
The tool of thought for expert programming

Dyalog User
Commands

Reference Guide
User Commands Version 2.00

Dyalog Limited

Minchens Court, Minchens Lane
Bramley, Hampshire

RG26 5BH
United Kingdom

tel: +44(0)1256 830030
fax: +44 (0)1256 830031

email: support@dyalog.com
http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited
Copyright  1982-2014

mailto:support@dyalog.com

Dyalog is a trademark of Dyalog Limited

Copyright  1982 - 2014 by Dyalog Limited.

All rights reserved.

Version 2.00

Revision: 20141128_200

No part of this publication may be reproduced in any form by any means without the prior written permission of Dyalog

Limited, Minchens Court, Minchens Lane, Bramley, Hampshire, RG26 5BH, United Kingdom.

Dyalog Limited makes no representations or warranties with respect to the contents hereof and specifically disclaims any

implied warranties of merchantability or fitness for any particular purpose. Dyalog Limited reserves the right to revise this

publication without notification.

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The Open Group.

Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

All other trademarks and copyrights are acknowledged.

Contents

1 ABOUT THIS DOCUMENT . 1
1.1 Audience ... 1

2 INTRODUCTION . 2
2.1 Cache File .. 2

3 USING USE R COMMANDS . 3
3.1 Installation .. 3
3.2 File Structure ... 3
3.3 Implementation .. 3

3.3.1 Customising the Implementation .. 4
3.4 File Format .. 4
3.5 Groups ... 4
3.6 Syntax in Dyalog Sessions.. 5

3.6.1 Requesting Additional Information ... 5
3.7 Running User Commands .. 5

3.7.1 Arguments ... 6
3.7.2 Modifiers and Modifier Values .. 6

4 CRE ATIN G USER COMMANDS . 7
4.1 Basic Definition ... 7
4.2 The List Function ... 7

4.2.1 Name .. 8
4.2.2 Group ... 8
4.2.3 Parse .. 8

4.3 The Run Function .. 9
4.4 The Help Function ... 9

4.4.1 Defining Multiple Levels of Help .. 10
4.5 Modifiers ... 11

4.5.1 Default Modifier Values ... 12
4.6 Arguments ... 13

4.6.1 Default Argument Values ... 13
4.6.2 Arguments Including Space Characters ... 13
4.6.3 Minimum Number of Arguments .. 13
4.6.4 Maximum Number of Arguments .. 14
4.6.5 Long Arguments ... 14
4.6.6 Summary of Argument Specification in the Parser 14

4.7 Saving Custom User Commands ... 15
4.8 Detecting New Custom User Commands .. 15

5 PRE DEFINED USE R COMMAN DS . 16
5.1 ARRAY Group... 17

5.1.1]Compare ... 17
5.1.2]Edit .. 17
5.1.3]ToHTML .. 17

5.2 FILE Group ... 18
5.2.1]CD ... 18
5.2.2]Collect ... 18
5.2.3]Compare ... 18
5.2.4]Edit .. 19
5.2.5]Find ... 19
5.2.6]Replace ... 19
5.2.7]Split ... 20
5.2.8]ToLarge ... 20
5.2.9]ToQuadTS ... 20
5.2.10]Touch .. 21

5.3 FN Group ... 21
5.3.1]Align .. 21
5.3.2]Calls ... 21
5.3.3]Compare ... 22
5.3.4]Defs ... 22
5.3.5]DInput ... 22
5.3.6]Latest .. 23
5.3.7]ReorderLocals ... 23

5.4 MISC Group ... 23
5.4.1]Calendar .. 23
5.4.2]Factors .. 24
5.4.3]PivotTable ... 24

5.5 NS Group ... 24
5.5.1]ScriptUpdate ... 24
5.5.2]Summary ... 25
5.5.3]Xref ... 25

5.6 OUTPUT Group .. 26
5.6.1]Box .. 26
5.6.2]Boxing ... 26
5.6.3]Disp ... 27
5.6.4]Display .. 27
5.6.5]Rows ... 27

5.7 PERFORMANCE Group .. 28
5.7.1]Monitor ... 28
5.7.2]Profile ... 29
5.7.3]RunTime .. 29
5.7.4]SpaceNeeded .. 30

5.8 SALT Group .. 30
5.8.1]Clean ... 30
5.8.2]Compare ... 31
5.8.3]List... 31
5.8.4]Load .. 31
5.8.5]Open ... 32
5.8.6]RemoveVersions ... 32
5.8.7]Save .. 32
5.8.8]Settings ... 32
5.8.9]Snap .. 33

5.9 SAMPLES Group .. 34
5.9.1]UCMDHelp .. 34
5.9.2]UCMDNoParsing ... 34
5.9.3]UCMDParsing .. 34

5.10 SVN Group ... 35
5.10.1]Add.. 35

5.10.2]Checkout ... 35
5.10.3]Commit ... 35
5.10.4]Delete ... 36
5.10.5]Diff .. 36
5.10.6]Export ... 36
5.10.7]Import ... 36
5.10.8]Resolve.. 37
5.10.9]Status .. 37
5.10.10]Update .. 37

5.11 TOOLS Group ... 38
5.11.1]Assemblies .. 38
5.11.2]Chart ... 38
5.11.3]Demo .. 39
5.11.4]FileAssociations .. 39
5.11.5]FromHex ... 39
5.11.6]GUIProps ... 39
5.11.7]ToHex .. 40

5.12 TRANSFER Group ... 40
5.12.1]In ... 40
5.12.2]Out .. 40

5.13 UCMD Group ... 40
5.13.1]UDebug ... 40
5.13.2]ULoad .. 41
5.13.3]UMonitor .. 41
5.13.4]UNew .. 41
5.13.5]URefresh ... 42
5.13.6]UReset .. 42
5.13.7]USetup .. 42
5.13.8]UUpdate.. 43
5.13.9]UVersion ... 43

5.14 WS Group .. 43
5.14.1]Compare ... 43
5.14.2]Document ... 43
5.14.3]FindRefs .. 44
5.14.4]FnsLike .. 44
5.14.5]Locate ... 45
5.14.6]Map ... 45
5.14.7]NamesLike .. 45
5.14.8]Nms ... 46
5.14.9]ObsLike ... 46
5.14.10]Peek ... 46
5.14.11]SizeOf .. 47
5.14.12]VarsLike ... 47

APPEN DIX A EXAMPLE USE R COMMANDS . 48

 Dyalog User Commands Reference Guide

1 About This Document

This document is intended as an introduction to user commands, a guide to creating
and implementing new user commands and a summary of the predefined user
commands supplied with Dyalog.

Although the behaviour of user commands is generally independent of the
operating system and whether a classic/Unicode installation is used, some of the
information in this document is operating system-specific (for example, the ability
to auto-complete the names of user commands when running them). The
differences between this document and the user commands experience on a UNIX
operating system are detailed in the Dyalog for UNIX User Guide.

1.1 Audience
It is assumed that the reader has a reasonable understanding of Dyalog.

 Dyalog User Commands Reference Guide 2

2 Introduction

User commands are tools that are available at any time, in any workspace, as
extensions to the Dyalog development environment. The text-based
implementation of user commands allows development tools to be easily shared
between users, and the ability to create custom user commands in addition to the
predefined user commands that are supplied with Dyalog means that it is simple to
write utility tools for your environment that can be easily issued to an entire
development team.

Custom user commands produced using this version of the user command
framework (version 2.00) are fully compatible with Dyalog version 13.1 and later;
the exception to this is user commands that invoke language features or
functionality not supported in the release in which they are run. For compatibility
with earlier versions of Dyalog, please contact support@dyalog.com.

User commands are entered in an APL Session by starting an input line with a]
character, for example:

]ToHex 250+⍳5
 FB FC FD FE FF

A section of the APL Wiki is devoted to sharing custom user commands (see
http://aplwiki.com/UserCmdsDyalog).

2.1 Cache File
The first time that you start a Dyalog Session after installing/updating Dyalog, a
cache file is created comprising the name of each of the user commands and the file
in which it is defined. This can take a few seconds. If any of the files that contain
user commands are altered, then the cache file is rebuilt:

• the next time a Dyalog Session is started.
• when the]Ureset user command is run (forces an in-Session recache).

By default, the cache file is located in:
Documents\Dyalog APL <version> Files\UserCommand20.cache

By default, the cache file is located in:
~/.dyalog/UserCommand20.cache
(it is likely that this location will change in a future version of Dyalog).

The name and location of the cache file can be changed from its default by setting the
UCMDCACHEFILE registry entry/environment variable.

mailto:support@dyalog.com
http://aplwiki.com/UserCmdsDyalog

 Dyalog User Commands Reference Guide 3

3 Using User Commands

This chapter introduces some of the concepts that underpin user commands in
Dyalog.

3.1 Installation
A set of predefined user commands is installed automatically with Dyalog.

For a summary of these user commands, see Chapter 5.

3.2 File Structure
The <path to Dyalog>\SALT\spice directory contains the predefined user commands
that are installed with Dyalog.

The spice directory can only be moved to a different location by moving its parent
SALT directory and setting the SALT environment variable accordingly. For
information on moving the SALT directory and setting the environment variable, see
the Dyalog SALT Reference Guide.

Although the spice directory can be moved, it must always remain directly beneath
the SALT directory and must not be renamed.

3.3 Implementation
When an input line in a Session starts with a] character, Dyalog makes a call to the
dyadic function ⎕SE.UCMD – if this function exists, then it is called with the rest of
the input line as the right argument and a reference to calling space as the left
argument.

For example:

The following command is entered in the namespace #.ABC:

]<cmd> –myModifier=value

Dyalog's interpreter preserves this exactly and makes the following call:

#.ABC ⎕SE.UCMD '<cmd> –myModifier=value'

⎕SE.UCMD converts this into a call to the user command framework:

⎕SE.SALTUtils.Spice '<cmd> –myModifier=value'

The functions defined for <cmd> are actioned with the –myModifier modifier
applied with a value of value and the result is displayed in the Session.

 Dyalog User Commands Reference Guide 4

This implementation means that application code can invoke user commands by
calling ⎕SE.UCMD directly; if this function is deleted then user commands are
disabled completely.

Dyalog Ltd reserves the right to change the implementation of the user command
framework; for this reason, the user command framework should never be called
directly instead of through ⎕SE.UCMD.

3.3.1 Customising the Implementation
Although it is possible to implement a custom user command system by redefining
⎕SE.UCMD, Dyalog Ltd does not recommend this approach – adhering to the user
command framework supplied with Dyalog promotes a single, consistent, format
that enables all custom user commands to be shared between Dyalog Sessions.

3.4 File Format
Each user command comprises a script containing a single namespace object (for
more information on scripted files, including declaration statements and permitted
constructs, see the Dyalog Programmer's Reference Guide) and must be stored as
files with the .dyalog extension.

If an extension is not specified when using user commands to save a script file, then
.dyalog is automatically appended.

By default, double-clicking on a file with the .dyalog extension opens it using a text
editor (in Microsoft Windows this is the Microsoft Windows Notepad program).

Files with the .dyalog extension are Unicode text files that use UTF-8 character
encoding. This means that they can store any text that uses Unicode characters. This
format includes most of the world's languages and the Dyalog character set, and is
supported by many software applications. By using text files as a storage
mechanism, user commands and other tools written using Dyalog can be combined
with industry-standard tools for source code management.

3.5 Groups
User commands with common features can be grouped together under a single
name. These groups have no effect on the functionality of the individual user
commands but enable related user commands to be gathered together for ease of
reference and provide a means of sorting and classifying user commands that can be
very useful as the number of user commands increases.

User command names must be unique within a group but do not have to be unique
across all groups. This means that groups allow a systematic naming convention for
user commands that perform similar functions on different types of APL object, for
example,]FILE.Compare to compare two files,]ARRAY.Compare to compare
two arrays and]FN.Compare to compare two functions.

When running (or asking for help on) a user command, the group name can be
prefixed to the user command name, separated by a . character; this group name
prefix is mandatory if the user command name is not unique across all groups.

Every user command must be in a group, and every group must comprise at least
one user command.

 Dyalog User Commands Reference Guide 5

3.6 Syntax in Dyalog Sessions
User commands are entered in a Dyalog Session with a preceding right bracket. The
basic syntax is as follows:

• to run a user command:] <cmd>...
• to list all user commands:]?
• to list all user commands (with descriptions) in their groups:]?+
• to list all the available commands defined in .dyalog files in a directory:

]? <full path to directory>/<directory name>
• to list all user commands that start with "<string>":]?<string>*
• to list all the available commands in a specific group:]?<groupname>
• to assign the result of a command to a variable:]<var>←<cmd>...

