cmd-p

No noticeable effect. This is the
command “Previous” (PV) used
for search/replace. Note how Nrm
in status line changes to Cmd
when Ctrl-x is hit and then back
to Nrm when the p is hit.

<Ctrl+x><Ctrl+x><p> CMD-p

No noticeable effect. This is the
command “Paste” (PT). Note how
Nrm in status line changes to
Cmd when Ctrl-x is hit, and then
changes to CMD when Ctrl-x hit
again, and then back to Nrm
when the p is hit.

<Ctrl+x><g> N/A

Nothing; this is an invalid
character in Cmd mode. Note how
Nrm in status line changes to
Cmd when Ctrl-x is hit, and then
back to Nrm when the g is hit.

5

Notes:
1. the words "Nrm", "Cmd" and "CMD" are configurable.
2. in this example each mode is temporary, lasting for only one subsequent

keystroke.

The Different Types of Input Windows
The tty version of Dyalog APL comprises of four different types of window:

The Session window
There is one and only one session window. It is always present (although may be
obscured by other windows. It cannot be resized from within APL (the terminal win-
dow or PuTTY session can be resized, and APL will respond to the resize event).

Edit windows
Multiple edit windows can be open at any time, each on a separate object. The con-
tents of edit windows can be altered, and these windows can be resized using the
Move/Resize (MR) command.

Trace windows
Multiple trace windows can be open at any time, one for each item on the stack.
These windows are read-only, but these windows can be resized using the Move/Res-
ize (MR) command.

⎕SM (Screen manager) window
There can be only one ⎕SM window; it exists only when ⎕SM is not empty, and
becomes visible either when waiting for user input (using ⎕SR) or can be toggled to
using the HotKey (HK) command.

6

Driving the Dyalog APL tty version
The session window always occupies the whole of the APL "screen"; it may however
be obscured by other windows. The session shows the expressions that have been
entered, along with any output generated by those expressions. History cannot in gen-
eral be altered or deleted; it is possible to alter lines in the history, but when Enter
(ER) is hit, the altered line is added to the bottom of the history, and the altered line
is reset to its original state.

The bottom line of the APL window is reserved for the status line. The status line is
considered at all times to be 79 characters wide. It is divided into several fields,
whose widths are fixed:

l The string "Search:"
l The current search string
l The string "Replace:"
l The current replace string
l The latest error message (is removed on next keystroke)
l The "name" field: this may contain the name of the workspace, or while in

the editor or tracer, the name of the current object
l The name of the current keyboard input mode (see later)
l Whether input is in insert or overwrite (replace) mode

Some error conditions generate text that does not become part of the session, yet is
written to the terminal. Additionally it is possible that other applications may write
to the terminal. In such cases, and when the emulator window is resized, it may be
necessary to perform a Screen Refresh (SR) which causes APL to rewrite the entire ter-
minal emulator window according to what it believes should be present; this will
effectively remove all extraneous text.

The session and the edit and trace windows form a loop; to cycle forwards between
windows use the command Windows Tab (TB), to cycle backwards use the command
Reverse Windows Tab (BT). At any time you can use the command Jump (JP) to
toggle between the current edit/trace window and the session. Escape (EP) closes the
current window, having saved any changes (where appropriate); QuiT (QT) closes
the current window, but without saving any changes.

It is possible to move and to resize an edit or a trace window; hit Move/Resize (MR)
to swap into this mode. In this mode the cursor keys move the current window
around (note that when the window reaches the edge of the screen, its size will in
many cases reduce as the opposite edge continues to move in the direction of move-
ment. Up one Screen (US), Down one Screen (DS), Left one Screen (LS) and Right
one Screen (RS) cause the right or bottom margin to extend or reduce as appropriate.
Note that if the right or bottom edge is against the right or bottom edge of the ses-
sion, then the window is made larger by "pushing" the left or top edge away as applic-
able.

7

Trace windows are read-only; however, it is possible to edit the currently traced
object by hitting Edit (ED) while the cursor is on the first column of any line or by
hitting ED while the cursor is on the name of the object. However, both in the Editor
and Trace windows individual breakpoints (aka Stops) can be set and unset using the
Toggle Breakpoint (BP) command. The Clear Breakpoints (CB) command will cause
all breakpoints in the current object to be cleared. Note that by default there is no vis-
ible indication that either of these commands has been run; however, the output from
⎕STOP will show whether either of these commands has been run. See "Configuring
the Editor" for more details.

