
The tool of thought for expert programming

Dyalog™ forWindows

Programmer's
Guide

Version: 14.0

Dyalog Limited
email: support@dyalog.com

http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2015 by Dyalog Limited

All rights reserved.

Version: 14.0

Revision: 20150302

Nopart of this publicationmay be reproduced in any form by any means without the prior written per-
mission of Dyalog Limited.

Dyalog Limitedmakes no representations or warranties with respect to the contents hereof and spe-
cifically disclaims any impliedwarranties of merchantability or fitness for any particular purpose.
Dyalog Limited reserves the right to revise this publicationwithout notification.

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The OpenGroup.

Windows, Windows Vista, Visual Basic andExcel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Array Editor is copyright of davidliebtag.com

All other trademarks and copyrights are acknowledged.

i

Contents

Chapter 1: Introduction 1
Workspaces 1
Arrays 2
Legal Names 6
Specification of Variables 6
Vector Notation 7
Structuring of Arrays 8
Display of Arrays 9
Prototypes and Fill Items 13
Cells and Sub-arrays 14
Expressions 16
Functions 17
Operators 20
Binding Strength 22
Function Trains 24
Parallel Execution 28
Complex Numbers 29
128 Bit Decimal Floating-Point Support 33
Namespaces 38
Threads 55
External Variables 69
Component Files 70
Auxiliary Processors 70
Key to Notation 71
Migration Level 71

Chapter 2:DefinedFunctions &Operators 73
Canonical Representation 73
Model Syntax 74
Statements 75
Global & Local Names 76
Namelists 78
Function Declaration Statements 79

Access Statement 80
Attribute Statement 81
Implements Statement 81
Signature Statement 82

Control Structures 84
Access Statement 86
Attribute Statement 86

ii

If Statement 87
While Statement 90
Repeat Statement 92
For Statement 94
Select Statement 96
With Statement 98
Hold Statement 99
Trap Statement 103
GoTo Statement 106
Return Statement 106
Leave Statement 106
Continue Statement 107
Section Statement 107

Triggers 108
Idiom Recognition 111
Search Functions and Hash Tables 118
Locked Functions &Operators 119
The State Indicator 120
Dfns &Dops 122
APL Line Editor 136

Chapter 3:ObjectOrientedPrograming 145
Introducing Classes 145
Constructors 150
Destructors 163
Class Members 166
Fields 167
Methods 172
Properties 176
Interfaces 189
Including Namespaces in Classes 192
Nested Classes 194
Namespace Scripts 203
Class Declaration Statements 209
:Field Statement 215
:Property Section 217

PropertyGet Function 219
PropertySet Function 220
PropertyShape Function 221

Chapter 4: Error Messages 223
Introduction 223
Standard Error Action 224
APL Errors 225
Operating System Error Messages 229
Windows Operating System Error Messages 231

iii

APL Error Messages 232
bad ws 232
cannot create name 232
clear ws 232
copy incomplete 232
DEADLOCK 232
defn error 233
DOMAIN ERROR 234
EOF INTERRUPT 234
EXCEPTION 234
FIELD CONTENTS RANK ERROR 235
FIELD CONTENTS TOO MANY COLUMNS 235
FIELD POSITION ERROR 235
FIELD CONTENTS TYPEMISMATCH 235
FIELD TYPE BEHAVIOUR UNRECOGNISED 235
FIELD ATTRIBUTES RANK ERROR 235
FIELD ATTRIBUTES LENGTH ERROR 235
FULL SCREEN ERROR 235
KEY CODE UNRECOGNISED 236
KEY CODE RANK ERROR 236
KEY CODE TYPE ERROR 236
FORMAT FILE ACCESS ERROR 236
FORMAT FILE ERROR 236
FILE ACCESS ERROR 237
FILE ACCESS ERROR CONVERTING 237
FILE COMPONENT DAMAGED 237
FILE DAMAGED 238
FILE FULL 238
FILE INDEX ERROR 238
FILE NAME ERROR 238
FILE NAME QUOTA USED UP 239
FILE SYSTEM ERROR 239
FILE SYSTEM NO SPACE 239
FILE SYSTEM NOT AVAILABLE 239
FILE SYSTEM TIES USED UP 239
FILE TIE ERROR 240
FILE TIED 240
FILE TIED REMOTELY 240
FILE TIE QUOTA USED UP 241
FORMAT ERROR 241
HOLD ERROR 241
incorrect command 242
INDEX ERROR 242
INTERNAL ERROR 243
INTERRUPT 243
is name 243
LENGTH ERROR 244
LIMIT ERROR 244

iv

NONCE ERROR 244
NO PIPES 244
name is not a ws 245
Name already exists 245
Namespace does not exist 245
not copied name 246
not found name 246
not saved this ws is name 246
PROCESSOR TABLE FULL 247
RANK ERROR 248
RESIZE 248
name saved date time 248
SYNTAX ERROR 249
sys error number 250
TIMEOUT 250
TRANSLATION ERROR 250
TRAP ERROR 250
too many names 251
VALUE ERROR 251
warning duplicate label 251
warning duplicate name 252
warning pendent operation 252
warning label name present 252
warning unmatched brackets 253
warning unmatched parentheses 253
was name 253
WS FULL 254
ws not found 254
ws too large 254

Operating System Error Messages 255
FILE ERROR 1 Not owner 255
FILE ERROR 2 No such file 255
FILE ERROR 5 I O error 255
FILE ERROR 6 No such device 255
FILE ERROR 13 Permission denied 255
FILE ERROR 20 Not a directory 255
FILE ERROR 21 Is a directory 256
FILE ERROR 23 File table overflow 256
FILE ERROR 24 Too many open 256
FILE ERROR 26 Text file busy 256
FILE ERROR 27 File too large 256
FILE ERROR 28 No space left 256
FILE ERROR 30 Read only file 257

Symbolic Index 259

Index 267

Chapter 1: Introduction 1

Chapter 1:

Introduction

Workspaces
APL expressions are evaluated within a workspace. The workspace may contain
objects, namely classes, namespaces, operators, functions and variables defined by
the user. APL expressions may include references to primitive operators, functions
and variables provided by APL. These objects do not reside in the workspace, but
space is required for the actual process of evaluation to accommodate temporary data.
During execution, APL records the state of execution through the STATE
INDICATOR which is dynamically maintained until the process is complete. Space
is also required to identify objects in the workspace in the SYMBOL TABLE. Main-
tenance of the symbol table is entirely dynamic. It grows and contracts according to
the current workspace contents.

Workspaces may be explicitly saved with an identifying name. The workspace may
subsequently be loaded, or objects may be selectively copied from a saved work-
space into the current workspace.

Under UNIX, workspace names must be valid file names, but are otherwise unres-
tricted. See your UNIX documentation for details.

UnderWindows, Dyalog APL workspaces are stored in files with the suffix ".DWS".
However, they are referred to fromwithin APL by only the first part of the file name
which must conform to Windows file naming rules.

Chapter 1: Introduction 2

Arrays
A Dyalog APL data structure is called an array. An array is a rectangular arrange-
ment of items, each of which may be a single number, a single character, a namespace
reference (ref), another array, or the ⎕OR of an object. An array which is part of
another array is also known as a subarray.

An array has two properties; structure and data type. Structure is identified by rank,
shape, and depth.

Rank
An array may have 0 or more axes or dimensions. The number of axes of an array is
known as its rank. Dyalog APL supports arrays with a maximum of 15 axes.

l An array with 0 axes (rank 0) is called a scalar.
l An array with 1 axis (rank 1) is called a vector.
l An array with 2 axes (rank 2) is called a matrix.
l An array with more than 2 axes is called a multi-dimensional array.

Shape
Each axis of an array may contain zero or more items. The number of items along
each axis of an array is called its shape. The shape of an array is itself a vector. Its
first item is the length of the first axis, its second item the length of the second axis,
and so on. An array, whose length along one or more axes is zero, is called an empty
array.

Depth
An array whose items are all simple scalars (i.e. single numbers, characters or refs) is
called a simple array. If one or more items of an array is not a simple scalar (i.e. is
another array, or a ⎕OR), the array is called a nested array. A nested array may con-
tain items which are themselves nested arrays. The degree of nesting of an array is
called its depth. A simple scalar has a depth of 0. A simple vector, matrix, or multi-
dimensional array has depth 1. An array whose items are all depth 1 subarrays has
depth 2; one whose items are all depth 2 subarrays has depth 3, and so forth.

Chapter 1: Introduction 3

Type
An array, whose elements are all numeric, is called a numeric array; its TYPE is
numeric. A character array is one in which all items are characters. An array whose
items contain both numeric and character elements is of MIXED type.

Numbers
Dyalog APL supports both real numbers and complex numbers.

Real Numbers
Numbers are entered or displayed using conventional decimal notation (e.g.
299792.458) or using a scaled form (e.g. 2.999792458E5).

On entry, a decimal point is optional if there is no fractional part. On output, a num-
ber with no fractional part (an integer) is displayed without a decimal point.

The scaled form consists of:

a. an integer or decimal number called the mantissa,
b. the letter E or e,
c. an integer called the scale, or exponent.

The scale specifies the power of 10 by which the mantissa is to be multiplied.

Example
12 23.24 23.0 2.145E2

12 23.24 23 214.5

Negative numbers are preceded by the high minus (¯) symbol, not to be confused
with the minus (-) function. In scaled form, both the mantissa and the scale may be
negative.

Example
¯22 2.145E¯2 ¯10.25

¯22 0.02145 ¯10.25

Chapter 1: Introduction 4

Complex Numbers
Complex numbers use the J notation introduced in IBM APL2 and are written as aJb
or ajb (without spaces) where the real and imaginary parts a and b are written as
described above. The capital J is always used to display a value.

Examples
2+¯1*.5

2J1
.3j.5

0.3J0.5
1.2E5J¯4E¯4

120000J¯0.0004

The empty vector (⍳0) may be represented by the numeric constant ⍬ called ZILDE.

Characters
Characters are entered within a pair of APL quotes. The surrounding APL quotes are
not displayed on output. The APL quote character itself must be entered as a pair of
APL quotes.

Examples
'DYALOG APL'

DYALOG APL

'I DON''T KNOW'
I DON'T KNOW

'*'
*

Chapter 1: Introduction 5

Enclosed Elements
An array may be enclosed to form a scalar element through any of the following
means:

l by the enclose function (⊂)
l by inclusion in vector notation
l as the result of certain functions when applied to arrays

Examples
(⊂1 2 3),⊂'ABC'

1 2 3 ABC

(1 2 3) 'ABC'
1 2 3 ABC

⍳2 3
1 1 1 2 1 3
2 1 2 2 2 3

Chapter 1: Introduction 6

Legal Names
APL objects may be given names. A name may be any sequence of characters, start-
ing with an alphabetic character, selected from the following:

0123456789(but not as the 1st character in a name)
ABCDEFGHIJKLMNOPQRSTUVWXYZ_
abcdefghijklmnopqrstuvwxyz
ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝß
àáâãäåæçèéêëìíîïðñòóôõöøùúûüþ
∆⍙
ⒶⒷⒸⒹⒺⒻⒼⒽⒾⒿⓀⓁⓂⓃⓄⓅⓆⓇⓈⓉⓊⓋⓌⓍⓎⓏ

Note that using a standard Unicode font (rather than APL385 Unicode used in the
table above), the last row above would appear as the circled alphabet,Ⓐ toⓏ.

Examples

Legal Illegal

THIS∆IS∆A∆NAME BAD NAME

X1233 3+21

SALES S!H|PRICE

pjb_1 1_pjb

Specification of Variables
A variable is a named array. An undefined name or an existing variable may be
assigned an array by specification with the left arrow (←).

Examples
A←'CHIPS WITH EVERYTHING'
A

CHIPS WITH EVERYTHING

X Y←'ONE' 'TWO'
X

ONE
Y

TWO

Chapter 1: Introduction 7

Vector Notation
A series of two or more adjacent expressions results in a vector whose elements are
the enclosed arrays resulting from each expression. This is known as vector (or
strand) notation. Each expression in the series may consist of one of the following:

a. a single numeric value
b. single character, within a pair of quotes
c. more than one character, within a pair of quotes
d. the name of a variable
e. the evaluated input symbol ⎕
f. the quote-quad symbol ⍞
g. the name of a niladic, defined function yielding a result
h. any other APL expression which yields a result, within parentheses

Examples
⍴A←2 4 10

3
⍴TEXT←'ONE' 'TWO'

2

Numbers and characters may be mixed:

⍴X←'THE ANSWER IS ' 10
2

X[1]
THE ANSWER IS

X[2] + 32
42

Blanks, quotes or parentheses must separate adjacent items in vector notation.
Redundant blanks and parentheses are permitted. In this manual, the symbol pair '←→'
indicates the phrase 'is equivalent to'.

Chapter 1: Introduction 8

1 2 ←→ (1)(2) ←→ 1 (2) ←→ (1) 2
2'X'3 ←→ 2 'X' 3 ←→ (2) ('X') (3)
1 (2+2) ←→ (1) ((2+2)) ←→ ((1)) (2+2)

Vector notation may be used to define an item in vector notation:

⍴X ← 1 (2 3 4) ('THIS' 'AND' 'THAT')
3

X[2]
2 3 4

X[3]
THIS AND THAT

Expressions within parentheses are evaluated to produce an item in the vector:

Y ← (2+2) 'IS' 4
Y

4 IS 4

The following identity holds:

A B C ←→ (⊂A), (⊂B), ⊂C

Structuring of Arrays
A class of primitive functions re-structures arrays in some way. Arrays may be input
only in scalar or vector form. Structural functions may produce arrays with a higher
rank. The Structural functions are reshape (⍴), ravel, laminate and catenate (,),
reverse and rotate (⌽), transpose (⍉), mix and take (↑), split and drop (↓), enlist (∊),
and enclose (⊂).

Examples
2 2⍴1 2 3 4

1 2
3 4

2 2 4⍴'ABCDEFGHIJKLMNOP'
ABCD
EFGH

IJKL
MNOP

↓2 4⍴'COWSHENS'
COWS HENS

Chapter 1: Introduction 9

Display of Arrays
Simple scalars and vectors are displayed in a single line beginning at the left margin.
A number is separated from the next adjacent element by a single space. The number
of significant digits to be printed is determined by the system variable ⎕PP whose
default value is 10. The fractional part of the number will be rounded in the last digit
if it cannot be represented within the print precision. Trailing zeros after a decimal
point and leading zeros will not be printed. An integer number will display without
a decimal point.

Examples
0.1 1.0 1.12

0.1 1 1.12

'A' 2 'B' 'C'
A 2 BC

÷3 2 6
0.3333333333 0.5 0.1666666667

If a number cannot be fully represented in ⎕PP significant digits, or if the number
requires more than five leading zeros after the decimal point, the number is rep-
resented in scaled form. The mantissa will display up to ⎕PP significant digits, but
trailing zeros will not be displayed.

Examples
⎕PP←3

123 1234 12345 0.12345 0.00012345 0.00000012345
123 1.23E3 1.23E4 0.123 0.000123 1.23E¯7

Simple matrices are displayed in rectangular form, with one line per matrix row. All
elements in a given column are displayed in the same format, but the format and
width for each column is determined independently of other columns. A column is
treated as numeric if it contains any numeric elements. The width of a numeric
column is determined such that the decimal points (if any) are aligned; that the E char-
acters for scaled formats are aligned, with trailing zeros added to the mantissae if
necessary, and that integer forms are right-adjusted one place to the left of the
decimal point column (if any). Numeric columns are right-justified; a column which
contains no numeric elements is left-justified. Numeric columns are separated from
their neighbours by a single column of blanks.

Chapter 1: Introduction 10

Examples
2 4⍴'HANDFIST'

HAND
FIST

1 2 3 ∘.× 6 2 5
6 2 5

12 4 10
18 6 15

2 3⍴2 4 6.1 8 10.24 12
2 4 6.1
8 10.24 12

2 4⍴4 'A' 'B' 5 ¯0.000000003 'C' 'D' 123.56
4E0 AB 5

¯3E¯9 CD 123.56

In the display of non-simple arrays, each element is displayed within a rectangle such
that the rows and columns of the array are aligned. Simple items within the array are
displayed as above. For non-simple items, this rule is applied recursively, with one
space added on each side of the enclosed element for each level of nesting.

Examples
⍳3

1 2 3

⊂⍳3
1 2 3

⊂⊂⍳3
1 2 3

('ONE' 1) ('TWO' 2) ('THREE' 3) ('FOUR' 4)
ONE 1 TWO 2 THREE 3 FOUR 4

2 4⍴'ONE' 1 'TWO' 2 'THREE' 3 'FOUR' 4
ONE 1 TWO 2
THREE 3 FOUR 4

Multi-dimensional arrays are displayed in rectangular planes. Planes are separated
by one blank line, and hyper-planes of higher dimensions are separated by increasing
numbers of blank lines. In all other respects, multi-dimensional arrays are displayed
in the same manner as matrices.

Chapter 1: Introduction 11

Examples
2 3 4⍴⍳24

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

3 1 1 3⍴'THEREDFOX'
THE

RED

FOX

The power of this form of display is made apparent when formatting informal reports.

Examples
+AREAS←'West' 'Central' 'East'

West Central East

+PRODUCTS←'Biscuits' 'Cakes' 'Buns' 'Rolls'
Biscuits Cakes Buns Rolls

SALES←50 5.25 75 250 20.15 900 500
SALES,←80.98 650 1000 90.03 1200
+SALES←4 3⍴SALES

50 5.25 75
250 20.15 900
500 80.98 650

1000 90.03 1200

' ' PRODUCTS ⍪., AREAS SALES
West Central East

Biscuits 50 5.25 75
Cakes 250 20.15 900
Buns 500 80.98 650
Rolls 1000 90.03 1200

Chapter 1: Introduction 12

If the display of an array is wider than the page width, as set by the system variable
⎕PW, it will be folded at or before ⎕PW and the folded portions indented six spaces.
The display of a simple numeric or mixed array may be folded at a width less than
⎕PW so that individual numbers are not split across a page boundary.

Example
⎕PW←40

?3 20⍴100
54 22 5 68 68 94 39 52 84 4 6 53 68
85 53 10 66 42 71 92 77 27 5 74 33 64
66 8 64 89 28 44 77 48 24 28 36 17 49

1 39 7 42 69 49 94
76 100 37 25 99 73 76
90 91 7 91 51 52 32

The Display Function
The DISPLAY function is implemented as a user command]display distributed
with Dyalog APL and may be used to illustrate the structure of an array.]display
is monadic. Its result is a character matrix containing a pictorial representation of its
argument.]display is used throughout this manual to illustrate examples. An
array is illustrated with a series of boxes bordering each sub-array. Characters embed-
ded in the border indicate rank and type information. The top and left borders con-
tain symbols that indicate its rank. A symbol in the lower border indicates type. The
symbols are defined as follows:

→ Vector.
↓ Matrix or higher rank array.
⊖ Empty along last axis.
⌽ Empty along other than last axis.
∊ Nested array.
~ Numeric data.
- Character data.
+ Mixed character and numeric data.
∇ ⎕OR object.
array of refs.

]display 'ABC' (1 4⍴1 2 3 4)
.→-----------------.
| .→--. .→------. |
| |ABC| ↓1 2 3 4| |
| '---' '~------' |
'∊-----------------'

Chapter 1: Introduction 13

Prototypes and Fill Items
Every array has an associated prototype which is derived from the array's first item.

If the first item is a number, the prototype is 0. Otherwise, if the first item is a char-
acter, the prototype is ' ' (space). Otherwise, if the first item is a (ref to) an instance
of a Class, the prototype is a ref to that Class.

Otherwise (in the nested case, when the first item is other than a simple scalar), the
prototype is defined recursively as the prototype of each of the array's first item.

Examples:

Array Prototype

1 2 3.4 0

2 3 5⍴'hello' ' '

99 'b' 66 0

(1 2)(3 4 5) 0 0

((1 2)3)(4 5 6) (0 0)0

'hello' 'world' ' '

⎕NEW MyClass MyClass

(88(⎕NEW MyClass)'X')7 0 MyClass ' '

Fill Items
Fill items for an overtake operation, are derived from the argument's prototype. For
each 0 or ' ' in the prototype, there is a corresponding 0 or ' ' in the fill item and
for each class reference in the prototype, there is a ref to a (newly constructed and dis-
tinct) instance of that class that is initialised by the niladic (default) constructor for
that class, if defined.

Examples:
4↑1 2

1 2 0 0
4↑'ab'

ab
4↑(1 2)(3 4 5)

1 2 3 4 5 0 0 0 0
2↑⎕NEW MyClass

#.[Instance of MyClass] #.[Instance of MyClass]

Chapter 1: Introduction 14

In the last example, two distinct instances are constructed (the first by ⎕NEW and the
second by the overtake).

Fill items are used in a number of operations including:

l First (⊃ or ↑) of an empty array
l Fill-elements for overtake
l For use with the Each operator on an empty array

Cells and Sub-arrays
Certain functions and operators operate on particular cells or sub-arrays of an array,
which are identified and described as follows.

K-Cells
A rank-k cell or k-cell of an array are terms used to describe a sub-array on the last k
axes of the array. Negative k is interpreted as r+k where r is the rank of the array,
and is used to describe a sub-array on the leading |k axes of an array.

If X is a 3-dimensional array of shape 2 3 4, the 1-cells are its 6 rows each of 4 ele-
ments; and its 2-cells are its 2 matrices each of shape 3 4. Its 3-cells is the array in its
entirety. Its 0-cells are its individual elements.

Major Cells
The major cells of an array X is a term used to describe the sub-arrays on the leading
dimension of the array X with shape 1↓⍴X. Using the k-cell terminology, the major
cells are its ¯1-cells.

The major cells of a vector are its elements (0-cells). The major cells of a matrix are its
rows (1-cells), and the major cells of a 3-dimensional array are its matrices along the
first dimension (2-cells).

Chapter 1: Introduction 15

Examples
In the following, the major cells of A are 1979, 1990, 1997, 2007, and 2010; those of
B are 'Thatcher', 'Major', 'Blair', 'Brown', and 'Cameron'; and those
of C are the four 2-by-3 matrices.

A
1979 1990 1997 2007 2010

B
Thatcher
Major
Blair
Brown
Cameron

⍴B
5 8

⎕←C←4 2 3⍴⍳24
0 1 2
3 4 5

6 7 8
9 10 11

12 13 14
15 16 17

18 19 20
21 22 23

Using the k-cell terminology, if r is the rank of the array, its major cells are its r-1-
cells.

Note that if the right operand k of the Rank Operator ⍤ is negative, it is interpreted as
0⌈r+k. Therefore the value ¯1 selects the major cells of the array.

Chapter 1: Introduction 16

Expressions
An expression is a sequence of one or more syntactic tokens which may be symbols
or constants or names representing arrays (variables) or functions. An expression
which produces an array is called an ARRAY EXPRESSION. An expression which
produces a function is called a FUNCTION EXPRESSION. Some expressions do not
produce a result.

An expression may be enclosed within parentheses.

Evaluation of an expression proceeds from right to left, unless modified by
parentheses. If an entire expression results in an array that is not assigned to a name,
then that array value is displayed. (Some system functions and defined functions
return an array result only if the result is assigned to a name or if the result is the argu-
ment of a function or operator.)

Examples
X←2×3-1

2×3-1
4

(2×3)-1
5

Either blanks or parentheses are required to separate constants, the names of vari-
ables, and the names of defined functions which are adjacent. Excessive blanks or
sets of parentheses are redundant, but permitted. If F is a function, then:

F 2←→ F(2) ←→ (F)2 ←→ (F) (2) ←→ F (2) ←→ F ((2))

Blanks or parentheses are not needed to separate primitive functions from names or
constants, but they are permitted:

-2 ←→ (-)(2) ←→ (-) 2

Blanks or parentheses are not needed to separate operators from primitive functions,
names or constants. They are permitted with the single exception that a dyadic oper-
ator must have its right argument available when encountered. The following syn-
tactical forms are accepted:

(+.×) ←→ (+).× ←→ +.(×)

The use of parentheses in the following examples is not accepted:

+(.)× or (+.)×

Chapter 1: Introduction 17

Functions
A function is an operation which is performed on zero, one or two array arguments
and may produce an array result. Three forms are permitted:

l NILADIC defined for no arguments
l MONADIC defined for a right but not a left argument
l DYADIC defined for a left and a right argument

The number of arguments is referred to as its VALENCE.

The name of a non-niladic function is AMBIVALENT; that is, it potentially rep-
resents both a monadic and a dyadic function, though it might not be defined for
both. The usage in an expression is determined by syntactical context. If the usage
is not defined an error results.

Functions have long SCOPE on the right; that is, the right argument of the function is
the result of the entire expression to its right which must be an array. A dyadic func-
tion has short scope on the left; that is, the left argument of the function is the array
immediately to its left. Left scope may be extended by enclosing an expression in
parentheses whence the result must be an array.

For some functions, the explicit result is suppressed if it would otherwise be dis-
played on completion of evaluation of the expression. This applies on assignment to
a variable name. It applies for certain system functions, and may also apply for
defined functions.

Examples
10×5-2×4

¯30
2×4

8
5-8

¯3
10×¯3

¯30
(10×5)-2×4

42

Chapter 1: Introduction 18

Defined Functions
Functions may be defined with the system function ⎕FX, or with the function editor.
A function consists of a HEADER which identifies the syntax of the function, and a
BODY in which one or more APL statements are specified.

The header syntax identifies the function name, its (optional) result and its (optional)
arguments. If a function is ambivalent, it is defined with two arguments but with the
left argument within braces ({}). If an ambivalent function is called monadically,
the left argument has no value inside the function. If the explicit result is to be sup-
pressed for display purposes, the result is shown within braces. A function need not
produce an explicit result. Refer to Chapter 2 for further details.

Example
∇ R←{A} FOO B

[1] R←⊃'MONADIC' 'DYADIC'[⎕IO+0≠⎕NC'A']
[2] ∇

FOO 1
MONADIC

'X' FOO 'Y'
DYADIC

Functions may also be created by using assignment (←).

Chapter 1: Introduction 19

Function Assignment & Display
The result of a function-expression may be given a name. This is known as
FUNCTION ASSIGNMENT (see also Dfns &Dops on page 122). If the result of a
function-expression is not given a name, its value is displayed. This is termed
FUNCTION DISPLAY.

Examples
PLUS←+
PLUS

+
SUM←+/
SUM

+/

Function expressions may include defined functions and operators. These are dis-
played as a ∇ followed by their name.

Example
∇ R←MEAN X ⍝ Arithmetic mean

[1] R←(+/X)÷⍴X
∇

MEAN
∇MEAN

AVERAGE←MEAN
AVERAGE

∇MEAN

AVG←MEAN∘,
AVG

∇MEAN ∘,

Chapter 1: Introduction 20

Operators
An operator is an operation on one or two operands which produces a function called
a DERIVED FUNCTION. An operand may be a function or an array. Operators are
not ambivalent. They require either one or two operands as applicable to the par-
ticular operator. However, the derived function may be ambivalent. The derived
function need not return a result. Operators have higher precedence than functions.
Operators have long scope on the left. That is, the left operand is the longest func-
tion or array expression on its left. The left operand may be terminated by:

1. the end of the expression
2. the right-most of two consecutive functions
3. a function with an array to its left
4. an array with a function to its left

an array or function to the right of a monadic operator.

A dyadic operator has short scope on the right. That is, the right operand of an oper-
ator is the single function or array on its right. Right scope may be extended by
enclosing an expression in parentheses.

Examples
⍴¨X←'WILLIAM' 'MARY' 'BELLE'

7 4 5

⍴∘⍴¨X
1 1 1

(⍴∘⍴)¨X
1 1 1

⎕∘←∘⎕VR¨'PLUS' 'MINUS'
∇ R←A PLUS B

[1] R←A+B
∇
∇ R←A MINUS B

[1] R←A-B
∇

PLUS/1 2 3 4
10

Chapter 1: Introduction 21

Defined Operators
Operators may be defined with the system function ⎕FX, or with the function editor.
A defined operator consists of a HEADER which identifies the syntax of the oper-
ator, and a BODY in which one or more APL statements are specified.

A defined operator may have one or two operands; and its derived function may have
one or two arguments, and may or may not produce a result. The header syntax
defines the operator name, its operand(s), the argument(s) to its derived function, and
the result (if any) of its derived function. The names of the operator and its operand(s)
are separated from the name(s) of the argument(s) to its derived function by par-
entheses.

Example
∇ R←A(F AND G)B

[1] R←(A F B)(A G B)
∇

The above example shows a dyadic operator called AND with two operands (F and
G). The operator produces a derived function which takes two arguments (A and B),
and produces a result (R).

12 +AND÷ 4
16 3

Operands passed to an operator may be either functions or arrays.

12 (3 AND 5) 4
12 3 4 12 5 4

12 (× AND 5) 4
48 12 5 4

Chapter 1: Introduction 22

Binding Strength
For two entities X and Y that are adjacent in an expression (that is, X Y), the binding
strength between them and the result of the bind is shown in this table:

Y

A F H MOP DOP DOT IDX

X

A 6 A 3 AF 3 AF 4 F 7 REF 4 A

F 2 A 1 F 4 F 4 F 4 F

H 1 F 4 F 4 F 4 H

AF 2 A 1 F

MOP 4 ERR

DOP 5 MOP 5 MOP 5 MOP

JOT 5 MOP 5 MOP 5 MOP 4 F

DOT 6 ERR 5 MOP 5 MOP 6 ERR

REF 7 A 7 F 7 H 7 MOP 7 DOP

IDX 3 ERR 3 ERR 3 ERR

A : *Array, for example, 0 1 2 'hello' ⍺ ⍵

F : *Function (primitive/defined/derived/system), for example, + - +.×
myfn ⎕CR {⍺ ⍵}

H : *Hybrid function/operator, that is, / ⌿ \ ⍀
AF : Bound left argument, for example, 2+
MOP : *Monadic operator, for example, ¨ ⍨ &
DOP : Dyadic operator, for example, ⍣ ⍠ ⍤ ⌸
JOT : Jot, that is, compose/null operand ∘
DOT : Dot, that is, reference/product .
IDX : square-bracketed expression, for example, [⍺+⍳⍵]
ERR : Error

* indicates a "first-class" entity, which can be parenthesised or named

In this table:

l the higher the number, the stronger the binding
l an empty field indicates no binding for this combination; an error.

Chapter 1: Introduction 23

For example, in the expression a b.c[d], where a, b, c and d are arrays, the bind-
ing proceeds:

a b . c [d]
6 7 6 4 ⍝ binding strengths between entities

→ a (b.) c [d]
0 7 4

→ a (b.c) [d]
6 4

→ (a(b.c))[d]

Chapter 1: Introduction 24

Function Trains
Introduction
A Train is a sequence of 2 or 3 items in an expression which bind together to form a
function. Each item in a train may be an array or a function but the right-most item
must be a function.

Forks and Atops
The following trains are supported where f, g and h are functions and A is an array:

f g h
A g h

g h

The 3-item trains (f g h) and (A g h) are termed forkswhile the 2-item train (g
h) is termed an atop. To distinguish the two styles of fork, we can use the terms fgh-
fork or Agh-fork.

Trains as Functions
A train is syntactically equivalent to a function and so, in common with any other
function, may be:

l named using assignment
l applied to or between arguments
l consumed by operators as operands
l and so forth.

In particular, trains may be applied to a single array (monadic use) or between 2
arrays (dyadic use), providing six new constructs.

⍺(f g h)⍵ ←→ (⍺ f ⍵) g (⍺ h ⍵) ⍝ dyadic (fgh) fork
⍺(A g h)⍵ ←→ A g (⍺ h ⍵) ⍝ dyadic (Agh) fork
⍺(g h)⍵ ←→ g (⍺ h ⍵) ⍝ dyadic atop

(f g h)⍵ ←→ (f ⍵) g (h ⍵) ⍝ monadic (fgh) fork
(A g h)⍵ ←→ A g (h ⍵) ⍝ monadic (Agh) fork
(g h)⍵ ←→ g (h ⍵) ⍝ monadic atop

Chapter 1: Introduction 25

Identifying a Train
For a sequence to be interpreted as a train it must be separated from the argument to
which it is applied. This can be done using parentheses or by naming the derived
function.

Example - fork: negation of catenated with reciprocal of
(-,÷)5

¯5 0.2

Example - named fork
negrec←-,÷
negrec 5

¯5 0.2

Whereas, without these means to identify the sequence as a train, the expression:

-,÷ 5
¯0.2

means the negation of the ravel of the reciprocal of 5.

Idiom Recognition
Function trains lend themselves to idiom recognition, a technique used to optimise
the performance of certain expressions.

Example
An expression to find the first position in a random integer vector X of a number
greater than 999000 is:

X←?1e6⍴1e6
(X≥999000)⍳1

1704

A function train is not only more concise, it is faster too.

X (⍳∘1 ≥) 999000
1704

Chapter 1: Introduction 26

Trains of Trains
As a train resolves to a function, a sequences of more than 3 functions represents a
train of trains. Function sequences longer than 3 are bound in threes, starting from the
right:

... fu fv fw fx fy fz → ... fu (fv fw (fx fy fz))

This means that, in the absence of parentheses, a sequence of an odd number of func-
tions resolves to a 3-train (fork) and an even-numbered sequence resolves to a 2-train
(atop):

e f g h i j k → e f(g h(i j k)) ⍝ fork(fork(fork))
f g h i j k → f(g h(i j k)) ⍝ atop(fork(fork))

Examples
6(+,-,×,÷)2 ⍝ fork:(6+2),((6-2),((6×2),(6÷2)))

8 4 12 3

6(⌽+,-,×,÷)2 ⍝ atop: ⌽ (6+2), ...
3 12 4 8

]boxing on
Was OFF

+,-,×,÷ ⍝ boxed display of fork
┌─┬─┬─────────────┐
│+│,│┌─┬─┬───────┐│
│ │ ││-│,│┌─┬─┬─┐││
│ │ ││ │ ││×│,│÷│││
│ │ ││ │ │└─┴─┴─┘││
│ │ │└─┴─┴───────┘│
└─┴─┴─────────────┘

⌽+,-,×,÷ ⍝ boxed display of atop
┌─┬───────────────────┐
│⌽│┌─┬─┬─────────────┐│
│ ││+│,│┌─┬─┬───────┐││
│ ││ │ ││-│,│┌─┬─┬─┐│││
│ ││ │ ││ │ ││×│,│÷││││
│ ││ │ ││ │ │└─┴─┴─┘│││
│ ││ │ │└─┴─┴───────┘││
│ │└─┴─┴─────────────┘│
└─┴───────────────────┘

]boxing -trains=tree
Was -trains=box

+,-,×,÷ ⍝ boxed (tree) display of fork
┌─┼───┐
+ , ┌─┼───┐

- , ┌─┼─┐
× , ÷

Chapter 1: Introduction 27

Binding Strengths
The binding strength between the items of a train is less than that of operand-operator
binding. In other words, operators bind first with their function (or array) operands to
form derived functions, which may then participate as items in a train.

Example:
+⌿ ÷ ≢ ⍝ fork for mean value

┌─────┬─┬─┐
│┌─┬─┐│÷│≢│
││+│⌿││ │ │
│└─┴─┘│ │ │
└─────┴─┴─┘

⌊/,⌈/ ⍝ fork for min_max
┌─────┬─┬─────┐
│┌─┬─┐│,│┌─┬─┐│
││⌊│/││ ││⌈│/││
│└─┴─┘│ │└─┴─┘│
└─────┴─┴─────┘

This means that any of the four hybrid tokens / ⌿ \ ⍀ will not be interpreted as a
function if there's a function to its left in the train. In order to fix one of these tokens
as a replicate or expand function, it must be isolated from the function to its left:

(⍳/⍳)3 ⍝ → ⍳/ atop ⍳3 → RANK ERROR
RANK ERROR

(⍳{⍺/⍵}⍳)3 ⍝ → (⍳3){⍺/⍵}(⍳3) → (⍳3)/(⍳3)
1 2 2 3 3 3

(⍳(/∘⊢)⍳)3 ⍝ → (⍳3)/⊢(⍳3)
1 2 2 3 3 3

(2/⍳)3 ⍝ Agh-fork is OK
1 1 2 2 3 3

Chapter 1: Introduction 28

Parallel Execution
If your computer has more than one CPU or is a multi-core processor, then the scalar
dyadic functions ÷, ≥, =, ≤, ⍟, |, !, ○, ∨ and ∧ will, when applied to arrays with a suf-
ficiently large number of elements, execute in parallel in separate system threads.

For example, if you have a computer with 4 cores (either real or virtual) and execute
an expression such as (A÷B) where A and/or B contain more than 32,768 elements,
then Dyalog will start 4 separate threads, each performing the division on ¼ of the
elements of the array(s) and simultaneously creating the corresponding ¼ of the result
array. The threads are only started once, and are reused for subsequent multi-threaded
operations.

The maximum number of threads to use can be controlled using 1111⌶, and the par-
allel execution threshold is changed using 1112⌶. These "tuning" I-beams should be
considered experimental, and may be changed or replaced in a future release. (See
Language Reference: Number of Threads and Parallel Execution Threshold).

Note that these scalar dyadic functions are not multi-threaded when applied to arrays
of Boolean or integer values, they are also not multi-threaded for +, - or × when
applied to arrays of 64 bits floating (type 645). Tests show that the overhead of pre-
paring such arrays for multi-threaded operations outweigh the performance benefits.

Chapter 1: Introduction 29

Complex Numbers
A complex number is a number consisting of a real and an imaginary part which is
usually written in the form a+ bi, where a and b are real numbers, and i is the stand-
ard imaginary unit with the property i2= −1.

Dyalog APL adopts the J notation introduced in IBM APL2 to represent the value of
a complex number which is written as aJb or ajb (without spaces). The former rep-
resentation (with a capital J) is always used to display a value.

Notation
2+¯1*.5

2J1

.3j.5
0.3J0.5

1.2E5J¯4E¯4
120000J¯0.0004

Arithmetic
The arithmetic primitive functions handle complex numbers in the appropriate way.

2j3+.3j.5 ⍝ (a+bi)+(c+di) = (a+c)+(b+d)i
2.3J3.5

2j3-.3j5 ⍝ (a+bi)-(c+di) = (a-c)+(b-d)i
1.7J¯2

2j3×.3j.5 ⍝ (a+bi)(c+di)= ac+bci+adi+bdi2
⍝ = (ac-bd)+(bc+ad)i

¯0.9J1.9

Chapter 1: Introduction 30

The absolute value, or magnitude of a complex number is naturally obtained using
the Magnitude function

|3j4
5

Monadic + of a complex number (a+bi) returns its conjugate (a-bi) ...

+3j4
3J¯4

... which when multiplied by the complex number itself, produces the square of its
magnitude.

3j4×3j¯4
25

Furthermore, adding a complex number and its conjugate produces a real number:

3j4+3j¯4
6

The famous Euler's Identitye + 1 = 0
iπ may be expressed as follows:

1+*○0j1 ⍝ Euler Identity
0

Different Result for Power
FromVersion 13.0 onwards, the implementation of X*Y (Power) gives a different
answer for negative real X than in all previous Versions of Dyalog APL. This change
is however in accordance with the ISO/EEC 13751 Standard for Extended APL.

In Version 13.0 onwards, the result is the principal value; whereas in previous Ver-
sions the result is a negative or positive real number or DOMAIN ERROR. The fol-
lowing examples illustrate this point:

¯8 * 1 2 ÷ 3 ⍝ Version 12.1
¯2 4

¯8 * 1 2 ÷ 3 ⍝ Version 13.0
1J1.732050808 ¯2J3.464101615

* (1 2 ÷ 3) × ⍟ ¯8 ⍝ Version 13.0
1J1.732050808 ¯2J3.464101615

Chapter 1: Introduction 31

Circular functions
The basic set of circular functions X○Y cater for complex values in Y, while the fol-
lowing extended functions provide specific features for complex arguments. Note
that a and b are the real and imaginary parts of Y respectively and θ is the phase of Y..