The names of user commands and groups are not case-sensitive although their
arguments, modifiers and modifier values might be. The convention used in this
document is that group names are shown in upper case and user command names
are shown in camel case.

3.6.1 Requesting Additional Information
Help can be requested in an APL Session using the following syntax:

• for general help on user commands:]?? or]Help
• for help on a specific user command:]?<cmd> or]Help <cmd>
• for more detailed help on a specific user command:]??<cmd>

For a specific user command, the information that is returned is dependent on the
level of help requested. This is determined by the number of ? characters entered
between the] character and the user command name; for example,]??<cmd>
returns the information defined for level 2 of the <cmd> user command. The
number of levels of help available depends on a user command's definition (for
information on defining multiple levels of help in custom user commands, see
Section 4.4.1).

When requesting help on a user command, the name of that user command does
not always need to be entered in full – as long as enough of the name is entered for
it to be interpreted unambiguously. For example, if a user command is called Time
and no other user commands start with the letter T then help can be successfully
requested by calling]?T ,]?Ti,]?Tim or]?Time.

3.7 Running User Commands
User commands are run with the following syntax:

] <cmd> <-modifiers/arguments>

For information on the precise syntax for each user command, the arguments that
can be supplied to it and the modifiers that it can take, enter]Help <cmd> or
]?<cmd> in a Dyalog Session.

When running a user command, the name of that command must be entered in full.

 Dyalog User Commands Reference Guide 6

Dyalog's auto-complete functionality means that any user commands
that match the entered string are presented as selectable options,
making it easy to correctly specify the requisite user command.

The names of user commands are not case-sensitive although their arguments,
modifiers and modifier values might be.

3.7.1 Arguments
Some user commands can accept (or require) one or more arguments. To see a list
of the possible arguments for a user command, enter]?<cmd> or]Help <cmd>
in a Dyalog Session.

For example, the behaviour of the user command]CD depends on the argument
supplied when calling it. If it is run with no argument, then it returns the current
working directory – this is equivalent to entering cd on the command line of a
Microsoft Windows operating system or pwd in UNIX. However, if a single argument
specifying the full path to a directory is supplied, then the user command changes
the current working directory to be the one specified by the argument.

3.7.2 Modifiers and Modifier Values
The default behaviour of a user command can be altered through the application of
modifiers (instructions that the command should change its default behaviour). To
see a list of the possible modifiers and their modifier values for a user command,
enter]?<cmd> or]Help <cmd> in a Dyalog Session.

Modifiers must be prefixed with the – character and are separated from any
associated modifier values with the = character, for example –version=3
or -format=APL. A modifier that does not accept a modifier value but can only be
present or absent is sometimes referred to as a flag or a switch, for
example, -protect.

When running a user command with a specified modifier, the name of the modifier
does not always need to be entered in full – as long as enough of the modifier's
name is entered for it to be interpreted unambiguously. For example, if a user
command has a modifier called -version and does not have any other modifiers
starting with the letter v then the function can be successfully called with modifiers
-version , -vers, -v and so on.

Multiple modifiers can be included in a user command call – in this situation they
must be separated by a space character. The order in which they are specified is
irrelevant.

 Dyalog User Commands Reference Guide 7

4 Creating User Commands

When an instruction is called repeatedly it can improve efficiency to have that
instruction in a script file. The user command framework provides a very efficient
mechanism for doing this, allowing a user to create and update instructions without
the necessity of maintaining a workspace. Unlike a workspace, user commands do
not need to be loaded into each Session that wants to employ them. In addition,
their text-based implementation makes them easy to store in a repository and share
between users.

This chapter describes the syntax, rules and conventions governing the creation of
custom user commands.

4.1 Basic Definition
A new user command can be defined in one of the following ways:

• in a text file (for example, using Microsoft Notepad) and then saved as
a .dyalog file

• in a Dyalog Session and saved as a .dyalog file using the]Save user
command.

Once in the appropriate directory (see Section 4.7), the new user command can be
run from the Dyalog Session.

User commands are defined by three specific APL functions (along with any
additional functions needed for the particular purpose of the user command). The
three functions must be called:

• List – for information on the List function, see Section 4.2.

• Run – for information on the Run function, see Section 4.3.

• Help – for information on the Help function, see Section 4.4.

These functions are wrapped together in a namespace (the order in which the
functions are specified within the namespace is not important). A single namespace
can host multiple user commands.

Examples of user commands wrapped in a namespace are included in Appendix A –
these show how the List, Help and Run functions are defined.

4.2 The List Function
The List function informs the user command framework about the command
being defined, enabling it to display a summary of the command when requested to
list all available commands (with descriptions) in their groups (]?+).

 Dyalog User Commands Reference Guide 8

The List function returns one namespace for each user command defined within
it. Each namespace contains four variables:

• Desc – a summary of the user command's functionality

• Name – the name of the user command (see Section 4.2.1)

• Group – the name of the group to which the command belongs (see
Section 4.2.2)

• Parse – parsing information for the framework (see Section 4.2.3)

4.2.1 Name
User commands must have unique names within a group (names can be replicated
across different groups if required). They must be valid APL identifier names (for
more information on legal names, see the Dyalog Programmer's Reference Guide)

Modifiers must have unique names within the user command but do not have to be
unique within the superset of user commands. Modifier names are case-sensitive.

The names of user commands and modifiers cannot contain space characters.

When naming a modifier, avoid the names Arguments, Delim, Propagate, SwD and
Switch as these names are used by the parser.

4.2.2 Group
Every user command must be a member of a group (but can only be a member of
one group). In addition:

• the user commands for a single group do not all need to be defined within a
single namespace/.dyalog file

• a single namespace/.dyalog file can include user commands for several
different groups

• user command names must be unique within a group but do not have to be
unique across all groups

Although it is possible to add a custom user command to one of the predefined user
command groups, Dyalog Ltd recommends that this is avoided as there could be
unforeseen consequences (especially with the SALT and UCMD groups).

4.2.3 Parse
If the Parse variable for a user command is empty, then the Run function's second
argument will comprise everything following the command name. By setting the
Parse variable to non-empty values, the user command framework is able to handle
arguments and modifiers.

For more information on modifiers and modifier values, see Section 4.5. For more
information on arguments, see Section 4.6.

The following general rules apply when processing a call to a user command:

• user commands take 0 or more arguments followed by 0 or more modifiers
(the arguments must come before the modifiers)

• individual arguments and modifiers are separated by space characters

 Dyalog User Commands Reference Guide 9

• modifiers can be optional or mandatory

• modifiers are identified by a preceding - character

• modifier values are identified by a preceding = character

• modifiers can be specified in any order

• modifier names are case-sensitive

• individual arguments and modifiers can be delimited by single or double
quotes to allow space characters within them.

The user command framework verifies that these rules have been adhered to
before creating a new namespace. It then populates this namespace with a variable
called Arguments (containing all the arguments) and a variable for each of the
modifiers with names matching those of the modifiers. Other tools for manipulating
the user command are also added to the namespace, for example, the Switch
function – see Section 4.5.1. This namespace is passed to the Run function (see
Section 4.3) as its second argument.

If the Parse variable defined in a user command's List function is empty, then
the user command will accept anything; the entire string is the argument.

If the Parse variable defined in a user command's List function is not empty,
then it must describe the number of arguments and the modifiers used. The number
of arguments is a simple number and the modifier list must include the delimiter,
the modifier name and whether it accepts a value.

4.3 The Run Function
The Run function executes the code for the command. It is always called with two
arguments; the user command's name and the supplied arguments/modifiers. As a
single namespace can host multiple user commands, the Run function uses the
command name to determine the appropriate actions to perform.

4.4 The Help Function
The Help function reports detailed information on the user command when this is
requested (by entering]?<cmd> or]Help <cmd> in a Dyalog Session). As a
single namespace can host multiple user commands, the Help function uses the
command name to determine the appropriate information to return.

When a user requests help for a particular user command, the Help function
returns a specific set of information by default:

Command “<commandname>”
Syntax: accepts switches <modifiers> only if modifiers are defined
<commandname> (no arguments) only if no arguments are defined
<commandname> <arguments> only if arguments are defined
<specific defined help information>
Script location: <location>

The only part of this that is not auto-populated is the specific defined help
information (see Section 4.4.1).

 Dyalog User Commands Reference Guide 10

4.4.1 Defining Multiple Levels of Help
The specific defined help information that is presented to a user when requesting
help in an APL Session is dependent on the level of help requested. The level is
determined by the number of ? characters that a user enters between the]
character and the command name; for example,]??<cmd> returns the
information defined for level 2 of the <cmd> user command.

As with the predefined user commands, increasingly detailed levels of information
can be provided for custom user commands. If multiple levels of help are defined,
then Dyalog Ltd recommends including information to that effect in each level, for
example, the information that is displayed in response to a]??<cmd> request
should state that more detailed information is available if]???<cmd> is entered.

Any valid Dyalog algorithmic syntax can be used in the Help function to define
different levels of help, for example, control structures or branching. Optionally, the
different levels of help can be cumulative so that, for example,]???<cmd> returns
the help information for levels 1 and 2 as well as the help for level 3.

The following code fragments are examples showing how separate (non-cumulative)
levels of help can be defined within the Help function:

∇ r←level Help Cmd; CR
 CR←⎕UCS 10
 r←'This is basic help.'
 :If level=1
 r,←CR,'This is level 1 help.'
 :ElseIf level=2
 r,←CR,'This is level 2 help.'
 :ElseIf level>2
 r,←CR,'This is level 3 help.'
 :EndIf
∇

Alternatively, the same can be achieved with:

∇ r←level Help Cmd; CR
 CR←⎕UCS 10
 r←'This is basic help.'
 r,←⊂'This is level 1 help.'
 r,←⊂'This is level 2 help.'
 r,←⊂'This is level 3 help.'
 r←⊃((¯1+⍴r)⌊level)↓r
∇

In these cases:

•]? <cmd> gives This is basic help.

•]?? <cmd> gives This is level 1 help.

•]??? <cmd> gives This is level 2 help.

•]???? <cmd> gives This is level 3 help.

•]????? <cmd> gives This is level 3 help.

 Dyalog User Commands Reference Guide 11

The following code fragments are examples showing how cumulative levels of help
can be defined within the Help function:

∇ r←level Help Cmd; CR
 CR←⎕UCS 10
 r←'This is basic help.'
 :If level>0
 r,←CR,'This is level 1 help.'
 :AndIf level>1
 r,←CR,'This is level 2 help.'
 :AndIf level>2
 r,←CR,'This is level 3 help.'
 :EndIf
∇

Alternatively, the same can be achieved with:

∇ r←level Help Cmd; CR
 CR←⎕UCS 10
 r←'This is basic help.'
 r,←⊂CR,'This is level 1 help.'
 r,←⊂CR,'This is level 2 help.'
 r,←⊂CR,'This is level 3 help.'
 r←(⍴,CR)↓ ⊃,/(1+level⌊⍴r)↑r
∇

In these cases:

•]? <cmd> gives This is basic help.

•]?? <cmd> gives This is basic help. This is level 1
help.

•]??? <cmd> gives This is basic help. This is level 1
help. This is level 2 help.

•]???? <cmd> gives This is basic help. This is level 1
help. This is level 2 help. This is level 3 help.

If only a single level of help is required, then the Help function should be defined
without a left argument, that is, r←Help Cmd.

Entering]Help <cmd> in an APL Session always presents the user with the same
level of help as]? <cmd> even if there are multiple levels of help defined.

4.5 Modifiers
Modifiers enable a user command to apply filters and rules so that an entirely new
(similar) user command does not need to be written. The user command framework
allows you to define the modifiers that your user command will accept. The rules
when defining each modifier in the Parse variable are:

• If a modifier accepts characters in a set, then the Parse variable includes
the modifier and possible values with the ∊ character as a separator. For
example:
-<modifier name>∊<set of characters>
so –XYZ∊abc012 means that the modifier -XYZ can accept any number
and combination of characters in the set abc012, such as ab2a0b.

 Dyalog User Commands Reference Guide 12

• If a modifier accepts specific strings, then the Parse variable includes the
modifier and possible values with the = character as a separator and the
strings separated by space characters. For example:
-<modifier name>=<string1> <string2> <string3>
so –XYZ=abc 012 means that the modifier -XYZ can accept either abc
or 012 as a modifier value.

• If a modifier accepts any string, then the Parse variable includes the
modifier a = character with nothing after it. For example:
-<modifier name>=
so –XYZ= means that the modifier -XYZ can accept any value.