Edit windows and the session are read-write. By default input lines are in insert
mode. It is possible to toggle to overwrite mode by using the Insert Toggle (IN) com-
mand. Note that this mode allows you to generate those overstrike APL characters
which are supported by Dyalog APL; attempting to overwrite an existing character
with one that does not form a valid APL character results in the original character
being replaced with the newly-typed one. Destructive Backspace (DB) and Delete
Item (DI) delete the character immediately before the cursor and the character under
the cursor respectively. It is possible to define keycodes for Insert Item (II) and Non-
destructive Backspace (NB) and Non-destructive Space (NS) but these are not in gen-
eral use. Destructive Space (DP) is mapped to the Spacebar.

In an edit window Toggle Localisation (TL) will add the name currently under the
cursor to the end of the header line so as to localise that name if it was not already
present in the header; if the name is present in the header, it is removed from the
header. Redraw (RD) causes the function to be reformatted, with indentations added
etc.

It is possible to move or copy a line or a block of lines from one window to the other.
It is also possible to Cut (CT) from the cursor position to the end of the line and to
Paste (PT) the cut text; however, there is no other mechanism for selecting parts of a
line although you can use the mouse and the facilities of the terminal window or emu-
lator to move partial lines around. In this case you may find that it is best to have the
editor or tracer windows maximised to avoid copying the line drawing characters
that form the outline of the edit or trace windows too; Zoom (ZM) toggles windows
between maximised and standard size.

Use the Tag (TG) command to select contiguous lines of text; identify the initial line
with TG, move to the last line you wish to highlight and hit TG again. The next TG
command only removes the tagging from the currently tagged block - it does not
clear and initiate another selection. For Copy (CP) or Move (MV) move to the line
immediately above where the text is to be placed, and hit CP or MV as appropriate.
Use Delete Block (DK) to delete the highlighted lines. Note that it is possible to
copy or move text between edit windows and the session.

Comments can be aligned to the column where the cursor is by hitting Align Com-
ments (AC). Comments that appear in columns which precede the first tabstop are
aligned to column 1.

8

Text searches can be made in all windows; the Search (SC) command defines the
search string; hitting Enter (ER) to complete the definition also moves the cursor to
the next instance of the search string in a forward direction. The Next (NX) and Pre-
vious (PV) commands moves the cursor to the next or previous instance of the search
string; when there are no more instances in the specified direction the error field will
contain either No Match→ or ←No Match.

Strings can be replaced in the Editor and Session windows; the cursor must be at the
start of an instance of the search string. Replace (RP) command is used to specify the
replacement string; if the cursor is at the start of an instance of the search string, that
instance will be replaced with the replacement string. The Repeat (RP) command
(also called Do) is used to make additional replacements. The Repeat All (RA) com-
mand will replace all instances of the search string with the replacement string in the
current object, both forwards and backwards from the current position; in this case
the cursor does not need to be at the start of an instance of the search string.

For both the Search and Replace commands EP is used to clear the definition of the
appropriate string; the entire field will be removed from the status line.

Dyalog APL responds to weak and strong interrupts; the kill operating system com-
mand can be used to send a signal 2 (SIGINT) or 3 (SIGQUIT) respectively, or the
user can hit the intr or quit keystrokes. The current mappings for these two keystrokes
can be seen by running the operating system command stty -a. The most common
keystrokes for intr and quit are Ctrl-C and Ctrl-\ respectively. Note that when using
PuTTY it will be necessary to swap out of the APL keyboard to generate these key-
strokes.

The tables below show the keystrokes that can be used in the different windows.

9

Commands Common to all Window Types
Command Code Description

Cursor Move

LC
RC
UC
DC

Left/Right/Up/Down one character

LS
RS
US
DS

Left/Right/Up/Down one screen

LL
RL
UL
DL

Left/Right/Up/Down to limit in that direction

HO Home Cursor .. to top left hand corner of object

Toggle line
numbers LN Turn line numbers on or off in all trace and edit

windows. This can be done from the session too

Screen Refresh SR
Causes APL to redraw the session, removing all
extraneous text that has come from external
sources and resetting the session display

Window Commands
Command Code Description

Move between
Windows

TB Move to next window in loop

BT Move to previous window in loop

JP Jump - toggle between session and current window

Alter Windows

ZM Zoom - toggle window to full size and back

MR

Move/Resize:

LC/RC/UC/DC: move window in that direction

LS/RS/US/DS: move bottom right hand corner in
selected direction relative to top left hand corner

EP: exit move/resize mode

10

Session Commands
Command Code Description

Redo/Undo
FD Show next line in input history

BK Show previous line in input history

Editor Commands
Command Code Description

Start/Stop

ED Start Editor (1)

EP Fix and Close

QT Abort and Close

Fix function FX Causes the function to be fixed, without quitting
the edit session