(-X) ○ Y X X ○ Y

-8○Y 8 (-1+Y*2)*0.5

Y 9 a

+Y 10 |Y

Y×0J1 11 b

*Y×0J1 12 θ

Note that 9○Y and 11○Y return the real and imaginary parts of Y respectively:

9 11○3.5J¯1.2
3.5 ¯1.2

9 11∘.○3.5J¯1.2 2J3 3J4
3.5 2 3

¯1.2 3 4

Chapter 1: Introduction 32

Comparison
In comparing two complex numbers X and Y, X=Y is 1 if the magnitude of X-Y does
not exceed ⎕CT times the larger of the magnitudes of X and Y; geometrically, X=Y if
the number smaller in magnitude lies on or within a circle centred on the one with lar-
ger magnitude, having radius ⎕CT times the larger magnitude.

As with real values, complex values sufficiently close to Boolean or integral values
are accepted by functions which require Boolean or integral values. For example:

2j1e¯14 ⍴ 12
12 12

0 ⍱ 1j1e¯15
0

Note that Dyalog APL always stores complex numbers as a pair of 64-bit binary float-
ing-point numbers, regardless of the setting of ⎕FR. Comparisons between complex
numbers and decimal floating-point numbers will require conversion of the decimal
number to binary to allow the comparison. When ⎕FR=1287, comparisons are
always subject to ⎕DCT, not ⎕CT - regardless of the data type used to represent a num-
ber.

This only really comes into play when determining whether the imaginary part of a
complex number is so small that it can be considered to be on the real plane.
However, Dyalog recommends that you do not mix the use of complex and decimal
numbers in the same component of an application.

Chapter 1: Introduction 33

128 Bit Decimal Floating-Point Support
Introduction
The original IEE-754 64-bit binary floating point (FP) data type (also known as type
number 645), that is used internally by Dyalog APL to represent floating-point val-
ues, does not have sufficient precision for certain financial computations – typically
involving large currency amounts. The binary representation also causes errors to
accumulate even when all values involved in a calculation are “exact” (rounded)
decimal numbers, since many decimal numbers cannot be accurately represented
regardless of the precision used to hold them. To reduce this problem, Dyalog APL
includes support for the 128-bit decimal data type described by IEEE-754-2008 as an
alternative representation for floating-point values.

System Variable: ⎕FR
Computations using 128-bit decimal numbers require twice as much space for stor-
age, and run more than an order of magnitude more slowly on platforms which do not
provide hardware support for the type. At this time, hardware support is only avail-
able from IBM (POWER 6 chips onwards, and recent “z” series mainframes). Even
with hardware support, a slowdown of a factor of 4 can be expected. For this reason,
Dyalog allows users to decide whether they need the higher-precision decimal rep-
resentation, or prefer to stay with the faster and smaller binary representation.

The system variable ⎕FR (for Floating-point Representation) can be set to the value
645 (the installed default) to indicate 64-bit binary FP, or 1287 for 128-bit decimal
FP. The default value of ⎕FR is configurable.

Simply put, the value of ⎕FR decides the type of the result of any floating-point cal-
culation that APL performs. In other words, when entered into the session:

⎕FR = ⎕DR 1.234 ⍝ Type of a floating-point constant
⎕FR = ⎕DR 3÷4 ⍝ Type of any floating-point result

Chapter 1: Introduction 34

⎕FR has workspace scope, and may be localised. If so, like most other system vari-
ables, it inherits its initial value from the global environment.

However:Although ⎕FR can vary, the system is not designed to allow “seamless”
modification during the running of an application and the dynamic alteration of ⎕FR
is not recommended. Strange effects may occur. For example, the type of a constant
contained in a line of code (in a function or class), will depend on the value of ⎕FR
when the function is fixed. Similarly, a constant typed into a line in the Session is
evaluated using the value of ⎕FR that pertained before the line is executed. Thus, it
would be possible for the first line of code above to return 0, if it is in the body of a
function. If the function was edited and while suspended and execution is resumed,
the result would become 1. Also note:

⎕FR←1287
x←1÷3

⎕FR←645
x=1÷3

1

The decimal number has 17 more 3s. Using the tolerance which applies to binary
floats (type 645), the numbers are equal. However, the “reverse” experiment yields 0,
as tolerance is much narrower in the 128-bit universe:

⎕FR←645
x←1÷3

⎕FR←1287
x=1÷3

0

Since ⎕FR can vary, it will be possible for a single workspace to contain floating-
point values of both types (existing variables are not converted when ⎕FR is
changed). For example, an array that has just been brought into the workspace from
external storage may have a different type from ⎕FR in the current namespace. Con-
version (if necessary) will only take place when a new floating-point array is gen-
erated as the result of “a calculation”. The result of a computation returning a
floating-point result will not depend on the type of the arrays involved in the expres-
sion: ⎕FR at the time when a computation is performed decides the result type, alone.

Chapter 1: Introduction 35

Structural functions generally do NOT change the type, for example:

⎕FR←1287
x←1.1 2.2 3.3

⎕FR←645
⎕dr x

1287
⎕dr 2↑x

1287

128-bit decimal numbers not only have greater precision (roughly 34 decimal digits);
they also have significantly larger range- from ¯1E6145 to 1E6145. Loss of pre-
cision is accepted on conversion from 645 to 1287, but the magnitude of a number
may make the conversion impossible, in which case a DOMAIN ERROR is issued:

⎕FR←1287
x←1E1000

⎕FR←645
x+0

DOMAIN ERROR

WARNING: The use of COMPLEX numbers when ⎕FR is 1287 is not recom-
mended, because:

l any 128-bit decimal array into which a complex number is inserted or appen-
ded will be forced in its entirety into complex representation, potentially los-
ing precision

l all comparisons are done using ⎕DCT when ⎕FR is 1287, and this is equi-
valent to 0 for complex numbers.

Conversion between Decimal and Binary
Conversion of data from Binary to Decimal is logically equivalent to formatting, and
the reverse conversion is equivalent to evaluating input. These operations are per-
formed according to the same rules that are used when formatting (and evaluating)
numbers with ⎕PP set to 17 (guaranteeing that the decimal value can be converted
back to the same binary bit pattern). Because the precision of decimal floating-point
numbers is much higher, there will always be a large number of potential decimal val-
ues which map to the same binary number: As with formatting, the rule is that the
SHORTEST decimal number which maps to a particular binary value will be used as
its decimal representation.

Chapter 1: Introduction 36

Data in component files will be stored without conversion, and only converted when
a computation happens. It should be stored in decimal form if it will repeatedly be
used by application code in which ⎕FR has the value 1287. Even in applications
which use decimal floating point everywhere, reading old component files con-
taining arrays of type 645, or receiving data via ⎕NA, the .NET interface or other
external sources, will allow binary floating-point values to enter the system and
require conversion.

⎕DCT - Decimal Comparison Tolerance
When ⎕FR has the value 1287, the system variable ⎕DCT will be used to specify com-
parison tolerance. The default value of ⎕DCT is 1E¯28, and the maximum value is
2.3283064365386962890625E¯10 (the value is chosen to avoid fuzzy com-
parison of 32-bit integers).

Passing floating-point values using ⎕NA
⎕NA supports the data type “D” to represent the Densely Packed Decimal (DPD) form
of 128-bit decimal numbers, as specified by the IEEE-754 2008 standard. Dyalog has
decided to use DPD, which is the format used by IBM for hardware support, on ALL
platforms, although “Binary Integer Decimal” (BID) is the format that Intel libraries
use to implement software libraries to do decimal arithmetic. Experiments have
shown that the performance of 128-bit DPD and BID libraries are very similar on
Intel platforms. In order to avoid the added complication of having two internal rep-
resentations, Dyalog has elected to go with the hardware format, which is expected
to be adopted by future hardware implementations.

The support libraries for writing APs and DLLs include new functions to extract the
contents of a value of type D as a string or double-precision binary “float” – and con-
vert data to D format.

Decimal Floats and Microsoft.NET
The Microsoft.NET framework contains a type named System.Decimal, which imple-
ments decimal floating-point numbers. However, it uses a different internal format
from that defined by IEEE-754 2008.

Dyalog APL includes a Microsoft.NET class (called Dyalog.Dec128), which will per-
form arithmetic on data represented using the “Binary Integer Decimal” format. All
computations performed by the Dyalog.Dec128 class will produce exactly the same
results as if the computation was performed in APL. A “DCT” property allows setting
the comparison tolerance to be used in comparisons, Ceiling/Floor, etc.).

Chapter 1: Introduction 37

The Dyalog class is modelled closely after the existing System.Decimal type, provid-
ing the same methods (Add, Ceiling, Compare, CompareTo, Divide, Equals, Finalize,
Floor, FromOACurrency, GetBits, GetHashCode, GetType, GetTypeCode, Mem-
berwiseClone, Multiply, Negate, Parse, Remainder, Round, Subtract, To*, Truncate,
TryParse) and operators (Addition, Decrement, Division, Equality, Explicit, Great-
erThan, GreaterThanOrEqual, Implicit, Increment, Inequality, LessThan,
LessThanOrEqual, Modulus, Multiply, Subtraction, UnaryNegation, UnaryPlus).

The “bridge” between Dyalog and .NET is able to cast floating-point numbers to or
from System.Double, System.Decimal and Dyalog.Dec128 (and perform all other reas-
onable casts to integer types etc.). Casting a Dyalog.Dec128 to or from strings will
perform a “lossless” conversion.

The .NET type System.Int64 will now always be cast to a 128-bit decimal number
when entering Dyalog APL, regardless of the setting of ⎕FR. So long as no 64-bit
arithmetic is performed on such a value, it will remain a 128-bit number and can be
passed back to .NET without loss.

Chapter 1: Introduction 38

Namespaces
Namespace is a (class 9) object in Dyalog APL. Namespaces are analogous to nested
workspaces.

'Flat' APL Workspace Workspace with Namespaces
.OLD-------------------. .NEW-------------------.
		FOO MAT VEC						
DISPLAY		.Util----------.						
			DISPLAY					
FOO MAT VEC			...					
		'--------------'						
WsDoc_Init		.WsDoc-------------.						
WsDoc_Xref			Init .prt-..fmt--.					
WsDoc_Tree				Init		line		
WsDoc_prt_init			Tree					
WsDoc_current_page			Xref	page				
...			'----''-----'					
		'------------------'						
'----------------------' '----------------------'

They provide the same sort of facility for workspaces as directories do for filesystems.
The analogy might prove helpful:

Operation Windows Namespace

Create MKDIR"apl""Dyalog")NS or ⎕NS

Change CD)CS or ⎕CS

Relative name DIR1\DIR2\FILE NS1.NS2.OBJ

Absolute name \DIR\FILE #.NS.OBJ

Name separator \ .

Top (root) object \ #

Parent object .. ##

Chapter 1: Introduction 39

Namespaces bring a number of major benefits:
They provide static (as opposed to dynamic) local names. This means that a defined
function can use local variables and functions which persist when it exits and which
are available next time it is called.

Just as with the provision of directories in a filing system, namespaces allow us to
organise the workspace in a tidy fashion. This helps to promote an object oriented
programming style.

APL's traditional name-clash problem is ameliorated in several ways:
l Workspaces can be arranged so that there are many fewer names at each

namespace level. This means that when copying objects from saved work-
spaces there is a much reduced chance of a clash with existing names.

l Utility functions in a saved workspace may be coded as a single namespace
and therefore on being copied into the active workspace consume only a
single name. This avoids the complexity and expense of a solution which is
sometimes used in 'flat' workspaces, where such utilities dynamically fix
local functions on each call.

l In flat APL, workspace administration functions such as WSDOC must share
names with their subject namespace. This leads to techniques for trying to
avoid name clashes such as using obscure name prefixes like '⍙⍙L1' This
problem is now virtually eliminated because such a utility can operate
exclusively in its own namespace.

The programming of GUI objects is considerably simplified.
l An object’s callback functions may be localised in the namespace of the

object itself.
l Static variables used by callback functions to maintain information between

calls may be localised within the object.

This means that the object need use only a single name in its namespace.

Chapter 1: Introduction 40

Namespace Syntax
Names within namespaces may be referenced explicitly or implicitly. An explicit ref-
erence requires that you identify the object by its full or relative pathname using a
'.' syntax; for example:

X.NUMB ← 88

sets the variable NUMB in namespace X to 88.

88 UTIL.FOO 99

calls dyadic function FOO in namespace UTIL with left and right arguments of 88
and 99 respectively. The interpreter can distinguish between this use of '.' and its
use as the inner product operator, because the leftmost name: UTIL is a (class 9)
namespace, rather than a (class 3) function.

The general namespace reference syntax is:

SPACE . SPACE . (...) EXPR

Where SPACE is an expression which resolves to a namespace reference, and EXPR is
any APL expression to be resolved in the resulting namespace.

There are two special space names:

is the top level or 'Root' namespace.

is the parent or space containing the current namespace.

⎕SE is a system namespace which is preserved across workspace load and clear.

Examples
WSDOC.PAGE.NO +← 1 ⍝ Increment WSDOC page count

#.⎕NL 2 ⍝ Variables in root space

UTIL.⎕FX 'Z←DUP A' 'Z←A A' ⍝ Fix remote function

##.⎕ED'FOO' ⍝ Edit function in parent space

⎕SE.RECORD ← PERS.RECORD ⍝ Copy from PERS to ⎕SE

UTIL.(⎕EX ⎕NL 2) ⍝ Expunge variables in UTIL

(⊃⎕SE #).(⍎⊃↓⎕NL 9).(⎕NL 2) ⍝ Vars in first ⎕SE
⍝ namespace.

UTIL.⍎STRING ⍝ Execute STRING in UTIL space

Chapter 1: Introduction 41

You may also reference a function or operator in a namespace implicitly using the
mechanism provided by ⎕EXPORT (See Language Reference: Export) and ⎕PATH. If
you reference a name that is undefined in the current space, the system searches for it
in the list of exported names defined for the namespaces specified by ⎕PATH. See
Language Reference: Search Path for further details.

Notice that the expression to the right of a dot may be arbitrarily complex and will be
executed within the namespace or ref to the left of the dot.

X.(C←A×B)
X.C

10 12 14
16 18 20

NS1.C
10 12 14
16 18 20

Summary
Apart from its use as a decimal separator (3.14), ‘.’ is interpreted by looking at the
type or class of the expression to its left:

Template Interpretation Example

∘. Outer product 2 3 ∘.× 4 5

function. Inner product 2 3 +.× 4 5

ref. Namespace reference 2 3 x.foo 4 5

array. Reference array expansion (x y).⎕nc⊂'foo'

Chapter 1: Introduction 42

Namespace Reference Evaluation
When the interpreter encounters a namespace reference, it:

1. Switches to the namespace.
2. Evaluates the name.
3. Switches back to the original namespace.

If for example, in the following, the current namespace is #.W, the interpreter eval-
uates the line:

A ← X.Y.DUP MAT

in the following way:

1. Evaluate array MAT in current namespace W to produce argument for func-
tion.

2. Switch to namespace X.Y within W.
3. Evaluate function DUP in namespace W.X.Y with argument.
4. Switch back to namespace W.
5. Assign variable A in namespace W.

Chapter 1: Introduction 43

Namespaces and Localisation
The rules for name resolution have been generalised for namespaces.

In flat APL, the interpreter searches the state indicator to resolve names referenced by
a defined function or operator. If the name does not appear in the state indicator,
then the workspace-global name is assumed.

With namespaces, a defined function or operator is evaluated in its 'home' namespace.
When a name is referenced, the interpreter searches only those lines of the state indic-
ator which belong to the home namespace. If the name does not appear in any of
these lines, the home namespace-global value is assumed.

For example, if #.FN1 calls XX.FN2 calls #.FN3 calls XX.FN4, then:

FN1:
is evaluated in #
can see its own dynamic local names
can see global names in #

FN2:
is evaluated in XX
can see its own dynamic local names
can see global names in XX

FN3:
is evaluated in #
can see its own dynamic local names
can see dynamic local names in FN1
can see global names in #

FN4:
is evaluated in XX
can see its own dynamic local names
can see dynamic local names in FN2
can see global names in XX

Chapter 1: Introduction 44

Namespace References
A namespace reference, or ref for short, is a unique data type that is distinct from and
in addition to number and character.

Any expression may result in a ref, but the simplest one is the namespace itself:

)NS NS1 ⍝ Make a namespace called NS1
NS1.A←1 ⍝ and populate it with variables A
NS1.B←2 3⍴⍳6 ⍝ and B

NS1 ⍝ expression results in a ref
#.NS1

You may assign a ref; for example:

X←NS1
X

#.NS1

In this case, the display of X informs you that X refers to the named namespace
#.NS1.

You may also supply a ref as an argument to a defined function or a dfn:

∇ FOO ARG
[1] ARG

 ∇

FOO NS1
#.NS1

The name class of a ref is 9.

⎕NC 'X'
9

You may use a ref to a namespace anywhere that you would use the namespace itself.
For example:

X.A
1

X.B
1 2 3
4 5 6

Chapter 1: Introduction 45

Notice that refs are references to namespaces, so that if you make a copy, it is the ref-
erence that is copied, not the namespace itself. This is sometimes referred to as a shal-
low as opposed to a deep copy. It means that if you change a ref, you actually change
the namespace that it refers to.

X.A+←1
X.A

2
NS1.A

2

Similarly, a ref passed to a defined function is call-by-reference, so that modifications
to the content or properties of the argument namespace using the passed reference per-
sist after the function exits. For example:

∇ FOO nsref
[1] nsref.B+←nsref.A

∇

FOO NS1
NS1.B

3 4 5
6 7 8

FOO X
NS1.B

5 6 7
8 9 10

Notice that the expression to the right of a dot may be arbitrarily complex and will be
executed within the namespace or ref to the left of the dot.

X.(C←A×B)
X.C

10 12 14
16 18 20

NS1.C
10 12 14
16 18 20

Chapter 1: Introduction 46

Unnamed Namespaces
The monadic form of ⎕NSmakes a new (and unique) unnamed namespace and returns
a ref to it.

One use of unnamed namespaces is to represent hierarchical data structures; for
example, a simple employee database:

The first record is represented by JOHN which is a ref to an unnamed namespace:

JOHN←⎕NS ''
JOHN

#.[Namespace]

JOHN.FirstName←'John'
JOHN.FirstName

John

JOHN.LastName←'Smith'
JOHN.Age←50

Data variables for the second record, PAUL, can be established using strand, or vec-
tor, assignment:

PAUL←⎕NS ''
PAUL.(FirstName LastName Age←'Paul' 'Brown' 44)

The function SHOW can be used to display the data in each record (the function is
split into 2 lines only to fit on the printed page). Notice that its argument is a ref.

∇ R←SHOW PERSON
[1] R←PERSON.FirstName,' ',PERSON.LastName
[2] R, ←' is ',⍕PERSON.Age

∇

SHOW JOHN
John Smith is 50

SHOW PAUL
Paul Brown is 44

Chapter 1: Introduction 47

An alternative version of the function illustrates the use of the :With :EndWith
control structure to execute an expression, or block of expressions, within a
namespace:

∇ R←SHOW1 PERSON
[1] :With PERSON
[2] R←FirstName,' ',LastName,' is ',(⍕Age)
[3] :EndWith

∇

SHOW1 JOHN
John Smith is 50

In this case, as only a single expression is involved, it can be expressed more simply
using parentheses.

∇ R←SHOW2 PERSON
[1] R←PERSON.(FirstName,' ',LastName,' is ',(⍕Age))

∇
SHOW2 PAUL

Paul Brown is 44

Dfns also accept refs as arguments:

SHOW3←{
⍵.(FirstName,' ',LastName,' is ',⍕Age)

}

SHOW3 JOHN
John Smith is 50

Chapter 1: Introduction 48

Arrays of Namespace References
You may construct arrays of refs using strand notation, catenate (,) and reshape (⍴).

EMP←JOHN PAUL
⍴EMP

2

EMP
#.[Namespace] #.[Namespace]

Like any other array, an array of refs has name class 2:

⎕NC 'EMP'
2

Expressions such as indexing and pick return refs that may in turn be used as follows:

EMP[1].FirstName
John

(2⊃EMP).Age
44

The each (¨) operator may be used to apply a function to an array of refs:

SHOW¨EMP
John Smith is 50 Paul Brown is 44

An array of namespace references (refs) to the left of a ‘.’ is expanded according to
the following rule, where x and y are refs, and exp is an arbitrary expression:

(x y).exp → (x.exp)(y.exp)

If exp evaluates to a function, the items of its argument array(s) are distributed to
each referenced function. In the dyadic case, there is a 3-way distribution among: left
argument, referenced functions and right argument.

Monadic function f:

(x y).f d e → (x.f d)(y.f e)

Dyadic function g:

a b (x y).g d e → (a x.g d)(b y.g e)

An array of refs to the left of an assignment arrow is expanded thus:

(x y).a←c d → (x.a←c)(y.a←d)

Chapter 1: Introduction 49

Note that the array of refs can be of any rank. In the limiting case of a simple scalar
array, the array construct: refs.exp is identical to the scalar construct: ref.exp.

Note that the expression to the right of the ‘.’ pervades a nested array of refs to its
left:

((u v)(x y)).exp → ((u.exp)(v.exp))((x.exp)(y.exp))

Note also that with successive expansions (u v).(x y z). ..., the final number
of ‘leaf’ terms is the product of the number of refs at each level.

Examples:
JOHN.Children←⎕NS¨'' ''
⍴JOHN.Children

2
JOHN.Children[1].FirstName←'Andy'
JOHN.Children[1].Age←23

JOHN.Children[2].FirstName←'Katherine'
JOHN.Children[2].Age←19

PAUL.Children←⎕NS¨'' ''
PAUL.Children[1].(FirstName Age←'Tom' 25)
PAUL.Children[2].(FirstName Age←'Jamie' 22)

⍴EMP
2

(⊃EMP).Children.(FirstName Age)
Andy 23 Katherine 19

]display (2⊃EMP).Children.(FirstName Age)
.→----------------------------.
| .→---------. .→-----------. |
	.→--.		.→----.					
		Tom	25			Jamie	22	
	'---'		'-----'					
'∊---------' '∊-----------'								
'∊----------------------------'

EMP.Children ⍝ Is an array of refs
#.[Namespace] #.[Namespace] #.[Namespace] ...

EMP.Children.(FirstName Age)
Andy 23 Katherine 19 Tom 25 Jamie 22

Chapter 1: Introduction 50

Distributed Assignment
Assignment pervades nested strands of names to the left of the arrow. The con-
formability rules are the same as for scalar (pervasive) dyadic primitive functions
such as ‘+’. The mechanism can be viewed as a way of naming the parts of a
structure.

Examples:
EMP.(FirstName Age)

JOHN 43 PAUL 44

EMP.(FirstName Age)←('Jonathan' 21)('Pauline' 22)

EMP.(FirstName Age)
Johnathan 21 Pauline 22

⍝ Distributed assignment is pervasive
JOHN.Children.(FirstName Age)

Andy 23 Katherine 19

JOHN.Children.(FirstName Age)←('Andrew' 21)('Kate'
9)

JOHN.Children.(FirstName Age)
Andrew 21 Kate 9

More Examples:
((a b)(c d))←(1 2)(3 4) ⍝ a←1 ⋄ b←2 ⋄ c←3 ⋄ d←4

((⎕io ⎕ml)vec)←0 ⎕av ⍝ ⎕io←0 ⋄ ⎕ml←0 ⋄ vec←⎕av

(i (j k))+←1 2 ⍝ i+←1 ⋄ j+←2 ⋄ k+←2

⍝ Naming of parts:

((first last) sex (street city state))←n⊃pvec

⍝ Distributed assignment in :For loop:

:For (i j)(k l) :In array

⍝ Ref array expansion:

(x y).(first last)←('John' 'Doe')('Joe' 'Blow')
(f1 f2).(b1 b2).Caption←⊂'OK' 'Cancel'

Chapter 1: Introduction 51

⍝ Structure rearrangement:
rotate1←{ ⍝ Simple binary tree rotation.

(a b c)d e←⍵
a b(c d e)

}
rotate3←{ ⍝ Compound binary tree rotation.

(a b(c d e))f g←⍵
(a b c)d(e f g)

}

Chapter 1: Introduction 52

Distributed Functions
Namespace ref array expansion syntax applies to functions too.

JOHN.PLOT←{↑⍵⍴¨'⎕'}
JOHN.PLOT ⍳10

⎕
⎕⎕
⎕⎕⎕
⎕⎕⎕⎕
⎕⎕⎕⎕⎕
⎕⎕⎕⎕⎕⎕
⎕⎕⎕⎕⎕⎕⎕
⎕⎕⎕⎕⎕⎕⎕⎕
⎕⎕⎕⎕⎕⎕⎕⎕⎕
⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕

PAUL.PLOT←{(⍵,¨1)⍴¨'⎕'}
PAUL.PLOT ⍳10

⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕

⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕

⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕ ⎕ ⎕ ⎕ ⎕

⎕ ⎕ ⎕ ⎕
⎕ ⎕ ⎕

⎕ ⎕
⎕

EMP.PLOT⊂⍳10 ⍝ (temporary vector of functions)
⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕⎕⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕⎕⎕⎕ ⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕⎕⎕⎕⎕ ⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕⎕⎕⎕⎕⎕ ⎕ ⎕ ⎕ ⎕
⎕⎕⎕⎕⎕⎕⎕⎕ ⎕ ⎕ ⎕
⎕⎕⎕⎕⎕⎕⎕⎕⎕ ⎕ ⎕
⎕⎕⎕⎕⎕⎕⎕⎕⎕⎕ ⎕

Chapter 1: Introduction 53

(x y).⎕NL 2 3 ⍝ x:vars, y:fns
varx funy

(x y).⎕NL⊂2 3 ⍝ x&y: vars&fns
funx funy
varx vary

(x y).(⎕NL¨)⊂2 3 ⍝ x&y: separate vars&fns
varx funx vary funy

'v'(x y).⎕NL 2 3 ⍝ x:v-vars, y:v-fns
varx

'vf'(x y).⎕NL 2 3 ⍝ x:v-vars, y:f-fns
varx funy

⍝ x:v-vars&fns,
'vf'(x y).⎕NL⊂2 3 ⍝ y:f-vars&fns

varx funy

x.⎕NL 2 3 ⍝ depth 0 ref
funx
varx

(x y).⎕NL⊂2 3 ⍝ depth 1 refs
funx funy
varx vary

((u v)(x y)).⎕NL⊂⊂2 3 ⍝ depth 2 refs
funu funv funx funy
varu varv varx vary

(1 2)3 4(w(x y)z).+1 2(3 4) ⍝ arg distribution.
2 3 5 5 7 8

Chapter 1: Introduction 54

Namespaces and Operators
A function passed as operand to a primitive or defined operator, carries its namespace
context with it. This means that if subsequently, the function operand is applied to an
argument, it executes in its home namespace, irrespective of the namespace from
which the operator was invoked or defined.

Examples
VAR←99 ⍝ #.VAR

)NS X
#.X

X.VAR←77 ⍝ X.VAR
X.⎕FX'Z←FN R' 'Z←R,VAR'

)NS Y
#.Y

Y.VAR←88 ⍝ Y.VAR
Y.⎕FX'Z←(F OP)R' 'Z←F R'

X.FN¨⍳3
1 77 2 77 3 77

X.FN 'VAR:'
VAR: 77

X.FN Y.OP 'VAR:'
VAR: 77

⍎ Y.OP'VAR'
99

Chapter 1: Introduction 55

Threads
Overview
Dyalog APL supports multithreading - the ability to run more than one APL expres-
sion at the same time.

This unique capability allows you to perform background processing, such as print-
ing, database retrieval, database update, calculations, and so forth while at the same
time perform other interactive tasks.

Multithreading may be used to improve throughput and system responsiveness.

A thread is a strand of execution in the APL workspace.

A thread is created by calling a function asynchronously, using the new primitive
operator ‘spawn’: & or by the asynchronous invocation of a callback function.

With a traditional APL synchronous function call, execution of the calling envir-
onment is paused, pendent on the return of the called function. With an asyn-
chronous call, both calling environment and called function proceed to execute
concurrently.

An asynchronous function call is said to start a new thread of execution. Each thread
has a unique thread number, with which, for example, its presence can be monitored
or its execution terminated.

Any thread can spawn any number of sub-threads, subject only to workspace avail-
ability. This implies a hierarchy in which a thread is said to be a child thread of its
parent thread. The base thread at the root of this hierarchy has thread number 0.

With multithreading, APL’s stack or state indicator can be viewed as a branching tree
in which the path from the base to each leaf is a thread.

Chapter 1: Introduction 56

When a parent thread terminates, any of its children which are still running, become
the children of (are ‘adopted’ by) the parent’s parent.

Thread numbers are allocated sequentially from 0 to 2147483647. At this point, the
sequence ‘wraps around’ and numbers are allocated from 0 again avoiding any still in
use. The sequence is reinitialised when a)RESET command is issued, or the active
workspace is cleared, or a new workspace is loaded. A workspace may not be saved
with threads other than the base thread: 0, running.

Multi-Threading language elements.
The following language elements are provided to support threads.

l Primitive operator, spawn: &.
l System functions: ⎕TID, ⎕TCNUMS, ⎕TNUMS, ⎕TKILL, ⎕TSYNC.
l An extension to the GUI Event syntax to allow asynchronous callbacks.
l A control structure: :Hold.
l System commands:)HOLDS,)TID.
l Extended)SI and)SINL display.

Running CallBack Functions as Threads
A callback function is associated with a particular event via the Event property of the
object concerned. A callback function is executed by ⎕DQ when the event occurs, or
by ⎕NQ.

If you append the character & to the name of the callback function in the Event spe-
cification, the callback function will be executed asynchronously as a thread when
the event occurs. If not, it is executed synchronously as before.

For example, the event specification:

⎕WS'Event' 'Select' 'DoIt&'

tells ⎕DQ to execute the callback function DoIt asynchronously as a thread when a
Select event occurs on the object.

Chapter 1: Introduction 57

Thread Switching
Programming with threads requires care.

The interpreter may switch between running threads at the following points:

l Between any two lines of a defined function, operator, dfn or dop.
l While waiting for a ⎕DL to complete.
l While waiting for a ⎕FHOLD to complete.
l While awaiting input from:

o ⎕DQ
o ⎕SR
o ⎕ED

l The session prompt or ⎕: or ⍞.
l While awaiting the completion of an external operation:

o A call on an external (AP) function.
o A call on a ⎕NA (DLL) function
o A call on an OLE function.
o A call on a .NET function.

At any of these points, the interpreter might execute code in other threads. If such
threads change the global environment; for example by changing the value of, or
expunging a name; then the changes will appear to have happened while the thread
in question passes through the switch point. It is the task of the application pro-
grammer to organise and contain such behaviour!

You can prevent threads from interacting in critical sections of code by using the
:Hold control structure.

High Priority Callback Functions
Note that the interpreter cannot perform thread-switching during the execution of a
high-priority callback. This is a callback function that is invoked by a high-priority
event which demands that the interpreter must return a result to Windows before it
may process any other event. Such high-priority events include Configure, ExitWin-
dows, DateTimeChange, DockStart, DockCancel, DropDown. It is therefore not per-
mitted to use a :Hold control structure in a high-priority callback function.

Chapter 1: Introduction 58

Name Scope
APL’s name scope rules apply whether a function call is synchronous or asyn-
chronous. For example when a defined function is called, names in the calling envir-
onment are visible, unless explicitly shadowed in the function header.

Just as with a synchronous call, a function called asynchronously has its own local
environment, but can communicate with its parent and ‘sibling’ functions via local
names in the parent.

This point is important. It means that siblings can run in parallel without danger of
local name clashes. For example, a GUI application can accommodate multiple con-
current instances of its callback functions.

However, with an asynchronous call, as the calling function continues to execute,
both child and parent functionsmay modify values in the calling environment. Both
functions see such changes immediately they occur.

If a parent function terminates while any of its children are still running, those chil-
dren will thenceforward ‘see’ local names in the environment that called the parent
function. In cases where a child function relies on its parent’s environment (the set-
ting of a local value of ⎕IO for example), this would be undesirable, and the parent
function would normally execute a ⎕TSYNC in order to wait for its children to com-
plete before itself exiting.

If, on the other hand, after launching an asynchronous child, the parent function calls
a new function (either synchronously or asynchronously); names in the new function
are beyond the purview of the original child. In other words, a function can only ever
see its calling stack decrease in size – never increase. This is in order that the parent
may call new defined functions without affecting the environment of its asyn-
chronous children.

Chapter 1: Introduction 59

Using Threads
Put most simply, multithreading allows you to appear to run more than one APL
function at the same time, just as Windows (or UNIX) appears to run more than one
application at the same time. In both cases this is something of an illusion, although
it does nothing to detract from its usefulness.

Dyalog APL implements an internal timesharing mechanism whereby it shares pro-
cessing between threads. Although the mechanics are somewhat different, APL mul-
tithreading is rather similar to the multitasking provided by Windows. If you are
running more than one application, Windows switches from one to another, alloc-
ating each one a certain time slice before switching. At any point in time, only one
application is actually running; the others are paused, waiting.

If you execute more than one Dyalog APL thread, only one thread is actually run-
ning; the others are paused. Each APL thread has its own State Indicator, or SI stack.
When APL switches from one thread to another, it saves the current stack (with all its
local variables and function calls), restores the new one, and then continues pro-
cessing.

Stack Considerations
When you start a thread, it begins with the SI stack of the calling function and sees
all of the local variables defined in all the functions down the stack. However, unless
the calling function specifically waits for the new thread to terminate (see Language
Reference: Wait forThreads to Terminate), the calling functions will (bit by bit, in
their turn) continue to execute. The new thread’s view of its calling environment may
then change. Consider the following example:

Suppose that you had the following functions: RUN[3] calls INIT which in turn
calls GETDATA but as 3 separate threads with 3 different arguments:

∇ RUN;A;B
[1] A←1
[2] B←'Hello World'
[3] INIT
[4] CALC
[5] REPORT

∇

Chapter 1: Introduction 60

∇ INIT;C;D
[1] C←D←0
[2] GETDATA&'Sales'
[3] GETDATA&'Costs'
[4] GETDATA&'Expenses'

∇

When each GETDATA thread starts, it immediately sees (via ⎕SI) that it was called
by INIT which was in turn called by RUN, and it sees local variables A, B, C and D.
However, once INIT[4] has been executed, INIT terminates, and execution of the
root thread continues by calling CALC. From then on, each GETDATA thread no
longer sees INIT (it thinks that it was called directly from RUN) nor can it see the
local variables C and D that INIT had defined. However, it does continue to see the
locals A and B defined by RUN, until RUN itself terminates.

Note that if CALC were also to define locals A and B, the GETDATA threads would
still see the values defined by RUN and not those defined by CALC. However, if
CALC were to modify A and B (as globals) without localising them, the GETDATA
threads would see the modified values of these variables, whatever they happened to
be at the time.

Globals and the Order of Execution
It is important to recognise that any reference or assignment to a global or semi-
global object (including GUI objects) is inherently dangerous (i.e. a source of pro-
gramming error) if more than one thread is running. Worse still, programming errors
of this sort may not become apparent during testing because they are dependent upon
random timing differences. Consider the following example:

∇ BUG;SEMI_GLOBAL
[1] SEMI_GLOBAL←0
[2] FOO& 1
[3] GOO& 1

∇

∇ FOO
[1] :If SEMI_GLOBAL=0
[2] DO_SOMETHING SEMI_GLOBAL
[3] :Else
[4] DO_SOMETHING_ELSE SEMI_GLOBAL
[5] :EndIf

∇

∇ GOO
[1] SEMI_GLOBAL←1

∇

Chapter 1: Introduction 61

In this example, it is formally impossible to predict in which order APL will execute
statements in BUG, FOO or GOO from BUG[2] onwards. For example, the actual
sequence of execution may be:

BUG[1] → BUG[2] → FOO[1] → FOO[2] →
DO_SOMETHING[1]

or

BUG[1] → BUG[2] → BUG[3] → GOO[1] →
FOO[1] → FOO[2] → FOO[3] →
FOO[4] → DO_SOMETHING_ELSE[1]

This is because APL may switch from one thread to another between any two lines in
a defined function. In practice, because APL gives each thread a significant time-
slice, it is likely to execute many lines, maybe even hundreds of lines, in one thread
before switching to another. However, you must not rely on this; thread-switching
may occur at any time between lines in a defined function.

Secondly, consider the possibility that APL switches from the FOO thread to the GOO
thread after FOO[1]. If this happens, the value of SEMI_GLOBAL passed to DO_
SOMETHING will be 1 and not 0. Here is another source of error.

In fact, in this case, there are two ways to resolve the problem. To ensure that the
value of SEMI_GLOBAL remains the same from FOO[1] to FOO[2], you may use
diamonds instead of separate statements, e.g.

:If SEMI_GLOBAL=0 ⋄ DO_SOMETHING SEMI_GLOBAL

Even better, although less efficient, you may use :Hold to synchronise access to the
variable, for example:

∇ FOO
[1] :Hold 'SEMI_GLOBAL'
[2] :If SEMI_GLOBAL=0
[3] DO_SOMETHING SEMI_GLOBAL
[4] :Else
[5] DO_SOMETHING_ELSE SEMI_GLOBAL
[6] :EndIf
[7] :EndHold

∇

∇ GOO
[1] :Hold 'SEMI_GLOBAL'
[2] SEMI_GLOBAL←1
[3] :EndHold

∇

Chapter 1: Introduction 62

Now, although you still cannot be sure which of FOO and GOO will run first, you can
be sure that SEMI_GLOBAL will not change (because GOO cuts in) within FOO.

Note that the string used as the argument to :Hold is completely arbitrary, so long
as threads competing for the same resource use the same string.

A Caution
These types of problems are inherent in all multithreading programming languages,
and not just with Dyalog APL. If you want to take advantage of the additional
power provided by multithreading, it is advisable to think carefully about the poten-
tial interaction between different threads.

Threads & Niladic Functions
l In common with other operators, the spawn operator & may accept monadic

or dyadic functions as operands, but not niladic functions. This means that,
using spawn, you cannot start a thread that consists only of a niladic func-
tion

l If you wish to invoke a niladic function asynchronously, you have the fol-
lowing choices:

l Turn your niladic function into a monadic function by giving it a dummy
argument which it ignores.

l Call your niladic function with a dfn to which you give an argument that is
implicitly ignored. For example, if the function NIL is niladic, you can call
it asynchronously using the expression: {NIL}& 0

l Call your function via a dummy monadic function, e.g.

∇ NIL_M DUMMY
[1] NIL

∇
NIL_M& ''

l Use execute, e.g.

⍎& 'NIL'

Note that niladic functions can be invoked asynchronously as callback functions.
For example, the statement:

⎕WS'Event' 'Select' 'NIL&'

will execute correctly as a thread, even though NIL is niladic. This is because call-
back functions are invoked directly by ⎕DQ rather than as an operand to the spawn
operator.

Chapter 1: Introduction 63

Threads & External Functions
External functions in dynamic link libraries (DLLs) defined using the ⎕NA interface
may be run in separate C threads. Such threads:

l take advantage of multiple processors if the operating system permits.
l allow APL to continue processing in parallel during the execution of a

⎕NA function.

When you define an external function using ⎕NA, you may specify that the function
be run in a separate C thread by appending an ampersand (&) to the function name,
for example:

'beep'⎕NA'user32|MessageBeep& i'
⍝ MessageBeep will run in a separate C thread

When APL first comes to execute a multi-threaded ⎕NA function, it starts a new C-
thread, executes the function within it, and waits for the result. Other APL threads
may then run in parallel.

