
Version 14.0

The tool of thought for expert programming

Dyalog Interface
Guide

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2014 by Dyalog Limited

All rights reserved.

Version: 14.0

Revision: 20141121

Nopart of this publicationmay be reproduced in any form by any means without the prior written per-
mission of Dyalog Limited.

Dyalog Limitedmakes no representations or warranties with respect to the contents hereof and spe-
cifically disclaims any impliedwarranties of merchantability or fitness for any particular purpose.
Dyalog Limited reserves the right to revise this publicationwithout notification.

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The OpenGroup.

Windows, Windows Vista, Visual Basic andExcel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Array Editor is copyright of davidliebtag.com

All other trademarks and copyrights are acknowledged.

Contents

Chapter 1: Introduction 1
Overview 1
Concepts 2
Creating Objects 8
Properties 11
User Interaction & Events 17
Methods 24
GUI Objects as Namespaces 26
Modal Dialog Boxes 31
Multi-Threading with Objects 33
The Co-ordinate System 34
Colour 36
Fonts 37
Drag and Drop 38
Debugging 39
Creating Objects using NEW 40
Native Look and Feel 41

Chapter 2:GUITutorial 43
Introduction 43
Some Concepts 43
Creating a Form 44
Adding a Fahrenheit Label 45
Adding a Fahrenheit Edit Field 46
Adding a Centigrade Label & Edit Field 47
Adding Calculate Buttons 48
Closing the Application Window 49
Adding a Quit Button 50
The Calculation Functions 51
Testing the Application 52
Making the Enter Key Work 53
Introducing a ScrollBar 54
Adding a Menu 55
Running fromDesktop 58
Using NEW instead of WC 60
Temperature Converter Class 62
Dual Class Example 65

iv

Chapter 3:Graphics 69
Introduction 69
Drawing Lines 70
Drawing in a Bitmap 71
Multiple Graphical Items 72
Unnamed Graphical Objects 73
Bitmaps and Icons 74
Metafiles 76
Picture Buttons 78
Using Icons 81

Chapter 4:Composite Controls 83
The ToolControl and ToolButton Objects 83
The CoolBar and CoolBand Objects 95
The TabControl and TabButton Objects 104
The StatusBar Object 114

Chapter 5:Hints andTips 119
Using Hints 119
Using Tips 122
Hints and Tips Combined 123

Chapter 6:Using theGridObject 125
Defining Overall Appearance 126
Row and Column Titles 127
Displaying and Editing Values in Grid Cells 129
Specifying Individual Cell Attributes 134
Drawing Graphics on a Grid 138
Controlling User Input 142
TreeView Feature 146
Grid Comments 151

Chapter 7:Multiple-Document (MDI)Applications 155
MDI Behaviour 156
Menus in MDI Applications 158
Defining a Window Menu 159
Arranging Child Forms and Icons 160

Chapter 8:Docking 161
Introduction 161
Docking Events 162

v

Docking a Form inside another 164
Docking a Form into a CoolBar 169
Undocking a SubForm or a CoolBand 171
Docking and Undocking a ToolControl 172
Native Look and Feel 176

Chapter 9:OLEAutomationClient andOLEControls 177
Introduction 177
Using an OLE Server 178
Loading an ActiveX Control 178
Type Information 179
Methods 188
Properties 192
Events 194
Using the Microsoft Jet Database Engine 195
Using OLE Objects without Type Information 197
Collections 199
Null Values 200
Additional Interfaces 201
Writing Classes based on OLEClient 202

Chapter 10:OLEAutomationServer 203
Introduction 203
In-process OLE Servers 206
Out-of-process OLE Servers 208
LateBind Property 210
The LOAN Workspace 211
Implementing an Object Hierarchy 221
The CFILESWorkspace 222
Configuring an out-of-process OLEServer for DCOM 232
Calling an OLE Function Asynchronously 236

Chapter 11:WritingActiveXControls inDyalog 241
Overview 242
The Dual Control Tutorial 246

Chapter 12: SharedVariables (DDE) 271
Introduction to DDE 271
Shared Variable Principles 272
APL and DDE in Practice 277
State and Access Control 280
Example: Communication Between APLs 286

vi

Example : Excel as the Server 287
Example : Excel as the Client 289
Example : APL as Compute Server for Excel 290
Restrictions & Limitations 292

Index 293

1

Chapter 1:

Introduction

Overview
This manual describes various interfaces between Dyalog APL and Windows.

Chapter 1 introduces the concepts of the Dyalog APL Graphical User Interface (GUI)
and describes, in outline, how the system works.

Chapter 2 contains a tutorial which takes you step-by-step through the imple-
mentation of a simple GUI application.

Chapters 3 explains how to draw graphics using primitive graphical objects such as
Poly, Bitmap and Metafile objects.

Chapter 4 describes how to use toolbars, tab controls and status bars.

Chapter 6 covers the important Grid object that provides a spreadsheet interface for
displaying and editing tables of data and

Chapters 7 and 8 describe the Multiple Document Interface (MDI) and docking. Fur-
ther GUI material is provided in the WTUTOR,WTUTOR95 and WDESIGN work-
spaces.

Chapters 9-12 describe the various ways in which Dyalog APL may communicate
with otherWindows applications using Component Object Model (COM) inter-
faces. These interfaces allow APL to act as an OLE Automation server and client, and
allow you to write ActiveX controls in Dyalog APL.

Chapter 13 describes the DDE interface which is implemented using (traditional)
APL shared variables. However, please note that DDE has all but been replaced by
COM, and is no longer promoted as a major technology by Microsoft.

2 Dyalog APL/W Interface Guide Version 14.0

Concepts
The Dyalog APL GUI is based upon four important concepts; objects, properties,
events and methods.

Objects
Objects are instances of classes that contain information and provide functionality.
Most Dyalog APL objects are GUI objects that may be displayed on the screen and
with which you can interact. An example of an object is a push-button (an instance
of class Button) which you may press to cause the program to take a particular action.
Objects are defined in hierarchies.

Objects are also namespaces and may contain functions, variables, and indeed other
namespaces. This allows you to store the code and data that is required by a given
object within that object. Functions and variables stored in an object are hidden and
protected from conflicts with functions and variables in the outside workspace and
with those in other objects.

Properties
Each object has an associated set of properties which describe how it looks and
behaves. For example, a Button has a property called Caption which defines the char-
acter string to be displayed in it. It also has a property called Type which may be
Push (the button appears to move in and out when it is pressed), Radio (the button
has two states and may be toggled on and off); and so forth.

Events
During interaction with the user, an object is capable of generating events. There are
essentially two types of event, raw events and object events.Raw events are typ-
ically associated with a particular hardware operation. Pressing a mouse button, press-
ing a key on the keyboard, or moving the mouse pointer are examples of raw events.
An object event is generated by some action that is specific to the object in question,
but which may typically be achieved by a variety of hardware operations.

An example is the Select event. For a Button object, this event is generated when the
user presses the Button. In MS-Windows, this can be done in several ways. Firstly,
the user may click the left mouse button over the object. Secondly, under certain cir-
cumstances, the Select event can be generated when the user presses the Enter key.
Finally, the event will occur if the user presses a "short-cut" (mnemonic) key that is
associated with the Button.

Chapter 1: Introduction 3

Methods
Methods are effectively functions that an object provides; they are things that you
may invoke to make the object do something for you. In Dyalog APL, the distinction
between methods and events is tenuous, because events also make objects perform
actions and you may generate events under program control. For example, a Scroll
event is generated by a scrollbar when the user moves the thumb. Conversely, you
can make a scrollbar scroll by generating a Scroll event. Nevertheless, the concept of
a method is useful to describe functions that can only be invoked by a program and
are not directly accessible to the user.

4 Dyalog APL/W Interface Guide Version 14.0

Objects
The following objects are supported.

System Objects

Root system-level object

Printer for hard-copy output

Clipboard provides access to Windows clipboard

Container Objects

CoolBand represents a band in a CoolBar

CoolBar a container for CoolBand objects

Form top-level Window

MDIClient container for MDI windows

SubForm acts as an MDI window or a constrained Form

Group a frame for grouping Buttons and other objects

Static a frame for drawing and clipping graphics

StatusBar ribbon status bar

TabBar contains TabBtns (tabs)

TabControl contains TabButtons (tabs)

ToolBar ribbon tool bar

ToolControl standard Windows tool control

PropertySheet contains PropertyPages

PropertyPage tabbed or paged container for other controls

Splitter divides a container into panes

Menu

MenuBar pull-down menu bar

Menu pop-up menu

MenuItem selects an option or action

Separator separator between items

Chapter 1: Introduction 5

Action

Button selects an option

ToolButton performs an action or selects an option

TabBtn selects a tabbed SubForm

TabButton selects a tabbed SubForm

Scroll scroll bar

UpDown spin buttons

Locator graphical (positional) input device

Timer generates events at regular intervals

Information

Label displays static text

StatusField displays status information

MsgBox displays a message box

TipField displays pop-up context sensitive help

ProgressBar displays the progress of a lengthy operation

Input & Selection

Calendar displays a month calendar control

Grid displays a data matrix as a spreadsheet

Edit text input field

RichEdit text input with word-processing capabilities

Spinner input field with spin buttons

List for selecting an item

ListView displays a collection of items for selection

Combo edit field with selectabe list of choices

TreeView displays a hierarchical collection of items

TrackBar a slider control for analogue input/output

FileBox prompts user to select a file

6 Dyalog APL/W Interface Guide Version 14.0

Resource

Font loads a font

Bitmap defines a bitmap

Icon defines an icon

ImageList defines a collection of bitmaps or icons

Metafile loads a Windows Metafile

Cursor defines a cursor

Graphical Output

Circle draws a circle

Ellipse draws an ellipse

Marker draws a series of polymarkers

Poly draws lines

Rect draws rectangles

Image displays Bitmaps, Icons and Metafiles

Text draws graphical text

Miscellaneous

ActiveXContainer represents the application hosting a Dyalog APL
ActiveXControl

ActiveXControl represents an ActiveX control written in Dyalog APL

NetClient provides access to .NET Classes

NetControl instantiates a .NET Control.

NetType exports an APL namespace as a Net Class

OCXClass provides access to OLE Custom Controls

OLEClient provides access to OLE Automation objects

OLEServer enables APL to act as an OLE Automation server

SM specifies a window for ⎕SM(character mode interface)

TCPSocket provides an interface to TCP/IP sockets

Chapter 1: Introduction 7

Implementation Overview
The Dyalog APL GUI is implemented by the following system functions :

⎕DQ Dequeue processes user actions, invoking callbacks

⎕NQ Enqueue generates an event under program control

⎕WC Create Object creates new object with specified properties

⎕WG Get Properties gets values of properties from an object

⎕WN Object Names reports names of all children of an object

⎕WS Set Properties sets values of properties for an object

GUI Objects are a special type of namespace and have a name class of 9. They may
therefore be managed like any other workspace object. This means that they can be
localised in function headers and erased with ⎕EX. GUI objects are saved with your
workspace and reappear when it is loaded or copied.

8 Dyalog APL/W Interface Guide Version 14.0

Creating Objects
You create objects using ⎕WC. Its left argument is a character vector that specifies the
name of the object to be created. Its right argument specifies the object's Type and
various other properties. Its (shy) result is the full pathname of the newly created
object.

The following statement creates a Form called 'f1' with the title "A Default Form"
and with default size, position, etc.

'f1' ⎕WC 'Form' 'A Default Form'

Naming Objects
Objects are created in a hierarchy. The Form we have just created is a "top-level"
object to which we can attach other child objects, like buttons, scrollbars and so
forth. You can create any number of top-level objects like this, up to a limit imposed
by MS-Windows and your system configuration.

For reasons which will become apparent later, there is a single Root object whose
name is '.' (dot) or '#'. It acts a bit like the root directory in a Windows system
file structure, and is the implied parent of all the top-level objects you create.

Chapter 1: Introduction 9

When you create a top-level object, you don't actually have to specify that it is a
child of the Root; this is implied. For any other object, you specify its position in the
hierarchy by including the names of its "parent", "grand-parent", and so forth in its
name.

Object names are specified in the form:

'grandparent.parent.child'

where the "." character is used to separate the individual parts of the name. There is
no explicit limit to the depth of the object hierarchy; although in practice it is lim-
ited by the rules governing which objects may be children of which others.

Complete object names must be unique, although you could use the same sub-name
for two objects that have different parents. For example, it would be valid to have
'form1.btn1' and 'form2.btn1'.

Apart from the "." separator, names may include any of the characters A-Z, a-z, and 0-
9. They are case-sensitive, so 'Form1' is not the same name as 'form1'.

For graphical objects, it is permissible to omit the last part of the name, although the
parent name must be specified followed by a "." (dot). Further information is given
later in this chapter.

Specifying Properties
The right argument of ⎕WC is a list of properties for the object being created. Apart
from trivial cases, it is always a nested vector. The first item in the list must specify
the object's Type. Other properties take default values and need not always be
defined. Properties are discussed more fully in the next section.

Saving Objects
Like functions, variables and operators, GUI objects are workspace objects and are)
SAVEd with it. GUI Objects are also namespaces and they have a name-class of 9.
The expression)OBJECTS or ⎕NL 9may be used to report their names. Like other
namespaces, GUI objects may be copied from a saved workspace using)COPY or
⎕CY.

10 Dyalog APL/W Interface Guide Version 14.0

The Object Hierarchy
This example illustrates how an object hierarchy is defined. The following state-
ments create a Form called 'accounts' which contains a Group called 'type'
and some Buttons called 'PLAN', 'BUDGET' and 'ACTUAL'. The embedded
spaces in these statements are intended only to improve clarity. The numbers refer to
the object's position within its parent. This will be discussed in detail later.

'accounts' ⎕WC 'Form' 'Accounts'
'accounts.type' ⎕WC 'Group' 'Account Type'
'accounts.type.PLAN' ⎕WC 'Button' 'PLAN' (20 35)
'accounts.type.BUDGET' ⎕WC 'Button' 'BUDGET' (45 30)
'accounts.type.ACTUAL' ⎕WC 'Button' 'ACTUAL' (70 32)

Schematically, this object structure looks as follows:

__ACTUAL
.___accounts___type___BUDGET

__PLAN

Chapter 1: Introduction 11

Properties
Properties may be set using the system functions ⎕WC and ⎕WS and their values may
be retrieved using ⎕WG.

If the system variable ⎕WX is set to 1, properties may be set using assignment and ref-
erenced by name as if they were variables. This is generally faster and more con-
venient than using ⎕WS and ⎕WG.

Certain properties, in particular the Type property, can only be set using ⎕WC. There
is no obvious rule that determines whether or not a property can only be set by ⎕WC;
it is a consequence of the Windows API.

However, any property that can be set by ⎕WS can be set using assignment and the
values of all properties can be retrieved by direct reference or using ⎕WG.

Setting Properties with Assignment
You may set the value of a property using the assignment arrow ←. For example:

'F' ⎕WC 'Form'

The following statement sets the Caption property to the string "Hello World":

F.Caption←'Hello World'

Strand assignment may be used to set several properties in a single statement:

F.Size F.Posn←(40 50)(10 10)

However, distributed assignment is even more concise:

F.(Size Posn)←(40 50)(10 10)

Normal namespace path rules apply, so the following are all equivalent:

#.F.Caption←'Hello World'

)CS F
#.F

Caption←'Hello World'
:With 'F'

Caption←'Hello World'
Posn←40 50
Size←10 10
...

:EndWith

12 Dyalog APL/W Interface Guide Version 14.0

Notice however, that used directly in this way, Property names are case-sensitive.
The following expressions assign values to variables in F and have no effect on the
Caption property.

F.caption←'Hello World'
F.CAPTION←'Hello World'

Retrieving property values by reference
You may obtain the value of a property as if it were a variable, by simply referring to
the property name. For example:

F.Caption←'Hello World'

F.Caption
Hello World

You can retrieve the values of several properties in one statement using strand nota-
tion:

F.Caption F.Posn F.Size
Hello World 40 50 10 10

Although, once again, the use of parentheses is even more concise:

F.(Caption Posn Size)
Hello World 40 50 10 10

Although setting and referencing a Property appears to be no different to setting and
referencing a variable, it is not actually the same thing at all. When you set a Prop-
erty (whether by assignment or using ⎕WC or ⎕WS) to a particular value you are mak-
ing a request to Windows to do so; there is no guarantee that it will be honoured. For
example, having asked for a Font with face name of "Courier New", you cannot
change its Fixed property to 0, because the Courier New font is always fixed pitch.

'F'⎕WC'Font' 'Courier New'
1

F.Fixed←0
F.Fixed

1

Chapter 1: Introduction 13

Setting Properties with ⎕WC
Properties may also be set by the right argument of ⎕WC. In these cases, they may be
specified in one of two ways; either by their position in the argument, or by a
keyword followed by a value. The keyword is a character vector containing the
name of the property. Its value may be any appropriate array. Property names and
value keywords are not case sensitive; thus 'Form' could be spelled 'form',
'FORM', or even 'fOrM'

The Type property, which specifies the type of the object, applies to all objects and
ismandatory. It is therefore the first to be specified in the right argument to ⎕WC,
and is normally specified without the Type keyword. The value associated with the
Type property is a character vector.

With the exception of Type, all other properties have default values and need only
be specified if you want to override the defaults. For example, the following state-
ments would give you a default Button in a default Group in a default Form :

'form' ⎕WC 'Form'
'form.g' ⎕WC 'Group'
'form.g.b1' ⎕WC 'Button'

Properties are specified in a sequence chosen to put the most commonly used ones
first. In practice, this allows you to specify most properties by position, rather than by
keyword/value pairs. For example, the Caption property is deemed to be the "most
used" property of a Button and is specified second after Type. The following two
statements are therefore equivalent:

'F1.B1' ⎕WC 'Button' 'OK'
'F1.B1' ⎕WC 'Button' ('Caption' 'OK')

The third and fourth properties are (usually) Posn, which specifies the position of a
child within its parent, and Size which specifies its size. The following statements all
create a Form with an empty title bar, whose top left corner is 10% down and 20%
across from the top left corner of the screen, and whose height is 60% of the screen
height and whose width is 40% of the screen width.

'form' ⎕WC 'Form' '' (10 20) (60 40)
'form' ⎕WC 'Form' '' ('Posn' 10 20) ('Size' 60 40)
'form' ⎕WC 'Form' '' ('Posn' 10 20) (60 40)
'form' ⎕WC 'Form' ('Posn' 10 20) (60 40)

14 Dyalog APL/W Interface Guide Version 14.0

Changing Property Values with ⎕WS
Once you have created an object using ⎕WC, you are free to alter most of its prop-
erties using ⎕WS. However in general, those properties that define the overall struc-
ture of an object's window cannot be altered using ⎕WS. Such immutable properties
include Type and (for some objects) Style. Note that if you find that you do need to
alter one of these properties dynamically, it is a simple matter to recreate the object
with ⎕WC.

The syntax for ⎕WS is identical to that of ⎕WC. The following examples illustrate
how the properties of a Button can be altered dynamically. Note that you can use
⎕WS in a callback function to change the properties of any object, including the one
that generated the event.

Create "OK" button at (10,10) that calls FOO when pressed

'form.b1' ⎕WC 'Button' 'OK' (10 10)

Some time later, change caption and size

'form.b1' ⎕WS ('Caption' 'Yes') ('Size' 20 15)

Note that if the right argument to ⎕WS specifies a single property, it is not necessary
to enclose it.How the Property List is Processed

The system is designed to give you as much flexibility as possible in specifying prop-
erty values. You should find that any "reasonable" specification will be accepted.
However, you may find the following explanation of how the right argument of ⎕WC
and ⎕WS is parsed, useful. The casual reader may wish to skip this page.

Items in the right argument are processed one by one. If the next array in the argu-
ment is a simple array, or a nested array whose first element is not a character vector,
the array is taken to be the value of the next property, taking the properties in the
order defined for that object type.

When the system encounters a nested array whose first element is a character vector,
it is checked against the list of property names. If it is not a property name, the entire
array is taken to define the value of the next property as above.

If the first element is a property name, the remainder of the nested array is taken to be
the value of the corresponding property. For convenience, considerable latitude is
allowed in how the structure of the property value is specified.

After assigning the value, the parser resets its internal pointer to the property fol-
lowing the one named. Thus in the third and fourth examples on the preceding page,
omitting the Size keyword is acceptable, because Size is the next property after Posn.

Chapter 1: Introduction 15

In the reference section for each object, you will find the list of properties applicable
to that object, given in the order in which they are to be specified. This information
is also reported by the PropList property, which applies to all objects. The list of prop-
erties may also be obtained by executing the system command)PROPS in an
object's namespace.

The Event Property
Of the many different properties supported, the Event property is rather special. Most
of the other properties determine an object's appearance and general behaviour. The
Event property, however, specifies how the application reacts to the user. Fur-
thermore, unlike most other properties, it takes not a single value, but a set of values,
each of which determines the action to be taken when a particular event occurs. In
simple terms, an event is something that the user can do. For example, pressing a
mouse button, pressing a key, selecting an item from a menu, are all examples of
events.

Like any other property, the Event property may be set by assignment or using ⎕WC
and ⎕WS. Using assignment, you can specify settings for the entire set of events, or
you can set individual events one by one.

Each type of event has a name and a number. Although you may identify an event
either by its name or by its number, the use of its name is generally preferable. The
exception to this is user-defined events which may only be specified by number.

The list of events supported by a particular object is available from its EventList prop-
erty, or by executing the system command)EVENTS in an object's namespace.

To specify an individual event, you assign the action to the event name which is
optionally prefixed by the string 'on' . For example, the name for the event that
occurs when a user presses a key is 'KeyPress'. To this you assign an action.
Event actions are described in detail later in this chapter, but most commonly action
is a character vector containing the name of a function. This is termed a callback func-
tion, because it will be automatically called for you when the corresponding event
occurs. So if F1 is a Form, the statement:

F1.onKeyPress←'CHECK_KEY'

specifies that the system is to call the function CHECK_KEY whenever the user
presses a key when F1 has the input focus.

16 Dyalog APL/W Interface Guide Version 14.0

Using ⎕WC and ⎕WS, the same effect can be obtained by:

'F1'⎕WC'Form' ('Event' 'onKeyPress' 'CHECK_KEY')

or

'F1'⎕WS 'Event' 'onKeyPress' 'CHECK_KEY'

When a callback function is invoked, the system supplies an event message as its
right argument, and (optionally) an array that you specify, as its left argument. The
event message is a nested vector that contains information about the event. The first
element of the event message is always either a namespace reference to the object
that generated the event or a character vector containing its name.

To instruct the system to pass the object name instead of a reference, you must use
the event name on its own (omitting the 'on' prefix) or the event number. This
method is retained for compatibility with previous versions of Dyalog APL that did
not support namespace references. For example, either of the following statements
will associate the callback function 'CHECK_KEY' with the KeyPress event.
However, when 'CHECK_KEY' is called, it will be called with the character string
'F1' in the first element of the right argument (the event message) instead of a direct
reference to the object F1.

F1.Event←'KeyPress' 'CHECK_KEY'
'F1'⎕WS 'Event' 'KeyPress' 'CHECK_KEY'
'F1'⎕WS 'Event' 22 'CHECK_KEY'

Note that by default, all events are processed automatically by APL, and may be
ignored by your application unless you want to take a specific action. Thus, for
example, you don't have to handle Configure events when the user resizes your
Form; you can just let APL handle them for you.

Before looking further into events, it is necessary to describe how control is passed to
the user, and to introduce the concept of the event queue.

For further details, see the description of the Event property in the Object Reference.

Chapter 1: Introduction 17

User Interaction & Events
Giving Control to the User
As we have seen, ⎕WC and ⎕WS are used to build up the definition of the user-inter-
face as a hierarchy of objectswith properties. Notice that the interface is defined not
only in terms of its appearance and general behaviour, but also by specification of
the Event property, in terms of how it reacts to user actions.

Once you have defined your interface, you are ready to give control to the user. This
is simply done by calling ⎕DQ. Alternatively, you may use the Wait method (if appro-
priate) which is identical to ⎕DQ in its operation.

⎕DQ performs several tasks. Firstly, it displays all objects that have been created but
not yet drawn. When you create objects, Dyalog APL/W automatically buffers the
output so as to avoid unpleasant flashing on the screen. Output is flushed when APL
requires input (at the 6-space prompt) and by ⎕DQ. Thus if you write a function that
creates a Form containing a set of controls, nothing is drawn until, later on in the
function, you call ⎕DQ. At this point the Form and its contents are displayed in a
single screen update, which is visually more pleasing than if they were drawn one by
one. A second task for ⎕DQ is to cause the system to wait for user events. Objects that
you create are immediately active and capable of generating events. During devel-
opment and testing, you can immediately use themwithout an explicit wait.
However, unless your application uses the Session in conjunction with GUI objects
you must call ⎕DQ to cause the application to wait for user input. In a run-time applic-
ation, ⎕DQ is essential.

The right argument to ⎕DQ specifies the objects with which the user may interact. If
it specifies '.', the user may interact with all active objects owned by the current
thread andwith any new objects which are created in callback functions. If not, the
right argument is a simple character vector or a vector of character vectors, con-
taining the names of one or more Form or PropertySheet objects and the Clipboard
object, or the name of a single modal object of type FileBox, Locator, MsgBox or
Menu. All specified objects must be owned by the current thread.

In general, ⎕DQ first updates the screen with any pending changes, then hands con-
trol to the user and waits for an event. If its right argument is '.' ⎕DQ processes
events for all active objects, i.e. for those objects and their children whose Active
property is 1. If the right argument contains the name of one or more Form and/or
Clipboard objects, ⎕DQ processes events for all of these objects and their children,
and (if the current thread is thread 0) for the Root object, but ignores any others, even
though they may be currently active.

18 Dyalog APL/W Interface Guide Version 14.0

If the right argument specifies a single modal object, ⎕DQ displays the object on the
screen, handles user-interaction with it, and then hides the object when the user has
finished with it. An event is generated according to the manner in which the user ter-
minated.

Events are managed by both the Operating System and by ⎕DQ using a queue. A
detailed understanding of how the queue works is not absolutely necessary, and you
may skip the following explanation. However, if you are planning to develop major
applications using the GUI, please continue.

The Event Queue
There are in fact two separate queues, one maintained by MS-Windows and one
internal to APL. The MS-Windows queue is used to capture all events that APL
needs to process. These include events for your GUI objects as well as other events
concerned with APL's own Session Window, Edit Windows, etc. At various points
during execution, APL reads events from the MS-Windows queue and either pro-
cesses them immediately or, if they are events concerned with objects you have
defined with ⎕WC, APL places them on its own internal queue. It is this queue to
which ⎕DQ looks for its next event.

When ⎕DQ receives an event, it can either ignore it, process it internally, execute a
string, call a callback function, or terminate according to the action you have defined
for that event. The way you define different actions is described in detail later in this
Chapter.

If you have disabled a particular event by setting its action code to ¯1, ⎕DQ simply
ignores it. For example, if you set the action code of a KeyPress event to ¯1, key-
strokes in that object will be ignored. If you have told ⎕DQ to process an event nor-
mally (the default action code of 0) ⎕DQ performs the default processing for the event
in question. For example, the default processing for a KeyPress event in an Edit
object is to display the character and move the input cursor.

If you have associated a string or a callback function with a particular event in a par-
ticular object, ⎕DQ executes the string or invokes the callback function for you. Dur-
ing the execution of the string or the callback function, the user may cause other
events. If so, these are added to APL's internal queue but they are not acted upon
immediately. When the execution of the string or the callback function terminates,
control returns to ⎕DQ which once more looks to the internal queue. If another event
has been added while the callback function was running, this is read and acted upon.
If not, ⎕DQ looks to the MS-Windows queue and waits for the next event to occur.

Chapter 1: Introduction 19

If you have associated an asynchronous callback function with an event (by append-
ing the character "&" to the name of the function), ⎕DQ starts the callback function in
a new thread and is then immediately ready to process the next event; ⎕DQ does not
wait for an asynchronous callback function to complete.

If ⎕DQ reads an event with an associated action code of 1, it terminates and returns
the event message which was generated by the event, as a result. The normal pro-
cessing for the event is not actioned. During the time between ⎕DQ terminating and
you calling it again, events are discarded. Events are only stored up in the queue if
⎕DQ is active (i.e. there is a ⎕DQ in the state indicator). It is therefore usually better to
process events using callback functions.

Assignment and reference to the Event Property
There are a number of special considerations when using assignment and reference to
the Event property.

You can set the action for a single event by prefixing the Event name by "on". For
example, to set the action of a MouseUp event on a Form F to execute the callback
function FOO:

F.onMouseUp←'UP'
F.onMouseUp

#.UP

Notice that the value returned (#.UP) is not necessarily exactly the same as you set it
(UP).

If you reference the Event property, you will obtain all the current settings, reported
in order of their internal event number. Notice the use of distributed strand notation
to set more than one event in the same statement.

F.(onMouseUp onMouseDown)←'UP' ('DOWN' 42)
F.Event

onMouseDown #.DOWN 42 onMouseUp #.UP

If you set the Event property using assignment, all the event actions are redefined, i.e.
previous event settings are lost. For example:

F.(onMouseUp onMouseDown)←'UP' ('DOWN' 42)
F.Event

onMouseDown #.DOWN 42 onMouseUp #.UP

F.Event←'onMouseMove' 'MOVE'
F.Event

onMouseMove #.MOVE

20 Dyalog APL/W Interface Guide Version 14.0

The All event can also be set by assignment, and it too clears previous settings.
Notice too that a subsequent reference to a specific event using the "on" prefix, will
report the "All" setting, unless it is specifically reset.

F.(onMouseUp onMouseDown)←'UP' ('DOWN' 42)
F.Event

onMouseDown #.DOWN 42 onMouseUp #.UP

F.onAll←'FOO'
F.Event

onAll #.FOO

F.onMouseMove
#.FOO

F.Event←'onMouseMove' 'MOVE'
F.Event

onMouseMove #.MOVE

If no events are set, the result obtained by ⎕WG and the result obtained by referencing
Event directly are different:

'F'⎕WC'Form'
DISPLAY 'F'⎕WG'Event'

.→--.
|0 0|
'~--'

DISPLAY F.Event
.⊖------------.
| .→--------. |
	.⊖. .⊖.					
	'-' '-'					
'∊--------'						

'∊------------'

Callback Functions
By setting the action code to 1 for all the events you are interested in, you could
write the control loop in your application as:

Loop: Event ← ⎕DQ 'system'
test Event[1] (object name)
and Event[2] (event code)
→Label

Label: process event for object
→Loop

Chapter 1: Introduction 21

However, such code can be error prone and difficult to maintain. Another limitation
is that events that occur between successive calls on ⎕DQ are discarded.

An alternative is to use callback functions. Not only do they encourage an object-ori-
ented modular approach to programming, but they can also be used to validate the
user's actions and prevent something untoward happening. For example, a callback
function can prevent the user from terminating the application at an inappropriate
point. The use of callback functions will also produce applications that execute
faster than those that process events by exiting ⎕DQ and looping back again as
above.

You associate a callback function with a particular event or set of events in a given
object. There is nothing to prevent you from using the same callback function with
several objects, but it only makes sense to do so if the processing for the event(s) is
common to all of them. The object that caused the event is identified by the first ele-
ment of the right argument when the callback is invoked.

When an event occurs that has an action set to a character vector, the system looks
for a function with that name. If none exists ⎕DQ terminates with a VALUE ERROR.
If the function does exist, it is called. If the callback function was called FOO and it
stopped on line [1], the State Indicator would be:

)SI
FOO[1]*
⎕DQ
...

A callback function may be defined with any syntax, i.e. it may be dyadic, monadic,
or niladic. If it is monadic or dyadic, ⎕DQ calls it with the event message as its right
argument. If the function is dyadic, its left argument will contain the value of the
array that was associated with the event.

A callback function is otherwise no different from any other function that you can
define. Indeed there is nothing to prevent you from calling one explicitly in your
code. For example, a callback function that is invoked automatically could call a
second callback function directly, perhaps to simulate another event.

By default, a callback function is run synchronously. This means that ⎕DQ waits for
it to return a result before attempting to process any other events. Events that are gen-
erated by Windows while the callback function is running are simply queued.

Alternatively, you may specify that a callback function is to be run asynchronously.
In this case, ⎕DQ starts the function in a new thread, but instead of waiting for it to
complete, proceeds immediately to the next event in the queue. See Asynchronous
Callbacks for further information.

22 Dyalog APL/W Interface Guide Version 14.0

Modifying or Inhibiting the Default Processing
It is often desirable to inhibit the normal processing of an event, and it is occa-
sionally useful to substitute some other action for the default. One way of inhibiting
an event is to set its action code to ¯1. However this mechanism is non-selective and
is not always applicable. You can use it for example to ignore all keystrokes, but not
to ignore particular ones.

Synchronous callback functions provide an additional mechanism which allows you
to selectively inhibit default processing of an event. The mechanism also allows you
to modify the event in order to achieve a different effect.

For example, you can use a callback function to ignore a particular keystroke or set
of keystrokes, or even to replace the original keystroke with a different one. Sim-
ilarly, you can use a callback function to selectively ignore a LostFocus event if the
data in the field is invalid. Callback functions therefore give you much finer control
over event processing. The mechanism uses the result returned by the callback func-
tion and operates as follows.

When an event occurs that has a synchronous callback function attached, ⎕DQ
invokes the callback function (passing it the event message as its right argument)
before performing any other action and waits for the callback to complete. When the
callback function terminates (exits) ⎕DQ examines its result.

If the callback function returned no result, or returned a scalar 1 or the identical event
message with which it was invoked, ⎕DQ then carries out the default processing for
the event in question. If the callback function returned a 0, ⎕DQ takes no further
action and the event is effectively ignored. Finally, if the callback returns a different
event message (from the one supplied as its right argument), ⎕DQ performs the default
processing associated with the new event rather than with the original one.

For example, consider a callback function attached to a KeyPress event in an Edit
object. When the user presses a key, for the sake of example, the unshifted "a" key,
⎕DQ invokes the callback function, passing it the corresponding event message as its
right argument. This event message includes information about which key was
pressed, in this case "a". The various possibilities are:

l If the callback function returns a value of 1 or the same event message with
which it was invoked, ⎕DQ carries out the default processing for the ori-
ginal event. In this case a lower-case "a" is displayed in the field.

l If the callback function returns a value of 0, ⎕DQ takes no further action and
the keystroke is ignored.

l If the callback function modifies the event message and changes the key
from an "a" to a "b", ⎕DQ carries out the default processing associated with
the new event, and displays a lower-case "b" instead.

Chapter 1: Introduction 23

Note that asynchronous callback functions may not be used to modify or inhibit the
default processing because their results are ignored.

Generating Events using ⎕NQ
The ⎕NQ system function is used to generate events under program control and has
several uses.

Firstly, it can be used to do something automatically for the user. For example, the fol-
lowing expression gives the input focus to the object Form1.ED1.

⎕NQ Form1.ED1 'GotFocus'

Secondly, ⎕NQ can be used to generate user-defined events which trigger special
actions either by invoking callback functions or by causing ⎕DQ to terminate. For
example, if you were to define the Event property on 'Form1' as:

'Form1' ⎕WS ('Event' 1001 'FOO')('Event' 1002 1)

The expression:

⎕NQ Form1 1001 'Hello' 42

would cause ⎕DQ to invoke the function FOO, passing it the entire event message
(#.Form1 1001 'Hello' 42) as its right argument. Similarly, the expression:

⎕NQ 'Form1' 1002 23.59

would cause ⎕DQ to terminate with the array ('Form1' 1002 23.59) as its res-
ult.

⎕NQ can be used to generate events in one of three ways which affect the context in
which the event is processed.

If it is used monadically as in the examples above, or with a left argument of 0, ⎕NQ
adds the event specified in its right argument onto the bottom of the event queue.
The event is then processed by ⎕DQ when it reaches the head of the queue. You can
add events to the queue prior to calling ⎕DQ, or from within a callback function
which is itself called by ⎕DQ. In either case, the context in which the event is finally
processed may be completely different from the context in which the event was
placed on the queue. When used in this way, the result of ⎕NQ is always an empty
character vector.

24 Dyalog APL/W Interface Guide Version 14.0

If you use ⎕NQ with a left argument of 1, the event is processed there and then by
⎕NQ itself. If there is a callback function attached to the event, ⎕NQ invokes it dir-
ectly. Thus like ⎕DQ, ⎕NQ can appear in the State Indicator ⎕SI or)SI. This use of
⎕NQ is used to generate an event for an object that is not currently included in a ⎕DQ,
and is the usual way of generating the special (non-user) events on the Printer and
other objects. It is also used when you want to cause an event to occur immediately
without waiting for any events already in the queue to be processed first. When used
in this way, the result of ⎕NQ is either an empty character vector, or the result of the
callback function if one is attached.

If you use ⎕NQ with a left argument of 2, APL immediately performs the default pro-
cessing (if any) for the event, bypassing any callback function. This case of ⎕NQ is
often used within a callback function to put the object into the state that it would oth-
erwise be in when the callback terminated. When used in this way, the result of ⎕NQ
is 1. To avoid processing the event twice, the callback function should return 0.

The use of ⎕NQ with a left argument of 2, is the same as calling the event as a
method, and this is discussed in the next section.

A left argument of 4 is a special case that is used by an ActiveXControl or NetType
object to generate an event in its host application. See Chapter 13 for details.

Methods
Calling Methods
A method is similar to a function in that it may or may not take an argument, perform
some action, and return a result.

Examples are the Print, NewPage, Setup and Abort methods, all of which cause a
Printer object to take a particular action.

If the system variable ⎕WX is 1, you may invoke an object's method using exactly the
same syntax as you would use to call a function in that object.

For example, to execute the IDNToDate method of a Calendar object named F.CAL,
you can use the expression:

F.CAL.IDNToDate 36525
2000 1 1 5

When you call a method in this way, the method name is case-sensitive and if you
spell it incorrectly, you will get a VALUE ERROR.

F.CAL.idntodate 36525
VALUE ERROR

F.C.idntodate 36525
^

Chapter 1: Introduction 25

Invoking Methods with ⎕NQ
Methods may also be called using ⎕NQ with a left argument of 2, indeed if ⎕WX is 0,
this is the only way to call a method.

The result of the method is returned by ⎕NQ. Note however that the result is shy.

For example, for a TreeView object you can obtain status information about a par-
ticular item in the object using the GetItemState method:

⎕←2 ⎕NQ 'f.tv' 'GetItemState' 6
96

Or you can call the IDNToDate method of a Calendar object F.C as follows:

⎕←2 ⎕NQ 'F.CAL' 'IDNToDate' 36525
2000 1 1 5

When you call a method using 2 ⎕NQ , the method name is not case-sensitive.

⎕←2 ⎕NQ 'F.CAL' 'idntodate' 36525
2000 1 1 5

Events as Methods
Methods and events are closely related and most events can be invoked as methods.

For example, you can reposition and resize a Form in one step by calling its Con-
figure event as a method. The argument you supply is the same as the event message
associated with the event, but with the first two items (Object and Event code) omit-
ted.

F.Configure 10 10 30 20

Or, using 2 ⎕NQ

2 ⎕NQ 'F' 'Configure' 10 10 30 20

Notice that when you call an event as a method, you are executing the default pro-
cessing associated with the event. The setting for the Event property is ignored and,
in particular, any callback associated with the event is not executed.

26 Dyalog APL/W Interface Guide Version 14.0

GUI Objects as Namespaces
GUI objects are a special type of namespace and this has several useful implications.
Firstly, instead of creating the children of an object from outside in the workspace,
you can use)CS to change to an object and create them fromwithin. The only restric-
tion is that you can only create GUI objects that are valid as children of the current
object. A second benefit is that you can put the callback functions, together with any
global variables they require, into the objects to which they apply. Consider the fol-
lowing example.

First make a Form F1

'F1' ⎕WC 'Form' 'GUI Objects as Namespaces'
('Size' 25 50)

Then change to the Form’s namespace

)CS F1
#.F1

Now you can create a Group (or any other child object), but because you are already
inside the Form, the name you give to the Group will be taken as being relative to
the Form. In other words, you must specify the part of the name that applies to the
Group itself, leaving out the 'F1.' prefix that you would use if you executed the
statement outside in the workspace.

'CH' ⎕WC 'Group' 'Counter' (10 10)(70 60)

You can continue to create other objects

'OK' ⎕WC 'Button' '&Ok' (20 80)(⍬ 15)
'CAN' ⎕WC 'Button' '&Cancel' (60 80) (⍬ 15)
'FNT' ⎕WC 'Font' 'Arial' 16 ('Weight' 700)

If you ask for a list of objects, you will see only those within the current namespace

)OBJECTS
CAN CH FNT OK

When you are inside an object you can also set (or get) a property directly, so you
can set the FontObj property for the Form with the following statement.

FontObj←'FNT'

You can achieve the same with ⎕WS by omitting its left argument:

⎕WS 'FontObj' 'FNT'

You can create a child of the Group from outside it ...

'CH.UP' ⎕WC 'Button' '+1' (20 10)(30 20)

Chapter 1: Introduction 27

or you can change to it and create others from within...

)CS CH
#.F1.CH

'DOWN' ⎕WC 'Button' '-1' (60 10)(30 20)
'FNT' ⎕WC 'Font' 'Arial' 32
'CTR' ⎕WC 'Label' ('FieldType' 'Numeric')

('FontObj' 'FNT')

Once again, if you request a list of objects you will see only those in the current
namespace.

)OBJECTS
CTR DOWN FNT UP

You can create functions and variables in a GUI namespace in exactly the same way
as in any other. So, for example, you could create a variable called COUNT and a func-
tion CHANGE to update it:

COUNT ← 0

∇ INCR CHANGE MSG
[1] COUNT←COUNT+INCR
[2] CTR.Value←COUNT

∇

You can also make CHANGE a callback function for the two Buttons.

UP.onSelect←'CHANGE' 1
DOWN.onSelect←'CHANGE' ¯1

Notice that because you were in the F1.CH namespace when you made this asso-
ciation, the event will fire the function CHANGE in the F1.CH namespace and, fur-
thermore, it will execute it within that namespace. Hence the names referenced by
the function are the local names, i.e. the variable COUNT and the Label CTR, within
that namespace.

So if you now switch back to the outer workspace

)CS
#

and click on the buttons...

The result will appear approximately as shown below

28 Dyalog APL/W Interface Guide Version 14.0

Attaching GUI Objects to Namespaces
Monadic ⎕WC is used to attach a GUI component to an existing object. The existing
object must be a pure namespace or an appropriate GUI object (one that can legit-
imately be placed at that point in the object hierarchy). The operation may be per-
formed by changing space to the object or by running ⎕WC inside the object using
the dot syntax. For example, the following statements are equivalent.

)CS F
#.F

⎕WC 'Form' ⍝ Attach a Form to this namespace

)CS
#

F.⎕WC'Form' ⍝ Attach a Form to namespace F

Monadic ⎕WC is often used in conjunction with the KeepOnClose property. This
property specifies whether or not an object remains in existence when its parent Form
(or in the case of a Form, the Form itself) is closed by the user or receives a Close
event.

This facility is particularly useful if you wish to have functions and variables encap-
sulated within your Forms. You may want to save these structures in your workspace,
but you do not necessarily want the Forms to be visible when the workspace is
loaded.

Chapter 1: Introduction 29

An alternative way to achieve this is to prevent the user from closing the Form and
instead make it invisible. This is achieved by intercepting the Close event on the
Form and set its Visible property to 0. Then, when the Form is subsequently required,
its Visible property is set back to 1. However, if the Form needs adjustment because
the workspace was loaded on a PC with different screen resolution or for other reas-
ons, it may not be easy to achieve the desired result using ⎕WS. Monadic ⎕WC is gen-
erally a better solution.

Namespace References and GUI Objects
The use of a GUI name in an expression is a reference to the GUI object, or ref for
short. If you assign a ref or call a function with a ref as an argument, the reference to
the GUI object is copied, not the GUI object itself.

So for example, if you have a Form named F:

'F'⎕WC 'Form'

Assigning F to F1, does not create a second Form F1; it simply creates a second ref-
erence (F1) to the Form F. Subsequently, you can manipulate the Form F using
either F or F1.

F1←F
F1

#.F
F1.Caption←'Hello World'
F.Caption

Hello World

Similarly, if you call a function with F as the argument, the local argument name
becomes a second reference to the Form, and a new Form is not created:

Here is a simple function which approximately centres a Form in the middle of the
screen:

∇ R←SHOW_CENTRE FORM;OLD;SCREEN
[1] SCREEN←⊃'.'⎕WG'DevCaps'
[2] OLD←FORM.Coord
[3] FORM.Coord←'Pixel'
[4] R←FORM.Posn←⌊0.5×SCREEN-FORM.Size
[5] FORM.Coord←OLD

∇

30 Dyalog APL/W Interface Guide Version 14.0

The function can be called using either F or F1 (or any other Form) as an argument:

SHOW_CENTRE F
287 329

SHOW_CENTRE F1
287 329

A ref to a GUI object can conveniently be used as the argument to :With; for
example, the SHOW_CENTRE function can instead be written as follows:

∇ R←SHOW_CENTRE FORM;OLD;SCREEN
[1] SCREEN←⊃'.'⎕WG'DevCaps'
[2] :With FORM
[3] OLD←Coord
[4] Coord←'Pixel'
[5] R←Posn←⌊0.5×SCREEN-Size
[6] Coord←OLD
[7] :EndWith

∇

If instead, you actually want to duplicate (clone) a GUI object, you may do so by call-
ing ⎕WC with a ref as the right argument and the new name as the left argument.

For example:

 'F' ⎕WC 'Form' 'Cloning Example'
 'F.B' ⎕WC 'Group' 'Background' (10 10)(80 30)
 'F.B.R' ⎕WC 'Button' 'Red' (20 10)('Style' 'Radio')
 'F.B.B' ⎕WC 'Button' 'Blue' (50 10)('Style' 'Radio')

'F.B.G' ⎕WC 'Button' 'Green' (80 10)('Style' 'Radio')

Then, instead of creating a second Group for selecting Foreground colour line by line
as before, you can clone the "Background" Group as follows:

'F.F' ⎕WC F.B

The new Group F.F is an exact copy of F.B and will have the same Posn, Size and
Caption, as well as having identical children. To achieve the desired result, it is there-
fore only necessary to change its Posn and Caption properties; for example:

F.F.Caption F.F.Posn ← 'ForeGround' (10 60)

The result is illustrated below.