Redo/Undo
FD Reapply last change

BK Undo last change (where possible)

Outlines
MO When on the first or last line of a control structure,

move to the opposite end (2)

TO Open/Close outlined blocks(2)

Toggle local TL
For traditional functions, the name under the cursor
is either added or removed from the list of
localised names on the function's header line

Toggle
Breakpoint BP Toggles a breakpoint on the current line(3)

Clear
Breakpoints CB Clears all breakpoints in the current object(3)

Open Line OP
Opens a line underneath the current line; in insert
mode moving to the end of the line and hitting ER
is equally effective

Reformat RD(4) Causes the function to be reformatted, with
corrected indentation etc

Comments

AC Align comments to current column

AO(4) Add comment symbol at start of each tagged or
current line

DO(4) Remove comment symbol which is first non-space
character on each tagged or current line

11

Notes:
1. The editor can also be started using)ED or ⎕ED. Hitting ED in the session

with a suspended function on the stack will open the editor on that func-
tion; this is called Naked Edit.

2. By default outlines are not shown. See "Configuring the Editor" for further
details.

3. By default there is no visual indication that a breakpoint has been set,
although ⎕STOP will show the breakpoints. However, it is possible to view
breakpoints - see "Configuring the Editor" for further details.

4. AO, DO, RD only work in 13.1 onwards

Tracer Commands
Command Code Description

Start/Stop
TC Start Tracer(1)

EP Cut stack back to calling function; close all
windows to match new stack status

Execution

ER Execute current line

TC Trace into any and all functions on current line

FD Skip over current line

BK Skip back one line

Toggle
Breakpoint BP Toggles a breakpoint on the current line(2)

Clear
Breakpoints CB Clears all breakpoints in the current object(2)

Continue
RM Resume Execution - do not show trace windows

on next error or stop

BH Run to Exit - but show trace windows on error or
stop

Notes:
1. Hitting TC in the session with a suspended function on the stack will open

one trace window for each function on the stack; this is called Naked Trace.
2. By default there is no visual indication that a breakpoint has been set,

although ⎕STOP will show the breakpoints. However, it is possible to view
breakpoints - see "Configuring the Editor" for further details.

12

Search and Replace Commands
Command Code Description

Define string

SC(1) Search: having hit Search, type string to search for,
and ER to find first occurrence. EP clears the field

RP(2)
Replace: having hit Replace, type string to replace
current search with; change will be effective once
ER is hit. EP clears the field

Find and
Replace

NX Locate next match downwards

PV Locate previous match upwards

RT Repeat (Do) the same action again

RA(3) Repeat all - in both directions

Notes:
1. Applies to session, editor and tracer
2. Applies to the session and editor only
3. Caution: the Repeat All replaces ALL matches in the current object

Session-related Commands
Command Code Description

Selection TG

Tag (highlight) blocks of text. Hit TG on initial
line, move to last line to be tagged and hit TG
again. Next TG clears the current tagging rather
than initiating a new tag

Block
commands

CP Copy highlighted block to below current line

DK Delete highlighted block

MV Move the highlighted block to below the current
line

Cut and Paste
CT Cut from current cursor position to end of line

PT Paste last Cut text immediately after cursor

13

ScreenManager Commands
Command Code Description

Move between
⎕SM and
session/trace/edit
windows

HK

With non-empty ⎕SM, toggle between ⎕SM
window and trace/edit/session window. HK is a
valid exit key for ⎕SR, but using it as such can be
confusing !

Exit keys
EP
QT
ER

Default exit keys for ⎕SR

14

Starting APL
By default, to start the non-GUI versions of Dyalog APL, run the mapl script which is
in the installation directory of Dyalog APL.

Example:
$ /opt/mdyalog/14.0/64/unicode/mapl

The mapl script is supplied so that the user can start to use Dyalog APL immediately
once the terminal environment has been setup. However, it should be treated more as
a template for creating a startup script more appropriate for the environment and pur-
poses that Dyalog will be used for.

The startup script usually sets a number of environment variables, and then calls the
interpreter with one or more of its parameters. Although all the examples are written
using the Korn shell, any shell can be used.

Note that under Microsoft Windows parameters appear after the name of the execut-
able; this is not supported under UNIX, where values must be passed as environment
variables.

The parameters are listed in the table below; the more frequently used environment
variables are included in the following section.

Table 1: Parameters for the mapl script:
Parameter Purpose

-tty
Start APL using the terminal development environment. This is
not necessary unless the wine (-wine) or MainWin (-mainwin)
versions are installed too.

