DYALOC

The tool of thought for expert programming

Dyalog Language
Reference Guide

Version 14.0




Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2014 by Dyalog Limited

All rights reserved.

Version: 14.0

Revision: 20141121

No part of this publication may be reproduced in any form by any means without the prior written per-

mission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents hereof and spe-
cifically disclaims any implied warranties of merchantability or fitness for any particular purpose.

Dyalog Limited reserves the right to revise this publication without notification.

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The Open Group.

Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Array Editor is copyright of davidliebtag.com

All other trademarks and copyrights are acknowledged.



Contents

Chapter 1: Primitive Functions ... ... . .. 1
Key to Notation .. ... ...l 1
Migration Level . ...l 1
Scalar FUNCtIONS . ... ... i 2
Mixed FUNCHIONS ... .. 5
Conformability .. ... 8
Fill Elements ... oo 8
AXIS OPCTatOT ... .. 9
FUNCHONS (A-Z) <. 9
ADOTt 10
Add 11
And, Lowest Common Multiple ... ... .. 12
ASSIGNMENt . 13
Assignment (Indexed) ... . 16
Assignment (SelectiVe) ... ... .. 21
Binomial .. 23
Branch . 24
Catenate/Laminate .. ... ... ... .. . 26
Catenate First ... .. 28
Cellin g oo 28
CArCUIar 29
GO U At .. 30
DAl . 30
DeCOde .. 31
Depth . 33
Direction (SIgNUM) _ ... 34
DSCIOSE ... 35
DAVIAe ... 36
D) (o 37
Drop With AXeS ... 38
ENClOSe ... 39
Enclose With AXeS .. ... o 40
ENcode oo 41
Endist 43
Equal _ oL 44
Excluding ..o . 45
Execute (Monadic) . ... 46

Execute (Dyadic) ... ... 46



EXpand 47
Expand First 48
Exponential ... 48
Factorial 48
Find 49
BTt 50
FlOOT 50
Format (Monadic) ... ... . . 51
Format (Dyadic) .. ... il 55
Grade Down (Monadic) ... ... ... . .. 57
Grade Down (Dyadic) ... ... L 58
Grade Up (MonadiC) .. ... 60
Grade Up (Dyadic) ... i 62
G T .. 63
Greater Or Equal | . 64
LAt ity 64
DX 65
Index With AXeS . ... o 68
Index GeNerator ... ... ... 69
Index Of 70
INdeXiN g 73
DN OIS CtiON . 77
L tt 78
LSS il 79
Less Or Equal .. . 79
Logarithm L 80
Mg it 80
MatC 81
MatrixX DIvIde . 82
Mt IV OIS . 84
MAaXIMUIM © . 85
MM TS D . 85
IMINTMUIN | 85
ViU 85
116 86
MU LY 91
NN 91
Natural Logarithm .l 92
N O atiVe . 92
N OT il 92
N Ot il 93
Not Equal .l 93
NOt MatCh 94
Or, Greatest Common DiVISOT ... ..o e e e 95

Part it O 96



Partitioned Enclose ... L 98
Pi ToMCS . o oo 99
PaCK 99
PIUS L 100
POW T il 100
RaAVEL | 101
Ravel With AXES .o e 101
Reciprocal ..l 104
R At 104
ReShaDe 106
ReSIAUC L. 106
ReVeTSe . 107
Reverse First 107
RUgt L 107
ROIL L 108
RoOtate .. 109
Rootate Farst 110
S | . 110
S AP 111
S It 112
U TG 112
B ;1 ) £ 113
K 114
Take With A XES o e 115
Tl L 116
IS o e 116
Transpose (MonadiC) . ... ... .. 116
Transpose (Dyadic) ... 117
YD il 118
Un0M e 118
U QU 119
Wt OUt 119
ZLAe L 119
Chapter 2: Primitive Operators .. ... ... .. o i 121
Operator SYNtaX ... ... 121
AXIS Specification .. 123
OPeratOrS (A2 - 124
Assignment (Modified) ... . il 124
Assignment (Indexed Modified) ... ... . . .. 125
Assignment (Selective Modified) ... . ... .. 126
Axis (with Monadic Operand) .. ... .. iiil. 127
Axis (with Dyadic Operand) ... .. 128

COMIMULE - oo e e e e e e e e e e 131



Vi

Composition (Form I) .. 132
Composition (Form I1) ... 133
Composition (Form II1) ... L 134
Composition (Form V) . 134
Each (with Monadic Operand) ... . . .. L 135
Each (with Dyadic Operand) . ... ... ... . 136
L B oA 137
Inner ProdUct o 138
KOy il 139
Outer Product 143
Power Operator .. iill. 144
RaANK 146
RedUCe .. 149
Reduce First ... 151
Reduce N-WisSe ..o 151
T o 152
Scan First 153
D aAW I 154
VaTIANt 155
Chapter 3: The -Beam Operator ... ... . . 159
LB | il 159
Inverted Table Index Of ... iiil.. 161
Unsqueezed TyPe .. ... 163
Syntax ColoUTing .. ... .. .o 164
Compress Vector of Short Integers .. ... .. ... .. 165
Serialise/Deserialise AITaY .. ... oo 167
Number of Threads ... .. . 168
Parallel Execution Threshold ... .. .. . ... 168
Thread Synchronisation Mechanism ... ... ... ... .. ... 168
Update Function Time Stamp ... ... 169
Memory Manager StatiStics ... ... ... ... 170
Specify Workspace Available ... ... ... .. 173
Update DataTable ... ill. 174
Read DataTable .. ..l 177
Data Binding . ..., 180
Flush Session Caption ... ... ... 186
Close All Windows ... L. 187
ExXport To MemOTy .. ... 187
Set Workspace Save Options: .. ... ...l 187
Expose Root Properties .. ... . 188
Disable Component Checksum Validation ... ... ... ... ... . ... .............. 189
Fork New Task (UNIX only) .. ... 190

Change User (UNIX only) ... oo, 191



vii

Reap Forked Tasks (UNIX only) .. o e 192
Signal Counts (UNIX only) .. e 194
Random Number Generator ... ... .. 195
Chapterd: System Functions ... ... .. . . 197
System ConStants _ ...l 199
System Variables ...l 200
System Operators _ L. 202
System NamesPaces ... ... 202
System Functions Categorised . ... ... ... . ... 203
Character Input/OutpUt - 213
Evaluated Input/Output ... 215
Underscored Alphabetic Characters ... ... ... .. ... 217
Alphabetic Characters ... ... .. 217
Account Information ... il 218
Account Name il 218
Arbitrary OUtpUt .. 219
AT DU S 220
ALOMIC V @O 0T .. 224
Atomic Vector - Unicode ... ... . 224
Base Class . ... 227
ClaSS - il 228
Clear WorKSpace ... il 230
Execute Windows Command ... ... ... .. 231
Start Windows Auxiliary Processor ... ... ... ... 235
Canonical Representation ... ... ... 236
Change SpPace ... i 238
Comparison Tolerance ... ... . il 241
Copy WorkSpace ... il 242
DAt <o 244
Decimal Comparison Tolerance ... ... ... .. 244
Display Form ... 245
Division Method ... .. 248
D elay .. 249
Diagnostic MESSAZE . ... ... 249
Extended Diagnostic MeSSage ............oooooi i 250
Dequeue Events .. il 255
Data Representation (Monadic) ... ... ... .. 258
Data Representation (Dyadic) ........ ... ...l 259
Edit Object .. 260
Event Message ... ....ooooii e 261
Event NUumber | .. 261
EX Pt ON .. 262

EXpunge Object .. ... L 263



viii

EXpOrt ObJeCt . 265
File Append Component .. .. ... . 266
File System Available . ... 266
File Check and Repair ... . 267
File CODY ..l 270
File Create . ... 271
File Drop Component ... ... ... L 273
File Brase ..l 274
File HiStOry . 274
File Hold . 276
FiX S CIIPt L 277
Component File Library ... 278
Format (Monadic) ... L 279
Format (Dyadic) ... 280
File Names . .o 287
File NUMD OTS 288
File Properties .. L 289
Floating-Point Representation ... ... ... ... . 293
File Read AcCCeSS . ... ... 295
File Read Component Information ... ... ... . ... 296
File Read Components .. ... ... .. L 297
File Rename . ... 298
File Replace Component ... ... ... . 299
File ReSIZE ..o 300
File SiZ€ .o 301
File Set ACCESS ..o 301
File Share Tie . 302
Exclusive File Tie ... 304
File Untie ..o 305
Fix Definition .. 305
NS aANCeS .. 306
Index Origin .. 307
Koy Label 308
Line CoUNt 308
Load WorKspace ... oo 309
Lock Definition L 310
Latent EXpression ... 311
Map File L 311
Migration Level ... L 313
Set MONITOT . e e e 315
Query MONItOT _ . 316
Name ASSOCIAtION | ... ..o 317
Native File Append ... 345
Name Classification . ... ... 346

Native File Create ... ..o e e e e e 357



Native File Erase .. ... . 357
N oW IS AN Ce .. 358
NaME LSt L 359
Native File LoCK ... 363
Native File Names ..ol 365
Native File NUmMbers ... 365
Enqueue Event . 366
Nested Representation ... ... ... ... 368
Native File Read ... . 369
Native File Rename .. . 371
Native File Replace ... 371
Native File ReSizZe ... .l 372
Create Namespace ... ... ill. 373
Namespace Indicator ... . 375
Native File Size ... 375
Native File Tae | 376
NULL M L 377
Native File Untie . 378
Native File Translate ... . 378
SN Off AP L 379
VAT ANt . 379
Object Representation .. ... . 380
Search Path ... 384
Program Function Key .. ... . 386
Print PreCiSION 387
Profile Application ... .. . 388
Print Wiadth L 395
Cross ReferenCes .. . 396
RePIaCE .. 397
Random LinK .. 416
Space Indicator .. .. ... 418
Response Time Limit ... 419
S aTC 419
Save WoorKSPaCe . ... . . 419
Screen DImMENSIONS . - ..o e 420
Session NameSPACE . . ... ..o 420
Execute (UNIX) Command ... ... ... 421
Start UNIX Auxiliary Processor ... . 422
State INdiCator - .. 423
Shadow Name L 424
Signal Event .. 425
Siz€ 0F OB JCCt ... 428
Screen MaD .. 429
Screen Read .o 432
SO T . . 436



State Indicator Stack .. .. 437

State 0f OB eCt _ . 439
St SO il 440
QUETY St 0D i 441
Set Access Control .. 442
Query Access Control 443
Shared Variable Offer ... . 444
Query Degree of Coupling .. .. ... . 446
Shared Variable QUery ... . 447
Shared Variable Retract Offer ... ... 447
Shared Variable State ... ... 448
Terminal Control 449
Thread Child NUumbers ... 450
Gt TOKENS 450
TRiS SPACE .. 452
Current Thread Identity ... L 453
Kiall Thread . ... e e e e e e e 453
Current Thread Name ... 454
Thread NUM OIS .. e e e e 454
ToKen POOL 454
PUt TOK NS 455
St a0 .. e 456
Quety TraCe il 457
Trap EVent .. 458
Token ReqUeStS .. 462
TIMe S A 463
Wait for Threads to Terminate ... ... ... e e 464
Unicode CONVEIT L 465
Using (Microsoft NET Search Path) ... ... . ... 468
Vector Representation ... . ... 469
Verify & Fix Input 470
Workspace Available ... ... . 471
Windows Create Object ... 472
Windows Get Property .. ... .. 475
Windows Child Names . ... 476
Windows Set Property .. ... 477
Workspace Identification . ... . .. 478
Window EXpOSe ... 479
XML CONVEI . e e e 480
Extended State Indicator _ .. ... . . 495
Set External Variable ...l 496
Query External Variable ... L 498



xi

IO dUCH 0N 499
LSt ClaSSeS . oL 501
Clear WorKSpace ..o 501
Windows Command Processor .. ... .. 502
Save Continuation ... ... 503
Copy WoOrKSPaCe ... 504
Chan e SPaCE .. 506
Drop WorKSpace . ... ..o 506
Edit ObeCt oL 507
Erase ObJeCt .. oL 508
LSt EVentS 508
List Global Defined Functions ... ... . 509
Display Held Tokens ... e 510
List Workspace Library ... . 511
Load WorKSpace . ... ... o 512
LSt Methods - .o 513
Create Namespace ... ... il 513
List Global Namespaces ... ... ... oo 514
List Global Namespaces ... ... ... oo 514
SN Off AP L 514
List Global Defined Operators ... . .. L 514
Protected CoPY ..o 515
LSt PrO P eItieS . L 516
Reset State Indicator ...l 516
Save WoorKSPaCe . ... . . 516
Execute (UNIX) Command ... ... ... e 518
State IndiCator ... 519
Clear State Indicator .. ... . 520
State Indicator & Name List ... ... . 520
Thread Identity ... 521
List Global Defined Variables ... ... ... . 522
Workspace Identification ... .. ... 522
Load without Latent EXpression ... ... ... 523

Appendices: PCRE Specifications ... ... ... 525

Appendix A - PCRE Syntax Summary ......... . . ... 526

Appendix B - PCRE Regular Expression Details ... ... ... ... ... ... 533

SYMbOliC INAEX . 571






Chapter 1:

Primitive Functions

Key to Notation

The following definitions and conventions apply throughout this manual:

f A function, or an operator's left argument when a function.

A function, or an operator's right argument when a function.

An operator's left argument when an array.

An operator's right argument when an array.

The left argument of a function.

< ||| > |

The right argument of a function.

R The explicit result of a function.

[K] |Axis specification.

[I] |Index specification.

{X} |The left argument of a function is optional.

{R} |The function may or may not return a result, or the result may be
« suppressed.

function may refer to a primitive function, a system function, a defined (canonical,
dfn or assigned) function or a derived (from an operator) function.

Migration Level

OML determines the degree of migration of the Dyalog APL language towards IBM's
APL2. Unless otherwise stated, the manual assumes [JML has a value of 1.



Dyalog APL/W Language Reference

Scalar Functions

There is a class of primitive functions termed SCALAR FUNCTIONS. This class is
identified in Table 1 below. Scalar functions are pervasive, i.e. their properties apply
at all levels of nesting. Scalar functions have the following properties:

Table 1: Scalar Primitive Functions

Symbol Monadic Dyadic

+ Identity Plus (Add)

- Negative Minus (Subtract)
x Direction (Signum) Times (Multiply)
+ Reciprocal Divide

| Magnitude Residue

L Floor Minimum

[ Ceiling Maximum

* Exponential Power

® Natural Logarithm Logarithm

o Pi Times Circular

! Factorial Binomial

~ Not $

? Roll $

€ Type (See Enlist) $




Chapter 1: Primitive Functions 3

Symbol Monadic

Dyadic

And

Or

Nand

Nor

Less

Less Or Equal

Equal

Greater Or Equal

Greater

£

Not Equal

$ Dyadic form is not scalar

Monadic Scalar Functions

The function is applied independently to each simple scalar in its argument.
The function produces a result with a structure identical to its argument.
When applied to an empty argument, the function produces an empty
result. With the exception of + and €, the type of this result depends on
the function, not on the type of the argument. By definition + and € return
a result of the same type as their arguments.

Example

0.5

2 (1 4)
1 0.25




Dyalog APL/W Language Reference

Dyadic Scalar Functions

e The function is applied independently to corresponding pairs of simple scal-
ars in its arguments.

e A simple scalar will be replicated to conform to the structure of the other
argument. If a simple scalar in the structure of an argument corresponds to a
non-simple scalar in the other argument, then the function is applied
between the simple scalar and the items of the non-simple scalar. Rep-
lication of simple scalars is called SCALAR EXTENSION.

e A simple unit is treated as a scalar for scalar extension purposes. A UNIT is
a single element array of any rank. If both arguments are simple units, the
argument with lower rank is extended.

e The function produces a result with a structure identical to that of its argu-
ments (after scalar extensions).

e If applied between empty arguments, the function produces a composite
structure resulting from any scalar extensions, with type appropriate to the
particular function. (All scalar dyadic functions return a result of numeric

type.)
Examples

23 4 +123
357

2 (3 4) +1 (2 3)
3 57

(1 2) 3 +4 (5 6)
56 89

10 x 2 (3 4)
20 30 40

2 4 =2 (4 6)
1 10

(1 1p5) - 1 (2 3)
b 3 2

114''+10
0

14(0pc' " (0 0))x""
0 00

Note: The Axis operator applies to all scalar dyadic functions.



Chapter 1: Primitive Functions 5

Mixed Functions

Mixed rank functions are summarised in Table 2. For convenience, they are sub-
divided into five classes:

Table 2: Mixed rank functions

These functions change the structure of the arguments in
Structural

some way.
Selection These functions select elements from an argument.

These functions identify specific elements by a Boolean map
Selector o

or by an ordered set of indices.

. These functions transform arguments in some way, or provide

Miscellaneous | . .

information about the arguments.
Special These functions have special properties.

In general, the structure of the result of a mixed primitive function is different from
that of its arguments.

Scalar extension may apply to some, but not all, dyadic mixed functions.

Mixed primitive functions are not pervasive. The function is applied to elements of
the arguments, not necessarily independently.

Examples

"CAT' 'DOG' 'MOUSE'1c'DOG'
2

3t 1 'TWO' 3 'FOUR'
1 TWO 3

In the following tables, note that:

o [ ] Implies axis specification is optional
e $ This function is in another class



Dyalog APL/W Language Reference

Table 3: Structural Primitive Functions

Symbol | Monadic Dyadic

p $ Reshape

, Ravel [] Catenate/Laminate[ ]

s Table Catenate First / Laminate [ ]

0 Reverse [ ] Rotate []

e Reverse First [ ] Rotate First [ ]

® Transpose Transpose
Mix/Disclose (First) [ ] $

' Split [ ] $

c Enclose [ ] Partitioned Enclose [ ]

€ Enlist (See Type) $

Table 4: Selection Primitive Functions

Symbol | Monadic Dyadic

> Disclose /Mix Pick

t $ Take [ ]

¢ $ Drop []

/ Replicate []

# Replicate First [ ]

\ Expand []

X Expand First [ ]

~ $ Without (Excluding)

n Intersection

v Unique Union

- Same Left

+ Identity Right




Chapter 1: Primitive Functions

Table 5: Selector Primitive Functions

Symbol | Monadic Dyadic

1 Index Generator Index Of

€ $ Membership

A Grade Up Grade Up

' Grade Down Grade Down

? $ Deal

€ Find
Table 6: Miscellaneous Primitive Functions

Symbol | Monadic Dyadic

p Shape $

= Depth Match

# Tally Not Match

& Execute Execute

] Format Format

1 Decode (Base)

Encode (Representation)

# Matrix Divide Matrix Inverse
Table 7: Special Primitive Functions

Symbol | Monadic Dyadic

> Abort

> Branch

« $ Assignment

[I]« $ Assignment(Indexed)
(I)« Assignment(Selective)
[] Indexing




Dyalog APL/W Language Reference

Conformability

The arguments of a dyadic function are said to be CONFORMABLE if the shape of
each argument meets the requirements of the function, possibly after scalar extension.

Fill Elements

Some primitive functions may include fill elements in their result. The fill element
for an array is the enclosed type of the disclose of the array (c€>Y forarray Y). The
Type function (€) replaces a numeric value with zero and a character value with '

The Disclose function (2) returns the first item of an array. If the array is empty, 2Y is
the PROTOTYPE of Y. The prototype is the type of the first element of the original
array.

Primitive functions which may return an array including fill elements are Expand (\
or X), Replicate (/ or #), Reshape (p) and Take (1).

Examples

€e1b
000O00O0

€>(13)("'ABC")
00O

ce>(13)('ABC")
00O

ceo>c(13)('ABC')
000

A<'ABC' (1 2 3)
A<OpA
ceoA

111

'zceoA



Chapter 1: Primitive Functions 9

Axis Operator

The axis operator may be applied to all scalar dyadic primitive functions and certain
mixed primitive functions. An integer axis identifies a specific axis along which the
function is to be applied to one or both of its arguments. Ifthe primitive function is
to be applied without an axis specification, a default axis is implied, either the first or

last.
Example
10 1/[1] 3 2p16
12
56
1 2 3+[2]2 3p10 20 30
11 22 33
11 22 33

Sometimes the axis value is fractional, indicating that a new axis or axes are to be cre-
ated between the axes identified by the lower and upper integer bounds of the value
(either of which might not exist).

Example

"NAMES',[0.5]'="

(I0 isan implicit argument of an axis specification.

Functions (A-Z)

Scalar and mixed primitive functions are presented in alphabetical order of their
descriptive names as shown in Figures 3(i) and 3(ii) respectively. Scalar functions
are described in terms of single element arguments. The rules for extension are
defined at the beginning of this chapter.

The class of the function is identified in the heading block. The valence of the func-
tion is implied by its syntax in the heading block.



10

Dyalog APL/W Language Reference

Abort

->

This is a special case of the Branch function used in the niladic sense. Ifit occurs in
a statement it must be the only symbol in an expression or the only symbol forming
an expression in a text string to be executed by ¢. It clears the most recently sus-
pended statement and all of its pendent statements from the state indicator.

The Abort function has no explicit result. The function is not in the function domain
of operators.

Examples
vV F
[1] 'FL1]!
[2] G
[3] 'FL3]"
v
VG
[1] ‘G[1]"
[2] -
[3] '‘G[3]"
v
F
FL1]
G[1]
OVR'VALIDATE'
vV VALIDATE
[1] ->(12=110AI)p0 o 'ACCOUNT NOT AUTHORISED' ¢ -
v
VALIDATE

ACCOUNT NOT AUTHORISED

1t0AT
52



Chapter 1: Primitive Functions 11

Add

ReX+Y

Y must be numeric. X must be numeric. R isthe arithmetic sumof X and Y. R is
numeric. This function is also known as Plus.

Examples
12+ 34

12+ 3,4k 5
L 6 7

1J1 232 + 373
4LJ4 5J5

5 + 4LJ4 5735
“1J4% 0J5




12 Dyalog APL/W Language Reference

And, Lowest Common Multiple R«XAY

Case 1: X and Y are Boolean

R is Boolean is determined as follows:

X Y R
0 0 0
0 1 0
1 0 0
1 1 1

Note that the ASCII caret (*) will also be interpreted as an APL And (*).

Example

0101~0011
0001

Case 2: Either or both X and Y are numeric (non-Boolean)

R is the lowest common multiple of X and Y. Note that in this case, [JCT is an implicit
argument.

Example

15127 23140
105 1 4 0

2 3 4% A 0j1 152 233
0J2 376 8712

232 2j4 A 535 4j4
10J10 ~i4J12



Chapter 1: Primitive Functions 13

Assignment X<«Y

Assignment allocates the result of the expression Y to the name or names in X.

IfY is an array expression, X must contain one or more names which are variables, sys-
tem variables, or are undefined. Following assignment, the name(s) in X become vari-
able(s) with value(s) taken from the result of the expression Y.

If X contains a single name, the variable assumes the value of Y.
The assignment arrow (or specification arrow) is often read as 'Is' or 'Gets'.

Examples
A<2.3

A
A<13
123
More than one name may be specified in X by using vector notation. Ifso, Y must be

avector ora scalar. IfY is a scalar, its value is assigned to all names in X. IfY isa
vector, each element of Y is assigned to the corresponding name in X.

Examples
A B<«2
A
2
B
2
P OIO Q«'TEXT' 1 (1 2 3)
2]
TEXT
010
1
Q

123



14 Dyalog APL/W Language Reference

For compatibility with IBM's APL2, the list of names specified in X may be enclosed
in parentheses.

Examples

(ABC)«t1 23
(D E)«'Hello' 'World'

Multiple assignments are permitted. The value of Y is carried through each assign-
ment:

I<J«K<0

I,J,K
00O

Function Assignment

IfY is a function expression, X must be a single name which is either undefined, or is
the name of an existing function or defined operator. X may not be the name of a sys-
tem function, or a primitive symbol.

Examples
PLUS<«+
PLUS

+
SUM<«+/
SUM

+/

MEAN<{(+/w)+pw}



Chapter 1: Primitive Functions 15

Namespace Reference Assignment

If an expression evaluates to a namespace reference, or ref, you may assign it to a
name. A name assigned to a simple scalar ref, has name class 9, whereas one assigned
to an array containing refs has name class 2.

'"f1'OWC'Form'
'ns1' [NS ''

N<ns1
ONC'N' A name class of a scalar ref

Fefl
ONC'F' A name class of a scalar ref

refs<N F A vector of refs.
ONC'refs' A nameclass of vector.

F2«2>orefs
ONC 'F2'
9

Re-Assignment

A name that already exists may be assigned a new value if the assignment will not
alter its name class, or will change it from 2 to 9 or vice versa. The table of permitted
re-assignments is as follows:

Ref Variable Function Operator
Ref Yes Yes
Variable Yes Yes
Function Yes Yes
Operator Yes Yes




16

Dyalog APL/W Language Reference

Assignment (Indexed) {R}«X[I]«Y

Indexed Assignment is the Assignment function modified by the Indexing function.
The phrase [ I ]« is treated as the function for descriptive purposes.

Y may be any array. X may be the name of any array or a selection from a named
array (EXP X)[I]«Y,see Assignment (Selective) on page 21. I must be a valid
index specification. The shape of Y must conform with the shape (implied) of the
indexed structure defined by I. IfY is a scalar ora 1-element vector it will be exten-
ded to conform. A side effect of Indexed Assignment is to change the value of the
indexed elements of X.

R is the value of Y. Ifthe result is not explicitly assigned or used it is suppressed.
0IO0 is an implicit argument of Indexed Assignment.

Three forms of indexing are permitted.

Simple Indexed Assignment

For vector X, I is a simple integer array whose items are from the set 1 pR. Elements
of X identified by index positions I are replaced by corresponding elements of Y.

Examples

+A<15
12345

A[2 3]«10 o A
110 10 4 5

The last-most element of Y is assigned when an index is repeated in I:

A[2 2]«100 101 ¢ A
1 101 10 4 5

For matrix X, I is composed of two simple integer arrays separated by the semicolon
character (;). The arrays select indices from the rows and columns of X respectively.




Chapter 1: Primitive Functions 17

Examples

RED
SUN

RED
SON

+B«2 3p'REDSUN'

B[2;2]«'0"' ¢ B

For higher-rank array X, I is a series of simple integer arrays with adjacent arrays sep-
arated by a single semicolon character (;). Each array selects indices from an axis of
X taken in row-major order.

Examples

11
14

21
24

12
15

22
25

C
13
16

23
26

C[1:;1:;3]«103 ¢ C
103
16

23
26

An indexing array may be ELIDED. That is, if an indexing array is omitted from the
Kth axis, the indexing vector 1 (pX) [K ] is implied:

Cl[;1:2 3]«2 2p112 113 122 123 ¢ C

11 112 113

14

15

16

21 122 123

24 25

o o
o o

o o
o o

o o

o o

26

C[;:]«0 o C



18

Dyalog APL/W Language Reference

Choose Indexed Assignment

The index specification I is a non-simple integer array. Each item identifies a single
element of X by a set of indices with one element per axis of X in row-major order.

Examples

C
11 12 13 14
21 22 23 24

Clel 1]«101 o C
101 12 13 14
21 22 23 24

CL(1 2) (2 3)]«102 203 ¢ C
101 102 13 14
21 22 203 24

C[2 2p(1 3)(2 4)(2 1)(1 4)]«2 2p103 204 201 104 o C
101 102 103 104
201 22 203 204

A scalar may be indexed by the enclosed empty vector:

S
10
S[c10]«c'VECTOR' ¢ S
VECTOR
S[c10]«5 ¢ S
5

Choose Indexed Assignment may be used very effectively in conjunction with Index
Generator (1) and Structural functions in order to assign into an array:

C
11 12 13 14
21 22 23 24
1pC
11 12 13 14
21 22 23 24
C[1 181pCl«1l 2 o C
1 12 13 14

21 2 23 24

C[2 "1t1pCl+99 ¢ C
112 13 99
21 2 23 99



Chapter 1: Primitive Functions 19

Reach Indexed Assignment

The index specification I is a non-simple integer array, each of whose items reach
down to a nested element of X. The items of an item of I are simple vectors (or scal-
ars) forming sets of indices that index arrays at successive levels of X starting at the
top-most level. A set of indices has one element per axis at the respective level of
nesting of X in row-major order.

Examples
D«(2 3p16)(2 2p'SMITH' 'JONES' 'SAM' 'BILL')

D
1 2 3 SMITH JONES
L 56 SAM BILL
=J«c2 (1 2)
-3
D[J]«c'WILLIAMS' ¢ D
1 2 3 SMITH WILLIAMS
L 56 SAM BILL
DL(1 (1 1))(2 (2 2) 1)]«10 'W' o D
10 2 3  SMITH WILLIAMS
L 56 SAM WILL

GREEN YELLOW RED

E[c2 1]«'M' o E
GREEN MELLOW RED

The context of indexing is important. In the last example, the indexing method is
determined to be Reach rather than Choose since E is a vector, not a matrix as would
be required for Choose. Observe that:

c2 1 «»> c(c2),(<1)

Note that for any array A, A[ <@] represents a scalar quantity, which is the whole of
A, so:

A<5p0

A
00000

Alcg]«1

A



20 Dyalog APL/W Language Reference

Combined Indexed and Selective Assignment

Instead of X being a name, it may be a selection from a named array, and the state-

ment is of the form (EXP X)[I]<«Y.

##Lllo
##trld
Hel lo
World

##rld
##llo
World
Hel lo

MAT«4 3p'Hello'
(2t"MAT)[1 2;]«'#'
MAT

##Lllo
##trld
Hello
World

MAT<4 3p'Hello’
OML<1 A € is Enlist

‘Wor ld'

'"World'

(EMAT)[szLO.SXpeMAT]«'#'

H# L#o
#o# L #
H# Ll #o
H#o# L #

MAT

#o# L #
H# L #o0
#o# L #
H# Ll #o

H# L#o
#o# L #
H# Ll #o
#o# L #



Chapter 1: Primitive Functions 21

Assignment (Selective) (EXP X)«Y

X is the name of a variable in the workspace, possibly modified by the indexing func-
tion (EXP X[I])<«Y,see Assignment (Indexed) on page 16. EXP is an expression
that selects elements of X. Y is an array expression. The result of the expression Y is
allocated to the elements of X selected by EXP.

The following functions may appear in the selection expression. Where appropriate
these functions may be used with axis [ ] and with the Each operator ™.

Functions for Selective Assignment
1 Take

4 Drop

Ravel

Table

Reverse, Rotate

-

el

Reshape

Disclose, Pick

Transpose (Monadic and Dyadic)
Replicate

Expand

Index

Enlist (OML21)

m &3~ N & U O ©

Note: Mix and Split (monadic t and ), Type (monadic € when [JML <1) and Mem-
bership (dyadic €) may not be used in the selection expression.

Examples

A<'HELLO'
((Ae'AEIOU")/A)«"*"

A
HxLLx

7«3 4p112
(5t,2)+«0

O OO
oo O
~RJdON
N 00 O



22 Dyalog APL/W Language Reference

MAT«3 3p19
(1 1§MAT)«0

MAT

~NF O
o onN
oo w

OML<1n so € is Enlist
names<«'Andy' 'Karen' 'Liam'
(('a'=enames)/enames)«"'x'
names

Andy Kxren Lix*m

Each Operator

The functions listed in the table above may also be used with the Each Operator ™.

Examples

A<'"HELLO' 'WORLD'
(247A)«" !
A

*xLLO x%xRLD

A<'HELLO' 'WORLD'
((A='0")/"A)«"*"
A

HELL* WxRLD

A<'HELLO' 'WORLD'
((Ae"c'LO")/"A)«" '
A

HE % % x WxRx*xD

Bracket Indexing

Bracket indexing may also be applied to the expression on the left of the assignment
arrow.

Examples

MAT«4 3p'Hello' 'World'
(T24"MAT[:;1 3])«'$"'
MAT

Hel$$ World Hel$$

Wor$$ Hello Wor$$

Hel$$ World Hel$$

Wor$$ Hello Wor$$



Chapter 1: Primitive Functions 23

Binomial

ReX!Y

X and Y may be any numbers except that if Y is a negative integer then X must be a
whole number (integer). R is numeric. An element of R is integer if corresponding ele-
ments of X and Y are integers. Binomial is defined in terms of the function Factorial
for positive integer arguments:

XY <> (lY)=(!1X)x!Y-X
For other arguments, results are derived smoothly from the Beta function:
Beta(X,Y) <> +Yx(X-1)!X+Y-1

For positive integer arguments, R is the number of selections of X things from Y
things.
Example

1 1.2 1.4 1.6 1.8 215
5 6.105689248 7.219424686 8.281104786 9.227916704 10

21352
135



24

Dyalog APL/W Language Reference

Branch

+Y

Y may be a scalar or vector which, if not empty, has a simple numeric scalar as its first
element. The function has no explicit result. It is used to modify the normal
sequence of execution of expressions or to resume execution after a statement has
been interrupted. Branch is not in the function domain of operators.

The following distinct usages of the branch function occur:

Entered in a Statement

Ent in I iate E tion M
in a Defined Function ntered in Immediate Execution Mode

LINE Continue with the Restart execution at the specific line of
>
specific line the most recently suspended function
Continue with the next
»10 . No effect
expression

In a defined function, if Y is non-empty then the first element in Y specifies a state-
ment line in the defined function to be executed next. Ifthe line does not exist, then
execution of the function is terminated. For this purpose, line 0 does not exist.
(Note that statement line numbers are independent of the index origin [J10).

IfY is empty, the branch function has no effect. The next expression is executed on
the same line, if any, or on the next line if not. Ifthere is no following line, the func-
tion is terminated.

The : GoTo statement may be used in place of Branch in a defined function.

Example

v TEST
[1] 1
[2] >k
[3] 3
(4] 4

v

TEST

1
"

In general it is better to branch to a LABEL than to a line number. A label occurs in
a statement followed by a colon and is assigned the value of the statement line num-
ber when the function is defined.



Chapter 1: Primitive Functions 25

Example
vV TEST
(1] 1
[2] -~FOUR
[3] 3
[4] FOUR: 4
\

The previous examples illustrate unconditional branching. There are numerous APL
idioms which result in conditional branching. Some popular idioms are identified in
the following table:

Branch

. Comment
Expression
STEST/LA Branchc?s to label L1 if TEST results in 1 but not if TEST
results in 0.
-TESTpL1 Similar to above.
TESTtL1 Similar to above.

>L1p=TEST Similar to above.

>L1[1TEST Similar to above but only if JI0«~1.

>L1x1TEST Similar to above but only if JI0«~1.

~(L1,L2,L3)
[N]

+(T1,T2,T3) |Branches to the first selected label dependent on tests
/L1,L2,L3 T1,T2,T3. If all tests result in 0, there is no branch.

Unconditional branch to a selected label.

>N¢L1,L2,L3 |Unconditional branch to thefirst label after rotation.

A branch expression may occur within a statement including ¢ separators:

[5] >NEXTp=TEST ¢ A<«A+1 ¢ -END
[6] NEXT:

In this example, the expressions ' A<A+1' and '>END"' are executed only if TEST
returns the value 1. Otherwise control branches to label NEXT.

In immediate execution mode, the branch function permits execution to be continued
within the most recently suspended function, if any, in the state indicator. Ifthe state
indicator is empty, or if the argument Y is the empty vector, the branch expression
has no effect. Ifa statement line is specified which does not exist, the function is
terminated. Otherwise, execution is restarted from the beginning of the specified
statement line in the most recently suspended function.



26 Dyalog APL/W Language Reference

Example
v F

(1] 1

[2] 2

(31 3
v
2 OSTOP'F'
F

1

FL2]
)SI

#.F[2]x
-2

2

3

The system constant [JL C returns a vector of the line numbers of statement lines in
the state indicator, starting with that in the most recently suspended function. It is
convenient to restart execution in a suspended state by the expression:

~{LcC

Catenate/Laminate R«X,[K]Y

Y may be any array. X may be any array. The axis specification is optional. If spe-
cified, K must be a numeric scalar or 1-element vector which may have a fractional
value. Ifnot specified, the last axis is implied.

The form R«X5Y may be used to imply catenation along the first axis.
Two cases of the function catenate are permitted:

1. With an integer axis specification, or implied axis specification.
2. With a fractional axis specification, also called laminate.

Catenation with Integer or Implied Axis Specification

The arrays X and Y are joined along the required axis to form array R. A scalar or 1-
element vector is extended to the shape of the other argument except that the
required axis is restricted to a unit dimension. X and Y must have the same shape
(after extension) except along the required axis, or one of the arguments may have
rank one less than the other, provided that their shapes conform to the prior rule after
augmenting the array of lower rank to have a unit dimension along the required axis.
The rank of R is the greater of the ranks of the arguments, but not less than 1.




Chapter 1: Primitive Functions 27

Examples

"FUR', 'LONG'
FURLONG

1,2
12

(2 4p'THISWEEK')5'="'
THIS
WEEK

S,[1]+#5<2 3p16

U1 F -
~oaN
O o w

If, after extension, exactly one of X and Y have a length of zero along the joined axis,
then the data type of R will be that of the argument with a non-zero length. Other-
wise, the data type of R will be that of X.

Lamination with Fractional Axis Specification

The arrays X and Y are joined along a new axis created before the [ Kth axis. The
new axis has a length of 2. K must exceed [JI0 (the index origin) minus 1, and K
must be less than [JI0 plus the greater of the ranks of X and Y. A scalar or 1-element
vector argument is extended to the shape of the other argument. Otherwise X and Y
must have the same shape.

The rank of R is one plus the greater of the ranks of X and Y.

Examples

"HEADING',[0.5]"'-"'
HEADING

"NIGHT',[1.5]"'*"
N *
Ix
Gx*
Hx
Tx
1o<«0
"HEADING',[70.5]"'-"'
HEADING



28 Dyalog APL/W Language Reference

Catenate First ReXs[K]Y

The form R<X5Y implies catenation along the first axis whereas the form R<X, Y
implies catenation along the last axis (columns). See Catenate/Laminate above.

Ceiling Re[Y

Ceiling is defined in terms of Flooras [ Y«»>-| -Y
Y must be numeric.

Ifan element of Y is real, the corresponding element of R is the least integer greater
than or equal to the value of Y.

Ifan element of Y is complex, the corresponding element of R depends on the rela-
tionship between the real and imaginary parts of the numbers in Y.

Examples
[T2.3 0.1 100 3.3
T2 1 100 4

[1.2j2.5 1.2§72.5
133 1772

For further explanation, see Floor on page 50.

OCT is an implied argument of Ceiling.



Chapter 1: Primitive Functions 29

Circular

R«XoY

Y must be numeric. X must be an integer in therange “12 < X < 12.Risnumeric.

X determines which of a family of trigonometric, hyperbolic, Pythagorean and com-
plex functions to apply to Y, from the following table. Note that when Y is complex,
aand b are used to represent its real and imaginary parts, while © represents its

phase.
(-X) oY X XoyY
(1-Y*2)x.5 0 (1-Y*2)x.5
Arcsin Y 1 Sine Y
Arccos Y 2 Cosine Y
Arctan Y 3 Tangent Y
(Y+1)x((Y-1)+Y+1)x0.5 4 (1+Yx2)x.5
Arcsinh Y 5 Sinh Y
Arccosh Y 6 Cosh Y
Arctanh Y 7 Tanh Y
-8oY 8 (-1+Y*2)x0.5
Y a
+Y 10 |[IY
Y=x0J1 11 |b
*xYx0J1 12 |8

Examples

07101

0 1.570796327

1{o(PI«01)+2 3 4

1 0.8660254038 0.7071067812
20PI=3

0.5
9 1103.5771.2

3.5 71.2

9 110.03.5J71.2 2J3 3J4




30 Dya

log APL/W Language Reference

- w
R
w N
F w

Conjugate

Re+Y

If Yis complex, R is Y with the imaginary part of all elements negated.
IfY is real or non-numeric, R is the same array unchanged.

Note that if Y is nested, the function has to process the entire array in case any item is
complex.

Examples

+3j4
3774

+1j2 233 3j4
1J72 2373 374

3j4++3jk
6

3j4x+3jk
25

+A<15
12345

+JEX'A"
1

Deal

ReX?Y

Y must be a simple scalar or 1-element vector containing a non-negative integer. X
must be a simple scalar or 1-element vector containing a non-negative integer and
X<Y.

R is an integer vector obtained by making X random selections from 1Y without repe-
tition.
Examples

13752
7 40 24 28 12 3 36 49 20 44 2 35 1

13752
20 4 22 36 31 49 45 28 5 35 37 48 40



Chapter 1: Primitive Functions 31

010 and ORL are implicit arguments of Deal. A side effect of Deal is to change the
value of JRL. See Random Number Generator on page 195 and Random Link on
page 416.

Decode

ReX1Y

Y must be a simple numeric array. X must be a simple numeric array. R is the
numeric array which results from the evaluation of Y in the number system with radix
X.

X and Y are conformable ifthe length of the last axis of X is the same as the length of
the first axis of Y. A scalar or 1-element vector is extended to a vector of the required
length. Ifthe last axis of X or the first axis of Y has a length of 1, the array is exten-
ded along that axis to conform with the other argument.

The shape of R is the catenation of the shape of X less the last dimension with the
shape of Y less the first dimension. That is:

PR «» (T14pX),14pY

For vector arguments, each element of X defines the ratio between the units for cor-
responding pairs of elements in Y. The first element of X has no effect on the result.

This function is also known as Base Value.

Examples

60 6013 13
193

0 6013 13
193

6013 13
193

211 010

10



32 Dyalog APL/W Language Reference

Polynomial Evaluation

If X is a scalar and Y a vector of length n, decode evaluates the polynomial(Index ori-
gin 1):

Y{I}Y”’l+—Y{2}¥”’2+a“4-Y[n}Y°

Examples

211 2 3 4
26

311 2 3 &4
58

1j111 2 3 &4
5J9

For higher-rank array arguments, each of the vectors along the last axis of X is taken
as the radix vector for each ofthe vectors along the first axis of Y.

Examples

M
00001111
00110011
01010101

A
111
2 22
3 33
b4 oL

ALM
o112 1 2 2 3
0123 4 5 6 7
0134 9 10 12 13
0145 16 17 20 21

Scalar extension may be applied:

2.1M
0123456717

Extension along a unit axis may be applied:

+A<2 1p2 10
2
10
ALM
2 3 4 5 6 7

01
01 10 11 100 101 110 111



Chapter 1: Primitive Functions 33

Depth (OML) Re=Y

Y may be any array. R is the number of levels of nesting of Y. A simple scalar (rank-0
number, character or namespace-reference) has a depth of 0.

A higher rank array, all of whose items are simple scalars, is termed a simple array
and has a depth of 1. An array whose items are not all simple scalars is nested and has
a depth 1 greater than that of its most deeply nested item.

Y is of uniform depth if it is simple or if all of its items have the same uniform depth.
IfOML <2 and Y is not of uniform depth then R is negated.

If(ML <2, a negative value of R indicates non-uniform depth.

Examples

=1
0

EIAI
0

='ABC'
1

E1 IAI
1

[OML<0

=A«<(1 2)(3 (4 5)) A Non-uniform array
-3

="A A A[1] is uniform, A[2] is non-uniform
1 72

_
00 01

OML<«2

=A
3

="A
1 2

“a

o
o
o nm
-



34

Dyalog APL/W Language Reference

Direction (Signum) RexY

Y may be any numeric array.

Where an element of Y is real, the corresponding element of R is an integer whose
value indicates whether the value is negative (" 1), zero (0) or positive (1).

Where an element of Y is complex, the corresponding element of R is a number with
the same phase but with magnitude (absolute value) 1. It is equivalent to Y+ | Y.

Examples

x~15.3 0 101
101

x3j4 4j5
0.6J0.8 0.6246950476J0.7808688094

{w:lw}3j% 4j5
0.6J0.8 0.6246950476J0.7808688094

|x3j4% 43j5




Chapter 1: Primitive Functions 35

Disclose

(OML) R«d>Y or R«tY

The symbol chosen to represent Disclose depends on the current Migration Level.
If ML <2, Disclose is represented by the symbol: >.
If OML 22, Disclose is represented by the symbol: 1.

Y may be any array. R isanarray. IfY is non-empty, R is the value of the first item of
Y taken in ravel order. IfY is empty, R is the prototype of Y.

Disclose is the inverse of Enclose. The identity R«»><R holds for all R. Disclose is
also referred to as First.

Examples
o1
1
22 4 6
2
>'MONDAY' 'TUESDAY'
MONDAY
5(1 (2 3))(4 (5 6))
1 23
210
0
1 I=DII
1
>21icl,c2 3

0 00O



36

Dyalog APL/W Language Reference

Divide

ReX+Y

Y must be a numeric array. X must be a numeric array. R is the numeric array res-
ulting from X divided by Y. System variable DIV is an implicit argument of
Divide.

If0DIV=0 and Y=0 then if X=0, the result of X+Y is 1; if X#0 then X+Y is a DOMAIN
ERROR.

IfODIV=1 and Y=0, the result of X+Y is O for all values of X.

Examples

2 0 54+ 0 2
0.51 2.5

3j1 2.5 4j5+2 1j1 .2
1.5J0.5 1.25J71.25 20325

ODIV«1
2 054+ 00
0.5 00



Chapter 1: Primitive Functions 37

Drop

ReXVY

Y may be any array. X must be a simple scalar or vector of integers. If X is a scalar, it
is treated as a one-clement vector. If'Y is a scalar, it is treated as an array whose shape
is (pX)p1l. After any scalar extensions, the shape of X must be less than or equal to
the rank of Y. Any missing trailing items in X default to 0.

R is an array with the same rank as Y but with elements removed from the vectors
along each ofthe axes of Y. For the Ith axis:

o if X[I] is positive, all but the first X[ I] elements of the vectors result.
o if X[I] is negative, all but the last X[ I] elements of the vectors result.

If the magnitude of X[ I ] exceeds the length of the Ith axis, the result is an empty
array with zero length along that axis.

Examples
4{'OVERBOARD'
BOARD
~54'OVERBOARD'
OVER
p10+'OVERBOARD'
0
M
ONE
FAT
FLY
0 "2M
0
F
F
T2 T1IM
ON
14M
FAT
FLY
M3«<2 3 4p[A
1 1IM3
QRST
UVWX
“1 T1IM3
ABCD

EFGH



38

Dyalog APL/W Language Reference

Drop with Axes Re«X4[K]Y

Y may be any non scalar array. X must be a simple integer scalar or vector. K is a vec-
tor of zero or more axes of Y.

R is an array of'the elements of Y with the first or last X[i] elements removed. Ele-
ments are removed from the beginning or end of Y according to the sign of X[i].

The rank of R is the same as the rank of Y:
pPR <> ppY
The size of each axis of R is determined by the corresponding element of X:
(pR)L,K] <= Of(pY)[,K]-1,X

Examples

O«M<2 3 4p12k4

2 3 4

5 6 7 8
0 11 12

13 14 15 16

17 18 19 20
21 22 23 24

14[2IM
5 6 7 8
9 10 11 12

17 18 19 20
21 22 23 24

24[3IM

-, w
oo

15 16
19 20
23 24

2 14[3 2IM



Chapter 1: Primitive Functions 39

Enclose RecY

Y may be any array. R is a scalar array whose item is the array Y. IfY is a simple
scalar, R is the simple scalar unchanged. Otherwise, R has a depth whose magnitude
is one greater than the magnitude of the depth of Y.

Examples
ci

c10
cc10

cci0
10




40

Dyalog APL/W Language Reference

Enclose with Axes R«c[K]Y

Y may be any array. K is a vector of zero or more axes of Y. R is an array ofthe ele-
ments of Y enclosed along the axes K. The shape of R is the shape of Y with the K
axes removed:

pR <= (pY)[(1ppR)~K]
The shape of each element of R is the shape of the K'th axes of Y:
paR «> (pY)[,K]
Examples
ldisplay A«2 3 4p'DUCKSWANBIRDWORMCAKESEED'

ldisplay <[3]A

DUCK SWAN BIRD

WORM CAKE SEED

Jdisplay <[2 3]A

T T

+DUCK| +WORM
SWAN CAKE
BIRD SEED

-€

Jdisplay <[1 3]A

| [ |
IDUCK| +SWAN| ¢BIRD
|w0RM |CAKE ISEED

-€




Chapter 1: Primitive Functions 41

Encode

ReXTY

Y must be a simple numeric array. X must be a simple numeric array. R is the
numeric array which results from the representation of Y in the number system
defined by X.

The shape of R is (pX) , pY (the catenation of the shapes of X and Y).

If X is a vector or a scalar, the result for each element of Y is the value of the element
expressed in the number system defined by radix X. IfY is greater than can be
expressed in the number system, the result is equal to the representation of the
residue (x/X) |Y. Ifthe first element of X is 0, the value will be fully represented.

This function is also known as Representation.

Examples

1015 15 125
555

0 1075 15 125
01 12
55 5




42 Dyalog APL/W Language Reference

If X is a higher-rank array, each of the vectors along the first axis of X is used as the
radix vector for each element of Y.

Examples
A
20 O
20 O
20 O
20 O
28 0
28 0
2 8 16
2 8 16
AT75
00 O
10 O
00 O
00 O
10 O
01 0
11 4
13 11
The example shows binary, octal and hexadecimal representations of the decimal
number 75.
Examples
0 1t1.25 10.5
1 10
0.25 0.5
4 13713752
310 23201 31231
12 2 4+ 12 17 6 3 1010338



Chapter 1: Primitive Functions 43

Enlist

(OML=21) ReeY

Migration level must be such that DML 21 (otherwise see Type on page 118).

Y may be any array, R is a simple vector created from all the elements of Y in ravel
order.

Examples

OML«1 A Migration level 1
MAT«2 2p'MISS' 'IS' 'SIP' 'PI' o MAT
MISS IS
SIP PI
eMAT
MISSISSIPPI

Mel (2 2p2 3 4 5) (6(7 8))
M
1 23 6 78
4 5
€M
12345678




44 Dyalog APL/W Language Reference

Equal R«X=Y

Y may be any array. X may be any array. R is Boolean. JCT is an implicit argument of
Equal.

If X and Y are character, then R is 1 if they are the same character. If X is character and
Y is numeric, or vice-versa, then R is 0.

If X and Y are numeric, then R is 1 if X and Y are within comparison tolerance of each
other.

For real numbers X and Y, X is considered equal to Y if ( | X-Y) is not greater than
AcTx(IX)T1Y.

For complex numbers X=Y is 1 if the magnitude of X-Y does not exceed OCT times
the larger of the magnitudes of X and Y; geometrically, X=Y if the number smaller in
magnitude lies on or within a circle centred on the one with larger magnitude, hav-
ing radius [JCT times the larger magnitude.

relotx|a




Chapter 1: Primitive Functions 45

Examples

3=3.1 3 72 73
0100

a«<2+0j1x[CT

a
2J1E7 14

a=23j.00000000000001 23j.0000000000001
10

'CAT'='FAT'
011

"CAT'=1 2 3
000

"CAT'='C' 2 3
100

OCT<«1E~10
1=1.000000000001

1=1.0000001

Excluding ReX~Y

X must be a scalar or vector. R is a vector of the elements of X excluding those ele-
ments which occur in Y taken in the order in which they occurin X.

Elements of X and Y are considered the same if X=Y returns 1 for those elements.

0CT is an implicit argument of Excluding. Excluding is also known as Without.

Examples

"HELLO'~'GOODBYE'
HLL

‘MONDAY' 'TUESDAY' 'WEDNESDAY'~'TUESDAY' 'FRIDAY'
MONDAY WEDNESDAY

5 10 15~110
15

For performance information, see Programmer's Guide. Search Functions and Hash
Tables.




46 Dyalog APL/W Language Reference

Execute (Monadic) ReeY

Y must be a simple character scalar or vector. IfY is an empty vector, it is treated as
an empty character vector. Y is taken to be an APL statement to be executed. R is
the result of the last-executed expression. Ifthe expression has no value, then ¢Y has
no value. IfY is an empty vector or a vector containing only blanks, then ¢Y has no
value.

IfY contains a branch expression which evaluates to a non-empty result, R does not
yield a result. Instead, the branch is effected in the environment from which the
Execute was invoked.

Examples
2'2+2"

=g '2+2"

Fr= -

£
(SN
o w

¢'A<2|T1tTS o »0p=A o A'

A

Execute (Dyadic) R«XeY

Y must be a simple character scalar or vector. IfY is an empty vector, it is treated as
an empty character vector. X must be a namespace reference or a simple character
scalar or vector representing the name of a namespace. Y is then taken to be an APL
statement to be executed in namespace X. R is the result of the last-executed
expression. Ifthe expression has no value, then X¢Y has no value.

Example
OSeE ¢ 'ONL 9'




Chapter 1: Primitive Functions 47

Expand

R«X\[K]Y

Y may be any array. X is a simple integer scalar or vector. The axis specification is
optional. If present, K must be a simple integer scalar or 1-element vector. The value
of K must be an axis of Y. Ifabsent, the last axis of Y is implied. The form R«XXY
implies the first axis. IfY is a scalar, it is treated as a one-element vector.

IfY has length 1 along the K (or implied) axis, it is extended along that axis to
match the number of positive elements in X. Otherwise, the number of positive ele-
ments in X must be the length of the Kth (or implied) axis of Y.

R is composed from the sub-arrays along the Kt axis of Y. If X[ I ] (an element of X)
is the Jth positive element in X, then the I sub-array along the Kth axis of Y is rep-
licated X[ I] times. If X[ I] is negative, then a sub-array of fill elements of Y is rep-
licated | X[ I] times and inserted in relative order along the Kth axis of the result. If
X[ I1]iszero, it is treated as the value ~1. The shape of R is the shape of Y except
that the length of the K™ axisis +/1[ | X.

Examples
0\10

1 72 3 74 5\'A'
A AAA AAAAA

[
N
o w

2 2 0 1\M

o o
o o
N =
a1 N
o o
o w

10 1xM

+F O -
OIO N
OO w

1 0 I\N[1]M

F O
IO N
OO w

1 72 1\(1 2)(3 4 5)
12 00 00 345



48 Dyalog APL/W Language Reference

Expand First R<XXY

The form R«XXY implies expansion along the first axis whereas the form R«X\Y
implies expansion along the last axis (columns). See Expand above.

Exponential RexY
Y must be numeric. R is numeric and is the Yth power of e, the base of natural log-
arithms.

Example

x1 0
2.718281828 1

x0j1 132
0.540302305970.8414709848 ~1.131204384J2.471726672

1+x00j1 A Euler Identity

Factorial R«lY

Y must be numeric excluding negative integers. R is numeric. R is the product of the
first Y integers for positive integer values of Y. For non-integral values of Y, 1Y is
equivalent to the gamma function of Y+1.

Examples

1123145
126 24 120

171.5 0 1.5 3.3
~3.544907702 1 1.329340388 8.85534336

1031 132
0.4980156681J70.1549498283 0.1122942423J0.3236128855



Chapter 1: Primitive Functions 49

Find

R«XeY

X and Y may be any arrays. R is a simple Boolean array the same shape as Y which
identifies occurrences of X within Y.

If the rank of X is smaller than the rank of Y, X is treated as if it were the same rank
with leading axes of'size 1. For example a vector is treated as a 1-row matrix.

Ifthe rank of X is larger than the rank of Y, no occurrences of X are found in Y.

OCT and ODCT are implicit arguments to Find.

Examples

"AN'€'BANANA'
010100

"ANA '€ 'BANANA'
010100

'BIRDS' 'NEST'e'BIRDS' 'NEST' 'SOUP'
100

MAT
IS YOU IS
OR IS YOU
ISN'T

"IS'eMAT
100000010
000100000
100000000

"IS YOU'€eMAT
100000000
000100000
000000000




50

Dyalog APL/W Language Reference

First

(OML) R«>Y or R«tY

See function Disclose on page 35.

Floor

R«lY

Y must be numeric.

For real numbers, R is the largest integer value less than or equal to Y within the com-
parison tolerance [ICT.

Examples
l72.3 0.1 100 3.3
=3 0 100 3

0.5 + 0.4 0.5 0.6
011

For complex numbers, R depends on the relationship between the real and imaginary
parts of the numbersin Y.

11j3.2 3.3j2.5 ~3.3j72.5
1J3 3J2 ~3773

The following (deliberately) simple function illustrates one way to express the rules
for evaluating complex Floor.

vV fl«CpxFloor cpxs;a;b
[1] A Complex floor of scalar complex number (a+ib)
[2] a b«9 1locpxs
[3] :If 1>(a-la)+b-Lb

(4] fl<(la)+0J1x|b
[5] :Else
[6] :If (a-la)<b-lb
[7] fle(lLa)+0J1x1+|b
[8] :Else
[9] fle(1+la)+0J1x|b
[10] tEndIf
[11] :EndIf
\'4

CpxFloor™1j3.2 3.3j2.5 73.3j72.5
133 3J2 3773

OCT is an implicit argument of Floor.



Chapter 1: Primitive Functions 51

Format (Monadic) ResY

Y may be any array. R isa simple character array which will display identically to
the display produced by Y. The result is independent of JPW. IfY is a simple char-
acter array, then Ris Y.

Example
+B«3A«2 6p'HELLO PEOPLE'
HELLO
PEOPLE
B = A
1

IfY is a simple numeric scalar, then R is a vector containing the formatted number
without any spaces. A floating point number is formatted according to the system
variable OPP. OPP is ignored when formatting integers.

Examples
OpPP<5
pC«310
0
pC<310
2
C
10
pC<312.34
5
C
12.34
7123456789
123456789
$123.456789
123.46

Scaled notation is used if the magnitude of the non-integer number is too large to rep-
resent with (PP significant digits or if the number requires more than five leading zer-
oes after the decimal point.



52 Dyalog APL/W Language Reference

Examples

$123456.7
1.2346E5

$0.0000001234%
1.234E77

IfY is a simple numeric vector, then R is a character vector in which each element of
Y is independently formatted with a single separating space between formatted ele-

ments.
Example

pC+«3~ 123456 1 22.5 ~0.000000667 5.00001
27

C
“1.2346E5 1 22.5 T6.67E77 5

IfY is a simple numeric array rank higher than one, R is a character array with the
same shape as Y except that the last dimension of Y is determined by the length of the
formatted data. The format width is determined independently for each column of Y,
such that:

a. the decimal points for floating point or scaled formats are aligned.

b. the E characters for scaled formats are aligned, with trailing zeros added to
the mantissae if necessary.

c. integer formats are aligned to the left of the decimal point column, if any, or
right-adjusted in the field otherwise.

d. each formatted column is separated from its neighbours by a single blank
column.

e. the exponent values in scaled formats are left-adjusted to remove any
blanks.

Examples
C<22 ~0.000000123 2.34% ~212 123456 6.00002 O

pC«3s2 2 3pC
2 2 29
C
22 ~1.2300E"7 2.3400EO
T212 1.2346E5 6.0000E0
0 2.2000E1 ~1.2300E77

2.3% 72.1200€E2 1.2346E5



Chapter 1: Primitive Functions

IfY is non-simple, and all items of Y at any depth are scalars or vectors, then R is a
vector.

Examples
B«sA«'ABC' 100 (1 2 (3 4 5)) 10

pA
4

=A
-3

pB
26

=B
1

A

ABC 100 1 2 3 45 10

B
ABC 100 1 2 3 4 5 10

By replacing spaces with #, it is clearer to see how the result of 3 is formed:

AABCAAL00ANLA2AAZAYABAAALQ



54 Dyalog APL/W Language Reference

IfY is non-simple, and all items of Y at any depth are not scalars, then R is a matrix.

Example
D«sC«1 'AB' (2 2pi+14) (2 2 3p'CDEFGHIJKLMN')

C
1 AB 2 3 CDE
4 5 FGH
IJK
LMN
pC
[
=C
-2
D
1 AB 2 3 CDE
4 5 FGH
IJK
LMN
pD
5 16
=D
1

By replacing spaces with #, it is clearer to see how the result of 3 is formed:
1AAABAA2A3AACDE/\
AAAAAAAL}ASAAFGHA
AANAAAAAAAAANAANAANANAN
AAAAAAAAAAAAIJKA
AAAAAAAAAAAALMN/\

0PP is an implicit argument of Monadic Format.



Chapter 1: Primitive Functions 55

Format (Dyadic) R«X3Y

Y must be a simple real (non-complex) numeric array. X must be a simple integer
scalar or vector. R is a character array displaying the array Y according to the spe-
cification X. Rhasrank 1[ ppY and “1¢pRis “14pY.Ifany element of Y is com-
plex, dyadic 3 reports a DOMAIN ERROR.

Conformability requires that if X has more than two elements, then pX must be
2x~11pY.If X contains one element, it is extended to (2x~11pY)p0, X. If X con-
tains 2 elements, it is extended to (2x~1tpY)pX.

X specifies two numbers (possibly after extension) for each column in Y. For this pur-
pose, scalar Y is treated as a one-element vector. Each pair of numbers in X identifies
a format width (W) and a format precision (P).

If P is 0, the column is to be formatted as integers.

Examples
503 2 3pi6
1 2 3
4 5 6

4 0s1.1 2 "4 2.547
1 2 T4 3

If P is positive, the format is floating point with P significant digits to be displayed
after the decimal point.

Example

L 1s1.1 2 74 2.547
1.1 2.074.0 2.5

If P is negative, scaled format is used with | P digits in the mantissa.

Example

7 335 15 155 1555
5.00E0 1.50E1 1.55E2 1.56E3

If W is 0 or absent, then the width of the corresponding columns of R are determined
by the maximum width required by any element in the corresponding columns of Y,
plus one separating space.



56

Dyalog APL/W Language Reference

Example

32 3p10 15.2346 "17.1 2 3 4
10.000 15.235 717.100
2.000 3.000 4+.000

If a formatted element exceeds its specified field width when W>0, the field width for
that element is filled with asterisks.

Example

306 2 3% 3 2p10.1 15 1001 22.357 101 1110.1
10 15.00
xxx 22.36

101 **xx%x%xx

If the format precision exceeds the internal precision, low order digits are replaced by
the symbol '_".
Example

2632%100
1267650600228229

p2632%100
59

0 20%+3
0.3333333333333333____

0 72033
3.333333333333333____E"1

The shape of R is the same as the shape of Y except that the last dimension of Y is the
sum of the field widths specified in X or deduced by the function. IfY is a scalar, the
shape of R is the field width.

P5 2 7 2 3 4pi12k
2 320



Chapter 1: Primitive Functions 57

Grade Down (Monadic) R«YyY

Y must be a simple character or simple numeric array of rank greater than 0. R is an
integer vector being the permutation of 11 pY that places the sub-arrays of Y along
the first axis in descending order. The indices of any set of identical sub-arrays in Y
occur in R in ascending order.

If'Y is a numeric array of rank greater than 1, the elements in each of the sub-arrays
along the first axis are compared in ravel order with greatest weight being given to
the first element and least weight being given to the last element.

Example
M
2532
3+ 11
2545
2532
2534
M
2 3514
MLYM; ]
34+ 11
2545
2534
2532
2532

IfY is a character array, the implied collating sequence is the numerical order of the
corresponding Unicode code points (Unicode Edition) or the ordering of characters
in JAV (Classic Edition).

0I0 isan implicit argument of Grade Down.




58 Dyalog APL/W Language Reference

Note that character arrays sort differently in the Unicode and Classic Editions.

Example
M
Goldilocks
porridge
Porridge
3 bears
Unicode Edition Classic Edition
VM VM
2314 3142
MLYM; ] MLYM; ]
porridge Porridge
Porridge Goldilocks
Goldilocks 3 bears
3 bears porridge

Grade Down (Dyadic)

R«XYY

Y must be a simple character array of rank greater than 0. X must be a simple char-
acter array of rank 1 or greater. R is a simple integer vector of shape 11pY con-
taining the permutation of 114 pY that places the sub-arrays of Y along the first axis
in descending order according to the collation sequence X. The indices of any set of
identical sub-arrays in Y occur in R in ascending order.

If X is a vector, the following identity holds:

XYY <> yXuy

A left argument of rank greater than 1 allows successive resolution of duplicate order-

ings in the following way.

Starting with the last axis:

e The characters in the right argument are located along the current axis of
the left argument. The position of the first occurrence gives the ordering

value of the character.

e If a character occurs more than once in the left argument its lowest position

along the current axis is used.

e If a character of the right argument does not occur in the left argument, the
ordering value is one more than the maximum index of the current axis - as

with dyadic iota.



Chapter 1: Primitive Functions 59

The process is repeated using each axis in turn, from the last to the first, resolving
duplicates until either no duplicates result or all axes have been exhausted.

For example, if index origin is 1:

Left argument: Right argument:
abc ab
ABA ac

Aa

Ac

Along last axis:

Character: Value: Ordering:

ab 12 3

ac 13 =1 <-duplicate ordering with
Aa 11 4

Ac 13 =1 <-respect to last axis.

Duplicates exist, so resolve these with respect to the first axis:

Character: Value: Ordering:
ac 11 2
Ac 21 1

So the final row ordering is:

ab
ac
Aa
Ac

= EFEDNDw

That is, the order of rows is 4 2 1 3 which corresponds to a descending row sort of:

Ac 1
ac 2
ab 3
Aa L



60

Dyalog APL/W Language Reference

Examples
pS1
2 27
S1

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz
S2
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz
S3
AaBbCcDdEeF fGgHhIiJjKkL LMmNNnOoPpQqRrSsTtUuVvWwXxYyZz
Sk
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz
abcdefghijklmnopgqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

The following results are tabulated for comparison:

X X[S1¥X;] X[S2¥X;] X[S3¥X;] XL[SHyX; ]
FIRsT TAPE rAT TAPE TAPE
TAP TAP fIRST TAP TAP
RATE RATE TAPE rAT RATE
FiRST rAT TAP RATE rAT
FIRST RAT RATE RAT RAT
rAT MAT RAT MAT MAT
fIRST fIRST MAT fIRST FIRsT
TAPE FiRST FiRST FiRST FiRST
MAT FIRsT FIRsT FIRsT FIRST
RAT FIRST FIRST FIRST fIRST

0IO0 is an implicit argument of Grade Down.

Grade Up (Monadic) R«AY

Y must be a simple character or simple numeric array of rank greater than 0. R is an
integer vector being the permutation of 1 14 pY that places the sub-arrays along the
first axis in ascending order.

IfY is a numeric array of rank greater than 1, the elements in each of the sub-arrays
along the first axis are compared in ravel order with greatest weight being given to
the first element and least weight being given to the last element.




Chapter 1: Primitive Functions

61

Examples

422.5 1 15 3 74

524 31

[N

o N

3

2

M

~N o

AM
1

IfY is a character array, the implied collating sequence is the numerical order of the
corresponding Unicode code points (Unicode Edition) or the ordering of characters
in JAV (Classic Edition).

0I0 isan implicit argument of Grade Up

Note that character arrays sort differently in the Unicode and Classic Editions.

M

Goldilocks
porridge
Porridge
3 bears

Unicode Edition

Classic Edition

AM M
L 132 2 413
MLAM; ] ML4M; ]
3 bears porridge
Goldilocks 3 bears
Porridge Goldilocks
porridge Porridge




62 Dyalog APL/W Language Reference

Grade Up (Dyadic) R<X4Y

Y must be a simple character array of rank greater than 0. X must be a simple char-
acter array of rank 1 or greater. R is a simple integer vector being the permutation of
111pY that places the sub-arrays of Y along the first axis in ascending order accord-
ing to the collation sequence X.

If X is a vector, the following identity holds:
X4Y <= AXrY

If X is a higher-rank array, each axis of X represents a grading attribute in increasing
order of importance. Ifa character is repeated in X, it is treated as though it were loc-
ated at the position in the array determined by the lowest index in each axis for all
occurrences of the character. The character has the same weighting as the character
located at the derived position in X.

Examples

(2 2p'ABBA') A 'AB'[?5 2p2] A A and B are equivalen
t
12345

Jdisplay A«2 14p' abcdegiklmnrt ABCDEGIKLMNRT'

T
+ abcdegiklmnrt
ABCDEGIKLMNRT

V<'Ab' 'AB' 'aba' 'ABA' 'abaca' 'abecedarian'
V,«<'Abelian' 'black' 'blackball' 'black belt'
V,«<'blacking' 'Black Mass'

Jdisplay M«tv

|

VAb

AB

aba

ABA

abaca
abecedarian
Abelian
black
blackball
black belt
blacking
Black Mass




Chapter 1: Primitive Functions

63

ldisplay M (M[(,A)AM;]) (ML(,8A)AM;]) (M[AAM;])

I

+Ab

AB

aba

ABA

abaca
abecedarian
Abelian
black
blackball
black belt
blacking
Black Mass

|
Vaba

abaca
abecedarian
black
black belt
blackball
blacking
Ab

Abelian

AB

ABA

Black Mass

I

VYaba

abaca
abecedarian
Ab

Abelian

AB

ABA

black
black belt
blackball
blacking
Black Mass

I

{Ab

AB

aba

ABA

abaca
abecedarian
Abelian
black
black belt
Black Mass
blackball
blacking

Greater

ReX>Y

Y must be numeric. X must be numeric.

and X=Y is 0. Otherwise Ris 0.

0CT is an implicit argument of Greater.

Examples
12345>2

00111
OcT«1E~10

1 1.00000000001 1.000000001 > 1

001

R is Boolean. Ris 1 if X is greater than Y




64

Dyalog APL/W Language Reference

Greater Or Equal R«X2Y

Y must be numeric. X must be numeric. R is Boolean. R is 1 if X is greater than Y or
X=Y. Otherwise R is 0.

0CT is an implicit argument of Greater Or Equal.

Examples

12345323
00111

dcT<1E~10

121
1

121.00000000001
1

1>1.00000001
0

Identity

RerY

Y may be any array. The result R is the argument Y.

Example




Chapter 1: Primitive Functions 65

Index

R«{X}0Y

Dyadic case

X must be a scalar or vector of depth <2 of integers each 2[JI0. Y may be any array.
In general, the result R is similar to that obtained by square-bracket indexing in that:

(I J ...0%)=Y[I:7;...]

The length of left argument X must be less than or equal to the rank of right argument
Y. Any missing trailing items of X default to the index vector of the corresponding
axis of Y.

Note that in common with square-bracket indexing, items of the left argument X may
be of any rank and that the shape ofthe result is the concatenation of the shapes of
the items of the left argument:

(pXOY) = t,/p"X
Index is sometimes referred to as squad indexing.
Note that index may be used with selective specification.

0IO0 isan implicit argument of index.




66 Dyalog APL/W Language Reference

Examples

10«1

VEC«<111 222 333 Lkh
3[VEC

333
(c4 3)[VEC
L4y 333
(¢2 3p3 1 4 1 2 3)[VEC
333 111 4uh
111 222 333
O0<«MAT«101"13 4
11 12 13 14
21 22 23 24
31 32 33 34
2 1[MAT
21
2[IMAT
21 22 23 24
3(2 1)[MAT
32 31
(2 3)1[MAT
21 31
(2 3)(,1)IMAT
21
31
p(2 1p1)(3 4p2)[MAT
213 4
06 O[MAT
00
(3(2 1)IMAT)<«0 o MAT
11 12 13 14
21 22 23 24
0 0 33 34

A Selective assignment.



Chapter 1: Primitive Functions 67

Monadic case
IfY is an array, Y is returned.

IfY is a refto an instance of a Class with a Default property, all elements of the
Default property are returned. For example, if I tem is the default property of
MyClass,and imc is an Instance of MyCl ass, then by definition:

imc.Item=[imc

NONCE ERROR is reported if the Default Property is Keyed, because in this case
APL has no way to determine the list of all the elements.

Note that the values of the index set are obtained or assigned by calls to the cor-
responding PropertyGet and PropertySet functions. Furthermore, if there is a
sequence of primitive functions to the left of the Index function, that operate on the
index set itself (functions such as dyadic p, t, ¥, 2) as opposed to functions that
operate on the values of the index set (functions such as +,[ , | ,p""), calls to the
PropertyGet and PropertySet functions are deferred until the required index set has
been completely determined. The full set of functions that cause deferral of calls to
the PropertyGet and PropertySet functions is the same as the set of functions that
applies to selective specification.

If for example, CompF i L e is an Instance of a Class with a Default Numbered Prop-
erty, the expression:

1t¢[JCompFile

would only call the PropertyGet function (for CompF i L e) once, to get the value of
the last element.

Note that similarly, the expression
10000p[JCompFile

would call the PropertyGet function 10000 times, on repeated indices if CompFi le
has less than 10000 elements. The deferral of access function calls is intended to be
an optimisation, but can have the opposite effect. You can avoid unnecessary repet-
itive calls by assigning the result of [] to a temporary variable.



68

Dyalog APL/W Language Reference

Index with Axes R«{X}D[K]Y

X must be a scalar or vector of depth <2, of integers each 2[]JI0. Y may be any array.
K is a simple scalar or vector specifying axes of Y. The length of K must be the same
as the length of X:

(p,X) = p,K

In general, the result R is similar to that obtained by square-bracket indexing with
elided subscripts. Items of K distribute items of X along the axes of Y. For example:

I J[O0L3]Y < Y[I;;J]

Note that index with axis may be used with selective specification. IO is an impli-
cit argument of index with axis.

Examples
0101

O«CUBE«101"12 3 4
111 112 113 114
121 122 123 124
131 132 133 134

211 212 213 214
221 222 223 224
231 232 233 234

2[J[1]CUBE
211 212 213 214
221 222 223 224
231 232 233 234

2[I[3]CUBE

112 122 132

212 222 232
CUBE[;;2] = 2[I[3]CUBE
(1 3)4[[2 3]CUBE

114 134

214 234

CUBE[:;1 3:;4] = (1 3)4[[2 3]CUBE




Chapter 1: Primitive Functions 69

(2(1 3)0[1 3]CUBE)«0 ¢ CUBE A Selective assignment.
111 112 113 114
121 122 123 124
131 132 133 134

0 212 0 214
0 222 0 224
0 232 0 234
Index Generator RerlY

Y must be a simple scalar or vector array of non-negative numbers. R is a numeric
array composed of the set of all possible coordinates of an array of shape Y. The
shape of R is Y and each element of R occurs in its self-indexing position in R. In par-
ticular, the following identity holds:

1Y <= (1Y)[rY]

0I0 is an implicit argument of Index Generator. This function is also known as Inter-

val.
Examples
010
1
pt0
0
15
12345
12 3
11 12 13
21 22 23
FA<2 Lp'MAINEXIT'
MAIN
EXIT
Al1pA]
MAIN

EXIT



70 Dyalog APL/W Language Reference

010+«0
15
01234
12 3
00 01 02
10 11 12
A[1pA]
MAIN
EXIT
Index Of ReX1Y
Y may be any array. X may be any array of rank 1 or more.
Vector Left Argument

If X is a vector, the result R is a simple integer array with the same shape as Y identi-
fying where elements of Y are first found in X. If an element of Y cannot be found in
X, then the corresponding element of R will be JIO+>2pX.

Elements of X and Y are considered the same if X=Y returns 1 for those elements.
0I0 and OCT/ODCTare implicit arguments of Index Of.
Examples

0I10«1

2 431412345
41326

"CAT' 'DOG' 'MOUSE':1'DOG' 'BIRD'
2 4




Chapter 1: Primitive Functions 71

Higher-Rank Left Argument

If X is a higher rank array, the function locates the first occurrence of sub-arrays in Y
which match major cells of X, where a major cell is a sub-array on the leading dimen-
sion of X with shape 14 pX. In this case, the shape of the result R is (1-ppX) ¢pY.

If a sub-array of Y cannot be found in X, then the corresponding element of R will be
OI10+>=pX.

Examples
X<3 4p112
X

1 2 3 4

5 6 7 8

9 10 11 12
X112 3 4

1
Y«2 4p1 2 3 4+ 9 10 11 12
Y

1 2 3 4

9 10 11 12
XY

1 3
X112 3 41

Ly

X1«<10 100 10000.+X
X1

11 12 13 14

15 16 17 18

19 20 21 22

101 102 103 104
105 106 107 108
109 110 111 112

1001 1002 1003 1004
1005 1006 1007 1008
1009 1010 1011 1012

X11100 10000.+X



72 Dyalog APL/W Language Reference

More Examples

X
United Kingdom
Germany

France

Italy

United States
Canada

Japan

Canada

France

Y
United Kingdom
Germany
France
Italy
USA

Canada
Japan
China
India
Deutschland
pX
9 14
Py
2 5 14
Xy
2 3 4 10
7 10 10 10
X 1X
123456763

Note that the expression (yi1x) signalsa LENGTH ERROR because it looks for
major cells in the left argument, whose shapeis 5 14 (14py), which is not the same
as the trailing shape of x.

yix
LENGTH ERROR

yix

A

For performance information, see Programmer's Guide: Search Functions and Hash
Tables.



Chapter 1: Primitive Functions 73

Indexing

R«X[Y]

X may be any array. Y must be a valid index specification. R is an array composed of
elements indexed from X and the shape of X is determined by the index specification.

This form of Indexing, using brackets, does not follow the normal syntax of a dyadic
function. For an alternative method of indexing, see Index on page 65.

0I0 is an implicit argument of Indexing.

Three forms of indexing are permitted. The form used is determined by context.

Simple Indexing

For vector X, Y is a simple integer array composed of items from the set 1 pX.

R consists of elements selected according to index positions in Y. R has the same
shapeas Y.

Examples
A<10 20 30 40 50

A[2 3p1 11 2 2 2]
10 10 10
20 20 20

A[3]
30

'ONE' 'TWO' 'THREE'[2]
TWO

For matrix X, Y is composed of two simple integer arrays separated by the semicolon
character (). The arrays select indices from the rows and columns of X respectively.

Examples

+M<2 Lp10x18
10 20 30 40
50 60 70 80

M[2;:3]
70




74 Dyalog APL/W Language Reference

For higher-rank array X, Y is composed of a simple integer array for each axis of X
with adjacent arrays separated by a single semicolon character (; ). The arrays select
indices from the respective axes of X, taken in row-major order.

Examples

FA<2 3 4p10x124
10 20 30 40
50 60 70 80
90 100 110 120

130 140 150 160
170 180 190 200
210 220 230 240

Al1:1:1]
10

A[2:3 2:4 1]
240 210
200 170

If an indexing array is omitted for the Kth axis, the index vector 1 (pX) [K] is
assumed for that axis.

Examples

A[5235]
50 60 70 80
170 180 190 200

M
10 20 30 40
50 60 70 80

ML ]
10 20 30 40
50 60 70 80

M[1;]
10 20 30 4O

M[s1]
10 50



Chapter 1: Primitive Functions 75

Choose Indexing

The index specification Y is a non-simple array. Each item identifies a single element
of X by a set of indices with one element per axis of X in row-major order.
Examples

M
10 20 30 40
50 60 70 80

Mlet 2]
20

M[2 2pc2 4]
80 80
80 80

ME(2 1)(1 2)]
50 20

A scalar may be indexed by the enclosed empty vector:
S«'z7'
S[3pc10]

111

Simple and Choose indexing are indistinguishable for vector X:

V<10 20 30 40

V[ie2]
20

c2
2

vi2]

20



76 Dyalog APL/W Language Reference

Reach Indexing

The index specification Y is a non-simple integer array, each of whose items reach
down to a nested element of X. The items of an item of Y are simple vectors (or scal-
ars) forming sets of indices that index arrays at successive levels of X starting at the
top-most level. A set of indices has one element per axis at the respective level of
nesting of X in row-major order.

Examples

G<('ABC' 1)('DEF" 2)('GHI' 3)('JKL"' &)
G<2 3pG,('MNO' 5)('PQR"' 6)
G

ABC 1 DEF 2 GHI 3

JKL 4 MNO 5 PQR 6

GL((1 2)1)((2 3)2)]
DEF 6

G[2 2pc(2 2)2]

oo
oo

Gleet 1]
ABC 1

G[ctl 1]
ABC 1

V<,G

V[cet]
ABC 1

V[let]
ABC 1

V[1]
ABC 1



Chapter 1: Primitive Functions 77

Intersection ReXnY

Y must be a scalar or vector. X must be a scalar or vector. A scalar X or Y is treated as
a one-element vector. R is a vector composed of items occurring in both X and Y in
the order of occurrence in X. Ifan item is repeated in X and also occurs in Y, the item
is also repeated in R.

Items in X and Y are considered the same if XY returns 1 for those items.

0CT is an implicit argument of Intersection.

Examples
"ABRA'n'CAR'
ARA

1 'PLUS' 2 n 15
12

For performance information, see Programmer's Guide: Search Functions and Hash
Tables.



78

Dyalog APL/W Language Reference

Left

ReX4Y

X and Y may be any arrays.
The result R is the left argument X.

Example

42-'abc' 1 2 3
42

Note that when - is applied using reduction, the derived function selects the first
sub-array of the array along the specified dimension. This is implemented as an

idiom.
Examples
/1 2 3
1
mat«t'scent' 'canoe' 'arson' 'rouse' 'fleet'
-#mat A first row
scent
4/mat A first column
scarf
4/[2]2 3 4p124 A first row from each plane
1 2 3 4
13 14 15 16

Similarly, with expansion:

-\mat
$SSSSS
ccccce
aaaaa
rrrrr
fffff
-Xmat
scent
scent
scent
scent
scent




Chapter 1: Primitive Functions 79

Less

ReX<Y

Y may be any numeric array. X may be any numeric array. R is Boolean. Ris 1 if X
isless than Y and X=Y is 0. Otherwise R is 0.

(CT is an implicit argument of Less.

Examples

(2 4) (6 8 10) < 6
11 000

OCT<«1E~10

1 0.99999999999 0.9999999999<«1
001

Less Or Equal ReX<Y

Y may be any numeric array. X may be any numeric array. R is Boolean. Ris 1 if X
isless than Y or X=Y. Otherwise R is 0.

0CT is an implicit argument of Less Or Equal.

Examples

2 4 6 810 < 6
11100

OcT«1E~10

1 1.00000000001 1.00000001 < 1
110




80

Dyalog APL/W Language Reference

Logarithm R«XeY

Y must be a positive numeric array. X must be a positive numeric array. X cannot be 1
unless Y is also 1. R is the base X logarithm of Y.

Note that Logarithm (dyadic @) is defined in terms of Natural Logarithm (monadic @)
as:

XeY<«>(oY)+eX
Examples

108100 2
2 0.3010299957

2 1080J1 1J2
0J2.266180071 0.3494850022J0.4808285788

Magnitude Re«|Y

Y may be any numeric array. R is numeric composed of the absolute (unsigned) val-
ues of Y.

Note that the magnitude of a complex number (@+ib) js defined to be ¥a” + b’

Examples

|2 73.4 0 ~2.7
2 3.4 0 2.7

1334




Chapter 1: Primitive Functions 81

Match ReX=Y

Y may be any array. X may be any array. R isa simple Boolean scalar. If X is
identical to Y, then R is 1. Otherwise R is 0.

Non-empty arrays are identical if they have the same structure and the same values in
all corresponding locations. Empty arrays are identical if they have the same shape
and the same prototype (disclosed nested structure).

OCT is an implicit argument of Match.

Examples

8=10
1

"'=10
0

A
THIS
WORD

A=2 4p'THISWORD'
1

A=110
0

+B<A A
THIS THIS
WORD WORD

A=>oB
1

(0pA)=0p8B
0

'=50pB

1111
1111

| I=30pA




82

Dyalog APL/W Language Reference

Matrix Divide R<XBY

Y must be a simple numeric array of rank 2 or less. X must be a simple numeric array
ofrank 2 orless. Y must be non-singular. A scalar argument is treated as a matrix
with one-element. IfY is a vector, it is treated as a single column matrix. If X is a vec-
tor, it is treated as a single column matrix. The number of rows in X and Y must be

the same. Y must have at least the same number of rows as columns.

R is the result of matrix division of X by Y. That is, the matrix product Y+ . xR is X.
R is determined such that (X-Y+.xR) *2 is minimised.
The shape of Ris (1+pY),14pX.
Examples
OPP<5

B

N~ W
o U1 =
010 F

35 89 79 H B
2.1444 8.2111 5.0889

A
35 36
89 88
79 75

AHB
2.1444 2.1889
8.2111 7.1222
5.0889 5.5778



Chapter 1: Primitive Functions 83

If there are more rows than columns in the right argument, the least squares solution
results. In the following example, the constants a and b which provide the best fit for
the set of equations represented by P=a + bQ are determined:

Q

11

12

13

14

15

16
P

12.03 8.78 6.01 3.75 70.31 72.79
PHQ

14.941 72.9609

Example: linear regression on complex numbers

x<j#£750+?72 13 4p100
y«(x+.x3 4 5 6) + j£0.0001x750+?2 13p100

pPX
13 4

Py
13

y B x

3J0.000011066 4J~0.000018499 5J0.000005745 6J0.000050328
A i.e. yBx recovered the coefficients 3 4 5 6



84

Dyalog APL/W Language Reference

Matrix Inverse R<BY

Y must be a simple array of rank 2 orless. Y must be non-singular. If'Y is a scalar, it
is treated as a one-element matrix. IfY is a vector, it is treated as a single-column
matrix. Y must have at least the same number of rows as columns.

R is the inverse of Y if Y is a square matrix, or the left inverse of Y if Y is not a square
matrix. That is, R+.xY is an identity matrix.

The shape of R is $p.

Examples
M
2 73
4 10
+A<EM

0.3125 0.09375
~0.125 0.0625

Within calculation accuracy, A+ . xM is the identity matrix.