Note that when the ⎕NA call finishes and returns its result, its new C-thread is
retained to be re-used by any subsequent multithreaded ⎕NA calls made within the
same APL thread. Thus any APL thread that makes any multi-threaded ⎕NA calls
maintains a separate C-thread for their execution. This C-thread is discarded when its
APL thread finishes.

Note that there is no point in specifying a ⎕NA call to be multi-threaded, unless you
wish to execute other APL threads at the same time.

In addition, if your ⎕NA call needs to access an APL GUI object (strictly, a window
or other handle) it should normally run within the same C-thread as APL itself, and
not in a separate C-thread. This is because Windows associates objects with the C-
thread that created them. Although you can use a multi-threaded ⎕NA call to access
(say) a Dyalog APL Form via its window handle, the effects may be different than if
the ⎕NA call was not multi-threaded. In general, ⎕NA calls that access APL (GUI)
objects should not be multi-threaded.

If you wish to run the same ⎕NA call in separate APL threads at the same time, you
must ensure that the DLL is thread-safe. Functions in DLLs which are not thread-
safe, must be prevented from running concurrently by using the :Hold control struc-
ture. Note that all the standard Windows API DLLs are thread safe.

Notice that you may define two separate functions (with different names), one single-
threaded and one multi-threaded, associated with the same function in the DLL. This
allows you to call it in either way.

Chapter 1: Introduction 64

Synchronising Threads
Threads may be synchronised using tokens and a token pool.

An application can synchronise its threads by having one thread add tokens into the
pool whilst other threads wait for tokens to become available and retrieve them from
the pool.

Tokens possess two separate attributes, a type and a value.

The type of a token is a positive or negative integer scalar. The value of a token is
any arbitrary array that you might wish to associate with it.

The token pool may contain up to 2*31 tokens; they do not have to be unique
neither in terms of their types nor of their values.

The following system functions are used to manage the token pool:

⎕TPUT Puts tokens into the pool.

⎕TGET
If necessary waits for, and then retrieves some tokens from the
pool.

⎕TPOOL Reports the types of tokens in the pool

⎕TREQ Reports the token requests from specific threads

A simple example of a thread synchronisation requirement occurs when you want
one thread to reach a certain point in processing before a second thread can continue.
Perhaps the first thread performs a calculation, and the second thread must wait until
the result is available before it can be used.

This can be achieved by having the first thread put a specific type of token into the
pool using ⎕TPUT. The second thread waits (if necessary) for the new value to be
available by calling ⎕TGET with the same token type.

Notice that when ⎕TGET returns, the specified tokens are removed from the pool.
However, negative token types will satisfy an infinite number of requests for their
positive equivalents.

The system is designed to cater for more complex forms of synchronisation. For
example, a semaphore to control a number of resources can be implemented by keep-
ing that number of tokens in the pool. Each thread will take a token while pro-
cessing, and return it to the pool when it has finished.

A second complex example is that of a latch which holds back a number of threads
until the coast is clear. At a signal from another thread, the latch is opened so that all
of the threads are released. The latch may (or may not) then be closed again to hold
up subsequently arriving threads. A practical example of a latch is a ferry terminal.

Chapter 1: Introduction 65

Semaphore Example
A semaphore to control a number of resources can be implemented by keeping that
number of tokens in the pool. Each thread will take a token while processing, and
return it to the pool when it has finished.

For example, if we want to restrict the number of threads that can have sockets open
at any one time.

sock←99 ⍝ socket-token
any +ive number will do).

⎕TPUT 5/sock ⍝ add 5 socket-tokens to poo
l.

∇ sock_open ...
[1] :If sock=⎕TGET sock ⍝ grap a socket token
[.] ... ⍝ do stuff.
[.] ⎕TPUT sock ⍝ release socket token
[.] :Else
[.] error'sockets off' ⍝ sockets switched off by

retract (see below).
[.] :EndIf

∇

0 ⎕TPUT ⎕treq ⎕tnums ⍝ retract socket "service"
with 0 value.

Chapter 1: Introduction 66

Latch Example
A latch holds back a number of threads until the coast is clear. At a signal from
another thread, the latch is opened so that all of the threads are released. The latch
may (or may not) then be closed again to hold up subsequently arriving threads.

A visual example of a latch might be a ferry terminal, where cars accumulate in the
queue until the ferry arrives. The barrier is then opened and all (up to a maximum
number) of the cars are allowed through it and on to the ferry. When the last car is
through, the barrier is re-closed.

tkt←6 ⍝ 6-token: ferry ticke
t.

∇ car ...
[1] ⎕TGET tkt ⍝ await ferry.
[2] ...

∇ ferry ...
[1] arrives in port
[2] ⎕TPUT(↑,/⎕treq ⎕tnums)∩tkt ⍝ ferry tickets for al
l.
[3] ...

Note that it is easy to modify this example to provide a maximum number of ferry
places per trip by inserting max_places↑ between ⎕TPUT and its argument. If
fewer cars than the ferry capacity are waiting, the ↑ will fill with trailing 0s. This will
not cause problems because zero tokens are ignored.

Let us replace the car ferry with a new road bridge. Once the bridge is ready for
traffic, the barrier could be opened permanently by putting a negative ticket in the
pool.

⎕TPUT -tkt ⍝ open ferry barrier permananently.

Cars could choose to take the last ferry if there are places:

∇ car ...
[1] :Select ⎕TGET tkt
[2] :Case tkt ⋄ take the last ferry.
[3] :Case -tkt ⋄ ferry full: take the new bridge.
[4] :End

The above :Select works because by default, ⎕TPUT -tkt puts a value of -tkt
into the token.

Chapter 1: Introduction 67

Debugging Threads
If a thread sustains an untrapped error, its execution is suspended in the normal way.
If the Pause on Error option (see User Guide) is set, all other threads are paused. If
Pause on Error option (see User Guide) is not set, other threads will continue run-
ning and it is possible for another thread to encounter an error and suspend.

Using the facilities provided by the Tracer and the Threads Tool (see User Guide) it
is possible to interrupt (suspend) and restart individual threads, and to pause and
resume individual threads, so any thread may be in one of three states - running, sus-
pended or paused.

The Tracer and the Session may be connected with any suspended thread and you
can switch the attention of the Session and the Tracer between suspended threads
using)TID or by clicking on the appropriate tab in the Tracer. At this point, you
may:

l Examine and modify local variables for the currently suspended thread.
l Trace and edit functions in the current thread.
l Cut back the stack in the currently suspended thread.
l Restart execution.
l Start new threads

The error message from a thread other than the base is prefixed with its thread num-
ber:

260:DOMAIN ERROR
Div[2] rslt←num÷div

^

State indicator displays:)SI and)SINL have been extended to show threads’ tree-
like calling structure.

)SI
· #.Calc[1]
&5
· · #.DivSub[1]
· &7
· · #.DivSub[1]
· &6
· #.Div[2]*
&4
#.Sub[3]
#.Main[4]

Here, Main has called Sub, which has spawned threads 4 and 5 with functions: Div
and Calc. Function Div, after spawning DivSub in each of threads 6 and 7, have
been suspended at line [2].

Chapter 1: Introduction 68

Removing stack frames using Quit from the Tracer or → from the session affects only
the current thread. When the final stack frame in a thread (other than the base thread)
is removed, the thread is expunged.

)RESET removes all but the base thread.

Note the distinction between a suspended thread and a paused thread.

A suspended thread is stopped at the beginning of a line in a defined function or oper-
ator. It may be connected to the Session so that expressions executed in the Session
do so in the context of that thread. It may be restarted by executing →line (typ-
ically, →⎕LC).

A paused thread is an inactive thread that is currently being ignored by the thread
scheduler. A paused thread may be paused within a call to ⎕DQ, a call on an external
function, at the beginning of a line, or indeed at any of the thread-switching points
described earlier in this chapter.

A paused thread may be resumed only by the action of a menu item or button. A
paused thread resumes only in the sense that it ceases to be ignored by the thread
scheduler and will therefore be switched back to at some point in the future. It does
not actually continue executing until the switch occurs.

Chapter 1: Introduction 69

External Variables
An external variable is a variable whose contents (value) reside not in the workspace,
but in a file. An external variable is associated with a file by the system function
⎕XT. If at the time of association the file exists, the external variable assumes its
value from the contents of the file. If the file does not exist, the external variable is
defined but a VALUE ERROR occurs if it is referenced before assignment. Assign-
ment of an array to the external variable or to an indexed element of the external vari-
able has the effect of updating the file. The value of the external variable or the
value of indexed elements of the external variable is made available in the workspace
when the external variable occurs in an expression. No special restrictions are placed
on the usage of external variables.

Normally, the files associated with external variables remain permanent in that they
survive the APL session or the erasing of the external variable from the workspace.
External variables may be accessed concurrently by several users, or by different
nodes on a network, provided that the appropriate file access controls are
established. Multi-user access to an external variable may be controlled with the sys-
tem function ⎕FHOLD between co-operating tasks.

Refer to the sections describing the system functions ⎕XT and ⎕FHOLD in Chapter 6
for further details.

Examples
'ARRAY' ⎕XT 'V'

V←⍳10
V[2] + 5

7

⎕EX'V'

'ARRAY' ⎕XT 'F'
F

1 2 3 4 5 6 7 8 9 10

Chapter 1: Introduction 70

Component Files
A component file is a data file maintained by Dyalog APL. It contains a series of
APL arrays known as components which are accessed by reference to their relative
positions or component number within the file. A set of system functions is provided
to perform a range of file operations. (See Language Reference: Component Files.)
These provide facilities to create or delete files, and to read and write components.
Facilities are also provided for multi-user access including the capability to determ-
ine who may do what, and file locking for concurrent updates. (See User Guide).

Auxiliary Processors
Auxiliary Processors (APs) are non-APL programs which provide Dyalog APL users
with additional facilities. They run as separate tasks, and communicate with the
Dyalog APL interpreter through pipes (UNIX) or via an area of memory (Windows).
Typically, APs are used where speed of execution is critical, such as in screen man-
agement software, or for utility libraries. Auxiliary Processors may be written in any
compiled language, although 'C' is preferred and is directly supported.

When an Auxiliary Processor is invoked fromDyalog APL, one or more external
functions are fixed in the active workspace. Each external function behaves as if it
was a locked defined function, but is in effect an entry point into the Auxiliary
Processor. An external function occupies only a negligible amount of workspace.
(See User Guide.)

Chapter 1: Introduction 71

Key to Notation
The following definitions and conventions apply throughout this manual:

f A function, or an operator's left argument when a function.

g A function, or an operator's right argument when a function.

A An operator's left argument when an array.

B An operator's right argument when an array.

X The left argument of a function.

Y The right argument of a function.

R The explicit result of a function.

[K] Axis specification.

[I] Index specification.

{X} The left argument of a function is optional.

{R}
←

The function may or may not return a result, or the result may be
suppressed.

function may refer to a primitive function, a system function, a defined (canonical,
dfn or assigned) function or a derived (from an operator) function.

Migration Level
⎕ML determines the degree of migration of the Dyalog APL language towards IBM's
APL2. Unless otherwise stated, the manual assumes ⎕ML has a value of 1.

Chapter 1: Introduction 72

Chapter 2: Defined Functions & Operators 73

Chapter 2:

Defined Functions & Operators

A defined function is a program that takes 0, 1, or 2 arrays as arguments and may pro-
duce an array as a result. A defined operator is a program that takes 1 or 2 functions or
arrays (known as operands) and produces a derived function as a result. To simplify
the text, the term operation is used within this chapter to mean function or operator.

Canonical Representation
Operations may be defined with the system function ⎕FX (Fix) or by using the editor
within definition mode. Applying ⎕CR to the character array representing the name
of an already established operation will produce its canonical representation. A
defined operation is composed of lines. The first line (line 0) is called the operation
HEADER. Remaining lines are APL statements, called the BODY.

The operation header consists of the following parts:

1. its model syntactical form,
2. an optional list of local names, each preceded by a semi-colon (;) character,
3. an optional comment, preceded by the symbol ⍝.

Only the model is required. If local names and comments are included, they must
appear in the prescribed order.

Chapter 2: Defined Functions & Operators 74

Model Syntax
The model for the defined operation identifies the name of the operation, its valence,
and whether or not an explicit result may be returned. Valence is the number of expli-
cit arguments or operands, either 0, 1 or 2; whence the operation is termed NILADIC,
MONADIC or DYADIC respectively. Only a defined function may be niladic.
There is no relationship between the valence of a defined operator, and the valence of
the derived function which it produces. Defined functions and derived functions pro-
duced by defined operators may be ambivalent, i.e. may be executed monadically
with one argument, or dyadically with two. An ambivalent operation is identified in
its model by enclosing the left argument in braces.

The value of a result-returning function or derived function may be suppressed in exe-
cution if not explicitly used or assigned by enclosing the result in its model within
braces. Such a suppressed result is termed SHY.

The tables below show all possible models for defined functions and operators
respectively.

Defined Functions
Result Niladic Monadic Dyadic Ambivalent

None f f Y X f Y {X} f Y

Explicit R←f R←f Y R←X f Y R←{X} f Y

Suppressed {R}←f {R}←f Y {R}←X f Y {R}←{X} f Y

Note:The right argument Y and/or the result Rmay be represented by a single name,
or as a blank-delimited list of names surrounded by parentheses. For further details,
see Namelists on page 78.

Derived Functions produced by Monadic Operator
Result Monadic Dyadic Ambivalent

None (A op)Y X(A op)Y {X}(A op)Y

Explicit R←(A op)Y R←X(A op)Y R←{X}(A op)Y

Suppressed {R}←(A op)Y {R}←X(A op)Y {R}←{X}(A op)Y

Chapter 2: Defined Functions & Operators 75

Derived Functions produced by Dyadic Operator
Result Monadic Dyadic Ambivalent

None (A op B)Y X(A op B)Y {X}(A op B)Y

Explicit R←(A op B)Y R←X(A op B)Y R←{X}(A op B)Y

Suppressed {R}←(A op B)Y {R}←X(A op B)Y {R}←{X}(A op B)Y

Statements
A statement is a line of characters understood by APL. It may be composed of:

1. a LABEL (which must be followed by a colon :), or a CONTROL
STATEMENT (which is preceded by a colon), or both,

2. an EXPRESSION (see Expressions on page 16),
3. a SEPARATOR (consisting of the diamond character ⋄ which must separate

adjacent expressions),
4. a COMMENT (which must start with the character ⍝).

Each of the four parts is optional, but if present they must occur in the given order
except that successive expressions must be separated by ⋄. Any characters occurring
to the right of the first comment symbol (⍝) that is not within quotes is a comment.

Comments are not executed by APL. Expressions in a line separated by ⋄ are taken in
left-to-right order as they occur in the line. For output display purposes, each sep-
arated expression is treated as a separate statement.

Examples
5×10

50

MULT: 5×10
50

MULT: 5×10 ⋄ 2×4
50
8

MULT: 5×10 ⋄ 2×4 ⍝ MULTIPLICATION
50
8

Chapter 2: Defined Functions & Operators 76

Global & Local Names
The following names, if present, are local to the defined operation:

1. the result,
2. the argument(s) and operand(s),
3. additional names in the header line following the model, each name pre-

ceded by a semi-colon character,
4. labels,
5. the argument list of the system function ⎕SHADOW when executed,
6. a name assigned within a dfn.

All names in a defined operation must be valid APL names. The same name may be
repeated in the header line, including the operation name (whence the name is loc-
alised). Normally, the operation name is not a local name.

The same name may not be given to both arguments or operands of a dyadic oper-
ation. The name of a label may be the same as a name in the header line. More than
one label may have the same name. When the operation is executed, local names in
the header line after the model are initially undefined; labels are assigned the values
of line numbers on which they occur, taken in order from the last line to the first; the
result (if any) is initially undefined.

In the case of a defined function, the left argument (if any) takes the value of the array
to the left of the function when called; and the right argument (if any) takes the value
of the array to the right of the function when called. In the case of a defined operator,
the left operand takes the value of the function or array to the left of the operator
when called; and the right operand (if any) takes the value of the function or array to
the right of the operator when called.

During execution, a local name temporarily excludes from use an object of the same
name with an active definition. This is known as LOCALISATION or
SHADOWING. A value or meaning given to a local name will persist only for the
duration of execution of the defined operation (including any time whilst the oper-
ation is halted). A name which is not local to the operation is said to be GLOBAL. A
global name could itself be local to a pendent operation. A global name can be made
local to a defined operation during execution by use of the system function
⎕SHADOW. An object is said to be VISIBLE if there is a definition associated with its
name in the active environment.

Chapter 2: Defined Functions & Operators 77

Examples
A←1

∇ F
[1] A←10
[2] ∇

F ⍝ <A> NOT LOCALISED IN <F>, GLOBAL VALUE REPLACED
A

10
A←1
)ERASE F

∇ F;A
[1] A←10
[2] ∇

F ⍝ <A> LOCALISED IN <F>, GLOBAL VALUE RETAINED
A

1

Any statement line in the body of a defined operation may begin with a LABEL. A
label is followed by a colon (:). A label is a constant whose value is the number of
the line in the operation defined by system function ⎕FX or on closing definition
mode.

The value of a label is available on entering an operation when executed, and it may
be used but not altered in any expression.

Example
⎕VR'PLUS'

∇ R←{A} PLUS B
[1] →DYADIC ⍴⍨2=⎕NC'A' ⋄ R←B ⋄ →END
[2] DYADIC: R←A+B
[3] END:

∇

1 ⎕STOP'PLUS'

2 PLUS 2

PLUS[1]
DYADIC

2

END
3

Chapter 2: Defined Functions & Operators 78

Namelists
The right argument and the result of a function may be specified in the function
header by a single name or by a Namelist. In this context, a Namelist is a blank-delim-
ited list of names surrounded by a single set of parentheses.

Names specified in a Namelist are automatically local to the function; there is no
need to localise them explicitly using semi-colons.

If the right argument of a function is declared as a Namelist, the function will only
accept a right argument that is a vector whose length is the same as the number of
names in the Namelist. Calling the function with any other argument will result in a
LENGTH ERROR in the calling statement. Otherwise, the elements of the argument
are assigned to the names in the Namelist in the specified order.

Example:
∇ IDN←Date2IDN(Year Month Day)

[1] 'Year is ',⍕Year
[2] 'Month is ',⍕Month
[3] 'Day is ',⍕Day
[4] ...

∇

Date2IDN 2004 4 30
Year is 2004
Month is 4
Day is 30

Date2IDN 2004 4
LENGTH ERROR

Date2IDN 2004 4
^

Note that if you specify a single name in the Namelist, the function may be called
only with a 1-element vector or a scalar right argument. If the result of a function is
declared as a Namelist, the values of the names will automatically be stranded
together in the specified order and returned as the result of the function when the
function terminates.

Example:
∇ (Year Month Day)←Birthday age

[1] Year←1949+age
[2] Month←4
[3] Day←30

∇
Birthday 50

1999 4 30

Chapter 2: Defined Functions & Operators 79

Function Declaration Statements
Function Declaration statements are used to identify the characteristics of a function
in some way.

The following declarative statements are provided.

l :Access
l :Attribute
l :Implements
l :Signature

With one exception, these statements are not executable statements and may the-
oretically appear anywhere in the body of the function. However, it is recommended
that you place them at the beginning before any executable statements. The excep-
tion is:

:Implements Constructor <[:Base expr]>

In addition to being declarative (declaring the function to be a Constructor) this state-
ment also executes the Constructor in the Base Class whether or not it includes :Base
expr. Its position in the code is therefore significant.

Chapter 2: Defined Functions & Operators 80

Access Statement :Access

:Access <Private|Public><Instance|Shared>
:Access <WebMethod>

The :Access statement is used to specify characteristics for functions that rep-
resent Methods in classes (seeMethods on page 172). It is also applicable to Classes
and Properties.

Element Description

Private|Public
Specifies whether or not the method is accessible from
outside the Class or an Instance of the Class. The
default is Private.

Instance|Shared
Specifies whether the method runs in the Class or
Instance. The default is Instance.

WebMethod
Specifies that the method is exported as a web
method. This applies only to a Class that implements a
Web Service.

Overridable
Applies only to an Instance Method and specifies that
the Method may be overridden by a Method in a
higher Class. See below.

Override
Applies only to an Instance Method and specifies that
the Method overrides the corresponding Overridable
Method defined in the Base Class. See below

Overridable/Override
Normally, a Method defined in a higher Class replaces a Method of the same name
that is defined in its Base Class, but only for calls made from above or within the
higher Class itself (or an Instance of the higher Class). The base method remains avail-
able in the Base Class and is invoked by a reference to it from within the Base Class.

However, a Method declared as being Overridable is replaced in-situ (i.e. within
its own Class) by a Method of the same name in a higher Class if that Method is itself
declared with the Override keyword. For further information, see Superseding
Base Class Methods on page 175.

WebMethod
Note that :Access WebMethod is equivalent to:

:Access Public

:Attribute System.Web.Services.WebMethodAttribute

Chapter 2: Defined Functions & Operators 81

Attribute Statement :Attribute

:Attribute <Name> [ConstructorArgs]

The :Attribute statement is used to attach .NET Attributes to a Method (or
Class).

Attributes are descriptive tags that provide additional information about pro-
gramming elements. Attributes are not used by Dyalog APL but other applications
can refer to the extra information in attributes to determine how these items can be
used. Attributes are saved with the metadata of Dyalog APL .NET assemblies.

Element Description

Name The name of a .NET attribute

ConstructorArgs Optional arguments for the Attribute constructor

Examples
:Attribute ObsoleteAttribute
:Attribute ObsoleteAttribute 'Don''t use' 1

Implements Statement :Implements

The :Implements statement identifies the function to be one of the following
types.

:Implements Constructor <[:Base expr]>
:Implements Destructor
:Implements Method <InterfaceName.MethodName>
:Implements Trigger <name1><,name2,name3,...>

Element Description

Constructor Specifies that the function is a Class Constructor.

:Base expr
Specifies that the Base Constructor be called with the result
of the expression expr as its argument.

Destructor Specifies that the function is a Class Destructor.

Method
Specifies that the function implements the Method
MethodName whose syntax is specified by Interface
InterfaceName.

Trigger
Identifies the function as a Trigger Function which is
activated by changes to variable name1, name2, etc.

Chapter 2: Defined Functions & Operators 82

Signature Statement :Signature

:Signature <rslttype←><name><arg1type arg1name>,...

This statement identifies the name and signature by which a function is exported as a
method to be called from outside Dyalog APL. Several :Signature statements may be
specified to allow the method to be called with different arguments and/or to specify
a different result type.

Element Description

rslttype Specifies the data type for the result of the method

name Specifies the name of the exported method.

argntype Specifies the data type of the nth parameter

argnname Specifies the name of the nth parameter

Argument and result data types are identified by the names of .NET Types which are
defined in the .NET Assemblies specified by ⎕USING or by a :USING statement.

Examples
In the following examples, it is assumed that the .NET Search Path (defined by
:Using or ⎕USING includes 'System'.

The following statement specifies that the function is exported as a method named
Format which takes a single parameter of type System.Object named Array.
The data type of the result of the method is an array (vector) of type
System.String.

:Signature String[]←Format Object Array

The next statement specifies that the function is exported as a method named
Catenate whose result is of type System.Object and which takes 3 parameters.
The first parameter is of type System.Double and is named Dimension. The
second is of type System.Object and is named Arg1. The third is of type
System.Object and is named Arg2.

:Signature Object←Catenate Double Dimension,...
...Object Arg1, Object Arg2

Chapter 2: Defined Functions & Operators 83

The next statement specifies that the function is exported as a method named
IndexGen whose result is an array of type System.Int32 and which takes 2 para-
meters. The first parameter is of type System.Int32 and is named N. The second is
of type System.Int32 and is named Origin.

:Signature Int32[]←IndexGen Int32 N, Int32 Origin

The next block of statements specifies that the function is exported as a method
named Mix. The method has 4 different signatures; i.e. it may be called with 4 dif-
ferent parameter/result combinations.

:Signature Int32[,]←Mix Double Dimension, ...
...Int32[] Vec1, Int32[] Vec2

:Signature Int32[,]←Mix Double Dimension,...
... Int32[] Vec1, Int32[] Vec2, Int32 Vec3

:Signature Double[,]←Mix Double Dimension, ...
... Double[] Vec1, Double[] Vec2

:Signature Double[,]←Mix Double Dimension, ...
... Double[] Vec1, Double[] Vec2, Double[] Ve

c3

Chapter 2: Defined Functions & Operators 84

Control Structures
Control structures provide a means to control the flow of execution in your APL pro-
grams.

Traditionally, lines of APL code are executed one by one from top to bottom and the
only way to alter the flow of execution is using the branch arrow. So how do you
handle logical operations of the form “If this, do that; otherwise do the other”?

In APL this is often not a problem because many logical operations are easily per-
formed using the standard array handling facilities that are absent in other
languages. For example, the expression:

STATUS←(1+AGE<16)⊃'Adult' 'Minor'

sets STATUS to 'Adult' if AGE is 16 or more; otherwise sets STATUS to
'Minor'.

Things become trickier if, depending upon some condition, you wish to execute one
set of code instead of another, especially when the code fragments cannot con-
veniently be packaged as functions. Nevertheless, careful use of array logic, defined
operators, the execute primitive function and the branch arrow can produce high qual-
ity maintainable and comprehensible APL systems.

Control structures provide an additional mechanism for handling logical operations
and decisions. Apart from providing greater affinity with more traditional languages,
Control structures may enhance comprehension and reduce programming errors, espe-
cially when the logic is complex. Control structures are not, however, a replacement
for the standard logical array operations that are so much a part of the APL language.

Control Structures are blocks of code in which the execution of APL statements fol-
lows certain rules and conditions. Control structures are implemented using a set of
control words that all start with the colon symbol (:). Control Words are case-insens-
itive.

There are eight different types of control structures defined by the control words,
:If, :While, :Repeat, :For, :Select, :With, :Trap and :Hold . Each
one of these control words may occur only at the beginning of an APL statement and
indicates the start of a particular type of control structure.

Within a control structure, certain other control words are used as qualifiers. These
are :Else, :ElseIf, :AndIf, :OrIf, :Until, :Case and :CaseList.

Chapter 2: Defined Functions & Operators 85

A third set of control words is used to identify the end of a particular control
structure. These are :EndIf, :EndWhile, :EndRepeat, :EndFor,
:EndSelect, :EndWith, :EndTrap and :EndHold. Although formally dis-
tinct, these control words may all be abbreviated to :End.

Finally, the :GoTo, :Return, :Leave and :Continue control words may be
used to conditionally alter the flow of execution within a control structure.

Control words, including qualifiers such as :Else and :ElseIf, may occur only at
the beginning of a line or expression in a diamond-separated statement. The only
exceptions are :In and :InEach which must appear on the same line within a
:For expression.

Key to Notation
The following notation is used to describe Control Structures within this section:

aexp an expression returning an array,

bexp an expression returning a single Boolean value (0 or 1),

var loop variable used by :For control structure,

code
0 or more lines of APL code, including other (nested) control
structures,

andor

either one or more :AndIf statements, or one or more :OrIf
statements.

|
.-----------------------.
| |
|<--------------. |<--------------.
| | | |
code | code |
| | | |
| | | |
:AndIf bexp-----' :OrIf bexp------'
| |
|<----------------------'
|

Chapter 2: Defined Functions & Operators 86

Access Statement :Access

The :Access statement may be used to define the characteristics of a Class, the char-
acteristics of a defined function (Method) in a Class, or the characteristics of other
Class members.

:Access Statement in a Function/Method.

:Access Statement in a Class or in other members of a Class.

Attribute Statement :Attribute

The :Attribute statement is used to attach .NET Attributes to a Method or a
Class.

:Attribute Statement for a Class.

:Attribute statement for a Method.

Chapter 2: Defined Functions & Operators 87

If Statement :If bexp

The simplest :If control structure is a single condition of the form:

[1] :If AGE<21
[2] expr 1
[3] expr 2
[5] :EndIf

If the test condition (in this case AGE<21) is true, the statements between the :If
and the :EndIf will be executed. If the condition is false, none of these statements
will be run and execution resumes after the :EndIf. Note that the test condition to
the right of :Ifmust return a single element Boolean value 1 (true) or 0 (false).

:If control structures may be considerably more complex. For example, the fol-
lowing code will execute the statements on lines [2-3] if AGE<21 is 1 (true), or
alternatively, the statement on line [6] if AGE<21 is 0 (false).

[1] :If AGE<21
[2] expr 1
[3] expr 2
[5] :Else
[6] expr 3
[7] :EndIf

Instead of a single condition, it is possible to have multiple conditions using the
:ElseIf control word. For example:

[1] :If WINEAGE<5
[2] 'Too young to drink'
[5] :ElseIf WINEAGE<10
[6] 'Just Right'
[7] :ElseIf WINEAGE<15
[8] 'A bit past its prime'
[9] :Else
[10] 'Definitely over the hill'
[11] :EndIf

Notice that APL executes the expression(s) associated with the first condition that is
true or those following the :Else if none of the conditions are true.

Chapter 2: Defined Functions & Operators 88

The :AndIf and :OrIf control words may be used to define a block of conditions
and so refine the logic still further. You may qualify an :If or an :ElseIf with
one or more :AndIf statements or with one or more :OrIf statements. You may
not however mix :AndIf and :OrIf in the same conditional block. For example:

[1] :If WINE.NAME≡'Chateau Lafitte'
[2] :AndIf WINE.YEAR∊1962 1967 1970
[3] 'The greatest?'
[4] :ElseIf WINE.NAME≡'Chateau Latour'
[5] :Orif WINE.NAME≡'Chateau Margaux'
[6] :Orif WINE.PRICE>100
[7] 'Almost as good'
[8] :Else

[9] 'Everyday stuff'
[10] :EndIf

Please note that in a :If control structure, the conditions associated with each of the
condition blocks are executed in order until an entire condition block evaluates to
true. At that point, the APL statements following this condition block are executed.
None of the conditions associated with any other condition block are executed. Fur-
thermore, if an :AndIf condition yields 0 (false), it means that the entire block must
evaluate to false so the systemmoves immediately on to the next block without
executing the other conditions following the failing :AndIf. Likewise, if an
:OrIf condition yields 1 (true), the entire block is at that point deemed to yield
true and none of the following :OrIf conditions in the same block are executed.

Chapter 2: Defined Functions & Operators 89

:If Statement

|
:If bexp
|
.-------.
| |
| andor
| |
|<------'
|
code
|
|<------------------------------.
| |
.-------.-------. |
| | | |
| :Else :ElseIf bexp |
	.-------.		
		andor	
		<------'	
code code			
<------' `---------------'			
:End[If]			

Chapter 2: Defined Functions & Operators 90

While Statement :While bexp

The simplest :While loop is :

[1] I←0
[2] :While I<100
[3] expr1
[4] expr2
[5] I←I+1
[6] :EndWhile

Unless expr1 or expr2 alter the value of I, the above code will execute lines [3-
4] 100 times. This loop has a single condition; the value of I. The purpose of the
:EndWhile statement is solely to mark the end of the iteration. It acts the same as
if it were a branch statement, branching back to the :While line.

An alternative way to terminate a :While structure is to use a :Until statement.
This allows you to add a second condition. The following example reads a native
file sequentially as 80-byte records until it finds one starting with the string
'Widget' or reaches the end of the file.

[1] I←0
[2] :While I<⎕NSIZE ¯1
[3] REC←⎕NREAD ¯1 82 80
[4] I←I+⍴REC
[5] :Until 'Widget'≡6⍴REC

Instead of single conditions, the tests at the beginning and end of the loop may be
defined by more complex ones using :AndIf and :OrIf. For example:

[1] :While 100>i
[2] :AndIf 100>j
[3] i j←foo i j
[4] :Until 100<i+j
[5] :OrIf i<0
[6] :OrIf j<0

In this example, there are complex conditions at both the start and the end of the
iteration. Each time around the loop, the system tests that both i and j are less than
or equal to 100. If either test fails, the iteration stops. Then, after i and j have been
recalculated by foo, the iteration stops if i+j is equal to or greater than 100, or if
either i or j is negative.

Chapter 2: Defined Functions & Operators 91

:While Statement

|
:While bexp
|
.-------.
| |
| andor
| |
|<------'
|
code
|
.---------------.
| |
:End[While] :Until bexp
| |
| .-------.
| | |
| | andor
| | |
| |<------'
| |
|<--------------'
|

Chapter 2: Defined Functions & Operators 92

Repeat Statement :Repeat

The simplest type of :Repeat loop is as follows. This example executes lines [3-
5] 100 times. Notice that as there is no conditional test at the beginning of a
:Repeat structure, its code statements are executed at least once.

[1] I←0
[2] :Repeat
[3] expr1
[4] expr2
[5] I←I+1
[6] :Until I=100

You can have multiple conditional tests at the end of the loop by adding :AndIf or
:OrIf expressions. The following example will read data from a native file as 80-
character records until it reaches one beginning with the text string 'Widget' or
reaches the end of the file.

[1] :Repeat
[2] REC←⎕NREAD ¯1 82 80
[3] :Until 'Widget'≡6⍴REC
[4] :OrIf 0=⍴REC

A :Repeat structure may be terminated by an :EndRepeat (or :End) statement
in place of a conditional expression. If so, your code must explicitly jump out of the
loop using a :Leave statement or by branching. For example:

[1] :Repeat
[2] REC←⎕NREAD ¯1 82 80
[3] :If 0=⍴REC
[4] :OrIf 'Widget'≡6⍴REC
[5] :Leave
[6] :EndIf
[7] :EndRepeat

Chapter 2: Defined Functions & Operators 93

:Repeat Statement

|
:Repeat
|
code
|
.---------------.
| |
:End[Repeat] :Until bexp
| |
| .-------.
| | |
| | andor
| | |
| |<------'
| |
|<--------------'
|

Chapter 2: Defined Functions & Operators 94

For Statement :For var :In[Each] aexp

Single Control Variable
The :For loop is used to execute a block of code for a series of values of a particular
control variable. For example, the following would execute lines [2-3] suc-
cessively for values of I from 3 to 5 inclusive:

[1] :For I :In 3 4 5
[2] expr1 I
[3] expr2 I
[4] :EndFor

The way a :For loop operates is as follows. On encountering the :For, the expres-
sion to the right of :In is evaluated and the result stored. This is the control array.
The control variable, named to the right of the :For, is then assigned the first value
in the control array, and the code between :For and :EndFor is executed. On
encountering the :EndFor, the control variable is assigned the next value of the con-
trol array and execution of the code is performed again, starting at the first line after
the :For. This process is repeated for each value in the control array.

Note that if the control array is empty, the code in the :For structure is not
executed. Note too that the control array may be any rank and shape, but that its ele-
ments are assigned to the control variable in ravel order.

The control array may contain any type of data. For example, the following code res-
izes (and compacts) all your component files

[1] :For FILE :In (↓⎕FLIB '')~¨' '
[2] FILE ⎕FTIE 1
[3] ⎕FRESIZE 1
[4] ⎕FUNTIE 1
[5] :EndFor

You may also nest :For loops. For example, the following expression finds the
timestamp of the most recently updated component in all your component files.

[1] TS←0
[2] :For FILE :In (↓⎕FLIB '')~¨' '
[3] FILE ⎕FTIE 1
[4] START END←2⍴⎕FSIZE 1
[5] :For COMP :In (START-1)↓⍳END-1
[6] TS⌈←¯1↑⎕FREAD FILE COMP
[7] :EndFor
[8] ⎕FUNTIE 1
[9] :EndFor

Chapter 2: Defined Functions & Operators 95

Multiple Control Variables
The :For control structure can also take multiple variables. This has the effect of
doing a strand assignment each time around the loop.

For example :For a b c :in (1 2 3)(4 5 6), sets a b c←1 2 3, first time
around the loop and a b c←4 5 6, the second time.

Another example is :For i j :In ⍳⍴Matrix, which sets i and j to each row
and column index of Matrix.

:InEach Control Word
:For var ... :InEach value ...

In a :For control structure, the keyword :InEach is an alternative to :In.

For a single control variable, the effect of the keywords is identical but for multiple
control variables the values vector is inverted.

The distinction is best illustrated by the following equivalent examples:

:For a b c :In (1 2 3)(3 4 5)(5 6 7)(7 8 9)
⎕←a b c

:EndFor

:For a b c :InEach (1 3 5 7)(2 4 6 8)(3 5 7 9)
⎕←a b c

:EndFor

In each case, the output from the loop is:

1 2 3
3 4 5
5 6 7
7 8 9

Notice that in the second case, the number of items in the values vector is the same as
the number of control variables. A more typical example might be.

:For a b c :InEach avec bvec cvec
...

:EndFor

Here, each time around the loop, control variable a is set to the next item of avec, b
to the next item of bvec and c to the next item of cvec.

Chapter 2: Defined Functions & Operators 96

:For Statement

|
:For var :In[Each] aexp
|
code
|
:End[For]
|

Select Statement :Select aexp

A :Select structure is used to execute alternative blocks of code depending upon
the value of an array. For example, the following displays 'I is 1' if the variable
I has the value 1, 'I is 2' if it is 2, or 'I is neither 1 nor 2' if it has
some other value.

[1] :Select I
[2] :Case 1
[3] 'I is 1'
[4] :Case 2
[5] 'I is 2'
[6] :Else
[7] 'I is neither 1 nor 2'
[8] :EndSelect

In this case, the system compares the value of the array expression to the right of the
:Select statement with each of the expressions to the right of the :Case state-
ments and executes the block of code following the one that matches. If none match,
it executes the code following the :Else (which is optional). Note that com-
parisons are performed using the ≡ primitive function, so the arrays must match
exactly. Note also that not all of the :Case expressions are necessarily evaluated
because the process stops as soon as a matching expression is found.

Instead of a :Case statement, you may also use a :CaseList statement. If so, the
enclose of the array expression to the right of :Select is tested for membership of
the array expression to the right of the :CaseList using the ∊ primitive function.

Note also that any code placed between the :Select and the first :Case or
:CaseList statements are unreachable; future versions of Dyalog APL may gen-
erate an error when attempting to fix functions which include such code.

Chapter 2: Defined Functions & Operators 97

Example
[1] :Select ?6 6
[2] :Case 6 6
[3] 'Box Cars'
[4] :Case 1 1
[5] 'Snake Eyes'
[6] :CaseList 2⍴¨⍳6
[7] 'Pair'
[8] :CaseList (⍳6),¨⌽⍳6
[9] 'Seven'
[10] :Else
[11] 'Unlucky'
[12] :EndSelect

:Select Statement

|
:Select aexp
|
|<--.
| |
.-------.-------.---------------. |
| | | | |
| :Else :Case aexp :CaseList aexp |
		<--------------'	
code code			
<------' `-------------------------------'			
:End[Select]

Chapter 2: Defined Functions & Operators 98

With Statement :With obj

:With is a control structure that may be used to simplify a series of references to an
object or namespace. :With changes into the specified namespace for the duration
of the control structure, and is terminated by :End[With]. For example, you could
update several properties of a Grid object F.G as follows:

:With F.G
Values←4 3⍴0
RowTitles←'North' 'South' 'East' 'West'
ColTitles←'Cakes' 'Buns' 'Biscuits'

:EndWith

:With is analogous to ⎕CS in the following senses:

l The namespace argument to :With is interpreted relative to the current
space.

l With the exception of those with name class 9, local names in the con-
taining defined function continue to be visible in the new space.

l Global references from within the :With control structure are to names in
the new space.

l Exiting the defined function from within a :With control structure causes
the space to revert to the one from which the function was called.