-c

-rt

-server

Causes dyalog.rt (the server version) to be started. This parameter
is for backwards compatibility; the use of the -rt or -server
parameter is recommended. See also the Note at the bottom of
this table.

-*
Any other parameter that starts with a "-" will be passed to the
interpreter; all parameters that start with a "-" will be passed
before any parameters that do not start with a "-".

*

This is usually the name of the workspace that is to be loaded
when the interpreter is started. Unless the "-x" flag is passed to
the interpreter, the latent expression in the workspace will be
executed once the workspace has been loaded.

Note:
l the -c parameter has different uses depending on whether it is passed to the

mapl script, or to the dyalog executable.

15

16

Table 2: Parameters for the Dyalog interpreter:
Parameter Purpose

-a

Start in "User mode". If not present, then APL will start in "Prog
(rammer) mode".

This refers to input translate tables, but is primarily meant for
backwards compatibility. See the section on I/O for further details.

-b Suppress the banner in the session.

-c

Comment: the "-c" and anything following it will be treated as a
comment, but will show up in a long process listing. By adding a
suitable comment the user or system administrator can uniquely
identify the individual APL processes.

See also the Note above this table.

-Dc Check workspace integrity after every callback function.

-Dw Check workspace integrity on return to session input.

-DW Check workspace integrity after every line of APL (application
will run slowly as a result)

-DK Log session keystrokes in (binary) file APLLOG.

-q

Continue to run even if an error causes a return to the six-space
prompt. Used when redirecting input to the session from a pipe
or file. If not used, then a return to the six-space prompt will
result in a CONTINUE being generated, and the interpreter
terminating.

+q suppress this behaviour.

-s Turn off the session: APL acts similarly to a scrolling terminal.

+s forces APL to enable the session.

-x
Do not execute the latent expression of any workspace that is)
LOADed or ⎕loaded. This applies to every)load or ⎕load
during the life of the APL session.

ws

This is assumed to be a workspace which will be loaded once
the interpreter has started. Unless the -x parameter is included on
the command line, the latent expression will be run immediately
after the load has finished.

Examples:
mapl dfns
MAXWS=2G mapl dfns
MAXWS=2G DEFAULT_IO=0 mapl -x dfns

17

Configuring the Editor
The editor in non-GUI versions of Dyalog APL can be considered to have 5 separate
functional columns. Below is the contents of the editor window, which shows the
namespace ns, which has two traditional-style functions and one dfn. The statement
5 ⎕STOP 'ns.fn1' has been run too:

[0] :Namespace ns
[1] [0] ├ ∇ r←fn1 a
[2] [1] ├ :If a=1
[3] [2] │ r←1
[4] [3] │ :Else
[5] [4] ├ :If today≡'Friday'
[6] [5] ○│ r←2
[7] [6] ├ :EndIf
[8] [7] ├ :EndIf
[9] [8] ├ ∇
[10]
[11] [0] dfn←{⍺+⍵}
[12]
[13] [0] ├ ∇ r←a fn2 w
[14] [1] │ r←a+w
[15] [2] ├ ∇
[16] :EndNamespace

This is formed of 5 separate columns:

┌────┬───┬───┬──┬────────────────────────────┐
│C1 │C2 │C3 │C4│C5 │
├────┼───┼───┼──┼────────────────────────────┤
│[0] │ │ │ │:Namespace ns │
│[1] │[0]│ │├ │ ∇ r←fn1 a │
│[2] │[1]│ │├ │ :If a=1 │
│[3] │[2]│ ││ │ r←1 │
│[4] │[3]│ ││ │ :Else │
│[5] │[4]│ │├ │ :If today≡'Friday'│
│[6] │[5]│ ○││ │ r←2 │
│[7] │[6]│ │├ │ :EndIf │
│[8] │[7]│ │├ │ :EndIf │
│[9] │[8]│ │├ │ ∇ │
│[10]│ │ │ │ │
│[11]│[0]│ │ │ dfn←{⍺+⍵} │
│[12]│ │ │ │ │
│[13]│[0]│ │├ │ ∇ r←a fn2 w │
│[14]│[1]│ ││ │ r←a+w │
│[15]│[2]│ │├ │ ∇ │
│[16]│ │ │ │:EndNamespace │
└────┴───┴───┴──┴────────────────────────────┘

18

Functional
Column

Value
(see
below)

Purpose

C1 4 Line numbers for entire object

C2 64 Line numbers for functions etc. within scripted
namespaces

C3 2 Trace/Stop points

C4 8 Control Structure Outlining

C5 16 Text (or content)This value is ignored; this column is
always present

It is possible to control at startup time which of these columns are visible. By default,
for all types of object, only the text column is visible; this can be overridden on a
per-object basis by setting one or more of the EDITOR_COLUMNS_ variables listed
in Table E5. The value of these variables is the sum of the values for each of the
columns which are desired.