A+ . xM

o -
= O

j«{a<0 ¢ a+0J1xw}
X«j#750+272 5 5p100

X
“37J741 253015 ~5J°09 3J020 29J041
“46J026 177724 173746 43J023 127718
1J013 33J025 "47J049 "45J7 14 2J726
17J048 ~50J022 ~12J025 "44J015 7T9J743
183013 8J038 43J723 34J°07 2J026
pX
55
jd«{e.==1w} A identity matrix of order w
[/,] (id 11px) - x+.xHEx
3.66384ET16




Chapter 1: Primitive Functions 85

Maximum ReXTY

Y may be any numeric array. X may be any numeric array. R is numeric. R is the lar-
ger of the numbers X and Y.

Example

~2.01 0.1 15.3 [ 73.2 "1.1 22.7
~2.01 0.1 22.7

Membership R«XeY

Y may be any array. X may be any array. R is Boolean. An element of R is 1 ifthe
corresponding element of X can be found in Y.

An element of X is considered identical to an element in Y if X=Y returns 1 for those
elements.

OCT is an implicit argument of Membership.

Examples

‘"THIS NOUN' € 'THAT WORD'
110010100

'CAT' 'DOG' 'MOUSE' e 'CAT' 'FOX' 'DOG' 'LLAMA'
110

For performance information, see Programmer's Guide: Search Functions and Hash
Tables.

Minimum ReXLY

Y may be any numeric array. X may be any numeric array. R is numeric. R is the
smaller of X and Y.

Example

“2.1 0.1 15.3 | 73.2 1 22
3.2 0.1 15.3

Minus ReX-Y

See Subtract on page 112.




86

Dyalog APL/W Language Reference

Mix

(OML) R«t[K]Y or Re>[K]Y

The symbol chosen to represent Mix depends on the current Migration Level.
If[OML <2, Mix is represented by the symbol: 1.
IfOML>2, Mix is represented by the symbol: .

Y may be any array whose items may be uniform in rank and shape, or differ in rank
and shape. If the items of Y are non-uniform, they are extended prior to the applic-
ation of the function as follows:

1. If the items of Y have different ranks, each item is extended in rank to that
of the greatest rank by padding with leading 1s.

2. Ifthe items of Y have different shapes, each is padded with the cor-
responding prototype to a shape that represents the greatest length along
each axis of all items in Y.

For the purposes of the following narrative, y represents the virtual item in Y with the
greatest rank and shape, with which all other items are extended to conform.

R is an array composed from the items of Y assembled into a higher-rank array with
one less level of nesting. pR will be some permutation of (pY) ,py.

K is an optional axis specification whose value(s) indicate where in the result the
axes of y appear. There are three cases:

1. For all values of ML, K may be a scalar or 1-element vector whose value is
a fractional number indicating the two axes of Y between which new axes
are to be inserted for y. The shape of R is the shape of Y with the shape py
inserted between the | Kth and the [Kth axes of Y

2. If0ML22, K may be a scalar or 1-element vector integer whose value spe-
cifies the position of the first axis of y in the result. This case is identical to
the fractional case where K (in this case) is [ K (in the fractional case).

3. If0ML22, K may be a vector, with the same length as py, each element of
which specifies the position in the result of the corresponding axis of the y.

IfK is absent, the axes of y appear as the last axes of the result.



Chapter 1: Primitive Functions 87

Simple Vector Examples

In this example, the shape of Y is 3, and the shape of y is 2. So the shape of the result
will be a permutation of 2 and 3, i.e. in this simple example, either (2 3) or (3 2).

IfK is omitted, the shape of the resultis (pY) ,py.
t(1 2)(3 4)(5 6)

gl w =
NFEN

IfK is between 0 and 1, the shape of the resultis (py) ,pY because (py) isinserted
between the 0t and the 15 axis of the result, i.e. at the beginning.

t[.5](1 2)(3 4)(5 6)
135
2 46

IfK is between 1 and 2, the shape of the resultis (pY ), py because (py) isinserted
between the 15t and 219 axis of the result, i.e. at the end. This is the same as the case
when K is omitted.

+[1.57(1 2)(3 4)(5 6)
12
3 4
56
IfOML 22 an integer K may be used instead (Note that > is used instead of t).

OML<3
2(1 2)(3 4)(5 6)

gl W =
oFN

5[1](1 2)(3 4)(5 6)

[N

35
2 46
>[2](1 2)(3 4)(5 6)

g w
FEN



88 Dyalog APL/W Language Reference

Shape Extension

Ifthe items of Y are unequal in shape, the shorter ones are extended:

OML<3
5(1)(3 4)(5)

o FfO

1

3

5
>[11(1)(3 4)(5)

135

o4 0

More Simple Vector Examples:

Jbox on
Was OFF
OML<«3
5('andy' 19)('geoff' 37)('pauline' 21)

andy 19

geoff 37

pauline|21

5[1]("'andy' 19)('geoff' 37)('pauline’ 21)

andy|geoff|pauline

19 37 21

>('andy' 19)('geoff' 37)(c'pauline')

andy 19
geoff 37
pauline

Notice that in the last statement, the shape of the third item was extended by cat-
enating it with its prototype.



Chapter 1: Primitive Functions

89

Example (Matrix of Vectors)

In the following examples, Y is a matrix of shape (5 Y4 ) and each item of Y (y)isa
matrix of shape (3 2). The shape of the result will be some permutaion of (5 4 3

2).
Y«<5 4p(120)xc3 2p1
Y
11 2 2 33 b4
11 2 2 3 3 b4
11 2 2 3 3 b4
55 6 6 71 8 8
55 6 6 77 8 8
55 6 6 77 8 8
99 10 1011 11(12 12
99 10 1011 1112 12
99 10 1011 1112 12
13 13|14 1415 15(16 16
13 13|14 14(15 15(16 16
13 13|14 14(15 15(16 16
17 17(18 18(19 19(20 20
17 17(18 18(19 19(20 20
17 17(18 18|19 19|20 20

By default, the axes of y appear in the last position in the shape of the result, but this
position is altered by specifying the axis K. Notice where the (3 2) appears in the
following results:

54

3

3

INDEX

A

p>Y
2

p=2[1]Y

L

pa[2]Y

L

p>[3]Y

2

p2[4]Y
ERROR
pa[4]Y

Note that >[4 ]Y generates an INDEX ERROR because 4 is greater than the length
ofthe result.



90

Dyalog APL/W Language Reference

Example (Vector K)

The axes of y do not have to be contiguous in the shape of the result. By specifying a
vector K, they can be distributed. Notice where the 3 and the 2 appear in the fol-
lowing results:

p=[1 3]Y
3524

pa[1 4]Y
3542

p2[2 4]y
534 2

p2[4 2]Y
52 4 3

Rank Extension

Ifthe items of Y are unequal in rank, the lower rank items are extended in rank by pre-
fixing their shapes with 1s. Each additonal 1 may then be increased to match the max-
imum shape of the other items along that axis.

OML<3
Y<(1)(2 3 4 5)(2 3p10x18)
Y
12 3 4 5(10 20 30
40 50 60
paY
324
oY
1 0 00
0 0 00
2 3 45
0 0 00
10 20 30 0
40 50 60 O

In the above example, the first item (1) becomes (1 1p1)to conform with the 3rd
item which is rank 2. It is then extended in shape to become (2 411 1p1) to con-
form with the 2-row 3rd item, and 4-column 2nd item.. Likewise, the 2nd item
becomes a 2-row matrix, and the 3rd item gains another column.



Chapter 1: Primitive Functions 91

Multiply ReXxY
Y may be any numeric array. X may be any numeric array. R is the arithmetic
product of X and Y.
This function is also known as Times.
Example
3210x2496
6 890
2j3x.3j.5 1j2 3j4 .5
“0.931.9 T4J7 T6J17 1J1.5
Nand ReXAY

Y must be a Boolean array. X must be a Boolean array. R is Boolean. The value of R
is the truth value of the proposition "not both X and Y", and is determined as follows:

X Y R
0 0 1
0 1 1
1 0 1
1 1 0

Example

(0 1)(1 0) A (0 0)(1 1)
11 01




92

Dyalog APL/W Language Reference

Natural Logarithm Ree®Y

Y must be a positive numeric array. R is numeric. R is the natural (or Napierian) log-
arithm of Y whose base is the mathematical constant e=2.71828....

Example

el 2
0 0.6931471806

®2 2p0j1 1j2 23j3 3j4
0.000000000J1.570796327 0.8047189562J1.107148718
1.282474679J0.9827937232 1.6094379120J0.927295218

Negative

Re-Y

Y may be any numeric array. R is numeric and is the negative value of Y. For complex
numbers both the real and imaginary parts are negated.

Example
-4+ 20 73 75
4 72 0 35

-1j2 7233 4J°5
“1J72 2373 T4J5

Nor

ReXVY

Y must be a Boolean array. X must be a Boolean array. R is Boolean. The value of R
is the truth value of the proposition "neither X nor Y", and is determined as follows:

X Y R
0 0 1
0 1 0
1 0 0
1 1 0

Example

0011v0101
1000




Chapter 1: Primitive Functions 93

Not Re~Y
Y must be a Boolean array. R is Boolean. The value of RisOifYis1,and Ris1ifY
is 0.
Example
~0 1
10
Not Equal R«XzY

Y may be any array. X may be any array. R is Boolean. R is 0 if X=Y. Otherwise R
is 1.

For Boolean X and Y, the value of R is the “exclusive or” result, determined as fol-
lows:

X Y R
0 0 0
0 1 1
1 0 1
1 1 0

0CT is an implicit argument of Not Equal.

Examples

123 =#1.123
100

OcT«1E~10

1#1 1.00000000001 1.0000001
001

1 2 3 #'CAT'
111




94

Dyalog APL/W Language Reference

Not Match ReX#Y

Y may be any array. X may be any array. R is a simple Boolean scalar. If X is
identical to Y, then R is 0. Otherwise R is 1.

Non-empty arrays are identical if they have the same structure and the same values in
all corresponding locations. Empty arrays are identical if they have the same shape
and the same prototype (disclosed nested structure).

OCT is an implicit argument of Not Match.

Examples
8#10
0
"'#10
1
+A«<c(13) 'ABC'
1 2 3 ABC
A#(13) 'ABC'
1
A#c(13) 'ABC'
0
8#0pA
1

(1t0pA)#c(0 0 0) '




Chapter 1: Primitive Functions 95

Or, Greatest Common Divisor ReXvY

Case 1: Xand Y are Boolean

R is Boolean and is determined as follows:

X Y R

0 o0 0

0o 1 1

1 0 1

1 1 1
Example

0011voO0o101
0111

Case 2: X and Y are numeric (non-Boolean)

R is the Greatest Common Divisor of X and Y.

Examples

15127 v 35140
5127

rational«{tw 1+civw} A rational (OCT) approximation
A to floating array.
rational 0.4321 0.1234% 6.66, +1 2 3
4321 617 333 1 1 1
10000 5000 501 2 3

OCT is an implicit argument in case 2.




96

Dyalog APL/W Language Reference

Partition

(OML23) R«Xe[K]Y

Y may be any non scalar array.
X must be a simple scalar or vector of non-negative integers.

The axis specification is optional. If present, it must be a simple integer scalar or one
element array representing an axis of Y. Ifabsent, the last axis is implied.

R is an array of the elements of Y partitioned according to X.

A new partition is started in the result whenever the corresponding element in X is
greater than the previous one. Items in Y corresponding to Os in X are not included in
the result.

Examples
OML<«3

ldisplay 1 1 1 2 2 3 3 3c'NOWISTHE'

NOW IS THE

€
Jdisplay 1 1 1 0 0 3 3 3c'NOWISTHE'
NOW THE
€
TEXT<' NOW IS THE TIME '
Jdisplay (' '#TEXT)<TEXT
NOW IS THE TIME
€
Jdisplay CMAT<OFMT(' ',ROWS),COLS;NMAT
|
y Jan Feb Mar
Cakes 0 100 150
Biscuits 0 0 350
Buns 0 1000 500




Chapter 1: Primitive Functions 97

Jdisplay (v#' '#CMAT)cCMAT A Split at blank cols.

t
Jan Feb Mar
Cakes 0 100 150
Biscuits 0 0 350
Buns 0 1000 500

Jdisplay N«4 Lpi16

|
+1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Jdisplay 1 1 0 1eN

[
J >
12 H]
>
5 6 8]
9 10 12
13 14 16

Jdisplay 1 1 0 1<[1]N

- —

15 2 6 37 L 8

13 14 15 16




98 Dyalog APL/W Language Reference

Partitioned Enclose (OML<3) R«Xc[K]Y

Y may be any array. X must be a simple Boolean scalar or vector.

The axis specification is optional. Ifpresent, it must be a simple integer scalar or
one-element vector. The value of K must be an axis of Y. If absent, the last axis of Y
is implied.

X must have the same length as the Kth axis of Y. However, if X is a scalar or one-ele-
ment vector, it will be extended to the length of the Kth axis of Y.

R is a vector of items selected from Y. The sub-arrays identified along the Kth axis of
Y at positions corresponding to each 1 in X up to the position before the next 1 in X
(or the last element of X) become the successive items of R. The length of R is +/X
(after possible extension).

Examples

010011000 <19
234 5 6789

101 c[1] 3 4pr12
34 910 11 12
78

[N

2
56

1 001 c[2]3 4pr12

O O1 =
o
,Nw
N 00 +



Chapter 1: Primitive Functions 99

Pi Times

R«oY

Y may be any numeric array. R is numeric. The value of R is the product of the math-
ematical constant 7=3.7/4159... (Pi),and Y.

Example

0.5 1 2
1.570796327 3.141592654 6.283185307

o0J1
0J3.141592654

*00J1 A Euler
1

Pick

ReXoY

Y may be any array.
X is a scalar or vector of indices of Y, viz. 1pY.
R is an item selected from the structure of Y according to X.

Elements of X select from successively deeper levels in the structure of Y. The items
of X are simple integer scalars or vectors which identify a set of indices, one per axis
at the particular level of nesting of Y in row-major order. Simple scalar items in Y
may be picked by empty vector items in X to any arbitrary depth.

0I0 isan implicit argument of Pick.
Examples
G<('ABC' 1)('DEF"' 2)('GHI' 3)('JKL' 4)
G«<2 3pG,('MNO' 5)('PQR' 6)
G
ABC 1 DEF 2 GHI 3
JKL & MNO 5 PQR 6

((e2 1),1)>6
JKL

(e2 1)-G
JKL &




100

Dyalog APL/W Language Reference

((2 1)1 2)-G

K
(5pc10)>10
10
Plus ReX+Y
See Add on page 11.
Power ReXxY

Y must be a numeric array. X must be a numeric array. R is numeric. The value of R
is X raised to the power of Y.

If'Y is zero, R is defined to be 1.
If X is zero, Y must be non-negative.

In general, if X is negative, the result R is likely to be complex.

Examples

2%2 T2
4 0.25

9 64x0.5
38

“27%3 2 1.2 .5
~19683 729 "42.22738244J730.67998919 0J5.196152423




Chapter 1: Primitive Functions 101

Ravel Re,Y

Y may be any array. R is a vector of the elements of Y taken in row-major order.

Examples
M
123
4 5 6
»M
123456
A
ABC
DEF
GHI
JKL
A
ABCDEFGHIJKL
p,10
1

Ravel with Axes R«,[K]Y

Y may be any array.
K is either:

e A simple fractional scalar adjacent to an axis of Y, or
e A simple integer scalar or vector of axes of Y, or
e An empty vector.

Ravel with axis can be used with selective specification.
R depends on the case of K above.

IfK is a fraction, the result R is an array of the same shape as Y, but with a new axis of
length 1 inserted at the K'th position.

ppR «= 1+ppY¥
pR <> (1,pY)[AK,1ppY]



102 Dyalog APL/W Language Reference

Examples

,[0.5]"ABC'
ABC

p,[0.5]"ABC'
13

,[1.5]"ABC'
A
B
c

p,[1.5]'ABC'
31

MAT<3 4p112

p,[0.5IMAT
1 34

p,[1.5]MAT
314

p,[2.5IMAT
341

IfK is an integer scalar or vector of axes of Y, then:

e K must contain contiguous axes of Y in ascending order.
e R contains the elements of Y raveled along the indicated axes.

Note that if K is a scalar or single element vector, R <> Y.
ppR <> 1+(ppY)-p,K
Examples
M
3
7 8
11

13 14 15 16

17 18 19 20

21 22 23 24
pM

2 3 4



Chapter 1: Primitive Functions

103

,[1 2IM
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
p,[1 2IM
6 4
,[2 3IM
1 2 3 4 5 6 7

8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

p,[2 3IM

2 12

IfK is an empty vector a new last axis of length 1 is created.

pR <> (pY),1

Examples

Q1«'January’

Jdisplay Q1

'February' 'March'

January

February

March

ldisplay ,[10]Q1

January

February

March




104 Dyalog APL/W Language Reference

Reciprocal ResY

Y must be a numeric array. R is numeric. R isthe reciprocal of Y; thatis 1+Y. If
(DIV=0, +0 resultsin a DOMAIN ERROR. If[JDIV=1, +0 returns 0.

ODIV is an implicit argument of Reciprocal.

Examples

425
0.25 0.5 0.2

$0j1 0§71 232 4j4
0J71 0J1 0.25J70.25 0.125J70.125

ODIV«1
+0 0.5

Replicate

R«X/[KJ]Y

Y may be any array. X is a simple integer vector or scalar.

The axis specification is optional. If present, K must be a simple integer scalar or 1-
element vector. The value of K must be an axis of Y. Ifabsent, the last axis of Y is
implied. The form R«X#Y implies the first axis of Y.

IfY has length 1 along the K (or implied) axis, it is extended along that axis to
match the length of X. Otherwise, the length of X must be the length of the K (or
implied) axis of Y. However, if X is a scalar or one-element vector, it will be extended
to the length of the K™ axis.

R is composed from sub-arrays along the Kth axis of Y. If X[ I] (an element of X) is
positive, then the corresponding sub-array is replicated X[ I] times. IfX[I] is zero,
then the corresponding sub-array of Y is excluded. If X[ I] is negative, then the fill
element of Y is replicated | X[ I] times. Each ofthe (replicated) sub-arrays and fill
items are joined along the Kth axis in the order of occurrence. The shape of R is the
shape of Y except that the length of the (implied) Kth axis is +/ | X (after possible
extension).

This function is sometimes called Compress when X is Boolean.



Chapter 1: Primitive Functions

105

Examples

1010 1/15
135

1 72 3 "4 5/15
1003330000556525H5

[
a1 N
w

2 0 1/M

0 1M
0 1/[1IM
L 56

IfY is a singleton (1=x/p,Y) its value is notionally extended to the length of X
along the specified axis.

10 1/4
"

101/,3
33

10 1/1 1p5



106 Dyalog APL/W Language Reference

Reshape R«XpY

Y may be any array. X must be a simple scalar or vector of non-negative integers. R
is an array of shape X whose elements are taken from Y in row-major sequence and
repeated cyclically ifrequired. IfY is empty, R is composed of fill elements of Y
(ce>Y). If X contains at least one zero, then R is empty. If X is an empty vector,
then R is scalar.

Examples

2 3p18
123
b 56

2 3pik

F
= N
N W

2 3p10

oo

00
00

Residue ReX|Y

Y may be any numeric array. X may be any numeric array.

For positive arguments, R is the remainder when Y is divided by X. If X=0,R is Y.
For other argument values, R is given by the expression Y=Xx[ Y+X+0=X.

OCT is an implicit argument of Residue.

Examples

3373 73755 44
127172

0.5/3.12 71 70.6
0.12 0 0.4

"1 0 1]75.25 0 2.41
“0.25 0 0.41

1j21233 3j4 5j6
1J1 131 0J1

Note that the ASCII Broken Bar (QUCS 166, U+00A6) is not interpreted as Residue.



Chapter 1: Primitive Functions 107

Reverse

R«¢[K]Y

Y may be any array. The axis specification is optional. Ifpresent, K must be an
integer scalar or one-element vector. The value of K must be an axis of Y. Ifabsent,
the last axis is implied. The form R«eY implies the first axis.

R is the array Y rotated about the Kth or implied axis.

Examples

$1 2 3 4 5
54321

M

[
aN
w

oM

a1 N

eM

—_
N ol

(1M

Reverse First R«e[K]Y

The form R«eY implies reversal along the first axis. See Reverse above.

Right

ReXrY

X and Y may be any arrays. The result R is the right argument Y.

Example

42 +'abc' 1 2 3
abc 1 2 3

Note that when + is applied using reduction, the derived function selects the last
sub-array of the array along the specified dimension. This is implemented as an
idiom.




108

Dyalog APL/W Language Reference

Examples
/1 2 3

mat<«t'scent' 'canoe' 'arson' 'rouse' 'fleet'
~#mat A last row

fleet
+/mat A last column

tenet

+/[2]2 3 4p124 A last row from each plane
9 10 11 12
21 22 23 24

Roll

Re?Y

Y may be any non-negative integer array. R has the same shape as Y at each depth.

For each positive element of Y the corresponding element of R is an integer, pseudo-
randomly selected from the integers 1Y with each integer in this population having
an equal chance of being selected.

For each zero element of Y, the corresponding element of R is a pseudo-random float-
ing-point value in the range 0 - 1, but excluding 0 and 1,1i.e. (0<R[I]<1).

0IO0 and ORL are implicit arguments of Roll. A side effect of Roll is to change the
value of [JRL.

Note that different random number generators are available; see 16807 I for more
information.

Examples

2999
275
23p0
0.3205466592 0.3772891947 0.5456603511




Chapter 1: Primitive Functions 109

Rotate

R«X$[K]Y

Y may be any array. X must be a simple integer array. The axis specification is
optional. If present, K must be a simple integer scalar or one-element vector.

The value of K must be an axis of Y. If absent, the last axis of Y is implied. The form
R<XeY implies the first axis.

IfY is a scalar, it is treated as a one-element vector. X must have the same shape as
the rank of Y excluding the Kth dimension. If X is a scalar or one-element vector, it
will be extended to conform. If'Y is a vector, then X may be a scalar or a one-element
vector.

R is an array with the same shape as Y, with the elements of each of the vectors along
the Kth axis of Y rotated by the value of the corresponding element of X. Ifthe value
is positive, the rotation is in the sense of right to left. Ifthe value is negative, the rota-
tion is in the sense of left to right.

Examples
3é1234567
456 7123
T2 ¢ 12345
45123
M
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
I
01710
03 21
I¢6[2]M
1 6 7 4
5 2 3 8
9 14 11 16

13 10 15 12



110 Dyalog APL/W Language Reference

JoM
b 1
7 8

aN

3
6
12 9 10 11
15 16 13 14

Rotate First R«Xe[K]Y

The form R«<XeY implies rotation along the first axis. See Rotate above.

Same ReaY

Y may be any array.

The result R is the argument Y.

Examples



Chapter 1: Primitive Functions 111

Shape R«pY

Y may be any array. R is a non-negative integer vector whose elements are the dimen-
sions of Y. IfY is a scalar, then R is an empty vector. The rank of Y is given by ppY.

Examples
pl0
p'CAT'
3
p3 W4pri2
3 4

+G«<(2 3p16)('CAT' 'MOUSE' 'FLEA')

1 2 3 CAT MOUSE FLEA
L 5 6
pG
2
ppG
1
076
23 3
G



112 Dyalog APL/W Language Reference

Split

R«4[KIY

Y may be any array. The axis specification is optional. Ifpresent, K must be a simple
integer scalar or one-element vector. The value of K must be an axis of Y. Ifabsent,
the last axis is implied.

The items of R are the sub-arrays of Y along the Kth axis. R isascalarifY is a scalar.
Otherwise R is an array whose rank is ~1+ppY and whose shape is (KZz1ppY)/pY.
Examples

43 4p'MINDTHATSTEP'
MIND THAT STEP

12 5p110
12345 678910

+[112 5p110
16 27 38 49 510

Subtract

ReX-Y

Y may be any numeric array. X may be any numeric array. R is numeric. The value of
R is the difference between X and Y.

This function is also known as Minus.

Example

3 7240-2172%4
1 736 74

2j3-.3j5 A (a+bi)-(c+di) = (a-c)+(b-d)i
1.7J72



Chapter 1: Primitive Functions 113

Table ResY

Y may be any array. R is a 2-dimensional matrix of the elements of Y taken in row-
major order, preserving the shape of the first dimension of Y if it exists

Table has been implemented according to the Extended APL Standard (ISO/IEC
13751:2001).

Examples
Jdisplay {w (pw)} 5'a’

EX;

€

Jdisplay {w (pw)} 5'hello’

1

o ——o |
(6,

Jdisplay {w (pw)} 52 3 4pr24

2 3 4 5 6 7 8 910 11 12 2 12

|
1
13 14 15 16 17 18 19 20 21 22 23 24




114 Dyalog APL/W Language Reference

Take Re«X1tY

Y may be any array. X must be a simple integer scalar or vector.

IfY is a scalar, it is treated as a one-element array of shape (p, X)p1. The length of
X must be the same as or less than the rank of Y. If the length of X is less than the rank
of Y, the missing elements of X default to the length of the corresponding axis of Y.

R is an array of the same rank as Y (after possible extension), and of shape | X. If X

[ I] (an element of X) is positive, then X[ I] sub-arrays are taken from the beginning
ofthe Ith axisof Y. IfX[I] isnegative, then X[ I] sub-arrays are taken from the
end of'the Ith axis of Y.

If more elements are taken than exist on axis I, the extra positions in R are filled with
the fill element of Y (<ce>Y).
Examples

5t 'ABCDEF"
ABCDE

5t1 2 3
12300

511 2 3
00123

54(13) (14) (15)
123 1234 12345 000 00O

M
1234
56 78

2 3tM
123
56 7

“1 T24M
7 8

M3<2 3 Lp[JA

14M3
ABCD
EFGH
IJKL

~1tM3
MNOP
QRST

Uvwx



Chapter 1: Primitive Functions 115

Take with Axes Re«Xt[K]Y

Y may be any non scalar array. X must be a simple integer scalar or vector. K is a vec-
tor of zero or more axes of Y.

R is an array of the first or last elements of Y taken along the axes K depending on
whether the corresponding element of X is positive or negative respectively.

The rank of R is the same as the rank of Y:
pPPR <> ppY

The size of each axis of R is determined by the corresponding element of X:
(pR)[,K] <= |,X

Examples

O«M<2 3 4pi2k
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

2¢[2IM
3 4
5 6 7 8

[
N

13 14 15 16
17 18 19 20

21[3IM

O U1 =
o

13 14
17 18
21 22

2 72¢[3 2IM

O ;
[
o

17 18
21 22



116 Dyalog APL/W Language Reference

Tally R#Y

Y may be any array. R is a simple numeric scalar.

Tally returns the number of major cells of Y. This can also be expressed as the length
ofthe leading axis or 1 if Y is a scalar. Tally is equivalent to the function {8p
(pw),1}.

Examples

#2 3 4p110
2

#£2
1

0
0

Note that #V is useful for returning the length of vector V as a scalar. (In contrast, pV
is a one-element vector.)

Times ReXxY

See Multiply on page 91.

Transpose (Monadic) R«QY

Y may be any array. R isan array of shape ¢pY, similar to Y with the order of the
axes reversed.

Examples
M

3
6

aN

1
4
&M

WN —~
oo F



Chapter 1: Primitive Functions 117

Transpose (Dyadic) ReX®Y

Y may be any array. X must be a simple scalar or vector whose elements are included
in the set 1ppY. Integer values in X may be repeated but all integers in the set 1[ /X
must be included. The length of X must equal the rank of Y.

R is an array formed by the transposition of the axes of Y as specified by X. The Ith
element of X gives the new position for the Ith axis of Y. If X repositions two or
more axes of Y to the same axis, the elements used to fill this axis are those whose
indices on the relevant axes of Y are equal.

0I0 is an implicit argument of Dyadic Transpose.

Examples

13 14 15 16
17 18 19 20
21 22 23 24

9 10 11 12
21 22 23 24

11 18A
11 28A

1 2 3 &
17 18 19 20




118

Dyalog APL/W Language Reference

Type

(OML<1) R«eY

Migration level must be such that ML <1 (otherwise € means Enlist. See Enlist on
page 43).

Y may be any array. R is an array with the same shape and structure as Y in which a
numeric value is replaced by 0 and a character value is replaced by ' '

Examples

€(2 3p16)(1 4p'TEXT')
000
00O

Union

ReXuY

Y must be a vector. X must be a vector. If either argument is a scalar, it is treated as a
one-element vector. R isa vector of the elements of X catenated with the elements of
Y which are not found in X.

Items in X and Y are considered the same if X=Y returns 1 for those items.
OCT is an implicit argument of Union.

Examples

‘WASH' v 'SHOUT'
WASHOUT

'ONE' 'TWO' v 'TWO' 'THREE'
ONE TWO THREE

For performance information, see Programmer's Guide: Search Functions and Hash
Tables.



Chapter 1: Primitive Functions 119

Unique R«vY

Y must be a vector. R is a vector of the elements of Y omitting non-unique elements
after the first.

0CT is an implicit argument of Unique.

Examples

u 'CAT' 'DOG' 'CAT' 'MOUSE' 'DOG' 'FOX'
CAT DOG MOUSE FOX

v 22 10 22 22 21 10 5 10
22 10 21 5

Without ReX~Y

See Excluding on page 45.

Zilde R«6

The empty vector (1 0) may be represented by the numeric constant € called ZILDE.




120 Dyalog APL/W Language Reference




121

Chapter 2:

Primitive Operators

Operator Syntax

Operators take one or two operands. An operator with one operand is monadic. The
operand of a monadic operator is to the left of the operator. An operator with two
operands is dyadic. Both operands are required for a dyadic operator.

Operators have long scope to the left. That is, the left operand is the longest function
or array expression to its left (see Programmer's Guide: Operators). A dyadic oper-
ator has short scope on the right. Right scope may be extended by the use of par-
entheses.

An operand may be an array, a primitive function, a system function, a defined func-
tion or a derived function. An array may be the result of an array expression.

An operator with its operand(s) forms a DERIVED FUNCTION. The derived func-
tion may be monadic or dyadic and it may or may not return an explicit result.

Examples

+/15
15

(x02)13
1 49

PLUS « + o TIMES <« x
1 PLUS.TIMES 2

2
ONL 2
A
X
Oex"+ONL 2

ONL 2



122

Dyalog APL/W Language Reference

Monadic Operators
Like primitive functions, monadic operators can be:

e named
e cenclosed within parentheses
e displayed in the session

Examples

0 « each « () A name and display

shape<«p
shape each (1 2) (3 4 5)

slash«/

+slash 110
55

swap<=~

3 -swap 4
1

Right Operand Currying

A dyadic operator may be bound or curried with its right operand to form a monadic
operator

Examples

0 « inv « ¥71 a produces monadic inverse operator
¥ 71

+\inv 1 2 3 A scan-inverse
111

lim « %= A power-limit

1 +o+lim 1 A Phi

1.61803



Chapter 2: Primitive Operators 123

Axis Specification

Some operators may include an axis specification. Axis is itself an operator.
However the effect of axis is described for each operator where its specification is per-
mitted. [JIO is an implicit argument of the function derived from the Axis operator.

The description for each operator follows in alphabetical sequence. The valence of
the derived function is specifically identified to the right of the heading block.

Table 8: Primitive Operators

Class of Name Producing Monadic |Producing Dyadic
Operator derived function derived function
Assignment Xf<Y
Assignment X[I]f«Y
Assignment (EXP X)f<«Y
Commute XF=Y
Each £y XFY
Monadic I-Beam ATY
Reduction f/Yy [ 1
fAY []
Scan f\Y [ 1]
fxy [ ]
Spawn fay Xf&Y
Axis fLBIY Xf[BlY
Composition fogY XfogY
AegyY
(foB)Y
Dyadic
Inner Product Xf.gY
Outer Product Xo.g¥
Power fxgY Xf¥gyY
Variant fElgY XfEgY
[ JIndicates optional axis specification




124 Dyalog APL/W Language Reference

Operators (A-Z)

Monadic and Dyadic primitive operators are presented in alphabetical order of their
descriptive names as shown in Table 8 above.

The valence of the operator and the derived function are implied by the syntax in the
heading block.

Assignment (Modified) {R}=XFf«Y

f may be any dyadic function which returns an explicit result. Y may be any array
whose items are appropriate to function f. X must be the name of an existing array
whose items are appropriate to function f.

R is the “pass-through” value, that is, the value of Y. Ifthe result of the derived func-
tion is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the value of the array named by X to the

result of XfY.
Examples
A
12345
A+<10
A
11 12 13 14 15
JeAx<2
2
A

22 24 26 28 30

vec« 4+9?9 ¢ vec
351717240732

vec/=«vec>0 ovec
35142



Chapter 2: Primitive Operators 125

Assignment (Indexed Modified) {R}«X[I]f«Y

f may be any dyadic function which returns an explicit result. Y may be any array
whose items are appropriate to function f. X must be the name of an existing array.
I must be a valid index specification. The items of the indexed portion of X must be
appropriate to function f.

R is the “pass-through” value, that is, the value of Y. Ifthe result of the derived func-
tion is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the indexed elements of X, thatis X[ I ],
to the result of X[ I]fY. This result must have the same shape as X[ I].

Examples
A
12345
+A[2 L4]+<«1
1
A
1 33655
A[3]+<«2
A
1 31.555

If an index is repeated, function f will be applied to the successive values of the
indexed elements of X, taking the index occurrences in left-to-right order.

Example
B«<5p0
B[2 4 1 2 1 4 24 1 3]+«1

B




126 Dyalog APL/W Language Reference

Assignment (Selective Modified) {R}«(EXP X)f<«Y

f may be any dyadic function which returns an explicit result. Y may be any array
whose items are appropriate to function f. X must be the name of an existing array.
EXP is an expression that selects elements of X. (See Assignment (Selective) on page
21 fora list of allowed selection functions.) The selected elements of X must be
appropriate to function f.

R is the “pass-through” value, that is, the value of Y. Ifthe result of the derived func-
tion is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the selected elements of X to the result of
X[IIfY where X[ I] defines the elements of X selected by EXP.

Example

A
12 36 23 78 30

((A>30)/A) x« 100
A

12 3600 23 7800 30



Chapter 2: Primitive Operators 127

Axis (with Monadic Operand)

R«f[B]Y

f must be a monadic primitive mixed function taken from those shown in Table 9
below, or a function derived from the operators Reduction (/) or Scan (\). B must be
anumeric scalar or vector. Y may be any array whose items are appropriate to func-
tion f. Axis does not follow the normal syntax of an operator.

Table 9: Primitive monadic mixed functions with optional axis.

Function Name Range of B

¢ or e Reverse |BeippY

t Mix (021]B)~(B>0I0-1)~(B<OIO+ppY)
4 Split BeippY

s Ravel fraction, or zero or more axes of Y

c Enclose (B=10)v(~/BerppY)

In most cases, B must be an integer which identifies a specific axis of Y. However,
when f is the Mix function (1), B is a fractional value whose lower and upper
integer bounds select an adjacent pair of axes of Y or an extreme axis of Y.

For Ravel (, ) and Enclose (<), B can be a vector of two or more axes.

(IO isan implicit argument of the derived function which determines the meaning

of B.

Examples

$[1]12 3p16

L 56
123

t[.1]'ONE"

‘TWO'




128 Dyalog APL/W Language Reference

Axis (with Dyadic Operand)

ReXf[B]Y

f must be a dyadic primitive scalar function, or a dyadic primitive mixed function
taken from Table 10 below. B must be a numeric scalar or vector. X and Y may be any
arrays whose items are appropriate to function f. Axis does not follow the normal
syntax of an operator.

Table 10: Primitive dyadic mixed functions with optional axis.

Function | Name Range of B

/ or # [Replicate BeippY

\ or X |Expand BeippY

s o

¢ or e |Rotate BeippY

, or 5 |Catenate BeippY

. or = |Laminate (0#1]8)~(B>0I0-1)~(B<[IO+(ppX)
[ppY)

) Take zero or more axes of Y

+ Drop zero or more axes of Y

In most cases, B must be an integer value identifying the axis of X and Y along which

function f is to be applied.

Exceptionally, B must be a fractional value for the Laminate function (, ) whose
upper and lower integer bounds identify a pair of axes or an extreme axis of X and Y.
For Take (1) and Drop (4), B can be a vector of two or more axes.

0I0 is an implicit argument of the derived function which determines the meaning

of B.




Chapter 2: Primitive Operators 129

Examples
1 45 =[1] 3 2p16
10
01
10
2 72 1/[2]2 3p'ABCDEF'
AA
DD F
"ABC',[1.1]'="
A=
B=
C=
"ABC',[0.1]'="'
ABC
010<0
'ABC',[70.5]'="

n >
no

B

Axis with Scalar Dyadic Functions

The axis operator [ X] can take a scalar dyadic function as operand. This has the
effect of “stretching’ a lower rank array to fit a higher rank one. The arguments must
be conformable along the specified axis (or axes) with elements of the lower rank
array being replicated along the other axes.

For example, if H is the higher rank array, L the lower rank one, X is an axis spe-
cification, and f a scalar dyadic function, then the expressions Hf [XJL and Lf[X]
H are conformable if (pL )<= (pH) [X]. Each element of L is replicated along the
remaining (pH)~X axes of H.

In the special case where both arguments have the same rank, the right one will play
the role of the higher rank array. If R is the right argument, L the left argument, X is an
axis specification and f a scalar dyadic function, then the expression L f [ X]R is con-
formable if (pL)<>(pR)[X].



130

Dyalog APL/W Language Reference

Examples

10 20
40 50

11 21
42 52

11 22
41 52

100
400
700
1000
101
401
702
1002
101
401
701
1001
110
440
710
1040
110
410

740
1040

mat
30
60

mat+[1]1 2
31
62

mat+[2]1 2 3
33
63

cube
200 300
500 600

800 900
1100 1200

cube+[1]1 2
201 301
501 601

802 902
1102 1202

cube+[3]1 2 3
202 303
502 603

802 903
1102 1203

cube+[2 3]mat
220 330
550 660

820 930
1150 1260

cube+[1 3]mat
220 330
520 630

850 960
1150 1260

A add along first axis

A add along last axis



Chapter 2: Primitive Operators 131

Commute

{R}«{X} f=Y

f may be any dyadic function. X and Y may be any arrays whose items are appro-
priate to function f.

The derived function is equivalent to Y f X. The derived function need not return a
result.

Ifleft argument X is omitted, the right argument Y is duplicated in its place, i.e.
f=Y <> Y f=Y
Examples

N
3254613

N/~2|N
3513

p=3
333

mean<+/o(+ep~) A mean of a vector
mean 110
5.5

The following statements are equivalent:
F/~<«I
F<F/~I
F<I/F

Commute often eliminates the need for parentheses




132

Dyalog APL/W Language Reference

Composition (Form I) {R}<«fogY

f may be any monadic function. g may be any monadic function which returns a
result. Y may be any array whose items are appropriate to function g. The items of
gY must be appropriate to function f.

The derived function is equivalent to fgY. The derived function need not return a
result.

Composition allows functions to be glued together to build up more complex func-
tions.

Examples

RANK « pep
RANK ~ '"JOANNE' (2 3p16)
1 2

+/0172 4 6
3 10 21

OVR'SUM'
V R«<SUM X
[1] Re+/X
v

SUMo1™2 4 6
3 10 21




Chapter 2: Primitive Operators 133

Composition (Form ll) {R}<«AogY

g may be any dyadic function. A may be any array whose items are appropriate to
function g. Y may be any array whose items are appropriate to function g.

The derived function is equivalent to AgY. The derived function need not return a
result.

Examples
2 20p " 'AB'
AA BB
AA BB
SINE « 1e0

SINE 10 20 30
~0.5440211109 0.9129452507 ~0.9880316241

The following example uses Composition Forms I and II to list functions in the work-
space:

ONL 3
ADD
PLUS

Oo<«odVR™¢ONL 3

vV ADD X
(1] +LABp~0#[INC'SUM' ¢ SUM<«0
[2] LAB: SUM«SUM++/X

v

V R<A PLUS B
[1] R<A+B

v



134

Dyalog APL/W Language Reference

Composition (Form Ill) {R}«(foB)Y

f may be any dyadic function. B may be any array whose items are appropriate to
function f. Y may be any array whose items are appropriate to function f.

The derived function is equivalent to YfB. The derived function need not return a
result.

Examples

(x00.5)4 16 25
2 45

SQRT « xo.5

SQRT 4 16 25
2 45

The parentheses are required in order to distinguish between the operand B and the
argument Y.

Composition (Form IV) {R}«XfegY

f may be any dyadic function. g may be any monadic function which returns a
result. Y may be any array whose items are appropriate to function g. Also gY must
return a result whose items are appropriate as the right argument of function f. X
may be any array whose items are appropriate to function f.

The derived function is equivalent to XfgY. The derived function need not return a
result.

Examples

+o+/40p1 A Golden Ratio! (Bob Smith)
1.618033989

0,015
o1 012 0123 01234 012345




Chapter 2: Primitive Operators 135

Each (with Monadic Operand) {R}«fY

f may be any monadic function. Y may be any array, each of whose items are sep-
arately appropriate to function f.

The derived function applies function f separately to each item of Y. The derived
function need not return a result. Ifa result is returned, R has the same shape as Y,
and its elements are the items produced by the application of function f to the cor-
responding items of Y.

IfY is empty, the prototype of R is determined by applying the operand function
once to the prototype of Y.

Examples
G<('TOM"' (13))('DICK' (14))('HARRY' (15))
pG
3
oG
2 2 2
077G

3 3 b 4 5 5

+FX7('FOO1"' 'A«1')('FO02' 'A<«2')
FOO1 FOO02




136 Dyalog APL/W Language Reference

Each (with Dyadic Operand) {R}XFY

f may be any dyadic function. X and Y may be any arrays whose corresponding
items (after scalar extension) are appropriate to function f when applied separately.

The derived function is applied separately to each pair of corresponding elements of
Xand Y. If X or Y is a scalar or single-eclement array, it will be extended to conform
with the other argument. The derived function need not produce an explicit result.
If a result is returned, R has the same shape as Y (after possible scalar extension)
whose elements are the items produced by the application of the derived function to
the corresponding items of X and Y.

If X or Y is empty, the operand function is applied once between the first items of X
and Y to determine the prototype of R.

Examples

+G<(1 (2 3))(4 (5 6))(8 9)10
1 23 4 56 8 9 10
167G
23 1 56 4 98 10

1 32 Y 65 8 9 10

1 23 4 56 8 9 10

1 2 3 417G
1 4+ 56 890 10000

"ABC',"'XYZ'
AX BY CzZ



Chapter 2: Primitive Operators 137

I-Beam

R«{X}(AT)Y

I-Beam is a monadic operator that provides a range of system related services.

WARNING: Although documentation is provided for I-Beam functions, any service
provided using I-Beam should be considered as “experimental” and subject to
change — without notice - from one release to the next. Any use of [-Beams in applic-
ations should therefore be carefully isolated in cover-functions that can be adjusted if
necessary.

A is an integer that specifies the type of operation to be performed . Y is an array that
supplies further information about what is to be done.

X may or may not be required depending on A.
R is the result of the derived function.

For further information, see /-Beam on page 159.



138

Dyalog APL/W Language Reference

Inner Product R«Xf.gY

f must be a dyadic function. g may be any dyadic function which returns a result.
The last axis of X must have the same length as the first axis of Y.

The result of the derived function has shape (T1+pX),1¢pY. Each item of R is the
result of f/xg""y where x and y are typical vectors taken from all the combinations
of vectors along the last axis of X and the first axis of Y respectively.

Function f (and the derived function) need not return a result in the exceptional case
when 2="11pX. In all other cases, function f must return a result.

If the result of xg ™"y is empty, for any x and y,a DOMAIN ERROR will be reported
unless function f is a primitive scalar dyadic function with an identity element
shown in Identity Elements on page 149.

Examples

1 2 3+.x10 12 14
76

1 2 3 PLUS.TIMES 10 12 14
76

+/1 2 3x10 12 14
76

NAMES
HENRY
WILLIAM
JAMES
SEBASTIAN

NAMESA.='WILLIAM '
0100




Chapter 2: Primitive Operators 139

Key R«{X}fBY

f may be any dyadic function that returns a result.

If Xis specified, it is an array whose major cells specify keys for corresponding major
cells of Y. The Key operator Elapplies the function f to each unique key in X and the
major cells of Y having that key.

If Xis omitted,Y is an array whose major cells represent keys.

In this case, the Key operator applies the function fto each unique key in Y and the
elements of 1 #Y having that key. fBY is the same as Y fH1#Y.

Key is similar to the GROUP BY clause in SQL.

Example

cards«'2' 'Queen' 'Ace' 'L' 'Jack'
suits«'Spades' 'Hearts' 'Spades' 'Clubs' 'Hearts'

suits,[1.5]cards

Spades 2
Hearts Queen
Spades Ace
Clubs L4

Hearts Jack

suits {o':'w}B cards
Spades : 2 Ace
Hearts : Queen Jack
Clubs 4

In this example, both arrays are vectors so their major cells are their elements. The
function {a' : 'w} is applied between the unique elements in suits (' Spades'
'Hearts' 'Clubs')and the elementsin cards grouped according to their cor-
responding elements in suits,ie.('2' 'Ace'),('Queen' 'Jack')and('4").

IThe symbol B is not available in Classic Edition, and the Key operator is instead represented by
Ou2338



140

Dyalog APL/W Language Reference

Monadic Example

{a0 w} B suits a indices of unique major cells
Spades 13
Hearts 25
N

Clubs
{o,#w} B suits A count of unique major cells
Spades 2
Hearts 2
Clubs 1

Further Examples

x is a vector of stock codes, y is a corresponding matrix of values.

pX
10

Py
10 2

X,y
IBM 13 75
AAPL 45 53
GOOG 21 4
GOOG 67 67
AAPL 93 38
MSFT 51 83
IBM 3 5
AAPL 52 67
AAPL 0 38
IBM 6 41

If we apply the function {a w} to x and y using the B operator, we can see how the
rows (its major cells) of y are grouped according to the corresponding elements (its
major cells) of x.

x{o w}By
IBM 13 75
3 5
6 41
AAPL 45 53
93 38
52 67
0 38
GOOG 21 4
67 67
MSFT 51 83



Chapter 2: Primitive Operators 141

More usefully, we can apply the function {o.(+#w) }, which delivers the stock
codes and the corresponding totals in y:

x{a(+#w)}By
IBM 22 121
AAPL 190 196
GOOG 88 71
MSFT 51 83

There is no need for the function to use its left argument. So to obtain just the totals
in y grouped by the stock codes in x:

x{+#w}By
22 121
190 196
88 71
51 83

Defined Function Example

This example appends the data for a stock into a component file named by the sym-
bol.

V r<«stock foo data;fid;file
[1] file«ostock

[2] :Trap O
[3] fid«file OFTIE O
[4] file OFERASE fid
[5] :EndTrap

[6] fid<file OFCREATE 0
[7] r«data OFAPPEND fid
[8] OFUNTIE fid

\'4

x fooBy
1111

Example

{00 w} B suits A indices of unique major cells
Spades 13
Hearts 25
Clubs 4

{a,#w} B suits ma count of unique major cells
Spades 2
Hearts 2
Clubs 1



142 Dyalog APL/W Language Reference

Another Example

Given a list of names and scores., the problem is to sum the scores for each unique
name. A solution is presented first without using the Key operator, and then with the
Key operator.

names A 12, some repeat
Pete Jay Bob Pete Pete Jay Jim Pete Pete Jim

Pete Pete
(unames)o.=names

100110011011

010001000000

001 000O0OO0OOO0OCODO

0000001 0O01O00O0
scores

66 75 71 100 22 10 67 77 55 42 1 78

b«<{(unames)o.=names
ldisp b/"c112

14589 11 122 6(3|7 10

+/"b/ cscores
399 85 71 109

ldisp {cw}B names

14589 11 122 6(3|7 10

names {+/w}H scores
399 85 71 109



Chapter 2: Primitive Operators 143

Outer Product {R}«Xe.gY¥

g may be any dyadic function. The left operand of the operator is the symbol o. X
and Y may be any arrays whose elements are appropriate to the function g.

Function g is applied to all combinations of the elements of X and Y. If function g
returns a result, the shape of R is (pX) , pY. Each element of R is the item returned
by function g when applied to the particular combination of elements of X and Y.

Examples

1 2 30.x10 20 30 40
10 20 30 4O
20 40 60 80
30 60 90 120

1 2 30.p'AB"
A B
AA BB
AAA BBB

°.,1 2 3
3
3

N -
(RSN
N = -
NNDN
N

(13)e.=13

OO+
o0
- OO

If X or Y is empty, the result R is a conformable empty array, and the operand function
is applied once between the first items of X and Y to determine the prototype of R.




144 Dyalog APL/W Language Reference

Power Operator {R}«{X}(f%xg)Y

Ifright operand g is a numeric integer scalar, power applies its left operand function
f cumulatively g times to its argument. In particular, g may be Boolean 0 or 1 for
conditional function application.

Ifright operand g is a scalar-returning dyadic function, then left operand function f
is applied repeatedly until ((f Y) g Y) oruntil a strong interrupt occurs. In par-
ticular, if g is = or =, the result is sometimes termed a fixpoint of f.

If a left argument X is present, it is bound as left argument to left operand function f:
X (f %)Y~ (Xef % g) ¥

A negative right operand g applies the inverse of the operand function f, (| g)
times. In this case, f may be a primitive function or an expression of primitive func-
tions combined with primitive operators:

° compose
each

°. outer product

= commute

\ scan

[] axis

% power

Defined, dynamic and some primitive functions do not have an inverse. In this case, a
negative argument g generates DOMAIN ERROR.

Examples

(,0co,%¥(1==,vec))vec A ravel-enclose if simple.
ab cel 0 1{(c*a)w} abc A enclose first and last.
cap<{(ao*a)w} A conditional application.

a b cel 0 lccap™abc A enclose first and last.



Chapter 2: Primitive Operators 145

succ«lo+

(succ*4)10
14

(succx~3)10
7

14+o03%x=1

1.618033989
f«(320+)0(x01.8)
f 0 100

32 212
cef*x71
c 32 212

0 100

invs«{(aa* 1)w}

+\invs 1 3 6 10
1 23 4

201invs 9
1 001

dual«{ww*~1 oo ww w}
mean<{(+/w)+pw}

mean duale 1 2 3 4 5
2.605171085

+/dual+ 1 2 3 4 5
0.4379562044

mean dual(x=)1 2 3 4 5
3.31662479

®dualt 'hello' 'world'
hw eo Lr Ll od

Warning

successor function.
fourth successor of 10.
third predecessor of 10.

fixpoint: golden mean.

Fahrenheit from Celsius.

c is Inverse of f.
Celsius from Fahrenheit.

inverse operator.

scan inverse.

decode inverse.

dual operator.
mean function.

geometric mean.

parallel resistance.

root-mean-square.

vector transpose.

Some expressions, such as the following, will cause an infinite internal loop and
APL will appear to hang. In most cases this can be resolved by issuing a hard

INTERRUPT.

1%-1
1%-2



146

Dyalog APL/W Language Reference

Rank

Re{X}fokY

If X is omitted, f may be any monadic function that returns a result. Y may be any
array.

The Rank operator & 1applies function f successively to the sub-arrays in Y specified
by k. If k is positive, it selects the k-cells of Y. If k is negative, it selects the (r+k)-
cells of Y where r is its rank. If k is 1 it selects the major cells of Y.

If X is specified, f may be any dyadic function that returns a result. Y may be any
array.

In this case, the Rank operator applies function f successively between the sub-
arrays in X and Y specified by k. k is a 2-element integer vector, or a scalar (which is
implicitly extended), whose first element selects sub-arrays in X and whose second
element selects sub-arrays of Y.

For further information, see Programmer's Guide: Cells and Subarrays.

Notice that it is necessary to prevent the right operand k binding to the right argu-
ment. This can be done using parentheses e.g. (f1)Y. The same can be achieved
using + because © binds tighter to its right operand than + does to its left argument,
and + therefore resolves to Identity.

Monadic Examples

Using enclose (<) as the left operand elucidates the workings of the rank operator.

Y
36 99 20 5
63 50 26 10
64 90 68 98

66 72 27 T4
bt 1 46 62
48 9 81 22

2 3 4

IThe symbol @ is not available in Classic Edition, and the Rank operator is instead represented by

gu236k




Chapter 2: Primitive Operators 147

co2 Y
36 99 20 5|66 72 27 74
63 50 26 10|44 1 46 62
64 90 68 98|48 9 81 22
col rY
36 99 20 5 |63 50 26 10|64+ 90 68 98
66 72 27 74|44 1 46 62 |48 9 81 22

The function { (cAw)[Jw} sorts a vector.

{(chw)lw} 31 4159265
1123455609

The rank operator can be used to apply the function to sub-arrays; in this case to sort
the 1-cells (rows) of a 3-dimensional array.

36
63
64

66
Ll
48

Y
99 20
50 26
90 68

72 27
1 46
9 81

({(chw)[w}e1)Y



148 Dyalog APL/W Language Reference

Dyadic Examples

10 20 30 (+°0 1)3 4pu12
10 11 12 13
24 25 26 27
38 39 40 41
Using the function {a w} as the left operand demonstrates how the dyadic case of
the rank operator works.

10 20 30 ({o w}°0 1)3 4p112

10{0 1 2 3

20| 5 6 7

30|18 9 10 11

Note that a right operand of ~ 1 applies the function between the major cells (in this
case elements) of the left argument, and the major cells (in this case rows) of the right
argument.

10 20 30 ({0 w}o71)3 4pr12

10{0 1 2 3

20|14 5 6 7

30|18 9 10 11




Chapter 2: Primitive Operators 149

Reduce R«f/[K]Y

f must be a dyadic function. Y may be any array whose items in the sub-arrays along
the Kth axis are appropriate to function f.

The axis specification is optional. If present, K must identify an axis of Y. Ifabsent,
the last axis of Y is implied. The form R«f #Y implies the first axis of Y.

R is an array formed by applying function f between items of the vectors along the
Kth (or implied) axis of Y.

Table 11: Identity Elements

Function Identity
Add + 0
Subtract - 0
Multiply x 1
Divide + 1
Residue | 0
Minimum L M(1)
Maximum [ -M(1)
Power * 1
Binomial ! 1

And A 1

Or v 0

Less < 0

Less or Equal < 1
Equal = 1
Greater > 0
Greater or Equal > 1

Not Equal # 0




150

Dyalog APL/W Language Reference

Encode T 0

Union v s}

Replicate /# 1

Expand \X 1

Rotate de 0
Notes:

M represents the largest representable value: typically this is 1.7E308, unless OFR is
1287, when the value is 1E6145.

Fora typical vector Y, the result is: € (12Y) f(22Y)f...... f(noY)

The shape of R is the shape of Y excluding the Kth axis. IfY isascalarthenR isa
scalar. Ifthe length ofthe Kth axis is 1, then R is the same as Y. Ifthe length of the
Kth axis is 0, then DOMAIN ERROR is reported unless function f occurs in Table 1,
in which case its identity element is returned in each element of the result.

Examples
v/0O1 0010

MAT

+/MAT
+#MAT

+/[1IMAT
579

+/(1 2 3)(4 5 6)(7 8 9)
12 15 18

,/'ONE"' 'NESS'
ONENESS

+/10
0
’/I '
DOMAIN ERROR
AR
A



Chapter 2: Primitive Operators 151

Reduce First Ref#£Y

The form R«<f #Y implies reduction along the first axis of Y. See Reduce above.

Reduce N-Wise ReXf/[K]Y

f must be a dyadic function. X must be a simple scalar or one-item integer array. Y
may be any array whose sub-arrays along the Kth axis are appropriate to function f.

The axis specification is optional. If present, K must identify an axis of Y. If absent,
the last axis of Y is implied. The form R<Xf #Y implies the first axis of Y.

R is an array formed by applying function f between items of sub-vectors of length X
taken from vectors along the Kth (or implied) axis of Y.

X can be thought of as the width of a ‘window’ which moves along vectors drawn
from the Kth axis of Y.

If X is zero, the resultisa (pY)+(ppY)=1ppY array of identity elements for the
function f. See Identity Elements on page 149.

If X is negative, each sub-vector is reversed before being reduced.

Examples

4
1234

3+/14Aa (1+2+3) (2+3+4)
6 9

2+/14a (1+2) (2+3) (3+4)
357

1+/14a (1) (2) (3) (W)
12 34

0+/14p Identity element for +
000O00O0

0x/14p Identity element for x
11111

2,/14a (1,2) (2,3) (3,4)
12 23 34

“2,/1t4p (2,1) (3,2) (4,3)
21 32 43




152 Dyalog APL/W Language Reference

Scan R«f\[K]Y

f may be any dyadic function that returns a result. Y may be any array whose items
in the sub-arrays along the Kth axis are appropriate to the function f.

The axis specification is optional. If present, K must identify an axis of Y. Ifabsent,
the last axis of Y is implied. The form R«fXY implies the first axis of Y.

R is an array formed by successive reductions along the Kth axis of Y. IfV is a typical
vector taken from the Kth axis of Y, then the Ith element of the result is determined
as f/ItV.

The shape of R is the same as the shape of Y. IfY is an empty array, then R is the
same empty array.
Examples

v\O0 0
001111

[N

0010

M1 1
1110000

[

0111
+\1 2 3 45
136 10 15

+\(1 2 3)(4 5 6)(7 8 9)
123 579 12 15 18



Chapter 2: Primitive Operators

153

[
~N N
w

+\[1]M

—_
~N N
w

,\"ABC'
A AB ABC

T«'ONE(TWO) BOOK(S)'

#\Te' ()"
0001111 000000110

((Te' ()")v=\Te'()")/T
ONE BOOK

Scan First

R+f\Y

The form R«f XY implies scan along the first axis of Y

. See Scan above.




154

Dyalog APL/W Language Reference

Spawn

{R}<{X}fRY

& is a monadic operator with an ambivalent derived function. & spawns a new thread
in which f is applied to its argument Y (monadic case) or between its arguments X
and Y (dyadic case). The shy result of this application is the number of the newly cre-

ated thread.

When function fterminates, its result (if any), the thread result, is returned. If the
thread number is the subject of an active JTSYNC, the thread result appears as the res-
ult of JTSYNC. Ifno JTSYNC is in effect, the thread result is displayed in the session

in the normal fashion.

Note that & can be used in conjunction with the each operator ~ to launch many

threads in parallel.

Examples
&Y A
0.25
O«<+8&4 A
1
0.25
FOO&88 A
2 FOO&3 A
{NIL}&O A
¢& 'NIL' A

X.G0O0&99 A
¢&'0dl 2' A
'NS'¢&'FO0' n

PRT&40nl 9 n

Reciprocal in background

Show thread number

Spawn monadic function.
dyadic

niladic

thread in remote space.
Execute async expression.
remote

PRT spaces in parallel.



Chapter 2: Primitive Operators 155

Variant

{R}«{X}(f B B)Y

The Variant operator [f] specifies the value of an option to be used by its left operand
function f. An option is a named property of a function whose value in some way
affects the operation of that function.

For example, the Search and Replace operators include options named IC and
Modewhich respectively determine whether or not case is ignored and in what man-
ner the input document is processed.

One of the set of options may be designated as the Principal option whose value
may be set using a short-cut form of syntax as described below. For example, the Prin-
cipal option for the Search and Replace operators is IC.

[l and JOPT are synonymous though only the latter is available in the Classic Edi-
tion.

For the operand function with right argument Y and optional left argument X, the
right operand B specifies the values of one or more options that are applicable to that
function. B may be a scalar, a 2-element vector, or a vector of 2-element vectors
which specifies values for one or more options as follows:

e If B is a 2-element vector and the first element is a character vector, it spe-
cifies an option name in the first element and the option value (which may
be any suitable array) in the second element.

e If B is a vector of 2-element vectors, each item of B is interpreted as above.

e If B is a scalar (a rank-0 array of any depth), it specifies the value of the Prin-
cipal option,

Option names and their values must be appropriate for the left operand function, oth-
erwise DOMAIN ERROR (error code 11) will be reported.

Example
tn<'Dick' (OFCREATE[E'Z' 1)0



156

Dyalog APL/W Language Reference

The following illustrations and examples apply to functions derived from the Search
and Replace operators.

Examples of operand B

The following expression sets the IC option to 1, the Mode optionto 'D' and the
EOL optionto 'LF".

[('Mode' 'D')('IC' 1)('EOL' 'LF')
The following expression sets just the EOL property to 'CR".
[J'eoL’ 'CR'

The following expression sets just the Principal option (which for the Search and
Replace operatorsis IC)to 1.

B 1

The order in which options are specified is typically irrelevant but if the same option
is specified more than once, the rightmost one dominates. The following expression
sets the option ICto 1:

EB('ICc" o) ('IC' 1)

The Variant operator generates a derived function f[IB and may be assigned to a
name. The derived function is effectively function f bound with the option values
specified by B.

The derived function may itself be used as a left operand to Variant to produce a
second derived function whose options are further modified by the second applic-
ation of the operator. The following sets the same options as the first example above:

['Mode' 'D'EI'IC' 1[I'EOL' 'LF'

When the same option is specified more than once in this way, the outermost (right-
most) one dominates. The following expression also sets the option IC to 1:

E'ICc' ofl'IC' 1



Chapter 2: Primitive Operators 157

Further Examples

The following derived function returns the location ofthe word 'variant ' within
its right argument using default values for all the options.

f1 « 'variant' [OS O
f1 'The variant Variant operator'
L

It may be modified to perform a case-insensitive search:

(f1 B 1) 'The variant Variant operator'
b 12

This modified function may be named:

f2 « f1 [0 1
f2 'The variant Variant operator'
b 12

The modified function may itself be modified, in this case to revert to a case sensitive
search:

f3 « f2 0
f3 'The variant Variant operator'
L

This is equivalent to:

(f1 B 1 [ 0) 'The variant Variant operator'



158 Dyalog APL/W Language Reference




Chapter 3: The I-Beam Operator 159

Chapter 3:

The |-Beam Operator

I-Beam

R«{X}(AT)Y

I-Beam is a monadic operator that provides a range of system related services.

WARNING: Although documentation is provided for I-Beam functions, any service
provided using [-Beam should be considered as “experimental” and subject to
change — without notice - from one release to the next. Any use of [-Beams in applic-
ations should therefore be carefully isolated in cover-functions that can be adjusted if
necessary.

A is an integer that specifies the type of operation to be performed as shown in the
table below. Y is an array that supplies further information about what is to be done.

X may or may not be required depending on A.

R is the result of the derived function.

A Derived Function

8 Inverted Table Index-of

181 Unsqueezed Type

200 Syntax Colouring

219 Compress/Decompress Vector of Short Integers
220 Serialise/Deserialise Array

1111 Number of Threads

1112 Parallel Execution Threshold

1113 Thread Synchronisation Mechanism




160 Dyalog APL/W Language Reference

Derived Function

1159

Update Function Time and User Stamp

2000

Memory Manager Statistics

2002

Specify Workspace Available

2010

Update DataTable

2011

Read DataTable

2015

Create Data Source

2022

Flush Session Caption

2023

Close all Windows

2100

Export to Memory

2400

Set Workspace Save Options

2401

Expose Root Properties

3002

Disable Component Checksum Validation

4000

Fork New Task

4001

Change User

4002

Reap Forked Tasks

4007

Signal Counts

16807

Random Number Generator




Chapter 3: The I-Beam Operator 161

Inverted Table Index Of R«X(8I)Y

This function computes X index-of Y (viz. X1 Y) where X and Y are compatible inver-
ted tables. R is the indices of Y in X.

An inverted table is a (nested) vector all of whose items have the same number of
major cells. That is, 1=ppw and (#>w)=#"w. An inverted table representation of
relational data is more efficient in time and space than other representations.

The following is an example of an inverted table:

X<(10 3pfa) (110) 'metalepsis’
X

ABC|0 1 2 3 4 5 6 7 8 9[metalepsis
DEF
GHI
JKL
MNO
PQR
STU
VWX
YZA
BCD

Using inverted tables, it is often necessary to perform a table look-up to find the
"row" indices of one in another. Suppose there is a second table Y:

Y«(ce3 1 4 1 5 9)["X
Y

GHI 31 4159 tmamli
ABC
JKL
ABC
MNO
YZA

To compute the indices of Y in X using dyadic t, it is necessary to first un-invert each
of'the tables in order to create nested matrices that 1 can handle.



162 Dyalog APL/W Language Reference

unvert « {§tcs 1w}
unvert X

ABC|O|m

DEF([1fe

GHI|2(t

JKL([3|a

MNO| 4| L

PQR|5(e

sTul6|p

VWX|7(s

YZA|8]i

BCD|9]s

(unvert X) v (unvert Y)
3141509

Each un-inverted table requires considerably more workspace than its inverted form,
so if the inverted tables are large, this operation is potentially expensive in terms of
both time and workspace.

81 is an optimised version of the above expression.

X (81) Y
314159



Chapter 3: The I-Beam Operator 163

Unsqueezed Type R«181IY

Y is any array.

The result R is an integer scalar containing an integer value which indicates the type
of'the array. For further information see Data Representation (Monadic) on page 258.

1811 is functionally identical to monadic [JDR, except that no attempt is made to
squeeze the data into smaller data types. [IDR always attempts to squeeze the data;
1811 does not, but if a workspace compaction occurs during execution of 1811, the
data may still be squeezed before the type is identified.

Example

Odr 111 1000
11

(1811) 111 1000
163




164 Dyalog APL/W Language Reference

Syntax Colouring R«2001Y

This function obtains syntax colouring information for a function.

Y is a vector of character vectors containing the [JNR representation of a function or

operator.

R is a vector of integer vectors with the same shape and structure of Y in which each
number identifies the syntax colour element associated with the corresponding char-
acterin Y.

Llo''

{(tw),t 200w} 'foo; local' 'global' 'local«pp''he

foo; local 21 21 21 19 3 31 31 31313100000
global 7 7 7 7T 7 7 0 0O 0 O0O0OO0OOOCO
local«pp'hello’ 31 31 31 31 31 19 23 23 4 4 4 4 4 L4 4

In this example:

21
19
3
31
7
23

is the syntax identifier for “function name”
is the syntax identifier for “primitive”

is the syntax identifier for “white space”

is the syntax identifier for “local name”

is the syntax identifier for “global name”

is the syntax identifier for “idiom”




Chapter 3: The I-Beam Operator 165

Compress Vector of Short Integers ReX(2191)Y

In this section, the term sint_vector is used to refer to a simple integer vector whose
items are all in the range “128 to 127 i.e. they are type 83. For further information
see Data Representation (Monadic) on page 258.

In most cases this I-Beam functionality will be used in conjunction with 2201 (Seri-
alise/Deserialise Array). However, it may be possible to pass the raw compressed
data to and from other applications.

X specifies the operation to be performed, either compression or decompression, the
compression library to be used, and any optional parameters. Y contains the data to
be operated on.

Compression
Y must be a sint_vector.

R is a two item vector, each of which is a sint_vector. R[ 1] describes the com-
pression, and R[ 2] contains the raw data which is the result of applying the com-
pression library to the input data Y.

X is specified as follows:

X[1] X[2] Compression Library
1 n/a LZ4
2 0.9 zlib
3 0.9 gzip

If LZ4 compression is required, then X must either be a scalar or a one element vector.
Otherwise, X[ 2 ], if present, specifies the compression level; higher numbers pro-
duce better compression, but take longer.

Decompression

R is a sint_vector, containing the output of applying the decompression library to the
input data, Y.

If X is a scalar or a one item vector, and has the value 0, then Y must be a vector of
two items which is the result of previously calling 219 to compress a sint_vector.



166 Dyalog APL/W Language Reference

Otherwise, X is a scalar or one or two element vector. The first element of X must be
one of the following values.

X[1] Compression Library
-1 Lz4
2 zlib
3 gzip

The second, optional, element of X specifies the length of the uncompressed data. Its
presence results in a more efficient use of the compression library.

X may not be a two item vector whose first item has the value 0.

Examples

sint<«{w-256xw>127}

utf8<«'UTF-8"'o[Jucs

str<'empty<6'

H4vesint utf8 str
101 109 112 116 121 30 7122 ~112 30 ~115 ~84

Hcomp«l (219I) v
8 551 0000 11 780 101 109 112 116 121 30 7122 112
~30 7115 "84

utf8 256| 0(2191)comp
empty<«6

utf8 256| ~1(2191)2>comp
empty<«6



Chapter 3: The I-Beam Operator 167

Serialise/Deserialise Array R«X(2201)Y

In this section, the term sint_vector is used to refer to a simple integer vector whose
items are all in the range “128 to 127 i.e. they are type 83. For further information
see Data Representation (Monadic) on page 258.

It is expected that in many cases this [-Beam functionality will be used in con-
junction with 2191 - Compress/Decompress vector of short integers. It would also
be possible to encrypt the serialised form and write to a file (either component or nat-
ive), and reverse the process at a later date.

X is a scalar which can take the value O or 1.

When X is 1, Y can be any array. The result R is the serialised form of the array,
presented as a sint_vector.

When X is 0, Y must be a sint_vector. The result R is an array whose serialised form is
represented by Y.

Typically it is not possible to construct a vector which can be deserialised; it is
expected that the only source of a vector which can be deserialised is the result of
using 1(2201) to serialise an array.

The result of 1 (2201 ) will differ between interpreters of differing widths and edi-
tions, but the resulting vector can be deserialised in other interpreters, with the excep-
tion that, like arrays in component files, it may not be possible to deserialise an array
which was serialised in a later interpreter

The following identity holds true:
A= 0(2201) 0(2191) 1(2191) 1(2201) A

Example

a<'ab'
b<«1(220I)a
b
33 7108 5 00 0313900200097 98 00
c«0(2201)b
c=a



168 Dyalog APL/W Language Reference

Number of Threads Re«1111IY

Specifies how many threads are to be used for parallel execution.
IfY has the value 8, R is the number of virtual processors in the machine.

Otherwise, Y is an integer that specifies the number of threads that are to be used
henceforth for parallel execution. Prior to this call, the default number of threads is
specified by the environment variable APL_MAX_THREADS. Ifthis variable is not
set, the default is the number of virtual processors that the machine is configured to
have.

R is the previous value.

To reset the number of threads to be the same as the number of virtual processors run:

{}11111 111118

Parallel Execution Threshold R«11121Y

Y is an integer that specifies the array size threshold at which parallel execution takes
place. If a parallel-enabled function is invoked on an array whose number of ele-
ments is equal to or greater than this threshold, execution takes place in parallel. If
not, it doesn’t.

Prior to this call, the default value of the threshold is specified by an environment
variable named APL._MIN PARALLEL. Ifthis variable is not set, the default is
32768.

R is the previous value

Thread Synchronisation Mechanism R«11131Y

Y is Boolean and specifies whether or not the main thread does a busy wait for the
others to complete or uses a semaphore when a function is executed in parallel.

The default and recommended value is 0 (use a semaphore). This function is provided
only for Operating Systems that do not support semaphores.

A value of 1 must be set if you are running AIX Version 5.2 which does not support
Posix semaphores. Later versions of AIX do not have this restriction.

R is the previous value



Chapter 3: The I-Beam Operator 169

Update Function Time Stamp {R}«X(11591)Y

Y is an array of function names in the same format as the right argument of JAT. For
further information, see Attributes on page 220.

X is an array of function attributes in the same format as the output of JAT.

The shy result R is a vector of numeric items, one per each specified function con-
taining the following values:

No change was made; the name is not that of a function, or the function
was locked

1 | The time and user stamp were updated

Note that the last item of the function time stamp must be set to 0 otherwise 1159 I
will generate a DOMAIN ERROR. Additionally, the time stamp must be greater than
1970 1 1 0 0 0 O.

Example
ldisp OAT'Christmas’

0 0 0/2013 3 1 11 14 58 0|0|Richard

x<[JAT 'Christmas'
x[2 4]«(2012 12 25 11 59 0 0)('Santa')
x (11591) 'Christmas'

ldisp OAT'Christmas’

0 0 0/2012 12 25 11 59 0 0|0|Santa




170 Dyalog APL/W Language Reference

Memory Manager Statistics R«{X}(20001)Y

This function returns information about the state of the workspace and provides a
means to reset certain statistics and to control workspace allocation. This I-Beam is
provided for performance tuning and is VERY LIKELY to change in the next
release.

Y is a simple integer scalar or vector containing values listed in the table below.

If X is omitted, the result R is an array with the same structure as Y, but with values in
Y replaced by the following statistics. For any value in Y outside those listed below,
the result is undefined.

Value |Description

0 Workspace available (a "quick" [JWA)

1 Workspace used

2 Number of compactions since the workspace was loaded

3 Number of garbage collections that found garbage

4 Current number of garbage pockets in the workspace

12 Sediment size

13 Current workspace allocation, i.e. the amount of memory that is
actually being used
Workspace allocation high-water mark, i.e. the maximum amount

14 of memory that has been used since the workspace was loaded or
since this count was reset

15 Limit on minimum workspace allocation

16 Limit on maximum workspace allocation

Note that while all other operations are relatively fast, the operation to count the
number of garbage pockets (4) may take a noticeable amount of time, depending
upon the size and state of the workspace.

Examples

2000z0
55414796
20000 1 2 3 4 12 13 14 15 16
55414796 10121204 5 0 O 2120524 34489168 34489168 0 65536000




Chapter 3: The I-Beam Operator 17

If X is specified,it must be either a simple integer scalar, or a vector of the same length
as Y, and the result R is 8. In this case, the value in Y specifies the item to be set and
and X its new value according to the table below.

Value |Description

2 0 resets the compaction count; no other values allowed

3 0 resets the count of garbage collections that found garbage; no
other values allowed

14 0 resets the workspace allocation high-water mark; no other values
allowed

s Sets the minimum workspace allocation to the corresponding value

in X; must be between 0 and the current workspace allocation

Sets the maximum workspace allocation to the corresponding value
16 in X; 0 implies MAXWS otherwise must be between the current
workspace allocation and MAXWS.

Notes:

e Note that the workspace allocation high-water mark indicates a minimum
value for MAXWS.

e Limiting the maximum workspace allocation can be used to prevent code
which grabs as much workspace as it can from skewing the peak usage res-
ult.

e Limiting the minimum workspace allocation can avoid repeatedly com-
mitting and releasing memory to the Operating System when memory usage
is fluctuating.

Examples

200012 3
6 0 33216252
0 (2000x)2 3 14 A Reset compaction count

20002 3
00
30000000 40000000(2000x)15 16 A Restrict min/max ws

(20001)15 16
30000000 40000000

0 (2000T)15 16 A Reset min/max ws

(2000x)15 16
0 65536000



172

Dyalog APL/W Language Reference

(20001)13 14 A Current, peak WS allocation
4072532 4072532

a«10ebp'x' A Increase WS allocation

(20001)13 14 A Current, peak WS allocation
15108580 15108580

Jex 'a' ¢ {}Owa A Decrease current WS allocation

(20001)13 14 A Current, peak WS allocation
1962856 15108580

0 (2000x) 14 n Reset High-water mark

(20001)13 14 A Current, peak WS allocation
1962856 1962856



Chapter 3: The I-Beam Operator 173

Specify Workspace Available R«20021Y

This function is identical to the system function [JWA except that it provides the
means to specify the amount of memory 1 that is committed for the workspace rather
than have it assigned by the internal algorithm. Committed memory is memory that is
allocated to a specific process and thereby reduces the amount of memory available
for other applications.

Like JWA, 20021 compacts the workspace so that it occupies the minimum number
of bytes possible, adds an extra amount, and then de-commiits all the remaining
memory that it is currently using, allowing it to be allocated by the operating system
for use by other applications.

The argument Y is an integer which specifies the size, in bytes, of this extra amount.

The purpose of the extra amount is to reduce the likelihood that APL will imme-
diately have to ask the operating system to re-commit memory that it has just de-com-
mitted, something that would have a deleterious effect on performance. At the same
time, if the extra amount were to be excessively large, APL could starve other applic-
ations of memory which itself could reduce the effective performance of the system.
Whereas [JWA calculates the size of the extra amount using a simple internal
algorithm, 20021 uses a value specified by the programmer.

R is an integer which reports the size in bytes of the memory committed for the work-
space, and is the sum of the minimum amount required by the workspace itself and
the argument Y.

Ifthe size of the committed workspace would be smaller than the minimum value
(specified by 20001I) or larger than the maximum value (which defaults to MAXWS),
a DOMAIN ERROR is signalled.

See also Memory Manager Statistics on page 170.

Note that this function does not change the size of the extra amount that will be
applied subsequently by WA or by an automatic compaction.

IThe term memory here means virtual memory which includes memory mapped to disk.



174 Dyalog APL/W Language Reference

Update DataTable R«{X}2010zxY

This function performs a block update of an instance of the ADO.NET object Sys-
tem.Data.DataTable. This object may only be updated using an explicit row-wise
loop, which is slow at the APL level. 2010 implements an internal row-wise loop
which is much faster on large arrays. Furthermore, the function handles NULL values
and the conversion of internal APL data to the appropriate NET datatype in a more
efficient manner than can be otherwise achieved. These 3 factors together mean that
the function provides a significant improvement in performance compared to calling
the row-wise programming interface directly at the APL level.

Y isa 2,3 or4-item array containing dtRef,Data,Nul lValues and Rows as
described in the table below.

The optional argument X is the Boolean vector ParseF Lags as described in the

table below.
Argument Description
dtRef A reference to an instance of System.Data.DataTable.
Data A matrix with the same number of columns as the table.

An optional vector with one element per column, containing
Nul LValues | the value which should be mapped to DBNull when this
column is written to the DataTable.

Row indices (zero origin) of the rows to be updated. If not

Rows provided, data will be appended to the DataTable.

A Boolean vector, where a 1 indicates that the corresponding
ParsefF Lags | element of Data is a string which needs to be passed to the
Parse method of the data type of column in question.




Chapter 3: The I-Beam Operator 175

Example

Shown firstly for comparison is the type of code that is required to update a DataT-
able by looping:

(QUSING«'System' 'System.Data,system.data.dll’

dt<[INEW DataTable

ac«{dt.Columns.Add o w}

'S1' 'S2' 'I1' 'D1' ac”String String Int32 DateTime
S1 S2 1I1 D1

NextYear<DateTime.Now+{[ONEW TimeSpan (4tw)} tn«365
data<(s"in),(np'odd' 'even'),(10|in),s;NextYear
2 Ltdata

364+ even 4 18-01-2011 14:03:29

365 odd 5 19-01-2011 14:03:29

ar<{(row«dt.NewRow).ItemArray«w ¢ dt.Rows.Add row}
t«<3>50ai ¢ ar’idata ¢ (3=0ai)-t
449

This result shows that this code can only insert roughly 100 rows per second (3°[0AI
returns elapsed time in milliseconds), because of the need to loop on each row and
perform a noticeable amount of work each time around the loop.

20101 does all the looping in compiled code:

dt.Rows.Clear A Delete the rows inserted above
SetDT«2010z
t«3o[JAI ¢ SetDT dt data o (3=[JAI)-t4

So in this case, using 201 0T achieves something like 10,000 rows per second.

Using ParseFlags

Sometimes it is more convenient to handle .NET datatypes in the workspace as
strings rather than as the appropriate APL array equivalent. The System.DateTime
datatype (which by default is represented in the workspace as a 6-element numeric
vector) is one such example. 201 0I will accept such character data and convert it to
the appropriate NET datatype internally.

If specified, the optional left argument X (ParseF Lags) instructs the system to
pass the corresponding columns of Data to the Parse() method of the data type in
question prior to performing the update.



176

Dyalog APL/W Language Reference

NextYear<«s 'DateTime.Now+{[INEW TimeSpan (4tw)} 1n«36

data<(s"in),(np'odd' 'even'),(10]|in),NextYear
2 4tdata

364+ even L4 18-01-2011 14:03:29

365 odd 5 19-01-2011 14:03:29

SetDT«20101 0 0 01 SetDT dt data

Handling Nulls

Ifapplicable, Nul LValues is a vector with as many elements as the DataTable has
columns, indicating the value that should be converted to System.DBNul L as data
is written. For example, using the same DataTable as above:

t
<null> odd 1 21-01-2010 14:50:19
two even 2 22-01-2010 14:50:19
three odd 99 23-01-2010 14:50:19

dt.Rows.Clear a Clear the contents of dt
SetDT dt t ('<null>' 'even' 99 '')

Above, we have declares that the string ' <nul L>" should be considered to be a

null value in the first column, 'even' in the second column, and the integer 99 in
the third.

Updating Selected Rows

Sometimes, you may have read a very large number of rows from a DataTable, but
only want to update a single row, or a very small number of rows. Row indices can
be provided as the fourth element of the argument to 2010I. If you are not using
Nul LValues,you can just use an empty vector as a placeholder. Continuing from
the example above, we could replace the first row in our DataTable using:

SetDT«20101
SetDT dt (1 4p'one' 'odd' 1 DateTime.Now) € O

Note

o the values must be provided as a matrix, even if you only want to update a
single row,
e row indices are zero origin (the first row has number 0).

Warning

If you are experimenting with writing to a DataTable, note that you should call
dt.Rows.Clear each time to clear the current contents of the table. Otherwise you will
end up with a very large number of rows after a while.



Chapter 3: The I-Beam Operator 177

Read DataTable R«{X}2011zxY

This function performs a block read from an instance of the ADO.NET object Sys-
tem.Data.DataTable. This object may only be read using an explicit row-wise loop,
which is slow at the APL level. 201 1 I implements an internal row-wise loop which
is much faster on large arrays. Furthermore, the function handles NULL values and
the conversion of NET datatypes to the appropriate internal APL form in a more effi-
cient manner than can be otherwise achieved. These 3 factors together mean that the
function provides a significant improvement in performance compared to calling the
row-wise programming interface directly at the APL level.

Y is a scalar or a 2-item array containing dtRef,and Nul lValues as described in
the table below.

The optional argument X is the Boolean vector ParseF Lags as described in the
table below.

The result R is the array Dat a as described in the table below.

Argument Description
dtRef A reference to an instance of System.Data.DataTable.
Data A matrix with the same number of columns as the table.

An optional vector with one element per column, containing
Nul lValues |the value to which a DBNull in the corresponding column of
the DataTable should be mapped in the result array Data.

A Boolean vector, where a 1 indicates that the corresponding
element of Data should be converted to a string using the
ToString () method of the data type of column in
question. It is envisaged that this argument may be extended
in the future, to allow other conversions — for example
converting Dates to a floating-point format.

Parsef lags




178

Dyalog APL/W Language Reference

First for comparison is shown the type of code that is required to read a DataTable by
looping:

t<3o5[JAI ¢ datal<«t([Jdt.Rows).ItemArray o (3>[AI)-t
191

The above expression turns the dt . Rows collection into an array using (], and mixes
the ItemArray properties to produce the result. Although here there is no explicit
loop, involved, there is an implicit loop required to reference each item of the col-
lection in succession. This operation performs at about 200 rows/sec.

20111 does the looping entirely in compiled code and is significantly faster:

GetDT«20111
t«3o50AI ¢ data2«GetDT dt ¢ (320AI)-t
25

ParseFlags Example

In the example shown above, 201 1T created 365 instances of System.DateTime
objects in the workspace. If we are willing to receive the timestamps in the form of
strings, we can read the data almost an order of magnitude faster:

t«3o50AI ¢ data3«0 0 0 1 GetDT dt ¢ (32[AI)-t
3

The left argument to 2011 I allows you to flag columns which should be returned as
the ToString () value of each object in the flagged columns. Although the res-
ulting array looks identical to the original, it is not: The fourth column contains char-
acter vectors:

2 4tdata3
364 even 4 18-01-2011 14:03:29
365 odd 5 19-01-2011 14:03:29

Depending on your application, you may need to process the text in the fourth
column in some way — but the overall performance will probably still be very much
better than it would be if DateTime objects were used.



Chapter 3: The I-Beam Operator 179

Handling Nulls

Using the DataTable produced by the corresponding example shown for 20101 it
can be shown that by default null values will be read back into the APL workspace
as instances of System.DBNull.

GetDT«20111>
J«z<GetDT dt

odd 1 21-01-2010 14:50:19
two 2 22-01-2010 14:50:19
three odd 23-01-2010 14:50:19

(1 18z).GetType
System.DBNull System.DBNull System.DBNull

However, by supplying a Nul LValues argument to 2011 I, we can request that
nulls in each column are mapped to a corresponding value of our choice; in this case,
"<null>', 'even', and 99 respectively.

GetDT dt ('<null>' 'even' 99 '")
<null> odd 1 21-01-2010 14:50:19
two even 2 22-01-2010 14:50:19
three odd 99 23-01-2010 14:50:19



180 Dyalog APL/W Language Reference

Data Binding R«{X}2015zxY

Creates an object that may be used as a data source for WPF data binding.1

Data binding connects a Binding Target to a Binding Source. In WPF a Binding Tar-
get is a particular property of a user interface object; for example, the Text property
ofa TextBox object. A Binding Source is a Path to a value in a data object (which
may contain other values). The value of the Binding Source determines the value of
the Binding Target. If two-way binding is in place, a change in a user-interface com-
ponent causes the bound data value to change accordingly. In the example of the
TextBox, the value in the Binding Source changes as the user types into the
TextBox.

Y is a character vector containing one of the following:

e the name of a variable

o the name of a namespace containing one or more variables

o the name of a variable containing a vector of refs to namespaces, each of
which contains one or more variables.

If the name specified by Y doesn't exist or represents neither a variable nor a
namespace, the function reports DOMAIN ERROR. Currently, no further validation of
the structure and contents of Y is performed, but nothing other than the examples
described herein is supported.

Ifthe optional left argument X is given and Y is an variable other than a ref, X spe-
cifies the binding type for that variable. If Y specifies one or more namespaces, X spe-
cifies the names and binding types of each of the variables which are to be bound,
contained in the namespaces specified by Y.

The structure of X depends upon the structure of Y and is discussed later in this topic.