4.5.1 Default Modifier Values
A modifier always has an internal value. This is one of the following:

• 0 if the modifier is not included when running the user command

• 1 if the modifier is included when running the user command but no
modifier value is included

• a string matching the specified modifier value

A modifier can be configured to default to a specific value in one of three ways;
these approaches are shown in this section with the modifier –X defaulting to a
modifier value of 123 (a three-element character vector).

Approach 1: Assign a default value to the modifier using the ":" character as the
separator:

List[i].Parse←'-X:123'

Approach 2: Test whether the modifier value is 0 and, if it is, then set it to the
required default value.

For example:

:if X≡0 ⋄ X←123 ⋄ :endif

Approach 3: Define the default value using the dyadic form of the function Switch
function (automatically defined in the namespace that is passed to the Run function
(see Section 4.3) as its second argument).

The default modifier value must be numeric when using this approach.

Given the name of a modifier as an argument:

• monadic Switch returns:

• 0 if an invalid modifier name is specified

• 0 if the modifier is not specified and no default value has been set
for that modifier

• 1 if the modifier is specified without a modifier value

• a string matching the specified modifier value

• a string matching the default modifier value if a modifier is not
specified. and a default value has been set for that modifier

 Dyalog User Commands Reference Guide 13

• dyadic Switch returns:

• the value of the left argument (default value) if an invalid modifier
value is specified

• the value of the left argument (default value) if a modifier is not
specified (irrespective of whether that modifier is mandatory) and
no default value has been set for that modifier

• the specified modifier value if defined – however, if the value of
the default is numeric then it assumes that the specified modifier
value should also be numeric and transforms it into a number. This
means that, if the modifier and modifier value –X=123 is entered,
the expression 99 Args.Switch 'X' will return (,123) not
'123'; the Switch function always returns a vector, making it
very easy to differentiate between 0 (the modifier is not included
when running the user command) and ,0 (a modifier value of 0
was specified when running the user command).

4.6 Arguments
Unlike modifiers, arguments do not have names. However, as arguments must be
specified in a particular order and each have a specific purpose, they should be
given an appropriate name in the Help function to make their purpose clear.

The number of arguments that a user command can take is specified in the Parse
variable (see Section 4.2.3); this section explains the rules for determining the value
to specify there.

4.6.1 Default Argument Values
A default value can be defined for an argument – this value is automatically used if
the argument is not specified when running the user command. Default values are
defined within the Run function. For example:

args←a.Arguments,(⍴a.Arguments)↓0 0 0 ‘defaultfor4th’
A4←'defaultvalue' a.Switch '_4'

4.6.2 Arguments Including Space Characters
Arguments that contain space characters must be delimited with ' characters. For
example, if the user command]NewID must have 2 arguments supplied, full name
and address, then Parse should be set to '2' and the user command must be run
as follows:

]NewID 'Morten Kromberg' 'Dyalog Ltd'

If the user command]NewID accepts 3 arguments, name, surname and address,
then Parse should be set to '3' and the user command must be run as follows:

]NewID Morten Kromberg 'Dyalog Ltd'

4.6.3 Minimum Number of Arguments
If a user command must have a minimum number of arguments, then Parse can
be coded to that effect by assigning it a range of numbers of arguments, that is:
Parse←'<min number of args>-<max number of args>'.

 Dyalog User Commands Reference Guide 14

A minimum number of arguments cannot be specified without also specifying a
maximum number of arguments. However, if there is no maximum number of
arguments then an arbitrary high number can be used. For example, if at least three
arguments must be supplied when calling a user command but there is no limit to
the number of arguments that the user command can process, then Parse could
be assigned as: Parse←'3-9999'.

4.6.4 Maximum Number of Arguments
If a user command can only process a limited number of arguments, then Parse
can be coded to that effect by appending S to the maximum number of arguments.
For example, if the user command can accept 0, 1 or 2 arguments but no more, then
Parse should be set to '2S'.

4.6.5 Long Arguments
The last argument can be defined to comprise anything that remains after removing
the other arguments. Parse can be coded to that effect by appending L to the
maximum number of arguments. For example, if the user command can accept 1
argument consisting of everything that is included when running the command,
then Parse should be set to '1L'. Any additional arguments are merged into the
last argument (separated by a space character). If there are multiple space
characters anywhere in the text, they are converted into single spaces.

The long argument L can be appended to the maximum number of arguments S to
specify that any additional arguments after the maximum number has been
supplied should be merged into the last one supplied. For example, if '3SL' is
specified, then 0, 1, 2 or 3 arguments can be supplied when calling the user
command but any more than this will be merged with the third argument. This
means that:

]xyz a1 a2 a3 a4 a5 a6

runs the user command xyz with three arguments: a1, a2 and 'a3 a4 a5 a6'.

4.6.6 Summary of Argument Specification in the Parser
Parse←'n' where n can be:

• n1 : exactly n1 arguments must be supplied

• n2-n3 : a minimum of n2 arguments and a maximum of n3 arguments can
be supplied

• n4S : a maximum of n4 arguments can be supplied (equivalent to 0-n2)

• n5L : n5 arguments must be supplied; if more than this are supplied then
the first n5-1 arguments are taken and the rest are merged together into
the final n5 argument

• n6-n7L : a minimum of n6 arguments and a maximum of n7 arguments can
be supplied; if more than this are supplied then the first n7-1 arguments
are taken and the rest are merged together into the final n7 argument

• n8SL : a maximum of n8 arguments can be supplied; if more than this are
supplied then the first n8-1 arguments are taken and the rest are merged
together into the final n8 argument (equivalent to 0-n8L)

 Dyalog User Commands Reference Guide 15

4.7 Saving Custom User Commands
Custom user commands must be saved in a .dyalog file (if a custom user command
has been created in a scripted namespace in an APL Session, then it can be saved as
a .dyalog file using the]Save user command).

The predefined user commands are located in the <path to Dyalog>\SALT\spice
directory. Dyalog Ltd recommends that you save custom user commands in a
different directory that is not located beneath the SALT directory; this is because
there might be permissions issues with accessing custom commands beneath this
directory and there is always the possibility that Dyalog Ltd might issue a user
command with the same filename as your custom user command at a future date.

The custom user command directory must be added to the user command search
path to enable the user commands within it to be detected. To do this, run the
]Settings user command (see Section 5.8.8) with the cmddir global parameter
set to the full path and name of the directory.

When adding a new directory to the list of directories searched by the user
command framework, you must precede its path with a , character.

4.8 Detecting New Custom User Commands
If the newcmd global parameter is set to auto and a user command is entered in a
Dyalog Session that the user command framework does not recognise, then the
Dyalog interpreter scans the user command folder(s) to see whether user new
commands have been added.

However, if the newcmd global parameter is set to manual or a change is made to
the Help function or List function of an existing user command, then the user
command]UReset must be run to force a complete reload of all user commands.

 Dyalog User Commands Reference Guide 16

5 Predefined User Commands

Related user commands with common features can be grouped under a single name
(see Section 3.5). This chapter introduces the predefined groups (as summarised in
Table 1) and their constituent user commands.

Table 1. User Command Groups

Group Description
ARRAY User commands that relate to arrays or variables.
FILE User commands that relate to files.
FN User commands that relate to functions and operators.
MISC User commands that do not obviously fit into any other category.
NS User commands that relate to namespaces.
OUTPUT User commands that change the way in which arrays are displayed

in a Session.
PERFORMANCE User commands that collect and analyse CPU consumption data.

SALT User commands that perform the same actions as the SALT
functions of the same name found in ⎕SE.SALT.

SAMPLES User commands that demonstrate the use of multiple levels of
help and parsing user command lines.

SVN User commands that cover svn's (the official command-line client
of Subversion) task-specific subcommands of the same name.

TOOLS User commands that can assist developers by retrieving and
presenting information without changing the underlying code.

TRANSFER User commands that convert workspaces between files written
using other dialects of APL or older versions of Dyalog and the
current Dyalog version.

UCMD User commands that manage the user command framework.
WS User commands that relate to workspaces.

This chapter summarises the user commands in each of these groups.

For information on the precise syntax for each user command, the arguments that
can be supplied to it and the modifiers that it can take, enter]Help <cmd> or
]? <cmd> in a Dyalog Session.

 Dyalog User Commands Reference Guide 17

5.1 ARRAY Group
The ARRAY group contains user commands that relate to arrays or variables.

5.1.1]Compare
This user command compares any two APL objects for which ⎕NC is 2 (variables) or
9 (namespaces) and returns the differences between them.

For example:

 varA←8,1↓varB←⍳9
]ARRAY.Compare varA varB

objects are num vectors
elements: 1 different (⎕IO=1)
Var1 8 2 3 4 5 6 7 8 9 Var2 1 2 3 4 5 6 7 8 9

5.1.2]Edit
This user command opens the specified array in the Array Editor.

For example:

 arr←(2 3⍴1 2 3 4)/¨⍪¨⍳2 3
]ARRAY.Edit arr

5.1.3]ToHTML
This user command outputs the specified namespace/class with the HTML tagging
necessary for it to be formatted and displayed in a web browser.

For example:

]ToHTML ⎕SE.Parser -file=\tmp\x.html
Text in file <\tmp\x.html>

 Dyalog User Commands Reference Guide 18

5.2 FILE Group
The FILE group contains user commands that relate to files.

5.2.1]CD
This user command reports the current directory if no argument is supplied.

If an argument is specified then this user command changes the
current directory to the one specified.

For example:

]CD
C:\Windows\system32

]CD \tmp
C:\Windows\system32

]CD
C:\tmp

5.2.2]Collect
This user command merges all the files that have a path/name starting with the
specified pattern into a single file.

This is particularly useful when]Split has been used on a file (see Section 5.2.7)
and the resultant files subsequently need to be reassembled.

For example:

To merge all files starting with \tmp\file.zip and followed by 001, 002 ,003 and so
on into a single file called \temp\px.zip:

]Collect \tmp\file.zip -newname=\temp\px.zip

5.2.3]Compare
This user command compares each component within a component file with the
component that has the same number in a second component file.

For example:

]FILE.Compare fileA fileB
Comparing file <fileA>
 with <fileB>
fileA has 2 components starting at 1
fileB has 2 components starting at 1

Comparing 2 components

⍟⍟⍟ Component 2
objects are num vectors
Var1 1 2 3 4 5 Var2 1 2 3 4 5 6 7 8 9 10

⍟⍟⍟ Comparing access matrices (no difference)

 Dyalog User Commands Reference Guide 19

If fileA comprises components 1 to 10 and fileB comprises components 6 to 22 then
only components 6 to 10 will be compared.

5.2.4]Edit
This user command opens the specified native file as an editable text file in the
standard in-Session Editor.

For example:

]file.edit C:\Users\fiona\Samples\UTF8.txt

]file.edit C:\Users\fiona\Samples\UTF16-BOM.txt

5.2.5]Find

This user command only works on the Microsoft Windows operating
system.

This user command searches for the specified search string, which can be a .NET
regular expression in, by default, .dyalog files in the current SALT working directory
(as returned by]Settings workdir) and its sub-directories.

It returns a list of the files (with full paths) containing the specified string and the
line numbers within each file on which the specified string occurs.

For example:

To identify all occurrences of the string "ABC" in all .dyalog files in the \temp
directory and its sub-directories:

]Find ABC –folder=\temp

To identify all occurrences of the string "ABC" and all seven-letter words in all .txt or
.log files in the current SALT working directory and its sub-directories:

]Find \b(ABC|\w{7})\b -typ=txt log –regex

5.2.6]Replace

This user command only works on the Microsoft Windows operating
system.

This user command searches for the specified search string, which can be a .NET
regular expression in, by default, .dyalog files in the current SALT working directory
(as returned by]Settings workdir) and its sub-directories and replaces it with
the specified replacement string, which can also be a .NET regular expression.

It returns the number of changes made.

For example:

To replace "ABC" with "XYZ" in all .dyalog files in the \tmp directory:

 Dyalog User Commands Reference Guide 20

]Replace ABC XYZ –folder=\tmp
23 file(s) changed

To reverse every occurrence of two words that follows "Name:" in all .dyalog files in
the current SALT working directory (for example, "Name: Ken Iverson" becomes
"Name: Iverson, Ken"):

]Replace "Name:\s+(\w+)\s+(\w+)" "Name: $2, $1"
 –regex
31 file(s) changed

5.2.7]Split
This user command splits the specified file into the stated number of smaller files
(maximum 999) of equal size or multiple individual files of the stated size.

For example:

To split FileA into five individual files (called FileA-01, FileA-02, and so on):

]Split FileA –n=5

To split FileA into individual files (called FileA-01, FileA-02, and so on) of 5 MB each:

]Split FileA –n=5M

5.2.8]ToLarge
This user command converts all small span component files in the specified directory
into large span component files.