Examples:
EDITOR_COLUMNS_NAMESPACE=94 shows all columns (the first example in
this section)

Various values for EDITOR_COLUMNS_FUNCTION

Value Editor window appearance

0
fn1 a
:If a=1

b←2
:EndIf

22

[0] fn1 a
[1] :If a=1
[2] ○ b←2
[3] :EndIf

26
fn1 a

 ├ :If a=1
○│ b←2
 ├ :EndIf

40
[0] fn1 a
[1] ├ :If a=1
[2] ○│ b←2
[3] ├ :EndIf

19

File permissions and ⎕FSTAC
Dyalog APL is a well behaved UNIX program and honours all standard UNIX file
permissions. Commands such as ⎕FLIB and)LIBread the magic number (the first
few bytes) of each file in the directory in order to determine whether each file is a
component file or workspace respectively; if the APL process cannot read those
bytes, then it will assume that the file is not a component file or workspace.

Under UNIX, the first element of ⎕AI is the user's effective uid, and ⎕AN reports the
user's name, as it appears in /etc/passwd. When a component file is newly created, its
UNIX file permissions will be defined by the umask for that user. The APL file access
matrix will be (0 3⍴0), which means that even if the user's UNIX file permissions
are such that anyone can read and write to the file, only the user in question will be
able to access the file using Dyalog APL component file system functions. To allow
any user to access the file (assuming that the UNIX file permissions are suitable) then
run

(1 3⍴0 ¯1 0)⎕fstac tieno

Any user with an effective uid 0 will be able to access any component file, irre-
spective of the file access matrix.

20

Signals and ⎕TRAP, ⌶4007
Signals and ⎕TRAP
Certain signals sent to a Dyalog APL process can be trapped and an event issued.
These signals are:

1 SIGHUP

2 SIGINT

3 SIGQUIT

15 SIGTERM

No other signal is trapped by the interpreter; their default action will occur. For
example when a Dyalog APL process receives a SIGSEGV (11) then it will terminate
with a segmentation fault. Note that SIG_USR1 is used by the interface between
Dyalog APL and Auxilliary Processors: sending this signal to the interpreter may
have "interesting" consequences.

The mapping between these signals and the event issued is non-trivial:

l If a SIGHUP is received, then the input stream is closed immediately, and
an event 1002 will be issued at the end of the current line of code. Any sub-
sequent attempt to read from the session will result in an EOF INTERRUPT
being issued.

l If a SIGINT is received, then execution will end at the end of the current
line of code. An event 1002 will be issued.

l If a SIGQUIT is received, then APL will terminate executing the current
line of code as soon as possible - usually at the end of the current built-in
command, and an event 1003 will be issued. However, if the end of the cur-
rent line is reached, then an event 1002 will be signalled.

l If a SIGTERM is received, then the input stream is closed immediately, and
an event 1002 will be issued at the end of the current line of code. Any sub-
sequent attempt to read from the session will result in an EOF INTERRUPT
being issued.

21

⌶4007
To aid the programmer in determining which signal was issued, the newly imple-
mented system operator, ⌶ (I-Beam) has been extended to report this information.

WARNING: Although documentation is provided for I-Beam functions, any service
provided using I-Beam should be considered as "experimental" and subject to change
- without notice - from one release to the next. Any use of I-Beams in applications
should therefore be carefully isolated in cover-functions that can be adjusted if neces-
sary.

4007⌶⍬ can be used to identify which signals have been received by the APL pro-
cess and how many of them have been received. A side effect of calling 4007⌶⍬ is to
reset all counters to 0.

4007⌶⍬ returns a vector of integers; the length is dependent on the APL interpreter
and the operating system, but is typically 63 or 255 elements long. Each element is a
count number of each signal received and processed by the interpreter. Note that
when a SIGQUIT is received by APL the count for both SIGINT and SIGQUIT will
be incremented by one.

Example:
8↑4007⌶⍬

1 4 2 0 0 0 0 0

This means that since either the start of the current APL process, or since the last
invocation of 4007⌶ APL has processed 1 SIGHUP, 2 SIGINT and 2 SIGQUIT.

It is recommended that rather than trapping either event 1002 or 1003, the user traps
event 1000, and queries the vector returned by 4007⌶⍬. In particular if a SIGHUP or
a SIGTERM has been received, then the user's code should terminate the application
as soon as possible, and should be careful to avoid requiring input. SIGHUP has
either been issued using the kill(1) command, or because either the device at the
other end of the connection or the connection has terminated. This used to be com-
mon with serial or dialup terminals, but is now most frequently seen when terminal
emulators or the PCs on which they run are terminated.