If X is omitted, all of the variables specified by Y are bound with default binding
types.

Here the term bind variable refers to any variable specified by X and Y to be bound,
and the term binding type means the NET data type to which the value of the bind
variable is converted before it is passed to the .NET interface.

It is beyond the scope of this document to fully explain the concepts of WPF data binding. See
Microsoft Developer Network, Data Binding Overview.



Chapter 3: The I-Beam Operator 181

20151 creates a Binding Source object R. This is a NET object which contains Path
(s) to one or more bind variables. This object may then be assigned to a property of a
WPF object or passed a s as a parameter to a WPF method that requires a Binding
Source.

Bind Variables and Bind Types
A bind variable should be of rank 2 or less. Higher rank arrays are not supported.

Ifnot specified by X, the binding type of a bind variable is derived from its content at
the time 201571 is executed. The binding type is then stored with the variable in the
workspace. There is no mechanism to change a variable's binding type without eras-
ing the variable and re-executing 2015I. If you change the type or rank ofa bind
variable while it is bound (for example from a variable to a namespace), the beha-
viour of the system is unpredictable.

The default binding type is derived as follow:

If the bind variable is a simple scalar number the default binding type is
System.Object. At the point when the value of the variable is passed to the NET
interface this will be cast to a numeric type such as System. Int16,
System.Int32,System.Int64,or System.Double,depending upon the
internal representation of the data. The NET property to which it is bound will typ-
ically only accept a single Type (for example System.Int32), so to avoid unpre-
dictable behaviour, it is recommended that the left argument X be used to specify the
binding type for numeric data.

Ifthe bind variable is a character scalar or vector, the default binding type is also
System.Object, but at the point when the value of the variable is passed to the
NET interface it will always be passed as System. String,which is suitable for
binding to any property that accepts a System. String, such as the Text property
ofa TextBox.

If the bind variable is a vector other than a simple character vector, such as a vector of
character vectors, a simple numeric vector, or a vector of NET objects, the bind type
will be a collection. This is suitable for binding to any property that represents a col-
lection (list) of items, for example the TtemsSource property ofa ListBox.

Ifthe bind variable is a matrix, the default binding type is System.Object.Itis
likely that in a future release a rank-2 array will be bound asa DataTable.

All the examples that follow assume JUSING<«'System'.



182

Dyalog APL/W Language Reference

Binding Single Variables
In this case, Y specifies the name of a variable which is one of the following:

e character vector (or scalar)

e numeric scalar

e scalar .NET object (not currently supported)
e vector of character vectors

e numeric vector

e vector of .NET objects

e matrix (not currently supported)

X (if specified) defines the binding type for the bind variable named by Y and is a
single .NET Type.

Note that in the following examples, the reason for expunging the name first is dis-
cussed in the section headed Rebinding a Variable.

Binding a Character Vector
This example illustrates how to bind a variable which contains a character vector.

JEX'txtSource'
txtSource<HELLO WORLD'
bindsource«<2015I'txtSource’

In this example, the binding type of the variable txtSource will be
System.String, suitable for binding to any property that accepts a String, such as
the Text property ofa TextBox.

Binding a Numeric Scalar

This example illustrates how to bind a variable which contains a numeric scalar
value.

JEX'sizeSource'
sizeSource<«36
bindSource«Int32(20151) 'sizeSource’

In this example, the left argument Int 32 specifies that the binding type for the vari-
able sizeSource is to be System. Int32. This means that whenever APL passes the
value of sizeSource to the control, it will first be cast to an Int32. This makes it
suitable, for example, for binding to the FontSize property ofa TextBox.



Chapter 3: The I-Beam Operator 183

A number of controls have a Value property which must be expressed as a
System.Double. The next example shows how to create a Binding Source for
such a variable.

JEX'valSource'
valSource<«42
bindSource«Double(20151I) 'valSource'

Binding a Scalar .NET Object

This is not supported in the first release of Version 14.0. It is intended that it will be
added in due course.

Binding a Vector of Character Vectors

WPF data binding provides the means to bind controls that display lists of items,
such as the ListBox, ListView, and TreeView controls, to collections of data.
These controls are all based upon the TtemsControl class. To bind an
ItemsControl to acollection object, you use its ItemsSource property.

This example illustrates how to bind a variable which contains a vector of character
vectors.

OJEX'itemsSource'
jtemsSource<'beer' 'wine' 'water'
bindsource«2015I'itemsSource’

In this example, the binding type of the variable i temsSource will be
System.Collection, suitable for binding to the ItemSource property of an
ItemsControl.

Binding a Numeric Vector

By default, a numeric vector is bound in the same way as a vector of character vec-
tors,i.e.as a System.Collection,suitable for binding to the ITtemSource
property ofan ItemsControl.

JeX'yearsSource'
yearsSource<«2000+120
bindSource<«2015I'yearsSource’

In principle, a numeric vector may alternatively be bound to a WPF property that
requires a 1-dimensional numeric array, by specifying the appropriate data type (e.g.
Int32, Double) for the array as the left argument. For example:

JEX'arraySource'
arraySource<«i42 24
bindSource«Int32 (2015I) 'arraySource’



184

Dyalog APL/W Language Reference

Binding a Vector of .NET Objects

A vector of NET objects is bound in the same way as a vector of character vectors,
i.e.asa System.Collection, suitable for binding to the ITtemSource property
ofan TtemsControl.

tEaster
2015 4 12
2016 5 1
2017 4 16
2018 4+ 8
2019 4+ 28
2020 4 19
2021 5 2
2022 4 24
2023 4 16
2024 5 5
dt<{[INEW DateTime w} 'Easter
bindSource«<20151'dt"'
Binding a Matrix

Currently, the system allows a bind variable to contain a matrix (simple or nested)
but the default binding type is System.Object. This is unlikely to be of any use.
It is intended that in a future release of Dyalog APL a matrix will be bound as a
DataTable orsimilar.

Rebinding a Variable

As mentioned earlier, when a variable is bound its binding type is stored with it in
the workspace. If you subsequently attempt to rebind the variable there is no mech-
anism in place to alter the binding type. If the current binding type (whether spe-
cified by the left argument X, or by being the default) differs from the saved one, the
function will generate a DOMAIN ERROR.

num<L42
bs<«2015I ' num'

bs«'Int32'(20151) 'num'
DOMAIN ERROR: You cannot redefine the binding types
bs«'Int32'(20151) 'num'

A

In this example, perhaps the programmer realised after binding num (with a default
binding type of System.Object) that the binding type should really be
System.Int32,and simply was trying to correct the error. To avoid this problem,
it is recommended that you expunge the name before using it.



Chapter 3: The I-Beam Operator 185

OJex 'num'
num<i2
bs«2015x'num'a (default) binding type System.Object

OEX 'num'
num<«y42
bs«Int32(2015I) 'num'

Binding A Namespace

In this case, Y specifies the name of a namespace that contains one or more variables.
By default, each variable is bound using its default binding type as described above.
Objects other than variables are ignored.

Ifit is required to specify the binding type of any of the variables, or if certain vari-
ables are to be excluded, the left argument is a 2-column matrix. The first column con-
tains the names of the variables to be bound, and the second column their binding

types.
Example

The following code snippet binds a namespace containing two variables named
txtSource and sizeSource. In this case, the name of each variable may be spe-
cified as the Path for a WPF property that requiresa Stringoran Int32. For
example, if bindSource were assigned to the DataContext property ofa
TextBox, its Text property could be bound to txtSource and its FontSize
property to sizeSource

src«[INS "'

src.txtSource«'Hello World'

src.sizeSource<«36

options<«2 2p'txtSource'String'sizeSource'Int32
bindSource«options(20151) 'src'

Binding a Vector of Namespaces

In this case, Y specifies the name of a variable that contains a vector of refs to
namespaces. In this case, the result R is of type
Dyalog.Data.DataBoundCollectionHandler which is suitable for bind-
ing to a WPF property that requires an IEnumerable implementation, such as the
ItemsSource property of the DataGrid.

Each namespace in Y represents one of a collection of instances of an object, which
exports a particular set of properties for binding purposes. For example, Y could spe-
cify a wine database where each namespace represents a different wine, and each
namespace contains the same set of variables that contain the name, price (and so
forth) of each wine.



186 Dyalog APL/W Language Reference

Example

winelist<[ONS " (pWines)pc'
winelist.Name<Wines
winelist.Price«0.01x10000+?(pWines)p10000

bindSource«2015I'winelist'

Flush Session Caption R«20221Y

Under Windows, the Session Caption displays information such as the name of the
current workspace. The contents of the Caption can be modified: see Window
Captions in the Installation and Configuration Guide for more details.

However, the Caption is updated only at the six-space prompt; calling OLOAD for
example from within a function will not result in the Caption being updated at the
end of the [JLOAD.

This [-Beam causes the Session Caption to be updated (flushed) when called. Note
that this I-Beam does not alter the contents of the Caption.

Example
202210



Chapter 3: The I-Beam Operator 187

Close All Windows R«20231Y

Under Windows the option, Windows -> Close All Windows allows the user to close
all open Editor and Tracer Windows, but does not reset the State Indicator.

This [-Beam mimics this behaviour, thus allowing the user to write code which can
close all windows before attempting to save the workspace; it is not possible to save
a workspace if any editor or tracer windows are open.

Under UNIX, this is the only mechanism for closing all such windows.

Example
202310

Export To Memory R«21001Y

This function exports the current active workspace as an in-memory .NET Assembly.
Y may be any array and is ignored.

The result R is 1 if the operation succeeded or 0 if it failed.

Set Workspace Save Options: R«24001Y

This function sets a flag in the workspace that determines what happens when it is
saved. The flag itselfis part of the workspace and is saved with it.

Ifthe flag is set, all Trace, Stop and Monitor settings will be cleared whenever the
workspace is saved, whether by ) SAVE,[JSAVE orby File/Save from the Session
menubar.

Y must be 1 (set the flag) or 0 (clear the flag).
The result R is the previous value of the flag.

This function may be extended in the future and a left-argument may be added.

Example

(24001)1
0
)SAVE
0 Trace bits cleared.
3 Stop bits cleared.
0 Monitor bits cleared.
temp saved Sat Apr 05 17:01:30 2014




188 Dyalog APL/W Language Reference

Expose Root Properties R«2401IY

This function is used to expose or hide Root Properties, Event and Methods.
IfY is 1, Root Properties, Events and Methods are exposed.

IfY is 0, no further Root Properties, Events or Methods are exposed; however any
that have already been exposed will remain so.

This functionality is available in Windows versions by selecting or unselecting the
Expose Root Properties Menultem in the Options Menu in the Session. Note that
deselecting this Menultem only affects future references to Root Properties, Events or
Methods.

This function is the only mechanism available under non-Windows versions of
Dyalog APL; the state of this setting is saved in the workspace, and therefore cannot
be controlled by an environment variable.

Example

#.GetEnvironment 'MAXWS'
VALUE ERROR
#.GetEnvironment 'MAXWS'

A

240111
0

#.GetEnvironment 'MAXWS'
64M

240110
1

#.GetEnvironment 'MAXWS'
64M

#.GetCommandLine
VALUE ERROR
#.GetCommandLine



Chapter 3: The I-Beam Operator 189

Disable Component Checksum Validation {R}«30021Y

Checksums allow component files to be validated and repaired using [JF CHK.

From Version 13.1 onwards, components which contain checksums are also val-
idated on every component read.

Although not recommended, applications which favour performance over security
may disable checksum validation by OF READ using this function.

Y is an integer defined as follows:

Value

Description

0

[OFREAD will not validate checksums.

OFREAD will validate checksums when they are present. This is the
default.

The shy result R is the previous value of this setting.




190

Dyalog APL/W Language Reference

Fork New Task (UNIX only) R«<4000IY

Y must be is a simple empty vector but is ignored.

This function forks the current APL task. This means that it initiates a new separate
copy of the APL program, with exactly the same APL execution stack.

Following the execution of this function, there will be two identical APL processes
running on the machine, each with the same execution stack and set of APL objects
and values. However, none of the external interfaces and resources in the parent pro-
cess will exist in the newly forked child process.

The function will return a result in both processes.

e In the parent process, R is the process id of the child (forked) process.
e In the child process, R is a scalar zero.

The following external interfaces and resources that may be present in the parent pro-
cess are not replicated in the child process:

Component file ties

Native file ties

Mapped file associations
Auxiliary Processors

NET objects

Edit windows

Clipboard entries

GUI objects (all children of ' . ")
I/O to the current terminal

Note that External Functions established using [JNA are replicated in the child pro-
cess.

The function will fail with a DOMAIN ERROR ifthere is more than one APL thread
running.

The function will fail witha FILE ERROR 11 Resource temporarily
unavai lable ifan attempt is made to exceed the maximum number of processes
allowed per user.



Chapter 3: The I-Beam Operator 191

Change User (UNIX only) R«4001I1Y

Y is a character vector that specifies a valid UNIX user name. The function changes
the userid (uid) and groupid (gid) of the process to values that correspond to the spe-
cified user name.

Note that it is only possible to change the user name if the current user name is root
(uid=0).

This call is intended to be made in the child process after a fork (4000I8) in a pro-
cess with an effective user id of 7oot. It can however be used in any APL process with
an effective user id of root.

If the operation is successful, R is the user name specified in Y.
If the operation fails, the function generatesa FILE ERROR 1 Not Owner error.

If the argument to 4001 I is other than a non-empty simple character vector, the func-
tion generates a DOMAIN ERROR.

If the argument is not the name of a valid user the function generatesa FILE ERROR
3 No such process.

If the argument is the same name as the current effective user, then the function
returns that name, but has no effect.

If the argument is a valid name other than the name of the effective user id of the cur-
rent process, and that effective user id is not root the function generatesa FILE
ERROR 1 Not owner.



192

Dyalog APL/W Language Reference

Reap Forked Tasks (UNIX only) R«<40021Y

Under UNIX, when a child process terminates, it signals to its parent that it has ter-
minated and waits for the parent to acknowledge that signal. 40021 is the mech-
anism to allow the APL programmer to issue such acknowledgements.

Y must be a simple empty vector but is ignored.

The result R is a matrix containing the list of the newly-terminated processes which
have been terminated as a result of receiving the acknowledgement, along with
information about each of those processes as described below.

R[ ;1] is the process ID (PID) of the terminated child

R[ ;2] is "1 ifthe child process terminated normally, otherwise it is the signal num-
ber which caused the child process to terminate.

R[ ;3] is ~1 ifthe child process terminated as the result of a signal, otherwise it is
the exit code of the child process

The remaining 15 columns are the contents of the rusage structure returned by the
underlying wait3 () system call. Note that the two timevalstructs are each
returned as a floating point number.

The current rusage structure contains:

struct rusage {
struct timeval ru utime; /* user time used */
struct timeval ru stime; /* system time used */

long ru maxrss; /* maximum resident set size */
long ru_ixrss; /* integral shared memory size */
long ru idrss; /* integral unshared data size */
long ru isrss; /* integral unshared stack size */
long ru minflt; /* page reclaims */

long ru majflt; /* page faults */

long ru_nswap; /* swaps */

long ru_inblock; /* block input operations */

long ru oublock; /* block output operations */
long ru_msgsnd; /* messages sent */

long ru_msgrcv; /* messages received */

long ru nsignals; /* signals received */

long ru_NvCcsw; /* voluntary context switches */

long ru nivcsw; /* involuntary context switches */




Chapter 3: The I-Beam Operator 193

40021 may return the PID of an abnormally terminated Auxiliary Processor; APL
code should check that the list of processes that have been reaped is a superset of the
list of processes that have been started.

Example

V tryforks;pid;fpid;rpid
[1] rpids«fpids«6

[2] :For i :In 15

[3] fpid«<4000x'' @ fork() a process
[4] A if the child, hang around for a while
[5] :If fpid=0

[6] oL 2xi

[7] [JoFF

[8] :Else

[9] p if the parent, save child's pid

+fpids,«fpid
:EndIf
:EndFor

[10]
[11]
[12]
[13]
[14] :For i :In 120

[15] oL 3

[16] A get Llist of newly terminated child processes
[17] rpid«4+002x""

[18] A and if not empty, make note of their pids
[19] :If Ozoprpid

[20] +rpids,«rpid[;1]

[21] :EndIf

[22] @A if all fork()'d child processes accounted for
[23] :If fpids=fpidsnrpids

[24] :Leave A quit

[25] :EndIf

[26] :EndfFor



194

Dyalog APL/W Language Reference

Signal Counts (UNIX only) R«40071Y

Y must be a simple empty vector but is ignored.

The result R is an integer vector of signal counts. The length of the vector is system
dependent. On AIX 32-bit it is 63 on AIX 64-bit it is 256 but code should not rely
on the length.

Each element is a count of the number of signals that have been generated since the
last call to this function, or since the start of the process. R[ 1] is the number of occur-
rences of signal 1 (SIGHUP), R[ 2] the number of occurrences of signal 2, and so
forth.

Each time the function is called it zeros the counts; it is therefore inadvisable to call
it in more than one APL thread.

Currently, only SIGHUP, SIGINT, SIGQUIT, SIGTERM and SIGWINCH are coun-
ted and all other corresponding elements of R are 0.



Chapter 3: The I-Beam Operator 195

Random Number Generator R«168071Y

Specifies the random number generator that is to be used by Roll and Deal.

Y is an integer that specifies which random number generator is to be enabled and
must be one of the numbers listed in the first column of the table below.

R is an integer that identifies the previous random number generator in use.

The 3 random number generators are as follows :

Id |Algorithm

0 Lehmer linear congruential generator.

1 Mersenne Twister.

2 Operating System random number generator.

Under Windows, the Operating System random number generator uses the
CryptGenRandom () function. Under UNIX/Linux it uses /dev/urandom[3].

The default random number generatorin a CLEAR WS is 1 (Mersenne Twister).

The Lehmer linear congruential generator RNG0 was the only random number gen-
erator provided in versions of Dyalog APL priorto Version 13.1. The imple-
mentation of this algorithm has several limitations including limited value range
(2%31), short period and non-uniform distribution (some values may appear more
frequently than others). It is retained for backwards compatibility.

The Mersenne Twister algortithm RNG/ produces 64-bit values with good dis-
tribution.

The Operating System algorithm RNG2 does not support a user modifiable random
number seed, so when using this scheme, it is not possible to obtain a repeatable ran-
dom number series.

For further information, see Random Link on page 416.



196 Dyalog APL/W Language Reference




197

Chapter 4:

System Functions

Dyalog includes a collection of built-in facilities which provide various services
related to both the APL and the external environment. They have distinguished case-
insensitive names beginning with the [J symbol and are implicitly available in a clear
workspace. Collectively, these facilities are referred to as System Functions but they
are variously implemented as constants, variables, functions, operators, and in one
case, as a namespace.

i 0 0A 0A OAI

OAN OARBIN OARBOUT OAT OAv

OAvU OBASE OCLASS OCLEAR OcMD

dcr dcs dct dcy 0o

OocT OoF ao1v OoL 0oM

OoMX aoQ OoRr 0eb 0OEM

O€EN Oex OEXCEPTION [OEXPORT |OFAPPEND
OFAVAIL |OFCHK OFcoPy OFCREATE |[OFDROP
OFERASE  |OFHIST OFHOLD OFIX gFLIB
OFMT OFNAMES OFNUMS OFPROPS |OFR
OFRDAC OFRDCI OFREAD OFRENAME |OFREPLACE
OFRESIZE |OFSIZE OFSTAC OFSTIE OFTIE
OFUNTIE |OFX OINSTANCES (0OIO0 OKL

dLc 0OLOAD dLock oLx OMAP

OML OMONITOR  [[ONA ONAPPEND |ONC
ONCREATE |[ONERASE ONEW ONL ONLOCK
ONNAMES  |[ONNUMS ONQ ONR ONREAD




198

Dyalog APL/W Language Reference

ONRENAME |[ONREPLACE |[ONRESIZE ONS ONSI
ONSIZE ONTIE ONULL ONUNTIE |[ONXLATE
OOFF QoPT doRr OPATH OPFKEY
app OPROFILE |OPW Or OREFS
ORL ORSI ORTL as OSAVE
aso ase OsH OSHADOW |0OSI
OSIGNAL |OSIZE Osm OsR OSRC
OSTACK OSTATE gsTop asvce dsvo
asvq OsVvR asvs aTc OTCNUMS
OTGET OTHIS aTID OTKILL OTNAME
OTNUMS adTPOOL aTPUuT OTRACE OTRAP
OTREQ aTs OTSYNC gucs OUSING
OVFI avr OwA awc awe

OWN aws OwWSID aOwx OXML
OxsI OxT




Chapter 4: System Functions 199

System Constants

System constants, which can be regarded as niladic system functions, return inform-
ation from the system. They have distinguished names, beginning with the quad
symbol,[J. A system constant may not be assigned a value. System constants may
not be localised or erased. System constants are summarised in the following table:

Name Description

0OA Underscored Alphabetic upper case characters
0A Alphabetic upper case characters

0AI Account Information

OAN Account Name

OAv Atomic Vector

0o Digits

(oM Diagnostic Message

(domx Extended Diagnostic Message

QdeN Event Number

OJEXCEPTION |Reports the most recent Microsoft NET Exception
gLc Line Count

ONULL Null Item

gso Screen (or window) Dimensions

aTc Terminal Control (backspace, linefeed, newline)
aTs Time Stamp

OwA Workspace Available




200

Dyalog APL/W Language Reference

System Variables

System variables retain information used by the system in some way, usually as impli-
cit arguments to functions.

The characteristics of an array assigned to a system variable must be appropriate; oth-
erwise an error will be reported immediately.

Example

0I10+3

DOMAIN ERROR
0103
A

System variables may be localised by inclusion in the header line of a defined func-
tion or in the argument list of the system function J[SHADOW. When a system variable
is localised, it retains its previous value until it is assigned a new one. This feature is
known as “pass-through localisation”. The exception to this rule is JTRAP.

A system variable can never be undefined. Default values are assigned to all system
variables in a clear workspace.

Name Description Scope

] Character Input/Output Session

d Evaluated Input/Output Session
OAvu Atomic Vector — Unicode Namespace
adct Comparison Tolerance Namespace
goct Decimal Comp Tolerance Namespace
go1v Division Method Namespace
OFR Floating-Point Representation Workspace
gIo Index Origin Namespace
gLx Latent Expression Workspace
ML Migration Level Namespace
OPATH Search Path Session




Chapter 4: System Functions 201

Name Description Scope

gep Print Precision Namespace
apw Print Width Session
OrRL Random Link Namespace
ORTL Response Time Limit Namespace
ds™m Screen Map Workspace
OTRAP Event Trap Workspace
QUSING Microsoft .NET Search Path Namespace
Owsib Workspace Identification Workspace
Owx Window Expose Namespace

In other words, [,

[0,0SE,OPATH and (PW relate to the session. JL X, JSM, OTRAP
and [JWSID relate to the active workspace. All the other system variables relate to
the current namespace.

Session Workspace Namespace

0 OFR dAvu

0 OLx acT

OPATH 0sM aocT

Odpw OTRAP ap1Iv

OwsID gIo

OML
app
ORL
ORTL
OUSING

Owx




202 Dyalog APL/W Language Reference

System Operators

The following system facilities are for convenience implemented as operators rather
than as functions:

Name Description

Or Replace

as Search

gopT Variant (Classic Edition only)

System Namespaces

OSE is currently the only system namespace.



Chapter 4: System Functions 203

System Functions Categorised

Dyalog includes a collection of built-in facilities which provide various services
related to both the APL and the external environment. They have distinguished case-
insensitive names beginning with the [J symbol and are implicitly available in a clear
workspace. Collectively, these facilities are referred to as System Functions but they
are variously implemented as constants, variables, functions, operators, and in one

case, as a namespace.

The following tables list the system functions divided into appropriate categories.
Each is then described in detail in alphabetical order.

Settings Affecting Behaviour of Primitive Functions

Name

Description

gct

Comparison Tolerance

gocT

Decimal Comp Tolerance

go1v

Division Method

OFR

Floating-Point Representation

Q1o

Index Origin

OML

Migration Level

OpP

Print Precision

OrRL

Random Link




204 Dyalog APL/W Language Reference

Session Information/Management

Name Description
OAI Account Information
OAN Account Name
[OCLEAR Clear workspace (WS)
gdcy Copy objects into active WS
goL Delay execution
OLOAD Load a saved WS
gdoFF End the session
OPATH Search Path
OSAVE Save the active WS
aTs Time Stamp
Constants
Name Description
OA Alphabetic upper case characters
(o Digits
aNuLL Null Item




Chapter 4: System Functions

205

Tools and Access to External Utilities

Name Description

[CMD Execute the Windows Command Processor or another
program

dcmD Start a Windows AP

(bR Data Representation (Monadic)

0oRr Data Representation (Dyadic)

OFMT Resolve display

OFMT Format array

OMAP Map a file

ONA Declare a DLL function

OrR Replace

as Search

OSH Execute a UNIX command or another program

0sH Start a UNIX AP

Qducs Unicode Convert

OUSING Microsoft .NET Search Path

OvrI Verify and Fix numeric

OxmL XML Convert




206 Dyalog APL/W Language Reference

Manipulating Functions and Operators

Name Description

OAT Object Attributes

dcr Canonical Representation
Qeb Edit one or more objects
Oex Expunge objects

aFXx Fix definition

gLock Lock a function

ONR Nested Representation
OPROFILE Profile Application
OREFS Local References

gsTop Set Stop vector

gsTop Query Stop vector
OTRACE Set Trace vector
OTRACE Query Trace vector

Ovr Vector Representation




Chapter 4: System Functions

207

Namespaces and Objects

Name Description
OBASE Base Class
OCLASS Class
0cs Change Space
(oFr Display Format
OFIX Fix
OINSTANCES |Instances
ONEW New Instance
ONS Create Namespace
0sSrcC Source
OTHIS This
Input/Output
Name Description
0 Evaluated Input/Output
0 Character Input/Output

Built-in GUl and COM Support

Name Description

aoQ Await and process events
OEXPORT Export objects

0ONQ Place an event on the Queue
Owc Create GUI object

awe Get GUI object properties
OwWN Query GUI object Names
0aws Set GUI object properties




Dyalog APL/W Language Reference

Component Files
Name Description
OFAPPEND Append a component to File
OFAVAIL File system Availability
OF CHK File Check and Repair
grcorpy Copy a File
OFCREATE Create a File
OFDROP Drop a block of components
OFERASE Erase a File
OFHIST File History
OFHOLD File Hold
gFLIB List File Library
OFNAMES Names of tied Files
OF NUMS Tie Numbers of tied Files
OFPROPS File Properties
OFRDAC Read File Access matrix
OFRDCI Read Component Information
OFREAD Read a component from File
OFRENAME Rename a File
OFREPLACE Replace a component on File
OFRESIZE File Resize
OFSIZE File Size
OFSTAC Set File Access matrix
OFSTIE Share-Tie a File
OFTIE Tie a File exclusively

OFUNTIE

Untie Files




Chapter 4: System Functions

209

Native Files

Name Description

[ONAPPEND Append to File
ONCREATE Create a File

ONERASE Erase a File

ONLOCK Lock a region of a file
ONNAMES Names of tied Files
OONNUMS Tie Numbers of tied Files
ONREAD Read from File
ONRENAME Rename a File
ONREPLACE Replace data on File
ONRESIZE File Resize

ONSIZE File Size

ONTIE Tie a File exclusively
ONUNTIE Untie Files

ONXLATE Specify Translation Table




210

Dyalog APL/W Language Reference

Threads
Name Description
OTCNUMS Thread Child Numbers
gTip Current Thread Identity
OTKILL Kill Threads
OTNAME Current Thread Name
OTNUMS Thread Numbers
OTSYNC Wait for Threads to Terminate
Synchronisation
Name Description
OTGET Get Tokens
OTKILL Kill Threads
gTpooL Token Pool
gTPuT Put Tokens
OTREQ Token Requests

Error Handling

Name Description

0oMX Extended Diagnostic Message

OeM Event Messages

OEXCEPTION |Reports the most recent Microsoft NET Exception
OSIGNAL Signal event

OTRAP Event Trap




Chapter 4: System Functions

211

Stack and Workspace Information

Name Description

0Lc Line Count

aLx Latent Expression

ONC Name Classification

ONL Name List

ONSI Namespace Indicator

OrsSI Space Indicator

OsI State Indicator

(OSHADOW Shadow names

(QsIze Size of objects

(STACK Report Stack

OSTATE Return State of an object

OwA Workspace Available

OwsID Workspace Identification

OxsI Extended State Indicator
Shared Variables

Name Description

gsvc Set access Control

gsvc Query access Control

gsvo Shared Variable Offer

gdsvo Query degree of coupling

asvaQ Shared Variable Query

OSVR Retract offer

gsvs Query Shared Variable State




212 Dyalog APL/W Language Reference

Various Other

Name

Description

DA

Underscored Alphabetic Characters

OARBIN

Arbitrary Input

OARBOUT

Arbitrary Output

OAv

Atomic Vector

OAvu

Atomic Vector - Unicode

(oM

Diagnostic Message

gEN

Event Number

OKL

Key Labels

OPFKEY

Programmable Function Keys

gso

Screen Dimensions

OsMm

Screen Map

OSR

Screen Read

OMONITOR

Monitor set

OMONITOR

Monitor query

ONXLATE

Specify Translation Table

gorT

Variant Operator

0Oor

Object Representation

ORTL

Response Time Limit

aTc

Terminal Control

OxT

Associate External variable

OxT

Query External variable

Owx

Expose GUI property names




Chapter 4: System Functions 213

Character Input/Output 0

[1is a variable which communicates between the user's terminal and APL. Its beha-
viour depends on whether it is being assigned or referenced.

When [ is assigned with a vector or a scalar, the array is displayed without the nor-
mal ending new-line character. Successive assignments of vectors or scalars to []
without any intervening input or output cause the arrays to be displayed on the same
output line.

Example

D«'2+2' o D«':' o D«q
2+2=4

Output through [ is independent of the print width in JPW. The way in which lines
exceeding the print width of the terminal are treated is dependent on the char-
acteristics of the terminal. Numeric output is formatted in the same manner as direct
output (see Programmer's Guide: Display of Arrays).

When [] is assigned with a higher-rank array, the output is displayed in the same man-
ner as for direct output except that the print width (PW is ignored.

When [1 is referenced, terminal input is expected without any specific prompt, and
the response is returned as a character vector.

If the [] request was preceded by one or more assignments to [] without any inter-
vening input or output, the last (or only) line of the output characters are returned as
part of the response.

Example

ma t <+ 0000

Examples

[J<'OPTION : ' o R<[]
OPTION : INPUT

R
OPTION : INPUT

pR
14



214

Dyalog APL/W Language Reference

The output of simple arrays of rank greater than 1 through [] includes a new-line char-
acter at the end of each line. Input through [] includes the preceding output through
[1 since the last new-line character. The result from [, including the prior output, is
limited to 256 characters.

A soft interrupt causes an INPUT INTERRUPT error if entered while [1 is awaiting
input, and execution is then suspended (unless the interrupt is trapped):

R«
(Interrupt)
INPUT INTERRUPT
A time limit is imposed on input through [T if[RTL is set to a non-zero value:

ORTL«5 ¢ [1«'PASSWORD ? ' ¢ R+l
PASSWORD ?
TIMEOUT
ORTL«5 ¢ [1«'PASSWORD : ' ¢ R<[l
A

The TIMEOUT interrupt is a trappable event.



Chapter 4: System Functions 215

Evaluated Input/Output 0

[0 is a variable which communicates between the user’s terminal and APL. Its beha-
viour depends on whether it is being assigned or referenced.

When [] is assigned an array, the array is displayed at the terminal in exactly the same
form as is direct output (see Programmer's Guide: Display of Arrays).

Example

d«2+15
34567

0«2 4p'WINEMART'
WINE
MART

When [ is referenced, a prompt (¢ ) is displayed at the terminal, and input is
requested. The response is evaluated and an array is returned if the result is valid. If
an error occurs in the evaluation, the error is reported as normal (unless trapped by a
OTRAP definition) and the prompt (0 :) is again displayed for input. An EOF inter-
rupt reports INPUT INTERRUPT and the prompt (¢ ) is again displayed for input.
A soft interrupt is ignored and a hard interrupt reports INTERRUPT and the prompt
(@:) is redisplayed for input.

Examples
10x[]+2
O:
13
30 40 50
2+0
O:
X
VALUE ERROR
X
A
O:
2+13



216 Dyalog APL/W Language Reference

A system command may be entered. The system command is effected and the prompt
is displayed again (unless the system command changes the environment):

p3,0
JWSID
WS /MYWORK
O:
)SI
0
O:
JCLEAR
CLEAR WS
Ifthe response to a[J: prompt is an abort statement (=), the execution will be abor-
ted:
123-=10
0O:

-

A trap definition on interrupt events set for the system variable JTRAP in the range
1000-1008 has no effect whilst awaiting input in response to a[J: prompt.

Example
OTRAP<(11 'C"' "''ERROR''')(1000 'C"' '''STOP''")
2+0
0:
(Interrupt Signal)
INTERRUPT
0:
'C'+2
ERROR

A time limit set in system variable ORTL has no effect whilst awaiting input in
response to a[J: prompt.



Chapter 4: System Functions 217

Underscored Alphabetic Characters R<JA

0A is a deprecated feature. Dyalog strongly recommends that you move away from
the use of [JAand of the underscored alphabet itself, as these symbols now constitute
the sole remaining non-standard use of characters in Dyalog applications.

In Versions of Dyalog APL prior to Version 11.0, JA was a simple character vector,
composed of the letters of the alphabet with underscores. If the Dyalog Alt font was
in use, these symbols displayed as additional National Language characters.

Version 10.1 and Earlier

0A
ABCDEFGHIJKLMNOPQRSTUVWXYZ

For compatibility with previous versions of Dyalog APL, functions that contain ref-
erences to [JA will continue to return characters with the same index in [JAV as before.
However, the display of JA is now [A, and the old underscored symbols appear as
they did in previous Versions when the Dyalog Alt font was in use.

Current Version

Alphabetic Characters R«[JA

This is a simple character vector, composed of the letters of the alphabet.

Example

OA
ABCDEFGHIJKLMNOPQRSTUVWXYZ




218 Dyalog APL/W Language Reference

Account Information R«AI

This is a simple integer vector, whose four elements are:

OAI[1] user identification.!

OAI[2] compute time for the APL session in milliseconds.

OAI[3] connect time for the APL session in milliseconds.

OAI[4] keying time for the APL session in milliseconds.

Elements beyond 4 are not defined but reserved.

Example

OAI
52 7396 2924216 2814831

'Under Windows, this is the aplnid (network ID from configuration dialog box).
Under UNIX and Linux this is the effective UID of the account.

Account Name R<+[JAN

This is a simple character vector containing the user (login) name. Under UNIX and
Linux this is the real user name.

Example

OAN
Pete

pOAN



Chapter 4: System Functions 219

Arbitrary Output {X}OARBOUT Y

This transmits Y to an output device specified by X.

Under Windows, the use of JARBOUT to the screen or to RS232 ports is not sup-
ported.

Y may be a scalar, a simple vector, or a vector of simple scalars or vectors. The items
of the simple arrays of Y must each be a character or a number in the range 0 to 255.
Numbers are sent to the output device without translation. Characters undergo the
standard [JAV to ASCII translation. IfY is an empty vector, no codes are sent to the
output device.

X defines the output device. If X is omitted, output is sent to standard output (usu-
ally the screen). If X is supplied, it must be a simple numeric scalar or a simple text
vector.

Ifit is a numeric scalar, it must correspond to a Windows device handle or UNIX
stream number.

Ifit is a text vector, it must correspond to a valid device or file name.

Y ou must have permission to write to the chosen device.

Examples

Write ASCII digits ' 123" to UNIX stream 9:
9 OJARBOUT 49 50 51

Write ASCII characters ' ABC' to MYFILE:
'"MYFILE' [JARBOUT 'ABC'

Beep 3 times:
OARBOUT 7 7 7

Prompt for input:

(O« 'Prompt: ' ¢ [arbout 12 ¢ ans+]




220

Dyalog APL/W Language Reference

Attributes

R«{X} DOAT Y

Y can be a simple character scalar, vector or matrix, or a vector of character vectors
representing the names of 0 or more defined functions or operators. Used dyadically,
this function closely emulates the APL2 implementation. Used monadically, it
returns information that is more appropriate for Dyalog APL.

Y specifies one or more names. If Y specifies a single name as a character scalar, a char-
acter vector, or as a scalar enclosed character vector, the result R is a vector. If Y spe-
cifies one or more names as a character matrix or as a vector of character vectors R is a
matrix with one row pername in Y.

Monadic Use

If X is omitted, R is a 4-element vector or a 4 column matrix with the same number of
rows as names in Y containing the following attribute information:

R[1] orR[;1]: Each item is a 3-element integer vector representing the function
header syntax:

0 if the function has no result
1 | Function result 1 if the function has an explicit result
~1 if the function has a shy result

0 if the object is a niladic function or not a function
1 if the object is a monadic function

2 if the object is a dyadic function

~2 if the object is an ambivalent function

2 | Function valence

0 if the object is not an operator
3 | Operator valence | 1 if the object is a monadic operator
2 if the object is a dyadic operator

The following values correspond to the syntax shown alongside:

0 0 O vV FOO

1 0 O vV Z+FOO

1 0 O v {Z}«F0O

072 O v {A} FOO B
11 2 v {Z}«(F OP G)B

R[2] orR[;2]: Each itemis the (OTS form) timestamp of the time the function was
last fixed.



Chapter 4: System Functions 221

R[3] orR[;3]: Each item is an integer reporting the current JLOCK state of the
function:

0 Not locked

1 Cannot display function

2 Cannot suspend function
3 Cannot display or suspend

RL4] orR[ ;4]: Each item is a character vector - the network ID of the user who last
fixed (edited) the function.

Example

v {z}«{Ll}(fn myop)r
[1] e

vV z<foo

(1]

v z+«{larg}util rarg
[1] ces

(LOCK'foo'

util2«util

Jdisplay OAT 'myop' 'foo' 'util' 'util2'
J >————— e = >———

| 171 72 1] 1996 8 2 2 13 56 O] 0 |john]|

| ~—————— ~ _————

| ovmmm. e °
I ] ] ] ]
__________________ -
| S>———— - — - >———
. . .

-
o
o
o
o
o
o
o
o
o
w

| 11 72 0l 11996 3 1 14 12 10 O] O |pete]

1 1
~————— ~—— —_—

| 11 =2 0] 11998 8 26 16 16 42 0| O |graeme]| |



222 Dyalog APL/W Language Reference

Dyadic Use

The dyadic form of JAT emulates APL2. It returns the same rank and shape result
containing information that matches the APL2 implementation as closely as pos-
sible.

The number of elements or columns in R and their meaning depends upon the value
of X which may be 1,2, 3 or4.

If X is 1, R specifies valences and contains 3 elements (or columns) whose meaning is
as follows:

1 if the object has an explicit result or is a variable

1 |Explicit It .
Xphicit resu 0 otherwise

0 if the object is a niladic function or not a function
2 | Function valence |1 if the object is a monadic function
2 if the object is an ambivalent function

0 if the object is not an operator
3 | Operator valence |1 if the object is a monadic operator
2 if the object is a dyadic operator

If X is 2, R specifies fix times (the time the object was last updated) for functions and
operators named in Y. The time is reported as 7 integer elements (or columns) whose
meaning is as follows. The fix time reported for names in Y which are not defined
functions or operators is 0.

1 Year

Month

Day

Minute

Second

2
3
4 |Hour
5
6
7

Milliseconds (this is always reported as 0)




Chapter 4: System Functions 223

If X is 3, R specifies execution properties and contains 4 elements (or columns)
whose meaning is as follows:

0 if the object is displayable

I |Displayable 1 if the object is not displayable

0 if execution will suspend in the object

2 1 . . . . .
Suspendable 1 if execution will not suspend in the object

3 Weak Interrupt 0 if the object responds to interrupt
behaviour 1 if the object ignores interrupt
4 (always 0)

If X is 4, R specifies object size and contains 2 elements (or columns) which both
report the ST ZE of the object.



224 Dyalog APL/W Language Reference

Atomic Vector R«[JAV

0AV is a deprecated feature and is replaced by JUCS.

This is a simple character vector of all 256 characters in the Classic Dyalog APL char-
acter.

In the Classic Edition the contents of [JAV are defined by the Output Translate Table.

In the Unicode Edition, the contents of [JAV are defined by the system variable
OAvU.

Examples

OAV[48+110]
0123456789

5 52p12ifav
%' ow abcdefgh1Jklmnopqrstuvwxyz__'A9012§3§§ZB9 n¥$£¢
AABCDEFGHIJKLMNOPQRSTUVWXYZ v OAAAAQEEEIIIIDOOOOUUU
Ypai505{€}-0 ARAR=ENOPURA44E32ceE8E 1 TAL/A\\<s=2>7vA
-++x?2ep~ti1ox[[Vo(conuiT|;,VAVARPee]!5eV5=£66060"#_8&'
@UAGAG [T e io«>n) IONSOMN*% "' aw_abcdefghijk

Atomic Vector - Unicode OAvU

OAVU specifies the contents of the atomic vector, JAV, and is used to translate data
between Unicode and non-Unicode character formats when required, for example
when:

e Unicode Edition loads or copies a Classic Edition workspace or a work-
space saved by a Version prior to Version 12.0.

e Unicode Edition reads character data from a non-Unicode component file,
or receives data type 82 from a TCP socket.

e Unicode Edition writes data to a non-Unicode component file

e Unicode Edition reads or writes data from or to a Native File using con-
version code 82.

e Classic Edition loads or copies a Unicode Edition workspace

e Classic Edition reads character data from a Unicode component file, or
receives data type 80, 160, or 320 from a TCP socket.

e Classic Edition writes data to a Unicode component file.

OAVU is an integer vector with 256 elements, containing the Unicode code points
which define the characters in JAV.



Chapter 4: System Functions 225

Note

In Versions of Dyalog prior to Version 12.0 and in the Classic Edition, a character is
stored internally as an index into the atomic vector, JAV. When a character is dis-
played or printed, the index in [JAV is translated to a number in the range 0-255
which represents the index of the character in an Extended ASCII font. This mapping
is done by the Output Translate Table which is user-configurable. Note that although
ASCII fonts typically all contain the same symbols in the range 0-127, there are a
number of different Extended ASCII font layouts, including proprietary APL fonts,
which provide different symbols in positions 128-255. The actual symbol that
appears on the screen or on the printed page is therefore a function of the Output
Translate Table and the font in use. Classic Edition provides two different fonts (and
thus two different [JAV layouts) for use with the Development Environment, named
Dyalog Std (with APL underscores) and Dyalog Alt (without APL underscores

The default value of JAVU corresponds to the use of the Dyalog Alt Output Trans-
late Table and font in the Classic Edition or in earlier versions of Dyalog APL.

2 13p[AVU[97+126]
193 194 195 199 200 202 203 204 205 206 207 208 210
211 212 213 217 218 219 221 254 227 236 240 242 245
o . hucs 2 13p0AVU[97+126]
ARAGEEEITTPO
000UUUYpaidoo
[JAVU has namespace scope and can be localised, in order to make it straightforward
to write access functions which receive or read data from systems with varying
atomic vectors. If you have been using Dyalog Alt for most things but have some
older code which uses underscores, you can bring this code together in the same
workspace and have it all look “as it should” by using the Alt and Std definitions for
[AVU as you copy each part of the code into the same Unicode Edition workspace.

)COPY avu.dws Std.[JAVU
C:\Program Files\Dyalog\Dyalog APL 12.0 Unicode\ws\avu sa
ved Thu Dec 06 11:24:32 2007

2 13p0AVU[97+126]
9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9k
09 9410
Ok11 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9k
22 9423

Oucs 2 13p0AVU[97+126]
ABCDEFGHIJKLM
NOPQRSTUVWXYZ




226

Dyalog APL/W Language Reference

Rules for Conversion on Import

When the Unicode Edition imports APL objects from a non-Unicode source, func-
tion comments and character data of type 82 are converted to Unicode. When the
Classic Edition imports APL objects from a Unicode source, this translation is per-
formed in reverse.

Ifthe objects are imported from a Version 12.0 (or later) workspace (i.e. from a work-
space that contains its own value of JAVU) the value of #.[JAVU (the value of JAVU
in the root) in the source workspace is used. Otherwise, such as when APL objects
are imported from a pre-Version 12 workspace, from a component file, or from a TCP
socket, the local value of JAVU in the target workspace is used.

Rules for Conversion on Export

When the Unicode Edition exports APL objects to a non-Unicode destination, such
as a non-Unicode Component File or non-Unicode TCPSocket Object, function com-
ments (in [JORs) and character data of type 82 are converted to [JAV indices using the
local value of JAVU.

When the Classic Edition exports APL objects to a Unicode destination, such as a
Unicode Component File or Unicode TCPSocket Object, function comments (in
[JORs) and character data of type 82 are converted to Unicode using the local value
of JAVU.

In all cases, if a character to be translated is not defined in JAVU,a TRANSLATION
ERROR (event number 92) will be signalled.



Chapter 4: System Functions 227

Base Class R«[BASE.Y

[OBASE isused to access the base class implementation of the name specified by Y.

Y must be the name of a Public member (Method, Field or Property) that is provided
by the Base Class of the current Class or Instance.

OBASE is typically used to call a method in the Base Class which has been super-
seded by a Method in the current Class.

Note that OBASE .Y is special syntax and any direct reference to JBASE on its own
or in any other context, is meaningless and causes SYNTAX ERROR.

In the following example, Class DomesticParrot derives from Class Parrot
and supersedes its Speak method. DomesticParrot.Speak calls the Speak
method in its Base Class Parrot, via[JBASE.

:Class Parrot: Bird
V R<«Speak
tAccess Public
R«'Squark!"’
\'4
tEndClass A Parrot

:Class DomesticParrot: Parrot
V R«<Speak
tAccess Public
R<[BASE.Speak,' Who''s a pretty boy, then!'
\'4
tEndClass A DomesticParrot

Maccaw<[INEW Parrot
Maccaw.Speak
Squark!

Pol ly<[OJNEW DomesticParrot
Polly.Speak
Squark! Who's a pretty boy, then!




228 Dyalog APL/W Language Reference

Class R«{X}OCLASS Y

Monadic Case

Monadic [JCLASS retumns a list of references to Classes and Interfaces that specifies
the class hierarchy for the Class or Instance specified by Y.

Y must be a reference to a Class or to an Instance of a Class.

R is a vector or vectors whose items represent nodes in the Class hierarchy of Y. Each
item of R is a vector whose first item is a Class reference and whose subsequent items
(ifany) are references to the Interfaces supported by that Class.

Example 1

This example illustrates a simple inheritance tree or Class hierarchy. There are 3
Classes, namely:

Animal
Bird (derived from Animal)
Parrot (derived from Bird)

:Class Animal
:EndClass A Animal
:Class Bird: Animal
:EndClass A Bird
:Class Parrot: Bird

;éﬁdClass A Parrot

OCLASS Eeyore<«[INEW Animal
#.Animal

[OCLASS Robin<[INEW Bird
#.Bird #.Animal

OCLASS Polly<[INEW Parrot
#.Parrot #.Bird #.Animal

OCLASS™ Parrot Animal
#.Parrot #.Bird #.Animal #.Animal



Chapter 4: System Functions 229

Example 2

The Penguin Class example (see Programmer's Guide: Penguin Class Example) illus-
trates the use of Interfaces.

In this case, the Penguin Class derives from Animal (as above) but additionally
supports the BirdBehaviour and FishBehaviour Interfaces, thereby inher-
iting members from both.

Pingo<[JNEW Penguin
OCLASS Pingo
#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

Dyadic Case

If X is specified, Y must be a reference to an Instance of a Class and X is a reference to
an Interface that is supported by Instance Y or to a Class upon which Instance Y is
based.

In this case, R is a reference to the implementation of Interface X by Instance Y, or to
the implementation of (Base) Class X by Instance Y, and is used as a cast in order to
access members of Y that correspond to members of Interface of (Base) Class X.

Example 1:

Once again, the Penguin Class example (see Programmer's Guide: Penguin Class
Example) is used to illustrate the use of Interfaces.

Pingo<«[INEW Penguin
OCLASS Pingo
#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

(FishBehaviour [OCLASS Pingo).Swim
I can dive and swim like a fish

(BirdBehaviour [ICLASS Pingo).Fly
Although I am a bird, I cannot fly

(BirdBehaviour [OCLASS Pingo).Lay
I lay one egg every year

(BirdBehaviour [OCLASS Pingo).Sing
Croak, Croak!



230

Dyalog APL/W Language Reference

Example 2:

This example illustrates the use of dyadic JCLASS to cast an Instance to a lower
Class and thereby access a member in the lower Class that has been superseded by
another Class higher in the tree.

Pol Ly«[INEW DomesticParrot
Polly.Speak
Squark! Who's a pretty boy, then!

Note that the Speak method invoked above is the Speak method defined by Class
DomesticParrot, which supersedes the Speak methods of sub-classes Parrot
and Bird.

You may use a cast to access the (superseded) Speak method in the sub-classes
Parrot and Bird.

(Parrot [JCLASS Polly).Speak
Squark!

(Bird [OCLASS Polly).Speak
Tweet, tweet!

Clear Workspace OCLEAR

A clear workspace is activated, having the name CLEAR WS. The active workspace
is lost. All system variables assume their default values. The maximum size of work-
space is available.

The contents of the session namespace [JSE are not affected.

Example

OCLEAR
OwsIb
CLEAR WS



Chapter 4: System Functions 231

Execute Windows Command {R}<[CMD Y

[0CMD executes the Windows Command Processor or UNIX shell or starts another
Windows application program. [JCMD is a synonym of [JSH. Either system function
may be used in either environment (Windows or UNIX) with exactly the same
effect. [JCMD is probably more natural for the Windows user. This section describes
the behaviour of JCMD and [O0SH under Windows. See Execute (UNIX) Command on
page 421 for a discussion of the behaviour of these system functions under UNIX.

The system commands ) SH and ) CMD provide similar facilities. For further inform-
ation, see Execute (UNIX) Command on page 518 and Windows Command Pro-
cessor on page 502.

Executing the Windows Command Processor

IfY is a simple character vector, JCMD invokes the Windows Command Processor
(normally cmd . exe) and passes the command specified by character vector Y to it
for execution. The term command means here an instruction recognised by the Com-
mand Processor, or the pathname of a program (with optional parameters) to be
executed by it. In either case, APL waits for the command to finish and then returns
the result R, a vector of character vectors containing its result. Each element in R cor-
responds to a line of output produced by the command.

Example
Z<[JCMD'DIR'
pZ

8
tz

Volume in drive C has no label
Directory of C:\DYALOG

<DIR> 5-07-89 3.02p
.. <DIR> 5-07-89 3.02p
SALES  DWS 110092 5-07-89 3.29p
EXPENSES DWS 154207 5-07-89 3.29p

Ifthe command specified in Y already contains the redirection symbol (>) the capture
of output through a pipe is avoided and the result R is empty. Ifthe command spe-
cified by Y issues prompts and expects user input, it is ESSENTIAL to explicitly
redirect input and output to the console. Ifthis is done, APL detects the presence of
a">"in the command line, runs the command processor in a visible window, and
does not direct output to the pipe. If you fail to do this your system will appear to
hang because there is no mechanism for you to receive or respond to the prompt.




232

Dyalog APL/W Language Reference

Example

[OCMD 'DATE <CON >CON'
(Command Prompt window appears)
Current date is Wed 19-07-1995
Enter new date (dd-mm-yy): 20-07-95

(COMMAND PROMPT window disappears)

Spaces in pathnames

IfY specifies a program (with or without parameters) and the pathname to the pro-
gram contains spaces, you must enclose the string in double-quotes.

For example, to start a version of Excel to which the pathname is:
C:\Program Files\Microsoft Office\OFFICEll\excel.exe
the argument to [JCMD should be:

[0CMD '“c:\program files\microsoft office\officell\excel.exe"'

Double-Quote Restriction

The Windows Command Processor does not permit more than one set of double-
quotes in a command string.

The following statements are all valid:

OCMD 'c:\windows\system32\notepad.exe c:\myfile.txt'
OCMD 'c:\windows\system32\notepad.exe "c:\myfile.txt"'
[0CMD '“c:\windows\system32\notepad.exe" c:\myfile.txt'

Whereas the next statement, which contains two sets of double-quotes, will fail:
0CMD '"c:\windows\system32\notepad.exe" "c:\myfile.txt"'

Such a statement can however be executed using the second form of JCMD(where the
argument is a 2-element vector of character vectors) which does not use the Windows
Command Processor and is not subject to this restriction.Hhowever, the call to JCMD
will return immediately, and no output from the command will be returned.

[0CMD'"c:\windows\system32\notepad.exe" "c:\myfile.txt"' "'



Chapter 4: System Functions 233

Implementation Notes

The right argument of [JCMD is simply passed to the appropriate command processor
for execution and its output is received using an unnamed pipe.

By default, JCMD will execute the string ( 'cmd.exe /c',Y); where Y is the argu-
ment given to JCMD. However, the implementation permits the use of alternative
command processors as follows:

Before execution, the argument is prefixed and postfixed with strings defined by the
APL parameters CMD PREFIX and CMD POSTFIX. The former specifies the name
of your command processor and any parameters that it requires. The latter specifies a
string which may be required. If CMD_PREFIX is not defined, it defaults to the
name defined by the environment variable COMSPEC followed by "/c". If
COMSPEC is not defined, it defaults to cmd . exe. IfCMD_POSTFIX is not
defined, it defaults to an empty vector.

[JCMD treats certain characters as having special meaning as follows:

# | marks the start of a trailing comment,

s [ divides the command into sub-commands,

if found within the last sub-command, causes [JCMD to use a visible
window.

If you simply wish to open a Command Prompt window, you may execute the com-
mand as a Windows Program (see below). For example:

(OCMD 'cmd.exe' '’

Starting a Windows Program

IfY is a 2-element vector of character vectors, JCMD starts the executable program
named by Y[ 1] with the initial window parameter specified by Y[2]. The shy res-
ult is an integer scalar containing the window handle allocated by the window man-
ager. Note that in this case APL does not wait for the program specified by Y to
finish, but returns immediately. The shy result R is the process identifier (PID).

Y [ 1] must specify the name or complete pathname of an executable program. If the
name alone is specified, Windows will search the following directories:

the current directory,

the Windows directory,

the Windows system directory,

the directories specified by the PATH variable,
the list of directories mapped in a network.

IS



234

Dyalog APL/W Language Reference

Note that Y[ 1] may contain the complete command line, including any suitable
parameters for starting the program. If Windows fails to find the executable program,
(0CMD will fail and report FILE ERROR 2.

Y[ 2] specifies the window parameter and may be one of the following. Ifnot, a
DOMAIN ERROR isreported.

‘Normal' Application is started in a normal window, which is given
" the input focus

Application is started in a normal window, which is NOT

Unfocused given the input focus

'Hidden' Application is run in an invisible window

‘Minimized' |Application is started as an icon which is NOT given the
'Minimised' |input focus

‘Maximized' | Application is started maximized (full screen) and is given
‘Maximised' [the input focus

An application started by JCMD may ONLY be terminated by itself or by the user.
There is no way to close it from APL. Furthermore, ifthe window parameter is
HIDDEN, the user is unaware of the application (unless it makes itself visible) and
has no means to close it.

Examples

Path«<'c:\Program Files\Microsoft Office\Office\'
O0«0CMD (Path, 'excel.exe') "'

33
OcMD (Path, 'winword /mMyMacro') 'Minimized'’

Executing Programs

Either form of JCMD may be used to execute a program. The difference is that when
the program is executed via the Command Processor, APL waits for it to complete
and returns any result that the program would have displayed in the Command Win-
dow had it been executed from a Command Window. In the second case, APL starts
the program (in parallel).



Chapter 4: System Functions 235

Start Windows Auxiliary Processor X 0cmD Y

Used dyadically, JCMD starts an Auxiliary Processor. The effect, as far as the APL
workspace is concermned, is identical under both Windows and UNIX, although the
method of implementation differs. [JCMD is a synonym of [JSH. Either function may
be used in either environment (Windows or UNIX) with exactly the same effect.
[0CMD is probably more natural for the Windows user. This section describes the
behaviour of JCMD and [JSH under Windows. See Start UNIX Auxiliary Processor
on page 422 for a discussion of the behaviour of these system functions under UNIX.

X must be a simple character vector containing the name (or pathname) of a Dyalog
APL Auxiliary Processor (AP). See User Guide for details of how to write an AP.

Y may be a simple character scalar or vector, or a vector of character vectors. Under
Windows the contents of Y are ignored.

OCMD loads the Auxiliary Processor into memory. Ifno other APs are currently run-
ning, [JCMD also allocates an area of memory for communication between APL and
its APs.

The effect of starting an AP is that one or more external functions are defined in the
workspace. These appear as locked functions and may be used in exactly the same
way as regular defined functions.

When an external function is used in an expression, the argument(s) (if any) are
passed to the AP for processing via the communications area described above. APL
halts whilst the AP is processing, and waits for a result. Under Windows, unlike
under UNIX, it is not possible for external functions to run in parallel with APL.




236 Dyalog APL/W Language Reference

Canonical Representation R<CR Y

Y must be a simple character scalar or vector which represents the name of a defined
function or operator.

IfY is a name of a defined function or operator, R is a simple character matrix. The
first row of R is the function or operator header. Subsequent rows are lines of the
function or operator. R contains no unnecessary blanks, except for leading indent-
ation of control structures, trailing blanks that pad each row, and the blanks in
comments. If'Y is the name of a variable, a locked function or operator, an external
function, or is undefined, R is an empty matrix whose shape is 0 O.

Example

VR<MEAN X A Arithmetic mean
[1] Re(+/X)+pX
\'4

[2]

+F<[JCR'MEAN'
R«<MEAN X A Arithmetic mean
Re<(+/X)+pX

pF
2 30

The definition of [JCR has been extended to names assigned to functions by spe-
cification («), and to local names of functions used as operands to defined operators.

IfY is a name assigned to a primitive function, R is a one-element vector containing
the corresponding function symbol. If'Y is a name assigned to a system function, R is
a one element nested array containing the name of the system function.

Examples

PLUS<«+
+F<[JCR'PLUS"

pF

C<[CR

c'c'
dcr

pC'C'



Chapter 4: System Functions 237

VR<CONDITION (FN1 ELSE FN2) X
[1] -~CONDITION/L1
[2] R<FN2 X ¢ =0
[3] L1:R<FN1 X
(4] v

2 [OSTOP 'ELSE'
(X20) | ELSE [ X«<72.5

ELSE[2]
X
2.5
OCR'FN2'
[
~{LC
2

IfY is a name assigned to a derived function, R is a vector whose elements represent
the arrays, functions, and operators from which Y was constructed. Constituent func-
tions are represented by their own [JCRs, so in this respect the definition of [JCR is
recursive. Primitive operators are treated like primitive functions, and are rep-
resented by their corresponding symbols. Arrays are represented by themselves.

Example
BOX<«2 20p
+F<[JCR'BOX"
2 2 op
pF
3
Jdisplay F

IfY is a name assigned to a defined function, R is the JCR of the defined function. In
particular, the name that appears in the function header is the name of the original
defined function, not the assigned name Y.

Example

AVERAGE<MEAN
OCR'AVERAGE'
R«<MEAN X A Arithmetic mean
Re(+/X)+pX



238

Dyalog APL/W Language Reference

Change Space {R}«{X}0OCS Y

Y must be namespace reference (ref) or a simple character scalar or vector identifying
the name of a namespace.

If specified, X is a simple character scalar, vector, matrix or a nested vector of char-
acter vectors identifying zero or more workspace objects to be exported into the
namespace Y.

The identifiers in X and Y may be simple names or compound names separated by
'. " and including the names of the special namespaces '0SE ", '#',and "##'.

The result R is the full name (starting #.) of the space in which the function or oper-
ator was executing prior to the JCS.

[cCS changes the space in which the current function or operator is running to the
namespace Y and returns the original space, in which the function was previously run-
ning, as a shy result. After the [ICS, references to global names (with the exception
of'those specified in X) are taken to be references to global names in Y. References to
local names (i.e. those local to the current function or operator) are, with the excep-
tion of those with name class 9, unaffected. Local names with name class 9 are how-
ever no longer visible.

When the function or operator terminates, the calling function resumes execution in
its original space.

The names listed in X are temporarily exported to the namespace Y. If objects with
the same name exist in Y, these objects are effectively shadowed and are inaccessible.
Note that Dyadic [JCS may be used only if there is a traditional function in the state
indicator (stack). Otherwise there would be no way to retract the export. In this case
(for example in a clear workspace) DOMAIN ERROR is reported.

Note that calling [JCS with an empty argument Y obtains the namespace in which a
function is currently executing.

Example

This simple example illustrates how [JCS may be used to avoid typing long path-
names when building a tree of GUI objects. Note that the objects NEW and OPEN are
created as children of the FILE menu as a result of using [JCS to change into the

F .MB.FILE namespace.



Chapter 4: System Functions 239

v MAKE_FORM;F ;0OLD

[1] '"F'OWC'Form'

[2] '"F.MB'OWC'MenuBar'

[3] '"F.MB.FILE'[JWC'Menu' '&File'
(4]

[5] OLD<[JCS'F.MB.FILE'

[6] "NEW'[(OWC 'MenuItem' '&New'
[7] 'OPEN'[OWC'Menultem' '&Open’
[8] (Jcs oLD

[9]

Elo% '"F.MB.EDIT'(OWC'Menu' '&Edit'
11

[12] OLD<[JCS'F.MB.EDIT'

[13] '"UNDO'[OWC'MenuItem' '&Undo'
[14] 'REDO'OWC'MenuItem' '&Redo'
[15] cs oLD

[16] v

\4

Example

Suppose a form F 1 contains buttons B1 and B2. Each button maintains a count of the
number of times it has been pressed, and the form maintains a count of the total num-
ber of button presses. The single callback function PRESS and its subfunction FMT
can reside in the form itself

)CS F1
#.F1
A Note that both instances reference
A the same callback function
'B1'OWS'Event' 'Select' 'PRESS'
'B2'OWS'Event' 'Select' 'PRESS'
A Initialise total and instance counts.
TOTAL « B1.COUNT <« B2.COUNT « O
Vv PRESS MSG
[1] '"FMT' 'TOTAL '[JCS=MSG n Switch to instance space

[2] (TOTAL COUNT)++«1 A Incr total & instance count
[3] OwWS'Caption' (COUNT FMT TOTAL)a Set instance caption

Vv CAPT«INST FMT TOTL A Format button caption.
[1] CAPT«(®INST),'/',sTOTL na E.g. 40/100.



240 Dyalog APL/W Language Reference

Example

This example uses [JCS to explore a namespace tree and display the structure. Note
that it must export its own name (tree) each time it changes space, because the name
tree is global.

V tabs tree space;subs A Display namespace tree
[1] tabs,space
[2] "tree'llCS space
[3] >(psubs<{[INL 9)40
(4] (tabs,'. '"JYotree subs

\'

)Jns x.y
#.x.y

Jns z
#.z

""tree '#'
#

X
y



Chapter 4: System Functions 241

Comparison Tolerance gdcT

The value of [JCT determines the precision with which two numbers are judged to be
equal. Two numbers, X and Y, are judged to be equal if:

(IX=Y)=<OCTx(IX)[|Y where < isapplied without tolerance.

Thus [ICT is not used as an absolute value in comparisons, but rather specifies a rel-
ative value that is dependent on the magnitude of the number with the greater mag-
nitude. It then follows that [JCT has no effect when either of the numbers is zero.

OCT may be assigned any value in the range from 0 to 2%*~32 (about 2.3E710). A
value of 0 ensures exact comparison. The value in a clear workspace is 1E7 14,

(CT is an implicit argument of the monadic primitive functions Ceiling ([), Floor (L)
and Unique (v), and of the dyadic functions Equal (=), Excluding (~), Find (¢),
Greater (>), Greater or Equal (2), Index of (1), Intersection (n), Less (<), Less or Equal
(2), Match (=), Membership (€), Not Match (#), Not Equal (#), Residue (| ) and
Union (v), as well as JFMT O-format.

If[JFR is 1287, the system uses (JDCT.

Examples

dcT«1E~10
1.00000000001 1.0000001 =1
10



242

Dyalog APL/W Language Reference

Copy Workspace {x}0cy Y

Y must be a simple character scalar or vector identifying a saved workspace. X is
optional. Ifpresent, it must be a simple character scalar, vector or matrix. A scalar or
vector is treated as a single row matrix. Each (implied) row of X is interpreted as an
APL name.

Each (implied) row of X is taken to be the name of an active object in the workspace
identified by Y. If X is omitted, the names of all defined active objects in that work-
space are implied (defined functions and operators, variables, labels and
namespaces).

Each object named in X (or implied) is copied from the workspace identified by Y to
become the active object referenced by that name in the active workspace if the
object can be copied. A copied label is re-defined to be a variable of numeric type.
If the name of the copied object has an active referent in the active workspace, the
name is disassociated from its value and the copied object becomes the active ref-
erent to that name. In particular, a function in the state indicator which is dis-
associated may be executed whilst it remains in the state indicator, but it ceases to
exist for other purposes, such as editing.

Y ou may copy an object from a namespace by specifying its full pathname. The
object will be copied to the current namespace in the active workspace, losing its ori-
ginal parent and gaining a new one in the process. You may only copy a GUI object
into a namespace that is a suitable parent for that object. For example, you could
only copy a Group object from a saved workspace if the current namespace in the act-
ive workspace is itself a Form, SubForm or Group.

See Copy Workspace on page 504 for further information and, in particular, the man-
ner in which dependant objects are copied.

A DOMAIN ERROR isreported in any of the following cases:

e Y is ill-formed, or is not the name of a workspace with access authorised for
the active user account.

e Any name in X is ill-formed.

e An object named in X does not exist as an active object in workspace
named in Y.

An object being copied has the same name as an active label.

When copying data between Classic and Unicode Editions, JCY will fail and a
TRANSLATION ERROR will be reported if any object in workspace Y fails con-
version between Unicode and [JAV indices, whether or not that object is specified by
X. See Atomic Vector - Unicode on page 224 for further details.



Chapter 4: System Functions 243

A WS FULL is reported if the active workspace becomes full during the copying pro-
cess.

Example

OvrR'FoOO'
V R«FOO
[1] R«<10
v
'"FOO' [CY 'BACKUP'
OvrR'FoO'
V R«<FOO X
[1] R<10xX
v

System variables are copied if explicitly included in the left argument, but not if the
left argument is omitted.

Example
OLx

(2 3p'OLX X')OCY'WS/CRASH'
aLX
~RESTART

A copied object may have the same name as an object being executed. If so, the
name is disassociated from the existing object, but the existing object remains
defined in the workspace until its execution is completed.

Example

)SI
#.FOO[1]*

OvrR'FoOO'
V R«FOO
[1] R«<10
v

"FOO'CY 'WS/MYWORK

FOO
123

)SI
#.FOO[1]x

~{LC
10



244 Dyalog APL/W Language Reference

Digits R«D
This is a simple character vector of the digits from 0 to 9.
Example
o
0123456789
Decimal Comparison Tolerance docT

The value of IDCT determines the precision with which two numbers are judged to
be equal when the value of OFR is 1287. If[JFR is 645, the system uses CT.

ODCT may be assigned any value in the range from 0 to 2*32] (about
2.3283064365386962890625E710). A value of 0 ensures exact comparison.
The value in a clear workspace is 1E728.

For further information, see Comparison Tolerance on page 241.

Examples

ODCT«1E™10
1.00000000001 1.0000001 = 1
10



Chapter 4: System Functions 245

Display Form {R}<0DF Y

[(DF sets the Display Form of a namespace, a GUI object, a Class, or an Instance of a
Class.

Y must be a simple character array that specifies the display form of a namespace. If
defined, this array will be returned by the format functions and (JFMT instead of the
default for the object in question. This also applies to the string that is displayed
when the name is referenced but not assigned (the default display).

The result R is the previous value of the Display Form which initially is ONULL.

'F'OWC'Form'
3F
#.F
p3F
3
OFMT F
#.F
pOFMT F
1 3
F A default display uses 3
#.F
F.ODF 'Pete''s Form'
3F
Pete's Form
p3F
11
OFMT F
Pete's Form
pOFMT F
1 11

Notice that [IDF will accept any character array, but JFMT always returns a matrix.

F.ODF 2 2 SpOA
F

ABCDE

FGHIJ

KLMNO
PQRST
psF




246

Dyalog APL/W Language Reference

pO<OFMT F
ABCDE
FGHIJ

KLMNO
PQRST
55

Note that [IDF defines the Display Form statically, rather than dynamically.

'F'OWC'Form' 'This is the Caption'
F

F.(ODF Caption)a set display form to current captio
n

F
This is the Caption

F.Caption«'New Caption' a changing caption does not
A change the display form
F
This is the Caption

You may use the Constructor function to assign the Display Form to an Instance of a
Class. For example:

:Class MyClass
vV Make arg
tAccess Public
:Implements Constructor
ODF arg
v
tEndClass A MyClass

PD<[JNEW MyClass 'Pete'’
PD
Pete



Chapter 4: System Functions 247

It is possible to set the Display Form for the Root and for [JSE

)CLEAR
clear ws
#
#
ObF OWSID
#
CLEAR WS
OsE
0se
Ose.0DF 'Session'
OsEe
Session

Note that [IDF applies directly to the object in question and is not automatically
applied in a hierarchical fashion.

IXIDNS [}
X
#.X
'Y'X.ONS "'
X.Y
#.X.Y
X.ODF 'This is X'
X
This is X
X.Y

#.X.Y



248 Dyalog APL/W Language Reference

Division Method do1v

The value of [IDIV determines how division by zero is to be treated. If[JDIV=0,
division by 0 produces a DOMAIN ERROR except that the special case of 0+0
returns 1.

IfJDIV=1, division by 0 returns 0.
ODIV may be assigned the value 0 or 1. The value in a clear workspace is 0.

ODIV is an implicit argument of the monadic function Reciprocal (+) and the dyadic
function Divide (%).
Examples

(DIvV+<0

102 +201
0.512

+0 1
DOMAIN ERROR
+0 1

A

0ODIV«1

30 2
0 0.5

102 +004
00 0.5



Chapter 4: System Functions 249

Delay {R}<DL Y

Y must be a simple non-negative single numeric value (of any rank). A pause of
approximately Y seconds is caused.

The shy result R is an scalar numeric value indicating the length of the pause in
seconds.

The pause may be interrupted by a strong interrupt.

Diagnostic Message R+[]DM

This niladic function returns the last reported APL error as a three-element vector, giv-
ing error message, line in error and position of caret pointer.

Example

2+0
DOMAIN ERROR
2+0

A

(oM
DOMAIN ERROR 230 A



250 Dyalog APL/W Language Reference

Extended Diagnostic Message R+[JDMX

[DDMX is a system object that provides information about the last reported APL error.
ODMX has thread scope, i.e. its value differs according to the thread from which it is
referenced. In a multi-threaded application therefore, each thread has its own value of
(DMX.

[ODMX contains the following Properties (name class 2.6). Note that this list is likely
to change. Your code should not assume that this list will remain unchanged. You
should also not assume that the display form of JDMX will remain unchanged.

character
Category vector The category of the error
OM nested | Diagnostic message. This is the same as
vector |[IDM, but thread safe
character | Event message; this is the same as JEM
EM
vector |[EN
. Error number. This is the same as [JEN, but
EN integer )
thread safe
ENX integer | Sub-error number
URL of a web page that will provide help
character for this error. APL identifies and has a
He L pURL handler for URLSs starting with htp:,

vector o
https:, mailto: and www. This list may be

extended in future

Identifies the line of interpreter source
code (file name and line number) which

nested . .. .
InternallLocation raised the error. This information may be
vector
useful to Dyalog support when
investigating an issue
character . .
Message Further information about the error
vector
see If applicable, identifies the error generated
OSError PP . g
below | by the Operating System
For system generated errors, Vendor will
character | always contain the character vector
Vendor

vector ‘Dyalog'. This value can be set using
OSIGNAL




Chapter 4: System Functions 251

OSError is a 3-element vector whose items are as follows:

This indicates how the operating system error was
retrieved.

int . .
t tnteger 0 = by the C-library errno () function
1 = by the Windows GetLastError () function
. Error code. The error number returned by the operating
2 integer

system using errno () or GetLastError () as above

character |The description of the error returned by the operating

3 vector system

Example

1+0
DOMAIN ERROR

1+0

A
(bMx
EM DOMAIN ERROR

Message Divide by zero
HelpURL http://help.dyalog.com/dmx/13.1/General/1

[OOMX.InternallLocation
arith_su.c 554

Isolation of Handled Errors

[DMX cannot be explicitly localised in the header of a function. However, for all
trapped errors, the interpreter creates an environment which effectively makes the cur-
rent instance of [IDMX local to, and available only for the duration of, the trap-hand-
ling code.

With the exception of JTRAP with Cutback, [IDMX is implicitly localised within:

e Any function which explicitly localises TRAP
e The :Case[List] or :Else clause ofa : Trap control structure.
e The right hand side of a D-function Error-Guard.



252

Dyalog APL/W Language Reference

and is implicitly un-localised when:

e A function which has explicitly localised OTRAP terminates (even if the
trap definition has been inherited from a function further up the stack).

e The :EndTrap of the current : Trap control structure is reached.

e A D-function Error-Guard exists.

During this time, if an error occurs then the localised [JDMX is updated to reflect the
values generated by the error.

The same is true for JTRAP with Cutback, with the exception that if the cutback trap
event is triggered, the updated values for JDMX are preserved until the function that
set the cutback trap terminates.

The benefit of the localisation strategy is that code which uses error trapping as a
standard operating procedure (such as a file utility which traps FILE NAME ERROR
and creates missing files when required) will not pollute the environment with irrel-
evant error information.

Example

V tie<NewFile name
[1] :Trap 22

[2] tie<name [JFCREATE O
[3] :Else

[4] [JOMX

[5] tie<name [OFTIE O
[6] name [JFERASE tie
[7] tie«name [JFCREATE O

[8] :EndTrap
[9] OFUNTIE tie
v

[0DMX is cleared by )RESET,.

Jreset
pOFMT [DMX
00

The first time we run NewFile 'pete’,the file doesn't exist and the JFCREATE
in NewFile[2] succeeds.

NewFile 'pete'’



Chapter 4: System Functions 253

If we run the function again, the JFCREATE in NewF i Le[ 2 Jgenerates an error
which triggers the : E L se clause of the :Trap. On entry to the : E L se clause, the
values in [JDMX reflect the error generated by JF CREATE. The file is then tied, erased
and recreated.

EM FILE NAME ERROR

Message File exists

HelpURL http://help.dyalog.com/dmx/13.1/Componentfilesystem/9
1

After exiting the : Trap control structure, the shadowed value of [IDMX is discarded,
revealing the orignal value that it shadowed.

pOFMT [DMX
00

Example

The EraseF i le function also uses a : Trap in order to ignore the situation when
the file doesn't exist.

V Erasefile name;tie

[1] :Trap 22
[2] tie<name [FTIE O
[3] name [JFERASE tie
[4] :Else
[5] OoMX
[6] :EndTrap

v

The first time we run the function, it succeeds in tieing and then erasing the file.

Erasefile 'pete’

The second time, the OF TIE fails. On entry to the : E L se clause, the values in JDMX
reflect this error.

Erasefile 'pete’
EM FILE NAME ERROR
Message Unable to open file
OSError 1 2 The system cannot find the file specified.
HelpURL http://help.dyalog.com/dmx/13.1/Componentfilesystem/11



254

Dyalog APL/W Language Reference

Once again, the local value of [IDMX is discarded on exit from the : Trap, revealing
the shadowed value as before.

pOFMT [IDMX
0o

Example

In this example only the error number (EN) propery of [IDMX is displayed in order to
simplify the output:

vV foo n;[TRAP

[1] 'Start foo'[IDMX.EN
[2] OTRAP«(2 'E' '-»err')(11 'C' '-»err')
[3] goo n
[4] err:'End foo: '[DJDMX.EN
\'4

v goo n;[TRAP
[1] OTRAP«5 'E' '-serr'
[2] ¢n>'+0"' '1 2+1 2 3' 'o!
[3] err:'goo: '[IDMX.EN

\'4

In the first case a DOMAIN ERROR (11)is generated on goo[2]. This error is not
included in the definition of JTRAP in goo, but rather the Cutback JTRAP defin-
ition in foo. The error causes the stack to be cut back to foo, and then execution
branches to foo[4]. Thus ODMX. EN in f oo retains the value set when the error
occurred in goo.

foo 1
Start foo O
End foo: 11

In the second case a LENGTH ERROR (5)is raised on goo[ 2 ]. This erroris included
in the definition of JTRAP in goo so the value [IDMX . EN while in goo is 5, but
when goo terminates and f oo resumes execution the value of [JDMX . EN localised in
goo is lost.

foo 2
Start foo O
goo: 5

End foo: O



Chapter 4: System Functions 255

In the third case a SYNTAX ERROR (2)is raised on goo[2]. Since the JTRAP state-
ment is handled within goo (although the applicable OTRAP is defined in f 00), the
value [IDMX . EN while in goo is 2, but when goo terminates and f 0o resumes exe-
cution the value of [JIDMX . EN localised in goo is lost.

foo 3
Start foo O
goo: 2
End foo: O

Dequeue Events {R}<DQ Y

0DQ awaits and processes events. Y specifies the GUI objects(s) for which events are
to be processed. Objects are identified by their names, as character scalars/vectors, or
by namespace references. These may be objects of type Root, Form, Locator, Filebox,
MsgBox, PropertySheet, TCPSocket, Timer, Clipboard and pop-up Menu. Sub-
objects (children) of those named in Y are also included. However, any objects
which exist, but are not named in Y, are effectively disabled (do not respond to the
user).

IfYis '."',all objects currently owned and subsequently created by the current
thread are included in the (JDQ. Note that because the Root object is owned by thread
0, events on Root are reported only to thread 0.

IfY is empty it specifies the object associated with the current namespace and is only
valid if the current space is one of the objects listed above.

Otherwise, Y contains the name(s) of or reference(s) to the objects for which events
are to be processed. Effectively, this is the list of objects with which the user may
interact. A DOMAIN ERROR is reported if an element of Y refers to anything other
than an existing "top-level" object.

Associated with every object is a set of events. For every event there is defined an
"action" which specifies how that event is to be processed by [IDQ. The "action" may
be a number with the value 0, 1 or ™1, or a character vector containing the name ofa
"callback function", or a character vector containing the name of a callback function
coupled with an arbitrary array. Actions can be defined in a number of ways, but the
following examples will illustrate the different cases.



256

Dyalog APL/W Language Reference

OBJ [OWS 'Event' 'Select' 0

OBJ [OWS 'Event' 'Select' 1

OBJ [OWS 'Event' 'Select' 'FOO'
OBJ [OWS 'Event' 'Select' 'FOO' 10

OBJ [OWS 'Event' 'Select' 'FOO&'

These are treated as follows:

Action = 0 (the default)

[DQ performs "standard" processing appropriate to the object and type of event. For
example, the standard processing for a KeyPress event in an Edit object is to action
the key press, i.e. to echo the character on the screen.

Action="1

This disables the event. The "standard" processing appropriate to the object and type
of'event is not performed, or in some cases is reversed. For example, if the "action
code" for a KeyPress event (22) is set to ~1, [0DQ simply ignores all keystrokes for
the object in question.

Action=1

0DQ terminates and returns information pertaining to the event (the event message in
R as a nested vector whose first two elements are the name of the object (that gen-
erated the event) and the event code. R may contain additional elements depending
upon the type of event that occurred.

Action = fn {larg}

fn is a character vector containing the name of a callback function. This function is
automatically invoked by DQ whenever the event occurs, and prior to the standard
processing for the event. The callback is supplied the event message (see above) as
its right argument, and, if specified, the array | arg as its left argument. Ifthe call-
back function fails to return a result, or returns the scalar value 1, [JDQ then performs
the standard processing appropriate to the object and type of event. Ifthe callback
function returns a scalar 0, the standard processing is not performed or in some cases
is reversed.

If the callback function returns its event message with some of the parameters
changed, these changes are incorporated into the standard processing. An example
would be the processing of a keystroke message where the callback function sub-
stitutes upper case for lower case characters. The exact nature of this processing is
described in the reference section on each event type.



Chapter 4: System Functions 257

Action = gexpr

If Action isset to a character vector whose first element is the execute symbol (¢)
the remaining string will be executed automatically whenever the event occurs. The
default processing for the event is performed first and may not be changed or inhib-
ited in any way.

Action = fn& {larg}

fn is a character vector containing the name of a callback function. The function is
executed in a new thread. The default processing for the event is performed first and
may not be changed or inhibited in any way.

The Result of JDQ

(DQ terminates, returning the shy result R, in one of four instances.

Firstly, 0DQ terminates when an event occurs whose "action code" is 1. In this case,
its result is a nested vector containing the event message associated with the event.
The structure of an event message varies according to the event type (see Object
Reference). However, an event message has at least two elements of which the first
is aref to the object or a character vector containing the name of the object, and the
second is a numeric code specifying the event type.

0DQ also terminates if all of the objects named in Y have been deleted. In this case,
the result is an empty character vector. Objects are deleted either using JEX, or on
exit from a defined function or operator if the names are localised in the header, or on
closing a form using the system menu.

Thirdly, JDQ terminates if the object named in its right argument is a special modal
object, such asaMsgBox, FileBox orLocator, and the user has finished inter-
acting with the object (e.g. by pressing an "OK" button). The return value of JDQ in
this case depends on the action code of the event.

Finally, [0DQ terminates with a VALUE ERROR ifit attempts to execute a callback
function that is undefined.



258 Dyalog APL/W Language Reference

Data Representation (Monadic) R«DR Y

Monadic (DR returns the type of'its argument Y. The result R is an integer scalar con-
taining one of the following values. Note that the internal representation and data
types for character data differ between the Unicode and Classic Editions.

Table 12: Unicode Edition

Value Data Type

11 1 bit Boolean

80 8 bits character

83 8 bits signed integer
160 16 bits character

163 16 bits signed integer
320 32 bits character

323 32 bits signed integer
326 Pointer (32-bit or 64-bit as appropriate)
645 64 bits Floating

1287 128 bits Decimal

Table 13: Classic Edition

Value Data Type

11 1 bit Boolean

82 8 bits character

83 8 bits signed integer

163 16 bits signed integer

323 32 bits signed integer

326 Pointer (32-bit or 64-bit as appropriate)
645 64 bits Floating

1287 128 bits Decimal

Note that types 80, 160 and 320 and 83 and 163 and 1287 are exclusive to Dyalog
APL.



Chapter 4: System Functions 259

Data Representation (Dyadic) R«X DR Y

Dyadic (DR converts the data type of its argument Y according to the type spe-
cification X. See Data Representation (Monadic) above for a list of data types but
note that 1287 is not a permitted value in X.

Case 1:

X is a single integer value. The bits in the right argument are interpreted as elements
of an array of type X. The shape of the resulting new array will typically be changed
along the last axis. For example, a character array seen as Boolean will have 8 times
as many elements along the last axis.

Case 2:

X is a 2-element integer value. The bits in the right argument are interpreted as type X
[1]. The system then attempts to convert the elements of the resulting array to type
X[ 2] without loss of precision. The result R is a two element nested array comprised
of:

1. The converted elements or a fill element (0 or blank) where the conversion
failed

2. A Boolean array of the same shape indicating which elements were suc-
cessfully converted.

Case 3: Classic Edition Only

X is a 3-element integer value and X[2 3] is 163 82. The bits in the right argu-
ment are interpreted as elements of an array of type X[ 1]. The system then converts
them to the character representation of the corresponding 16 bit integers. This case is
provided primarily for compatibility with APL*PLUS. For new applications, the use
of the [conv] field with ONAPPEND and [INREPLACE is recommended.

Conversion to and from character (data type 82) uses the translate vector given by
ONXLATE 0.By default this is the mapping defined by the current output translate
table (usually WIN.DOT).

Note. The internal representation of data may be modified during workspace com-
paction. For example, numeric arrays and (in the Unicode Edition) character arrays
will, if possible, be squeezed to occupy the least possible amount of memory.
However, the internal representation of the result R is guaranteed to remain unmod-
ified until it is re-assigned (or partially re-assigned) with the result of any function.




260

Dyalog APL/W Language Reference

Edit Object {R}«{X}0ED Y

OED invokes the Editor. Y is a simple character vector, a simple character matrix, or a
vector of character vectors, containing the name(s) of objects to be edited. The
optional left argument X is a character scalar or character vector with as many ele-
ments as there are names in Y. Each element of X specifies the type of the cor-
responding (new) object named in Y, where:

v function/operator
> simple character vector
€ vector of character vectors

- character matrix

® Namespace script
o Class script
° Interface

If an object named in Y already exists, the corresponding type specification in X is
ignored.

IfED is called from the Session, it opens Edit windows for the object(s) named in Y
and returns a null result. The cursor is positioned in the first of the Edit windows
opened by [JED, but may be moved to the Session or to any other window which is
currently open. The effect is almost identical to using ) ED.

If0ED is called from a defined function or operator, its behaviour is different. On
asynchronous terminals, the Edit windows are automatically displayed in "full-
screen" mode (ZOOMED). In all implementations, the user is restricted to those win-
dows named in Y. The user may not skip to the Session even though the Session may
be visible

OED terminates and returns a result ONLY when the user explicitly closes all the win-
dows for the named objects. In this case the result contains the names of any objects
which have been newly (re)fixed in the workspace as a result of the [JED, and has the
same structure as Y.