On leaving the :With control structure, execution reverts to the original namespace.
Notice however that the interpreter does not detect branches (→) out of the control
structure. :With control structures can be nested in the normal fashion:

[1] :With 'x' ⍝ Change to #.x
[2] :With 'y' ⍝ Change to #.x.y
[3] :With ⎕SE ⍝ Change to ⎕SE
[4] ... ⍝ ... in ⎕SE
[5] :EndWith ⍝ Back to #.x.y
[6] :EndWith ⍝ Back to #.x
[7] :EndWith ⍝ Back to #

:With Statement
|
:With namespace (ref or name)
|
code
|
:End[With]
|

Chapter 2: Defined Functions & Operators 99

Hold Statement :Hold tkns

Whenever more than one thread tries to access the same piece of data or shared
resource at the same time, you need some type of synchronisation to control access to
that data. This is provided by :Hold.

:Hold provides a mechanism to control thread entry into a critical section of code.
tknsmust be a simple character vector or scalar, or a vector of character vectors.
tkns represents a set of ‘tokens’, all of which must be acquired before the thread can
continue into the control structure. :Hold is analogous to the component file system
⎕FHOLD.

Within the whole active workspace, a token with a particular value may be held only
once. If the hold succeeds, the current thread acquires the tokens and execution con-
tinues with the first phrase in the control structure. On exit from the structure, the
tokens are released for use by other threads. If the hold fails, because one or more of
the tokens is already in use:

1. If there is no :Else clause in the control structure, execution of the thread
is blocked until the requested tokens become available.

2. Otherwise, acquisition of the tokens is abandoned and execution resumed
immediately at the first phrase in the :Else clause.

tkns can be either a single token:

'a'
'Red'
'#.Util'
''
'Program Files'

…or a number of tokens:

'red' 'green' 'blue'
'doe' 'a' 'deer'
,¨'abc'
↓⎕nl 9

Pre-processing removes trailing blanks from each token before comparison, so that,
for example, the following two statements are equivalent:

:Hold 'Red' 'Green'
:Hold ↓2 5⍴'Red Green'

Chapter 2: Defined Functions & Operators 100

Unlike ⎕FHOLD, a thread does not release all existing tokens before attempting to
acquire new ones. This enables the nesting of holds, which can be useful when mul-
tiple threads are concurrently updating parts of a complex data structure.

In the following example, a thread updates a critical structure in a child namespace,
and then updates a structure in its parent space. The holds will allow all ‘sibling’
namespaces to update concurrently, but will constrain updates to the parent structure
to be executed one at a time.

:Hold ⎕cs'' ⍝ Hold child space
... ⍝ Update child space
:Hold ##.⎕cs'' ⍝ Hold parent space

... ⍝ Update Parent space
:EndHold
...

:EndHold

However, with the nesting of holds comes the possibility of a ‘deadlock’. For
example, consider the two threads:

Thread 1 Thread 2

:Hold 'red'
...
:Hold 'green'

...
 :EndHold

:EndHold

:Hold 'green'
...
:Hold 'red'

...
:EndHold

:EndHold

In this case if both threads succeed in acquiring their first hold, they will both block
waiting for the other to release its token.

If this deadlock situation is detected acquisition of the tokens is abandoned. Then:

1. If there is an :Else clause in the control structure, execution jumps to the
:Else clause.

2. Otherwise, APL issues an error (1008) DEADLOCK.

You can avoid deadlock by ensuring that threads always attempt to acquire tokens in
the same chronological order, and that threads never attempt to acquire tokens that
they already own.

Note that token acquisition for any particular :Hold is atomic, that is, either all of
the tokens or none of them are acquired. The following example cannot deadlock:

Chapter 2: Defined Functions & Operators 101

Thread 1 Thread 2

:Hold 'red'
...
:Hold 'green'

...
 :EndHold

:EndHold

:Hold 'green' 'red'
...
:EndHold

Examples
:Hold could be used for example, during the update of a complex data structure that
might take several lines of code. In this case, an appropriate value for the token
would be the name of the data structure variable itself, although this is just a pro-
gramming convention: the interpreter does not associate the token value with the
data variable.

:Hold'Struct'
... ⍝ Update Struct
Struct ← ...

:EndHold

The next example guarantees exclusive use of the current namespace:

:Hold ⎕CS'' ⍝ Hold current space
...

:EndHold

The following example shows code that holds two positions in a vector while the
contents are exchanged.

:Hold ⍕¨to fm
:If >/vec[fm to]

vec[fm to]←vec[to fm]
:End

:End

Between obtaining the next available file tie number and using it:

:Hold '⎕FNUMS'
tie←1+⌈/0,⎕FNUMS
fname ⎕FSTIE tie

:End

The above hold is not necessary if the code is combined into a single line:

fname ⎕FSTIE tie←1+⌈/0,⎕FNUMS

or,

tie←fname ⎕FSTIE 0

Chapter 2: Defined Functions & Operators 102

Note that :Hold, like its component file system counterpart ⎕FHOLD, is a device to
enable co-operating threads to synchronise their operation.

:Hold does not prevent threads from updating the same data structures concurrently,
it prevents threads only from :Hold-ing the same tokens.

:Hold Statement

|
:Hold token(s)
|
code
|
|-------.
| |
| :Else
| |
| code
| |
|<------.
|
:End[Hold]
|

Chapter 2: Defined Functions & Operators 103

Trap Statement :Trap ecode

:Trap is an error trapping mechanism that can be used in conjunction with, or as an
alternative to, the ⎕TRAP system variable. It is equivalent to APL2’s ⎕EA, except
that the code to be executed is not restricted to a single expression and is not con-
tained within quotes (and so is slightly more efficient).

ecode is an integer scalar or vector containing the list of event codes which are to
be handled during execution of the segment of code between the :Trap and :End
[Trap] statements. Note that event codes 0 and 1000 are wildcards that means any
event code in a given range. See Language Reference.

Operation
The segment of code immediately following the :Trap keyword is executed. On
completion of this segment, if no error occurs, control passes to the code following
:End[Trap].

If an error occurs which is not specified by ecode, it is processed by outer :Traps,
⎕TRAPs, or by the default system processing in the normal fashion.

If an error occurs, whose event code matches ecode:

l If the error occurred within a sub-function, the system cuts the execution
stack back to the function containing the :Trap keyword. In this respect,
:Trap behaves like ⎕TRAP with a 'C' qualifier.

l If the :Trap segment contains a :Case[List] ecode statement whose
ecode matches the event code of the error that has occurred, execution con-
tinues from the statement following that :Case[List] ecode.

l Otherwise, if the :Trap segment contains a :Else statement, execution
continues from the first statement following the :Else statement.

l Otherwise, execution continues from the first statement following the :End
[Trap] and no error processing occurs.

Note that the error trapping is in effect only during execution of the initial code seg-
ment. When a trapped error occurs, further error trapping is immediately disabled (or
surrendered to outer level :Traps or ⎕TRAPs). In particular, the error trap is no
longer in effect during processing of :Case[List]’s argument or in the code fol-
lowing the :Case[List] or :Else statement. This avoids the situation sometimes
encountered with ⎕TRAP where an infinite ‘trap loop’ occurs.

Note that the statement :Trap ⍬ results in no errors being trapped.

Chapter 2: Defined Functions & Operators 104

Examples
∇ lx

[1] :Trap 1000 ⍝ Cutback and exit on interrupt
[2] Main ...
[3] :EndTrap

∇

∇ ftie←Fcreate file ⍝ Create null component file
[1] :Trap 22 ⍝ Trap FILE NAME ERROR
[2] ftie←file ⎕FCREATE 0 ⍝ Try to create file.
[3] :Else
[4] ftie←file ⎕FTIE 0 ⍝ Tie the file.
[5] file ⎕FERASE ftie ⍝ Drop the file.
[6] file ⎕FCREATE ftie ⍝ Create new file.
[7] :EndTrap

∇

∇ lx ⍝ Distinguish various cases
[1] :Trap 0 1000
[2] Main ...
[3] :Case 1002
[4] 'Interrupted ...'
[5] :CaseList 1 10 72 76
[6] 'Not enough resources'
[7] :CaseList 17+⍳20
[8] 'File System Problem'
[9] :Else
[10] 'Unexpected Error'
[11] :EndTrap

∇

Note that :Traps can be nested:

∇ ntie←Ntie file ⍝ Tie native file
[1] :Trap 22 ⍝ Trap FILE NAME ERROR
[2] ntie←file ⎕NTIE 0 ⍝ Try to tie file
[3] :Else
[4] :Trap 22 ⍝ Trap FILE NAME ERROR
[5] ntie←(file,'.txt')⎕NTIE 0 ⍝ Try with .txt extn
[6] :Else
[7] ntie←file ⎕NCREATE 0 ⍝ Create null file.
[8] :EndTrap
[9] :EndTrap

∇

Chapter 2: Defined Functions & Operators 105

:Trap Statement

|
:Trap <ecode>
|
code
|
|<------------------------------------.
| |
.-------.-------. |
| | | |
| :Else :Case[List] <ecode> |
code code		
<------' `---------------------'		
:End[Trap]		

Where ecode is a scalar or vector of ⎕TRAP event codes (see Language Reference:
Trappable Event Codes).

Note that within the :Trap control structure, :Case is used for a single event code
and :CaseList for a vector of event codes.

Chapter 2: Defined Functions & Operators 106

GoTo Statement :GoTo aexp

A :GoTo statement is a direct alternative to → (branch) and causes execution to jump
to the line specified by the first element of aexp.

The following are equivalent. See Language Reference: Branch for further details.

→Exit
:GoTo Exit

→(N<I←I+1)/End
:GoTo (N<I←I+1)/End

→1+⎕LC
:GoTo 1+⎕LC

→10
:GoTo 10

Return Statement :Return

A :Return statement causes a function to terminate and has exactly the same effect
as →0.

The :Return control word takes no argument.

A :Return statement may occur anywhere in a function or operator.

Leave Statement :Leave

A :Leave statement is used to explicitly terminate the execution of a block of state-
ments within a :For, :Repeat or :While control structure.

The :Leave control word takes no argument.

Chapter 2: Defined Functions & Operators 107

Continue Statement :Continue

A :Continue statement starts the next iteration of the immediately surrounding
:For, :Repeat or :While control loop.

When executed within a :For loop, the effect is to start the body of the loop with
the next value of the iteration variable.

When executed within a :Repeat or :While loop, if there is a trailing test that test
is executed and, if the result is true, the loop is terminated. Otherwise the leading
test is executed in the normal fashion.

Section Statement :Section

Functions and scripted objects (classes, namespaces etc.) can be subdivided into Sec-
tions with :Section and :EndSection statements. Both statements may be fol-
lowed by an optional and arbitrary name or description. The purpose is to split the
function up into sections that you can open and close in the Editor, thereby aiding
readability and code management. Sections have no effect on the execution of the
code, but must follow the nesting rules of other control structures.

For further information, See User Guide.

Chapter 2: Defined Functions & Operators 108

Triggers
Triggers provide the ability to have a function called automatically whenever a vari-
able or a Field is assigned. Triggers are actioned by all forms of assignment (←), but
only by assignment.

Triggers are designed to allow a class to perform some action when a field is mod-
ified – without having to turn the field into a property and use the property setter
function to achieve this. Avoiding the use of a property allows the full use of the
APL language to manipulate data in a field, without having to copy field data in and
out of the class through get and set functions.

Triggers can also be applied to variables outside a class, and there will be situations
where this is very useful. However, dynamically attaching and detaching a trigger
from a variable is a little tricky at present.

The function that is called when a variable or Field changes is referred to as the Trig-
ger Function. The name of a variable or Field which has an associated Trigger Func-
tion is termed a Trigger.

A function is declared as aTrigger function by including the statement:

:Implements Trigger Name1,Name2,Name3, ...

where Name1, Name2 etc are the Triggers.

When a Trigger function is invoked, it is passed an Instance of the internal Class
TriggerArguments. This Class has 3 Fields:

Member Description

Name
Name of the Trigger whose change in value has caused the
Trigger Function to be invoked.

NewValue The newly assigned value of the Trigger

OldValue
The previous value of the Trigger. If the Trigger was not
previously defined, a reference to this Field causes a VALUE
ERROR.

A Trigger Function is called as soon as possible after the value of a Trigger was
assigned; typically by the end of the currently executing line of APL code. The pre-
cise timing is not guaranteed and may not be consistent because internal workspace
management operations can occur at any time.

If the value of a Trigger is changed more than once by a line of code, the Trigger
Function will be called at least once, but the number of times is not guaranteed.

Chapter 2: Defined Functions & Operators 109

A Trigger Function is not called when the Trigger is expunged.

Expunging a Trigger disconnects the name from the Trigger Function and the Trigger
Function will not be invoked when the Trigger is reassigned. The connection may be
re-established by re-fixing the Trigger Function.

A Trigger may have only a single Trigger Function. If the Trigger is named in more
than one Trigger Function, the Trigger Function that was last fixed will apply.

In general, it is inadvisable for a Trigger function to modify its own Trigger, as this
will potentially cause the Trigger to be invoked repeatedly and forever.

To associate a Trigger function with a local name, it is necessary to dynamically fix
the Trigger function in the function in which the Trigger is localised; for example:

∇ TRIG arg
[1] :Implements Trigger A
[2] ...

∇ TEST;A
[1] ⎕FX ⎕OR'TRIG'
[2] A←10

Example
The following function displays information when the value of variables A or B
changes.

∇ TRIG arg
[1] :Implements Trigger A,B
[2] arg.Name'is now 'arg.NewValue
[3] :Trap 6 ⍝ VALUE ERROR
[4] arg.Name'was 'arg.OldValue
[5] :Else
[6] arg.Name' was [undefined]'
[7] :EndTrap

∇

Note that on the very first assignment to A, when the variable was previously
undefined, arg.OldValue is a VALUE ERROR.

Chapter 2: Defined Functions & Operators 110

A←10
A is now 10
A was [undefined]

A+←10
A is now 20
A was 10

A←'Hello World'
A is now Hello World
A was 20

A[1]←⊂2 3⍴⍳6
A is now 1 2 3 ello World

4 5 6
A was Hello World

B←⌽¨A
B is now 3 2 1 ello World

6 5 4
B was [undefined]

A←⎕NEW MyClass
A is now #.[Instance of MyClass]
A was 1 2 3 ello World

4 5 6

'F'⎕WC'Form'
A←F

A is now #.F
A was #.[Instance of MyClass]

Note that Trigger functions are actioned only by assignment, so changing A to a
Form using ⎕WC does not invoke TRIG.

'A'⎕WC'FORM' ⍝ Note that Trigger Function is not in
voked

However, the connection (between A and TRIG) remains and the Trigger Function
will be invoked if and when the Trigger is re-assigned.

A←99
A is now 99
A was #.A

See Trigger Fields on page 171 for information on how a Field (in a Class) may be
used as a Trigger.

Chapter 2: Defined Functions & Operators 111

Idiom Recognition
Idioms are commonly used expressions that are recognised and evaluated internally,
providing a significant performance improvement.

For example, the idiom BV/⍳⍴A (where BV is a Boolean vector and A is an array)
would (in earlier Versions of Dyalog APL) have been evaluated in 3 steps as follows:

1. Evaluate ⍴A and store result in temporary variable temp1 (temp1 is just an
arbitrary name for the purposes of this explanation)

2. Evaluate ⍳temp1 and store result in temporary variable temp2.
3. Evaluate BV/temp2
4. Discard temporary variables

In the current Version of Dyalog APL, the expression is recognised in its entirety and
processed in a single step as if it were a single primitive function. In this case, the res-
ultant improvement in performance is between 2 and 4.5.

Idiom recognition is precise; an expression that is almost identical but not exactly
identical to an expression given in the Idiom List on page 111 table will not be recog-
nised.

For example, ⎕AV⍳ will be recognised as an idiom, but (⎕AV)⍳ will not. Similarly,
(,)/ would not be recognized as the Join idiom.

Idiom List
In the following table, arguments to the idiom have types and ranks as follows:

Type Description Rank Description

C Character S Scalar or 1-item vector

B Boolean V Vector

N Numeric M Matrix

P Nested A Array of any rank

X any type

For example: NV: numeric vector, CM: character matrix, PV: nested vector.

Chapter 2: Defined Functions & Operators 112

Idiom Description

⍴⍴XA The rank of XA

BV/⍳NS
The subset of NS corresponding to the 1s in
BV

BV/⍳⍴XV
The positions in XV corresponding to the 1s
in BV

NA⊃¨⊂XV
The subset of XV in the index positions
defined by NA (equivalent to XV[NA])

XA1{}XA2
XA1 and XA2 are ignored (no result
produced)

XA1{⍺}XA2 XA1 (XA2 is ignored)

XA1{⍵}XA2 XA2 (XA1 is ignored)

XA1{⍺ ⍵}XA2
XA1 and XA2 as a two item vector (XA1
XA2)

{0}XA 0 irrespective of XA

{0}¨XA 0 corresponding to each item of XA

,/PV
The enclose of the items of PV (which must
be of depth 2) catenated along their last axes

⍪/PV
The enclose of the items of PV (which must
be of depth 2) catenated along their first axes

⊃⌽XA The item in the top right of XA (⎕ML<2)

↑⌽XA The item in the top right of XA (⎕ML≥2)

⊃⌽,XA The item in the bottom right of XA (⎕ML<2)

↑⌽,A The item in the bottom right of XA (⎕ML≥2)

0=⍴XV 1 if XV has a shape of zero, 0 otherwise

0=⍴⍴XA
1 if XA has a rank of zero (scalar), 0
otherwise

Chapter 2: Defined Functions & Operators 113

Expression Description

0=≡XA
1 if XA has a depth of zero (simple scalar), 0
otherwise

XM1{(↓⍺)⍳↓⍵}XM2

A simple vector comprising as many items as
there are rows in XM2, where each item is the
number of the first row in XM1 that matches
each row in XM2.

↓⍉↑PV

A nested vector comprising vectors that each
correspond to a position in the original
vectors of PV – the first vector contains the
first item from each vector in PV, padded to
be the same length as the largest vector, and
so on (⎕ML<2)

↓⍉⊃PV

A nested vector comprising vectors that each
correspond to a position in the original
vectors of PV – the first vector contains the
first item from each vector in PV, padded to
be the same length as the largest vector, and
so on (⎕ML≥2)

^\' '=CA
A Boolean mask indicating the leading blank
spaces in each row of CA

+/^\' '=CA
The number of leading blank spaces in each
row of CA

+/^\BA The number of leading 1s in each row of BA

{(∨\' '≠⍵)/⍵}CV CV without any leading blank spaces

{(+/^\' '=⍵)↓⍵}CV CV without any leading blank spaces

~∘' '¨↓CA

A nested vector comprising simple character
vectors constructed from the rows of CA
(which must be of depth 1) with all blank
spaces removed

{(+/∨\' '≠⌽⍵)↑¨↓⍵}CA

A nested vector comprising simple character
vectors constructed from the rows of CA
(which must be of depth 1) with trailing
blank spaces removed

Chapter 2: Defined Functions & Operators 114

Expression Description

⊃∘⍴¨XA
The length of the first axis of each item in XA
(⎕ML<2)

↑∘⍴¨XA
The length of the first axis of each item in XA
(⎕ML≥2)

XA1,←XA2
XA1 redefined to be XA1 with XA2 catenated
along its last axis

XA1⍪←XA2
XA1 redefined to be XA1 with XA2 catenated
along its first axis

{⍵[⍋⍵]}XV
XV sorted into numerical or alphabetical
order

{⍵[⍒⍵]}XV
XV sorted into reverse numerical or
alphabetical order

{⍵[⍋⍵;]}XM
XM with the rows sorted into numerical or
alphabetical order

{⍵[⍒⍵;]}XM
XM with the rows sorted into reverse
numerical or alphabetical order

1=≡XA
1 if XA has a depth of 1 (simple array), 0
otherwise

1=≡,XA
1 if XA has a depth of 0 or 1 (simple scalar,
vector, etc.), 0 otherwise

0∊⍴XA 1 if XA is empty, 0 otherwise

~0∊⍴XA 1 if XA is not empty, 0 otherwise

⊣⌿XA The first sub-array along the first axis of XA

⊣/XA The first sub-array along the last axis of XA

⊢⌿XA The last sub-array along the first axis of XA

⊢/XA The last sub-array along the last axis of XA

*○NA
Euler's idiom (accurate when NA is a multiple
of 0J0.5)

Chapter 2: Defined Functions & Operators 115

Expression Description

0=⊃⍴
1 if XA has an empty first dimension, 0
otherwise (⎕ML<2)

0≠⊃⍴
1 if XA does not have an empty first
dimension, 0 otherwise (⎕ML<2)

⎕AV⍳CA
Classic version only: The character numbers
(atomic vector index) corresponding to the
characters in CA

⌊0.5+NA Round to nearest integer

Notes
/⍳ and /⍳⍴, as well as providing an execution time advantage, reduce intermediate
workspace usage and, consequently, the incidence of memory compactions and the
likelihood of a WS FULL.

NA⊃¨⊂XV is implemented as XV[NA], which is significantly faster. The two are equi-
valent but the former now has no performance penalty.

,/ is special-cased only for vectors of vectors or scalars. Otherwise, the expression is
evaluated as a series of concatenations. Recognition of this idiom turns join from an
n-squared algorithm into a linear one. In other words, the improvement factor is pro-
portional to the size of the argument vector.

⊃⌽ and ⊃⌽, now take constant time. Without idiom recognition, the time taken
depends linearly on the number of items in the argument.

0=≡ takes a small constant time. Without idiom recognition, the time taken would
depend on the size and depth of the argument, which in the case of a deeply nested
array could be significant.

↓⍉↑ is special-cased only for a vector of nested vectors, each of whose items is of the
same length.

{(↓⍺)⍳↓⍵} can accommodate much larger matrices than its constituent primitives.
It is particularly effective when bound with a left argument using the compose oper-
ator:

find←mat∘{(↓⍺)⍳↓⍵} ⍝ find rows in mat table

In this case, the internal hash table for mat is retained so that it does not need to be
generated each time the monadic derived function find is applied to a matrix argu-
ment.

Chapter 2: Defined Functions & Operators 116

{(∨\' '≠⍵)/⍵} and {(+/^\' '=⍵)↓⍵} are two codings of the same idiom.
Both use the same C code for evaluation.

~∘' '¨↓ typically takes a character matrix argument and returns a vector of char-
acter vectors from which all blanks have been removed. An example might be the
character matrix of names returned by the system function ⎕NL. In general, this idiom
accommodates character arrays of any rank.

{(+/∨\' '≠⌽⍵)↑¨↓⍵} typically takes a character matrix argument and returns a
vector of character vectors. Any embedded blanks in each row are preserved but trail-
ing blanks are removed. In general, this idiom accommodates character arrays of any
rank.

⊃∘⍴¨A (⎕ML<2) and ↑∘⍴¨A (⎕ML>2) avoid having to create an intermediate nested
array of shape vectors.

For an array of vectors, this idiom quickly returns a simple array of the length of each
vector.

⊃∘⍴¨ 'Hi' 'Pete' ⍝ Vector Lengths
2 4

For an array of matrices, it returns a simple array of the number of rows in each matrix.

⊃∘⍴¨⎕CR¨↓⎕NL 3 ⍝ Lines in functions
5 21...

A,←A and A⍪←Aoptimise the catenation of an array to another array along the last
and first dimension respectively.

Among other examples, this idiom optimises repeated catenation of a scalar or vector
to an existing vector.

props,←⊂ 'Posn' 0 0
props,←⊂'Size' 50 50
vector,←2+4

Note that the idiom is not applied if the value of vector V is shared with another sym-
bol in the workspace, as illustrated in the following examples:

Example 1: the idiom is used to perform the catenation to V1.

V1←⍳10
V1,←11

Chapter 2: Defined Functions & Operators 117

Example 2: the idiom is not used to perform the catenation to V1, because its value is
at that point shared with V2.

V1←⍳10
V2←V1
V1,←11

Example 3: the idiom is not used to perform the catenation to V in Join[1] because
its value is, at that point, shared with the array used to call the function.

∇ V←V Join A
[1] V,←A

∇
(⍳10) Join 11

1 2 3 4 5 6 7 8 9 10 11

⊢⌿XA, ⊢/XA, ⊣⌿XA, and ⊣/XA return the first/last rank (0⌈¯1+⍴⍴A) sub-array
along the first/last axis of XA. For example, if V is a vector, then:

⊣/V First item of vector

⊢/V Last item of vector

Similarly, if M is a matrix, then:

⊣⌿M First row of matrix

⊣/M First column of matrix

⊢⌿M Last row of matrix

⊢/M Last column of matrix

The idiom generalises uniformly to higher-rank arrays.

Euler's idiom *○NA produces accurate results for right argument values that are a
multiple of 0J0.5. This is so that Euler's famous identity 0=1+*○0J1 holds, des-
pite pi being represented as a floating point number.

Chapter 2: Defined Functions & Operators 118

Search Functions and Hash Tables
Primitive dyadic search functions, such as ⍳ (index of) and ∊ (membership) have a
principal argument in which items of the other subject argument are located.

In the case of ⍳, the principal argument is the one on the left and in the case of ∊, it is
the one on the right. The following table shows the principal (P) and subject (s) argu-
ments for each of the functions.

P ⍳ s Index of

s ∊ P Membership

s ∩ P Intersection

P ∪ s Union

s ~ P Without

P {(↓⍺)⍳↓⍵} s Matrix Iota (idiom)

P∘⍋ and P∘⍒ Sort

The Dyalog APL implementation of these functions already uses a technique known
as hashing to improve performance over a simple linear search. (Note that ⍷ (find)
does not employ the same hashing technique, and is excluded from this discussion.)

Building a hash table for the principal argument takes a significant time but is rewar-
ded by a considerably quicker search for each item in the subject. Unfortunately, the
hash table is discarded each time the function completes and must be reconstructed
for a subsequent call (even if its principal argument is identical to that in the previous
one).

For optimal performance of repeated search operations, the hash table may be
retained between calls, by binding the function with its principal argument using the
primitive ∘ (compose) operator. The retained hash table is then used directly
whenever this monadic derived function is applied to a subject argument.

Notice that retaining the hash table pays off only on a second or subsequent applic-
ation of the derived function. This usually occurs in one of two ways: either the
derived function is named for later (and repeated) use, as in the first example below or
it is applied repeatedly as the operand of a primitive or defined operator, as in the
second example.

Chapter 2: Defined Functions & Operators 119

Example: naming a derived function.
words←'red' 'ylo' 'grn' 'brn' 'blu' 'pnk' 'blk'

find←words∘⍳ ⍝ monadic find functio
n

find'blk' 'blu' 'grn' 'ylo' ⍝
7 5 3 2

find'grn' 'brn' 'ylo' 'red' ⍝ fast find
3 4 2 1

Example: repeated application by (¨) each operator.
∊∘⎕A¨'This' 'And' 'That'

1 0 0 0 1 0 0 1 0 0 0

Locked Functions & Operators
A defined operation may be locked by the system function ⎕LOCK. A locked oper-
ation may not be displayed or edited. The system function ⎕CR returns an empty mat-
rix of shape 0 0 and the system functions ⎕NR and ⎕VR return an empty vector for a
locked operation.

Stop, trace and monitor settings may be established by the system functions ⎕STOP,
⎕TRACE and ⎕MONITOR respectively. Existing stop, trace and monitor settings are
cancelled when an operation is locked.

A locked operation may not be suspended, nor may a locked operation remain pen-
dent when execution is suspended. The state indicator is cut back as described
below.

Chapter 2: Defined Functions & Operators 120

The State Indicator
The state of execution is dynamically recorded in the STATE INDICATOR. The
state indicator identifies the chain of execution for operators, functions and the eval-
uated or character input/output system variables (⎕ and ⍞). At the top of the state
indicator is the most recently activated operation.

Execution may be suspended by an interrupt, induced by the user, the system, or by a
signal induced by the system function ⎕SIGNAL or by a stop control set by the sys-
tem function ⎕STOP. If the interrupt (or event which caused the interrupt) is not
defined as a trappable event by the system variable ⎕TRAP, the state indicator is cut
back to the first of either a defined operation or the evaluated input prompt (⎕) such
that there is no locked defined operation in the state indicator. The topmost oper-
ation left in the state indicator is said to be SUSPENDED. Other operations in the
chain of execution are said to be PENDENT.

The state indicator may be examined when execution is suspended by the system
commands)SI and)SINL. The names of the defined operations in the state indic-
ator are given by the system functions ⎕SI and ⎕XSI while the line numbers at
which they are suspended or pendent is given by the system variable ⎕LC.

Suspended execution may be resumed by use of the Branch function (see Language
Reference: Branch). Whilst execution is suspended, it is permitted to enter any APL
expression for evaluation, thereby adding to the existing state indicator. Therefore,
there may be more than one LEVEL OF SUSPENSION in the state indicator. If the
state indicator is cut back when execution is suspended, it is cut back no further than
the prior level of suspension (if any).

Examples
∇ F

[1] G
∇

∇ G
[1] 'FUNCTION G'+

∇

⍎'F'
SYNTAX ERROR
G[1] 'FUNCTION G'+

^

)SI
#.G[1]*
#.F[1]
⍎

Chapter 2: Defined Functions & Operators 121

⎕LOCK'G'

⍎'F'
SYNTAX ERROR
F[1] G

^

)SI
#.F[1]*
⍎
#.G[1]*
#.F[1]
⍎

A suspended or pendent operation may be edited by the system editor or redefined
using ⎕FX provided that it is visible and unlocked. However, pendent operations
retain their original definition until they complete, or are cleared from the State
Indicator. When a new definition is applied, the state indicator is repaired if neces-
sary to reflect changes to the operations, model syntax, local names, or labels.

Chapter 2: Defined Functions & Operators 122

Dfns & Dops
A dfn (dop)1 is an alternative function definition style suitable for defining small to
medium sized functions. It bridges the gap between operator expressions:
rank←⍴∘⍴ and full ‘header style’ definitions such as:

∇ rslt←larg func rarg;local...

In its simplest form, a dfn is an APL expression enclosed in curly braces {}, possibly
including the special characters ⍺ and ⍵ to represent the left and right arguments of
the function respectively. For example:

{(+/⍵)÷⍴⍵} 1 2 3 4 ⍝ Arithmetic Mean (Average)
2.5

3 {⍵*÷⍺} 64 ⍝ ⍺th root
4

dfns can be named in the normal fashion:

mean←{(+/⍵)÷⍴⍵}
mean¨(2 3)(4 5)

2.5 4.5

dfns can be defined and used in any context where an APL function may be found, in
particular:

l In immediate execution mode as in the examples above.
l Within a defined function or operator.
l As the operand of an operator such as each (¨).
l Within another dfn.
l The last point means that it is easy to define nested local functions.

1The terms dfn and dop refer to a special type of function (or operator) unique to Dyalog. They
were originally named dynamic functions and dynamic operators, later abbreviated to Dfns and
Dops or D-Fns and D-Ops, but all these terms have been dropped in favour of the current ones.

Chapter 2: Defined Functions & Operators 123

Multi-Line Dfns
The single expression which provides the result of the dfn may be preceded by any
number of assignment statements. Each such statement introduces a name which is
local to the function.

For example in the following, the expressions sum← and num← create local variables
sum and num.

mean←{ ⍝ Arithmetic mean
sum←+/⍵ ⍝ Sum of elements
num←⍴⍵ ⍝ Number of elements
sum÷num ⍝ Mean

}

Note that dfns may be commented in the usual way using ⍝.

When the interpreter encounters a local definition, a new local name is created. The
name is shadowed dynamically exactly as if the assignment had been preceded by:
⎕shadow name ⋄.

It is important to note the distinction between the two types of statement above.
There can bemany assignment statements, each introducing a new local variable, but
only a single expression where the result is not assigned. As soon as the interpreter
encounters such an expression, it is evaluated and the result returned immediately as
the result of the function.

For example, in the following,

mean←{ ⍝ Arithmetic mean
sum←+/⍵ ⍝ Sum of elements
num←⍴⍵ ⍝ Number of elements
sum,num ⍝ Attempt to show sum,num (wrong)!
sum÷num ⍝ ... and return result.

}

... as soon as the interpreter encounters the expression sum,num, the function ter-
minates with the two element result (sum,num) and the following line is not eval-
uated.

To display arrays to the session fromwithin a dfn, you can use the explicit display
forms ⎕← or ⍞← as in:

mean←{ ⍝ Arithmetic mean
sum←+/⍵ ⍝ Sum of elements
num←⍴⍵ ⍝ Number of elements
⎕←sum,num ⍝ show sum,num.
sum÷num ⍝ ... and return result.

}

Chapter 2: Defined Functions & Operators 124

Note that local definitions can be used to specify local nested dfns:

rms←{ ⍝ Root Mean Square
root←{⍵*0.5} ⍝ ∇ Square root
mean←{(+/⍵)÷⍴⍵} ⍝ ∇ Mean
square←{⍵×⍵} ⍝ ∇ Square
root mean square ⍵

}

Default Left Argument
The special syntax: ⍺←expr is used to give a default value to the left argument if a
dfn is called monadically. For example:

root←{ ⍝ ⍺th root
⍺←2 ⍝ default to sqrt
⍵*÷⍺

}

The expression to the right of ⍺← is evaluated only if its dfn is called with no left
argument.

Note that the assignment ⍺←⊢ allows an ambivalent function to call an ambivalent
sub-function. For example in:

foo←{
⍺←⊢
⍺ goo ⍵

}

If foo is given a left argument, this is passed to goo. Otherwise, ⍺ is assigned ⊢ and
the last line is ⊢ goo ⍵, which is a monadic call on goo followed by the ⊢ (Right)
of the result of goo, which is the same value.

Chapter 2: Defined Functions & Operators 125

Guards
A Guard is a Boolean-single valued expression followed on the right by a ':'. For
example:

0≡≡⍵: ⍝ Right arg simple scalar
⍺<0: ⍝ Left arg negative

The guard is followed by a single APL expression: the result of the function.

⍵≥0: ⍵*0.5 ⍝ Square root if non-negative.

A dfn may contain any number of guarded expressions each on a separate line (or col-
lected on the same line separated by diamonds). Guards are evaluated in turn until
one of them yields a 1. The corresponding expression to the right of the guard is then
evaluated as the result of the function.

If an expression occurs without a guard, it is evaluated immediately as the default res-
ult of the function. For example:

sign←{
⍵>0: '+ve' ⍝ Positive
⍵=0: 'zero' ⍝ zero

'-ve' ⍝ Negative (Default)
}

Local definitions and guards can be interleaved in any order.

Note again that any code following the first unguarded expression (which terminates
the function) could never be executed and would therefore be redundant.

Shy Result
Dfns are usually 'pure' functions that take arguments and return explicit results. Occa-
sionally, however, the main purpose of the function might be a side-effect such as the
display of information in the session, or the updating of a file, and the value of a res-
ult, a secondary consideration. In such circumstances, you might want to make the res-
ult 'shy', so that it is discarded unless the calling context requires it. This can be
achieved by assigning a dummy variable after a (true) guard:

log←{ ⍝ Append ⍵ to file ⍺.
tie←⍺ ⎕fstie 0 ⍝ tie number for file,
cno←⍵ ⎕fappend tie ⍝ new component number,
tie←⎕funtie tie ⍝ untie file,
1:rslt←cno ⍝ comp number, shy result.

}

Chapter 2: Defined Functions & Operators 126

Static Name Scope
When an inner (nested) dfn refers to a name, the interpreter searches for it by looking
outwards through enclosing dfns, rather than searching back along the execution
stack. This regime, which is more appropriate for nested functions, is said to employ
static scope instead of APL’s usual dynamic scope. This distinction becomes appar-
ent only if a call is made to a function defined at an outer level. For the more usual
inward calls, the two systems are indistinguishable.

For example, in the following function, variable type is defined both within
which itself and within the inner function fn1. When fn1 calls outward to fn2
and fn2 refers to type, it finds the outer one (with value 'static') rather than
the one defined in fn1:

which←{

type←'static'

fn1←{
type←'dynamic'
fn2 ⍵

}

fn2←{
type ⍵

}

fn1 ⍵
}

which'scope'
static scope

Tail Calls
A novel feature of the implementation of dfns is the way in which tail calls are optim-
ised.

When a dfn calls a sub-function, the result of the call may or may not be modified by
the calling function before being returned. A call where the result is passed back
immediately without modification is termed a tail call.

For example in the following, the first call on function fact is a tail call because the
result of fact is the result of the whole expression, whereas the second call isn’t
because the result is subsequently multiplied by ⍵.

(⍺×⍵)fact ⍵-1 ⍝ Tail call on fact.
⍵×fact ⍵-1 ⍝ Embedded call on fact.

Chapter 2: Defined Functions & Operators 127

Tail calls occur frequently in dfns, and the interpreter optimises them by re-using the
current stack frame instead of creating a new one. This gives a significant saving in
both time and workspace usage. It is easy to check whether a call is a tail call by tra-
cing it. An embedded call will pop up a new trace window for the called function,
whereas a tail call will re-use the current one.

Using tail calls can improve code performance considerably, although at first the tech-
nique might appear obscure. A simple way to think of a tail call is as a branch with
arguments. The tail call, in effect, branches to the first line of the function after
installing new values for ⍵ and ⍺.

Iterative algorithms can almost always be coded using tail calls.

In general, when coding a loop, we use the following steps; possibly in a different
order depending on whether we want to test at the ‘top’ or the ‘bottom’ of the loop.

1. Initialise loop control variable(s).⍝ init
2. Test loop control variable.⍝ test
3. Process body of loop.⍝ proc
4. Modify loop control variable for next iteration.⍝ mod
5. Branch to step 2.⍝ jump

For example, in classical APL you might find the following:

∇ value←limit loop value⍝ init
[1] top:→(⎕CT>value-limit)/0⍝ test
[2] value←Next value⍝ proc, mod
[3] →top⍝ jump

∇

Control structures help us to package these steps:

∇ value←limit loop value⍝ init
[1] :While ⎕CT<value-limit⍝ test
[2] value←Next value⍝ proc, mod
[3] :EndWhile⍝ jump

∇

Using tail calls:

loop←{⍝ init
⎕CT>⍺-⍵:⍵⍝ test
⍺ ∇ Next ⍵⍝ proc, mod, jump

}

Chapter 2: Defined Functions & Operators 128

Error-Guards
An error-guard is (an expression that evaluates to) a vector of error numbers (see
APL Error Messages on page 225), followed by the digraph: ::, followed by an
expression, the body of the guard, to be evaluated as the result of the function. For
example:

11 5 :: ⍵×0 ⍝ Trap DOMAIN and LENGTH errors.

In common with :Trap and ⎕TRAP, error numbers 0 and 1000 are catchalls for syn-
chronous errors and interrupts respectively.

When an error is generated, the system searches statically upwards and outwards for
an error-guard that matches the error. If one is found, the execution environment is
unwound to its state immediately prior to the error-guard’s execution and the body
of the error-guard is evaluated as the result of the function. This means that, during
evaluation of the body, the guard is no longer in effect and so the danger of a hang
caused by an infinite ‘trap loop’, is avoided.

Notice that you can provide ‘cascading’ error trapping in the following way:

0::try_2nd
0::try_1st
expr

In this case, if expr generates an error, its immediately preceding: 0:: catches it and
evaluates try_1st leaving the remaining error-guard in scope. If try_1st fails,
the environment is unwound once again and try_2nd is evaluated, this time with
no error-guards in scope.

Chapter 2: Defined Functions & Operators 129

Examples:
Open returns a handle for a component file. If the exclusive tie fails, it attempts a
share-tie and if this fails, it creates a new file. Finally, if all else fails, a handle of 0 is
returned.

open←{ ⍝ Handle for component file ⍵.
0::0 ⍝ Fails:: return 0 handle.
22::⍵ ⎕FCREATE 0 ⍝ FILE NAME:: create new one.
24 25::⍵ ⎕FSTIE 0 ⍝ FILE TIED:: try share tie.