For example:

]ToLarge \project -recursive -verbose -backup=.32
* <C:\project\132u64b.DCF> is already 64b
*** <C:\project\to\x1.DCF> is tied
...
<C:\project\to\x2.DCF> made into 64b format and backed up
 to <C:\project\to\x2.DCF.32>
27 files modified

This user command uses ⎕FCOPY to perform the conversion. This means that it can
take a considerable amount of time to execute if there are very large files, but all
the timestamps are preserved.

5.2.9]ToQuadTS
This user command takes a timestamp (for example, the last time a component
within a component file was updated) and converts it into its ⎕TS equivalent (a
vector of 7 numbers).

For example:

]ToQuadTS 3⌷⎕frdci 4 1
2013 9 9 23 16 28 0

 Dyalog User Commands Reference Guide 21

5.2.10]Touch
This user command checks whether the specified file exists in the current/specified
location and creates it if it cannot be found.

For example:

]Touch abc.xyz

5.3 FN Group
The FN group contains user commands that relate to functions and operators.

5.3.1]Align
This user command searches for comments at the end of a line of code within the
specified function and aligns them to the stated column (defaults to column 40).

For example:

To align all comments at column 30 in functions that start "HTML" and display the
names of all the functions that have been modified in)FNS format:

]Align HTML* -offset=30

5.3.2]Calls
This user command produces the calling tree of the specified function in the
specified class/namespace (defaults to the current namespace).

For example:

]calls ClassFolder

Level 1: →ClassFolder
⍝ Produce full path by merging root and folder name
 F:specialName

Level 2: ClassFolder→specialName
⍝ Change any [name] into path
 F:getEnvir F:lCase F:uCase

Level 3: specialName→getEnvir
 F:rlb F:splitOn F:splitOn1st
F:SALTsetFile

Level 4: getEnvir→SALTsetFile

Level 4: getEnvir→splitOn1st
⍝ Split on 1st occurrence of any chars in str

Level 4: getEnvir→splitOn

Level 4: getEnvir→rlb

Level 3: specialName→uCase
 F:LU

Level 4: uCase→LU

 Dyalog User Commands Reference Guide 22

Level 3: specialName→lCase
 *:LU

5.3.3]Compare
This user command compares two any APL objects for which ⎕NC is 3 (functions) or
4 (operators) and returns the differences between them (including timestamps).

For example:

given: ∇fna ∇fnb
 [1] same line [1] same line
 [2] fna line 2 [2] fnb line 2
 [3] same line 3 [3] same line 3
 [4] ⍝ comment deleted [4] new common line
 [5] new common line [5] ⍝ new comment
 ∇ ∇

]fncomp fna fnb
←[0] fna
→ fnb
 [1] same line
←[2] fna line 2
→ fnb line 2
 [3] same line 3
←[4] ⍝ comment deleted
 [5] new common line
→ ⍝ new comment

5.3.4]Defs
This user command lists the names and definitions of all single-line dfns, dops,
derived functions and trains, optionally filtered to include only those that contain a
specified string or limited to those with the specified names.

For example:

]Defs
 at←{⍵+(⍴⍵)↑(-⍺⍺)↑⍺}
 derv←{(⍳⍵),¨box⊃⍵*÷2}{⍵+(⍴⍵)↑(-⍺⍺)↑⍺}
 pars←⊃∘(+.×/)
 rcb←{(⍳⍵),¨box⊃⍵*÷2}

]Defs ⍺⍺
 at←{⍵+(⍴⍵)↑(-⍺⍺)↑⍺}
 derv←{(⍳⍵),¨box⊃⍵*÷2}{⍵+(⍴⍵)↑(-⍺⍺)↑⍺}

]Defs at
 at←{⍵+(⍴⍵)↑(-⍺⍺)↑⍺}

5.3.5]DInput
This user command is used to test multi line D-expressions (dfns and dops)

For example:

]Dinput
····{
········⍵ ⍵

 Dyalog User Commands Reference Guide 23

····}{
········⍺⍺ ⍺⍺ ⍵
····}7
 7 7 7 7

5.3.6]Latest
This user command lists the names of any functions changed since the specified
date (default is the current system date), with the most recently changed function
listed first. Dates are specified as YYYYMMDD but can be shortened to MMDD if the
year of interest is the current year; a leading 0 can also then be dropped. For
example, 213 is February 13th of the current year

For example:

]Latest 20140101
#.HelpExample.Help #.HelpExample.List #.HelpExample.Run

5.3.7]ReorderLocals
This user command changes the order in which the local names in the header of a
tradfn are listed.

For example:

To change the order in which the local names in all tradfns that start "F" are listed:

 ⎕vr 'Fnml'
 ∇ Fnml;⎕PP;X;⍙;a;_;aa;Aa;aaAA;aA;⎕IO ⍝ locals anyone?
[1] ...
 ∇

]reorderlocals F*
3 fns processed, 1 changed

 ⎕vr 'Fnml'
 ∇ Fnml;a;aa;aA;Aa;aaAA;X;⍙;_;⎕IO;⎕PP ⍝ locals anyone?
[1] ...
 ∇

5.4 MISC Group
The MISC group contains user commands that do not obviously fit into any other
category.

5.4.1]Calendar
This user command displays a calendar for the specified month and year (omitting
both arguments returns the current month in the current year, omitting the year
returns the specified month in the current year, omitting the month returns every
month in the specified year).

For example:

]Calendar 6 1974
 June 1974
Su Mo Tu We Th Fr Sa
 1
 2 3 4 5 6 7 8

 Dyalog User Commands Reference Guide 24

 9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30

5.4.2]Factors
This user command returns the factors of the specified integer.

For example:

]Factors 123456789
3 3 3607 3803

5.4.3]PivotTable
This user command requires Dyalog version 14.0 or later.

This user command provides pivot table functionality; the array that is to have pivot
table functionality applied to it must have no more than three columns.

For example:

 M←(20 2⍴'C3C3C4B4C2B2D1C4A4C1B3B1C1B2A0A1D1B0C1C4'),
4 3 4 8 3 3 9 6 5 9 2 7 7 1 6 5 4 7 6 9

]PivotTable M ⍝ default: count of unique M[;1 2]
 3 4 2 1 0 Total
 C 2 3 1 3 0 9
 B 1 1 2 1 1 6
 D 0 0 0 2 0 2
 A 0 1 0 1 1 3
 Total 3 5 3 7 2 20

]PivotTable M -f=+/ ⍝ sum M[;3] by unique M[;1 2]
 3 4 2 1 0 Total
 C 7 19 3 22 0 51
 B 2 8 4 7 7 28
 D 0 0 0 13 0 13
 A 0 5 0 5 6 16
 Total 9 32 7 47 13 108

]PivotTable "(5 2⍴'GrpA' 'case1' 'GrpB' 'case1'
'GrpB' 'case2' 'GrpA' 'case1' 'GrpB' 'case2'),⍳5" -f=+/
 case1 case2 Total
 GrpA 5 0 5
 GrpB 2 8 10
 Total 7 8 15

5.5 NS Group
The NS group contains user commands that relate to namespaces.

5.5.1]ScriptUpdate
This user command updates scripted namespaces/classes to take account of newly
added or deleted variables, functions and operators.

 Dyalog User Commands Reference Guide 25

In Dyalog the only way to update the source of a scripted object is to edit the
source; defining a function using ⎕FX or creating a variable using assignment does
not update the source. This user command identifies variables, functions and
operators that exist in the specified scripted object but are not part of the source
and adds them to the source using ⎕FIX. It also identifies variables, functions and
operators that do not exist in the specified scripted object but are part of the source
and deletes them from the source using ⎕FIX.

For example:

]Load myns
)cs myns
 V←⍳9
 ⎕FX 'myfn' '2+2'

]ScriptUpdate
Added 1 variables and 1 functions

5.5.2]Summary
This user command returns summary information (scope, size and syntax) of each of
the functions in the specified scripted namespace/class.

For example:

]summary ⎕SE.Parser
 name scope size syntax
 Parse P 8812 r1f
 Propagate 1584 r2f
 Quotes 1200 r1f
 Switch 1524 r2f
 deQuote 816 r1f
 fixCase 68 n0f
 if 24 n0f
 init PC 7976 n1f
 splitParms 2008 r1f
 sqz 636 r2f
 upperCase 716 r2f
 xCut 524 r2f

5.5.3]Xref
This user command generates a cross-reference of the objects in a scripted object.

It produces a table showing all objects referred to (columns) against the function or
operator that refers to them (rows). The symbols in the table described the nature
of the reference: o means local, G mean global, F means function, L means label and
! identifies an unused localised name.

For example:

 src←':Class cl' ':Field myfield←1'
 src,←'∇foo a;var' 'a←1' 'goo' '∇'
 src,←'∇goo;var' 'var←myfield' '∇'
 src,←⊂':EndClass'
 ⎕fix src

 Dyalog User Commands Reference Guide 26

]Xref cl
 var
 myfield.
 goo..
 a...
 ↓↓↓↓
[FNS] - -
foo ○F !
goo .G○

This shows that var appears in both foo and goo, but in foo it only appears in
the function header. myfield is referenced in goo but is external to it, so appears
as a Global to goo.

The dot, dash and semi-colon characters only serve as alignment decorators and
have no special meaning.

5.6 OUTPUT Group
The OUTPUT group contains user commands that change the way in which arrays
are displayed in a Session.

5.6.1]Box
Identical to]Boxing (see Section 5.6.2) – included for convenience when calling
on a UNIX installation that does not have the auto-complete feature.

5.6.2]Boxing
This user command requires Dyalog version 14.0 or later.

This user command changes the default display of arrays, functions and operators in
the Session. For example, nested arrays can, by default, be displayed as if the
]Disp or]Display user commands had been used (see Sections 5.6.3 and 5.6.4
respectively).

For example:

]Box on
Was OFF

 ⍳¨⍳2 3
┌─────┬─────────┬─────────────┐
│┌───┐│┌───┬───┐│┌───┬───┬───┐│
││1 1│││1 1│1 2│││1 1│1 2│1 3││
│└───┘│└───┴───┘│└───┴───┴───┘│
├─────┼─────────┼─────────────┤
│┌───┐│┌───┬───┐│┌───┬───┬───┐│
││1 1│││1 1│1 2│││1 1│1 2│1 3││
│├───┤│├───┼───┤│├───┼───┼───┤│
││2 1│││2 1│2 2│││2 1│2 2│2 3││
│└───┘│└───┴───┘│└───┴───┴───┘│
└─────┴─────────┴─────────────┘

 Dyalog User Commands Reference Guide 27

5.6.3]Disp
This user command displays the specified array with vertical and horizontal lines
separating each sub-array. Characters embedded in these borders indicate
sub-array shape and type.

Equivalent to the disp function from supplied workspace dfns.dws.

For example:

]Disp ⍳¨⍳2 3
┌→────┬─────────┬─────────────┐
↓┌→──┐│┌→──┬───┐│┌→──┬───┬───┐│
│↓1 1││↓1 1│1 2││↓1 1│1 2│1 3││
│└~─→┘↓└~─→┴~─→┘↓└~─→┴~─→┴~─→┘↓
├────→┼────────→┼────────────→┤
│┌→──┐│┌→──┬───┐│┌→──┬───┬───┐│
│↓1 1││↓1 1│1 2││↓1 1│1 2│1 3││
│├~─→┤│├~─→┼~─→┤│├~─→┼~─→┼~─→┤│
││2 1│││2 1│2 2│││2 1│2 2│2 3││
│└~─→┘↓└~─→┴~─→┘↓└~─→┴~─→┴~─→┘↓
└────→┴────────→┴────────────→┘

5.6.4]Display
This user command displays the specified array with boxes bordering each
sub-array. Characters embedded in the borders indicate sub-array shape and type.

Equivalent to the display function from supplied workspace dfns.dws.