Objects named in Y that cannot be edited are silently ignored. Objects qualified with
a namespace path are (e.g. a.b.c.foo)are silently ignored ifthe namespace does
not exist.



Chapter 4: System Functions 261

Event Message R<EM Y

Y must be a simple non-negative integer scalar or vector of event codes. If Y isa
scalar, R is a simple character vector containing the associated event message. If'Y is
a vector, R is a vector of character vectors containing the corresponding event mes-
sages.

If'Y refers to an undefined error code "n", the event message returned is "ERROR
NUMBER n".
Example

OeM 11
DOMAIN ERROR

Event Number R<[EN

This simple integer scalar reports the identification number for the most recent event
which occurred, caused by an APL action or by an interrupt or by the JSIGNAL sys-
tem function. Its value in a clear workspace is 0.




262

Dyalog APL/W Language Reference

Exception

R<JEXCEPTION

This is a system object that identifies the most recent Exception thrown by a
Microsoft .NET object.

OEXCEPTION derives from the Microsoft NET class System.Exception. Among its
properties are the following, all of which are strings:

The name of the .NET namespace in which the exception

Source
was generated

StackTrace [The calling stack

Message The error message

OUSING<«'System'

DT<«DateTime.New 100000 0 O
EXCEPTION

DT«DateTime.New 100000 0 O

OEN
90
OEXCEPTION.Message
Specified argument was out of the range of valid values.

Parameter name: Year, Month, and Day parameters describe
an unrepresentable DateTime.

OJEXCEPTION.Source
mscorlib

JEXCEPTION.StackTrace
at System.DateTime.DateToTicks(Int32 year,
Int32 month, Int32 day)

at System.DateTime..ctor(Int32 year,
Int32 month, Int32 day)



Chapter 4: System Functions 263

Expunge Object {R}<EX Y

Y must be a simple character scalar, vector or matrix, or a vector of character vectors
containing a list of names. R is a simple Boolean vector with one element per name
inY.

Each name in Y is disassociated from its value if the active referent for the name is a
defined function, operator, variable or namespace.

The value of an element of R is 1 if the corresponding name in Y is now available for
use. This does not necessarily mean that the existing value was erased for that
name. A value of 0 is returned for an ill-formed name or for a distinguished name in
Y. The result is suppressed if not used or assigned.

Examples

OEX'VAR'

+JEX'FOO' '0jI0' 'X' '123°
1010

If a named object is being executed the existing value will continue to be used until
its execution is completed. However, the name becomes available immediately for
other use.

Examples
)SI
#.FO0O[1]x*
OVR'FOO'
V R«FOO
[1] R«10
v
+JEX'FOO'
1
)SI
#.FO0[1]x*
vFoo[O]
defn error
FOO«1 2 3
~[LC
10
FOO

123




264

Dyalog APL/W Language Reference

If a named object is an external variable, the external array is disassociated from the
name:

OXT'F'
FILES/COSTS

OQeX'F' o OXT'F'
If the named object is a GUI object, the object and all its children are deleted and
removed from the screen. The expression JEX ' . ' deletes all objects owned by the
current thread except for the Root object itself. In addition, if this expression is

executed by thread 0, it resets all the properties of ' . ' to their default values. Fur-
thermore, any unprocessed events in the event queue are discarded.

Ifthe named object is a shared variable, the variable is retracted.

If the named object is the last remaining external function of an auxiliary process, the
AP is terminated.

Ifthe named object is the last reference into a dynamic link library, the DLL is freed.



Chapter 4: System Functions 265

Export Object {R}«{X}OEXPORT Y

OEXPORT is used to set or query the export type of a defined function (or operator)
referenced by the JPATH mechanism.

Y is a character matrix or vector-of-vectors representing the names of functions and
operators whose export type is to be set or queried.

X is an integer scalar or vector (one per name in the namelist) indicating the export
type. X can currently be one of the values:

e 0 - not exported.
e | -exported (default).

A scalar or 1-element-vector type is replicated to conform with a multi-name list.

The result R is a vector that reports the export type of the functions and operators
named in Y. When used dyadically to set export type, the result is shy.

When the path mechanism locates a referenced function (or operator) in the list of
namespaces in the JPATH system variable, it examines the function’s export type:

This instance of the function is ignored and the search is resumed at the
next namespace in the JPATH list. Type-0 is typically used for functions
residing in a utility namespace which are not themselves utilities, for
example the private sub-function of a utility function.

This instance of the function is executed in the namespace in which is was
1 | found and the search terminated. The effect is exactly as if the function
had been referenced by its full path name.

Warning: The left domain of [JEXPORT may be extended in future to include extra
types 2, 3,... (for example, to change the behaviour of the function). This means that,
while JEXPORT returns a Boolean result in the first version, this may not be the case
in the future. If you need a Boolean result, use 0# or an equivalent.

(0#0EXPORT Onl 3 4)#0nl 3 4+ na Llist of exported
A functions and ops.



266 Dyalog APL/W Language Reference

File Append Component {R}«X OFAPPEND Y

Access code 8

Y must be a simple integer scalar ora 1 or 2 element vector containing the file tie
number followed by an optional passnumber. Ifthe passnumber is omitted it is
assumed to be zero. Subject to a few restrictions, X may be any array.

The shy result R is the number of the component to which X is written, and is 1
greater than the previously highest component number in the file, or 1 if the file is

new.
Examples
(100071000) [OFAPPEND 1
O«(2 3p16) 'Geoff' ([OOR'FOO') [FAPPEND 1
12
O<A B C OFAPPEND™1
13 14 15
Dump+{
tie«o [JFCREATE O A create file.
(OFUNTIE tie){}w OFAPPEND tie A append and untie.
}

File System Available R«(FAVAIL

This niladic function returns the scalar value 1 unless the component file system is
unavailable for some reason, in which case it returns scalar 0. If[JFAVAIL does
return 0, most of the component file system functions will generate the error message:

FILE SYSTEM NOT AVAILABLE
See User Guide for further details.




Chapter 4: System Functions 267

File Check and Repair R«{X} OFCHK Y

OF CHK validates and repairs component files, and validates files associated with
external variables, following an abnormal termination of the APL process or oper-
ating system.

Y must be a simple character scalar or vector which specifies the name of'the file to
be exclusively checked or repaired. For component files, the file must be named in
accordance with the operating system's conventions, and may be a relative or abso-
lute pathname. The file must exist and must not be tied. For files associated with
external variables, any filename extension must be specified even if JXT would not
require it. The file must exist and must not currently be associated with an external
variable.

Options for [JF CHK are specified using the Variant operator [l or by the optional left
argument X. The former is recommended but the older mechanism using the left argu-
ment is still supported.

In either case, the default behaviour is as follows:

1. If the file appears to have been cleanly untied previously, return 8, i.e.
report that the file is good.

2. Otherwise, validate the file and return the appropriate result. If the file is cor-
rupt, no attempt is made to repair it.

The result R is a vector of the numbers of missing or damaged components. R may
include non-positive numbers of "pseudo components" that indicate damage to parts
of'the file other than in specific components:

0 ACCESS MATRIX.
-1 Free-block tree.
-2 Component index tree.

Other negative numbers represent damage to the file metadata; this set may be exten-
ded in the future.



268 Dyalog APL/W Language Reference

Specifying options using Variant
Using Variant, the options are as follows:

o Task
e Repair
e Force

Rebuild causes the file indices to be discarded and rebuilt. Repair only takes place
on files which have been checked and found to be damaged. It involves a rebuild,
but that only takes place if it is needed. Note that Repair and Force only apply if
Task is 'Scan'.

Task

causes the file to be checked and optionally repaired (see

scan 'Repair' below)

Rebuild causes the file to be unconditionally rebuilt

Repair (principle option)

0 do not repair

1 causes the file to be repaired if damage is found
Force

do not validate the file if it appears to have been properly
closed

1 validate the file even if it appears to have been properly closed

Default values are highlighted thus in the above tables.

Examples
To check a file and attempt to fix it if damage is found:
(OFCHK [ 1) 'suspect.dcf'
To forcibly check a file and attempt to fix it if damage is found:
(OFCHK [ ('Repair' 1)('Force'1))'suspect.dcf’



Chapter 4: System Functions 269

Specifying options using a left argument

Using the optional left-argument, X must be a vector of zero or more character vectors
fromamong 'force', 'repair' and 'rebuild’', which determine the detailed
operation of the function. Note that these options are case-insensitive.

o If X contains 'force', JFCHK will validate the file even if it appears to
have been cleanly untied.

e If X contains 'repair', OFCHK will repair the file, following validation,
if it appears to be damaged. This option may be used in conjunction with
‘force'.

e If X contains 'rebuild', JFCHK will repair the file unconditionally.

Following a check of the file, a non-null result indicates that the file is damaged.

Following a repair of the file, the result indicates those components that could not
be recovered. Un-recovered components will givea FILE COMPONENT DAMAGED
error if read but may be replaced without error.

Repair can recover only check-summed components from the file, i.e. only those com-
ponents that were written with the checksum option enabled (see File Properties on
page 289).

Following an operating system crash, repair may result in one or more individual
components being rolled back to a previous version or not recovered at all, unless
Journaling levels 2 or 3 were also set when these components were written.



270

Dyalog APL/W Language Reference

File Copy

R«X OFCOPY Y

Access Code: 4609

Y must be a simple integer scalar or 1 or 2-element vector containing the file tie num-
ber and optional passnumber. The file need not be tied exclusively.

X is a character vector containing the name of a new file to be copied to.

[JF COPY creates a copy of the tied file specified by Y, named X. The new file X will
be always be a large-span file, but will otherwise be identical to the original file. In
particular all component level information, including the user number and update
time, will be the same. The operating system file creation, modification and access
times will be set to the time at which the copy occurred.

The result R is the file tie number associated with the new file X.

Note that the Access Code is 4609, which is the sum of the Access Codes for
[FREAD (1),0FRDCI (512) and JFRDAC (4096).

Example

told<'oldfile32'0FTIE O
'S' OFPROPS told
32
tnew<'newfileéb4' [JFCOPY told

'S' OFPROPS tnew
64

If X specifies the name of an existing file, the operation fails witha FILE NAME
ERROR.

Note: This operation is atomic. If an error occurs during the copy operation (such as
disk full) or if a strong interrupt is issued, the copy will be aborted and the new file X
will not be created.




Chapter 4: System Functions 271

File Create {R}«X [OFCREATE Y

Y must be a simple integer scalar ora 1 or 2 element vector. The first element is the
file tie number. The second element, if specified, must be 641,

The file tie number must not be the tie number associated with another tied file.
X must be either

a. a simple character scalar or vector which specifies the name of the file to be
created. See User Guide for file naming conventions under UNIX and Win-
dows.

b. a vector of length 1 or 2 whose items are:

i. a simple character scalar or vector as above.
ii. an integer scalar specifying the file size limit in bytes.

The newly created file is tied for exclusive use.

The shy result of JFCREATE is the tie number of the new file.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create or tie operation, allocates, and returns as an
explicit result, the first (closest to zero) available tie number. This allows you to sim-
plify code. For example:

from:
tie«1+[/0,[JFNUMS A With next available number,
file OFCREATE tie A ... create file.
to:
tie«file [OFCREATE O m Create with first available..
Examples
'..\BUDGET\SALES' OFCREATE 2 A Windows
'../budget/SALES.85' [OFCREATE 2 A UNIX
. "COSTS' 200000 [FCREATE 4 A max size 20000

IThis element sets the span of the file which in earlier Versions of Dyalog APL could be 32 or 64.
Small-span (32-bit) component files may no longer be created and this element is retained only for
backwards compatibility of code.



272 Dyalog APL/W Language Reference

File Properties

[OF CREATE allows you to specify propeties for the newly created file via the variant
operator [] used with the following options:

Vo . .
e 'J' -joumaling level; a numeric value.
] ]

e 'C' -checksum level; 0 or 1.
e 'Z' -compression; 0 or 1.

The Principal Option is neither ' J' nor 'C' - but a combination as follows:

e O-sets ('J' 0) ('C' 0)

e l-sets('J" 1) ('C' 1)

e 2-sets('J' 2) ('C' 1)

e 3-sets ('J' 3) ('C' 1)
Examples

‘newfile' ([OFCREATE[3) O
1

'SEUJCZ' [OFPROPS 1
64 01 310

Alternatively:
JFCREATE<[JFCREATE [ 3

will name a variant of JF CREATE which will create component file with level 3
journaling, and checksum enabled. Then:

‘'newfile'JFCREATE 0



Chapter 4: System Functions 273

File Drop Component {R}<[FDROP Y

Access code 32

Y must be a simple integer vector of length 2 or 3 whose elements are:

[1]]|a file tie number

a number specifying the position and number of components to be
dropped. A positive value indicates that components are to be removed
from the beginning of the file; a negative value indicates that
components are to be removed from the end of the file

(2]

[ 3] | an optional passnumber which if omitted is assumed to be zero

The shy result ofa [JFDROP is a vector of the numbers of the dropped components.
This is analogous to JF APPEND in that the result is potentially useful for updating
some sort of dictionary:

cnos,«vec [JFAPPEND"tie A Append index to dictionary
cnos~<[JFDROP tie,-pvec A Remove index from dict.

Note that the result vector, though potentially large, is generated only on request.

Examples

OFsIze 1
1 21 5436 4294967295

OFDROP 1 3 ¢ [FSIZE 1
4 21 5436 4294967295

OFDROP 1 ~2 o [FSIZE 1
4L 19 5436 4294967295




274 Dyalog APL/W Language Reference

File Erase

{R}«X OFERASE Y

Access code 4

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie num-
ber followed by an optional passnumber. Ifthe passnumber is omitted it is assumed
to be zero. X must be a character scalar or vector containing the name of the file asso-
ciated with the tie number Y. This name must be identical with the name used to tie
the file, and the file must be exclusively tied. The file named in X is erased and
untied. See User Guide for file naming conventions under UNIX and Windows.

The shy result of [JF ERASE is the tie number of the erased file.

Examples
'SALES'OFERASE 'SALES' OFTIE O

‘./temp' [OFCREATE 1

"temp' [FERASE 1
FILE NAME ERROR

"temp '0JFERASE 1

A

File History R<(FHIST Y

Access code 16384

Y must be a simple integer vector of length 1 or 2 containing the file tie number and
an optional passnumber. If the passnumber is omitted it is assumed to be zero.

The result is a numeric matrix with shape (5 2) whose rows represent the most recent
occurrence of the following events.

File creation (see note)

(Undefined)

Last update of the access matrix

(Undefined)

Last update performed by [JF APPEND, JFCREATE, JFDROP or
OFREPLACE

N =

For each event, the first column contain the user number and the second a timestamp.
Like the timestamp reported by F RDCIthis is measured in 60ts of a second since
1st January 1970 (UTC).

Currently, the second and fourth rows of the result (undefined) contain (0 0).



Chapter 4: System Functions 275

Note: JFHIST collects information only if journaling and/or checksum is in oper-
ation. If neither is in use, the collection of data for JFHIST is disabled and its result
is entirely 0. If a file has both journaling and checksum disabled, and then either is
enabled, the collection of data for JFHIST is enabled too. In this case, the inform-
ation in row 1 of JFHIST relates to the most recent enabling [JFPROPS operation
rather than the original JF CREATE.

In the examples that follow, the FHi st function is used below to format the result of
OFHIST.

V r<FHist tn;cols;rows;fhist;fmt;ToTS;I2D

[1] rows«'Created' 'Undefined' 'Last [OFSTAC'
[2] rows,«'Undefined' 'Last Updated'
[3] cols«'User' 'TimeStamp'
[4] fmt<«'ZI4,2(c-2,212),c o,212,2(c:>,212)"'
[5] I2D«{+2 [ONQ'.' 'IDNToDate'w}
[6] ToTS«{d t«1 1 0 0 0<®lO0 24 60 60 60Tw
[7] {fmt OFMT(O0 ~141I2D"25568+,d),0 ~14t}
[8] fhist«[JFHIST tn
[9] fhist[;2]«ToTS fhist[;2]
[10] fhist[;1]«s fhist[;1]
[11] re((c''),rows),colssfhist
\'4
Examples
'c:\temp'DFCREATE 1 ¢ FHist 1
User TimeStamp
Created 0 2012-01-14 12:29:53
Undefined 0 1970-01-01 00:00:00
Last (JFSTAC 0 2012-01-14% 12:29:53
Undefined 0 1970-01-01 00:00:00
Last Updated O 2012-01-14 12:29:53
(110)0FAPPEND 1 o FHist 1
User TimeStamp
Created 0 2012-01-14 12:29:53
Undefined 0 1970-01-01 00:00:00
Last [FSTAC 0 2012-01-14% 12:29:53
Undefined 0 1970-01-01 00:00:00
Last Updated O 2012-01-14 12:29:55
OFUNTIE 1
"c:\temp'FCREATE 1 ¢ FHist 1
User TimeStamp
Created 0 2012-01-14% 12:29:53
Undefined 0 1970-01-01 00:00:00
Last (JFSTAC 0 2012-01-14 12:29:53
Undefined 0 1970-01-01 00:00:00
Last Updated O 2012-01-14% 12:29:55



276 Dyalog APL/W Language Reference

File Hold

{R}<[JFHOLD Y

Access code 2048
This function holds component file(s) and/or external variable(s).

Ifapplied to component files, then Y is an integer scalar, vector, or one-row matrix of
file tie numbers, or a two-row matrix whose first row contains file tie numbers and
whose second row contains passnumbers.

Ifapplied to external variables, then Y is a non-simple scalar or vector of character
vectors, each of which is the name of an external variable. (NOT the file names asso-
ciated with those variables).

Ifapplied to component files and external variables, Y is a vector whose elements are
either integer scalars representing tie numbers, or character vectors containing names
of'external variables.

The effect is as follows:

1. The user's preceding holds (if any) are released.

2. Execution is suspended until the designated files are free of holds by any
other task.

3. When all the designated files are free, execution proceeds. Until the hold is
released, other tasks using JFHOLD on any of the designated files will wait.

IfY is empty, the user's preceding hold (if any) is released, and execution continues.
A hold is released by any of the following:

e Another JFHOLD

e Untying or retying all the designated files. If some but not all are untied or
retied, they become free for another task but the hold persists for those that
remain tied.

e Termination of APL.

e Any untrapped error or interrupt.

e A return to immediate execution.

Note that a hold is not released by a request for input through 0 or [1.

Note also that point 5 above implies that JF HOLD is generally useful only when
called from a defined function, as holds set in immediate execution (desk calculator)
mode are released immediately.

The shy result of JFHOLD is a vector of tie numbers of the files held.



Chapter 4: System Functions 277

Examples:
OFHOLD 1

(OFHOLD &
OFHOLD c'XTVAR'
OFHOLD 1 2,[0.5]0 16385

OFHOLD 1 'XTVAR'

Fix Script

{R}<{X}OFIX Y

OF IX fixes a Class from the script specified by Y.

Y must be a vector of character vectors or character scalars that contains a well-
formed Class script. If so, the shy result R is a reference to the new Class fixed by
OFIX.

The Class specified by Y may be named or unnamed.

If specified, X must be a numeric scalar. If X is omitted or non-zero, and the Class
script Y specifies a name (for the Class), [F IX establishes that Class in the work-
space.

If X is 0 or the Class specified by Y is unnamed, the Class is not established per se,
although it will exist for as long as a reference to it exists.

In the first example, the Class specified by Y is named (MyCl ass) but the result of
OF IX is discarded. The end-result is that MyC l asss is established in the workspace
as a Class.

O<0FIX ':Class MyClass' ':EndClass'
#.MyClass

In the second example, the Class specified by Y is named (MyClass) and the result
of OF IX is assigned to a different name (MYREF). The end-result is that a Class
named MyCl ass is established in the workspace, and MYREF is a reference to it.

MYREF<[JFIX ':Class MyClass' ':EndClass'
JCLASSES
MyClass MYREF
[ONC'MyClass' 'MYREF'
9.4 9.4
MYREF
#.MyClass




278 Dyalog APL/W Language Reference

In the third example, the left-argument of 0 causes the named Class MyClass to be
visible only via the reference to it (MYREF). It is there, but hidden.

MYREF«<0 OFIX ':Class MyClass' ':EndClass'
JCLASSES

MYREF
MYREF

#.MyClass

The final example illustrates the use of un-named Classes.

src«':Class' 'VMake n'

src,«'Access Public' 'Implements Constructor'
src,«'[IDF n' 'v' ':EndClass'

MYREF<[JFIX src

JCLASSES

MYREF
MYINST<[INEW MYREF 'Pete’
MYINST

Pete

Component File Library R«(JFLIB Y

Y must be a simple character scalar or vector which specifies the name of the dir-
ectory whose APL component files are to be listed. If'Y is empty, the current work-
ing directory is assumed.

The result R is a character matrix containing the names of the component files in the
directory with one row per file. The number of columns is given by the longest file
name. Each file name is prefixed by Y followed by a directory delimiter character.
The ordering of the rows is not defined.

If there are no APL component files accessible to the user in the directory in ques-
tion, the result is an empty character matrix with 0 rows and 0 columns.

Examples

grLIB "'
SALESFILE
COSTS

grLIB '.'
./SALESFILE
./COSTS



Chapter 4: System Functions 279

OFLIB '../budget'
../budget/SALES.85
../budget/COSTS.85

Format (Monadic) R<[FMT Y

Y may be any array. R isa simple character matrix which appears the same as the
default display of Y. If Y contains control characters from [JTC, they will be resolved.

Examples
A<QOFMT 'n' ,OTC[1],'o"

pA

A<[OVR 'FOO'

A
vV R«FOO
[1] R«<10
v

pA
31
B<[JFMT A

B
vV R«FOO
[1] R«10
v

pB
3 12




280

Dyalog APL/W Language Reference

Format (Dyadic) R«X OFMT Y

Y must be a simple array of rank not exceeding two, or a non-simple scalar or vector
whose items are simple arrays of rank not exceeding two. The simple arrays in Y
must be homogeneous, either character or numeric. All numeric values in Y must be
simple; if Y contains any complex numbers, dyadic FMT will generate a DOMAIN
ERROR. X must be a simple character vector. R is a simple character matrix.

X is a format specification that defines how columns of the simple arrays in Y are to
appear. A simple scalarin Y is treated as a one-element matrix. A simple vectorin Y
is treated as a one-column matrix. Each column ofthe simple arrays in Y is formatted
in left-to-right order according to the format specification in X taken in left-to-right
order and used cyclically if necessary.

R has the same number of rows as the longest column (or implied column) in Y, and
the number of columns is determined from the format specification.

The format specification consists of a series of control phrases, with adjacent phrases
separated by a single comma, selected from the following:

rAw Alphanumeric format
rEw.s Scaled format
rqfw.d Decimal format
rqGlpatternl] Pattern

rqlw Integer format

Tn Absolute tabulation
Xn Relative tabulation
0t0 Text insertion

(Alternative surrounding pairs for Pattern or Text insertionare < >, < 2, 0 [ or

)



Chapter 4: System Functions 281

where:

t

pattern

is an optional repetition factor indicating that the format phrase
is to be applied to r columns of Y

is an optional usage of qualifiers or affixtures from those
described below.

is an integer value specifying the total field width per column
of Y, including any affixtures.

is an integer value specifying the number of significant digits in
Scaled format; s must be less than w-1

is an integer value specifying the number of places of decimal
in Decimal format; d must be less than w.

is an integer value specifying a tab position relative to the
notional left margin (for T-format) or relative to the last
formatted position (for X-format) at which to begin the next
format.

is any arbitrary text excluding the surrounding character pair.
Double quotes imply a single quote in the result.

see following section G format

Qualifiers q are as follows:

B

C

Km

L
ov[t[

SOpl

leaves the field blank if the result would otherwise be zero.
inserts commas between triads of digits starting from the
rightmost digit of the integer part of the result.

scales numeric values by 1Em where m is an integer; negation
may be indicated by ~ or - preceding the number.

left justifies the result in the field width.

replaces specific numeric value v with the text t.

substitutes standard characters. p is a string of pairs of symbols
enclosed between any of the Text Insertion delimiters. The first
of each pair is the standard symbol and the second is the symbol
to be substituted. Standard symbols are:

* overflow fill character

. decimal point

, triad separator for C qualifier

0 fill character for Z qualifier

_ loss of precision character

fills unused leading positions in the result with zeros (and
commas if C is also specified).

digit selector



282

Dyalog APL/W Language Reference

Affixtures are as follows:

prefixes negative results with the text t instead of the negative

MOt :
sign.
NOt0 post-fixes negative results with the text t
POtO prefixes positive or zero results with the text t.
QUtd post-fixes positive or zero results with the text t.
presets the field with the text t which is repeated as necessary
ROLO to fill the field. The text will be replaced in parts of the field

filled by the result, including the effects of other qualifiers and
affixtures except the B qualifier

The surrounding affixture delimiters may be replaced by the alternative pairs
described for Text Insertion.

Examples
A vector is treated as a column:

'I5' OFMT 10 20 30
10
20
30

The format specification is used cyclically to format the columns of the right argu-
ment:

'I3,F5.2" OFMT 2 4p18
1 2.00 3 4.00
5 6.00 7 8.00

The columns of the separate arrays in the items of a non-simple right argument are
formatted in order. Rows in a formatted column beyond the length of the column are
left blank:

'2I4,F7.1" OFMT (t4)(2 2p 0.1xtl)
0 0.2
0 0.4

FwWrE -

Characters are right justified within the specified field width, unless the L qualifier is
specified:

"A2' [OFMT 1 6p'SPACED'
SPACED



Chapter 4: System Functions 283

Ifthe result is too wide to fit within the specified width, the field is filled with aster-
isks:

'F5.2"' OFMT 0.1x5 1000 ~100
0.50

% %k %k k %
* %k % % %

Relative tabulation (X-format) identifies the starting position for the next format
phrase relative to the finishing position for the previous format, or the notional left
margin ifnone. Negative values are permitted providing that the starting position is
not brought back beyond the left margin. Blanks are inserted in the result, if neces-
sary:

'I2,X3,3A1" OFMT (13)(2 3p'TOPCAT')

1 TOP
2 CAT
3

Absolute tabulation (T-format) specifies the starting position for the next format rel-
ative to the notional left margin. If position 0 is specified, the next format starts at
the next free position as viewed so far. Blanks are inserted into the result as
required. Over-written columns in the result contain the most recently formatted
array columns taken in left-to-right order:

X«<'6I1,T5,A1,T1,3A1,T7,F5.1"'

X OFMT (1 6p16)('*x')(1 3p'ABC')(22.2)
ABCLx6 22.2

If the number of specified significant digits exceeds the internal precision, low order
digits are replaced by the symbol :

'F20.1' [OFMT 1E18+3
3333333333333333__._

The Text Insertion format phrase inserts the given text repeatedly in all rows of the
result:

MEN<3 5p'FRED BILL JAMES'
WOMEN<«2 5p'MARY JUNE '

'SA1,<|>" OFMT MEN WOMEN
FRED |MARY |
BILL |JUNE |
JAMES | |



284

Dyalog APL/W Language Reference

The last example also illustrates that a Text Insertion phrase is used even though the
data is exhausted. The following example illustrates effects of the various qualifiers:

X<'F5.1,BF6.1,X1,2F5.1,X1,LF5.1,K3CS<.,,.>F10.1"'

X OFMT &5 3p~1.5 0 25
1.5 71.5 701.5 71.5 ~1.500,0
0.0 000.0 0.0 0,0
25.0 25.0 025.0 25.0 25.000,0

Affixtures allow text to be included within a field. The field width is not extended
by the inclusion of affixtures. N and Q affixtures shift the result to the left by the num-
ber of characters in the text specification. Affixtures may be used to enclose neg-
ative results in parentheses in accordance with common accounting practice:

'M<(>N<)>Q< >F9.2"' [FMT 150.3 ~50.25 0 1114.9
150.30
(50.25)
0.00
1114.90

One or more format phrases may be surrounded by parentheses and preceded by an

optional repetition factor. The format phrases within parentheses will be re-used the
given number of times before the next format phrase is used. A Text Insertion phrase
will not be re-used if the last data format phrase is preceded by a closing parenthesis:

'12,2(</>,2I12)"' OFMT 1 3p$100|3t0TS
20/07/89

G Format

Only the B, K, S and O qualifiers are valid with the G option

[pattern[]isan arbitrary string of characters, excluding the delimiter characters.
Characters '9' and 'Z' (unless altered with the S qualifier) are special and are known as
digit selectors.

The result of a G format will have length equal to the length of the pattern.

The data is rounded to the nearest integer (after possible scaling). Each digit of the
rounded data replaces one digit selector in the result. Ifthere are fewer data digits

than digit selectors, the data digits are padded with leading zeros. If there are more
data digits than digit selectors, the result will be filled with asterisks.

A '9' digit selector causes a data digit to be copied to the result.



Chapter 4: System Functions 285

A 'Z' digit selector causes a non-zero data digit to be copied to the result. A zero data
digit is copied if and only if digits appear on either side of it. Otherwise a blank
appears. Similarly text between digit selectors appears only if digits appear on either
side of the text. Text appearing before the first digit selector or after the last will
always appear in the result.

Examples

'Gc99/99/99>"'0FMT 0 100 100 18 7 89
08/07/89

'GeZZ/17/77>'00FMT 80789 + 0 1
8/07/89
8/07/9

'GeAndy ZZ Pauline ZZ>' [FMT 2721.499 2699.5
Andy 27 Pauline 21
Andy 27

pl«'K2GeDM 7.227.229,99>"' [OFMT 1234567.89 1234.56
DM 1.234.567,89
DM 1.234%,56
2 15

An error will be reported if:

Numeric data is matched against an A control phrase.

Character data is matched against other than an A control phrase.
The format specification is ill-formed.

For an F control phrase, d>w-2

For an E control phrase, s>w-2

O Format Qualifier

The O format qualifier replaces a specific numeric value with a text string and may
be used in conjunction with the E, F, [ and G format phrases.

An O-qualifier consists of the letter "O" followed by the optional numeric value
which is to be substituted (if omitted, the default is 0) and then the text string within
pairs of symbols such as "<>". For example:

O - qualifier Description

O<nil> Replaces the value 0 with the text "nil"

O42<N/A> Replaces the value 42 with the text "N/A"

00.001<1/1000> Replaces the value 0.001 with the text "1/1000"



286 Dyalog APL/W Language Reference

The replacement text is inserted into the field in place of the numeric value. The text
is normally right-aligned in the field, but will be left-aligned if the L qualifier is also
specified.

It is permitted to specify more than one O-qualifier within a single phrase.

The O-qualifieris JCT sensitive.

Examples
"O<NIL>F7.2'0FMT 12.3 0 42.5
12.30
NIL
42.50
"O<NIL>LF7.2'0FMT 12.3 0 42.5
12.30
NIL
42.50
"O<NIL>O042<N/A>I6'[JFMT 12 0 42 13
12
NIL
N/A
13
'099<replace>F20.2'0fmt 99 100 101
replace
100.00

101.00



Chapter 4: System Functions 287

File Names R<[JFNAMES

The result is a character matrix containing the names of all tied files, with one file
name per row. The number of columns is that required by the longest file name.

A file name is returned precisely as it was specified when the file was tied. Ifno files
are tied, the result is a character matrix with O rows and 0 columns. The rows of'the
result are in the order in which the files were tied.

Examples
"/usr/pete/SALESFILE' OFSTIE 16

'../budget/COSTFILE' [OFSTIE 2
"PROFIT' [OFCREATE 5

OFNAMES
/usr/pete/SALESFILE
../budget/COSTFILE
PROFIT

pOFNAMES
3 19

OFNUMS ,0FNAMES
16 /usr/pete/SALESFILE
2 ../budget/COSTFILE
5 PROFIT




288 Dyalog APL/W Language Reference

File Numbers R<[JFNUMS

The result is an integer vector of the tie numbers of all tied files. Ifno files are tied,
the result is empty. The elements of the result are in the order in which the files were

tied.

Examples
'/usr/pete/SALESFILE' OFSTIE 16
'../budget/COSTFILE' OFSTIE 2
"PROFIT' [FCREATE 5
OF NUMS

16 2 5
OFNUMS ,00FNAMES

16 /usr/pete/SALESFILE
2 ../budget/COSTFILE
5 PROFIT

OFUNTIE OFNUMS
pF NUMS




Chapter 4: System Functions 289

File Properties R«X OFPROPS Y

Access Code 1 (to read) or 8192 (to change properties)
OF PROPS reports and sets the properties of a component file.

Y must be a simple integer scalar or 1 or 2-element vector containing the file tie num-
ber followed by an optional passnumber. If the passnumber is omitted, it is assumed
to be 0.

X must be a simple character scalar or vector containing one or more valid Identifiers
listed in the table below, or a 2-element nested vector which specifies an Identifier
and a (new) value for that property. To set new values for more than one property, X
must be is a vector of 2-element vectors, each of which contains an Identifier and a
(new) value for that property.

Ifthe left argument is a simple character array, the result R contains the current values
for the properties identified by X. If the left argument is nested, the result R contains
the previous values for the properties identified by X.

Identifier | Property Description / Legal Values

File Size 32 = Small-span Component Files (<4GB)

S (read only) |64 = Large-span Component Files
£ Endian-ness |0 = Little-endian
(read only) |1 = Big-endian
U Unicode 0 = Characters will be written as type 82 arrays

1 = Characters will be written as Unicode arrays

0 = Disable Journaling

1 = Enable APL crash proof Journaling

J Journaling |2 = Enable System crash proof Journaling; repair
needed on recovery

3 = Enable full System crash proof Journaling

0 = Disable checksum

¢ Checksum 1 = Enable checksum

0 = Disable compression

C . .
7 ompression 1 = Enable compression




290

Dyalog APL/W Language Reference

The default properties for a newly created file are as follows:

e S=64

e U =1 (in Unicode Edition) or 0 (in Classic Edition)
e J=1

e C=1

e Z=0

e E depends upon the computer architecture.

Note that the defaults for C and J can be overridden by calling OF CREATE via the
Variant operator [i]. For further information, see File Create on page 271.

Journaling Levels

Level 1 journaling (APL crash-proof) automatically protects a component file from
damage in the event of abnormal termination of the APL process. The file state will
be implicitly committed between updates and an incomplete update will auto-
matically be rolled forward or back when the file is re-tied. In the event of an oper-
ating system crash the file may be more seriously damaged. If checksum was also
enabled it may be repaired using [JF CHK but some components may be restored to a
previous state or not restored at all.

Level 2 journaling (system crash-proof — repair needed on recovery) extends level 1
by ensuring that a component file is fully repairable using F CHK with no com-
ponent loss in the event of an operating system failure. If an update was in progress
when the system crashed the affected component will be rolled back to the previous
state. Tying and modifying such a file without first running [JF CHK may however
render it un-repairable.

Level 3 journaling (system crash-proof) extends level 2 by protecting a component
file from damage in the event of abnormal termination of the APL process and also
the operating system. Rollback of an incomplete update will be automatic and no
explicit repair will be needed.

Enabling journaling on a component file will reduce performance of file updates;
higher journaling levels have a greater impact.

Journaling levels 2 and 3 cannot be set unless the checksum option is also enabled.

The default level of journaling may be changed using the APL_FCREATE _
PROPS_J parameter (see User Guide).



Chapter 4: System Functions 291

Checksum Option

The checksum option is enabled by default. This enables a damaged file to be
repaired using [JF CHK. It will however reduce the performance of file updates
slightly and result in larger component files. The default may be changed using the
APL_FCREATE_PROPS_C parameter (See User Guide).

Enabling the checksum option on an existing non-empty component file will result
in all previously written components without a checksum being check-summed and
converted. This operation which will take place when [JFPROPS is changed, may
not therefore be instantaneous.

Journaling and checksum settings may be changed at any time a file is exclusively
tied.

Example

tn<'myfileé4' [FCREATE 0O
"SEUT' OFPROPS tn
64 010

The following expression disables Unicode and switches Journaling on. The func-
tion returns the previous settings:

('U" 0)('J" 1) OFPROPS tn
10

Note that to set the value of just a single property, the following two statements are
equivalent:

'J' 1 OFPROPS tn
(,e'J" 1) OFPROPS tn

Properties may be read by a task with [JFREAD permission (access code 1), and set by
a task with JF STAC access (8192). To set the value of the Journaling property, the
file must be exclusively tied.

Recommendation

It is recommended that all component files are protected by a minimum of Level 1
Joumalling and have Checksum enabled.

Unprotected files should should only be used:

e for temporary work files where speed is paramount and integrity a sec-
ondary issue

e or where compatibility with Versions of Dyalog prior to Version 12.0 is
required



292 Dyalog APL/W Language Reference

This recommendation is given for the following reasons:

e Unprotected files are ecasily damaged by abnormal termination of the inter-
preter

They cannot be repaired using [JF CHK

They do not support JFHIST

They are not well supported by the Dyalog File Server (DFS)

They do not support compression of components

Additional features added in future may not be supported

Compression Option

Components are compressed using the LZ4 compressor which delivers a medium
level of compression, but is considered to be very fast compared to other algorithms.

Compression is intended to deliver a performance gain reading and writing large com-
ponents on fast computers with slow (e.g. network) file access. Conversely, on a slow
computer with fast file access compression may actually reduce read/write per-
formance. For this reason it is optional at the component level.

The default forthe 'Z ' property is 0 which means no compression; 1 means com-
pression. When written, components are compressed or not according to the current
value of the ' 2" property. Changing this property does not change any components
already in the file.

A component file may therefore contain a mixture of normal and compressed com-
ponents. Note that only the data in file components are compressed, the file access
matrix and other header information is not compressed.

When read, compressed components are decompressed regardless of the value of the
"7"' property.

An exclusive tie is not needed to change the file property.

Compression is not supported for files in which both Journalling and Checksum are
disabled.



Chapter 4: System Functions 293

Floating-Point Representation OFR

The value of [JFR determines the way that floating-point operations are performed.

IfFR is 645, all floating-point calculations are performed using IEEE 754 64-bit
floating-point operations and the results of these operations are represented intern-
ally using binary641 floating-point format.

If0FR is 1287, all floating-point calculations are performed using IEEE 754-2008
128-bit decimal floating-point operations and the results of these operations are rep-
resented internally using decimall 282 format.

Note that when you change [FR, its new value only affects subsequent floating-
point operations and results. Existing floating-point values stored in the workspace
remain unchanged.

The default value of [JFR (its value in a c Lear ws)is configurable.

0F R has workspace scope, and may be localised. If so, like most other system vari-
ables, it inherits its initial value from the global environment.

However:Although [JFR can vary, the system is not designed to allow “seamless”
modification during the running of an application and the dynamic alteration ofis
not recommended. Strange effects may occur. For example, the type of a constant
contained in a line of code (in a function or class), will depend on the value of JFR
when the function is fixed.

Also note:
OFR«1287
x«1+3
OFR<«645
x=1+3

1

1http:// en.wikipedia.org/wiki/Double precision floating-point format

2http:// en.wikipedia.org/wiki/Decimal128 floating-point format




294

Dyalog APL/W Language Reference

The decimal number has 17 more 3’s. Using the tolerance which applies to binary
floats (type 645), the numbers are equal. However, the “reverse” experiment yields 0,
as tolerance is much narrower in the decimal universe:

OFR<«645
x<1+3
OFR<«1287
x=1+3

0

Since [FR can vary, it will be possible for a single workspace to contain floating-
point values of both types (existing variables are not converted when 0FR is
changed). For example, an array that has just been brought into the workspace from
external storage may have a different type from [JFR in the current namespace. Con-
version (if necessary) will only take place when a new floating-point array is gen-
erated as the result of “a calculation”. The result of a computation returning a
floating-point result will not depend on the type of the arrays involved in the expres-
sion: [JFR at the time when a computation is performed decides the result type, alone.

Structural functions generally do NOT change the type, for example:

[OFR«1287
x«1.1 2.2 3.3

[OFR<645

ODR x
1287

ODR 21tx
1287

128-bit decimal numbers not only have greater precision (roughly 34 decimal digits);
they also have significantly larger range — from "1E6145 to 1E6145. Loss of pre-
cision is accepted on conversion from 645 to 1287, but the magnitude of a number
may make the conversion impossible, in which case a DOMAIN ERROR is issued:

OFR<«1287

x<1E1000

OFR«645 ¢ x+0
DOMAIN ERROR



Chapter 4: System Functions 295

When experimenting with FR it is important to note that numeric constants entered
into the Session are evaluated (and assigned a data type) before the line is actually
executed. This means that constants are evaluated according to the value of [JFR that
pertained before the line was entered. For example:

OFR<«645

OFR
645

OFR<1287 o [ODR 0.1
645

bR 0.1
1287

WARNING: The use of COMPLEX numbers when [JFR is 1287 is not recom-
mended, because:

any 128-bit decimal array into which a complex number is inserted or appended will
be forced in its entirety into complex representation, potentially losing precision.

all comparisons are done using ODCT when [FR is 1287, and the default value of
1E728 is equivalent to 0 for complex numbers.

File Read Access R<JFRDAC Y

Access code 4096

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie num-
ber followed by an optional passnumber. Ifthe passnumber is omitted it is assumed
to be zero. The result is the access matrix for the designated file.

See "File Access Control" in User Guide for further details.

Examples

OFRDAC 1
28 2105 16385
0 2073 16385
31 1 0




296 Dyalog APL/W Language Reference

File Read Component Information R«[JFRDCI Y

Access code 512

Y must be a simple integer vector of length 2 or 3 containing the file tie number, com-
ponent number and an optional passnumber. Ifthe passnumber is omitted it is
assumed to be zero.

The result is a 3 element numeric vector containing the following information:

1. the size of the component in bytes (i.e. how much disk space it occupies).
2. the user number of the user who last updated the component.
3. the time of the last update in 60ths of a second since 1st January 1970

(UTC).
Example

OFRDCI 1 13
2200 207 3.702094494E10



Chapter 4: System Functions 297

File Read Components R«(JFREAD Y

Access code 1

Y is a 2 or 3 item vector containing the file tie number, the component number(s), and
an optional passnumber. Ifthe passnumber is omitted it is assumed to be zero. All
elements of Y must be integers.

The second item in Y may be scalar which specifies a single component number or a
vector of component numbers. If it is a scalar, the result is the value of the array that

is stored in the specified component on the tied file. If it is a vector, the result is a vec-
tor of such arrays.

Note that any invocation of JFREAD is an atomic operation. Thus if compnos is a
vector, the statement:

OFREAD tie compnos passno
will return the same result as:
{OFREAD tie w passno} compnos

However, the first statement will, in the case of a share-tied file, prevent any poten-
tial intervening file access from another user (without the need for a[JF HOLD). It will
also perform slightly faster, especially when reading from a share-tied file.

Examples

PSALES<[JFREAD 1 241
3 2 12

GetFile«{dio+«0
tiecw [fstie O
fm to«2t0fsize tie
cnos«fm+ito-fm
cvec+[Jfread tie cnos
cvec{a}dfuntie tie

Extract contents.

new tie number.

first and next component.

vector of component nos.

vector of components.
untie and return.

DODOD®TDODDO®DO



298 Dyalog APL/W Language Reference

File Rename {R}«X [OFRENAME Y

Access code 128

Y must be a simple 1 or 2 element integer vector containing a file tie number and an
optional passnumber. Ifthe passnumber is omitted it is assumed to be zero.

X must be a simple character scalar or vector containing the new name of the file.
This name must be in accordance with the operating system's conventions, and may
be specified with a relative or absolute pathname.

The file being renamed must be tied exclusively.

The shy result of JF RENAME is the tie number of the file.

Examples

'SALES' QOFTIE 1
"PROFIT' QOFTIE 2

OFNAMES
SALES
PROFIT

'SALES.85' [OFRENAME 1
'../profits/PROFITS.85"' [JFRENAME 2

OFNAMES
SALES.85
../profits/PROFITS.85

Rename<«{
fm to«w
OFUNTIE to OFRENAME fm OFTIE O



Chapter 4: System Functions 299

File Replace Component {R}«X OFREPLACE Y

Access code 16

Y must be a simple 2 or 3 element integer vector containing the file tie number, the
component number, and an optional passnumber. Ifthe passnumber is omitted it is
assumed to be zero. The component number specified must lie within the file's com-
ponent number limits.

X is any array (including, for example, the JOR of a namespace), and overwrites the
value of the specified component. The component information (see File Read Com-
ponent Information on page 296) is also updated.

The shy result of JFREPLACE is the file index (component number of replaced
record).

Example
SALES<[JFREAD 1 241
(SALESx1.1) [OFREPLACE 1 241
Define a function to replace (index, value) pairs in a component file ]JMS.DCF:
Frep«{
tie«a OFTIE O

_+<{w OFREPLACE tie a}/ w
OFUNTIE tie

"jms'Frep(3 'abc')(29 'xxx')(7 'yyy')




300

Dyalog APL/W Language Reference

File Resize {R}«{X}JFRESIZE Y

Access code 1024

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie num-
ber followed by an optional passnumber. Ifthe passnumber is omitted it is assumed
to be zero.

X is an integer that specifies the maximum permitted size of the file in bytes. The
value 0 means the maximum possible size of file.

An attempt to update a component file that would cause it to exceed its maximum
size will fail witha FILE FULL error (21).A side effect of JFRESIZE is to cause
the file to be compacted. Any interrupt entered at the keyboard during the com-
paction is ignored. Note that if the left argument is omitted, the file is simply com-
pacted and the maximum file size remains unchanged.

During compaction, the file is restructured by reordering the components and by
amalgamating the free areas at the end of the file. The file is then truncated and
excess disk space is released back to the operating system. For a large file with many
components, this process may take a significant time.

The shy result of JFRESIZE is the tie number of the file.

Example

'test'[JFCREATE 1 o [FSIZE 1
11 120 1.844674407E19

(10 1000p1.1)0FAPPEND 1 o [JFSIZE 1
1 2 80288 1.844674407E19

100000 [JFRESIZE 1 A Limit size to 100000 bytes
(10 1000p1.1)00FAPPEND 1

FILE FULL
(10 1000p1.1)FAPPEND 1

A

OFRESIZE 1 A Force file compaction.




Chapter 4: System Functions 301

File Size

R<FSIZE Y

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie num-
ber followed by an optional passnumber. Ifthe passnumber is omitted it is assumed
to be zero. The result is a 4 element numeric vector containing the following:

Element

Description

1

the number of first component

1 + the number of the last component, (i.e. the result of the next
OF APPEND)

3

the current size of the file in bytes

4

the file size limit in bytes

Example

OFsIzE 1
1 21 65271 4294967295

File Set Access

{R}«X OFSTAC Y

Access code 8192

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie num-
ber followed by an optional passnumber. Ifthe passnumber is omitted it is assumed

to be zero.

X must be a valid access matrix, i.e. a 3 column integer matrix with any number of

TOWS.

See "File Access Control" in User Guide for further details.

The shy result of [JF STAC is the tie number of the file.

Examples

SALES [FCREATE 1
(3 3p28 2105 16385 0 2073 16385 31 ~1 0) [FSTAC 1
((OFRDAC 1)521 2105 16385) [OFSTAC 1

(1 3p0 "1 0)OFSTAC 2 a Allow everyone access




302

Dyalog APL/W Language Reference

File Share Tie {R}«X OFSTIE Y

Y must be 0 ora simple 1 or 2 element integer vector containing an available file tie
number to be associated with the file for further file operations, and an optional
passnumber. Ifthe passnumber is omitted it is assumed to be zero. The tie number
must not already be associated with a tied file.

X must be a simple character scalar or vector which specifies the name of the file to
be tied. The file must be named in accordance with the operating system's con-
ventions, and may be specified with a relative or absolute pathname.

The file must exist and be accessible by the user. Ifit is already tied by another task,
it must not be tied exclusively.

The shy result of JF STIE is the tie number of the file.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create, share tie or exclusive tie operation, alloc-
ates the first (closest to zero) available tie number and returns it as an explicit result.
This allows you to simplify code. For example:

from:
tie«1+[/0,00FNUMS @A With next available number,
file OFSTIE tie A ... share tie file.
to:
tiee«file OFSTIE O A Tie with 1st available number.
Example

'SALES' [OFSTIE 1

'../budget/COSTS' [FSTIE 2




Chapter 4: System Functions 303

Tieing Small-Span Component Files

To tie a small-span file you must specify the ReadOn Ly option via the Variant oper-
ator [5].

Example

‘old-32-bit-file' (OFTIEE'ReadOnly' 1)1
"SEUJC' [OFPROPS 1
32 0011

Note that there is no Principle Option for this function; you must specify the
ReadOnly option by name.



304

Dyalog APL/W Language Reference

Exclusive File Tie {R}«X OFTIE Y

Access code 2

Y must be 0 ora simple 1 or 2 element integer vector containing an available file tie
number to be associated with the file for further file operations, and an optional
passnumber. Ifthe passnumber is omitted it is assumed to be zero. The tie number
must not already be associated with a share tied or exclusively tied file.

X must be a simple character scalar or vector which specifies the name of the file to
be exclusively tied. The file must be named in accordance with the operating sys-
tem's conventions, and may be a relative or absolute pathname.

The file must exist and be accessible by the user. It may not already be tied by
another user.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create, share tie or exclusive tie operation, alloc-
ates the first (closest to zero) available tie number, and returns it as an explicit result.
This allows you to simplify code. For example:

from:

tie<1+[/0,00FNUMS A With next available number,
file OFTIE tie A ... tie file.

to:
tie«file OFTIE O A Tie with first available number.
The shy result of F TIE is the tie number of the file.

Examples
'SALES' [OFTIE 1

'../budget/COSTS' OFTIE 2

'../budget/expenses' [FTIE O




Chapter 4: System Functions 305

File Untie {R}<[JFUNTIE Y

Y must be a simple integer scalar or vector (including Zilde). Files whose tie num-
bers occurin Y are untied. Other elements of Y have no effect.

If'Y is empty, no files are untied, but all the interpreter's internal file buffers are
flushed and the operating system is asked to flush all file updates to disk. This spe-
cial facility allows the programmer to add extra security (at the expense of per-
formance) for application data files.

The shy result of JFUNTIE is a vector of tie numbers of the files actually untied.

Example
(OFUNTIE OFNUMS A Unties all tied files

[(JFUNTIE 6 A Flushes all buffers to disk

Fix Definition {R}OFX Y

Y is the representation form of a function or operator which may be:

e its canonical representation form similar to that produced by [JCR except
that redundant blanks are permitted other than within names and constants.

e its nested representation form similar to that produced by [ONR except that
redundant blanks are permitted other than within names and constants.

e its object representation form produced by [JOR.

e its vector representation form similar to that produced by VR except that
additional blanks are permitted other than within names and constants.

0F X attempts to create (fix) a function or operator in the workspace or current
namespace from the definition given by Y. [JI0 is an implicit argument of [JF X.
Note that [JF X does not update the source of a scripted namespace, or of class or
instance; the only two methods of updating the source of scripted objects is via the
Editor, or by calling OF IX.

If the function or operator is successfully fixed, R is a simple character vector con-
taining its name and the result is shy. Otherwise R is an integer scalar containing the
(010 dependent) index of the row of the canonical representation form in which the
first error preventing its definition is detected. In this case the result R is not shy.

Functions and operators which are pendent, that is, in the State Indicator without a
suspension mark (*), retain their original definition until they complete, or are
cleared from the State Indicator. All other occurrences of the function or operator
assume the new definition. The function or operator will fail to fix if it has the same
name as an existing variable, or a visible label.




306

Dyalog APL/W Language Reference

Instances

R<(JINSTANCES Y

OINSTANCES returns a list all the current instances of the Class specified by Y.
Y must be a reference.

IfY is a reference to a Class, R is a vector of references to all existing Class Instances
of Y. Otherwise, R is empty.

Examples

This example illustrates a simple inheritance tree or Class hierarchy. There are 3
Classes, namely:

Animal
Bird (derived from Animal)
Parrot (derived from Bird)

:Class Animal
;éﬁdClass A Animal
:Class Bird: Animal
;éHdClass A Bird
:Class Parrot: Bird

;éﬁdclass A Parrot

Eeyore<[JNEW Animal
Robin<[INEW Bird
Pol ly<[JNEW Parrot

[OJINSTANCES Parrot
#.[Parrot]

[JINSTANCES Bird
#.[Bird] #.[Parrot]

(JINSTANCES Animal
#.[Animal] #.[Bird] #.[Parrot]

Eeyore.[JDF 'eeyore'
Robin.(DF 'robin'
Polly.[DF 'polly'




Chapter 4: System Functions 307

OINSTANCES Parrot
polly

OINSTANCES Bird
robin polly

OINSTANCES Animal
eeyore robin polly

Index Origin gIo

0I0 determines the index of'the first element of a non-empty vector.
0I0 may be assigned the value 0 or 1. The value in a clear workspace is 1.

(IO isan implicit argument of any function derived from the Axis operator ([K ]), of
the monadic functions Fix ((F X), Grade Down (V¥), Grade Up (4), Index Generator
(1), Roll (?), and of the dyadic functions Deal (?), Grade Down (V¥), Grade Up (4),
Index Of (1), Indexed Assignment, Indexing, Pick (@) and Transpose (®).

Examples
(10«1

12345

01234

+/[0]2 3p16

"ABC',[.5]'="

n >
n w
no



308

Dyalog APL/W Language Reference

Key Label

R<0KL Y

Classic Edition only.

Y is a simple character vector or a vector of character vectors containing Input Codes
for Keyboard Shortcuts. In the Classic Edition, keystrokes are associated with Key-
board Shortcuts by the Input Translate Table.

R is a simple character vector or a vector of character vectors containing the labels
associated with the codes. If'Y specifies codes that are not defined, the cor-
responding elements of R are the codesin Y.

OKL provides the information required to build device-independent help messages
into applications, particularly full-screen applications using [JSM and [JSR.
Examples:

OKkL 'RC'
Right

OKL 'ER' 'EP' 'QT' 'F1' 'F13'
Enter Esc Shift+Esc F1 Shift+F1

Line Count R«LC

This is a simple vector of line numbers drawn from the state indicator (See Pro-
grammer's Guide: The State Indicator). The most recently activated line is shown
first. If a value corresponds to a defined function in the state indicator, it represents
the current line number where the function is either suspended or pendent.

The value of JLC changes immediately upon completion of the most recently activ-
ated line, or upon completion of execution within ¢ or[J. Ifa[JSTOP control is set,
OLC identifies the line on which the stop control is effected. In the case where a stop
control is set on line 0 of a defined function, the first entry in [JL C is 0 when the con-
trol is effected.

The value of [JL C in a clear workspace is the null vector.

Examples

)SI
#.TASK1[5]*

3
#.BEGIN[3]

gdLc



Chapter 4: System Functions 309

»{LC
gLc

pdLC

Load Workspace OLOAD Y

Y must be a simple character scalar or vector containing the identification of a saved
workspace.

IfY is ill-formed or does not identify a saved workspace or the user account does not
have access permission to the workspace,a DOMAIN ERROR is reported.

Otherwise, the active workspace is replaced by the workspace identified in Y. The
active workspace is lost. Ifthe loaded workspace was saved by the ) SAVE system
command, the latent expression (L X) is immediately executed, unless APL was
invoked with the -x option. Ifthe loaded workspace was saved by the JSAVE sys-
tem function, execution resumes from the point of exit from the JSAVE function,
with the result of the JSAVE function being 0.

The workspace identification and time-stamp when saved is not displayed.

Ifthe workspace contains any GUI objects whose Visib l e property is 1, these
objects will be displayed. Ifthe workspace contains a non-empty JSM but does not
contain an SM GUI object, the form defined by [JSM will be displayed in a window
on the screen.

Under UNIX, the interpreter attempts to open the file whose name matches the con-
tents of Y. Under Windows, unless Y contains at least one ".", the interpreter will
append the file extension ".DWS" to the name.




310 Dyalog APL/W Language Reference

Lock Definition {X}OLOCK Y

Y must be a simple character scalar, or vector which is taken to be the name of a
defined function or operator in the active workspace. JLOCK does not apply to dfns
or derived functions.

The active referent to the name in the workspace is locked. Stop, trace and monitor
settings, established by the JSTOP,[JTRACEand [JMONITOR functions, are can-
celled.

The optional left argument X specifies to what extent the function code is hidden. X
may be 1, 2 or 3 (the default) with the following meaning:

1. The object may not be displayed and you may not obtain its character form

using [JCR, VR or [INR.
2. Execution cannot be suspended with the locked function or operator in the

state indicator. On suspension of execution the state indicator is cut back to
the statement containing the call to the locked function or operator.
3. Both 1 and 2 apply. You can neither display the locked object nor suspend

execution within it.
Locks are additive, so that

1 OLOCK'FOO' ¢ 2 [JLOCK'FOO'

is equivalent to:
3 [LOCK'FOO'
A DOMAIN ERROR isreported if Y is ill-formed.

Examples

OFX'r«foo' 'r<«i0'
[ONR'foo'

r<«foo r«10
pONR "' foo'

0OLOCK'foo'
pONR ' foo'



Chapter 4: System Functions 311

Latent Expression OLXx

This may be a character vector or scalar representing an APL expression. The expres-
sion is executed automatically when the workspace is loaded. If APL is invoked
using the -x flag, this execution is suppressed.

The value of [JL X in a clear workspace is

Example
OLX<'"'"'GOOD MORNING PETE'"''

)SAVE GREETING
GREETING saved Tue Sep 8 10:49:29 1998

JLOAD GREETING
./GREETING saved Tue Sep 8 10:49:29 1998
GOOD MORNING PETE

Map File

R«{X}OMAP Y

[OMAP function associates a mapped file with an APL array in the workspace.

Two types of mapped files are supported; 4PL and raw. An APL mapped file contains
the binary representation of a Dyalog APL array, including its header. A file of this
type must be created using the supplied utility function AMPUT. When you map an
APL file, the rank, shape and data type of the array is obtained from the information
on the file.

A raw mapped file is an arbitrary collection of bytes. When you map a raw file, you
must specify the characteristics of the APL array to be associated with this data. In
particular, the data type and its shape.

The type of mapping is determined by the presence (raw) or absence (APL) of the left
argument to (JMAP.

The right argument Y specifies the name of the file to be mapped and, optionally, the
access type and a start byte in the file. Y may be a simple character vector, ora 2 or 3-
element nested vector containing:

1. file name (character scalar/vector)

2. access code (character scalar/vector) : one of : 'R' or 'r' (read-only
access), 'W' or 'w' (read-write access).

3. start byte offset (integer scalar/vector). Must be a multiple of 4 (default 0)



312

Dyalog APL/W Language Reference

If you map a file with read-only access you may modify the corresponding array in
the workspace, however your changes are not written back to the file.

If X is specified, it defines the type and shape to be associated with raw data on file.
X must be an integer scalar or vector. The first item of X specifies the data type and
must be one of the following values:

Classic Edition 11, 82, 83, 163, 323 or 645

Unicode Edition 11, 80, 83, 160, 163, 320, 323 or 645

The values are more fully explained in Data Representation (Monadic) on page 258.

Following items determine the shape of the mapped array. A value of ~1 on any (but
normally the first) axis in the shape is replaced by the system to mean: read as many
complete records from the file as possible. Only one axis may be specified in this
way. Note that if X is a singleton, the data on the file is mapped as a scalar and only
the first value on the file is accessible.

Ifno left argument is given, file is assumed to contain a simple APL array, complete
with header information (type, rank, shape, etc). Such mapped files may only be
updated by changing the associated array using indexed/pick assignment: var[a]
«b, the new values must be of the same type as the originals.

Note that a raw mapped file may be updated only ifits file offset is 0.

Examples
Map raw file as a read-only vector of doubles:
vec<645 ~1 [OMAP'c:\myfile'
Map raw file as a 20-column read-write matrix of 1-byte integers:
mat<83 ~1 20 [OMAP'c:\myfile' 'W'
Replace some items in mapped file:
mat[2 3:4 5]«2 2pi4
Map bytes 100-180 in raw file as a 5x2 read-only matrix of doubles:
dat«645 5 2 OMAP'c:\myfile' 'R' 100
Put simple 4-byte integer array on disk ready for mapping:
(283 323 [IDR 2 3 4p124)AMPUT'c:\myvar'
Then, map a read-write variable:

var<[JMAP'c:\myvar' 'w'



Chapter 4: System Functions 313

Note that a mapped array need not be named. In the following example, a ‘raw’ file is
mapped, summed and released, all in a single expression:

+/163 ~1 [OMAP'c:\shorts.dat'
42

Ifyou fail to specify the shape of the data, the data on file will be mapped as a scalar
and only the first value in the file will be accessible:

83 [OMAP 'myfile' A map FIRST BYTE of file.
~86

Compatibility between Editions

In the Unicode Edition OMAP will fail with a TRANSLATION ERROR (event num-
ber 92) if you attempt to map an APL file which contains character data type 82.

In order for the Unicode Edition to correctly interpret data in a raw file that was writ-
ten using data type 82, the file may be mapped with data type 83 and the characters
extracted by indexing into JAVU.

Migration Level OML

OML determines the degree of migration of the Dyalog APL language towards IBM's
APL2. Setting this variable to other than its default value of 0 changes the inter-
pretation of certain symbols and language constructs.

OML<0 Native Dyalog (Default)

OML<1 | Z«€eR |Monadic '€ is interpreted as 'enlist' rather than 'type'.

OML<2 [ Z«tR |Monadic 't"' is interpreted as 'first' rather than 'mix’.

Z+>R [Monadic '>"' is interpreted as 'mix' rather than 'first'.

Monadic returns a positive rather than a negative value,

Ze=R if its argument has non-uniform depth.

R«Xc [Dyadic 'c' follows the APL2 (rather than the original

OML<3 [K]Y |Dyalog APL) convention.

gTtc The order of the elements of JTC is the same as in APL2.

Subsequent versions of Dyalog APL may provide further migration levels.



314 Dyalog APL/W Language Reference

Examples
X«<2(3 4)
OML<0
(4

0 0O
tX

20

3 4
oX

2
=X

2
OML<«1
eX

2 3 4
t+X

20

3 4
>X

2
=X

-2
OML<2
eX

2 3 4
X

2
>X

20

3 4
=X



Chapter 4: System Functions 315

Set Monitor {R}«X [OMONITOR Y

Y must be a simple character scalar or vector which is taken to be the name of a vis-
ible defined function or operator. X must be a simple non-negative integer scalar or
vector. R is a simple integer vector of non-negative elements.

X identifies the numbers of lines in the function or operator named by Y on which a
monitor is to be placed. Numbers outside the range of line numbers in the function
or operator (other than 0) are ignored. The number 0 indicates that a monitor is to be
placed on the function or operator as a whole. The value of X is independent of JIO.

R is a vector of numbers on which a monitor has been placed in ascending order. The
result is suppressed unless it is explicitly used or assigned.

The effect of JMONITOR is to accumulate timing statistics for the lines for which the
monitor has been set. See Query Monitor on page 316 for details.

Examples

+(0,110) [OMONITOR 'FOO'
012345

Existing monitors are cancelled before new ones are set:

+1 [JMONITOR 'FOO'
1

All monitors may be cancelled by supplying an empty vector:
& OMONITOR 'FOO'

Monitors may be set on a locked function or operator, but no information will be
reported. Monitors are saved with the workspace.



316 Dyalog APL/W Language Reference

Query Monitor

R«<[JMONITOR Y

Y must be a simple character scalar or vector which is taken to be the name of a vis-
ible defined function or operator. R is a simple non-negative integer matrix of 5
columns with one row for each line in the function or operator Y which has the mon-

itor set, giving:

Column 1

Line number

Column 2

Number of times the line was executed

Column 3

CPU time in milliseconds

Column 4

Elapsed time in milliseconds

Column 5

Reserved

The value of 0 in column one indicates that the monitor is set on the function or oper-
ator as a whole. R will be empty for dfns and dops.

Example
vV FOO
[1]  A<?25 25p100
[2] B<HA
[3] C+<@8

(4] R1«[0.5+A+.xB

[5] R2«A=C

v

(0,15) [OJMONITOR 'FOO' A Set monitor

FOO

OMONITOR
01 1418 1000
11 83 0
2 1 400 0
3 1 397 0
Y 1 467 1000
51 100 0

[eNeoNoNoNeNe)

A Run function

'FOO' A Monitor query



Chapter 4: System Functions 317

Name Association {R}«{X}ONA Y

ONA provides access from APL to compiled functions within a Dynamic Link
Library (DLL). A DLL is a collection of functions typically written in C (or C++)
each of which may take arguments and return a result.

Instructional examples using [JNA can be found in supplied workspace:
QUADNA .DWS.

The DLL may be part of the standard operating system software, purchased from a
third party supplier, or one that you have written yourself.

The right argument Y is a character vector that identifies the name and syntax of the
function to be associated. The left argument X is a character vector that contains the
name to be associated with the external function. If the [JNA is successful, a function
(name class 3) is established in the active workspace with name X. If X is omitted, the
name of the external function itselfis used for the association.

The shy result R is a character vector containing the name of the external function
that was fixed.

For example, math.d11 might be a library of mathematical functions containing a
function divide. To associate the APL name di v with this external function:

‘div' ONA 'F8 math|divide I4 Iu'

where F 8 and I4, specify the types of the result and arguments expected by
divide. The association has the effect of establishing a new function: di v in the
workspace, which when called, passes its arguments to divide and returns the res-
ult.

)fns
div

div 10 4
2.5




318

Dyalog APL/W Language Reference

Type Declaration

In a compiled language such as C, the types of arguments and results of functions
must be declared explicitly. Typically, these types will be published with the doc-
umentation that accompanies the DLL. For example, function divide might be
declared:

double divide (int32 t, int32 t);

which means that it expects two long (4-byte) integer arguments and returns a double
(8-byte) floating point result. Notice the correspondence between the C declaration
and the right argument of [INA:

C: double divide (int32 t, int32 t);
APL:'div' [ONA 'F8 math|divide Iy I !

It is imperative that care be taken when coding type declarations. A DLL cannot
check types of data passed from APL. A wrong type declaration will lead to erro-
neous results or may even cause the workspace to become corrupted and crash.

The full syntax for the right argument of [INA is:
[result] library|function [argl] [arg2] ...

Note that functions associated with DLLs are never dyadic. All arguments are passed
as items of a (possibly nested) vector on the right of the function.

Locating the DLL

The DLL may be specified using a full pathname, file extension, and function type.

Pathname:

APL uses the LoadLibrary () system function under Windows and d1lopen ()
under UNIX and Linux to load the DLL. If a full or relative pathname is omitted,
these functions search standard operating system directories in a particular order. For
further details, see the operating system documentation about these functions.

Alternatively, a full or relative pathname may be supplied in the usual way:

ONA'... c:\mydir\mydll|foo ..."



Chapter 4: System Functions 319

Errors:
If the specified DLL (or a dependent DLL) fails to load it will generate:
FILE ERROR 2 No such file or directory

Ifthe DLL loads successfully, but the specified library function is not accessible, it
will generate:

VALUE ERROR

File Extension:

Under Windows, if the file extension is omitted, .dll is assumed. Note that some
DLLs are in fact .exe files, and in this case the extension must be specified explicitly:

ONA'... mydll.exe|foo ...'

Example
ONA'... mydll.exe.P32|foo ...'Am 32 bit Pascal

Name Mangling

C++ and some other languages will by default mangle (or decorate) function names
which are exported from a DLL file. The given external function name must exactly
match the exported name, either by matching the name mangling or by ensuring the
names exported from the library are not mangled.

Call by Ordinal Number

Under Windows, a DLL may associate an ordinal number with any of its functions.
This number may then be used to call the function as an alternative to calling it by
name. Using [INA to call by ordinal number uses the same syntax but with the func-
tion name replaced with its ordinal number. For example:

ONA'... mydLL]|57 ...'
Multi-Threading

Appending the ‘&’ character to the function name causes the external function to be
run in its own system thread. For example:

ONA'... mydll|foo& ...'

This means that other APL threads can run concurrently with the one that is calling
the [NA function.



320 Dyalog APL/W Language Reference

Data Type Coding Scheme

The type coding scheme introduced above is of the form:

[direction] [special] type [width] [array]

The options are summarised in the following table and their functions detailed

below.

Description

Symbol

Meaning

Direction

<

Pointer to array input to DLL function.

>

Pointer to array output from DLL function

Pointer to input/output array.

Special

Null-terminated string.

Byte-counted string

Type

int

unsigned int

char

char!

float

decimal

complex

uintptr-t2

APL array

N[> D] QOO0 |lCc|H]| ®|O

APL array with header (as passed to a TCP/IP socket)

IClassic Edition: - translated to/from ANSI
2equivalent to U4 on 32-bit versions and U8 on 64-bit versions




Chapter 4: System Functions 321

Description | Symbol | Meaning
1 1-byte
2 2-byte
Width 4 4-byte
8 8-byte
16 16-byte (128-bit)
[n] Array of length 7 elements
Array
[] Array, length determined at call-time
Structure {...} |Structure.

In the Classic Edition, C specifies untranslated character, whereas T specifies that the
character data will be translated to/from [JAV.

In the Unicode Edition, C and T are identical (no translation of character data is per-
formed) except that for C the default width is 1 and for T the default width is "wide"
(2 bytes under Windows, 4 bytes under UNIX).

The use of T with default width is recommended to ensure portability between Edi-
tions.

Direction

C functions accept data arguments either by value or by address. This distinction is
indicated by the presence ofa “*’ or ‘[ ]’ in the argument declaration:

int numl; // value of numl passed.
int *num2; // Address of num2 passed.
int num3[]; // Address of num3 passed.

An argument (or result) of an external function of type pointer, must be matched in
the OONA call by a declaration starting with one of the characters: <, >, or =.

In C, when an address is passed, the corresponding value can be used as either an
input or an output variable. An output variable means that the C function overwrites
values at the supplied address. Because APL is a call-by-value language, and doesn’t
have pointer types, we accommodate this mechanism by distinguishing output vari-
ables, and having them returned explicitly as part of the result of the call.



322 Dyalog APL/W Language Reference

This means that where the C function indicates a pointer type, we must code this as
starting with one of the characters: <, > or =.

Examples

<I2
>C

indicates that the address of the argument will be used by C as an input
variable and values at the address will not be over-written.

indicates that C will use the address as an output variable. In this case,
APL must allocate an output array over which C can write values. After
the call, this array will be included in the nested result of the call to
the external function.

indicates that C will use the address for both input and output. In this
case, APL duplicates the argument array into an output buffer whose
address is passed to the external function. As in the case of an output
only array, the newly modified copy will be included in the nested
result of the call to the external function.

Pointer to 2-byte integer - input to external function
Pointer to character output from external function.
Pointer to character input to and output from function.
Pointer to APL array modified by function.



Chapter 4: System Functions 323

Special

In C it is common to represent character strings as null-terminated or byte counted
arrays. These special data types are indicated by inserting the symbol 0 (null-ter-
minated) or # (byte counted) between the direction indicator (<, >, =) and the type (T
or C) specification. For example, a pointer to a null-terminated input character string
is coded as <0T[ ], and an output one coded as >0T[].

Note that while appending the array specifier ‘[ ]° is formally correct, because the
presence of the special qualifier (0 or #) implies an array, the ‘[ ]’ may be omitted:
<0T, >0T, =#C, etc.

Note also that the 0 and # specifiers may be used with data of all types (excluding A
and Z) and widths. For example, in the Classic Edition, <OU2 may be useful for deal-
ing with Unicode.



324

Dyalog APL/W Language Reference

Type

The data type of the argument may be one of the following characters and may be spe-
cified in lower or upper case:

Type Description
I Integer The value is interpreted as a 2s complement signed
integer
u Unmgned The value is interpreted as an unsigned integer
integer
The value is interpreted as a character. In the Unicode
Edition, the value maps directly onto a Unicode code
point. In the Classic Edition, the value is interpreted as an
C Character |index into [JAV. This means that JAV positions map onto
corresponding ANSI positions.
For example, with JI0=0:
OAV[35] = 's' 6 mapstoANSI[35] = '’
Type Description
The value is interpreted as a character. In the Unicode
Edition, the value maps directly onto a Unicode code
point. In the Classic Edition, the value is translated using
T Translated |standard Dyalog AV to ANSI translation. This means
character |that JAVcharacters map onto corresponding ANSI
characters.
For example, with JI0=0:
OAV[35] = 's' mapstoANSI[115] = ’s’
The value is interpreted as an IEEE 754-2008 binary64
F Float . .
floating point number
. The value is interpreted as an IEEE 754-2008 decimal128
D Decimal . .
floating point number (DPD format)
J Complex
. This is equivalent to U4 on 32-bit versions and U8 on 64-
P uintptr-t . .
bit versions
APL - . .
LAY 1 This is the same format as is used to transmit APL arrays
Z with
over TCP/IP Sockets
header




Chapter 4: System Functions 325

Width

The type specifier may be followed by the width of the value in bytes. For example:

Iy 4-byte signed integer.

u2 2-byte unsigned integer.

F8 8-byte floating point number.

Fu 4-byte floating point number.

D16 16-byte decimal floating-point number

Type Possible values for Width Default value for Width
I 1,2,4,8 4

u 1,2,4,8 4

C 1,24 1

T 1,2,4 wide character(see below)
F 4,8 8

D 16 16

J 16 16

P Not applicable

A Not applicable

JA Not applicable

In the Unicode Edition, the default width is the width of a wide character according
to the convention of the host operating system. This translates to T2 under Windows
and T4 under UNIX or Linux.

Note that 32-bit versions can support 64-bit integer arguments, but not 64-bit integer
results.

Examples

I2 16-bit integer

<I4 Pointer to input 4-byte integer

u Default width unsigned integer

=F4 Pointer to input/output 4-byte floating point number.



326

Dyalog APL/W Language Reference

Arrays

Arrays are specified by following the basic data type with [n] or [ ], where n indic-
ates the number of elements in the array. In the C declaration, the number of elements
in an array may be specified explicitly at compile time, or determined dynamically at
runtime. In the latter case, the size of the array is often passed along with the array, in
a separate argument. In this case, n, the number of elements is omitted from the spe-
cification. Note that C deals only in scalars and rank 1 (vector) arrays.

int vec[10]; // explicit vector length.
unsigned size, list[]; // undetermined length.

could be coded as:

I[10] vector of 10 ints.

U U[] unsigned integer followed by an array of unsigned integers.

Confusion sometimes arises over a difference in the declaration syntax between C
and [ONA. In C, an argument declaration may be given to receive a pointer to either a
single scalar item, or to the first element of an array. This is because in C, the address
of an array is deemed to be the address of its first element.

void foo (char *string);

char ch = 'a', ptr = "abc";

foo(&ch);// call with address of scalar.
foo (ptr);// call with address of array.

However, from APL’s point of view, these two cases are distinct and if the function is
to be called with the address of (pointer to) a scalar, it must be declared: ' <T"'.
Otherwise, to be called with the address of an array, it must be declared: '<T[]"'.
Note that it is perfectly acceptable in such circumstances to define more than one
name association to the same DLL function specifying different argument types:

'"FooScalar'ONA'mydll]|foo <T' ¢ FooScalar'a'
'FooVector'[JNA'mydll|foo <T[]' ¢ FooVector'abc'



Chapter 4: System Functions 327

Structures

Arbitrary data structures, which are akin to nested arrays, are specified using the sym-
bols {}. For example, the code {F8 I2} indicates a structure comprised of an 8-
byte float followed by a 2-byte int. Furthermore, the code <{F8 I2}[3] meansan
input pointer to an array of 3 such structures.

For example, this structure might be defined in C thus:

typedef struct

{
double f£f;
short i;
} mystruct;

A function defined to receive a count followed by an input pointer to an array of
such structures:

void foo (unsigned count, mystruct *str);
An appropriate ONA declaration would be:
ONA'mydll.foo U <{F8 I2}[]"

A call on the function with two arguments - a count followed by a vector of struc-
tures:

foo 4,c(1.4% 3)(5.9 1)(6.5 2)(0 0)
Notice that for the above call, APL converts the two Boolean (0 0) elements to an
8-byte float and a 2-byte int, respectively.
Specifying Pointers Explicitly

ONA syntax enables APL to pass arguments to DLL functions by value or address as
appropriate. For example if a function requires an integer followed by a pointer to an
integer:

void fun(int wvalu, int *addr);
You might declare and call it:

ONA'mydlLl|fun I <I' ¢ fun 42 42

The interpreter passes the value of the first argument and the address of the second
one.



328

Dyalog APL/W Language Reference

Two common cases occur where it is necessary to pass a pointer explicitly. The first
isifthe DLL function requires a null pointer, and the second is where you want to
pass on a pointer which itselfis a result from a DLL function.

In both cases, the pointer argument should be coded as P. This causes APL to pass
the pointer unchanged, by value, to the DLL function.

In the previous example, to pass a null pointer, (or one returned from another DLL
function), you must code a separate [INA definition.

"fun_null'ONA'mydlLl]|fun I P' ¢ fun_null 42 0

Now APL passes the value of the second argument (in this case 0 - the null pointer),
rather than its address.

Note that by using P, which is 4-byte for 32-bit processes and 8-byte for 64-bit pro-
cesses, you will ensure that the code will run unchanged under both 32-bit and 64-
bit versions of Dyalog APL.

Using a Function

A DLL function may or may not return a result, and may take zero or more argu-
ments. This syntax is reflected in the coding of the right argument of JNA. Notice
that the corresponding associated APL function is niladic or monadic (never dyadic),
and that it a/ways returns a vector result - a null one if there is no output from the
function. See Result Vector section below. Examples of the various combinations
are:

DLL function Non-result-returning:

[ONA ‘mydlLL]|fnt' A Niladic
[ONA "'mydlLl]|fn2 <OT' A Monadic - 1-element arg
[ONA ‘mydll|fn3 =0T <0T' @A Monadic - 2-element arg

DLL function Result-returning:

ONA '"I4% mydlLl]|fn4' A Niladic
ONA 'I4% mydlLl|fn5 F8' A Monadic - 1-element arg
ONA 'I4% mydll|fné >I4[] <OT'Am Monadic - 2-element arg

When the external function is called, the number of elements in the argument must
match the number defined in the [INA definition. Using the example functions
defined above:

fni A Niladic Function.
fn2, c'Single String' A 1-element arg
fn3 'This' 'That' A 2-element arg



Chapter 4: System Functions 329

Note in the second example, that you must enclose the argument string to produce a
single item (nested) array in order to match the declaration. Dyalog converts the type
of a numeric argument if necessary, so for example in fn5 defined above, a Boolean
value would be converted to double floating point (F8) prior to being passed to the
DLL function.

Pointer Arguments

When passing pointer arguments there are three cases to consider.

< Input pointer:

In this case you must supply the data array itself as argument to the function. A
pointer to its first element is then passed to the DLL function.

fn2 c'hello'’
> Output pointer:

Here, you must supply the number of elements that the output will need in order for
APL to allocate memory to accommodate the resulting array.

fné 10 'world' @ 1st arg needs space for 10 ints.

Note that if you were to reserve fewer elements than the DLL function actually used,
the DLL function would write beyond the end of the reserved array and may cause
the interpreter to crash with a System Error (syserr 999 on Windows or SIGSEGV on
UNIX).

= |nput/Output:

As with the input-only case, a pointer to the first element of the argument is passed to
the DLL function. The DLL function then overwrites some or all of the elements of
the array, and the new value is passed back as part of the result of the call. As with
the output pointer case, if the input array were too short, so that the DLL wrote bey-
ond the end of the array, the interpreter would almost certainly crash.

fn3 '..... ' 'hello'



330

Dyalog APL/W Language Reference

Result Vector

In APL, a function cannot overwrite its arguments. This means that any output from a
DLL function must be returned as part of the explicit result, and this includes output
via ‘output’ or ‘input/output’ pointer arguments.

The general form of the result from calling a DLL function is a nested vector. The
first item of the result is the defined explicit result of the external function, and sub-
sequent items are implicit results from output, or input/output pointer arguments.

The length of the result vector is therefore: 1 (if the function was declared to return
an explicit result) + the number of output or input/output arguments.

[ONA Declaration Result | Output Arguments | Result Length
mydlLl]|fni 0 0
mydlLl|fn2 <OT 0 0 0
mydll|fn3 =0T <0T 0 10 1

I4 mydlLl]|fnk 1 1

I4 mydll]|fn5 F8 1 0 1

I4 mydll|fn6 >I4[] <OT |1 10 2

As a convenience, if the result would otherwise be a 1-item vector, it is disclosed.
Using the third example above:

pfn3 '..... ' 'abc
5

fn3 has no explicit result; its first argument is input/output pointer; and its second
argument is input pointer. Therefore as the length of the result would be 1, it has
been disclosed.

ANSI /Unicode Versions of Library Calls

Under Windows, most library functions that take character arguments, or return char-
acter results have two forms: one Unicode (Wide) and one ANSI. For example, a func-
tion such as MessageBox (), has two forms MessageBoxA () and
MessageBoxW (). The A stands for ANSI (1-byte) characters, and the W for wide (2-
byte Unicode) characters.

It is essential that you associate the form of the library function that is appropriate for
the Dyalog Edition you are using, i.e. MessageBoxA () for the Classic Edition, but
MessageBoxW () forthe Unicode Edition.



Chapter 4: System Functions 3

To simplify writing portable code for both Editions, you may specify the character *
instead of A or W at the end of a function name. This will be replaced by A in the Clas-
sic Edition and W in the Unicode Edition.

The default name of the associated function (if no left argument is given to [INA),
will be without the trailing letter (MessageBox).

Type Definitions (typedefs)

The C language encourages the assignment of defined names to primitive and com-
plex data types using its #define and typedef mechanisms. Using such abstrac-
tions enables the C programmer to write code that will be portable across many
operating systems and hardware platforms.

Windows software uses many such names and Microsoft documentation will nor-
mally refer to the type of function arguments using defined names such as HANDLE
or LPSTR rather than their equivalent C primitive types: int or char*.

It is beyond the scope of this manual to list a/l the Microsoft definitions and their C
primitive equivalents, and indeed, DLLs from sources other than Microsoft may well
employ their own distinct naming conventions.

In general, you should consult the documentation that accompanies the DLL in order
to convert typedefs to primitive C types and thence to [ONA declarations. The doc-
umentation may well refer you to the ‘include’ files which are part of the Software
Development Kit, and in which the types are defined.



332

Dyalog APL/W Language Reference

The following table of some commonly encountered Windows typedefs and their

ONA equivalents might prove useful.

Windows typedef ONA equivalent
HWND P

HANDLE P
GLOBALHANDLE P
LOCALHANDLE P

DWORD Ukt

WORD u2

BYTE ut

LPSTR =0T[] (note 1)
LPCSTR <0T[] (note 2)
WPARAM U (note 3)
LPARAM U4 (note 3)
LRESULT Iy

BOOL I

UINT u

ULONG U4

ATOM u2

HDC P

HBITMAP P

HBRUSH P

HFONT P

HICON P

HMENU P

HPALETTE P

HMETAFILE P

HMODULE P

HINSTANCE P




Chapter 4: System Functions 333

Windows typedef ONA equivalent
COLORREF {UL[4]}
POINT {I 1}
POINTS {12 12}
RECT {IT1IT1}
CHAR T orC

Notes

1. LPSTR is a pointer to a null-terminated string. The definition does not indic-
ate whether this is input or output, so the safest coding would be =0T[ ]
(providing the vector you supply for input is long enough to accommodate
the result). You may be able to improve simplicity or performance if the doc-
umentation indicates that the pointer is ‘input only’ (<OT[]) or ‘output
only’ (>0T[ ]). See Direction above.

2. LPCSTR is a pointer to a constant null-terminated string and therefore cod-
ing <0T[] is safe.

3. WPARAM is an unsigned value, LPARAM is signed. They are 32 bit values in
a 32-bit APL, and 64-bit in a 64 bit APL. You should consult the doc-
umentation for the specific function that you intend to call to determine
what type they represent

4. The use of type T with default width ensures portability of code between
Classic and Unicode Editions. In the Classic Edition, T (with no width spe-
cifier) implies 1-byte characters which are translated between [JAV and
ASCII, while In the Unicode Edition, T (with no width specifier) implies 2-
byte (Unicode) characters.

Dyalog32.dll or Dyalog64.dll

Included with Dyalog APL are utility DLLs called dyalog32.dll and dyalog64.dll.
These DLLs contain three functions: MEMCPY, STRNCPY and STRLEN.



334

Dyalog APL/W Language Reference

MEMCPY

MEMCPY is an extremely versatile function used for moving arbitrary data between
memory buffers.

Its C definition is:

void *MEMCPY ( // copy memory
void *to, // target address
void *fm, // source address
size t size // number of bytes to copy

)i

MEMCPY copies size bytes starting from source address fm, to destination address
to. The source and destination areas should not overlap; if they do the behaviour is
undefined and the result is the first argument.

MEMCPY’s versatility stems from being able to associate to it using many different
type declarations.

Example

Suppose a global buffer (at address: addr) contains (numb) double floating point
numbers. To copy these to an APL array, we could define the association:

'"doubles' [ONA 'dyalog32|MEMCPY >F8[] I4 U4'
doubles numb addr (numbx8)

Notice that:

e As the first argument to doub les is an output argument, we must supply
the number of elements to reserve for the output data.

e MEMCPY is defined to take the number of byfes to copy, so we must mul-
tiply the number of elements by the element size in bytes.

Example

Suppose that a database application requires that we construct a record in global
memory prior to writing it to file. The record structure might look like this:

typedef struct {
int empno;// employee number.
float salary;// salary.
char name[20];// name.
} person;

Then, having previously allocated memory (addr) to receive the record, we can
define:

'prec' [ONA 'dyalog32|MEMCPY I4 <{P F4 T[20]} U4’
prec addr(99 12345.60 'Charlie Brown') (4+4+20)



Chapter 4: System Functions 335

STRNCPY

STRNCPY is used to copy null-terminated strings between memory buffers.