Chapter 1: Introduction 31

Note that when a namespace is cloned in this way, the objects (functions, variables
and other namespaces) within it are not necessarily duplicated. Instead, the objects in
cloned namespaces are in effect just pointers to the original objects. However, if you
subsequently change the clone, or the original object to which it refers, the two are
de-coupled and a second copy ensues. This mechanismmakes it possible to create
large numbers of instances of a single class namespace without consuming an excess-
ive amount of workspace.

Modal Dialog Boxes
Up to now, it has been assumed that your user has constant access to all of the inter-
face features and controls that you have provided. The user is in charge; your applic-
ation merely responds to his requests.

Although this is generally considered desirable, there are times when a particular
operation must be allowed to complete before anything else can be done. For
example, an unexpected error may occur and the user must decide upon the next
course of action (e.g. Continue, Restart, Quit). In these situations, a modal dialog box
is required. A modal dialog box is one to which the user must respond before the
application will continue. While the modal dialog box is in operation, interaction
with all other objects is inhibited.

A modal dialog box is simply achieved by calling ⎕DQ with just the name of the cor-
responding Form in its argument. This can be done fromwithin a callback function
or indeed from any point in an application. To make the local ⎕DQ terminate, you
may specify an action code of 1 for an event. Alternatively, if you wish to make
exclusive use of callback functions to process events, you can cause the ⎕DQ to ter-
minate by erasing the Form from a callback function.

32 Dyalog APL/W Interface Guide Version 14.0

For example, suppose that you want the user to close the dialog box by clicking an
"OK" button. You would specify the Event property for the Button as:

('Event' 'Select' 'EXIT')

... and the function EXIT is simply...

∇ EXIT Msg;BTN;Form
[1] ⍝ Terminate modal ⎕DQ by erasing Form
[2] OBJ←⍕⊃Msg
[3] Form←(¯1+OBJ⍳'.')↑OBJ ⍝ Get Form name
[4] ⎕EX Form

∇

Note that this function is fairly general, as it gets the name of the Form from the name
of the object that generated the event.

The MsgBox and FileBox Objects
The MsgBox and FileBox objects are standard MS-Windows dialog boxes and are
strictly modal. The following discussion refers to the way a MsgBox is used, but
applies equally to a FileBox.

The MsgBox is a pop-up modal dialog box with a title bar (defined by the Caption
property), an icon (defined by the Style property), some text (defined by the Text
property) and up to three buttons (defined by the Btns property).

The MsgBox does not appear on the screen when you create it with ⎕WC. Instead, it
pops up ONLY when you call ⎕DQ with the name of the MsgBox as its sole right
argument. Furthermore, the MsgBox automatically pops down when the user clicks
on any one of its buttons; you don't actually have to enable any events to achieve
this. For example:

'ERR' ⎕WC 'MsgBox' 'Input Error' '' 'Error'

creates an invisible MsgBox with the title (Caption) 'Input Error', no text, and
a Style of 'Error'. This gives it a "Stop sign" icon. When you want to issue an
error message to your user, you simply call a function (let's call it ERRMSG) which is
defined as follows:

∇ ERRMSG Msg
[1] ⍝ Displays 'ERR' message box
[2] ERR.Text←Msg ⍝ Put Msg in box
[3] ⎕DQ 'ERR'

∇

Chapter 1: Introduction 33

Note that ⎕DQ will terminate automatically when the user clicks one of the buttons
in the MsgBox object.

In this case we were not interested in the particular button that the user pressed. If
you are interested in this information, you can enable special events associated with
these buttons. For details, see the description of the MsgBox and FileBox objects in
the Object Reference.

Multi-Threading with Objects
The following rules apply when using threads and objects together.

1. All events generated by an object are reported to the thread that owns the
object and cannot be detected by any other threads. A thread owns an
object if it has created it or inherited it. If a thread terminates without des-
troying an object, the ownership of the object and its events passes to the
parent thread.

2. The Root object '.' and the Session object ⎕SE are owned by thread 0.
Events on these objects will be only be detected and processed by ⎕DQ run-
ning in thread 0, or by the implicit ⎕DQ that runs in the Session during
development.

3. Several threads may invoke ⎕DQ concurrently. However, each thread may
only use ⎕DQ on objects that it owns. If a thread attempts to invoke ⎕DQ on
an object owned by another thread, it will fail with DOMAIN ERROR.

4. Any thread may execute the expression ⎕DQ '.', however:
a. In thread 0, the expression ⎕DQ '.' will detect and process events on

the Root object and on any Forms and other top-level objects owned
by thread 0 or created by callbacks running in thread 0. The expression
will terminate if there are no active and visible top level objects and
there are no callbacks attached to events on Root.

b. In any other thread, the expression ⎕DQ '.' will detect and process
events on any Forms and other top-level objects owned by that thread
or created by callbacks running in that thread. The expression will ter-
minate if there are no active and visible top level objects owned by
that thread.

34 Dyalog APL/W Interface Guide Version 14.0

5. A thread may use ⎕NQ to post an event to an object owned by another
thread, or to invoke the default processing for an event, or to execute a
method in such an object. This means that the following uses of ⎕NQ are
allowed when the object in question is owned by another thread:

⎕NQ object event...
0 ⎕NQ object event...
2 ⎕NQ object event...
2 ⎕NQ object method...
3 ⎕NQ ole_object method...
4 ⎕NQ activexcontrol event...

The only use of ⎕NQ that is prohibited in these circumstances is

1 ⎕NQ object event...

which will generate a DOMAIN ERROR.

6. While a thread is waiting for user response to a strictly modal object such
as a MsgBox, FileBox, Menu or Locator object, any other threads that are
running remain suspended. APL is not able to switch execution to another
thread in these circumstances.

The Co-ordinate System
Each object has a Coord property that determines the units in which its Posn and Size
properties are expressed. Coord may be set to one of the following values :

'Inherit'
this means that the object assumes the same co-ordinate system
as its parent. This is the default for all objects except the Root
object.

'Prop'
the position and size of the object are expressed as a
percentage of the dimensions of its parent.

'Pixel' The position and size of the object are expressed in pixels.

'User'
the position and size of the object are expressed in units
defined by the YRange and XRange properties of the object's
parent.

'Cell'
the position and size of the object are expressed in cell
coordinates (applies only to Grid and its graphical children).

Chapter 1: Introduction 35

By default, the value of Coord for the Root object is 'Prop'. For all other objects,
the default is 'Inherit'. This means that the default co-ordinate system is a pro-
portional one.

You can change Coord from one value to another as you require. It only affects the
units in which Size and Posn are currently expressed. The physical position and size
are unaffected. Note that if you set Posn and/or Size in the same ⎕WC or ⎕WS state-
ment as you set Coord, it is the old value of Coord that is applied.

The co-ordinate system is also independent of the way in which objects are recon-
figured when their parent is resized. This is perhaps not immediately obvious, as it
might be expected that objects which are specified using Pixel co-ordinates will be
unaffected when their parent is resized. This is not necessarily the case as the manner
in which objects respond to their parent being resized is determined independently
by the AutoConf and Attach properties.

The User co-ordinate system is useful not only to automate scaling for graphics, but
also to perform scrolling. This is possible because XRange and YRange define not
just the scale along each axis, but also the position of the origin of the co-ordinate
system in the parent window.

36 Dyalog APL/W Interface Guide Version 14.0

Colour
Colours are specified using the FCol (foreground colour) and BCol (background col-
our) properties. Graphical objects have an additional FillCol (fill colour) property.

A single colour may be specified in one of two ways, either as a negative integer that
refers to one of a set of standard Windows colours, or as a 3-element numeric vector.
The latter specifies a colour directly in terms of its red, green and blue intensities
which are measured on the scale of 0 (none) to 255 (full intensity). Standard Win-
dows colours are:

Colour Element Colour Element

0 Default ¯11 Active Border

¯1 Scroll Bars ¯12 Inactive Border

¯2 Desktop ¯13 Application Workspace

¯3 Active Title Bar ¯14 Highlight

¯4 Inactive Title Bar ¯15 Highlighted Text

¯5 Menu Bar ¯16 Button Face

¯6 Window Background ¯17 Button Shadow

¯7 Window Frame ¯18 Disabled Text

¯8 Menu Text ¯19 Button Text

¯9 Window Text ¯20 Inactive Title Bar Text

¯10 Active Title Bar Text ¯21 Button Highlight

A colour specification of 0 (which is the default) selects the appropriate background
or foreground colour defined by your current colour scheme for the object in ques-
tion. For example, if you select yellow as yourMS-Windows Menu Bar colour, you
will get a yellow background in Menu and MenuItem objects as the default if BCol
is not specified.

To select a colour explicitly, you specify its RGB components as a 3-element vector.
For example:

(255 0 0) = red (0 255 0) = green
(255 255 0) = yellow (192 192 192) = grey
(0 0 0) = black (255 255 255) = white

Note that the colour actually realised depends upon the capabilities of the device in
question and the current contents of the Windows colour map.

A colour specification of ⍬ (zilde) selects a transparent colour.

Chapter 1: Introduction 37

Fonts
In keeping with the manner in which fonts are managed by Microsoft Windows and
other GUI environments, Dyalog APL treats fonts as objects which you create (load)
using ⎕WC and erase (unload) using ⎕EX or localisation.

A Font object is created and assigned a name using ⎕WC. This name is then ref-
erenced by other objects via their FontObj properties. For example to use an Arial
bold italic font of height 32 pixels in two Labels:

'A32' ⎕WC 'Font' 'ARIAL' 32 0 1 0 700

'F.L1' ⎕WC 'Label' 'Hello' (20 10) ('FontObj' 'A32')
'F.L2' ⎕WC 'Label' 'World' (20 10) ('FontObj' 'A32')

If a font is referenced by more than one Form, you should create the Font as a top-
level object, as in the above example. However, if the font is referenced by a single
Form, you may make the Font object a child of that Form. The font will then auto-
matically be unloaded when you erase the Form with which it is associated.

Compatibility Note:

In the first release of Dyalog APL/W (Version 6.2), fonts were referenced directly by
the FontObj property. The above example would have been achieved by:

'F.L1' ⎕WC 'Label' 'Hello' (10 10)
('FontObj' 'ARIAL' 32 0 1 0 700)

'F.L2' ⎕WC 'Label' 'World' (20 10)
('FontObj' 'ARIAL' 32 0 1 0 700)

Although this original mechanism continues to be supported, it is recommended that
you use the method based on Font objectswhich supersedes it.

38 Dyalog APL/W Interface Guide Version 14.0

Drag and Drop
Dyalog APL/W provides built-in support for drag/drop operations through the Drag-
able property. This applies to all objects for which drag/drop is appropriate.

The default value of Dragable is 0 which means that the object cannot be
drag/dropped. To enable drag/drop, you can set it to 1 or 2. A value of 1 means that
the user drags a box that represents the bounding rectangle of the object. In general, a
value of 2 means that the user drags the outline of the object itself, whether or not it
is rectangular. However, there are two exceptions. For a Text object, ('Dragable'
2)means that the user drags the text itself. For an Image object that contains an Icon,
('Dragable' 2)means that the user drags the icon itself, and not just its outline.

If Dragable is 1 or 2, the user may drag/drop the object using the mouse.

When the user drops an object, the default processing for the event is:

a. If the object is dropped over its parent, it is moved to the new location.
b. If the object is dropped over an object other than its parent, the dragged

object remains where it is.

If you enable the DragDrop event (11) on all eligible objects, you can control what
happens explicitly. If an object is dropped onto a new parent, you can move it by
first deleting it and then recreating it. Note that you must give it a new name to
reflect its new parentage. Note too that the DragDrop event reports co-ordinates rel-
ative to the object being dropped on, so it is easy to rebuild the object in the correct
position and with the correct size.

An alternative to using the built-in drag/drop operation is to do it yourself with the
Locator object. This is no less efficient and has the advantage that you can choose
which mouse button you use. It can also be used to move a group of objects.
However, the Locator only supports a rectangular or elliptical outline.

Chapter 1: Introduction 39

Debugging
Four features are built into the system to assist in developing and debugging GUI
applications.

Firstly, if you execute ⎕WC and/or ⎕WS statements from the Session or by tracing a
function, they have an immediate effect on the screen. Thus you can see immediately
the visual result of an expression, and go back and edit it if it isn't quite what you
want.

Secondly, if you use ⎕WC with an existing name, the original object is destroyed and
then re-created. This allows you to repeatedly edit and execute a single statement
until it gives the effect you desire.

Thirdly, if you TRACE a ⎕DQ statement, any callback functions that are invoked
will be traced as they occur. This is invaluable in debugging. However, callbacks
invoked by certain "raw" events, for example MouseMove, can be awkward to trace
as the act of moving the mouse pointer to the Trace window interferes with the oper-
ation in the object concerned.

Finally, ⎕NQ can be used to artificially generate events and sequences of events in a
controlled manner. This can be useful for developing repeatable test data for your
application.

40 Dyalog APL/W Interface Guide Version 14.0

Creating Objects using ⎕NEW
With the introduction of Classes in Version 11.0, you may manipulate Dyalog GUI
objects as Instances of built-in (GUI) Classes. This approach supplements (but does
not replace) the use of ⎕WC, ⎕WS and so forth.

To create a GUI object using ⎕NEW, the Class is given as the GUI Object name and
the Constructor Argument as a vector of (Property Name / Property Value) pairs. For
example, to create a Form:

F1←⎕NEW 'Form' (⊂'Caption' 'Hello World')

Notice however that only perfectly formed name/value pairs are accepted. The
highly flexible syntax for specifying Properties by position and omitting levels of
enclosure, that is supported by ⎕WC and ⎕WS, is not provided with ⎕NEW.

Naturally, you may reference and assign Properties in the same way as for objects cre-
ated using ⎕WC:

F1.Size
50 50

F1.Size←20 30

Callbacks to regular defined functions in the Root or in another space, work in the
same way too. If function FOOmerely displays its argument:

∇ FOO M
[1] ⎕←M

∇

F1.onMouseUp←'#.FOO'
#.[Form] MouseUp 78.57142639 44.62540...

Note that the first item in the event message is a ref to the Instance of the Form.

To create a control such as a Button, it is only necessary to run ⎕NEW inside a ref to
the appropriate parent object. For example:

B1←F1.⎕NEW 'Button' (('Caption' '&OK')('Size' (10 10)))

As illustrated in this example, it is not necessary to assign the resulting Button
Instance to a name inside the Form (F1 in this case). However, it is a good idea to do
so that refs to Instances of controls are expunged when the parent object is expunged.
In the example above, expunging F1 will not remove the Form from the screen
because B1 still exists as a ref to the Button. So, the following is safer:

F1.B1←F1.⎕NEW'Button'(('Caption' '&OK')('Size' (10 10)))

Or perhaps better still,

F1.(B1←⎕NEW 'Button'(('Caption' '&OK')('Size' (10 10))))

Chapter 1: Introduction 41

Native Look and Feel
Windows Native Look and Feel is an optional feature ofWindows fromWindows
XP onwards.

IfNative Look and Feel is enabled, user-interface controls such as Buttons take on a
different appearance and certain controls (such as the ListView) provide enhanced
features.

The following pictures illustrate the appearance of a simple Button created with and
without Native Look and Feel underWindows XP and Windows 7.

42 Dyalog APL/W Interface Guide Version 14.0

Dyalog Session
During development, both the Dyalog Session and the Dyalog APL GUI will dis-
play native style buttons, combo boxes, and other GUI components ifNative Look
and Feel is enabled. The option is provided in the General tab of the Configuration
dialog.

Applications
There are two ways to enable Native Look and Feel in end-user applications.

If you use the File/Export… menu item on the Session MenuBar to create a bound
executable, an OLE Server (in-process or out-of-process), an ActiveX Control or a
.NET Assembly, check the option box labelled Enable Native Look and Feel in the
create bound file dialog box. See User Guide.

If not, set the XPLookandFeel parameter to 1, when you run the program. For
example:

dyalogrt.exe XPLookAndFeel=1 myws.dws

Note that to have effect,Native Look and Feelmust also be enabled at the Win-
dows level.

43

Chapter 2:

GUI Tutorial

Introduction
This tutorial illustrates how to go about developing a GUI application in Dyalog
APL/W. It is necessarily an elementary example, but illustrates what is involved. The
example is a simple Temperature Converter. It lets you enter a temperature value in
either Fahrenheit or Centigrade and have it converted to the other scale.

Some Concepts
Objects
Objects are GUI components such as Forms, Buttons and Scrollbars. You create
objects using the system function ⎕WC. Its left argument is a name for the object; its
right argument specifies the object type and various properties. Objects are created in
a hierarchy.

Properties
Properties specify the appearance and behaviour of an object. For example, the Cap-
tion property specifies the text that appears on a Button or the title that appears in the
title bar on a Form.When you create an object with ⎕WC, its right argument specifies
its properties. You can also set properties using ⎕WS. This lets you dynamically alter
the appearance and behaviour of an object as required.

Events
Events are things that happen in objects as a result (usually) of some action by the
user. For example, when the user clicks a MenuItem, it generates a Select event. Sim-
ilarly, when the user focuses on an object, it generates a GotFocus event.

44 Dyalog APL/W Interface Guide Version 14.0

Callback Functions
Callback Functions are APL functions that you can associate with a particular event
in a particular object. Interaction with the user is controlled by the system function
⎕DQ. This function performs all of the routine tasks involved in driving the GUI inter-
face. However, its main role is to invoke your callback functions for you as and when
events occur.

That's enough theory for now ... let's see how it all works in practice.

Creating a Form
The first task is to create a Form which is to act as the main window for our applic-
ation. We will call the Form 'TEMP' and give it a title (Caption) of "Temperature
Converter".

We will position the Form 68% down and 50% along the screen. This will avoid it
interfering with the APL Session Window, and make development easier.

The Form will have a height equal to 30% of the height of the screen, and a width of
40% of the screen width.

TITLE←'Temperature Converter'
'TEMP' ⎕WC 'Form' TITLE (68 50)(30 40)

Chapter 2: GUI Tutorial 45

Adding a Fahrenheit Label
We are going to need two edit fields to input and display temperatures and two
labels to identify them.

Let's create the "Fahrenheit" label first. It doesn't really matter what we call it because
we won't need to refer to it later. Nevertheless, it has to have a name. Let's call it LF.
We will place it at (10,10) but we don't need to specify its Size; ⎕WC will make it just
big enough to fit its Caption.

'TEMP.LF' ⎕WC'Label' 'Fahrenheit'(10 10)

46 Dyalog APL/W Interface Guide Version 14.0

Adding a Fahrenheit Edit Field
Now let's add the edit field for Fahrenheit. We will call it F and place it alongside
the label, but 40% along. Initially the field will be empty. We will make it 20% wide
but let its height default. ⎕WC will make it just big enough to fit the current font
height. As the field is to handle numbers, we will set its FieldType to 'Numeric'.

'TEMP.F' ⎕WC 'Edit' '' (10 40)(⍬ 20)('FieldType' 'Numeric')

Chapter 2: GUI Tutorial 47

Adding a Centigrade Label & Edit Field
Now we need to add a corresponding Centigrade label and edit field. We'll call these
objects LC and C respectively, and place them 40% down the Form.

'TEMP.LC' ⎕WC'Label' 'Centigrade' (40 10)
'TEMP.C' ⎕WC 'Edit' '' (40 40)(⍬ 20)('FieldType' 'Numeric')

48 Dyalog APL/W Interface Guide Version 14.0

Adding Calculate Buttons
Our Temperature Converter must work both ways; from Fahrenheit to Centigrade and
vice versa. There are a number of different ways of making this happen.

A simple approach is to have two buttons for the user to press; one for Fahrenheit to
Centigrade, and one for Centigrade to Fahrenheit. We will call the first one F2C and
place it alongside the Fahrenheit edit field. The caption on this button will be 'F-
>C'. When the user presses the button, we want our application to calculate the cen-
tigrade temperature. For this we need a callback function. Let's call it f2c. Notice
how you associate a callback function with a particular event. In this case, the Select
event. This event is generated by a Button when it is pressed.

(The statement below is broken into two only so as to fit on the page)

FB←'Button' 'F->C' (10 70)('Event' 'Select' 'f2c')
'TEMP.F2C'⎕WC FB

Notice that it is not necessary to specify the Size of the button; the default size fits
the Caption nicely. Now let's add the Centigrade to Fahrenheit button. This will be
called C2F and have an associated callback function c2f. We could have chosen to
have a single callback function associated with both buttons, which would save a
few lines of code. Having separate functions is perhaps clearer.

Chapter 2: GUI Tutorial 49

Again, the statement is split into two only to make it fit onto the page.

FC←'Button' 'C->F' (40 70)('Event' 'Select' 'c2f')
'TEMP.C2F'⎕WC FC

Closing the Application Window
Then we need something to allow our user to terminate our application. He will
expect the application to terminate when he closes the window.We will implement
this by having a callback function called QUIT which will simply call ⎕OFF, i.e.

∇ QUIT
[1] ⎕OFF

∇

We can associate this with the Close event on the Form TEMP. This event will be gen-
erated when the user closes the window from its SystemMenu

TEMP.onClose←'QUIT'

Although here we have used assignment to set the Event property, we could just as
easily have defined it when we created the Form by adding ('Event' 'Close'
'QUIT') to the right argument of ⎕WC.

50 Dyalog APL/W Interface Guide Version 14.0

Adding a Quit Button
Finally, we will add a "Quit" button, attaching the same QUIT function as a callback,
but this time to the Select event which occurs when the user presses it.

Instead of having a default sized button, we will make it nice and big, and position it
centrally.

To make the statement fit on the page, it is split into three. The Posn and Size prop-
erties are explicitly named for clarity.

QB←'Button' '&Quit' ('Posn' 70 30)
QB,←('Size' ⍬ 40)('Event' 'Select' 'QUIT')
'TEMP.Q' ⎕WC QB

Notice how the ampersand (&) in the Caption is used to specify the mnemonic (short-
cut) key. This can be used to press the button instead of clicking the mouse.

Chapter 2: GUI Tutorial 51

The Calculation Functions
So far we have built the user-interface, and we have written one callback function
QUIT to terminate the application. We now need to write the two functions f2c and
c2f which will actually perform the conversions. First let's tackle f2c.

A callback such as this one performs just one simple action. This does not depend
upon the type of event that called it (there is only one), so the function has no need
of arguments. Neither does it need to do anything fancy, such as preventing the event
from proceeding. It need not therefore return a result. The header line, which includes
the local variables we will need, is then...

[0] f2c;F;C

The first thing the function must do is to obtain the contents of the Fahrenheit edit
field which is called TEMP.F. As we have defined the FieldType as 'Numeric',
this is easily done by querying its Value property...

[1] F ← TEMP.F.Value

Next, we need to calculate Centigrade from Fahrenheit...

[2] C ← (F-32) × 5÷9

... and finally, display the value in the Centigrade edit field. As we have also defined
this as a numeric field, we can just set its Value property using assignment.

[3] TEMP.C.Value←C

So our completed f2c callback function is...

∇ f2c;F;C
[1] F ← TEMP.F.Value
[2] C ← (F-32) × 5÷9
[3] TEMP.C.Value←C

∇

which can be simplified to:

∇ f2c
[1] TEMP.C.Value←(TEMP.F.Value-32)×5÷9

∇

The Centigrade to Fahrenheit callback function c2f looks very similar:

∇ c2F
[1] TEMP.F.Value←32+TEMP.C.Value×9÷5

∇

52 Dyalog APL/W Interface Guide Version 14.0

Testing the Application
Before we test our application, it would be a good idea to)SAVE the workspace. If
you remember, the QUIT callback calls ⎕OFF, so if we don't want to lose our work...

)SAVE TEMP
TEMP saved ...

Note that the GUI objects we have created are all saved with the workspace. You
don't have to re-build them every time you)LOAD it again.

If this was a Run-Time application, we would have to use ⎕DQ to run it. However, as
it is not, we can just go ahead and use it from the Session. Click on the Fahrenheit
edit field and enter a number (say 212). Now click on the "F->C" button. The Tem-
perature Converter window should look like the picture below.

If you have mis-typed any of the functions in this example, you may get an error. If
this happens, don't worry; simply correct the error as you would with any other APL
application, and type →⎕LC.

If you got a VALUE ERROR error, you have probably mis-spelt the name of the
callback function. If so, you can fix it using ⎕WS to reset the appropriate Event prop-
erty.

Don't click the "Quit" button or close the window (yet). If you do so your APL ses-
sion will terminate.

Chapter 2: GUI Tutorial 53

If you want to follow what is happening you can use the Tracer. This requires a state-
ment to trace, so we will use ⎕DQ just as you would in a real application. To do this,
type ⎕DQ '.' in the Session window, then, instead of pressing Enter (to execute it),
press Ctrl+Enter (to Trace it). Having done this, enter your data into one of the edit
fields and click the "F->C" or "C->F" buttons as before. When you do so, your call-
back function will pop-up in a Trace Window. Step it through (if in doubt, see the
section on the Tracer) and watch how it works. When the callback has finished, its
Trace window disappears. Don’t forget, you are running a ⎕DQ. To terminate it, press
Ctrl+Break or select Interrupt from the Action menu.

Making the Enter Key Work
Ok, so the basic application works. Let's look at what we can do to improve it.

The first thing we can do is to let the user press the Enter key to make the system re-
calculate, rather than having to click on a button. There are a number of alternatives,
but we will do it using the Default property of Buttons.

In any Form, you can allocate a single Button to be the Default Button. In simple
terms, pressing Enter anywhere in the Form has the same effect as clicking the
Default Button. Let's do this for the "F->C" Button :

TEMP.F2C.Default←1

Now type a number into the Fahrenheit field and then press the Enter key. As you
will see, this fires the Default Button labelled "F->C". The only problem with this is
that the user cannot run the calculation the other way round using the Enter key. We
need some mechanism to switch which Button is the Default one depending upon
which field the user typed in.

This is easily achieved by making use of the GotFocus event. This is generated when
the user puts the cursor into the edit field prior to typing. So all we need do is attach
a callback to set the Default Button whenever a GotFocus event occurs in either edit
field. We could use two separate callbacks or we could make use of the fact that you
can make APL supply data of your choice to a callback when it is fired. This is sup-
plied as its left argument.

The first of the next two statements attaches the callback function 'SET_DEF' to
the GotFocus event in the Fahrenheit edit field. It also specifies that when APL runs
the callback, it should supply the character vector 'TEMP.F2C' to SET_DEF as its
left argument. 'TEMP.F2C' is of course the name of the Button which we want to
make the Default one. The second statement is identical, except that it instructs APL
to supply the name of the Centigrade to Fahrenheit Button 'TEMP.C2F'

TEMP.F.onGotFocus ← 'SET_DEF' 'TEMP.F2C'
TEMP.C.onGotFocus ← 'SET_DEF' 'TEMP.C2F'

54 Dyalog APL/W Interface Guide Version 14.0

Where the callback 'SET_DEF' is defined as...

∇ BTN SET_DEF MSG
[1] BTN ⎕WS'Default' 1

∇

Now let's test the application again. Try typing numbers in both fields and pressing
enter each time.

Introducing a ScrollBar
Another way to improve the application would be to allow the user to input using a
slider or scrollbar. Let's create one called 'TEMP.S' ...

SCR←'Scroll' ('Range' 101)('Event' 'Scroll' 'C2F')
'TEMP.S' ⎕WC SCR

The range of a scrollbar goes from 1 to the value of the Range property. Setting
Range to 101 will give us a range of 1-101. You will see in a moment why we need
to do this. The Scroll event will be generated whenever the user moves the scrollbar.
We have associated it with the callback function 'C2F' which we will define as fol-
lows:

∇ C2F MSG
[1] ⍝ Callback for Centigrade input via scrollbar
[2] TEMP.C.Value←101-4⊃MSG
[3] TEMP.F.Value←32+TEMP.C.Value÷5÷9

∇

Chapter 2: GUI Tutorial 55

The Event message MSG contains information about the Scroll event. Its 4th element
contains the requested thumb position. As we want to go from 0 at the top, to 100 at
the bottom, we need to subtract this value from 101. This is done in line 2 of the func-
tion. C2F[3] calculates the corresponding Fahrenheit value.

Try moving the scrollbar and see what happens...

Adding a Menu
It would also be helpful if you could use the scrollbar to calculate in the reverse dir-
ection, from Fahrenheit to Centigrade. Let's add this facility, and give you the ability
to choose to which scale the scrollbar applies through a menu.

To create a menu structure in a bar along the top of a Form (as opposed to a floating
or pop-up menu) we first need to create a MenuBar object. This type of object has
very few properties, and we need only specify its name, 'TEMP.MB'.

'TEMP.MB' ⎕WC 'MenuBar'

Notice that, at this stage, there is no change in the appearance of the Form.

Then we can add a menu with the Caption 'Scale'. The name of the menu is
'TEMP.MB.M'. Adding the first menu causes the MenuBar to become visible.

'TEMP.MB.M' ⎕WC 'Menu' '&Scale'

56 Dyalog APL/W Interface Guide Version 14.0

Note that the ampersand (&) allows the user to select the menu quickly by pressing
"Alt+S".

Now we can add the two options to the menu. Note that the MenuBar and Menu
objects do not represent final choices, they merely specify a path to a choice which is
represented by the MenuItem object. When either of these is chosen, we want to
execute a callback function that will make the necessary changes to the scrollbar.
The statements to create each of these MenuItems are broken into 3 only to fit them
onto the page.

First we create the Centigrade MenuItem...

C←'MenuItem' '&Centigrade'
C,←('Checked' 1)('Event' 'Select' 'SET_C')
'TEMP.MB.M.C' ⎕WC C

Setting the Checked property to 1 will cause a tick mark to appear against this
option, indicating that it is the current one in force.

Then the Fahrenheit MenuItem...

F←'MenuItem' '&Fahrenheit'
F,←('Checked' 0)('Event' 'Select' 'SET_F')
'TEMP.MB.M.F' ⎕WC F

Notice that as the default value of Checked is 0, we didn't really have to set it expli-
citly for Fahrenheit. Nevertheless, it will do no harm to do so, and improves clarity.

The SET_C callback function is defined as follows:

Chapter 2: GUI Tutorial 57

∇ SET_C
[1] ⍝ Sets the scrollbar to work in Centigrade
[2] TEMP.S.Range←101
[3] TEMP.S.onScroll←'C2F'
[4] TEMP.MB.M.C.Checked←1
[5] TEMP.MB.M.F.Checked←0

∇

Line [2] simply sets the Range property of the scrollbar to be 101, and line [3] makes
C2F the callback function when the scrollbar is moved. Lines [4] and [5] ensure that
the tick mark is set on the chosen option.

The SET_F function is very similar...

∇ SET_F
[1] ⍝ Sets the scrollbar to work in Fahrenheit
[2] TEMP.S.Range←213
[3] TEMP.S.onScroll←'F2C'
[4] TEMP.MB.M.F.Checked ← 1
[5] TEMP.MB.M.C.Checked ← 0

∇

and of course we need F2C to make the scrollbar work in Fahrenheit.

∇ F2C Msg;C;F
[1] ⍝ Callback for Fahrenheit input via scrollbar
[2] TEMP.F.Value←213-4⊃Msg
[3] TEMP.C.Value←(TEMP.F.Value-32)×5÷9

∇

58 Dyalog APL/W Interface Guide Version 14.0

Running from Desktop
Now that we have a final working application, it would be nice to add it as a short-
cut, so that the user can run it from the Start Menu or from the Desktop, like any other
application.

First we need to define ⎕LX so that the application starts automatically.

⎕LX ← '⎕DQ''.'''

or, to avoid so many confusing quotes...

⎕LX ← ⍞
⎕DQ '.'

Next, it would be a good idea to clear the edit fields and ensure that the scrollbar is
in its default position:

'TEMP.F' ⎕WS 'Text' ''
'TEMP.C' ⎕WS 'Text' ''
'TEMP.S' ⎕WS 'Thumb' 1

Then we must)SAVE the workspace...

)SAVE TEMP
TEMP saved ...

... and exit APL

)OFF

The next step is to add the application to the Desktop. This is done in the normal
way, i.e.

Right-click on the Desktop and choose "New" followed by "Shortcut".

Type in the appropriate command line, such as:

"C:\Program Files\Dyalog\Dyalog APL 13.1 Unicode\dyalog.exe" temp
.dws

Chapter 2: GUI Tutorial 59

Select "Next" and give the application a name, then select "Finish".

The resulting icon is shown below. Note that although by default you will get a
standard Dyalog APL icon, you could of course select another one from elsewhere on
your system.

Clicking on this icon will start your application. Notice that the APL Session Win-
dow will NOT appear at any stage unless there is an error in your code. All the user
will see is your "Temperature Converter" dialog box.

60 Dyalog APL/W Interface Guide Version 14.0

Using ⎕NEW instead of ⎕WC
FromVersion 11 onwards, it is possible to use ⎕NEW to create Instances of the built-
in GUI Classes. The following function illustrates this approach using the Tem-
perature Converter example described previously.

∇ TempConv;TITLE;TEMP
[1] TITLE←'Temperature Converter'
[2] TEMP←⎕NEW'Form'(('Caption'TITLE)('Posn'(10 10))

('Size'(30 40)))
[3]
[4] TEMP.(MB←⎕NEW⊂'MenuBar')
[5] TEMP.MB.(M←⎕NEW'Menu'(,⊂'Caption' '&Scale'))
[6] TEMP.MB.M.(C←⎕NEW'MenuItem'

(('Caption' '&Centigrade')('Checked' 1)))
[7] TEMP.MB.M.(F←⎕NEW'MenuItem'

(,⊂('Caption' '&Fahrenheit')))
[8]
[9] TEMP.(LF←⎕NEW'Label'(('Caption' 'Fahrenheit')

('Posn'(10 10))))
[10] TEMP.(F←⎕NEW'Edit'(('Posn'(10 40))('Size'(⍬ 20))

('FieldType' 'Numeric')))
[11]
[12] TEMP.(LC←⎕NEW'Label'(('Caption' 'Centigrade')

('Posn'(40 10))))
[13] TEMP.(C←⎕NEW'Edit'(('Posn'(40 40))('Size'(⍬ 20))

('FieldType' 'Numeric')))
[14]
[15] TEMP.(F2C←⎕NEW'Button'(('Caption' 'F->C')

('Posn'(10 70))('Default' 1)))
[16] TEMP.(C2F←⎕NEW'Button'(('Caption' 'C->F')

('Posn'(40 70))))
[17] TEMP.(Q←⎕NEW'Button'(('Caption' '&Quit')

('Posn'(70 30))('Size'(⍬ 40))
('Cancel' 1)))

[18]
[19] TEMP.(S←⎕NEW'Scroll'(⊂('Range' 101)))
[20]
[21] TEMP.MB.M.C.onSelect←'SET_C'
[22] TEMP.MB.M.F.onSelect←'SET_F'
[23] TEMP.F2C.onSelect←'f2c'
[24] TEMP.F.onGotFocus←'SET_DEF'
[25] TEMP.C2F.onSelect←'c2f'
[26] TEMP.C.onGotFocus←'SET_DEF'
[27] TEMP.onClose←'QUIT'
[28] TEMP.Q.onSelect←'QUIT'
[29] TEMP.S.onScroll←'c2f_scroll'
[30]
[31] ⎕DQ'TEMP'

∇

Chapter 2: GUI Tutorial 61

For brevity, only a couple of the callback functions are shown here.

∇ f2c
[1] TEMP.C.Value←(TEMP.F.Value-32)×5÷9

∇

∇ c2f_scroll MSG
[1] ⍝ Callback for Centigrade input via scrollbar
[2] TEMP.C.Value←101-4⊃MSG
[3] c2f

∇

62 Dyalog APL/W Interface Guide Version 14.0

Temperature Converter Class
You may create user-defined Classes based upon Dyalog GUI objects as illustrated
by the Temperature Converter Class which is listed overleaf.

To base a Class on a Dyalog GUI object, you specify the name of the object as its
Base Class. For example, the Temperature Converter is based upon a Form:

:Class Temp: 'Form'

Being based upon a top-level GUI object, the Temperature Converter may be used as
follows:

T1←⎕NEW Temp(⊂'Posn'(68 50))

Chapter 2: GUI Tutorial 63

Temperature Converter Example
:Class Temp: 'Form'

∇ Make pv;TITLE
:Access Public
TITLE←'Temperature Converter'
:Implements Constructor :Base (⊂'Caption' TITLE),pv,

⊂('Size' (30 40))
MB←⎕NEW⊂'MenuBar'
MB.(M←⎕NEW'Menu'(,⊂'Caption' '&Scale'))
MB.M.(C←⎕NEW'MenuItem'(('Caption' '&Centigrade')

('Checked' 1)))
MB.M.(F←⎕NEW'MenuItem'(,⊂('Caption' '&Fahrenheit')))
LF←⎕NEW'Label'(('Caption' 'Fahrenheit')

('Posn'(10 10)))
F←⎕NEW'Edit'(('Posn'(10 40))('Size'(⍬ 20))

('FieldType' 'Numeric'))
LC←⎕NEW'Label'(('Caption' 'Centigrade')

('Posn'(40 10)))
C←⎕NEW'Edit'(('Posn'(40 40))('Size'(⍬ 20))

('FieldType' 'Numeric'))
F2C←⎕NEW'Button'(('Caption' 'F->C')('Posn'(10 70))

('Default' 1))
C2F←⎕NEW'Button'(('Caption' 'C->F')('Posn'(40 70)))
Q←⎕NEW'Button'(('Caption' '&Quit')('Posn'(70 30))

('Size'(⍬ 40))('Cancel' 1))
S←⎕NEW'Scroll'(⊂('Range' 101))
MB.M.C.onSelect←'SET_C'
MB.M.F.onSelect←'SET_F'
F2C.onSelect←'f2c'
F.onGotFocus←'SET_DEF'
C2F.onSelect←'c2f'
C.onGotFocus←'SET_DEF'
onClose←'QUIT'
Q.onSelect←'QUIT'
S.onScroll←'c2f_scroll'

∇

∇ f2c
C.Value←(F.Value-32)×5÷9

∇
∇ c2f
F.Value←32+C.Value×9÷5

∇
∇ c2f_scroll MSG
⍝ Callback for Centigrade input via scrollbar
C.Value←101-4⊃MSG
c2f

∇

∇ f2c_scroll Msg
⍝ Callback for Fahrenheit input via scrollbar
F.Value←213-4⊃Msg
f2c

∇

64 Dyalog APL/W Interface Guide Version 14.0

∇ Quit
Close

∇
∇ SET_DEF MSG
(⊃MSG).Default←1

∇
∇ SET_C
⍝ Sets the scrollbar to work in Centigrade
S.Range←101
S.onScroll←'c2f_scroll'
MB.M.C.Checked←1
MB.M.F.Checked←0

∇
∇ SET_F
⍝ Sets the scrollbar to work in Fahrenheit
S.Range←213
S.onScroll←'f2c_scroll'
MB.M.F.Checked←1
MB.M.C.Checked←0

∇
:EndClass ⍝ Temp

Notice that the :Implements Constructor statement of its Constructor Make:

:Implements Constructor :Base (⊂'Caption' TITLE),pv,
⊂('Size' (30 40))

passes on the application-specific property list (pv) given as its argument, but (in this
case) specifies Caption and Size as well. The order in which the properties are spe-
cified in the :Base call ensures that the former will act as a default (and be over-
ridden by an application-specific Caption requested in pv), whereas the specified
Size of(30 40) will override whatever value of Size is requested by the host applic-
ation in pv.

Other Instances can co-exist with the first:

T2←⎕NEW Temp(('Caption' 'My Application')
('Posn'(10 10))

Chapter 2: GUI Tutorial 65

Dual Class Example
The Dual Class example is based upon the example used to illustrate how you may
build an ActiveX Control in Dyalog APL (see Chapter 13), but re-engineered as a
internal Dyalog APL Class. The full listing of the Dual Class script is provided over-
leaf.

This version of Dual is based upon a SubForm:

:Class Dual: 'SubForm'

The Dual Control requires a GUI parent but several Instances can co-exist, quite inde-
pendently, in the same parent.

For example, function RUN creates a Form and 3 Instances of Dual; one to convert
Centigrade to Fahrenheit, one to convert Fahrenheit to Centigrade, and the third to
convert centimetres to inches.

∇ RUN;F;D1PROPS;D2PROPS;D3PROPS
[1]
[2] F←⎕NEW'Form'(('Caption' 'Dual Instances')

('Coord' 'Pixel')('Size'(320 320)))
[3]
[4] D1PROPS←('Caption1' 'Centigrade')

('Caption2' 'Fahrenheit')
[5] D1PROPS,←('Intercept' 32)('Gradient'(9÷5))

('Value1' 0)('Range'(0 100))
[6] F.D1←F.⎕NEW Dual(('Coord' 'Pixel')('Posn'(10 10))

('Size'(100 300)),D1PROPS)
[7]
[8] D2PROPS←('Caption1' 'Fahrenheit')

('Caption2' 'Centigrade')
[9] D2PROPS,←('Intercept'(-32×5÷9))('Gradient'(5÷9))

('Value1' 0)('Range'(0 212))
[10] F.D2←F.⎕NEW Dual(('Coord' 'Pixel')('Posn'(110 10))

('Size'(100 300)),D2PROPS)
[11]
[12] D3PROPS←('Caption1' 'Centimetres')

('Caption2' 'Inches')
[13] D3PROPS,←('Intercept' 0)('Gradient'(÷2.54))

('Value1' 0)('Range'(0 100))
[14] F.D3←F.⎕NEW Dual(('Coord' 'Pixel')('Posn'(210 10))

('Size'(100 300)),D3PROPS)
[15]
[16] ⎕DQ'F'

∇

66 Dyalog APL/W Interface Guide Version 14.0

Dual's Constructor Make first splits its constructor arguments into those that apply to
the Dual Class itself, and those that apply to the SubForm. Its :Implements
Constructor statement then passes these on to the Base Constructor, together
with an appropriate setting for EdgeStyle.

:Implements Constructor :Base BaseArgs,
⊂'EdgeStyle' 'Dialog'

Dual Class Example
:Class Dual: 'SubForm'

:Include GUITools
:Field Private _Caption1←''
:Field Private _Caption2←''
:Field Private _Value1←0
:Field Private _Value2←0
:Field Private _Range←0
:Field Private _Intercept←0
:Field Private _Gradient←1
:Field Private _Height←40

Chapter 2: GUI Tutorial 67

∇ Create args;H;W;POS;SH;CH;Y1;Y2;BaseArgs;MyArgs;
Defaults

:Access Public
MyArgs BaseArgs←SplitNV args
:Implements Constructor :Base BaseArgs,

⊂'EdgeStyle' 'Dialog'
ExecNV_ MyArgs ⍝ Set Flds named _PropertyName

MyArgs
Coord←'Pixel'
H W←Size
POS←2↑⌊0.5×0⌈(H-_Height)
CH←⊃GetTextSize'W'
'Slider'⎕WC'TrackBar'POS('Size'_Height W)
Slider.(Limits AutoConf)←_Range 0
Slider.(TickSpacing TickAlign)←10 'Top'
Slider.onThumbDrag←'ChangeValue'
Slider.onScroll←'ChangeValue'
Y1←POS[1]-CH+1
Y2←POS[1]+_Height+1
'Caption1_'⎕WC'Text'_Caption1(Y1,0)('AutoConf' 0)
'Caption2_'⎕WC'Text'_Caption2(Y2,0)('AutoConf' 0)
'Value1_'⎕WC'Text'(⍕_Value1)(Y1,W)('HAlign' 2)

('AutoConf' 0)
CalcValue2
'Value2_'⎕WC'Text'(⍕_Value2)(Y2,W)('HAlign' 2)

('AutoConf' 0)
onConfigure←'Configure'

∇

:Property Caption1, Caption2
:Access Public

∇ R←Get arg
R←(arg.Name,'_')⎕WG'Text'

∇
∇ Set arg

(arg.Name,'_')⎕WS'Text'arg.NewValue
∇

:EndProperty

:Property Value1
:Access Public

∇ R←Get
R←_Value1

∇
∇ Set arg

⎕NQ'Slider' 'Scroll' 0 arg.NewValue
∇

:EndProperty

68 Dyalog APL/W Interface Guide Version 14.0

:Property Intercept, Gradient, Range, Height, Value2
:Access Public

∇ R←Get arg
R←⍎'_',arg.Name

∇
:EndProperty

∇ CalcValue2
_Value2←_Intercept+_Gradient×_Value1

∇

∇ ChangeValue MSG
⍝ Callback for ThumbDrag and Scroll
_Value1←⊃¯1↑MSG
CalcValue2
Value1_.Text←⍕_Value1
Value2_.Text←⍕_Value2

∇

∇ Configure MSG;H;W;POS;CH;Y1;Y2
2 ⎕NQ MSG
H W←Size
POS←2↑⌊0.5×(H-_Height)
CH←⊃GetTextSize'W'
Slider.(Posn Size)←POS(_Height W)
Y1←POS[1]-CH+1
Y2←POS[1]+_Height+1
Caption1_.Points←1 2⍴Y1,0
Caption2_.Points←1 2⍴Y2,0
Value1_.Points←1 2⍴Y1,W
Value1_.Points←1 2⍴Y2,W

∇

:EndClass ⍝ Dual

69

Chapter 3:

Graphics

Introduction
Graphical output is performed using the following objects:

Graphical Output

Circle draws circles, arcs and pie charts

Ellipse draws ellipses

Marker draws a series of polymarkers

Poly draws lines

Rect draws rectangles

Image displays or prints Bitmaps, Icons and Metafiles

Text displays or prints graphical text

These graphical objects can be drawn in (i.e. be the children of) a wide range of other
objects including a Form, Static, Printer and Bitmap.