⍵ ⎕FTIE 0 ⍝ Attempt to open file.
}

An error in div causes it to be called recursively with improved arguments.

div←{ ⍝ Tolerant division:: ⍺÷0 → ⍺.
⍺←1 ⍝ default numerator.
5::↑∇/↓↑⍺ ⍵ ⍝ LENGTH:: stretch to fit.
11::⍺ ∇ ⍵+⍵=0 ⍝ DOMAIN:: increase divisor.
⍺÷⍵ ⍝ attempt division.

}

Notice that some arguments may cause div to recur twice:

6 4 2 div 3 2
→ 6 4 2 div 3 2 0
→ 6 4 2 div 3 2 1
→ 2 2 2

The final example shows the unwinding of the local environment before the error-
guard’s body is evaluated. Local name trap is set to describe the domain of its fol-
lowing error-guard. When an error occurs, the environment is unwound to expose
trap’s statically correct value.

add←{
trap←'domain' ⋄ 11::trap
trap←'length' ⋄ 5::trap
⍺+⍵

}

2 add 3 ⍝ Addition succeeds
5

2 add 'three' ⍝ DOMAIN ERROR generated.
domain

2 3 add 4 5 6 ⍝ LENGTH ERROR generated.
length

Chapter 2: Defined Functions & Operators 130

Dops
The operator equivalent of a dfn is distinguished by the presence of either of the com-
pound symbols ⍺⍺ or ⍵⍵ anywhere in its definition. ⍺⍺ and ⍵⍵ represent the left and
right operand of the operator respectively.

Example
The following monadic each operator applies its function operand only to unique
elements of its argument. It then distributes the result to match the original argument.
This can deliver a performance improvement over the primitive each (¨) operator if
the operand function is costly and the argument contains a significant number of
duplicate elements. Note however, that if the operand function causes side effects,
the operation of dop and primitive versions will be different.

each←{ ⍝ Fast each:

shp←⍴⍵ ⍝ Shape and ...

vec←,⍵ ⍝ ... ravel of arg.

nub←∪vec ⍝ Vector of unique elements.

res←⍺⍺¨nub ⍝ Result for unique elts.

idx←nub⍳vec ⍝ Indices of arg in nub ...
shp⍴idx⊃¨⊂res ⍝ ... distribute result.

}

The dyadic else operator applies its left (else right) operand to its right argument
depending on its left argument.

else←{
⍺: ⍺⍺ ⍵ ⍝ True: apply Left operand

⍵⍵ ⍵ ⍝ Else, .. Right ..
}
0 1 ⌈else⌊¨ 2.5 ⍝ Try both false and true.

2 3

Chapter 2: Defined Functions & Operators 131

Recursion
A recursive dfn can refer to itself using its name explicitly, but because we allow
unnamed functions, we also need a special symbol for implicit self-reference: '∇'.
For example:

fact←{ ⍝ Factorial ⍵.
⍵≤1: 1 ⍝ Small ⍵, finished,
⍵×∇ ⍵-1 ⍝ Otherwise recur.

}

Implicit self-reference using '∇' has the further advantage that it incurs less inter-
pretative overhead and is therefore quicker. Tail calls using '∇' are particularly effi-
cient.

Recursive dops refer to their derived functions, that is the operator bound with its
operand(s) using ∇ or the operator itself using the compound symbol: ∇∇. The first
form of self reference is by far the more frequently used.

pow←{ ⍝ Function power.
⍺=0:⍵ ⍝ Apply function operand ⍺ times.
(⍺-1)∇ ⍺⍺ ⍵ ⍝ ⍺⍺ ⍺⍺ ⍺⍺ ... ⍵

}

The following example shows a rather contrived use of the second form of (operator)
self reference. The exp operator composes its function operand with itself on each
recursive call. This gives the effect of an exponential application of the original oper-
and function:

exp←{ ⍝ Exponential fn application.
⍺=0:⍺⍺ ⍵ ⍝ Apply operand 2*⍺ times.
(⍺-1)⍺⍺∘⍺⍺ ∇∇ ⍵ ⍝ (⍺⍺∘⍺⍺)∘(...) ... ⍵

}
succ←{1+⍵} ⍝ Successor (increment).
10 succ exp 0

1024

Chapter 2: Defined Functions & Operators 132

Example: Pythagorean triples
The following sequence shows an example of combining dfns and dops in an attempt
to find Pythagorean triples: (3 4 5)(5 12 13) ...

sqrt←{⍵*0.5} ⍝ Square root.

sqrt 9 16 25
3 4 5

hyp←{sqrt+/⊃⍵*2} ⍝ Hypoteneuse of triangl
e.

hyp(3 4)(4 5)(5 12)
5 6.403124237 13

intg←{⍵=⌊⍵} ⍝ Whole number?

intg 2.5 3 4.5
0 1 0

pyth←{intg hyp ⍵} ⍝ Pythagorean pair?

pyth(3 4)(4 9)(5 12)
1 0 1

pairs←{,⍳⍵ ⍵} ⍝ Pairs of numbers 1..⍵.

pairs 3
1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3

filter←{(⍺⍺ ⍵)/⍵} ⍝ Op: ⍵ filtered by ⍺⍺.

pyth filter pairs 12 ⍝ Pythagorean pairs 1..12
3 4 4 3 5 12 6 8 8 6 9 12 12 5 12 9

So far, so good, but we have some duplicates: (6 8) is just double (3 4).

rpm←{ ⍝ Relatively prime?
⍵=0:⍺=1 ⍝ C.f. Euclid's gcd.
⍵ ∇ ⍵|⍺

}/¨ ⍝ Note the /¨

rpm(2 4)(3 4)(6 8)(16 27)
0 1 0 1

rpm filter pyth filter pairs 20
3 4 4 3 5 12 8 15 12 5 15 8

Chapter 2: Defined Functions & Operators 133

We can use an operator to combine the tests:

and←{ ⍝ Lazy parallel 'And'.
mask←⍺⍺ ⍵ ⍝ Left predicate select

s...
mask\⍵⍵ mask/⍵ ⍝ args for right predicat

e.
}

pyth and rpm filter pairs 20
3 4 4 3 5 12 8 15 12 5 15 8

Better, but we still have some duplicates: (3 4) (4 3).

less←{</⊃⍵}
less(3 4)(4 3)

1 0

less and pyth and rpm filter pairs 40
3 4 5 12 7 24 8 15 9 40 12 35 20 21

And finally, as promised, triples:

{⍵,hyp ⍵}¨less and pyth and rpm filter pairs 35
3 4 5 5 12 13 7 24 25 8 15 17 12 35 37 20 21 29

A Larger Example
Function tokens uses nested local dfns to split an APL expression into its con-
stituent tokens. Note that all calls on the inner functions: lex, acc, and the
unnamed dfn in each token case, are tail calls. In fact, the only stack calls are those
on function: all, and the unnamed function: {⍵∨¯1⌽⍵}, within the ‘Char literal’
case.

Chapter 2: Defined Functions & Operators 134

tokens←{ ⍝ Lex of APL src line.
alph←⎕A,⎕Á,'_∆⍙',26↑17↓⎕AV ⍝ Alphabet for names.
all←{+/^\⍺∊⍵} ⍝ No. of leading ⍺∊⍵.
acc←{(⍺,↑/⍵)lex⊃↓/⍵} ⍝ Accumulate tokens.
lex←{

0=⍴⍵:⍺ ⋄ hd←↑⍵ ⍝ Next char else done.

hd=' ':⍺{ ⍝ White Space.
size←⍵ all' '
⍺ acc size ⍵

}⍵

hd∊alph:⍺{ ⍝ Name
size←⍵ all alph,⎕D
⍺ acc size ⍵

}⍵

hd∊'⎕:':⍺{ ⍝ System Name/Keyword
size←⍵ all hd,alph
⍺ acc size ⍵

}⍵

hd='''':⍺{ ⍝ Char literal
size←+/^\{⍵∨¯1⌽⍵}≠\hd=⍵
⍺ acc size ⍵

}⍵

hd∊⎕D,'¯':⍺{ ⍝ Numeric literal
size←⍵ all ⎕D,'.¯E'
⍺ acc size ⍵

}⍵

hd='⍝':⍺ acc(⍴⍵)⍵ ⍝ Comment
⍺ acc 1 ⍵ ⍝ Single char token.

}
(0⍴⊂'')lex,⍵

}
display tokens'xtok←size↑srce ⍝ Next token'

.→---.
| .→---. .→. .→---. .→. .→---. .→-. .→-----------. |
| |xtok| |←| |size| |↑| |srce| | | |⍝ Next token| |
| '----' '-' '----' '-' '----' '--' '------------' |
'∊---'

Chapter 2: Defined Functions & Operators 135

Restrictions
Currently multi-line dfns can’t be typed directly into the session. The interpreter
attempts to evaluate the first line with its trailing left brace and a SYNTAX ERROR
results.

Dfns need not return a result. However even a non-result-returning expression will ter-
minate the function, so you can’t, for example, call a non-result-returning function
from the middle of a dfn.

You can trace a dfn only if it is defined on more than one line. Otherwise it is
executed atomically in the same way as an execute (⍎) expression. This deliberate
restriction is intended to avoid the confusion caused by tracing a line and seeing
nothing change on the screen.

dfns do not currently support ⎕CS.

Supplied Workspaces
You can find more examples of dfns and dops in the following workspaces in the ws
sub-directory.

DFNS.DWS - a selection of utility functions.

MIN.DWS - an example application.

Chapter 2: Defined Functions & Operators 136

APL Line Editor
The APL Line Editor described herein is included for completeness and for adherence
to the ISO APL standard. See User Guide for a description of the more powerful full-
screen editor, ⎕ED.

Using the APL Line Editor, functions and operators are defined by entering Defin-
ition Mode. This mode is opened and closed by the Del symbol, ∇. Within this
mode, all evaluation of input is deferred. The standard APL line editor (described
below) is used to create and edit operations within definition mode.

Operations may also be defined using the system function ⎕FX (implicit in a ⎕ED fix)
which acts upon the canonical (character), vector, nested or object representation
form of an operation. (See Language Reference: Fix Definition for details.)

Functions may also be created dynamically or by function assignment.

The line editor recognises three forms for the opening request.

Creating Defined Operation
The opening ∇ symbol is followed by the header line of a defined operation. Redund-
ant blanks in the request are permitted except within names. If acceptable, the editor
prompts for the first statement of the operation body with the line-number 1 enclosed
in brackets. On successful completion of editing, the defined operation becomes the
active definition in the workspace.

Example
∇R←FOO

[1] R←10
[2] ∇

FOO
10

Chapter 2: Defined Functions & Operators 137

The given operation name must not have an active referent in the workspace, oth-
erwise the system reports defn error and the system editor is not invoked:

)VARS
SALES X Y

∇R←SALES Y
defn error

The header line of the operation must be syntactically correct, otherwise the system
reports defn error and the system editor is not invoked:

∇R←A B C D:G
defn error

Listing Defined Operation
The ∇ symbol followed by the name of a defined operation and then by a closing ∇,
causes the display of the named operation. Omitting the function name causes the
suspended operation (i.e. the one at the top of the state indicator) to be displayed and
opened for editing.

Example
∇FOO∇

∇ R←FOO
[1] R←10

∇

)SI
#.FOO[1] *

∇
∇ R←FOO

[1] R←10
[2]

Chapter 2: Defined Functions & Operators 138

Editing Active Defined Operation
Definition mode is entered by typing ∇ followed optionally by a name and editing
directive.

The ∇ symbol on its own causes the suspended operation (i.e. the one at the top of
the state indicator) to be displayed. The editor then prompts for a statement or edit-
ing directive with a line-number one greater than the highest line-number in the
function. If the state indicator is empty, the system reports defn error and defin-
ition mode is not entered.

The ∇ symbol followed by the name of an active defined operation causes the display
of the named operation. The editor then prompts for input as described above. If the
name given is not the name of an active referent in the workspace, the opening
request is taken to be the creation of a new operation as described in paragraph 1. If
the name refers to a pendent operation, the editor issues the message warning
pendent operation prior to displaying the operation. If the name refers to a
locked operation, the system reports defn error and definition mode is not entered.

The ∇ symbol followed by the name of an active defined operation and an editing dir-
ective causes the operation to be opened for editing and the editing directive
actioned. If the editing directive is invalid, it is ignored by the editor which then
prompts with a line-number one greater than the highest line-number in the
operation. If the name refers to a pendent operation, the editor issues the message
warning pendent operation prior to actioning the editing directive. If the
name refers to a locked operation, the system reports defn error and definition
mode is not entered.

On successful completion of editing, the defined operation becomes the active defin-
ition in the workspace which may replace an existing version of the function. Mon-
itors, and stop and trace vectors are removed.

Example
∇FOO[2]

[2] R←R*2
[3] ∇

Chapter 2: Defined Functions & Operators 139

Editing Directives
Editing directives, summarised in Figure 2(iv) are permitted as the first non-blank
characters either after the operation name on opening definition mode for an active
defined function, or after a line-number prompt.

 Syntax Description

∇ Closes definition mode

[⎕] Displays the entire operation

[⎕n] Displays the operation starting at line n

[n⎕] Displays only line n

[∆n] Deletes line n

[n∆m] Deletes m lines starting at line n

[n] Prompts for input at line n

[n]s Replaces or inserts a statement at line n

[n⎕m]
Edits line n placing the cursor at character position m where an
Edit Control Symbol performs a specific action.

Chapter 2: Defined Functions & Operators 140

Line Numbers
Line numbers are associated with lines in the operation. Initially, numbers are
assigned as consecutive integers, beginning with [0] for the header line. The num-
ber associated with an operation line remains the same for the duration of the defin-
ition mode unless altered by editing directives. Additional lines may be inserted by
decimal numbering. Up to three places of decimal are permitted. On closing defin-
ition mode, operation lines are re-numbered as consecutive integers.

The editor always prompts with a line number. The response may be a statement line
or an editing directive. A statement line replaces the existing line (if there is one) or
becomes an additional line in the operation:

∇R←A PLUS B
[1] R←A+B
[2]

Position
The editing directive [n], where n is a line number, causes the editor to prompt for
input at that line number. A statement or another editing directive may be entered.
If a statement is entered, the next line number to be prompted is the previous number
incremented by a unit of the display form of the last decimal digit. Trailing zeros are
not displayed in the fractional part of a line number:

[2] [0.8]
[0.8] ⍝ MONADIC OR DYADIC +
[0.9] ⍝ A ←→ OPTIONAL ARGUMENT
[1]

The editing directive [n]s, where n is a line number and s is a statement, causes the
statement to replace the current contents of line n, or to insert line n if there is none:

[1] [0] R←{A} PLUS B
[1]

Delete
The editing directive [∆n], where n is a line number, causes the statement line to be
deleted. The form [n∆m], where n is a line number and m is a positive integer,
causes m consecutive statement lines starting from line number n to be deleted.

Chapter 2: Defined Functions & Operators 141

Edit
The editing directive [n⎕m], where n is a line number and m is an integer number,
causes line number n to be displayed and the cursor placed beneath the m{th} char-
acter on a new line for editing. The response is taken to be edit control symbols selec-
ted from:

/ to delete the character immediately above the symbol.

1 to 9 to insert from 1 to 9 spaces immediately prior to the character above
the digit.

A to Z to insert multiples of 5 spaces immediately prior to the character
above the letter, where A = 5, B = 10, C = 15 and so forth.

,

to insert the text after the comma, including explicitly entered
trailing spaces, prior to the character above the comma, and then re-
display the line for further editing with the text inserted and any
preceding deletions or space insertions also effected.

.

to insert the text after the comma, including explicitly entered
trailing spaces, prior to the character above the comma, and then
complete the edit of the line with the text inserted and any
preceding deletions or space insertions also effected.

Invalid edit symbols are ignored. If there are no valid edit symbols entered, or if
there are only deletion or space insertion symbols, the statement line is re-displayed
with characters deleted and spaces inserted as specified. The cursor is placed at the
first inserted space position or at the end of the line if none. Characters may be added
to the line which is then interpreted as seen.

The line number may be edited.

Chapter 2: Defined Functions & Operators 142

Examples
[1] [1⎕7]
[1] R←A+B

,→(0=⎕NC'A')⍴1←⎕LC ⋄
[1] →(0=⎕NC'A')⍴1←⎕LC ⋄ R←A+B

.⋄→END
[2] R←B
[3] END:
[4]

The form [n⎕0] causes the line number n to be displayed and the cursor to be posi-
tioned at the end of the displayed line, omitting the edit phase.

Display
The editing directive [⎕] causes the entire operation to be displayed. The form
[⎕n] causes all lines from line number n to be displayed. The form [n⎕] causes
only line number n to be displayed:

[4] [0⎕]
[0] R←{A} PLUS B
[0]
[0] [⎕]
[0] R←{A} PLUS B
[0.1] ⍝ MONADIC OR DYADIC +
[1] →(0=⎕NC'A')⍴1+⎕LC ⋄ R←A+B ⋄→END
[2] R←B
[3] 'END:
[4]

Close Definition Mode
The editing directive ∇ causes definition mode to be closed. The new definition of
the operation becomes the active version in the workspace. If the name in the oper-
ation header (which may or may not be the name used to enter definition mode) refers
to a pendent operation, the editor issues the message warning pendent
operation before exiting. The new definition becomes the active version, but the
original one will continue to be referenced until the operation completes or is cleared
from the State Indicator.

Chapter 2: Defined Functions & Operators 143

If the name in the operation header is the name of a visible variable or label, the
editor reports defn error and remains in definition mode. It is then necessary to
edit the header line or quit.

If the header line is changed such that it is syntactically incorrect, the system reports
defn error, and re-displays the line leaving the cursor beyond the end of the text
on the line. Backspace/linefeed editing may be used to alter or cancel the change:

[3] [0⎕] - display line 0
[0] R←{A} PLUS B
[0] R←{A} PLUS B:G;H - put syntax error in line 0
defn error
[0] R←{A} PLUS B:G;H - line redisplayed

;G;H - backspace/linefeed editing
[1]

Local names may be repeated. However, the line editor reports warning messages as
follows:

1. If a name is repeated in the header line, the system reports "warning duplic-
ate name" immediately.

2. If a label has the same name as a name in the header line, the system reports
"warning label name present in line 0" on closing definition mode.

3. If a label has the same name as another label, the system reports "warning
duplicate label" on closing definition mode.

Chapter 2: Defined Functions & Operators 144

Improper syntax in expressions within statement lines of the function is not detected
by the system editor with the following exceptions:

l If the number of opening parentheses in each entire expression does not
equal the number of closing parentheses, the system reports "warning
unmatched parentheses", but accepts the line.

l If the number of opening brackets in each entire expression does not equal
the number of closing brackets, the system reports "warning unmatched
brackets", but accepts the line.

These errors are not detected if they occur in a comment or within quotes. Other syn-
tactical errors in statement lines will remain undetected until the operation is
executed.

Example
[4] R←(A[;1)=2)⌿⍎EXP,'×2
warning unmatched parentheses
warning unmatched brackets
[5]

Note that there is an imbalance in the number of quotes. This will result in a
SYNTAX ERROR when this operation is executed.

Quit Definition Mode
The user may quit definition mode by typing the INTERRUPT character. The active
version of the operation (if any) remains unchanged.

Chapter 3: Object Oriented Programing 145

Chapter 3:

Object Oriented Programing

Introducing Classes
A Class is a blueprint from which one or more Instances of the Class can be created
(instances are sometimes also referred to asObjects).

A Class may optionally derive from another Class, which is referred to as its Base
Class.

A Class may contain Methods, Properties and Fields (commonly referred to together
asMembers) which are defined within the body of the class script or are inherited
from other Classes. This version of Dyalog APL does not support Events although it
is intended that these will be supported in a future release. However, Classes that are
derived from .NET types may generate events using 4 ⎕NQ.

A Class that is defined to derive from another Class automatically acquires the set of
Properties, Methods and Fields that are defined by its Base Class. This mechanism is
described as inheritance.

A Class may extend the functionality of its Base Class by adding new Properties,
Methods and Fields or by substituting those in the Base Class by providing new ver-
sions with the same names as those in the Base Class.

Members may be defined to be Private or Public. A Public member may be used or
accessed from outside the Class or an Instance of the Class. A Private member is
internal to the Class and (in general) may not be referenced from outside.

Although Classes are generally used as blueprints for the creation of instances, a class
can have Shared members which can be used without first creating an instance

Chapter 3: Object Oriented Programing 146

Defining Classes
A Class is defined by a script that may be entered and changed using the editor. A
class script may also be constructed from a vector of character vectors, and fixed
using ⎕FIX.

A class script begins with a :Class statement and ends with a :EndClass state-
ment.

For example, using the editor:

)CLEAR
clear ws

)ED ○Animal

[an edit window opens containing the following skeleton Class script ...]

:Class Animal
:EndClass

[the user edits and fixes the Class script]

)CLASSES
Animal

⎕NC⊂'Animal'
9.4

Chapter 3: Object Oriented Programing 147

Editing Classes
Between the :Class and :EndClass statements, you may insert any number of
function bodies, Property definitions, and other elements. When you fix the Class
Script from the editor, these items will be fixed inside the Class namespace.

Note that the contents of the Class Script defines the Class in its entirety. You may
not add or alter functions by editing them independently and you may not add vari-
ables by assignment or remove objects with ⎕EX.

When you re-fix a Class Script using the Editor or with ⎕FIX, the original Class is
discarded and the new definition, as specified by the Script, replaces the old one in
its entirety.

Note:
Associated with a Class (or an instance of a class) there is a completely separate
namespace which surrounds the class and can contain functions, variables and so
forth that are created by actions external to the class.

For example, if X is not a public member of the class MyClass, then the following
expression will insert a variable X into the namespace which surrounds the class:

MyClass.X←99

The namespace is analogous to the namespace associated with a GUI object and will
be re-initialised (emptied) whenever the Class is re-fixed. Objects in this parallel
namespace are not visible from inside the Class or an Instance of the Class.

For further information, see Changing Scripted Objects Dynamically on page 204.

Chapter 3: Object Oriented Programing 148

Inheritance
If you want a Class to derive from another Class, you simply add the name of that
Class to the :Class statement using colon+space as a separator.

The following example specifies that CLASS2 derives from CLASS1.

:Class CLASS2: CLASS1
:EndClass

Note that CLASS1 is referred to as the Base Class of CLASS2.

If a Class has a Base Class, it automatically acquires all of the Public Properties, Meth-
ods and Fields defined for its Base Class unless it replaces themwith its own mem-
bers of the same name. This principle of inheritance applies throughout the Class
hierarchy. Note that Privatemembers are not subject to inheritance.

Warning:When a class is fixed, it keeps a reference (a pointer) to its base class. If the
global name of the base class is expunged, the derived class will still have the base
class reference, and the base class will therefore be kept alive in the workspace. The
derived class will be fully functional, but attempts to edit it will fail when it attempts
to locate the base class as the new definition is fixed.

At this point, if a new class with the original base class name is created, the derived
class has no way of detecting this, and it will continue to use the old and invisible
version of the base class. Only when the derived class is re-fixed, will the new base
class be detected.

If you edit, re-fix or copy an existing base class, APL will take care to patch up the ref-
erences, but if the base class is expunged first and recreated later, APL is unable to
detect the substitution. You can recover from this situation by editing or re-fixing the
derived class(es) after the base class has been substituted.

Classes that derive from .NET Types
You may define a Class that derives from any of the .NET Types by specifying the
name of the .NET Type and including a :USING statement that provides a path to
the .NET Assembly in which the .NET Type is located.

Example
:Class APLGreg: GregorianCalendar
:Using System.Globalization
...
:EndClass

Chapter 3: Object Oriented Programing 149

Classes that derive from the Dyalog GUI
You may define a Class that derives from any of the Dyalog APL GUI objects by spe-
cifying the name of the Dyalog APL GUI Class in quotes.

For example, to define a Class named Duck that derives from a Poly object, the
Class specification would be:

:Class Duck:'Poly'
:EndClass

The Base Constructor for such a Class is the ⎕WC system function.

Instances
A Class is generally used as a blueprint or model from which one or more Instances of
the Class are constructed. Note however that a class can have Shared members which
can be used directly without first creating an instance.

You create an instance of a Class using the ⎕NEW system function which is monadic.

The 1-or 2-item argument to ⎕NEW contains a reference to the Class and, optionally,
arguments for its Constructor function.

When ⎕NEW executes, it creates a regular APL namespace to contain the Instance,
and within that it creates an Instance space, which is populated with any Instance
Fields defined by the class (with default values if specified), and pointers to the
Instance Method and Property definitions specified by the Class.

If a monadic Constructor is defined, it is called with the arguments specified in the
second item of the argument to ⎕NEW. If ⎕NEW was called without Constructor argu-
ments, and the class has a niladic Constructor, this is called instead.

The Constructor function is typically used to initialise the instance and may establish
variables in the instance namespace.

The result of ⎕NEW is a reference to the instance namespace. Instances of Classes
exhibit the same set of Properties, Methods and Fields that are defined for the Class.

Chapter 3: Object Oriented Programing 150

Constructors
A Constructor is a special function defined in the Class script that is to be run when
an Instance of the Class is created by ⎕NEW. Typically, the job of a Constructor is to
initialise the new Instance in some way.

A Constructor is identified by a :Implements Constructor statement. This
statement may appear anywhere in the body of the function after the function header.
The significance of this is discussed below.

Note that it is also essential to define the Constructor to be Public, with a :Access
Public statement, because like all Class members, Constructors default to being
Private. Private Constructors currently have no use or purpose, but it is intended that
they will be supported in a future release of Dyalog APL.

A Constructor function may be niladic or monadic and must not return a result.

A Class may specify any number of different Constructors of which one (and only
one) may be niladic. This is also referred to as the default Constructor.

There may be any number of monadic Constructors, but each must have a differently
defined argument list which specifies the number of items expected in the Con-
structor argument. See Constructor Overloading on page 151 for details.

Although possible, a Constructor function should not call another Constructor func-
tion. A constructor function may not be called directly from outside the Class. The
only way a Constructor function may be invoked is by ⎕NEW. See Base Constructors
on page 158 for further details.

When ⎕NEW is executed with a 2-item argument, the appropriate monadic Con-
structor is called with the second item of the ⎕NEW argument.

The niladic (default) Constructor is called when ⎕NEW is executed with a 1-item argu-
ment, a Class reference alone, or whenever APL needs to create a fill item for the
Class.

Note that ⎕NEW first creates a new instance of the specified Class, and then executes
the Constructor inside the instance.

Example
The DomesticParrot Class defines a Constructor function egg that initialises the
Instance by storing its name (supplied as the 2nd item of the argument to ⎕NEW) in a
Public Field called Name.

Chapter 3: Object Oriented Programing 151

:Class DomesticParrot:Parrot
:Field Public Name

∇ egg name
:Implements Constructor
:Access Public
Name←name

∇
...

:EndClass ⍝ DomesticParrot

pol←⎕NEW DomesticParrot 'Polly'
pol.Name

Polly

Constructor Overloading
NameList header syntax is used to define different versions of a Constructor each
with a different number of parameters, referred to as its signature. SeeNamelists on
page 78 for details. The Clover Class illustrates this principle.

In deciding which Constructor to call, APL matches the shape of the Constructor
argument with the signature of each of the Constructors that are defined. If a con-
structor with the same number of arguments exists (remembering that 0 arguments
will match a niladic Constructor), it is called. If there is no exact match, and there is a
Constructor with a general signature (an un-parenthesised right argument), it is
called. If no suitable constructor is found, a LENGTH ERROR is reported.

There may be one and only one constructor with a particular signature.

A Constructor function may not call another Constructor function and a constructor
function may not be called directly from outside the Class. The only way a Con-
structor function may be invoked is by ⎕NEW. See Base Constructors on page 158 for
further details.

In the Clover Class example Class, the following Constructors are defined:

Constructor Implied argument

Make1 1-item vector

Make2 2-item vector

Make3 3-item vector

Make0 No argument

MakeAny Any array accepted

Chapter 3: Object Oriented Programing 152

Clover Class Example
:Class Clover ⍝ Constructor Overload Example

:Field Public Con
∇ Make0

:Access Public
:Implements Constructor
make 0

∇
∇ Make1(arg)

:Access Public
:Implements Constructor
make arg

∇
∇ Make2(arg1 arg2)

:Access Public
:Implements Constructor
make arg1 arg2

∇
∇ Make3(arg1 arg2 arg3)

:Access Public
:Implements Constructor
make arg1 arg2 arg3

∇
∇ MakeAny args

:Access Public
:Implements Constructor
make args

∇
∇ make args

Con←(⍴args)(2⊃⎕SI)args
∇

:EndClass ⍝ Clover

Chapter 3: Object Oriented Programing 153

In the following examples, the Make function (see Clover Class for details) displays:

<shape of argument> <name of Constructor called><argumen
t>
(see function make)

Creating a new Instance of Clover with a 1-element vector as the Constructor argu-
ment, causes the system to choose the Make1 Constructor. Note that, although the
argument to Make1 is a 1-element vector, this is disclosed as the list of arguments is
unpacked into the (single) variable arg1.

(⎕NEW Clover(,1)).Con
Make1 1

Creating a new Instance of Clover with a 2- or 3-element vector as the Constructor
argument causes the system to choose Make2, or Make3 respectively.

(⎕NEW Clover(1 2)).Con
2 Make2 1 2

(⎕NEW Clover(1 2 3)).Con
3 Make3 1 2 3

Creating an Instance with any other Constructor argument causes the system to
choose MakeAny.

(⎕NEW Clover(⍳10)).Con
10 MakeAny 1 2 3 4 5 6 7 8 9 10

(⎕NEW Clover(2 2⍴⍳4)).Con
2 2 MakeAny 1 2

3 4

Note that a scalar argument will call MakeAny and not Make1.

(⎕NEW Clover 1).Con
MakeAny 1

and finally, creating an Instance without a Constructor argument causes the system to
choose Make0.

(⎕NEW Clover).Con
Make0 0

Chapter 3: Object Oriented Programing 154

Niladic (Default) Constructors
A Class may define a niladic Constructor and/or one or more Monadic Constructors.
The niladic Constructor acts as the default Constructor that is used when ⎕NEW is
invoked without arguments and when APL needs a fill item.

:Class Bird
:Field Public Species

∇ egg spec
:Access Public Instance
:Implements Constructor
Species←spec

∇
∇ default

:Access Public Instance
:Implements Constructor
Species←'Default Bird'

∇
∇ R←Speak

:Access Public
R←'Tweet, tweet!'

∇

:EndClass ⍝ Bird

The niladic Constructor (in this example, the function default) is invoked when
⎕NEW is called without Constructor arguments. In this case, the Instance created is no
different to one created by the monadic Constructor egg, except that the value of the
Species Field is set to 'Default Bird'.

Birdy←⎕NEW Bird
Birdy.Species

Default Bird

The niladic Constructor is also used when APL needs to make a fill item of the Class.
For example, in the expression (3↑Birdy), APL has to create two fill items of
Birdy (one for each of the elements required to pad the array to length 3) and will in
fact call the niladic Constructor twice.

In the following statement:

TweetyPie←3⊃10↑Birdy

Chapter 3: Object Oriented Programing 155

The 10↑ (temporarily) creates a 10-element array comprising the single entity
Birdy padded with 9 fill-elements of Class Bird. To obtain the 9 fill-elements,
APL calls the niladic Constructor 9 times, one for each separate prototypical Instance
that it is required to make.

TweetyPie.Species
Default Bird

Empty Arrays of Instances: Why ?
In APL it is natural to use arrays of Instances. For example, consider the following
example.

:Class Cheese
:Field Public Name←''
:Field Public Strength←⍬
∇ make2(name strength)

:Access Public
:Implements Constructor
Name Strength←name strength

∇
∇ make1 name

:Access Public
:Implements Constructor
Name Strength←name 1

∇
∇ make_excuse

:Access Public
:Implements Constructor
⎕←'The cat ate the last one!'

∇
:EndClass

We might create an array of Instances of the Cheese Class as follows:

cdata←('Camembert' 5)('Caephilly' 2) 'Mild Cheddar'
cheeses←{⎕NEW Cheese ⍵}¨cdata

Suppose we want a range of medium-strength cheese for our cheese board.

board←(cheeses.Strength<3)/cheeses
board.Name

Caephilly Mild Cheddar

But look what happens when we try to select really strong cheese:

board←(cheeses.Strength>5)/cheeses
board.Name

The cat ate the last one!

Chapter 3: Object Oriented Programing 156

Note that this message is not the result of the expression, but was explicitly dis-
played by the make_excuse function. The clue to this behaviour is the shape of
board; it is empty!

⍴board
0

When a reference is made to an empty array of Instances (strictly speaking, a ref-
erence that requires a prototype), APL creates a new Instance by calling the niladic
(default) Constructor, uses the new Instance to satisfy the reference, and then discards
it. Hence, in this example, the reference:

board.Name

caused APL to run the niladic Constructor make_excuse, which displayed:

The cat ate the last one!

Notice that the behaviour of empty arrays of Instances is modelled VERY closely
after the behaviour of empty arrays in general. In particular, the Class designer is
given the task of deciding what the types of the members of the prototype are.

Empty Arrays of Instances: How?
To cater for the need to handle empty arrays of Instances as easily as non-empty
arrays, a reference to an empty array of Class Instances is handled in a special way.

Whenever a reference or an assignment is made to the content of an empty array of
Instances, the following steps are performed:

1. APL creates a new Instance of the same Class of which the empty Instance
belongs

2. the default (niladic) Constructor is run in the new Instance
3. the appropriate value is obtained or assigned:

o if it is a reference is to a Field, the value of the Field is obtained
o if it is a reference is to a Property, the PropertyGet function is run
o if it is a reference is to a Method, the method is executed
o if it is an assignment, the assignment is performed or the PropertySet

function is run
4. if it is a reference, the result of step 3 is used to generate an empty result

array with a suitable prototype by the application of the function {0⍴⊂⍵}
to it

5. the Class Destructor (if any) is run in the new Instance
6. the New Instance is deleted

Chapter 3: Object Oriented Programing 157

Example
:Class Bird

:Field Public Species

∇ egg spec
:Access Public Instance
:Implements Constructor
⎕DF Species←spec

∇
∇ default

:Access Public Instance
:Implements Constructor
⎕DF Species←'Default Bird'
#.DISPLAY Species

∇
∇ R←Speak

:Access Public
#.DISPLAY R←'Tweet, Tweet, Tweet'

∇

:EndClass ⍝ Bird

First, we can create an empty array of Instances of Bird using 0⍴.

Empty←0⍴⎕NEW Bird 'Robin'

A reference to Empty.Species causes APL to create a new Instance and invoke
the niladic Constructor default. This function sets Species to 'Default
Bird'and calls #.DISPLAY which displays output to the Session.

DISPLAY Empty.Species
.→-----------.
|Default Bird|
'------------'

APL then retrieves the value of Species ('Default Bird'), applies the func-
tion {0⍴⊂⍵} to it and returns this as the result of the expression.

.⊖---------------.
| .→-----------. |
| | | |
| '------------' |
'∊---------------'

A reference to Empty.Speak causes APL to create a new Instance and invoke the
niladic Constructor default. This function sets Species to 'Default
Bird'and calls #.DISPLAY which displays output to the Session.

Chapter 3: Object Oriented Programing 158

DISPLAY Empty.Speak
.→-----------.
|Default Bird|
'------------'

APL then invokes function Speak which displays 'Tweet, Tweet, Tweet'
and returns this as the result of the function.

.→------------------.
|Tweet, Tweet, Tweet|
'-------------------'

APL then applies the function {0⍴⊂⍵} to it and returns this as the result of the
expression.

.⊖----------------------.
| .→------------------. |
| | | |
| '-------------------' |
'∊----------------------'

Base Constructors
Constructors in a Class hierarchy are not inherited in the same way as other members.
However, there is a mechanism for all the Classes in the Class inheritance tree to par-
ticipate in the initialisation of an Instance.

Every Constructor function contains a :Implements Constructor statement
which may appear anywhere in the function body. The statement may optionally be
followed by the :Base control word and an arbitrary expression.

The statement:

:Implements Constructor :Base expr

calls a monadic Constructor in the Base Class. The choice of Constructor depends
upon the rank and shape of the result of expr (see Constructor Overloading on page
151 for details).

Whereas, the statement:

:Implements Constructor

or

:Implements Constructor :Base

calls the niladic Constructor in the Base Class.

Chapter 3: Object Oriented Programing 159

Note that during the instantiation of an Instance, these calls potentially take place in
every Class in the Class hierarchy.

If, anywhere down the hierarchy, there is a monadic call and there is no matching
monadic Constructor, the operation fails with a LENGTH ERROR.

If there is a niladic call on a Class that defines no Constructors, the niladic call is
simply repeated in the next Class along the hierarchy.

However, if a Class defines a monadic Constructor and no niladic Constructor it
implies that that Class cannot be instantiated without Constructor arguments.
Therefore, if there is a call to a niladic Constructor in such a Class, the operation fails
with a LENGTH ERROR. Note that it is therefore impossible for APL to instantiate a
fill item or process a reference to an empty array for such a Class or any Class that is
based upon it.

A Constructor function may not call another Constructor function and a constructor
function may not be called directly from outside the Class or Instance. The only way
a Constructor function may be invoked is by ⎕NEW. The fundamental reason for these
restrictions is that there must be one and only one call on the Base Constructor when
a new Instance is instantiated. If Constructor functions were allowed to call one
another, there would be several calls on the Base Constructor. Similarly, if a Con-
structor could be called directly it would potentially duplicate the Base Constructor
call.

Chapter 3: Object Oriented Programing 160

Niladic Example
In the following example, DomesticParrot is derived from Parrot which is
derived from Bird. They all share the Field Desc (inherited from Bird). Each of the
3 Classes has its own niladic Constructor called egg0.

:Class Bird
:Field Public Desc
∇ egg0

:Access Public
:Implements Constructor
Desc←'Bird'

∇
:EndClass ⍝ Bird

:Class Parrot: Bird
∇ egg0

:Access Public
:Implements Constructor
Desc,←'→Parrot'

∇
:EndClass ⍝ Parrot

:Class DomesticParrot: Parrot
∇ egg0

:Access Public
:Implements Constructor
Desc,←'→DomesticParrot'

∇
:EndClass ⍝ DomesticParrot

(⎕NEW DomesticParrot).Desc
Bird→Parrot→DomesticParrot

Explanation
⎕NEW creates the new instance and runs the niladic Constructor
DomesticParrot.egg0. As soon as the line:

:Implements Constructor

is encountered, ⎕NEW calls the niladic constructor in the Base Class Parrot.egg0

Parrot.egg0 starts to execute and as soon as the line:

:Implements Constructor

is encountered, ⎕NEW calls the niladic constructor in the Base Class Bird.egg0.

Chapter 3: Object Oriented Programing 161

When the line:

:Implements Constructor

is encountered, ⎕NEW cannot call the niladic constructor in the Base Class (there is
none) so the chain of Constructors ends. Then, as the State Indicator unwinds ...

Bird.egg0 executes Desc←'Bird''

Parrot.egg0 executes Desc,←'→Parrot''

DomesticParrot.egg0 execute Desc,←'→DomesticParrot''

Monadic Example
In the following example, DomesticParrot is derived from Parrot which is
derived from Bird. They all share the Field Species (inherited from Bird) but
only a DomesticParrot has a Field Name. Each of the 3 Classes has its own Con-
structor called egg.

:Class Bird
:Field Public Species
∇ egg spec

:Access Public Instance
:Implements Constructor
Species←spec

∇
...