For example:

]Display ⍳¨⍳2 3
┌→──┐
↓ ┌→──────┐ ┌→────────────┐ ┌→──────────────────┐ │
│ ↓ ┌→──┐ │ ↓ ┌→──┐ ┌→──┐ │ ↓ ┌→──┐ ┌→──┐ ┌→──┐ │ │
│ │ │1 1│ │ │ │1 1│ │1 2│ │ │ │1 1│ │1 2│ │1 3│ │ │
│ │ └~──┘ │ │ └~──┘ └~──┘ │ │ └~──┘ └~──┘ └~──┘ │ │
│ └∊──────┘ └∊────────────┘ └∊──────────────────┘ │
│ ┌→──────┐ ┌→────────────┐ ┌→──────────────────┐ │
│ ↓ ┌→──┐ │ ↓ ┌→──┐ ┌→──┐ │ ↓ ┌→──┐ ┌→──┐ ┌→──┐ │ │
│ │ │1 1│ │ │ │1 1│ │1 2│ │ │ │1 1│ │1 2│ │1 3│ │ │
│ │ └~──┘ │ │ └~──┘ └~──┘ │ │ └~──┘ └~──┘ └~──┘ │ │
│ │ ┌→──┐ │ │ ┌→──┐ ┌→──┐ │ │ ┌→──┐ ┌→──┐ ┌→──┐ │ │
│ │ │2 1│ │ │ │2 1│ │2 2│ │ │ │2 1│ │2 2│ │2 3│ │ │
│ │ └~──┘ │ │ └~──┘ └~──┘ │ │ └~──┘ └~──┘ └~──┘ │ │
│ └∊──────┘ └∊────────────┘ └∊──────────────────┘ │
└∊──┘

5.6.5]Rows
This user command requires Dyalog version 14.0 or later.

This user command impacts the display of any array that is subsequently entered
into the Session by limiting the number of rows that are output.

 Dyalog User Commands Reference Guide 28

For example:

]rows -fold=3
Was off

 ⍳10 4
┌→───┬────┬────┬────┐
↓1 1 │1 2 │1 3 │1 4 │
├~──→┼~──→┼~──→┼~──→┤
│2 1 │2 2 │2 3 │2 4 │
├~──→┼~──→┼~──→┼~──→┤
│3 1 │3 2 │3 3 │3 4 │
├~──→┼~──→┼~──→┼~──→┤
·····················
├~──→┼~──→┼~──→┼~──→┤
│10 1│10 2│10 3│10 4│
└~──→┴~──→┴~──→┴~──→┘

5.7 PERFORMANCE Group
The PERFORMANCE group contains user commands that measure CPU consumption
in various ways.

5.7.1]Monitor
This user command reports which lines of code in traditional functions and
operators (does not work for dfns and dops) consume the most CPU.

For example:

]Monitor –on
Monitoring switched on for 44 functions

 5↑[1]NTREE '⎕SE'
⎕SE (Session)
├─Chart (Namespace)
│ ├─CheckData (Function)
│ ├─Do (Function)
│ ├─DoChart (Function)

]Monitor -report -caption=NTREE

 Dyalog User Commands Reference Guide 29

5.7.2]Profile
This user command makes it easy to locate the points in your application at which
significant quantities of CPU/elapsed time is spent, facilitating the tuning process.

For more information, see the Dyalog Application Tuning Guide.

For example:

)load dfns
]Profile -expr="⍴queens 8"
12

5.7.3]RunTime
This user command measures and reports the average CPU time and elapsed time
required to execute each of the specified APL expressions once.

For example:

To benchmark a single expression by executing that expression once:

]RunTime {+/1=⍵∨⍳⍵}¨⍳1000
* Benchmarking "{+/1=⍵∨⍳⍵}¨⍳1000"
 Exp
 CPU (avg): 31
 Elapsed: 26

To benchmark a single expression by executing that expression repeatedly for 1
second and then averaging the results:

]RunTime {+/1=⍵∨⍳⍵}¨⍳1000 -repeat=1s
* Benchmarking "{+/1=⍵∨⍳⍵}¨⍳1000", repeat=1s
 Exp
 CPU (avg): 19.78571429
 Elapsed: 19.94642857

 Dyalog User Commands Reference Guide 30

To benchmark two expressions by executing them 50 times and then averaging the
results, returning the results as a matrix of two rows (for the two expressions) and
four columns (⎕MONITOR CPU and elapsed times and ⎕AI CPU and elapsed times):

]RunTime {+/1=⍵∨⍳⍵}¨⍳100 ⍳⍨⍳1e6 -details=ai -rep=50
 0.32 0.32 0.32 0.32
22.78 22.88 22.78 22.9

To compare the benchmarking statistics of two expressions:

]runtime ⍴⍴⍳9 ⍴∘⍴⍳9 –comp
⍴⍴⍳9 → 1.6E¯7 | 0% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕
⍴∘⍴⍳9 → 3.2E¯7 | +93% ⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕

5.7.4]SpaceNeeded
This user command returns the space (in bytes) required to execute the specified
expressions.

For example:

]spaceneeded ⍳1e6 ⍴⍳8
 ⍳1e6 4000102
 ⍴⍳8 818

5.8 SALT Group
The SALT group contains user commands that perform the same actions as the SALT
functions of the same name found in ⎕SE.SALT. For more information on SALT,
see the Dyalog SALT Reference Guide.

APL objects that have been saved using SALT/user commands (that is, by calling
either the Save or the Snap SALT function) or by running the]Save or]Snap
user commands are referred to as SALTed.

5.8.1]Clean
This user command removes all the tags associated with SALT from each object in
the workspace. Running this user command means that SALT no longer saves
changes that are made in the workspace to the objects that were untagged.

This is the only user command in the SALT group that is not analogous to a SALT
function.

For example:

To remove the SALT tags from all APL objects in the active workspace:

]Clean

To remove the SALT tags from APL objects objA and objB in the active workspace:

]Clean objA objB

 Dyalog User Commands Reference Guide 31

5.8.2]Compare
Analogous to ⎕SE.SALT.Compare.

This user command identifies the differences between two different versions of the
same file or between two similar but distinct files.

For example:

]SALT.Compare C:\Users\andy\Desktop\abc.dyalog
C:\Users\andy\Desktop\abc2.dyalog

Comparing C:\Users\andy\Desktop\abc.dyalog
 with C:\Users\andy\Desktop\abc2.dyalog

 [0] cmpx←{ ⍝ Approx expression timings.
-[1] ⍺←⍬ ⍝ options: raw cpu cols.
+ ⍺←⍬ ⍝ options: raw cp.
 [2] 1=≡,⍵:⍺ ∇⊂,⍵ ⍝ single expression: enclose.
 [3] ⍺{ ⍝ options.
-[4] (⍎⍵)-⎕AI ⍝ time of ⍺ expr-iterations.
 [5] }{⎕IO ⎕ML←0 1 ⍝ local sysvars (see Notes).
 [6] dflt←{⍵+⍺×⍵=0} ⍝ ⍺ default if ⍵=0.

5.8.3]List
Analogous to ⎕SE.SALT.List.

This user command lists the files/directories in a specified location (by default, this is
the [SALT] directory.

For example:

]List
 Type Name Versions Size Last Update
 <DIR> core 2014/06/10 10:41:19
 <DIR> lib 2014/06/10 10:41:19
 <DIR> spice 2014/06/20 10:44:56
 <DIR> study 2014/06/10 10:41:19
 <DIR> tools 2014/06/10 10:41:19

5.8.4]Load
Analogous to ⎕SE.SALT.Load.

This user command loads the latest (highest numbered) version of an APL object
into the namespace that the user command is run in. By default, the link between
the loaded APL object and its source is maintained and the loaded APL object is
assigned a global name. Depending on the nameclass of the APL object loaded, this
user command returns a shy result of:
• a reference to the loaded namespace(s)
• the name of the function/variable/operator loaded

For example:

]Load C:\Users\jason\Desktop\DIR\abc
ABC

 Dyalog User Commands Reference Guide 32

5.8.5]Open
Analogous to ⎕SE.SALT.Open.

This user command opens directories and files, including files that are external to
Dyalog, using the appropriate program.

For example:

]Load C:\Users\jason\Desktop\DIR\abc

5.8.6]RemoveVersions
Analogous to ⎕SE.SALT.RemoveVersions.

This user command deletes a version (or range of versions) of a versioned file and
returns the number of versions that have been deleted.

For example:

 b←1
 'bb'⎕ns'b'
]snap
 #.b #.bb.b

]RemoveVersions b –all
1 version deleted.

5.8.7]Save
Analogous to ⎕SE.SALT.Save.

This user command saves an APL object in a native text file and returns the full path
and name of the file that it saves. APL objects that are already SALTed are saved in
the original location by default.

For example:

To save APL object ABC as a file called abc.dyalog in directory DIR (creating
directory DIR if it does not already exist):

]Save ABC C:\Users\jason\Desktop\DIR\abc –makedir
C:\Users\jason\Desktop\DIR\abc.dyalog

5.8.8]Settings
Analogous to ⎕SE.SALT.Settings.

The values of certain global parameters are retrieved from the Microsoft Windows
Registry at the start of a Dyalog Session. These Session parameters remain active for
the Session unless they are modified – one way in which they can be modified is by
running the]Settings user command.

For example:

]Settings
 compare apl
 cmddir C:\Program Files (x86)\Dyalog\Dyalog APL
14.0 Unicode\SALT\Spice

 Dyalog User Commands Reference Guide 33

 debug 0
 editor notepad
 edprompt 1
 mapprimitives 1
 newcmd auto
 track
 varfmt xml
 workdir C:\Program Files (x86)\Dyalog\Dyalog APL
14.0 Unicode\SALT

The global parameters that can be changed by running the]Settings user
command can also impact SALT functionality – for more information on SALT see the
Dyalog SALT Reference Guide.

The global parameters that impact user commands are:

• cmddir – the full path to the directory (or list of directories) from which to
retrieve user commands

• debug – specifies the level of debugging to use. Possible values are:

o 0 : no debugging and report errors in the environment
o >0 : stop if an error is encountered

• edprompt – specifies the frequency at which a user is prompted for
confirmation to overwrite the file when modifying a script. Possible values
are:

o 0 or n : the user is never prompted for confirmation
o 1 or y: the user is prompted for confirmation each time a script is

modified
• newcmd – specifies when new user commands become effective in the

user interface. Possible values are:

o auto : new commands are detected automatically
o manual : new commands do not become effective until the user

command]UReset is run.

5.8.9]Snap
Analogous to ⎕SE.SALT.Snap.

Although the]Save user command enables individual APL objects to be saved,
saving all the APL objects in a workspace using the]Save user command would be
a repetitive process. Instead, the]Snap user command performs a bulk save of
every APL object in the workspace in individual native text files – all new APL objects
are saved to the specified directory and all modified APL objects are saved to the
appropriate location. A list of the names of the APL objects that have been
successfully saved is returned. If the]Snap user command stops for any reason,
then everything that has already been saved remains saved and a list of the names
of the APL objects that have been successfully saved is returned.

For example:

 a←1
 'myns'⎕ns'a'

 Dyalog User Commands Reference Guide 34

]snap
 #.a #.myns.a

5.9 SAMPLES Group
The SAMPLES group contains user commands that demonstrate the use of multiple
levels of help and parsing user command lines.

The user commands in this group are not like those in other groups; they do not
provide any useful functionality but their code can be examined to assist with
understanding when creating custom user commands. This can be achieved by
opening them in any text editor, for example, Microsoft Notepad.

This group is only available if]Settings cmddir ,[SALT]/study is issued.

5.9.1]UCMDHelp
An example of a custom user command that defines multiple levels of help
information in the Help function, selectable by the left argument supplied by the
user.

To open the code for this user command in the Editor:

]ULoad UCMDHelp
The source code for command "ucmdhelp" has been loaded in
namespace "#.HelpExample"

)ED HelpExample

5.9.2]UCMDNoParsing
An example of a custom user command that does not use parsing; the argument is
the entire string after the command name.

To open the code for this user command in the Editor:

]ULoad UCMDNoParsing
The source code for command "ucmdnoparsing" has been
loaded in namespace "#.anyname"

)ED anyname

5.9.3]UCMDParsing
An example of a custom user command that uses parsing; the string after the
command name is parsed and turned into a namespace containing the arguments
(tokenised) and each of the identified switches.

To open the code for this user command in the Editor:

]ULoad UCMDParsing
The source code for command "ucmdparsing" has been loaded
in namespace "#.anyname"

)ED anyname

 Dyalog User Commands Reference Guide 35

5.10 SVN Group
svn is the official command-line client of Subversion; the SVN group contains user
commands that cover svn's task-specific subcommands of the same name.

The user commands in the SVN group only work on the Microsoft
Windows operating system.

To be used successfully, the user commands in this group require the command line
version of Subversion to be installed. For detailed information and to download this,
see http://subversion.apache.org/download/#recommended-release.

5.10.1]Add
This user command saves the specified APL object and adds it to the user's working
copy of the repository ready to be committed to the master svn repository.

Similar to the svn add subcommand.

For example:

To save the APL object ns_nick to a file called nick in the user's working copy of
the repository:

]Add ns_nick nick

5.10.2]Checkout
This user command checks out a working copy of the specified APL object from the
master svn repository.

Similar to the svn checkout (or svn co) subcommand.