Additional graphical resources are provided by the following objects. These are
unusual in that they are not visible except when referenced as the property of another
object:

Resource

Font loads a font

Bitmap defines a bitmap

Icon defines an icon

Metafile loads a Windows Metafile

70 Dyalog APL/W Interface Guide Version 14.0

Graphical objects are created, like any other object, using ⎕WC and have properties
that can be changed using ⎕WS and queried using ⎕WG. Graphical objects also gen-
erate certain events.

Drawing Lines
To draw a line you use the Poly object. The following example draws a line in a
Form from the point (y=10, x=5) to the point (y=90, x=60) :

'F' ⎕WC 'Form' 'Drawing Lines' ('Size' 25 50)
'F.Line' ⎕WC 'Poly' ((10 90)(5 60))

In the above example, the points are specified as a 2-element nested vector con-
taining y-coordinates and x-coordinates respectively. You can also use a 2-column
matrix, e.g.

'F.Line'⎕WC'Poly'(4 2⍴90 5 5 50 90 95 90 5)

Notice that because the second example replaced the object F.Line, the original
line drawn in the first example has been erased.

Chapter 3: Graphics 71

In common with the position and size of other GUI objects, y-coordinates precede x-
coordinates. Graphical software typically uses (x,y) rather than (y,x) but the latter is
consistent with the order in which coordinates are specified and reported for all other
objects and events. The Dyalog APL GUI support allows you to freely mix graphical
objects with other GUI components (for example, you can use the graphical Text
object in place of a Label) and this (y,x) consistency serves to avoid confusion.

When a graphical object in a screen object is erased its parent is restored to the
appearance that it had before that graphical object was created. Thus:

'F.Line' ⎕WC 'Poly' (2 2⍴10 5 50 10)
⎕EX 'F.Line'

first draws a line and then removes it. The following expression clears all graphical
objects (and any other non-graphical ones too) from a parent object 'F':

⎕EX ⎕WN'F'

Similarly, objects automatically disappear when a function in which they are loc-
alised exits.

Erasing graphical objects that have been drawn on a Printer has no effect. Once
drawn they cannot be undrawn.

Drawing in a Bitmap
A bitmap is an invisible resource (in effect, an area of memory) that is only displayed
on the screen when it is referenced by another object. Any of the seven graphical
objects (Circle, Ellipse, Image, Marker, Poly, Text and Rect) can be drawn in a bit-
map (represented by a Bitmap object), using exactly the same ⎕WC syntax as if you
were drawing in a Form, Static or Printer. However, drawing in a Bitmap is, like draw-
ing on a Printer, an operation that cannot be "undone".

This facility allows you to construct a picture using lines, circles, text etc. and then
later display it or save it as a bitmap.

72 Dyalog APL/W Interface Guide Version 14.0

Multiple Graphical Items
All graphical output objects (Circle, Ellipse, Image, Marker, Poly, Text and Rect) per-
mit nested arguments so that you can draw several items with a single object. This
feature has several advantages. Firstly, it allows you to treat related graphical items
as a single object with a single name. This reduces the potential number of objects in
existence and reduces the number of program statements needed to draw them. For
example, sets of tick marks or grid lines do not have to be drawn separately, but can
be represented by one object. Furthermore, because a set of lines can be embodied in
a single object, you can erase them, replace them or drag/drop them as a unit. A fur-
ther consideration is performance. A set of graphical items represented by a single
object will normally be drawn faster than if each item was represented by separate
objects.

For example, the following statements draw two separate rectangles; a red one at
(y=10, x=20) and a blue one at (y=50, x=60). Both rectangles are size (30,30).

RED BLUE ← (255 0 0)(0 0 255)

'F.R1' ⎕WC 'Rect' (10 20)(30 30) ('FCol' RED)
'F.R2' ⎕WC 'Rect' (50 60)(30 30) ('FCol' BLUE)

The next statement achieves the same result, but uses only one object:

'F.R' ⎕WC 'Rect' ((10 50)(20 60)) (30 30)
('FCol' RED BLUE)

The rectangles drawn by both these sets of statements are shown below (blue and red
have been replaced by black for clarity).

The capability to specify more than one graphical item as a single object is par-
ticularly useful with the Text object as it allows you to display or print several text
items (at different positions and in different colours if you wish) in a single state-
ment. For example, the following expressions display a set of "labels" in a Form
'F1':

Chapter 3: Graphics 73

LAB←'Name' 'Age' 'Address'
POS←3 2⍴10 10 10 60 30 10
'F1.LABS' ⎕WC 'Text' LAB POS

Unnamed Graphical Objects
When using the seven graphical output objects, you can optionally omit the final
part of the name. For example, the following expression is valid:

'F.' ⎕WC 'Poly' (2 2⍴10 5 50 10)

When you create a named object, all of the properties pertaining to that object are
stored internally in your workspace. A polyline consisting of a large number of
points thus takes up a significant amount of memory. However, this is necessary
because the APL interpreter needs the information in order to redraw the object when
another window is placed over it and then moved away again (exposure) or when the
user resizes the Form in which it is displayed.

When you create an unnamed graphical object, the object is drawn, but its properties
are not remembered internally, thus conserving workspace. This has two con-
sequences. Firstly, you cannot subsequently modify or query the object's properties;
you must name an object if you are ever going to refer to it again. Secondly, the
object cannot automatically be redrawn (by APL) when it is exposed or resized.
Instead, you must control this yourself using the Expose event.

Unnamed graphical objects are useful in the following circumstances:

l For output to a Printer.
l When you are very short of workspace.
l When you are sure that the window you are drawing in will not need to be

redrawn, for example, when you are working "full-screen".
l For drawing in a Bitmap or a Metafile.
l For creating bitmaps in an ImageList

74 Dyalog APL/W Interface Guide Version 14.0

Bitmaps and Icons
Bitmaps and icons are implemented as separate objects that you can create and des-
troy. Once you have created such an object you can reference it as many times as you
wish. For example, you can use the same bitmap in several Buttons or associate the
same icon with several Forms.

The Bitmap and Icon objects can be created in one of two ways. They are either
loaded from an existing file or they are defined fromAPL arrays.

The files concerned must be in the appropriate Windows format for the object (.BMP
or .ICO files) which can be edited by a standard Windows utility such as Paintbrush.
The following example creates a Bitmap object from the CARS.BMP bitmap file
which is supplied in the WS sub-directory:

ROOT←'C:\Program Files\Dyalog\Dyalog APL 13.1 Unicode\'
'CARS' ⎕WC 'Bitmap' (ROOT,'\WS\CARS')

Then you can use the Bitmap to fill the background of a Form by:

'F1' ⎕WC 'Form' ('Picture' CARS 1)('Size' 25 50)

The "1" in the expression specifies that the Bitmap is to be used to "tile" the back-
ground of the Form. The result is shown in the illustration below. You can also pos-
ition the Bitmap in the top-left (0) or centre (3) of the Form, or even have the Bitmap
scaled automatically (2) to fit exactly in the Form. These settings are useful for dis-
playing pictures. You can explore these facilities using the BMVIEW function in the
UTIL workspace.

Instead of creating Bitmap and Icon objects from file, you can define them using APL
arrays. These arrays specify the individual pixels that make up the picture or shape of
the object in question.

Chapter 3: Graphics 75

There are two ways to define a Bitmap object from APL arrays. The first method,
which is limited to colour palettes of 16 or 256 colours is to supply two arrays; one
containing the colour indices for every pixel in the bitmap, and one containing the
colour map. The colour map specifies the colours (in terms of their red, green and
blue components) corresponding to the indices in the first array. For example, the fol-
lowing expressions create a 32 x 32 Bitmap from the arrays PIX and CM:

⍴PIX ⍝ colour index (in CM) of each pixel
32 32

⍴CM ⍝ 16-row matrix of RGB values
16 3

'BM' ⎕WC 'Bitmap' ('Bits' PIX)('CMap' CM)

The reason that this method is restricted to 256 colours is that the CMap array con-
taining the colour map is, of necessity, the same size as the colour palette. Even for a
relatively modest 16-bit colour palette, the size of the array would be 65536 x 3.

The second method, which applies to all sizes of colour palette, is to use a single
array that represents each pixel by a number that is an encoding of the red, green and
blue components. The formula used to calculate each pixel value is:

256⊥RED GREEN BLUE

where RED, GREEN and BLUE are integers in the range 0-255.

Thus the example above can be achieved using a single array CBITS as follows:

CBITS←(256⊥⍉CMAP)[⎕IO+PIX]
'BM' ⎕WC 'Bitmap' ('CBits' CBITS)

While it is possible to define bitmaps by creating appropriate APL arrays, it is likely
that you will load them from file, e.g.

'BM' ⎕WC 'Bitmap' (ROOT,'\WS\CARS')
PIX CM ← 'BM' ⎕WG 'Bits' 'CMap'

76 Dyalog APL/W Interface Guide Version 14.0

Metafiles
A Windows metafile is a mechanism for representing a picture as a collection of
graphics commands. Once a metafile has been created, the picture that it represents
can be drawn repeatedly from it. Metafiles are device-independent, so the picture can
be reproduced on different devices. Unlike bitmaps, metafiles can be scaled accur-
ately and are therefore particularly useful for passing graphical information between
different applications. Note that some other applications only support placeable
metafiles. See RealSize property for details.

Creating a Metafile Object
In Dyalog APL, a Windows metafile is represented by the Metafile object. This is cre-
ated in much the same way as a Bitmap object. That is, you can either make a Meta-
file object from an existing .WMF file, or you can create an empty one and then draw
onto it using Poly, Text and other graphical objects. For example, to create a Metafile
object called Tigger from the j0332364.wmf metafile that comes with
Microsoft Office, you can execute the following:

Dir←'C:\Program Files\Microsoft Office\MEDIA\CAGCAT10\'
'Tigger'⎕WC'Metafile'(Dir,'j0332364.wmf')

If instead you wanted to create a metafile drawing from scratch, you could do so as
follows. Notice that there is no need to assign names to the graphical objects drawn
onto the Metafile.

'METADUCK' ⎕WC 'Metafile' ''
'METADUCK.' ⎕WC 'Poly' DUCK
'METADUCK.' ⎕WC 'Text' 'Quack' (25 86)

Chapter 3: Graphics 77

Drawing a Metafile Object
A Metafile object is drawn by specifying either the object itself or its name as the Pic-
ture property of another object. This causes the Metafile to be drawn in that object
and scaled to fit exactly within its boundaries.

The following statement creates a Form containing the Metafile object Tigger.

'F1'⎕WC'Form' ('Size' 25 50) ('Picture' Tigger)

The next statement replaces the Picture with the Metafile object METADUCK.

F1.Picture←METADUCK

78 Dyalog APL/W Interface Guide Version 14.0

Picture Buttons
Picture buttons in toolbars are most conveniently represented by ToolButtons in
ToolControls (see Chapter 4). Pictures on stand-alone buttons or buttons used in the
(superseded) ToolBar object, may be created using Bitmap, Icon and Metafile objects
and there are two different methods provided. The first (and the simplest) is to use the
Picture property which applies to all 3 types of image,(Bitmap, Icon orMetafile). The
second method is to use the BtnPix property. This requires rather more effort, and
only draws Bitmaps, and not Icons orMetafiles. However, the BtnPix property gives
you total control over the appearance of a Button which the Picture property does
not.

Using the Picture Property
The Picture property overlays a Bitmap, Icon orMetafile on top of a standard push-
button. The following example uses an icon which is included with Dyalog APL.

dyalog←2 ⎕NQ'.' 'GetEnvironment' 'dyalog'
'spider'⎕WC'Icon'(dyalog,'ws\arachnid.ico')
'F'⎕WC'Form' 'Using the Picture Property'
'F.B'⎕WC'Button'('Coord' 'Pixel')('Size' 40 40)
F.B.Picture←spider 3

Notice that (by definition) an icon is 32 x 32 pixels in size. To allow space for the
pushbutton borders you have to make the Button at least 40 x 40 pixels. The "3"
means put the 'spider' in the centre of the button.

When you press a Button which has its Picture property set like this, APL auto-
matically shifts the overlaid image down and to the right by 1 pixel. This com-
plements the change in appearance of the button borders and achieves a "pressed-in"
look. When you release the button, APL shifts the image back again.

The Picture property therefore provides a very simple mechanism for implementing a
"tool-button", especially if you already have a bitmap or icon file that you want to
use.

Chapter 3: Graphics 79

However, the Picture property has certain limitations. Firstly, you cannot alter the
"pressed-in" look of the Button which is determined automatically for you. You
might want the Button to change colour when you press it, and you cannot achieve
this with the Picture property. Secondly, the appearance of the Button is unchanged
when you make it inactive (by setting its Active property to 0).

Note that if you use the Picture property on Radio or Check buttons, the buttons
assume pushbutton appearance although their radio/check behaviour is unaffected.

Using the BtnPix Property
You can obtain complete control over the appearance of a Button by using the
BtnPix property; however this entails more work on your part.

BtnPix allows you to associate three bitmaps with a Button, i.e.

l one for when the Button is in its normal state
l one for when it is pressed/selected
l one for when it is inactive

For example, if you have created three Bitmap objects called UP, DOWN and DEAD,
you define the Button as follows:

'F.B' ⎕WC 'Button' ('BtnPix' UP DOWN DEAD)

APL subsequently displays one of the three Bitmap objects according to the state of
the Button; i.e. UP for its normal state (State 0), DOWN for its pressed/selected state
(State 1) or DEAD when it is inactive (Active 0).

The BtnPix property requires that you use Bitmap objects; it doesn't work for Icons.
This is because icons are normally at least partly transparent. However, it is very
easy to convert an icon file to a Bitmap object. First you create an Icon object from
the icon (.ICO) file. Next you read the icon's pattern definition (Bits property) and
colour map (CMap property) into the workspace. Then finally, you create a Bitmap
from these two arrays.

The following example illustrates how you can make a Button from icons supplied
with Windows.

Load a closed folder icon:

'T1'⎕WC'Icon'('Shell32.dll' ¯3)

Read its Bits (pattern) and CMap (colour map):

Bits CMap ← 'T1' ⎕WG 'Bits' 'CMap'

80 Dyalog APL/W Interface Guide Version 14.0

Now define a Bitmap from these variables, (replacing the T1 object):

'T1' ⎕WC 'Bitmap' '' Bits CMap

Now make a second Bitmap:

'T2'⎕WC'Icon'('Shell32.dll' ¯4)
'T2'⎕WC'Bitmap' '','T2'⎕WG'Bits' 'CMap'

Now define the Button. Notice that the third (inactive) bitmap is optional.

'F.B' ⎕WC 'Button' ('BtnPix' 'T1' 'T2')

The pictures below show the button in its normal and pressed states.

Chapter 3: Graphics 81

Using Icons
You have seen how icons can be displayed using the Picture property. Other uses of
icons are described below.

Firstly, you can associate an icon with a Form or so that the icon is displayed (by
Windows) when the Form is minimised. This is done using the IconObj property. For
example, the following expressions would associate the UK Flag icon distributed
with Visual Basic with the Form 'F1'. This icon would then be displayed when
'F1' is minimised.

'star'⎕WC'Icon'('Shell32.dll' ¯43)
'F1' ⎕WC 'Form' ('IconObj' star)

The IconObj property also applies to the Root object '.'. This defines the icon to
be displayed for your application as a whole when the user toggles between applic-
ations using Alt+Tab. It is used in conjunction with the Caption property which
determines the description of your application that is shown alongside the icon, e.g.

'MYIcon' ⎕WC 'Icon' ...
'.' ⎕WS ('IconObj' MYIcon) ('Caption' 'My System')

An icon can be displayed using the Image object. This object is used to position one
or more Icon objects (or Bitmap objects) in a Form or Static. It can also be used to
draw an icon on a Printer. If you make the Image dragable, you will be able to
drag/drop the icon. The following example displays a dragable Icon at (10,10) in a
Form. It also associates the callback function 'Drop' with the DragDrop event so
that this function is called when the user drag/drops the icon.

'F1' ⎕WC 'Form' ('Event' 'DragDrop' 'Drop')
'star'⎕WC'Icon'('Shell32.dll' ¯43)
'F1.I' ⎕WC 'Image' (10 10) ('Picture' star)

 F1.I.Dragable←2

Notice that setting Dragableto 2 specifies that an object is fully displayed while it
is being dragged. Setting Dragable to 1 causes only the bounding rectangle
around the object to be dragged.

82 Dyalog APL/W Interface Guide Version 14.0

83

Chapter 4:

Composite Controls

This chapter describes how to use the ToolControl, CoolBar, TabControl and
StatusBar objects.

Several of these objects require the Windows Custom Control Library
COMCTL32.DLL, Version 4.72 or higher.

The ToolControl and ToolButton Objects
The ToolControl object is normally used in conjunction with ToolButtons, although
it may also act as a parent for other objects, including a MenuBar.

A ToolButton may display a Caption and an Image, although both are optional.
Images for individual ToolButtons are not defined one-by-one, but instead are
defined by an ImageList which contains a set of bitmaps or icons.

The ImageListObj property of the ToolControl specifies the name of one or more
ImageList objects to be used. The ImageIndex properties of each of the ToolButtons
specifies which of the images in each ImageList object apply to which of the
ToolButtons.

Standard Bitmap Resources
Typically, you will want your ToolControls to provide standard Windows buttons
and the easiest way to achieve this is to utilise the standard Windows bitmaps that
are contained in COMCTL32.DLL. There are three main sets of bitmaps, each of
which is provided in two sizes, small (16x16) and large (24 x 24).

Resource number 120 (IDB_STD_SMALL_COLOR) and 121 (IDB_STD_LARGE_
COLOR) contain the following set of assorted bitmap images.

84 Dyalog APL/W Interface Guide Version 14.0

Resource number 124 (IDB_VIEW_SMALL_COLOR) and 125 (IDB_VIEW_
LARGE_COLOR) contain a set of bitmaps relating to different views of information.
These are used, for example in the Windows Explorer tool bar

Resource number 130 (IDB_HIST_SMALL_COLOR) and 131 (IDB_HIST_
LARGE_COLOR) contain another useful set of bitmaps

COMCTL32.DLL also contains individual bitmaps in resources 132-134.

Dyalog Bitmap Resources
Another three sets of useful bitmaps are to be found in the DYARES32.DLL file.
These bitmaps are used in the Dyalog APL/W Session tool buttons. Note that if you
include these bitmaps in a run-time application, you will have to ship
DYARES32.DLL with it.

The normal set of bitmaps associated with the Session buttons may be created using
the statement:

'bm'⎕wc'Bitmap' ('DYARES32' 'tb_normal')

The bitmaps used when the buttons are highlighted may be created using the state-
ment (note that the file name may be elided)

'bm'⎕wc'Bitmap' ('' 'tb_hot')

The bitmaps used when the buttons are inactivemay be created using the statement

'bm'⎕wc'Bitmap' ('' 'tb_inactive')

Chapter 4: Composite Controls 85

Creating ImageLists for ToolButtons
You may use up to three ImageList objects to represent ToolButton images. These
will be used to specify the pictures of the ToolButton objects in their normal, high-
lighted (sometimes termed hot) and inactive states respectively.

The set of images in each ImageList is then defined by creating unnamed Bitmap or
Icon objects as children.

When creating an ImageList, it is a good idea to set its MapCols property to 1. This
means that standard button colours used in the bitmaps will automatically be adjus-
ted to take the user’s colour preferences into account.

When you create each ToolButton you specify its ImageIndex property, selecting up
to three pictures (normal, highlighted and inactive) to be displayed on the button.

If you specify only a single ImageList, the picture on the ToolButton will be the
same in all three cases. However, the appearance of the buttons themselves change
when the button is highlighted or pressed, and in many situations this may be suf-
ficient behaviour.

The following example illustrates how a simple ToolControl can be constructed
using standard Windows bitmaps. Notice that the Masked property of the ImageList
is set to 0; this is necessary if the ImageList is to contain bitmaps, as opposed to
icons. Secondly, because the bitmaps are in this case size 16 x 16, it is unnecessary to
specify the Size property of the ImageList which is, by default, also 16 x 16.

'F'⎕WC'Form' 'ToolControl'('Size' 10 40)
'F.TB'⎕WC'ToolControl'
'F.TB.IL'⎕WC'ImageList'('Masked' 0) ('MapCols' 1)
'F.TB.IL.'⎕WC'Bitmap'('ComCtl32' 120)⍝ STD_SMALL
'F.TB'⎕WS'ImageListObj' 'F.TB.IL'
'F.TB.B1'⎕WC'ToolButton' 'New'('ImageIndex' 7)
'F.TB.B2'⎕WC'ToolButton' 'Open'('ImageIndex' 8)
'F.TB.B3'⎕WC'ToolButton' 'Save'('ImageIndex' 9)

86 Dyalog APL/W Interface Guide Version 14.0

The Style Property
The overall appearance of the ToolButton objects displayed by the ToolControl is
defined by the Style property of the ToolControl itself, rather than by properties of
individual ToolButtons.1

Note that the Style property may only be set when the ToolControl is created using
⎕WC and may not subsequently be changed using ⎕WS.

Style may be 'FlatButtons', 'Buttons', 'List' or 'FlatList'. The
default Style is of a ToolControl is 'FlatButtons', as is the first example above.
The following examples illustrate the other three styles:

1The appearance of the ToolControl is also heavily dependent upon whether or not Native Look
and Feel is enabled. The screen-shots in this manual were all taken using Windows XP with Native
Look and Feel disabled.. See User Guide for details.

Chapter 4: Composite Controls 87

The Divider Property
You will notice that, in the above examples, there is a thin groove drawn above the
ToolControl. The presence or absence of this groove is controlled by the Divider
property whose default is 1. The following picture illustrates the effect of setting
Divider to 0.

The MultiLine Property
The MultiLine property specifies whether or not ToolButtons (and other child con-
trols) are arranged in several rows (or columns) when there are more than would oth-
erwise fit.

If MultiLine is 0 (the default), the ToolControl object clips its children and the user
must resize the Form to bring more objects into view.

Note that you may change MultiLine dynamically, using ⎕WS.

'F'⎕WC'Form' 'ToolControl: MultiLine 0'
'F.TB'⎕WC'ToolControl'('Style' 'List')

'F.TB.IL'⎕WC'ImageList'('Masked' 0)('Size' 24 24)
'F.TB.IL.'⎕WC'Bitmap'('ComCtl32' 121)⍝ STD_LARGE
'F.TB'⎕WS'ImageListObj' 'F.TB.IL'

'F.TB.B1'⎕WC'ToolButton' 'Cut'('ImageIndex' 1)
'F.TB.B2'⎕WC'ToolButton' 'Copy'('ImageIndex' 2)
'F.TB.B3'⎕WC'ToolButton' 'Paste'('ImageIndex' 3)
'F.TB.B4'⎕WC'ToolButton' 'Undo'('ImageIndex' 4)
'F.TB.B5'⎕WC'ToolButton' 'Redo'('ImageIndex' 5)
'F.TB.B6'⎕WC'ToolButton' 'Delete'('ImageIndex' 6)

88 Dyalog APL/W Interface Guide Version 14.0

If we set MultiLine to 1, the ToolButtons are instead displayed in several rows:

The Transparent Property
The Transparent property (default 0) specifies whether or not the ToolControl is trans-
parent. Note that Transparent must be set when the object is created using ⎕WC and
may not subsequently be changed using ⎕WS.

If a ToolControl is created with Transparent set to 1, the visual effect is as if the
ToolButtons (and other controls) were drawn directly on the parent Form as shown
below.

'F'⎕WC'Form' 'ToolControl: Transparent 1)'
ROOT←'C:\Program Files\Dyalog\Dyalog APL 13.1 Unicode\'
'F.BM'⎕WC'Bitmap'(ROOT,'\WS\BUBBLES')
'F'⎕WS'Picture' 'F.BM' 1

'F.TB'⎕WC'ToolControl'('Style' 'Buttons')('Transparent'1)
'F.TB.IL'⎕WC'ImageList'('Masked' 0)('Size' 24 24)
'F.TB.IL.'⎕WC'Bitmap'('ComCtl32' 121)⍝ STD_LARGE
'F.TB'⎕WS'ImageListObj' 'F.TB.IL'

'F.TB.B1'⎕WC'ToolButton' 'New'('ImageIndex' 7)
'F.TB.B2'⎕WC'ToolButton' 'Open'('ImageIndex' 8)
'F.TB.B3'⎕WC'ToolButton' 'Save'('ImageIndex' 9)

Chapter 4: Composite Controls 89

Radio buttons, Check buttons and Separators
The Style property of a ToolButton may be 'Push', 'Check', 'Radio',
'Separator' or 'DropDown'.

Push buttons (the default) are used to generate actions and pop in and out when
clicked.

Radio and Check buttons are used to select options and have two states, normal (out)
and selected (in). Their State property is 0 when the button is in its normal (unse-
lected state) or 1 when it is selected.

A group of adjacent ToolButtons with Style 'Radio' defines a set in which only
one of the ToolButtons may be selected at any one time. The act of selecting one will
automatically deselect any other. Note that a group of Radio buttons must be sep-
arated from Check buttons or other groups of Radio buttons by ToolButtons of
another Style.

Separator buttons are a special case as they have no Caption or picture, but appear as
a thin vertical grooves that are used only to separate groups of buttons.

The following example illustrates how two groups of radio buttons are established
by inserting a ToolButton with Style 'Separator' between them. This ToolCon-
trol could be used to control the appearance of a ListView object. The first group is
used to select the view (Large Icon, Small Icon, List or Report), and the second is
used to sort the items by Name, Size or Date. In the picture, the user has selected
Small Icon View and Sort by Date.

'F'⎕WC'Form' 'ToolControl: Radio Buttons'
'F.TB'⎕WC'ToolControl'

'F.TB.IL'⎕WC'ImageList'('Masked' 0)
'F.TB.IL.'⎕WC'Bitmap'('ComCtl32' 124)⍝ VIEW_SMALL
'F.TB'⎕WS'ImageListObj' 'F.TB.IL'

'F.TB.B1'⎕WC'ToolButton' 'Large'('ImageIndex' 1)('Style' 'Radio')
'F.TB.B2'⎕WC'ToolButton' 'Small'('ImageIndex' 2)('Style' 'Radio')
'F.TB.B3'⎕WC'ToolButton' 'List'('ImageIndex' 3)('Style' 'Radio')
'F.TB.B4'⎕WC'ToolButton' 'Details'('ImageIndex' 4)('Style' 'Radi
o')

'F.TB.S1'⎕WC'ToolButton'('Style' 'Separator')

'F.TB.B5'⎕WC'ToolButton' 'Name'('ImageIndex' 5)('Style' 'Radio')
'F.TB.B6'⎕WC'ToolButton' 'Size'('ImageIndex' 6)('Style' 'Radio')
'F.TB.B7'⎕WC'ToolButton' 'Date'('ImageIndex' 7)('Style' 'Radio')

90 Dyalog APL/W Interface Guide Version 14.0

Notice that the appearance of the Separator ToolButton is less obvious when the
ToolControl Style is Buttons or List, but the radio grouping effect is the same:

Drop-Down buttons
It is possible to define ToolButtons that display a drop-down menu fromwhich the
user may choose an option. This is done by creating a ToolButton with Style
'DropDown'.

A ToolButton with Style 'DropDown' has an associated popup Menu object
which is named by its Popup property. There are two cases to consider.

If the ShowDropDown property of the parent ToolControl is 0, clicking the ToolBut-
ton causes the popup menu to appear. In this case, the ToolButton itself does not
itself generate a Select event; you must rely on the user selecting a MenuItem to spe-
cify a particular action.

If the ShowDropDown property of the parent ToolControl is 1, clicking the drop-
down button causes the popup menu to appear; clicking the ToolButton itself gen-
erates a Select event, but does not display the popup menu.

Chapter 4: Composite Controls 91

'F'⎕WC'Form' 'ToolControl: Dropdown Buttons'
'F.TB'⎕WC'ToolControl'('ShowDropDown' 1)

:With 'F.FMENU'⎕WC'Menu' ⍝ Popup File menu
'NEW'⎕WC'MenuItem' '&New'
'OPEN'⎕WC'MenuItem' '&Open'
'CLOSE'⎕WC'MenuItem' '&Close'

:EndWith

:With 'F.EMENU'⎕WC'Menu' ⍝ Popup Edit menu
'CUT'⎕WC'MenuItem' 'Cu&t'
'COPY'⎕WC'MenuItem' '&Copy'
'PASTE'⎕WC'MenuItem' '&Paste'

:EndWith

'F.TB.B1'⎕WC'ToolButton' 'File'('Style' 'DropDown')('Popup' 'F.FM
ENU')
'F.TB.B2'⎕WC'ToolButton' 'Edit'('Style' 'DropDown')('Popup' 'F.EM
ENU')

A MenuBar as the child of a ToolControl
As a special case, the ToolControl may contain a MenuBar as its only child. In this
case, Dyalog APL/W causes the menu items to be drawn as buttons, even underWin-
dows 95.

Although nothing is done to prevent it, the use of other objects in a ToolControl con-
taining a MenuBar, is not supported.

92 Dyalog APL/W Interface Guide Version 14.0

'F'⎕WC'Form' 'ToolControl with MenuBar'
'F.TB'⎕WC'ToolControl'

:With 'F.TB.MB'⎕WC'MenuBar'
:With 'File'⎕WC'Menu' 'File'

'New'⎕WC'MenuItem' 'New'
'Open'⎕WC'MenuItem' 'Open'
'Close'⎕WC'MenuItem' 'Close'

:EndWith

:With 'Edit'⎕WC'Menu' 'Edit'
'Cut'⎕WC'MenuItem' 'Cut'
'Copy'⎕WC'MenuItem' 'Copy'
'Paste'⎕WC'MenuItem' 'Paste'

:EndWith

:EndWith

Chapter 4: Composite Controls 93

Providing User Customisation
It is common to allow the user to switch the appearance of a ToolControl dynam-
ically. This may be done using a pop-up menu. In addition to providing a choice of
styles, the user may switch the text captions on and off.

The ShowCaptions property specifies whether or not the captions of ToolButton
objects are drawn. Its default value is 1 (draw captions).

ToolButtons drawn without captions occupy much less space and ShowCaptions
provides a quick way to turn captions on/off for user customisation.

The following functions illustrate how this was achieved.

∇ Example
[1] 'F'⎕WC'Form' 'ToolControl: User Options'
[2] 'F.TB'⎕WC'ToolControl'
[3] 'F.TB'⎕WS'Event' 'MouseDown' 'TC_POPUP'
[4]
[5] 'F.TB.IL'⎕WC'ImageList'('Masked' 0)('Size' 24 24)
[6] 'F.TB.IL.'⎕WC'Bitmap'('ComCtl32' 121)⍝ STD_LARGE
[7] 'F.TB'⎕WS'ImageListObj' 'F.TB.IL'
[8]
[9] 'F.TB.B1'⎕WC'ToolButton' 'Cut'('ImageIndex' 1)
[10] 'F.TB.B2'⎕WC'ToolButton' 'Copy'('ImageIndex' 2)
[11] 'F.TB.B3'⎕WC'ToolButton' 'Paste'('ImageIndex' 3)
[12] 'F.TB.B4'⎕WC'ToolButton' 'Undo'('ImageIndex' 4)
[13] 'F.TB.B5'⎕WC'ToolButton' 'Redo'('ImageIndex' 5)
[14] 'F.TB.B6'⎕WC'ToolButton' 'Delete'('ImageIndex' 6)

∇

94 Dyalog APL/W Interface Guide Version 14.0

∇ TC_POPUP MSG;popup;TC;STYLE;SHOW;MULTI;OPTION
[1] ⍝ Popup menu on ToolControl
[2] :If (2≠5⊃MSG) ⍝ Right mouse button ?
[3] :Return
[4] :EndIf
[5]
[6] TC←'#.',⊃MSG
[7] STYLE SHOW MULTI←TC ⎕WG'Style' 'ShowCaptions'

'MultiLine'
[8]
[9] :With 'popup'⎕WC'Menu'
[10] 'FlatButtons'⎕WC'MenuItem' '&Flat Buttons'

('Style' 'Radio')
[11] 'Buttons'⎕WC'MenuItem' '&Buttons'

('Style' 'Radio')
[12] 'List'⎕WC'MenuItem' '&List'('Style' 'Radio')
[13] 'FlatList'⎕WC'MenuItem' 'Fla&t List'

('Style' 'Radio')
[14] STYLE ⎕WS'Checked' 1
[15] 'sep'⎕WC'Separator'
[16] 'ShowCaptions'⎕WC'MenuItem' '&Show Text'

('Checked'SHOW)
[17] 'MultiLine'⎕WC'MenuItem' '&MultiLine'

('Checked'MULTI)
[18]
[19] ('MenuItem'⎕WN'')⎕WS¨⊂'Event' 'Select' 1
[20]
[21] :If 0=⍴MSG←⎕DQ''
[22] :Return
[23] :EndIf
[24]
[25] :Select OPTION←⊃MSG
[26] :CaseList 'FlatButtons' 'Buttons' 'List'

'FlatList'
[27] TC ⎕WS'Style'OPTION
[28] :Else
[29] TC ⎕WS OPTION(~TC ⎕WG OPTION)
[30] :EndSelect
[31]
[32] :EndWith

∇

Chapter 4: Composite Controls 95

The CoolBar and CoolBand Objects
A CoolBar contains one or more bands (CoolBands). Each band can have any com-
bination of a gripper bar, a bitmap, a text label, and a single child object.

Using the gripper bars, the user may drag bands from one row to another, resize bands
in the same row, and maximise or minimise bands in a row. The CoolBar therefore
gives the user a degree of control over the layout of the controls that it contains.

A CoolBand may not contain more than one child object, but that child object may
itself be a container such as a ToolControl or a SubForm.

The following example illustrates a CoolBar containing two CoolBands, each of
which itself contains a ToolControl.

'F'⎕WC'Form' 'CoolBar Object with ToolControls'
'F.IL'⎕WC'ImageList'('Masked' 0)('MapCols' 1)
'F.IL.'⎕WC'Bitmap'('ComCtl32' 120)⍝ STD_SMALL

'F.CB'⎕WC'CoolBar'

:With 'F.CB.C1'⎕WC'CoolBand'
'TB'⎕WC'ToolControl'('ImageListObj' '#.F.IL')
'TB.B1'⎕WC'ToolButton' 'New'('ImageIndex' 7)
'TB.B2'⎕WC'ToolButton' 'Open'('ImageIndex' 8)
'TB.B3'⎕WC'ToolButton' 'Save'('ImageIndex' 9)

:EndWith

:With 'F.CB.C2'⎕WC'CoolBand'
'TB'⎕WC'ToolControl'('ImageListObj' '#.F.IL')
'TB.B1'⎕WC'ToolButton' 'Cut'('ImageIndex' 1)
'TB.B2'⎕WC'ToolButton' 'Copy'('ImageIndex' 2)
'TB.B3'⎕WC'ToolButton' 'Paste'('ImageIndex' 3)
'TB.B4'⎕WC'ToolButton' 'Undo'('ImageIndex' 4)
'TB.B5'⎕WC'ToolButton' 'Redo'('ImageIndex' 5)

:EndWith

96 Dyalog APL/W Interface Guide Version 14.0

The user may move band 2 into row 1 by dragging the gripper bar:

CoolBar: FixedOrder Property
FixedOrder is a property of the CoolBar and specifies whether or not the CoolBar dis-
plays CoolBands in the same order. If FixedOrder is 1, the user may move bands
which have gripper bars to different rows, but the band order is static. The default is
0.

CoolBand: GripperMode Property
GripperMode is a property of a CoolBand and specifies whether or not the CoolBand
has a gripper bar which is used to reposition and resize the CoolBand within its par-
ent CoolBar. GripperMode is a character vector with the value 'Always' (the
default), 'Never' or 'Auto'. If GripperMode is 'Always' , the CoolBand dis-
plays a gripper bar even if it is the only CoolBand in the CoolBar. If GripperMode is
'Never' , the CoolBand does not have a gripper bar and may not be directly reposi-
tioned or resized by the user. If GripperMode is 'Auto' , the CoolBand displays a
gripper bar only if there are other CoolBands in the same CoolBar.

CoolBar: DblClickToggle Property
If it has a gripper bar, the user may maximise one of the bands in a row, causing the
other bands to be minimised. The action required to do this is defined by the
DblClickToggle property which is a property of the CoolBar.

If DblClickToggle is 0 (the default), the user must single-click the gripper bar. If
DblClickToggle is 1, the user must double-click the gripper bar. These actions toggle
a child CoolBand between its maximised and minimised state. The following picture
shows the first CoolBand maximised.

Chapter 4: Composite Controls 97

The next picture shows the second CoolBand maximised.

98 Dyalog APL/W Interface Guide Version 14.0

CoolBar: VariableHeight/BandBorders Properties
These two properties affect the appearance of the CoolBar.

The VariableHeight property specifies whether or not the CoolBar displays bands in
different rows at the minimum required height (the default), or all the same height.

The BandBorders property specifies whether or not narrow lines are drawn to sep-
arate adjacent bands. The default is 0 (no lines).

The following example uses simple controls (as opposed to container controls) as
children of the CoolBands and illustrate the effect of these properties on the appear-
ance of the CoolBar.

'F'⎕WC'Form' 'CoolBar Object with simple controls'
'F.CB'⎕WC'CoolBar'

:With F.CB.C1'⎕WC'CoolBand'
'E1'⎕WC'Edit' 'Edit1'

:EndWith

:With 'F.CB.C2'⎕WC'CoolBand'
'C1'⎕WC'Combo'('One' 'Two' 'Three')('SelItems' 0 1 0)

:EndWith

:With 'F.CB.C3'⎕WC'CoolBand'
'E2'⎕WC'Edit'(3 5⍴'Edit2')('Style' 'Multi')

:EndWith

Chapter 4: Composite Controls 99

If the CoolBands are arranged in the same row, the height of the row expands to
accommodate the largest one as shown below.

The picture below illustrates the effect of setting VariableHeight to 0.

The picture below shows the affect on appearance of setting BandBorders to 1.

100 Dyalog APL/W Interface Guide Version 14.0

CoolBand: ChildEdge Property
ChildEdge is a property of a CoolBand and specifies whether or not the CoolBand
leaves space above and below the object that it contains.

If the ChildEdge property of each CoolBand had been set to 1 in the above example,
then the result would show wider borders between each band.

Chapter 4: Composite Controls 101

CoolBand: Caption and ImageIndex Properties
The Caption and ImageIndex properties of a CoolBand are used to display an
optional text string and picture in the CoolBand.

The picture is defined by an image in an ImageList object whose name is referenced
by the ImageListObj property of the parent CoolBar. The following example illus-
trates how this is done.

'F'⎕WC'Form' 'CoolBand Caption and ImageIndex'
'F.IL'⎕WC'ImageList'('Masked' 0)('MapCols' 1)
'F.IL.'⎕WC'Bitmap'('ComCtl32' 120)⍝ STD_SMALL

'F.CB'⎕WC'CoolBar'('ImageListObj' 'F.CB.IL')
'F.CB.IL'⎕WC'ImageList'('Masked' 1)('MapCols' 1)
'F.CB.IL.'⎕WC'Icon'('' 'aplicon')
'F.CB.IL.'⎕WC'Icon'('' 'editicon')

:With 'F.CB.C1'⎕WC'CoolBand' 'File'('ImageIndex' 1)
'TB'⎕WC'ToolControl'('ImageListObj' '#.F.IL')('Divider'

0)
'TB.B1'⎕WC'ToolButton' 'New'('ImageIndex' 7)
'TB.B2'⎕WC'ToolButton' 'Open'('ImageIndex' 8)
'TB.B3'⎕WC'ToolButton' 'Save'('ImageIndex' 9)

:EndWith

:With 'F.CB.C2'⎕WC'CoolBand' 'Edit'('ImageIndex' 2)
'TB'⎕WC'ToolControl'('ImageListObj' '#.F.IL')('Divider'

0)
'TB.B1'⎕WC'ToolButton' 'Cut'('ImageIndex' 1)
'TB.B2'⎕WC'ToolButton' 'Copy'('ImageIndex' 2)
'TB.B3'⎕WC'ToolButton' 'Paste'('ImageIndex' 3)
'TB.B4'⎕WC'ToolButton' 'Undo'('ImageIndex' 4)
'TB.B5'⎕WC'ToolButton' 'Redo'('ImageIndex' 5)

:EndWith

102 Dyalog APL/W Interface Guide Version 14.0

Note that the Caption and image are displayed when the CoolBand is minimised as
shown below:

CoolBand: Size, Posn, NewLine, Index Properties
The Size property of a CoolBand is partially read-only and may only be used to spe-
cify its width; because the height of a CoolBand is determined by its contents. Fur-
thermore, the Size property may only be specified when the CoolBand is created
using ⎕WC.

The position of a Cool Band within a CoolBar is determined by its Index and
NewLine properties, and by the position and size of preceding CoolBand objects in
the same CoolBar. The Posn property is read-only.

The Index property specifies the position of a CoolBand within its parent CoolBar,
relative to other CoolBands and is ⎕IO dependant. Initially, the value of Index is
determined by the order in which the CoolBands are created. You may re-order the
CoolBands within a CoolBar by changing its Index property with ⎕WS.

The NewLine property specifies whether or not the CoolBand occupies the same row
as an existing CoolBand, or is displayed on a new line within its CoolBar parent.

The value of NewLine in the first CoolBand in a CoolBar is always ⎕IO, even if you
specify it to be 0. You may move a CoolBand to the previous or next row by chan-
ging its NewLine property (using ⎕WS)from 1 to 0, or from 0 to 1 respectively.

If you wish to remember the user’s chosen layout when your application terminates,
you must store the values of Index, Size and NewLine for each of the CoolBands.
When your application is next started, you must re-create the CoolBands with the
same values of these properties.

Chapter 4: Composite Controls 103

CoolBands with SubForms
The CoolBand object itself may contain only a single child object. However, if that
child is a SubForm containing other objects, the CoolBand can appear to manage a
group of objects. A similar effect can be obtained using a ToolBar or ToolControl.

The following example illustrates this technique. Note that the SubForms are dis-
guised by setting their EdgeStyle and BCol properties. In addition, their AutoConf
properties are set to 0 to prevent resizing of the child controls when the CoolBands
are resized.

'F'⎕WC'Form' 'CoolBar with SubForms'('Size' 25 50)
'F'⎕WS'Coord' 'Pixel'

'F.CB'⎕WC'CoolBar'

:With 'F.CB.C1'⎕WC'CoolBand'
'S'⎕WC'SubForm'('Size' 30 ⍬)('EdgeStyle' 'Default')

('BCol' ¯16)('AutoConf' 0)
'S.E1'⎕WC'Edit' 'Edit 1'(2 2)(⍬ 60)
'S.C1'⎕WC'Combo'('One' 'Two')''(2 70)(⍬ 60)

:EndWith

:With 'F.CB.C2'⎕WC'CoolBand'
'S'⎕WC'SubForm'('Size' 30 ⍬)('EdgeStyle' 'Default')

('BCol' ¯16)('AutoConf' 0)
'S.E1'⎕WC'Edit' 'Edit 2'(2 2)(⍬ 60)
'S.C1'⎕WC'Combo'('One' 'Two')''(2 70)(⍬ 60)

:EndWith

104 Dyalog APL/W Interface Guide Version 14.0

The TabControl and TabButton Objects
The TabControl object provides access to the standard Windows NT tab control.

The standard tab control is analogous to a set of dividers in a notebook and allows
you to define a set of pages that occupy the same area of a window or dialog box.
Each page consists of a set of information or a group of controls that the application
displays when the user selects the corresponding tab.

A special type of tab control displays tabs that look like buttons. For example, the
Windows 98 taskbar is such a tab control.

To implement a multiple page tabbed dialog, illustrated below, you should create a
Form, then a TabControl with Style 'Tabs' (which is the default) as a child of the
Form.

'F'⎕WC'Form' 'TabControl: Default'('Size' 25 50)
'F.TC'⎕WC'TabControl'

Individual tabs or buttons are represented by TabButton objects which should be cre-
ated as children of the TabControl object. Optional captions and pictures are spe-
cified by the Caption and ImageIndex properties of the individual TabButton objects
themselves.

'F.TC.IL'⎕WC'ImageList'
'F.TC.IL.'⎕WC'Icon'('' 'APLIcon')
'F.TC.IL.'⎕WC'Icon'('' 'FUNIcon')
'F.TC.IL.'⎕WC'Icon'('' 'EDITIcon')
'F.TC'⎕WS'ImageListObj' 'F.TC.IL'

Next, create one or more pairs of TabButton and SubForm objects as children of the
TabControl. You associate each SubForm with a particular tab by setting its TabObj
property to the name of the associated TabButton object. Making the SubForms chil-
dren of the TabControl ensures that, by default, they will automatically be resized
correctly. (You may alternatively create your SubForms as children of the main Form
and establish appropriate resize behaviour using their Attach property.)

'F.TC.T1'⎕WC'TabButton' 'One'('ImageIndex' 1)
'F.TC.T2'⎕WC'TabButton' 'Two'('ImageIndex' 2)
'F.TC.T3'⎕WC'TabButton' 'Three'('ImageIndex' 3)
'F.TC.S1'⎕WC'SubForm'('TabObj' 'F.TC.T1')
'F.TC.S2'⎕WC'SubForm'('TabObj' 'F.TC.T2')
'F.TC.S3'⎕WC'SubForm'('TabObj' 'F.TC.T3')

Chapter 4: Composite Controls 105

Style, FlatSeparators and HotTrack Properties
The Style property determines the overall appearance of the tabs or buttons in a
TabControl and may be 'Tabs' (the default), 'Buttons' or 'FlatButtons'.

A TabControl object with Style 'Buttons' or 'FlatButtons'may be used in a
similar way (i.e. to display a set of alternative pages), although buttons in this type of
TabControl are more normally used to execute commands. For this reason, these
styles of TabControl are borderless.

106 Dyalog APL/W Interface Guide Version 14.0

If Style is 'FlatButtons', the FlatSeparators property specifies whether or not
separators are drawn between the buttons. The following example illustrates the
effect of setting FlatSeparators to 1.