22

⎕SH, exit codes and stderr
Note that ⎕SHcalls /bin/sh; this cannot be altered.

If the command, or command pipe issued using ⎕SH exits with a non-zero exit code,
then ⎕SH will terminate with a DOMAIN ERROR, and all output from the command
will be lost. To avoid this, add an exit 0 to the end of the command string, and the
DOMAIN ERROR will be suppressed. However, this technique does require that some
other method is used to determine that the command pipe failed. Example:

⍴⎕SH 'grep no_such_user /etc/passwd'
DOMAIN ERROR

⍴⎕SH 'grep no_such_user /etc/passwd'
∧

but

⍴⎕SH 'grep no_such_user /etc/passwd ; exit 0'
0

⎕SH only captures stdout; unless redirected, any output on stderr will appear in the
same terminal window as the session; hitting RD (default Ctrl-L) will force a screen
redraw, thereby returning the session to its state before the error output appeared.

⎕SH and starting jobs in background
It is possible to run tasks from within APL using ⎕SH:

⎕sh'myjob'

However, in this case, APL will wait until myjob has completed, and will return the
output from myjob (assuming that is that myjob completes with a non-zero exit
code). It is possible to start a job that will run in background, without APL waiting
for that job to complete, with the job continuing even if APL is terminated:

Example:

⎕sh 'sleep 40000 </dev/null >/dev/null 2>&1 &'

More useful might be to save the stdout and stderr of the command, and pipe the
input in from a file; it might also be useful to have the job continue to run even after
the user has both quit APL and logs out from the server:

⎕sh 'nohup myjob <my.in >my.out 2>my.err &'

23

BuildID
Each interpreter has its own unique BuildID. This is a 32-bit checksum of the progam
file which is the Dyalog APL interpreter. This checksum allows Dyalog Ltd. support
staff to uniquely identify the interpreter and from that determine the version, edition,
platform etc of the interpreter.

For that reason, Dyalog Ltd. support staff ask that whenever an issue is raised with
them that the BuildID is included in all communications.

The BuildID is included in binary form in any aplcore that is generated; if a core file
is created, then is it possible to identify the BuildID using the following command:

$ strings -a -n 14 core | grep “BuildID=”

Additionally, the BuildID is included in the "Interesting Information" section of
aplcore files provided that the environment variable APL_TEXTINAPLCORE is set
to 1.

The BuildID can be identified both from within the interpreter (using the GetBuildID
method), and also from the BuildID executable which is supplied with the product
on UNIX.

Both of these methods can be used for any file;they are useful and very fast ways of
keeping track of workspaces versions etc. although md5sum and others may be more
appropriate.

Examples:
At the command line:

$ cd /opt/mdyalog/12.1/32/classic/p6
$./BuildID dyalog
70a3446e
$./BuildID magic
0a744663

In APL:

+2 ⎕nq '.' 'GetbuildID'
70a3446e

magicfile←'/opt/mdyalog/12.1/32/classic/p6/magic'
+2 ⎕nq '.' 'GetBuildID' magicfile

0a744663
)sh

$ echo $PPID
$ kill -11 $PPID
/opt/mdyalog/12.1/32/classic/p6/mapl[58]: 274434 Segmenta
tion fault(coredump)
$ strings -a -n14 core | grep BuildID=
BuildID=70a3446e

24

Core and aplcore files
When Dyalog APL encounters an unexpected problem it is likely that the interpreter
will terminate and generate either a core file or an aplcore file. Under Linux core files
are not created by default; it is necessary to enable their creation.

An aplcore file contains the workspace at the point where the interpreter terminated,
along with debug information that may enable Dyalog to identify and rectify the
problem.

The Dyalog support department (support@dyalog.com, other means of contact on the
Dyalog website) should be contacted if an aplcore file is generated. More imme-
diately it may be possible to copy the contents of the aplcore into a new Dyalog pro-
cess by running

)copy aplcore

Note however that it is possible that the)COPY itself will cause another aplcore; it is
best to rename the original aplcore before attempting this course of action.

From Version 13.2 onwards in situations where a core file is generated, an aplcore
file will be generated too; this is done by forking the failing APL process, so an addi-
tional APL process will appear in any process listing while the aplcore is being cre-
ated. If the environment variable APL_TEXTINAPLCORE is set and has the value 1
then an "Interesting Information" section is appended to the aplcore which contains
information such as the APL stack, the WSID of the originating workspace etc. This
section can be extracted from an aplcore using

sed -n '/======== Interesting Information/,$p' aplcore

25

Appendix A: Table of keycodes and keystrokes using
a terminal emulator under Linux GUIs

Keycodes, their common keystrokes, and the keystrokes specific to terminal emu-
lators under Linux GUIs.