For example:

To check out the contents of the master svn repository http://svn.local/myproject
to the user's working copy of the repository:

]Checkout http://svn.local/myproject

To check out the contents of the master svn repository http://svn.local/myproject
to the directory c:\My Projects\myproject and set the destination directory to be
the current working directory:

]Checkout http://svn.local/myproject "c:\My
Projects\myproject"

5.10.3]Commit
This user command sends changes made in the user's working copy of the
repository to the master svn repository.

Similar to the svn commit (or svn ci) subcommand.

http://subversion.apache.org/download/%23recommended-release

 Dyalog User Commands Reference Guide 36

For example:

To commit the changes made in the file nick in the user's working copy of the
repository with the message "new feature added":

]Commit nick –m="New feature added"

5.10.4]Delete
This user command deletes the specified file from the user's working copy of the
repository and schedules it for deletion from the master svn repository (the deletion
will occur the next time the]commit user command is run). If the URL of an svn
repository is specified instead of a file name, then the specified repository is
deleted.

Similar to the svn delete subcommand.

For example:

To delete the file nick from the user's working copy of the repository and schedule it
for deletion from the master svn repository:

]Delete nick

5.10.5]Diff
This user command returns the differences between the version of the specified file
in the user's working copy of the repository and the version of the file in the master
svn repository.

Similar to the svn diff (or svn di) subcommand.

For example:

]Diff nick

5.10.6]Export
This user command copies the most recent version of the contents of the specified
URL of an svn repository and saves those contents to the specified location. No svn
metadata is saved with the files.

Similar to the svn export subcommand.

For example:

To save the contents of an svn repository with the URL http://svn.mysite.com/Nick
to a directory called nick in the C directory:

]Export "http://svn.mysite.com/Nick" "c:\nick"

5.10.7]Import
This user command copies the most recent version of the contents of the specified
location and saves those contents to the svn repository that has the specified URL.

Similar to the svn import subcommand.

 Dyalog User Commands Reference Guide 37

For example:

To save the contents of a directory called nick in the C directory to an svn repository
with the URL http://svn.mysite.com/Nick:

]Import "c:\nick" "http://svn.mysite.com/Nick"

5.10.8]Resolve
This user command informs svn that conflicts between different versions of the
specified file have been resolved.

Similar to the svn resolve subcommand.

For example:

]Resolve nick

5.10.9]Status
This user command shows the status of the contents of the svn repository that has
the specified URL (for example, unknown or modified).

Similar to the svn status subcommand.

For example:

To check the status of every file in the user's working copy of the repository:

]Status

To check the status of every file in the svn repository that has the URL
http://svn.mysite.com/Nick:

]Status " http://svn.mysite.com/Nick"

5.10.10]Update
This user command updates the user's working copy of the repository with any
changes that have been committed to the master svn repository since the original
checkout or last time that the]update user command was run.

Similar to the svn update (or svn up) subcommand.

For example:

To update the user's working copy of the repository:

]Update

To update only the file nick in the user's working copy of the repository:

]Update nick

 Dyalog User Commands Reference Guide 38

5.11 TOOLS Group
The TOOLS group contains user commands that can assist developers by retrieving
and presenting information without changing the underlying code.

5.11.1]Assemblies

This user command only works on the Microsoft Windows operating
system.

This user command lists all the .NET assemblies loaded in the current application
domain.

For example:

]Assemblies
mscorlib, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089
bridge140_unicode, Version=14.0.20631.0, Culture=neutral,
PublicKeyToken=eb5ebc232de94dcf
msvcm80, Version=8.0.50727.6195, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a
dyalognet, Version=14.0.20631.0, Culture=neutral,
PublicKeyToken=eb5ebc232de94dcf
System.Configuration, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a
System, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089
System.Xml, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089

5.11.2]Chart
This user command opens the Chart Wizard and SharpPlot Chart Viewer to display
the specified expression.

For example:

]Chart {+/1=⍵∨⍳⍵}¨⍳1000

 Dyalog User Commands Reference Guide 39

5.11.3]Demo
This user command provides a playback mechanism for live demonstrations of code
written in Dyalog. It takes a script (the specified text file) name as an argument and
executes each APL line in it after displaying it on the screen.

For example:

]Demo \tmp\mydemo

5.11.4]FileAssociations

This user command only works on the Microsoft Windows operating
system.

This user command associates files that have the extension .dws or .dyapp with a
specific Dyalog version. This is only relevant if you have multiple versions of Dyalog
installed and want to change the version in which .dws and .dyapp files open when
double-clicked on.

For example:

]FileAssociations

5.11.5]FromHex
This user command converts a hexadecimal number to its decimal equivalent.

For example:

]FromHex 64 100
 100 256

5.11.6]GUIProps
This user command reports the properties (and their values) of the specified GUI
object or, if none is provided, the object on which the Session has focus (the object
whose name appears in the bottom left corner of the Session log). This only works
for GUI objects that have been created using the ⎕WC syntax, not for GUI objects
that have been created using other techniques.

 Dyalog User Commands Reference Guide 40

For example:

 't' ⎕WC 'timer' ('active'0)

]GuiProps t
Properties of #.t Interval:1000 Event: KeepOnClose:0
Type:Timer Active:0 Data:
Properties of #.t
MethodList: Detach Wait
ChildList: Timer
EventList: Close Create Timer

5.11.7]ToHex
This user command converts a decimal number to its hexadecimal equivalent.

For example:

]ToHex 100 256
 64 100

5.12 TRANSFER Group
The TRANSFER group contains user commands that convert workspaces between
files written using other dialects of APL or older versions of Dyalog and the current
Dyalog version. For more information, see the Dyalog Workspace Transfer Guide.

5.12.1]In
This user command imports workspaces between files written using other dialects
of APL or older versions of Dyalog and the current Dyalog version.

5.12.2]Out
This user command exports workspaces written using the current Dyalog version
into files that are valid for other dialects of APL or older versions of Dyalog.

5.13 UCMD Group
The UCMD group contains user commands that manage the user command
framework.

5.13.1]UDebug
This user command facilitates the debugging of custom user commands. When a –
character is added as the last item of the user command and the user command is
executed, the – character is removed, a stop is set on line 1 of the Run function to
suspend its execution and the Debugger is opened when execution reaches that
line.

If the namespace containing the user command is within the current namespace,
then that version of the namespace is used rather than the script on file.

NOTE: Use of the –flags modifier with this user command should only be used as
directed by Dyalog Ltd.

 Dyalog User Commands Reference Guide 41

5.13.2]ULoad
This user command loads the namespace associated with the specified user
command into the active workspace.

For example:

]ULoad UCMDHelp
The source code for command "ucmdhelp" has been loaded in
namespace "#.HelpExample"

5.13.3]UMonitor
This user command turns monitoring on or off. When on, invoking a user command
causes its ⎕CR and ⎕MONITOR information to be paired in the global variable
#.UCMDMonitor; this information can be further processed to report code
coverage.

For example:

]UMonitor on
Was OFF

]calendar
 June 2014
Su Mo Tu We Th Fr Sa
 1 2 3 4 5 6 7
 8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30

]UMonitor –report
 x line never executed
 → branch always taken
 ↓ branch never taken
 : label never used
 ? questionnable line

∇∇

 1 [0] r←Run(Cmd Args)
 1 [1] :Access Shared Public
 ? 1 [2] :select AllCmds⍳⊂Cmd
 x : 0 [3] :case 1⊣'calendar' ⋄ r←calendar Args
 → 1 [4] :case 2⊣'peek' ⋄ r←wspeek Args
 x : 0 [5] :case 3⊣'dinput' ⋄ r←##.THIS dinput Args
 x : 0 [6] :case 4⊣'map' ⋄ r←##.THIS map Args
 x 0 [7] :endselect

5.13.4]UNew
This user command opens the New User Command Wizard, a form that can be used
to input the basic information pertaining to a new user command (press F1 for
details when running it). A new class skeleton is created from this information that
can be further edited.

For example:

 Dyalog User Commands Reference Guide 42

]UNew

5.13.5]URefresh
This user command reloads the most recent version of all SALTed objects that have
been changed. This situation can occur if you)LOAD a workspace that contains stale
objects (for example).

For example:

]URefresh
8 objects refreshed

5.13.6]UReset
This user command forces a rebuild of the user command cache file. This is
necessary to pick up changes made to files containing user commands (unless the
Session is restarted, in which situation the cache is automatically rebuilt, or the
global newcmd parameter has been set to auto – see Section 5.8.8).

For example:

]UReset
88 commands reloaded

5.13.7]USetup
This user command is used to initialise files in which Session preferences are
customised and modified, for example, configuration of program function (PF) keys.
It is analogous to ⎕LX in the Dyalog interpreter.

For example:

]USetup

 Dyalog User Commands Reference Guide 43

5.13.8]UUpdate
This user command updates SALT and/or user commands to the latest version. If
SALT is updated, then the user command framework is automatically updated too.

NOTE: If you need to update SALT/user commands to a later major version than the
one that came with your version of Dyalog, then you will need to use the –
version flag.

For example:

]UUpdate

5.13.9]UVersion
This user command reports the version numbers of Dyalog, SALT, UCMD and .NET
for the current Session. If the name of a file containing a workspace is specified as an
argument, then the minimum version of Dyalog necessary to)LOAD that workspace
is returned.

For example:

]UVersion
 APL Windows 14.0.21658.0 W Development Unicode 9e252458
 SALT 2.4
 UCMD 2
 .NET 2.0

]UVersion 'C:\Users\fiona\Samples\wsA.dws'
14

5.14 WS Group
The WS group contains user commands that relate to workspaces.

5.14.1]Compare
This user command compares any two workspaces and returns the size difference
and the APL object differences between them; it can be thought of as a combination
of the]ARRAY.Compare and]FN.Compare. user commands running at a
workspace level.

For example:

]WS.Compare 'C:\Users\fiona\Samples\wsA.dws'
'C:\Users\fiona\Samples\wsB.dws'
* comparing 'C:\Users\fiona\Samples\wsA.dws'
 with 'C:\Users\fiona\Samples\wsB.dws'

NOTE: total sizes differ by 248 bytes.

<…etc…>

5.14.2]Document
This user command lists and details the contents (namespaces, functions, operators
and variables) of your workspace.

 Dyalog User Commands Reference Guide 44

For example:

To display the contents of the workspace on the screen (this workspace only
contains a single variable, name←3):

]Document
)wsid
CLEAR WS

)fns

)vars
name

 name (type=I ⍴⍴=0 ⍴=⍬)
3

)obs

To output the contents of the workspace to a file:

]Document -file=C:\Users\karen\Samples\tmp.txt
Output file = C:\Users\karen\Samples\tmp.txt

5.14.3]FindRefs
This user command attempts to find all references in a workspace and identify
where they are referenced from.

For example:

 a←⎕ns''
 b←1 a 2
 'andy'⎕ns''

]FindRefs
 #: Followed 5 pointers to reach a total of 3 "refs" in
0ms.
 Shortest Name Alias 1
 #
 #.a #.b[2]
 #.andy

5.14.4]FnsLike
This user command returns a list of APL objects for which ⎕NC is 3 (functions) or 4
(operators) that exist in the current namespace and match the specified pattern.

For example:

To find all APL objects for which ⎕NC is 3 or 4:

]FnsLike
big det else getfile life

 Dyalog User Commands Reference Guide 45

To find all APL objects for which ⎕NC is 9 that contain the letter "e" in their name:

]FnsLike *e*
det else getfile life

5.14.5]Locate
This user command searches for the specified string in the current namespace.

For example:

To search for the string "queens":

]locate queens

 ∇ #.queens (3 found)
[0] queens←{⎕IO ⎕ML←0 1 ⍝ The N-queens problem.
 ∧ ∧

[24] chars←'·⍟'[(↑⍵)∘.=⍳⍺] ⍝ char array of placed queens.
 ∧

To search for the string "queens" irrespective of case and ignoring comments:

]locate queens -insensitive -exclude=C

 ∇ #.queens (1 found)
[0] queens←{⎕IO ⎕ML←0 1 ⍝ The N-queens problem.
 ∧

5.14.6]Map
This user command displays the structure of the specified namespace (or the
current namespace if none is specified) in terms of its constituent variables,
functions and operators (identified with ~, ∇ and ∘ respectively). Sub-namespaces
are displayed recursively.

This user command uses the tree function from supplied workspace dfns.dws.

For example:

]map ⎕SE.Dyalog
⎕SE.Dyalog
· Callbacks
· · ∇ WSLoaded
· SEEd → ⎕SE.[SessionEditor]
· Utils
· · ~ Version lc uc
· · ∇ cut disp display dmb drvSrc dtb fromXML fromto
lcase psmum repObj showCol showRow toMatrix toVector
toXML trimEnds txtreplace ucase where
· · SALT_Data → ⎕SE.[Namespace]

5.14.7]NamesLike
This user command returns a list of all APL objects (irrespective of ⎕NC) that exist in
the current namespace and match the specified pattern.