The HotTrack property specifies whether or not the tabs or buttons in a TabControl
object (which are represented by TabButton objects), are automatically highlighted
by the mouse pointer.

Chapter 4: Composite Controls 107

The Align Property
The Align property specifies along which of the 4 edges of the TabControl the tabs
or buttons are arranged. Align also controls the relative positioning of the picture
and Caption within each TabButton. Align may be Top (the default), Bottom, Left or
Right.

If Align is 'Top' or 'Bottom', the tabs or buttons are arranged along the top or
bottom edge of the TabControl and the picture is drawn to the left of the Caption.

'F'⎕WC'Form' 'TabControl: Align Bottom'('Size' 25 50)
'F.TC'⎕WC'TabControl'('Align' 'Bottom')

'F.TC.IL'⎕WC'ImageList'
'F.TC.IL.'⎕WC'Icon'('' 'APLIcon')
'F.TC.IL.'⎕WC'Icon'('' 'FUNIcon')
'F.TC.IL.'⎕WC'Icon'('' 'EDITIcon')

'F.TC'⎕WS'ImageListObj' 'F.TC.IL'

'F.TC.T1'⎕WC'TabButton' 'One'('ImageIndex' 1)
'F.TC.T2'⎕WC'TabButton' 'Two'('ImageIndex' 2)
'F.TC.T3'⎕WC'TabButton' 'Three'('ImageIndex' 3)

'F.S1'⎕WC'SubForm'('TabObj' 'F.TC.T1')
'F.S2'⎕WC'SubForm'('TabObj' 'F.TC.T2')
'F.S3'⎕WC'SubForm'('TabObj' 'F.TC.T3')

If Align is 'Left' or 'Right', the tabs or buttons are arranged top-to-bottom
along the left or right edge of the TabControl as shown below.

108 Dyalog APL/W Interface Guide Version 14.0

The MultiLine Property
The MultiLine property of a TabControl determines whether or not your tabs or but-
tons will be arranged in multiple flights or multiple rows/columns.

The default value ofMultiLine is 0, in which case, if you have more tabs or buttons
than will fit in the space provided, the TabControl displays an UpDown control to
permit the user to scroll them.

Chapter 4: Composite Controls 109

If MultiLine is set to 1, the tabs are displayed in multiple flights.

If the TabControl has Style 'Buttons' and MultiLine is set to 1, the buttons are
displayed in multiple rows.

110 Dyalog APL/W Interface Guide Version 14.0

The ScrollOpposite Property
The ScrollOpposite property specifies that unneeded tabs scroll to the opposite side
of a TabControl, when a tab is selected. This only applies when MultiLine is 1.

The following example illustrates a TabControl with ScrollOpposite set to 1, after
the user has clicked Third Tab. Notice that, in this example, the SubForms have been
created as children of the TabControl. This is necessary to ensure that they are man-
aged correctly in this case.

'F'⎕WC'Form' 'TabControl: ScrollOpposite'
'F.TC'⎕WC'TabControl' ('ScrollOpposite' 1)('MultiLine' 1)

'F.TC.IL'⎕WC'ImageList'
'F.TC.IL.'⎕WC'Icon'('' 'APLIcon')
'F.TC.IL.'⎕WC'Icon'('' 'FUNIcon')
'F.TC.IL.'⎕WC'Icon'('' 'EDITIcon')

'F.TC'⎕WS'ImageListObj' 'F.TC.IL'

'F.TC.T1'⎕WC'TabButton' 'First Tab'('ImageIndex' 1)
'F.TC.T2'⎕WC'TabButton' 'Second Tab'('ImageIndex' 2)
'F.TC.T3'⎕WC'TabButton' 'Third Tab'('ImageIndex' 3)
'F.TC.T4'⎕WC'TabButton' 'Fourth Tab'('ImageIndex' 1)

If MultiLine is 1, the way that multiple flights of tabs or rows/columns of buttons are
displayed is further defined by the Justify property which may be 'Right' (the
default) or 'None'.

Chapter 4: Composite Controls 111

The Justify Property
If Justify is 'Right' (which is the default), the TabControl increases the width of
each tab, if necessary, so that each row of tabs fills the entire width of the tab control.
Otherwise, if Justify is empty or 'None', the rows are ragged as shown below.

'F'⎕WC'Form' 'TabControl: MultiLine Tabs, Justify None'
'F.TC'⎕WC'TabControl'('MultiLine' 1)('Justify ' 'None')
'F.TC.IL'⎕WC'ImageList'
'F.TC.IL.'⎕WC'Icon'('' 'APLIcon')
'F.TC.IL.'⎕WC'Icon'('' 'FUNIcon')
'F.TC.IL.'⎕WC'Icon'('' 'EDITIcon')
'F.TC'⎕WS'ImageListObj' 'F.TC.IL'
'F.TC.T1'⎕WC'TabButton' 'First Tab'('ImageIndex' 1)
'F.TC.T2'⎕WC'TabButton' 'Second Tab'('ImageIndex' 2)
'F.TC.T3'⎕WC'TabButton' 'Third Tab'('ImageIndex' 3)
'F.TC.T4'⎕WC'TabButton' 'Fourth Tab'('ImageIndex' 1)

The next picture illustrates the effect of Justify 'None' on a TabControl with Style
'Buttons'.

112 Dyalog APL/W Interface Guide Version 14.0

The TabSize and TabJustify Properties
By default, the size of the tabs may vary from one row to another. Fixed size tabs may
be obtained by setting the TabSize property.

If fixed size tabs are in effect, the positions at which the picture and Caption are
drawn within each TabButton is controlled by the TabJustify property which may be
'Centre'(the default), 'Edge', or 'IconEdge'.

'F'⎕WC'Form' 'TabControl: TabJustify Centre'
'F.TC'⎕WC'TabControl'('Style' 'Buttons')('TabSize'⍬ 30)

'F.TC.IL'⎕WC'ImageList'
'F.TC.IL.'⎕WC'Icon'('' 'APLIcon')
'F.TC.IL.'⎕WC'Icon'('' 'FUNIcon')
'F.TC.IL.'⎕WC'Icon'('' 'EDITIcon')
'F.TC'⎕WS'ImageListObj' 'F.TC.IL'

'F.TC.T1'⎕WC'TabButton' 'One'('ImageIndex' 1)
'F.TC.T2'⎕WC'TabButton' 'Two'('ImageIndex' 2)
'F.TC.T3'⎕WC'TabButton' 'Three'('ImageIndex' 3)

If TabJustify is set to 'Edge' then the picture and text on the TabButton are jus-
tified along the side defined by the Align property (default 'Top').

'F'⎕WC'Form' 'TabControl: TabJustify Edge'('Size' 10 40)
'F.TC'⎕WC'TabControl'('Style' 'Buttons')

('TabJustify' 'Edge')('TabSize'⍬ 30)

etc.

If, instead, the TabJustify property is set to 'IconEdge' then the text is centred and
only the icons are justified.

Chapter 4: Composite Controls 113

The TabFocus Property
The TabFocus property specifies the focus behaviour for the TabControl object.

TabFocus is a character vector that may be 'Normal' (the default), 'Never' or
'ButtonDown'.

If TabFocus is 'Normal', the tabs or buttons in a TabControl do not immediately
receive the input focus when clicked, but only when clicked a second time. This
means that, normally, when the user circulates through the tabs, the input focus will
be given to the appropriate control in the associated SubForm. However, if the user
clicks twice in succession on the same tab or button, the TabControl itself will
receive the input focus.

If TabFocus is 'ButtonDown', the tabs or buttons in a TabControl receive the
input focus when clicked.

If TabFocus is 'Never', the tabs or buttons in a TabControl never receive the input
focus. This allows the user to circulate through a set of tabbed SubForms without
ever losing the input focus to the TabControl itself.

114 Dyalog APL/W Interface Guide Version 14.0

The StatusBar Object
Like the Toolbar, the StatusBar object is also a container that manages its children.
However, the StatusBar may contain only one type of object, namely StatusFields.
By default, the StatusBar is a flat grey object, positioned along the bottom edge of a
Form, upon which the StatusFields are drawn as sunken rectangles. StatusFields dis-
play textual information and are typically used for help messages and for monitoring
the status of an application. They can also be used to automatically report the status
of the Caps Lock, Num Lock, Scroll Lock, and Insert keys

The following example illustrates a default StatusBar containing three StatusFields.
Notice how the StatusFields are positioned automatically.

'TEST'⎕WC'Form' 'Simple StatusBar'
'TEST' ⎕WS'BCol' (255 255 255)
'TEST.SB'⎕WC'StatusBar'
'TEST.SB.S1'⎕WC'StatusField' 'Field1:' 'text1'
'TEST.SB.S2'⎕WC'StatusField' 'Field2:' 'text2'
'TEST.SB.S3'⎕WC'StatusField' 'Field3:' 'text3'

A Default StatusBar

The following example illustrates a scrolling StatusBar. The fourth StatusField
extends beyond the right edge of the StatusBar and, because HScroll is ¯2, a mini
scrollbar appears.

'TEST'⎕WC'Form' 'Scrolling StatusBar'
('BCol' (255 255 255))

'TEST.SB'⎕WC'StatusBar'('HScroll' ¯2)

'TEST.SB.S1'⎕WC'StatusField' 'Field1:' 'text1'
'TEST.SB.S2'⎕WC'StatusField' 'Field2:' 'text2'
'TEST.SB.S3'⎕WC'StatusField' 'Field3:' 'text3'
'TEST.SB.S4'⎕WC'StatusField' 'Field4:' 'text4'

Chapter 4: Composite Controls 115

A Scrolling StatusBar

As an alternative to single-row scrolling StatusBar, you can have a multi-line one.
Indeed, this is the default if you omit to specify HScroll. However, you do have to
explicitly set the height of the StatusBar to accommodate the second row.

'TEST'⎕WC'Form' 'Multi Line StatusBar'
('BCol' (255 255 255))

'TEST.SB.S1'⎕WC'StatusField' 'Field1:' 'text1'
'TEST.SB.S2'⎕WC'StatusField' 'Field2:' 'text2'
'TEST.SB.S3'⎕WC'StatusField' 'Field3:' 'text3'
'TEST.SB.S4'⎕WC'StatusField' 'Field4:' 'text4'

A Multi-line StatusBar

116 Dyalog APL/W Interface Guide Version 14.0

Using StatusFields
There are basically three ways of using StatusFields. Firstly, you can display inform-
ation in them directly from your program by setting their Caption and/or Text prop-
erties. For example, if you are executing a lengthy calculation, you may wish to
display the word "Calculating ..." as the Caption of a StatusField and, as the cal-
culations proceed, display (say) "Phase 1" followed in due course by "Phase 2", and
so forth. You can also use StatusFields to display application messages, including
warning and error messages, where the use of a MsgBox is inappropriate.

The second major use of a StatusField is to display hintswhich you do by setting the
HintObj property of an object to the name of the StatusField. Used in this way, a
StatusField automatically displays context sensitive help when the user places the
mouse pointer over an object. This topic is described in Chapter 5.The third use of a
Status Field is to monitor the status of the keyboard. This is achieved by setting its
Style property to one of the following keywords:

Keyword Meaning

CapsLock Monitors state of Caps Lock key

ScrollLock Monitors state of Scroll Lock key

NumLock Monitors state of Num Lock key

KeyMode Monitors the keyboard mode (APL/ASCII) (Classic Edition only)

InsRep Monitors the state of the Insert/Replace toggle key

Chapter 4: Composite Controls 117

The following example illustrates different uses of the StatusField object. The first
StatusField F.SB.S1 is used for context-sensitive help by making it the HintObj for
the Form F. The second StatusField F.SB.S2 is simply used to display application
status; in this case "Ready ...". The third and fourth StatusField objects monitor the
status of the Insert and Caps Lock keys respectively. Note that whilst the Caps Lock,
Num Lock and Scroll Lock keys have a recognised state, the Insert key does not. Ini-
tially, APL sets the key to "Ins" and then toggles to and from "Rep" whenever the key
is pressed. To discover which mode the keyboard is in, you should use ⎕WG to read
the value of the Text property of the StatusField.

'F'⎕WC'Form' 'Using StatusFields'('Coord' 'Pixel')

'F.SB'⎕WC'StatusBar'

'F.SB.S1'⎕WC'StatusField'('Size'⍬ 150)
'F'⎕WS'HintObj' 'F.SB.S1'

'F.SB.S2'⎕WC'StatusField' 'Ready ...'
'F.SB.S3'⎕WC'StatusField'('Style' 'InsRep')('Size'⍬ 50)
'F.SB.S4'⎕WC'StatusField'('Style' 'CapsLock')('Size'⍬ 50)

'F.L'⎕WC'List'WINES(0 0)(F.Size×0.8 1)('Hint' 'Choose a W
ine')

118 Dyalog APL/W Interface Guide Version 14.0

119

Chapter 5:

Hints and Tips

In many applications it is often a good idea to provide short context-sensitive help
messages that tell the user what action each control (menuitem, button and so forth)
performs. It is conventional to do this by displaying a message when the user points
to a control with the mouse. The provision of this facility is particularly helpful for
users who are not familiar with your application or who use it only occasionally.
Constant prompting can however become irritating for an experienced user, so it is a
good idea to provide a means to disable it.

Dyalog APL/W provides two mechanisms, hints and tips, that make the provision of
context-sensitive help very easy and efficient to implement.Hints are help messages
displayed in a fixed region, typically a field in a status bar, that is reserved for the pur-
pose. For example, when the user browses through a menu, a message describing
each of the options may be displayed in the status bar. The user has only to glance at
the status bar to obtain guidance. Tips are similar, but instead of being displayed in a
fixed location, they are displayed as pop-up messages over the control to which they
refer. The choice of using hints or tips is a matter of taste and indeed many applic-
ations feature both.

Using Hints
All of the GUI objects supported by Dyalog APL that have a visible presence on the
screen have a Hint property and a HintObj property. Quite simply, when the user
moves the mouse pointer over the object the contents of its Hint property are dis-
played in the object referenced by its HintObj property. When the user moves the
mouse pointer away from the object, its Hint disappears. If an object has a Hint, but
its HintObj property is empty, the system uses the HintObj defined for its parent, or
for its parent’s parent, and so forth up the tree. If there is no HintObj defined, the Hint
is simply not displayed. This mechanism has two useful attributes:

120 Dyalog APL/W Interface Guide Version 14.0

1. it allows you to easily define a single region for help messages for all of the
controls in a Form, but still provides the flexibility for using different mes-
sage locations for different controls if appropriate.

2. to enable or disable the display of hints all you typically have to do is to
set or clear the HintObj property on the parent Form

The object named by HintObj may be any object with either a Caption property or a
Text property. Thus you can use the Caption on a Label, Form, or Button or the text
in an Edit object. If you use a StatusField object which has both Caption and Text
properties, the Text property is employed. If you set HintObj to the name of an object
which possesses neither of these properties, the hints will simply not be displayed.
The following example illustrates the use of a StatusField for displaying hints.

Example: Using a StatusField for Hints
This example illustrates the use of a StatusField object to display hints. .

'Test'⎕WC 'Form' 'Using Hints'('HintObj' 'Test.SB.H')

'Test.MB' ⎕WC 'MenuBar'
'Test.MB.F' ⎕WC 'Menu' '&File'
HINT ← 'Creates a new empty document'
'Test.MB.F.New' ⎕WC 'MenuItem' '&New' ('Hint' HINT)

'Test.SB' ⎕WC 'StatusBar'
'Test.SB.H' ⎕WC 'StatusField' ('Size' ⍬ 98)

Using a StatusBar to display Hints

Chapter 5: Hints and Tips 121

Example: Using an Edit Object for Hints
You can display a much larger amount of information using a multi-line Edit object
as shown in this example.

'Test'⎕WC 'Form' 'Using Hints' ('HintObj' 'Test.ED')
'Test.MB' ⎕WC 'MenuBar'
'Test.MB.F' ⎕WC 'Menu' '&File'
HINT ← 100⍴'Creates a new empty document '
'Test.MB.F.New' ⎕WC 'MenuItem' '&New' ('Hint' HINT)

'Test.ED' ⎕WC 'Edit' ('Style' 'Multi')

Displaying Hints in an Edit object

122 Dyalog APL/W Interface Guide Version 14.0

Using Tips
Tips work in a very similar way to Hints. Most of the GUI objects that have a visible
presence on the screen have a Tip property and a TipObj property. Exceptions are
Menus, MenuItems and other pop-up objects. The TipObj property contains the
name of a TipField object. This is a special kind of pop-up object whose sole purpose
is to display tips. When the user moves the mouse pointer over the object the cor-
responding TipField appears displaying the object’s Tip. When the mouse pointer
moves away from the object, the TipField disappears. If an object has a Tip, but its
TipObj property is empty, the system uses the TipObj defined for its parent, or for its
parent’s parent, and so forth up the tree. If there is no TipObj defined, the Tip is
simply not displayed. Normally, you need only define one TipField for your applic-
ation, but if you want to use different colours or fonts for individual tips, you may
define as many different TipFields as you require. Again, it is very simple to turn tips
on and off.

Example
This example shows how easy it is to associate a tip with an object, in this case a But-
ton.

'Test'⎕WC 'Form' 'Using Tips'('TipObj' 'Test.Tip')
'Test.Tip' ⎕WC 'TipField'
'Test.B' ⎕WC 'Button' '&Ok' ('Tip' 'Press Me')

Using Tips

Chapter 5: Hints and Tips 123

Hints and Tips Combined
There is no reason why you cannot provide Hints and Tips. The next exampleshows
how an object, in this case a Combo, can have both defined.

Example
'Test'⎕WC 'Form' 'Using Hints and Tips'

'Test.SB' ⎕WC 'StatusBar'
'Test.SB.H' ⎕WC 'StatusField' ('Size' ⍬ 98)
'Test' ⎕WS 'HintObj' 'Test.SB.H'

'Test.Tip' ⎕WC 'TipField'
'Test' ⎕WS 'TipObj' 'Test.Tip'

'Test.C' ⎕WC 'Combo' WINES
'Test.C' ⎕WS 'Hint' 'Select your wine from this

list'
'Test.C' ⎕WS 'Tip' 'Wine Cellar'

Hints and Tips Combined

124 Dyalog APL/W Interface Guide Version 14.0

125

Chapter 6:

Using the Grid Object

The Grid object allows you to display information in a series of rows and columns
and lets the user input and change the data. The Grid has four main components; a
matrix of cells that represents the data, a set of row titles, a set of column titles, and a
pair of scroll bars. The following picture illustrates these components. The scroll bars
scroll the data cells and either the row or column titles. The row titles remain fixed in
place when the data cells scroll horizontally and the column titles stay fixed when
the data is scrolled vertically.

The components of the Grid object

126 Dyalog APL/W Interface Guide Version 14.0

Defining Overall Appearance
By default, the Grid inherits its font from the parent Form, or ultimately, from the
Root object. This defaults to yourWindows System font.

You can change the font for the Grid as a whole using its FontObj property. This font
will be used for the row titles, column titles and for the data. You can separately
define the font for the data using the CellFonts property. Thus, for example, if you
wanted to use Helvetica 12 for the titles and Arial 10 for the data, you could do so as
follows:

'Test.G' ⎕WS 'FontObj' 'Helvetica' 12

'Test.CF' ⎕WC 'Font' 'Arial' 10
'Test.G' ⎕WS 'CellFonts' 'Test.CF'

The FCol and BCol properties specify the foreground and background colours for the
text in the data cells. The default colour scheme is black on white. FCol and BCol
may define single colours which refer to all the cells, or a set of colours to be applied
to different cells

The colour of the gridlines is specified by GridFCol. To draw a Grid with no grid-
lines, set GridFCol to the same colour as is defined by BCol.

If the Grid is larger than the space occupied by the data cells, GridBCol specifies the
colour used to fill the area between the end of the last column of data and the right
edge of the Grid, and between the bottom row of data and the bottom edge of the
Grid.

The ClipCells property determines whether or not the Grid displays partial cells. The
default is 1. If you set ClipCells to 0, the Grid displays only complete cells and auto-
matically fills the space between the last visible cell and the edge of the Grid with
the GridBCol colour.

The following example shows a default Grid (ClipCells is 1) in which the third
column of data is in fact incomplete (clipped), although this is by no means apparent
to the user.

Chapter 6: Using the Grid Object 127

This second picture shows the effect on the Grid of setting ClipCells to 0 which pre-
vents such potential confusion.

Row and Column Titles
Row and column titles are defined by the RowTitles and ColTitles properties, each
of which is a vector of character arrays. An element of RowTitles and ColTitles may
be a character vector specifying a 1-row title, or a matrix or vector of vectors which
specify multi-row titles.

The height of the area used to display column titles is specified by the TitleHeight
property. The width of the area used to display row titles is defined by the
TitleWidth property. The alignment of text within the title cells is defined by
RowTitleAlign and ColTitleAlign and the colour of the text is specified by
RowTitleFCol and ColTitleFCol.

Multi-level titles are also possible and are defined by the RowTitleDepth and
ColTitleDepth properties. An example of what can be achieved is shown below.

128 Dyalog APL/W Interface Guide Version 14.0

∇ HierarchicalTitles;Q1;Q2;Q3;Q4;TITLES;CDEPTH
[1] 'F'⎕WC'Form' ''('Size' 313 362)('Coord' 'Pixel')
[2] F.Caption←'Hierarchical Titles'
[3] 'F.G'⎕WC'Grid'(?12 6⍴100)(0 0)F.Size
[4] F.G.(TitleWidth TitleHeight CellWidths)←120 60 40
[5] Q1←'Q1' 'Jan' 'Feb' 'Mar'
[6] Q2←'Q2' 'Apr' 'May' 'Jun'
[7] Q3←'Q3' 'Jul' 'Aug' 'Sep'
[8] Q4←'Q4' 'Oct' 'Nov' 'Dec'
[9] TITLES←(⊂'2013'),Q1,Q2,Q3,Q4
[10] CDEPTH←0,16⍴1 2 2 2
[11] F.G.(RowTitles RowTitleDepth)←TITLES CDEPTH
[12] F.G.RowTitleAlign←'Centre'
[13] TITLES←'Wine' 'Red' 'White'
[14] TITLES,←'Champagne' 'Red' 'White' 'Rose'
[15] TITLES,←⊂↑'Beer' ' and' 'Cider'
[16] CDEPTH←0 1 1 0 1 1 1 0
[17] F.G.(ColTitles ColTitleDepth)←TITLES CDEPTH

∇

Chapter 6: Using the Grid Object 129

Displaying and Editing Values in Grid Cells
The Grid can display the value in a cell directly (as in Fig 7.1) or indirectly via an
associated object. You do not (as you might first expect) define input and validation
characteristics for the cells directly, instead you do so indirectly through associated
objects. Objects are associated with Grid cells by the Input property. If a cell has an
associated object, its value is displayed and edited using that object. Several types of
object may be associated with Grid cells, including Edit, Label, Button (Push, Radio
and Check), and Combo objects. You can use a single associated object for the entire
Grid, or you can associate different objects with individual cells.

Edit and Label objects impose formatting on the cells with which they are associated
according to the values of their FieldType and Decimal properties (for numbers, dates
and time) and their Justify property (for text). In addition, Label objects protect cells
(because a Label has no input mechanism), while Edit objects impose input val-
idation. If you use an Edit object with a FieldType of Numeric, the user may only
enter numbers into the corresponding cells of the Grid. For both Edit and Label
objects, the FieldType and Decimals properties of the object are used to format the
data displayed in the corresponding cells of the Grid. For example, if the FieldType
property of the associated object is Date, the numeric elements in Values will be dis-
played as dates.

Numeric cells may also be formatted using the FormatString property which applies
⎕FMT format specifications to the data. The AlignChar property permits formatted
data to be aligned in a column. For example, you can specify that numbers in a
column are aligned on their decimal points.

Combo objects can be used to allow the user to select a cell value from a set of altern-
atives. Radio and Check Buttons may be used to display and edit Boolean values.

Associated Edit, Label and Combo objects may be external to the Grid (for example,
you can have the user type values into a companion edit field) or they may be
internal. Internal objects (which are implemented as children of the Grid) float from
cell to cell and allow the data to be changed in-situ. Button, Spinner and TrackBar
objects may only be internal.

130 Dyalog APL/W Interface Guide Version 14.0

Using a Floating Edit Field
If the Edit object specified by Input is owned by (i.e. is a child of) the Grid itself, the
Edit object floats from cell to cell as the user moves around the Grid. For example, if
the user clicks on the cell addressed by row 4, column 3, the Edit object is auto-
matically moved to that location and the data in that cell is copied into it ready for
editing. When the user moves the focus away from this cell, the data in the Edit
object is copied back into it (and into the corresponding element of the Values prop-
erty) before the Edit object is moved away to the new cell location. This mechanism
provides in-situ editing. Continuing the example illustrated in Figure 7.1, in-situ edit-
ing could be achieved as follows:

'Test.G.ED' ⎕WC 'Edit' ('FieldType' 'Numeric')
'Test.G' ⎕WS 'Input' 'Test.G.ED'

In-situ editing provides two input modes; Scroll and InCell. In Scroll mode the cursor
keys move from one cell to another. In InCell mode, the cursor keys move the cursor
a character at a time within the cell; to switch to a new cell, the user must press the
Tab key or use the mouse. The InputMode property allows you to control the input
mode directly or to allow the user to switch from one to another. In the latter case, the
user does so by pressing a key defined by the InputModeKey property or by double-
clicking the left mouse button.

Using a Fixed Edit Field
A different style of editing may be provided by specifying the name of an external
Edit object that you have created. This can be any Edit object you wish to use; it
need not even be owned by the same Form as the Grid. In this case, the Edit object
remains stationary (wherever you have positioned it), but as the user moves the
focus from cell to cell, the cell contents are copied into it and made available for edit-
ing. The current cell is identified by a thick border. When the user shifts the focus ,
the data is copied out from the Edit object into the corresponding cell before data in
the newly selected one is copied in. Continuing the example illustrated in Figure 7.1,
external editing could be achieved as follows:

'Test.ED' ⎕WC 'Edit' ('FieldType' 'Numeric')
'Test.G' ⎕WS 'Input' 'Test.ED'

Chapter 6: Using the Grid Object 131

Using Label Objects
If Input specifies a Label object, it too may either be a child of the Grid or an external
Label. A Label is useful to format cell data (through its FieldType property) and to
protect cells from being changed

If the Label is a child of the Grid, it floats from cell to cell in the same way as a float-
ing Edit object. However, unlike the situation with other objects, the row and
column titles are not indented to help identify the current cell. If the Label is bor-
derless (which is the default) and has the same font and colour characteristics of the
cells themselves, the user will receive no visual feedback when a corresponding cell
is addressed, even though the current cell (reflected by the CurCell property) does in
fact change. Therefore, if you want to protect the data by using a Label and you want
the user to be able to identify the current cell, you should give the Label a border, a
special colour scheme or a special font.

Using Combo Objects
A Combo object is used to present a list of choices for a cell. Although you may use
an external Combo, internal Combos are more suitable for most applications. If dif-
ferent cells have different sets of choices, you can create several Combo objects, each
with its own set of Items and associate different cells with different Combos through
the CellTypes property. Alternatively, you can use a single Combo and change Items
dynamically from a callback on the CellMove event. In all cases, the value in the cell
corresponds to the Text property of the Combo.

If you use a floating Combo, the appearance of the non-current cells depends upon
the value of the ShowInput property. If ShowInput is 0 (the default), the non-current
cells are drawn in the standard way as if there were no associated input object. If
ShowInput is 1, the non-current cells are given the appearance of a Combo, although
the system does not actually use Combos to do so. Furthermore, there is a subtle dif-
ference in behaviour. If ShowInput is 0, the user must click twice to change a value;
once to position the Combo on the new cell and again to drop its list box. If ShowIn-
put is 1, the user may drop the list box with a single click on the cell.

Note that ShowInput may be a scalar that applies to the whole Grid, or a vector
whose elements applies to different cells through the CellType property.

The following Grid uses two internal Combo objects for the Job Title and Region
columns, but with ShowInput set to 0. Only the current cell has Combo appearance.

132 Dyalog APL/W Interface Guide Version 14.0

∇ Employees;Surname;JobTitle;Region;Salary;DATA;Jobs;Regions
[1] 'F'⎕WC'Form' ''('Size' 126 401)('Coord' 'Pixel')
[2] F.Caption←'Employee DataBase'
[3] Surname←'Brown' 'Jones' 'Green' 'Black' 'White'
[4] JobTitle←'Manager' 'Project Leader' 'Consultant'
[5] JobTitle,←'Programmer' 'Assistant'
[6] Region←'South' 'South' 'South' 'East' 'Central'
[7] Salary←64000 43250 45000 30000 4000
[8] DATA←↑[0.5]Surname JobTitle Region Salary
[9] 'F.G'⎕WC'Grid'DATA(0 0)F.Size
[10] Jobs←JobTitle
[11] Regions←'North' 'South' 'East' 'West' 'Central'
[12] 'F.G.JobTitle'⎕WC'Combo'Jobs
[13] 'F.G.Region'⎕WC'Combo'Regions
[14] 'F.G.Salary'⎕WC'Label'('FieldType' 'Currency')
[15] F.G.Input←'' 'F.G.JobTitle' 'F.G.Regions' 'F.G.Salary'
[16] F.G.CellTypes←(⍴F.G.Values)⍴1 2 3 4
[17] F.G.TitleWidth←0
[18] F.G.ColTitles←'Surname' 'Job Title' 'Region' 'Salary'

∇

The same Grid with ShowInput set to 1 is illustrated below. In this case, all of the
cells associated with Combo objects have Combo appearance.

F.G.ShowInput
0

F.G.ShowInput←1

Chapter 6: Using the Grid Object 133

Using Radio and Check Button Objects
Radio and Check Buttons behave in a similar way to Combo objects except that they
may only be used internally. The value in the cell associated with the Button must be
0 or 1 and corresponds to the Button’s State property. The value is toggled by click-
ing the Button.

If ShowInput is 0, the user must click twice to change a value; once to position the
(floating) Button on the cell, and a second time to toggle its state. If ShowInput is 1,
the user may change cell values directly with a single click. Note that this may be
undesirable in certain applications because the user cannot click on a cell without
changing its value.

By default, the value of the EdgeStyle property for a Radio or Check Button which is
created as the child of a Grid is 'None', so you must set EdgeStyle explicitly to
'Plinth' if a 3-dimensional appearance is required.

You can refine the appearance of the Radio or Check Button using its Align prop-
erty. This may be set to 'Left', 'Right' or 'Centre' (and 'Center'). The lat-
ter causes the symbol part of the Button (the circle or checkbox) to be centred within
the corresponding Grid cell(s) but should only be used if the Caption property is
empty.

The following illustrates different values for the Align property using Check But-
tons.

∇ AlignedCheckBoxes;CStyle
[1] 'F'⎕WC'Form' 'Aligned Check Boxes in a Grid'
[2] 'F.G'⎕WC'Grid'(¯1+?10 3⍴2)(0 0)(100 100)('ShowInput' 1)
[3] CStyle←('Style' 'Check')('EdgeStyle' 'Plinth')
[4] 'F.G.C1'⎕WC'Button' 'Left',CStyle,('Align' 'Left')
[5] 'F.G.C2'⎕WC'Button' '',CStyle,('Align' 'Centre')
[6] 'F.G.C3'⎕WC'Button' 'Right',CStyle,('Align' 'Right')
[7]
[8] 'F.G'⎕WS'Input'('F.G.C1' 'F.G.C2' 'F.G.C3')
[9] 'F.G'⎕WS'CellTypes'(10 3⍴1 2 3)

∇

134 Dyalog APL/W Interface Guide Version 14.0

Specifying Individual Cell Attributes
The FCol, BCol, CellFonts and Input properties can be used to specify attributes of
individual cells. One possible design would be for these properties to be matrices
like the Values property, each of whose elements corresponded to a cell in the Grid.
However, although conceptually simple, this design was considered to be wasteful
in terms of workspace, especially as it is unlikely that every cell will require a totally
individual set of attributes. Instead, FCol, BCol, CellFonts and Input either specify a
single attribute to be applied to all cells, or they specify a vector of attributes which
are indexed through the CellTypes property. This design is slightly more complex to
use, but minimises the workspace needed to represent cell information.

CellTypes is an integer matrix of the same size as Values. Each number in CellTypes
defines the type of the corresponding cell, where typemeans a particular set of cell
attributes defined by the BCol, FCol, CellFonts and Input properties.

If an element of CellTypes is 0 or 1, the corresponding cell is displayed using the nor-
mal value of each of the FCol, BCol, CellFonts and Input properties. The normal
value is either the value defined by its first element or, if the property has not been
specified, its default value.

If an element of CellTypes is greater than 1, the corresponding element of each of the
FCol, BCol, CellFonts and Input properties is used. However, if a particular property
applies to all cells, you need only specify one value; there is no need to repeat it.
This mechanism is perhaps best explained by using examples.

Chapter 6: Using the Grid Object 135

Example 1

Suppose that you want to use a Grid to display a numeric matrix DATA and you want
to show elements whose value exceeds 150 with a grey background. Effectively,
there are 2 different types of cell; normal white ones and dark grey ones. This can be
achieved as follows:

DATA←?12 3⍴300
'F'⎕WC'Form' 'Example 1'
'F.G'⎕WC'Grid'DATA(0 0)F.Size
'F.G'⎕WS'CellTypes'(1+DATA>150)
'F.G'⎕WS'BCol'(192 192 192)(128 128 128)

136 Dyalog APL/W Interface Guide Version 14.0

Example 2
Continuing on from the first example, suppose that in addition, you want to show val-
ues that exceed 200 with a white background, but using a bold font. Now you have 3
types of cell; white background with normal font, grey background with normal font,
and white background with bold font. This can be done as follows:

CT←(DATA>200)+1+DATA>100
'F.G'⎕WS'CellTypes'CT
COL←(255 255 255)(192 192 192)(255 255 255)
'F.G'⎕WS'BCol'COL
'Normal'⎕WC'Font' 'Arial' 16
'Bold'⎕WC'Font' 'Arial' 16('Weight' 1000)
'F.G'⎕WS'CellFonts' 'Normal' 'Normal' 'Bold'

Chapter 6: Using the Grid Object 137

Example 3
This is a more complex example that introduces different uses of the Input property
to handle numeric and date cells. Suppose that you wish to display the names, date of
birth, and salaries of some people. The user may edit the salary and date of birth, but
not the name. Salaries in excess of $19,999 are to be shown in bold

This means that we need 4 types of cell; the "names" cells, the "date of birth" cells,
the cells containing salaries below $20,000 and those cells containing $20,000 or
more. The Input property must specify 3 different objects; a Label for the protected
"names" cells, an Edit object for the "date" cells, and a different Edit object for the
salaries. The CellFonts property must specify the two different fonts required; normal
and bold.

'F'⎕WC'Form' 'Example 3'
'F.G'⎕WC'Grid'('Posn' 0 0)F.Size
'F.G'⎕WS'Values'(↑[0.5]NAMES BIRTHDATES SALARIES)

CT←1,2,[1.5]3+SALARIES>19999
'F.G'⎕WS'CellTypes'CT

'F.G.Name'⎕WC'Label'('FontObj' 'Normal')
'F.G.Date'⎕WC'Edit'('FieldType' 'Date')
'F.G.Sal'⎕WC'Edit'('FieldType' 'Currency')
INPUTS←'F.G.Name' 'F.G.Date',2⍴⊂'F.G.Sal'
'F.G'⎕WS'Input'INPUTS

'Normal'⎕WC'Font' 'Arial' 16
'Bold'⎕WC'Font' 'Arial' 16('Weight' 1000)
FONTS←(3⍴⊂'Normal'),⊂'Bold'
'F.G'⎕WS'CellFonts'FONTS

138 Dyalog APL/W Interface Guide Version 14.0

Drawing Graphics on a Grid
You may draw graphics on a Grid by creating graphical objects (Circle, Ellipse,
Image, Marker, Poly, Rect and text) as children of the Grid.

For the Grid (but only for the Grid) the Coord property may be set to 'Cell' as an
alternative to 'Prop', 'Pixel' or 'User'. This allows you to easily position
graphical objects relative to individual cells or ranges of cells. The origin of the Grid
(0,0) is deemed to be the top left corner of the data (i.e. the area inside the row and
column titles). In Cell co-ordinates, the value (1,1) is therefore the bottom right
corner of the first cell. Regardless of the coordinate system, graphical objects scroll
with the data.

The following example illustrates how to draw a box around the cells in rows 2 to 4
and columns 3 to 6.

'F'⎕WC'Form' 'Graphics on a Grid'('Coord' 'Pixel')
'F.G'⎕WC'Grid'(?10 10⍴100)(0 0)F.Size('CellWidths' 40)
'F.G.L'⎕WC'Rect'(1 2)(3 4)('LWidth' 4)('Coord' 'Cell')

Chapter 6: Using the Grid Object 139

The OnTop property of the graphical object controls how it is drawn relative to the
grid lines and cell text. For graphical objects created as a child of a Grid, OnTop may
be 0, 1 or 2.

0 Graphical object is drawn behind grid lines and cell text

1 Graphical object is drawn on top of grid lines but behind cell text

2 Graphical object is drawn on top of grid lines and cell text

140 Dyalog APL/W Interface Guide Version 14.0

The following example shows the effect of the OnTop property on how an Image is
drawn on a Grid.

'F'⎕WC'Form' 'Graphics on a Grid'('Coord' 'Pixel')
'F.G'⎕WC'Grid'(?10 10⍴100)(0 0)F.Size('CellWidths' 40)
DyalogDir←2 ⎕NQ'.' 'GetEnvironment' 'Dyalog'
'F.M'⎕WC'MetaFile'(DyalogDir,'\WS\DOLLAR')
'F.G.I'⎕WC'Image'(0 0)('Size' 10 10)('Coord' 'Cell')

'F.G.I'⎕WS('Picture' 'F.M')('Ontop' 0)

Chapter 6: Using the Grid Object 141

F.G.I.OnTop←1

F.G.I.OnTop←2

142 Dyalog APL/W Interface Guide Version 14.0

Controlling User Input
The Grid object is designed to allow you to implement simple applications with very
little programming effort. You merely present the data to be edited by setting the Val-
ues property and then get it back again once the user has signalled completion. The
validation imposed by the associated Edit object(s) will prevent the user from enter-
ing invalid data and your program can leave the user interaction to be managed
entirely by APL. However, for more sophisticated applications, the Grid triggers
events which allow your program to respond dynamically to user actions.

Moving from Cell to Cell
When the user moves from one cell to another, the Grid generates a CellMove event.
This reports the co-ordinates (row and column) of the newly selected cell. The
CellMove event serves two purposes. Firstly, it allows you to take some special
action when the user selects a particular cell. For example, you could display a
Combo or List object to let the user choose a new value from a pre-defined set, then
copy the selected value into the cell. Secondly, the CellMove event provides the
means for you to position the user in a particular cell under program control, using
⎕NQ.

Changing Standard Validation Behaviour
Input validation is provided by the Edit object associated with a cell. By default, the
built-in validation will prevent the user from leaving the cell should the data in that
cell be invalid. For example, if the FieldType is 'Date' and the user enters 29th
February and a non-leap year, APL will beep and not allow the user to leave the cell
until a valid date has been entered If you wish instead to take some other action, for
example display a message box, you should use the CellError event. This event is
generated immediately the user attempts to move to another cell when the data in the
current cell is invalid. The event is also generated if the user selects a MenuItem,
presses a Button or otherwise changes the focus away from the current cell.

The CellError event reports the row and column number of the current cell, the
(invalid) text string in that cell, the name of the object to which the user has trans-
ferred attention or the co-ordinates of the new cell selected. The default action of the
event is to beep, so to disable the beep your callback function should return a 0. If
you wish to allow the user to move to a different cell, you must do so explicitly by
generating a CellMove event using ⎕NQ or by returning a CellMove event as the res-
ult of the callback.

Chapter 6: Using the Grid Object 143

Reacting to Changes
If enabled, the Grid object generates a CellChange event whenever the user alters
data in a cell and then attempts to move to another cell or otherwise shifts the focus
away from the current cell. This allows you to perform additional validation or to trig-
ger calculations when the user changes a value. The CellChange event reports the co-
ordinates of the current cell and the new value, together with information about the
newly selected cell or the external object to which the focus has changed.

The default action of the CellChange event is to replace the current value of the cell
with the new one. If you wish to prevent this happening, your callback function must
return a 0. If in addition you wish the focus to remain on the current cell, you must do
this explicitly by using the CellMove event to reposition the current cell back to the
one the user has attempted to leave.

Restoring User Changes
The Grid object supports an Undo method which causes the last change made by the
user to be reversed. This method can only be invoked under program control using
⎕NQ and cannot be directly generated by the user. If you want to provide an undo
facility, it is recommended that you attach a suitable callback function to a
MenuItem or a Button. To perform an undo operation, the callback function should
then generate an Undo event for the Grid object.

Updating Cell Data
You can change the entire contents of the Grid by resetting its Values property with
⎕WS. However, this will causes the entire Grid to be redrawn and is not to be recom-
mended if you only want to change one cell or just a few cells.

You can change the value in a particular cell by using ⎕NQ to send a CellChange
event to the Grid. For example, if you want to alter the value in row 2 column 3 of
the Grid object called Test.G to 42, you simply execute the following statement :

⎕NQ 'Test.G' 'CellChange' 2 3 42

To update an entire row or column of data you can use the RowChange and
ColChange events. For example, to change all 12 columns of row 500 to the 12-ele-
ment vector TOTAL, you could execute :

⎕NQ 'Test.G' 'RowChange' 500 TOTAL

144 Dyalog APL/W Interface Guide Version 14.0

Deleting Rows and Columns
You can delete a row or column by using ⎕NQ to send a DelRow or DelCol message
to the Grid object. For example, the following statement deletes the 123rd row from
the Grid object Test.G. Note that if you have specified it, the corresponding ele-
ment of RowTitles is removed too.

⎕NQ 'Test.G' 'DelRow' 123

Inserting Rows and Columns
You can insert or add a row or column using the AddRow or AddCol method. You
must specify the following information.

row or column number
title (optional)
height or width (optional)
undo flag (optional)
resize flag (optional)
title colour (optional)
gridline type (optional)

The event message must specify the number of the row or column you wish to insert.
This is index-origin dependent and indicates the number that the row or column will
have after it has been inserted. For example, if ⎕IO is 1 and you wish to insert a row
between the 10th and 11th rows, you specify the number of the row to be inserted as
11. If you wish to insert a new column before the first one, you specify a column num-
ber of 1. To append a row or column to the end of the Grid, you should specify 1 +
the current number of rows or columns.

If you have specified RowTitles or ColTitles, the message may include a title for the
new row or column and this will be inserted in RowTitles or ColTitles as appro-
priate. If you fail to supply a new title, an empty vector will be inserted in RowTitles
or ColTitles for you. If you are using default row and column headers and you have
not specified RowTitles or ColTitles, any title you supply will be ignored. In this
case the rows and columns will be re-labelled automatically.

If you have set CellHeights or CellWidths to a vector, the AddRow or AddCol event
message may include the height or width of the new row or column being inserted. If
you fail to supply one or you specify a value of ¯1 the default value will apply. Note
that setting the height or width to 0 is allowed and will cause the new row or column
to be invisible. If CellHeights or CellWidths has not been specified or is a scalar, the
new row or column will be given the same height or width as the others and any
value that you specify is ignored.

Chapter 6: Using the Grid Object 145

The undo flag indicates whether or not the insertion will be added to the undo stack
and may therefore be subsequently undone. Its default value is 1.

If the data in the Grid is entirely numeric, the new row or column will be filled with
zeros. If not, it will be filled with empty character vectors. If you want to set the row
or column data explicitly, you should invoke the ChangeRow or ChangeCol imme-
diately after the AddRow or AddCol event. The ChangeRow and ChangeCol event
require just the row or column number followed by the new data.

The following example adds a new row entitled "Chateau Latour" to a Grid object
called Test.G. The first statement adds a new row between rows 122 and 123 (it
becomes row 123) of the Grid. It will be of default height (or the same as all the other
rows) and the change may not be undone (the undo flag is 0). The second statement
sets the data in the new row to the values defined by the vector LATOUR_SALES.

⎕NQ 'Test.G' 'AddRow' 123 'Chateau Latour' ¯1 0
⎕NQ 'Test.G' 'ChangeRow' 123 LATOUR_SALES

146 Dyalog APL/W Interface Guide Version 14.0

TreeView Feature
Introduction
The Grid can display a TreeView like interface in the row titles and automatically
shows and hides row of data as the user expands and contracts nodes of the tree.

RowTreeDepth property
The tree structure is specified by the RowTreeDepth property This is either a scalar 0
or an integer vector of the same length as the number of rows in the grid.
RowTreeDepth is similar to the Depth property of the TreeView object.

Each element of RowTreeDepth specifies the depth of the corresponding row of the
Grid. A value of 0 indicates that the row is a top-level row. A value of 1 indicates
that the corresponding row is a child of the most recent row whose RowTreeDepth is
0; a value of 2 indicates that the corresponding row is a child of the most recent row
whose RowTreeDepth is 1, and so forth.

The picture below illustrates the initial appearance of a Grid with TreeView beha-
viour. Notice that at first only the top-level rows are displayed.

The tree structure is defined on TreeGrid[26]. In this example, the Grid has top-
level rows (RowTreeDepth of 0) that contain annual totals. The second-tier rows
(RowTreeDepth of 1), contain quarterly totals, while the third-tier rows
(RowTreeDepth of 2) contain monthly figures.