:EndClass ⍝ Bird

:Class Parrot: Bird
∇ egg species

:Access Public Instance
:Implements Constructor :Base 'Parrot: ',species

∇
...

:EndClass ⍝ Parrot

:Class DomesticParrot: Parrot
:Field Public Name
∇ egg(name species)

:Access Public Instance
:Implements Constructor :Base species
⎕DF Name←name

∇
...

:EndClass ⍝ DomesticParrot

Chapter 3: Object Oriented Programing 162

pol←⎕NEW DomesticParrot('Polly' 'Scarlet Macaw')
pol.Name

Polly
pol.Species

Parrot: Scarlet Macaw

Explanation
⎕NEW creates the new instance and runs the Constructor DomesticParrot.egg.
The egg header splits the argument into two items name and species. As soon as
the line:

:Implements Constructor :Base species

is encountered, ⎕NEW calls the Base Class constructor Parrot.egg, passing it the
result of the expression to the right, which in this case is simply the value in
species.

Parrot.egg starts to execute and as soon as the line:

:Implements Constructor :Base 'Parrot: ',species

is encountered, ⎕NEW calls its Base Class constructor Bird.egg, passing it the res-
ult of the expression to the right, which in this case is the character vector
'Parrot: ' catenated with the value in species.

Bird.egg assigns its argument to the Public Field Species.

At this point, the State Indicator would be:

)SI
[#.[Instance of DomesticParrot]] #.Bird.egg[3]*
[constructor]
:base
[#.[Instance of DomesticParrot]] #.Parrot.egg[2]
[constructor]
:base
[#.[Instance of DomesticParrot]] #.DomesticParrot.egg[2]
[constructor]

Bird.egg then returns to Parrot.egg which returns to
DomesticParrot.egg.

Finally, DomesticParrot.egg[3] is executed, which establishes Field Name
and the Display Format (⎕DF) for the instance.

Chapter 3: Object Oriented Programing 163

Destructors
A Destructor is a function that is called just before an Instance of a Class ceases to
exist and is typically used to close files or release external resources associated with
an Instance.

An Instance of a Class is destroyed when:

l The Instance is expunged using ⎕EX or)ERASE.
l A function, in which the Instance is localised, exits.

But be aware that a destructor will also be called if:

l The Instance is re-assigned (see below)
l The result of ⎕NEW is not assigned (the instance gets created then imme-

diately destroyed).
l APL creates (and then destroys) a new Instance as a result of a reference to a

member of an empty Instance. The destructor is called after APL has
obtained the appropriate value from the instance and no longer needs it.

l The constructor function fails. Note that the Instance is actually created
before the constructor is run (inside it), and if the constructor fails, the
fledgling Instance is discarded. Note too that this means a destructor may
need to deal with a partially constructed instance, so the code may need to
check that resources were actually acquired, before releasing them.

l On the execution of)CLEAR,)LOAD, ⎕LOAD,)OFF or ⎕OFF.

Note that an Instance of a Class only disappears when the last reference to it dis-
appears. For example, the sequence:

I1←⎕NEW MyClass
I2←I1
)ERASE I1

will not cause the Instance of MyClass to disappear because it is still referenced by
I2.

A Destructor is identified by the statement :Implements Destructor which
must appear immediately after the function header in the Class script.

:Class Parrot
...
∇ kill

:Implements Destructor
'This Parrot is dead'

∇
...

:EndClass ⍝ Parrot

Chapter 3: Object Oriented Programing 164

pol←⎕NEW Parrot 'Scarlet Macaw'
)ERASE pol

This Parrot is dead

Note that reassignment to pol causes the Instance referenced by pol to be destroyed
and the Destructor invoked:

pol←⎕NEW Parrot 'Scarlet Macaw'
pol←⎕NEW Parrot 'Scarlet Macaw'

This Parrot is dead

If a Class inherits from another Class, the Destructor in its Base Class is automatically
called after the Destructor in the Class itself.

So, if we have a Class structure:

DomesticParrot => Parrot => Bird

containing the following Destructors:

:Class DomesticParrot: Parrot
...
∇ kill

:Implements Destructor
'This ',(⍕⎕THIS),' is dead'

∇
...

:EndClass ⍝ DomesticParrot

:Class Parrot: Bird
...
∇ kill

:Implements Destructor
'This Parrot is dead'

∇
...

:EndClass ⍝ Parrot

:Class Bird
...
∇ kill

:Implements Destructor
'This Bird is dead'

∇
...

:EndClass ⍝ Bird

Chapter 3: Object Oriented Programing 165

Destroying an Instance of DomesticParrot will run the Destructors in
DomesticParrot, Parrot and Bird and in that order.

pol←⎕NEW DomesticParrot

)CLEAR
This Polly is dead
This Parrot is dead
This Bird is dead
clear ws

Chapter 3: Object Oriented Programing 166

Class Members
A Class may contain Methods, Fields and Properties (commonly referred to together
asMembers) which are defined within the body of the Class script or are inherited
from other Classes.

Methods are regular APL defined functions, but with some special characteristics that
control how they are called and where they are executed. Dfns may not be used as
Methods.

Fields are just like APL variables. To get the Field value, you reference its name; to
set the Field value, you assign to its name, and the Field value is stored in the Field.
However, Fields differ from variables in that they possess characteristics that control
their accessibility.

Properties are similar to APL variables. To get the Property value, you reference its
name; to set the Property value, you assign to its name. However, Property values are
actually accessed via PropertyGet and PropertySet functions that may perform all
sorts of operations. In particular, the value of a Property is not stored in the Property
and may be entirely dynamic.

All three types of member may be declared as Public or Private and as Instance or
Shared.

Public members are visible from outside the Class and Instances of the Class, whereas
Private members are only accessible from within.

Instance Members are unique to every Instance of the Class, whereas Shared Members
are common to all Instances and Shared Members may be referenced directly on the
Class itself.

Chapter 3: Object Oriented Programing 167

Fields
A Field behaves just like an APL variable.

To get the value of a Field, you reference its name; to set the value of a Field, you
assign to its name. Conceptually, the Field value is stored in the Field. However,
Fields differ from variables in that they possess characteristics that control their
accessibility.

A Field may be declared anywhere in a Class script by a :Field statement. This spe-
cifies:

l the name of the Field
l whether the Field is Public or Private
l whether the Field is Instance or Shared
l whether or not the Field is ReadOnly
l optionally, an initial value for the Field.

Note that Triggers may be associated with Fields. See Trigger Fields on page 171 for
details.

Public Fields
A Public Field may be accessed from outside an Instance or a Class. Note that the
default is Private.

Class DomesticParrot has a Name Field which is defined to be Public and
Instance (by default).

:Class DomesticParrot: Parrot
:Field Public Name

∇ egg nm
:Access Public
:Implements Constructor
Name←nm

∇
...

:EndClass ⍝ DomesticParrot

The Name field is initialised by the Class constructor.

pet←⎕NEW DomesticParrot'Polly'
pet.Name

Polly

The Name field may also be modified directly:

pet.Name←⌽pet.Name
pet.Name

ylloP

Chapter 3: Object Oriented Programing 168

Initialising Fields
A Field may be assigned an initial value. This can be specified by an arbitrary expres-
sion that is executed when the Class is fixed by the Editor or by ⎕FIX.

:Class DomesticParrot: Parrot
:Field Public Name

:Field Public Talks←1

∇ egg nm
:Access Public
:Implements Constructor
Name←nm

∇
...

:EndClass ⍝ DomesticParrot

Field Talks will be initialised to 1 in every instance of the Class.

pet←⎕NEW DomesticParrot 'Dicky'

pet.Talks
1

pet.Name
Dicky

Note that if a Field is ReadOnly, this is the only way that it may be assigned a value.

See also: Shared Fields on page 170.

Chapter 3: Object Oriented Programing 169

Private Fields
A Private Field may only be referenced by code running inside the Class or an
Instance of the Class. Furthermore, Private Fields are not inherited.

The ComponentFile Class (see page 183) has a Private Instance Field named tie that
is used to store the file tie number in each Instance of the Class.

:Class ComponentFile
:Field Private Instance tie

∇ Open filename
:Implements Constructor
:Access Public Instance
:Trap 0

tie←filename ⎕FTIE 0
:Else

tie←filename ⎕FCREATE 0
:EndTrap
⎕DF filename,'(Component File)'

∇

As the field is declared to be Private, it is not accessible from outside an Instance of
the Class, but is only visible to code running inside.

F1←⎕NEW ComponentFile 'test1'
F1.tie

VALUE ERROR
F1.tie

^

Chapter 3: Object Oriented Programing 170

Shared Fields
If a Field is declared to be Shared, it has the same value for every Instance of the
Class. Moreover, the Field may be accessed from the Class itself; an Instance is not
required.

The following example establishes a Shared Field called Months that contains abbre-
viated month names which are appropriate for the user's current International settings.
It also shows that an arbitrarily complex statement may be used to initialise a Field.

:Class Example
:Using System.Globalization
:Field Public Shared ReadOnly Months←12↑(⎕NEW DateTim

eFormatInfo).AbbreviatedMonthNames
:EndClass ⍝ Example

A Shared Field is not only accessible from an instance...

EG←⎕NEW Example
EG.Months

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

... but also, directly from the Class itself.

Example.Months
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

Notice that in this case it is necessary to insert a :Using statement (or the equi-
valent assignment to ⎕USING) in order to specify the .NET search path for the
DateTimeFormatInfo type. Without this, the Class would fail to fix.

You can see how the assignment works by executing the same statements in the Ses-
sion:

⎕USING←'System.Globalization'
12↑(⎕NEW DateTimeFormatInfo).AbbreviatedMonthNames

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

Chapter 3: Object Oriented Programing 171

Trigger Fields
A field may act as a Trigger so that a function may be invoked whenever the value of
the Field is changed.

As an example, it is often useful for the Display Form of an Instance to reflect the
value of a certain Field. Naturally, when the Field changes, it is desirable to change
the Display Form. This can be achieved by making the Field a Trigger as illustrated
by the following example.

Notice that the Trigger function is invoked both by assignments made within the
Class (as in the assignment in ctor) and those made from outside the Instance.

:Class MyClass
:Field Public Name
:Field Public Country←'England'
∇ ctor nm

:Access Public
:Implements Constructor
Name←nm

∇
∇ format

:Implements Trigger Name,Country
⎕DF'My name is ',Name,' and I live in ',Country

∇
:EndClass ⍝ MyClass

me←⎕NEW MyClass 'Pete'
me

My name is Pete and I live in England

me.Country←'Greece'
me

My name is Pete and I live in Greece

me.Name←'Kostas'
me

My name is Kostas and I live in Greece

Chapter 3: Object Oriented Programing 172

Methods
Methods are implemented as regular defined functions, but with some special attrib-
utes that control how they are called and where they are executed.

A Method is defined by a contiguous block of statements in a Class Script. A Method
begins with a line that contains a ∇, followed by a valid APL defined function
header. The method definition is terminated by a closing ∇.

The behaviour of a Method is defined by an :Access control statement.

Public or Private
Methods may be defined to be Private (the default) or Public.

A Private method may only be invoked by another function that is running inside the
Class namespace or inside an Instance namespace. The name of a Private method is
not visible from outside the Class or an Instance of the Class.

A Public method may be called from outside the Class or an Instance of the Class.

Instance or Shared
Methods may be defined to be Instance (the default) or Shared.

An Instance method runs in the Instance namespace and may only be called via the
instance itself. An Instance method has direct access to Fields and Properties, both
Private and Public, in the Instance in which it runs.

A Shared method runs in the Class namespace and may be called via an Instance or
via the Class. However, a Shared method that is called via an Instance does not have
direct access to the Fields and Properties of that Instance.

Shared methods are typically used to manipulate Shared Properties and Fields or to
provide general services for all Instances that are not Instance specific.

Overridable Methods
Instance Methods may be declared with :Access Overridable.

A Method declared as being Overridable is replaced in situ (i.e. within its own Class)
by a Method of the same name that is defined in a higher Class which itself is
declared with the Override keyword. See Superseding Base Class Methods on page
175.

Chapter 3: Object Oriented Programing 173

Shared Methods
A Shared method runs in the Class namespace and may be called via an Instance or
via the Class. However, a Shared method that is called via an Instance does not have
direct access to the Fields and Properties of that Instance.

Class Parrot has a Speakmethod that does not require any information about the
current Instance, so may be declared as Shared.

:Class Parrot:Bird

∇ R←Speak times
:Access Public Shared
R←⍕times⍴⊂'Squark!'

∇

:EndClass ⍝ Parrot

wild←⎕NEW Parrot
wild.Speak 2

Squark! Squark!

Note that Parrot.Speakmay be executed directly from the Class and does not in
fact require an Instance.

Parrot.Speak 3
Squark! Squark! Squark!

Chapter 3: Object Oriented Programing 174

Instance Methods
An Instance method runs in the Instance namespace and may only be called via the
instance itself. An Instance method has direct access to Fields and Properties, both
Private and Public, in the Instance in which it runs.

Class DomesticParrot has a Speakmethod defined to be Public and Instance.
Where Speak refers to Name, it obtains the value of Name in the current Instance.

Note too that DomesticParrot.Speak supersedes the inherited
Parrot.Speak.

:Class DomesticParrot: Parrot
:Field Public Name

∇ egg nm
:Access Public
:Implements Constructor
Name←nm

∇

∇ R←Speak times
:Access Public Instance
R←⊂Name,', ',Name
R←↑R,times⍴⊂' Who''s a pretty boy, then!'

∇

:EndClass ⍝ DomesticParrot

pet←⎕NEW DomesticParrot'Polly'
pet.Speak 3

Polly, Polly
Who's a pretty boy, then!
Who's a pretty boy, then!
Who's a pretty boy, then!

bil←⎕NEW DomesticParrot'Billy'
bil.Speak 1

Billy, Billy
Who's a pretty boy, then!

Chapter 3: Object Oriented Programing 175

Superseding Base Class Methods
Normally, a Method defined in a higher Class supersedes the Method of the same
name that is defined in its Base Class, but only for calls made from above or within
the higher Class itself (or an Instance of the higher Class). The base method remains
available in the Base Class and is invoked by a reference to it from within the Base
Class. This behaviour can be altered using the Overridable and Override key words
in the :Access statement but only applies to Instance Methods.

If a Public Instance method in a Class is marked asOverridable, this allows a Class
which derives from the Class with the Overridable method to supersede the Base
Class method in the Base Class, by providing a method which is marked Override.
The typical use of this is to replace code in the Base Class which handles an event,
with a method provided by the derived Class.

For example, the base class might have a method which is called if any error occurs in
the base class:

∇ ErrorHandler
[1] :Access Public Overridable
[2] ⎕←↑⎕DM

∇

In your derived class, you might supersede this by a more sophisticated error handler,
which logs the error to a file:

∇ ErrorHandler;TN
[1] :Access Public Override
[2] ⎕←↑⎕DM
[3] TN←'ErrorLog'⎕FSTIE 0
[4] ⎕DM ⎕FAPPEND TN
[5] ⎕FUNTIE TN

∇

If the derived class had a function which was not marked Override, then function in
the derived class which called ErrorHandler would call the function as defined
in the derived class, but if a function in the base class called ErrorHandler, it
would still see the base class version of this function. With Override specified, the
new function supersedes the function as seen by code in the base class. Note that dif-
ferent derived classes can specify different Overrides.

In C#, Java and some other compiled languages, the term Virtual is used in place of
Overridable, which is the term used by Visual Basic and Dyalog APL.

Chapter 3: Object Oriented Programing 176

Properties
A Property behaves in a very similar way to an ordinary APL variable. To obtain the
value of a Property, you simply reference its name. To change the value of a Property,
you assign a new value to the name.

However, under the covers, a Property is accessed via a PropertyGet function and its
value is changed via a PropertySet function. Furthermore, Properties may be defined
to allow partial (indexed) retrieval and assignment to occur.

There are three types of Property, namely Simple, Numbered and Keyed.

A Simple Property is one whose value is accessed (by APL) in its entirety and re-
assigned (by APL) in its entirety.

A Numbered Property behaves like an array (conceptually a vector) which is only
ever partially accessed and set (one element at a time) via indices. The Numbered
Property is designed to allow APL to perform selections and structural operations on
the Property.

A Keyed Property is similar to a Numbered Property except that its elements are
accessed via arbitrary keys instead of indices.

The following cases illustrate the difference between Simple and Numbered Prop-
erties.

If Instance MyInst has a Simple Property Sprop and a Numbered Property Nprop,
the expressions

X←MyInst.SProp
X←MyInst.SProp[2]

both cause APL to call the PropertyGet function to retrieve the entire value of
Sprop. The second statement subsequently uses indexing to extract just the second
element of the value.

Whereas, the expression:

X←MyInst.NProp[2]

causes APL to call the PropertyGet function with an additional argument which spe-
cifies that only the second element of the Property is required. Moreover, the expres-
sion:

X←MyInst.NProp

Chapter 3: Object Oriented Programing 177

causes APL to call the PropertyGet function successively, for every element of the
Property.

A Property is defined by a :Property ... :EndProperty section in a Class
Script.

Within the body of a Property Section there may be:

l one or more :Access statements which must appear first in the body of
the Property.

l a single PropertyGet function.
l a single PropertySet function
l a single PropertyShape function

Simple Instance Properties
A Simple Instance Property is one whose value is accessed (by APL) in its entirety
and re-assigned (by APL) in its entirety. The following examples are taken from the
ComponentFile Class (see page 183).

The Simple Property Count returns the number of components on a file.

:Property Count
:Access Public Instance

∇ r←get
r←¯1+2⊃⎕FSIZE tie

∇
:EndProperty ⍝ Count

F1←⎕NEW ComponentFile 'test1'
F1.Append'Hello World'

1
F1.Count

1
F1.Append 42

2
F1.Count

2

Because there is no set function defined, the Property is read-only and attempting to
change it causes SYNTAX ERROR.

F1.Count←99
SYNTAX ERROR

F1.Count←99
^

Chapter 3: Object Oriented Programing 178

The Access Property has both get and set functions which are used, in this
simple example, to get and set the component file access matrix.

:Property Access
:Access Public Instance

∇ r←get
r←⎕FRDAC tie

∇
∇ set am;mat;OK

mat←am.NewValue
:Trap 0

OK←(2=⍴⍴mat)^(3=2⊃⍴mat)^^/,mat=⌊mat
:Else

OK←0
:EndTrap
'bad arg'⎕SIGNAL(~OK)/11
mat ⎕FSTAC tie

∇
:EndProperty ⍝ Access

Note that the set function must be monadic. Its argument, supplied by APL, will be
an Instance of PropertyArguments. This is an internal Class whose NewValue
field contains the value that was assigned to the Property.

Note that the set function does not have to accept the new value that has been
assigned. The function may validate the value reject or accept it (as in this example),
or perform whatever processing is appropriate.

F1←⎕NEW ComponentFile 'test1'
⍴F1.Access

0 3
F1.Access←3 3⍴28 2105 16385 0 2073 16385 31 ¯1 0

F1.Access
28 2105 16385
0 2073 16385

31 ¯1 0

F1.Access←'junk'
bad arg

F1.Access←'junk'
^

F1.Access←1 2⍴10
bad arg

F1.Access←1 2⍴10
^

Chapter 3: Object Oriented Programing 179

Simple Shared Properties
The ComponentFile Class (see page 183) specifies a Simple Shared Property named
Files which returns the names of all the Component Files in the current directory.

The previous examples have illustrated the use of Instance Properties. It is also pos-
sible to define Shared properties.

A Shared property may be used to handle information that is relevant to the Class as a
whole, and which is not specific to any a particular Instance.

:Property Files
:Access Public Shared

∇ r←get
r←⎕FLIB''

∇
:EndProperty

Note that ⎕FLIB (invoked by the Files get function) does not report the names
of tied files.

F1←⎕NEW ComponentFile 'test1'
⎕EX'F1'
F2←⎕NEW ComponentFile 'test2'
F2.Files ⍝ NB ⎕FLIB does not report tied files

test1
⎕EX'F2'

Note that a Shared Property may be accessed from the Class itself. It is not necessary
to create an Instance first.

ComponentFile.Files
test1
test2

Chapter 3: Object Oriented Programing 180

Numbered Properties
A Numbered Property behaves like an array (conceptually a vector) which is only
ever partially accessed and set (one element at a time) via indices.

To implement a Numbered Property, you must specify a PropertyShape function and
either or both a PropertyGet and PropertySet function.

When an expression references or makes an assignment to a Numbered Property, APL
first calls its PropertyShape function which returns the dimensions of the Property.
Note that the shape of the result of this function determines the rank of the Property.

If the expression uses indexing, APL checks that the index or indices are within the
bounds of these dimensions, and then calls the PropertyGet or PropertySet function.
If the expression specifies a single index, APL calls the PropertyGet or PropertySet
function once. If the expression specifies multiple indices, APL calls the function suc-
cessively.

If the expression references or assigns the entire Property (without indexing) APL gen-
erates a set of indices for every element of the Property and calls the PropertyGet or
PropertySet function successively for every element in the Property.

Note that APL generates a RANK ERROR if an index contains the wrong number of
elements or an INDEX ERROR if an index is out of bounds.

When APL calls a monadic PropertyGet or PropertySet function, it supplies an argu-
ment of type PropertyArguments.

Example
The ComponentFile Class (see page 183) specifies a Numbered Property named
Component which represents the contents of a specified component on the file.

:Property Numbered Component
:Access Public Instance

∇ r←shape
r←¯1+2⊃⎕FSIZE tie

∇
∇ r←get arg

r←⎕FREAD tie arg.Indexers
∇
∇ set arg

arg.NewValue ⎕FREPLACE tie,arg.Indexers
∇

:EndProperty

Chapter 3: Object Oriented Programing 181

F1←⎕NEW ComponentFile 'test1'

F1.Append¨(⍳5)×⊂⍳4
1 2 3 4 5

F1.Count
5

F1.Component[4]
4 8 12 16

4⊃F1.Component
4 8 12 16

(⊂4 3)⌷F1.Component
4 8 12 16 3 6 9 12

Referencing a Numbered Property in its entirety causes APL to call the get function
successively for every element.

F1.Component
1 2 3 4 2 4 6 8 3 6 9 12 4 8 12 16 5 10 15 20

((⊂4 3)⌷F1.Component)←'Hello' 'World'

F1.Component[3]
World

Attempting to access a Numbered Property with inappropriate indices generates an
error:

F1.Component[6]
INDEX ERROR

F1.Component[6]
^
F1.Component[1;2]

RANK ERROR
F1.Component[1;2]

^

Chapter 3: Object Oriented Programing 182

The Default Property
A single Numbered Property may be identified as the Default Property for the Class.
If a Class has a Default Property, indexing with the ⌷ primitive function and [...]
indexing may be applied to the Property directly via a reference to the Class or
Instance.

The Numbered Property example of the ComponentFile Class(see page 183) can be
extended by adding the control word Default to the :Property statement for the
Component Property.

Indexing may now be applied directly to the Instance F1. In essence, F1[n] is
simply shorthand for F1.Component[n] and n⌷F1 is shorthand for
n⌷F1.Component

:Property Numbered Default Component
:Access Public Instance

∇ r←shape
r←¯1+2⊃⎕FSIZE tie

∇
∇ r←get arg

r←⎕FREAD tie arg.Indexers
∇
∇ set arg

arg.NewValue ⎕FREPLACE tie,arg.Indexers
∇

:EndProperty

F1←⎕NEW ComponentFile 'test1'
F1.Append¨(⍳5)×⊂⍳4

1 2 3 4 5
F1.Count

5

F1[4]
4 8 12 16

(⊂4 3)⌷F1
4 8 12 16 3 6 9 12

((⊂4 3)⌷F1)←'Hello' 'World'
F1[3]

World

Note however that this feature applies only to indexing.

4⊃F1
DOMAIN ERROR

4⊃F1
^

Chapter 3: Object Oriented Programing 183

ComponentFile Class
:Class ComponentFile

:Field Private Instance tie

∇ Open filename
:Implements Constructor
:Access Public Instance
:Trap 0

tie←filename ⎕FTIE 0
:Else

tie←filename ⎕FCREATE 0
:EndTrap
⎕DF filename,'(Component File)'

∇

∇ Close
:Access Public Instance
⎕FUNTIE tie

∇

∇ r←Append data
:Access Public Instance
r←data ⎕FAPPEND tie

∇

∇ Replace(comp data)
:Access Public Instance
data ⎕FREPLACE tie,comp

∇

:Property Count
:Access Public Instance

∇ r←get
r←¯1+2⊃⎕FSIZE tie

∇
:EndProperty ⍝ Count

Chapter 3: Object Oriented Programing 184

Component File Class Example (continued)
:Property Access

:Access Public Instance
∇ r←get arg

r←⎕FRDAC tie
∇
∇ set am;mat;OK

mat←am.NewValue
:Trap 0

OK←(2=⍴⍴mat)^(3=2⊃⍴mat)^^/,mat=⌊mat
:Else

OK←0
:EndTrap
'bad arg'⎕SIGNAL(~OK)/11
mat ⎕FSTAC tie

∇
:EndProperty ⍝ Access

:Property Files
:Access Public Shared

∇ r←get
r←⎕FLIB''

∇
:EndProperty

:Property Numbered Default Component
:Access Public Instance

∇ r←shape args
r←¯1+2⊃⎕FSIZE tie

∇
∇ r←get arg

r←⊂⎕FREAD tie,arg.Indexers
∇
∇ set arg

(⊃arg.NewValue)⎕FREPLACE tie,arg.Indexers
∇

:EndProperty

∇ Delete file;tie
:Access Public Shared
tie←file ⎕FTIE 0
file ⎕FERASE tie

∇
:EndClass ⍝ Class ComponentFile

Chapter 3: Object Oriented Programing 185

Keyed Properties
A Keyed Property is similar to a Numbered Property except that it may only be
accessed by indexing (so-called square-bracket indexing) and indices are not restric-
ted to integers but may be arbitrary arrays.

To implement a Keyed Property, only a get and/or a set function are required. APL
does not attempt to validate or resolve the specified indices in any way, so does not
require the presence of a shape function for the Property.

However, APL does check that the rank and lengths of the indices correspond to the
rank and lengths of the array to the right of the assignment (for an indexed assign-
ment) and the array returned by the get function (for an indexed reference). If the rank
or shape of these arrays fails to conform to the rank or shape of the indices, APL will
issue a RANK ERROR or LENGTH ERROR.

Note too that indicesmay be elided. If KProp is a Keyed Property of Instance I1,
the following expressions are all valid.

I1.KProp
I1.KProp[]←10
I1.KProp[;]←10
I1.KProp['One' 'Two';]←10
I1.KProp[;'One' 'Two']←10

When APL calls a monadic get or a set function, it supplies an argument of type
PropertyArguments, which identifies which dimensions and indices were specified.
See PropertyArguments Class on page 218.

The Sparse2 Class illustrates the implementation and use of a Keyed Property.

Sparse2 represents a 2-dimensional sparse array each of whose dimensions are
indexed by arbitrary character keys. The sparse array is implemented as a Keyed Prop-
erty named Values. The following expressions show how it might be used.

SA1←⎕NEW Sparse2
SA1.Values[⊂'Widgets';⊂'Jan']←100
SA1.Values[⊂'Widgets';⊂'Jan']

100
SA1.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']←

10×2 3⍴⍳6
SA1.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']

10 20 30
40 50 60

SA1.Values[⊂'Widgets';'Jan' 'Oct']
10 30

SA1.Values['Grommets' 'Widgets';⊂'Oct']
60
30

Chapter 3: Object Oriented Programing 186

Sparse2 Class Example
:Class Sparse2 ⍝ 2D Sparse Array

:Field Private keys
:Field Private values
∇ make

:Access Public
:Implements Constructor
keys←0⍴⊂'' ''
values←⍬

∇
:Property Keyed Values
:Access Public Instance

∇ v←get arg;k
k←arg.Indexers
⎕SIGNAL(2≠⍴k)/4
k←fixkeys k
v←(values,0)[keys⍳k]

∇
∇ set arg;new;k;v;n

v←arg.NewValue
k←arg.Indexers
⎕SIGNAL(2≠⍴k)/4
k←fixkeys k
v←(⍴k)(⍴⍣(⊃1=⍴,v))v
⎕SIGNAL((⍴k)≠⍴v)/5
k v←,¨k v
:If ∨/new←~k∊keys

values,←new/v
keys,←new/k
k v/⍨←⊂~new

:EndIf
:If 0<⍴k

values[keys⍳k]←v
:EndIf

∇
:EndProperty

∇ k←fixkeys k
k←(2≠≡¨k){,(⊂⍣⍺)⍵}¨k
k←⊃(∘.{⊃,/⊂¨⍺ ⍵})/k

∇
:EndClass ⍝ 2D Sparse Array

Chapter 3: Object Oriented Programing 187

Internally, Sparse2maintains a list of keys and a list of values which are initialised
to empty arrays by its constructor.

When an indexed assignment is made, the set function receives a list of keys
(indices) in arg.Indexer and values in arg.NewValue. The function updates
the values of existing keys, and adds new keys and their values to the internal lists.

When an indexed reference is made, the get function receives a list of keys (indices)
in arg.Indexer. The function uses these keys to retrieve the corresponding val-
ues, inserting 0s for non-existent keys.

Note that in the expression:

SA1.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']

the structure of arg.Indexer is:

.→---.
| .→---------------------. .→------------------. |
	.→------. .→-------.		.→--. .→--. .→--.											
		Widgets		Grommets				Jan		Mar		Oct		
	'-------' '--------'		'---' '---' '---'											
'∊---------------------' '∊------------------'														
'∊---'

Chapter 3: Object Oriented Programing 188

Example
A second example of a Keyed Property is provided by the KeyedFile Class which
is based upon the ComponentFile Class (see page 183) used previously.

:Class KeyedFile: ComponentFile
:Field Public Keys
⎕ML←0

∇ Open filename
:Implements Constructor :Base filename
:Access Public Instance
:If Count>0

Keys←{⊃⍵⊃⎕BASE.Component}¨⍳Count
:Else

Keys←0⍴⊂''
:EndIf

∇

:Property Keyed Component
:Access Public Instance

∇ r←get arg;keys;sink
keys←⊃arg.Indexers
⎕SIGNAL(~^/keys∊Keys)/3
r←{2⊃⍵⊃⎕BASE.Component}¨Keys⍳keys

∇
∇ set arg;new;keys;vals

vals←arg.NewValue
keys←⊃arg.Indexers
⎕SIGNAL((⍴,keys)≠⍴,vals)/5
:If ∨/new←~keys∊Keys

sink←Append¨↓⍉↑(⊂new)/¨keys vals
Keys,←new/keys
keys vals/⍨←⊂~new

:EndIf
:If 0<⍴,keys

Replace¨↓⍉↑(Keys⍳keys)(↓⍉↑keys vals)
:EndIf

∇
:EndProperty

:EndClass ⍝ Class KeyedFile

Chapter 3: Object Oriented Programing 189

K1←⎕NEW KeyedFile 'ktest'
K1.Count

0
K1.Component[⊂'Pete']←42
K1.Count

1
K1.Component['John' 'Geoff']←(⍳10)(3 4⍴⍳12)
K1.Count

3
K1.Component['Geoff' 'Pete']

1 2 3 4 42
5 6 7 8
9 10 11 12

K1.Component['Pete' 'Morten']←(3 4⍴'∘')(⍳⍳3)
K1.Count

4
K1.Component['Morten' 'Pete' 'John']

1 1 1 1 1 2 1 1 3 ∘∘∘∘ 1 2 3 4 5 6 7 8 9 10
1 2 1 1 2 2 1 2 3 ∘∘∘∘

∘∘∘∘

Interfaces
An Interface is defined by a Script that contains skeleton declarations of Properties
and/or Methods. These members are only place-holders; they have no specific imple-
mentation; this is provided by each of the Classes that support the Interface.

An Interface contains a collection of methods and properties that together represents
a protocol that an application must follow in order to manipulate a Class in a par-
ticular way.

An example might be an Interface called Icompare that provides a single method
(Compare) which compares two Instances of a Class, returning a value to indicate
which of the two is greater than the other. A Class that implements Icompare must
provide an appropriate Compare method, but every Class will have its own indi-
vidual version of Compare. An application can then be written that sorts Instances of
any Class that supports the ICompare Interface.

An Interface is implemented by a Class if it includes the name of the Interface in its
:Class statement, and defines a corresponding set of the Methods and Properties that
are declared in the Interface.

Chapter 3: Object Oriented Programing 190

To implement a Method, a function defined in the Class must include a
:Implements Method statement that maps it to the corresponding Method
defined in the Interface:

:Implements Method <InterfaceName.MethodName>

Furthermore, the syntax of the function (whether it be result returning, monadic or
niladic) must exactly match that of the method described in the Interface. The func-
tion name, however, need not be the same as that described in the Interface.

Similarly, to implement a Property the type (Simple, Numbered or Keyed) and syntax
(defined by the presence or absence of a PropertyGet and PropertySet functions) must
exactly match that of the property described in the Interface. The Property name, how-
ever, need not be the same as that described in the Interface.

Penguin Class Example
The Penguin Class example illustrates the use of Interfaces to implement multiple
inheritance.

:Interface FishBehaviour
∇ R←Swim ⍝ Returns description of swimming capability
∇
:EndInterface ⍝ FishBehaviour

:Interface BirdBehaviour
∇ R←Fly ⍝ Returns description of flying capability
∇
∇ R←Lay ⍝ Returns description of egg-laying behaviour
∇
∇ R←Sing ⍝ Returns description of bird-song
∇
:EndInterface ⍝ BirdBehaviour

Chapter 3: Object Oriented Programing 191

:Class Penguin: Animal,BirdBehaviour,FishBehaviour
∇ R←NoCanFly

:Implements Method BirdBehaviour.Fly
R←'Although I am a bird, I cannot fly'

∇
∇ R←LayOneEgg

:Implements Method BirdBehaviour.Lay
R←'I lay one egg every year'

∇
∇ R←Croak

:Implements Method BirdBehaviour.Sing
R←'Croak, Croak!'

∇
∇ R←Dive

:Implements Method FishBehaviour.Swim
R←'I can dive and swim like a fish'

∇
:EndClass ⍝ Penguin

In this case, the Penguin Class derives from Animal but additionally supports the
BirdBehaviour and FishBehaviour Interfaces, thereby inheriting members
from both.

Pingo←⎕NEW Penguin
⎕CLASS Pingo

#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

(FishBehaviour ⎕CLASS Pingo).Swim
I can dive and swim like a fish

(BirdBehaviour ⎕CLASS Pingo).Fly
Although I am a bird, I cannot fly

(BirdBehaviour ⎕CLASS Pingo).Lay
I lay one egg every year

(BirdBehaviour ⎕CLASS Pingo).Sing
Croak, Croak!

Chapter 3: Object Oriented Programing 192

Including Namespaces in Classes
A Class may import methods from one or more plain Namespaces. This allows several
Classes to share a common set of methods, and provides a degree of multiple inher-
itance.

To import methods from a Namespace NS, the Class Script must include a statement:

:Include NS

When the Class is fixed by the editor or by ⎕FIX, all the defined functions and oper-
ators in Namespace NS are included as methods in the Class. The functions and oper-
ators which are brought in as methods from the namespace NS are treated exactly as if
the source of each function/operator had been included in the class script at the point
of the :Include statement. For example, if a function contains :Signature or
:Access statements, these will be taken into account. Note that such declarations
have no effect on a function/operator which is in an ordinary namespace.

Dfns and dops in NS are also included in the Class but as Private members, because
dfns and dops may not contain :Signature or :Access statements. Variables
and Sub-namespaces in NS are not included.

Note that objects imported in this way are not actually copied, so there is no penalty
incurred in using this feature. Additions, deletions and changes to the functions in
NS are immediately reflected in the Class.

If there is a member in the Class with the same name as a function in NS, the Class
member takes precedence and supersedes the function in NS.

Conversely, functions in NS will supersede members of the same name that are inher-
ited from the Base Class, so the precedence is:

Class supersedes

Included Namespace, supersedes

Base Class

Any number of Namespaces may be included in a Class and the :Include state-
ments may occur anywhere in the Class script. However, for the sake of readability, it
is recommended that you have :Include statements at the top, given that any defin-
itions in the script will supersede included functions and operators.

Chapter 3: Object Oriented Programing 193

Example
In this example, Class Penguin inherits from Animal and includes functions from
the plain Namespaces BirdStuff and FishStuff.

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff

:EndClass ⍝ Penguin

Namespace BirdStuff contains 2 functions, both declared as Public methods.

:Namespace BirdStuff
∇ R←Fly

:Access Public Instance
R←'Fly, Fly ...'

∇
∇ R←Lay

:Access Public Instance
R←'Lay, Lay ...'

∇
:EndNamespace ⍝ BirdStuff

Namespace FishStuff contains a single function, also declared as a Public
method.

:Namespace FishStuff
∇ R←Swim

:Access Public Instance
R←'Swim, Swim ...'

∇
:EndNamespace ⍝ FishStuff

Pingo←⎕NEW Penguin
Pingo.Swim

Swim, Swim ...
Pingo.Lay

Lay, Lay ...
Pingo.Fly

Fly, Fly ...

Chapter 3: Object Oriented Programing 194

This is getting silly - we all know that Penguin's can't fly. This problem is simply
resolved by overriding the BirdStuff.Flymethod with Penguin.Fly. We can
hide BirdStuff.Fly with a Private method in Penguin that does nothing. For
example:

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff
∇ Fly ⍝ Override BirdStuff.Fly
∇

:EndClass ⍝ Penguin

Pingo←⎕NEW Penguin
Pingo.Fly

VALUE ERROR
Pingo.Fly

^

or we can supersede it with a different Public method, as follows:

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff
∇ R←Fly ⍝ Override BirdStuff.Fly

:Access Public Instance
R←'Sadly, I cannot fly'

∇
:EndClass ⍝ Penguin

Pingo←⎕NEW Penguin
Pingo.Fly

Sadly, I cannot fly

Nested Classes
It is possible to define Classes within Classes (Nested Classes).

A Nested Class may be either Private or Public. This is specified by a :Access
Statement, which must precede the definition of any Class contents. The default is
Private.

A Public Nested Class is visible from outside its containing Class and may be used
directly in its own right, whereas a Private Nested Class is not and may only be
used by code inside the containing Class.

However, methods in the containing Class may return instances of Private Nested
Classes and in that way expose them to the calling environment.