Its C definition is:

void *STRNCPY (// copy null-terminated string
char *to,// target address
char *fm,// source address
size t size// MAX number of chars to copy
)

STRNCPY copies a maximum of size characters from the null-terminated source
string at address fm, to the destination address to. If the source and destination
strings overlap, the result is the first argument.

If the source string is shorter than size, null characters are appended to the des-
tination string.

If the source string (including its terminating null) is longer than size, only size
characters are copied and the resulting destination string is not null-terminated

Example

Suppose that a database application returns a pointer (addr) to a structure that con-
tains two pointers to (max 20-char) null-terminated strings.

typedef struct { // null-terminated strings:
char *first; // first name (max 19 chars + 1 null).
char *last; // last name. (max 19 chars + 1 null).
} name;

To copy the names from the structure:

'get'ONA'dyalog32|STRNCPY >0T[] P U4’
get 20 addr 20

Charlie
get 20 (addr+4) 20

Brown

Note that on a 64-bit version, JFR will need to be 1287 for the addition to be reli-
able.

To copy data from the workspace into an already allocated (new) structure:

'put 'ONA'dyalog32|STRNCPY Ik <OT[] U4'
put new 'Bo' 20
put (new+4) 'Peep' 20



336 Dyalog APL/W Language Reference

Notice in this example that you must ensure that names no longer than 19 characters
are passed to put. More than 19 characters would not leave STRNCPY enough
space to include the trailing null, which would probably cause the application to
fail.

STRLEN

STRLEN calculates the length of a C string (a 0-terminated string of bytes in
memory). Its C declaration is:

size t STRLEN( // calculate length of string
const char *s // address of string

)i
Example

Suppose that a database application returns a pointer (addr) to a null-terminated
string and you do not know the upper bound on the length of the string.

To copy the string into the workspace:

"len' [ONA'P dyalog32]|STRLEN P'

"cpy 'ONA'dyalog32|MEMCPY >T[] P P'

cpy L addr (l<len addr)
Bartholemew



Chapter 4: System Functions 337

Examples

The following examples all use functions from the Microsoft Windows user32.d11.

This DLL should be located in a standard Windows directory, so you should not nor-
mally need to give the full path name of the library. However if trying these
examples results in the error message ‘FILE ERROR 1 No such file or directory’, you
must locate the DLL and supply the full path name (and possibly extension).

Example 1

The Windows function "GetCaretBlinkTime" retrieves the caret blink rate. It
takes no arguments and returns an unsigned in¢ and is declared as follows:

UINT GetCaretBlinkTime (void) ;

The following statements would provide access to this routine through an APL func-
tion of the same name.

[ONA 'U user32|GetCaretBlinkTime'
GetCaretBlinkTime
530

The following statement would achieve the same thing, but using an APL function
called BLINK.

'BLINK' ONA 'U user32|GetCaretBlinkTime'
BLINK
530

Example 2

The Windows function "SetCaretBlinkTime" sets the caret blink rate. It takes a
single unsigned int argument, does not return a result and is declared as follows:

void SetCaretBlinkTime (UINT) ;

The following statements would provide access to this routine through an APL func-
tion of the same name:

ONA 'user32|SetCaretBlinkTime U'
SetCaretBlinkTime 1000



338

Dyalog APL/W Language Reference

Example 3

The Windows function "MessageBox" displays a standard dialog box on the screen
and awaits a response from the user. It takes 4 arguments. The first is the window
handle for the window that owns the message box. This is declared as an unsigned
int. The second and third arguments are both pointers to null-terminated strings con-
taining the message to be displayed in the Message Box and the caption to be used
in the window title bar. The 4th argument is an unsigned int that specifies the Mes-
sage Box type. The result is an inf which indicates which of the buttons in the mes-
sage box the user has pressed. The function is declared as follows:

int MessageBox (HWND, LPCSTR, LPCSTR, UINT);

The following statements provide access to this routine through an APL function of
the same name. Note that the 2nd and 3rd arguments are both coded as input pointers
to type T null-terminated character arrays which ensures portability between Edi-
tions.

ONA 'I user32|MessageBoxx P <OT <OT U'

The following statement displays a Message Box with a stop sign icon together with
2 push buttons labelled OK and Cancel (this is specified by the value 19).

MessageBox 0 'Message' 'Title' 19

The function works equally well in the Unicode Edition because the <0T spe-
cification is portable.

MessageBox 0 'To MAvupa' 'O TitAog' 19

Note that a simpler, portable (and safer) method for displaying a Message Box is to
use Dyalog APL’s primitive MsgBox object.

Example 4

The Windows function "FindWindow" obtains the window handle of a window
which has a given character string in its title bar. The function takes two arguments.
The first is a pointer to a null-terminated character string that specifies the window's
class name. However, if you are not interested in the class name, this argument
should be a NULL pointer. The second is a pointer to a character string that specifies
the title that identifies the window in question. This is an example of a case
described above where two instances of the function must be defined to cater for the
two different types of argument. However, in practice this function is most often
used without specifying the class name. The function is declared as follows:

HWND FindWindow (LPCSTR, LPCSTR) ;



Chapter 4: System Functions 339

The following statement associates the APL function FW with the second variant of
the FindWindow call, where the class name is specified as a NULL pointer. To indic-
ate that APL is to pass the value of the NULL pointer, rather than its address, we

need to code this argument as I4.

‘"FW' [ONA 'P user32|FindWindowx I4 <OT'
To obtain the handle of the window entitled "CLEAR WS - Dyalog APL/W":

O<«HNDL«FW 0 'CLEAR WS - Dyalog APL/W'
59245156

Example 5

The Windows function "GetWindowText" retrieves the caption displayed in a win-
dow's title bar. It takes 3 arguments. The first is an unsigned int containing the win-
dow handle. The second is a pointer to a buffer to receive the caption as a null-
terminated character string. This is an example of an output array. The third argu-
ment is an int which specifies the maximum number of characters to be copied into
the output buffer. The function returns an inf containing the actual number of char-
acters copied into the buffer and is declared as follows:

int GetWindowText (HWND, LPSTR, int);

The following associates the "GetWindowText" DLL function with an APL func-
tion of the same name. Note that the second argument is coded as ">0T" indicating
that it is a pointer to a character output array.

ONA 'I user32|GetWindowTextx P >0T I'
Now change the Session caption using )WSID :

JWSID MYWS
was CLEAR WS

Then retrieve the new caption (max length 255) using window handle HNDL from
the previous example:

Jdisplay GetWindowText HNDL 255 255

There are three points to note. Firstly, the number 255 is supplied as the second
argument. This instructs APL to allocate a buffer large enough for a 255-element
character vector into which the DLL routine will write. Secondly, the result of the
APL function is a nested vector of 2 elements. The first element is the result of the
DLL function. The second element is the output character array.



340

Dyalog APL/W Language Reference

Finally, notice that although we reserved space for 255 elements, the result reflects
the length of the actual text (19).

An alternative way of coding and using this function is to treat the second argument
as an input/output array.
e.g.

ONA 'I User32|GetWindowTextx P =0T I'

Jdisplay GetWindowText HNDL (255p' ') 255

In this case, the second argument is coded as =0T, so when the function is called an
array of the appropriate size must be supplied. This method uses more space in the
workspace, although for small arrays (as in this case) the real impact of doing so is
negligible.

Example 6

The function "GetCharWidth" returns the width of each character in a given

range Its first argument is a device context (handle). Its second and third arguments
specify font positions (start and end). The third argument is the resulting integer vec-
tor that contains the character widths (this is an example of an output array). The
function returns a Boolean value to indicate success or failure. The function is
defined as follows. Note that this function is provided in the library: gdi32.dll.

BOOL GetCharWidth (HDC, UINT, UINT, int FAR¥*);

The following statements provide access to this routine through an APL function of
the same name:

[(ONA 'U4 gdi32|GetCharWidthx P U U >I[]"'
'"P'OWC'Printer'
Jdisplay GetCharWidth ('P' OWG 'Handle') 65 67 3



Chapter 4: System Functions N

Note: 'P'0WG'Handle ' returns a handle This is represented as a number. The num-
ber will be in the range (0 - 2*32] on a 32-bit version and (0 - 2*64] on a 64-bit ver-
sion. These can be passed to a P type parameter. Older versions used a 32-bit signed
integer.

Example 7

The following example from the supplied workspace: QUADNA . DWS illustrates sev-
eral techniques which are important in advanced JNA programming. Function

Dl LVersion returns the major and minor version number for a given DLL. Note
that this example assumes that the computer is running the 64-bit version of Dyalog.

In advanced DLL programming, it is often necessary to administer memory outside
APL’s workspace. In general, the procedure for such use is:

Allocate global memory.

Lock the memory.

Copy any DLL input information from workspace into memory.
Call the DLL function.

Copy any DLL output information from memory to workspace.
Unlock the memory.

Free the memory.

Nownkwhh =

Notice that steps 1 and 7 and steps 2 and 6 complement each other. That is, if you
allocate global system memory, you must free it after you have finished using it. If
you continue to use global memory without freeing it, your system will gradually
run out of resources. Similarly, if you lock memory (which you must do before using
it), then you should unlock it before freeing it. Although on some versions of Win-
dows, freeing the memory will include unlocking it, in the interests of good style,
maintaining the symmetry is probably a good thing.



342 Dyalog APL/W Language Reference

V version«DllVersion file;Alloc;Free;Lock;Unlock;Size
;Info;Value;Copy;sizeshndlsaddr;buff;ok

[1]
[2] 'Alloc'ONA'P kernel32|GlobalAlloc U4 U4'
[3] 'Free'[NA'P kernel32|GlobalFree P'
(4] "Lock'[DNA'P kernel32|GloballLock P'
[5] 'Unlock'ONA'U4% kernel32|GlobalUnlock P'
[6]
[7] 'Size'[INA'U4 version|GetFileVersionInfoSizex <0T >U
L+I
[8] 'Info'lINA'U4 version|GetFileVersionInfox<0T U4 U4 P'
[9] 'Value'ONA'U4 version|VerQueryValuex P <0T >P >U4'
[10]
[11] 'Copy'ONA'dyalogé4|MEMCPY >U4[] P P'
[12]
[13] :If xsize«>Size file O A Size of info
[14] :AndIf xhndl«Alloc 0 size A Alloc memory
[15] :If xaddr<«Lock hndl A Lock memory
[16] :If xInfo file 0 size addr A Version info
[17] ok buff size«Value addr'\' 0 0 A Version valu
e
[18] :If ok
[19] buff«Copy(size+4)buff size A Copy info
[20] version«(2/2x16)T>2¢buff p Split versio
n
[21] :tEndIf
[22] tEndIf
[23] ok<«Unlock hndl A Unlock memor
y
[24] tEndIf
[25] ok<Free hndl A Free memory
[26] :EndIf

\'4

Lines [2-11] associate APL function names with the DLL functions that will be used.
Lines [2-5] associate functions to administer global memory.

Lines [7-9] associate functions to extract version information froma DLL.

Line[11] associates Copy with MEMCPY function from dyalog64.dll.

Lines [13-26] call the DLL functions.

Line [13] requests the size of buffer required to receive version information for the
DLL. A size of 0 will be returned if the DLL does not contain version information.



Chapter 4: System Functions 343

Notice that care is taken to balance memory allocation and release:

On line [14], the :If clause is taken only if the global memory allocation is successful,
in which case (and only then) a corresponding Free is called on line [25].

Unlock on line[23] is called if and only ifthe call to Lock on line [15] succeeds.

A result is returned from the function only if all the calls are successful Otherwise,
the calling environment will sustain a VALUE ERROR.



344 Dyalog APL/W Language Reference

More Examples

ONA'I4
ONA'I4
|+I
ONA'I4
|+I
ONA'I4
ONA'I4
ONA'I4
ONA'I4
ONA'P
ONA'P
ONA'P
ONA'P
ONA'I4
ONA'I4
ONA ' U4
ONA'P
ONA'I4
ONA ' U4
ONA"
ONA'I4
ONA'P
ONA ' U4
ONA ' U4
ONA'P
ONA'I4
ONA'P
ONA'I4
[ONA"
ONA"
ONA"'
ONA'
ONA'I4
ONA'P
ONA'IY
ONA'I2
ONA'P
ONA'I4
ONA'P
ONA ' U4
ONA'I4
ONA'I4
ONA'IY
ONA'I4
ONA'P
ONA'P
ONA'I4
ONA'I4

advapi32
advapi32

advapi32

advapi32
advapi32
advapi32
advapi32
dyalog32
dyalog32
dyalog32
dyalog32
gdi32
gdi32
gdi32
gdi32
gdi32
gdi32
glu32
kernel32
kernel32
kernel32
kernel32
kernel32
kernel32
kernel32
kernel32
opengl32
opengl32
opengl32
opengl32
user32
user32
user32
user32
user32
User32
user32
user32
user32
user32
user32
user32
user32
user32
user32
winnm

|RegCloseKey
|RegCreateKeyExx

|RegEnumValuex

P ]
P <OT U4 <OT U4 U4 P >P >U

P U4 >0T =U4 =U4% >U4 >0T =U

|RegOpenKey * P <0T >pP'

|RegOpenKeyEx* P <OT U4 U4 >p'

|RegQueryValueExx P <0T =U4% >U4 >0T =U4'

|RegSetValueExx P <0T =U4% U4 <OT U4'

| STRNCPY PPP'

| STRNCPYA PPP'

| STRNCPYW PPP

|MEMCPY PPP

|AddFontResourcex <0T'

|BitBLlt P I4+ I4 I4 I4 P I4 I4 U4'

|GetPixel P I4 I4'

|GetStockObject I4!

|RemoveFontResourcex <OT'

|SetPixel P I4 I4 U4'

|gluPerspective F8 F8 F8 F8'

| CopyFilex <0T <OT Iy’

|GetEnvironmentStrings'

|GetLastError'

|GetTempPathx U4+ >0T'

|GetProcessHeap'

|GlobalMemoryStatusEx ={U4 U4 U8 U8 U8 U8 U8 U8}'

|HeapAlloc P U4 P!
|HeapFree P U4 P
|glClearColor F4t F4 F4 Fu'
|glClearDepth F8'

|glEnable U4

| glMatrixMode ut'
|ClientToScreen P ={I4 Iu}'
|FindWindowx <0T <O0T'

| ShowWindow P Iy’
|GetAsyncKeyState I4!

|GetDC P'
|GetDialogBaseUnits'

|GetFocus'

|GetSysColor I4!
|GetSystemMetrics I4'
|InvalidateRgn PP I4'
|MessageBoxx P <OT <OT U4'
|ReleaseDC PP

| SendMessagex P U4+ P P'
|SetFocus P'

|[WinHe Lp* P <OT U4 P!

| sndPlaySound <0T U4'



Chapter 4: System Functions 345

Native File Append {R}«X [ONAPPEND Y

This function appends the ravel of its left argument X to the end of the designated nat-
ive file. X must be a simple homogeneous APL array. Y isa 1-or2-element integer
vector. Y[ 1] isanegative integer that specifies the tie number of a native file. The
optional second element Y [ 2 ] specifies the data type to which the array X is to be
converted before it is written to the file.

The shy file index result returned is the position within the file of the end of the
record, which is also the start of the following one.

Unicode Edition

Unless you specify the data type in Y[ 2], a character array will by default be written
using type 80.

If the data will not fit into the specified character width (bytes) OINAPPEND will fail
with a DOMAIN ERROR.

As a consequence of these two rules, you must specify the data type (either 160 or
320) in order to write Unicode characters whose code-point are in the range 256-
65535 and >65535 respectively.

Example
n<'test '[JNCREATE 0

abc' [Onappend n

'tapgépva'lnappend n
DOMAIN ERROR
"taBépva'[INAPPEND n

A

"tapépva'ONAPPEND n 160

ONREAD n 80 3 0
abc

[ONREAD n 160 7
Tapépva

For compatibility with old files, you may specify that the data be converted to type
82 on output. The conversion (to JAV indices) will be determined by the local value
of JAVU.



346 Dyalog APL/W Language Reference

Name Classification R<[INC Y

Y must be a simple character scalar, vector, matrix, or vector of vectors that specifies a
list of names. R is a simple numeric vector containing one element per name in Y.

Each element of R is the name class of the active referent to the object named in Y.

IfY is simple, a name class may be:

Name Class Description

-1 invalid name

0 unused name

1 Label

2 Variable

3 Function

4 Operator

9 Object (GUL namespace, COM, .NET)

IfY is nested a more precise analysis of name class is obtained whereby different

types are identified by a decimal extension. For example, defined functions have
name class 3.1, D-fins have name class 3.2, and so forth. The complete set of name
classification is as follows:

Array Functions | Operators
Namespaces (9)
@ |6 @ paces (
n.1 Variable |Traditional |Traditional Created by [INS,)NS or
:Namespace
n.2 Field dfns dops Instance
03 Propert Derived Derived
' PEY | primitive | Primitive
n.4 Class
n.5 Interface
n.6 Extemal External External Class
Shared
n.7 External Interface




Chapter 4: System Functions 347

In addition, values in R are negative to identify names of methods, properties and
events that are inherited through the class hierarchy of the current class or instance.

Variable (Name-Class 2.1)

Conventional APL arrays have name-class 2.1.

NUM<88
CHAR<'Hel lo World'

ONC t'NUM' 'CHAR'

2 2
ONC 'NUM' 'CHAR'
2.1 2.1
'MYSPACE '[NS '
MYSPACE.VAR<«10
MYSPACE .ONC'VAR'
2
MYSPACE .ONCc ' VAR
2.1
Field (Name-Class 2.2)

Fields defined by APL Classes have name-class 2.2.

:Class nctest
:Field Public pubFld
:Field pvtFld

V r«<NameClass x
tAccess Public
r<NC x

\'4

;éédCLass A nctest

ncinst«[INEW nctest

The name-class of a Field, whether Public or Private, viewed from a Method that is
executing within the Instance Space, is 2.2.

ncinst.NameClass'pubFld' 'pvtFld'
2.2 2.2



348 Dyalog APL/W Language Reference

Note that an internal Method sees both Public and Private Fields in the Class
Instance. However, when viewed from outside the instance, only public fields are vis-
ible

ONC 'ncinst.pubFld' 'ncinst.pvtFld'
2.2 0

In this case, the name-class is negative to indicate that the name has been exposed by
the class hierarchy, rather than existing in the associated namespace which APL has
created to contain the instance. The same result is returned if INC is executed inside
this space:

ncinst.[ONC'pubFld' 'pvtFld'
2.2 0

Note that the names of Fields are reported as being unused if the argument to ONC is
simple.

ncinst.(ONC 2 6p'pubFldpvtFld’
00

Property (Name-Class 2.3)

Properties defined by APL Classes have name-class 2.3.

:Class nctest
:Field pvtFLld«99

:Property pubProp
:Access Public
V r<get
r<pvtFld

v
:EndProperty

:Property pvtProp
V r<get
r<pvtFld
v
:EndProperty

V r<NameClass x
:Access Public
r<[INC x
\'4
;éﬁdClass A nctest

ncinst«[ONEW nctest



Chapter 4: System Functions 349

The name-class of a Property, whether Public or Private, viewed from a Method that
is executing within the Instance Space,is 2.3.

ncinst.NameClass'pubProp' 'pvtProp'
2.3 2.3

Note that an internal Method sees both Public and Private Properties in the Class
Instance. However, when viewed from outside the instance, only Public Properties
are visible

ONC 'ncinst.pubProp' 'ncinst.pvtProp'
2.3 0

In this case, the name-class is negative to indicate that the name has been exposed by
the class hierarchy, rather than existing in the associated namespace which APL has
created to contain the instance. The same result is returned if [INC is executed inside
this space:

ncinst.ONC 'pubProp' 'pvtProp'
2.3 0

Note that the names of Properties are reported as being unused if the argument to
ONC is simple.

ncinst.ONC 2 6p'pubProppvtProp'
00

External Properties (Name-Class 2.6)

Properties exposed by external objects (NET and COM and the APL GUI) have
name-class ~2.6.

OQUSING<«'System'

dt<[INEW DateTime (2006 1 1)

dt.[ONC 'Day' 'Month' 'Year'
2.6 2.6 72.6

‘ex' OWC 'OLEClient' 'Excel.Application’
ex.[INC 'Caption' 'Version' 'Visible'
2.6 2.6 72.6

"f'OWC'Form'
f.ONC'Caption' 'Size'
2.6 72.6

Note that the names of such Properties are reported as being unused if the argument
to [NC is simple.

f.ONC 2 7p'CaptionSize '



350 Dyalog APL/W Language Reference

Defined Functions (Name-Class 3.1)

Traditional APL defined functions have name-class 3.1.

V R«<AVG X
[1] Re(+/X)+pX
v
AVG 1100
50.5
ONC'AVG'
3
ONCc'AVG'
3.1
'MYSPACE ‘[INS 'AVG'
MYSPACE.AVG 1100
50.5
MYSPACE.[NC'AVG'
3
ONCc 'MYSPACE.AVG'
3.1

Note that a function that is simply cloned from a defined function by assignment
retains its name-class.

MEAN<AVG
ONC'AVG' 'MEAN'
3.1 3.1

Whereas, the name of a function that amalgamates a defined function with any other
functions has the name-class of a Derived Function, i.e. 3.3.

VMEAN<«AVGo ,
ONC'AVG' 'VMEAN'
3.1 3.3
Dfns (Name-Class 3.2)

Dfns have name-class 3.2
Avg<{(+/w)*pw}
ONC'Avg'

ONCc'Avg'



Chapter 4: System Functions 351

Derived Functions (Name-Class 3.3)

Derived Functions and functions created by naming a Primitive function have name-
class 3.3.

PLUS«+

SUM<«+/

CUM<«PLUS\

ONC'PLUS' 'SUM' 'CUM'
3.3 3.3 3.3

ONC 3 4p'PLUSSUM CUM '
333

Note that a function that is simply cloned from a defined function by assignment
retains its name-class. Whereas, the name of a function that amalgamates a defined
function with any other functions has the name-class of a Derived Function, i.e. 3.3.

V R«AVG X
[1] Re(+/X)+pX

\'4

MEAN<«AVG

VMEAN<«AVGe,

[ONC'AVG' 'MEAN' 'VMEAN'
3.1 3.1 3.3

External Functions (Name-Class 3.6)

Methods exposed by the Dyalog APL GUI and COM and .NET objects have name-
class ~3. 6. Methods exposed by External Functions created using [INA and [JSH all
have name-class 3. 6.

'F'OWC'Form'

F.ONC'GetTextSize' 'GetFocus'
3.6 3.6

'"EX'OWC'OLECLlient' 'Excel.Application’
EX.ONC 'Wait' 'Save' 'Quit'
3.6 73.6 "3.6

OUSING«'System'

dt<[ONEW DateTime (2006 1 1)

dt.[ONC 'AddDays' 'AddHours'
3.6 3.6



352 Dyalog APL/W Language Reference

'beep'[NA'user32|MessageBeep i'

ONC'beep’
3
ONCc'beep'
3.6
"xutils'[SH"'
JFNS
avx box dbr getenv hex Ltom Ltov m
tol ss vtol
ONC'hex' 'ss'
3.6 3.6

Operators (Name-Class 4.1)
Traditional Defined Operators have name-class 4.1.

VFILTERYV

V VEC«(P FILTER)VEC @A Select from VEC those elts ..
[1] VEC<(P"VEC)/VEC A for which BOOL fn P is true.

\'4

ONC'FILTER'
I

ONCc'FILTER'
k.1

Dops (Name-Class 4.2
Dops have name-class 4.2.

pred«<{0JI0 OML«1 3 A Partitioned reduction.
s00/ (a/1pa)cw

2 3 3 2 +pred 110
3 12 21 19
ONC'pred'’

ONCc'pred'



Chapter 4: System Functions 353

External Events (Name-Class 8.6)

Events exposed by Dyalog APL GUI objects, COM and .NET objects have name-
class 78.6.

f<[NEW'Form' ('Caption' 'Dyalog GUI Form')
f.ONC'Close' 'Configure' 'MouseDown'
8.6 "8.6 8.6

x L<[JNEW'OLEClient'(c'ClassName' 'Excel.Applicatio
n')

xL.0ONL -8
NewWorkbook SheetActivate SheetBeforeDoubleClick

xL.[ONC 'SheetActivate' 'SheetCalculate'
“8.6 78.6

QUSING<«'System.Windows.Forms,system.windows.forms.dl
L 1

ONC,<'Form'
9.6

Form.ONL -8
Activated BackgroundImageChanged BackColorChanged

Namespaces (Name-Class 9.1)

Plain namespaces created using [INS, or fixed from a : Namespace script, have
name-class 9.1.

'MYSPACE' ONS "'
ONC'MYSPACE'
9
ONCc 'MYSPACE'
9.1

Note however that a namespace created by cloning, where the right argument to [INS
is a[JOR of a namespace, retains the name-class of the original space.

"CopyMYSPACE '[NS [JOR 'MYSPACE'
"CopyF'ONS [0OR 'F'OWC'Form'

ONC'MYSPACE' 'F'
9.1 9.2

ONC'CopyMYSPACE' 'CopyF'
9.1 9.2

The Name-Class of NET namespaces (visible through JUSING) is also 9.1

QUSING<"'"'
ONC 'System' 'System.IO'
9.1 9.1



354 Dyalog APL/W Language Reference

Instances (Name-Class 9.2)

Instances of Classes created using [INEW, and GUI objects created using [JWC all have
name-class 9.2.

MyInst<[INEW MyClass

ONC'MyInst'
9
[ONCe'MyInst'
9.2
UrInst<[NEW OFIX ':Class' ':EndClass'
[ONC 'MyInst' 'UrInst'
9.2 9.2
'F'OWC 'Form'
'F.B8' OWC 'Button'
ONC 2 3p'F F.B'
99
ONC'F"' 'F.B'
9.2 9.2
F.ONC'B'
9
F.0ONCe, 'B'
9.2
Instances of COM Objects whether created using JWC or INEW also have name-class
9.2.
x L«[INEW'OLEClient'(c'ClassName' 'Excel.Applicatio
n')
'XL'OWC'OLECLient' 'Excel.Application'
ONC'xLl' 'XL'
9.2 9.2
The same is true of Instances of NET Classes (Types) whether created using ONEW or
.New.
QUSING«'System'
dt<[NEW DateTime (310TS)
DT«DateTime.New 3t0TS
ONC 'dt' 'DT'
9.2 9.2

Note that if you remove the GUI component of a GUI object, using the Detach
method, it reverts to a plain namespace.

F.Detach
ONCe, 'F'



Chapter 4: System Functions 355

Correspondingly, if you attach a GUI component to a plain namespace using the
monadic form of JWC, it morphs into a GUT object

F.OWC 'PropertySheet'

ONCe, 'F'
9.2

Classes (Name-Class 9.4)

Classes created using the editor or JF IX have name-class 9.4.
JED oMyClass
:Class MyClass
V r<NameClass x

:Access Public Shared
r<[NC x

v
tEndClass A MyClass

ONC 'MyClass'

9
ONCc'MyClass'

9.4
OFIX ':Class UrClass' ':EndClass'
[ONC 'MyClass' 'UrClass'

9.4 9.4

Note that the name of'the Class is visible to a Public Method in that Class, or an
Instance of'that Class.

MyClass.NameClass'MyClass'

MyClass.NameClassc'MyClass'
9.4



356

Dyalog APL/W Language Reference

Interfaces (Name-Class 9.5)

Interfaces, defined by : Interface ... :EndInterface clauses, have name-
class 9.5.

:Interface IGolfClub
:Property Club

V r<get

v

V set

v
:EndProperty

vV Shank<«Swing Params
v

:EndInterface A IGolfClub

ONC 'IGolfClub'
9

ONC <'IGolfClub'
9.5

External Classes (Name-Class 9.6)

External Classes (Types) exposed by .NET have name-class 9.6.
OJUSING«'System' 'System.IO'

ONC 'DateTime' 'File' 'DirectoryInfo’
9.6 9.6 9.6

Note that referencing a NET class (type) with ONC, fixes the name of that class in the
workspace and obviates the need for APL to repeat the task of searching for and load-
ing the class when the name is next used.

External Interfaces (Name-Class 9.7)

External Interfaces exposed by .NET have name-class 9.7.
OJUSING«'System.Web.UI,system.web.dll'

[ONC 'IPostBackDataHandler' 'IPostBackEventHandler'
9.7 9.7

Note that referencing a NET Interface with [INC, fixes the name of that Interface in
the workspace and obviates the need for APL to repeat the task of searching for and
loading the Interface when the name is next used.



Chapter 4: System Functions 357

Native File Create {R}«X [ONCREATE Y

This function creates a new file. Under Windows the file is opened in compatibility
mode. The name ofthe new file is specified by the left argument X which must be a
simple character vector or scalar containing a valid pathname for the file. YisOora
negative integer value that specifies an (unused) tie number by which the file may
subsequently be referred.

The shy result of INCREATE is the tie number of the new file.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create or tie operation, allocates, and returns as an
explicit result, the first (closest to zero) available tie number. This allows you to sim-
plify code. For example:

from:
tie<™1+|/0,[ONNUMS A With next available number,
file OONCREATE tie A ... create file.
to:
tie«file [ONCREATE O ma Create with first available n
o.

If the specified file already exists, INCREATE fails with the error (22):
FILE NAME ERROR: Unable to create file

Native File Erase {R}«X [ONERASE Y

This function erases (deletes) a native file. Y is a negative integer tie number asso-
ciated with a tied native file. X is a simple character vector or scalar containing the
name of the same file and must be identical to the name used when it was opened by
ONCREATE orONTIE.

The shy result of ONERASE is the tie number that the erased file had.

Example

file Onerase file Ontie 0




358 Dyalog APL/W Language Reference

New Instance R<[INEW Y

ONEW creates a new instance of the Class or NET Type specified by Y.

Y must be a 1- or 2-item scalar or vector. The first item is a reference to a Class orto a
NET Type, or a character vector containing the name of a Dyalog GUI object. The
second item, if specified, contains the argument to be supplied to the Class or Type
Constructor.

The result R is a reference to a new instance of Class or Type Y.

For further information, see Interface Guide.

Class Example

:Class Animal
v Name nm
:Access Public
:Implements Constructor
ODF nm
\'4
:EndClass A Animal

Donkey<«[INEW Animal 'Eeyore'’
Donkey
Eeyore

IfONEW is called with just a Class reference (i.e. without parameters for the Con-
structor), the default constructor will be called. A default constructor is defined by a
niladic function with the :Implements Constructor attribute. For example, the Animal
Class may be redefined as:

:Class Animal
v NoName
tAccess Public
:Implements Constructor
(ODF 'Noname'
v
v Name nm
:Access Public
:Implements Constructor
0ODF nm
\'
:EndClass A Animal

Horse<[NEW Animal
Horse
Noname



Chapter 4: System Functions 359

.NET Examples

JUSING«'System' 'System.Web.Mail,System.Web.dll'
dt<[JNEW DateTime (2006 1 1)
msg<[INEW MailMessage
ONC 'dt' 'msg' 'DateTime' 'MailMessage'’
9.2 9.2 9.6 9.6

Note that NET Types are accessed as follows.

If the name specified by the first item of Y would otherwise generate a VALUE
ERROR, and QUSING has been set, APL attempts to load the Type specified by Y
from the NET assemblies (DLLs) specified in JUSING. If successful, the name spe-
cified by Y is entered into the SYMBOL TABLE with a name-class of 9. 6. Sub-
sequent references to that symbol (in this case DateTime) are resolved directly and
do not involve any assembly searching.

F<(ONEW <'Form'
F<ONEW'Form' (('Caption' 'Hello')('Posn' (10 10)))

ONEW'Form' (('Caption' 'Hello')('Posn' (10 10)))
#.[Form]

Name List

R«{X}ONL Y

Y must be a simple numeric scalar or vector containing one or more of the values for
name-class. See alsoName Classification on page 346.

X is optional. If present, it must be a simple character scalar or vector. R is a list of the
names of active objects whose name-class is included in Y in standard sorted order.

If any element of Y is negative, positive values in Y are treated as if they were neg-
ative, and R is a vector of character vectors. Otherwise, R is simple character matrix.

Furthermore, if (NL is being evaluated inside the namespace associated with a Class
or an Instance of a Class, and any element of Y is negative, R includes the Public
names exposed by the Base Class (ifany) and all other Classes in the Class hierarchy.

If X is supplied, R contains only those names which begin with any character of X.
Standard sorted order is in Unicode point order for Unicode editions, and in the col-
lation order of JAV for Classic editions.

If an element of Y is an integer, the names of all of the corresponding sub-name-
classes are included in R. For example, if Y contains the value 2, the names of all vari-
ables (name-class 2.1), fields (2.2), properties (2.3) and external or shared variables
(2.6) are obtained. Otherwise, only the names of members of the corresponding sub-
name-class are obtained.



360 Dyalog APL/W Language Reference

Examples:
ONL 2 3

FAST
FIND
FOO

"AV' ONL 2 3

ONL 79
Animal Bird BirdBehaviour Coin Cylinder DomesticPar
rot Eeyore FishBehaviour Nickel Parrot Penguin Poll
y Robin

ONL 9.3 A Instances
Eeyore Nickel Polly Robin

ONL 9.4 p Classes
Animal Bird Coin Cylinder DomesticParrot Parrot Pe
nguin

ONL 79.5 A Interfaces
BirdBehaviour FishBehaviour

ONL can also be used to explore Dyalog GUI Objects, .NET types and COM objects.

Dyalog GUI Objects

ONL may be used to obtain lists of the Methods, Properties and Events provided by
Dyalog APL GUI Objects.

'F' OWC 'Form'

F.ONL -2 a Properties
Accelerator AcceptfFiles Active AlphaBlend AutoConf
Border BCol Caption

F.ONL -3 na Methods
Animate Choosefont Detach GetFocus GetTextSize Show
SIP Wait

F.ONL -8 a Events
Close Create DragDrop Configure ContextMenu DropFile
s DropObjects Expose Help



Chapter 4: System Functions 361

.NET Classes (Types)
ONL can be used to explore NET types.

When a reference is made to an undefined name, and JUSING is set, APL attempts to
load the Type from the appropriate NET Assemblies. If successful, the name is
entered into the symbol table with name-class 9.6.

[JUSING<«'System'

DateTime
(System.DateTime)

ONL -9
DateTime

[ONC,c'DateTime’
9.6

The names of the Properties and Methods of a NET Type may then be obtained
using [INL.

DateTime.[IJNL -2 A Properties
MaxValue MinValue Now Today UtcNow

DateTime.[JNL -3 A Methods
get_Now get_Today get_UtcNow op_Addition op_Equality

In fact it is not necessary to make a separate reference first, because the expression
Type.ONL (where Type is a NET Type) is itselfa reference to Type. So, (with
OUSINGstill setto 'System"'):

Array.[ONL -3
BinarySearch Clear Copy CreateInstance 1IndexOf Last
IndexOf Reverse Sort

ONL -9
Array DateTime



362 Dyalog APL/W Language Reference

Another use for [INL is to examine .NET enumerations. For example:

OUSING<«'System.Windows.Forms,system.windows.forms.d
L'

FormBorderStyle.[OJNL -2
Fixed3D FixedDialog FixedSingle FixedToolWindow None
Sizable SizableToolWindow

FormBorderStyle.FixedDialog.value__

FormBorderStyle.({w,[1.5]¢"w, "' .value__'}INL -2)
Fixed3D 2
FixedDialog 3
FixedSingle 1
FixedToolWindow 5
None 0
Sizable L
SizableToolWindow 6

COM Objects

Once a reference to a COM object has been obtained, ONL may be used to obtain
lists of its Methods, Properties and Events.

x L<[INEW'OLEClient'(c'ClassName' 'Excel.Applicatio
n')

xL.ONL -2 a Properties
_Default ActiveCell ActiveChart ActiveDialog ActiveM
enuBar ActivePrinter ActiveSheet ActiveWindow

xL.ONL -3 A Methods
_Evaluate _FindFile _Run2 _Wait _WSFunction Activat
eMicrosoftApp AddChartAutoFormat AddCustomList Browse
Calculate

ONL -9
x L



Chapter 4: System Functions 363

Native File Lock {R}<«X [NLOCK Y

This function assists the controlled update of shared native files by locking a range
of bytes.

Locking enables controlled update of native files by co-operating users. A process
requesting a lock on a region of a file will be blocked until that region becomes avail-
able. A write-lock is exclusive, whereas a read-lock is shared. In other words, any
byte in a file may be in one of only three states:

e Unlocked
e Write-locked by exactly one process.
e Read-locked by any number of processes.

Y must be a simple integer scalar or vector containing 1, 2 or 3 items namely:

1. Tie number
2. Offset (from 0) of first byte of region. Defaults to 0
3. Number of bytes to lock. Defaults to maximum possible file size

X must be a simple integer scalar or vector containing 1 or 2 items, namely:

1. Type: 0: Unlock, 1:Read lock, 2:Write lock.
2. Timeout: Number of seconds to wait for lock before generating a TIMEOUT
error. Defaults to indefinite wait.

The shy result R is Y. To unlock the file, this value should subsequently be supplied
in the right argument to 0 [ONLOCK.

Examples:
2 [ONLOCK ~1 A write-lock whole file
0 [ONLOCK ~1 A unlock whole file.
1 [ONLOCK ~1 A read (share) lock whole file.
2 [ONLOCK '[ONNUMS A write-lock all files.
0 [ONLOCK '[ONNUMS A unlock all files.

ONLOCK ~1 12 1
ONLOCK ~1 0 10
ONLOCK ~1 20

ONLOCK ~1 10 2
ONLOCK ~1 12 1

read-lock byte 12.

read-lock first 10 bytes.
write-lock from byte 20 onwards.
write-lock 2 bytes from byte 10
remove lock from byte 12.

ONNEFE -
DDO®XDO®DODD



364

Dyalog APL/W Language Reference

To lock the region immediately beyond the end of the file prior extending it:

O«region«2 [ONLOCK ~1, ONSIZE ~1 A write-lock from EOF.
-1 1000

... ONAPPEND "1 A append bytes to file
... ONAPPEND "1 A append bytes to file
0 [ONLOCK region A release Llock.

The left argument may have a second optional item that specifies a timeout value. Ifa
lock has not been acquired within this number of seconds, the acquisition is aban-
doned and a TIMEOUT error reported.

2 10 Onlock ~1 A wait up to 10 seconds for lock.

Notes:

There is no per-byte cost associated with region locking. It takes the same time to
lock/unlock a region, irrespective of that region’s size.

Different file servers implement locks in slightly different ways. For example on
some systems, locks are advisory. This means that a write lock on a region precludes
other locks intersecting that region, but doesn't stop reads or writes across the region.
On the other hand, mandatory locks block both other locks and read/write oper-
ations. INLOCK will just pass the server's functionality along to the APL programmer
without trying to standardise it across different systems.

All locks on a file will be removed by ONUNTIE.

Blocked locking requests can be freed by a strong interrupt. Under Windows, this
operation is performed from the Dyalog APL pop-up menu in the system tray.

Errors

In this release, an attempt to unlock a region that contains bytes that have not been
locked results in a DOMAIN ERROR.

A LIMIT ERROR results ifthe operating system lock daemon has insufficient
resources to honour the locking request.

Some systems support only write locks. In this case an attempt to set a read lock will
generate a DOMAIN ERROR, and it may be appropriate for the APL programmer to
trap the error and apply a write lock.

No attempt will be made to detect deadlock. Some servers do this and if such a con-
dition is detected, a DEADLOCK error (1008) will be reported.



Chapter 4: System Functions 365

Native File Names R<[INNAMES

This niladic function reports the names of all currently open native files. R is a char-
acter matrix. Each row contains the name of a tied native file padded if necessary
with blanks. The names are identical to those that were given when opening the
files with ONCREATE or INTIE. The rows of the result are in the order in which the
files were tied.

Native File Numbers R<[ONNUMS

This niladic function reports the tie numbers associated with all currently open nat-
ive files. R isan integer vector of negative tie numbers. The elements of the result are
in the order in which the files were tied.



366

Dyalog APL/W Language Reference

Enqueue Event {R}«{X}ONQ Y

This system function generates an event or invokes a method.

While APL is executing, events occur "naturally" as a result of user action or of com-
munication with other applications. These events are added to the event queue as
and when they occur, and are subsequently removed and processed one by one by
0DQ. [NQ provides an "artificial" means to generate an event and is analogous to
OSIGNAL.

If the left argument X is omitted or is 0, [INQ adds the event specified by Y to the bot-
tom of the event queue. The event will subsequently be processed by [IDQ when it
reaches the top of the queue.

If X is 1, the event is actioned immediately by [INQ itself and is processed in exactly
the same way as it would be processed by [IDQ. For example, if the event has a call-
back function attached, [INQ will invoke it directly. See Dequeue Events on page
255 for further details.

Note that it is not possible for one thread to use 1 [INQ to send an event to another
thread.

If X is 2 and the name supplied is the name of an event, ONQ performs the default pro-
cessing for the event immediately, but does not invoke a callback function if there is
one attached.

If X is 2 and the name supplied is the name of a (Dyalog APL) method, ONQ invokes
the method. Its (shy) result is the result produced by the method.

If X is 3, NQ invokes a method in an OLE Control. The (shy) result of [INQ is the res-
ult produced by the method.

If X is 4, ONQ signals an event from an ActiveXControl object to its host

application. The (shy) result of [INQ is the result returned by the host application and
depends upon the syntax ofthe event. This case is only applicable to Act-
iveXControl objects.

Y is a nested vector containing an event message. The first two elements of Y are:

[1] |Object |ref or character vector

numeric scalar or character vector which specifies an event or

[2] | Event method




Chapter 4: System Functions 367

Y [ 1] must specify an existing object. If not, [INQ terminates with a VALUE

ERROR. If Y[ 2] specifies a standard event type, subsequent elements must conform
to the structure defined for that event type. Ifnot, JNQ terminates with a SYNTAX
ERROR. IfY[ 2] specifies a non-standard event type, Y[ 3] onwards (if present) may
contain arbitrary information. Although any event type not listed herein may be
used, numbers in the range 0-1000 are reserved for future extensions.

IfONQ is used monadically, or with a left argument of 0, its (shy) result is always an
empty character vector. Ifa left argument of 1 is specified, ONQ returns Y unchanged
or a modified Y if the callback function returns its modified argument as a result.

If the left argument is 2, [INQ retumns either the value 1 or a value that is appropriate.

Examples

A Send a keystroke ("A") to an Edit Field
ONQ TEST.ED 'KeyPress' 'A'

A Iconify all top-level Forms
{ONQ w 'StateChange' 1} 'Form'[OWN'.'

A Set the focus to a particular field
ONQ TEST.ED3 40

A Throw a new page on a printer

1 ONQ PR1 'NewPage'

A Terminate [IDQ under program control
'"TEST'OWC 'Form' ... ('Event' 1001 1)

ﬁbé "TEST'

[ONQ TEST 1001 @ From a callback

A Call GetItemState method for a TreeView F.TV

+2 ONQF.TV 'GetItemState' 6
96

+2 ONQ'.' 'GetEnvironment' 'Dyalog’
c:\Z\2\dyalog82



368

Dyalog APL/W Language Reference

Nested Representation R«NR Y

Y must be a simple character scalar or vector which represents the name of a function
or a defined operator.

IfY is a name of a defined function or defined operator, R is a vector of text vectors.
The first element of R contains the text of the function or operator header. Sub-
sequent elements contain lines of the function or operator. Elements of R contain no
unnecessary blanks, except for leading indentation of control structures and the
blanks which precede comments.

IfY is the name of a variable, a locked function or operator, an external function or a
namespace, or is undefined, R is an empty vector.

Example

VR<MEAN X A Average
[1] Re(+/X)+pX
v

+F<[JNR 'MEAN'
R<MEAN X AAverage  R<(+/X)+pX

pF
2

ldisplay F
| | ReMEAN X  a Average| | Re(+/X):pX| |
| L L 1 |
Ie ________________________________________ 1

The definition of [JNR has been extended to names assigned to functions by spe-
cification («), and to local names of functions used as operands to defined operators.
In these cases, the result of [JNR is identical to that of [JCR except that the rep-
resentation of defined functions and operators is as described above.




Chapter 4: System Functions 369

Example

AVG+<MEAN-o,

+F<[NR"'AVG'

R«MEAN X A Average Re(+/X)+pX o,

pF
3

Jdisplay F
| (oo - - |
| | o . Fommm------ . > |
| | | ReMEAN X A Average| | Re(+/X)2pX| | - - |
I I Vo e e e e e e e e e e e e e e e L ] I
| e ' |
IE ________________________________________________ 1

Native File Read R<ONREAD Y

This monadic function reads data from a native file. Y is a 3- or 4-element integer vec-
tor whose elements are as follows:

[1] negative tie number,

[2] conversion code (see below),
[3] count,

[4] start byte, counting from 0.

Y [ 2] specifies conversion to an APL internal form as follows. Note that the internal
formats for character arrays differ between the Unicode and Classic Editions.



370 Dyalog APL/W Language Reference

Table 14: Unicode Edition : Conversion Codes

Value |Number of bytes read Result Type Result shape
11 count 1 bit Boolean 8 x count
80 count 8 bits character count

82! count 8 bits character count

83 count 8 bits integer count

160 2 x count 16-bits character count

163 2 x count 16 bits integer count

320 4 x count 32-bits character count

323 4 x count 32 bits integer count

645 8 x count 64bits floating count
Table 15: Classic Edition : Conversion Codes

Value |Number of bytes read Result Type Result shape
11 count 1 bit Boolean 8 x count
82 count 8 bits character count

83 count 8 bits integer count

163 2 x count 16 bits integer count

323 4 x count 32 bits integer count

645 8 x count 64bits floating count

Note that types 80, 160 and 320 and 83 and 163 are exclusive to Dyalog APL.

If Y[ 4] is omitted, data is read starting from the current position in the file (initially,

0).

Example

DATA<[INREAD ~1 160 (0.5x[INSIZE 1) 0 A Unicode
DATA<[INREAD ~1 82 (ONSIZE ~1) O

A Classic

IConversion code 82 is permitted in the Unicode Edition for compatibility and

causes 1-byte data on file to be translated (according to ONXLATE) from [JAV indices

into normal (Unicode) characters of type 80, 160 or 320.




Chapter 4: System Functions 371

Native File Rename {R}«X [ONRENAME Y

[ONRENAME is used to rename a native file.

Y is a negative integer tie number associated with a tied native file. X is a simple
character vector or scalar containing a valid (and unused) file name.

The shy result of INRENAME is the tie number of the renamed file.

Native File Replace {R}«X ONREPLACE Y

ONREPLACE is used to write data to a native file, replacing data which is already
there.

X must be a simple homogeneous APL array containing the data to be written.
Y is a 2- or 3-element integer vector whose elements are as follows:

[1] negative tie number,
[2] start byte, counting from 0, at which the data is to be written,

[3] conversion code (optional).

See Native File Read on page 369 for a list of valid conversion codes.

The shy result is the position within the file of the end of the record, or, equivalently,
the start of the following one. Used, for example, in:

A Replace sequentially from indx.
{oo ONREPLACE tie w}/vec,indx

Unicode Edition

Unless you specify the data type in Y[ 3], a character array will by default be written
using type 80.

If the data will not fit into the specified character width (bytes) ONREPLACE will fail
with a DOMAIN ERROR.

As a consequence of these two rules, you must specify the data type (either 160 or
320) in order to write Unicode characters whose code-point is in the range 256-
65535 and >65535 respectively.




372

Dyalog APL/W Language Reference

Example
n<'test'[INTIE O A See Example on page 345

ONREAD n 80 3 0
abc

ONREAD n 160 7
TaBépva

O<'eatiatbpio'[ONREPLACE n 3
DOMAIN ERROR
O<'eotiatbpio'[ONREPLACE n 3

A

O<«'ectiatdépio'[ONREPLACE n 3 160
23

[ONREAD n 80 3 0
abc

ONREAD n 160 10
eotiatdpio

For compatibility with old files, you may specify that the data be converted to type
82 on output. The conversion (to JAV indices) will be determined by the local value
of JAVU.

Native File Resize {R}«X [ONRESIZE Y

This function changes the size of a native file.
Y is a negative integer tie number associated with a tied native file.

X is a single integer value that specifies the new size of the file in bytes. If X is smal-
ler than the current file size, the file is truncated. If X is larger than the current file
size, the file is extended and the value of additional bytes is undefined.

The shy result of INRESIZE is the tie number of the resized file.




Chapter 4: System Functions 373

Create Namespace {R}<«{X}ONS Y

If specified, X must be a simple character scalar or vector identifying the name of a
namespace.

Y is either a character array which represents a list of names of objects to be copied
into the namespace, or is an array produced by the [JOR of a namespace.

In the first case, Y must be a simple character scalar, vector, matrix or a nested vector
of character vectors identifying zero or more workspace objects to be copied into the
namespace X. The identifiers in X and Y may be simple names or compound names
separated by ' . ' and including the names of the special namespaces '# ', '##' and
‘Ose’.

The namespace X is created if it doesn't already exist. Ifthe name is already in use for
an object other than a namespace, APL issues a DOMAIN ERROR.

If X is omitted, an unnamed namespace is created.
The objects identified in the list Y are copied into the namespace X.

If X is specified, the result R is the full name (starting with #. or[JSE.) of the
namespace X. If X is omitted, the result R is a namespace reference, or ref, to an
unnamed namespace.



374

Dyalog APL/W Language Reference

Examples

+'X'ONS"! A Create namespace X.
#.X

+'X'0ONS'VEC' 'UTIL.DISP'm Copy VEC and DISP to X.
#.X

)CS X A Change to namespace X.
#.X

~'Y'ONS'#.MAT' '##.VEC' A Create #.X.Y &copy in
#.X.Y

'# . UTIL'ONS'Y.MAT' A Copy MAT from Y to UTIL #
LUTIL.
#.UTIL

F'#'ONS'Y! A Copy namespace Y to root.
#

' 'ONS"#.MAT' A Copy MAT to currentspace.
#.X

' 'ONS " A Display current space.
#.X

+'Z'0ONS OOR'Y' A Create nspace from [OR.
#.X.2

NONAME<[INS "' A Create unnamed nspace

NONAME
#.[Namespace]

DATA<[INS"3pc'' A Create 3-element vector of

A distinct unnamed nspaces
DATA
#.[Namespace] #.[Namespace] #.[Namespace]

The second case is where Y is the [JOR of a namespace.

IfY is the JOR of a GUI object, # . Z must be a valid parent for the GUI object rep-
resented by Y, or the operation will fail with a DOMAIN ERROR.

Otherwise, the result of the operation depends upon the existence of Z.

e If Z does not currently exist (name class is 0), Z is created as a complete
copy (clone) of the original namespace represented by Y. If Y is the [JOR of
a GUI object or of a namespace containing GUI objects, the corresponding
GUI components of Y will be instantiated in Z.

e If Z is the name of an existing namespace (name class 9), the contents of Y,
including any GUI components, are merged into Z. Any items in Z with cor-
responding names in Y (names with the same path in both Y and Z) will be
replaced by the names in Y, unless they have a conflicting name class in
which case the existing items in Z will remain unchanged. However, all
GUI spaces in Z will be stripped of their GUI components prior to the
merge operation.



Chapter 4: System Functions 375

Namespace Indicator

R+NSI

R is a nested vector of character vectors containing the names of the spaces from
which functions in the state indicator were called (pONSI«->p[JRSI<+>p[]SI).

ORSTI and ONST are identical except that JRST returns refs to the spaces whereas
ONSI returns their names. Put another way: ONSI«->35 "[JRSI.

Note that [INSI contains the names of spaces from which functions were called not

those in which they are currently running.

Example
JOBJECTS
XX Yy
OVR 'yy.foo'
V r<foo
(1] r«<0SE.goo
\'4
OvR'0SE.goo"’
V r<goo
[1] r<(SI,[1.5]0ONSI
\'4
)CS xx
#.xx

calling«#.yy.foo
Jdisplay calling

-——

goo #.yy

foo #.xx

Native File Size

R<[NSIZE Y

This reports the size of a native file.

Y is a negative integer tie number associated with a tied native file. The result R is

the size of the file in bytes.




376

Dyalog APL/W Language Reference

Native File Tie {R}«X ONTIE Y

ONTIE opensa native file.

X is a simple character vector or scalar containing a valid pathname for an existing
native file.

Y isa 1-or2-element vector. Y[ 1] isanegative integer value that specifies an
(unused) tie number by which the file may subsequently be referred. Y[2] is
optional and specifies the mode in which the file is to be opened. This is an integer
value calculated as the sum of 2 codes. The first code refers to the type of access
needed from users who have already tied the native file. The second code refers to
the type of access you wish to grant to users who subsequently try to open the file
while you have it open.

Needed from existing users Granted to subsequent users
0 read access 0 compatibility mode
1 write access 16 no access (exclusive)
2 read and write access |32 read access
48 write access
64 read and write access

On UNIX systems, the first code (16 |mode) is passed to the open (2) call as the
access parameter. See include file fcnt1 . h for details.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create or tie operation, allocates, and returns as an
explicit result, the first (closest to zero) available tie number. This allows you to sim-
plify code. For example:

from:
tie<"1+[/0,[ODNNUMS A With next available number,
file ONTIE tie A ... tie file.
to:
tie<file ONTIE O A Tie with first available no.
Example
ntie<«{ A tie file and return tie no.
o<2+64 A default all access.
w [Ontie 0 a A return new tie no.



Chapter 4: System Functions 377

Null Item

R<[NULL

This is a reference to a null item, such as may be returned across the COM interface to
represent a null value. An example might be the value of an empty cell in a spread-

sheet.

ONULL may be used in any context that accepts a namespace reference, in particular:

As the argument to a defined function

As an item of an array.

As the argument to those primitive functions that take character data argu-
ments, for example: =, #, =, #, ,, p, 2, €

Example

"EX'OWC'OLECLlient' 'Excel.Application'’
WB«<EX.Workbooks.Open 'simple.xls'

(WB.Sheets.Item 1).UsedRange.Value2

[Null]l [Null] [Null] [Null]l [Null]
[Null] Year [Null] [Null] [Null]
[Null] 1999 2000 2001 2002
[Null] [Null] C[Null] [Null] [Null]

Sales 100 76 120 150
[Null] [Null] [Null] [Null] [Null]
Costs 80 60 100 110
[Null] [Null] C[Null] [Null] [Null]
Margin 20 16 20 40

To determine which of the cells are filled, you can compare the array with ONULL.

P OFROFRLROO0OO0O

R OFROFRORRFLRO

P OFRrROFR,ROFL,O0OO

ONULL#Z"(WB.Sheets.Item 1).UsedRange.Value2
0o0

PO ROROR
PO ROROR



378

Dyalog APL/W Language Reference

Native File Untie {R}<«[ONUNTIE Y

This closes one or more native files. Y is a scalar or vector of negative integer tie
numbers. The files associated with elements of Y are closed. Native file untie with a
zero length argument (ONUNTIE &) flushes all file buffers to disk - see File Untie

on page 305 for more explanation.

The shy result of INUNTIE is a vector of tie numbers of the files actually untied.

Native File Translate {R}«{X}ONXLATE Y

This associates a character translation vector with a native file or, if Y is 0, with the
use by [IDR.

A translate vector is a 256-element vector of integers from 0-255. Each element maps
the corresponding [JAV position onto an ANSI character code.

For example, to map JAV[17+0I0] onto ANSI'a' (code 97), element 17 of the trans-
late vectoris set to 97.

ONXLATE is a non-Unicode (Classic Edition) feature and is retained in the Unicode
Edition only for compatibility.

Y is either a negative integer tie number associated with a tied native file or 0. IfY is
negative, monadic ONXLATE returns the current translation vector associated with

the corresponding native file. If specified, the left argument X is a 256-element vector
of integers that specifies a new translate vector. In this case, the old translate vector
is returned as a shy result. If'Y is 0, it refers to the translate vector used by [JDR to con-
vert to and from character data.

The system treats a translate vector with value (1256 ) -[J10 as meaning no trans-
lation and thus provides raw input/output bypassing the whole translation process.

The default translation vector established at ONTIE or INCREATE time, maps [JAV
characters to their corresponding ANSI positions and is derived from the mapping
defined in the current output translation table (normally WIN.DOT)

Between them, ANSI and RAW translations should cater for most uses.



Chapter 4: System Functions 379

Unicode Edition

ONXLATE is relevant in the Unicode Edition only to process Native Files that con-
tain characters expressed as indices into [JAV, such as files written by the Classic Edi-
tion.

In the Unicode Edition, when reading data from a Native File using conversion code
82, incoming bytes are translated first to JAV indices using the translation table spe-
cified by ONXLATE, and then to type 80, 160 or 320 using JAVU. When writing data
to a Native File using conversion code 82, characters are converted using these two
translation tables in reverse.

Sign Off APL OOFF

This niladic system function terminates the APL session, returning to the shell com-
mand level. The active workspace does not replace the last continuation workspace.

Although [JOFF is niladic, you may specify an optional integer I to the right of the
system function which will be reported to the Operating System as the exit code. If I
is an expression generating an integer, you should put the expression in parentheses.
I must be in the range 0..255, but note that on UNIX processes use values greater
than 127 to indicate the signal number which was used to terminate a process, and
that currently APL itself generates values 0..8; this list may be extended in future.

Variant

{R}«{X}(f OOPT B)Y

0OPT is synonymous with the Variant Operator symbol [ and is the only form avail-
able in the Classic Edition.

See Variant on page 155.




380

Dyalog APL/W Language Reference

Object Representation R<[OR Y

[JOR converts a function, operator or namespace to a special form, described as its
object representation, that may be assigned to a variable and/or stored on a com-
ponent file. Classes and Instances are however outside the domain of [JOR.

Taking the [JOR ofa function or operator is an extremely fast operation as it simply
changes the type information in the object’s header, leaving its internal structure
unaltered. Converting the object representation back to an executable function or
operator using [JF X is also very fast.

However, the saved results of JOR which were produced on a different hardware plat-
form or using an older version of Dyalog APL may require a significant amount of
processing when re-constituted using JF X. For optimum performance, it is strongly
recommended that you save [JORs using the same version of Dyalog APL and on the
same hardware platform that you will use to [F X them.

[JOR may also be used to convert a namespace (either a plain namespace or a named
GUI object created by WC) into a form that can be stored in a variable or on a com-
ponent file. The namespace may be reconstructed using [INS or OWC with its original
name or with a new one. [JOR may therefore be used to clone a namespace or GUI
object.

Y must be a simple character scalar or vector which contains the name of an APL
object.

IfY is the name of a variable, the result R is its value. In this case, R<[JOR Y is
identical to R«¢Y.

Otherwise, R is a special form of the name Y, re-classified as a variable. The rank of R
is 0 (R is scalar), and the depth of R is 1. These unique characteristics distinguish the
result of [JOR from any other object. The type of R (€R) is itself. Note that although
R is scalar, it may not be index assigned to an element of an array unless it is
enclosed.



Chapter 4: System Functions 381

If'Y is the name of a function or operator, R is in the domain of the monadic functions
Depth (), Disclose (), Enclose (<), Rotate (¢), Transpose (®), Indexing ([ ]), Format
(), Identity (+), Shape (p), Type (€) and Unique (v), of the dyadic functions Assign-
ment (+), Without (~), Index Of (1), Intersection (n), Match (=), Membership (€), Not
Match (#) and Union (v), and of the monadic system functions Canonical Rep-
resentation ((JCR), Cross-Reference (OREF S), Fix (OF X), Format (OFMT), Nested Rep-
resentation ((ONR) and Vector Representation ((JVR).

Nested arrays which include the object representations of functions and operators are
in the domain of many mixed functions which do not use the values of items of the
arrays.

Note that a [JOR object can be transmitted through an 'APL-style' TCP socket. This
technique may be used to transfer objects including namespaces between APL ses-
sions.

The object representation forms of namespaces produced by [JOR may not be used as
arguments to any primitive functions. The only operations permitted for such
objects (or arrays containing such objects) are JEX, JFAPPEND, JFREPLACE,[INS,
and (WC.

Example
F<OJOR OFX'R«FO0' 'R«10'

pF

ppF
0

=F
1

F=eF
1

The display of the JOR form of a function or operator is a listing of the function or
operator. Ifthe [JOR form ofa function or operator has been enclosed, then the result
will display as the operator name preceded by the symbol V. It is permitted to apply
[OR to a locked function or operator. In this instance the result will display as for
the enclosed form.



382 Dyalog APL/W Language Reference

Examples

F
vV R«FOO
[1] R«10
v

<F
vFOO

[Lock'Foo'

(OorR'FoO"
VFOO

A<15
A[3]<«cF

A
12 VFOO 4 5

For the [JOR forms of two functions or operators to be considered identical, their
unlocked display forms must be the same, they must either both be locked or
unlocked, and any monitors, trace and stop vectors must be the same.

Example
F<OOR [OFX 'R«A PLUS B' 'R«A+B'

F=0OR 'PLUS'

1 OSTOP 'PLUS'

F={OR 'PLUS'



Chapter 4: System Functions 383

Namespace Examples

The following example sets up a namespace called UTILS, copies into it the con-
tents of the UTIL workspace, then writes it to a component file:

)CLEAR
clear ws
JNS UTILS
#.UTILS
)CS UTILS
#.UTILS
)COPY UTIL
C:\WDYALOG\WS\UTIL saved Fri Mar 17 12:48:06 1995
)CS
#
"ORTEST' [OFCREATE 1
(OOR'UTILS')OFAPPEND 1

The namespace can be restored with [JNS, using either the original name or a new
one:

)CLEAR
clear ws

"UTILS' ONS OFREAD 1 1
#.UTILS

)CLEAR
clear ws

"NEWUTILS' [ONS OFREAD 1 1
#.NEWUTILS

This example illustrates how [JOR can be used to clone a GUI object; in this case a
Group containing some Button objects. Note that OWC will accept only a [JOR
object as its argument (or preceded by the “Type” keyword). You may not specify
any other properties in the same JWC statement, but you must instead use (WS to
reset them afterwards.
"F'OWC'Form'
'F.G1' OWC 'Group' '&0ne' (10 10)(80 30)
'F.G1.B2'[OWC'Button' '&Blue' (40 10)('Style' 'Radio')
'F.G1.B3'[OWC'Button' '&Green' (60 10)('Style' 'Radio')
'F.G1.B1'[JWC'Button' '&Red' (20 10)('Style' 'Radio')

'F.G2' OwC [JOR 'F.G1'
"F.G2' OWS ('Caption' 'Two')('Posn' 10 60)

Note too that JWC and [ONS may be used interchangeably to rebuild pure namespaces
or GUI namespaces from a [JOR object. You may therefore use [INS to rebuild a Form
or use [JWC to rebuild a pure namespace that has no GUI components.



384

Dyalog APL/W Language Reference

Search Path OPATH

[OPATH is a simple character vector representing a blank-separated list of
namespaces. It is approximately analogous to the PATH variable in Windows or
UNIX

The JPATH variable can be used to identify a namespace in which commonly used
utility functions reside. Functions or operators (NOT variables) which are copied
into this namespace and exported (see Export Object on page 265) can then be used
directly from anywhere in the workspace without giving their full path names.

Example
To make the DISPLAY function available directly from within any namespace.

A Create and reference utility namespace.
OPATH«'0se.util'Ons""’

A Copy DISPLAY function from UTIL into it.
'DISPLAY'se.util.0cy'UTIL"'

A (Remember to save the session to file).

In detail, OPATH works as follows:

When a reference to a name cannot be found in the current namespace, the system
searches for it from left to right in the list of namespaces indicated by JPATH. In
each namespace, if the name references a defined function (or operator) and the
export type of that function is non-zero (see Export Object on page 265 ), then it is
used to satisfy the reference. If the search exhausts all the namespaces in JPATH
without finding a qualifying reference, the system issues a VALUE ERROR in the nor-
mal manner.

The special character t stands for the list of namespace ancestors:
HE HHOHH BEOHE L HE

In other words, the search is conducted upwards through enclosing namespaces, emu-
lating the static scope rule inherent in modern block-structured languages.

Note that the JPATH mechanism is used ONLY if the function reference cannot be
satisfied in the current namespace. This is analogous to the case when the Windows
or UNIX PATH variable begins witha ' . ".



Chapter 4: System Functions 385

Examples
OPATH Search in

1. 'Ose.util' Current space, then
Ose.util, then
VALUE ERROR

2. 't Current space
Parent space: ##
Parent's parent space: ##.##
Root: # (or [se if current space

was inside [se)

VALUE ERROR

3. 'util t [Ose.util’ Current space

util (relative to current space)
Parent space: ##

Root: # or [se
Ose.util
VALUE ERROR

Note that JPATH is a session variable. This means that it is workspace-wide and sur-
vives ) LOAD and ) CLEAR. It can of course, be localised by a defined function or
operator.



386

Dyalog APL/W Language Reference

Program Function Key R«{X}OPFKEY Y

OPFKEY is a system function that sets or queries the programmable function keys.
OPFKEY associates a sequence of keystrokes with a function key. When the user sub-
sequently presses the key, it is as if he had typed the associated keystrokes one by
one.

Y is an integer scalar in the range 0-255 specifying a programmable function key. If
X is omitted the result R is the current setting of the key. Ifthe key has not been
defined previously, the result is an empty character vector.

If X is specified it is a simple or nested character vector defining the new setting of
the key. The value of X is returned in the result R.

The elements of X are either character scalars or 2-element character vectors which
specify Input Translate Table codes.

Programmable function keys are recognised in any of the three types of window
(SESSION, EDIT and TRACE) provided by the Dyalog APL development envir-
onment. [JSR operates with the 'raw' function keys and ignores programmed settings.

Note that key definitions can reference other function keys.

The size of the buffer associated with PFKEY is specified by the pfkey size para-
meter.

Examples
(')FNS',c'ER') [OPFKEY 1
JFNS ER
ldisplay OPFKEY 1
I o
| ) FNS |ER| |
[ - - == "'=-="
IE _____________ 1

(')VARS',c'ER') [OPFKEY 2
JVARS ER

'"F1' 'F2' [OPFKEY 3 A Does )FNS and )VARS
F1 F2



Chapter 4: System Functions 387

Print Precision OppP

0PP is the number of significant digits in the display of numeric output.

(PP may be assigned any integer value in the range 1 to 17. The value in a clear
workspace is 10. Note that in all Versions of Dyalog APL prior to Version 11.0, the
maximum value for[JPP was 16.

0PP is used to format numbers displayed directly. It is an implicit argument of mon-
adic function Format (3), monadic [JFMT and for display of numbers via [] and [] out-
put. OPP is ignored for the display of integers.

Examples:
OpP<«10

+3 6
0.3333333333 0.1666666667

Opp«3

3 6
0.333 0.167

If0PP is set to its maximum value of 17, floating-point numbers may be converted
between binary and character representation without loss of precision. In particular,
if0PP is 17 and [ICT is O (to ensure exact comparison), for any floating-point number
N the expression N=¢3N is true. Note however that denormal numbers are an excep-
tion to this rule.

Numbers, very close to zero, in the range 2.2250738585072009E7308 to
4.9406564584124654E™ 324 are called denormal numbers. Such numbers can
occur as the result of calculations and are displayed correctly.

Numbers below the lower end of this range (4 . 94E~324) are indistinguishable from
zero in IEEE double floating point format.



388 Dyalog APL/W Language Reference

Profile Application

R«{X}OPROFILE Y

OPROF ILE facilitates the profiling of either CPU consumption or elapsed time for a
workspace. It does so by retaining time measurements collected for APL func-
tions/operators and function/operator lines. JPROF ILE is used to both control the
state of profiling and retrieve the collected profiling data.

Y specifies the action to perform and any options for that action, if applicable. Y is

case-insensitive.

Use Description

state<[JPROFILE 'start' |Tur profiling on using the specified timer
{timer} or resume if profiling was stopped
state<[JPROFILE 'stop’ Suspend the collection of profiling data

? Z: t?;lazi:f ILE Calibrate the profiling timer
state<[JPROFILE 'state' |Query profiling state

data<[JPROFILE 'data’ Retrieve profiling data in flat form
data<[JPROFILE 'tree' Retrieve profiling data in tree form




Chapter 4: System Functions 389

OPROFILE has 2 states:

e active — the profiler is running and profiling data is being collected.
e inactive — the profiler is not running.

For most actions, the result of JPROF ILE is its current state and contains:

[1] character vector indicating the [JPROF ILE state having one of the
values 'active' or 'inactive'

[2] character vector indicating the timer being used having one of the
values 'CPU' or 'elapsed’

call time bias in milliseconds. This is the amount of time, in

[3] milliseconds, that is consumed for the system to take a time
measurement.

timer granularity in milliseconds. This is the resolution of the timer

being used.

state<JPROFILE 'start' {timer}

Tum profiling on; t imer is an optional case-independent character vector con-
taining 'CPU' or 'elapsed’ or 'none'.Ifomitted, it defaultsto 'CPU'.If
timeris 'none',[JPROFILE can be used to record which lines of code are
executed without incurring the timing overhead.

(4]

The first time a particular timer is chosen, JPROF ILE will spend 1000 milliseconds
(1 second) to approximate the call time bias and granularity for that timer.

OPROFILE 'start' 'CPU'
active CPU 0.0001037499999 0.0001037499999

state<JPROFILE 'stop'’

Suspends the collection of profiling data.

OPROFILE 'stop'
inactive CPU 0.0001037499999 0.0001037499999

state<«[JPROFILE 'clear’

Clears any collected profiling data and, if profiling is active, places profiling in an
inactive state.

OPROFILE 'clear'
inactive 00



390

Dyalog APL/W Language Reference

state«[JPROFILE 'calibrate’

Causes [JPROF ILE to perform a 1000 millisecond calibration to approximate the call
time bias and granularity for the current timer. Note, a timer must have been pre-
viously selected by using JPROFILE 'start'.

[OPROF ILE will retain the lesser of the current timer values compared to the new val-
ues computed by the calibration. The rationale for this is to use the smallest possible
values of which we can be certain.

OPROFILE'calibrate’
active CPU 0.0001037499997 0.0001037499997

state+<[JPROFILE 'state'

Returns the current profiling state.

)Jclear
clear ws
[JPROFILE 'state'
inactive 00

[OPROFILE 'start' 'CPU'

active CPU 0.0001037499997 0.0001037499997
OPROFILE 'state'

active CPU 0.0001037499997 0.0001037499997

data«<{X} OPROFILE 'data’

Retrieves the collected profiling data. If the optional left argument X is omitted, the
result is a matrix with the following columns:

[:1] function name

[;2] function line number or € for a whole function entry

[:3] number of times the line or function was executed

[s4]

accumulated time (ms) for this entry exclusive of items called by this
entry

accumulated time (ms) for this entry inclusive of items called by this

[;5]
entry

[ ;6] number of times the timer function was called for the exclusive time

[+7] number of times the timer function was called for the inclusive time



Chapter 4: System Functions 391

Example: (numbers have been truncated for formatting)
OPROFILE 'data’

#.foo 1 1.04406 39347.64945 503 4080803
#.foo 1 1 0.12488 0.124887 1 1
#.foo 2 100 0.58851 39347.193900 200 4080500
#.foo 3 100 0.21340 0.213406 100 100
#.NS1.goo 100 99.44404 39346.6053 50300 4080300
#.NS1.goo 1 100 0.61679 0.616793 100 100
#.NS1.goo 2 10000 67.80292 39314.9642 20000 4050000
#.NS1.goo 3 10000 19.60274 19.6027 10000 10000

If X is specified it must be a simple vector of column indices. In this case, the result
has the same shape as X and is a vector of the specified column vectors:

X OPROFILE 'data' <> V[0OIO](OPROFILE 'data')[;X]

If column 2 is included in the result, the value ~1 is used instead of & to indicate a
whole-function entry.

data«{X} OPROFILE 'tree'

Retrieve the collected profiling data in tree format:

[;1] depth level

[;2] function name
[:3] function line number or & for a whole function entry
[s4] number of times the line or function was executed
[:5] accumulated time (ms) for this entry exclusive of items called by
’ this entry
[:6] accumulated time (ms) for this entry inclusive of items called by
’ this entry
[:7] number of times the timer function was called for the exclusive time
[:8] number of times the timer function was called for the inclusive time

The optional left argument is treated in exactly the same way as for X [JPROFILE
‘data’.



392 Dyalog APL/W Language Reference

Example:
OPROFILE 'tree'

0 #.foo 1 1.04406 39347.64945 503 4080803
1 #.foo 1 1 0.12488 0.12488 1 1
1 #.foo 2 100 0.58851 39347.19390 200 4080500
2 #.NS1.goo 100 99.4L4L4O4 39346.60538 50300 4080300
3 #.NSi.goo 1 100 0.61679 0.61679 100 100
3 #.NSt.goo 2 10000 67.80292 39314.96426 20000 4050000
4 #.NS2.moo 10000 39247.16133 39247.16133 4030000 4030000
5 #.NS2.moo 1 10000 39.28315 39.28315 10000 10000
5 #.NS2.moo 2 1000000 36430.65236 36430.65236 1000000 1000000
5 #.NS2.moo 3 1000000 1645.36214 1645.36214 1000000 1000000
3 #.NSt.goo 3 10000 19.60274 19.60274% 10000 10000
1 #.foo 3 100 0.21340 0.21340 100 100

Note that rows with an even depth level in column [ ; 1 ] represent function sum-
mary entries and odd depth level rows are function line entries. Recursive functions
will generate separate rows for each level of recursion.

Notes

Profile Data Entry Types

The results of JPROFILE 'data' and JPROFILE 'tree' havetwo typesof
entries; function summary entries and function line entries. Function summary entries
contain € in the line number column, whereas function line entries contain the line
number. Dfnns line entries begin with 0 as they do not have a header line like tra-
ditional functions. The timer data and timer call counts in function summary entries
represent the aggregate of the function line entries plus any time spent that cannot be
directly attributed to a function line entry. This could include time spent during func-
tion initialisation, etc.

Example:

#.foo 1 1.04406 39347.649450 503 4080803
#.foo 1 1 0.12488 0.124887 1 1
#.foo 2 100 0.58851 39347.193900 200 4080500
#.foo 3 100 0.21340 0.213406 100 100

Timer Data Persistence

The profiling data collected is stored outside the workspace and will not impact
workspace availability. The data is cleared upon workspace load, clear workspace,
OPROFILE 'clear',orinterpretersign off.



Chapter 4: System Functions 393

The PROFILE User Command

JPROF ILE is a utility which implements a high-level interface to JPROFILE and
provides reporting and analysis tools that act upon the profiling data. For further
information, see Tuning Applications using the Profile User Command.

Using OPROF ILE Directly

If you choose to use JPROF ILE directly, the following guidelines and information
may be ofuse to you.

Note: Running your application with JPROF ILE tumed on incurs a significant pro-
cessing overhead and will slow your application down.

Decide which timer to use

OPROF ILE supports profiling of either CPU or elapsed time. CPU time is generally
of more interest in profiling application performance.

Simple Profiling

To get a quick handle on the top CPU time consumers in an application, use the fol-
lowing procedure:

e Make sure the application runs long enough to collect enough data to over-
come the timer granularity — a reasonable rule of thumb is to make sure the
application runs for at least (4000x4>[JPROFILE 'state') mil-
liseconds.

Turn profiling on with JPROFILE 'start' CPU

Run your application.

Pause the profiler with JPROFILE 'stop'

Examine the profiling data from JPROFILE 'data' orJPROFILE
"tree’ for entries that consume large amounts of resource.

This should identify any items that take more than 10% of the run time.

To find finer time consumers, or to focus on elapsed time rather than CPU time, take
the following additional steps prior to running the profiler:



394

Dyalog APL/W Language Reference

Turn off as much hardware as possible. This would include peripherals, network con-
nections, etc.

e Tum off as many other tasks and processes as possible. These include anti-
virus software, firewalls, internet services, background tasks.

¢ Raise the priority on the Dyalog APL task to higher than normal, but in gen-
eral avoid giving it the highest priority.

e Run the profiler as described above.

Doing this should help identify items that take more than 1% of the run time.

Advanced Profiling

The timing data collected by OPROF ILE is not adjusted for the timer’s call time
bias; in other words, the times reported by JPROF ILE include the time spent calling
the timer function. One effect of this can be to make “cheap” lines that are called
many times seem to consume more resource. If you desire more accurate profiling
measurements, or if your application takes a short amount of time to run, you will
probably want to adjust for the timer call time bias. To do so, subtract from the tim-
ing data the timer’s call time bias multiplied by the number of times the timer was
called.

Example:

CallTimeBias<«3>[JPROFILE 'state'
RawTimes<«[JPROFILE 'data'
Adjusted«RawTimes[ ;4 5]-RawTimes[;6 7]xCallTimeBias



Chapter 4: System Functions 395

Print Width OpPw

0PW is the maximum number of output characters per line before folding the display.

0PW may be assigned any integer value in the range 42 to 32767. Note that in ver-
sions of Dyalog APL prior to 13.0 [JPW had a minimum value of 30; this was
increased to support 128-bit decimal values.

If an attempt is made to display a line wider than [JPW, then the display will be fol-
ded at or before the JPW width and the folded portions indented 6 spaces. The dis-
play of a simple numeric array may be folded at a width less than [PW so that
individual numbers are not split.

OPW ony affects output, either direct or through [ output. It does not affect the result
of the function Format (%), of the system function JFMT, or output through the sys-
tem functions JARBOUT and [JARBIN, or output through [].

Note that if the auto_pw parameter (Options/Configure/Session/Auto PW)issetto 1,
0PW is automatically adjusted whenever the Session window is resized. In these cir-
cumstances, a value assigned to JPW will only apply until the Session window is
next resized.

Examples
OPW<42
0«3p=+3

0.3333333333 0.3333333333 0.3333333333
0.3333333333




396

Dyalog APL/W Language Reference

Cross References R<[REFS Y

Y must be a simple character scalar or vector, identifying the name of a function or
operator, or the object representation form of a function or operator (see Object Rep-
resentation on page 380). R is a simple character matrix, with one name per row, of
identified names in the function or operator in Y excluding distinguished names of
system constants, variables or functions.

Example

OVR'OPTIONS'
V OPTIONS;OPTS;INP

[1] A REQUESTS AND EXECUTES AN OPTION
[2] OPTS «'INPUT' 'REPORT' 'END'
[3] IN:INP<ASK'OPTION:'
[4]  ~EXp=(cINP)€OPTS
[5] "INVALID OPTION. SELECT FROM',OPTS ¢ -IN
[6] EX:>EX+OPTS1<cINP
[7] INPUT ¢ -IN
[8] REPORT ¢ -IN
[9] END:

v

OREFS'OPTIONS'
ASK
END
EX
IN
INP
INPUT
OPTIONS
OPTS
REPORT

IfY is locked or is an External Function, R contains its name only. For example:

OLOCK 'OPTIONS' o [OREFS 'OPTIONS'
OPTIONS

IfY is the name of a primitive, external or derived function, R is an empty matrix with
shape 0 0.



Chapter 4: System Functions 397

Replace

R«{X}(A OR B) Y

OR (Replace) and [0S (Search) are system operators which take search pattern(s) as
their left arguments and transformation rule(s) as their right arguments; the derived
function operates on text data to perform either a search, or a search and replace oper-
ation.

The search patterns may include Regular Expressions so that complex searches may
be performed. [JR and [0S utilise the open-source regular-expression search engine
PCRE, which is built into Dyalog APL and distributed according to the PCRE
license which is published separately.

The transformation rules are applied to the text which matches the search patterns;
they may be given as a simple character vector, numeric codes, or a function.

The two system operators, (R for replace and [1S for search, are syntactically
identical. With [R, the input document is examined; text which matches the search
pattern is amended and the remainder is left unchanged. With S, each match in the
input document results in an item in the result whose type is dependent on the trans-
formation specified.The operators use the Variant operator to set options.

A specifies one or more search patterns, being given as a single character, a character
vector, a vector of character vectors or a vector of both characters and character vec-
tors. See search pattern following.

B is the transformation to be performed on matches within the input document; it
may be either one or more transformation patterns (specified as a character, a char-
acter vector, a vector of character vectors, or a vector of both characters and character
vectors), one or more transformation codes (specified as a numeric scalar or a numeric
vector) or a function; see transformation pattern, transformation codes and trans-

formation function following.

Y specifies the input document; see input document below.
X optionally specifies an output stream; see output below.

R is the result value; see output below.



398

Dyalog APL/W Language Reference

Examples of replace operations

('".at' OR '\u0') 'The cat sat on the mat'
The CAT SAT on the MAT

In the search pattern the dot matches any character, so the pattern as a whole matches
sequences of three characters ending ‘at’. The transformation is given as a character
string, and causes the entire matching text to be folded to upper case.

('"\w+' OR {dw.Match}) 'The cat sat on the mat'
ehT tac tas no eht tam

The search pattern matches each word. The transformation is given as a function,
which receives a namespace containing various variables describing the match, and
it returns the match in reverse, which in turn replaces the matched text.

Examples of search operations

STR«'The cat sat on the mat'
('.at' OS '\u0') STR
CAT SAT MAT

The example is identical to the first, above, except that after the transformation is
applied to the matches the results are returned in a vector, not substituted into the
source text.

('.at' 0OS {w.((1tOffsets),1tLengths)}) STR
b 3 83 19 3

When searching, the result vector need not contain only text and in this example the
function returns the numeric position and length of the match given to it; the res-
ultant vector contains these values for each of the three matches.

('.at' S 0 1) STR
Y3 83 19 3

Here the transformation is given as a vector of numeric codes which are a short-hand
for the position and length of each match; the overall result is therefore identical to
the previous example.

These examples all operate on a simple character vector containing text, but the text
may be given in several forms - character vectors, vectors of character vectors, and
external data streams. These various forms constitute a ‘document’. When the result
also takes the form of'a document it may be directed to a stream.



Chapter 4: System Functions 399

Input Document

The input document may be an array or a data stream.
When it is an array it may be given in one of two forms:

1. A character scalar or vector
2. A vector of character vectors

Currently, the only supported data stream is a native file, specified as tie number,
which is read from the current position to the end. If the file is read from the start, and
there is a valid Byte Order Mark (BOM) at the start of it, the data encoding is determ-
ined by this BOM. Otherwise, data in the file is assumed to be encoded as specified
by the InEnc option.

Hint: once a native file has been read to the end by 0R or[S it is possible to reset the
file position to the start so that it may be read again using:

{} ONREAD tienum 82 0 0

The input document is comprised of lines of text. Line breaks may be included in the
data:

Implicitly
e Between each item in the outer vector (type 2, above)
Explicitly, as

carriage return

line feed

carriage return and line feed together, in that order
vertical tab (U+000B)

newline (U+0085)

form Feed (U+000C)

line Separator (U+2028)

paragraph Separator (U+2029)

The implicit line ending character may be set using the EOL option. Explicit line
ending characters may also be replaced by this character - so that all line endings are
normalised - using the NEOL option.

The input document may be processed in line mode, document mode or mixed mode.
In document mode and mixed mode, the entire input document, line ending char-
acters included, is passed to the search engine; in line mode the document is split on
line endings and passed to the search engine in sections without the line ending char-
acters. The choice of mode affects both memory usage and behaviour, as documented
in the section ‘Line, document and mixed modes’.



400

Dyalog APL/W Language Reference

Output

The format of the output is dependent on whether [0S or R are in use, whether an out-
put stream is specified and, for R, the form of the input and whether the ResultText
option is specified.

An output data stream may optionally be specified. Currently, the only supported
data stream is a native file, specified as tie number, and all output will be appended
to it. Data in the stream is encoded as specified by the OutEnc option. If this encod-
ing specifies a Byte Order Mark and the file is initially empty then the Byte Order
Mark will be written at the start. Appending to existing data using a different encod-
ing is permitted but unlikely to produce desirable results. If an input stream is also
used, care must be taken to ensure the input and output streams are not the same.

OrR

With no output stream specified and unless overridden by the ResultText option, the
derived function result will be a document which closely matches the format of the
input document, as follows:

A character scalar or vector input will result in a character vector output. Any
and all line endings in the output will be represented by line ending characters
within the character vector.

A vector of character vectors as input will result in a vector of character vectors as
document output. Any and all line endings in the output document will be implied
at the end of each character vector.

A stream as input will result in a vector of character vectors document output. Any
and all line endings in the output document will be implied at the end of each char-
acter vector.

Note that the shape of the output document may be significantly different to that of
the input document.

If the ResultText option is specified, the output type may be forced to be a character
vector or vector of character vectors as described above, regardless of the input doc-
ument.

With an output stream specified there is no result - instead the text is appended to the
stream. If the appended text does not end with a line ending character then the line
ending character specified by the EOL option is also appended.



Chapter 4: System Functions 401

Qs

With no output stream specified, the result will be a vector containing one item for
each match in the input document, of types determined by the transformation per-
formed on each match.

With an output stream specified there is no result - instead each match is appended to
the stream. If any match does not end with a line ending character then the line end-
ing character specified by the EOL option is also appended. Only text may be writ-
ten to the stream, which means:

e When a transformation function is used, the function may only generate a
character vector result.
e Transformation codes may not be used.

Search pattern

A summary of the syntax of the search pattern is reproduced from the PCRE doc-
umentation. See Appendix A - PCRE Syntax Summary on page 526.

A full description is provided in Appendix B - PCRE Regular Expression Details on
page 533.

There may be multiple search patterns. If more than one search pattern is specified
and more than one pattern matches the same part of the input document then priority
is given to the pattern specified first.

Note that when anchoring a search to the beginning of a line, it is essential to use
@Aucs 9u4), not A Qucs 8743).

Transformation pattern

For each match in the input document, the transformation pattern causes the creation
of text which, for R, replaces the matching text and, for[JS, generates one item in
the result.