Chapter 6: Using the Grid Object 147

∇ TreeGrid;SIZE;YR;YRS;DATA;MDATA;QDATA;YDATA;IX
[1] SIZE←126 381
[2] 'F'⎕WC'Form' 'Grid: TreeView Feature'

('Coord' 'Pixel')
[3] F.Size←SIZE
[4] 'F.MB'⎕WC'MenuBar'
[5] 'F.MB.View'⎕WC'Menu' 'View'
[6] 'F.MB.View.Expand1'⎕WC'MenuItem' 'Expand Years'
[7] 'F.MB.View.Expand1'⎕WS'Event' 'Select'

'⍎F.G.RowSetVisibleDepth 1'
[8] 'F.MB.View.Expand2'⎕WC'MenuItem' 'Expand All'
[9] 'F.MB.View.Expand2'⎕WS'Event' 'Select'

'⍎F.G.RowSetVisibleDepth 2'
[10] 'F.MB.View.Collapse'⎕WC'MenuItem' 'Collapse All'
[11] 'F.MB.View.Collapse'⎕WS'Event' 'Select'

'⍎F.G.RowSetVisibleDepth 0'
[12] 'F.G'⎕WC'Grid'('Posn' 0 0)SIZE
[13] F.G.(TitleWidth CellWidths←80 60)
[14] YR←'Q1' 'Jan' 'Feb' 'Mar' 'Q2' 'Apr' 'May' 'Jun'
[15] YR,←'Q3' 'Jul' 'Aug' 'Sep' 'Q4' 'Oct' 'Nov' 'Dec'
[16] YRS←'2000' '2001' '2002' '2003' '2004'
[17] F.G.RowTitles←⊃,/(⊂¨YRS),¨⊂YR
[18] MDATA←12 5⍴5/100+⍳12
[19] YDATA←+⌿MDATA
[20] QDATA←(3+/[1]MDATA)[1 4 7 10;]
[21] MDATA←((⍴YR)⍴0 1 1 1)⍀MDATA
[22] MDATA[1 5 9 13;]←QDATA
[23] YDATA←YDATA,[1]MDATA
[24] DATA←⊃,[1]/1 1.1 1.2 1.3 1.4×⊂YDATA
[25] F.G.Values←DATA
[26] F.G.RowTreeDepth←(⍴F.G.RowTitles)⍴0,(⍴YR)⍴1 2 2 2

∇

148 Dyalog APL/W Interface Guide Version 14.0

When the user clicks on one of the nodes indicated by a "+" symbol, the Grid auto-
matically expands to display the rows at the next level below that node. At the same
time, an Expanding event is generated. In the next picture, the user has clicked on the
2001 node and, below that, the Q3 node.

RowSetVisibleDepth Method
The Grid provides a RowSetVisibleDepth method that provides tier-level control
over which rows are displayed.

The value of its argument is an integer that specifies the depth of rows to be dis-
played. The Grid displays all rows whose RowTreeDepth values are less than or
equal to this value. In the example, this method is called by items on the View menu.

Chapter 6: Using the Grid Object 149

The next picture shows how the Grid is displayed after choosing Expand Years from
the View menu. Notice that, as specified by TreeGrid[6] this menu item simply
executes the RowSetVisibleDepth method with an argument of 1.

150 Dyalog APL/W Interface Guide Version 14.0

Similarly, the Expand All item executes RowSetVisibleDepth 2, as specified by
TreeGrid[7] and this causes the Grid to display all rows up to and including
RowTreeDepth of 2 as shown below.

Note that the Collapse All item executes RowSetVisibleDepth 0, which causes only
the top-level rows to be displayed.

You may open specific nodes by invoking the Expanding event as a method.

Fine control over the appearance of the tree is provided through the RowTreeImages
and RowTreeStyle properties. See Object Reference for further details.

Chapter 6: Using the Grid Object 151

Grid Comments
Introduction
Grid comments are implemented in a manner that is consistent with the way com-
ments are handled in Microsoft Excel.

If a comment is associated with a cell, a small red triangle is displayed in its top right
corner. When the user rests the mouse pointer over a commented cell, the comment is
displayed as a pop-up with an arrow pointing back to the cell to which it refers. The
comment disappears when the mouse pointer is moved away. This is referred to as tip
behaviour.

It is also possible to display and hide comments under program control. A comment
window displayed under program control does not (normally) disappear auto-
matically when the user moves the mouse, but instead must be hidden explicitly. It is
therefore possible to have several comments visible.

Implementation
Because comments are typically sparse, this facility is implemented by a small set of
methods rather than as a property, and comments are stored internally in data struc-
tures that minimise storage space. The following methods and events are provided.

Event/Method Number Description

AddComment 220 Associates a comment with a cell

DelComment 221 Deletes the comment associated with a particular
cell

GetComment 222 Retrieves the comment associated with a given
cell

ShowComment 223 Displays a comment either as a pop-up or on-top
window

HideComment 224 Hides a comment

ClickComment 225 Reported when user clicks the mouse on a
comment window

A comment is described by its text content and the size of the window in which it
appears. The text may optionally be Rich Text (RTF) such as that produced by the
value of the RTFText property of a RichEdit object. The size of the window is spe-
cified in pixels.

152 Dyalog APL/W Interface Guide Version 14.0

AddComment Method
This method is used to add a new comment. For example, the following statement
associates a comment with the cell at row 2, column 1; the text of the comment is
"Hello", and the size of the comment window is 50 pixels (high) by 60 pixels (wide).

2 ⎕NQ'F.G' 'AddComment' 2 1 'Hello' 50 60

The height and width of the comment window, specified by the last 2 elements of the
right argument to ⎕NQ are both optional. If the cell already has an associated com-
ment, the new comment replaces it.

Note that just before the comment is displayed, the Grid generates a ShowComment
event which gives you the opportunity to (temporarily) change the text and/or win-
dow size of a comment dynamically.

DelComment Method
This method is used to delete a comment. For example, the following expression
removes the comment associated with the cell at row 2, column 1.

2 ⎕NQ'F.G' 'DelComment' 2 1

If the row and column number are omitted, all comments are deleted.

GetComment Method
This method is used to retrieve the comment associated with a cell. For example, the
following expression retrieves the comment associated with the cell at row 3, column
1.

⎕←2 ⎕NQ 'F.G' 'GetComment' 3 1
1 3 Hello 175 100

If there is no comment associated with the specified cell, the result is a scalar 1.

ShowComment Event/Method
If enabled, a Grid will generate a ShowComment event when the user rests the mouse
pointer over a commented cell. You may use this event to modify the appearance of
the comment dynamically.

You may display the comment associated with a particular cell under program con-
trol by generating a ShowComment event using ⎕NQ. By default, a comment dis-
played under program control does not exhibit tip behaviour but remains visible
until it is explicitly removed using the HideComment method.

Note that a comment will only be displayed if the specified cell is marked as a com-
mented cell.

Chapter 6: Using the Grid Object 153

HideComment Event/Method
If enabled, a HideComment event is generated just before a comment window is hid-
den as a result of the user moving the mouse-pointer away from a commented cell.

Invoked as a method, HideComment is used to hide a comment that has previously
been displayed by ShowComment. For example, the following expression hides the
comment associated with the cell at row 2, column 1.

2 ⎕NQ'F.G' 'HideComment' 2 1

ClickComment Event
If enabled, a ClickComment event is generated when the user clicks the mouse in a
comment widow. The event message reports the co-ordinates of the cell. The result of
a callback function (if any) is ignored.

154 Dyalog APL/W Interface Guide Version 14.0

155

Chapter 7:

Multiple-Document (MDI) Applications

The multiple-document interface (MDI) is a document-oriented interface that is com-
monly used by word-processors, spreadsheets and other applications that deal with
documents. An MDI application allows the user to display multiple documents at the
same time, with each document displayed in its own window. Document windows
are implemented as child forms that are contained within a parent form.When a child
form is minimised, its icon appears on the parent form instead of on the desktop. An
example MDI application is illustrated below.

Child forms displayed within anMDIClient

156 Dyalog APL/W Interface Guide Version 14.0

In general, the parent form in an MDI application may also contain tool bars and
status bars and potentially other objects. This means that not all of the internal area
of the parent form is available. To allow for this and to distinguish MDI behaviour
from that of simple child forms, Dyalog APL/W uses an MDIClient object.

The MDIClient object is a container object that effectively specifies the client area
within the parent Form in which the SubForms are displayed. The MDIClient object
also imposes special MDI behaviour which is quite different from that where a
SubForm is simply the child of another Form.

By default, the MDIClient occupies the entire client area within its parent Form. This
is the area within the Form that is not occupied by ToolBars and StatusBars. In most
applications it is therefore not necessary to specify its Posn and Size properties,
although you may do so if you want to reserve additional space in the parent Form
for other objects.

To Create an MDI Application
1. Create a Form (this will be the parent form for the application).
2. Add MenuBar, ToolBar and StatusBar objects as appropriate as children of

the parent Form.
3. Create an MDIClient object as a child of the parent Form.
4. Create the application's SubForms as children of the MDIClient, not as chil-

dren of the parent Form.

MDI Behaviour
l All child forms are displayed within the MDIClient. Forms may be moved

and resized but they are restricted to the MDIClient and will be clipped if
they extend beyond it.

l When a child form is minimised, its icon appears on the MDIClient rather
than on the desktop.

l When a SubForm is maximised, its Caption is combined with the Caption
of the parent Form, i.e. the parent of the MDIClient object and is displayed
in the parent Form's title bar. In addition, the SubForm's system menu and
restore button are displayed in the parent Form's MenuBar.

l You cannot hide a SubForm. Setting its Visible property to 0 has no effect.
l A SubForm does not display its MenuBar. Instead, it is displayed in place

of the parent Form's MenuBar when the SubForm has the focus.

Chapter 7: Multiple-Document (MDI) Applications 157

The effect of maximising a SubForm

158 Dyalog APL/W Interface Guide Version 14.0

Menus in MDI Applications
A feature ofMDI behaviour is that SubForms do not display menu bars. However, if
you create a MenuBar object for a SubForm, that object will be displayed as the
menu bar of the parent Form whenever the SubForm has the focus. If there are no
SubForms or if the SubForm with the focus does not own a MenuBar, the MenuBar of
the parent Form is displayed. This mechanism provides one way of achieving the
desired effect, namely that the menu bar displayed is appropriate for the type of doc-
ument represented by the SubForm that has the focus. However, if you have a large
number of SubForms of the same type (i.e. which share the same menu bar) you must
defined identical MenuBar objects for all of them.

An alternative approach is to define separate MenuBar objects as children of the par-
ent Form, only one of which is visible. Then you simply attach a callback function to
the GotFocus event for each SubForm that makes the appropriate MenuBar visible.
This approach means that you need only define MenuBar objects for each different
type of SubForm, rather than for every one.

It is possible to mix these techniques, so that the MenuBar displayed is either the res-
ult of your callback function making it visible, or because a SubForm has its own
MenuBar object defined and received the focus.

Note that when the user maximises a SubForm, its systemmenu button and restore
button are displayed in the parent Form's menu bar. It is therefore essential that you
ensure that your application provides such a menu bar at all times. Otherwise, when
your user maximises a SubForm there is no way to reverse it.

Chapter 7: Multiple-Document (MDI) Applications 159

Defining a Window Menu
Most MDI applications incorporate a Window menu. This is a special menu that dis-
plays the captions of all open SubForms as shown below. The caption of the
SubForm which currently has the focus is checked and the user can switch focus to
another SubForm by selecting it from the Window menu.

The Window menu

The task of updating the Window menu with the names of the SubForms is per-
formed for you by Dyalog APL/W. You nominate the menu to be used for this pur-
pose by setting the MDIMenu property of the appropriate MenuBar object. For
example, if yourMenuBar is called F1.MB and the menu you want to use as the Win-
dow menu is called F1.MB.WM, you would type the following:

'F1.MB' ⎕WS 'MDIMenu' 'WM'

Notice that the name you specify is just the name of the menu itself, not its full path-
name. If you have several MenuBars in your application, you must specify the
MDIMenu property separately for each one.

160 Dyalog APL/W Interface Guide Version 14.0

Arranging Child Forms and Icons
Another common feature ofMDI applications is that the user can ask for the
SubForms to be displayed in a particular way, or that any SubForm icons are arranged
in an orderly fashion. This is implemented in Dyalog APL/W by your application
invoking an method using ⎕NQ. The MDIClient recognises three different methods,
namely MDICascade (110), MDITile (111) and MDIArrange (112).

The MDICascade method causes the child forms to be arranged in an overlapping
manner. The MDITile method causes them to be tiled, either horizontally or ver-
tically . Finally, the MDIArrange method arranges any child form icons in an orderly
fashion. The most convenient way to provide these actions is to attach a Callback
function to appropriate MenuItems. The callback function is called with different left
arguments according to the MenuItem selected. The following code snippet illus-
trates this technique.

The following lines define callbacks for each of the MenuItem objects in the Menu
F1.MB.WM. Each one uses the callback function MDI_ARRANGE, but with a left
argument corresponding to the message that must be sent to the MDIClient to cause
the desired action. For example, clicking the MenuItem named F1.MB.WM.Vert
runs MDI_ARRANGE with a left argument of (111 1)

'F1.MB.WM.CASCADE' ⎕WS 'Event' 30 'MDI_ARRANGE' 110
'F1.MB.WM.HORZ' ⎕WS 'Event' 30 'MDI_ARRANGE' (111 0)
'F1.MB.WM.VERT' ⎕WS 'Event' 30 'MDI_ARRANGE' (111 1)
'F1.MB.WM.ARRANGE' ⎕WS 'Event' 30 'MDI_ARRANGE' 112

The MDI_ARRANGE function uses its left argument to construct a message for the
MDIClient object, in this case F1.MDI, and returns it as a result. This causes the
desired action.

∇ MSG←M MDI_ARRANGE MSG
[1] MSG←(⊂'F1.MDI'),M

∇

An alternative approach which does not require a callback function is to use ⎕NQ

'F1.MB.WM.CASCADE' ⎕WS 'Event' 30 '⍎⎕NQ ''F1.MDI 110'''
'F1.MB.WM.HORZ' ⎕WS 'Event' 30 '⍎⎕NQ ''F1.MDI 111 0'''
'F1.MB.WM.VERT' ⎕WS 'Event' 30 '⍎⎕NQ ''F1.MDI 111 1'''
'F1.MB.WM.ARRANGE' ⎕WS 'Event' 30 '⍎⎕NQ ''F1.MDI 112'''

161

Chapter 8: Docking

Introduction
Dyalog APL supports dockable Forms, SubForms, CoolBands and ToolControls.

If an object is dockable, the user may drag it to a different position within the same
container, drag it out of its current container and drop it onto a different container, or
drop it onto the desktop as a free-floating window. An undocked object can sub-
sequently be redocked in its original container or in another.

For example, a SubForm can be dragged from one Form and docked into another. Or
a CoolBand can be dragged out of its CoolBar and turned into a top-level Form on
the desktop.

With the exception of ToolControls, when a dockable object is docked or undocked,
the full Name and Type of the object change according to the following table.

Parent Object

Dockable Object
Form
F1

SubForm
F1.S1

CoolBar
F1.CB1

Root
(.)

Form
F2

SubForm
F1.F2

SubForm
F1.S1.F2

CoolBand
F1.CB1.F2

Form
F2

Form
F1.F2

SubForm
F1.F2

SubForm
F1.S1.F2

CoolBand
F1.CB1.F2

Form
F1.F2

SubForm
F2.S2

SubForm
F1.F2

SubForm
F1.S1.F2

CoolBand
F1.CB1.F2

Form
S2

CoolBand
F2.CB2.C2

SubForm
F1.C2

SubForm
F1.S1.C2

CoolBand
F1.CB1.C2

Form
C2

For example, a top-level Form F2 when docked in another top-level Form F1,
becomes a SubForm named F2.F1.

162 Dyalog APL/W Interface Guide Version 14.0

Similarly, a CoolBand named F2.CB2.C2 when dragged from its CoolBar F2.CB2
and dropped over the desktop, becomes a top-level Form named C2.

Notice how the node name of the object remains the same, but its full pathname
changes as it is moved from one parent object to another.

When an object changes Type in this way, the values of all its properties for its ori-
ginal Type are remembered, and these are automatically restored when the object
reverts back to its original Type. Since an object can change Type between Form,
SubForm, and CoolBand, it follows that there are effectively 3 different sets of prop-
erties associated with the object. However, only one set of properties (the set asso-
ciated with the object's current Type) is visible and accessible (to the programmer) at
any one time.

Docking Events
An object (the client) may be docked in another object (the host) if the Dockable
property of the client is set to 'Always' and the name of the client is included in
the host object's DockChildren property. This property defines the list of names that
the host will accept. Docking a Form or re-docking an already docked object behave
in essentially the same way.

DockStart Event
The user picks up a client object by depressing the left mouse button over its title bar
or client area and dragging. As soon as the mouse is moved, the object generates a
DockStart event At this stage, the entire operation may be cancelled by a callback
function on DockStart that returns 0.

Once a docking operation has begun, the outline of the object is displayed as a rect-
angle that moves with the mouse.

DockMove Event
When the client object is dragged over a suitable host object (one that will accept it
as a child), the host object generates a series of DockMove events. Each DockMove
event reports the edge along which the client object will be docked, namely Top,
Bottom, Left, Right or None, and a corresponding rectangle

.

Chapter 8: Docking 163

When the mouse pointer approaches an edge of the host, the rectangle changes to
describe a docking zone indicating where the object will be docked in the host.

A callback function on DockMove that returns 0 will prevent the outline rectangle
changing to indicating a docking zone and will prevent the client from being
docked.

A callback function on DockMove can also return a result that modifies the position
and size of the rectangle that is actually displayed for the user. This in turn will affect
the zone occupied by the client when it becomes docked. For example, you can use
this to control its size.

DockRequest Event
When the user releases the mouse pointer, the client object generates a DockRequest
event. A callback function on DockRequest may return 0 to abort the operation, or
may modify the requested docking zone in the host. In the case of a ToolControl, the
callback is used to action the docking operation.

DockAccept Event
In response to a successful DockRequest event, the host object generates a Dock-
Accept event. A callback on DockAccept may also be used to abort the operation or
to modify the docking zone. The DockAccept event reports the new name for the cli-
ent object which it will assume as a child of the host.

Furthermore, if the DockAccept callback actions the event before completing, the
docking operation will take place immediately, rather than being deferred until the
callback has completed. This allows you to set properties on the newly docked
object.

DockEnd Event
Finally, the docked client object (whose name has now changed) will generate a
DockEnd event. This is reported for information only and a DockEnd callback func-
tion cannot cancel or modify the docking operation. The DockEnd event may how-
ever be used to set properties for the newly docked client.

If the user releases the mouse elsewhere than over an accepting host object, the Dock-
End event is reported by the client object itself. If appropriate, this will be followed
by a Configure event and the client will simply move to a new location without chan-
ging its docking status.

DockCancel Event
If at any stage the user presses the Esc key, the operation is aborted and the client
object generates a DockCancel event.

164 Dyalog APL/W Interface Guide Version 14.0

Docking a Form inside another
The following example illustrates the effect of docking one Form in another.

'Host' ⎕WC 'Form' 'Host'
Host.DockChildren←'Client'

'Client' ⎕WC 'Form' 'Client'
Client.Dockable←'Always'

Notice that a dockable Form is indistinguishable in appearance between any other
top-level Form except that it has additional items in its pop-up context (right mouse
button) menu as shown.

Chapter 8: Docking 165

The following picture shows the effect of dragging the Client Form to the top edge
of the Host, just before the mouse button is released.

The next picture shows the result after docking. The Client Form has become a
SubForm (white is the default background colour for a SubForm) called
Host.Client.

166 Dyalog APL/W Interface Guide Version 14.0

The third picture illustrates the effect of docking the Client on the left-hand edge.

The following picture shows the Client Form docked as a SubForm along the right
edge of the Host Form.

Chapter 8: Docking 167

It is also possibleto dock a Form into an already docked Form.

'Client2' ⎕WC 'Form' 'Second Client'
Client2.Dockable←'Always'

which we can make dockable in both the Host Form and the Host.Client
SubForm:

Host.DockChildren Host.Client.DockChildren←⊂'Client2'

The next picture shows Client2 about to be docked in the Client SubForm:

168 Dyalog APL/W Interface Guide Version 14.0

And finally, after it has been docked.

Chapter 8: Docking 169

Docking a Form into a CoolBar
The following example illustrates the effect of docking a Form into a CoolBar.

∇ FormToCoolBand
[1] 'il'⎕WC'ImageList'('Masked' 0)('MapCols' 1)
[2] 'il.'⎕WC'Bitmap'('ComCtl32' 120)⍝ STD_SMALL
[3]
[4] 'host'⎕WC'Form' 'Host'
[5] host.Coord←'Pixel'
[6] host.Size←140 375
[7] 'host.cb'⎕WC'CoolBar'
[8] host.cb.DockChildren←'file' 'edit'
[9]
[10] :With 'host.cb.file'⎕WC'CoolBand'
[11] Caption←'File'
[12] Dockable←'Always'
[13] 'tb'⎕WC'ToolControl'('ImageListObj' '#.il')
[14] 'tb.b1'⎕WC'ToolButton' 'New'('ImageIndex' 7)
[15] 'tb.b2'⎕WC'ToolButton' 'Open'('ImageIndex' 8)
[16] 'tb.b3'⎕WC'ToolButton' 'Save'('ImageIndex' 9)
[17] :EndWith
[18]
[19] :With 'edit'⎕WC'Form' 'Edit' ('Coord' 'Pixel')
[20] Size←100 200
[21] Dockable←'Always'
[22] Coord←'Pixel'
[23] 'tb'⎕WC'ToolControl'('ImageListObj' '#.il')
[24] 'tb.b1'⎕WC'ToolButton' 'Cut'('ImageIndex' 1)
[25] 'tb.b2'⎕WC'ToolButton' 'Copy'('ImageIndex' 2)
[26] 'tb.b3'⎕WC'ToolButton' 'Paste'('ImageIndex' 3)
[27] 'tb.b4'⎕WC'ToolButton' 'Undo'('ImageIndex' 4)
[28] 'tb.b5'⎕WC'ToolButton' 'Redo'('ImageIndex' 5)
[29] :EndWith

∇

170 Dyalog APL/W Interface Guide Version 14.0

The following picture shows the effect of dragging the client Form to the CoolBar in
the host, just before the mouse button is released.

The next picture shows the result after docking. The client Form has become a
CoolBand called host.cb.edit.

Chapter 8: Docking 171

Undocking a SubForm or a CoolBand
When a SubForm or a CoolBand is undocked, it becomes a Form.

The object may either become a Form that is a child of Root, or a Form that remains
the child of the Form fromwhere it was undocked. Such an object will always appear
on top of its parent, even when undocked.

This behaviour is controlled by the UndocksToRoot Property

Note that a Form or a CoolBand object may be undocked if its Dockable property is
set to 'Always'; the DockChildren property does not apply to the Root object.

The Root object does not provide DockMove events, but the docked object will gen-
erate a DockRequest event when the user releases the mouse button over the desktop.
This may be used to disable or modify the operation.

172 Dyalog APL/W Interface Guide Version 14.0

Docking and Undocking a ToolControl
Docking and undocking a ToolControl is handled rather differently from docking
and undocking a Form or CoolBand.

When you undock a ToolControl from a Form or SubForm, it cannot remain a
ToolControl object, because a ToolControl cannot be a child of Root. Furthermore,
its Type cannot simply change to Form because a Form cannot be a parent of a
ToolButton. In fact, a ToolButton may only be the child of a ToolControl.

Therefore, when a dockable ToolControl is undocked, no action is taken; you have
to perform the various operations yourself.

Typically, you would create a new Form to contain the ToolControl and only the
ToolControl), and then delete the original.

The new Form should be dockable in the original parent (of the ToolControl), but a
callback should intercept this operation and re-instate the ToolControl as a direct
child of the host.

Effectively, when you undock a ToolControl, you need to insert a new (floating)
Form between the Host Form and the ToolControl. Then when you re-dock it, you
need to remove the (floating) Form from the hierarchy.

The following example illustrates the procedure.

The following function creates a Form containing a dockable ToolControl. The
ToolControl can be undocked, becoming a floating toolbar, and then docked back
into the original Form.

∇ DockableToolControl
[1] 'IL'⎕WC'ImageList'('Masked' 0)
[2] 'IL.'⎕WC'Bitmap'('ComCtl32' 120)⍝ STD_SMALL
[3] :With 'Host'⎕WC'Form' 'Host'
[4] Coord←'Pixel'
[5] Size←50 300
[6] DockChildren←'Floater'
[7] onDockAccept←'#.DOCK'
[8] onDockMove←'#.DOCKMOVE'
[9] :With 'TC'⎕WC'ToolControl'
[10] Dockable←'Always'
[11] onDockRequest←'#.UNDOCK'
[12] ImageListObj←'#.IL'
[13] 'B1'⎕WC'ToolButton' 'New'('ImageIndex' 7)
[14] 'B2'⎕WC'ToolButton' 'Open'('ImageIndex' 8)
[15] 'B3'⎕WC'ToolButton' 'Save'('ImageIndex' 9)
[16] :EndWith
[17] :EndWith

∇

Chapter 8: Docking 173

The picture below shows the initial appearance of the Host Form and its ToolCon-
trol.

Because the ToolControl is dockable, the user may pick it up and drag it out of its
parent Form as shown below.

When the user drops the ToolControl outside the Host Form, it (the ToolControl)
generates a DockRequest event which is attached to the UNDOCK callback function.
This function, creates a new Form called Floater, makes a copy of the ToolControl
as a child of Floater, and then expunges the original ToolControl from the Host
Form. The function, and the results of the operation, are shown below. The following
points should be noted.

l The UNDOCK callback returns 0 to prevent APL from taking any further
action (the default action after a successful DockRequest is to generate a
DockAccept event, which in this case is undesirable).

l The Floater Form is created as a child of the Host Form so that it
always floats above it in the window stacking order.

l The Floater Form is made dockable so that it can be re-docked back into
Host.

l The (new) ToolControl is made non-dockable, so that the user cannot drag
it out of Floater.

174 Dyalog APL/W Interface Guide Version 14.0

∇ R←UNDOCK MSG
[1] R←0
[2] :With 'Host.Floater'⎕WC'Form'
[3] Caption←'Floating ToolControl'
[4] Dockable←'Always'
[5] Coord←'Pixel'
[6] 'TC'⎕WC⊃MSG
[7] TC.Dockable←'Never'
[8] Size←TC.Size
[9] Posn←#.Host.Posn+2↑7⊃MSG
[10] :EndWith
[11] ⎕EX'#.Host.TC'

∇

The user may dock the ToolControl back into Host by dragging the Floater Form
into it.

The DOCKMOVE callback function, shown below, prevents the ToolControl (rep-
resented by its parent Floater) from being docked anywhere except along the top
edge.

∇ R←DOCKMOVE MSG
[1] ⍝ Only allow docking along Top edge
[2] R←MSG[4]∊'Top' 'None'

∇

Chapter 8: Docking 175

The picture below illustrates the moment just before the user releases the mouse but-
ton to dock Floater back into Host.

At this point, the Host Form generates a DockAccept event and the callback func-
tion DOCK is invoked. This function recreates the ToolControl as a child of Host
(making it dockable once more), and then expunges the Floater Form.

∇ R←DOCK MSG
[1] R←0
[2] :With ⊃MSG
[3] 'TC'⎕WC ⎕OR(3⊃MSG).TC
[4] TC.Dockable←'Always'
[5] :EndWith
[6] ⎕EX'#.Host.Floater'

∇

Once again, the result of the callback function is 0 to tell APL that you have dealt
with the situation and it is to take no further action.

176 Dyalog APL/W Interface Guide Version 14.0

Native Look and Feel
Windows Native Look and Feel is an optional feature ofWindows XP and other
advanced versions ofWindows.

Under XP, it may be enabled from the Appearance tab of the Display Properties dia-
log box, by choosing Windows XP style.

If Native Look and Feel is enabled, APL will optionally display the title bars of
docked windows using the appropriate Native style. You can control this behaviour
using the XPLookAndFeelDocker parameter (see User Guide, Chapter 2).

If XPLookAndFeelDocker is 1, APL will display docked window title bars using the
appropriate XP style. If XPLookAndFeelDocker is 0 (the default), it will not.

The picture below illustrates how the first example in this chapter appears when Nat-
ive Look and Feel is enabled, XPLookAndFeelDocker is 1, and a special Windows
XP Theme is in use.

177

Chapter 9:

OLE Automation Client and OLE Controls

Introduction
OLE Automation allows you to drive one application from another and to mix code
written in different programming languages. In practical terms, this means that you
may write a subroutine to perform calculations in (say) C++ and use the subroutine
directly in Visual Basic 4 or Excel. Equally, you could write the code in Visual
Basic and call it from C++. Dyalog APL/W is a fully subscribed member of this
code-sharing club.

OLE Automation is, however, much more than just a mechanism to facilitate cross-
application macros because it deals not just with subroutine calls but with objects.
An object is a combination of code and data that can be treated as a unit. Without
getting too deeply into the terminology, an object defines a class; when you work
with an object you create one or more instances of that class.

This chapter describes how Dyalog APL can drive other applications using OLE
Automation. In these circumstances, Dyalog APL is acting as an OLE client.

There are two types of OLE object involved; OLE Servers and ActiveX controls. An
ActiveX control can be instantiated as a GUI object within a Dyalog APL Form,
whereas an OLE Server either has no GUI component, or is a separate object. Other-
wise, the two are very similar.

You can obtain lists of the OLE Servers and ActiveX Controls installed on your com-
puter from the OLEServers and OLEControls properties of the system object '.'.
These lists are obtained from yourWindows Registry and therefore contains only
those OLE objects that are correctly installed. Each OLE Server and OLE Control is
identified by its name and class identifier. Either may be used to access it.

178 Dyalog APL/W Interface Guide Version 14.0

Using an OLE Server
You can access an OLE Automation or COM Server using the OLEClient object.
When you create an OLEClient, you specify the name of the Server as the ClassName
property for the object.

For example:

XL←⎕NEW 'OleClient' (⊂'ClassName' 'Excel.Application')

or, using ⎕WC

'EX'⎕WC'OLEClient' 'Excel.Application'

The effect of both statements is to create an object EX, which is connected to an
instance of the of the Excel.Application Class, an OLE Server. The OLE Server
instance may be in-process or out-of-process. If it is in-process, the code and data
associated with the instance are loaded into the same address space as the Dyalog
APL process. In the latter case, the instance represents a separate Windows process
on your computer or, on an entirely different computer in the network.

When APL connects to an out-of-process OLE Server in this way, you can specify
whether you wish to connect to an existing (running) instance of the Server, or start a
new copy of the Server. This is done using the InstanceMode property.

Loading an ActiveX Control
An ActiveX or OLE Control is in fact a type of Dynamic Link Library (DLL) which
must be loaded before it can be used. This is done by creating an OCXClass object
using ⎕WC or ⎕NEW.

For example, if you have an OLE Control named "Microsoft Office Chart 9.0 ", you
can load it with the following statements (which are split here only to prevent text
wrap)

NAME←' Microsoft Office Chart 9.0 '
MOC←⎕NEW 'OCXClass' (⊂'ClassName' NAME)

or, using ⎕WC

'MOC' ⎕WC 'OCXClass' NAME

The right argument is a character string containing the name or class identifier of the
ActiveX Control. The left argument is an arbitrary name of your own choosing by
which you will subsequently refer to the Control class.

Chapter 9: OLE Automation Client and OLE Controls 179

Using an OLE Control
Having created an OCXClass object, you may use an OLE Control by creating an
instance of it from its class. The instance must be created as the child of a Form. For
example:

'F' ⎕WC 'Form'
'F.MM' ⎕WC 'MOC' ⍝ Instance of MOC

Although you can obtain general information about an OLE Control from both the
class (represented by the OCXClass object) and any instance, you may only query
and manipulate a control through an instance.

Type Information
In general, it is a requirement that all COM objects provide Type Information. This is
commonly provided in a type library file (extension .TLB) or is included in the
object's .EXE or .DLL file. Type Information includes the names of the methods,
events and properties exported by the object, together with descriptions of the argu-
ments to each method and descriptions of the data types of each property. Type
Information is necessary for the COM object to be properly recognised by object
browsers and by application development systems.

When you load a COM object, APL by default reads all of the Type Information asso-
ciated with the top-level object into the workspace. In addition, it reads the Type
Information for all other objects in the same object hierarchy, and the Type Inform-
ation for any other COM objects that are used or referenced by it. This Type Inform-
ation is retained in the workspace when you)SAVE it. When you reattach an
OLEClient or OCXClass to the same object, there is no need for the Type Inform-
ation to be re-read.

Dyalog APL uses the Type Information to expose the names, data types and argu-
ments of all the methods, events and properties provided by the object, and those of
all the other sub-objects in the object hierarchy.

Dyalog APL also uses the Type Information to validate the arguments you supply to
methods (both the number and the data types) and the values you assign to prop-
erties. For example, if a method is defined to take an argument VT_I4, Dyalog APL
will issue a DOMAIN ERROR if you invoke the method with a character argument.
Internally, Dyalog APL also uses the Type Information to convert between APL
arrays and OLE data types.

The operation to read the Type Information may take several seconds, possibly
minutes, and the Type information may occupy a considerable amount of workspace.
Nevertheless, the availability of the Type information in the active workspace
greatly assists development and optimises run-time performance.

180 Dyalog APL/W Interface Guide Version 14.0

Late Binding
In some circumstances it may be desirable to avoid the process of reading the Type
information in its entirety (known as early binding), and instead use a different
approach whereby Type information is obtained only when it is needed, i.e. when a
particular property, method or event is referenced. This is called late binding and is
specified by setting the LateBind property of the OLEClient object to 1 when you
create it. When this scheme is used, APL only reads the Type information for prop-
erties and methods that are actually used, although the benefit of having all the Type
information held in the workspace is lost.

Missing Type Information
Not all COM objects provide Type information, or do so in non-standard ways.

In these cases, if LateBind is set to 0, APL willfail to obtain any Type information ,
the OLEClient object will be created without it and its associated namespace will be
empty. If LateBind is set to 1, the alternative mechanism using late binding will prob-
ably not work either.

There are however other ways in which the methods, properties and events provided
by the COM object may be accessed fromAPL.

The first approach is to provide APL with the equivalent information using the
SetPropertyInfo and SetMethodInfo methods of the OLEClient object. Cor-
responding mechanisms are provided for defining Events.

The last resort is to rely on a secondary form of late binding 1in which APL requires
only that the COM object confirms the existence of a given name as one that it
exports, and then accesses it using a general mechanism . For further information, see
Using OLE Objects without Type Information on page 197.

1Prior to Version 14.0, this was the only form of late binding provided by Dyalog APL.

Chapter 9: OLE Automation Client and OLE Controls 181

Identifying Properties, Methods and Events
You can obtain the names of all the properties, methods, and events exposed by a
COM object by executing the system function ⎕NL, with the appropriate argument,
inside the namespace that is associated with an instance of the object. Note that the
result of ⎕NL is a vector of character vectors. If Type Information is unobtainable, the
list of items reported by ⎕NLwill be empty. See the section entitled OLE Objects
without Type Information later in this Chapter.

For example:
DB←⎕NEW'OleClient' (⊂'ClassName' 'DAO.DBEngine.120')
DB.⎕NL ¯2 ⍝ Properties

AutoBrowse ChildList ClassID ClassName Data
DefaultPassword DefaultType DefaultUser
Errors Event EventList Handle HelpFile
IniPath InstanceMode KeepOnClose LastError
Locale LoginTimeout MethodList PropList
Properties QueueEvents SystemDB Type
TypeList Version Workspaces

DB.⎕NL ¯3 ⍝ Methods
BeginTrans CommitTrans CompactDatabase

CreateDatabase CreateWorkspace ISAMStats Idle
OpenConnection OpenDatabase RegisterDatabase
RepairDatabase Rollback SetOption

Pre-Version 11 Behaviour
In previous versions of Dyalog APL, you could obtain this information from the
PropList, MethodList and EventList properties of the object. Note that these 3 prop-
erties are internally generated by Dyalog APL and are not exported by the object
itself. You could also obtain this information by executing the system commands)
PROPS,)METHODS and)EVENTS inside the namespace that is associated with an
instance of the object.

182 Dyalog APL/W Interface Guide Version 14.0

For backwards compatibility, these capabilities are retained when ⎕WX is 0 or 1.

For example:
⎕WX←1
'DB'⎕WC'OleClient' 'DAO.DBEngine.120'
)CS DB

#.[OLEClient]

)METHODS
BeginTrans CommitTrans CompactDatabase
CreateDatabase CreateWorkspace ISAMStats Idle
OpenConnection OpenDatabase RegisterDatabase
RepairDatabase Rollback SetOption

)PROPS
AutoBrowse ChildList ClassID ClassName
Data DefaultPassword DefaultType DefaultUser
Errors Event EventList Handle HelpFile
IniPath InstanceMode KeepOnClose LastError
Locale LoginTimeout MethodList PropList
Properties QueueEvents SystemDB Type
TypeList Version Workspaces

Or, for example, using an ActiveX Control:

NAME←'Microsoft Office Chart 11.0'
'MOC'⎕WC'OCXClass'NAME
'F' ⎕WC'Form'
'F.MOC' ⎕WC 'MOC' ⍝ Instance of MOC
)CS F.MOC

#.F.MOC
)PROPS

AllowFiltering AllowGrouping AllowLayoutEvents
AllowPointRenderEvents AllowPropertyToolbox AllowRend
erEvents
AllowScreenTipEvents AllowUISelection Attach A
utoConf
Border Bottom BuildNumber CanUndo ChartLayout ...

Using the Property Sheet
The simplest way to obtain further information about an OLE property, method or
event is to display its Property Sheet.

To do this, change space to the namespace that represents the object, type the name
(or place the cursor over the name) of the property, method or event in question, press
the right mouse button and select Properties from the context menu.

Chapter 9: OLE Automation Client and OLE Controls 183

The information displayed for the OpenDatabase method that is provided by the
DAO.DBEngine OLE object is shown below.

184 Dyalog APL/W Interface Guide Version 14.0

Using the Workspace Explorer
You can also obtain information using the Workspace Explorer.

If you have created an instance of an object, you can navigate to it using the Explorer
and then browse its Events, Methods and Properties. The picture below illustrates the
effect of browsing the object DB that is connected to DAO.DBEngine.120.

To obtain detailed information about a specific property, event, or method, just open
the appropriate folder and select the name you want. The details will be displayed in
the list view pane.

The same information can be obtained by browsing the Loaded Libraries folder. This
folder will be displayed if the View/Type Librariesmenu item is checked and the
appropriate library has been loaded. The library will be loaded if you have ever cre-
ated an instance of the object in this workspace. Alternatively, you may navigate to
the information using the Registered Library folder.

Chapter 9: OLE Automation Client and OLE Controls 185

GetPropertyInfo Method
You can also obtain information about the properties exposed by a COM object,
using the GetPropertyInfo method. Note that this is a Dyalog APL method, added to
the object, and not a native method provided by the object itself.

For example, the DAO.DBEngine OLE object exposes a property called Version.
You can discover the meaning of the Version property as follows:

GetPropertyInfo 'Version'
VT_BSTR

Or, using ⎕NQ

+2 ⎕NQ '' 'GetPropertyInfo' 'Version'
VT_BSTR

This tells you that the property value is a character string (VT_BSTR) that contains
the version number of the database engine.

Version
3.51

186 Dyalog APL/W Interface Guide Version 14.0

GetMethodInfo Method
You can also obtain information about the methods exposed by an OLE object,
using the GetMethodInfo method. Note that this is a Dyalog APL method, added to
the object, and not a native method provided by the object itself.

For example, the DAO.DBEngine OLE object exposes a method called OpenData-
base. You can obtain information about the OpenDatabase method as follows:

↑GetMethodInfo 'OpenDatabase'
Database

Name VT_BSTR
[Options] VT_VARIANT
[ReadOnly] VT_VARIANT
[Connect] VT_VARIANT

This tells you that the method opens a specified database and that the result is of type
Database. Furthermore, the function takes up to four arguments, the first of which
(called Name) is a character string (VT_BSTR). The remaining 3 arguments (called
Exclusive, ReadOnly and Connect) are optional (their names are surrounded
by []) and of type VT_VARIANT.

GetEventInfo Method
Let’s use the Windows Media Player as an example. First we must load the Control
by creating an OCXClass object using ⎕NEW.

wmp←⎕NEW'OCXClass'(⊂'ClassName' 'Windows Media Player')
'f'⎕WC'Form'
'f.wmp'⎕WC'wmp'

Next we can find out what events it supports using ⎕NL ¯8.

wmp.⎕NL ¯8
Buffering Click DblClick Disconnect DisplayModeChange

DVDNotify EndOfStream Error KeyDown KeyPress
KeyUp MarkerHit MouseDown MouseMove MouseUp New
Stream OpenStateChange PlayStateChange PositionCh
ange ReadyStateChange ScriptCommand Warning

Then, we can obtain information about a particular event (or events) by invoking a
GetEventInfo method. Note that in the case of the Windows Media Control it is
necessary to query the instance of the control (f.wmp) as opposed to the instance of
the OCXClass (wmp). For example, you can ask it about its MouseDown event. The
result is a vector, each element of which is a 2-element vector of character vectors.

⍴INFO←⊂f.wmp.GetEventInfo'MouseDown'
5

Chapter 9: OLE Automation Client and OLE Controls 187

The first element contains a description of the event and the data type of its result
(few events generate results, so this is usually VT_VOID), i.e.

⊃INFO
Sent when a mouse button is pressed VT_VOID

Subsequent elements describe the name and data type of each of the parameters to the
event. These are the items that will appear as the third and subsequent elements of
the event message that is passed as the right argument to a callback function or
returned as the result of ⎕DQ. In this case:

↑1↓INFO
Button VT_I2
ShiftState VT_I2
x VT_COORD
y VT_COORD

This information tells us that the first parameter Button is a 2-byte integer value
which (presumably) is the number of the mouse button that the user has pressed. The
second parameter Shift is also a 2-byte integer and (presumably) reports the keyboard
shift state. The third and fourth parameters X and Y are of data type VT_COORD.

Obtaining On-line Help
You can display the help topic associated with a property, method, or event by select-
ing Help from its context menu or using the help button in its property sheet.

Note that the name of the object’s help file is provided by its HelpFile property.

For example, in the case of the DAO.DBEngine OLE object:

⎕WG'HelpFile
'C:\PROGRA~1\COMMON~1\MICROS~1\OFFICE12\dao360.chm

For Office 2000 applications, you will need to install the MSDN to obtain the appro-
priate help files.

188 Dyalog APL/W Interface Guide Version 14.0

Methods
When you create an instance of a COM object, the methods and the properties are dir-
ectly accessible from the corresponding namespace.

Calling Methods
You invoke a method in an OLE object as if it were an APL function in your work-
space.

If a method takes no parameters, you must invoke it as if it were niladic.

If a method takes parameters, you must call it as if it were monadic. Each element of
its argument corresponds to each of the method’s parameters.

If a method takes a parameter declared as a string (VT_BSTR) you must call it with
an enclosed character vector.

Note: In previous versions of Dyalog APL, a character vector was automatically
enclosed if required. For backwards compatibility you may select old or new beha-
viour using ⎕WX. If ⎕WX is 3 (the default) you must enclose a single string argument.
IF ⎕WX is 0 or 1, you may supply a simple character vector.

For example, the OpenDatabase method in the DAO.DBEngine OLE server may be
called with a single parameter that specifies the name of the database to be opened.
You may call it from APL with either of the following two expressions:

OpenDatabase 'c:\example.mdb' ⍝only if ⎕WX is 0 or 1
OpenDatabase ⊂'c:\example.mdb'⍝any value of ⎕WX

Arrays and Pointers
Many parameters to OLE methods are specified by pointers. If, for example, the para-
meter type is VT_BSTR, it means that the calling routine must supply a pointer to
(i.e. the address of) a character string.

Similarly, if the parameter type is defined to be VT_VARIANT, it means that the
parameter is the address of an arbitrary array (the VT_VARIANT data type actually
maps nicely onto a Dyalog APL nested array).

The rule is that if a pointer is required, APL will provide it automatically; you do not
have to do so. Instead, all you do is supply the value.

Chapter 9: OLE Automation Client and OLE Controls 189

Optional Parameters
Methods are often defined to have optional parameters. For example the parameters
defined for the OpenDatabase method provided by the DAO.DBEngine OLE object
are:

Name VT_BSTR
[Exclusive] VT_VARIANT
[ReadOnly] VT_VARIANT
[Connect] VT_VARIANT

To call the corresponding APL function, you may supply a nested array that contains
1,2, 3or 4 elements corresponding to these parameters.

The parameters to some methods are all optional. This means that the method may be
called with or without any parameters. As APL does not support this type of syntax,
the special value ⍬ (zilde) is used to mean "0 parameters".

For example, the parameters for the Idle method provided by DAO.DBEngine are
defined to be:

[Action] VT_VARIANT

This means that the method takes either no arguments or one argument. To call it
with no argument, you must use ⍬ (zilde), for example:

Idle ⍬

Note that you cannot therefore call a function in an APL server with a single argu-
ment that is an empty numeric vector.

Output Parameters
You may encounter parameters whose data type is defined explicitly as a pointer to
something else, for example VT_PTR to VT_UI4 specifies a pointer to an unsigned
4-byte integer.

In these cases, it usually means that the calling routine is expected to pass an address
into which the OLE method will place a value.

When you invoke the method you must use data of the type pointed to.

The result of the method is then a vector containing the result defined for the method,
followed by the (new) values of the output parameters. This is similar to the mech-
anism used by ⎕NA.

190 Dyalog APL/W Interface Guide Version 14.0

Named Parameters
Visual Basic syntax allows you to specify parameters by position or by name; rather
like ⎕WC and ⎕WS. For example the parameters defined for the OpenDatabase method
provided by the DAO.DBEngine OLE object are:

Name VT_BSTR
[Exclusive] VT_VARIANT
[ReadOnly] VT_VARIANT
[Connect] VT_VARIANT

You could call this method fromVisual Basic using the syntax:

Set Db = OpenDatabase(Name:="c:\example.mdb",_
ReadOnly:=True)

You may do the same thing fromDyalog APL, using ⎕WS syntax. For example, the
equivalent call from APL would be:

OpenDatabase('Name' 'c:\example.mdb')('ReadOnly' 1)

Note that you may only use named parameters if they are supported by the method.
Many methods do not allow them.