Notes:
1. APL represents the metakey used as the APL character and command shift
2. Cmd represents the keystroke <Ctrl-x>
3. CMD represents the keystrokes <Ctrl-x><Ctrl-x>
4. The file $DYALOG\aplkeys\xterm is certain to be uptodate and should be

treated as the definitive source of the keycode-keystroke translations

Keycode Command Common
keystrokes Terminal Emulator

AC Align Comments Cmd a

AO Comment Out Cmd ,

BH Run to Exit Cmd < APL+Left

BK Back Cmd b APL+Up

BP Toggle Breakpoint CMD b APL+Backspace

BT Back Tab Window CMD Tab Shift+APL+Tab

CB Clear Breakpoints CMD B Shift+APL+Backspace

CP Copy Cmd c APL+Insert

CT Cut CMD c Shift+APL+Delete

DB Backspace Backspace

DC Down Cursor Down

DI Delete Item Delete

DK Delete Block Cmd Delete APL+Delete

DL Down Limit Ctrl+Down Shift+APL+PgDn

DO Uncomment Cmd .

DS Down Screen Shift+Down APL+PgDn

ED Edit Cmd e APL+Enter

26

Keycode Command Common
keystrokes Terminal Emulator

EP Escape Esc Esc

ER Enter Enter

FD Forward Cmd f APL+Down

FX Fix Cmd x

HK Hot Key (⎕SM) Cmd u

HO Home Cursor Cmd h

IN Insert Mode Cmd i

JP Jump Cmd j

LC Left Cursor Cursor Left

LL Left Limit Ctrl+Left Shift+APL+Home

LN Line Numbers Cmd l APL+Numpad+-

LS Left Screen Shift+Left APL+Home

MO Move to Outline CMD % Shift+APL+Space

MR Move/Resize CMD m

MV Move block Cmd m

NX Next Cmd n

OP Open line Cmd o

PT Paste CMD p Shift+APL+Insert

PV Previous Cmd p

QT Quit Cmd q APL+Esc

RA Repeat All CMD d

RC Cursor Right Right

RD Redraw Function CMD r APL+Numpad-/

RL Right Limit Ctrl+Right Shift+APL+End

RM Resume All Threads Cmd > APL+Right

27

Keycode Command Common
keystrokes Terminal Emulator

RP Replace String Cmd r

RS Right Screen Shift+Right APL+End

RT Repeat (Do) Cmd d

SC Search Cmd s

SR Redraw Screen Ctrl+l (1)

TB Tab Window Cmd Tab APL+Tab

TC Trace Cmd Enter Shift+APL+Enter

TG Tag Cmd t APL+Numpad-*

TL Toggle Localisation CMD l APL+Numpad-+

TO Toggle Outline CMD o APL+Space

UC Cursor Up Cursor Up

UL Up Limit Ctrl+Up Shift+APL+PgUp

US Up Screen Shift+Up APL+PgUp

ZM Zoom Cmd z Shift+APL+F12

28

Appendix B: Table of keycodes and keystrokes for
PuTTY

Keycodes, their common keystrokes, and the keystrokes specific to the PuTTY ter-
minal emulator.

Notes:
1. APL represents the metakey used as the APL character and command shift
2. Cmd represents the keystroke <Ctrl-x>
3. CMD represents the keystrokes <Ctrl-x><Ctrl-x>
4. The file $DYALOG\aplkeys\xterm is certain to be uptodate and should be

treated as the definitive source of the keycode-keystroke translations

Keycode Command Common
keystrokes PuTTY

AC Align Comments Cmd a

AO Comment Out Cmd ,

BH Run to Exit Cmd <

BK Back Cmd b Shift+Ctrl+Backspace

BP Toggle Breakpoint CMD b Shift+End

BT Back Tab Window CMD Tab Shift+Ctrl+Tab

CB Clear Breakpoints CMD B

CP Copy Cmd c Ctrl+Insert

CT Cut CMD c Shift+Delete

DB Backspace Backspace Backspace

DC Down Cursor Down

DI Delete Item Delete

DK Delete Block Cmd Delete Ctrl+Delete

DL Down Limit Ctrl+Down Ctrl+End

DO Uncomment Cmd .