There may be either one transformation pattern, or the same number of transformation
patterns as search patterns. If there are multiple search patterns and multiple trans-
formation patterns then the transformation pattern used corresponds to the search pat-
tern which matched the input text.

Transformation patterns may not be mixed with transformation codes or functions.



402 Dyalog APL/W Language Reference

The following characters have special meaning:

%

acts as a placeholder for the entire line (line mode) or document
(document mode or mixed mode) which contained the match

&

acts as a placeholder for the entire portion of text which matched

\n

represents a line feed character

\r

represents a carriage return

\0

equivalent to &

\n

acts as a placeholder for the text which matched the first to ninth
subpattern; » may be any single digit value from 1 to 9

\(n)

acts as a placeholder for the text which matched the numbered
subpattern; » may have an integer value from 0 to 63.

\<name>

acts as a placeholder for the text which matched the named
subpattern

\\

represents the backslash character

\%

represents the percent character

\&

represents the ampersand character

The above may be qualified to fold matching text to upper- or lower-case by using
the u and 1 modifiers respectively. Character sequences beginning with the backslash
place the modifier after the backslash; character sequences with no leading backslash
add both a backslash and the modifier to the start of the sequence, for example:

\u&

acts as a placeholder for the entire portion of text which matched,
folded to upper case

\10

equivalent to \I&

Character sequences beginning with the backslash other that those shown are
invalid. All characters other than those shown are literal values and are included in
the text without modification.




Chapter 4: System Functions 403

Transformation codes

The transformation codes are a numeric scalar or vector. Transformation codes may
only be used with [JS. For each match in the input document, a numeric scalar or vec-
tor of the same shape as the transformation codes is created, with the codes replaced
with values as follows:

The offset from the start of the line (line mode) or document (document
mode or mixed mode) of the start of the match, origin zero.

1 | The length of the match.

In line mode, the block number in the source document of the start of
2 | the match. The value is origin zero. In document mode or mixed mode
this value is always zero.

3 | The pattern number which matched the input document, origin zero.




404 Dyalog APL/W Language Reference

Transformation Function

The transformation function is called for each match within the input document. The
function is monadic and is passed a namespace, containing the following variables:

The entire line (line mode) or document (document mode or

Block mixed mode) in which the match was found.
With line mode, the block (line) number in the source

B LockNum document of the start of the match. The value is origin zero.
With document mode or mixed mode the entire document is
contained within one block and this value is always zero.

Pattern The search pattern which matched.

PatternNum |The index-zero pattern number which matched.

Match The text within Block which matched Pattern.

A vector of one or more index-zero offsets relative to the
start of Block. The first value is the offset of the entire
Offsets match; any and all additional values are the offsets of the
portions of the text which matched the subpatterns, in the
order of the subpatterns within Pattern.

A vector of one or more lengths, corresponding to each

Lengths value in Offset.

A vector of one or more character vectors corresponding to
each of the values in Offsets, specifying the names given to
Names the subpatterns within Pattern. The first entry
(corresponding to the match) and all subpatterns with no
name are included as length zero character vectors.

A Boolean indicating whether the function was called by

ReplaceMode OR (value 1) or S (value 0).

A Boolean indicating whether the return value from the
TextOnly function must be a character vector (value 1) or any value
(value 0).




Chapter 4: System Functions 405

The return value from the function is used as follows:

With [R the function must return a character vector. The contents of this vector are
used to replace the matching text.

With [1S the function may return no value. If it does return a value:

e When output is being directed to a stream it must be a character vector.
e Otherwise, it may be any value. The overall result of the derived function is
the catenation of the enclosure of each returned value into a single vector.

The passed namespace exists over the lifetime of R or[1S; the function may there-
fore preserve state by creating variables in the namespace.

The function may itselfcall OR or[S.

The locations of the match within Block and subpatterns within Match are given as
offsets rather than positions, i.e. the values are the number of characters preceding the
data, and are not affected by the Index Origin.

There may be only one transformation function, regardless of the number of search
patterns.

Options
Options are specified using the Variant operator. The Principal option is IC.

Default values are highlighted thus.

IC Option

When set, case is ignored in searches.

1 Matches are not case sensitive.
0 Matches are case sensitive.
Example:

('[AEIOU]' OR 'X' [0 'IC' 1) 'ABCDE abcde'
XBCDX XbcdX

('[AEIOU]' OR 'X' [l 1)'ABCDE abcde'
XBCDX XbcdX




406 Dyalog APL/W Language Reference

Mode Option

Specifies whether the input document is interpreted in line mode, document mode or
mixed mode.

When line mode is set, the input document is split into
separate lines (discarding the line ending characters
themselves), and each line is processed separately. This means
that the ML option applies per line, and the " and '$' anchors
IL match the start and end respectively of each line. Because the
document is split, searches can never match across multiple
lines, nor can searches for line ending characters ever succeed.
Setting line mode can result in significantly reduced memory
requirements compared with the other modes.

When document mode is set, the entire input document is
processed as a single block. The ML option applies to this

D entire block, and the "' and '$' anchors match the start and end
respectively of the block - not the lines within it. Searches can
match across lines, and can match line ending characters.

When mixed mode is set, the "' and '$' anchors match the start
and end respectively of each line, as if line mode is set, but in
all other respects behaviour is as if document mode is set - the
entire input document is processed in a single block.

Examples:
('$'" OR '[Endline]' [l 'Mode' 'L') 'ABC' 'DEF'
ABC[Endline] DEF[Endline]

('$" OR '[Endline]"' [ 'Mode' 'D') 'ABC' 'DEF'
ABC DEF[Endline

('$" OR '[Endline]"' [l 'Mode' 'M') 'ABC' 'DEF'
ABC[Endline] DEF[Endline]



Chapter 4: System Functions 407

DotAll Option

Specifies whether the dot (*.”) character in search patterns matches line ending char-
acters.

0 The ‘.’ character in search patterns matches most characters, but
not line endings.
1 The ‘.’ character in search patterns matches all characters.

This option is invalid in line mode, because line endings are stripped from the input
document.

Example:

("." OR 'X"' E'Mode' 'D') 'ABC' 'DEF'
XXX XXX

("." OR 'X" [('Mode' 'D')('DotAll' 1)) 'ABC' 'DEF'
XXXXXXXX

EOL Option

Sets the line ending character which is implicitly present between character vectors,
when the input document is a vector of character vectors.

CR Carriage Return (U+000D)

LF Line Feed (U+000A)

CRLF Carriage Return followed by New Line
VT Vertical Tab (U+000B)

NEL New Line (U+0085)

FF Form Feed (U+000C)

LS Line Separator (U+2028)

PS Paragraph Separator (U+2029)

In the Classic Edition, setting a value which is not in JAVU may result in a
TRANSLATION ERROR.

Example:

(‘\n' OR'X" [('Mode' 'D')('EOL' 'LF')) 'ABC' 'DEF'
ABCXDEF

Here, the implied line ending between ‘ABC’ and ‘DEF’ is “\n’, not the default “\r\n’.



408 Dyalog APL/W Language Reference

NEOL Option

Specifies whether explicit line ending sequences in the input document are nor-
malised by replacing them with the character specified using the EOL option.

0 Line endings are not normalised.
1 Line endings are normalised.
Example:

a<'ABC',(11240AV), 'DEF',(1t340AV), 'GHI'

(‘\n'S 0 [ 'Mode' 'D' [ 'NEOL' 1 [ 'EOL' 'LF') a
37
“\n” has matched both explicit line ending characters in the input, even though they
are different.

ML Option

Sets a limit to the number of processed pattern matches per line (line mode) or doc-
ument (document mode and mixed mode).

Positive value n Sets the limit to the first n matches.

0 Sets no limit.

Negative value

Sets the limit to exactly the nth match.

n
Examples:
("."0OR 'x'" [ 'ML'" 2) 'ABC' 'DEF'
xxC xxF
("."0OR 'x" [ '"ML' T2) 'ABC' 'DEF'
AxC DxF

('." 0OR 'x" B 'ML'" "4 [l 'Mode' 'D') 'ABC' 'DEF'
ABC xEF



Chapter 4: System Functions 409

Greedy Option

Controls whether patterns are “greedy” (and match the maximum input possible) or
are not (and match the minimum). Within the pattern itself'it is possible to specify
greediness for individual elements of the pattern; this option sets the default.

1 Greedy by default.
0 Not greedy by default.
Examples:

('[A-2]1.%x[0-9]1" OR 'X' [ 'Greedy' 1)'ABC123 DEF456'
X

('"[A-2].%x[0-9]" OR 'X' [ 'Greedy' 0)'ABC123 DEF456'
X23 X56

OM Option

Specifies whether matches may overlap.

Searching continues for all patterns and then from the character
1 following the start of the match, thus permitting overlapping
matches.

Searching continues from the character following the end of the
match.

This option may only be used with JS. With [IR searching always continues from the
character following the end of the match (the characters following the start of the
match will have been changed).

Examples:

('[o-91+"' 0OS '\0' [ 'OM' 0) 'A 1234 5678 B'
1234 5678

('f0-9]+"' 0OS '\O' [I 'OM' 1) 'A 1234 5678 B'
1234 234 34 4 5678 678 78 8



410 Dyalog APL/W Language Reference

InEnc Option

This option specifies the encoding of the input stream when it cannot be determined
automatically.

When the stream is read from its start, and the start of the stream contains a recog-
nised Byte Order Mark (BOM), the encoding is taken as that specified by the BOM
and this option is ignored. Otherwise, the encoding is assumed to be as specified by
this option.

The stream is processed as UTF-8 data. Note that ASCII is a

B subset of UTF-8, so this default is also suitable for ASCII data.

UTF16LE The stream is processed as UTF16 little-endian data.

UTF16BE | The stream is processed as UTF16 big-endian data.

The stream is processed as ASCII data. If the stream contains

ASCII any characters outside of the ASCII range then an error is
produced.
ANSI The stream is processed as ANSI (Windows-1252) data.

For compatibility with the OutEnc option, the above UTF formats may be qualified
with -BOM (e.g. UTF-BOM). For input streams, the qualified and unqualified
options are equivalent.

OutEnc Option

When the output is written to a stream, the data may be encoded on one of the fol-
lowing forms:

If input came from a stream then the encoding format is the

Implied . .
pre same as the input stream, otherwise UTF-8

UTF8 The data is written in UTF-8 format.

UTF16LE The data is written in UTF-16 little-endian format.

UTF16BE | The data is written in UTF-16 big-endian format.

ASCII The data is written in ASCII format.

ANSI The data is written in ANSI (Windows-1252) format.

The above UTF formats may be qualified with -BOM (e.g. UTF8-BOM) to specify
that a Byte Order Mark should be written at the start of the stream. For files, this is
ignored if the file already contains any data.



Chapter 4: System Functions 411

Enc Option

This option sets both InEnc and OutEnc simultaneously, with the same given value.
Any option value accepted by those options except Implied may be given.

ResultText Option

For [R, this option determines the format of the result.

The output will either be a character vector or a vector of

Implied :
P character vectors, dependent on the input document type

The output will be a character vector. Any and all line
Simple endings in the output will be represented by line ending
characters within the character vector.

The output will be a vector of character vectors. Any and all
Nested line endings in the output document will be implied at the end
of each character vector.

This option may only be used with 0R.

Examples:

gucs ™ ('A' OR 'x') "AB' 'CD'
120 66 67 68

gucs ('A' OR 'x' [ 'ResultText' 'Simple') 'AB' 'CD'
120 66 13 10 67 68

Line, document and mixed modes

The Mode setting determines how the input document is packaged as a block and
passed to the search engine. In line mode each line is processed separately; in doc-
ument mode and mixed mode the entire document is presented to the search engine.
This affects both the semantics of the search expression, and memory usage.



412

Dyalog APL/W Language Reference

Semantic differences

e The ML option applies per block of data.

e In line mode, search patterns cannot be constructed to span multiple lines.
Specifically, pattemns that include line ending characters (such as “\r’) will
never match because the line endings are never presented to the search
engine.

e By default the search pattern metacharacters “*” and ‘$’ match the start and
end of the block of data. In line mode this is always the start and end of
each line. In document mode this is the start and end of the document. In
mixed mode the behaviour of “*” and ‘$’ are amended by setting the PCRE
option ‘MULTILINE’ so that they match the start and end of each line
within the document.

Memory usage differences

e Blocks of data passed to the search engine are processed and stored in the
workspace. Processing the input document in line mode limits the total
memory requirements; in particular this means that large streams can be pro-
cessed without holding all the data in the workspace at the same time.

Technical Considerations

[R and S utilise the open-source regular-expression search engine PCRE, which is
built into the Dyalog software and distributed according to the PCRE license which
is published separately.

Before data is passed to PCRE it is converted to UTF-8 format. This converted data is
buffered in the workspace; processing large documents may have significant memory
requirements. In line mode, the data is broken into individual lines and each is pro-
cessed separately, potentially reducing memory demands.

It is possible to save a workspace with an active (R or[]S on the stack and execution
can continue when the workspace is reloaded with the same interpreter version. Later
versions of the interpreter may not remain compatible and may signal a DOMAIN
ERROR with explanatory message in the status window if'it is unable to continue exe-
cution.

PCRE has a buffer length limit of 23! bytes (2GB). UTF-8 encodes each character
using between 1 and 6 bytes (typically 1 or 3). In the very worst case, where every
character is encoded in 6 bytes, the maximum block length which can be searched
would be 357,913,940 characters.



Chapter 4: System Functions 413

Further Examples

Several of the examples use the following vector as the input document:

text
To be or not to be- that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles

Replace all upper and lower-case vowels by ' X ':

('[aeiou]’ OR 'X' [ 'IC' 1) text
TX bX Xr nXt tX bX- thXt Xs thX gXXstXXn:
WhXthXr 'tXs nXblXr Xn thX mXnd tX sXffXr
ThX slXngs Xnd XrrXws Xf XXtrXgXXXs fXrtXnX,
Xr tX tXkX Xrms XgXXnst X sXX Xf trXXblXs

Replace only the second vowel on each line by ' \VOWEL\ ':

('"[aeiou]’ OR '"N\VOWEL\\'E('IC' 1)('ML' 72)) text
To b\VOWEL\ or not to be- that is the question:
Wheth\VOWEL\r 'tis nobler in the mind to suffer
The sl\VOWEL\ngs and arrows of outrageous fortune,
Or t\VOWEL\ take arms against a sea of troubles

Case fold each word:

('(?2<first>\w)(?<remainder>\wx)"' [OR '\u<first>\l<re
mainder>') text
To Be Or Not To Be- That Is The Question:
Whether 'Tis Nobler In The Mind To Suffer
The Slings And Arrows Of Outrageous Fortune,
Or To Take Arms Against A Sea Of Troubles

Extract only the lines with characters ‘or’ (in upper or lower case) on them:

t('or" OS '%' @ ('IC" 1)('ML' 1)) text
To be or not to be- that is the question:
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles

Identify which lines contain the word ‘or’ (in upper or lower case) on them:

('\bor\b'0S 2[('IC"' 1)('ML' 1))text
03

Note the difference between the characters ‘or’ (which appear in ‘fortune’) and the
word ‘or’.



414

Dyalog APL/W Language Reference

Place every non-space sequence of characters in brackets:

("[~\s]+' OR '(&)' ) 'To be or not to be, that is t
he question'
(To) (be) (or) (not) (to) (be,) (that) (is) (the) (questi
on)

Replace all sequences of one or more spaces by newline. Note that the effect of
this is dependent on the input format:

Character vector input results in a single character vector output with embedded
newlines:

ldisplay ('\s+' OR '\r') 'To be or not to be, that
is the question'

To

be

or

not

to

be,

that

is

the
question

A vector of two character vectors as input results in a vector of 10 character vectors
output:

Jdisplay ('\s+' OR ‘\r') 'To be or not to be,' 'that is the
question'

be not to be, that the question
€

Change numerals to their expanded names, using a function:

vr<f a

[1] r<' ',o(¢a.Match)!{'zero' 'one' 'two' 'three' 'four'
‘five' 'six' 'seven' 'eight' 'nine’

v
verbose«<('[0-9]' OR f)
verbose $27x56x87
one three one five four four



Chapter 4: System Functions 415

Swap ‘red’ and ‘blue’:

('red' 'blue' OR 'blue' 'red') 'red hat blue coat'
blue hat red coat

Convert a comma separated values (CSV) file so that

o dates in the first field are converted from European format to ISO, and
e currency values are converted from Deutsche Marks (DEM) to Euros (DEM
1.95583 to €1).

The currency conversion requires the use of a function. Note the nested use of R.

Input file:

01/03/1980,Widgets,DEM 10.20

02/04/1980,Bolts,DEM 61.75

17/06/1980,Nuts; special rate DEM 17.00,DEM 17.00
18/07/1980, Hammer,DEM 1.25

Output file:

1980-03-01,Widgets,€ 5.21

1980-04-02,Bolts,€ 31.57

1980-06-17,Nuts; special rate DEM 17.00,€ 8.69
1980-07-18, Hammer,€ 0.63

V ret«f a;d;m;y;v

[1] 10«0
[2] :Select a.PatternNum
[3] :Case 0
[4] d m y«{a.Match[a.Offsets[w+1]+1a.Lengths[w+
111}73
[5] retey,'-',m,"'-",d,","
[6] :Else
[7] ve<¢a.Block[a.Offsets[1]+ta.Lengths[1]]
[8] vi«1,95583
[9] ret<',€ ', (' (\d+\.\d\d).x'0OR"\1")sv
[10] :EndSelect
\'4

jn « 'x.csv' [ONTIE O

out « 'new.csv' [ONCREATE O
dateptn<«' (\d{2})/(\d{2})/(\d{4}),"
valptn<',DEM ([0-9.]+)"

out (dateptn valptn OR f) in
Onuntie”in out



416

Dyalog APL/W Language Reference

Create a simple profanity filter. For the list of objectionable words:
profanity«'bleeding’' 'heck'
first construct a pattern which will match the words:

ptn<(C'A" '$" '\r\n') OR "\\b("' ")\\b' "['
OOPT 'Mode' 'D') profanity
ptn
\b(bleeding|heck)\b

then a function that uses this pattern:
sanitiseeptn OR '*xxx' [Jopt 1

sanitise '"Heck", I said'
"xxxx" T said

Random Link ORL

ORL establishes a base or seed for generating random numbers using Roll and Deal,
and returns the current state of such generation.

Three different random number generatators are provided, which are referred to here
as RNG0, RNG1 and RNG2. These are selected using (168071). See Random Num-
ber Generator on page 195.[RL is relevant only to RNG0 and RNG for which
repeatable pseudo-random series can be obtained by setting [JRL to a particular value
first.

Using RNG0 or RNG1, you can set [IRL to any integer in the range 0 to 2+2%31 .
The value 0 has a special meaning (see below).

Inaclear ws,[RL isinitialised to the value defined by the default_rl parameter
which itself defaults to 16807 ifit is not defined.

Using RNGO, ORL returns an integer which represents the seed for the next random
number in the sequence.

Using RNG 1, the system internally retains a block of 312 64-bit numbers which are
used one by one to generate the results of roll and deal. When the first block of312
have been used up, the system generates a second block. In this case, ORL returns an
integer vector of 32-bit numbers of length 625 (the first is an index into the block of
312) which represents the internal state of the random number generator. This means
that, as with RNG0, you may save the value of JRL in a variable and reassign it later.

Internally, APL maintains the current state separately for RNG0 and RNGI. When
you switch from one Random Number Generator to the other, the appropriate state is
loaded into ORL.




Chapter 4: System Functions 417

If ORL is assigned the value 0, ORL is initialised with a random seed generated by
the operating system. This provides the means to initiate a non-repeatable series of
pseudo-random numbers when using RNG0 or RNG 1.

RNG2 does not permit access to the seed, so in this case [JRL is not relevant and is not
used by Roll and Deal. It will accept any value but will always return zilde.

Examples
1680711 n Select RNGI

OrRL«16807
10710
165297 1038
510RL
10 0 16807 1819658750 ~355441828
X«<?71000p1000
510RL
100 465541037 1790786136 ~205462449 996695303

ORL«+16807
10?710
4165297 10 3 8
Y«<?1000p1000
X=Y
1
5t0RL
100 “465541037 ~1790786136 ~205462449 996695303

1680710 A Select RNGO

ORrRL
16807

79 9 9
275

79
7

ORrRL
984943658

ORL<«16807

79 9 9
275

79
7

ORrRL

984943658



418 Dyalog APL/W Language Reference

1680711 p Select RNG1
0
5t0RL
100 465541037 71790786136 ~205462449 996695303

Space Indicator R«[RSI

R is a vector of refs to the spaces from which functions in the state indicator were
called (pORSI«=>p[ONSI«+-p[SI).

ORST and [NST are identical except that RS T returns refs to the spaces whereas
ONSTI returns their names. Put another way: ONSI<«-»3""JRSI.

Note that [JRST returns refs to the spaces from which functions were called not those
in which they are currently running.

Example
JOBJECTS
X X yy
OVR 'yy.foo'
vV r<foo
[1] r«<(JSE.goo
v
OVR'0SE.goo"
V r<goo
[1] r<[sI,[1.5]0ORSI
v
)CS xx
#.xx

calling«#.yy.foo
Jdisplay calling

Pa—

goo| #.yy

foo| #.xx




Chapter 4: System Functions 419

Response Time Limit ORTL

A non-zero value in JRTL places a time limit, in seconds, for input requested via[],
OARBIN,and JSR. ORTL may be assigned any integer in the range 0 to 32767.
The value is a clear workspace is 0.

Example

ORTL«5 ¢ [«'FUEL QUANTITY?' ¢ R+l
FUEL QUANTITY?
TIMEOUT

ORTL«5 ¢ [J«'FUEL QUANTITY?' o R+<[]

Search

R«{X}(A OS B) Y

See Replace on page 397.

Save Workspace {R}«{X}OSAVE Y

Y must be a simple character scalar or vector, identifying a workspace name. Note
that the name must represent a valid file name for the current Operating System. R is a
simple logical scalar. The active workspace is saved with the given name in Y. In the
active workspace, the value 1 is returned. The result is suppressed if not used or
assigned.

The optional left argument X is either 0 or 1. If X is omitted or 1, the saved version of
the workspace has execution suspended at the point of exit from the JSAVE
function. Ifthe saved workspace is subsequently loaded by JLOAD, execution is
resumed, and the value 0 is returned if the result is used or assigned, or otherwise the
result is suppressed. In this case, the latent expression value (L X) is ignored.

If X is 0, the workspace is saved without any State Indicator in effect. The effect is the
same as if you first executed )RESET and then ) SAVE. In this case, when the work-
space is subsequently loaded, the value of the latent expression ([JL X) is honoured if
applicable.

A DOMAIN ERROR isreported if the name in Y is not a valid workspace name or file
name, or the reference is to an unauthorised directory.



420

Dyalog APL/W Language Reference

As is the case for ) SAVE (see Save Workspace on page 516), monadic JSAVE will
fail and issue DOMAIN ERROR ifany threads (other than the root thread 0) are run-
ning or if there are any Edit or Trace windows open. However, neither of these restric-
tions apply if the left argument X is 0.

Note that the values of all system variables (including [JSM) and all GUT objects are
saved.

Example

(2'SAVED' 'ACTIVE' [OIO+[SAVE'TEMP']),' WS'
ACTIVE WS

OLOAD 'TEMP'
SAVED WS

Screen Dimensions R<[JSD

0SD is a 2-element integer vector containing the number of rows and columns on the
screen, or in the USER window.

For asynchronous terminals under UNIX, the screen size is taken from the terminal
database terminfo or termcap.

In window implementations of Dyalog APL, [ISD reports the current size (in char-
acters) of the USER window or the current size of the SM object, whichever is appro-
priate.

Session Namespace OSE

OSE is a system namespace. Its GUI components (MenuBar, ToolBar, and so forth)
define the appearance and behaviour of the APL Session window and may be cus-
tomised to suit individual requirements.

0SE is maintained separately from the active workspace and is not affected by )
LOAD or ) CLEAR. Tt is therefore useful for containing utility functions. The con-
tents of JSE may be saved in and loaded from a .DSE file.

See User Guide for further details.



Chapter 4: System Functions 421

Execute (UNIX) Command {R}«[OSH Y

0SH executes a UNIX shell or a Windows Command Processor. [JSH is a synonym
of JCMD. Either function may be used in either environment (UNIX or Windows)
with exactly the same effect. [JSH is probably more natural for the UNIX user. This
section describes the behaviour of JSH and JCMD under UNIX. See Execute Win-
dows Command on page 231 for a discussion of the behaviour of these system func-
tions under Windows.

The system commands ) SH and ) CMD provide similar facilities. For further inform-
ation, see Execute (UNIX) Command on page 518 and Windows Command Pro-
cessor on page 502.

Y must be a simple character scalar or vector representing a UNIX shell command. R
is a nested vector of character vectors.

Y may be any acceptable UNIX command. It could cause another process to be
entered, such as sed or vi. Ifthe command does not return a result, Ris €' ' but the
result is suppressed if not explicitly used or assigned. Ifthe command has a non-zero
exit code, then APL will signal a DOMAIN ERROR. Ifthe command returns a result
and has a zero exit code, then each element of R will be a line from the standard out-
put (stdout) of the command. Output from standard error (stderr) is not captured
unless redirected to stdout.

Examples

OSH'Ls'
FILES WS temp

OSH 'rm WS/TEST'

OSH 'grep bin /etc/passwd ; exit O'
bin:1:2:2::/bin:

OSH 'apl MYWS <inputfile >outl 2>out2 &'




422

Dyalog APL/W Language Reference

Start UNIX Auxiliary Processor X OSH Y

Used dyadically, [JSH starts an Auxiliary Processor. The effect, as far as the APL user
is concerned, is identical under both Windows and UNIX although there are dif-
ferences in the method of implementation. [JSH is a synonym of JCMD. Either func-
tion may be used in either environment (UNIX or Windows) with exactly the same
effect. [JSH is probably more natural for the UNIX user. This section describes the
behaviour of [JSH and [JCMD under UNIX. See Start Windows Auxiliary Processor
on page 235 fora discussion of the behaviour of these system functions under Win-
dows.

X must be a simple character vector. Y may be a simple character scalar or vector, or a
nested character vector.

[SH loads the Auxiliary Processor from the file named by X using a search-path
defined by the environment variable WSPATH.

The effect of starting an AP is that one or more external functions are defined in the
workspace. These appear as locked functions and may be used in exactly the same
way as regular defined functions.

When an external function is used in an expression, the argument(s) (if any) are piped
to the AP for processing. Ifthe function returns a result, APL halts while the AP is
processing and waits for the result. Ifnot it continues processing in parallel.

The syntax of dyadic [JSH is similar to the UNIX execl(2) system call, where
'taskname'is the name of the auxiliary processor to be executed and argO0 through
argn are the parameters of the calling line to be passed to the task, viz.

'taskname' [OSH 'arg0' 'argl' ... 'argn'
See User Guide for further information.
Examples

"xutils' [OSH 'xutils' 'ss' 'dbr'

"/bin/sh' OSH 'sh' '-c¢' 'adb test'



Chapter 4: System Functions 423

State Indicator R«[SI

R is a nested vector of vectors giving the names of the functions or operators in the
execution stack.
Example

)SI
#.PLUS[2]*

#.MATDIV[4]
#.FOO[1]*
$

OsI
PLUS MATDIV FOO

. (pOLC)=p0OSI

If execution stops in a callback function, JDQ will appear on the stack, and may
occur more than once

)SI
#.ERRFN[7]*
0oQ
#.CALC
0oQ
# .MAIN

To edit the function on the top of the stack:
Oeb »0sI
The name of the function which called this one:
514[1SI
To check if the function AN is pendent:
((cAN)€140SI)/'Warning : ',AN,' is pendent'

See also Extended State Indicator on page 495.




424

Dyalog APL/W Language Reference

Shadow Name [OSHADOW Y

Y must be a simple character scalar, vector or matrix identifying one or more APL
names. Fora vector Y, names are separated by one or more blanks. For a matrix Y,
each row is taken to be a single name.

Each valid name in Y is shadowed in the most recently invoked defined function or
operator, as though it were included in the list of local names in the function or oper-
ator header. The class of the name becomes 0 (undefined). The name ceases to be
shadowed when execution of the shadowing function or operator is completed.
Shadow has no effect when the state indicator is empty.

If a name is ill-formed, or if it is the name of a system constant or system function,
DOMAIN ERROR isreported.

Ifthe name of a top-level GUI object is shadowed, it is made inactive.

Example

OVR'RUN'
v NAME RUN FN
[1] A Runs function named <NAME> defined
[2] A from representation form <FN>
[3] [JSHADOW NAME
[4] [JFX FN
v

0 [OSTOP 'RUN' A stop prior RUN exiting

'FOO' RUN 'R«FO0' 'R«10'
10

RUN[O]

)SINL
#.RUN[O]* FOO FN NAME

~{LC
FOO

VALUE ERROR
FOO
A




Chapter 4: System Functions 425

Signal Event {X}OSIGNAL Y

Y must be a scalar or vector.
If'Y is a an empty vector nothing is signalled.
IfY is a vector of more than one element, all but the first element are ignored.

If the first element of Y is a simple integer in the range 1-999 it is taken to be an event
number. X is an optional text message. If present, X must be a simple character scalar
or vector, or an object reference. If X is omitted or is empty, the standard event mes-
sage for the corresponding event number is assumed. See Programmer's Guide: APL
Error Messages. If there is no standard message, a message of the form ERROR
NUMBER n is composed, where n is the event number in Y. Values outside the range
1-999 will result in a DOMAIN ERROR.

Ifthe first element of Y is a 2 column matrix or a vector of 2 element vectors of name/-
values pairs, then it is considered to be a set of values to be used to override the
default values in a new instance of [J[DMX. Any other value for the first element of Y
will result in a DOMAIN ERROR.

The names in the error specification must all appear in a system-generated [JDMX, oth-
erwisc a DOMAIN ERROR will be issued. For each name specified, the default value
in the new instance of [JDMX is replaced with the value specified. EN must be one of
the names in the error specification. Attempting to specify certain names, including
InternalLocation and DM, will result in a DOMAIN ERROR. The value which is to be
assigned to a name must be appropriate to the name in question.

Dyalog may enhance [JDMX in future, thus potentially altering the list of valid and/or
assignable names.

Ifthe first element of Y is an array of name/value pairs then specifying any value for
X will result ina DOMAIN ERROR.

The effect of the system function is to interrupt execution. The state indicator is cut
back to exit from the function or operator containing the line that invoked
OSIGNAL, oris cut back to exit the Execute (¢) expression that invoked JSIGNAL,
and an error is then generated.

An error interrupt may be trapped if the system variable JTRAP is set to intercept the
event. Otherwise, the standard system action is taken (which may involve cutting
back the state indicator further if there are locked functions or operators in the state
indicator). The standard event message is replaced by the text given in X, if present.



426 Dyalog APL/W Language Reference

Example

OVR'DIVIDE"
Vv R<A DIVIDE B;[TRAP

[1] OTRAP<«11 'E' '->ERR'

[2] R<A+B ¢ -0

[3] ERR: 'DIVISION ERROR' [SIGNAL 11
v

2 4+ 6 DIVIDE 0O
DIVISION ERROR
2 4 6 DIVIDE O

A

If you are using the Microsoft NET Framework, you may use JSIGNAL to throw an
exception by specifying a value of 90 in Y. In this case, if you specify the optional
left argument X, it must be a reference to a .NET object that is or derives from the
Microsoft NET class System.Exception. The following example illustrates a con-
structor function CTOR that expects to be called with a value for JI0 (0 or 1)

v CTOR IO;EX
[1] :If IOeO0 1

[2] JI10<«IO

[3] :Else

(4] EX<ArgumentException.New'IO must be 0 or 1'
[5] EX OSIGNAL 90

[6] :EndIf

v



Chapter 4: System Functions 427

Further examples

Example 1

"Hello'[JSIGNAL 200
Hel lo
'Hello'[JSIGNAL 200
A
[oMX
EM Hello
Message
He L pURL

(oM
Hello "Hello'0SIGNAL 200 A

[OSIGNALcc('EN' 200)
ERROR 200
[OSIGNALc<("EN' 200)

A

(JoMX
EM ERROR 200
Message
He lpURL

(oM
ERROR 200 OSIGNALcc('EN' 200) A

Example 2

[OSIGNAL<('EN' 200)('Vendor' 'Andy')('Message'

ERROR 200: My error

[OSIGNAL<('EN' 200)('Vendor' 'Andy')('Message'

A

0oMmX
EM ERROR 200
Message My error
He lpURL
sODMX. (EN EM Vendor)
200
ERROR 200
Andy

'My error')

'My error')

Be aware of the following case, in which the argument has not been sufficiently nes-

ted:
[OSIGNAL<('EN' 200)

DOMAIN ERROR: Unexpected name in signalled [ODMX specification

[OSIGNAL<('EN' 200)

A



428

Dyalog APL/W Language Reference

Size of Object R«[JSIZE Y

Y must be a simple character scalar, vector or matrix, or a vector of character vectors
containing a list of names. R is a simple integer vector of non-negative elements with
the same length as the number of names in Y.

Ifthe name in Y identifies an object with an active referent, the workspace required
in bytes by that object is returned in the corresponding element of R. Otherwise, 0 is
returned in that element of R.

The result returned for an external variable is the space required to store the external
array. The result for a system constant, variable or function is 0. The result returned
for a GUI object gives the amount of workspace needed to store it, but excludes the
space required for its children.

Note: Wherever possible, Dyalog APL shares the whole or part of a workspace
object rather than generates a separate copy; however JSIZE reports the size as
though nothing is shared. JSIZE also includes the space required for the interpreter's
internal information about the object in question.

Examples
dvrR 'FoOO'
vV R«FOO
[1] R<10
v
A<110

"EXT/ARRAY' OXT'E' © E«120

OSIZE 'A' 'FOO' 'E' 'UND'
28 76 120 0



Chapter 4: System Functions 429

Screen Map OSM

[SMis a system variable that defines a character-based user interface (as opposed to a
graphical user interface). In versions of Dyalog APL that support asynchronous ter-
minals, [JSM defines a form that is displayed on the USER SCREEN. The imple-
mentation of JSM in "window" environments is compatible with these versions. In
Dyalog APL/X, [JSM occupies its own separate window on the display, but is oth-
erwise equivalent. In versions of Dyalog APL with GUI support, [JSM either occu-
pies its own separate window (as in Dyalog APL/X) or, if it exists, uses the window
assigned to the SM object. This allows [JSM to be used in a GUI application in con-
junction with other GUI components.

In general [JSM is a nested matrix containing between 3 and 13 columns. Each row
of [JSM represents a field; each column a field attribute.

The columns have the following meanings:

Column Description Default
1 Field Contents N/A
2 Field Position - Top Row N/A
3 Field Position - Left Column N/A
4 Window Size - Rows 0

5 Window Size - Columns 0

6 Field Type 0

7 Behaviour 0

8 Video Attributes 0

9 Active Video Attributes 1
10 Home Element - Row |

11 Home Element - Column 1

12 Scrolling Group - Vertical 0

13 Scrolling Group - Horizontal 0

With the exception of columns 1 and 8, all elements in JSM are integer scalar values.



430 Dyalog APL/W Language Reference

Elements in column 1 (Field Contents) may be:

e A numeric scalar

e A numeric vector

e A l-column numeric matrix

e A character scalar

e A character vector

e A character matrix (rank 2)

e A nested matrix defining a sub-form whose structure and contents must con-
form to that defined for [JSM as a whole. This definition is recursive. Note
however that a sub-form must be a matrix - a vector is not allowed.

Elements in column 8 (Video Attributes) may be:

e An integer scalar that specifies the appearance of the entire field.
e An integer array of the same shape as the field contents. Each element spe-
cifies the appearance of the corresponding element in the field contents.

Screen Management (Async Terminals)

Dyalog APL for UNIX systems (Async terminals) manages two screens; the
SESSION screen and the USER screen. Ifthe SESSION screen is current, an assign-
ment to [JSM causes the display to switch to the USER screen and show the form
defined by OSM.

If the USER screen is current, any change in the value of JSM is immediately reflec-
ted by a corresponding change in the appearance of the display. However, an assign-
ment to [JSM that leaves its value unchanged has no effect.

Dyalog APL automatically switches to the SESSION screen for default output, if it
enters immediate input mode (6-space prompt), or through use of ] or[]. This means
that typing

0OSM « expression

in the APL session will cause the screen to switch first to the USER screen, display
the form defined by 0SM, and then switch back to the SESSION screen to issue the 6-
space prompt. This normally happens so quickly that all the user sees is a flash on
the screen.

To retain the USER screen in view it is necessary to issue a call to [JSR or for APL to
continue processing. e.g.

0OSM <« expression o [ISR 1
or

[0SM « expression ¢ [DL 5



Chapter 4: System Functions 431

Screen Management (Window Versions)

In Dyalog APL/X, and optionally in Dyalog APL/W,[]SM is displayed in a separate
USER WINDOW on the screen. In an end-user application this may be the only
Dyalog APL window. However, during development, there will be a SESSION win-
dow, and perhaps EDIT and TRACE windows too.

The USER Window will only accept input during execution of [JSR. It is otherwise
"output-only". Furthermore, during the execution of [JSR it is the only active win-
dow, and the SESSION, EDIT and TRACE Windows will not respond to user input.

Screen Management (GUI Versions)

In versions of Dyalog APL that provide GUI support, there is a special SM object
that defines the position and size of the window to be associated with JSM. This
allows character-mode applications developed for previous versions of Dyalog APL
to be migrated to and integrated with GUI environments without the need for a total
re-write.

Effect of Localisation

Like all system variables (with the exception of JTRAP) [JSM is subject to "pass-
through localisation". This means that a localised JSM assumes its value from the
calling environment. The localisation of [JSM does not, of itself therefore, affect the
appearance of the display. However, reassignment of a localised [JSM causes the new
form to overlay rather than replace whatever forms are defined further down the
stack. The localisation of [JSM thus provides a simple method of defining pop-up
forms, help messages, etc.

The user may edit the form defined by [JSM using the system function [JSR. Under
the control of (ISR the user may change the following elements in JSM which may
afterwards be referenced to obtain the new values.

Column 1 Field Contents

Column 10 Home Element - Row (by scrolling vertically)

Column 11 Home Element - Column (by scrolling horizontally)



432

Dyalog APL/W Language Reference

Screen Read R«{X}OSR Y

[0SR is a system function that allows the user to edit or otherwise interact with the
form defined by [JSM.

In versions of Dyalog APL that support asynchronous terminals, if the current screen
is the SESSION screen, [JSR immediately switches to the USER SCREEN and dis-
plays the form defined by OSM.

In Dyalog APL/X, [0SR causes the input cursor to be positioned in the USER
window. During execution of ISR, only the USER Window defined by []SM will
accept input and respond to the keyboard or mouse. The SESSION and any EDIT
and TRACE Windows that may appear on the display are dormant.

In versions of Dyalog APL with GUI support, a single SM object may be defined.
This object defines the size and position of the JSM window, and allows JSM to be
used in conjunctions with other GUI components. In these versions, [JSR acts as a
superset of [IDQ (see Dequeue Events on page 255) but additionally controls the char-
acter-based user interface defined by OJSM.

Y is an integer vector that specifies the fields which the user may visit. In versions
with GUI support, Y may additionally contain the names of GUI objects with which
the user may also interact.

If specified, X may be an enclosed vector of character vectors defining EXIT_KEYS
or a 2-element nested vector defining EXIT_KEYS and the INITIAL_CONTEXT.

The result R isthe EXIT_CONTEXT.

Thus the 3 uses of [JSR are:
EXIT_CONTEXT<«[JSR FIELDS

EXIT_CONTEXT«(<EXIT_KEYS)OSR FIELDS

EXIT_CONTEXT«(EXIT_KEYS) (INITIAL_CONTEXT)OSR FIELDS



Chapter 4: System Functions 433

FIELDS

If an element of Y is an integer scalar, it specifies a field as the index of a row in JSM
(ifOSMis a vector it is regarded as having 1 row).

Ifan element of Y is an integer vector, it specifies a sub-field. The first element in Y
specifies the top-level field as above. The next element is used to index a row in the
form defined by o[JSM[Y[1]; 1] and so forth.

Ifan element of Y is a character scalar or vector, it specifies the name of a top-level
GUI object with which the user may also interact. Such an object must be a "top-
level" object, i.e. the Root object ('. ') ora Form or pop-up Menu. This feature is
implemented ONLY in versions of Dyalog APL with GUI support.

EXIT_KEYS

Each element of EXIT_KEYS is a 2-character code from the Input Translate Table for
the keyboard. Ifthe user presses one of these keys, ISR will terminate and return a
result.

IfFEXIT_KEYS is not specified, it defaults to:
1 ER 1 1 EP 1 1 QT 1

which (normally) specifies <Enter>, <Esc> and <Shift+Esc>.

INITIAL_CONTEXT

This is a vector of between 3 and 6 elements with the following meanings and
defaults:

Element Description Default
1 Initial Field N/A

2 Initial Cursor Position - Row N/A

3 Initial Cursor Position - Col N/A

4 Initial Keystroke b

5 (ignored) N/A

6 Changed Field Flags 0




434

Dyalog APL/W Language Reference

Structure of INITIAL CONTEXT

INITIAL_CONTEXT[ 1] specifies the field in which the cursor is to be placed. It is
an integer scalar or vector, and must be a member of Y. It must not specify a field
which has BUTTON behaviour (64), as the cursor is not allowed to enter such a field.

INITIAL_CONTEXT[2 3] are integer scalars which specify the initial cursor pos-
ition within the field in terms of row and column numbers.

INITIAL_CONTEXT[4] iseither empty, or a 2-element character vector specifying
the initial keystroke as a code from the Input Translate Table for the keyboard.

INITIAL_CONTEXT[5] isignored. Itisincluded so that the EXIT_CONTEXT res-
ult of one call to [JSR can be used as the INITIAL_CONTEXT to a subsequent call.

INITIAL_CONTEXT[ 6] isaBoolean scalar or vector the same length as Y. It spe-
cifies which of the fields in Y has been modified by the user.

EXIT_CONTEXT

The result EXIT_CONTEXT is a 6 or 9-element vector whose first 6 elements have
the same structure as the INITIAL_CONTEXT. Elements 7-9 only apply to those
versions of Dyalog APL that provide mouse support.

Element Description

1 Final Field

2 Final Cursor Position - Row
3 Final Cursor Position - Col
4 Terminating Keystroke

5 Event Code

6 Changed Field Flags

7 Pointer Field

8 Pointer Position - Row

9 Pointer Position - Col




Chapter 4: System Functions 435

Structure of the Result of ISR

EXIT_CONTEXT[1] contains the field in which the cursor was when [JSR ter-
minated due to the user pressing an exit key or due to an event occurring. Itisan
integer scalar or vector, and a member of Y.

EXIT_CONTEXT[2 3] are integer scalars which specify the row and column pos-
ition of the cursor within the field EXIT_CONTEXT[1 ] when [JSR terminated.

EXIT_CONTEXT[4] is a 2-element character vector specifying the last keystroke
pressed by the user before [JSR terminated. Unless JSR terminated due to an event,
EXIT_CONTEXT[4] will contain one of the exit keys defined by X. The keystroke
is defined in terms of an Input Translate Table code.

EXIT_CONTEXT[5] contains the sum of the event codes that caused [JSR to
terminate. For example, if the user pressed a mouse button on a BUTTON field (event
code 64) and the current field has MODIF IED behaviour (event code 2) EXIT_
CONTEXT[5] will have the value 66.

EXIT_CONTEXT[6] isa Boolean scalar or vector the same length as Y. Tt specifies
which of the fields in Y has been modified by the user during this [JSR, ORed with
INITIAL_CONTEXT[6]. Thusifthe EXIT_CONTEXT ofone call to [JSR is fed
back as the INITIAL_CONTEXT ofthe next, EXIT_CONTEXT[ 6] records the
fields changed since the start of the process.

EXIT_CONTEXT (Window Versions)

(SR returns a 9-element result ONLY ifit is terminated by the user pressing a mouse
button. In this case:

EXIT_CONTEXT([7] contains the field over which the mouse pointer was posi-
tioned when the user pressed a button. It is an integer scalar or vector, and a member
of Y.

EXIT_CONTEXT[8 9] are integer scalars which specify the row and column pos-
ition of the mouse pointer within the field EXIT_CONTEXT([ 7] when [ISR ter-
minated.



436 Dyalog APL/W Language Reference

Source R<SRC Y

OSRC returns the script that defines the scripted object Y.

Y must be a reference to a scripted object. Scripted objects include Classes, Interfaces
and scripted Namespaces.

R is a vector of character vectors containing the script that was used to define Y.
Jed oMyClass

:Class MyClass

V r«foo arg

tAccess public shared
r<l+arg

v

:EndClass

z«[JSRC MyClass
0z

0"z
14 15 27 13 5 9
5Z
:Class MyClass
vV r«<foo arg
:Access public shared
r<i+arg
v
:EndClass

Note: The only two ways to permanently alter the source of a scripted object are to

change the object in the editor, or by refixing it using (JF IX. A useful technique to

ensure that a scripted object is in sync with its source isto JFIX [OSRC object_
reference.



Chapter 4: System Functions 437

State Indicator Stack

R«[JSTACK

R is a two-column matrix, with one row per entry in the State Indicator.

Column 1 :[JOR form of user defined functions or operators on the State Indicator.
Null for entries that are not user defined functions or operators.

Column 2 :Indication of the type of the item on the stack.

space user defined function or operator
execute level
0 evaluated input
* desk calculator level
0oQ in callback function
other primitive operator
Example
)SI
#.PLUS[2]*
# .MATDIV[Y4]
#.FOO[1]*
3
OSTACK
*
VPLUS
VMATDIV
*
VFOO
3
*
pSTACK
8 2

(pOLC)=1tpOSTACK



438 Dyalog APL/W Language Reference

Pendent defined functions and operators may be edited in Dyalog APL with no res-
ulting SI damage. However, only the visible definition is changed; the pendent ver-
sion on the stack is retained until its execution is complete. When the function or
operator is displayed, only the visible version is seen. Hence JSTACK is a tool
which allows the user to display the form of the actual function or operator being
executed.

Example

To display the version of MATDIV currently pendent on the stack:

S[OSTACK[4;11]
vV R«A MATDIV B
[1] A Divide matrix A by matrix B
[2] C<AHB
[3] A Check accuracy
[4] D«<[0.5+A PLUS.TIMES B
\'



Chapter 4: System Functions 439

State of Object R«(JSTATE Y

Y must be a simple character scalar or vector which is taken to be the name of an APL
object. The result returned is a nested vector of 4 elements as described below.
[OSTATE supplies information about shadowed or localised objects that is otherwise
unobtainable.

Boolean vector, element set to 1 if and only if this level shadows Y

1R Note: (p12R)=p[LC

Numeric vector giving the stack state of this name as it entered this
level. Note: (p2>R)=p[LC

0=not on stack

I=supended

2=pendent (may also be suspended)

3=active (may also be pendent or suspended)

25R

Numeric vector giving the name classification of Y as it entered this

3>5R
level. Note: (p32R)=+/1>R

Vector giving the contents of Y before it was shadowed at this level.

2R Note: (p4>R)=+/0#£3>R

Example

OFMToOR™'FN1' 'FN2' 'FN3'
vV FN1;A;B:C vV FN2;:;A;C vV FN3:A
[1] A<t [1] A<'HELLO' [1] A<«t00
[2] B«2 [2] B<'EVERYONE' [2] °
[3] C<«3 [3] C<«'HOW ARE YOU?' v
[4] FN2 [4] FN3
\ \

)SI
#.FN3[2]*
#.FN2[4]
#.FENL[4]

OSTATE 'A'
111 000 220 HELLO 1

R<0STATE 'OTRAP'



440 Dyalog APL/W Language Reference

Set Stop

{R}<«X OSTOP Y

Y must be a simple character scalar or vector which is taken to be the name of a vis-
ible defined function or operator. X must be a simple non-negative integer scalar or
vector. R isa simple integer vector of non-negative elements. X identifies the num-
bers of lines in the function or operator named by Y on which a stop control is to be
placed. Numbers outside the range of line numbers in the function or operator (other
than 0) are ignored. The number 0 indicates that a stop control is to be placed imme-
diately prior to exit from the function or operator. If X is empty, all existing stop con-
trols are cancelled. The value of X is independent of JIO.

R is a vector of the line numbers on which a stop control has been placed in ascend-
ing order. The result is suppressed unless it is explicitly used or assigned.
Examples

+(0,110) [STOP 'FOO'
01

Existing stop controls in the function or operator named by Y are cancelled before
new stop controls are set:

+1 [JSTOP 'FOO'
1

All stop controls may be cancelled by giving X an empty vector:

p'' [OSTOP 'FOO'

p& [OSTOP 'FOO'
0

Attempts to set stop controls in a locked function or operator are ignored.

dLocK'Foo'

+0 1 [STOP'FOO'

The effect of JSTOP when a function or operator is invoked is to suspend execution
at the beginning of any line in the function or operator on which a stop control is
placed immediately before that line is executed, and immediately before exiting from
the function or operator if a stop control of 0 is set. Execution may be resumed by a
branch expression. A stop control interrupt (1001) may also be trapped - see Trap
Event on page 458.



Chapter 4: System Functions

a1

Example
OFX'R«FO0' 'R<«10'

0 1 [STOP'FOO'

FOO
FOO[1]

R
VALUE ERROR

R

A

-1
FOO[O0]

R
10

~{LC
10

Query Stop

R<[JSTOP Y

Y must be a simple character scalar or vector which is taken to be the name of a vis-
ible defined function or operator. R is a simple non-negative integer vector of the
line numbers of the function or operator named by Y on which stop controls are set,
shown in ascending order. The value 0 in R indicates that a stop control is set imme-
diately prior to exit from the function or operator.

Example
gsTop'Fo0'




442

Dyalog APL/W Language Reference

Set Access Control R«X OSvVC Y

This system function sets access control on one or more shared variables.

Y is a character scalar, vector, or matrix containing names of shared variables. Each
name may optionally be paired with its surrogate. If so, the surrogate must be sep-
arated from the name by at least one space.

X may be a 4-element Boolean vector which specifies the access control to be
applied to all of the shared variables named in Y. Alteratively, X may be a 4-
column Boolean matrix whose rows specify the access control for the corresponding
name in Y. X may also be a scalar or a 1-element vector. Ifso, it treated as if it were a
4-element vector with the same value in each element.

Each shared variable has a current access control vector which is a 4-element
Boolean vector. A 1 in each ofthe four positions has the following impact :

You cannot set a new value for the shared variable until after an
intervening use or set by your partner.

[1]

Your partner cannot set a new value for the shared variable until after
an intervening use or set by you.

[2]

You cannot use the value of the shared variable until after an
intervening set by your partner.

[3]

Your partner cannot use the value of the shared variable until after an
intervening set by you.

(4]

The effect of JSVC is to reset the access control vectors for each of the shared vari-
ables named in Y by OR-ing the values most recently specified by your partner with
the values in X. This means that you cannot reset elements of the control vector
which your partner has set to 1.

Note that the initial value of your partner's access control vector is normally 0 0 0 0.
However, if it is a non-APL client application that has established a hot DDE link,
its access control vector is defined to be 1 0 0 1. This inhibits either partner from set-
ting the value of the shared variable twice, without an intervening use (or set) by the
other. This prevents loss of data which is deemed to be desirable from the nature of
the link. (An application that requests a hot link is assumed to require every value of
the shared variable, and not to miss any). Note that APL's way of inhibiting another
application from setting the value twice (without an intervening use) is to delay the
acknowledgement of the DDE message containing the second value until the vari-
able has been used by the APL workspace. An application that waits for an acknow-
ledgement will therefore hang until this happens. An application that does not wait
will carry on obliviously.



Chapter 4: System Functions 443

The result R is a Boolean vector or matrix, corresponding to the structure of X, which
contains the new access control settings. If Y refers to a name which is not a shared
variable, or if the surrogate name is mis-spelt, the corresponding value in R is 4p0.

Examples

1 00 1 0dsvc ‘X'
1001

1 0SvVC 'X EXTNAME'
1111

(2 4p1 001 01 1 0) OSVC t'ONE' 'TWO'
1111
0110

Query Access Control R«SVC Y

This system function queries the access control on one or more shared variables.

Y is a character scalar, vector, or matrix containing names of shared variables. Each
name may optionally be paired with its surrogate. If so, the surrogate must be sep-
arated from the name by at least one space.

IfY specifies a single name, the result R is a Boolean vector containing the current
effective access control vector. If'Y is a matrix of names, R is a Boolean matrix
whose rows contain the current effective access control vectors for the corresponding
row in Y.

For further information, see the preceding section on setting the access control vec-
tor.
Example

gsvc 'x'
0000




444

Dyalog APL/W Language Reference

Shared Variable Offer R«X OSVO Y

This system function offers to share one or more variables with another APL work-
space or with another application. Shared variables are implemented using Dynamic
Data Exchange (DDE) and may be used to communicate with any other application
that supports this protocol. See Interface Guide for further details.

Y is a character scalar, vector or matrix. Ifitisa vector it contains a name and option-
ally an external name or surrogate. The first name is the name used internally in the
current workspace. The external name is the name used to make the connection with
the partner and, if specified, must be separated from the internal name by one or more
blanks. Ifthe partner is another application, the external name corresponds to the
DDE item specified by that application. Ifthe external name is omitted, the internal
name is used instead. The internal name must be a valid APL name and be either
undefined or be the name of a variable. There are no such restrictions on the content
ofthe external name.

Instead of an external name, Y may contain the special symbol '¢ ' separated from
the (internal) name by a blank. This is used to implement a mechanism for sending
DDE_EXECUTE messages, and is described at the end of this section.

IfY is a scalar, it specifies a single 1-character name. IfY is a matrix, each row of Y
specifies a name and an optional external name as for the vector case.

The left argument X is a character vector or matrix. Ifit is a vector, it contains a
string that defines the protocol, the application to which the shared variable is to be
connected, and the topic of the conversation. These three components are separated
by the characters ' : ' and ' | ' respectively. The protocol is currently always

'DDE ', but future implementations of Dyalog APL may support additional com-
munications protocols if applicable. IfY specifies more than one name, X may be a
vector or a matrix with one row perrow in Y.

If the shared variable offer is a general one (server), X, or the corresponding row of X,
should contain 'DDE: '.

The result R is a numeric scalar or vector with one element for each name in Y and
indicates the "degree of coupling". A value of 2 indicates that the variable is fully
coupled (via a warm or hot DDE link) with a shared variable in another APL work-
space, or with a DDE item in another application. A value of | indicates that there is
no connection, or that the second application rejected a warm link. In this case, a
transfer of data may have taken place (via a cold link) but the connection is no longer
open. Effectively, APL treats an application that insists on a cold link as if it imme-
diately retracts the sharing after setting or using the value, whichever is appropriate.



Chapter 4: System Functions 445

Examples

'DDE: ' OSsvo 'X'
1

'DDE:' [OSVO 'X SALES_92'
1

'DDE:' [SVO t'X SALES_92' 'COSTS_92'
11

'DDE :DYALOG|SERV_WS' [SvO 'X'
2

'DDE:EXCEL|SHEET1' [OSVO 'DATA RiC1:Ri0C12'
2

A special syntax is used to provide a mechanism for sending DDE_EXECUTE mes-
sages to another application. This case is identified by specifying the '¢ ' symbol in
place of the external name. The subsequent assignment of a character vector to a vari-
able shared with the external name of ' ¢ ' causes the value of the variable to be trans-
mitted in the form of a DDE_EXECUTE message. The value of the variable is then
reset to 1 or 0 corresponding to a positive or negative acknowledgement from the
partner. In most (if not all) applications, commands transmitted in DDE_EXECUTE
messages must be enclosed in square brackets [ ]. For details, see the relevant doc-
umentation for the external application.

Examples:
'DDE:EXCEL|SYSTEM' [JSVO 'X &'

2
X«<'[OPEN("c:\mydir\mysheet.xls")]'
X

1

X<'[SELECT("R1C1:R5C10")]"
X



446

Dyalog APL/W Language Reference

Query Degree of Coupling R«[JSVO Y

This system function returns the current degree of coupling for one or more shared
variables.

Y is a character scalar, vector or matrix. Ifit is a vector it contains a shared variable
name and optionally its external name or surrogate separated from it by one of more
blanks.

IfY is a scalar, it specifies a single 1-character name. IfY is a matrix, each row of Y
specifies a name and an optional external name as for the vector case.

IfY specifies a single name, the result R is a 1-element vector whose value 0, 1 or 2
indicates its current degree of coupling. If'Y specifies more than one name, R is a vec-
tor whose elements indicate the current degree of coupling of the variable specified
by the corresponding row in Y. A value of 2 indicates that the variable is fully
coupled (via a warm or hot DDE link) with a shared variable in another APL work-
space, or with a DDE item in another application. A value of 1 indicates that you
have offered the variable but there is no such connection, or that the second applic-
ation rejected a warm link. In this case, a transfer of data may have taken place (via a
cold link) but the connection is no longer open. A value of 0 indicates that the name
is not a shared variable.

Examples

gsvo 'x'
2

gsvo t'X SALES' 'Y' 'JUNK'
210



Chapter 4: System Functions 447

Shared Variable Query R«SvQ Y

This system function is implemented for compatibility with other versions of APL
but currently performs no useful function. Its purpose is to obtain a list of out-
standing shared variable offers made to you, to which you have not yet responded.

Using DDE as the communication protocol, it is not possible to implement SVQ
effectively.

Shared Variable Retract Offer R<[SVR Y

This system function terminates communication via one or more shared variables, or
aborts shared variable offers that have not yet been accepted.

Y is a character scalar, vector or matrix. Ifit is a vector it contains a shared variable
name and optionally its external name or surrogate separated from it by one of more
blanks. IfY is a scalar, it specifies a single 1-character name. IfY is a matrix, each
row of Y specifies a name and an optional external name as for the vector case.

The result R is vector whose length corresponds to the number of names specified by
Y, indicating the level of sharing of each variable after retraction.

See Shared Variable State on page 448 for further information on the possible states
of a shared variable.




448 Dyalog APL/W Language Reference

Shared Variable State R<OSVS Y

This system function returns the current state of one or more shared variables.

Y is a character scalar, vector or matrix. Ifit is a vector it contains a shared variable
name and optionally its external name or surrogate separated from it by one of more
blanks. IfY isascalar, it specifies a single 1-character name. IfY is a matrix, each
row of Y specifies a name and an optional external name as for the vector case.

IfY specifies a single name, the result R is a 4-element vector indicating its current
state. If'Y specifies more than one name, R is a matrix whose rows indicate the cur-
rent state of the variable specified by the corresponding row in Y.

There are four possible shared variable states:

means that you and your partner are both aware of the current
0011 value, and neither has since reset it. This is also the initial
value of the state when the link is first established.

means that you have reset the shared variable and your partner
1 0 1 0 |hasnotyetusedit. This state can only occur if both partners
are APL workspaces.

means that your partner has reset the shared variable but that

0101 you have not yet used it.

00O00O the name is not that of a shared variable

Examples

gsvs 'Xx'
0101

gsvs +'X SALES' 'Y' 'JUNK'

oo
[eNeNe]
o -
(o Ne N



Chapter 4: System Functions 449

Terminal Control (OML) R<TC

(TC is a deprecated feature and is replaced by JUCS (see note).

(TC is a simple three element vector. If[JML < 3 this is ordered as follows:

gTrcl1] Backspace
gTcl2] Linefeed
grcl3] Newline

Note that JTC=0JAV[OIO+13] forOML< 3.

IfOML 2 3 the order of the elements of JTC is instead compatible with IBM's

APL2:
grcl1] Backspace
grcl2] Newline
gTcl[3] Linefeed

Elements of JTC beyond 3 are not defined but are reserved.

Note

With the introduction of JUCS in Version 12.0, the use of JTC is discouraged and it
is strongly recommended that you generate control characters using [JUCS instead.
This recommendation holds true even if you continue to use the Classic Edition.

Control Character Oold New

Backspace aTcl1] Jucs 8

Otcl2] (OML<3)

Linefeed OTcl3] (OML=23)

fucs 10

Otcl3] (OML<3)

OTcl2] (OML23) fucs 13

Newline




450

Dyalog APL/W Language Reference

Thread Child Numbers R<[JTCNUMS Y

Y must be a simple array of integers representing thread numbers.

The result R is a simple integer vector of the child threads of each thread of Y.

Examples

OTCNUMS 0
23

OTCNUMS 2 3
4L 567 809

Get Tokens {R}«~{X} OTGET Y

Y must be a simple integer scalar or vector that specifies one or more tokens, each
with a specific non-zero token type, that are to be retrieved from the pool.

X is an optional time-out value in seconds.

Shy result R is a scalar or vector containing the values of the tokens of type Y that
have been retrieved from the token pool.

Note that types of the tokens in the pool may be positive or negative, and the ele-
ments of Y may also be positive or negative.

A request (OTGET) for a positive token will be satisfied by the presence of a token in
the pool with the same positive or negative type. If the pool token has a positive
type, it will be removed from the pool. If the pool token has a negative type, it will
remain in the pool. Negatively typed tokens will therefore satisfy an infinite number
of requests for their positive equivalents. Note that a request for a positive token will
remove one if it is present, before resorting to its negative equivalent




Chapter 4: System Functions 451

A request for a negative token type will only be satisfied by the presence of a neg-
ative token type in the pool, and that token will be removed.

If, when a thread calls JTGET, the token pool satisfies all of the tokens specified by
Y, the function returns immediately with a (shy) result that contains the values asso-
ciated with the pool tokens. Otherwise, the function will block (wait) until all of the
requested tokens are present or until a timeout (as specified by X) occurs.

For example, if the pool contains only tokens of type 2:
OTGET 2 4 A blocks waiting for a 4-token

The TGET operation is atomic in the sense that no tokens are taken from the pool
until all of the requested types are present. While this last example is waiting for a 4-
token, other threads could take any of the remaining 2-tokens.

Note also, that repeated items in the right argument are distinct. The following will
block until there are at least 3 x 2-tokens in the pool:

OTGET 3/2 A wait for 3 x 2-tokens

The pool is administered on a first-in-first-out basis. This is significant only if tokens
ofthe same type are given distinct values. For example:

OTGET OTPOOL A empty pool.
"ABCDE'JTPUT™2 2 3 2 3 na pool some tokens.

+0OTGET 2 3
AC

+0TGET 2 3
BE

Timeout is signalled by the return of an empty numeric vector € (zilde). By default,
the value of a token is the same as its type. This means that, unless you have expli-

citly set the value of a token to 8, a[JTGET result of @ unambiguously identifies a

timeout.

Beware - the following statement will wait forever and can only be terminated by an
interrupt.

OTGET O A wait forever

Note too that if a thread waiting to JTGET tokens isJTKILLed, the thread dis-
appears without removing any tokens from the pool. Conversely, if a thread that has
removed tokens from the pools is JTKILLed, the tokens are not returned to the pool.



452 Dyalog APL/W Language Reference

This Space R«THIS

OTHIS retumns a reference to the current namespace, i.e. to the space in which it is ref-
erenced.

IfNC9 is a reference to any object whose name-class is 9, then:

NC9=NC9.0THIS

1
Examples
OTHIS
#
"X'ONS '
X.OTHIS
#.X
"F'OWC'Form'
'F.B'0WC'Button'
F.B.OTHIS
#.F.B

Pol ly<[JNEW Parrot
Polly.OTHIS
#.[Parrot]

An Instance may use JTHIS to obtain a reference to its own Class:

Polly. (=250CLASS [THIS)
#.Parrot

or a function (such as a Constructor or Destructor) may identify or enumerate all
other Instances of the same Class:

Polly.(pINSTANCES>>[JCLASS [THIS)



Chapter 4: System Functions 453

Current Thread Identity R«(TID
R is a simple integer scalar whose value is the number of the current thread.
Examples
gTIo A Base thread number
0

¢&'0TID' A Thread number of async e.

Kill Thread {R}«{X}OTKILL Y

Y must be a simple array of integers representing thread numbers to be terminated. X
is a Boolean single, defaulting to 1, which indicates that all descendant threads
should also be terminated.

The shy result R is a vector of the numbers of all threads that have been terminated.

The base thread 0 is always excluded from the cull.

Examples
OTKILL O A Kill background threads.
OTKILL OTID A Kill self and descendants.
0 OTKILL OTID A Kill self only.

OTKILL OTCNUMS OTID A Kill descendants.




454

Dyalog APL/W Language Reference

Current Thread Name OTNAME

The system variable JTNAME reports and sets the name of the current APL thread.
This name is used to identify the thread in the Tracer.

The default value of JTNAME is an empty character vector.

You may set JTNAME to any valid character vector, but it is recommended that con-
trol characters (such as JAV[[JIO] ) be avoided.

Example:

OTNAME<«'Dylan'
OTNAME
Dylan

Thread Numbers R<JTNUMS

OTNUMS reports the numbers of all current threads.
R is a simple integer vector of the base thread and all its living descendants.

Example

OTNUMS
0245637829

Token Pool R<«TPOOL

R is a simple scalar or vector containing the token types for each of the tokens that
are currently in the token pool.

The following (OML =0) function returns a 2-column snapshot of the contents of the
pool. It does this by removing and replacing all of the tokens, restoring the state of
the pool exactly as before. Coding it as a single expression guarantees that snap is
atomic and cannot disturb running threads.

snap«<{(OTGET w){(8tw a){ata OTPUT w}w}

snap [TPOOL
hello world
2
2
three-type token
2

NNWN -




Chapter 4: System Functions 455

Put Tokens {R}«{X} OTPUT Y

Y must be a simple integer scalar or vector of non-zero token types.
X is an optional array of values to be stored in each of the tokens specified by Y.

Shy result R is a vector of thread numbers (if any) unblocked by the JTPUT.

Examples

OTPUT 2 3 2 A put a 2-token, a 3-token and anothe
’ 2-token into the pool.

88 OTPUT 2 A put another 2-token into the pool

this token has the value 88.

‘'Hello'OTPUT "4 A put a "4-token into the pool with
the value 'Hello'.

If X is omitted, the value associated with each of the tokens added to the pool is the
same as its fype.

Note that you cannot put a O-token into the pool; 0-s are removed from Y.




456 Dyalog APL/W Language Reference

Set Trace

{R}«X OTRACE Y

Y must be a simple character scalar or vector which is taken to be the name of a vis-
ible defined function or operator. X must be a simple non-negative integer scalar or
vector.

X identifies the numbers of lines in the function or operator named by Y on which a
trace control is to be placed. Numbers outside the range of line numbers in the func-
tion or operator (other than 0) are ignored. The number 0 indicates that a trace con-
trol is to be placed immediately prior to exit from the function or operator. The value
of X is independent of [JI0.

R is a simple integer vector of non-negative elements indicating the lines in the func-
tion or operator on which a trace control has been placed.

Example

+(0,110) OTRACE'FOO'
01

Existing trace controls in the function or operator named by Y are cancelled before
new trace controls are set:

+ 1 [JTRACE'FOO'
1

All trace controls may be cancelled by giving X an empty vector:

p& OTRACE 'FOO'

Attempts to set trace controls in a locked function or operator are ignored.

fLock 'fFoo’
+1 (TRACE 'FOO'

The effect of trace controls when a function or operator is invoked is to display the
result of each complete expression for lines with trace controls as they are executed,
and the result of the function if trace control 0 is set. Ifa line contains expressions
separated by ¢, the result of each complete expression is displayed for that line after
execution.

The result of a complete expression is displayed even where the result would nor-
mally be suppressed. In particular:

e the result of a branch statement is displayed;

o the result (pass-through value) of assignment is displayed;

e the result of a function whose result would normally be suppressed is dis-
played;



Chapter 4: System Functions 457

For each traced line, the output from JTRACE is displayed as a two element vector,
the first element of which contains the function or operator name and line number,
and the second element of which takes one of two forms.

e The result of the line, displayed as in standard output.
e - followed by a line number.

Example

OvrR ‘'DSL'

V R«DSL SKIP;A:;B;C;D
[1] A<2x3+4
[2] B<(2 3p'ABCDEF')A
[3] >NEXTx1SKIP
[4] 'SKIPPED LINE'
[5] NEXT:C<«'one' ¢ D<«'two'
[6] END:R«C D

\'4

(0,16) OTRACE 'DSL'

DSL 1
DSL[1] 14
DSL[2] ABC 14
DEF
DSL[3] -5
DSL[5] one
DSL[5] two

DSL[6] one two
DSL[O] one two
one two

Query Trace R«(JTRACE Y

Y must be a simple character scalar or vector which is taken to be the name of a vis-
ible defined function or operator. R is a simple non-negative integer vector of the
line numbers of the function or operator named by Y on which trace controls are set,
shown in ascending order. The value 0 in R indicates that a trace control is set to dis-
play the result of the function or operator immediately prior to exit.

Example

OTRACE'DSL'
0123456



458 Dyalog APL/W Language Reference

Trap Event

OTRAP

This is a non-simple vector. An item of JTRAP specifies an action to be taken when
one of a set of events occurs. An item of JTRAP is a2 or 3 element vector whose
items are simple scalars or vectors in the following order:

1. an integer vector whose value is one or more event codes selected from the
list in the Figure on the following two pages.
2. a character scalar whose value is an action code selected from the letters C,

E,NorS.

3. ifelement 2 is the letter C or E, this item is a character vector forming a
valid APL expression or series of expressions separated by ¢. Otherwise,
this element is omitted.

An EVENT may be an APL execution error, an interrupt by the user or the system, a
control interrupt caused by the JSTOP system function, or an event generated by the
OSIGNAL system function.

When an event occurs, the system searches for a trap definition for that event. The
most local JTRAP value is searched first, followed by successive shadowed values of
OTRAP, and finally the global OTRAP value. Separate actions defined in a single
OTRAP value are searched from left to right. Ifa trap definition for the event is
found, the defined action is taken. Otherwise, the normal system action is followed.

The ACTION code identifies the nature of the action to be taken when an associated
event occurs. Permitted codes are interpreted as follows:

C |Cutback

The state indicator is 'cut back' to the environment in which
the OTRAP is locally defined (or to immediate execution
level). The APL expression in element 3 of the same (JTRAP
item is then executed.

E Execute

The APL expression in element 3 of the same JTRAP item is
executed in the environment in which the event occurred.

N | Next

The event is excluded from the current JTRAP definition.
The search will continue through further localised definitions
of JTRAP

S | Stop

Stops the search and causes the normal APL action to be
taken in the environment in which the event occurred.




Chapter 4: System Functions

459

Table 16: Trappable Event Codes

Code Event
0 Any event in range 1-999
1 WS FULL
2 SYNTAX ERROR
3 INDEX ERROR
4 RANK ERROR
5 LENGTH ERROR
6 VALUE ERROR
FORMAT ERROR
10 LIMIT ERROR
11 DOMAIN ERROR
12 HOLD ERROR
16 NONCE ERROR
18 FILE TIE ERROR
19 FILE ACCESS ERROR
20 FILE INDEX ERROR
21 FILE FULL
22 FILE NAME ERROR
23 FILE DAMAGED
24 FILE TIED
25 FILE TIED REMOTELY
26 FILE SYSTEM ERROR
28 FILE SYSTEM NOT AVAILABLE
30 FILE SYSTEM TIES USED UP
31 FILE TIE QUOTA USED UP
32 FILE NAME QUOTA USED UP




460

Dyalog APL/W Language Reference

Code Event

34 FILE SYSTEM NO SPACE

35 FILE ACCESS ERROR - CONVERTING FILE
38 FILE COMPONENT DAMAGED

52 FIELD CONTENTS RANK ERROR

53 FIELD CONTENTS TOO MANY COLUMNS
54 FIELD POSITION ERROR

55 FIELD SIZE ERROR

56 FIELD CONTENTS/TYPE MISMATCH

57 FIELD TYPE/BEHAVIOUR UNRECOGNISED
58 FIELD ATTRIBUTES RANK ERROR

59 FIELD ATTRIBUTES LENGTH ERROR

60 FULL-SCREEN ERROR

61 KEY CODE UNRECOGNISED

62 KEY CODE RANK ERROR

63 KEY CODE TYPE ERROR

70 FORMAT FILE ACCESS ERROR

71 FORMAT FILE ERROR

72 NO PIPES

76 PROCESSOR TABLE FULL

8L TRAP ERROR

90 EXCEPTION

92 TRANSLATION ERROR

200-499 [Reserved for distributed auxiliary processors
500-999 [User-defined events




Chapter 4: System Functions 461

Code Event

1000 Any event in range 1001-1008

1001 Stop vector

1002 Weak interrupt

1003 INTERRUPT

1005 EOF INTERRUPT

1006 TIMEOUT

1007 RESIZE (Dyalog APL/X, Dyalog APL/W)

1008 DEADLOCK

See Programmer's Guide: Trap Statement for an alternative 'control structured' error
trapping mechanism.

Examples
OTRAP«c(3 4 5) 'E' 'ERROR' ¢ p[ITRAP

OTRAP
3 4 5 E ERROR

Items may be specified as scalars. Ifthere is only a single trap definition, it need not
be enclosed. However, the value of JTRAP will be rigorously correct:

OTRAP«11 'E' '->LAB'

OTRAP
11 E -ERR

pOTRAP
1

The value of JTRAP in a clear workspace is an empty vector whose prototype is
O0p(@ '' ''). Aconvenient way of cancelling a[JTRAP definition is:
OTRAP<0p[TRAP

Event codes 0 and 1000 allow all events in the respective ranges 1-999 and 1000-
1006 to be trapped. Specific event codes may be excluded by the N action (which
must precede the general event action):

OTRAP«(1 'N')(0 'E' '-»GENERR')



462

Dyalog APL/W Language Reference

The 'stop' action is a useful mechanism for cancelling trap definitions during devel-
opment of applications.

The 'cut-back’ action is useful for returning control to a known point in the applic-
ation system when errors occur. The following example shows a function that
selects and executes an option with a general trap to return control to the function
when an untrapped event occurs:

V SELECT;OPT;[JTRAP
[1] A Option selection and execution
[2] A A general cut-back trap
[3] OTRAP<(0 1000)'C' '-ERR'
[4] INP:[1«'OPTION : ' ¢ OPT<«(OPT#' ')/OPT«9[1
[5] +EXp:(COPT)EOptions o '"INVALID OPTION' ¢ -INP
[6] EX:eOPT ¢ ->INP
[7] ERR:ERRORAACTION ¢ -INP
[8] END:
\'4

User-defined events may be signalled through the JSIGNAL system function. A
user-defined event (in the range 500-999) may be trapped explicitly or implicitly by
the event code 0.

Example
OTRAP«500 'E' '''USER EVENT 500 - TRAPPED'''

OSIGNAL 500
USER EVENT 500 - TRAPPED

Token Requests R«(JTREQ Y

Y is a simple scalar or vector of thread numbers.

R is a vector containing the concatenated token requests for all the threads specified
in Y. This is effectively the result of catenating all of the right arguments together for
all threads in Y that are currently executing JTGET.

Example

OTREQ OTNUMS A tokens required by all threads.




Chapter 4: System Functions

463

Time Stamp

ROTS

This is a seven element vector which identifies the clock time set on the particular

installation as follows:

OTs[1] Year
aTs[2] Month
OTs[3] Day
Orsi4] Hour
Ogrs(s] Minute
aTsieé] Second
aTs(7] Millisecond
Example
aTs

1989 7 11 10 42 59 123

Note that on some systems, where time is maintained only to the nearest second, a
zero is returned for the seventh (millisecond) field.




464 Dyalog APL/W Language Reference

Wait for Threads to Terminate R<TSYNC Y

Y must be a simple array of thread numbers.
IfY is a simple scalar, R is an array, the result (if any) of the thread.

IfY is a simple non-scalar, R has the same shape as Y, and result is an array of
enclosed thread results.

Examples
dup«{w w} A Duplicate
O«dup&88 A Show thread number
11
88 88
OTSYNC dup&88 A Wait for result
88 88
OTSYNC,dup&88
88 88

OTSYNC dup&1 2 3
123 123

OTSYNC dup&™1 2 3
11 22 33

Deadlock

The interpreter detects a potential deadlock if a number of threads wait for each other
in a cyclic dependency. In this case, the thread that attempts to cause the deadlock
issues error number 1008 : DEADLOCK.

OTsYNC OTID A Wait for self
DEADLOCK
OTsSYNC OTID
A

OEN
1008



Chapter 4: System Functions 465

Potential Value Error

Ifany item of Y does not correspond to the thread number of an active thread, or if
any subject thread terminates without returning a result, then JTSYNC does not
return a result. This means that, if the calling context of the JTSYNC requires a result,
forexample: rs Lt«<[JTSYNC tnums,a VALUE ERROR will be generated. This situ-
ation can occur if threads have completed before OTSYNC is called.

O<+84% A thread (3) runs and terminates.
3
0.25
OTSYNC 3 A no result required: no prob
O«0tsync 3 A context requires result

VALUE ERROR

O«Otsync {}&0 A non-result-returning fn: no resul
t.
VALUE ERROR

Coding would normally avoid such an inconvenient VALUE ERROR either by arran-
ging that the thread-spawning and OTSYNC were on the same line:

rslt <« OTYSYNC myfn&" argvec
or
tnums<myfn&" argvec ¢ rslt«[JTSYNC tnums

or by error-trapping the VALUE ERROR.

Unicode Convert R«{X} Oucs Y

QUCS converts (Unicode) characters into integers and vice versa.

The optional left argument X is a character vector containing the name of a variable-
length Unicode encoding scheme which must be one of:

e 'UTF-8'
e 'UTF-16'
e 'UTF-32

Ifnot,a DOMAIN ERROR isissued.

If X is omitted, Y is a simple character or integer array, and the result R is a simple
integer or character array with the same rank and shape as Y.

If X is specified, Y must be a simple character or integer vector, and the result R is a
simple integer or character vector.



466

Dyalog APL/W Language Reference

Monadic JQUCS

Used monadically, JUCS simply converts characters to Unicode code points and
vice-versa.

With a few exceptions, the first 256 Unicode code points correspond to the ANSI
character set.

QJucs 'Hello World'
72 101 108 108 111 32 87 111 114 108 100

Qucs 2 11p72 101 108 108 111 32 87 111 114 108 100
Hello World
Hello World

The code points for the Greek alphabet are situated in the 900's:

QUCS 'kaAnuépa eAr&s'
954 945 955 951 956 941 961 945 32 949 955 955 940 948

Unicode also contains the APL character set. For example:

gucs 123 40 43 47 9077 41 247 9076 9077 125
{(+/w)+puw}

Dyadic QUCS

Dyadic JUCS is used to translate between Unicode characters and one of three stand-
ard variable-length Unicode encoding schemes, UTF-8, UTF-16 and UTF-32. These
represent a Unicode character string as a vector of 1-byte (UTF-8), 2-byte (UTF-16)
and 4-byte (UTF-32) signed integer values respectively.

"UTF-8"' [JucsS 'ABC'
65 66 67
'UTF-8' OUCS 'ABCEQA'
65 66 67 195 134 195 152 195 133
"UTF-8"' [JucS 195 134, 195 152, 195 133
EQA
'UTF-8' [UCS 'yera cou'
206 179 206 181 206 185 206 177 32 207 131 206 191 207 13
3
"UTF-16' [UCS 'yeia cou'
947 949 953 945 32 963 959 965
"UTF-32' JUuCS 'yeia oou'
947 949 953 945 32 963 959 965



Chapter 4: System Functions 467

Because integers are signed, numbers greater than 127 will be represented as 2-byte
integers (type 163), and are thus not suitable for writing directly to a native file. To
write the above data to file, the easiest solution is to use JUCS to convert the data to
1-byte characters and append this data to the file:

(Oucs 'UTF-8' QUCS 'ABCA®A') [NAPPEND tn

Note regarding UTF-16: For most characters in the first plane of Unicode (0000-
FFFF), UTF-16 and UCS-2 are identical. However, UTF-16 has the potential to
encode all Unicode characters, by using more than 2 bytes for characters outside
plane 1.

'"UTF-16"' [UCS 'ABCEQAVA'
65 66 67 198 216 197 9042 9035
O«unihan<QUCS (2x2%16)+13 A x20001-x20003

=l
'"UTF-16"' [JUCS unihan
55360 56321 55360 56322 55360 56323

Translation Error

0ucs will generate TRANSLATION ERROR (event number 92) if the argument can-
not be converted. In the Classic Edition,a TRANSLATION ERROR is generated if
the result is not in JAV or the numeric argument is not in JAVU.



468

Dyalog APL/W Language Reference

Using (Microsoft .NET Search Path) OUSING

OUSING specifies a list of Microsoft NET Namespaces that are to be searched for a
reference to a .NET class.

OUSING is a vector of character vectors, each element of which specifies the name of
a NET Namespace followed optionally by a comma (, ) and the Assembly in which
it is to be found.

If a pathname is specified, the file is loaded from that location. Otherwise the system
will attempt to load the assembly first from the directory in which the Dyalog pro-
gram (or host application) is located, and then from the .NET installation directory.

If the Microsoft .NET Framework is installed, the System namespace in
mscorlib.dl1l is automatically loaded when Dyalog APL starts. To access this
namespace, it is not necessary to specify the name ofthe Assembly.

OUSING has namespace scope. If the local value of JUSING is anything other than
empty, and you reference a name that would otherwise generate a VALUE ERROR,
APL searches the list of NET Namespaces and Assemblies specified by JUSING for
a class of that name. If it is found, an entry for the class is added to the symbol table
in the current space and the class is used as specified. Note that subsequent references
to that class in the current space will be identified immediately.

IfQUSING is empty (its default value in a CLEAR WS) no such search is performed.

Note that when you assign a value to JUSING, you may specify a simple character
vector or a vector of character vectors. If you specify a simple character vector (includ-
ing an empty vector ' '), this is equivalent to specifying a 1-element enclosed vector
containing the specified characters. Thus to clear JUSING, you must set it to Opec "'
andnot ' '.

Examples:

OJUSING«'System'
ldisplay OUSING

| ommee- |

| I|System| |
| 1 1

OQUSING,«c'System.Windows.Forms,System.Windows.Forms.dl L'
OUSING,«c'System.Drawing,System.Drawing.dll"’



Chapter 4: System Functions 469

An Assembly may contain top-level classes which are not packaged into NET
Namespaces. In this case, you omit the Namespace name. For example:

QUSING«,<',.\LoanService.dll'

Vector Representation R«(VR Y

Y must be a simple character scalar or vector which represents the name of a function
or defined operator.

IfY is the name of a defined function or defined operator, R is a simple character vec-
tor containing a character representation of the function or operator with each line
except the last terminated by the newline character (QUCS OAVU[4]).

Its display form is as follows:

1. the header line starts at column 8 with the v symbol in column 6,

2. the line number for each line of the function starts in column 1,

3. the statement contained in each line starts at column 8 except for labelled
lines or lines beginning with A which start at column 7,

4. the header line and statements contain no redundant blanks beyond column
7 except that the ¢ separator is surrounded by single blanks, control struc-
ture indentation is preserved and comments retain embedded blanks as ori-
ginally defined,

5. the last line shows only the Vv character in column 6.

IfY is the name of a variable, a locked function or operator, an external function, or is
undefined, R is an empty vector.

Example

pV<0OVR'PLUS'
128

v
vV R<{A}PLUS B
[1] A MONADIC OR DYADIC +
[2] +DYADICp~2=[INC'A' ¢ R«B ¢ -END
[3] DYADIC:R«A+B o —-END
[4] END:
v

The definition of JVR has been extended to names assigned to functions by spe-
cification («), and to local names of functions used as operands to defined operators.
In these cases, the result of [JVR is identical to that of JCR except that the rep-
resentation of defined functions and operators is as described above.



470 Dyalog APL/W Language Reference

Example

AVG<MEAN-o
+F<[JVR'AVG'
V R«<MEAN X A Arithmetic mean
[1] Re(+/X)+pX
V o,

pF
Jdisplay F

. |
| V R<MEAN X A Arithmetic mean| o , |
[[1] Re(+/X)+pX [ - -1
| | |
1 1 !

Verify & Fix Input R«{X}OVFI Y

Y must be a simple character scalar or vector. X is optional. If present, X must be a
simple character scalar or vector. R is a nested vector of length two whose first item
is a simple logical vector and whose second item is a simple numeric vector of the
same length as the first item of R.

Y is the character representation of a series of numeric constants. If X is omitted, adja-
cent numeric strings are separated by one or more blanks. Leading and trailing
blanks and separating blanks in excess of one are redundant and ignored. If X is
present, X specifies one or more alternative separating characters. Blanks in leading
and trailing positions in Y and between numeric strings separated also by the char-
acter(s) in X are redundant and ignored. Leading, trailing and adjacent occurrences
of'the character(s) in X are not redundant. The character O is implied in Y before a
leading character, after a trailing character, and between each adjacent pair of char-
acters specified by X.

The length of the items of R is the same as the number of identifiable strings (or
implied strings) in Y separated by blank or the value of X. An element of the first
item of R is 1 where the corresponding string in Y is a valid numeric representation,
or 0 otherwise. An element of the second item of R is the numeric value of the cor-
responding string in Y ifit is a valid numeric representation, or 0 otherwise.



Chapter 4: System Functions 471

Examples

1

OvFI '2 -2 ~2'
1 20 72

OVFTI '12.1 1E1 1A1 "10'

1101 12.1 10 0 710

>(//0VFI'12.1 1E1 1A1 T10')

12.1 10 "10

'o'0OVFI'L o 2 3 o 4 '
1 104
(8 &)=0VFI"'"

Workspace Available R<OWA

This is a simple integer scalar. It identifies the total available space in the active
workspace area given as the number of bytes it could hold.