Methods that return Objects
Object hierarchies in OLE are not static, but are created dynamically by calling meth-
ods that return objects as their result.

If the data type of the result of a method is a pre-defined object type, or VT_
DISPATCH or VT_COCLASS, or VT_PTR to VT_DISPATCH or VT_PTR to VT_
COCLASS, the result returned to APL is a namespace. If the result is assigned to a
name, the value associated with that name becomes a namespace reference. For
example, GetMethodInfo tells us that the syntax for the OpenDatabase method
provided by the OLE object DAO.DBEngine is as follows:

↑ DB.GetMethodInfo 'OpenDatabase'
Opens a specified database VT_DISPATCH
Name VT_BSTR
[Exclusive] VT_VARIANT
[ReadOnly] VT_VARIANT
[Connect] VT_VARIANT

The data-type of the result is VT_DISPATCH, so it returns an object; indeed the help
for the method tells us that it returns a Database object. The function could be called
fromAPL as follows:

DB←OpenDatabase ⊂'example.mdb'

Alternatively, you may simply use the result as an argument to a defined function or
as the argument to ⎕CS or :With, thereby switching into the namespace returned by
the method. For example:

Chapter 9: OLE Automation Client and OLE Controls 191

:With OpenDatabase ⊂'example.mdb'

:EndWith

Notice that in both these cases, the namespace associated with the result of the
OpenDatabase method is unnamed. Assigning the result of OpenDatabase to DB
does not set the namespace name to DB, it merely assigns a namespace reference to
DB.

To preserve compatibility with previous versions of Dyalog APL that did not sup-
port namespace references, a method that returns an object may be called with the
name of the (new) namespace as its left argument. Note that OLE methods do not
themselves accept left arguments, so this extension does not conflict with OLE con-
ventions.

'DB' OpenDatabase ⊂'example.mdb'

This expression creates a new namespace called DB associated with a new object in
the OLE Server. Note that if you invoke the OpenDataBasemethod in this way, its
result is a number that represents the Dispatch Interface of the new object. This is
done to preserve compatibility with previous versions of Dyalog APL.

192 Dyalog APL/W Interface Guide Version 14.0

Properties
By default, Properties exposed by a COM object behave in the same way as Prop-
erties exposed by Dyalog APL Classes.

To query the value of a property, you simply reference it. To set the value of the prop-
erty, you assign a new value to it. If the Property is an Indexed Property, you may use
indexing to set or retrieve the value of a particular element.

Note that in previous versions of Dyalog APL, indexed Properties of COM objects
were exposed as Methods and for backwards compatibility this behaviour may be
retained by setting ⎕WX to 0 or 1 (the default value is 3). See Language Reference.

If the old (pre-Version 11.0) behaviour is selected., indexed properties are exposed as
methods and you treat the property as if it were an APL function. To obtain the value
of the property, you must call it monadically, specifying the required index (or other
information) as the argument. To set the value of the property, you must call it dyad-
ically, specifying the required index (or other information) as the right argument and
the new value as the left argument.

The data type of the variable is reported by the GetPropertyInfomethod. Con-
version between APL data types and OLE data types is performed automatically.

If you attempt to set the value of a property to an something with an inappropriate
data type, APL will generate a DOMAIN ERROR.

If you set the value to something of the correct data type, APL will pass it through
the OLE interface. However, the OLE object may itself reject the new value. In this
case, APL will also generate a DOMAIN ERROR. However, the OLE error inform-
ation may be obtained from the LastError property of the object or Root. The
error is also displayed in the Status Window.

Note that if ⎕WX is 0 or 1,)PROPS and PropList report the names of all of the prop-
erties of an object, regardless of whether the property is implemented as a variable or
as a function. You can tell whether or not the property takes an argument (and there-
fore behaves as a function) from its property sheet, using GetPropertyInfo, or from the
documentation for the object in question.

Chapter 9: OLE Automation Client and OLE Controls 193

Properties as Objects
Dyalog APL permits an object hierarchy to be represented by a namespace hierarchy.
In other words, the relationship between one object and another is a parent-child rela-
tionship whereby one object owns and contains another.

Visual Basic has no such mechanism and the relationship between objects has to be
specified in another way. This is commonly done using properties. For example, an
object view of a bicycle could be a hierarchy consisting of a bicycle object that con-
tains a Frame object, a FrontWheel object and a RearWheel object. In Visual Basic,
you could represent this hierarchy as a Bicycle object having Frame, FrontWheel and
RearWheel propertieswhich are (in effect) pointers to the sub-objects. The properties
are effectively used to tie the objects together.

An extension of this idea is the Visual Basic Collection object. This is a special type
of object, that is somewhat similar to an array. It is used where one object may con-
tain several objects of the same type. For example, a Wheel object could contain a
Spokes collection object which itself contains a number of individual Spoke objects.
Collection objects are usually implemented as properties.

When you reference the value of an object property, you will get a namespace.

Using the bicycle analogy, you could recreate the object hierarchy in the APL work-
space as follows:

'BIKE' ⎕WC'OLEClient' 'EG.Bicycle'
FRONT ← BIKE.FrontWheel
REAR ← BIKE.RearWheel

The result would be three namespaces, one named BIKE, and two unnamed
namespaces referenced by FRONT and REAR. Each contains the specific properties,
methods and events exposed by the three corresponding objects.

Note however, that in this example BIKE, FRONT and REAR are all top-level
namespaces; a proper parent/child representation can be achieved by making FRONT
and REAR child namespaces of BIKE, for example:

BIKE.FRONT ← BIKE.FrontWheel
BIKE.REAR ← BIKE.RearWheel

or

:With BIKE
FRONT ← FrontWheel
REAR ← RearWheel

:EndWith

This example illustrates that when you work with an OLE object, you have a choice
whether to represent an object hierarchy as a namespace tree or just as a collection of
otherwise unrelated namespaces.

194 Dyalog APL/W Interface Guide Version 14.0

Events
Events generated by OLE objects are provided via an event sink which is simply an
interface that defines a collection of events that may be generated by the object.
Objects may support more than one event sink and may or may not define them in a
type library.

By default, events generated by COM objects are processed like all other events in
Dyalog APL.

This means that if you attach a callback function to an event in an instance of an
OCXClass object, the events are queued up when they are received and then pro-
cessed one-by-one, by ⎕DQ, from the internal queue. This is the mechanism used to
process all events in Dyalog APL and it has many advantages:

l Events are handled in an orderly manner
l An event cannot interrupt a callback that is processing a previous event
l Incoming events are held up so that you can trace a callback function

The disadvantage of this approach is that, for internal reasons, your APL callback
function is unable to return a result to the ActiveX control, or to modify any of the
arguments supplied by the event. This is a severe problem if the COM object relies
on callbacks to control certain aspects of its functionality.

The QueueEvents property allows you to change the normal behaviour so that it is
possible for a callback function to return a result to a COM object.

If QueueEvents is 1, which is the default, the result (if any) of your callback function
is not passed back to the COM object but is discarded. Thus you cannot, for example,
inhibit or modify the default processing of the event by the COM object.

If instead you set QueueEvents to 0, the callback function attached to the event is
executed immediately, even if there are other APL events before it in the internal
event queue. The result of your callback function is then passed back to the COM
object which may use it to inhibit or modify its normal event processing.

See QueueEvents for further details.

Chapter 9: OLE Automation Client and OLE Controls 195

Using the Microsoft Jet Database Engine
The SQL function in workspace samples\ole\oleauto.dws is a simple
example showing how you can call the Microsoft Jet database engine using OLE.

SQL is dyadic. The left argument is the path-name of an Access database; the right
argument is a query in the form of an SQL statement.

The result is a matrix containing the records that match the query.

For example:

FILE← 'c:\Program Files\Microsoft Office\Office\Sam
ples\Northwind'

QUERY←'Select * From Suppliers'
⍴FILE SQL QUERY

29 11

The SQL Function
∇ DATA←DATABASE SQL QUERY;DB;DBS;RCS

[1] ⍝ Uses the OLE Server DAO.DBEngine to perform a
[2] ⍝ query on an MS Access database
[3]
[4] 'DB'⎕WC'OleClient' 'DAO.DBEngine.35'
[5]
[6] :Trap 11 ERROR
[7] DBS←DB.OpenDatabase⊂DATABASE
[8] RCS←DBS.OpenRecordset⊂QUERY
[9] DATA←⍉RCS.GetRows 999
[10] :Else
[11] DATA←'DB'⎕WG'LastError'
[12] :EndTrap

∇

Let us examine how the function works.

[4] 'DB'⎕WC'OleClient' 'DAO.DBEngine.35'

This statement creates a new namespace called DB that is connected to the
DAO.DBEngine OLE Server. After the statement has executed, DB is essentially an
instance of the object and exposes the methods and properties provided by the
object.

[7] DBS←DB.OpenDatabase⊂DATABASE

196 Dyalog APL/W Interface Guide Version 14.0

The OpenDatabasemethod is called with the name of the database file as its
single argument (other parameters are optional and omitted here). The result of
OpenDatabase is a (new) Database object whose namespace reference is assigned
to DBS.

[8] RCS←DBS.OpenRecordset QUERY

The OpenRecordsetmethod is called with a character vector containing an SQL
statement as its argument. The result of OpenRecordset is a (new) Recordset
object whose namespace reference is assigned to RCS.

[9] DATA←⍉RCS.GetRows 999

The GetRowsmethod takes a single parameter which is the number of rows to be
fetched. This simple example ignores the possibility that there may be more than 999
records to be fetched and ignores the possibility of WS FULL. The result is a nested
matrix containing the data. In this case, the data is transposed.

It is not actually necessary to assign the results of the expressions in lines [7] and [8].
These expressions, which return namespaces, can simply be parenthesised and the
entire query can be executed in a single statement as illustrated by function SQL1.

∇ DATA←DATABASE SQL1 QUERY;DB
[1] ⍝ Shorter version of SQL
[2]
[3] 'DB'⎕WC'OleClient' 'DAO.DBEngine.35'
[4]
[5] :Trap 11
[6] DATA←⍉((DB.OpenDatabase⊂DATABASE).

OpenRecordset⊂QUERY).GetRows 999
[7] :Else
[8] DATA←DB.LastError
[9] :EndTrap

∇

Chapter 9: OLE Automation Client and OLE Controls 197

Using OLE Objects without Type Information
Even if an OLE Object fails to provide Type Information, either using early or late
binding, you will still be able to access its methods and properties using a secondary
form of late binding or SetMethodInfo and SetPropertyInfo as follows.

Secondary Late Binding1

If you refer to a name inside the OLEClient namespace that would otherwise gen-
erate a VALUE ERROR, and there is no Type information available for that name,
APL asks the COM object if it has a member (method or property) of that name.

The mechanism permits APL to determine only that the member is exported; it says
nothing about its type (method or property) nor its syntax. If the response from the
COM object is positive, APL therefore makes the most general assumption possible,
namely:

l That the member is a method
l That it may take up to 16 optional arguments
l That each argument is input/output (i.e. specified via a pointer)
l That the method returns a result.

This means that if you know, from its documentation or another source, that a COM
object provides a certain Method or Property, you may therefore access that member
by simply calling a function of that name in the OLEClient namespace. Note that
any parameters you pass will be returned in the result, because APL assumes that all
parameters are input/output. Furthermore, APL will be unable to check the validity
of the parameters you specify because it does not know what data types are expected.

SetMethodInfo and SetPropertyInfo
The SetMethodInfo and SetPropertyInfo methods provide a mechanism for you to pre-
cisely specify the missing Type Information for the methods and properties that you
wish to use. See Object Reference for further details.

Note that whether you use late binding or SetMethodInfo/SetPropertyInfo, any sub-
object namespaces that you create by invoking the methods and properties in the
top-level object, will also have no visible methods and properties. Therefore, if the
Type Information is missing, Late Binding or SetMethodInfo and SetPropertyInfo
must be used to access all the methods and properties that you wish to use, wherever
they occur in the object hierarchy.

1Prior to Version 14.0, this was the only form of late binding provided by Dyalog APL.

198 Dyalog APL/W Interface Guide Version 14.0

Events
When type library information is available, Dyalog APL automatically connects the
appropriate event sinks and establishes the EventList property for the object when it
is created. However, if the COM object does not declare its event sinks in a type lib-
rary, or if the LateBind property were set to 1, it is necessary to connect to themmanu-
ally. To support these cases, the following methods are used. These apply to top-
level COM objects and to the namespaces associated with any other COM objects
exposed by them.

Method Description

OLEListEventSinks

Returns the names of any event sinks currently
attached to an object. An event sink is a set of
events grouped (for convenience) by a COM
object.

OLEAddEventSink

Attaches the namespace associated with an object
to a specific event sink that it supports. If
successful, new event names will appear in the
EventList property of the namespace. This is the
only way to access events from an event sink that
is not described in the object's Type Information.

OLEDeleteEventSink
Removes the events associated with a particular
event sink from the EventList property of the
namespace associated with an object.

Chapter 9: OLE Automation Client and OLE Controls 199

Collections
A collection is a special type of object that represents a set of other objects. Col-
lections are typically implemented as properties. For example, the Excel Sheet object
has a property named Sheets whose value is a collection object that represents a set
of worksheets. Collections typically have a property called Count, which tells you
how many objects there are, and a Default Property named Item that provides access
to each member of the set. Item typically accepts a number or a name as an index and
returns a reference to an object.

For example, if a workbook contains two worksheets named "P&L" and "2002 Sales"
respectively, they might be accessed as follows:

S1←Sheets.Item[1]
S1.Name

P&L
S2←Sheets.Item ['2002 Sales']
S2.Index

2

Note that in old versions of Dyalog APL (pre-Version 11.0) the Item property was
exposed as a method. This old behaviour may be select by setting ⎕WX to 0 or 1
when you create the object. In which case:

S1←Sheets.Item 1
S1.Name

P&L
S2←Sheets.Item '2002 Sales'
S2.Index

2

Note that some collections work in origin 0 and some in origin 1; there is no way to
tell which applies except from the documentation. Furthermore, collections are used
for all sorts of purposes, and may not necessarily permit the instantiation of more
than one member of the set at the same time. Collections are not the same as arrays.

As mentioned above, the Item property is typically the Default Property (see Lan-
guage reference) of a Collection, so indexing may be applied directly to the Col-
lection object.

Sheets[1 2].Name
P&L 2002 Sales

200 Dyalog APL/W Interface Guide Version 14.0

The :For - :EndFor control structure provides a convenient way to enumerate
through the members of a collection without using the Item property. For example,
the following code snippet accumulates the values in an Excel worksheet collection.

DATA←0⍴⊂0 0⍴0
:For S :In Sheets ⍝ Enumerate SHEETS collection

DATA,←⊂S.UsedRange.Value2
:EndFor

Null Values
COM methods and properties frequently return null values for which there is no dir-
ect equivalent in the APL language. Instead, the system constant ⎕NULL is used to
represent a null value.

The following spreadsheet contains a number of empty cells.

Chapter 9: OLE Automation Client and OLE Controls 201

Using the Excel.Application COM object, the contents of the spreadsheet can be
obtained as follows:

'EX'⎕WC'OLEClient' 'Excel.Application'
WB←EX.Workbooks.Open 'simple.xls'

WB.Sheets[1].UsedRange.Value2
[Null] [Null] [Null] [Null] [Null]
[Null] Year [Null] [Null] [Null]
[Null] 1999 2000 2001 2002
[Null] [Null] [Null] [Null] [Null]
Sales 100 76 120 150
[Null] [Null] [Null] [Null] [Null]
Costs 80 60 100 110
[Null] [Null] [Null] [Null] [Null]
Margin 20 16 20 40

To determine which of the cells are filled, you can compare the array with ⎕NULL.

⎕NULL≢¨WB.Sheets[1].UsedRange.Value2
0 0 0 0 0
0 1 0 0 0
0 1 1 1 1
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
1 1 1 1 1

⎕NULL should also set the values of COM properties to null.

Additional Interfaces
Most COM objects and their sub-objects provide information about their methods
and properties through the IDispatch interface which is the normal interface used for
OLE Automation. When you create an instance of an OLEClient object or an
OCXClass object, Dyalog APL uses this interface to gain the information it requires.

If an object does not provide an IDispatch interface, or if an object provides addi-
tional functionality through other interfaces, it is possible to access the object’s func-
tionality using the OLEQueryInterface method.

In addition, if an object exposes sub-objects using an interface other than IDispatch,
you may access these sub-objects using the OLEQueryInterface method..

See OLEQueryInterface for further details.

202 Dyalog APL/W Interface Guide Version 14.0

Writing Classes based on OLEClient
You may define APL Classes (See Language Reference) based upon the OLEClient
object. For example:

:Class Excel: 'OLEClient'
∇ ctor wkbk

:Access Public
:Implements Constructor :Base ,⊂('ClassName' 'Excel

.Application')
Workbooks.Open ⊂wkbk

∇
:EndClass ⍝ Excel

XL←⎕NEW Excel 'f:\help11.0\days.xls'
XL.Workbooks[1].Sheets[1].UsedRange.Value2

From To Days Hours
38790 38791 0 3.25
38792 38792 [Null] 2.25
38793 38793 [Null] 2.5
38799 38799 [Null] 5
38800 38800 [Null] 3

[Null] [Null] [Null] 16

203

Chapter 10:

OLE Automation Server

Introduction
OLE Automation allows you to drive one application from another and to mix code
written in different programming languages. In practical terms, this means that you
may write a subroutine to perform calculations in (say) C++ and use the subroutine
directly in Visual Basic or Excel. Equally, you could write the code in Visual Basic
and call it from C++. Dyalog APL/W is a fully subscribed member of this code-shar-
ing club.

OLE Automation is, however, much more than just a mechanism to facilitate cross-
application macros because it deals not just with subroutine calls but with objects.
An object is a combination of code and data that can be treated as a unit. Without get-
ting too deeply into the terminology, an object defines a class; when you work with
an object you create one or more instances of that class.

OLE objects are represented in Dyalog APL by namespaces.

This chapter describes how you can write an OLE Automation Server in Dyalog
APL.

Namespaces and Objects
There is a direct correspondence between the object model and Dyalog APL
namespace technology, a correspondence that is thoroughly exploited in the imple-
mentation of OLE Automation.

204 Dyalog APL/W Interface Guide Version 14.0

An OLE object is simply a collection of methods (code that performs tasks) and prop-
erties (data that affects behaviour). An object corresponds directly to a Dyalog APL
namespace which contains functions that do things and variables that affect things.
Furthermore, OLE objects are hierarchical in nature; objects may contain sub-objects
just as namespaces may contain sub-namespaces. To complete the picture, an OLE
Server is an application that provides (exposes) one or more OLE objects. Thus an
OLE Server corresponds directly to a workspace that contains one or more
namespaces.

However, when you access an OLE object, you do so by creating an instance of its
class and you may work with several instances at the same time. Furthermore, several
applications may access the same OLE object at the same time, each with its own set
of instances. Each instance inherits its methods (functions) and the initial values of
its properties from the class. However, different property values will soon be estab-
lished in different instances so they must be maintained separately.

Dyalog APL/W includes the capability for a namespace to spawn instances of itself.
Initially, a new instance is simply a pointer to the original namespace (not a copy),
but as soon as anything in it is changed, the new value is recorded separately. Thus
instance namespaces will typically share functions but maintain separate sets of data.

Writing an APL OLE Server
The following steps are required to create an OLE Automation Server in Dyalog
APL/W:

1. Create a workspace containing an OLEServer namespace. This namespace
represents an OLE Object and may contain as many functions and variables
as you want to provide the functionality you require. It may also contain
other OLEServer namespaces to represent sub-objects in an object hierarchy.

2. For each of the functions and variables that you wish to expose as methods
and properties of your object, you must declare the data types of their para-
meters and results. You can do this manually, using the COM Properties tab
of the Object Properties dialog box, or by invoking the SetFnInfo and
SetVarInfo methods. Note that non-exported functions and variables, sub-
namespaces and defined operators may be used internally, but are not avail-
able directly to an OLE Automation client. It is also possible to generate
events from an OLEServer. The mechanism is the same as for an Act-
iveXControl and is described in the next chapter.

3. Select Export from the Session File menu and choose in-process or out-of-
process COM Server as you prefer.

Chapter 10: OLE Automation Server 205

Rules for Exported Functions
There are certain fundamental differences between OLE syntax and APL syntax.

For example, OLE methods may take any number of arguments whereas APL is con-
fined to two; a left and a right.

Secondly, some of the arguments or even all of the arguments to an OLE method may
be optional. You cannot however call a monadic APL function with no arguments;
in APL there is a clear distinction between niladic functions and functions that take
an argument.

Furthermore, the number and type of the arguments for each OLE method must be
registered in advance so that OLE knows how to call it.

These factors mean that certain rules must be adopted so that APL can register your
APL functions as OLE methods.

1. Exported APL functions must be niladic or monadic defined functions;
dyadic functions, dfns, derived functions and operators are not allowed.
However, ambivalent functions may be called (monadically) by OLE.

2. Character arrays whose rank is greater than 1 are passed as 1-byte integer
arrays. This means that 1-byte integer matrices and higher-rank arrays will
always be converted to character arrays.

3. An exported APL function may not be called with an empty numeric vector
(zilde) as its single argument. Zilde is used by an APL client to call a non-
niladic OLE method with no arguments.

4. If an exported APL function is called with more than one parameter, its argu-
ment will be a nested vector. If it is called with a single parameter that is a
character vector or an array whose rank is greater than 1, the argument sup-
plied to the APL function will be a simple array. Effectively, a 1-element
nested array received from an OLE Client is disclosed.

Out-of-Process and In-Process OLE Servers
Dyalog APL allows you to create both out-of-process OLE Servers and in-process
OLE Servers. An out-of-process OLE Server runs as a completely separate Windows
program that communicates with one or more client programs. An in-process OLE
Server is implemented as a Dynamic Link Library (DLL) that is loaded into the client
process and becomes part of its address space.

206 Dyalog APL/W Interface Guide Version 14.0

The main advantage of an in-process OLE Server is that communication between the
client application and the OLE Server is fast. Communication between clients and
out-of-process OLE Servers has to go through a separate OLE layer in Windows that
incurs a certain overhead. Another advantage is that in-process OLE Servers are sim-
pler to administer and simpler to install.

The main disadvantages of in-process OLE Servers is that there can only be one cli-
ent per server and they do not support DCOM directly.

ClassID, TypeLibID and other properties
Windows COM objects are identified using a system of Globally Unique Identifiers
(GUIDs). When you create an OLEServer object using WC, APL creates a number
of GUIDs and allocates them to the OLE Server. One of these is a Class Identifier
(often abbreviated to CLSID) that will uniquely identify your OLE object. This is
stored in the ClassID property of the OLEServer. Another GUID identifies the Dis-
patch interface of the object but is not available via a property.

An out-of-process COM server requires a separate Type Library file. This is a binary
file that describes the methods (functions) and properties (variables) exposed by the
OLEServer namespace(s) in the workspace. The Type Library is identified by a
GUID and by its file name. The file name (which is constructed from the workspace
name with a .TLB extension) is stored in the TypeLibFile property of the OLEServer
namespace. The GUID is generated when it is first needed and is stored in the
TypeLibFileID property of the OLEServer namespace. Note that if the workspace
contains several OLEServer objects, their TypeLibFile and TypelLibID properties all
have the same values.

In-process OLE Servers
Exporting
When you use File/Export to create an in-processOLE Server, the following steps
are performed.

APL first saves your workspace to a temporary file. Then it creates a temporary Type
Library File that describes each of the OLEServer objects in the workspace. Next, it
creates a Dynamic Link Library (DLL) file (whose name defaults to the name of your
workspace but with a .DLL extension) by merging the workspace saved in the tem-
porary file with the file OCXSTUB.DLL. Finally, it registers your OLE Server by
updating the Windows Registry. Your OLE Server DLL is self-contained and is inde-
pendent of your workspace. The temporary files are then deleted.

Chapter 10: OLE Automation Server 207

Execution
In-process OLEServers are hosted (executed) by the Dyalog APL DLL. If you export
your OLE Server with Runtime application checked, it will be bound with the run-
time version, If this checkbox is cleared, your OLE Server will be bound by the devel-
opment version.

If an in-process OLE Server, that is bound with the run-time Dyalog APL DLL gen-
erates an untrapped error, an OLE Automation error will be reported.

If an in-process OLE Server, that is bound with the development Dyalog APL DLL
generates an untrapped error, the APL Session will appear and you can use it to
debug the problem and continue. Note that at this point, the development DLL will
load your Session file so that all of your session tools are available during debug-
ging. If your Session file runs any initialisation code that references external files,
remember that this code will be executed in the current working directory of the host
process.

For further details, see User Guide, Chapter 2.

Registering and Unregistering
During development, an in-process OLE Server is automatically registered when you
create it using File/Export.

The Windows utility REGSVR32.EXE should be used to register an in-processOLE
Server independently, or to install a runtime in-process OLE Server on a target com-
puter. For example:

C:\Dyalog101>regsvr32 mysvr.dll

REGSVR32 should also be used (with the /u flag) to un-register an in-process OLE
Server. For example:

C:\Dyalog101>regsvr32 /u mysvr.dll

Note that in both cases, REGSVR32 actually starts the OLE Server. This in turn
loads the appropriate Dyalog APL DLL. If you are using the development DLL, note
that if your session start-up code fails for any reason, the REGSVR32 process will
hang and have to be terminated using the Task Manager.

208 Dyalog APL/W Interface Guide Version 14.0

Out-of-process OLE Servers
Exporting
When you use File/Export to create an out-of-processOLE Server, the following
steps are performed.

APL first creates a single Type Library File that describes all of the OLEServer
objects in the workspace. It then registers your OLE Server by updating the Win-
dows Registry with, among other things, the names and ClassIDs of your workspace
and Type Library file.

Note that the type information is taken from your active workspace and not the saved
workspace. It is up to you to ensure that your saved workspace (which will actually
be used when the OLE Server is invoked) is kept in step.

For example, if you were subsequently to remove the OLEServer objects from your
workspace and re-save it, or save a completely different workspace with the same
pathname, your OLE Server would fail to start because the Type Library and Registry
and no longer synchronised with your workspace.

Execution
An out-of-process OLE Server is implemented by a separate Dyalog APL process
(DYALOG.EXE or DYALOGRT.EXE) that loads your workspace when it starts.

If an out-of-process OLE Server, that is bound with the run-time Dyalog APL pro-
gram, generates an untrapped error, an OLE Automation error will be reported.

If an out-of-process OLE Server, that is bound with the development Dyalog APL pro-
gram, generates an untrapped error, the APL Session will appear and you can use it to
debug the problem and continue. In previous versions of Dyalog APL, the visibility
of the APL Session for debugging was controlled by the ShowSession property. Set-
ting ShowSession to 1 will cause the Session to be displayed immediately, when the
OLE Server is started. However, setting ShowSession to 0 will not prevent the Ses-
sion from appearing if an untrapped APL error occurs.Registering and Unregistering

During development, an out-of-process OLE Server is automatically registered when
you create it using File/Export.

An out-of-process OLEServer may also be registered by calling its OLERegister
method. This performs the same tasks as File/Export, but without any user-inter-
action.

OLERegister is the recommended way to install an out-of-processOLEServer on a
target computer as a run-time application.

Chapter 10: OLE Automation Server 209

An out-of-process OLEServer may be unregistered by calling its OLEUnRegister
method.

Registry Entries
This section describes the entries that are written into the Windows Registry when
APL registers an out-of-processOLEServer.

All registry entries are written as sub-keys of the primary key HKEY_LOCAL_
MACHINE\SOFTWARE\Classes of which HKEY_CLASSES_ROOT is an alias.
Four separate entries are created, although only the first of these applies to top-level
OLEServers.

1. A sub-key named dyalog.xxxx where xxxx is the name of the OLEServer.
This has a sub-key named CLSID whose Default value is a GUID cor-
responding to the ClassID property of the OLEServer.

2. A sub-key named CLSID\xxxx where xxxx is the GUID corresponding to
the value of the ClassID property of the OLEServer. The Default value of
this sub-key is the name of the OLEServer, and the sub-key itself contains
sub-keys, namely DyalogDispInterface, DyalogEventInterface,
InProcHandler32, LocalServer32, ProgID, TypeLib, and Ver-
sionIndependentProgID.
a. DyalogDispInterface and DyalogEventInterface have their Default

values set to the GUID for the Interface entry (see Paragraph 4). This
GUID is generated internally by the registration of the Type Library.

b. InProcHandler32 has the Default value "OLE32.DLL".
c. LocalServer32 has its Default value set to the command line that is

required to start the OLEServer. This is the full path-name of the appro-
priate DYALOG.EXE or DYALOGRT.EXE followed by the full path-
name of the corresponding workspace plus any options that were spe-
cified in the Create bound file dialog box.

d. ProgID has its Default value set to "dyalog.xxxx" where "xxxx" is the
name of the OLEServer.

e. TypeLib has its Default value set to the GUID corresponding to the
TypeLibID property of the OLEServer.

f. VersionIndependentProgID has its Default value set to "dyalog.xxxx"
where "xxxx" is the name of the OLEServer (same as ProgID).

g. Note that for a sub-object (an OLEServer that is a child of another
OLEServer) only the InProcHandler32 key is required, although the
other entries are created and are in fact redundant.

210 Dyalog APL/W Interface Guide Version 14.0

3. A sub-key named TypeLib\xxxx where xxxx is the GUID corresponding to
the value of the TypeLib property of the OLEServer. This contains a sub-
key named 1.0 (which refers to its version number). The Default value of
1.0 is "Type Library for xxxx" where "xxxx" is the name of the OLEServer.
1.0 contains three further sub-keys named 0, FLAGS and HELPDIR.
a. 0 (this identifies the language id; 0 refers to all languages) contains a

sub-key named win32 whose Default value is the full path-name of the
Type Library file associated with the OLE object; i.e. the value of the
TypeLibFile property of the OLEServer.

b. FLAGS has a Default value of "0".
c. HELPDIR has its Default value set to the full path-name of the dir-

ectory in which the corresponding workspace is saved.
4. Sub-keys named Interface\xxxx where xxxx is the GUID referenced by the

value of DyalogDispInterface and DyalogEventInterface described in para-
graph 2. The Default values of these sub-keys is "xxxxdisp" where "xxxx"
is the name of the OLEServer. You may identify the correct Interface sub-
key by searching the registry for this string. It has three sub-keys named
ProxyStubClsid, ProxyStubClsid32, and TypeLib.
a. ProxyStubClsid has a Default value of a GUID that references an inter-

face of type PSDispatch.)
b. ProxyStubClsid32 (same as ProxyStubClsid).
c. TypeLib has two values. Its Default value is the GUID identified by

the TypeLib property of the OLEServer object, or, for a child
OLEServer, the TypeLib property if its parent OLEServer. Its Version
value is "1.0".

LateBind Property
When an APL OLEServer is hosted by another application (for example, Microsoft
Excel), the OLEServer can be passed not just arrays but references to objects in the
host application. If this occurs, then APL reads the Type information for the ref-
erenced objects so that it has the information necessary to manipulate them using
their properties, methods and events. This operation can take an unacceptably long
length of time but can be avoided (if appropriate) using late binding.

The way that an OLEServer object processes Type information using early or late
binding, as specified by its LateBind property, is essentially the same as for an
OLEClient. See Type Information on page 179.

Furthermore, the way that an OLEServer deals with host application objects that do
not provide Type information is also the same. SeeMissing Type Information on
page 180 and Using OLE Objects without Type Information on page 197.

Chapter 10: OLE Automation Server 211

The LOAN Workspace
LOAN.DWS contains a single namespace called Loan which is used to calculate
monthly repayments on a loan. As supplied, LOAN is a pure APL workspace. You
will have to turn it into an OLE Server, and declare a method and a property, before
you can use it.

The Loan namespace contains a single function CalcPayments and a variable
PeriodType.

The CalcPayments function takes a 5-element numeric vector as an argument
whose elements specify:

1. loan amount
2. maximum number of periods for repayment
3. minimum number of periods for repayment
4. maximum annual interest rate
5. minimum annual interest rate

CalcPayments also uses the "global" variable PeriodType which specifies
whether the periods (above) are years or months. This is done solely to illustrate
how another application can manipulate an APL object via its variables (properties)
as well as by calling its functions (methods).

CalcPayments returns a matrix. The first row contains the period numbers (from
min to max). The first column contains the interest rates (frommin to max in steps of
0.5%). Other elements contain the monthly repayments for the corresponding number
of periods and interest rates.

Using CalcPayments
The following session transcript illustrates how the CalcPayments function is
used.

)LOAD LOAN
C:\Dyalog101\samples\ole\LOAN saved ...

)OBS
Loan

)CS Loan
#.Loan

)FNS
CalcPayments

)VARS
PeriodType

212 Dyalog APL/W Interface Guide Version 14.0

CalcPayments 10000 5 3 6 3
0 3 4 5
3 290.8120963 221.3432699 179.6869066
3.5 293.0207973 223.5600105 181.9174497
4 295.2398501 225.7905464 184.1652206
4.5 297.4692448 228.0348608 186.4301924
5 299.708971 230.2929357 188.7123364
5.5 301.959018 232.5647523 191.0116217
6 304.2193745 234.8502905 193.3280153

The CalcPayments Function
[0] PAYMENTS←CalcPayment;X;LoanAmt;LenMin;LenMa;IntrMin;IntrMax

;PERIODS;INTEREST;NI;NM;PER;INT
[1] ⍝ Calculates loan repayments
[2] ⍝ Argument X specifies:
[3] ⍝ LoanAmt Loan amount
[4] ⍝ LenMax Maximum loan period
[5] ⍝ LenMin Minimum loan period
[6] ⍝ IntrMax Maximum interest rate
[7] ⍝ IntrMin Minimum interest rate
[8] ⍝ Also uses the following global variable
[9] ⍝ PeriodType 1 = years, 2 = months
[10]
[11] LoanAmt LenMax LenMin IntrMax IntrMin←X
[12]
[13] PER←PERIODS←¯1+LenMin+⍳1+LenMax-LenMin
[14] PERIODS←PERIODS×12 1[PeriodType]
[15] INT←INTEREST←0.5×¯1+(2×IntrMin)+⍳1+2×IntrMax-IntrMin
[16] INTEREST←INTEREST÷100×12 1[PeriodType]
[17]
[18] NI←⍴INTEREST
[19] NM←⍴PERIODS
[20]
[21] PAYMENTS←(LoanAmt)×((NI,NM)⍴NM/INTEREST)÷

1-1÷(1+INTEREST)∘.*PERIODS
[22] PAYMENTS←PER,[1]PAYMENTS
[23] PAYMENTS←(0,INT),PAYMENTS

Chapter 10: OLE Automation Server 213

Registering Loan as an OLE Server
To use this example, you must first

1. Convert the Loan namespace into an OLEServer object.
2. Declare the COM properties for CalcPayments and PeriodType.
3. Create an in-process or out-of-process server and register the Loan object on

your system.

Please perform the following steps:

)LOAD the LOAN workspace from the samples\ole sub-directory

)LOAD SAMPLES\OLE\LOAN
samples\ole\loan saved ...

)OBS
Loan

Execute the following statement to make Loan an OLEServer object:

Loan.⎕WC 'OLEServer'

214 Dyalog APL/W Interface Guide Version 14.0

Now, using the COM Properties tab of the Properties dialog box, define the syntax
and data types for the CalcPayments function and the PeriodType variable so
that they are exported as a method and property respectively.

The picture above shows the COM properties that are required to export function
CalcPayments as a method. The function is declared to require 5 parameters of
type VT_I4 (integers) and return a result of type VT_ARRAY of VT_R8 (an array of
floating-point numbers).

The names you choose for the parameters will be visible in an object browser and cer-
tain other programming environments.

Chapter 10: OLE Automation Server 215

The picture above shows the COM properties to export variable PeriodType as a
property. The property is declared to be of type VT_I4 (integer).

Rename and save the workspace to avoid overwriting the original:

)WSID MYLOAN
was C:\Program Files\Dyalog\Dyalog APL 13.1 Unicode\Sampl
es\ole\loan

)SAVE
MYLOAN saved ...

216 Dyalog APL/W Interface Guide Version 14.0

Finally, to create your OLE Server, choose Export from the Session Filemenu and
complete the Create bound file dialog box as shown below. In this case, the OLE
Server is created as an in-process server, bound to the development version of the
Dyalog APL DLL (because the Runtime application checkbox is cleared)

Note that appropriate information will be displayed in the Status window to inform
you of the success (or failure) of the operation.

Chapter 10: OLE Automation Server 217

Using Loan from Excel
Start Excel and load the spreadsheet Loan.xls from the Dyalog APL sub-directory
samples\ole.

The Payments button fires a simple macro that uses the APL dyalog.Loan object to
perform repayment calculations. To run the example enter data into the cells as
shown below, then click Payments. When you do so, Excel runs the Calc macro and
this causes OLE to initialise the dyalog.Loan OLE Server

The Calc macro actually calculates the repayments matrix by calling the Cal-
cPayments method in the dyalog.Loan object; i.e. it runs the CalcPayments func-
tion in the Loan namespace.

218 Dyalog APL/W Interface Guide Version 14.0

How it Works
Sub Calc()

Dim APLLoan As Object
Dim Payments As Variant
Set APLLoan = CreateObject("dyalog.Loan")
LoanAmt = Cells(1, 3).Value
LenMax = Cells(2, 3).Value
LenMin = Cells(3, 3).Value
IntrMax = Cells(4, 3).Value
IntrMin = Cells(5, 3).Value
APLLoan.PeriodType = 1
Payments = APLLoan.CalcPayments(LoanAmt, LenMax,

LenMin, IntrMax, IntrMin)
For r = 0 To UBound(Payments, 1)

For c = 0 To UBound(Payments, 2)
Cells(r + 1, c + 5).Value = Payments(r, c)

Next c
Next r

End Sub

The statement:

Dim APLLoan As Object

declares a (local) variable called APLLoan to be of type Object

The next statement:

Set APLLoan = CreateObject("dyalog.Loan")

creates an instance of dyalog.Loan associated with this variable.

Effectively, when the macro is run, Excel asks OLE to provide the external object
called dyalog.Loan.

If you exported Loan as an out-of-processOLE Server, OLE starts the appropriate
version (development or run-time) of Dyalog APL with your workspace MYLOAN. If
you exported Loan as an in-processOLE Server, OLE loads MYLOAN.DLL into
your Visual Basic application which in turn loads the appropriate Dyalog APL DLL.
In either case, an instance of the Loan namespace is connected to the Excel macro as
an Object.

The next statement to notice is:

APLLoan.PeriodType = 1

In Excel terms, this statement sets the PeriodType property of the APLLoan object to
the value 1. What actually happens, is that the APL variable PeriodType in the
corresponding running instance of the Loan namespace is set to 1.

Chapter 10: OLE Automation Server 219

Finally, the following statement:

Payments = APLLoan.CalcPayments(LoanAmt, LenMax, LenMin,
IntrMax, IntrMin)

calls the APL function CalcPayments and receives the result.

In Excel terms, this statement invokes the CalcPayments method of the APLLoan
object. In practice, it calls the CalcPayments APL function with the specified
argument and puts the result in the local variable Payments. Note that the conversion
between the result of the function (a Dyalog APL floating-point matrix) and the cor-
responding Excel data type is performed automatically for you.

Notice that the APLLoan variable is local to the Calc macro. This means that the
dyalog.Loan object is loaded every time that Calc is run and is unloaded when it ter-
minates.

Using Loan from Dyalog APL
It is of course possible to use Dyalog APL as both an OLE Automation client and an
OLE Automation Server.

To use the dyalog.Loan object, start Dyalog APL and then enter the following expres-
sions in the Session window.

'LN'⎕WC'OLEClient' 'dyalog.Loan'
)OBS

LN
)CS LN

#.LN
)METHODS

CalcPayments
)PROPS

PeriodType

CalcPayments 10000 5 3 6 3
0 3 4 5
3 290.8120963 221.3432699 179.6869066
3.5 293.0207973 223.5600105 181.9174497
4 295.2398501 225.7905464 184.1652206
4.5 297.4692448 228.0348608 186.4301924
5 299.708971 230.2929357 188.7123364
5.5 301.959018 232.5647523 191.0116217
6 304.2193745 234.8502905 193.3280153

220 Dyalog APL/W Interface Guide Version 14.0

The statement:

'LN'⎕WC'OLEClient' 'dyalog.Loan'

causes APL to ask OLE to provide the external object called dyalog.Loan. This name
will have been recorded in the registry by Dyalog APL when you saved the MYLOAN
workspace.

If you exported Loan as an out-of-processOLE Server, OLE starts a second Dyalog
APL process (development or run-time) with your workspace MYLOAN. There are
now two separate copies of Dyalog APL running; one is the client, the other the
server.

If you exported Loan as an in-processOLE Server, OLE loads MYLOAN.DLL into
the Dyalog APL program which in turn loads the appropriate Dyalog APL DLL.
These DLLs are both are loaded into the same address space as the original APL pro-
cess. In effect, you have two copies of APL (and two workspaces) running as a single
program.

Note that in both cases, the mapping between the corresponding functions and vari-
ables is direct. Effectively, the client namespace LN is an instance of the server
namespace Loan.

Chapter 10: OLE Automation Server 221

Implementing an Object Hierarchy
Despite the close correspondence between the object model and Dyalog APL
namespace technology, there is one significant difference. OLE does not support
object hierarchies in the sense that one object contains or owns another.

Instead you must implement object hierarchies using properties that refer to other
objects and/ormethods that return objects as results.

It is not possible to pass Dyalog APL namespace hierarchies through OLE because
OLE does not support them. If you want to write an OLE Automation Server in APL
that implements an object hierarchy, you must follow the OLE conventions for doing
so.

You can pass an instance of a Dyalog APL OLEServer namespace to an OLE client
as a ⎕OR, which can be the result of a function or the value of a variable. In order to
be recognised as an OLE object, the namespace must be of type OLEServer.

In fact, when you export a workspace containing one or more OLEServer objects,
any child OLEServer objects that they contain are registered too.

The CFILESWorkspace (samples\ole\cfiles.dws) illustrates the use of an
object hierarchy.

222 Dyalog APL/W Interface Guide Version 14.0

The CFILES Workspace
CFILES.DWS contains a single OLEServer namespace called CFiles which imple-
ments a basic object-oriented interface to Dyalog APL component files.

This example allows an OLE Client, such as Excel, to read and write APL com-
ponent files. It is deliberately over-simplified but illustrates how an object hierarchy
may be implemented.

Unlike the previous example, the CFILES workspace is supplied as a complete
OLEServer with all of the COM properties for its methods already defined. All you
have to do is to export it as a COM Server.

The CFiles namespace contains a single function OpenFile and a sub-namespace
called File which is also an OLEServer. This namespace contains functions
FREAD, FREPLACE, FAPPEND and FSIZE.

To use this Server, an OLE Client requests an instance of the dyalog.CFiles
object.

To open a component file, an OLE Client calls OpenFile with the name of the file as
its argument. This function opens the file and returns, not a file tie number as you
might expect, but an instance of the File namespace which is associated with the file.
As far as the client is concerned, this is a subsidiary OLE object of type
dyalog.File.

To perform file operations, the client invokes the FREAD, FREPLACE, FAPPEND
and FSIZEmethods (functions) of the File object.

A more sophisticated example might expose each component as a subsidiary object
too.

Registering CFiles as an OLE Server
In order to explore the use of an APL OLE Server using the CFILES workspace as an
example, you must register the CFiles object on your system.

)LOAD the CFILES workspace from the samples\ole sub-directory

)LOAD SAMPLES\OLE\CFILES
samples\ole\cfiles saved ...

)OBS
CFiles

Then select Export from the Session Filemenu and create either an in-process or out-
of process OLE Server.

Chapter 10: OLE Automation Server 223

The OpenFile Function
∇ FILE←OpenFile NAME;F;TIE

[1] ⍝ Makes a new File object
[2] TIE←1+⌈/0,⎕FNUMS
[3] NAME ⎕FTIE TIE
[4] File.TieNumber←TIE
[5] File.Name←NAME
[6] FILE←⎕OR'File'

∇

OpenFile takes the name of an existing component file and opens it exclusively
using ⎕FTIE.

It returns an instance of the File namespace that is associated with the file through
the variable TieNumber. This is global to the File namespace.

OpenFile[4]sets the variable TieNumber in the File namespace to the tie num-
ber of the requested file.

OpenFile[5]sets the variable Name in the File namespace to the name of the
requested file. This is not actually used.

OpenFile[6]creates an instance of the File namespace using ⎕OR and returns it
as the result.

Note that there is a separate instance of File for every file opened by every OLE Cli-
ent that is connected. Each knows its own TieNumber and Name.

224 Dyalog APL/W Interface Guide Version 14.0

The COM Properties dialog box for OpenFile is shown below. The function is
declared to take a single parameter called FileName whose data type is VT_BSTR (a
string). The result of the function is of data type VT_DISPATCH. This data type is
used to represent an object.

Chapter 10: OLE Automation Server 225

The FSIZE Function
∇ R←FSIZE

[1] R←⎕FSIZE TieNumber
∇

FSIZE returns the result of ⎕FSIZE for the file associated with the current instance
of the File namespace.

The COM Properties dialog box for FSIZE is shown below. The function is declared
to take no parameters. The result of the function is of data type VT_VARIANT. This
data type is used to represent an arbitrary APL array.

226 Dyalog APL/W Interface Guide Version 14.0

The FREAD Function
∇ R←FREAD N

[1] R←⎕FREAD TieNumber,N
∇

FREAD returns the value in the specified component read from the file associated
with the current instance of the File namespace.

The COM Properties dialog box for FREAD is shown below. The function is declared
to take a single parameter called Component whose data type is VT_I4 (an integer).
The result of the function is of data type VT_VARIANT. This data type is used to
represent an arbitrary APL array.

Chapter 10: OLE Automation Server 227

The FAPPEND Function
∇ R←FAPPEND DATA

[1] R←DATA ⎕FAPPEND TieNumber
∇

FAPPEND appends a component onto of the file associated with the current instance
of the File namespace.