 Dyalog User Commands Reference Guide 46

For example:

To find all APL objects that contain the letter "a" in their name:

]NamesLike *a*
aplUtils.9 disableSALT.3 enableSALT.3
commandLineArgs.2 disableSPICE.3 enableSPICE.3

To find all APL objects that contain the letter "a" in their name without showing
their nameclass:

]NamesLike *a* -noclass
aplUtils disableSALT enableSALT
commandLineArgs disableSPICE enableSPICE

5.14.8]Nms
This user command returns a list of all APL objects (irrespective of ⎕NC) that exist in
the current namespace and match the specified pattern.

Almost identical to]NamesLike but does not have a modifier for removing the
nameclass when displaying results. This slight restriction means that it matches
IBM's APL2 system command)NMS.

For example:

]Nms *a*
aplUtils.9 disableSALT.3 enableSALT.3
commandLineArgs.2 disableSPICE.3 enableSPICE.3

5.14.9]ObsLike
This user command produces a list of APL objects for which ⎕NC is 9 (namespaces)
that exist in the current namespace and match the specified pattern.

For example:

To find all APL objects for which ⎕NC is 9:

]ObsLike
NStoScript aplUtils test

To find all APL objects for which ⎕NC is 9 that contain the letter "a" in their name:

]ObsLike *s*
aplUtils test

5.14.10]Peek
This user command executes the specified expression in a temporary copy of the
workspace; any changes made are discarded on termination of the user command,
meaning that the current workspace is unchanged.

This user command copies the specified workspace into a temporary namespace in
the current process and executes the specified expression in that namespace. It is
used to view, rather than to change, a saved workspace; any changes made in the
copy are discarded on termination of the command.

 Dyalog User Commands Reference Guide 47

For example:

Execute the queens program from supplied workspace dfns.dws:

]Peek dfns 0 disp queens 5

5.14.11]SizeOf
This user command produces a list of all APL objects that exist in the current
namespace and match the specified pattern along with their size (in bytes) in
decreasing order.

For example:

)obs
NStoScript aplUtils test

)vars
CR DELINS Describe FS

]SizeOf -top=2 –class=2 9
NStoScript 132352 aplUtils 40964

5.14.12]VarsLike
This user command returns a list of APL objects for which ⎕NC is 2 (variables) that
exist in the current namespace and match the specified pattern.

For example:

To find all APL objects for which ⎕NC is 2:

]VarsLike
CR DELINS Describe FS

To find all APL objects for which ⎕NC is 2 that contain the letter "a" in their name:

]VarsLike *S*
DELINS FS

 Dyalog User Commands Reference Guide 48

Appendix A Example User Commands

This appendix includes examples illustrating the construction of user commands.

The examples in this appendix have been created to illustrate different aspects of
user commands. This means that they do not necessarily follow an efficient
workflow process or best coding practice.

A.1 Example: Basic User Command Definition

This example illustrates the definition of a basic user command.

A new user command called Time is required to display the local time. The
necessary functions are defined in a namespace called timefns:

:Namespace timefns

 ⎕ML ⎕IO←1 ⍝ set to avoid inheriting external values

 ∇ r←List
 r←⎕NS¨1⍴⊂'' ⍝ r is a vector of length 1 with the
 ⍝ item set to be a ref to a namespace
 r.(Group Parse Name)←⊂'TimeGrp' '' 'Time'
 r[1].Desc←'Time example Script'
 ∇

 ∇ r←Run(Cmd Args)
 r←1↓,'⊂:⊃,ZI2'⎕FMT ⎕TS[4 5 6] ⍝ show time
 ∇

 ∇ r←Help Cmd
 r←'Time (no arguments)'
 ∇

:EndNamespace

In this example:

• The List function sets the four variables Desc, Name, Group and Parse to
'Time example Script', Time, TimeGrp and <null> respectively.

• The Run function only needs to call ⎕TS so the command name and any
supplied arguments are ignored. This function also formats the time into a
user-friendly format.

• The Help function identifies that there is only one user command in the
namespace (there is only one user command name, Time, defined) and
returns the appropriate information for the Time user command.

Running this user command in a Dyalog Session returns three numbers; these three
numbers are the current time – respectively they indicate the hour (according to the

 Dyalog User Commands Reference Guide 49

24 hour clock), the number of minutes past the hour and the number of seconds
elapsed. For example:

]?Time
Command "Time".

Time (no arguments)

Script location: c:\program files\dyalog\dyalog apl 14.0
unicode\salt\spice\timefns

(the same result is returned if]Help Time or]??Time is entered)

]Time
13:05:09

(indicating that the current system time is 13:05 and 9 seconds)

A.2 Example: Cross-Operating System User Command Definition

This example illustrates the inclusion of two different user commands within a single
namespace, different techniques for achieving the same result depending on the
operating system being used and using breakout without user commands.

Although the current system time returned by the Time user command (see
Section A.1) is useful, it might be more relevant to have a choice of displaying local
time or UTC (Co-ordinated Universal Time). To do this, a new user command called
UTC is required. As this is closely related to the Time user command, it should be
created in the same namespace; this involves adding a new function called Zulu
and modifying the Run, List and Help functions.

To illustrate the ability of a user command to obtain information through a breakout
call to .NET, this example also includes options in the Run function that are
dependent on the operating system that the Dyalog Session is being run on (.NET is
only valid when running on the Microsoft Windows operating system). These
options ensure that the same user command is cross-system compatible for
Microsoft Windows and Linux.

:Namespace timefns

 ⎕ML ⎕IO←1 ⍝ set to avoid inheriting external values

 ∇ r←List
 r←⎕NS¨2⍴⊂'' ⍝ r is a vector of length 2 with the
 ⍝ items set to be refs to namespaces
 r.(Group Parse)←⊂'TimeGrp' ''
 r.Name←'Time' 'UTC'
 r.Desc←'Show local time' 'Show UTC time'
 ∇

 ∇ r←Run(Cmd Args);dt
 :If 'Windows' ≡ 7↑⊃'.'⎕WG 'APLVERSION' ⍝ Windows
 ⎕USING←'System' ⍝ Windows
 dt←DateTime.Now ⍝ Windows
 :If 'UTC'≡Cmd ⍝ Windows
 dt←Zulu dt ⍝ Windows
 :EndIf ⍝ Windows

 Dyalog User Commands Reference Guide 50

 r←(r⍳' ')↓r←⍕dt ⍝ Windows
 :ElseIf 'Linux' ≡ 5↑⊃'.'⎕WG 'APLVERSION' ⍝ Linux
 dt←('UTC'≡Cmd)/'TZ=UTC' ⍝ Linux
 r←⊃⎕SH dt,' date +"%H:%M:%S"' ⍝ Linux
 :Else
 r←'Unrecognised operating system' ⍝ neither!
 :EndIf
 ∇

 ∇ r←Help Cmd;which
 which←'Time' 'UTC'⍳⊂Cmd
 r←which⊃'Time (no arguments)' 'UTC (no arguments)'
 ∇

 ∇ r←Zulu date
 ⍝ Use .Net to retrieve UTC info
 r←TimeZone.CurrentTimeZone.ToUniversalTime date
 ∇

:EndNamespace

In this example:

• The List function is amended to allow for two function definitions in the
four variable definitions:

o Desc is set to to 'Show local time'/'Show UTC time' (two values,
therefore the first applies to the first user command and the
second applies to the second user command)

o Name is set to Time/UTC (two values, therefore the first applies to
the first user command and the second applies to the second user
command)

o Group is set to TimeGrp (only one value so applied to both user
commands)

o Parse is set to <null> (only one value so applied to both user
commands)

• The Run function is amended to use the Cmd argument to determine
which user command is being run (any further supplied arguments are still
ignored). The operating system on which the Dyalog Session is being run is
then identified; different actions are taken depending on whether the
operating system is Microsoft Windows or Linux (if neither, then a message
is returned). The operating system is then used to determine the current
system time rather than the APL system function ⎕TS, for example, if the
UTC user command is being run on a Microsoft Windows operating system,
then the Run function calls the Zulu function. The Run function also
formats the resulting time into a more user-friendly format irrespective of
the operating system and user command.

• The Help function is amended to enable it to identify that there are two
user commands in the namespace (there are two user command names,
Time and UTC, defined) and return the appropriate information according
to which name is specified.

• The Zulu function is added to retrieve the UTC time through a .NET call –
this function is only called if the Run function identifies that the Dyalog
Session is running on a Microsoft Windows operating system and the UTC
user command is specified.

 Dyalog User Commands Reference Guide 51

After changing the code but before running these user commands, the]UReset
user command should be run to force a cache file update (otherwise the code
changes will not be detected).

The Time and UTC user commands can now be run from a Dyalog Session:

]?TimeGrp
 Group Name Description
 ===== ==== ===========
 TimeGrp Time Show local time
 UTC Show UTC time

]?Time
Command "Time".

Time (no arguments)

Script location: c:\program files\dyalog\dyalog apl 14.0
unicode\salt\spice\timefns

(the same result is returned if]Help Time or]??Time is entered)

]Time
13:17:34
(indicating that the current system time is 13:17 and 34 seconds)

]?UTC
Command "UTC".

UTC (no arguments)

Script location: c:\program files\dyalog\dyalog apl 14.0
unicode\salt\spice\timefns

(the same result is returned if]Help UTC or]??UTC is entered)

]UTC
12:18:15
(indicating that the co-ordinated universal time is 12:18 and 15 seconds)

A.3 Example: Optional Arguments

This example illustrates the creation of a user command with an optional argument.

Although the Time and UTC user commands return the local time and UTC
respectively (see Section A.2), they only work for the location in which the system is
located. To return the time in different locations, new functions could be defined for
each location and the Run, List and Help functions modified accordingly.
Alternatively, the Run function can be modified to use the location as an argument
to compute the time (this does not take account of daylight saving time). Using this
second approach the timefns.dyalog file can be modified as follows (Microsoft
Windows only):

:Namespace timefns

 ⎕ML ⎕IO←1 ⍝ set to avoid inheriting external values

 Dyalog User Commands Reference Guide 52

 ∇ r←List
 r←⎕NS¨2⍴⊂'' ⍝ r is a vector of length 2 with the
 ⍝ items set to be refs to namespaces
 r.(Group Parse)←⊂'TimeGrp' ''
 r.Name←'Time' 'UTC'
 r.Desc←'Show local time in a city' 'Show UTC time'
 ∇

 ∇ r←Run(Cmd Args);dt;offset;cities;diff;city;lcity;ix
 ⎕USING←'System'
 dt←DateTime.Now
 :Select Cmd
 :Case 'UTC'
 dt←Zulu dt
 :Case 'Time'
 :If 0≠⍴city←Args~' '
 offset←CityTimeOffset city
 'Unknown city'⎕SIGNAL 11⍴⍨⍬≡offset
 diff←⎕NEW TimeSpan(3↑offset)
 dt←(Zulu dt)+diff
 :EndIf
 :EndSelect
 r←(r⍳' ')↓r←⍕dt
 ∇

 ∇ r←Help Cmd;which
 which←'Time' 'UTC'⍳⊂Cmd
 r←which⊃'Time [city]' 'UTC (no arguments)'
 ∇

 ∇ r←Zulu date
 ⍝ Use .Net to retrieve UTC info
 r←TimeZone.CurrentTimeZone.ToUniversalTime date
 ∇

 ∇ r←CityTimeOffset city;lcity;cities;ix;offsets
 cities←'l.a.' 'montreal' 'copenhagen' 'sydney'
 offsets←¯8 ¯5 2 10
 r←⍬ ⍝ Assume no match
 lcity←('.'⎕R'\l&')city ⍝ Name to lowercase
 ix←cities⍳⊂lcity ⍝ Find city in cities
 :If ix≤⍴cities ⍝ If present,
 r←ix⌷offsets ⍝ return the offset
 :EndIf ⍝ [else return ⍬]
 ∇

:EndNamespace

In this example:

• The List function has one small amendment to the description of the
Desc variable for the first user command.

• The Run function still uses the Cmd argument to determine which user
command is being run; different actions are taken according to which is
specified. If the Cmd argument is UTC then the function proceeds as before.
However, if the Cmd argument is Time then the function now takes the
second argument into account and passes it to the CityTimeOffset
function (the Args~' ' expression removes any extraneous spaces in the

 Dyalog User Commands Reference Guide 53

name of the city, so that a user can enter (for example) 'l.a.' or
'l. a.' and get a valid result) If the CityTimeOffset function
returns an offset value then the Run function uses this to calculate the
time in the specified city, otherwise it generates an "Unknown city" error
message.