Chapter 3: Object Oriented Programing 195

GolfService Example Class
:Class GolfService
:Using System

:Field Private GOLFILE←'' ⍝ Name of Golf data file
:Field Private GOLFID←0 ⍝ Tie number Golf data file

:Class GolfCourse
:Field Public Code←¯1
:Field Public Name←''

∇ ctor args
:Implements Constructor
:Access Public Instance
Code Name←args
⎕DF Name,'(',(⍕Code),')'

∇

:EndClass

:Class Slot
:Field Public Time
:Field Public Players

∇ ctor1 t
:Implements Constructor
:Access Public Instance
Time←t
Players←0⍴⊂''

∇
∇ ctor2 (t pl)

:Implements Constructor
:Access Public Instance
Time Players←t pl

∇
∇ format

:Implements Trigger Players
⎕DF⍕Time Players

∇
:EndClass

Chapter 3: Object Oriented Programing 196

:Class Booking
:Field Public OK
:Field Public Course
:Field Public TeeTime
:Field Public Message

∇ ctor args
:Implements Constructor
:Access Public Instance
OK Course TeeTime Message←args

∇
∇ format

:Implements Trigger OK,Message
⎕DF⍕Course TeeTime(⊃OK⌽Message'OK')

∇
:EndClass

:Class StartingSheet
:Field Public OK
:Field Public Course
:Field Public Date
:Field Public Slots←⎕NULL
:Field Public Message

∇ ctor args
:Implements Constructor
:Access Public Instance
OK Course Date←args

∇
∇ format

:Implements Trigger OK,Message
⎕DF⍕2 1⍴(⍕Course Date)(↑⍕¨Slots)

∇
:EndClass

∇ ctor file
:Implements Constructor
:Access Public Instance
GOLFILE←file
⎕FUNTIE(((↓⎕FNAMES)~' ')⍳⊂GOLFILE)⊃⎕FNUMS,0
:Trap 22

GOLFID←GOLFILE ⎕FTIE 0
:Else

InitFile
:EndTrap

∇

Chapter 3: Object Oriented Programing 197

∇ dtor
:Implements Destructor
⎕FUNTIE GOLFID

∇

∇ InitFile;COURSECODES;COURSES;INDEX;I
:Access Public
:If GOLFID≠0

GOLFILE ⎕FERASE GOLFID
:EndIf
GOLFID←GOLFILE ⎕FCREATE 0
COURSECODES←1 2 3
COURSES←'St Andrews' 'Hindhead' 'Basingstoke'
INDEX←(⍴COURSES)⍴0
COURSECODES COURSES INDEX ⎕FAPPEND GOLFID
:For I :In ⍳⍴COURSES

INDEX[I]←⍬ ⍬ ⎕FAPPEND 1
:EndFor
COURSECODES COURSES INDEX ⎕FREPLACE GOLFID 1

∇

∇ R←GetCourses;COURSECODES;COURSES;INDEX
:Access Public
COURSECODES COURSES INDEX←⎕FREAD GOLFID 1
R←{⎕NEW GolfCourse ⍵}¨↓⍉↑COURSECODES COURSES

∇

Chapter 3: Object Oriented Programing 198

∇ R←GetStartingSheet ARGS;CODE;COURSE;DATE;COURSECODE
S

;COURSES;INDEX;COURSEI;IDN
;DATES;COMPS;IDATE;TEETIMES
;GOLFERS;I;T

:Access Public
CODE DATE←ARGS
COURSECODES COURSES INDEX←⎕FREAD GOLFID 1
COURSEI←COURSECODES⍳CODE
COURSE←⎕NEW GolfCourse(CODE(COURSEI⊃COURSES,⊂''))
R←⎕NEW StartingSheet(0 COURSE DATE)
:If COURSEI>⍴COURSECODES

R.Message←'Invalid course code'
:Return

:EndIf
IDN←2 ⎕NQ'.' 'DateToIDN',DATE.(Year Month Day)
DATES COMPS←⎕FREAD GOLFID,COURSEI⊃INDEX
IDATE←DATES⍳IDN
:If IDATE>⍴DATES

R.Message←'No Starting Sheet available'
:Return

:EndIf
TEETIMES GOLFERS←⎕FREAD GOLFID,IDATE⊃COMPS
T←DateTime.New¨(⊂DATE.(Year Month Day)),¨↓[1]

24 60 1⊤TEETIMES
R.Slots←{⎕NEW Slot ⍵}¨T,∘⊂¨↓GOLFERS
R.OK←1

∇

Chapter 3: Object Oriented Programing 199

∇ R←MakeBooking ARGS;CODE;COURSE;SLOT;TEETIME
;COURSECODES;COURSES;INDEX
;COURSEI;IDN;DATES;COMPS;IDATE
;TEETIMES;GOLFERS;OLD;COMP;HOURS
;MINUTES;NEAREST;TIME;NAMES;FREE
;FREETIMES;I;J;DIFF

:Access Public
⍝ If GimmeNearest is 0, tries for specified time

⍝ If GimmeNearest is 1, gets nearest time
CODE TEETIME NEAREST←3↑ARGS
COURSECODES COURSES INDEX←⎕FREAD GOLFID 1
COURSEI←COURSECODES⍳CODE
COURSE←⎕NEW GolfCourse(CODE(COURSEI⊃COURSES,⊂''))
SLOT←⎕NEW Slot TEETIME
R←⎕NEW Booking(0 COURSE SLOT'')
:If COURSEI>⍴COURSECODES

R.Message←'Invalid course code'
:Return

:EndIf
:If TEETIME.Now>TEETIME

R.Message←'Requested tee-time is in the past'
:Return

:EndIf
:If TEETIME>TEETIME.Now.AddDays 30

R.Message←'Requested tee-time is more than 30
days from now'

:Return
:EndIf
IDN←2 ⎕NQ'.' 'DateToIDN',TEETIME.(Year Month Day)
DATES COMPS←⎕FREAD GOLFID,COURSEI⊃INDEX
IDATE←DATES⍳IDN
:If IDATE>⍴DATES

TEETIMES←(24 60⊥7 0)+10×¯1+⍳1+8×6
GOLFERS←((⍴TEETIMES),4)⍴⊂''llowed per tee time
:If 0=OLD←⊃(DATES<2 ⎕NQ'.' 'DateToIDN',3↑⎕TS)/

⍳⍴DATES
COMP←(TEETIMES GOLFERS)⎕FAPPEND GOLFID
DATES,←IDN
COMPS,←COMP
(DATES COMPS)⎕FREPLACE GOLFID,COURSEI⊃INDEX

:Else
DATES[OLD]←IDN
(TEETIMES GOLFERS)⎕FREPLACE GOLFID,

COMP←OLD⊃COMPS
DATES COMPS ⎕FREPLACE GOLFID,COURSEI⊃INDEX

:EndIf

Chapter 3: Object Oriented Programing 200

:Else
COMP←IDATE⊃COMPS
TEETIMES GOLFERS←⎕FREAD GOLFID COMP

:EndIf
HOURS MINUTES←TEETIME.(Hour Minute)
NAMES←(3↓ARGS)~⍬''
TIME←24 60⊥HOURS MINUTES
TIME←10×⌊0.5+TIME÷10
:If ~NEAREST

I←TEETIMES⍳TIME
:If I>⍴TEETIMES
:OrIf (⍴NAMES)>⊃,/+/0=⍴¨GOLFERS[I;]

R.Message←'Not available'
:Return

:EndIf
:Else

:If ~∨/FREE←(⍴NAMES)≤⊃,/+/0=⍴¨GOLFERS
R.Message←'Not available'
:Return

:EndIf
FREETIMES←(FREE×TEETIMES)+32767×~FREE
DIFF←|FREETIMES-TIME
I←DIFF⍳⌊/DIFF

:EndIf
J←(⊃,/0=⍴¨GOLFERS[I;])/⍳4
GOLFERS[I;(⍴NAMES)↑J]←NAMES
(TEETIMES GOLFERS)⎕FREPLACE GOLFID COMP
TEETIME←DateTime.New TEETIME.(Year Month Day),

3↑24 60⊤I⊃TEETIMES
SLOT.Time←TEETIME
SLOT.Players←(⊃,/0<⍴¨GOLFERS[I;])/GOLFERS[I;]
R.(OK TeeTime)←1 SLOT

∇

:EndClass

Chapter 3: Object Oriented Programing 201

GolfService Example
The GolfService Example Class illustrates the use of nested classes. GolfService was
originally developed as a Web Service for Dyalog.NET and is one of the samples dis-
tributed in samples\asp.net\webservices. This version has been reconstructed as a
stand-alone APL Class.

GolfService contains the following nested classes, all of which are Private.

GolfCourse A Class that represents a Golf Course, having Fields Code and
Name.

Slot
A Class that represents a tee-time or match, having Fields
Time and Players. Up to 4 players may play together in a
match.

Booking

A Class that represents a reservation for a particular tee-time at
a particular golf course. This has Fields OK, Course,
TeeTime and Message. The value of TeeTime is an
Instance of a Slot Class.

StartingSheet
A Class that represents a day's starting-sheet at a particular golf
course. It has Fields OK, Course, Date, Slots, Message.
Slots is an array of Instances of Slot Class.

The GolfService constructor takes the name of a file in which all the data is stored.
This file is initialised by method InitFile if it doesn't already exist.

G←⎕NEW GolfService 'F:\HELP11.0\GOLFDATA'
G

#.[Instance of GolfService]

The GetCourses method returns an array of Instances of the internal (nested) Class
GolfCourse. Notice how the display form of each Instance is established by the
GolfCourse constructor, to obtain the output display shown below.

G.GetCourses
St Andrews(1) Hindhead(2) Basingstoke(3)

All of the dates and times employ instances of the .NET type System.DateTime, and
the following statements just set up some temporary variables for convenience later.

⎕←Tomorrow←(⎕NEW DateTime(3↑⎕TS)).AddDays 1
31/03/2006 00:00:00

⎕←TomorrowAt7←Tomorrow.AddHours 7
31/03/2006 07:00:00

Chapter 3: Object Oriented Programing 202

The MakeBooking method takes between 4 and 7 parameters viz.

l the code for the golf course at which the reservation is required
l the date and time of the reservation
l a flag to indicate whether or not the nearest available time will do
l a list of up to 4 players who wish to book that time.

The result is an Instance of the internal Class Booking. Once again, ⎕DF is used to
make the default display of these Instances meaningful. In this case, the reservation is
successful.

G.MakeBooking 2 TomorrowAt7 1 'Pete' 'Tiger'
Hindhead(2) 31/03/2006 07:00:00 Pete Tiger OK

Bob, Arnie and Jack also ask to play at 7:00 but are given the 7:10 tee-time instead
(4-player restriction).

G.MakeBooking 2 TomorrowAt7 1 'Bob' 'Arnie' 'Jack'
Hindhead(2) 31/03/2006 07:10:00 Bob Arnie Jack

OK

However, Pete and Tiger are joined at 7:00 by Dave and Al.

G.MakeBooking 2 TomorrowAt7 1 'Dave' 'Al'
Hindhead(2) 31/03/2006 07:00:00 Pete Tiger Dave

Al OK

Up to now, all bookings have been made with the tee-time flexibility flag set to 1.
Inflexible Jim is only interested in playing at 7:00...

G.MakeBooking 2 TomorrowAt7 0 'Jim'
Hindhead(2) 31/03/2006 07:00:00 Not available

... so his reservation fails (4-player restriction).

Finally the GetStartingSheet method is used to obtain an Instance of the internal
Class StartingSheet for the given course and day.

G.GetStartingSheet 2 Tomorrow
Hindhead(2) 31/03/2006 00:00:00
31/03/2006 07:00:00 Pete Tiger Dave Al
31/03/2006 07:10:00 Bob Arnie Jack
31/03/2006 07:20:00
....

Chapter 3: Object Oriented Programing 203

Namespace Scripts
A Namespace Script is a script that begins with a :Namespace statement and ends
with a :EndNamespace statement. When a Namespace Script is fixed, it estab-
lishes an entire namespace that may contain other namespaces, functions, variables
and classes.

The names of Classes defined within a Namespace Script which are parents, children,
or siblings are visible both to one another and to code and expressions defined in the
same script, regardless of the namespace hierarchy within it. Names of Classes which
are nieces or nephews and their descendants are however not visible.

For example:

:Namespace a

d←⎕NEW a1
e←⎕NEW bb2

:Class a1
∇ r←foo

:Access Shared Public
r←⎕NEW¨b1 b2

∇
:EndClass ⍝ a1

∇ r←goo
r←a1.foo

∇

∇ r←foo
r←⎕NEW¨b1 b2

∇

:Namespace b
:Class b1
:EndClass ⍝ b1
:Class b2

:Class bb2
:EndClass ⍝ bb2

:EndClass ⍝ b2
:EndNamespace ⍝ b

:EndNamespace ⍝ a

Chapter 3: Object Oriented Programing 204

a.d
#.a.[a1]

a.e
#.a.[bb2]

a.foo
#.a.[b1] #.a.[b2]

Note that the names of Classes b1 (a.b.b1) and b2 (a.b.b2) are not visible from
their “uncle” a1 (a.a1).

a.goo
VALUE ERROR
foo[2] r←⎕NEW¨b1 b2

Notice that Classes in a Namespace Script are fixed before other objects (hence the
assignments to d and e are evaluated after Classes a1 and bb2 are fixed), although
the order in which Classes themselves are defined is still important if they reference
one another during initialisation.

Changing Scripted Objects Dynamically
The source of a scripted object can only be altered using the Editor, or by refixing it
in its entirety using ⎕FIX. Dynamic changes to variables, fields and properties, and
calling ⎕FX to generate functions do not alter the source of a scripted object.

Furthermore, if you introduce new objects of any type (functions, variables, or
classes) into a namespace or a class defined by a script by any means other than edit-
ing the script, then these objects will be lost the next time the script is edited and
fixed.

If you fix a function using ⎕FX with the same name as a function defined in the
script, this new version will supercede the version defined from the script, although
the version in the script will remain unchanged.

If you edit the function (as opposed to editing the script) the Editor will show the
new version of the function.

If however you edit the script, the Editor will display the original version of the func-
tion embedded in the script.

If you were to edit both the script and the function, the Editor would show the two
different versions of the function as illustrated in the example that follows.

When you fix the script, the version of the function in the script will replace the one
created using ⎕FX.

Chapter 3: Object Oriented Programing 205

Example
:Namespace ns

∇ foo
1

∇
:EndNamespace

ns.foo
1

ns.⎕fx 'foo' '2'
ns.foo

2
)ed ns.foo ns

Note that the Editor displays the description Unscripted Function in the status
bar of the window showing the new version of foo.

Similarly, if you were to Trace the execution of ns.foo, the Tracer would display
the current (⎕FX'ed) version of foo, with the same description in its status bar.

Chapter 3: Object Oriented Programing 206

Namespace Script Example
The DiaryStuff example illustrates the manner in which classes may be defined and
used in a Namespace script.

DiaryStuff defines two Classes named Diary and DiaryEntry.

Diary contains a (private) Field named entries, which is simply a vector of
instances of DiaryEntry. These are 2-element vectors containing a .NET
DateTime object and a description.

The entries Field is initialised to an empty vector of DiaryEntry instances
which causes the invocation of the default constructor DiaryEntry.Make0 when
Diary is fixed. See Empty Arrays of Instances: Why ? on page 155 for further explan-
ation.

The entries Field is referenced through the Entry Property, which is defined as
the Default Property. This allows individual entries to be referenced and changed
using indexing on a Diary Instance.

Note that DiaryEntry is defined in the script first (before Diary) because it is ref-
erenced by the initialisation of the Diaries.entries Field

:Namespace DiaryStuff
:Using System

:Class DiaryEntry
:Field Public When
:Field Public What
∇ Make(ymdhm wot)

:Access Public
:Implements Constructor
When What←(⎕NEW DateTime(6↑5↑ymdhm))wot
⎕DF⍕When What

∇
∇ Make0

:Access Public
:Implements Constructor
When What←⎕NULL''

∇
:EndClass ⍝ DiaryEntry

Chapter 3: Object Oriented Programing 207

:Class Diary
:Field Private entries←0⍴⎕NEW DiaryEntry
∇ R←Add(ymdhm wot)

:Access Public
R←⎕NEW DiaryEntry(ymdhm wot)
entries,←R

∇
∇ R←DoingOn ymd;X

:Access Public
X←,(↑entries.When.(Year Month Day))^.=3 1⍴3↑ymd
R←X/entries

∇
∇ R←Remove ymdhm;X

:Access Public
:If R←∨/X←entries.When=⎕NEW DateTime(6↑5↑ymdhm)

entries←(~X)/entries
:EndIf

∇
:Property Numbered Default Entry

∇ R←Shape
R←⍴entries

∇
∇ R←Get arg

R←arg.Indexers⊃entries
∇
∇ Set arg

entries[arg.Indexers]←arg.NewValue
∇

:EndProperty
:EndClass ⍝ Diary

:EndNamespace

Chapter 3: Object Oriented Programing 208

Create a new instance of Diary.

D←⎕NEW DiaryStuff.Diary

Add a new entry "meeting with John at 09:00 on April 30th"

D.Add(2006 4 30 9 0)'Meeting with John'
30/04/2006 09:00:00 Meeting with John

Add another diary entry "Dentist at 10:00 on April 30th".

D.Add(2006 4 30 10 0)'Dentist'
30/04/2006 10:00:00 Dentist

One of the benefits of the Namespace Script is that Classes defined within it (which
are typically related) may be used independently, so we can create a stand-alone
instance of DiaryEntry; "Doctor at 11:00"...

Doc←⎕NEW DiaryStuff.DiaryEntry((2006 4 30 11 0)'Docto
r')

Doc
30/04/2006 11:00:00 Doctor

... and then use it to replace the second Diary entry with indexing:

D[2]←Doc

and just to confirm it is there...

D[2]
30/04/2006 11:00:00 Doctor

What am I doing on the 30th?

D.DoingOn 2006 4 30
30/04/2006 09:00:00 Meeting with John ...
... 30/04/2006 11:00:00 Doctor

Remove the 11:00 appointment...

D.Remove 2006 4 30 11 0
1

and the complete Diary is...

⌷D
30/04/2006 09:00:00 Meeting with John

Chapter 3: Object Oriented Programing 209

Class Declaration Statements
This section summarises the various declaration statements that may be included in a
Class or Namespace Script. For information on other declaration statements, as they
apply to functions and methods, see Function Declaration Statements on page 79.

:Interface Statement
:Interface <interface name>
...
:EndInterface

An Interface is defined by a Script containing skeleton declarations of Properties
and/or Methods. The script must begin with a :Interface Statement and end
with a :EndInterface Statement.

An Interface may not contain Fields.

Properties and Methods defined in an Interface, and the Class functions that imple-
ment the Interface,may not contain :Access Statements.

:Namespace Statement
:Namespace <namespace name>
...
:EndNamespace

A Namespace Script may be used to define an entire namespace containing other
namespaces, functions, variables and Classes.

A Namespace script must begin with a :Namespace statement and end with a
:EndNamespace statement.

Sub-namespaces, which may be nested, are defined by pairs of :Namespace and
:EndNamespace statements within the Namespace script.

Classes are defined by pairs of :Class and :EndClass statements within the
Namespace script, and these too may be nested.

The names of Classes defined within a Namespace Script are visible both to one
another and to code and expressions defined in the same script, regardless of the
namespace hierarchy within it.

A Namespace script is therefore particularly useful to group together Classes that
refer to one another where the use of nested classes is inappropriate.

Chapter 3: Object Oriented Programing 210

:Class Statement
:Class <class name><:base class name> <,interface name...>

:Include <namespace>
...
:EndClass

A class script begins with a :Class statement and ends with a :EndClass state-
ment. The elements that comprise the :Class statement are as follows:

Element Description

class
name

Optionally, specifies the name of the Class, which must
conform to the rules governing APL names.

base
class
name

Optionally specifies the name of a Class from which this Class
is derived and whose members this Class inherits.

interface
name

The names of one or more Interfaces which this Class supports.

A Class may import methods defined in separate plain Namespaces with one or more
:Include statements. For further details, see Including Namespaces in Classes on
page 192.

Examples:
The following statements define a Class named Penguin that derives from (is based
upon) a Class named Animal and which supports two Interfaces named
BirdBehaviour and FishBehaviour.

:Class Penguin: Animal,BirdBehaviour,FishBehaviour
...
:EndClass

The following statements define a Class named Penguin that derives from (is based
upon) a Class named Animal and includes methods defined in two separate
Namespaces named BirdStuff and FishStuff.

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff
...
:EndClass

Chapter 3: Object Oriented Programing 211

:Using Statement
:Using <NameSpace[,Assembly]>

This statement specifies a .NET namespace that is to be searched to resolve unqual-
ified names of .NET types referenced by expressions in the Class.

Element Description

NameSpace Specifies a .NET namespace.

Assembly

Specifies the Assembly in which NameSpace is located. If the
Assembly is defined in the global assembly cache, you need
only specify its name. If not, you must specify a full or relative
pathname.

If the Microsoft .NET Framework is installed, the System namespace
inmscorlib.dll is automatically loaded when Dyalog APL starts. To access this
namespace, it is not necessary to specify the name of the Assembly.

When the class is fixed, ⎕USING is inherited from the surrounding space. Each
:Using statement appends an element to ⎕USING, with the exception of :Using
with no argument:

If you omit <Namespace>, this is equivalent to clearing ⎕USING, which means
that no .NET namespaces will be searched (unless you follow this statement with
additional :Using statements, each of which will append to ⎕USING).

To set ⎕USING, to a single empty character vector, which only allows references to
fully qualified names of classes in mscorlib.dll, you must write:

:Using , (note the presence of the comma)

or

:Using ,mscorlib.dll

i.e. specify an empty namespace name followed by no assembly, or followed by the
default assembly, which is always loaded.

Chapter 3: Object Oriented Programing 212

:Attribute Statement
:Attribute <Name> [ConstructorArgs]

The :Attribute statement is used to attach .NET Attributes to a Class or a Method.

Attributes are descriptive tags that provide additional information about pro-
gramming elements. Attributes are not used by Dyalog APL but other applications
can refer to the extra information in attributes to determine how these items can be
used. Attributes are saved with the metadata of Dyalog APL .NET assemblies.

Element Description

Name The name of a .NET attribute

ConstructorArgs Optional arguments for the Attribute constructor

Example
The following Class has SerializableAttribute and
CLSCompliantAttribute attributes attached to the Class as a whole, and
ObsoleteAttribute attributes attached to Methods foo and goo within it.

:Class c1
:using System

:attribute SerializableAttribute
:attribute CLSCompliantAttribute 1

∇ foo(p1 p2)
:Access public instance
:Signature foo Object,Object
:Attribute ObsoleteAttribute

∇

∇ goo(p1 p2)
:Access public instance
:Signature foo Object,Object
:Attribute ObsoleteAttribute 'Don''t use this' 1

∇

:EndClass ⍝ c1

When this Class is exported as a .NET Class, the attributes are saved in its metadata.
For example, Visual Studio will warn developers if they make use of a member which
has the ObsoleteAttribute.

Chapter 3: Object Oriented Programing 213

:Access Statement
:Access <Private|Public><Instance|Shared><Overridable>

<Override>
:Access <WebMethod>

The :Access statement is used to specify characteristics for Classes, Properties and
Methods.

Element Description

Private|Public
Specifies whether or not the (nested) Class, Property or
Method is accessible from outside the Class or an
Instance of the Class. The default is Private.

Instance|Shared

For a Field, specifies if there is a separate value of the
Field in each Instance of the Class, or if there is only a
single value that is shared between all Instances.For a
Property or Method, specifies whether the code
associated with the Property or Method runs in the
Class or Instance.

WebMethod
Applies only to a Method and specifies that the
method is exported as a web method. This applies
only to a Class that implements a Web Service.

Overridable
Applies only to an Instance Method and specifies that
the Method may be overridden by a Method in a
higher Class. See below.

Override
Applies only to an Instance Method and specifies that
the Method overrides the corresponding Overridable
Method defined in the Base Class. See below.

Overridable/Override
Normally, a Method defined in a higher Class replaces a Method of the same name
that is defined in its Base Class, but only for calls made from above or within the
higher Class itself (or an Instance of the higher Class). The base method remains avail-
able in the Base Class and is invoked by a reference to it from within the Base Class.

Chapter 3: Object Oriented Programing 214

However, a Method declared as being Overridable is replaced in situ (i.e. within
its own Class) by a Method of the same name in a higher Class if that Method is itself
declared with the Override keyword. For further information, see Superseding
Base Class Methods on page 175.

Nested Classes
The :Access statement is also used to control the visibility of one Class that is
defined within another (a nested Class). A Nested Class may be either Private or
Public. Note that the :Access Statement must precede the definition of any Class
contents.

A Public Nested Class is visible from outside its containing Class and may be used
directly in its own right, whereas a Private Nested Class is not and may only be
used by code inside the containing Class.

However, methods in the containing Class may return instances of Private Nested
Classes and in that way expose them to the calling environment.

WebMethod
Note that :Access WebMethod is equivalent to:

:Access Public
:Attribute System.Web.Services.WebMethodAttribute

:Implements Statement
The :Implements statement identifies the function to be one of the following
types.

:Implements Constructor <[:Base expr]>
:Implements Destructor
:Implements Method <InterfaceName.MethodName>
:Implements Trigger <name1><,name2,name3,...>

Element Description

Constructor Specifies that the function is a Class Constructor.

:Base expr
Specifies that the Base Constructor be called with the result
of the expression expr as its argument.

Destructor Specifies that the function is a Class Destructor.

Method
Specifies that the function implements the Method
MethodName whose syntax is specified by Interface
InterfaceName.

Trigger
Identifies the function as a Trigger Function which is
activated by changes to variable name1, name2, etc.

Chapter 3: Object Oriented Programing 215

:Field Statement
:Field <Private|Public> <Instance|Shared> <ReadOnly>...

... FieldName <← expr>

A :Field statement is a single statement whose elements are as follows:

Element Description

Private|Public
Specifies whether or not the Field is accessible from
outside the Class or an Instance of the Class. The
default is Private.

Instance|Shared
Specifies if there is a separate value of the Field in
each Instance of the Class, or if there is only a single
value that is shared between all Instances.

ReadOnly
If specified, this keyword prevents the value in the
Field from being changed after initialisation.

FieldName Specifies the name of the Field (mandatory).

← expr Specifies an initial value for the Field.

Examples:
The following statement defines a Field called Name. It is (by default), an Instance
Field so every Instance of the Class has a separate value. It is a Public Field and so
may be accessed (set or retrieved) from outside an Instance.

:Field Public Name

The following statement defines a Field called Months.

:Field Shared ReadOnly Months←12↑(⎕NEW DateTimeFormatInf
o)

.AbbreviatedMonthNames

Months is a Shared Field so there is just a single value that is the same for every
Instance of the Class. It is (by default), a Private Field and may only be referenced by
code running in an Instance or in the Class itself. Furthermore, it is ReadOnly and
may not be altered after initialisation. Its initial value is calculated by an expression
that obtains the short month names that are appropriate for the current locale using
the .NET Type DateTimeFormatInfo.

Chapter 3: Object Oriented Programing 216

Notes
Note that Fields are initialised when a Class script is fixed by the editor or by ⎕FIX.
If the evaluation of expr causes an error (for example, a VALUE ERROR), an appro-
priate message will be displayed in the Status Window and ⎕FIX will fail with a
DOMAIN ERROR. Note that a ReadOnly Field may only be assigned a value by its
:Field statement.

In the second example above, the expression will only succeed if ⎕USING is set to
the appropriate path, in this case System.Globalization.

You may not define a Field with the name of one of the permissable keywords (such
as public). Otherwise the Class not be fixed and the editor will display an error mes-
sage in the Status Windows. For example:

error AC0541: a field must have a name " :Field Public public"

Chapter 3: Object Oriented Programing 217

:Property Section
A Property is defined by a :Property ... :EndProperty section in a Class
Script. The syntax of the :Property Statement, and its optional :Access statement is
as follows:

:Property <Simple|Numbered|Keyed> <Default> Name<,Nam
e>...
:Access <Private|Public><Instance|Shared>
...
:EndProperty

Element Description

Name

Specifies the name of the Property by which
it is accessed. Additional Properties, sharing
the same PropertyGet and/or PropertySet
functions, and the same access behaviour may
be specified by a comma-separated list of
names.

Simple|Numbered|Keyed
Specifies the type of Property (see below).
The default is Simple.

Default
Specifies that this Property acts as the default
property for the Class when indexing is
applied directly to an Instance of the Class.

Private|Public

Specifies whether or not the Property is
accessible from outside the Class or an
Instance of the Class. The default is
Private.

Instance|Shared

Specifies if there is a separate value of the
Property in each Instance of the Class, or if
there is only a single value that is shared
between all Instances.

A Simple Property is one whose value is accessed (by APL) in its entirety and re-
assigned (by APL) in its entirety.

A Numbered Property behaves like an array (conceptually a vector) which is only
ever partially accessed and set (one element at a time) via indices.

A Keyed Property is similar to a Numbered Property except that its elements are
accessed via arbitrary keys instead of indices.

Chapter 3: Object Oriented Programing 218

Numbered and Keyed Properties are designed to allow APL to perform selections and
structural operations on the Property.

Within the body of a Property Section there may be:

l one or more :Access statements
l a single PropertyGet function.
l a single PropertySet function
l a single PropertyShape function

The three functions are identified by case-independent names Get, Set and Shape.

Errors
When a Class is fixed by the Editor or by ⎕FIX, APL checks the validity of each
Property section and the syntax of PropertyGet, PropertySet and PropertyShape func-
tions within them.

l You may not specify a name which is the same as one of the keywords.
l There must be at least a PropertyGet, or a PropertySet or a PropertyShape

function defined.
l You may only define a PropertyShape function if the Property is Numbered.

If anything is wrong, the Class is not fixed and an error message is displayed in the
Status Window. For example:

error AC0545: invalid or empty property declaration
error AC0595: this property type should not implement a "
shape" function

PropertyArguments Class
Where appropriate, APL supplies the PropertyGet and PropertySet functions with an
argument that is an instance of the internal class PropertyArguments.

PropertyArguments has just 3 read-only Fields which are as follows:

Name
The name of the property. This is useful when one
function is handling several properties.

NewValue
Array containing the new value for the Property or
for selected element(s) of the property as specified
by Indexers.

IndexersSpecified
A Boolean vector that identifies which dimensions
of the Property are to be referenced or assigned.

Indexers
A vector that identifies the elements of the Property
that are to be referenced or assigned.

Chapter 3: Object Oriented Programing 219

PropertyGet Function R←Get {ipa}

The name of the PropertyGet function must be Get, but is case-independent. For
example, get, Get, gEt and GET are all valid names for the PropertyGet function

The PropertyGet function must be result returning. For a Simple Property, it may be
monadic or niladic. For a Numbered or Keyed Property it must be monadic.

The result Rmay be any array. However, for a Keyed Property, Rmust conform to the
rank and shape specified by ipa.Indexers or be scalar.

If monadic, ipa is an instance of the internal class .

In all cases, ipa.Name contains the name of the Property being referenced and
NewValue is undefined (VALUE ERROR).

If the Property is Simple, ipa.Indexers is undefined (VALUE ERROR).

If the Property is Numbered, ipa.Indexers is an integer vector of the same length
as the rank of the property (as implied by the result of the Shape function) that iden-
tifies a single element of the Property whose value is to be obtained. In this case, R
must be scalar.

If the Property is Keyed, ipa.IndexersSpecified is a Boolean vector with the
same length as the rank of the property (as implied by the result of the Shape func-
tion). A value of 1 means that an indexing array for the corresponding dimension of
the Property was specified, while a value of 0 means that the corresponding dimen-
sion was elided. ipa.Indexers is a vector of the same length containing the
arrays that were specified within the square brackets in the reference expression. Spe-
cifically, ipa.Indexers will contain one fewer elements than, the number of
semi-colon (;) separators. If any index was elided, the corresponding element of
ipa.Indexers is ⎕NULL

Chapter 3: Object Oriented Programing 220

PropertySet Function Set ipa

The name of the PropertySet function must be Set, but is case-independent. For
example, set, Set, sEt and SET are all valid names for the PropertySet function.

The PropertySet function must be monadic and may not return a result.

ipa is an instance of the internal class .

In all cases, ipa.Name contains the name of the Property being referenced and
NewValue contains the new value(s) for the element(s) of the Property being
assigned.

If the Property is Simple, ipa.Indexers is undefined (VALUE ERROR).

If the Property is Numbered, ipa.Indexers is an integer vector of the same length
as the rank of the property (as implied by the result of the Shape function) that iden-
tifies a single element of the Property whose value is to be set.

If the Property is Keyed, ipa.IndexersSpecified is a Boolean vector with the
same length as the rank of the property (as implied by the result of the Shape func-
tion). A value of 1 means that an indexing array for the corresponding dimension of
the Property was specified, while a value of 0 means that the corresponding dimen-
sion was elided.ipa.Indexers is a vector containing the arrays that were spe-
cified within the square brackets in the assignment expression. Specifically,
ipa.Indexers will contain one fewer elements than, the number of semi-colon (;)
separators. If any index was elided, the corresponding element of ipa.Indexers is
⎕NULL. However, if the Keyed Property is being assigned in its entirety, without
square-bracket indexing, ipa.Indexers is undefined (VALUE ERROR).

Chapter 3: Object Oriented Programing 221

PropertyShape Function R←Shape {ipa}

The name of the PropertyShape function must be Shape, but is case-independent.
For example, shape, Shape, sHape and SHAPE are all valid names for the Prop-
ertyShape function.

A PropertyShape function is only called if the Property is a Numbered Property.

The PropertyShape function must be niladic or monadic and must return a result.

If monadic, ipa is an instance of the internal class . ipa.Name contains the name of
the Property being referenced and NewValue and Indexers are undefined
(VALUE ERROR).

The result Rmust be an integer vector or scalar that specifies the rank of the Prop-
erty. Each element of R specifies the length of the corresponding dimension of the
Property. Otherwise, the reference or assignment to the Property will fail with
DOMAIN ERROR.

Note that the result R is used by APL to check that the number of indices corresponds
to the rank of the Property and that the indices are within the bounds of its dimen-
sions. If not, the reference or assignment to the Property will fail with RANK ERROR
or LENGTH ERROR.

Chapter 3: Object Oriented Programing 222

Chapter 4: Error Messages 223

Chapter 4:

Error Messages

Introduction
The error messages reported by APL are described in this section. Standard APL mes-
sages that provide information or report error conditions are summarised in APL Error
Messages on page 225 and described later in alphabetical order.

APL also reports messages originating from the Operating System (WINDOWS or
UNIX) which are summarised in Typical Operating System Error Messages on page
229 and Windows Operating System Messages on page 231. Only those Operating
System error messages that might occur through normal usage of APL operations are
described here. Other messages could occur as a direct or indirect consequence of
using the Operating System interface functions ⎕CMD and ⎕SH or system commands
)CMD and)SH, or when a non-standard device is specified for the system functions
⎕ARBIN or ⎕ARBOUT. Refer to the WINDOWS or UNIX reference manual for fur-
ther information about these messages.

Most errors may be trapped using the system variable ⎕TRAP, thereby retaining con-
trol and inhibiting the standard system action and error report. The table, Language
Reference: Trappable Event Codes identifies the error code for trappable errors. The
error code is also identified in the heading block for each error message when applic-
able.

See User Guide for a full description of the Error Handling facilities in Dyalog APL.

Chapter 4: Error Messages 224

Standard Error Action
The standard system action in the event of an error or interrupt whilst executing an
expression is to suspend execution and display an error report. If necessary, the state
indicator is cut back to a statement such that there is no halted locked function vis-
ible in the state indicator.

The error report consists of up to three lines

1. The error message, preceded by the symbol ⍎ if the error occurred while
evaluating the Execute function.

2. The statement in which the error occurred (or expression being evaluated by
the Execute function), preceded by the name of the function and line num-
ber where execution is suspended unless the state indicator has been cut
back to immediate execution mode. If the state indicator has been cut back
because of a locked function in execution, the displayed statement is that
from which the locked function was invoked.

3. The symbol ^ under the last referenced symbol or name when the error
occurred. All code to the right of the ^ symbol in the expression will have
been evaluated.

Examples
X PLUS U

VALUE ERROR
X PLUS U

^
FOO

INDEX ERROR
FOO[2] X←X+A[I]

^

CALC
⍎DOMAIN ERROR
CALC[5] ÷0

^

Chapter 4: Error Messages 225

APL Errors
Table 1: APL Error Messages
Error Code Report

bad ws

cannot create name

clear ws

copy incomplete

1008 DEADLOCK

defn error

11 DOMAIN ERROR

1005 EOF INTERRUPT

90 EXCEPTION

52 FIELD CONTENTS RANK ERROR

53 FIELD CONTENTS TOO MANY COLUMNS

54 FIELD POSITION ERROR

55 FIELD SIZE ERROR

56 FIELD CONTENTS/TYPE MISMATCH

57 FIELD TYPE/BEHAVIOUR UNRECOGNISED

58 FIELD ATTRIBUTES RANK ERROR

59 FIELD ATTRIBUTES LENGTH ERROR

60 FULL-SCREEN ERROR

61 KEY CODE UNRECOGNISED

62 KEY CODE RANK ERROR

63 KEY CODE TYPE ERROR

70 FORMAT FILE ACCESS ERROR

71 FORMAT FILE ERROR

Chapter 4: Error Messages 226

Error Code Report

19 FILE ACCESS ERROR

35 FILE ACCESS ERROR - CONVERTING FILE

38 FILE COMPONENT DAMAGED

23 FILE DAMAGED

21 FILE FULL

20 FILE INDEX ERROR

22 FILE NAME ERROR

32 FILE NAME QUOTA USED UP

26 FILE SYSTEM ERROR

34 FILE SYSTEM NO SPACE

28 FILE SYSTEM NOT AVAILABLE

30 FILE SYSTEM TIES USED UP

18 FILE TIE ERROR

24 FILE TIED

25 FILE TIED REMOTELY

31 FILE TIE QUOTA USED UP

7 FORMAT ERROR

incorrect command

12 HOLD ERROR

3 INDEX ERROR

insufficient resources

99 INTERNAL ERROR

1003 INTERRUPT

is name

5 LENGTH ERROR

10 LIMIT ERROR

Chapter 4: Error Messages 227

Error Code Report

16 NONCE ERROR

72 NO PIPES

name is not a ws

Name already exists

Namespace does not exist

not copied name

not found name

not saved this ws is name

76 PROCESSOR TABLE FULL

4 RANK ERROR

1007 RESIZE

name saved date/time

2 SYNTAX ERROR

sys error number

1006 TIMEOUT

too many names

92 TRANSLATION ERROR

84 TRAP ERROR

6 VALUE ERROR

warning duplicate label

warning duplicate name

warning label name present in line 0

warning pendent operation

Chapter 4: Error Messages 228

Error Code Report

warning unmatched brackets

warning unmatched parentheses

was name

1 WS FULL

ws not found

ws too large

Chapter 4: Error Messages 229

Operating System Error Messages
Table 2 refers to UNIX Operating Systems under which the error code reported by
Dyalog APL is (100 + the UNIX file error number). The text for the error message,
which is obtained by calling perror(), will vary from one type of system to
another.

Table 3 refers to the equivalent error messages underWindows.

Table 2: Typical Operating System Error Messages
Error Code Report

101 FILE ERROR 1 Not owner

102 FILE ERROR 2 No such file or directory

103 FILE ERROR 3 No such process

104 FILE ERROR 4 Interrupted system call

105 FILE ERROR 5 I/O error

106 FILE ERROR 6 No such device or address

107 FILE ERROR 7 Arg list too long

108 FILE ERROR 8 Exec format error

109 FILE ERROR 9 Bad file number

110 FILE ERROR 10 No children

111 FILE ERROR 11 No more processes

112 FILE ERROR 12 Not enough code

113 FILE ERROR 13 Permission denied

114 FILE ERROR 14 Bad address

115 FILE ERROR 15 Block device required

116 FILE ERROR 16 Mount device busy

117 FILE ERROR 17 File exists

118 FILE ERROR 18 Cross-device link

119 FILE ERROR 19 No such device

Chapter 4: Error Messages 230

Error Code Report

120 FILE ERROR 20 Not a directory

121 FILE ERROR 21 Is a directory

122 FILE ERROR 22 Invalid argument

123 FILE ERROR 23 File table overflow

124 FILE ERROR 24 Too many open files

125 FILE ERROR 25 Not a typewriter

126 FILE ERROR 26 Text file busy

127 FILE ERROR 27 File too large

128 FILE ERROR 28 No space left on device

129 FILE ERROR 29 Illegal seek

130 FILE ERROR 30 Read-only file system

131 FILE ERROR 31 Too many links

132 FILE ERROR 32 Broken pipe

133 FILE ERROR 33 Math argument

134 FILE ERROR 34 Result too large

Chapter 4: Error Messages 231

Windows Operating System Error Messages
Table 3: Windows Operating SystemMessages
Error Code Report

101 FILE ERROR 1 No such file or directory

102 FILE ERROR 2 No such file or directory

103 FILE ERROR 3 Exec format error

105 FILE ERROR 5 Not enough memory

106 FILE ERROR 6 Permission denied

107 FILE ERROR 7 Argument list too big

108 FILE ERROR 8 Exec format error

109 FILE ERROR 9 Bad file number

111 FILE ERROR 11 Too many open files

112 FILE ERROR 12 Not enough memory

113 FILE ERROR 13 Permission denied

114 FILE ERROR 14 Result too large

115 FILE ERROR 15 Resource deadlock would occur

117 FILE ERROR 17 File exists

118 FILE ERROR 18 Cross-device link

122 FILE ERROR 22 Invalid argument

123 FILE ERROR 23 File table overflow

124 FILE ERROR 24 Too many open files

133 FILE ERROR 33 Argument too large

134 FILE ERROR 34 Result too large

145 FILE ERROR 45 Resource deadlock would occur

Chapter 4: Error Messages 232

APL Error Messages
There follows an alphabetical list of error messages reported fromwithin Dyalog
APL.

bad ws
This report is given when an attempt is made to)COPY or)PCOPY from a file that is
not a valid workspace file. Invalid files include workspaces that were created by a
version of Dyalog APL later than the version currently being used.

cannot create name
This report is given when an attempt is made to)SAVE a workspace with a name that
is either the name of an existing, non-workspace file, or the name of a workspace that
the user does not have permission to overwrite or create.

clear ws
This message is displayed when the system command)CLEAR is issued.