DS Down Screen Shift+Down PgDn

ED Edit Cmd e Shift+Enter

29

Keycode Command Common
keystrokes PuTTY

EP Escape Esc Esc

ER Enter Enter Enter

FD Forward Cmd f Shift+Ctrl+Enter

FX Fix Cmd x

HK Hot Key (⎕SM) Cmd u

HO Home Cursor Cmd h

IN Insert Mode Cmd i

JP Jump Cmd j Shift+Ctrl+Home

LC Left Cursor Cursor Left

LL Left Limit Ctrl+Left

LN Line Numbers Cmd l

LS Left Screen Shift+Left Ctrl+Left

MO Move to Outline CMD % Shift+Ctrl+Up

MR Move/Resize CMD m

MV Move block Cmd m Shift+Ctrl+Delete

NX Next Cmd n Shift+Ctrl+Right

OP Open line Cmd o Shift+Ctrl+Insert

PT Paste CMD p Shift+Insert

PV Previous Cmd p Shift+Ctrl+Left

QT Quit Cmd q Shift+Esc

RA Repeat All CMD d Ctrl+Down

RC Cursor Right Right

RD Redraw Function CMD r Shift+PgUp

RL Right Limit Ctrl+Right

RM Resume All Threads Cmd >

30

Keycode Command Common
keystrokes PuTTY

RP Replace String Cmd r

RS Right Screen Shift+Right Ctrl+PgDn

RT Repeat (Do) Cmd d Shift+Ctrl+Down

SC Search Cmd s

SR Redraw Screen Ctrl+l (1)

TB Tab Window Cmd Tab Ctrl+Tab

TC Trace Cmd Enter Ctrl+Enter

TG Tag Cmd t

TL Toggle Localisation CMD l Ctrl+Up

TO Toggle Outline CMD o Shift+Up

UC Cursor Up Cursor Up

UL Up Limit Ctrl+Up Ctrl+Home

US Up Screen Shift+Up PgUp

ZM Zoom Cmd z Shift+Ctrl+PgUp

Notes:
l If you are using PuTTY or another emulator that uses the Dyalog Unicode

IME, it will be necessary to swap to a non-Dyalog APL keyboard before hit-
ting Ctrl-l; hitting Ctrl-l while in a Dyalog APL keyboard will generate a
Quad symbol.

31

Appendix C: Unused keycodes
Keycodes defined for Dyalog APL, but not used or should not be used in the Dyalog
APL tty version

AB Abort Changes (effectively same as QT)

CB Clear stop/trace/monitor

CH Change Hint

Dc Down with selection

DD Drag and Drop

DH Delete Highlighted section

Dl Down Limit with selection

Dn Down Mouse key n, n∊1 2 3 4 5

Ds Down Screen with selection

EN End of Line

GL Goto Line

HT Horizontal Tab

IF Insert Off

Lc Left with selection

Ll Left Limit with selection

LW Left Word

Lw Left Word with selection

MC Mode Change

PA Paste Ansi

PR Properties

PU Paste Unicode

Rc Right with selection

Rl Right Limit with selection

RW Right Word

Rw Right Word with selection

ST Start of Line

32

TH Reverse Horizontal Tab

UA Undo All

Uc Up with selection

Ul Up Limit with selection

Un Up Mouse key n, n∊1 2 3 4 5

Us Up Screen with selection

Index 33

Index

A

APLCore file 24

B

BuildID in saved files 23

C

Commands
common to all window types 9
editor related 10
overview and description 6
screen manager related 13
search and replace 12
selection related 12
session related 10
tracer related 11
window related 9

Configuring the editor 17
Core file 24

E

Edit Window 5
Entering characters 3
Entering commands 4

F

File permissions
UNIX 19

FSTAC
UNIX 19

I

I-Beam 4007 20
Interpreter parameters 16

K

Keystrokes for console/terminal windows 25
Keystrokes for PuTTY 28

M

Metakey 1

Q

quadSH
exit codes 22
stderr 22

S

Screen Manager Window 5
Session Window 5
Signals 20
Starting APL under UNIX 14
Startup script parameters 14
Status line contents 6

T

Trace Window 5

U

Unused keystrokes 31

34 Dyalog APL for UNIX User Guide

	Overview
	Entering Characters
	Entering the Key Character
	Entering Commands
	The Different Types of Input Windows
	Driving the Dyalog APL tty version
	Starting APL
	Configuring the Editor
	File permissions and ⎕FSTAC
	⎕SH, exit codes and stderr
	BuildID
	Appendix A: Table of keycodes and keystrokes using a terminal emulator under ...
	Appendix B: Table of keycodes and keystrokes for PuTTY
	Appendix C: Unused keycodes
	Index