• The Help function has one small amendment to state that an optional
argument specifying the location can be included when running the]Time
user command.

• The Zulu function remains unchanged.
• The CityTimeOffset function is added to determine whether the

second argument matches the name of one of the cities that have had time
offsets defined and return the appropriate offset if a match is found. The
name of the city entered when running the user command is made
case-insensitive by converting them to lower case with the
('.'⎕R'\l&')city expression.

After changing the code but before running these user commands, the]UReset
user command should be run to force a cache file update (otherwise the code
changes will not be detected).

The Time and UTC user commands can now be run from a Dyalog Session:

]?Time
Command "Time".

Time [city]

Script location: c:\program files\dyalog\dyalog apl 14.0
unicode\salt\spice\timefns

(the same result is returned if]Help Time or]??Time is entered)

]Time
13:17:34
(indicating that the current system time is 13:17 and 34 seconds)

]Time l.a.
04:17:51
(indicating that the current time in Los Angeles, ignoring daylight saving time, is
04:17 and 51 seconds)

]Time l.x.
12:17:59
(an invalid city is specified, so the local co-ordinated universal time – based on the
current system time – is returned…12:17 and 59 seconds)

]?UTC
Command "UTC".

UTC (no arguments)

Script location: c:\program files\dyalog\dyalog apl 14.0
unicode\salt\spice\timefns

(the same result is returned if]Help UTC or]??UTC is entered)

 Dyalog User Commands Reference Guide 54

]UTC
06:08:30
(indicating that the local co-ordinated universal time is 6:08 and 30 seconds)

]?TimeGrp
 Group Name Description
 ===== ==== ===========
 TimeGrp Time Shown local time in a city
 UTC Show UTC time

A.4 Example: The Parse Variable

This example illustrates use of the Parse variable; by setting this to non-empty
values, the user command framework is able to handle arguments and modifiers.

For more information on the Parse variable, see Section 4.2.3. For more information
on modifiers and modifier values, see Section 4.5. For more information on
arguments, see Section 4.6.

A new user command called Number is required to display either the age of the
specified person or to convert a decimal number into its Hexadecimal equivalent.
The necessary functions are defined in a namespace called number:

:Namespace number

 ⎕ML ⎕IO←1 ⍝ set to avoid inheriting external values

 ∇ r←List
 r←⎕NS¨1⍴⊂''
 r.(Group Parse Name Desc)←⊂'AgeHex' '' 'Number'
 'Gives age or Hexadecimal format'
 ∇

 ∇ r←Run(Cmd Args);N;H;alph;Name;Names
 r←⍬
 Names←Args.Arguments
 :For Name :In Names
 :Select Name
 :Case 'Fiona'
 r,←40
 :Case 'Andy'
 r,←51
 :Else
 :Trap 6 ⍝ VALUE ERROR
 :If ∧/Name∊⎕D ⍝ If all digits...
 N←⌈16⍟(⍎Name)
 H←(N⍴16)⊤(⍎Name)
 alph←'0123456789ABCDEF'
 r,⊂←alph[⎕IO+H]
 :Else
 r,←⊂'Unrecognised Name'
 :EndIf
 :Else
 r,←⊂'Unrecognised Name'
 :EndTrap
 :EndSelect

 Dyalog User Commands Reference Guide 55

 :EndFor
 ∇

 ∇ r←Help Cmd
 r←'Enter either a person''s name to return their age
 or a number to return the Hexadecimal equivalent'
 ∇

:EndNamespace

In this example, the Parse variable is empty – this means that the Run function's
takes everything following the command name as a simple character vector.
However, if a valid name is entered with the expectation of having that person's age
returned, then an error message is generated:

]Number Fiona
* Command Execution Failed: SYNTAX ERROR

The same error message is generated if a decimal number is entered with the
expectation of its Hexadecimal equivalent being returned:

]Number 42
* Command Execution Failed: SYNTAX ERROR

This error arises because the user command is expecting a namespace as its input
and instead it is receiving a simple character vector.

These errors arise because the Args parameter in the Run function is a simple
character vector rather than a namespace; this is due to the empty Parse variable.
Populating the Parse variable means that the Args parameter becomes a
namespace.

For this example, the only changes that will be made to the user command's code
are to its Parse variable definition.

To enable the user command to perform the necessary namespace conversion, the
Parse variable is changed from '' to '2S' – this means that the user command can
accept 0, 1 or 2 arguments but no more (for more information on this, see Section
4.6.4).

]Number 42
 2A

]Number 42 42
 2A 2A

]Number 42 42 42
* Command Execution Failed: too many arguments

]Number 42 Fiona
 2A 40

Changing the Parse variable again, this time from '2S' to '2L', means that 2
arguments must be supplied; if more than this are supplied then the first argument
is taken as specified and the rest are merged together to become the second
argument (for more information on this, see Section 4.6.5).

]Number 42

 Dyalog User Commands Reference Guide 56

* Command Execution Failed: too few arguments

]Number 42 42
 2A 2A

]Number 42 42 42
 2A Unrecognised Name

]Number 42 Fiona
 2A 40

A.5 Example: Debugging a User Command

This example illustrates using the]UDebug user command to debug a namespace
containing a user command group definition.

A user command can be debugged by tracing through the entire namespace.
However, a more convenient method is to instruct code to suspend on the first line
of the Run function – tracing/debugging can then proceed from there. To do this,
debugging mode must be switched on:

]UDebug on
Was OFF

Having debugging enabled does not impact the execution of a user command unless
you specify the "-" flag at the end of the command. For example, using the number
namespace defined in see Section A.4 to hold the AgeHex group of user commands:

]Number 42 Andy
 2A 51

]Number 42 Andy –
Run[1]

The Debugger should open with the code suspended on Run[1].

To progress through the Run function, press the <TC> key combination.

Relevant key combinations on the Microsoft Windows operating system:
<TC> is usually Ctrl + Enter
<ED> is usually Shift + Enter
<EP> is usually Escape

Relevant key combinations on a Linux operating system:
<TC> is usually APLkey + Shift + Enter
<ED> is usually APLkey + Enter
<EP> is usually Escape

You can now trace and debug the code in the namespace.

The debugging window shows that, in the number namespace, the Parse variable is
set to 2S. This means that the Args variable is a namespace. The namespace
contains a number of variables, one of which is Arguments:

 Dyalog User Commands Reference Guide 57

]disp Args
⎕SE.[Namespace]
 Args.⎕NL 2
Arguments
SwD
_1
_2

]disp Args.Arguments
┌→─┬────┐
│42│Andy│
└─→┴───→┘

This shows that the Arguments variable is a vector comprising two character vectors.

Press the <ED> key combination to open the namespace definition in the Editor and
change the Parse variable from '2S' to '2L'. Save the changes and repeatedly hit
<EP> until you are no longer tracing through code. Then enter:

]Number 42 Andy 8 9 10 –

With the Run function suspended, enter:

]Disp Args.Arguments
┌→─┬───────────┐
│42│Andy 8 9 10│
└─→┴──────────→┘

This shows that the Arguments variable is still a vector comprising two character
vectors. However, the second of the two character vectors now includes everything
after the first argument in the call to the user command.

Press the <ED> key combination to open the namespace definition in the Editor and
change the Parse variable from '2L' to '2S -true'. The '-true' means that
the parser now accepts a modifier called –true that does not accept a modifier
value but can only be present or absent (see Section 3.7.2). Save the changes and
repeatedly hit <EP> until you are no longer tracing through code. Then enter:

]Number 42 Andy –
 Args.⎕NL 2
Arguments
SwD
_1
_2
true

This shows an additional variable, true, created with the same name as the
modifier that was included in the Parse variable. However, when calling the Number
user command, this on/off modifier was not specified. Therefore:

 Args.true
0

To see the effect of calling the Number user command with this modifier specified:

)reset
]number 42 Andy –true –

 Dyalog User Commands Reference Guide 58

 Args.true
1

Press the <ED> key combination to open the namespace definition in the Editor and
change the Parse variable from '2S -true' to ''. Save the changes and
repeatedly hit <EP> until you are no longer tracing through code. Then enter:

]number 42 Andy –

With the Run function suspended, enter:

]disp Args
42 Andy

 ⍴Args
8

With an empty Parse variable, Args is a simple character vector of length 8
(because we have used the "-" argument, there is a trailing space after the "y" of
"Andy").

Debugging mode is switched off using:

]UDebug off
Was ON

	1 About This Document
	1.1 Audience

	2 Introduction
	2.1 Cache File

	3 Using User Commands
	3.1 Installation
	3.2 File Structure
	3.3 Implementation
	3.3.1 Customising the Implementation

	3.4 File Format
	3.5 Groups
	3.6 Syntax in Dyalog Sessions
	3.6.1 Requesting Additional Information

	3.7 Running User Commands
	3.7.1 Arguments
	3.7.2 Modifiers and Modifier Values

	4 Creating User Commands
	4.1 Basic Definition
	4.2 The List Function
	4.2.1 Name
	4.2.2 Group
	4.2.3 Parse

	4.3 The Run Function
	4.4 The Help Function
	4.4.1 Defining Multiple Levels of Help

	4.5 Modifiers
	4.5.1 Default Modifier Values

	4.6 Arguments
	4.6.1 Default Argument Values
	4.6.2 Arguments Including Space Characters
	4.6.3 Minimum Number of Arguments
	4.6.4 Maximum Number of Arguments
	4.6.5 Long Arguments
	4.6.6 Summary of Argument Specification in the Parser

	4.7 Saving Custom User Commands
	4.8 Detecting New Custom User Commands

	5 Predefined User Commands
	5.1 ARRAY Group
	5.1.1]Compare
	5.1.2]Edit
	5.1.3]ToHTML

	5.2 FILE Group
	5.2.1]CD
	5.2.2]Collect
	5.2.3]Compare
	5.2.4]Edit
	5.2.5]Find
	5.2.6]Replace
	5.2.7]Split
	5.2.8]ToLarge
	5.2.9]ToQuadTS
	5.2.10]Touch

	5.3 FN Group
	5.3.1]Align
	5.3.2]Calls
	5.3.3]Compare
	5.3.4]Defs
	5.3.5]DInput
	5.3.6]Latest
	5.3.7]ReorderLocals

	5.4 MISC Group
	5.4.1]Calendar
	5.4.2]Factors
	5.4.3]PivotTable

	5.5 NS Group
	5.5.1]ScriptUpdate
	5.5.2]Summary
	5.5.3]Xref

	5.6 OUTPUT Group
	5.6.1]Box
	5.6.2]Boxing
	5.6.3]Disp
	5.6.4]Display
	5.6.5]Rows

	5.7 PERFORMANCE Group
	5.7.1]Monitor
	5.7.2]Profile
	5.7.3]RunTime
	5.7.4]SpaceNeeded

	5.8 SALT Group
	5.8.1]Clean
	5.8.2]Compare
	5.8.3]List
	5.8.4]Load
	5.8.5]Open
	5.8.6]RemoveVersions
	5.8.7]Save
	5.8.8]Settings
	5.8.9]Snap

	5.9 SAMPLES Group
	5.9.1]UCMDHelp
	5.9.2]UCMDNoParsing
	5.9.3]UCMDParsing

	5.10 SVN Group
	5.10.1]Add
	5.10.2]Checkout
	5.10.3]Commit
	5.10.4]Delete
	5.10.5]Diff
	5.10.6]Export
	5.10.7]Import
	5.10.8]Resolve
	5.10.9]Status
	5.10.10]Update

	5.11 TOOLS Group
	5.11.1]Assemblies
	5.11.2]Chart
	5.11.3]Demo
	5.11.4]FileAssociations
	5.11.5]FromHex
	5.11.6]GUIProps
	5.11.7]ToHex

	5.12 TRANSFER Group
	5.12.1]In
	5.12.2]Out

	5.13 UCMD Group
	5.13.1]UDebug
	5.13.2]ULoad
	5.13.3]UMonitor
	5.13.4]UNew
	5.13.5]URefresh
	5.13.6]UReset
	5.13.7]USetup
	5.13.8]UUpdate
	5.13.9]UVersion

	5.14 WS Group
	5.14.1]Compare
	5.14.2]Document
	5.14.3]FindRefs
	5.14.4]FnsLike
	5.14.5]Locate
	5.14.6]Map
	5.14.7]NamesLike
	5.14.8]Nms
	5.14.9]ObsLike
	5.14.10]Peek
	5.14.11]SizeOf
	5.14.12]VarsLike

	Appendix A Example User Commands