The COM Properties dialog box for FAPPEND is shown below. The function is
declared to take a single parameter called Data whose data type is VT_VARIANT.
This data type is used to represent an arbitrary APL array. The result of the function is
of data type VT_I4 (an integer).

228 Dyalog APL/W Interface Guide Version 14.0

The FREPLACE Function
∇ FREPLACE ID;I;DATA

[1] I DATA←ID
[2] DATA ⎕FREPLACE TieNumber,I

∇

FREPLACE replaces the specified component of the file associated with the current
instance of the File namespace.

The COM Properties dialog box for FREPLACE is shown below. The function is
declared to take two parameter. The first is called Component and is of data type
VT_I4 (integer). The second parameter is called Data and is of data type VT_
VARIANT. This data type is used to represent an arbitrary APL array. The result of
the function is of data type VT_VOID, which means that the function does not
return a result.

Chapter 10: OLE Automation Server 229

Using CFiles from Excel
Start Excel and load the spreadsheet CFiles.xls from the Dyalog APL sub-directory
samples\ole.

Please note that to simplify the Excel code, only components containing matrices
(such as those contained in samples\ole\test.dcf) are handled. Components con-
taining scalars, vectors, higher-rank arrays and complex nested arrays are not sup-
ported.

To open a file, type the name of the file and click the Open button. This runs the
FOpen procedure. A test file named test.dcf is provided in the samples\ole
sub-directory.

To read a component, enter the component number and click Read. This runs the
FRead procedure.

To replace a component, first enter the component number. Then type some data else-
where on the spreadsheet and select it. Now click Replace. This runs the FReplace
procedure.

To append a component, enter some data elsewhere on the spreadsheet and select it.
Now click Append. This runs the FAppend procedure.

230 Dyalog APL/W Interface Guide Version 14.0

The FOpen Procedure
Public CF As Object
Public File As Object

Dim Data As Variant

Sub FOpen()
Set CF = CreateObject("dyalog.CFILES")
f = Cells(1, 2).Value
Set File = CF.OpenFile(f)
Call FSize

End Sub

In the declaration section, the first statement declares a global variable CF to be of
data type Object. This variable will be connected to the dyalog.CFiles OLE Server
object. The second statement declares a global variable File to be of data type
Object. This variable will be connected to the dyalog.File OLE Server object. The
third statement declares a global variable Data to be of data type Variant. This is equi-
valent to a nested array. This variable will be used for the component data.

The statement:

Set CF = CreateObject("dyalog.CFILES")

causes OLE to start Dyalog APL and obtain an instance of the dyalog.CFiles OLE
Server object which is then associated with the variable CF. Because this variable is
global, the OLE Server remains in memory and available for use.

The statement

f = Cells(1, 2).Value

gets the name of the file to be opened and puts it into the (local) variable f.

Finally, the statement:

Set File = CF.OpenFile(f)

calls the OpenFile function and stores the result (which is an object) in the global
variable File.

Chapter 10: OLE Automation Server 231

The FRead Procedure
Sub FRead()

c = Cells(4, 2).Value
Data = File.FREAD(c)
For r = 0 To UBound(Data, 1)

For c = 0 To UBound(Data, 2)
Cells(r + 6, c + 2).Value = Data(r, c)

Next c
Next r

End Sub

The statement:

c = Cells(4, 2).Value

gets the number of the component to be read and stores it in the (local) variable c.

The statement:

Data = File.FREAD(c)

calls the FREAD function in the instance of the File namespace that is connected to
the (global) Excel variable File. The result is stored in the variable Data.

The remaining statements copy the data from Data into the spreadsheet.

The FReplace Procedure
Sub FReplace()

c = Cells(4, 2).Value
Data = Selection.Value
Call File.FReplace(c, Data)
Call Fsize()

End Sub

The statement:

c = Cells(4, 2).Value

gets the number of the component to be replaced and stores it in the (local) variable
c.

The statement:

Data = Selection.Value

gets the contents of the selected range of cells and stores it in the variable Data. This
will be a 2-dimensional matrix.

The statement:

Call File.FReplace(c, Data)

calls the FREPLACE function in the instance of the File namespace that is con-
nected to the (global) Excel variable File.

232 Dyalog APL/W Interface Guide Version 14.0

The FAppend Procedure
Sub FAppend()

Dim Rslt As Variant
Data = Selection.Value
Rslt = File.FAppend(Data)
Call Fsize()

End Sub

The statement:

Data = Selection.Value

gets the contents of the selected range of cells and stores it in the variable Data. This
will be a 2-dimensional matrix.

The statement:

Rslt = File.FAppend(Data)

calls the FAPPEND function in the instance of the File namespace that is connected
to the (global) Excel variable File. The result of this function is ignored.

Configuring an out-of-process OLEServer for DCOM
Introduction
When you register an out-of-processOLEServer using File/Export or OLERegister,
Dyalog APL automatically updates the Windows registry so that your OLEServer is
immediately accessible to an OLE client application running on the same computer.

If you wish to make the same object accessible to client applications running on dif-
ferent computers (using distributed COM, or DCOM) you have to install additional
registry entries on the server and on each of the clients.

Once you have established these registries entries, you should be able to access the
OLEServer fromWindows 95 or NT client computers in exactly the same way as if it
were local; the client applications need not know where the server is located. In most
cases, these additional registry entries are sufficient. However, the NT and DCOM
security considerations may require the use of dcomcnfg.exe (a Microsoft utility)
to set additional values. For example, if you get E_ACCESSDENIED errors when con-
necting from the client you may need to run dcomcnfg.exe on the server com-
puter to assign the appropriate launch and access permissions for the OLEServer
object.

The additional registry entries are described below. You may add these to the
registry directly (using regedit.exe) or by running the functions provided in the
DCOMREG.DWS workspace.

Chapter 10: OLE Automation Server 233

DCOM Registry Entries for the Server
On the computer upon which you want the OLEServer to be run, you must add the
following registry entries.

1. A key under HKEY_CLASSES_ROOT\AppID whose name corresponds to
the CLSID of your OLEServer object as reported by the value of its
ClassID property. The (Default) value of this key should be the name of
the server object. In addition, you must define a RunAs entry which spe-
cifies the manner in which a client application runs your server. The
simplest choice is Interactive User which specifies that the client applic-
ation is treated like a normal user.

For example, if you had saved an OLEServer namespace called Loan (c.f.
samples\loan.dws), whose ClassID property had the value
{B80E9D40-2090-11D1-8F93-0020AFABD95D} the entries would be:

HKEY_CLASSES_ROOT\AppID\{B80E9D40-2090-11D1-8F93-
0020AFABD95D}

(Default)=dyalog.Loan

RunAs=Interactive User

2. An AppID entry to the HKEY_CLASSES_ROOT\CLSID key. (Note that
this key will itself have been created by Dyalog APL/W when you saved
the workspace) Once again, CLSID refers to the value of your OLEServer’s
ClassID property. The value of the AppID entry is the (same) CLSID.

Using the same example as above, the entry would be:

HKEY_CLASSES_ROOT\{B80E9D40-2090-11D1-8F93-
0020AFABD95D}

AppID={B80E9D40-2090-11D1-8F93-0020AFABD95D}

234 Dyalog APL/W Interface Guide Version 14.0

DCOM Registry Entries for the Client
On each of the computers from which you wish to call the OLEServer object as a cli-
ent, you must add the following entries.

1. Two keys under HKEY_CLASSES_ROOT that identify the object (locally)
and associate it with your OLEServer Note that the local name of the object
is arbitrary and may be different on each client.

HKEY_CLASSES_ROOT\dyalog.ServerName

HKEY_CLASSES_ROOT\dyalog.ServerName\CLSID

CLSID is again the CLSID of the OLEServer object (thismust be the same as
that of the server machine). dyalog.ServerName can be replaced with
whatever name you want clients to use to refer to this object

2. Under HKEY_CLASSES_ROOT\AppID, a key whose name corresponds to
the CLSID of your server object. The (Default) value of this key should be
the name of the OLE server object (its name on the server computer). In
addition, the key should contain a RemoteServerName entry whose value is
the name of the server computer. For example:

HKEY_CLASSES_ROOT\AppID\{B80E9D40-2090-11D1-8F93-
0020AFABD95D}

(Default)=dyalog.Loan

RemoteServerName=ntsvr

Chapter 10: OLE Automation Server 235

DCOMREG Workspace
The workspace DCOMREG.DWS contains a single namespace called reg that con-
tains three functions to help register an out-of-processOLE Server for DCOM.

RegDCOMServer
This function should be run on the server computer and is called as follows:

RegDCOMServer ServerName CLSID

Where ServerName is a character string containing the (full) name of the
OLEServer (e.g. dyalog.Loan) and CLSID is a character string containing the
CLSID of the server (the value of it ClassID property). For example:

)LOAD LOAN
.\LOAN saved ...

)COPY DCOMREG
DCOMREG saved ...

CLSID ←('Loan' ⎕WG 'ClassID')
reg.RegDCOMServer 'dyalog.Loan' CLSID

RegDCOMClient
This function should be run on each of the client computers and is called as follows:

machine RegDCOMClient ServerName CLSID

Where machine is a character vector specifying the name of the (NT) server com-
puter, ServerName is a character vector containing the (full) name of the
OLEServer (e.g. dyalog.Loan) and CLSID is a character string containing the
CLSID of the server (the value of it ClassID property). For example:

CLSID←'{B80E9D40-2090-11D1-8F93-0020AFABD95D}'
'NTSVR' reg.RegDCOMClient 'dyalog.Loan' CLSID

Config

This niladic function simply invokes the dcomcnfg.exe utility using ⎕CMD.

236 Dyalog APL/W Interface Guide Version 14.0

Calling an OLE Function Asynchronously
Introduction
Functions exported by an OLEServer are executed (by the underlying OLE tech-
nology) in a synchronousmanner. This means that the OLE client must wait for the
function to complete before it can continue processing.

In certain cases the client may not be interested in a result from a function and it may
be desirable for client not to have to wait. For example, if a function updates files or
performs a printing task, it would be nice for the client application to continue while
the server performs this task in background, or indeed (using DCOM) on another com-
puter.

For an out-of-processOLE Server, this can be achieved by having the function that is
called directly by the client post an event (using ⎕NQ) onto the event queue and then
return. When the function terminates, APL will take the next event from the queue
and take the appropriate action. If the event has an associated callback function, APL
will invoke it. Note that this happens immediately after the original function has ter-
minated and a result (if any) has been returned to the client. This means that the APL
OLEServer continues processing at the same time as the client application.

Note however that while the OLEServer is processing, further OLE requests will be
queued. For example, if the client were to call the same function again immediately,
the function would not be invoked until the original processing has finished and the
client would therefore wait (note that OLE itself will actually time-out after a certain
period). Nevertheless, this technique is an effective way to offload batch processing
tasks to a second (background) APL process or to one running on a different com-
puter.

The OLEASYNC Workspace
The OLEASYNC workspace illustrates this technique. It contains a single
namespace called Async which exports 2 functions (methods), PRINT and ASYNC
and two variables (properties) ERRCODE and COPIES.

The first function, PRINT, prints a specified number of test pages in the background.
PRINT does not actually do any printing. All it does is to associate a second func-
tion PRINT_CB as a callback on a user-defined event 3001 (the choice of 3001 is
purely arbitrary). It then posts an event 3001 onto the queue and returns 0 as its res-
ult.

Chapter 10: OLE Automation Server 237

The function also illustrates the use of :Trap. Should either of the statements on
lines [3] and [4] fail, the function terminates cleanly and returns ⎕DM instead.

∇ R←PRINT N
[1] ⍝ Prints N test pages "in background"
[2] :Trap 0
[3] '.'⎕WS'Event' 3001 'PRINT_CB'N
[4] ⎕NQ'.' 3001
[5] (R ERRCODE)←0
[6] :Else
[7] (R ERRCODE)←⎕DM ⎕EN
[8] :EndTrap

∇

The actual printing is performed by PRINT_CB after PRINT has returned to the cli-
ent and while the client itself continues processing. It too uses :Trap to terminate
cleanly should an error occur.

∇ N PRINT_CB MSG;PR;I;M
[1] ⍝ Callback function : prints N test pages
[2] :Trap 0
[3] 'PR'⎕WC'Printer'
[4] :For I :In ⍳N
[5] 'PR.'⎕WC'Text'(20 60⍴'Testing')(0 0)
[6] 1 ⎕NQ'PR' 'NewPage'
[7] :EndFor
[8] ERRCODE←0
[9] :Else
[10] ERRCODE←⎕EN
[11] :EndTrap

∇

Note that the client can (later) query ERRCODE to find out whether or not the oper-
ation succeeded. Indeed, referencing ERRCODE will synchronise the client and server
because the server will have to wait until PRINT_CB completes before it can service
the request for the value of ERRCODE.

The ASYNC function illustrates a slightly different approach and may be used to
execute any expression asynchronously. It simply associates its argument (a character
vector) as an expression to be executed when (user-defined) event 3001 occurs. It
then posts this event onto the queue as before.

238 Dyalog APL/W Interface Guide Version 14.0

∇ R←ASYNC CMD
[1] ⍝ Executes expression CMD "asynchronously"
[2] :Trap 0
[3] '#.Async'⎕WS'Event' 3001 'DO'CMD
[4] ⎕NQ'#.Async' 3001
[5] (R ERRCODE)←0
[6] :Else
[7] (R ERRCODE)←⎕DM ⎕EN
[8] :EndTrap

∇

The callback function DO is invoked (later) when the event 3001 is processed from
the event queue. This happens immediately after the function ASYNC has returned its
result to the client workspace. DO simply executes its left argument, which is the
string that was supplied as the right argument to ASYNC.

∇ CMD DO MSG
[1] :Trap 0
[2] ⍎CMD
[3] ERRCODE←0
[4] :Else
[5] ERRCODE←⎕EN
[6] :EndTrap

∇

You may wonder why it is necessary to use a callback function as opposed to an
execute expression. In particular, why not have ASYNC[3] as follows?

[3] '#.Async'⎕WS'Event' 3001 '⍎CMD'

The reason is that whilst a callback will execute in the instance of the OLEServer
namespace connected to this client (which is what we want), an execute expression
will be executed in the master OLEServer namespace itself.

The namespace contains a fourth function called LPR which is designed to be called
via ASYNC using an expression such as ASYNC 'LPR'.

∇ LPR;PR;I
[1] :Trap 0
[2] 'PR'⎕WC'Printer'
[3] :For I :In ⍳COPIES
[4] 'PR.'⎕WC'Text'(20 60⍴'Testing')(0 0)
[5] 1 ⎕NQ'PR' 'NewPage'
[6] :EndFor
[7] ERRCODE←0
[8] :Else
[9] ERRCODE←⎕EN
[10] :EndTrap

∇

Chapter 10: OLE Automation Server 239

Note that the number of copies to be printed is defined by the (global) variable
COPIES whose default value is 1. This is done only to illustrate that LPR called via
DO runs in the correct instance of the OLEServer (using your value of COPIES) as
opposed to in the master OLEServer namespace itself.

Testing dyalog.Async
Load OLEASYNC and then register dyalog.Async as an OLE object by doing the fol-
lowing:

Async.⎕WC 'OLEServer'
'Async'⎕WS'ExportedFns' ('PRINT' 'ASYNC')
'Async'⎕WS'ExportedVars' ('ERRCODE' 'COPIES')

Rename the workspace to avoid overwriting the original and)SAVE it.

)WSID MYASYNC
)SAVE

Finally, register the OLE Server using File/Export.Note that dyalog.Async will only
work as an out-of-process OLE Server.

Now clear the workspace and test dyalog.Async using Dyalog APL as an OLE client
application. You could also try calling it from Excel. Note that the results from the
functions PRINT and ASYNC are returned immediately.

)CLEAR
clear ws

'TEST' ⎕WC 'OLEClient' 'dyalog.Async'

TEST.PRINT 3
0

TEST.ERRCODE
0

TEST.COPIES←2
TEST.COPIES

2
TEST.ASYNC 'LPR'

0
TEST.ASYNC 99 ⍝ Wrong !

0
TEST.ERRCODE

11

240 Dyalog APL/W Interface Guide Version 14.0

241

Chapter 11:

Writing ActiveX Controls in Dyalog

An ActiveX Control is basically a user-defined control that may be included in GUI
applications and Web Browsers.

This chapter describes how you write ActiveX Controls in Dyalog APL/W.

A Dyalog APL ActiveX Control can be used by any other application that supports
ActiveX. Such applications include Microsoft Visual Basic, Microsoft Excel,
Microsoft Internet Explorer, Netscape Navigator with the NCompass ScriptActive
Plug-In and of course Dyalog APL itself.

This chapter also includes a tutorial which teaches you how to:

l Create an ActiveX control in Dyalog APL
l Define and Export Properties, Methods and Events
l Include your ActiveX control in a Visual basic application
l Run your ActiveX control from a Web Browser.

Please note that the Visual Basic examples described in this Chapter were developed
and tested with Visual Basic Version 5 and may require some modification to work
with other versions of Visual basic.

242 Dyalog APL/W Interface Guide Version 14.0

Overview
What is an ActiveX Control ?
An ActiveX Control is a dynamic link library that represents a particular type of
COM object. When an ActiveX Control is loaded by a host application, it runs in-
process, i.e. it is part of the host application’s address space. Furthermore, an ActiveX
Control typically has a window associated with it, which normally appears on the
screen and has a user interface.

An ActiveX Control is usually stored in file with the extension .OCX. The func-
tionality provided by the control can be supplied entirely by functions in that file
alone, or can be provided by other dynamic link libraries that it loads and calls, i.e.
an ActiveX Control can be stand-alone or can rely on one or more other dynamic
link libraries.

What is a Dyalog APL ActiveX Control ?
An ActiveX Control written using Dyalog APL is also a file with a .OCX extension.
The file combines a small dynamic link library stub and a workspace. The func-
tionality of the control is provided by the functions and variables in the workspace
combined with a dynamic link library version of Dyalog APL named
DYALOG131.DLL or DYALOG131RT.DLL.

Note that an ActiveX Control written in Dyalog APL is a GUI object that has a vis-
ible appearance and a user interface.

To write an ActiveX Control in Dyalog APL, you use ⎕WC to create an Act-
iveXControl object, as a child of a Form. An ActiveXControl is a container object,
akin to a Group or a SubForm, that may contain a whole range of other controls such
as Edit, Combo, Button and Grid objects. You may populate your ActiveXControl
with other objects at this stage and save them in the workspace. However, you may
prefer to create these sub-objects when an instance of the ActiveXControl is created.
This happens when your control is loaded by a host application.

All the functions and variables that represent methods and properties through which
the ActiveXControl object exports its functionality, reside within the Act-
iveXControl namespace.

You may turn a workspace containing one or more ActiveXControl objects into an
installable OCX file by selecting the Export menu item from the Session Filemenu.

Note that a single OCX file can therefore contain a number of ActiveX Controls.

Chapter 11: Writing ActiveX Controls in Dyalog 243

When a Dyalog APL ActiveX Control is loaded by a host application, functions in
the stub load the appropriate Dyalog APL dynamic link library into the host applic-
ation. This in turn copies the appropriate parts of the workspace from the .OCX. If the
same host application starts a second (different) ActiveX Control written in Dyalog
APL, the appropriate parts of the second workspace are merged with the first. For fur-
ther details, see the section entitled Workspace Management.

The Dyalog APL DLL
ActiveXControls are hosted (executed) by the Dyalog APL DLL. For further details,
see User Guide, Chapter 2.

Instance Creation
When a host application creates an instance of an ActiveXControl object, the new
instance generates a Create event. It is recommended that you make any GUI objects
that you need within the ActiveXControl at this stage, rather than making them in
advance and saving them in the workspace.

The reason for this is that until an instance of an ActiveXControl is created, its Size
and ambient properties are not known. Ambient properties include the font (which
may affect the size and position of the internal controls) and background and fore-
ground colours. These are specified by the host application and should normally be
honoured by the ActiveXControl. Although when you are developing an Act-
iveXControl it will have a specific size, the size of an instance of the object cannot
be predicted in advance because it is determined by the host application. This alone
is sufficient reason to delay the creation of sub-objects inside the ActiveXControl
until the Create event occurs.

In addition to the Create event, ActiveXControl objects support a PreCreate event.
This event is always generated before a Create event and signals the creation of a
newly cloned namespace. However, it is reported before the host application has
assigned it a window. You may therefore not use the PreCreate event to create sub-
objects, but you may use it for other initialisation tasks if applicable. Many host
applications distinguish between design mode, when the user may just place controls
in a GUI framework, and run mode when the controls become fully active. Some
applications, such as Microsoft Access, do not require the control to appear fully in
design mode, but instead represent the control by a simple rectangle or bitmap. In
these cases, the ActiveXControl will generate a PreCreate event in design mode and
not generate a Create event until run-time. Others, like Visual Basic, require that the
control appears in design mode as it would appear in the final application. In these
cases, the Create event follows immediately after PreCreate.

244 Dyalog APL/W Interface Guide Version 14.0

Properties, Methods and Events
Typically, an ActiveX Control provides Properties, Methods and Events that allow
the control to be configured and controlled by a host application.

The information about the properties, methods and events exported by an ActiveX
Control is normally stored in its .OCX file. The information includes the name of
each property and its data type, and the name and data type of each method and each
of its arguments. The information for an event is similar to that for a method. In addi-
tion to these obligatory items, it is possible to include help strings and help ids
which provide on-line documentation for the host application programmer

Dyalog APL provides facilities for you to specify all this information in one of two
ways; using dialog boxes or by calling methods.

Firstly, the Properties dialog box for an ActiveXControl object includes three addi-
tional tabs named COM Properties, COM Functions and COM Events. These dialog
boxes allow you to export variables as properties, to export functions as either prop-
erties or methods, and to export events. In addition, the individual Properties dialog
boxes for all the functions and variables in an ActiveXControl namespace have an
additional COM Properties tab which performs the same function. Examples of these
dialog boxes are provided in the tutorial section of this chapter.

Secondly, the ActiveXControl object provides three (internal) methods that allow
you to specify this information by executing APL statements. These methods are
named SetVarInfo, SetFnInfo and SetEventInfo and examples of their use is given in
the tutorial.

Generating Events
Events that are generated by Dyalog APL GUI objects inside an ActiveXControl are
purely internal events and are not detectable by a host application. However, an Act-
iveXControl object may generate an arbitrary event for a host application using ⎕NQ
with a left argument of 4.

An external event must have a name (numbers are not allowed) and may include one
or more parameters that supply additional information. The name of the event and the
name and data types of each of its parameters must be defined in advance using the
COM Events tab of the Properties dialog box of the ActiveXControl object, or by
calling its SetEventInfo method.

Chapter 11: Writing ActiveX Controls in Dyalog 245

For example, the Dual control described in the tutorial has an event called
ChangeValue1. This event supplies a parameter named Value1 that has a data type of
VT_PTR to VT_I4 (pointer to an integer). The Dual control generates the event for
the host application by executing the statement:

4 ⎕NQ '' 'ChangeValue1' Value1

where Value1 is the new value of its internal Slider control.

A host application may choose to ignore an event generated by an ActiveXControl,
or it may attach a callback function that performs some action in response to the
event. A callback function in the host application receives the parameters supplied
by the event as parameters to the function. If the host application is Dyalog APL
itself, the callback function receives the parameters as part of the event message.

A host application callback function may not return a result. However, it may modify
any of the parameters that were supplied as part of the event message if those para-
meters are defined as pointers (VT_PTR to xxx).

The result of 4 ⎕NQ is therefore a vector whose elements correspond to the pointer
parameters in the order they were specified. The result does not contain elements for
parameters that were not exported as pointers and may therefore be empty. In the
above example, the result of 4 ⎕NQ is a 1-element vector containing the, possibly
modified, value of Value1.

246 Dyalog APL/W Interface Guide Version 14.0

The Dual Control Tutorial
The ActiveX control we will use in this example is deliberately an extremely simple
one; so that the intricacies of the control itself do not get in the way of the principles
involved. In practice, there are actually very few restrictions concerning the com-
plexity of the ActiveX control, and it is perfectly possible to package complete mul-
tiple-window Dyalog APL applications in this way.

Your ActiveX control will be called a Dyalog Dual Control and is based on the
Dyalog APL TrackBar object.

The Dual control allows the user to enter a number using a slider, whilst displaying
its value in two different units. For example, you could use it to enter a temperature
value which is displayed in both Centigrade and Fahrenheit units. Equally, the same
control could be used to enter a measurement of length which is concurrently dis-
played in centimetres and inches.

Methods
None. (The Dual control provides no methods.)

Chapter 11: Writing ActiveX Controls in Dyalog 247

Properties
The Dual control provides the following properties:

Property Description

Caption1 A text string that describes the primary units. This is displayed in
the top left corner of the object.

Caption2 A text string that describes the secondary or derived units. This is
displayed in the bottom left corner of the object.

Value1 The current value of the control measured in primary units

Value2 The current value of the control measured in secondary units.

Intercept Used to derive Value2 from Value1

Gradient Used to derive Value2 from Value1

Min The minimum value of Value1

Max The maximum value of Value1

Value2 is derived fromValue 1 using the expression:

Value2←Intercept+Gradient×Value1

Events
Your Dual control will generate a ChangeValue1 event whenever the user alters
Value1 using the slider.

The event message will contain a single parameter (the new value) which may be
modified by the host application.

In other words, every time the value in the control changes, the host application may
detect this as an event and has the opportunity to override the user.

Your Dual control will also generate a ChangeValue2 event whenever the derived
value in the control (Value2) changes. This event is reported for information only.

248 Dyalog APL/W Interface Guide Version 14.0

Introducing the Dual Control
To save time, the basic APL code for the Dual control has already been written.
However, you will have to turn it into an ActiveX control yourself.

Load the DUALBASE workspace:

)LOAD SAMPLES\ACTIVEX\DUALBASE

Run the function TEST and observe how the 2 Dual controls behave.

View the function TEST and observe how 2 separate instances of the Dual
namespace F.D1 and F.D2 have been created using ⎕OR and ⎕NS.

Using the Dyalog APLWorkspace Explorer, open up the various namespaces. See
how F.D1 and F.D2 are clones of Dual.

Open the function Dual.Create and see how the individual components of the
control are defined.

Close the Form F.

Changing Dual into an ActiveX Control
Change the name of the workspace to DUAL:

)WSID DUAL

Make a new namespace called F

)NS F

Using the Workspace Explorer, move the Dual namespace into F, so that Dual is a
child namespace of F.

Now edit the function F.Dual.Create and make the following changes:

Remove all references to the local variable POSITION. This change is required
because an ActiveX control has no say in its position within its parent. (Hint: use the
Search/Replace dialog to remove all occurrences of POSITION+)

Remove the right argument, SIZE and change Create[1] from:

H W←SIZE

to

H W←Size

This change allows the control to fit itself within the space allocated by the host
application.

Chapter 11: Writing ActiveX Controls in Dyalog 249

Change Create[4] from:

CH←⊃##.GetTextSize 'W'

to

CH←⊃GetTextSize 'W'

The original code was designed to pick up the character height from the parent Form.
The ActiveXControl object does this automatically via its own GetTextSize method.

After making these changes, the Create function should be as follows:

∇ Create;H;W;POS;SH;CH;Y1;Y2
[1] H W←Size
[2] SH←40 ⍝ Default Trackbar height
[3] POS←2↑⌊0.5×0⌈(H-SH)
[4] CH←⊃GetTextSize'W'
[5] 'Slider'⎕WC'TrackBar'(POS)('Size'SH W)
[6] Slider.(Limits AutoConf)←(Min,Max)0
[7] Slider.(TickSpacing TickAlign)←10 'Top'
[8] Slider.onThumbDrag←'ChangeValue'
[9] Slider.onScroll←'ChangeValue'
[10] Y1←POS[1]-CH+1
[11] Y2←POS[1]+SH+1
[12] 'Cap1'⎕WC'Text'Caption1(Y1,0)('AutoConf' 0)
[13] 'Cap2'⎕WC'Text'Caption2(Y2,0)('AutoConf' 0)
[14] 'V1'⎕WC'Text'(⍕Value1)(Y1,W)

('HAlign' 2)('AutoConf' 0)
[15] CalcValue2
[16] 'V2'⎕WC'Text'(⍕Value2)(Y2,W)

('HAlign' 2)('AutoConf' 0)
∇

Open the function F.Dual.Build. This function turns the Dual’s parent
namespace into a Form (an ActiveXControl currently requires a parent Form) and
turns Dual itself into an ActiveXControl. It then attaches functions Create and Con-
figure as callbacks on the Create and Configure events of the ActiveXControl object
itself.

∇ Build
[1] ##.⎕WC'Form'('Coord' 'Pixel')('KeepOnClose' 1)
[2] ⎕WC'ActiveXControl'('Size' 80 200)

('KeepOnClose' 1)
[3] ⎕WS'Event' 'Create' 'Create'
[4] ⎕WS'Event' 'Configure' 'Configure'
[5] ⎕NQ'' 'Create'

∇

250 Dyalog APL/W Interface Guide Version 14.0

Run function F.Dual.Build. You should see a Form containing a single instance
of the Dual control. Please resist any temptation to play with it at this stage; we want
it to be in its default state for when we save it.

Type the following expression; note that the ClassID, which uniquely identifies your
control, is allocated when you create the ActiveXControl object.

F.Dual.ClassID

Save the workspace (DUAL.DWS).

From the Session Filemenu, select Export, choose where you want to save your
OCX, and then click Save. It is a good idea to clear the Runtime application check-
box so that you can debug the control if anything goes wrong.

Chapter 11: Writing ActiveX Controls in Dyalog 251

Testing the Dual Control
This section describes how you can test and exercise the Dual control using
Microsoft Visual Basic 2010 Express which is henceforth referred to as VB.

Close Dyalog APL

Start VB and create a new Windows Forms Application Project.

Click the right mouse button in the General section of the Toolbox window and
select Choose Items ... from the pop-up menu. In the Choose Toolbox Items dialog
box, click the COM Components tab.

Locate the control named Dyalog DUAL Control,enable its check box and click OK.
This adds a tool for the Dual control to the VB Toolbox.

Click on the new tool and drag it onto your Form. An instance of the Dual control
will appear.

Repeat this step to position a second instance of the Dual control on your VB Form.

Click the Start Debugging button.

Exercise the two Dual controls.

Click the Stop Debugging.button.

Click on one of the Dual controls and scroll through its Property list. Notice that all
the properties listed are standard VB ones; there are no properties (or indeed methods
and events) exported. We will learn how to do this next.

Close but do not save the project.

252 Dyalog APL/W Interface Guide Version 14.0

Defining and Exporting Properties
Start Dyalog APL and load the DUAL workspace (Hint: use the File menu; it will be
the most recently saved file).

Change space into the F.Dual namespace.

)CS F.Dual

The properties we wish to export are:

Caption1 Description of the primary set of units

Caption2 Description of the secondary set of units

Value1 The primary value in the control

Min Minimum for Value1

Max Maximum for Value1

Intercept Used to derive the secondary value (Value2)

Gradient Used to derive the secondary value (Value2)

Although we could export all these properties as variables, it is generally more useful
to employ Get and Put functions. The reason for this is that there is no mechanism to
detect when the host application changes a property/variable; nor is there any mech-
anism to prevent it assigning an inappropriate value. The Get and Put functions you
need are listed below. To save you time, you can copy them in from the workspace
DUALFNS.

)COPY SAMPLES\ACTIVEX\DUALFNS

∇ R←GetCaption1
[1] R←Caption1

∇ SetCaption1 C
[1] Cap1.Text←Caption1←C

∇ R←GetCaption2
[1] R←Caption2

∇ SetCaption2 C
[1] Cap2.Text←Caption2←C

∇ R←GetIntercept
[1] R←Intercept

Chapter 11: Writing ActiveX Controls in Dyalog 253

∇ SetIntercept I
[1] Intercept←I
[2] CalcValue2
[3] V2.Text←⍕Value2

∇ R←GetGradient
[1] R←Gradient

∇ SetGradient G
[1] Gradient←G
[2] CalcValue2
[3] V2.Text←⍕Value2

∇ R←GetValue1
[1] R←Value1

∇ SetValue1 V
[1] 1 ⎕NQ'' 'ChangeValue'V

The Get functions need no explanation; they simply return the value of the cor-
responding variable. The Set functions assign a new value to the corresponding vari-
able and update the control accordingly. SetValue1 does this by enqueuing a
Scroll event to the Slider, which in turn invokes the ChangeValue callback.

Display the Object Properties dialog box for the function GetCaption1. (Hint: use
the Workspace Explorer).

Select the COM Properties tab. As you have not yet defined any OLE attributes, the
default display is as follows:

254 Dyalog APL/W Interface Guide Version 14.0

Check the Exported option button.

Change the data type for the Result to VT_BSTR(a text string).

Check the Prop Get radio button to indicate that this is a Property Get function and
enter the name of the property (Caption1) to which it applies.

Note that it is not necessary for the property name referenced by the Get and Put func-
tions to correspond to a variable name, although in this case it does.

Chapter 11: Writing ActiveX Controls in Dyalog 255

The final COM Properties dialog box for GetCaption1 should appear as follows.
Click OK to save your changes.

Now do the same for the SetCaption1 function. This function takes an argument
which it expects to be a character vector. It must therefore be defined as having a
single parameter of data type VT_BSTR; the parameter name is unimportant.
However, you must ensure that the Optional button is unchecked.

In APL terms, the function does not return a result. However, in OLE terms the result
is defined to be of type VT_VOID. Alternatively, you may just leave this field empty.

256 Dyalog APL/W Interface Guide Version 14.0

The OLE properties for SetCaption1 should appear as follows:

An alternative way to define the syntax for exported functions is to use the COM
Functions tab in the Properties dialog box for the ActiveXControl object itself.
(Hint: using the Workspace Explorer, open F so that its contents, Dual, are dis-
played in the right-hand list, select Dual, then click Props). The COM Functions tab
should appear as follows:

Chapter 11: Writing ActiveX Controls in Dyalog 257

The right-hand Combo box allows you to view and edit their syntax for the exported
functions you have already defined. The left-hand Combo box displays the list of
other non-exported functions that are defined in the ActiveXControl.

Select GetCaption2 from the left-hand Combo box, and then click Add. The dia-
log box will change to display the default syntax for GetCaption2. Alter the
Result data type to VT_BSTR, select Prop Get, and enter the name of the property,
Caption2, so that the dialog box appears as follows:

258 Dyalog APL/W Interface Guide Version 14.0

The third way to define the syntax for exported functions is to use the SetFnInfo
method of the ActiveXControl object. This allows you to export functions using
APL code, which in some circumstances may be more convenient than filling in dia-
log boxes.

The SetFnInfo method requires the name of the function, its syntax, a help id, a code
which specifies its type (0 = method, 2 = property get, 4 = property put) and, if appro-
priate, the name of the property to which it applies, i.e.

SetFnInfo fn syntax helpid type property

Chapter 11: Writing ActiveX Controls in Dyalog 259

The function syntax is a nested array whose first element defines the function’s res-
ult and whose subsequent elements define each of its parameters. Each syntax spe-
cifier is a single character string that defines a data type, or a pair of character strings.
If so, the first string for the result defines a help string, and the first string for each
parameter defines its name.

The following table describes the information we must specify for each of the func-
tions to be exported:

Table 1: Exported Functions

Function Result
Parameter

Get/Put Property
Name Type

GetCaption1 VT_BSTR Get (2) Caption1

GetCaption2 VT_BSTR Get(2) Caption2

GetGradient VT_R8 Get(2) Gradient

GetIntercept VT_R8 Get(2) Intercept

GetValue1 VT_I4 Get(2) Value1

SetCaption1 VT_VOID Caption1 VT_BSTR Put(4) Caption1

SetCaption2 VT_VOID Caption2 VT_BSTR Put(4) Caption2

SetGradient VT_VOID Gradient VT_R8 Put(4) Gradient

SetIntercept VT_VOID Intercept VT_R8 Put(4) Intercept

SetValue1 VT_VOID Value1 VT_I4 Put(4) Value1

From this table we can easily construct the corresponding SetFnInfo statements. For
example, the statement for GetCaption1 is:

SetFnInfo 'GetCaption1' 'VT_BSTR' ¯1 2 'Caption1'

Note that ¯1 in the 3rd element of the right argument specifies that there is no help
id.

Open the function F.Dual.EXPORT; this contains statements to export all of the
Get and Put functions we need.

Run the function and save the workspace.

)CS
#

F.Dual.EXPORT
)SAVE

260 Dyalog APL/W Interface Guide Version 14.0

Then, re-export the workspace, updating your .OCX file with all the new inform-
ation.

Setting Properties from VB
Close Dyalog APL.

Start VB and create a new Windows Forms Application Project.

Click the right mouse button in the General section of the Toolbox windowand
select Choose Items ... from the pop-up menu. In the Choose Toolbox Items dialog
box, click the COM Components tab.

Locate the control named Dyalog DUAL Control,enable its check box and click OK.
This adds a tool for the Dual control to the VB Toolbox.

Click on the new tool and drag it onto your Form. An instance of the Dual control
will appear.

In the Properties dialog box, set the Dual1 properties as follows:

Caption1 Centimetres

Caption2 Inches

Gradient 0.3937

Intercept 0

Double-click the left mouse button over your Form (Form1). This will bring up the
code editor dialog box. Edit the Form_Load() subroutine, entering the following
program statements. This code will be run when VB starts your application and loads
the Form Form1. It illustrates how you can change the properties of your Dyalog
APL ActiveX control dynamically.

Private Sub Form_Load()
Dual2.Caption1 = "Inches"
Dual2.Caption2 = "Centimetres"
Dual2.Intercept = 0
Dual2.Gradient = 2.54
End Sub

Now test your application by clicking Start Debugging. When you have finished,
click Stop Debugging.

Close but do not save the project.

Chapter 11: Writing ActiveX Controls in Dyalog 261

Defining and Exporting Events
Start Dyalog APL and load the DUAL workspace (Hint: use the Filemenu; it will be
the most recently saved file)

Using the Workspace Explorer, open the callback function F.Dual
ChangeValue and alter ChangeValue[2] from:

Value1←⊃¯1↑MSG

to

Value1←⊃4 ⎕NQ '' 'ChangeValue1' (⊃¯1↑MSG)

Then close the function. Previously, the ChangeValue function simply accepted
the new value (of the TrackBar thumb) that it received as the last element of the
event message. Now it generates an external ChangeValue1 event for the host applic-
ation using 4 ⎕NQ. The host may in turn modify the new value which is returned as
the result of the expression. Thus not only can Dyalog APL generate events which
are detectable by the host application, it can also accept modifications.

Again using the Workspace Explorer, open the Properties dialog box for the Dual
object itself and select the COM Events tab.

Enter the name of the event ChangeValue1 into the edit box labelled Name.

Click Add

Click the right mouse button over the Result row and select Insert

Change the name Param1 to Value1, the Type to VT_I4 and theModifier to VT_
PTR. This defines the event to supply a pointer to an integer. The fact that it is a
pointermeans that the (integer) parameter may be modified by the host application.

The final appearance of this dialog box should be as follows:

262 Dyalog APL/W Interface Guide Version 14.0

Click OK, change back to the root space, and save the workspace.

)CS #
)SAVE

Select File/Export and rebuild your OCX file.

Chapter 11: Writing ActiveX Controls in Dyalog 263

Using Events from VB
Start VB and create a new Windows Application Project.

Click the right mouse button in the General section of the Toolbox windowand
select Choose Items ... from the pop-up menu. In the Choose Toolbox Items dialog
box, click the COM Components tab.

Locate the control named Dyalog DUAL Control, set its check box on and click OK.
This adds a tool for the Dual control to the VB Toolbox.

Click on the new tool and drag it onto your Form. An instance of the Dual control
will appear.

Select the label tool and add a label object to the Form. Select its Font property and
change it to 14-point bold.

Double-click overDual1 to bring up the code window. Notice how VB presents you
with a skeleton subroutine for the (only) event ChangeValue1 which we have just
defined and exported. Notice too that VB knows that the single parameter is named
Value1 and that its data type is Long (VT_I4).

Enter the following code, and then close the code window.

Private Sub Dual1_ChangeValue1(Value1 As Long)
Label1.Caption=Str(Value1)

Start the application using Start Debugging. Exercise the Dual control and observe
that VB updates the Label1 control in response to the ChangeValue1 events. When
you have finished, select Stop Debugging.

Double-click overDual1 to bring up the code window. Alter the Dual1_
ChangeValue subroutine to the following, and then close the code window.

Private Sub Dual1_ChangeValue1(Value1 As Long)
Value1=2*(Value1\2)
Label1.Caption=Str(Value1)
End Sub

Start the application using Start Debugging. Exercise the Dual control and observe
that now the slider moves in increments of 2. When you have finished, select Stop
Debugging.

Close but do not save the project.

264 Dyalog APL/W Interface Guide Version 14.0

Using Dual in a Web Page
This part of the tutorial can be run using any Web Browser that supports ActiveX.

Start Dyalog APL and load the DUAL workspace again.

)LOAD DUAL
)CS F.Dual

Look at the function WRITE_HTML. This function writes a very simple page of
HTML that loads your Dyalog APL ActiveX control. The left argument to the func-
tion is a title for the page; the right argument is the full pathname for the file. The
function references the control by embedding its ClassID in the HTML document.

Now run it:

'Dyalog Dual Control' WRITE_HTML 'dual.htm'

Close Dyalog APL

Start yourWeb Browser and point it at the file you have just saved by typing the
URL: file://c:\...dyalog...\dual.htm

Close your browser

Calling Dual from VBScript
In the last part of this tutorial, you will learn how you can manipulate the Dual con-
trol from VBScript in a web page.

For this example, we first need to export the Value2 property. This property is only
required to be read (not set) by the VBScript program. Therefore there is no need for
it to be accessed via Get and Put functions and it can be exported (more simply) as a
variable.

Start Dyalog APL and load the DUAL workspace again.

)LOAD DUAL

Using theWorkspace Explorer, display the Object Properties dialog box for the vari-
able Value2.

Select the COM Properties tab. As you have not yet defined any OLE attributes, the
default display is as follows:

Chapter 11: Writing ActiveX Controls in Dyalog 265

Check the Exported option button, and change the data type to VT_R8. This is
important because unlike Value1, which is an integer, Value2may be floating-
point and it must be declared as such. The resulting dialog box should appear as
below; click OK to save these settings.

266 Dyalog APL/W Interface Guide Version 14.0

The VBScript program is going to need to know whenever the derived value,
Value2, changes, Therefore, the next step is to define the code to generate a
ChangeValue2 event and export it. ChangeValue2 is to be generated whenever
Value2 has changed, so the place to put it is immediately after Value2 is recalculated
in CalcValue2.

Edit F.Dual.CalcValue2 so that it reads as follows:

∇ CalcValue2;SINK
[1] Value2←Intercept+Gradient×Value1
[2] :If ~(⊂'Create')∊⎕SI
[3] SINK←4 ⎕NQ'' 'ChangeValue2'Value2
[4] :EndIf

∇

Chapter 11: Writing ActiveX Controls in Dyalog 267

Note that the function deliberately avoids generating the ChangeValue2 event when
the instance is created. It can tell when this happens because during creation it will
have been called by the Create function. (We could have instead have called Cal-
cValue2 with an argument, but this will suffice.) This is necessary only because the
simple VBScript example is unable to handle events during object creation

You can export the CalcValue2 event using the COM Events tab on the Properties
dialog box for F.Dual. However, you can also export the event using the
SetEventInfo method.

Type the following:

INFO←'VT_VOID'('Value2' 'VT_R8')
2 ⎕NQ'#.F.Dual' 'SetEventInfo' 'ChangeValue2' INFO

(You may wish to confirm that the event is registered correctly using the dialog box)

Save the workspace:

)CS #
)SAVE

Finally, you need to rebuild the OCX file to reflect these changes, so select File/Ex-
port and rebuild your OCX file.

The HTML page containing the example VBScript program is supplied in the file
samples\activex\dualvb.htm. However, the Dual object to which the
HTML refers (via its ClassID) is not the same object as yourDual object which has
its own unique ClassID.We must update the file, changing the existing ClassID to
the ClassID of your own Dual object. You can do this using the UPDATE_
CLASSID.

268 Dyalog APL/W Interface Guide Version 14.0

Look at the function F.Dual.UPDATE_CLASSID. This function simply updates
an HTML file with the ClassID of the current (ActiveXControl) namespace.

∇ {NEW}UPDATE_CLASSID FILE;NID;HTML;CLASSID;I
[1] ⍝ Updates HTML file, replacing all object
[2] ⍝ references with the ClassID of the current
[3] ⍝ (ActiveXControl) namespace.
[4] ⍝ Optional left argument is the name of the
[5] ⍝ new HTML file. If omitted, it updates the
[6] ⍝ file in-situ.
[7]
[8] NID←FILE ⎕NTIE 0
[9] HTML←⎕NREAD NID,82,(⎕NSIZE NID),0
[10] :If 2=⎕NC'NEW'
[11] ⎕NUNTIE NID
[12] :Trap 22
[13] NID←NEW ⎕NCREATE 0
[14] :Else
[15] NID←NEW ⎕NTIE 0
[16] :EndTrap
[17] :EndIf
[18] I←'clsid:'⍷{
[19] ⎕AV[(⎕AV⍳⍵)-48×⍵∊⎕A]
[20] }HTML
[21] I←I/⍳⍴I
[22] :If ×⍴I
[23] I+←5
[24] CLASSID←1↓¯1↓⎕WG'ClassID'
[25] HTML[,I∘.+⍳⍴CLASSID]←((⍴I)×⍴CLASSID)⍴CLASSID
[26] HTML ⎕NREPLACE NID 0
[27] :EndIf
[28] ⎕NUNTIE NID

∇

Now run the function, making a new dualvb.htm file in your current directory.

)CS #.F.Dual
'dualvb.htm' UPDATE_CLASSID 'samples\activex\dualvb.ht

m'

Close Dyalog APL.