A side effect of using [JWA is an internal reorganisation of the workspace and process
memory, as follows:

1.

Any un-referenced memory is discarded. This process, known as garbage
collection, is required because whole cycles of refs can become un-ref-
erenced.

Numeric arrays are demoted to their tightest form. For example, a simple
numeric array that happens to contain only values 0 or 1, is demoted or
squeezed to have a [JDR type of 11 (Boolean).

All remaining used memory blocks are copied to the low-address end of the
workspace, leaving a single free block at the high-address end. This process
is known as compaction.

Workspace above a small amount (1/16 of the configured maximum work-
space size) of working memory is returned to the Operating System. On a
Windows system, you can see the process size changing by using Task Man-
ager.

Example

OwA

261412

See also: Specify Workspace Available on page 173



472

Dyalog APL/W Language Reference

Windows Create Object {R}«{X}OWC Y

This system function creates a GUI object. Y is either a vector which specifies prop-
erties that determine the new object's appearance and behaviour, or the [JOR of a GUI
object that exists or previously existed. X is a character vector which specifies the
name of the new object, and its position in the object hierarchy.

If X is omitted, JWC attaches a GUI component to the current namespace, retaining
any functions, variables and other namespaces that it may contain. Monadic OWC is
discussed in detail at the end of this section.

IfY is a nested vector each element specifies a property. The Type property (which
specifies the class of the object) must be specified. Most other properties take
default values and need not be explicitly stated. Properties (including Ty pe) may be
declared either positionally or with a keyword followed by a value. Note that Type
must always be the first property specified. Properties are specified positionally by
placing their values in Y in the order prescribed for an object of that type.

If'Y is a result of [JOR, the new object is a complete copy of the one from which the
0OR was made, including any child objects, namespaces, functions and variables that
it contained at that time.

The shy result R is the full name (starting #. or [JSE.) of the namespace X.

An object's name is specified by giving its full pathname in the object hierarchy. At
the top ofthe hierarchy is the Root object whose name is".". Below "." there may
be one or more "top-level" objects. The names of these objects follow the standard
rules for other APL objects as described in Chapter 1.

"non;:

Names for sub-objects follow the same rules except that the character "." isused as a
delimiter to indicate parent/child relationships.

The following are examples of legal and illegal names :

Legal Illegal
FORM1 FORM 1
form_23 form#1
Formi.Gp 11_Form
F1.92.b34% Form+1




Chapter 4: System Functions 473

If X refers to the name of an APL variable, label, function, or operator, a DOMAIN
ERROR is reported. If X refers to the name of an existing GUI object or namespace,
the existing one is replaced by the new one. The effect is the same as if it were
deleted first.

If'Y refers to a non-existent property, or to a property that is not defined for the type
ofobject X,a DOMAIN ERROR isreported. A DOMAIN ERROR is also reported ifa
value is given that is inconsistent with the corresponding property. This can occur
for example, if Y specifies values positionally and in the wrong order.

A "top-level" object created by OWC whose name is localised in a function/operator
header, is deleted on exit from the function/operator. All objects, including sub-
objects, can be deleted using JEX.

GUI objects are named relative to the current namespace, so the following examples
are equivalent:

'F1.81' OWC 'Button'

is equivalent to :

)CS F1

#.F1
'B1' OWC 'Button'
)CS

#

is equivalent to :

'B1' F1.(OWC 'Button'

Examples

A Create a default Form called F1

'F1' OWC 'Form'

A Create a Form with specified properties (by position)
A Caption = "My Application" (Title)

A Posn = 10 30 (10% down, 30% across)

A Size = 80 60 (80% high, 60% wide)

'F1' OWC 'Form' 'My Application' (10 30)(80 60)



474 Dyalog APL/W Language Reference

A Create a Form with specified properties (by keyword)
A Caption = "My Application" (Title)

A Posn = 10 30 (10% down, 30% across)

A Size = 80 60 (80% high, 60% wide)

PROPS«c'Type' 'Form'
PROPS,«c'Caption' 'My Application'
PROPS,«c'Posn' 10 30
PROPS,«c'Size' 80 60

'F1' [OWC PROPS

A Create a default Button (a pushbutton) in the Form F1
'F1.BTN' [OWC 'Button'

Create a pushbutton labelled "Ok"

10% down and 10% across from the start of the FORM

with callback function FOO associated with EVENT 30
(this event occurs when the user presses the button)

DO DD

'F1.BTN'OWC'Button' '&0k' (10 10)('Event' 30 'FO0')

Monadic OWC is used to attach a GUI component to an existing object. The existing
object must be a pure namespace or a GUI object. The operation may be performed
by changing space to the object or by running JWC inside the object using the dot
syntax. For example, the following statements are equivalent.

)CS F

#.F
OWC 'Form' @ Attach a Form to this namespace
)CS

#

F.OWC'Form' a Attach a Form to namespace F



Chapter 4: System Functions 475

Windows Get Property R«{X}0OWG Y

This system function returns property values for a GUI object.

X is a namespace reference or a character vector containing the name of the object. Y
is a character vector or a vector of character vectors containing the name(s) of the
properties whose values are required. The result R contains the current values of the
specified properties. If' Y specifies a single property name, a single property value is
returned. IfY specifies more than one property, R is a vector with one element per
name in Y.

If X refers to a non-existent GUI name, a VALUE ERROR isreported. IfY refersto a

non-existent property, or to a property that is not defined for the type of object X, a
DOMAIN ERROR isreported.

GUI objects are named relative to the current namespace. A null value of X (refer-
ring to the namespace in which the function is being evaluated) may be omitted.
The following examples are equivalent:

‘F1.B1' [OWG 'Caption'

‘B1' F1.(WG 'Caption'

"' F1.B1.00WG 'Caption’

F1.B1.0WG 'Caption'

Examples
‘F1' OWC 'Form' 'TEST'

'F1' OWG 'Caption’

TEST
‘F1' OWG 'MaxButton'’
1
'F1' OWG 'Size'
50 50
Jdisplay 'F1' [OWG 'Caption' 'MaxButton' 'Size'

I . o
| ITEST| 1 |50 50| |
| 1 1 1 1

_— ~———— |




476

Dyalog APL/W Language Reference

Windows Child Names R«{X}OWN Y

This system function reports the Windows objects whose parent is Y.

IfY is a name (i.e. is a character vector) then the result R is a vector of character vec-
tors containing the names of the named direct Windows children of Y.

IfY is a reference then the result R is a vector of references to the direct Windows chil-
dren of Y, named or otherwise.

The optional left argument X is a character vector which specifies the Type of Win-
dows object to be reported; if X is not specified, no such filtering is performed.

Names of objects further down the tree are not returned, but can be obtained by
recursive use of [JWN.

IfY refers to a namespace with no GUI element,a VALUE ERROR is reported.
Note that JWN reports only those child objects visible from the current thread.

GUI objects are named relative to the current namespace. The following examples
are equivalent:

OWN 'F1.B1'
F1.0OWN 'B1'
F1.81.0WN "'

Example

f<[INEWc'Form'

f.n<ns""' A non-windows object
reference to a Label
named Button
reference to a Butto

f.l<f.[ONEWc'Label' A
"f.b1'Owc'Button'
f.(b2«<[new <'Button') A

D
> > > >

Own 'f'

[Form].b1
Own f

#.[Form].[Label] #.[Form].bl #.[Form].[Button]
'Button' [Own f

#.[Form].b1 #.[Form].[Button]



Chapter 4: System Functions 477

Windows Set Property {R}<{X}0OwWS Y

This system function resets property values for a GUI object.

X is a namespace reference or a character vector containing the name of the object. Y
defines the property or properties to be changed and the new value or values. Ifa
single property is to be changed, Y is a vector whose first element Y[ 1] is a character
vector containing the property name. IfY is oflength 2, Y[ 2] contains the cor-
responding property value. However, if the property value is itself a numeric or nes-
ted vector, its elements may be specifiedin Y[2 3 4 ... ] instead ofas a single
nested element in Y[2]. IfY specifies more than one property, they may be declared
either positionally or with a keyword followed by a value. Properties are specified
positionally by placing their values in Y in the order prescribed for an object of that
type. Note that the first property in Y must always be specified with a keyword
because the Type property (which is expected first) may not be changed using [WS.

If X refers to a non-existent GUI name, a VALUE ERROR isreported. IfY refersto a
non-existent property, or to a property that is not defined for the type of object X, or
to a property whose value may not be changed by WS, a DOMAIN ERROR is repor-
ted.

The shy result R contains the previous values of the properties specified in Y.

GUI objects are named relative to the current namespace. A null value of X (refer-
ring to the namespace in which the function is being evaluated) may be omitted.
The following examples are equivalent:

'F1.B1' [OWS 'Caption' '&Ok'
‘B1' F1.[OWS 'Caption' '&0k'
"' F1.B1.0WS 'Caption' '&0k'
F1.B1.0WS 'Caption' '&0k'

Examples
'F1' OWC 'Form' A A default Form

"F1' OWS 'Active' O

‘F1' OWS 'Caption' 'My Application’

‘F1' OWS 'Posn' 0 0O

"F1' OWS ('Active' 1)('Event' 'Configure' 'FOO0')

‘F1' OWS 'Junk' 10
DOMAIN ERROR

'F1' OWS 'MaxButton' 0
DOMAIN ERROR



478 Dyalog APL/W Language Reference

Workspace ldentification OwsSID

This is a simple character vector. It contains the identification name of the active
workspace. Ifanew name is assigned, that name becomes the identification name of
the active workspace, provided that it is a correctly formed name.

See Programmer's Guide: Workspaces for workspace naming conventions.

It is useful, though not essential, to associate workspaces with a specific directory in
order to distinguish workspaces from other files.

The value of DWSID in a clear workspace is ' CLEAR WS"'.

Example

OwsIb
CLEAR WS

OWSID«'WS/MYWORK' (UNIX)

(OWSID<«'B:\WS\MYWORK" (Windows)



Chapter 4: System Functions 479

Window Expose OwX

0OWX is a system variable that determines:

a. whether or not the names of properties, methods and events provided by a
Dyalog APL GUI object are exposed.
b. certain aspects of behaviour of NET and COM objects.

The permitted values of WX are 0, 1, or 3. Considered as a sum of bit flags, the first
bit in WX specifies (a), and the second bit specifies (b).

IfOWX is 1 (15t bit is set), the names of properties, methods and events are exposed as
reserved names in GUI namespaces and can be accessed directly by name. This
means that the same names may not be used for global variables in GUI namespaces.

If (WX is 0, these names are hidden and may only be accessed indirectly using [JWG
and [WS.

IFOWX is 3 (2" bit is also set) COM and .NET objects adopt the Version 11 beha-
viour, as opposed to the behaviour in previous versions of Dyalog APL.

Note that it is the value of WX in the object itself, rather than the value of WX in the
calling environment, that determines its behaviour.

The value of WX in a clear workspace is defined by the default wx parameter (see
User Guide) which itself defaults to 3.

(WX has namespace scope and may be localised in a function header. This allows
you to create a utility namespace or utility function in which the exposure of objects
is known and determined, regardless of its global value in the workspace.



480 Dyalog APL/W Language Reference

XML Convert R«{X} OXML Y

OXML converts an XML string into an APL array or converts an APL array into an
XML string.

Options for JXML are specified using the Variant operator [l or by the optional left
argument X. The former is recommended but the older mechanism using the left argu-
ment is still supported.

For conversion from XML, Y is a character vector containing an XML string. The res-
ult R isa 5 column matrix whose columns are made up as follows:

Column |Description

1 Numeric value which indicates the level of nesting

) Element name, other markup text, or empty character vector when
empty

3 Character data or empty character vector when empty

4 Attribute name and value pairs, (0 2pc' ') when empty

5 A numeric value which indicates what the row contains

The values in column 5 have the following meanings:

Value Description

1 Element

2 Child element

4 Character data

8 Markup not otherwise defined
16 Comment markup

32 Processing instruction markup




Chapter 4: System Functions 481

Example

x<'<xml><document id="001">An introduction to XML'
x,<'</document></xml>"'

ldisplay v<[XML x

{ re
0 [xml _J b E] [] 3

-€
[

1 [document An introduction to XML| ¢ 5
001

-€

-€

For conversion fo XML, Y isa 3,4 or 5 column matrix and the result R is a character
vector. The columns of Y have the same meaning as those described above for the res-
ult of converting from XML.:

Example

OXML v
<xml>
<document id="001">An introduction to XML</document>
</xml>



482

Dyalog APL/W Language Reference

Introduction to XML and Glossary of Terms

XML is an open standard, designed to allow exchange of data between applications.
The full speciﬁcation1 describes functionality, including processing directives and
other directives, which can transform XML data as it is read, and which a full XML
processor would be expected to handle.

The XML function is designed to handle XML to the extent required to import and
export APL data. It favours speed over complexity - some markup is tolerated but
largely ignored, and there are no XML query or validation features. APL applications
which require processing, querying or validation will need to call external tools for
this, and finally call XML on the resulting XML to perform the transformation into
APL arrays.

XML grammar such as processing instructions, document type declarations etc may
optionally be stored in the APL array, but will not be processed or validated. This is
principally to allow regeneration of XML from XML input which contains such
structures, but an APL application could process the data if it chose to do so.

The XML definition uses specific terminology to describe its component parts. The
following is a summary of the terms used in this section:

Character Data

Character data consists of free-form text. The free-form text should not include the
characters >’, ‘<’ or ‘&’, so these must be represented by their entity references
(‘&gt;’, ‘&lt;” and ‘&amp;’ respectively), or numeric character references.

Entity References and Character References

Entity references are named representations of single characters which cannot nor-
mally be used in character data because they are used to delimit markup, such as &gt;
for >’. Character references are numeric representations of any character, such as
&#20; for space. Note that character references always take values in the Unicode
code space, regardless of the encoding of the XML text itself.

OXMLconverts entity references and all character references which the APL character
set is able to represent into their character equivalent when generating APL array
data; when generating XML it converts any or all characters to entity references as
needed.

There is a predefined set of entity references, and the XML specification allows oth-
ers to be defined within the XML using the <!ENTITY > markup. XML does not
process these additional declarations and therefore will only convert the predefined

types.

Thttp://www.w3.0rg/TR/2008/REC-xml-20081126/


http://www.w3.org/TR/2008/REC-xml-20081126/

Chapter 4: System Functions 483

Whitespace

Whitespace sequences consist of one or more spaces, tabs or line-endings. Within
character data, sequences of one or more whitespace characters are replaced with a
single space when this is enabled by the whitespace option. Line endings are rep-
resented differently on different systems (0x0D 0x0A, 0x0A and 0x0D are all used)
but are normalized by converting them all to 0x0A before the XML is parsed, regard-
less of the setting of the whitespace option.

Elements

An element consists of a balanced pair of tags or a single empty element tag. Tags are
given names, and start and end tag names must match.

An example pair of tags, named TagName is

<TagName></TagName>

This pair is shown with no content between the tags; this may be abbreviated as an
empty element tag as

<TagName/>

Tags may be given zero or more attributes, which are specified as name/value pairs;
for example

<TagName AttName="AttValue”>

Attribute values may be delimited by either double quotes as shown or single quotes
(apostrophes); they may not contain certain characters (the delimiting quote, ‘&’ or
‘<”) and these must be represented by entity or character references.

The content of elements may be zero or more mixed occurrences of character data and
nested elements. Tags and attribute names describe data, attribute values and the con-
tent within tags contain the data itself. Nesting of elements allows structure to be
defined.

Because certain markup which describes the format of allowable data (such as ele-
ment type declarations and attribute-list declarations) is not processed, no error will
be reported if element contents and attributes do not conform to their restricted declar-
ations, nor are attributes automatically added to tags if not explicitly given.



484

Dyalog APL/W Language Reference

Attributes with names beginning xml: are reserved. Only xml:space is treated spe-
cially by OXML. When converting both from and to XML, the value for this attribute
has the following effects on space normalization for the character data within this ele-
ment and child elements within it (unless subsequently overridden):

e default — space normalization is as determined by the whitespace option.

e preserve - space normalization is disabled — all whitespace is preserved as
given.

e any other value — rejected.

Regardless of whether the attribute name and value have a recognised meaning, the
attribute will be included in the APL array / generated XML. Note that when the
names and values of attributes are examined, the comparisons are case-sensitive and
take place after entity references and character references have been expanded.

Comments

Comments are fully supported markup. They are delimited by ‘<!--* and ‘-->" and all
text between these delimiters is ignored. This text is included in the APL array if
markup is being preserved, or discarded otherwise.

CDATA Sections

CDATA Sections are fully supported markup. They are used to delimit text within
character data which has, or may have, markup text in it which is not to be processed
as such. They and are delimited by ‘<![CDATA[‘ and ‘]]>’. CDATA sections are
never recorded in the APL array as markup when XML is processed — instead, that
data appears as character data. Note that this means that if you convert XML to an
APL array and then convert this back to XML, CDATA sections will not be regen-
erated. It is, however, possible to generate CDATA sections in XML by presenting
them as markup.

Processing Instructions

Processing Instructions are delimited by ‘<&’ and ‘&>’ but are otherwise treated as
other markup, below.



Chapter 4: System Functions 485

Other markup

The remainder of XML markup, including document type declarations, XML declar-
ations and text declarations are all delimited by ‘<!’ and “>’, and may contain nested
markup. If markup is being preserved the text, including nested markup, will appear
as a single row in the APL array. (XML does not process the contents of such
markup. This has varying effects, including but not limited to the following:

No validation is performed.

Constraints specified in markup such element type declarations will be
ignored and therefore syntactically correct elements which fall outside their
constraint will not be rejected.

Default attributes in attribute-list declarations will not be automatically
added to elements.

Conditional sections will always be ignored.

Only standard, predefined, entity references will be recognized; entity
declarations which define others entity references will have no effect.
External entities are not processed.

Conversion from XML

The level number in the first column of the result R is 0 for the outermost
level and subsequent levels are represented by an increase of 1 for each
level. Thus, for

<xml><document id="001">An introduction to XML </document></xml>
The xm! element is at level 0 and the document id element is at level 1. The
text within the document id element is at level 2.

Each tag in the XML contains an element name and zero or more attribute
name and value pairs, delimited by ‘<’ and >’ characters. The delimiters are
not included in the result matrix. The element name of a tag is stored in
column 2 and the attribute(s) in column 4.

All XML markup other than tags are delimited by either ‘<!’ and “>’, or
‘<?” and >’ characters. By default these are not stored in the result matrix
but the markup option may be used to specify that they are. The elements
are stored in their entirety, except for the leading and trailing ‘<’ and >’
characters, in column 2. Nested constructs are treated as a single block.
Because the leading and trailing ‘<’ and >’ characters are stripped, such
entries will always have either ‘!’ or ‘&’ as the first character.

Character data itself has no tag name or attributes. As an optimisation, when
character data is the sole content of an element, it is included with its par-
ent rather than as a separate row in the result. Note that when this happens,
the level number stored is that of the parent; the data itself implicitly has a
level number one greater.



486

Dyalog APL/W Language Reference

e Attribute name and value pairs associated with the element name are stored

in the fourth column, in an (» x 2) matrix of character values, for the n
(including zero) pairs.

Each row is further described in the fifth column as a convenience to sim-
plify processing of the array (although this information could be deduced).
Any given row may contain an entry for an element, character data, markup
not otherwise defined, a comment or a processing instruction. Furthermore,
an element will have zero or more of these as children. For all types except
elements, the value in the fifth column is as shown above. For elements, the
value is computed by adding together the value of the row itself (1) and
those of its children. For example, the value for a row for an element which
contains one or more sub-elements and character data is 7 — that is 1 (ele-
ment) + 2 (child element) + 4 (character data). It should be noted that:

0dd values always represent elements. Odd values other than 1 indicate
that there are children.

Elements which contain just character data (5) are combined into a single
row as noted previously.

Only immediate children are considered when computing the value. For
example, an element which contains a sub-element which in turn contains
character data does not itself contain the character data.

The computed value is derived from what is actually preserved in the array.
For example, if the source XML contains an element which contains a com-
ment, but comments are being discarded, there will be no entry for the com-
ment in the array and the fifth column for the element will not indicate that
it has a child comment.

Conversion to XML

Conversion to XML takes an array with the format described above and generates
XML text from it. There are some simplifications to the array which are accepted:

e The fifth column is not needed for XML generation and is effectively

ignored. Any numeric values are accepted, or the column may be omitted
altogether.

If there are no attributes in a particular row then the (0 2pc' ') may be
abbreviated as € (zilde). If the fifth column is omitted then the fourth
column may also be omitted altogether.

Data in the third column and attribute values in the fourth column (if
present) may be provided as either character vectors or numeric values.
Numeric values are implicitly formatted as if JPP was set to 17.



Chapter 4: System Functions 487

The following validations are performed on the data in the array:

e All elements within the array are checked for type.

e Values in column 1 must be non-negative and start from level 0, and the
increment from one row to the next must be < +1.

e Tag names in column 2 and attribute names in column 4 (if present) must
conform to the XML name definition.

Then, character references and entity references are emitted in place of characters
where necessary, to ensure that valid XML is generated. However, markup, if present,
is not validated and it is possible to generate invalid XML if care in not taken with
markup constructs.

Options

There are 3 options which may be specified using the Variant operator [ (recom-
mended) or by the optional left argument X (retained for backwards compatibility).
The names are different and are case-sensitive; they must be spelled exactly as shown
below.

Option names for Variant Option names for left argument
Whitespace whitespace

Markup markup

UnknownEntity unknown-entity

The values of each option are tabulated below. In each case the value of the option
for Variant is given first, followed by its equivalent for the optional left argument in
brackets; e.g. UnknownEntity (unknown-entity).

Note that the default value is shown first, and that the option names and values are
case-sensitive.

If options are specified using the optional left argument, X specifies a set of option/-
value pairs, each of which is a character vector. X may be a 2-element vector, or a vec-
tor of 2-element character vectors. In the examples below, this method is illustrated
by the equivalent expression written as a comment, following the recommended
approach using the Variant operator [d. i.e.

]d1splay (OXMLE" Wh1tespace 'Strip')eg
'whitespace' 'strip' OXML eg

Errors detected in the input arrays or options will all cause DOMAIN ERROR.



488

Dyalog APL/W Language Reference

Whitespace (whitespace)

When converting from XML Whi tespace specifies the default handling of white
space surrounding and within character data. When converting to XML
Whitespace specifies the default formatting of the XML. Note that attribute val-
ues are not comprised of character data so white space in attribute values is always
preserved.

Converting from XML

All leading and trailing whitespace sequences are removed;

Strip .. . .
(strip) remaining whitespace sequences are replaced by a single

P space character
Trim All leading and trailing whitespace sequences are removed;
(trim) all remaining white space sequences are handled as preserve
Preserve Whitespace is preserved as given except that line endings are

(preserve)

represented by Linefeed (QUCS 10)

Converting to

XML

All leading and trailing whitespace sequences are removed;

Strip remaining whitespace sequences within the data are replaced
(strip) by a single space character. XML is generated with
formatting and indentation to show the data structure
Tri .
( ;:'Tm ) Synonymous with strip
White space in the data is preserved as given, except that line
Preserve endings are represented by Linefeed (QUCS 10). XML is

(preserve)

generated with no formatting and indentation other than that
which is contained within the data




Chapter 4: System Functions

489

Jdisplay eg

<xml>
<a>
Datal
<!-- Comment -->
Data2
<b> Data3 </b>
Datalt
<c att="val"/>
</a>
</xml>

ldisplay (OXMLE'Whitespace' 'Strip')eg
A ‘whitespace' 'strip' OXML eg
T
{ ©
0 [xml [J ¢ [j [] 3
€
e
1 [g} [_} ¢ req re 7
“e
)
2 [J Datal Data2| ¢ req e 4
€
2 |b Data3 ¢ req re 5
“€
e
2 Datal ¢ [j [] 4
€
- O I
[ [ ; :
att val
“e




490

Dyalog APL/W Language Reference

]d1splay (DXMLE wh1tespace

'whitespace'

preserve

Preserve')eg

OXML eg

xml

-0
J oo
-€
[0
-€
-0
J oo
3
b e e
Datal [J LJ
Data2| ‘e
Data3 ¢ req re-
3
b req re-
Datal
e
_e |
j ;
att val
-€
[0
-€
| [ [0
3




Chapter 4: System Functions 491

Markup (markup)

When converting from XML, Markup determines whether markup (other than entity
tags) appears in the output array or not. When converting to XML Markup has no

effect.

Converting from XML

(preserve)

>tri p Markup data is not included in the output array
(strip)
Preserve Markup text appears in the output array, without the leading

‘<’ and trailing >’ in the tag (2"%) column

ldisplay eg

<xml>

<a>
Datal
Data2
Datalt

</a>
</xml>

<l-- Comment -->
<b> Data3 </b>

<c att="val"/>




492 Dyalog APL/W Language Reference

]d1splay (OXMLE" Markup 'Strip')eg
‘markup’ ‘'strip' OXML eg

+ 61
0 [xml 1) [j [j
—— -0
1 |a (0} m m
_e-
2 Datal Data2| ¢ [j [j
-€
2 |[b Data3 b req re-
| e—
)
2 [J Datal ¢ req1 re-
P —
—> (=] I
[ [ ¢
att val
-€




Chapter 4: System Functions

493

]d1splay (DXMLE Markup
‘preserve’

‘markup’

Preserve')eg
OXML eg

xml
]
]

=
-

Datal

)
|-- Comment -- [J

o | | Jo)

1
(0}

X

b req re
Le

Data2| ¢ req re
Le

Data3| ¢ req re
e

Datalk| ¢

att

val

23

16




494 Dyalog APL/W Language Reference

UnknownEntity (unknown-entity)

When converting from XML, this option determines what happens when an
unknown entity reference, or a character reference for a Unicode character which can-
not be represented as an APL character, is encountered. In Classic versions of Dyalog
APL that is any Unicode character which does not appear in JAVU. When converting
to XML, this option determines what happens to Esc characters (QUCS 27) in data.

Converting from XML

Replace

(replace) The reference is replaced by a single ‘?’ character

Preserve The reference is included in the output data as given, but
(preserve) | with the leading ‘&’ replaced by Esc (QUCS 27)

Converting to XML

Replace

(replace) Esc (QUCS 27) is preserved

Preserve

(preserve) Esc (JUCS 27) is replaced by ‘&




Chapter 4: System Functions 495

Extended State Indicator R«[XSI

R is a nested vector of character vectors giving the full path names of the functions or
operators in the execution stack. Note that if a function has changed space, its ori-
ginal (home) space is reported, rather than its current one.

Example

In the following, function f oo in namespace x has called goo in namespace y.
Function goo has then changed space (OCS) to namespace z where it has been sus-
pended:

)si
[z] y.goo[2]*
x.foo[1]

OXS1I reports the full path name of each function:
Oxsi

#.y.goo #.x.foo

This can be used for example, to edit all functions in the stack, irrespective of the cur-
rent namespace by typing: [Oed [Oxsi

See also State Indicator on page 423.



496

Dyalog APL/W Language Reference

Set External Variable X OXT Y

Y must be a simple character scalar or vector which is taken to be a variable name. X
must be a simple character scalar or vector which is taken to be a file reference. The
name given by Y is identified as an EXTERNAL VARIABLE associated with an
EXTERNAL ARRAY whose value may be stored in file identified by X. See User
Guide for file naming conventions under Windows and UNIX.

IfY is the name of a defined function or operator, a label or a namespace in the active
workspace,a DOMAIN ERROR is reported.

Example
"EXT\ARRAY' [OXT 'V'

Ifthe file reference does not exist, the external variable has no value until a value is
assigned:

v
VALUE ERROR
v

A

A value assigned to an external variable is stored in file space, not within the work-
space:

OWA
2261186

V«<1100000

OwA
2261186

There are no specific restrictions placed on the use of external variables. They must
conform to the normal requirements when used as arguments of functions or as oper-
ands of operators. The essential difference between a variable and an external vari-

able is that an external variable requires only temporary workspace for an operation
to accommodate (usually) a part of its value.




Chapter 4: System Functions 497

Examples
V<15

+/V
15

V[3]«c'ABC'

\
12 ABC 4 5

0V
3

Assignment allows the structure or the value of an external variable to be changed
without fully defining the external array in the workspace.

Examples
V,«c2 4p18

pV

V(6]

1234

567 8

V[1 2 4 5 6]x+«10
v

10 20 ABC 40 50 10 20 30 4O
50 60 70 80

An external array is (usually) preserved in file space when the name of the external
variable is disassociated from the file. It may be re-associated with any valid vari-
able name.
Example

gex'v!

"EXT\ARRAY'OXT'F'

F
10 20 ABC 40 50 10 20 30 40
50 60 70 80



498

Dyalog APL/W Language Reference

In UNIX versions, if X is an empty vector, the external array is associated with a tem-
porary file which is erased when the array is disassociated.

Example
" 'OXT'TEMP'
TEMP«110
+/TEMPxTEMP
385
OEX'TEMP'

An external array may be erased using the native file function: INERASE.

In a multi-user environment (UNIX or a Windows LAN) a new file associated with
an external array is created with access permission for owner read/write. An existing
file is opened for exclusive use (by the owner) if the permissions remain at this level.
If the access permissions allow any other users to read and write to the file, the file is
opened for shared use. In UNIX versions, access permissions may be modified using
the appropriate Operating System command, or in Windows using the supplied func-
tion XVAR from the UTIL workspace.

Query External Variable R<OXT Y

Y must be a simple character scalar or vector which is taken to be a variable name. R
is a simple character vector containing the file reference of the external array asso-
ciated with the variable named by Y, or the null vector if there is no associated
external array.

Example

OxT'v!
EXT\ARRAY

pOXT'G'




499

Chapter 5:

System Commands

Introduction

System commands are not executable APL expressions. They provide services or
information associated with the workspace and the external environment.

Command Presentation

System commands may be entered from immediate execution mode or in response to
the prompt [J: within evaluated input. All system commands begin with the symbol
), known as a right parenthesis. All system commands may be entered in upper or

lower case.

Each command is described in alphabetical order in this chapter.

Table 17: System Commands

Command Description

JCLASSES List classes

)JCLEAR Clear the workspace

)JCMD Y Execute a Windows Command

) CONTINUE /S;;f a Continue workspace and terminate
)COPY {Y} Copy objects from another workspace
)CS {Y} Change current namespace

)DROP {Y} Drop named workspace

JED Y Edit object(s)

JERASE Y Erase object(s)

JEVENTS List events of GUI namespace or object




500

Dyalog APL/W Language Reference

Command Description

JFNS {Y} List user defined Functions

)JHOLDS Display Held tokens

JLIB {Y} List workspaces in a directory

JLOAD (Y} Load a workspace

JMETHODS List methods in GUI namespace or object
INS {Y} Create a global Namespace

JOBJECTS {Y} List global namespaces

)OBS {Y} List global namespaces (alternative form)
)OFF Terminate the APL session

JOPS {Y} List user defined Operators

JPCOPY {Y} Perform Protected Copy of objects
)PROPS List properties of GUI namespace or object
JRESET Reset the state indicator

)SAVE {Y} Save the workspace

JSH {Y} Execute a (UNIX) Shell command

)SI State Indicator

)SIC Clear State Indicator

)SINL State Indicator with local Name Lists
YTID {Y} Switch current Thread Identity

JVARS {Y} List user defined global Variables
JWSID (Y} Workspace Identification

)XLOAD Y Load a workspace; do not execute [JL X

{ } indicates that the parameter(s) denoted by Y are optional.




Chapter 5: System Commands 501

List Classes JCLASSES

This command lists the names of APL Classes in the active workspace.

Example:

JCLEAR
clear ws
JED oMyClass

:Class MyClass
vV Make Name
:Implements Constructor
(ODF Name
v
:EndClass A MyClass

JCLASSES
MyClass
)COPY 00 YourClass
.\0OO saved Sun Jan 29 18:32:03 2006
JCLASSES
MyClass YourClass
ONC 'MyClass' 'YourClass'
9.4 9.4

Clear Workspace )CLEAR

This command clears the active workspace and gives the report "c lear ws". The
active workspace is lost. The name of a clear workspace is CLEAR WS. System vari-
ables are initialised with their default values as described in System Variables on
page 200.

In GUI implementations of Dyalog APL, ) CLEAR expunges all GUI objects, dis-
cards any unprocessed events in the event queue and resets the properties of the
Root object '.' to their default values.

Example

)CLEAR
clear ws




502

Dyalog APL/W Language Reference

Windows Command Processor )CMD cmd

This command allows Windows Command Processor or UNIX shell commands to be
given from APL. )CMD is a synonym of ) SH. Either command may be given in
either environment (Windows or UNIX) with exactly the same effect. ) CMD is prob-
ably more natural for the Windows user. This section describes the behaviour of )
CMD and ) SH under Windows. See Execute (UNIX) Command on page 518 for a dis-
cussion of the behaviour of these commands under UNIX.

The system functions [JSH and [JCMD provide similar facilities but may be executed
from within APL code. For further information, see Execute (UNIX) Command on
page 421 and Execute Windows Command on page 231.

Note that under Windows, you may not execute ) CMD without a command. Ifyou
wish to, you can easily open a new Command Prompt window outside APL.

Example
)CMD DIR

Volume in drive C has no label
Directory of C:\PETE\WS

<DIR> 5-07-94% 3.02p
.. <DIR> 5-07-9% 3.02p
SALES DWS 110092 5-07-9% 3.29p
EXPENSES DWS 154207 5-07-94% 3.29p

If emd issues prompts and expects user input, it is ESSENTIAL to explicitly redirect
input and output to the console. Ifthis is done, APL detects the presence ofa ">" in
the command line and runs the command processor in a visible window and does not
direct output to the pipe. Ifyou fail to do this your system will appear to hang
because there is no mechanism for you to receive or respond to the prompt.

Example

JCMD DATE <CON >CON

(Command Prompt window appears)

Current date is Wed 19-07-1995
Enter new date (dd-mm-yy): 20-07-95

(Command Prompt window disappears)



Chapter 5: System Commands 503

Implementation Notes

The argument of )CMD is simply passed to the appropriate command processor for exe-
cution and its output is received using an unnamed pipe.

By default, ) CMD will execute the string ( 'cmd.exe /c',Y) where Y is the argu-
ment given to ) CMD. However, the implementation permits the use of alternative
command processors as follows:

Before execution, the argument is prefixed and postfixed with strings defined by the
APL parameters CMD PREFIX and CMD POSTFIX. The former specifies the name
of your command processor and any parameters that it requires. The latter specifies a
string which may be required. If CMD PREFIX is not defined, it defaults to the name
defined by the environment variable COMSPEC followed by "\c¢". If COMSPEC is
not defined, it defaults to COMMAND.COM or CMD.EXE as appropriate. [f CMD
POSTFIX is not defined, it defaults to an empty vector.

Save Continuation )CONTINUE

This command saves the active workspace under the name CONTINUE and ends the
Dyalog APL session.

When you subsequently start another Dyalog APL session, the CONTINUE work-
space is loaded automatically. When a CONTINUE workspace is loaded, the latent
expression (if any) is NOT executed.

Note that the values of all system variables (including [JSM) and GUI objects are also
saved in CONTINUE.



504

Dyalog APL/W Language Reference

Copy Workspace )COPY {ws {nms}}

This command brings all or selected global objects nms from a stored workspace
with the given name. A stored workspace is one which has previously been saved
with the system command ) SAVE or the system function JSAVE. See Pro-
grammer's Guide: Workspaces for the rules for specifying a workspace name.

Ifthe list of names is excluded, all defined objects (including namespaces) are
copied.

If the workspace name identifies a valid, readable workspace, the system reports the
workspace name, "saved" and the date and time when the workspace was last
saved.

Examples

JCOPY WS/UTILITY
WS/UTILITY saved Mon Nov 1 13:11:19 1992

JCOPY TEMP [LX FOO X A.B.C
./TEMP saved Mon Nov 1 14:20:47 1992
not found X

Copied objects are defined at the global level in the active workspace. Existing
global objects in the active workspace with the same name as a copied object are
replaced. Ifthe copied object replaces either a function in the state indicator, or an
object that is an operand of an operator in the state indicator, or a function whose left
argument is being executed, the original object remains defined until its execution is
completed or it is no longer referenced by an operator in the state indicator. Ifthe
workspace name is not valid or does not exist or if access to the workspace is not
authorised, the system reports ws not found.

You may copy an object from a namespace by specifying its full pathname. The
object will be copied to the current namespace in the active workspace, losing its ori-
ginal parent and gaining a new one in the process. You may only copy a GUI object
into a namespace that is a suitable parent for that object. For example, you could
only copy a Group object from a saved workspace if the current namespace in the act-
ive workspace is itself a Form, SubForm or Group.

If the workspace name identifies a file that is not a workspace, the system reports
bad ws.

Ifthe source workspace is too large to be loaded, the system reports ws too
large.



Chapter 5: System Commands 505

When copying data between Classic and Unicode Editions, ) COPY will fail with
TRANSLATION ERROR ifany object in the source workspace fails conversion
between Unicode and [JAV indices, whether or not that object is specified by nms.
See Atomic Vector - Unicode on page 224 for further details.

If"ws" is omitted, the file open dialog box is displayed and all objects copied from
the selected workspace.

Ifthe list of names is included, the names of system variables may also be included
and copied into the active workspace. The global referents will be copied.

If an object is not found in the stored workspace, the system reports not found fol-
lowed by the name of the object.

If the list of names includes the name of:

¢ an Instance of a Class but not the Class itself

o a Class but not a Class upon which it depends

e an array or a namespace that contains a ref to another namespace, but not
the namespace to which it refers

the dependant object(s) will also be copied but will be unnamed and hidden. In such
as case, the system will issue a warning message.

For example, if a saved workspace named CFWS contains a Class named
#.CompF i Le and an Instance (of CompF i le)named icf,

)JCOPY CFWS icf
.\CFWS saved Fri Mar 03 10:21:36 2006
copied object created an unnamed copy of class #.CompFile

The existence of a hidden copy can be confusing, especially ifit is a hidden copy of
an object which had a name which is in use in the current workspace. In the above
example, if there is a class called CompF i Le in the workspace into which icf is
copied, the copied instance may appear to be an instance of the visible CompF i Le,
but it will actually be an instance of the hidden CompF i L e - which may have very
different (or perhaps worse: very slightly different) characteristics to the named ver-
sion.

Ifyou copy a Class without copying its Base Class, the Class can be used (it will use
the invisible copy of the Base Class), but if you edit the Class, you will either be
unable to save it because the editor cannot find the Base Class, or - if there is a vis-
ible Class of that name in the workspace - it will be used as the Base Class. In the lat-
ter case, the invisible copy which was brought in by ) COPY will now disappear,
since there are no longer any references to it - and if these two Base Classes were dif-
ferent, the behaviour of the derived Class will change (and any changes made to the
invisible Base Class since it was copied will be lost).



506

Dyalog APL/W Language Reference

Change Space )CS {nm}

) CS changes the current space to the global namespace nm.

Ifno nmis given, the system changes to the top level (Root) namespace. If nm is not
the name of a global namespace, the system reports the error message Namespace
does not exist.

name may be either a simple name or a compound name separated by '.", including
one ofthe special names '#' (Root) or '## "' (Parent).

Examples

)CS
#

)CS X
#.X

)CS Y.Z
#.X.Y.2

)CS ##
#.X.Y

)CS #.UTIL
#.UTIL

Drop Workspace )JDROP {ws}

This command removes the specified workspace from disk storage. See Pro-
grammer's Guide: Workspaces for information regarding the rules for specifying a
workspace name.

If ws is omitted, a file open dialog box is displayed to elicit the workspace name.

Example

)JDROP WS/TEMP
Thu Sep 17 10:32:18 1998




Chapter 5: System Commands 507

Edit Object JED nms

) ED invokes the Dyalog APL editor and opens an Edit window for each ofthe
objects specified in nms.

If a name specifies a new symbol it is taken to be a function/operator. However, ifa
name is localised in a suspended function/operator but is otherwise undefined, it is
assumed to be a vector of character vectors.

The type of a new object may be specified explicitly by preceding its name with an
appropriate symbol as follows:

v function/operator
> simple character vector
€ vector of character vectors

- character matrix

® Namespace script
o Class script
o Interface

The first object named becomes the top window on the stack. See User Guide for
details.

Examples
)JED MYFUNCTION
JED VFOO -MAT eVECVEC

Objects specified in nms that cannot be edited are silently ignored. Objects qualified
with a namespace path are (e.g. a.b.c.foo)are silently ignored if the namespace
does not exist.



508

Dyalog APL/W Language Reference

Erase Object JERASE nms

This command erases named global defined objects (functions, operators, variables,
namespaces and GUI objects) from the active workspace or current namespace.

If a named object is a function or operator in the state indicator, or the object is an
operand of an operator in the state indicator, or the object is a function whose left
argument is being executed, the object remains defined until its execution is com-
pleted or it is no longer referenced by an operator in the state indicator. However,
the name is available immediately for other uses.

If a named object is a GUI object, the object and all its children are deleted and
removed from the screen.

If an object is not erased for any reason, the system reports not found followed
by the name of the object.

Erasing objects such as external functions may have other implications: see Expunge
Object on page 263 for details.

Example

JERASE FOO A [JIO
not found [JIO

List Events )JEVENTS

The ) EVENTS system command lists the Events that may be generated by the object
associated with the current space.

For example:

(cs 'sB' OWC 'BrowseBox'

JEVENTS
Close Create FileBoxCancel FileBoxOK

)EVENTS produces no output when executed in a pure (non-GUI) namespace, for
example:

gcs ‘X' ONS '
JEVENTS




Chapter 5: System Commands 509

List Global Defined Functions JFNS {nm}

This command displays the names of global defined functions in the active work-
space or current namespace. Names are displayed in JAV collation order. Ifa name
is included after the command, only those names starting at or after the given name in
collation order are displayed.

Examples

JFNS

ASK DISPLAY GET PUT ZILCH
JFNS G

GET PUT ZILCH



510 Dyalog APL/W Language Reference

Display Held Tokens )HOLDS

System command ) HOLDS displays a list of tokens which have been acquired or
requested by the : Ho L d control structure.

Each line of the display is of the form:
token: acq req req

Where acq is the number of the thread that has acquired the token, and req is the
number of a thread which is requesting it. For a token to appear in the display, a
thread (and only one thread) must have acquired it, whereas any number of threads
can be requesting it.

Example

Thread 300’s attempt to acquire token 'blue ' results in a deadlock:

300:DEADLOCK
Sema4[1] :Hold 'blue'
A

JHOLDS
blue: 100
green: 200 100
red: 300 200 100

e Blue has been acquired by thread 100.
e Green has been acquired by 200 and requested by 100.
e Red has been acquired by 300 and requested by 200 and 100.

The following cycle of dependencies has caused the deadlock:

Thread 300 attempts to acquire blue, 300 -~ blue
which is owned by 100, t {
which is waiting for red, red « 100

which is owned by 300.



Chapter 5: System Commands 511

List Workspace Library )LIB {dir}
This command lists the names of Dyalog APL workspaces contained in the given dir-
ectory.

Example

JLIB WS
MYWORK TEMP

If a directory is not given, the workspaces on the user's APL workspace path
(WSPATH) are listed. In this case, the listing is divided into sections identifying the
directories concerned. The current directory is identified as ".".

Example
JLIB

PDTEMP  WORK GRAPHICS
C:\DYALOG\WS
DISPLAY GROUPS



512

Dyalog APL/W Language Reference

Load Workspace JLOAD {ws}

This command causes the named stored workspace to be loaded. The current active
workspace is lost.

If"ws" is a full or relative pathname, only the specified directory is examined. Ifnot,
the APL workspace path (WSPATH is traversed in search of the named workspace. A
stored workspace is one which has previously been saved with the system command

) SAVE or the system function JSAVE. Under Windows, if ‘ws’ is omitted, the File
Open dialog box is displayed.

If the workspace name is not valid or does not exist or if access to the workspace is
not authorised, the system reports "ws not found". Ifthe workspace name iden-
tifies a file or directory that is not a workspace, the system reports workspace name
"is not a ws". Ifsuccessfully loaded, the system reports workspace name
"saved", followed by the date and time when the workspace was last saved. Ifthe
workspace is too large to be loaded into the APL session, the system reports "ws
too large". Afterloading the workspace, the latent expression (OL X) is executed
unless APL was invoked with the -x option.

If the workspace contains any GUI objects whose Visib L e property is 1, these
objects will be displayed. Ifthe workspace contains a non-empty [JSM but does not
contain an SM GUI object, the form defined by [JSM will be displayed in a window
on the screen.

Holding the Ctrl key down while entering a ) LOAD command or selecting a work-
space from the session file menu now causes the incoming latent expression to be
traced.

Holding the Shift key down while selecting a workspace from the session file menu
will prevent execution of the latent expression.

Example

)load dfns
/opt/mdyalog/14.0/64%/unicode/ws/dfns saved Thu Jan 16 00:
09:55 2014

An assortment of D Functions and Operators.
tree # A Workspace map.

t710t4attrib Onl 3 4 @A What's new?
notes find 'Word' A Apropos "Word".




Chapter 5: System Commands 513

List Methods JMETHODS

The )METHODS system command lists the Methods that apply to the object asso-
ciated with the current space.

For example:
gcs 'F' OWC 'Form'
JMETHODS

Animate ChoosefFont Detach GetFocus GetTextSize Wait

JMETHODS produces no output when executed in a pure (non-GUI) namespace, for

example:
gcs 'X' ONs "'
JMETHODS
Create Namespace JNS {nm}

)NS creates a global namespace and displays its full name, nm.

nm may be either a simple name or a compound name separated by ' . ', including
one of the special names '#' (Root) or '##' (Parent).

If name does not start with the special Root space identifier ' #', the new namespace
is created relative to the current one.

If name is already in use for a workspace object other than a namespace, the com-
mand fails and displays the error message Name already exists.

If name is an existing namespace, no change occurs.
)NS with no nm specification displays the current namespace.

Examples

JNS
#

INS W.X
#.W.X

)CS W.X
#.W.X

INS Y.Z
#MW.X.Y.Z

JNS
#.W.X



514

Dyalog APL/W Language Reference

List Global Namespaces JOBJECTS {nm}

This command displays the names of global namespaces in the active workspace.
Names are displayed in the [JAV collating order. If a name is included after the com-
mand, only those names starting at or after the given name in collating order are
displayed. Namespaces are objects created using [INS, ) NS or JWC and have name
class 9.

Note: )OBS can be used as an alternative to )OBJECTS

Examples

JOBJECTS
FORM1 UTIL WSDOC XREF

JOBS W
WSsSDOC XREF

List Global Namespaces )OBS {nm}

This command is the same as the )OBJECTS command. See List Global
Namespaces on page 514

Sign Off APL )OFF

This command terminates the APL session, returning to the Operating System com-
mand processor or shell.

List Global Defined Operators )OPS {nm}

This command displays the names of global defined operators in the active work-
space or current namespace. Names are displayed in [JAV collation order. Ifa name
is included after the command, only those names starting at or after the given name in
collation order are displayed.

Examples

JOPS
AND DOIF DUAL ELSE POWER

JOPS E
ELSE POWER



Chapter 5: System Commands 515

Protected Copy JPCOPY {ws {nms}}

This command brings all or selected global objects from a stored workspace with the
given name provided that there is no existing global usage of the name in the active
workspace. A stored workspace is one which has previously been saved with the sys-
tem command ) SAVE or the system function JSAVE.

)PCOPY does not copy [JSM. This restriction may be removed in a later release.

If the workspace name is not valid or does not exist or if access to the workspace is
not authorised, the system reports "ws not found". Ifthe workspace name iden-
tifies a file that is not a workspace, or is a workspace with an invalid version number
(one that is greater than the version of the current APL) the system reports "bad

ws". See Programmer's Guide: Workspaces for the rules for specifying a workspace
name.

If the workspace name is the name of a valid, readable workspace, the system reports
the workspace name, "saved", and the date and time that the workspace was last
saved.

If the list of names is excluded, all global defined objects (functions and variables)
are copied. Ifan object is not found in the stored workspace, the system reports "not
found" followed by the name of the object. If an object cannot be copied into the
active workspace because there is an existing referent, the system reports "not
copied" followed by the name of the object.

For further information, see Copy Workspace on page 242.

Examples

JPCOPY WS/UTILITY
WS/UTILITY saved Mon Nov 1 13:11:19 1993
not copied COPIED IF
not copied COPIED JOIN

JPCOPY TEMP FOO X
./TEMP saved Mon Nov 1 14:20:47 1993
not found X



516

Dyalog APL/W Language Reference

List Properties )PROPS

The )PROPS system command lists the Properties of the object associated with the
current space.

For example:

(cs 'sB' OWC 'BrowseBox'

JPROPS
BrowsefFor Caption ChildList Data Event
EventList HasEdit KeepOnClose MethodList
PropList StartIn Target Translate Type

)PROPS produces no output when executed in a pure (non GUI) namespace, for
example:

gcs ‘X' ONS '
JPROPS

Reset State Indicator JRESET

This command cancels all suspensions recorded in the state indicator and discards
any unprocessed events in the event queue.

)JRESET also performs an internal re-organisation of the workspace and process
memory. See Workspace Available on page 471 for details.

Example

)SI
#.FOO[1]*

3
#.FOO[1]x
JRESET

)SI

Save Workspace )SAVE {ws}

This command compacts (see Workspace Available on page 471 for details) and
saves the active workspace

The workspace is saved with its state of execution intact. A stored workspace may
subsequently be loaded with the system command ) LOAD or the system function




Chapter 5: System Commands 517

[LOAD, and objects may be copied from a stored workspace with the system com-
mands ) COPY or )PCOPY or the system function [ICY.

This command may fail with one of the following error messages:

The given workspace name was

unacceptable char ill-formed

An attempt was made to change
the name of the workspace for the
save, and that workspace already
existed.

not saved this ws is WSID

The active workspace was CLEAR
not saved this ws is CLEAR WS |WS and no attempt was made to
change the name.

The workspace name supplied did
not represent a valid file name for
the current Operating System.

Can't save - file could not
be created.

The user does not have access to
create the file OR the workspace
name conflicts with an existing
non-workspace file.

cannot create

A workspace may not be saved if

cannot save with windows open L
trace or edit windows are open.

An existing stored workspace with the same name will be replaced. The active work-
space may be renamed by the system command )WSID or the system function
Ows1p.

After a successful save, the system reports the workspace name, "saved", followed
by the time and date.

Example

)SAVE MYWORK
./MYWORK saved Thu Sep 17 10:32:20 1998



518 Dyalog APL/W Language Reference

Execute (UNIX) Command )SH {cmd}

This command allows WINDOWS or UNIX shell commands to be given from APL.

) SH is a synonym of ) CMD. Either command may be given in either environment
(WINDOWS or UNIX) with exactly the same effect. ) SH is probably more natural
for the UNIX user. This section describes the behaviour of ) SH and ) CMD under
UNIX. See Windows Command Processor on page 502 for a discussion of their beha-
viour under WINDOWS.

The system functions [JSH and [JCMD provide similar facilities but may be executed
from within APL code. For further information, see Execute (UNIX) Command on
page 421 and Execute Windows Command on page 231.

) SH allows UNIX shell commands to be given from APL. The argument must be
entered in the appropriate case (usually lower-case). The result of the command, if
any, is displayed.

) SH causes Dyalog APL to invoke the system () library call. The shell which is
used to run the command is therefore the shell which system () is defined to call.
For example, under AIX this would be /usr/bin/sh.

When the shell is closed, control returns to APL. See User Guide for further inform-
ation.

The parameters CMD_PREFIX and CMD_POSTFIX may be used to execute a dif-
ferent shell under the shell associated with system ().

Example

YSH Ls
EXT
FILES



Chapter 5: System Commands 519

State Indicator )SI

This command displays the contents of the state indicator in the active workspace.
The state indicator identifies those operations which are suspended or pendent for
each suspension.

The list consists of a line for each suspended or pendent operation beginning with
the most recently suspended function or operator. Each line may be:

e The name of a defined function or operator, followed by the line number at
which the operation is halted, and followed by the * symbol if the oper-
ation is suspended. The name of the function or operator is its full pathname
relative to the root namespace #. For example, #. UTIL.PRINT. In addi-
tion, the display of a function or operator which has dynamically changed
space away from its origin is prefixed with its current space. For example,
[OSE] TRAV.

A primitive operator symbol.

The Execute function symbol (¢).

The Evaluated Input symbol ().

The System Function [0DQ or OSR (occurs when executing a callback func-
tion).

Examples

)SI
#.PLUS[2]*

i.’r‘.MATDIV['-r]
#.FOO[1]*
-]

This example indicates that at some point function FOO was executed and suspended
on line 1. Subsequently, function MATDIV was invoked, with a function derived
from the Inner Product or Outer Product operator (. ) having defined function PLUS
as an operand.

In the following, function f oo in namespace x has called goo in namespace y. Func-
tion goo has then changed space ((OCS) to namespace z where it has been sus-
pended:

)si
[z] y.goo[2]x
x.foo[1]



520

Dyalog APL/W Language Reference

Threads

In a multithreading application, where parent threads spawn child threads, the state
indicator assumes the structure of a branching tree. Branches of the tree are rep-
resented by indenting lines belonging to child threads. For example:

)SI
. #.Calc[1]
&5
- #.DivSub[1]
&7
#.DivSub[1]
&6
. #.Div[2]*
&4
#.Sub[3]
#.Main[4]

Here, Main has called Sub, which has spawned threads 4 and 5 with functions: Di v
and Cal c. Function D1 v, after spawning Di vSub in each of threads 6 and 7, has
been suspended at line [2].

Clear State Indicator )SIC

This command is a synonym for ) RESET. See Reset State Indicator on page 516

State Indicator & Name List )SINL

This command displays the contents of the state indicator together with local names.
The display is the same as for ) ST (see above) except that a list of local names is
appended to each defined function or operator line.

Example

)SINL
#.PLUS[2]* B A R DYADIC END
#.MATDIV[H] R END I J OTRAP
#.FOO[1]* R

-1




Chapter 5: System Commands 521

Thread Identity )TID {tid}

) TID associates the Session window with the specified thread so that expressions
that you subsequently execute in the Session are executed in the context of that
thread.

If you attempt to ) TID to a thread that is paused or running, that thread will, if pos-
sible, be interrupted by a strong interrupt. If the thread is in a state which it would be
inappropriate to interrupt (for example, if the thread is executing an external func-
tion), the system reports:

Can't switch, this thread is n

If no thread number is given, ) TID reports the number of the current thread.

Examples
A State indicator
)si
#.print[1]
&3
. #.sub_calc[2]x
&2
#.calc[1]
&1
A Current thread
ytid
is 2
A Switch suspension to thread 3
)ytid 3
was 2
A State indicator
)si
: #.print[1]x
&3
. #.sub_calc[2]
&2
. calc[1]
&1

A Attempt to switch to pendent thread 1
Ytid 1
Can't switch, this thread is 3




522 Dyalog APL/W Language Reference

List Global Defined Variables )JVARS {nm}

This command displays the names of global defined variables in the active work-
space or current namespace. Names are displayed in [JAV collation order. Ifa name
is included after the command, only those names starting at or after the given name in
collation order are displayed.

Examples

JVARS
A B F TEMP VAR

JVARS F
F TEMP VAR

Workspace Identification JWSID {ws}

This command displays or sets the name of the active workspace.

If a workspace name is not specified, ) WS ID reports the name of the current active
workspace. The name reported is the full path name, including directory references.

If a workspace name is given, the current active workspace is renamed accordingly.
The previous name of the active workspace (excluding directory references) is
reported. See Programmer's Guide: Workspaces for the rules for specifying a work-
space name.

Examples

JLOAD WS/TEMP
WS/TEMP saved Thu Sep 17 10:32:19 1998

JWSID
is WS/TEMP

JWSID WS/KEEP
was WS/TEMP

JWSID
WS/KEEP



Chapter 5: System Commands 523

Load without Latent Expression )XLOAD {ws}

This command causes the named stored workspace to be loaded. The current active
workspace is lost.

) XLOAD is identical in effect to ) LOAD except that ) XLOAD does not cause the
expression defined by the latent expression [IL X in the saved workspace to be
executed.




524 Dyalog APL/W Language Reference




525

Appendices: PCRE Specifications

PCRE (Perl Compatible Regular Expressions) is an open source library used by the
OR and [0S system operators. The regular expression syntax which the library sup-
ports is not unique to APL nor is it an integral part of the language.

There are two named sections: pcrepattern, which describes the full syntax and
semantics); and prcresyntax, a quick reference summary.



526 Dyalog APL/W Language Reference

Appendix A -

PCRE Syntax Summary

The following is a summary of search pattern syntax.

PCRESYNTAX (3)

NAME

PCRESYNTAX (3)

PCRE - Perl-compatible regular expressions

PCRE REGULAR EXPRESSION SYNTAX SUMMARY

The full syntax and semantics of the regular expressions that are sup-
ported by PCRE are described in the pcrepattern documentation. This
document contains just a quick-reference summary of the syntax.

QUOTING

\x
\Q...\E

CHARACTERS

\a

\cx

\e

\f

\n

\r

\t

\ddd
\xhh
\x{hhh..}

CHARACTER TYPES

\C
\d
\D
\h
\H
\N
\p{xx}
\P{xx}
\R
\s
\S
\v
\V
\w
\W
\X

where x is non-alphanumeric is a literal x
treat enclosed characters as literal

alarm, that is, the BEL character (hex 07)
"control-x", where x is any ASCII character
escape (hex 1B)

formfeed (hex 0C)

newline (hex 0A)

carriage return (hex 0D)

tab (hex 09)

character with octal code ddd, or backreference
character with hex code hh

character with hex code hhh..

any character except newline;
in dotall mode, any character whatsoever
one byte, even in UTF-8 mode (best avoided)
decimal digit
character that is not a decimal digit
horizontal whitespace character
character that is not a horizontal whitespace character
character that is not a newline
character with the xx property
character without the xx property
newline sequence
whitespace character
character that is not a whitespace character
vertical whitespace character
character that is not a vertical whitespace character
"word" character
"non-word" character
an extended Unicode sequence

[ R R R U VU V)



Appendices: PCRE Specifications

527

In PCRE, by default,

\d, \D, \s, \S,

characters, even in UTF-8 mode. However,

the PCRE_UCP option.

GENERAL CATEGORY PROPERTIES FOR \p and \P

\w, and \W recognize only ASCII
this can be changed by setting

C Other

Cc Control

Cf Format

Cn Unassigned

Co Private use

Cs Surrogate

L Letter

L1l Lower case letter
Lm Modifier letter

Lo Other letter

Lt Title case letter
Lu Upper case letter
L& Ll, Lu, or Lt

M Mark

Mc Spacing mark

Me Enclosing mark

Mn Non-spacing mark

N Number

Nd Decimal number

N1 Letter number

No Other number

p Punctuation

Pc Connector punctuation
Pd Dash punctuation

Pe Close punctuation
Pf Final punctuation
Pi Initial punctuation
Po Other punctuation
Ps Open punctuation

S Symbol

Sc Currency symbol

Sk Modifier symbol

Sm Mathematical symbol
So Other symbol

Z Separator

zZ1 Line separator

Zp Paragraph separator
Zs Space separator

PCRE SPECIAL CATEGORY PROPERTIES FOR \p and \P

Xan
Xps
Xsp
Xwd

Alphanumeric: union of properties L and N

POSIX space: property Z or tab, NL, VT, FF, CR

Perl space: property Z or tab, NL, FF, CR
Perl word: property Xan or underscore



528

Dyalog APL/W Language Reference

SCRIPT NAMES FOR \p AND \P

Arabic, Armenian, Avestan, Balinese, Bamum, Bengali, Bopomofo, Braille,
Buginese, Buhid, Canadian Aboriginal, Carian, Cham, Cherokee, Common,
Coptic, Cuneiform, Cypriot, Cyrillic, Deseret, Devanagari, Egyp-
tian Hieroglyphs, Ethiopic, Georgian, Glagolitic, Gothic, Greek,
Gujarati, Gurmukhi, Han, Hangul, Hanunoo, Hebrew, Hiragana, Impe-
rial Aramaic, Inherited, Inscriptional Pahlavi, Inscriptional Parthian,
Javanese, Kaithi, Kannada, Katakana, Kayah Li, Kharoshthi, Khmer, Lao,
Latin, Lepcha, Limbu, Linear B, Lisu, Lycian, Lydian, Malayalam,
Meetei Mayek, Mongolian, Myanmar, New Tai Lue, Nko, Ogham, Old Italic,
0ld Persian, 0ld South Arabian, Old Turkic, Ol Chiki, Oriya, Osmanya,
Phags Pa, Phoenician, Rejang, Runic, Samaritan, Saurashtra, Shavian,
Sinhala, Sundanese, Syloti Nagri, Syriac, Tagalog, Tagbanwa, Tai Le,
Tai Tham, Tai Viet, Tamil, Telugu, Thaana, Thai, Tibetan, Tifinagh,
Ugaritic, Vai, Yi.

CHARACTER CLASSES

.. positive character class
| negative character class

[

[

[x-vy] range (can be used for hex characters)
[[:xxx:]] positive POSIX named set
[[:"xxx:]] negative POSIX named set

alnum alphanumeric

alpha alphabetic

ascii 0-127

blank space or tab

cntrl control character

digit decimal digit

graph printing, excluding space

lower lower case letter

print printing, including space

punct printing, excluding alphanumeric
space whitespace

upper upper case letter

word same as \w

xdigit hexadecimal digit

In PCRE, POSIX character set names recognize only ASCII characters by
default, but some of them use Unicode properties if PCRE UCP is set.
You can use \Q...\E inside a character class.

QUANTIFIERS

? 0 or 1, greedy

2+ 0 or 1, possessive

?7? 0 or 1, lazy

* 0 or more, greedy

*+ 0 or more, possessive
*? 0 or more, lazy

+ 1 or more, greedy

++ 1 or more, possessive
+7? 1 or more, lazy

{n} exactly n
{n, m} at least n, no more than m, greedy



Appendices: PCRE Specifications

529

{n,m}+
{n,m}?
{n,}

{n, }+
{n,}?

at least n, no more than m, possessive
at least n, no more than m, lazy

n or more, greedy

n or more, possessive

n or more, lazy

ANCHORS AND SIMPLE ASSERTIONS

\b
\B

\A
$

\Z
\z

\G

MATCH POINT RESET

\K

ALTERNATION

word boundary
not a word boundary
start of subject
also after internal newline in multiline mode
start of subject
end of subject
also before newline at end of subject
also before internal newline in multiline mode
end of subject
also before newline at end of subject
end of subject
first matching position in subject

reset start of match

expr|expr|expr...

CAPTURING

(.0

(?<name>...)
(?'name'...)
(
( .
(

?P<name>...

?20...)

ATOMIC GROUPS

(?>...)

COMMENT

(?#....)

OPTION SETTING

capturing group
named capturing group (Perl)
named capturing group (Perl)
) named capturing group (Python)
non-capturing group
non-capturing group; reset group numbers for
capturing groups in each alternative

atomic, non-capturing group

comment (not nestable)

caseless

allow duplicate names
multiline

single line (dotall)



530

Dyalog APL/W Language Reference

(?0) default ungreedy (lazy)
(?x) extended (ignore white space)
(?=...) unset option (s)

The following are recognized only at the start of a pattern or after
one of the newline-setting options with similar syntax:

(*NO_START OPT) no start-match optimization (PCRE_NO START OPTIMIZE)
(*UTE8) set UTF-8 mode (PCRE UTF8)
(*UCP) set PCRE UCP (use Unicode properties for \d etc)

LOOKAHEAD AND LOOKBEHIND ASSERTIONS

(?=...) positive look ahead
(?'...) negative look ahead
(?<=...) positive look behind
(

<L) negative

look behind

Each top-level branch of a look behind must be of a fixed length.

name (Oniguruma)
name (Oniguruma)

number
number
number

number
number
number
number
number
number

BACKREFERENCES
\n reference by number
\gn reference by number
\g{n} reference by number
\g{-n} relative reference by number
\k<name> reference by name (Perl)
\k'name' reference by name (Perl)
\g{name} reference by name (Perl)
\k{name} reference by name (.NET)
(?P=name) reference by name (Python)
SUBROUTINE REFERENCES (POSSIBLY RECURSIVE)
(?R) recurse whole pattern
(?n) call subpattern by absolute
(?4n) call subpattern by relative
(?-n) call subpattern by relative
(?&name) call subpattern by name (Perl)
(?P>name) call subpattern by name (Python)
\g<name> call subpattern by
\g'name"' call subpattern by
\g<n> call subpattern by absolute
\g'n’ call subpattern by absolute
\g<+n> call subpattern by relative
\g'+n' call subpattern by relative
\g<-n> call subpattern by relative
\g'-n' call subpattern by relative
CONDITIONAL PATTERNS
(? (condition) yes-pattern)
(? (condition) yes-pattern|no-pattern)
(?(n) ... absolute reference condition

(? (+n) ... relative reference condition

(can be ambiguous)

(Oniguruma)
(Oniguruma)

(PCRE
(PCRE
(PCRE
(PCRE

extension
extension
extension
extension



Appendices: PCRE Specifications 531

(?(-n) ... relative reference condition

(? (Kname>) ... named reference condition (Perl)
(?('name") ... named reference condition (Perl)
(? (name) ... named reference condition (PCRE)
(?(R) ... overall recursion condition

(? (Rn) ... specific group recursion condition
(? (R&name) . .. specific recursion condition

(? (DEFINE) ... define subpattern for reference

(? (assert) ... assertion condition

BACKTRACKING CONTROL
The following act immediately they are reached:

(*ACCEPT) force successful match
(*FAIL) force backtrack; synonym (*F)

The following act only when a subsequent match failure causes a back-
track to reach them. They all force a match failure, but they differ in
what happens afterwards. Those that advance the start-of-match point do
so only if the pattern is not anchored.

(*COMMIT) overall failure, no advance of starting point
(*PRUNE) advance to next starting character

(*SKIP) advance start to current matching position
(*THEN) local failure, backtrack to next alternation

NEWLINE CONVENTIONS

These are recognized only at the very start of the pattern or after a

(*BSR_...) or (*UTF8) or (*UCP) option.
(*CR) carriage return only
(*LF) linefeed only
(*CRLF) carriage return followed by linefeed
(*ANYCRLF) all three of the above
(*ANY) any Unicode newline sequence

WHAT \R MATCHES

These are recognized only at the very start of the pattern or after a
(*...) option that sets the newline convention or UTF-8 or UCP mode.

(*BSR_ANYCRLF) CR, LF, or CRLF
(*BSR_UNICODE) any Unicode newline sequence
CALLOUTS
(?C) callout
(?Cn) callout with data n
AUTHOR

Philip Hazel
University Computing Service



532 Dyalog APL/W Language Reference

Cambridge CB2 3QH, England.

REVISION

Last updated: 21 November 2010
Copyright (c) 1997-2010 University of Cambridge.



Appendices: PCRE Specifications 533

Appendix B - PCRE Regular Expression Details

PCREPATTERN (3) PCREPATTERN (3)

NAME
PCRE - Perl-compatible regular expressions

PCRE REGULAR EXPRESSION DETAILS

The syntax and semantics of the regular expressions that are supported
by PCRE are described in detail below. There is a quick-reference syn-
tax summary in the pcresyntax page. PCRE tries to match Perl syntax and
semantics as closely as it can. PCRE also supports some alternative
regular expression syntax (which does not conflict with the Perl syn-
tax) in order to provide some compatibility with regular expressions in
Python, .NET, and Oniguruma.

Perl's regular expressions are described in its own documentation, and
regular expressions in general are covered in a number of books, some
of which have copious examples. Jeffrey Friedl's "Mastering Regular
Expressions", published by O0O'Reilly, covers regular expressions in
great detail. This description of PCRE's regular expressions 1is
intended as reference material.

The original operation of PCRE was on strings of one-byte characters.
However, there is now also support for UTF-8 character strings. To use
this, PCRE must be built to include UTF-8 support, and you must call
pcre_compile() or pcre compile2() with the PCRE UTF8 option. There is
also a special sequence that can be given at the start of a pattern:

(*UTF8)

Starting a pattern with this sequence 1is equivalent to setting the
PCRE _UTF8 option. This feature 1is not Perl-compatible. How setting
UTF-8 mode affects pattern matching is mentioned in several places
below. There is also a summary of UTF-8 features in the section on
UTF-8 support in the main pcre page.

The remainder of this document discusses the patterns that are sup-
ported by PCRE when its main matching function, pcre exec(), is used.
From release 6.0, PCRE offers a second matching function,
pcre_dfa exec(), which matches using a different algorithm that is not
Perl-compatible. Some of the features discussed below are not available
when pcre dfa exec() 1s used. The advantages and disadvantages of the
alternative function, and how it differs from the normal function, are
discussed in the pcrematching page.

NEWLINE CONVENTIONS

PCRE supports five different conventions for indicating line breaks in
strings: a single CR (carriage return) character, a single LF (line-
feed) character, the two-character sequence CRLF, any of the three pre-
ceding, or any Unicode newline sequence. The pcreapi page has further
discussion about newlines, and shows how to set the newline convention
in the options arguments for the compiling and matching functions.

It is also possible to specify a newline convention by starting a pat-



534

Dyalog APL/W Language Reference

tern string with one of the following five sequences:

(*CR) carriage return

(*LF) linefeed

(*CRLF) carriage return, followed by linefeed
(*ANYCRLF) any of the three above

(*ANY) all Unicode newline sequences

These override the default and the options given to pcre compile() or
pcre compile2(). For example, on a Unix system where LF is the default
newline sequence, the pattern

(*CR)a.b

changes the convention to CR. That pattern matches "a\nb" because LF is
no longer a newline. Note that these special settings, which are not
Perl-compatible, are recognized only at the very start of a pattern,
and that they must be in upper case. If more than one of them is
present, the last one is used.

The newline convention does not affect what the \R escape sequence
matches. By default, this is any Unicode newline sequence, for Perl
compatibility. However, this can be changed; see the description of \R
in the section entitled "Newline sequences" below. A change of \R set-
ting can be combined with a change of newline convention.

CHARACTERS AND METACHARACTERS

A regular expression 1s a pattern that is matched against a subject
string from left to right. Most characters stand for themselves 1in a
pattern, and match the corresponding characters in the subject. As a
trivial example, the pattern

The quick brown fox

matches a portion of a subject string that is identical to itself. When
caseless matching is specified (the PCRE_CASELESS option), letters are
matched independently of case. In UTF-8 mode, PCRE always understands
the concept of case for characters whose values are less than 128, so
caseless matching is always possible. For characters with higher wval-
ues, the concept of case is supported if PCRE is compiled with Unicode
property support, but not otherwise. If you want to use caseless
matching for characters 128 and above, you must ensure that PCRE is
compiled with Unicode property support as well as with UTF-8 support.

The power of regular expressions comes from the ability to include
alternatives and repetitions in the pattern. These are encoded in the
pattern by the use of metacharacters, which do not stand for themselves
but instead are interpreted in some special way.

There are two different sets of metacharacters: those that are recog-
nized anywhere in the pattern except within square brackets, and those
that are recognized within square brackets. Outside square brackets,
the metacharacters are as follows:

\ general escape character with several uses
~ assert start of string (or line, in multiline mode)
S assert end of string (or line, in multiline mode)

match any character except newline (by default)



Appendices: PCRE Specifications 535

[ start character class definition
| start of alternative branch
( start subpattern
) end subpattern
? extends the meaning of (
also 0 or 1 gquantifier
also quantifier minimizer

* 0 or more quantifier
+ 1 or more quantifier

also "possessive quantifier"
{ start min/max quantifier

Part of a pattern that is in square brackets 1is called a "character
class". In a character class the only metacharacters are:

\ general escape character

~ negate the class, but only if the first character

- indicates character range

[ POSIX character class (only if followed by POSIX
syntax)

] terminates the character class

The following sections describe the use of each of the metacharacters.

BACKSLASH

The backslash character has several uses. Firstly, if it is followed by
a non-alphanumeric character, it takes away any special meaning that
character may have. This use of backslash as an escape character
applies both inside and outside character classes.

For example, if you want to match a * character, you write \* in the
pattern. This escaping action applies whether or not the following
character would otherwise be interpreted as a metacharacter, so it 1is
always safe to precede a non-alphanumeric with backslash to specify
that it stands for itself. In particular, if you want to match a back-
slash, you write \\.

If a pattern is compiled with the PCRE_EXTENDED option, whitespace in
the pattern (other than in a character class) and characters between a
# outside a character class and the next newline are ignored. An escap-
ing backslash can be used to include a whitespace or # character as
part of the pattern.

If you want to remove the special meaning from a sequence of charac-
ters, you can do so by putting them between \Q and \E. This is differ-
ent from Perl in that $ and @ are handled as literals in \Q...\E
sequences in PCRE, whereas in Perl, $ and @ cause variable interpola-
tion. Note the following examples:

Pattern PCRE matches Perl matches
\Qabcs$xyz\E abc$xyz abc followed by the
contents of $xyz
\Qabc\$xyz\E abc\$xyz abc\$xyz
\Qabc\E\$\Qxyz\E  abcSxyz abcSxyz

The \Q...\E sequence 1is recognized both inside and outside character
classes.



536

Dyalog APL/W Language Reference

Non-printing characters

A second use of backslash provides a way of encoding non-printing char-
acters 1in patterns in a visible manner. There is no restriction on the
appearance of non-printing characters, apart from the binary zero that
terminates a pattern, but when a pattern is being prepared by text
editing, it is often easier to wuse one of the following escape
sequences than the binary character it represents:

\a alarm, that is, the BEL character (hex 07)

\cx "control-x", where x is any character

\e escape (hex 1B)

\f formfeed (hex 0C)

\n linefeed (hex 0A)

\r carriage return (hex 0D)

\t tab (hex 09)

\ddd character with octal code ddd, or back reference
\xhh character with hex code hh

\x{hhh..} character with hex code hhh..

The precise effect of \cx is as follows: if x is a lower case letter,
it is converted to upper case. Then bit 6 of the character (hex 40) is
inverted. Thus \cz becomes hex 1A, but \c{ becomes hex 3B, while \c;
becomes hex 7B.

After \x, from zero to two hexadecimal digits are read (letters can be
in upper or lower case). Any number of hexadecimal digits may appear
between \x{ and }, but the value of the character code must Dbe less
than 256 in non-UTF-8 mode, and less than 2**31 in UTF-8 mode. That is,
the maximum value in hexadecimal is 7FFFFFFF. Note that this is Dbigger
than the largest Unicode code point, which is 10FFFF.

If characters other than hexadecimal digits appear between \x{ and },
or if there is no terminating }, this form of escape is not recognized.
Instead, the initial \x will be interpreted as a basic hexadecimal
escape, with no following digits, giving a character whose value 1is
Zero.

Characters whose value is less than 256 can be defined by either of the
two syntaxes for \x. There is no difference in the way they are han-
dled. For example, \xdc is exactly the same as \x{dc}.

After \O wup to two further octal digits are read. If there are fewer
than two digits, just those that are present are wused. Thus the
sequence \0\x\07 specifies two binary zeros followed by a BEL character
(code value 7). Make sure you supply two digits after the initial zero
if the pattern character that follows is itself an octal digit.

The handling of a backslash followed by a digit other than 0 is compli-
cated. Outside a character class, PCRE reads it and any following dig-
its as a decimal number. If the number is less than 10, or if there
have been at least that many previous capturing left parentheses in the
expression, the entire sequence 1is taken as a Dback reference. A
description of how this works is given later, following the discussion
of parenthesized subpatterns.

Inside a character «class, or if the decimal number is greater than 9
and there have not been that many capturing subpatterns, PCRE re-reads
up to three octal digits following the backslash, and uses them to gen-



Appendices: PCRE Specifications 537

erate a data character. Any subsequent digits stand for themselves. 1In
non-UTF-8 mode, the wvalue of a character specified in octal must be
less than \400. In UTF-8 mode, values up to \777 are permitted. For
example:

\040 is another way of writing a space

\40 is the same, provided there are fewer than 40
previous capturing subpatterns

\7 is always a back reference

\11 might be a back reference, or another way of

writing a tab

\011 1is always a tab

\0113 is a tab followed by the character "3"

\113 might be a back reference, otherwise the
character with octal code 113

\377 might be a back reference, otherwise
the byte consisting entirely of 1 bits

\81 is either a back reference, or a binary zero
followed by the two characters "8" and "1"

Note that octal wvalues of 100 or greater must not be introduced by a
leading zero, because no more than three octal digits are ever read.

All the sequences that define a single character value can be used both
inside and outside character classes. In addition, inside a character
class, the sequence \b is interpreted as the backspace character (hex
08), and the sequences \R and \X are interpreted as the characters "R"
and "X", respectively. Outside a character class, these sequences have
different meanings (see below) .

Absolute and relative back references

The sequence \g followed by an unsigned or a negative number, option-
ally enclosed in braces, is an absolute or relative back reference. A
named back reference can be coded as \g{name}. Back references are dis-
cussed later, following the discussion of parenthesized subpatterns.

Absolute and relative subroutine calls

For compatibility with Oniguruma, the non-Perl syntax \g followed by a
name or a number enclosed either in angle brackets or single quotes, is
an alternative syntax for referencing a subpattern as a "subroutine".
Details are discussed later. Note that \g{...} (Perl syntax) and
\g<...> (Oniguruma syntax) are not synonymous. The former is a Dback
reference; the latter is a subroutine call.

Generic character types

Another use of backslash is for specifying generic character types. The
following are always recognized:

\d any decimal digit

\D any character that is not a decimal digit

\h any horizontal whitespace character

\H any character that is not a horizontal whitespace character
\s any whitespace character

\S any character that is not a whitespace character

\v any vertical whitespace character

\V any character that is not a vertical whitespace character

\w any "word" character



538

Dyalog APL/W Language Reference

\W any "non-word" character

Each pair of escape sequences partitions the complete set of characters
into two disjoint sets. Any given character matches one, and only one,
of each pair.

These character type sequences can appear both inside and outside char-
acter classes. They each match one character of the appropriate type.
If the current matching point is at the end of the subject string, all
of them fail, since there is no character to match.

For compatibility with Perl, \s does not match the VT character (code
11). This makes it different from the POSIX "space" class. The \s
characters are HT (9), LF (10), FF (12), CR (13), and space (32). If
"use locale;" is included in a Perl script, \s may match the VT charac-
ter. In PCRE, it never does.

In UTF-8 mode, characters with values greater than 128 never match \d,
\s, or \w, and always match \D, \S, and \W. This is true even when Uni-
code character property support is available. These sequences retain
their original meanings from before UTF-8 support was available, mainly
for efficiency reasons. Note that this also affects \b, because it is
defined in terms of \w and \W.

The sequences \h, \H, \v, and \V are Perl 5.10 features. In contrast to
the other sequences, these do match certain high-valued codepoints in
UTF-8 mode. The horizontal space characters are:

U+0009 Horizontal tab

U+0020 Space

U+00A0 Non-break space

U+1680 Ogham space mark

U+180E Mongolian vowel separator
U+2000 En quad

U+2001 Em quad

U+2002 En space

U+2003 Em space

U+2004 Three-per—-em space

U+2005 Four-per-em space

U+2006 Six-per-em space

U+2007 Figure space

U+2008 Punctuation space

U+2009 Thin space

U+200A Hair space

U+202F Narrow no-break space
U+205F Medium mathematical space
U+3000 Ideographic space

The vertical space characters are:

U+000A Linefeed

U+000B Vertical tab
U+000C Formfeed

U+000D Carriage return
U+0085 Next line

U+2028 Line separator
U+2029 Paragraph separator

A "word" character is an underscore or any character less than 256 that
is a letter or digit. The definition of letters and digits is con-



Appendices: PCRE Specifications 539

trolled by PCRE's low-valued character tables, and may vary if locale-
specific matching is taking place (see "Locale support" in the pcreapi
page) . For example, in a French locale such as "fr FR" in Unix-like
systems, or "french" in Windows, some character codes greater than 128
are used for accented letters, and these are matched by \w. The use of
locales with Unicode is discouraged.

Newline sequences

Outside a character class, by default, the escape sequence \R matches
any Unicode newline sequence. This is a Perl 5.10 feature. In non-UTF-8
mode \R is equivalent to the following:

(?2>\r\n|\n|\x0b|\f|\r|\x85)

This 1s an example of an "atomic group", details of which are given
below. This particular group matches either the two-character sequence
CR followed by LF, or one of the single characters LF (linefeed,
U+000A) , VT (vertical tab, U+000B), FF (formfeed, U+000C), CR (carriage
return, U+000D), or NEL (next line, U+0085). The two-character sequence
is treated as a single unit that cannot be split.

In UTF-8 mode, two additional characters whose codepoints are greater
than 255 are added: LS (line separator, U+2028) and PS (paragraph sepa-
rator, U+2029). Unicode character property support is not needed for
these characters to be recognized.

It is possible to restrict \R to match only CR, LF, or CRLF (instead of
the complete set of Unicode 1line endings) Dby setting the option
PCRE_BSR ANYCRLF either at compile time or when the pattern is matched.

(BSR is an abbrevation for "backslash R".) This can be made the default
when PCRE is Dbuilt; if this is the case, the other behaviour can be
requested via the PCRE BSR UNICODE option. It is also possible to

specify these settings By starting a pattern string with one of the
following sequences:

(*BSR_ANYCRLF) CR, LF, or CRLF only
(*BSR_UNICODE) any Unicode newline sequence

These override the default and the options given to pcre compile() or
pcre compile2 (), but they can be overridden by options given to
pcre_exec() or pcre dfa exec(). Note that these special settings, which
are not Perl-compatible, are recognized only at the very start of a
pattern, and that they must be in upper case. If more than one of them
is present, the last one is used. They can be combined with a change of
newline convention, for example, a pattern can start with:

(*ANY) (*BSR_ANYCRLF)
Inside a character class, \R matches the letter "R".
Unicode character properties
When PCRE is built with Unicode character property support, three addi-
tional escape sequences that match characters with specific properties
are available. When not in UTF-8 mode, these sequences are of course
limited to testing characters whose codepoints are less than 256, but

they do work in this mode. The extra escape sequences are:

\p{xx} a character with the xx property



540

Dyalog APL/W Language Reference

\P{xx} a character without the xx property
\X an extended Unicode sequence

The property names represented by xx above are limited to the Unicode
script names, the general category properties, and "Any", which matches
any character (including newline). Other properties such as "InMusical-
Symbols" are not currently supported by PCRE. Note that \P{Any} does
not match any characters, so always causes a match failure.

Sets of Unicode characters are defined as belonging to certain scripts.
A character from one of these sets can be matched using a script name.
For example:

\p{Greek}
\P{Han}

Those that are not part of an identified script are lumped together as
"Common". The current list of scripts is:

Arabic, Armenian, Balinese, Bengali, Bopomofo, Braille, Buginese,
Buhid, Canadian Aboriginal, Cherokee, Common, Coptic, Cuneiform,
Cypriot, Cyrillic, Deseret, Devanagari, Ethiopic, Georgian, Glagolitic,
Gothic, Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo, Hebrew, Hira-
gana, Inherited, Kannada, Katakana, Kharoshthi, Khmer, Lao, Latin,
Limbu, Linear B, Malayalam, Mongolian, Myanmar, New Tai Lue, Nko,
Ogham, 0ld Italic, O0ld Persian, Oriya, Osmanya, Phags Pa, Phoenician,
Runic, Shavian, Sinhala, Syloti Nagri, Syriac, Tagalog, Tagbanwa,
Tai Le, Tamil, Telugu, Thaana, Thai, Tibetan, Tifinagh, Ugaritic, Yi.

Each character has exactly one general category property, specified by
a two-letter abbreviation. For compatibility with Perl, negation can be
specified by including a circumflex between the opening brace and the
property name. For example, \p{"Lu} is the same as \P{Lu}.

If only one letter is specified with \p or \P, it includes all the gen-
eral category properties that start with that letter. In this case, in
the absence of negation, the curly brackets in the escape sequence are
optional; these two examples have the same effect:

\p{L}
\pL

The following general category property codes are supported:

C Other

Cc Control

Cf Format

Cn Unassigned

Co Private use

Cs Surrogate

L Letter

Ll Lower case letter
Im Modifier letter

Lo Other letter
Lt Title case letter
Lu Upper case letter

M Mark
Mc Spacing mark



Appendices: PCRE Specifications

541

Me Enclosing mark
Mn Non-spacing mark
N Number

Nd Decimal number

N1 Letter number
No Other number

p Punctuation

Pc Connector punctuation
Pd Dash punctuation

Pe Close punctuation

Pf Final punctuation

Pi Initial punctuation
Po Other punctuation

Ps Open punctuation

S Symbol

Sc Currency symbol

Sk Modifier symbol

Sm Mathematical symbol
So Other symbol

Z Separator

z1 Line separator

Zp Paragraph separator
Zs Space separator

The special property L& is also supported: it matches a character that
has the Lu, L1, or Lt property, in other words, a letter that is not
classified as a modifier or "other".

The Cs (Surrogate) property applies only to characters in the range
U+D800 to U+DFFF. Such characters are not valid in UTF-8 strings (see
RFC 3629) and so cannot be tested by PCRE, unless UTF-8 validity check-
ing has been turned off (see the discussion of PCRE NO UTF8 CHECK in
the pcreapi page). Perl does not support the Cs property.

The 1long synonyms for property names that Perl supports (such as
\p{Letter}) are not supported by PCRE, nor is it permitted to prefix
any of these properties with "Is".

No character that is in the Unicode table has the Cn (unassigned) prop-
erty. 1Instead, this property is assumed for any code point that is not
in the Unicode table.

Specifying caseless matching does not affect these escape sequences.
For example, \p{Lu} always matches only upper case letters.

The \X escape matches any number of Unicode characters that form an
extended Unicode sequence. \X is equivalent to

(?>\PM\pM*)

That 1is, it matches a character without the "mark" property, followed
by zero or more characters with the "mark" property, and treats the
sequence as an atomic group (see below). Characters with the "mark"
property are typically accents that affect the preceding character.
None of them have codepoints less than 256, so in non-UTF-8 mode \X
matches any one character.



542

Dyalog APL/W Language Reference

Matching characters by Unicode property is not fast, because PCRE has
to search a structure that contains data for over fifteen thousand
characters. That is why the traditional escape sequences such as \d and
\w do not use Unicode properties in PCRE.

Resetting the match start

The escape sequence \K, which is a Perl 5.10 feature, causes any previ-
ously matched characters not to Dbe included in the final matched
sequence. For example, the pattern:

foo\Kbar

matches "foobar", but reports that it has matched "bar". This feature
is similar to a lookbehind assertion (described below). However, in
this case, the part of the subject before the real match does not have
to be of fixed length, as lookbehind assertions do. The use of \K does
not interfere with the setting of captured substrings. For example,
when the pattern

(foo) \Kbar

matches "foobar", the first substring is still set to "foo".

Simple assertions

The final use of backslash is for certain simple assertions. An asser-
tion specifies a condition that has to be met at a particular point in
a match, without consuming any characters from the subject string. The
use of subpatterns for more complicated assertions is described below.
The backslashed assertions are:

\b matches at a word boundary
\B matches when not at a word boundary
\A matches at the start of the subject
\Z matches at the end of the subject
also matches before a newline at the end of the subject
\z matches only at the end of the subject
\G matches at the first matching position in the subject

These assertions may not appear in character classes (but note that \b
has a different meaning, namely the backspace character, inside a char-
acter class).

A word boundary is a position in the subject string where the current
character and the previous character do not both match \w or \W (i.e.
one matches \w and the other matches \W), or the start or end of the
string if the first or last character matches \w, respectively. Neither
PCRE nor Perl has a separte "start of word" or "end of word" metase-
quence. However, whatever follows \b normally determines which it is.
For example, the fragment \ba matches "a" at the start of a word.
The \A, \Z, and \z assertions differ from the traditional circumflex
and dollar (described in the next section) in that they only ever match
at the very start and end of the subject string, whatever options are
set. Thus, they are independent of multiline mode. These three asser-
tions are not affected by the PCRE NOTBOL or PCRE_NOTEOL options, which
affect only the behaviour of the circumflex and dollar metacharacters.
However, if the startoffset argument of pcre exec() is non-zero, indi-



Appendices: PCRE Specifications 543

cating that matching is to start at a point other than the beginning of
the subject, \A can never match. The difference between \Z and \z is
that \Z matches before a newline at the end of the string as well as at
the very end, whereas \z matches only at the end.

The \G assertion is true only when the current matching position is at
the start point of the match, as specified by the startoffset argument
of pcre exec(). It differs from \A when the wvalue of startoffset is
non-zero. By calling pcre exec() multiple times with appropriate argu-
ments, you can mimic Perl's /g option, and it is in this kind of imple-
mentation where \G can be useful.

Note, however, that PCRE's interpretation of \G, as the start of the
current match, is subtly different from Perl's, which defines it as the
end of the previous match. In Perl, these can be different when the
previously matched string was empty. Because PCRE does just one match
at a time, it cannot reproduce this behaviour.

If all the alternatives of a pattern begin with \G, the expression is
anchored to the starting match position, and the "anchored" flag is set
in the compiled regular expression.

CIRCUMFLEX AND DOLLAR

Outside a character class, in the default matching mode, the circumflex
character is an assertion that is true only if the current matching
point is at the start of the subject string. If the startoffset argu-
ment of pcre exec() is non-zero, circumflex can never match if the
PCRE MULTILINE option is unset. Inside a character class, circumflex
has an entirely different meaning (see below) .

Circumflex need not be the first character of the pattern if a number
of alternatives are involved, but it should be the first thing in each
alternative in which it appears if the pattern is ever to match that
branch. If all possible alternatives start with a circumflex, that is,
if the pattern is constrained to match only at the start of the sub-
ject, it 1s said to be an "anchored" pattern. (There are also other
constructs that can cause a pattern to be anchored.)

A dollar character is an assertion that is true only if the current
matching point 1is at the end of the subject string, or immediately
before a newline at the end of the string (by default). Dollar need not
be the last character of the pattern if a number of alternatives are
involved, but it should be the last item in any branch in which it
appears. Dollar has no special meaning in a character class.

The meaning of dollar can be changed so that it matches only at the
very end of the string, by setting the PCRE DOLLAR ENDONLY option at
compile time. This does not affect the \Z assertion.

The meanings of the circumflex and dollar characters are changed if the
PCRE MULTILINE option is set. When this is the case, a circumflex
matches immediately after internal newlines as well as at the start of
the subject string. It does not match after a newline that ends the
string. A dollar matches before any newlines in the string, as well as
at the very end, when PCRE MULTILINE is set. When newline is specified
as the two-character sequence CRLF, isolated CR and LF characters do
not indicate newlines.



544

Dyalog APL/W Language Reference

For example, the pattern /”“abc$/ matches the subject string "def\nabc"
(where \n represents a newline) in multiline mode, but not otherwise.
Consequently, patterns that are anchored in single line mode because
all branches start with *» are not anchored in multiline mode, and a
match for circumflex is possible when the startoffset argument of
pcre _exec() 1s non-zero. The PCRE DOLLAR ENDONLY option is ignored if
PCRE_MULTILINE is set.

Note that the sequences \A, \Z, and \z can be used to match the start
and end of the subject in both modes, and if all branches of a pattern
start with \A it is always anchored, whether or not PCRE MULTILINE is
set.

FULL STOP (PERIOD, DOT)

Outside a character class, a dot in the pattern matches any one charac-
ter in the subject string except (by default) a character that signi-
fies the end of a line. In UTF-8 mode, the matched character may be
more than one byte long.

When a line ending is defined as a single character, dot never matches
that character; when the two-character sequence CRLF is used, dot does
not match CR if it is immediately followed by LF, but otherwise it
matches all characters (including isolated CRs and LFs). When any Uni-
code line endings are being recognized, dot does not match CR or LF or
any of the other line ending characters.

The behaviour of dot with regard to newlines can be changed. If the
PCRE DOTALL option is set, a dot matches any one character, without
exception. If the two-character sequence CRLF is present in the subject
string, it takes two dots to match it.

The handling of dot is entirely independent of the handling of circum-
flex and dollar, the only relationship being that they both involve
newlines. Dot has no special meaning in a character class.

MATCHING A SINGLE BYTE

SQUARE

Outside a character class, the escape sequence \C matches any one byte,
both in and out of UTF-8 mode. Unlike a dot, it always matches any
line-ending characters. The feature is provided in Perl in order to
match individual bytes in UTF-8 mode. Because it breaks up UTF-8 char-
acters into individual bytes, what remains in the string may be a mal-
formed UTF-8 string. For this reason, the \C escape sequence is best
avoided.

PCRE does not allow \C to appear in lookbehind assertions (described
below), Dbecause in UTF-8 mode this would make it impossible to calcu-
late the length of the lookbehind.

BRACKETS AND CHARACTER CLASSES

An opening square bracket introduces a character class, terminated by a
closing square bracket. A closing square bracket on its own is not spe-
cial by default. However, if the PCRE JAVASCRIPT COMPAT option is set,
a lone closing square bracket causes a compile-time error. If a closing
square bracket is required as a member of the class, it should Dbe the



Appendices: PCRE Specifications

545

first data character in the «class (after an initial circumflex, if
present) or escaped with a backslash.

A character class matches a single character in the subject. In UTF-8
mode, the character may be more than one byte long. A matched character
must be in the set of characters defined by the class, unless the first
character in the class definition is a circumflex, in which case the
subject character must not be in the set defined by the class. If a
circumflex is actually required as a member of the class, ensure it is
not the first character, or escape it with a backslash.

For example, the character class [aeiou] matches any lower case vowel,
while ["aeiou] matches any character that is not a lower case vowel.
Note that a circumflex is just a convenient notation for specifying the
characters that are in the class by enumerating those that are not. A
class that starts with a circumflex is not an assertion; it still con-
sumes a character from the subject string, and therefore it fails if
the current pointer is at the end of the string.

In UTF-8 mode, characters with values greater than 255 can be included
in a class as a literal string of bytes, or by using the \x{ escaping
mechanism.

When caseless matching is set, any letters in a class represent both
their upper case and lower case versions, so for example, a caseless
[aeiou] matches "A" as well as "a", and a caseless [“aeiou] does not
match "A", whereas a caseful version would. In UTF-8 mode, PCRE always
understands the concept of case for characters whose values are less
than 128, so caseless matching is always possible. For characters with
higher values, the concept of case is supported if PCRE 1is compiled
with Unicode property support, but not otherwise. If you want to use
caseless matching in UTF8-mode for characters 128 and above, you must
ensure that PCRE is compiled with Unicode property support as well as
with UTF-8 support.

Characters that might indicate line breaks are never treated in any
special way when matching character classes, whatever line-ending
sequence is in wuse, and whatever setting of the PCRE DOTALL and
PCRE_MULTILINE options is used. A class such as ["a] always matches one
of these characters.

The minus (hyphen) character can be used to specify a range of charac-
ters in a character class. For example, [d-m] matches any letter
between d and m, inclusive. If a minus character 1is required in a
class, 1t must be escaped with a backslash or appear in a position
where it cannot be interpreted as indicating a range, typically as the
first or last character in the class.

It is not possible to have the literal character "]" as the end charac-
ter of a range. A pattern such as [W-]46] is interpreted as a class of
two characters ("W" and "-") followed by a literal string "46]", so it
would match "W46]" or "-46]". However, if the "]" 1is escaped with a
backslash it is interpreted as the end of range, so [W-\]46] is inter-
preted as a class containing a range followed by two other characters.
The octal or hexadecimal representation of "]" can also be used to end
a range.

Ranges operate in the collating sequence of character values. They can
also be wused for characters specified numerically, for example
[\000-\037]. In UTF-8 mode, ranges can include characters whose values



546

Dyalog APL/W Language Reference

are greater than 255, for example [\x{100}-\x{2ff}].

If a range that includes letters is used when caseless matching is set,
it matches the letters in either case. For example, [W-c] is equivalent
to []J[\\"_ ‘wxyzabc], matched caselessly, and in non-UTF-8 mode, if
character tables for a French locale are in use, [\xc8-\xcb] matches
accented E characters in both cases. In UTF-8 mode, PCRE supports the
concept of case for characters with values greater than 128 only when
it is compiled with Unicode property support.

The character types \d, \D, \p, \P, \s, \S, \w, and \W may also appear
in a character class, and add the characters that they match to the
class. For example, [\dABCDEF] matches any hexadecimal digit. A circum-
flex can conveniently be used with the upper case character types to
specify a more restricted set of characters than the matching lower
case type. For example, the class ["\W_] matches any letter or digit,
but not underscore.

The only metacharacters that are recognized in character classes are
backslash, hyphen (only where it can be interpreted as specifying a
range), circumflex (only at the start), opening square bracket (only
when it can be interpreted as introducing a POSIX class name - see the
next section), and the terminating closing square bracket. However,
escaping other non-alphanumeric characters does no harm.

POSIX CHARACTER CLASSES

Perl supports the POSIX notation for character classes. This uses names
enclosed Dby [: and :] within the enclosing square brackets. PCRE also
supports this notation. For example,

[01[:alpha:]%]

matches "0", "1", any alphabetic character, or "$". The supported class
names are

alnum letters and digits

alpha letters

ascii character codes 0 - 127

blank space or tab only

cntrl control characters

digit decimal digits (same as \d)

graph printing characters, excluding space
lower lower case letters

print printing characters, including space
punct printing characters, excluding letters and digits
space white space (not quite the same as \s)
upper upper case letters

word "word" characters (same as \w)

xdigit hexadecimal digits

The "space" characters are HT (9), LF (10), VT (11), FF (12), CR (13),
and space (32). Notice that this list includes the VT character (code
11) . This makes "space" different to \s, which does not include VT (for
Perl compatibility).

The name "word" is a Perl extension, and "blank" is a GNU extension
from Perl 5.8. Another Perl extension is negation, which is indicated
by a ”~ character after the colon. For example,



Appendices: PCRE Specifications 547

[12[:"digit:]]

matches "1", "2", or any non-digit. PCRE (and Perl) also recognize the
POSIX syntax [.ch.] and [=ch=] where "ch" is a "collating element", but
these are not supported, and an error is given if they are encountered.

In UTF-8 mode, characters with values greater than 128 do not match any
of the POSIX character classes.

VERTICAL BAR

Vertical Dbar characters are used to separate alternative patterns. For
example, the pattern

gilbert|sullivan

matches either "gilbert" or "sullivan". Any number of alternatives may
appear, and an empty alternative 1is permitted (matching the empty
string) . The matching process tries each alternative in turn, from left
to right, and the first one that succeeds is used. If the alternatives
are within a subpattern (defined below), "succeeds" means matching the
rest of the main pattern as well as the alternative in the subpattern.

INTERNAL OPTION SETTING

The settings of the PCRE CASELESS, PCRE MULTILINE, PCRE DOTALL, and
PCRE_EXTENDED options (which are Perl-compatible) can be changed from
within the pattern by a sequence of Perl option letters enclosed
between " (?" and ")". The option letters are

i for PCRE CASELESS
m for PCRE MULTILINE
s for PCRE_DOTALL

x for PCRE_EXTENDED

For example, (?im) sets caseless, multiline matching. It is also possi-
ble to unset these options by preceding the letter with a hyphen, and a
combined setting and unsetting such as (?im-sx), which sets PCRE CASE-
LESS and PCRE MULTILINE while unsetting PCRE DOTALL and PCRE EXTENDED,
is also permitted. If a letter appears both before and after the
hyphen, the option is unset.

The PCRE-specific options PCRE DUPNAMES, PCRE_UNGREEDY, and PCRE EXTRA
can be changed in the same way as the Perl-compatible options by using
the characters J, U and X respectively.

When one of these option changes occurs at top level (that is, not
inside subpattern parentheses), the change applies to the remainder of
the pattern that follows. If the change is placed right at the start of
a pattern, PCRE extracts it into the global options (and it will there-
fore show up in data extracted by the pcre fullinfo() function).

An option change within a subpattern (see below for a description of
subpatterns) affects only that part of the current pattern that follows

it, so

(a(?i)b)c



548

Dyalog APL/W Language Reference

matches abc and aBc and no other strings (assuming PCRE CASELESS is not
used) . By this means, options can be made to have different settings
in different parts of the pattern. Any changes made in one alternative
do carry on into subsequent branches within the same subpattern. For
example,

(a(?i)blc)
matches "ab", "aB", "c", and "C", even though when matching "C" the
first branch is abandoned before the option setting. This is because
the effects of option settings happen at compile time. There would be
some very weird behaviour otherwise.

Note: There are other PCRE-specific options that can be set by the
application when the compile or match functions are called. In some
cases the pattern can contain special leading sequences such as (*CRLF)
to override what the application has set or what has been defaulted.
Details are given in the section entitled "Newline sequences" above.
There 1s also the (*UTF8) leading sequence that can be used to set
UTF-8 mode; this is equivalent to setting the PCRE UTF8 option.

SUBPATTERNS

Subpatterns are delimited by parentheses (round brackets), which can be
nested. Turning part of a pattern into a subpattern does two things:

1. It localizes a set of alternatives. For example, the pattern
cat (aract|erpillar])

matches one of the words "cat", "cataract", or "caterpillar". Without
the parentheses, it would match '"cataract", "erpillar" or an empty
string.

2. It sets up the subpattern as a capturing subpattern. This means
that, when the whole pattern matches, that portion of the subject
string that matched the subpattern is passed back to the caller via the
ovector argument of pcre exec(). Opening parentheses are counted from
left to right (starting from 1) to obtain numbers for the capturing
subpatterns.

For example, if the string "the red king" is matched against the pat-
tern

the ((red|white) (kingl|queen))

the captured substrings are "red king", "red", and "king", and are num-
bered 1, 2, and 3, respectively.

The fact that plain parentheses fulfil two functions 1is not always
helpful. There are often times when a grouping subpattern is required
without a capturing requirement. If an opening parenthesis is followed
by a question mark and a colon, the subpattern does not do any captur-
ing, and is not counted when computing the number of any subsequent
capturing subpatterns. For example, if the string "the white queen" is
matched against the pattern

the ((?:red|white) (king|queen))



Appendices: PCRE Specifications 549

the captured substrings are "white queen" and "queen", and are numbered
1 and 2. The maximum number of capturing subpatterns is 65535.

As a convenient shorthand, if any option settings are required at the
start of a non-capturing subpattern, the option letters may appear
between the "?" and the ":". Thus the two patterns

(?i:saturday|sunday)
(?:(?1)saturday|sunday)

match exactly the same set of strings. Because alternative branches are
tried from left to right, and options are not reset until the end of
the subpattern is reached, an option setting in one branch does affect
subsequent branches, so the above patterns match "SUNDAY" as well as
"Saturday".

DUPLICATE SUBPATTERN NUMBERS

Perl 5.10 introduced a feature whereby each alternative in a subpattern
uses the same numbers for its capturing parentheses. Such a subpattern
starts with (?| and is itself a non-capturing subpattern. For example,
consider this pattern:

(?| (Sat)ur| (Sun))day

Because the two alternatives are inside a (?| group, both sets of cap-
turing parentheses are numbered one. Thus, when the pattern matches,
you can look at captured substring number one, whichever alternative
matched. This construct is useful when you want to capture part, but
not all, of one of a number of alternatives. Inside a (?| group, paren-
theses are numbered as usual, but the number is reset at the start of
each branch. The numbers of any capturing buffers that follow the sub-
pattern start after the highest number used in any branch. The follow-
ing example is taken from the Perl documentation. The numbers under-
neath show in which buffer the captured content will be stored.

# Db
/(a) RIx(y)z |l (@1 | (&) u(w) (z)/x
# 1 2 2 3 2 3 4

A Dback reference to a numbered subpattern uses the most recent value
that is set for that number by any subpattern. The following pattern
matches "abcabc" or "defdef":

/(2] (abc) | (def))\1/
In contrast, a recursive or "subroutine" call to a numbered subpattern
always refers to the first one in the pattern with the given number.
The following pattern matches "abcabc" or "defabc":

/(2| (abc) | (def)) (21)/
If a condition test for a subpattern's having matched refers to a non-
unique number, the test is true if any of the subpatterns of that num-

ber have matched.

An alternative approach to using this "branch reset" feature is to use
duplicate named subpatterns, as described in the next section.



550

Dyalog APL/W Language Reference

NAMED SUBPATTERNS

Identifying capturing parentheses by number is simple, but it can be
very hard to keep track of the numbers in complicated regular expres-—
sions. Furthermore, if an expression is modified, the numbers may
change. To help with this difficulty, PCRE supports the naming of sub-
patterns. This feature was not added to Perl until release 5.10. Python
had the feature earlier, and PCRE introduced it at release 4.0, using
the Python syntax. PCRE now supports both the Perl and the Python syn-
tax. Perl allows identically numbered subpatterns to have different
names, but PCRE does not.

In PCRE, a subpattern can be named in one of three ways: (?<name>...)
or (?'name'...) as in Perl, or (?P<name>...) as in Python. References
to capturing parentheses from other parts of the pattern, such as back
references, recursion, and conditions, can be made by name as well as
by number.

Names consist of up to 32 alphanumeric characters and underscores.
Named capturing parentheses are still allocated numbers as well as
names, exactly as if the names were not present. The PCRE API provides
function calls for extracting the name-to-number translation table from
a compiled pattern. There is also a convenience function for extracting
a captured substring by name.

By default, a name must be unique within a pattern, but it is possible
to relax this constraint by setting the PCRE DUPNAMES option at compile
time. (Duplicate names are also always permitted for subpatterns with
the same number, set up as described in the previous section.) Dupli-
cate names can Dbe useful for patterns where only one instance of the
named parentheses can match. Suppose you want to match the name of a
weekday, either as a 3-letter abbreviation or as the full name, and in
both cases you want to extract the abbreviation. This pattern (ignoring
the line breaks) does the job:

(?<DN>Mon | Fri|Sun) (?:day) ?|
(?<DN>Tue) (?:sday) ?|
(?<DN>Wed) (?:nesday) ?|
(?<DN>Thu) (?:rsday) ? |
(?<DN>Sat) (?:urday) ?

There are five capturing substrings, but only one is ever set after a
match. (An alternative way of solving this problem is to use a "branch
reset" subpattern, as described in the previous section.)

The convenience function for extracting the data by name returns the
substring for the first (and in this example, the only) subpattern of
that name that matched. This saves searching to find which numbered
subpattern it was.

If you make a back reference to a non-unique named subpattern from
elsewhere 1in the pattern, the one that corresponds to the first occur-
rence of the name is used. In the absence of duplicate numbers (see the
previous section) this is the one with the lowest number. If you use a
named reference in a condition test (see the section about conditions
below), either to check whether a subpattern has matched, or to check
for recursion, all subpatterns with the same name are tested. If the
condition 1s true for any one of them, the overall condition is true.



Appendices: PCRE Specifications 551

This is the same behaviour as testing by number. For further details of
the interfaces for handling named subpatterns, see the pcreapi documen-
tation.

Warning: You cannot use different names to distinguish between two sub-
patterns with the same number because PCRE uses only the numbers when
matching. For this reason, an error is given at compile time if differ-
ent names are given to subpatterns with the same number. However, you
can give the same name to subpatterns with the same number, even when
PCRE_DUPNAMES is not set.

REPETITION

Repetition 1is specified by quantifiers, which can follow any of the
following items:

a literal data character

the dot metacharacter

the \C escape sequence

the \X escape sequence (in UTF-8 mode with Unicode properties)
the \R escape sequence

an escape such as \d that matches a single character

a character class

a back reference (see next section)

a parenthesized subpattern (unless it is an assertion)

a recursive or "subroutine" call to a subpattern

The general repetition quantifier specifies a minimum and maximum num-
ber of permitted matches, by giving the two numbers in curly brackets
(braces), separated by a comma. The numbers must be less than 65536,
and the first must be less than or equal to the second. For example:

z{2,4}

matches "zz", "zzz", or "zzzz". A closing brace on its own is not a
special character. If the second number is omitted, but the comma is
present, there 1s no upper limit; if the second number and the comma
are both omitted, the quantifier specifies an exact number of required
matches. Thus

[aeiou] {3, }
matches at least 3 successive vowels, but may match many more, while
\d{8}

matches exactly 8 digits. An opening curly bracket that appears in a
position where a quantifier is not allowed, or one that does not match
the syntax of a quantifier, is taken as a literal character. For exam-—
ple, {,6} is not a quantifier, but a literal string of four characters.

In UTF-8 mode, quantifiers apply to UTF-8 characters rather than to
individual bytes. Thus, for example, \x{100}{2} matches two UTF-8 char-
acters, each of which is represented by a two-byte sequence. Similarly,
when Unicode property support is available, \X{3} matches three Unicode
extended sequences, each of which may be several bytes long (and they
may be of different lengths).

The quantifier {0} is permitted, causing the expression to behave as if



552

Dyalog APL/W Language Reference

the previous item and the quantifier were not present. This may be use-
ful for subpatterns that are referenced as subroutines from elsewhere
in the pattern. Items other than subpatterns that have a {0} quantifier
are omitted from the compiled pattern.

For convenience, the three most common quantifiers have single-charac-
ter abbreviations:

is equivalent to {0,}
+ is equivalent to {1,}
? is equivalent to {0,1}

It is possible to construct infinite loops by following a subpattern
that can match no characters with a quantifier that has no upper limit,
for example:

(a?)*

Earlier versions of Perl and PCRE used to give an error at compile time
for such patterns. However, because there are cases where this can be
useful, such patterns are now accepted, but if any repetition of the
subpattern does in fact match no characters, the loop is forcibly bro-
ken.

By default, the quantifiers are "greedy", that is, they match as much
as possible (up to the maximum number of permitted times), without
causing the rest of the pattern to fail. The classic example of where
this gives problems is in trying to match comments in C programs. These
appear between /* and */ and within the comment, individual * and /
characters may appear. An attempt to match C comments by applying the
pattern

VAN
to the string
/* first comment */ not comment /* second comment */

fails, because it matches the entire string owing to the greediness of
the .* item.

However, 1f a quantifier is followed by a question mark, it ceases to
be greedy, and instead matches the minimum number of times possible, so
the pattern

ANV

does the right thing with the C comments. The meaning of the various
quantifiers is not otherwise changed, Jjust the preferred number of
matches. Do not confuse this use of question mark with its use as a
quantifier in its own right. Because it has two uses, it can sometimes
appear doubled, as in

\d2?\d

which matches one digit by preference, but can match two if that is the
only way the rest of the pattern matches.

If the PCRE UNGREEDY option is set (an option that is not available in
Perl), the quantifiers are not greedy by default, but individual ones



Appendices: PCRE Specifications

553

ATOMIC

can be made greedy by following them with a question mark. In other
words, it inverts the default behaviour.

When a parenthesized subpattern is quantified with a minimum repeat
count that is greater than 1 or with a limited maximum, more memory is
required for the compiled pattern, in proportion to the size of the
minimum or maximum.

If a pattern starts with .* or .{0,} and the PCRE DOTALL option (equiv-
alent to Perl's /s) is set, thus allowing the dot to match newlines,
the pattern is implicitly anchored, because whatever follows will be
tried against every character position in the subject string, so there
is no point in retrying the overall match at any position after the
first. PCRE normally treats such a pattern as though it were preceded
by \A.

In cases where it is known that the subject string contains no new-
lines, it 1is worth setting PCRE DOTALL in order to obtain this opti-
mization, or alternatively using ”~ to indicate anchoring explicitly.

However, there is one situation where the optimization cannot be wused.
When .* 1s inside capturing parentheses that are the subject of a back
reference elsewhere in the pattern, a match at the start may fail where
a later one succeeds. Consider, for example:

(.*)abc\1

If the subject is "xyz123abcl23" the match point is the fourth charac-
ter. For this reason, such a pattern is not implicitly anchored.

When a capturing subpattern is repeated, the value captured is the sub-
string that matched the final iteration. For example, after

(tweedle[dume] {3}\s*)+

has matched "tweedledum tweedledee" the value of the captured substring
is "tweedledee". However, if there are nested capturing subpatterns,
the corresponding captured values may have been set in previous itera-
tions. For example, after

/(al (b))+/

matches "aba" the value of the second captured substring is "b".

GROUPING AND POSSESSIVE QUANTIFIERS

With both maximizing ("greedy") and minimizing ("ungreedy" or "lazy")
repetition, failure of what follows normally causes the repeated item
to be re-evaluated to see if a different number of repeats allows the
rest of the pattern to match. Sometimes it is useful to prevent this,
either to change the nature of the match, or to cause it fail earlier
than it otherwise might, when the author of the pattern knows there is
no point in carrying on.

Consider, for example, the pattern \d+foo when applied to the subject
line

123456bar



554

Dyalog APL/W Language Reference

After matching all 6 digits and then failing to match "foo", the normal
action of the matcher is to try again with only 5 digits matching the
\d+ item, and then with 4, and so on, before ultimately failing.
"Atomic grouping" (a term taken from Jeffrey Friedl's book) provides
the means for specifying that once a subpattern has matched, it is not
to be re-evaluated in this way.

If we use atomic grouping for the previous example, the matcher gives
up immediately on failing to match "foo" the first time. The notation
is a kind of special parenthesis, starting with (?> as in this example:

(?>\d+) foo

This kind of parenthesis "locks up" the part of the pattern it con-
tains once it has matched, and a failure further into the pattern is
prevented from backtracking into it. Backtracking past it to previous
items, however, works as normal.

An alternative description 1is that a subpattern of this type matches
the string of characters that an identical standalone pattern would
match, if anchored at the current point in the subject string.

Atomic grouping subpatterns are not capturing subpatterns. Simple cases
such as the above example can be thought of as a maximizing repeat that
must swallow everything it can. So, while both \d+ and \d+? are pre-
pared to adjust the number of digits they match in order to make the
rest of the pattern match, (?>\d+) can only match an entire sequence of
digits.

Atomic groups in general can of course contain arbitrarily complicated
subpatterns, and can be nested. However, when the subpattern for an
atomic group is just a single repeated item, as in the example above, a
simpler notation, called a "possessive quantifier" can be used. This
consists of an additional + character following a quantifier. Using
this notation, the previous example can be rewritten as

\d++foo

Note that a possessive quantifier can be used with an entire group, for
example:

(abc|xyz) {2,3}+

Possessive quantifiers are always greedy; the setting of the
PCRE _UNGREEDY option is ignored. They are a convenient notation for the
simpler forms of atomic group. However, there is no difference in the
meaning of a possessive quantifier and the equivalent atomic group,
though there may be a performance difference; possessive quantifiers
should be slightly faster.

The possessive quantifier syntax is an extension to the Perl 5.8 syn-
tax. Jeffrey Friedl originated the idea (and the name) in the first
edition of his book. Mike McCloskey liked it, so implemented it when he
built Sun's Java package, and PCRE copied it from there. It ultimately
found its way into Perl at release 5.10.

PCRE has an optimization that automatically "possessifies" certain sim-
ple pattern constructs. For example, the sequence A+B 1is treated as
A++B because there is no point in backtracking into a sequence of A's
when B must follow.



Appendices: PCRE Specifications 555

When a pattern contains an unlimited repeat inside a subpattern that
can itself be repeated an unlimited number of times, the use of an
atomic group is the only way to avoid some failing matches taking a
very long time indeed. The pattern

(\D+|<\d+>) *[1?]

matches an unlimited number of substrings that either consist of non-
digits, or digits enclosed in <>, followed by either ! or ?. When it
matches, it runs quickly. However, if it is applied to

daaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

it takes a long time before reporting failure. This is because the
string can be divided between the internal \D+ repeat and the external
* repeat in a large number of ways, and all have to be tried. (The
example uses [!?] rather than a single character at the end, because
both PCRE and Perl have an optimization that allows for fast failure
when a single character is used. They remember the last single charac-
ter that i1s required for a match, and fail early if it is not present
in the string.) If the pattern is changed so that it wuses an atomic
group, like this:

((2>\D+) [<\d+>) *[!?]

sequences of non-digits cannot be broken, and failure happens quickly.

BACK REFERENCES

Outside a character class, a backslash followed by a digit greater than
0 (and possibly further digits) is a back reference to a capturing sub-
pattern earlier (that is, to its left) in the pattern, provided there
have been that many previous capturing left parentheses.

However, if the decimal number following the backslash is less than 10,
it 1is always taken as a back reference, and causes an error only if
there are not that many capturing left parentheses in the entire pat-
tern. In other words, the parentheses that are referenced need not be
to the left of the reference for numbers less than 10. A "forward back
reference" of this type can make sense when a repetition is involved
and the subpattern to the right has participated in an earlier itera-
tion.

It is not possible to have a numerical "forward back reference" to a
subpattern whose number is 10 or more wusing this syntax because a
sequence such as \50 is interpreted as a character defined in octal.
See the subsection entitled "Non-printing characters" above for further
details of the handling of digits following a backslash. There is no
such problem when named parentheses are used. A back reference to any
subpattern is possible using named parentheses (see below) .

Another way of avoiding the ambiguity inherent in the use of digits
following a backslash is to use the \g escape sequence, which is a fea-
ture introduced in Perl ©5.10. This escape must be followed by an
unsigned number or a negative number, optionally enclosed in braces.
These examples are all identical:

(ring), \1



556

Dyalog APL/W Language Reference

(ring), \gl
(ring), \g{1}

An unsigned number specifies an absolute reference without the ambigu-
ity that is present in the older syntax. It is also useful when literal
digits follow the reference. A negative number is a relative reference.
Consider this example:

(abc (def) ghi) \g{-1}

The sequence \g{-1} is a reference to the most recently started captur-
ing subpattern before \g, that is, is it equivalent to \2. Similarly,
\g{-2} would be equivalent to \1. The use of relative references can be
helpful in 1long patterns, and also in patterns that are created by
joining together fragments that contain references within themselves.

A back reference matches whatever actually matched the capturing sub-
pattern in the current subject string, rather than anything matching
the subpattern itself (see "Subpatterns as subroutines" below for a way
of doing that). So the pattern

(sens|respons)e and \libility

matches "sense and sensibility" and "response and responsibility", but
not "sense and responsibility". If caseful matching is in force at the
time of the back reference, the case of letters is relevant. For exam-—
ple,

((?1) rah)\s+\1

matches "rah rah" and "RAH RAH", but not "RAH rah", even though the
original capturing subpattern is matched caselessly.

There are several different ways of writing back references to named
subpatterns. The .NET syntax \k{name} and the Perl syntax \k<name> or
\k'name' are supported, as is the Python syntax (?P=name). Perl 5.10's
unified back reference syntax, in which \g can be used for both numeric
and named references, 1is also supported. We could rewrite the above
example in any of the following ways:

(?<pl>(?1i) rah) \s+\k<pl>

(?'pl' (?i)rah) \s+\k{pl}

(?P<pl>(?1)rah)\s+(?P=pl)

(?<pl>(?i)rah)\s+\g{pl}

A subpattern that is referenced by name may appear in the pattern
before or after the reference.

There may be more than one back reference to the same subpattern. If a
subpattern has not actually been used in a particular match, any back
references to it always fail by default. For example, the pattern

(al (bc))\2
always fails if it starts to match "a" rather than "bc". However, if
the PCRE JAVASCRIPT COMPAT option is set at compile time, a back refer-

ence to an unset value matches an empty string.

Because there may be many capturing parentheses in a pattern, all dig-
its following a backslash are taken as part of a potential back refer-



Appendices: PCRE Specifications 557

ence number. If the pattern continues with a digit character, some
delimiter must be wused to terminate the Dback reference. If the
PCRE_EXTENDED option is set, this can be whitespace. Otherwise, the \g{
syntax or an empty comment (see "Comments" below) can be used.

Recursive back references

A back reference that occurs inside the parentheses to which it refers
fails when the subpattern is first used, so, for example, (a\l) never
matches. However, such references can be useful inside repeated sub-
patterns. For example, the pattern

(alb\1)+

matches any number of "a"s and also "aba", "ababbaa" etc. At each iter-
ation of the subpattern, the Dback reference matches the character
string corresponding to the previous iteration. In order for this to
work, the pattern must be such that the first iteration does not need
to match the back reference. This can be done using alternation, as in
the example above, or by a quantifier with a minimum of zero.

Back references of this type cause the group that they reference to be
treated as an atomic group. Once the whole group has been matched, a
subsequent matching failure cannot cause backtracking into the middle
of the group.

ASSERTIONS

An assertion 1is a test on the characters following or preceding the
current matching point that does not actually consume any characters.
The simple assertions coded as \b, \B, \A, \G, \Z, \z, * and $ are
described above.

More complicated assertions are coded as subpatterns. There are two
kinds: those that look ahead of the current position in the subject
string, and those that look behind it. An assertion subpattern is
matched in the normal way, except that it does not cause the current
matching position to be changed.

Assertion subpatterns are not capturing subpatterns, and may not be
repeated, Dbecause it makes no sense to assert the same thing several
times. If any kind of assertion contains capturing subpatterns within
it, these are counted for the purposes of numbering the capturing sub-
patterns in the whole pattern. However, substring capturing is carried
out only for positive assertions, because it does not make sense for
negative assertions.

Lookahead assertions

Lookahead assertions start with (?= for positive assertions and (?! for
negative assertions. For example,

\w+ (?=;)

matches a word followed by a semicolon, but does not include the semi-
colon in the match, and

foo (?!bar)



558

Dyalog APL/W Language Reference

matches any occurrence of "foo" that is not followed by "bar". Note
that the apparently similar pattern

(?!foo)bar

does not find an occurrence of "bar" that is preceded by something
other than "foo"; it finds any occurrence of "bar" whatsoever, because
the assertion (?!foo) is always true when the next three characters are
"bar". A lookbehind assertion is needed to achieve the other effect.

If you want to force a matching failure at some point in a pattern, the
most convenient way to do it is with (?!) because an empty string
always matches, so an assertion that requires there not to be an empty
string must always fail. The Perl 5.10 backtracking control verb
(*FAIL) or (*F) is essentially a synonym for (?!).

Lookbehind assertions

Lookbehind assertions start with (?<= for positive assertions and (?<!
for negative assertions. For example,

(?<!foo)bar

does find an occurrence of "bar" that is not preceded by "foo". The
contents of a lookbehind assertion are restricted such that all the
strings it matches must have a fixed length. However, if there are sev-
eral top-level alternatives, they do not all have to have the same
fixed length. Thus

(?<=bullock|donkey)
is permitted, but
(?<!dogs?|cats?)

causes an error at compile time. Branches that match different length
strings are permitted only at the top level of a lookbehind assertion.
This 1is an extension compared with Perl (5.8 and 5.10), which requires
all branches to match the same length of string. An assertion such as

(?<=ab(c|de))

is not permitted, because its single top-level branch can match two
different lengths, but it is acceptable to PCRE if rewritten to use two
top-level branches:

(?<=abc|abde)

In some cases, the Perl 5.10 escape sequence \K (see above) can be used
instead of a lookbehind assertion to get round the fixed-length
restriction.

The implementation of lookbehind assertions is, for each alternative,
to temporarily move the current position back by the fixed length and
then try to match. If there are insufficient characters before the cur-
rent position, the assertion fails.

PCRE does not allow the \C escape (which matches a single byte in UTF-8
mode) to appear in lookbehind assertions, because it makes it impossi-
ble to calculate the length of the lookbehind. The \X and \R escapes,



Appendices: PCRE Specifications 559

which can match different numbers of bytes, are also not permitted.

"Subroutine" calls (see below) such as (?2) or (?&X) are permitted in
lookbehinds, as 1long as the subpattern matches a fixed-length string.
Recursion, however, is not supported.

Possessive quantifiers can be wused 1in conjunction with lookbehind
assertions to specify efficient matching of fixed-length strings at the
end of subject strings. Consider a simple pattern such as

abcd$

when applied to a long string that does not match. Because matching
proceeds from left to right, PCRE will look for each "a" in the subject
and then see if what follows matches the rest of the pattern. If the
pattern is specified as

~ . *abcd$

the initial .* matches the entire string at first, but when this fails
(because there is no following "a"), it backtracks to match all but the
last character, then all but the last two characters, and so on. Once
again the search for "a" covers the entire string, from right to left,
so we are no better off. However, if the pattern is written as

N *+ (?<=abcd)

there can Dbe no backtracking for the .*+ item; it can match only the
entire string. The subsequent lookbehind assertion does a single test
on the last four characters. If it fails, the match fails immediately.
For long strings, this approach makes a significant difference to the
processing time.

Using multiple assertions
Several assertions (of any sort) may occur in succession. For example,
(?<=\d{3}) (?<!999) foo

matches "foo" preceded by three digits that are not "999". Notice that
each of the assertions is applied independently at the same point in
the subject string. First there 1is a check that the previous three
characters are all digits, and then there is a check that the same
three characters are not "999". This pattern does not match "foo" pre-
ceded by six characters, the first of which are digits and the last
three of which are not "999". For example, it doesn't match "123abc-
foo". A pattern to do that is

(?<=\d{3}...) (?<!999) foo
This time the first assertion looks at the preceding six characters,
checking that the first three are digits, and then the second assertion
checks that the preceding three characters are not "999".
Assertions can be nested in any combination. For example,

(?<=(?<!foo)bar)baz

matches an occurrence of "baz" that is preceded by "bar" which in turn
is not preceded by "foo", while



560

Dyalog APL/W Language Reference

(?<=\d{3}(2!999)...)foo

is another pattern that matches "foo" preceded by three digits and any
three characters that are not "999".

CONDITIONAL SUBPATTERNS

It is possible to cause the matching process to obey a subpattern con-
ditionally or to choose between two alternative subpatterns, depending
on the result of an assertion, or whether a specific capturing subpat-
tern has already Dbeen matched. The two possible forms of conditional
subpattern are:

(? (condition) yes-pattern)
(? (condition) yes-pattern|no-pattern)

If the condition is satisfied, the yes-pattern is used; otherwise the
no-pattern (if present) 1is used. If there are more than two alterna-
tives in the subpattern, a compile-time error occurs.

There are four kinds of condition: references to subpatterns, refer-
ences to recursion, a pseudo-condition called DEFINE, and assertions.

Checking for a used subpattern by number

If the text between the parentheses consists of a sequence of digits,
the condition is true if a capturing subpattern of that number has pre-
viously matched. TIf there is more than one capturing subpattern with
the same number (see the earlier section about duplicate subpattern
numbers), the condition is true if any of them have been set. An alter-
native notation is to precede the digits with a plus or minus sign. In
this case, the subpattern number is relative rather than absolute. The
most recently opened parentheses can be referenced by (?(-1), the next
most recent by (?(-2), and so on. In looping constructs it can also
make sense to refer to subsequent groups with constructs such as
(?(+2) .

Consider the following pattern, which contains non-significant white
space to make it more readable (assume the PCRE EXTENDED option) and to
divide it into three parts for ease of discussion:

The first part matches an optional opening parenthesis, and if that
character is present, sets it as the first captured substring. The sec-
ond part matches one or more characters that are not parentheses. The
third part is a conditional subpattern that tests whether the first set
of parentheses matched or not. If they did, that is, if subject started
with an opening parenthesis, the condition is true, and so the yes-pat-
tern 1is executed and a closing parenthesis is required. Otherwise,
since no-pattern is not present, the subpattern matches nothing. In
other words, this pattern matches a sequence of non-parentheses,
optionally enclosed in parentheses.

If you were embedding this pattern in a larger one, vyou could use a
relative reference:

...other stuff... ( \()? [~ 1+ (?(-1) \) )



Appendices: PCRE Specifications 561

This makes the fragment independent of the parentheses in the larger
pattern.

Checking for a used subpattern by name

Perl uses the syntax (?(<name>)...) or (?('name')...) to test for a
used subpattern by name. For compatibility with earlier versions of
PCRE, which had this facility before Perl, the syntax (?(name)...) 1is

also recognized. However, there is a possible ambiguity with this syn-
tax, because subpattern names may consist entirely of digits. PCRE
looks first for a named subpattern; if it cannot find one and the name
consists entirely of digits, PCRE looks for a subpattern of that num-
ber, which must be greater than zero. Using subpattern names that con-
sist entirely of digits is not recommended.

Rewriting the above example to use a named subpattern gives this:
(?<OPEN> \ ( )7 [~ 1+ (? (KOPEN>) \) )

If the name used in a condition of this kind is a duplicate, the test
is applied to all subpatterns of the same name, and is true if any one
of them has matched.

Checking for pattern recursion

If the condition is the string (R), and there is no subpattern with the
name R, the condition is true if a recursive call to the whole pattern
or any subpattern has been made. If digits or a name preceded by amper-
sand follow the letter R, for example:

(?(R3)...) or (?(R&name)...)

the condition is true if the most recent recursion is into a subpattern
whose number or name is given. This condition does not check the entire
recursion stack. If the name wused in a condition of this kind is a
duplicate, the test is applied to all subpatterns of the same name, and
is true if any one of them is the most recent recursion.

At "top level", all these recursion test conditions are false. The
syntax for recursive patterns is described below.

Defining subpatterns for use by reference only

If the condition is the string (DEFINE), and there 1is no subpattern
with the name DEFINE, the condition is always false. In this case,
there may be only one alternative in the subpattern. It 1is always
skipped 1f <control reaches this point in the pattern; the idea of
DEFINE is that it can be used to define "subroutines" that can be ref-
erenced from elsewhere. (The use of "subroutines" is described below.)
For example, a pattern to match an IPv4 address could be written 1like
this (ignore whitespace and line breaks):

(? (DEFINE) (?<byte> 2[0-4]\d | 25[0-5] | 1\d\d | [1-9]?\d) )
\b (?&byte) (\.(?&byte)) {3} \b

The first part of the pattern is a DEFINE group inside which a another
group named "byte" is defined. This matches an individual component of
an IPv4 address (a number less than 256). When matching takes place,
this part of the pattern is skipped because DEFINE acts like a false



562 Dyalog APL/W Language Reference

condition. The rest of the pattern uses references to the named group
to match the four dot-separated components of an IPv4 address, insist-
ing on a word boundary at each end.

Assertion conditions

If the condition is not in any of the above formats, it must be an
assertion. This may be a positive or negative lookahead or lookbehind
assertion. Consider this pattern, again containing non-significant
white space, and with the two alternatives on the second line:

(z(?=["a-z]*[a-z])
\d{2}-[a-z] {3}-\d{2} | \d{2}-\d{2}-\d{2} )

The condition 1s a positive lookahead assertion that matches an
optional sequence of non-letters followed by a letter. In other words,
it tests for the presence of at least one letter in the subject. If a
letter 1is found, the subject is matched against the first alternative;
otherwise it is matched against the second. This pattern matches
strings 1in one of the two forms dd-aaa-dd or dd-dd-dd, where aaa are
letters and dd are digits.

COMMENTS

The sequence (?# marks the start of a comment that continues up to the
next closing parenthesis. Nested parentheses are not permitted. The
characters that make up a comment play no part in the pattern matching
at all.

If the PCRE EXTENDED option is set, an unescaped # character outside a
character class introduces a comment that continues to immediately
after the next newline in the pattern.

RECURSIVE PATTERNS

Consider the problem of matching a string in parentheses, allowing for
unlimited nested parentheses. Without the use of recursion, the best
that can be done 1is to use a pattern that matches up to some fixed
depth of nesting. It is not possible to handle an arbitrary nesting
depth.

For some time, Perl has provided a facility that allows regular expres-
sions to recurse (amongst other things). It does this by interpolating
Perl code in the expression at run time, and the code can refer to the
expression itself. A Perl pattern using code interpolation to solve the
parentheses problem can be created like this:

Sre = qr{\( (?2: (>[*()]1+) | (?p{Sre}) )* \)}x;

The (?p{...}) item interpolates Perl code at run time, and in this case
refers recursively to the pattern in which it appears.

Obviously, PCRE cannot support the interpolation of Perl code. Instead,
it supports special syntax for recursion of the entire pattern, and
also for individual subpattern recursion. After its introduction in
PCRE and Python, this kind of recursion was subsequently introduced
into Perl at release 5.10.



Appendices: PCRE Specifications

563

A special item that consists of (? followed by a number greater than
zero and a closing parenthesis is a recursive call of the subpattern of
the given number, provided that it occurs inside that subpattern. (If
not, it 1s a "subroutine" call, which is described in the next sec-
tion.) The special item (?R) or (?0) is a recursive call of the entire
regular expression.

This PCRE pattern solves the nested parentheses problem (assume the
PCRE_EXTENDED option is set so that white space is ignored) :

NCCIMOT++ 1 (2R) )* \)

First it matches an opening parenthesis. Then it matches any number of
substrings which can either Dbe a sequence of non-parentheses, or a
recursive match of the pattern itself (that is, a correctly parenthe-
sized substring). Finally there is a closing parenthesis. Note the use
of a possessive quantifier to avoid backtracking into sequences of non-
parentheses.

If this were part of a larger pattern, you would not want to recurse
the entire pattern, so instead you could use this:

CNC OO+ 1 (21) )* \) )

We have put the pattern into parentheses, and caused the recursion to
refer to them instead of the whole pattern.

In a larger pattern, keeping track of parenthesis numbers can be
tricky. This is made easier by the use of relative references (a Perl
5.10 feature). Instead of (?1) 1in the pattern above you can write
(?-2) to refer to the second most recently opened parentheses preceding
the recursion. In other words, a negative number counts capturing
parentheses leftwards from the point at which it is encountered.

It is also possible to refer to subsequently opened parentheses, by
writing references such as (?+2). However, these cannot be recursive
because the reference is not inside the parentheses that are refer-
enced. They are always "subroutine" calls, as described in the next
section.

An alternative approach is to use named parentheses instead. The Perl
syntax for this 1is (?&name); PCRE's earlier syntax (?P>name) is also
supported. We could rewrite the above example as follows:

(?<pn> \( ( ["OJ++ | (2&pn) )* \) )

If there is more than one subpattern with the same name, the earliest
one is used.

This particular example pattern that we have been looking at contains
nested unlimited repeats, and so the use of a possessive quantifier for
matching strings of non-parentheses is important when applying the pat-
tern to strings that do not match. For example, when this pattern is
applied to

(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa ()
it vyields "no match" quickly. However, if a possessive quantifier is
not used, the match runs for a very long time indeed because there are
so many different ways the + and * repeats can carve up the subject,



564

Dyalog APL/W Language Reference

and all have to be tested before failure can be reported.

At the end of a match, the values of capturing parentheses are those
from the outermost level. If you want to obtain intermediate values, a
callout function can be used (see below and the pcrecallout documenta-
tion). If the pattern above is matched against

(ab (cd) ef)

the wvalue for the inner capturing parentheses (numbered 2) is "ef",
which is the last value taken on at the top level. If a capturing sub-
pattern is not matched at the top level, its final value is unset, even
if it is (temporarily) set at a deeper level.

If there are more than 15 capturing parentheses in a pattern, PCRE has
to obtain extra memory to store data during a recursion, which it does
by using pcre malloc, freeing it via pcre free afterwards. If no memory
can be obtained, the match fails with the PCRE_ERROR NOMEMORY error.

Do not confuse the (?R) item with the condition (R), which tests for
recursion. Consider this pattern, which matches text in angle Dbrack-
ets, allowing for arbitrary nesting. Only digits are allowed in nested
brackets (that is, when recursing), whereas any characters are permit-
ted at the outer level.

< (?2: (?2(R) \d++ | [*<>]1*+) | (?R)) * >
In this pattern, (?(R) is the start of a conditional subpattern, with

two different alternatives for the recursive and non-recursive cases.
The (?R) item is the actual recursive call.

Recursion difference from Perl

In PCRE (like Python, but unlike Perl), a recursive subpattern call is
always treated as an atomic group. That is, once it has matched some of
the subject string, it is never re-entered, even if it contains untried
alternatives and there is a subsequent matching failure. This can be
illustrated Dby the following pattern, which purports to match a palin-
dromic string that contains an odd number of characters (for example,
"a", "aba'", "abcba", "abcdcba"):

S (2DN2) S

The idea is that it either matches a single character, or two identical
characters surrounding a sub-palindrome. In Perl, this pattern works;
in PCRE it does not if the pattern is longer than three characters.
Consider the subject string "abcba":

At the top level, the first character is matched, but as it is not at
the end of the string, the first alternative fails; the second alterna-
tive is taken and the recursion kicks in. The recursive call to subpat-
tern 1 successfully matches the next character ("b"). (Note that the
beginning and end of line tests are not part of the recursion).

Back at the top level, the next character ("c") is compared with what
subpattern 2 matched, which was "a". This fails. Because the recursion
is treated as an atomic group, there are now no backtracking points,
and so the entire match fails. (Perl is able, at this point, to re-
enter the recursion and try the second alternative.) However, if the
pattern is written with the alternatives in the other order, things are



Appendices: PCRE Specifications 565

different:
A (PDN21.0) 8

This time, the recursing alternative is tried first, and continues to
recurse until it runs out of characters, at which point the recursion
fails. But this time we do have another alternative to try at the
higher 1level. That 1s the Dbig difference: in the previous case the
remaining alternative is at a deeper recursion level, which PCRE cannot
use.

To change the pattern so that matches all palindromic strings, not just
those with an odd number of characters, it is tempting to change the
pattern to this:

M) (?D)N21.?)8

Again, this works in Perl, but not in PCRE, and for the same reason.
When a deeper recursion has matched a single character, it cannot be
entered again in order to match an empty string. The solution is to
separate the two cases, and write out the odd and even cases as alter-
natives at the higher level:

M) (RDN21) 1) (23)\4].))

If you want to match typical palindromic phrases, the pattern has to
ignore all non-word characters, which can be done like this:

ANWF (22 (O NWFH (D) NWHHN2 1) | () N (23) \WFH\4 [ \WH 4\ +) ) \W*+S

If run with the PCRE CASELESS option, this pattern matches phrases such
as "A man, a plan, a canal: Panama!" and it works well in both PCRE and
Perl. Note the use of the possessive quantifier *+ to avoid backtrack-
ing into sequences of non-word characters. Without this, PCRE takes a
great deal longer (ten times or more) to match typical phrases, and
Perl takes so long that you think it has gone into a loop.

WARNING: The palindrome-matching patterns above work only if the sub-
ject string does not start with a palindrome that is shorter than the
entire string. For example, although "abcba" is correctly matched, if
the subject is "ababa", PCRE finds the palindrome "aba" at the start,
then fails at top level because the end of the string does not follow.
Once again, it cannot jump back into the recursion to try other alter-
natives, so the entire match fails.

SUBPATTERNS AS SUBROUTINES

If the syntax for a recursive subpattern reference (either by number or
by name) is used outside the parentheses to which it refers, it oper-
ates 1like a subroutine in a programming language. The "called" subpat-
tern may be defined before or after the reference. A numbered reference
can be absolute or relative, as in these examples:

(...(absolute)...)...(?2)...
(... (relative)...)...(?2-1)...
(vo.(?41) ... (relative)...

An earlier example pointed out that the pattern



566

Dyalog APL/W Language Reference

(sens|respons)e and \libility

matches "sense and sensibility" and "response and responsibility", but
not "sense and responsibility". If instead the pattern

(sens|respons)e and (?1)ibility

is used, it does match "sense and responsibility" as well as the other
two strings. Another example is given in the discussion of DEFINE
above.

Like recursive subpatterns, a subroutine call is always treated as an
atomic group. That is, once it has matched some of the subject string,
it is never re-entered, even if it contains wuntried alternatives and
there 1is a subsequent matching failure. Any capturing parentheses that
are set during the subroutine call revert to their previous values
afterwards.

When a subpattern is used as a subroutine, processing options such as
case-independence are fixed when the subpattern is defined. They cannot
be changed for different calls. For example, consider this pattern:

(abc) (?1i:(?-1))

It matches "abcabc". It does not match "abcABC" because the change of
processing option does not affect the called subpattern.

ONIGURUMA SUBROUTINE SYNTAX

For compatibility with Oniguruma, the non-Perl syntax \g followed by a
name or a number enclosed either in angle brackets or single quotes, is
an alternative syntax for referencing a subpattern as a subroutine,
possibly recursively. Here are two of the examples used above, rewrit-
ten using this syntax:

(?<pn> \ (. ( (2>["0)14) | \g<pn> )* \) )
(sens|respons)e and \g'l'ibility

PCRE supports an extension to Oniguruma: if a number is preceded by a
plus or a minus sign it is taken as a relative reference. For example:

(abc) (?1:\g<-1>)
Note that \g{...} (Perl syntax) and \g<...> (Oniguruma syntax) are not

synonymous. The former is a back reference; the latter is a subroutine
call.

CALLOUTS

Perl has a feature whereby using the sequence (?{...}) causes arbitrary
Perl code to be obeyed in the middle of matching a regular expression.
This makes it possible, amongst other things, to extract different sub-
strings that match the same pair of parentheses when there is a repeti-
tion.

PCRE provides a similar feature, but of course it cannot obey arbitrary
Perl code. The feature is called "callout". The caller of PCRE provides
an external function by putting its entry point in the global variable



Appendices: PCRE Specifications 567

pcre callout. By default, this variable contains NULL, which disables
all calling out.

Within a regular expression, (?C) indicates the points at which the
external function is to be called. If you want to identify different
callout points, you can put a number less than 256 after the letter C.
The default value is zero. For example, this pattern has two callout
points:

(?Cl)abc (?C2)def

If the PCRE AUTO CALLOUT flag is passed to pcre compile(), callouts are
automatically installed before each item in the pattern. They are all
numbered 255.

During matching, when PCRE reaches a callout point (and pcre callout is
set), the external function is called. It is provided with the number
of the callout, the position in the pattern, and, optionally, one item
of data originally supplied by the caller of pcre exec(). The callout
function may cause matching to proceed, to backtrack, or to fail alto-
gether. A complete description of the interface to the callout function
is given in the pcrecallout documentation.

BACKTRACKING CONTROL

Perl 5.10 introduced a number of "Special Backtracking Control Verbs",
which are described in the Perl documentation as "experimental and sub-
ject to change or removal in a future version of Perl". It goes on to
say: "Their usage in production code should be noted to avoid problems
during upgrades." The same remarks apply to the PCRE features described
in this section.

Since these verbs are specifically related to Dbacktracking, most of
them can be wused only when the pattern is to be matched using
pcre_exec(), which uses a backtracking algorithm. With the exception of
(*FAIL), which behaves like a failing negative assertion, they cause an
error if encountered by pcre dfa exec().

If any of these verbs are used in an assertion or subroutine subpattern
(including recursive subpatterns), their effect is confined to that
subpattern; it does not extend to the surrounding pattern. ©Note that
such subpatterns are processed as anchored at the point where they are
tested.

The new verbs make use of what was previously invalid syntax: an open-
ing parenthesis followed by an asterisk. In Perl, they are generally of
the form (*VERB:ARG) but PCRE does not support the use of arguments, so
its general form is just (*VERB). Any number of these verbs may occur
in a pattern. There are two kinds:

Verbs that act immediately
The following verbs act as soon as they are encountered:
(*ACCEPT)
This verb causes the match to end successfully, skipping the remainder

of the pattern. When inside a recursion, only the innermost pattern is
ended immediately. If (*ACCEPT) is inside capturing parentheses, the



568

Dyalog APL/W Language Reference

data so far 1is captured. (This feature was added to PCRE at release
8.00.) For example:

A((?:A|B(*ACCEPT) |C)D)

This matches "AB", "AAD", or "ACD"; when it matches "AB", "B" 1is cap-
tured by the outer parentheses.

(*FAIL) or (*F)

This verb causes the match to fail, forcing backtracking to occur. It
is equivalent to (?!) but easier to read. The Perl documentation notes
that it 1is probably wuseful only when combined with (?{}) or (2?{}).
Those are, of course, Perl features that are not present in PCRE. The
nearest equivalent is the callout feature, as for example in this pat-
tern:

a+(?2C) (*FAIL)

A match with the string "aaaa" always fails, but the callout is taken
before each backtrack happens (in this example, 10 times).

Verbs that act after backtracking

The following verbs do nothing when they are encountered. Matching con-
tinues with what follows, but if there is no subsequent match, a fail-

ure 1is forced. The verbs differ 1in exactly what kind of failure
occurs.
(*COMMIT)

This verb causes the whole match to fail outright if the rest of the
pattern does not match. Even if the pattern is unanchored, no further
attempts to find a match by advancing the starting point take place.
Once (*COMMIT) has been passed, pcre exec() is committed to finding a
match at the current starting point, or not at all. For example:

a+ (*COMMIT) b

This matches "xxaab" but not "aacaab". It can be thought of as a kind
of dynamic anchor, or "I've started, so I must finish."

(*PRUNE)

This verb causes the match to fail at the current position if the rest
of the pattern does not match. If the pattern is unanchored, the normal
"bumpalong" advance to the next starting character then happens. Back-
tracking can occur as usual to the left of (*PRUNE), or when matching
to the right of (*PRUNE), but if there is no match to the right, back-
tracking cannot cross (*PRUNE). In simple cases, the use of (*PRUNE)
is just an alternative to an atomic group or possessive quantifier, but
there are some uses of (*PRUNE) that cannot be expressed in any other
way.

(*SKIP)

This verb is like (*PRUNE), except that if the pattern is unanchored,
the "bumpalong" advance is not to the next character, but to the posi-
tion 1in the subject where (*SKIP) was encountered. (*SKIP) signifies
that whatever text was matched leading up to it cannot be part of a



Appendices: PCRE Specifications

569

successful match. Consider:
a+ (*SKIP)b

If the subject 1is "aaaac...", after the first match attempt fails
(starting at the first character in the string), the starting point
skips on to start the next attempt at "c". Note that a possessive quan-
tifer does not have the same effect as this example; although it would
suppress backtracking during the first match attempt, the second
attempt would start at the second character instead of skipping on to
"t

(*THEN)

This verb causes a skip to the next alternation if the rest of the pat-
tern does not match. That is, it cancels pending backtracking, but only
within the current alternation. Its name comes from the observation
that it can be used for a pattern-based if-then-else block:

( COND1 (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ )

If the CONDl pattern matches, FOO is tried (and possibly further items
after the end of the group if FOO succeeds); on failure the matcher
skips to the second alternative and tries COND2, without backtracking
into CONDl1. If (*THEN) is wused outside of any alternation, it acts
exactly like (*PRUNE) .

SEE ALSO

AUTHOR

pcreapi (3), pcrecallout (3), pcrematching(3), pcresyntax(3), pcre(3).

Philip Hazel
University Computing Service
Cambridge CB2 30QH, England.

REVISION

Last updated: 11 January 2010
Copyright (c) 1997-2010 University of Cambridge.



570 Dyalog APL/W Language Reference




571

Symbolic Index

IA

v

See add,
conjugate,
plus

See minus,
negate,
subtract

See multiply,
signum, times

See divide,
reciprocal

See matrix
divide, matrix
inverse

See
magnitude,
residue

See ceiling,
maximum

See floor,
minimum
See

exponential,
power

See
logarithm,
natural
logarithm

See less
See greater

See less or
equal

See greater or

>t

<t

equal
See equal
See not equal

See depth,
match

See not
match, tally

See
excluding,
not, without

See and, caret
pointer

See or
See nand
See nor

See union,
unique

See
intersection

See enclose,
partition,
partitioned
enclose

See disclose,
mix, pick

See deal, roll

See binomial,
factorial

See grade up

See grade
down

See execute
See format

See decode
See encode

See same, left



572

Dyalog APL/W Language Reference

vl

|m

See same,
right

See circular,
pi times

See transpose
See reverse,
rotate

See reverse
first, rotate
first

See catenate,
laminate,
ravel

See catenate
first, table
See index
generator,
index of

See reshape,
shape

See enlist,
membership,
type

See find

See disclose,
mix, take
See drop, split
See
assignment
See abort,
branch

See name
separator,
decimal point,
inner product
See outer
product

See rank

See compose

%3

< H M =

>

[l

O)
{}

See compress,
replicate,
reduce

See replicate
first, reduce
first

See expand,
scan

See expand
first, scan first

See each

See commute
See spawn
See power
operator

See variant
See key

See i-beam
See zilde
See negative
sign

See underbar
character

See delta
character

See delta-
underbar
character
See quotes
See index,
axis

See indexing,
axis

See
parentheses
See braces

See left
argument



Symbolic Index 573

ool

ww

##

\A%

:AndIf

tAccess

:Case

:Caselist

:Class

:Continue

tElse

tElself

See left
operand

See right
argument
See right
operand

See Root
object

See parent
object

See statement
separator
See comment
symbol

See function
self, del editor
See operator
self

See name
separator,
array
separator
See label
colon

See and if
condition
See access
statement
See case
qualifier

See caselist
qualifier

See class
statement
See continue
branch

See else
qualifier

See else-if
condition

:End
:EndClass
:EndFor
:EndHold
:EndIf

:EndNamespace

:EndProperty

:EndRepeat
:EndSelect
:EndTrap
:EndWhi le
:EndWith
:Field
:For

:GoTo
:Hold
:Include

cIf

:Implements

See general
end control
See endclass
statement

See end-for
control

See end-hold
control

See end-if
control

See
endnamespace
See
endproperty
statement

See end-
repeat control
See end-select
control

See end-trap
control

See end-while
control

See end-with
control

See field
statement

See for
statement

See go-to
branch

See hold
statement

See include
statement

See if
statement

See

implements
statement



574

Dyalog APL/W Language Reference

:In

:InEach

:Interface

:Leave

:Namespace

:0rIf

:Property

:Repeat

:Return

:Section

:Select

:Trap

:Until

:While

:With

OA

See in control

See ineach
control

See interface
statement
See leave
branch

See
namespace
statement
See or-if
condition
See property
statement
See repeat
statement
See return
branch

See section
statement
See select
statement
See trap
statement
See until
condition
See while
statement
See with
statement
See quote-
quad,
character NO
See quad,
evaluated NO
See
underscored
alphabet

See alphabet

OAI

OAN

OARBIN

OARBOUT

OAT

OAv

OdAavu

0BASE
OCLASS

OCLEAR

cMmp

Ocr

dcs

gct

dcy

0o

gocT

oF

go1v

See account
information
See account
name

See arbitrary
input

See arbitrary
output

See attributes
See atomic
vector

See atomic
vector -
unicode

See base class
See class

See clear
workspace
See execute
Windows
command,
start AP

See canonical
representation
See change
space

See
comparison
tolerance

See copy
workspace
See digits
See decimal
comparison
tolerance

See display
form

See division
method



Symbolic Index 575

0oL

(oM

0oQ

OoR

0eb

OeM

OEN

Oex
OEXCEPTION

OEXPORT

OFAPPEND

OFAVAIL

OFCHK

grFcopry
OFCREATE

OFDROP

OFERASE
OFHOLD

OFHIST
OFIX
OFLIB

OFMT

See delay

See
diagnostic
message

See dequeue
events

See data
representation
See edit
object

See event
message

See event
number

See expunge
object
See exception

See export
object

See file
append
component

See file
available

See file check
and repair

See file copy
See file create

See file drop
component

See file erase
See file hold

See file
history

See fix script

See file
library

See format

OFNAMES

[OFNUMS

OFPROPS

OFr

[OFRDAC

[OFRDCI

OFREAD

OFRENAME

OFREPLACE
OFRESIZE
OFSIZE

OFSTAC

OFSTIE

OFTIE
OFUNTIE

OF X
OINSTANCES
010
OKL

0Lc

[LOAD

See file names

See file
numbers

See file
properties

See floating-
point
representation

See file read
access matrix

See file read
component
information

See file read
component

See file
rename

See file
replace
component

See file resize
See file size

See file set
access matrix

See file share
tie

See file tie
See file untie

See fix
definition

See instances
See index
origin

See key label

See line
counter
See load
workspace



576 Dyalog APL/W Language Reference

drLock

OLx

OMAP

OML
OMONITOR

ONA

[ONAPPEND

ONC

[ONCREATE

ONERASE

ONEW
ONL

ONLOCK

[ONNAMES

ONNUMS

ONQ

ONR

[ONREAD

ONRENAME

ONREPLACE

[ONRESIZE

See lock
definition

See latent
expression
See map file
See migration
level

See monitor
See name
association

See native file
append

See name
class

See native file
create

See native file
erase

See new
instance

See name list

See native file
lock

See native file
names

See native file
numbers

See enqueue
event

See nested
representation
See native file
read

See native file
rename

See native file
replace

See native file
resize

ONS

ONSI

ONSIZE

ONTIE
ONuLL

ONUNTIE

ONXLATE

[oFF
OopT

or

OPATH

OPFKEY

Opp

OPROFILE

Opw
OrR

OREFS

ORL

ORrRSI

ORTL

See
namespace

See
namespace
indicator

See native file
size

See native file
tie

See null item
See native file
untie

See native file
translate

See sign off
APL

See variant

See object
representation

See search
path

See program
function key
See print
precision
See profile
application
See print
width

See replace

See cross
references
See random
link

See space
indicator
See response
time limit



Symbolic Index 577

gs

OSAVE

gso

Ose

0sH

OSHADOW

0sI

OSIGNAL

OSIzZE

OsM™

Osr

0src

OSTACK

OSTATE

gsTopP

gsvc

gsvo

gsve

OSVR

See search
See save
workspace
See screen
dimensions
See session
namespace
See execute
shell
command,
start AP
See shadow
name

See state
indicator
See signal
event

See size of
object

See screen
map

See screen
read

See source
See state
indicator
stack

See state of
object

See stop
control

See shared
variable
control

See shared
variable offer
See shared
variable query

See shared

asvs

grc

[OTCNUMS

OTGET
OTHIS

QTIio

OTKILL

OTNAME

OTNUMS

QTPoOL

OTPuT

OTRACE
OTRAP

OTREQ

aTs

OTSYNC

gucs

QUSING

OvrI

OvrR

variable
retract

See shared
variable state
See terminal
control

See thread
child numbers
See get
tokens

See this space
See thread
identity

See thread
kill

See thread
name

See thread
numbers

See token
pool

See put
tokens

See trace
control

See trap event
See token
requests

See time
stamp

See threads
synchronise
See unicode
convert

See using
path

See verify and
fix input

See vector



578 Dyalog APL/W Language Reference

OwA

Qwc

owe

OwWN

Ows

OwWsSID

Owx

OxmL

OxsI

OxT

JCLASSES

JCLEAR
)CMD

JCONTINUE

)COPY

)CS

)DROP

JED

JERASE

representation
See
workspace
available

See window
create object
See window
get property
See window
child names
See window
set property
See
workspace
identification
See window
expose names
See xml
convert

See extended
state indicator
See external
variable

See list
classes

See clear
workspace
See command

See continue
off

See copy
workspace
See change
space

See drop
workspace
See edit
object

See erase

JEVENTS

JFNS

JHOLDS

JLIB

JLOAD

JMETHODS

INS

JOBJECTS

)OBS

)OFF

JOPS

)JPCOPY

JPROPS

JRESET

) SAVE

) SH

)SI

)SINL

)TID

object

See list events
See list
functions
See held
tokens

See
workspace
library

See load
workspace
See list
methods
See
namespace
See list
objects

See list
objects

See sign off
APL

See list
operators
See protected
copy

See list
properties
See reset state
indicator
See save
workspace
See shell
command
See state
indicator

See state
indicator
name

See thread



Symbolic Index

579

JVARS

JWSID

) XLOAD

identity

See list
variables

See
workspace
identity

See quiet-load
workspace



580 Dyalog APL/W Language Reference




581

Index

A

abort function 10
absolute value 80
access codes 297-301, 304
Account Information 218
Account Name 218
add arithmetic function 11
alphabetic characters 217
ancestors 384
and boolean function 12
APL

characters 224

appending components to files 266

appending to native file 345
arbitrary output 219
array separator 16,73
arrays
dimensions of 111
indexing 73
prototypes of 8
rank of 111
unit 4
assignment 13
indexed 16
indexed modified 125
modified by functions 124
re-assignment 15
selective 21
selective modified 126
simple 13
atomic vector 224

atomic vector - unicode 224,242,313, 345,

372,379,505

attributes of operations 220
auto_pw parameter 395
auxiliary processors 235

axis operator 9
with dyadic operands 128
with monadic operands 127
axis specification 9,123

B

base class 227
best fit approximation 83
beta function 23
binomial function 23
Boolean functions

and (conjunction) 12

nand 91

nor 92

not 93

not-equal (exculsive disjunction) 93

or (inclusive disjunction) 95
bracket indexing 73
branch function 24
byte order mark 399

C
callback functions 257,367

canonical representation of operations 236

caret pointer 249
catenate function 26
ceiling function 28
change user 191
changing namespaces 238, 506
character input/output 213
checksum 289,291
child names 476
child threads 450
choose indexed assignment 18
choose indexing 75
circular functions 29
class (system function) 228
classes
base class 227
casting 229
class system function 228
copying 505



582 Dyalog APL/W Language Reference

display form 245
external interfaces 356
fields 347
fix script 277
instances 306
list classes 501
name-class 355-356
new instance 358
properties 348
source 436
this space 452

classic edition 155,379,407

Classic Edition 57,61,224,259,308,312,

370,379,449
classification of names 346
clear state indicator 516,520
clearing workspaces 230,501
close all windows 187
CMD_POSTFIX parameter 503,518
CMD_PREFIX parameter 503,518
command operating system 502
command processor 231,502
commute operator 131
comparison tolerance 241
complex numbers

circular functions 29

floating-point representation 295
component files

checksum 289,291

compression 292

file properties 289

journaling 290

unicode 289
composition operator

formI 132

formII 133

form Il 134

formIV 134
compress operation 104
compress/decompress vector of short
integers 165
compression 289,292
Compute Time 218
conformability of arguments 8
conjunction 12

Connect Time 218

continue off 503

copying component files 270
copying from other workspaces 242, 504
CPU time 316

creating component files 271
creating GUI objects 472
creating namespaces 373,513
creating native files 357
cross references 396

current thread identity 453
currying 122

cutback error trap 458

D

data binding 180
data representation
dyadic 259
monadic 258
deal random function 30
decimal comparison tolerance 244
default property 67
delay times 249
denormal numbers 387
deprecated features
atomic vector 224
terminal control 449
underscored alphabet 217
dequeuing events 255
derived functions 121
diagnostic messages 249
digits0to 9 244
dimensions of arrays 111
direction function 34
disclose function 35
disjunction 95
display form 245
displaying held tokens 510
divide arithmetic function 36
division methods 248
dmx 250,425
DOMAIN ERROR 412
DotAll option 407



Index

583

drop function 37

with axes 38
dropping components from files 273
dropping workspaces 506
dyadic primitive functions

add 11

and 12

catenate 26

deal 30

divide 36

drop 37

encode 41

execute 46

expand 47

expand-first 48

find 49

format 55

grade down 58

gradeup 62

greater 63

greater or equal 64

greatest common divisor 95

index function 65

index of 70

intersection 77

left 78

less 79

less orequal 79

logarithm 80

match 81

matrix divide 82

maximum 85

member of 85

minimum 85

nand 91

nor 92

not equal 93

not match 94

or. 95

partition 96

partitioned enclose 98

pick 99

power 100

replicate 104

reshape 106

residue 106

right 107

rotate 109

subtract 112

take 114

transpose 117

unique 119
dyadic primitive operators

axis 127-128

compose 132-134

currying 122

each 136

inner product 138

key 139

outer product 143

rank 146

replace 397

search 397

variant 155,379,397,405
dyadic scalar functions 4
dynamic data exchange 444
dynamic link libraries 317

E

each operator
with dyadic operands 136
with monadic operands 135
editing APL objects 260,507
editor 260
empty vectors 119
Enc option 411
enclose function 39
with axes 40
encode function 41
enlist function 43
enqueuing an event 366
EOL option 407
equal relational function 44
erasing component files 274
erasing native files 357

erasing objects from workspaces 263, 508

error trapping system variable 458
evaluated input/output 215



584 Dyalog APL/W Language Reference

event messages 261 hold 276
event numbers 261 library 278
exception 262 names 287
excluding set function 45 numbers 288
exclusively tying files 304 read access matrix 295
execute error trap 458 read component 297
execute operation read component information 296
dyadic 46 rename 298
monadic 46 replace component 299
executing commands resize 300
UNIX 421,518 set access matrix 301
Windows 231, 502 share-tie 302
exit code 379 size 301
exiting APL system 379,514 tie (number) 304
expand-first operation 48 untie 305
expand operation 47 file history 274
with axis 47 file properties 289
exponential function 48 file system availability 266
exporting objects 265 files
expose root properties 188 APL component files 270-271
exposing properties 479 mapped 311
expunge objects 263 operating system native files 357
extended diagnostic message 250,425 fill elements 8

extended state indicator 495
external arrays 496
external functions 235
external interfaces 356
external variables

query 498

set 496

find function 49
first function 50
fix script 277

fixing operation definitions 305
floating-point representation 244,293

complex numbers 295
floor function 50
flush session caption 186
fork new task 190

F format function

factorial function 48 dyadic 55

fields 347 monadic 51

file format specification 280

append component 266
available 266

check and repair 267
copy 270

create 271

drop component 273
erase 274

history 274

format system function
affixtures 282
digit selectors 284
G-format 284
O-format qualifier 285
qualifiers 281
text insertion 280
formatting system function
dyadic 280



Index

585

monadic 279
function assignment 14
function keys 386
functions

mixed rank 5

pervasive 2

primitive 2

rank zero 2

scalarrank 2

G

gamma function 48
generating random numbers 416
get tokens 450
getting properties of GUI objects 475
grade-down function

dyadic 58

monadic 57
grade-up function

dyadic 62

monadic 60
greater-or-equal function 64
greater-than relational function 63
greatest common divisor 95
Greedy option 409
GUI objects 255

H

held tokens 510
holding component files 276

I

i-beam 137,159
change user 191
close all windows 187

compress/decompress vector of short

integers 165
expose root properties 188
flush session caption 186
fork new task 190
inverted table index of 161

memory manager statistics 170
number of threads 168

parallel execution threshold 168
read dataTable 177

reap forked tasks 192
serialise/deserialise arrays 167
set workspace save options 187
signal counts 194

specify workspace available 173
syntax colouring 164

thread synchrnisation mechanism 168
unsqueezed type 163

updata DataTable 174

update function time stamp 169

IC option 155,405
identification of workspaces 522
identity 64

identity elements 149

identity function 30

identity matrix 84

index

with axes 68

index-generator function 69
index-of function 70

index function 65

index of 161

index origin 307

indexed assignment 16
indexed modified assignment 125
indexing arrays 73

InEnc option 410
inner-product operator 138
instances 306,354
interfaces 356
INTERRUPT 145
intersection set function 77
inverted table index of 161
iota 69

J

journaling 289-290



586 Dyalog APL/W Language Reference

K

key labels 308
key operator 139
Keying Time 218
kill threads 453

L

labels 24

laminate function 26

latent expressions 311

least squares solution 83

left 78

legal names 472

less-or-equal function 79

less-than relational function 79

levels of migration towards APL2 1

libraries of component files 278

line number counter 308

list classes 501

list names in a class 359

listing global defined functions 509

listing global defined operators 514

listing global namespaces 514

listing global objects 514

listing global variables 522

listing GUI events 508

listing GUI methods 513

listing GUI properties 516

listing workspace libraries 511

loading workspaces 309,512
without latent expressions 523

localisation 424

lock native file 363

locking defined operations 310

logarithm function 80

logical conjunction 12

logical disjunction 95

logical equivalence 81

logical negation 93

logical operations 12

M

magnitude function 80
major cell 71

major cells 146

map file 311

markup 491

match relational function 81
matrix-divide function 82
matrix-inverse function 84
matrix product 82
maximum function 85
MAXWS parameter 171
membership set function 85
MEMCPY 334

memory manager statistics 170

migration levels 1,35,43,86,118,313

minimum function 85
minus arithmetic function 85
miscellaneous primitive functions 5
mix function 86

with axis 86
mixed rank functions 5
ML option 408
Mode option 155,406,411
modified assignment 124
monadic primitive functions

branch 24

ceiling 28

direction 34

disclose 35

enclose 39

enlist 43

execute 46

exponential 48

factorial 48

floor 50

format 51

grade down 57

gradeup 60

identity 30, 64

index generator 69

magnitude 80

matrix inverse 84



Index

587

mix 86
natural logarithm 92
negative 92
not 93
pitimes 99
ravel 101
reciprocal 104
reverse 107
roll 108
same 110
shape 111
signum 34
split 112
table 113
tally 116
transpose 116
type 118
union 118
monadic primitive operators
assignment 124-126
commute 131
each 135
reduce 149,151
scan 152-153
spawn 154
monadic scalar functions 3
monitoring operation statistics
query 316
set 315
MPUT utility 311
multiply arithmetic function 91

N

name association 317,351
name classifications 346
name lists by classification 359
name mangling 319
name of thread 454
name references in operations 396
names

legal 472
names of tied component files 287
names of tied native files 365

namespace indicator 375

namespace reference 15,238,255,475,477

namespace reference assignment 15
namespace script 353
namespaces

create 513

search path 384

this space 452

unnamed 373
nand boolean function 91
Naperian logarithm function 92
natch 94
native file

append 345

create 357

erase 357

lock 363

names 365

numbers 365

read 369

rename 371

replace 371

resize 372

size 375

tie (number) 376

translate 378

untie 378
natural logarithm function 92
negate 92
negative function 92
NEOL option 408

nested representation of operations 368

new instance 358
next error trap 458
niladic primitive functions

abort 10

zilde 119
NONCE ERROR 67
nor boolean function 92
not-equal relational function 93
not-match relational function 94
not boolean function 93
notation

keys 1
nsi 375



588 Dyalog APL/W Language Reference

null 377
number of each thread 454
number of threads 168
numbers
empty vectors 119
numbers of tied component files 288
numbers of tied native files 365

(0]

object representation of operations 380
OM option 409
operands 121
operator syntax 121
operators

dyadic 121

monadic 121

syntax 121
or boolean function 95
OutEnc option 410
outer-product operator 143

P

parallel execution
number of threads 168
parallel execution threshold 168
thread synchronisation mechanism 168
parallel execution threshold 168
partition function 96
partitioned enclose function 98
with axis 98
pass-through values 124
passnumbers of files 297
PCRE 397
PCRE Regular Expression Details 533
pervasive functions 2
pi-times function 99
pick function 99
plus arithmetic function 100
power function 100
primitive function classifications 5
primitive functions 2

primitive operators 121

axis 127-128

commute 131

compose 132-134

each 135-136

indexed modified assignment 125

inner product 138

key 139

modified assignment 124

outer product 143

power 144

rank 146

reduce 149

reduce-first 151

reduce n-wise 151

replace 397

scan 152

scan-first 153

search 397

selective modified assignment 126

spawn 154

variant 155,379,397
Principal option 155-156,405
print precision in session 387
print width in session 395
product

inner 138

outer 143
profile application 388
profile user command 393
programming function keys 386
properties 348-349

propertyget Function 67

propertyset function 67
protected copying from workspaces 515
prototype 8, 135-136, 143
put tokens 455

Q

quad indexing 68
quietly loading workspaces 523



Index

589

R

random link 416
rank of arrays 111
rank operator 146
ravel function 101
with axes 101
re-assignment 15
reach indexed assignment 19
reach indexing 76
read DataTable 177

reading components from files 297

reading file access matrices 295

reading file component information 296

reading native files 369

reading properties of GUI objects 475

reading screen maps 432
reap forked tasks 192
reciprocal function 104
reduce-first operator 151
reduce operator 149
reduction operator

n-wise 151

with axis 149
regular expressions 397
releasing component files 276
renaming component files 298
renaming native files 371
replace operator 397

DotAll 407

Enc 411

EOL 407

Greedy 409

IC 155,405

InEnc 410

ML 408

Mode 155,406,411

NEOL 408

OutEnc 410

replacing components on files 299
replacing data in native files 371

replicate operation 104
with axis 104
reset state indicator 516,520

reshape function 106
residue function 106
resizing component files 300
resizing native files 372
response time limit 419
reverse-first function 107,110
reverse function 107

with axis 107
right 107
Right Parenthesis 499
roll random function 108
rotate function 109

with axis 109
rsi 418

S

same 110

saving continuation workspaces 503

saving workspaces 419,516
scalar extension 4
scalar functions 2
scan-first operator 153
scan operator 152

with axis 152
screen dimensions 420
screen maps 429
screen read 432
search operator 397

DotAll 407

Enc 411

EOL 407

Greedy 409

IC 155,405

InEnc 410

ML 408

Mode 155,406,411

NEOL 408

OM 409

OutEnc 410
search path 384,468

selection primitive functions 5

selective assignment 21

selective modified assignment 126



590 Dyalog APL/W Language Reference

selector primitive functions 5 stack 437
serialise/deserialise arrays 167 states of objects 439
session namespace 420 stop control
set difference 45 query 441
set workspace save options 187 set 440
setting properties of GUI objects 477 stop error trap 458
shadowing names 424 STRLEN 336
shape function 111 STRNCPY 335
share-tying files 302 structural primitive functions 5
shared variables subtract arithmetic function 112
offer couplings 444 syntax colouring 164
query access control 443 system commands 499
query couplings 446 system constants 199
query outstanding offers 447 system functions 197,203
retract offers 447 categorised 203
set access control 442 system namespaces 202
states 448 system operators 202

signal counts 194
signal event 425,577

signing off APL 379,514 T
signum function 34 table function 113
simple assignment 13 take function 114
simple indexed assignment 16 with axes 115
simple indexing 73 tally 116
size of objects 428 terminal control vector 449
sizes of component files 301 this space 452
sizes of native files 375 thread
source 436 name 454
spawn thr.eaq operator 154 thread synchronisation mechanism 168
special primitive functions 5 threads
sp601ﬁcat10n child numbers 450
axis 9,123 . identity 453
specify workspace available 173 kill 453
split function 112 numbers 454,462
with axis 112 spawn 154
squad indexing 65 synchronise 464
staclf 437 - tie numbers 288,365
starting auxiliary processors time stamp 463
UNIX 422 times arithmetic function 116
Wm(_iows 235 token pool 454
state indicator 423,519 token requests 462
and name list 520 tokens
clear 516, 520 get tokens 450
extension 495 put tokens 455

reset 516,520



Index 591

time-out 450

token pool 454

token requests 462
tracing lines in defined operations

query 457

set 456
translating native files 378
TRANSLATION ERROR 226,242,313,407,
505
transpose function

dyadic 117

monadic 116
transposition of axes 117
trapping error conditions 458
tying component files 302,304
tying native files 376
type function 118

U

underscored alphabetic characters 217
unicode 289

unicode convert 224,449,465
Unicode Edition 57,61,224,312-313,369,
371,379

union set function 118

unique set function 119

unit arrays 4

unknown-entity 494
unknownentity 494

unnamed copy 505

unsqueezed type 163

untying component files 305
untying native files 378

update DataTable 174

update function time stamp 169
User Identification 218

using 468

UTF-16 466

UTF-32 466

UTF-8 466

A%

VALUE ERROR 465

variant operator 155,379,397,405
vector representation of operations 469
vectors

empty character 233
verify and fix input 470

W

waiting for threads to terminate 464
whitespace 488
wide character 325
window

create object 472

get property 475

names of children 476

set property 477
window expose names 479
without set function 119
workspace available 471
workspace identification 478,522
writing file access matrices 301

X

xml convert 480
markup 491
unknown-entity 494
unknownentity 494
whitespace 488

Z

zilde constant 119



592 Dyalog APL/W Language Reference