Start yourWeb Browser and point it at the file you have just saved by typing the
URL: file://c:\...dyalog...\dualvb.htm

The Web page displays two instances of your Dual control, one called plank_length
labelled Length (Metres to Centimetres) and the other named plank_width and
labelled Width (Inches to Centimetres). The initialisation of these controls is per-
formed by the window_onload()which is run when the page is loaded into the
Web Browser.

Chapter 11: Writing ActiveX Controls in Dyalog 269

Sub window_onload()
plank_length.Caption1 = "Metres"
plank_length.Caption2 = "Centimetres"
plank_length.Gradient = 100
plank_length.Intercept = 0
plank_width.Caption1 = "Inches"
plank_width.Caption2 = "Centimetres"
plank_width.Gradient = 2.54
plank_width.Intercept = 0
end sub

Whenever you change one of these dimensions, the corresponding Dual control gen-
erates a ChangeValue2 event after the derived value (Value2) in centimetres is recal-
culated. Each of the Dual controls has a VBScript callback function attached which
calculates the new area. These are as follows:

Sub plank_length_ChangeValue2(Value2)
Result.Plank_Area.value = Value2 * plank_width.Value2
end sub

Sub plank_width_ChangeValue2(Value2)
Result.Plank_Area.value=Value2 * plank_length.Value2
end sub

When you have finished exercising the two Dual controls, close yourWeb Browser.

270 Dyalog APL/W Interface Guide Version 14.0

271

Chapter 12:

Shared Variables (DDE)

Introduction to DDE
Dynamic Data Exchange (DDE) is a protocol supported by Microsoft Windows that
enables two applications to communicate with one another and to exchange data.

DDE has largely been superseded by COM, but continues to be supported by Dyalog
APL for backwards compatibility. For new applications, use COM.

Two applications exchange information by having a conversation. In any con-
versation, there is a client, which is the application that initiates the conversation,
and a server; the application that is responding to the client. An application may par-
take in several conversations at the same time, and may play the server role in some
and the client role in others. Indeed, it is perfectly reasonable for two applications to
have two conversations in which each acts as the server in one and the client in
another.

Most conversations are effectively one-way in that data flows from the server to the
client. However, conversations are potentially bi-directional and it is possible for the
client to send data to the server. This is often described as poking data.

To initiate a DDE conversation, the client application must specify the name of the
server and the subject of the conversation, called the topic. The combination of
application and topic uniquely identifies the conversation. In most applications that
support DDE, the topic is the "document name". For example, Microsoft Excel recog-
nises the name of a spreadsheet file (.XLS or .XLC) as a topic.

During a conversation, the client and server exchange information concerning one or
more items. An item identifies a particular piece of data. For example, Microsoft
Excel recognises cell references (such as R1C1) as data items in a conversation.
Throughout a conversation, the client may specify how it wishes to be updated when
the data in the server changes. There are three alternatives. Firstly, the client can
explicitly request the value of an item as and when it needs it. This is described as a
cold link. Alternatively, a client may ask the server to supply it with the value of a
particular item whenever its value changes. This is called a hot link.

272 Dyalog APL/W Interface Guide Version 14.0

Finally, it may ask the server to notify it whenever the value of an item changes, to
which the client may respond by asking for the new value or not. This is termed a
warm link.

In addition to providing a means for exchanging data, DDE provides a mechanism
for one application to instruct another application to execute a command. This is
implemented by sending a DDE_EXECUTE message. It is important to understand
that the effect of the command is local to the application in which it is executed, and
that the recipient of the message does not return a result to the originating applic-
ation. It does notwork like the APL execute function.

Shared Variable Principles
Shared Variables are part of the APL standard, although strictly speaking as an
optional facility. They provide a comprehensive mechanism for communicating
between two APL workspaces, or between APL and a co-operating non-APL applic-
ation. Despite some conflicts between Shared Variable concepts and DDE, this stand-
ard APL mechanism has overriding advantages as the basis for a DDE interface. The
main benefit is that Shared Variables provide a general basis for developing com-
munications using a variety of protocols, of which DDE is but a single example.
Dyalog APL communications are not therefore designed for and limited to DDE, but
can be extended to other protocols which are appropriate in different environments.

Most mainframe APL users will already be familiar with Shared Variables and will
need no introduction to their concepts. New APL users, or those whose experience
has been only of PC-based interpreters, may find the following introduction helpful.

Introduction
It is easiest to consider Shared Variables between two APL workspaces. A Shared
Variable is simply a variable that is common to and visible in two workspaces. Once
a variable is shared, its value is the same in both workspaces. Communication is
achieved by one workspace assigning a new value to the variable and then the other
workspace referencing it. Although there is no explicit send or receive, it is perhaps
easier to think of things in this way. When you assign a value to a shared variable,
you are in effect transmitting it to your partner. When you reference a shared vari-
able, you are in fact receiving it from your partner.

This discussion of shared variables will refer to the terms set and use. The term set
means to assign a (new) value to a variable, i.e. its name appears to the left of an
assignment arrow. The term usemeans to refer to the value of a variable, i.e. its name
appears to the right of an assignment arrow.

Chapter 12: Shared Variables (DDE) 273

Sharing a Variable
Variables are shared using the system function ⎕SVO. This is a dyadic function
whose right argument specifies the name (or a matrix of names) of the variable, and
whose left argument identifies the partner with whom the variable is to be shared. In
mainframe APL, you identify the partner by its processor id. For example, the fol-
lowing statement means that you offer to share the variable X with processor 123.

123 ⎕SVO 'X'

A single ⎕SVO by one workspace is not however sufficient to make a connection. It
is necessary that both partners make an offer to share the variable. Thus if you are pro-
cess 345, your partner must complete the coupling by making an equivalent shared
variable offer, e.g.

345 ⎕SVO 'X'

The coupling process is symmetrical and there is no specific order in which offers
must be made. However, there is a concept known as the degree of coupling which is
returned as the result of ⎕SVO. The degree of coupling is simply a count of the num-
ber of processes which currently have the variable "on offer". When the first process
offers to share the variable, its ⎕SVO will return 1. When the second follows suit, its
⎕SVO returns 2. The first process can tell when coupling is complete by calling
⎕SVOmonadically at a later point, as illustrated below.

Process 345 Process 123
123 ⎕SVO 'X'

1

345 ⎕SVO 'X'

2

⎕SVO 'X'

2

In this example, both partners specified exactly whom they wished to share with.
These are termed specific offers. It is also possible to make a general offer, which
means that you offer to share a particular variable with anyone. Coupling can be
established by any other processor that offers to share the same variable with you, but
notice that the other processor must make a specific offer to couple with your general
one. The rule is in fact, that sharing may be established by matching a specific offer
with another specific offer, or by matching a specific offer with a general offer. Two
general offers cannot establish a connection.

274 Dyalog APL/W Interface Guide Version 14.0

The State Vector
One of the interesting things about Shared Variables, is that both APL workspaces
are equal partners. Either of them is allowed to change the value of a shared variable,
thus communication is two way. In any communication of this sort, it is essential to
have a mechanism to keep things in step. If not, it is possible for one partner to miss
something or to receive the same message twice. In some applications this doesn't
matter. For example, if one APL workspace is simply monitoring the current value of
a particular currency, it does not matter that a second workspace doesn't see all of the
fluctuations as they occur. It is important only that the latest value can be referenced
when it is needed. Contrast this with a trading application in which the trading work-
space registers each transaction with a second workspace which monitors and stores
the transactions on a database. Clearly in this case it is essential that each and every
transaction is properly communicated and recorded.

Synchronisation is provided by two system functions, ⎕SVS and ⎕SVC. ⎕SVS
reports the current value of a shared variable's State Vector. This provides inform-
ation concerning the state of the variable from each partner's point of view. The
second function, ⎕SVC, allows you and your partner to specify interlocking that
enforces the level of synchronisation required by your application.

Each shared variable has a state vector which indicates which partner has set a value
of which the other is still ignorant, and which partner is aware of the current value.
The current state of a shared variable is reported by the monadic system function
⎕SVS. Its argument is the name of the shared variable. Its result is a 4-element
Boolean vector which specifies the current state vector, i.e.

state ← ⎕SVS name

The state vector will have one of the following values:

0 0 0 0 The variable is not shared

0 0 1 1 Both partners know the current value

1 0 1 0 You have set the value, but your partner has yet to use it.

0 1 0 1 Your partner has set the variable but you have not yet used it.

It may not be immediately apparent as to how the information provided by ⎕SVS can
be used. The answer, as we will see later, is that communications generates events.
That is to say, when your partner sets a shared variable to a new value or references a
value that you have set, an event is generated telling you that something has
happened. ⎕SVS is then used to determine what has happened (set or use) and, if you
have several variables shared, which one of the variables has in some way changed
state. A shared variable state change is thus the trigger that forces some kind of
action out of the other process.

Chapter 12: Shared Variables (DDE) 275

Access Control
⎕SVS is not sufficient on its own to synchronise data transfer. For example, what if
the two partners both set the shared variable to a different value at exactly the same
point in time ? This is the role of ⎕SVC which actually assures data integrity (if
required) by imposing access controls. Its purpose is to synchronise the order in
which two applications set and use the value of a shared variable.

In simple terms, ⎕SVC allows an application to inhibit its partner from setting a new
value before it has read the current one, and/or to inhibit its partner from using a vari-
able again before it has been reset.

⎕SVC is a dyadic system function. Its right argument specifies the name of the shared
variable; its left argument the access control vector, i.e.

access ⎕SVC name

The access control vector is a 4-element Boolean vector whose elements specify
access control as follows:

[1] 1 means that you cannot set the variable until your partner has used it.

[2]
1 means that your partner cannot set the variable until you have used
it.

[3] 1 means that you cannot use the variable until your partner has set it.

[4] 1 means that your partner cannot use the variable until you have set it.

In principle, each of the two partners maintains its own copy of the access control
vector using ⎕SVC. Control is actually imposed by the effective access control vec-
tor which is the result of "ORing" the two individual ones. From your own point of
view, the effective access control vector is:

(your ⎕SVC) ∨ (your partner's ⎕SVC)[3 4 1 2]

Whenever either of the partners attempts an operation (set or use) on a shared vari-
able, the system consults its effective access control vector. If the vector indicates
that the operation is currently permitted, it goes ahead. If however the vector indic-
ates that the operation is currently inhibited, the operation is delayed until the situ-
ation changes.

For example, suppose that the effective access control vector is (1 0 0 1). This pre-
vents either partner from setting the shared variable twice in a row, without an inter-
vening use by the other. The purpose of this is to prevent loss of data. Suppose now
that one workspace assigns the value 10 to the shared variable (which is called
DATA), i.e.

276 Dyalog APL/W Interface Guide Version 14.0

DATA ← 10

Then, before the partner has referenced the new value it attempts to execute the state-
ment:

DATA ← 20

APL will not execute the statement. Instead it will wait (indefinitely if required)
until the partner has received the first value (10). Only then will the second assign-
ment be executed and processing continued. Effectively one workspace stops and
waits for the other to catch up.

Similarly, suppose that the effective access control vector is (0 0 1 1). This means that
neither partner can use the variable twice in succession without an intervening set by
the other. This type of control is appropriate where each set corresponds to an indi-
vidual transaction, and you want to prevent transactions from inadvertently being
duplicated.

Suppose now that one workspace references the shared variable (which is called
DATA), i.e.

TRANSACTION ← DATA

Then, soon after, it executes the statement again, but without an intervening set by
its partner, i.e.

TRANSACTION ← DATA

This time, the reference to DATA is inhibited, and the workspace waits (indefinitely if
necessary) until the partner has assigned a new value. Only then will the second ref-
erence be executed and processing continued. Again, one workspace stops and waits
for the other.

The purpose of ⎕SVC is to synchronise data transfer. It is particularly useful where
timing considerations would otherwise cause data loss. However, an incorrect applic-
ation which makes inappropriate use of ⎕SVCmay hang.

A second type of problem can occur during the development of an application that
uses shared variables. If the program is interrupted by an error, an attempt to display
the value of a shared variable counts as a "use" and, if inhibited, will hang. In applic-
ations that use interlocking, it is recommended that a shared variable is explicitly
"used" by making an assignment to a temporary variable which can then be ref-
erenced freely.

This is the theory; we will now see how DDE, by its very nature, imposes certain lim-
itations in practice.

Chapter 12: Shared Variables (DDE) 277

APL and DDE in Practice
The interface between Dyalog APL/W and DDE is provided by Shared Variables
which are implemented as closely as possible in accordance with the APL Standard.
There are however some conflicts between Shared Variables and the way in which
DDE works. These impose certain restrictions.

The APL Shared Variable concept is based upon the peer-to-peer communications
model where each partner has equal rights and equal control. DDE however is based
upon the client-servermodel whereby data (normally) flows from server to the client
at the client's request. This in turn has two major implications. Firstly, a client must
initiate a DDE conversation. A server may only respond to a request from a client for
a connection; it may not itself start a conversation. Secondly a server cannot specify
to which client it wishes to communicate. In terms of the APL standard, this means
that if a shared variable is to act as a server it must be made the subject of a general
offer. A shared variable that is to act as a client must be the subject of a specific offer
Furthermore, as in any DDE conversation there must be one server and one client, it
means that two APL workspaces can share variables only if one makes a general offer
and one makes a specific offer.

An APL application registers itself as a potential server, or initiates a DDE con-
versation as a client, by making a Shared Variable offer using ⎕SVO. The offer is
either a general offer, which corresponds to a DDE server, or a specific offer which is
a client.

Note that, as mentioned in the introduction, DDE does not preclude two-way data
transfer, despite its insistence on a client-server relationship. Thus the establishment
of a shared variable as a server or as a client does not force the data transfer to be one-
way. The choice of whether APL is to act as a server or as client may in practice be
determined by convenience.

APL as the Client
To initiate a DDE conversation with a server, you use ⎕SVO as follows:

'DDE:appln|topic' ⎕SVO 'var item'

where:

appln is the name of the server application.

topic is the server topic (usually the name of a document).

var is the name of the APL variable.

item
is the name of the item with which the variable is to be associated
(shared).

278 Dyalog APL/W Interface Guide Version 14.0

For example, the following statement would associate the variable SALES with the
block of cells R1C1 to R10C10 in an Excel spreadsheet called "Budget".

'DDE:EXCEL|BUDGET' ⎕SVO 'SALES R1C1:R10C10'
2

Note that the result of ⎕SVO is the degree of coupling. This has the value 2 if the con-
nection is complete (the server has responded) and 1 if it has not. In practice it is a
little more complicated than this, because the result actually depends upon the type
of DDE link that has been established.

In principle, the type of link is determined by the client. However, because the server
may refuse to accept a particular type of link, it can actually be a result of nego-
tiation between the two applications.

When the shared variable is offered as a client, APL always requests a warm link
from the server. If the server refuses a warm link, APL instead requests the current
value of the data item (a cold link), and, if the server responds, APL stores the value
in the variable. In either case, the degree of coupling is set to 2 if the connection was
successful.

Executing Commands in the Server
As mentioned in the Introduction, it is possible for a client to instruct a server to
execute a command by sending it a DDE_EXECUTE message. This is intended to
allow the client to condition the environment in which the server is operating and
not (as one might first expect) to execute a command which directly returns a result.
In fact the only response from a server to a DDE_EXECUTE message is a positive or
negative acknowledgement, the meaning of which is application dependent.

You can establish a shared variable as a channel for sending DDE_EXECUTE mes-
sages by assigning it a surrogate name of '⍎', the APL execute symbol. After shar-
ing, you send commands to the server as DDE_EXECUTE messages by assigning
them, as character vectors, to the shared variable. Following each such assignment,
the value of the shared variable is reset to 1 if the server responded with a positive
acknowledgement, or 0 if it responded with a negative acknowledgement. This
should be interpreted with reference to the server application documentation. Note
that most applications require that commands are surrounded by square brackets but
several commands may be sent at a time. The following examples use Microsoft
Excel Version 2.0 as the server :

Chapter 12: Shared Variables (DDE) 279

Establish a link to Excel's SYSTEM topic :
'DDE:EXCEL|SYSTEM' ⎕SVO 'X ⍎'

2

Instruct EXCEL to open a spreadsheet file :
X←'[OPEN(c:\mydir\mysheet.xls)]'
X

1

Instruct EXCEL to select a range of cells :
X←'[SELECT("R1C1:R5C10")]'
X

1

Carry out two commands in one call :
CMD1←'[OPEN(c:\mydir\mysheet.xls)]'
CMD2←'[SELECT("R1C1:R5C10")]'
X←CMD1,CMD2
X

1

APL as the Server
A DDE conversation is initiated by a client, and not by a server. If you wish to act as
a server, it is therefore necessary to register this fact with the APL interpreter so that it
will subsequently respond to a client on your behalf. This is done by making a gen-
eral offer using ⎕SVO as follows:

'DDE:' ⎕SVO 'var item'

where:

var is the name of the APL variable.

item
is the name of the item with which the variable is to be associated
(shared).

Notice that in this case, the left argument to ⎕SVO specifies only the protocol,
'DDE'. APL automatically defines the application name and topic to be 'DYALOG'
and ⎕WSID respectively. The DDE item is specified in the right argument as either
the name of the variable, or, optionally, as its external name or surrogate.

To allow another application to act as a client, you must have previously published
the name(s) of the items which are supported. For example, if your APL application
provides SALES information, the following statement could be used to establish it as
a server for this item:

280 Dyalog APL/W Interface Guide Version 14.0

'DDE:' ⎕SVO 'X1 SALES'
1

In the case of a single general offer, the result of ⎕SVO will always be 1. When sub-
sequently a client application attempts to initiate a conversation with a server with
the application name 'DYALOG' and topic ⎕WSID, the APL interpreter will respond
and complete the connection.

At this point, if and when the client has requested a hot or warm link to the item
SALES, the degree of coupling (which is reported by using ⎕SVOmonadically)
becomes 2, i.e.

⎕SVO 'X1'
2

State and Access Control
Earlier, we have seen how shared variable state and access controls are used to ensure
effective communication between two APL tasks. How do these concepts apply in
the DDE environment when APL is using shared variables to communicate via DDE
with both other APL workspaces, and with non-APL applications?

The initial state of a shared variable on the completion of sharing depends upon
whether your variable is a server or a client. If it is a server, the initial state vector is
(1 0 1 0) which means that you have set (and know) the value, but your partner has
yet to use it. If the variable is acting as a client, the initial state vector is (0 1 0 1).
This implies that your partner has set the value but you have yet to use it.

As your partner can be a non-APL application which does not share the concepts of
set and use, it is necessary to define a rule or set of rules from which APL can reas-
onably infer such actions.

During a DDE conversation, the physical transfer of data from one application to
another is achieved using DDE DATA messages. When a DATA message is sent, the
receiving task normally returns an ACK (acknowledgement) message. APL uses the
DATA and ACK messages to control Shared Variable access.

When an assignment is made to a shared variable, APL sends a DATA message to the
second process. When it receives back an ACK message, APL infers that this means
that the partner has used the variable. When APL receives a DATA message from the
other process it infers that the partner has set the variable. However, it only responds
with an ACK message when the new value of the variable is referenced by the work-
space.

Let's see what this means if two APL workspaces are involved.

Chapter 12: Shared Variables (DDE) 281

Server Workspace Client Workspace

Make general offer

X←42

'DDE:' ⎕SVO 'X'

1

⎕SVS 'X'

0 0 0 0 ⍝ No partner

⎕SVC 'X'

0 0 0 0 ⍝ No access ctl

Make specific offer

'DDE:DYALOG|SERVER'⎕SVO'X'

<--- initiate ---
ack --->

<--- please advise on change
ack --->

2 ⍝ Offer accepted

⎕SVS 'X' ⎕SVS 'X'

1 0 1 0⍝ I know, not he 0 1 0 1⍝ He knows, I don't

Client requests data

Y ← X

<--- req ---
--- data (42) --->

<--- ack ---
⎕SVS 'X' ⎕SVS 'X'

0 0 1 1⍝ We both know 0 0 1 1⍝ We both know

Server changes data

X ← 20

--- data has changed -->
<--- ack ---

⎕SVS 'X' ⎕SVS 'X'

1 0 1 0⍝ I know, not he 0 1 0 1⍝ He knows, I don't

282 Dyalog APL/W Interface Guide Version 14.0

Server Workspace Client Workspace

Client requests data

Y ← X

<--- req ---
--- data (20) --->

<--- ack ---
⎕SVS 'X' ⎕SVS 'X'

0 0 1 1⍝ We both know 0 0 1 1⍝ We both know

As you can see, this has the desired effect, namely that an APL workspace sets the
value of a shared variable by assignment to it and uses it by reference to it. The mech-
anism of using the DATA and ACK messages to imply set and use also works with
non-APL applications which do not (in general) support these concepts.

Access control between two APL workspaces is imposed by each workspace acting
independently. Whenever either workspace changes its ⎕SVC, the information is
transmitted to the other. Thus both workspaces maintain their own copy of the effect-
ive access control vector upons which to base decisions.

Server Workspace Client Workspace

No access control No access control

⎕SVC 'X' ⎕SVC 'X'

0 0 0 0 ⍝ No access ctl 0 0 0 0 ⍝ No access ctl

Client makes multiple requests for data
Y←X

Y←X

Server can set several times
X←30

X←40

Chapter 12: Shared Variables (DDE) 283

Server Workspace Client Workspace

Set access control

1 0 0 1 ⎕SVC 'X'

--- change in ⎕SVC -->

⎕SVC 'X' ⎕SVC 'X'

1 0 0 1⍝ I cannot set
until he has
used; he cannot
use untilI
have set

0 1 1 0⍝ He cannot set
until I have
used. I cannot
use until he
has set

Client requests data

Y ← X

<--- req ---

(hangs waiting for data)

Server changes data

X ← 30

--- data (30) --->
<--- ack ---

Y⍝ data received

30

Server changes data

X ← 40

--- data has changed --->
<--- ack ---

Server tries to change data again
X ← 50

--- data has changed --->
(assignment hangs waiting for ack)

Y ← X⍝ use data

<--- req ---
--- data (40) --->

<--- ack ---
X⍝ assignment done Y⍝ data received

50 40

284 Dyalog APL/W Interface Guide Version 14.0

Where the second process is a non-APL application, the effective access control vec-
tor is maintained only by the APL task and access control can only be imposed by
APL. At first sight, it may seem impossible for APL to affect another application in
this way, and indeed there are severe limitations in what APL can achieve. Never-
theless, effective access control is possible in the case when it is desirable to inhibit
the partner from setting the value twice without an intervening use by the APL task.

This is simply achieved by withholding the ACK message. Thus if APL receives a
DATA message from its partner at a time when a set by the partner is inhibited, APL
registers the new value but withholds the acknowledgement. Only when the inhib-
itor is removed will APL respond with an ACK. (Users with DDESPY will observe
that this is actually implemented by APL re-transmitting the DATA message to itself
when the inhibitor is removed).

Assuming that the second application waits for the acknowledgement before pro-
ceeding, this will cause the desired synchronisation. Naturally, this cannot be
entirely guaranteed because APL has no direct control over a non-APL program.
Indeed, when an application transmits a DATA message, it can include a flag to
indicate that an acknowledgement is neither expected nor required. In these cir-
cumstances, APL is powerless to impose any access control.

Note that APL does not (and cannot) have any control over successive internal ref-
erences to the data by a non-APL application.

The rule for establishing your partner's initial ⎕SVC is as follows :

l If the DDE link is a warm link, your partner's ⎕SVC is initially (0 0 0 0).
l If the DDE link is instead a hot link, your partner's ⎕SVC is initially (1 0 0

1).

This works in practice as follows :

Server = APL, Client = APL
You made a general offer which has been accepted by another APL workspace, e.g.

'DDE:' ⎕SVO 'DATA'

Two APL tasks always use a warm DDE link. Therefore, initially, both ⎕SVCs are (0
0 0 0). Control is (optionally) imposed by both partners subsequently setting ⎕SVC.

Chapter 12: Shared Variables (DDE) 285

Server = APL, Client = another application
You made a general offer which has been accepted by another application, e.g.

'DDE:' ⎕SVO 'DATA'

The client application establishes the strength of the link (warm or hot). If it is a
warm link, the initial value of the client's ⎕SVC is (0 0 0 0) and, as the client has no
means to change it itself, control may only be imposed by the server APL task. If the
client establishes a hot link, its initial ⎕SVC is (1 0 0 1). As it has no means to change
it, and as the APL server task cannot (by definition) change it, the client's ⎕SVC
retains this setting for the duration of the conversation. (1 0 0 1) means that both part-
ners are inhibited from setting the value of the shared variable twice in a row without
an intervening use (or set) by the other. Given that the other application has reques-
ted a hot link (give me the value every time it changes) it is reasonable to assume that
the application does not want to miss any values and will happily accept new data
every time it is changed.

Server = another application, Client = APL
You made a specific offer to another application, e.g.

'DDE:EXCEL|SHEET1' ⎕SVO 'DATA R1C1:R3C4'

In this case, APL as the client will request a warm DDE link. If the server fails to
agree to this request, APL will ask for the current data value and, whether or not the
server responds, will not establish a permanent link. Thus the only possibility for a
permanent connection is a warm link. This in turn means that the server's ⎕SVC will
be (0 0 0 0). Furthermore, as the server has no means to change it, it's ⎕SVC will
remain (0 0 0 0) for the duration of the conversation. Control is therefore imposed
solely by APL.

Terminating a Conversation
A DDE conversation is terminated by "un-sharing" the variable. This can be done
explicitly using ⎕EX or ⎕SVR. It is also done automatically when you exit a function
in which a shared variable is localised.

286 Dyalog APL/W Interface Guide Version 14.0

Example: Communication Between APLs
The following instructions will allow you to explore how the DDE interface can be
used to communicate between two Dyalog APL/W workspaces.

Start two separate APL sessions and arrange their windows one above the other so
that they do not overlap.

Select the top window and type :

)WSID SERVER
A←?5 5⍴100 ⋄ A
'DDE:' ⎕SVO 'A EXTNAME'

1

The result of ⎕SVO is 1, indicating that no client has yet joined in the conversation.

Select the lower window and type :

)WSID CLIENT
'DDE:DYALOG|SERVER' ⎕SVO 'B EXTNAME'
B

The result of ⎕SVO is 2 indicating that the connection with the SERVER workspace
has been successfully made. Now type B. It will have the same value as A in the
upper window.

Select the top window (SERVER) again and type :

A←⌹A
⎕SVS 'A'

1 0 1 0

Note that the result of ⎕SVS indicates that the SERVER has set A, but the CLIENT
has not yet referenced the value.

Select the lower window (CLIENT) and type :

⎕SVS 'B'
0 1 0 1

B
...

⎕SVS 'B'
0 0 1 1

Note how, after referencing the shared variable, its state has changed.

Chapter 12: Shared Variables (DDE) 287

Still in the CLIENT workspace, write the following function called FOO:

∇ FOO
[1] ⍝ This function gets called on event 50 (DDE)
[2] →(0 0 1 1≡⎕SVS'B')/0 ⍝ Exit if no change
[3] B

∇

Then, to attach FOO as a callback and to "wait"...

'.' ⎕WS 'Event' 50 'FOO'
⎕DQ '.'

Now switch to the upper window (SERVER) and type :

A←⌹A

Type this expression repeatedly, or experiment with others. Note how changing A
generates a DDE event (event number 50) on the system object '.' in CLIENT,
which in turn fires the callback.

To interrupt ⎕DQ in the CLIENT, type Ctrl+Break or select "Interrupt" from the
Action menu in the Session Window.

Example : Excel as the Server
The following instructions will allow you to explore the DDE interface with another
application (in this case Microsoft Excel) acting as the server.

Start Excel and enter some data into (say) the cells R1C1 to R4C3 of the spreadsheet
"SHEET1". The data can be character strings and/or numbers. Note that if the spread-
sheet is NOT called "SHEET1", the function RUN below should be changed accord-
ingly.

Start Dyalog APL/W (clear ws).

Size your windows so that both the Excel window and the APL Session window can
be viewed comfortably at the same time.

Type the following statement in the APL Session :

'DDE:EXCEL|SHEET1' ⎕SVO 'X R1C1:R4C3'
2

The result should be 2. If not, please check that you have typed the expression cor-
rectly, and that the name of the topic (SHEET1) corresponds to the spreadsheet name
displayed by Excel.

288 Dyalog APL/W Interface Guide Version 14.0

Note that the character between "EXCEL" and "SHEET1" may be the ASCII pipe
symbol or the APL stile. Also note that in some countries, you use Lnn instead of
Rnn to refer to rows in Excel. You may therefore need to use the following expres-
sion instead:

'DDE:EXCEL|SHEET1' ⎕SVO 'X L1C1:L4C3'
2

Remaining in the APL Session, type X. It is a matrix containing as many cells as you
have requested in the ⎕SVO statement. If you entered any character strings, X will be
nested.

Switch to your Excel window and change the data in one or more of the cells.

Switch back to the APL Session and look at X again. It will contain the new data.

Look at the state of the shared variable X using ⎕SVS. It indicates that both partners
are aware of the current value of X.

⎕SVS 'X'
0 0 1 1

Now switch to Excel and change the data again. Repeat step 8. Note the result indic-
ates that Excel has changed X, but you have not yet referenced it.

⎕SVS 'X'
0 1 0 1

Type the expressions :

'.' ⎕WS 'EVENT' 50 1
⎕DQ'.'

Now switch to Excel and change the data again. Note that the ⎕DQ terminates and
returns a result.

. 50

Switch back to APL and create the following function :

∇ FOO MSG
[1] 'MSG IS ' MSG
[2] 'X IS' X

∇

Then type :

'.' ⎕WS 'EVENT' 50 'FOO'
⎕DQ'.'

Chapter 12: Shared Variables (DDE) 289

Now switch back to Excel and change the data. Note that every time you change a
cell, the DDE event fires your callback function FOO. In fact the function is fired
twice because it itself alters the STATE of X by referencing it. This causes a second
DDE event.

Switch back to APL, and type Ctrl+Break or select "Interrupt" from the Action menu
to interrupt ⎕DQ.

Example : Excel as the Client
The following instructions will allow you to explore the DDE interface with APL
acting as the server to another application; in this case Microsoft Excel.

Start APL (clear ws) and type the expressions :

)WSID MYWS
X←12
'DDE:' ⎕SVO 'X SALES'

The workspace MUST have a name as this is broadcast as the DDE topic. Note that it
is currently essential that X contains a value before you make the offer. The result of
⎕SVO is 1, indicating that no client has yet joined in the conversation.

Start Excel (empty spreadsheet).

Size your windows so that both the Excel window and the APL Session window can
be viewed comfortably at the same time. Do NOT iconify either one.

Select the Excel window and type the following formula into the first cell :

=dyalog|myws!sales

the value of X (12) will now appear in the cell.

Switch to the APL Session and type :

⎕SVO'X'
2

Notice that now that Excel has made the connection, the degree of coupling is 2.

Now type :

X←34

You will immediately see the new value appear in your spreadsheet.

290 Dyalog APL/W Interface Guide Version 14.0

Create the following function in your workspace :

∇ FOO MSG
[1] MSG
[2] X←⎕AI[2]

∇

Then type the expressions :

'.' ⎕WS 'EVENT' 50 'FOO'

⎕DQ '.'

The link between Excel and APL is a warm link (the type of link is determined by
the client, so other applications may behave differently). This means that APL will
send the new value of X (SALES) to Excel every time it changes. If you have
DDESPY.EXE, you can verify what is happening.

To interrupt ⎕DQ, type Ctrl+Break or select "Interrupt" from the Action menu in the
Session Window.

Example : APL as Compute Server for Excel
The following instructions illustrate how APL can act as a "compute server" for
Microsoft Excel, using two shared variables. One variable is used to read the data
from Excel; the other is used to pass back the result.

Start Excel and enter some NUMBERS into the cells R1C1 to R3C3 of the spread-
sheet "SHEET1".

Start Dyalog APL/W and size your windows so that both the Excel window and the
APL Session window can be viewed comfortably at the same time.

Chapter 12: Shared Variables (DDE) 291

)LOAD the EXCEL workspace. This contains the following functions :

∇ RUN;Z;⎕WSID
[1] Z←'DDE:EXCEL|SHEET1'⎕SVO 'DATA R1C1:R3C3'
[2] →(2=Z)/L1
[3] 'No Excel out there ?' ⋄ →0
[4] L1:
[5] CALC
[6] ⎕WSID←'EXCEL'
[7] Z←'DDE:'⎕SVO 'RESULT ANSWER'
[8] 'Now type "=dyalog|excel!answer" into'
[9] 'cell A4 in your spreadsheet'
[10] L2:⎕DL 1
[11] →(2≠⎕SVO 'RESULT')/L2 ⍝Wait for Excel to connect
[12] 'Connected ...'
[13] '.'⎕WS 'EVENT' 50 'CALLB'
[14] ⎕DQ '.'

∇

∇ CALLB MSG
[1] ⍝ Callback to recalculate when Excel changes DATA
[2] →(0 0 1 1≡⎕SVS 'DATA')/0
[3] CALC

∇

∇ CALC;⎕TRAP
[1] ⎕TRAP←0 'C' '→ERR'
[2] RESULT←+/,DATA
[3] →0
[4] ERR:RESULT←⊂⎕EM ⎕EN

∇

Type the following statement in the APL Session :

RUN

Now type "=dyalog|excel!answer" into cell A4 in your spreadsheet

Follow the above instructions to establish a link fromAPL to cell A4 in your Excel
spreadsheet. The result of the computation will be displayed.

Try changing some of the numbers in the spreadsheet and watch as APL re-calculates
the sum.

Try entering a character string in cell A1. Note that APL sends back a character string
containing DOMAIN ERROR.

Use Ctrl+Break or select "Interrupt" from the Action menu in the Session window to
stop ⎕DQ.

292 Dyalog APL/W Interface Guide Version 14.0

Restrictions & Limitations
Although shared variables have been implemented as closely to the APL standard as
is possible, certain restrictions are imposed by the nature of DDE itself.

The server cannot make an offer to a specific client. Instead, it must broadcast a "gen-
eral" offer, which could be accepted by any client. Indeed neither the client nor the
server can specifically identify the other task.

Dyalog APL supports Excel "Fast Table Format" for communications with Excel
(and with any other application that supports this format). This imposes the fol-
lowing restrictions :

l The maximum number of numbers that you can send to Excel is 8191. Any
attempt to send more will result in a LENGTH ERROR. This is because
APL currently tries to send all the data in a single block. Larger amounts of
data can be received from Excel, because Excel will send several blocks if
required. The restriction may be lifted in due course.

l The maximum length of a character vector (which represents a string within
a cell) is 255.

A client APL program can only use indexed assignment to change the value of a
shared variable if it already knows the up-to-date value of the variable, i.e. if its
⎕SVS is 0 0 1 1 or 1 0 1 0. An attempt to use indexed assignment on a variable
whose ⎕SVS is 0 1 0 1 will cause a NONCE error.

Consider Excel as a server and APL as client with several warm links to an Excel
spreadsheet e.g.:

'DDE:EXCEL|SHEET1' ⎕SVO 'X R1C1'
'DDE:EXCEL|SHEET1' ⎕SVO 'Y R2C2'
'DDE:EXCEL|SHEET1' ⎕SVO 'Z R3C3'

If R1C1 is changed in Excel, APL expects to be told only of that change. Instead,
Excel tells APL that ALL the linked cells have changed.

If APL pokes a value back to R1C1, Excel again tells APL that ALL the linked cells
have changed.

You must take care to avoid this problem when dealing with DDE between Excel
and APL.

293

Index

A

access control vector 275
ActiveX Control

calling methods in 188
ActiveX controls

loading 178
obtaining event information 186
writing in Dyalog APL 242

ActiveXControl object 241
creating an instance 243
exporting properties 253
generating events 244
overview 242
SetEventInfo method 244

AddCol method 144
AddComment method 152
AddRow method 144
Align property 107, 133
AlignChar property 129
ampersand (in a caption) 50, 56
aynchronous processing (OLE) 236

B

BandBorders property 98
BCol property 36, 126, 134
Bitmap object 74
bitmaps

Dyalog APL 84
Windows standard 83

Bits property 79
BMP file 74
BtnPix property 79
Button object 48, 122

in a Grid 129, 133

C

callback function 21, 44
Caption property 48, 81

CoolBand object 101
Cell co-ordinates 138
CellChange event 143
CellError event 142
CellFonts property 126, 134, 137
CellHeights property 144
CellMove event 142
CellTypes property 134
CellWidths property 144
CFILES workspace 222

registering as an OLE server 222
using from Excel 229

ChangeCol method 145
ChangeRow method 145
Checked property 56
ChildEdge property 100
Classic Edition 116
ClickComment event 153
client (DDE) 271
ClipCells property 126
CMap property 79
cold link (DDE) 271, 278
colour 36
ColTitleAlign property 127
ColTitleDepth property 127
ColTitleFCol property 127
ColTitles property 127, 144
COM objects 194

syntax rules 188
COM Properties tab (Properties dialog) 253
Combo object

in a Grid 129, 131
COMCTL32.DLL 83
conversation (DDE) 271
CoolBand object 95

Caption property 101
ChildEdge property 100
GripperMode property 96
ImageIndex property 101
Index property 102

294 Dyalog APL/W Interface Guide Version 14.0

NewLine property 102
CoolBar object 95

BandBorders property 98
DblClickToggle property 96
FixedOrder property 96
ImageList property 101
VariableHeight property 98

Coord property 34
coordinate system 34
CurCell property 131

D

DblClickToggle property 96
DCOM 232
DCOMREG workspace 235
DDE 271
DDE conversation 280
DDE_EXECUTE message 272, 278
debugging GUI applications 39
Decimal property 129
DelCol method 144
DelComment method 152
DelRow method 144
dequeue 17
Divider property 87
Dockable Property 164
DockAccept Event 163, 175
DockCancel Event 163
DockChildren Property 164, 167
DockEnd Event 163
Docking

a Form into a CoolBar 169
a ToolControl 172
one Form in another 164
sequence of events 162

DockMove Event 162, 174
DockRequest Event 163
DockStart Event 162
Dragable property 38
DragDrop event 38
Dyalog APL DLL 207, 218, 220, 243

E

early binding 180, 197
Edit object

in a Grid 129-130
enqueue 23
Event property 15, 49
event queue 16, 18
EventList property 15, 181
events 2, 17, 194
Events

generating using NQ 23
Expanding event 148, 150
Export 242
Expose event 73

F

FCol 126
FCol property 36, 134
FieldType property 46, 129
FileBox object 33
FillCol property 36
FixedOrder property 96
FlatSeparators property 106
fonts 37
Form object 44, 55
FormatString property 129

G

generating events 23
GetComment method 152
GetEventInfo method 186
GetMethodInfo method 186
GetPropertyInfo method 185
GetPropertyInfo Method 192
GotFocus event 53
graphics 69

in a Grid 138
Grid comments 151
Grid object 125

AddCols method 144
AddComment method 152

Index 295

AddRows method 144
AlignChar property 129
BCol property 134
cell co-ordinates 138
CellChange event 143
CellError event 142
CellFonts property 126, 134, 137
CellHeights property 144
CellMove event 142
CellTypes property 134
CellWidths property 144
ChangeCol method 145
ChangeRow method 145
ClickComment event 153
ClipCells property 126
ColTitleAlign property 127
ColTitleDepth property 127
ColTitleFCol property 127
ColTitles property 127, 144
CurCell property 131
DelCol method 144
DelComment method 152
deleting rows and columns 144
DelRow method 144
Expanding event 148, 150
FCol property 134
FormatString property 129
GetComment method 152
GridBCol property 126
GridFCol property 126
HideComment event 153
InCell mode 130
Input property 129, 134
InputMode property 130
inserting rows and columns 144
RowSetVisibleDepth method 148
RowTitleAlign property 127
RowTitleDepth property 127
RowTitleFCol property 127
RowTitles property 127, 144
RowTreeDepth property 146
RowTreeImages property 150
RowTreeStyle property 150
Scroll mode 130
ShowComment event 152

ShowInput property 132-133
Titleheight property 127
TitleWidth property 127
Undo method 143
using a Combo 131
using a Label 131
using an Edit 130
using Check buttons 133
using comments 151
using graphical objects 138
using Radio buttons 133

GridBCol property 126
GridFCol property 126
GripperMode property 96
Group object 26
GUI systems functions 7
GUI tutorial 43

H

HelpFile property 187
HideComment event 153
Hint property 119
HintObj property 116, 119
hot link (DDE) 271
HotTrack property 106

I

ICO file 74, 79
Icon object 74
Icon property 81
ImageIndex property

CoolBand object 101
ToolButton object 85

ImageList object 85
MapCols property 85
Masked property 85

ImageList property
CoolBar object 101
ToolControl object 85

InCell mode (Grid) 130
Index property

CoolBand object 102

296 Dyalog APL/W Interface Guide Version 14.0

inhibiting an event 22
Input property 129, 134
InputMode property 130
Invoking Methods

with NQ 25

J

Justify property 111

K

KeyPress event 18, 22

L

Label object in a Grid 129, 131
late binding 180, 197, 210
LateBind property 180, 198, 210
LOAN workspace 211

registering as an OLE server 213
using fromDyalog APL 219
using from Excel 217
using from two applications 217

M

MapCols property 85
Masked property 85
MDI 155
MDIArrange method 160
MDICascade method 160
MDIClient object 156
MDIMenu property 159
MDITile method 160
Menu object 56
MenuBar object 55

in a ToolControl object 91
in MDI applications 158

MenuItem object 56
Metafile object 76
MethodList property 181
methods 3
Microsoft Jet Database Engine 195

modal dialog box 31
modal object 17
MouseMove event 39
MsgBox object 32
multi-threading with objects 33
MultiLine property 87, 108

N

name list system function 181
named parameters (OLE) 190
namespace 2, 7, 9, 26
Namespace References 29
Native Look and Feel 41

effect on docked windows 176
new system function 40, 60, 62
NewLine property 102
null values 200

O

object name 9
objects 2
OCXClass object 178

events 194
OLEAddEventSink method 198
OLEDeleteEventSink method 198
OLEListEventSink method 198
OLEQueryInterface method 201
QueueEvents Property 194

OCXSTUB.DLL 206
OLE Client 177

null values 200
OLEAUTO workspace 195
on-line help 187
type information 179
writing a client 178

OLE methods 188
arrays and pointers 188
calling with no parameters 189
optional parameters 189
output parameters 189
returning objects 190
using named parameters 190

Index 297

OLE properties
as objects 193
using 192

OLE Server
aynchronous processing 236
configuring an OLE server for DCOM 232
DCOM 232
implementing an object hierarchy 221
in-process servers 206
LOAN workspace 211
out-of-process registry entries 209
out-of-process servers 208

OLEAddEventSink method 198
OLEAUTO workspace 195
OLEClient object 178

calling methods in 188
events 194
GetMethodInfo method 186
GetPropertyInfo method 185
HelpFile property 187
OLEAddEventSink method 198
OLEDeleteEventSink method 198
OLEListEventSink method 198
OLEQueryInterface method 201
QueueEvents Property 194

OLEControls property 177
OLEDeleteEventSink method 198
OLEListEventSink method 198
OLEQueryInterface method 201
OLERegister method 208
OLEServer object 221

OLERegister method 208
OLEUnRegister method 209

OLEServers property 177
OLESYNC workspace 236
OLEUnRegister method 209
OnTop property 139
optional parameters

OLE methods 189

P

Picture property 77, 81
Poly object 70

Posn property 50
properties 2

changing with WS 14
retrieving by reference 12
setting with assignment 11
setting with WC 13

Properties dialog 244
PropList property 15, 181

Q

QueueEvents Property 194

R

Range property 54, 57
ref 29
REGSVR32.EXE 207
Root object 8, 81

multi-threading 33
RowSetVisibleDepth method 148
RowTitleAlign property 127
RowTitleDepth property 127
RowTitleFCol property 127
RowTitles property 127, 144
RowTreeDepth property 146
RowTreeImages property 150
RowTreeStyle property 150

S

Scroll event 54
Scroll mode (Grid) 130
ScrollOpposite property 110
Select event 50
server (DDE) 271
Server object

ShowSession property 208
SetEventInfo method 244
SetMethodInfo method 197
SetPropertyInfo method 197
shared variables 272
ShowCaptions property 93
ShowComment event 152

298 Dyalog APL/W Interface Guide Version 14.0

ShowDropDown property 90
ShowInput property 131-133
ShowSession property 208
Size property 50

CoolBand object 102
Spinner object in a Grid 129
StatusBar object 114
StatusField object 114, 116, 120
Style property

TabControl object 105
ToolButton object 89
ToolControl object 86

SubForm object
in a CoolBand 103
in a TabControl 104
in an MDIClient 156

T

TabButton object 104
TabControl object 104

Buttons style 105, 109
FlatButtons style 105
FlatSeparators property 106
HotTrack property 106
MultiLine property 108
ScrollOpposite property 110
Style property 105
TabFocus property 113
TabJustify property 112
Tabs (default) style 104
TabSize property 112

TabFocus property 113
TabJustify property 112
TabSize property 112
Tip property 119
TipField object 122
TipObj property 122
TitleHeight property 127
TitleWidth property 127
ToolButton object 83

DropDown style 90
ImageIndex property 85
Radio style 89

Separator style 89
ShowDropDown property 90
Style property 89

ToolControl object 83
bitmaps for 83
containing a MenuBar 91
Divider property 87
ImageList property 85
MultiLine property 87
ShowCaptions property 93
Style property 86
Transparent property 88

topic (DDE) 271
TrackBar object in a Grid 129
Transparent property 88
type information (OLE) 179
Type property 13

U

Undo method 143
Undocking a SubForm 171
UndocksToRoot Property 171
Using Classes 40, 62

V

VALUE ERROR 21
Value property 51
VariableHeight property 98

W

Wait method 17
warm link (DDE) 272
window expose 11
window expose system function 182
window menu (MDI) 159
Windows bitmaps 83
WMF file 76
workspaces, sample

CFILES 222
LOAN 211
OLEAUTO 195

Index 299

X

XPLookAndFeelDocker parameter 176

300 Dyalog APL/W Interface Guide Version 14.0