Example
)CLEAR

clear ws

copy incomplete
This report is given when an attempted)COPY or)PCOPY fails to complete.
Reasons include:

l Failure to identify the incoming file as a workspace.
l Not enough active workspace to accommodate the copy.

DEADLOCK 1008

If two threads succeed in acquiring a hold of two different tokens, and then each asks
to hold the other token, they will both stop and wait for the other to release its token.
The interpreter detects such cases and issues an error (1008) DEADLOCK.

Chapter 4: Error Messages 233

defn error
This report is given when either:

l The system editor is invoked in order to edit a function that does not exist,
or the named function is pendent or locked, or the given name is an object
other than a function.

l The system editor is invoked to define a new function whose name is
already active.

l The header line of a function is replaced or edited in definition mode with a
line whose syntax is incompatible with that of a header line. The original
header line is re-displayed by the system editor with the cursor placed at the
end of the line. Back-spacing to the beginning of the line followed by line-
feed restores the original header line.

Examples
X←1
∇X

defn error

∇FOO[0⎕]
[0] R←FOO
[0] R←FOO:X
defn error
[0] R←FOO:X

⎕LOCK'FOO'
∇FOO[⎕]

defn error

Chapter 4: Error Messages 234

DOMAIN ERROR 11

This report is given when either:

l An argument of a function is not of the correct type or its numeric value is
outside the range of permitted values or its character value does not con-
stitute valid name(s) in the context.

l An array operand of an operator is not an array, or it is not of the correct
type, or its numeric value is outside the range of permitted values. A func-
tion operand of an operator is not one of a prescribed set of functions.

l A value assigned to a system variable is not of the correct type, or its
numeric value is outside the range of permitted values

l The result produced by a function includes numeric elements which cannot
be fully represented.

Examples
1÷0

DOMAIN ERROR
1÷0
^

(×∘'CAT')2 4 6
DOMAIN ERROR

(×∘'CAT')2 4 6
^

⎕IO←5
DOMAIN ERROR

⎕IO←5
^

EOF INTERRUPT 1005

This report is given on encountering the end-of-file when reading input from a file.
This condition could occur when an input to APL is from a file.

EXCEPTION 90

This report is given when a Microsoft .NET object throws an exception. For details
see Language Reference: Exception System Function.

Chapter 4: Error Messages 235

FIELD CONTENTS RANK ERROR 52

This report is given if a field content of rank greater than 2 is assigned to ⎕SM.

FIELD CONTENTS TOO MANY COLUMNS 53

This report is given if the content of a numeric or date field assigned to ⎕SM has more
than one column.

FIELD POSITION ERROR 54

This report is given if the location of the field assigned to ⎕SM is outside the screen.

FIELD CONTENTS TYPE MISMATCH 56

This report is given if the field contents assigned to ⎕SM does not conform with the
given field type e.g. character content with numeric type.

FIELD TYPE BEHAVIOUR UNRECOGNISED 57

This report is given if the field type or behaviour code assigned to ⎕SM is invalid.

FIELD ATTRIBUTES RANK ERROR 58

This report is given if the current video attribute assigned to ⎕SM is non-scalar but its
rank does not match that of the field contents.

FIELD ATTRIBUTES LENGTH ERROR 59

This report is given if the current video attribute assigned to ⎕SM is non-scalar but its
dimensions do not match those of the field contents.

FULL SCREEN ERROR 60

This report is given if the required full screen capabilities are not available to ⎕SM.
This report is only generated in UNIX environments.

Chapter 4: Error Messages 236

KEY CODE UNRECOGNISED 61

This report is given if a key code supplied to ⎕SR or ⎕PFKEY is not recognised as a
valid code.

KEY CODE RANK ERROR 62

This report is given if a key code supplied to ⎕SR or ⎕PFKEY is not a scalar or a vec-
tor.

KEY CODE TYPE ERROR 63

This report is given if a key code supplied to ⎕SR or ⎕PFKEY is numeric or nested;
i.e. is not a valid key code.

FORMAT FILE ACCESS ERROR 70

This report is given if the date format file to be used by ⎕SM does not exist or cannot
be accessed.

FORMAT FILE ERROR 71

This report is given if the date format file to be used by ⎕SM is ill-formed.

Chapter 4: Error Messages 237

FILE ACCESS ERROR 19

This report is given when the user attempts to execute a file system function for
which the user is not authorised, or has supplied the wrong passnumber. It also
occurs if the file specified as the argument to ⎕FERASE or ⎕FRENAME is not exclus-
ively tied.

Examples
'SALES' ⎕FSTIE 1

⎕FRDAC 1
0 4121 0
0 4137 99

X ⎕FREPLACE 1
FILE ACCESS ERROR

X ⎕FREPLACE 1
^

'SALES' ⎕FERASE 1
FILE ACCESS ERROR

'SALES' ⎕FERASE 1
^

FILE ACCESS ERROR CONVERTING
When a new version of Dyalog APL is used, it may be that improvements to the com-
ponent file system demand that the internal structure of component files must alter.
This alteration is performed by the interpreter on the first occasion that the file is
accessed. If the operating system file permissions deny the ability to perform such a
restructure, this report is given.

FILE COMPONENT DAMAGED 38

This report is given if an attempt is made to access a component that is not a valid
APL object. This will rarely occur, but may happen as a result of a previous com-
puter system failure. Components files may be checked using ⎕FCHK. See Lan-
guage Reference: File Check and Repair.

Chapter 4: Error Messages 238

FILE DAMAGED 23

This report is given if a component file becomes damaged. This rarely occurs but
may result from a computer system failure. Components files may be checked using
⎕FCHK. See Language Reference: File Check and Repair.

FILE FULL 21

This report is given if the file operation would cause the file to exceed its file size
limit.

FILE INDEX ERROR 20

This report is given when an attempt is made to reference a non-existent component.

Example
⎕FSIZE 1

1 21 16578 4294967295

⎕FREAD 1 34
FILE INDEX ERROR

⎕FREAD 1 34
^
⎕FDROP 1 50

FILE INDEX ERROR
⎕FDROP 1 50
^

FILE NAME ERROR 22

This report is given if:

l the user attempts to ⎕FCREATE using the name of an existing file.
l the user attempts to ⎕FTIE or ⎕FSTIE a non-existent file, or a file that is

not a component file.
l the user attempts to ⎕FERASE a component file with a name other than the

EXACT name that was used when the file was tied.

Chapter 4: Error Messages 239

FILE NAME QUOTA USED UP 32

This report is given when the user attempts to execute a file system command that
would result in the User's File Name Quota (see User Guide) being exceeded.

This can occur with ⎕FCREATE, ⎕FTIE, ⎕FSTIE or ⎕FRENAME .

FILE SYSTEM ERROR 26

This report is given if an input/output (I/O) error occurs when reading from or writing
to the host file system. Contact your System Administrator.

If this occurs when the file is being written it may become damaged; it is therefore
advisable to check the integrity of the file using ⎕FCHK once the source of the I/O
errors has been corrected. See Language Reference: File Check and Repair.

FILE SYSTEM NO SPACE 34

This report is given if the user attempts a file operation that cannot be completed
because there is insufficient disk space.

FILE SYSTEM NOT AVAILABLE 28

This error is generated if the operation system generates an unexpected error when
attempting to get a lock on a component file. See User Guide for details.

FILE SYSTEM TIES USED UP 30

This error is generated when the maximum number of file ties for this APL instance
has been reached. See User Guide for details.

Chapter 4: Error Messages 240

FILE TIE ERROR 18

This report is given when the argument to a file system function contains a file tie
number used as if it were tied when it is not or as if it were available when it is
already tied. It also occurs if the argument to ⎕FHOLD contains the names of non-
existent external variables.

Examples
⎕FNAMES,⎕FNUMS

SALES 1
COSTS 2
PROFIT 3

X ⎕FAPPEND 4
FILE TIE ERROR

X ⎕FAPPEND 4
^
'NEWSALES' ⎕FCREATE 2

FILE TIE ERROR
'NEWSALES' ⎕FCREATE 2
^

'EXTVFILE' ⎕XT'BIGMAT'
⎕FHOLD 'BIGMAT'

FILE TIE ERROR
⎕FHOLD 'BIGMAT'
^
⎕FHOLD⊂'BIGMAT'

FILE TIED 24

This report is given if the user attempts to tie a file that is exclusively tied by another
task, or attempts to exclusively tie a file that is already share-tied by another task.

FILE TIED REMOTELY 25

This report is given if the user attempts to tie a file that is exclusively tied by another
task, or attempts to exclusively tie a file that is already share-tied by another task;
and that task is running on other than the user's processor.

Chapter 4: Error Messages 241

FILE TIE QUOTA USED UP 31

This error is generated if an attempt is made to ⎕FTIE, ⎕FSTIE or ⎕FCREATE a file
when the user already has the maximum number of files tied. (See File Tie Quota ,
User Guide)

FORMAT ERROR 7

This report is given when the format specification in the left argument of system func-
tion ⎕FMT is ill-formed.

Example
'A1,1X,I5'⎕FMT CODE NUMBER

FORMAT ERROR
'A1,1X,I5'⎕FMT CODE NUMBER
^

(The correct specification should be 'A1,X1,I5' .)

HOLD ERROR 12

This report is given when an attempt is made to save a workspace using the system
function ⎕SAVE if any external arrays or component files are currently held (as a res-
ult of a prior use of the system function ⎕FHOLD).

Example
∇HOLD∆SAVE

[1] ⎕FHOLD 1
[2] ⎕SAVE 'TEST'

∇

'FILE' ⎕FSTIE 1

HOLD∆SAVE
HOLD ERROR
HOLD∆SAVE[2] ⎕SAVE'TEST'

^

Chapter 4: Error Messages 242

incorrect command
This report is given when an unrecognised system command is entered.

Example
)CLERA

incorrect command

INDEX ERROR 3

This report is given when either:

l The value of an index, whilst being within comparison tolerance of an
integer, is outside the range of values defined by the index vector along an
axis of the array being indexed. The permitted range is dependent on the
value of ⎕IO.

l The value specified for an axis, whilst being within comparison tolerance of
an integer for a derived function requiring an integer axis value or a non-
integer for a derived function requiring a non-integer, is outside the range of
values compatible with the rank(s) of the array argument(s) of the derived
function. Axis is dependent on the value of ⎕IO.

Examples
A

1 2 3
4 5 6

A[1;4]
INDEX ERROR

A[1;4]
^

↑ [2]'ABC' 'DEF'
INDEX ERROR

↑ [2]'ABC' 'DEF'
^

Chapter 4: Error Messages 243

INTERNAL ERROR 99

INTERNAL ERROR indicates a severe system error from which Dyalog APL has
recovered.

Should you encounter INTERNAL ERROR, Dyalog strongly recommends that you
save your work(space) , and report the issue.

INTERRUPT 1003

This report is given when execution is suspended by entering a hard interrupt. A
hard interrupt causes execution to suspend as soon as possible without leaving the
environment in a damaged state.

Example
1 1 2 ⍉(2 100⍴⍳200)∘.|?1000⍴200

(Hard interrupt)

INTERRUPT
1 1 2 ⍉(2 100⍴⍳200)∘.|?1000⍴200

^

is name
This report is given in response to the system command)WSID when used without a
parameter. name is the name of the active workspace including directory references
given when loaded or named. If the workspace has not been named, the system
reports is CLEAR WS.

Example
)WSID

is WS/UTILITY

Chapter 4: Error Messages 244

LENGTH ERROR 5

This report is given when the shape of the arguments of a function do not conform,
but the ranks do conform.

Example
2 3+4 5 6

LENGTH ERROR
2 3+4 5 6
^

LIMIT ERROR 10

This report is given when a system limit is exceeded. System limits are installation
dependent.

Example
(16⍴1)⍴1

LIMIT ERROR
(16⍴1)⍴1
^

NONCE ERROR 16

This report is given when a system function or piece of syntax is not currently imple-
mented but is reserved for future use.

NO PIPES 72

This message applies to the UNIX environment ONLY.

This message is given when the limit on the number of pipes communicating
between tasks is exceeded. An installation-set quota is assigned for each task. An
associated task may require more than one pipe. The message occurs on attempting
to exceed the account's quota when either:

l An APL session is started
l A non-APL task is started by the system function ⎕SH
l An external variable is used.

Chapter 4: Error Messages 245

It is necessary to release pipes by terminating sufficient tasks before proceeding with
the required activity. In practice, the error is most likely to occur when using the sys-
tem function ⎕SH.

Examples
'via' ⎕SH 'via'

NO PIPES
'via' ⎕SH 'via'
^

'EXT/ARRAY' ⎕XT 'EXVAR'
NO PIPES

'EXT/ARRAY' ⎕XT 'EXVAR'
^

name is not a ws
This report is given when the name specified as the parameter of the system com-
mands)LOAD,)COPY or)PCOPY is a reference to an existing file or directory that is
not identified as a workspace.

This will also occur if an attempt is made to)LOAD a workspace that was)SAVE’d
using a later version of Dyalog APL.

Example
)LOAD EXT\ARRAY

EXT\ARRAY is not a ws

Name already exists
This report is given when an)NS command is issued with a name which is already in
use for a workspace object other than a namespace.

Namespace does not exist
This report is given when a)CS command is issued with a name which is not the
name of a global namespace.

Chapter 4: Error Messages 246

not copied name
This report is given for each object named or implied in the parameter list of the sys-
tem command)PCOPY which was not copied because of an existing global referent
to that name in the active workspace.

Example
)PCOPY WS/UTILITY A FOO Z

WS/UTILITY saved Mon Nov 1 13:11:19 1993
not copied Z

not found name
This report is given when either:

l An object named in the parameter list of the system command)ERASE is
not erased because it was not found or it is not eligible to be erased.

l An object named in the parameter list (or implied list) of names to be
copied from a saved workspace for the system commands)COPY or)
PCOPY is not copied because it was not found in the saved workspace.

Examples
)ERASE ⎕IO

not found ⎕IO

)COPY WS/UTILITY UND
WS/UTILITY saved Mon Nov 1 13:11:19 1993
not found UND

not saved this ws is name
This report is given in the following situations:

l When the system command)SAVE is used without a name, and the work-
space is not named. In this case the system reports not saved this ws
is CLEAR WS.

l When the system command)SAVE is used with a name, and that name is
not the current name of the workspace, but is the name of an existing file.

In neither case is the workspace renamed.

Chapter 4: Error Messages 247

Examples
)CLEAR
)SAVE

not saved this ws is CLEAR WS

)WSID JOHND
)SAVE
)WSID ANDYS
)SAVE JOHND

not saved this ws is ANDYS

PROCESSOR TABLE FULL 76

This report can only occur in a UNIX environment.

This report is given when the limit on the number of processes (tasks) that the com-
puter system can support would be exceeded. The limit is installation dependent.
The report is given when an attempt is made to initiate a further process, occurring
when an APL session is started.

It is necessary to wait until active processes are completed before the required task
may proceed. If the condition should occur frequently, the solution is to increase the
limit on the number of processes for the computer system.

Example
'prefect' ⎕SH 'prefect'

PROCESSOR TABLE FULL
'prefect' ⎕SH 'prefect'
^

Chapter 4: Error Messages 248

RANK ERROR 4

This report is given when the rank of an argument or operand does not conform to the
requirements of the function or operator, or the ranks of the arguments of a function
do not conform.

Example
2 3 + 2 2⍴10 11 12 13

RANK ERROR
2 3 + 2 2⍴10 11 12 13
^

RESIZE 1007

This report is given when the user resizes the ⎕SM window. It is only applicable to
Dyalog APL/X and Dyalog APL/W.

name saved date time
This report is given when a workspace is saved, loaded or copied.

date/time is the date and time at which the workspace was most recently saved.

Examples
)LOAD WS/UTILITY

WS/UTILITY saved Fri Sep 11 10:34:35 1998

)COPY SPACES GEOFF JOHND VINCE
./SPACES saved Wed Sep 30 16:12:56 1998

Chapter 4: Error Messages 249

SYNTAX ERROR 2

This report is given when a line of characters does not constitute a meaningful
statement. This condition occurs when either:

l An illegal symbol is found in an expression.
l Brackets, parentheses or quotes in an expression are not matched.
l Parentheses in an expression are not matched.
l Quotes in an expression are not matched.
l A value is assigned to a function, label, constant or system constant.
l A strictly dyadic function (or derived function) is used monadically.
l A monadic function (or derived function) is used dyadically.
l A monadic or dyadic function (or derived function) is used without any

arguments.
l The operand of an operator is not an array when an array is required.
l The operand of an operator is not a function (or derived function) when a

function is required.
l The operand of an operator is a function (or derived function) with incorrect

valency.
l A dyadic operator is used with only a single operand.
l An operator is used without any operands.

Examples
A>10)/A

SYNTAX ERROR
A>10)/A
^

⊤2 4 8
SYNTAX ERROR

⊤2 4 8
^

A.+1 2 3
SYNTAX ERROR

A.+1 2 3
^

Chapter 4: Error Messages 250

sys error number
This report is given when an internal error occurs in Dyalog APL.

Under UNIX it may be necessary to enter a hard interrupt to obtain the UNIX com-
mand prompt, or even to kill your processes from another screen. UnderWINDOWS
it may be necessary to reboot your PC.

If this error occurs, please submit a fault report to your Dyalog APL distributor.

TIMEOUT 1006

This report is given when the time limit specified by the system variable ⎕RTL is
exceeded while awaiting input through character input (⍞) or ⎕SR.

It is usual for this error to be trapped.

Example
⎕RTL←5 ⋄ ⍞←'RESPOND WITHIN 5 SECONDS: ' ⋄ R←⍞

RESPOND WITHIN 5 SECONDS:
TIMEOUT

⎕RTL←5 ⋄ ⍞←'RESPOND WITHIN 5 SECONDS: ' ⋄ R←⍞
^

TRANSLATION ERROR 92

This report is given when the system cannot convert a character from Unicode to an
Atomic Vector index or vice versa. Conversion is controlled by the value of ⎕AVU.
Note that this error can occur when you reference a variable whose value has been
obtained by reading data from a TCPSocket or by calling an external function. This is
because in these cases the conversion to/from ⎕AV is deferred until the value is used.

TRAP ERROR 84

This report is given when a workspace full condition occurs whilst searching for a
definition set for the system variable ⎕TRAP after a trappable error has occurred. It
does not occur when an expression in a ⎕TRAP definition is being executed.

Chapter 4: Error Messages 251

too many names
This report is given by the function editor when the number of distinct names (other
than distinguished names beginning with the symbol ⎕) referenced in a defined func-
tion exceeds the system limit of 4096.

VALUE ERROR 6

This report is given when either:

l There is no active definition for a name encountered in an expression.
l A function does not return a result in a context where a result is required.

Examples
X

VALUE ERROR
X
^

∇ HELLO
[1] 'HI THERE'
[2] ∇

2+HELLO
HI THERE
VALUE ERROR

2+HELLO
^

warning duplicate label
This warning message is reported on closing definition mode when one or more
labels are duplicated in the body of the defined function. This does not prevent the
definition of the function in the active workspace. The value of a duplicated label is
the lowest of the line-numbers in which the labels occur.

Chapter 4: Error Messages 252

warning duplicate name
This warning message is reported on closing definition mode when one or more
names are duplicated in the header line of the function. This may be perfectly valid.
Definition of the function in the active workspace is not prevented. The order in
which values are associated with names in the header line is described in Pro-
grammer's Guide: Defined Functions &Operators.

warning pendent operation
This report is given on opening and closing definition mode when attempting to edit
a pendant function or operator.

Example
[0] ∇FOO
[1] GOO
[2] ∇

[0] ∇GOO
[1] ∘
[2] ∇

FOO
SYNTAX ERROR
GOO[1] ∘

^

∇FOO
warning pendent operation
[0] ∇FOO
[1] GOO
[2] ∇
warning pendent operation

warning label name present
This warning message is reported on closing definition mode when one or more label
names also occur in the header line of the function. This does not prevent definition
of the function in the active workspace. The order in which values are associated
with names is described in Programmer's Guide: Defined Functions &Operators.

Chapter 4: Error Messages 253

warning unmatched brackets
This report is given after adding or editing a function line in definition mode when it
is found that there is not an opening bracket to match a closing bracket, or vice versa,
in an expression. This is a warning message only. The function line will be accep-
ted even though syntactically incorrect.

Example
[3] A[;B[;2]←0
warning unmatched brackets
[4]

warning unmatched parentheses
This report is given after adding or editing a function line in definition mode when it
is found that there is not an opening parenthesis to match a closing parenthesis, or
vice versa, in an expression. This is a warning message only. The function line will
be accepted even though syntactically incorrect.

Example
[4] X←(E>2)^E<10)⌿A
warning unmatched parentheses
[5]

was name
This report is given when the system command)WSID is used with a parameter spe-
cifying the name of a workspace. The message identifies the former name of the
workspace. If the workspace was not named, the given report is was CLEAR WS.

Example
)WSID TEMP

was UTILITY

Chapter 4: Error Messages 254

WS FULL 1

This report is given when there is insufficient workspace in which to perform an
operation. Workspace available is identified by the system constant ⎕WA.

The maximumworkspace size allowed is defined by the environment variable
MAXWS. See User Guide for details.

Example
⎕WA⍴1.2

WS FULL
⎕WA⍴1.2
^

ws not found
This report is given when a workspace named by the system commands)LOAD,)
COPY or)PCOPY does not exist as a file, or when the user does not have read access
authorisation for the file.

Examples
)LOAD NOWS

ws not found

)COPY NOWS A FOO X
ws not found

ws too large
This report is given when:

l the user attempts to)LOAD a workspace that needs a greater work area than
the maximum that the user is currently permitted.

l the user attempts to)COPY or)PCOPY from a workspace that would
require a greater work area than the user is currently permitted if the work-
space were to be loaded.

The maximumwork area permitted is set using the environment variable MAXWS.

Chapter 4: Error Messages 255

Operating System Error Messages
There follows a numerically sorted list of error messages emanating from a typical
operating system and reported through Dyalog APL.

FILE ERROR 1 Not owner 101

This report is given when an attempt is made to modify a file in a way which is for-
bidden except to the owner or super-user, or in some instances only to a super-user.

FILE ERROR 2 No such file
This report is given when a file (which should exist) does not exist, or when a dir-
ectory in a path name does not exist.

FILE ERROR 5 I O error 105

This report is given when a physical I/O error occurred whilst reading from or writing
to a device, indicating a hardware fault on the device being accessed.

FILE ERROR 6 No such device
This report is given when a device does not exist or the device is addressed beyond
its limits. Examples are a tape which has not been mounted or a tape which is being
accessed beyond the end of the tape.

FILE ERROR 13 Permission denied 113

This report is given when an attempt is made to access a file in a way forbidden to the
account.

FILE ERROR 20 Not a directory 120

This report is given when the request assumes that a directory name is required but
the name specifies a file or is not a legal name.

Chapter 4: Error Messages 256

FILE ERROR 21 Is a directory 121

This report is given when an attempt is made to write into a directory.

FILE ERROR 23 File table overflow 123

This report is given when the system limit on the number of open files is full and a
request is made to open another file. It is necessary to wait until the number of open
files is reduced. If this error occurs frequently, the system limit should be increased.

FILE ERROR 24 Too many open
This report is given when the task limit on the number of open files is exceeded. It
may occur when an APL session is started or when a shell command is issued to start
an external process through the system command ⎕SH. It is necessary to reduce the
number of open files. It may be necessary to increase the limit on the number of open
files to overcome the problem.

FILE ERROR 26 Text file busy 126

This report is given when an attempt is made to write a file which is a load module
currently in use. This situation could occur on assigning a value to an external vari-
able whose associated external file name conflicts with an existing load module's
name.

FILE ERROR 27 File too large 127

This report is given when a write to a file would cause the system limit on file size to
be exceeded.

FILE ERROR 28 No space left
This report is given when a write to a file would exceed the capacity of the device
containing the file.

Chapter 4: Error Messages 257

FILE ERROR 30 Read only file
This report is given when an attempt is made to write to a device which can only be
read from. This would occur with a write-protected tape.

Chapter 4: Error Messages 258

Symbolic Index 259

Symbolic Index

+
See add,
conjugate,
plus

-
See minus,
negate,
subtract

×
See multiply,
signum, times

÷
See divide,
reciprocal

⌹
See matrix
divide, matrix
inverse

|
See
magnitude,
residue

⌈
See ceiling,
maximum

⌊
See floor,
minimum

*
See
exponential,
power

⍟

See
logarithm,
natural
logarithm

< See less
> See greater

≤
See less or
equal

≥
See greater or
equal

= See equal
≠ See not equal

≡
See depth,
match

≢
See not
match, tally

~
See
excluding,
not, without

^
See and, caret
pointer

∨ See or
⍲ See nand
⍱ See nor

∪
See union,
unique

∩
See
intersection

⊂

See enclose,
partition,
partitioned
enclose

⊃
See disclose,
mix, pick

? See deal, roll

!
See binomial,
factorial

⍋ See grade up

⍒
See grade
down

⍎ See execute
⍕ See format
⊥ See decode
⊤ See encode
⊣ See same, left

⊢
See same,
right

○
See circular,
pi times

Symbolic Index 260

⍉ See transpose

⌽
See reverse,
rotate

⊖
See reverse
first, rotate
first

,
See catenate,
laminate,
ravel

⍪
See catenate
first, table

⍳
See index
generator,
index of

⍴
See reshape,
shape

∊
See enlist,
membership,
type

⍷ See find

↑
See disclose,
mix, take

↓ See drop, split

←
See
assignment

→
See abort,
branch

.

See name
separator,
decimal point,
inner product

∘.
See outer
product

⍤ See rank
∘ See compose

,
See compress,
replicate,
reduce

⌿
See replicate
first, reduce
first

\
See expand,
scan

⍀
See expand
first, scan first

¨ See each
⍨ See commute
& See spawn

⍣
See power
operator

⍠ See variant
⌸ See key
⌶ See i-beam
⍬ See zilde

¯
See negative
sign

_
See underbar
character

∆
See delta
character

⍙
See delta-
underbar
character

'' See quotes

⌷
See index,
axis

[]
See indexing,
axis

()
See
parentheses

{} See braces

⍺
See left
argument

⍺⍺
See left
operand

⍵
See right
argument

⍵⍵
See right
operand

#
See Root
object

Symbolic Index 261

##
See parent
object

⋄
See statement
separator

⍝
See comment
symbol

∇
See function
self, del editor

∇∇
See operator
self

;

See name
separator,
array
separator

:
See label
colon

:AndIf
See and if
condition

:Access
See access
statement

:Case
See case
qualifier

:CaseList
See caselist
qualifier

:Class
See class
statement

:Continue
See continue
branch

:Else
See else
qualifier

:ElseIf
See else-if
condition

:End
See general
end control

:EndClass
See endclass
statement

:EndFor
See end-for
control

:EndHold
See end-hold
control

:EndIf
See end-if
control

:EndNamespace
See
endnamespace

:EndProperty
See
endproperty
statement

:EndRepeat
See end-
repeat control

:EndSelect
See end-select
control

:EndTrap
See end-trap
control

:EndWhile
See end-while
control

:EndWith
See end-with
control

:Field
See field
statement

:For
See for
statement

:GoTo
See go-to
branch

:Hold
See hold
statement

:Include
See include
statement

:If
See if
statement

:Implements
See
implements
statement

:In See in control

:InEach
See ineach
control

:Interface
See interface
statement

:Leave
See leave
branch

:Namespace
See
namespace
statement

:OrIf
See or-if
condition

Symbolic Index 262

:Property
See property
statement

:Repeat
See repeat
statement

:Return
See return
branch

:Section
See section
statement

:Select
See select
statement

:Trap
See trap
statement

:Until
See until
condition

:While
See while
statement

:With
See with
statement

⍞
See quote-
quad,
character I\O

⎕
See quad,
evaluated I\O

⎕Á
See
underscored
alphabet

⎕A See alphabet

⎕AI
See account
information

⎕AN
See account
name

⎕ARBIN
See arbitrary
input

⎕ARBOUT
See arbitrary
output

⎕AT See attributes

⎕AV
See atomic
vector

⎕AVU
See atomic
vector -
unicode

⎕BASE See base class

⎕CLASS See class

⎕CLEAR
See clear
workspace

⎕CMD

See execute
Windows
command,
start AP

⎕CR
See canonical
representation

⎕CS
See change
space

⎕CT
See
comparison
tolerance

⎕CY
See copy
workspace

⎕D See digits

⎕DCT
See decimal
comparison
tolerance

⎕DF
See display
form

⎕DIV
See division
method

⎕DL See delay

⎕DM
See
diagnostic
message

⎕DQ
See dequeue
events

⎕DR
See data
representation

⎕ED
See edit
object

⎕EM
See event
message

⎕EN
See event
number

⎕EX
See expunge
object

⎕EXCEPTION See exception

Symbolic Index 263

⎕EXPORT
See export
object

⎕FAPPEND
See file
append
component

⎕FAVAIL
See file
available

⎕FCHK
See file check
and repair

⎕FCOPY See file copy
⎕FCREATE See file create

⎕FDROP
See file drop
component

⎕FERASE See file erase
⎕FHOLD See file hold

⎕FHIST
See file
history

⎕FIX See fix script

⎕FLIB
See file
library

⎕FMT See format
⎕FNAMES See file names

⎕FNUMS
See file
numbers

⎕FPROPS
See file
properties

⎕FR
See floating-
point
representation

⎕FRDAC
See file read
access matrix

⎕FRDCI
See file read
component
information

⎕FREAD
See file read
component

⎕FRENAME
See file
rename

⎕FREPLACE
See file
replace
component

⎕FRESIZE See file resize
⎕FSIZE See file size

⎕FSTAC
See file set
access matrix

⎕FSTIE
See file share
tie

⎕FTIE See file tie
⎕FUNTIE See file untie

⎕FX
See fix
definition

⎕INSTANCES See instances

⎕IO
See index
origin

⎕KL See key label

⎕LC
See line
counter

⎕LOAD
See load
workspace

⎕LOCK
See lock
definition

⎕LX
See latent
expression

⎕MAP See map file

⎕ML
See migration
level

⎕MONITOR See monitor

⎕NA
See name
association

⎕NAPPEND
See native file
append

⎕NC
See name
class

⎕NCREATE
See native file
create

⎕NERASE
See native file
erase

⎕NEW
See new
instance

⎕NL See name list
⎕NLOCK See native file

Symbolic Index 264

lock

⎕NNAMES
See native file
names

⎕NNUMS
See native file
numbers

⎕NQ
See enqueue
event

⎕NR
See nested
representation

⎕NREAD
See native file
read

⎕NRENAME
See native file
rename

⎕NREPLACE
See native file
replace

⎕NRESIZE
See native file
resize

⎕NS
See
namespace

⎕NSI
See
namespace
indicator

⎕NSIZE
See native file
size

⎕NTIE
See native file
tie

⎕NULL See null item

⎕NUNTIE
See native file
untie

⎕NXLATE
See native file
translate

⎕OFF
See sign off
APL

⎕OPT See variant

⎕OR
See object
representation

⎕PATH
See search
path

⎕PFKEY
See program
function key

⎕PP See print

precision

⎕PROFILE
See profile
application

⎕PW
See print
width

⎕R See replace

⎕REFS
See cross
references

⎕RL
See random
link

⎕RSI
See space
indicator

⎕RTL
See response
time limit

⎕S See search

⎕SAVE
See save
workspace

⎕SD
See screen
dimensions

⎕SE
See session
namespace

⎕SH

See execute
shell
command,
start AP

⎕SHADOW
See shadow
name

⎕SI
See state
indicator

⎕SIGNAL
See signal
event

⎕SIZE
See size of
object

⎕SM
See screen
map

⎕SR
See screen
read

⎕SRC See source

⎕STACK
See state
indicator
stack

Symbolic Index 265

⎕STATE
See state of
object

⎕STOP
See stop
control

⎕SVC
See shared
variable
control

⎕SVO
See shared
variable offer

⎕SVQ
See shared
variable query

⎕SVR
See shared
variable
retract

⎕SVS
See shared
variable state

⎕TC
See terminal
control

⎕TCNUMS
See thread
child numbers

⎕TGET
See get
tokens

⎕THIS See this space

⎕TID
See thread
identity

⎕TKILL
See thread
kill

⎕TNAME
See thread
name

⎕TNUMS
See thread
numbers

⎕TPOOL
See token
pool

⎕TPUT
See put
tokens

⎕TRACE
See trace
control

⎕TRAP See trap event

⎕TREQ
See token
requests

⎕TS
See time
stamp

⎕TSYNC
See threads
synchronise

⎕UCS
See unicode
convert

⎕USING
See using
path

⎕VFI
See verify and
fix input

⎕VR
See vector
representation

⎕WA
See
workspace
available

⎕WC
See window
create object

⎕WG
See window
get property

⎕WN
See window
child names

⎕WS
See window
set property

⎕WSID
See
workspace
identification

⎕WX
See window
expose names

⎕XML
See xml
convert

⎕XSI
See extended
state indicator

⎕XT
See external
variable

)CLASSES
See list
classes

)CLEAR
See clear
workspace

)CMD See command

)CONTINUE
See continue
off

)COPY
See copy
workspace

)CS See change

Symbolic Index 266

space

)DROP
See drop
workspace

)ED
See edit
object

)ERASE
See erase
object

)EVENTS See list events

)FNS
See list
functions

)HOLDS
See held
tokens

)LIB
See
workspace
library

)LOAD
See load
workspace

)METHODS
See list
methods

)NS
See
namespace

)OBJECTS
See list
objects

)OBS
See list
objects

)OFF
See sign off
APL

)OPS
See list
operators

)PCOPY
See protected
copy

)PROPS
See list
properties

)RESET
See reset state
indicator

)SAVE
See save
workspace

)SH
See shell
command

)SI
See state
indicator

)SINL
See state
indicator
name

)TID
See thread
identity

)VARS
See list
variables

)WSID
See
workspace
identity

)XLOAD
See quiet-load
workspace

Index 267

Index

A

access statement 80, 86, 172, 217
Access Statement 213
ambivalent functions 17, 74
and-if condition 84
APL

arrays 2
component files 70
error messages 232
expressions 16
functions 17
line editor 19, 136
operators 20
quotes 4
statements 75

arguments 73
arguments of functions 17
array expressions 16
arrays 2

depth of 2
display of 9
enclosed 5
matrix 2
multi-dimensional 2
of namespace references 48
rank of 2
scalar 2
shape of 2
type of 3
vector 2

assignment
distributed 50
function 19

atomic vector - unicode 250
atop 24
attribute statement 81, 86, 212
auxiliary processors 70

B

bad ws 232
base class 145, 148, 210
base constructor 158
binary integer decimal 36
binding strength 22
body

of function 18
of operator 21, 73

braces 18
branch arrow 106
branch statements

branch 106
continue 107
goto 106
leave 106
return 106

C

callback functions run as threads 56
cannot create name 232
canonical representation of operations 73
case-list qualifier 84
case qualifier clause 96
cells 14
character arrays 4
characters 4
circular functions 31
class statement 210
classes

base class 145, 148, 210
constructors 149-150, 156, 158, 161
defining 146
derived from .Net Type 148
derived fromGUI 149
destructor 156, 163
editing 147
fields 166-167, 215
including namespaces 192
inheritance 145, 148
instances 145, 149, 163
introduction 145
members 166
methods 166, 172

Index 268

properties 166, 176, 217
script 146
using statement 211

clear ws 232
colon character 77
comments 73, 75
complex numbers 4, 29

circular functions 31
floating-point representation 35

component files 70
ComponentFile Class example 183
composition operator

form II 118
form III 118

conditional statements
if (condition) 87
until 92
while 90

constructors
base 158
introduction 150
monadic 161
niladic 154, 160
overloading 151

continue branch statements 107
control qualifiers

case 96
control structures 84

for 94
hold 99
if (condition) 87
repeat 92
select 96
trap 103
while 90
with 98

control words 94
copy incomplete 232
curly brackets 18

D

DEADLOCK 232
decimal comparison tolerance 36
decimal numbers 3
decimal point 3
default constructor 154, 156

default property 182
defined functions 73
defined operations 73
defined operators 73
defining function 18
defining operators 21
definition mode 136
defn error 233
del editor 136
delta-underbar character 6
delta character 6
densely packed decimal 36
depth of arrays 2
derived functions 20, 73
destructor 156, 163
dfns 122, 135

default left arguments 124
error guards 128
guards 125
local assignment of 123
multi-line 123, 135
recursion 131
result of 123
static name scope 126
tail calls 126, 131

diamond symbol 75
displaying arrays 9, 12
displaying assigned functions 19
distributed functions 52
DOMAIN ERROR 234
dops 122, 130-131
dyadic functions 17
dyadic operations 74
dyadic operators 20
dyadic primitive functions

power 30
dynamic localisation 43
dynamic name scope 126

E

editing directives 139
else-if condition 84
else qualifier 84
empty vectors 4
enclosed arrays 5
enclosed elements 5

Index 269

end-for control 85
end-hold control 85
end-if control 85
end-repeat control 85
end-select control 85
end-trap control 85
end-while control 85
end-with control 85
end control 85
endproperty statement 217
endsection statement 107
EOF INTERRUPT 234
error guards 128
error messages 223
error trapping control structures 103
Euler identity 117
evaluation of namespace references 42
exception 234
expressions 75

array expressions 16
function expressions 16

external functions 70
external variables 69

F

FIELD ... ERROR 235
field statement 215
fields 166-167, 215

initialising 168
private 169
public 167
shared 170
trigger 171

FILE ACCESS ERROR 237
FILE ACCESS ERROR ... 237
FILE COMPONENT DAMAGED 237
FILE DAMAGED 238
FILE FULL 238
FILE INDEX ERROR 238
FILE NAME ERROR 238
FILE NAME QUOTA USED UP 239
FILE SYSTEM ERROR 239
FILE SYSTEM NO SPACE 239
FILE SYSTEM NOT AVAILABLE 239
FILE SYSTEM TIES USED UP 239
FILE TIE ERROR 240

FILE TIE QUOTA USED UP 241
FILE TIED 240
FILE TIED REMOTELY 240
fill item 13
fix script 146
floating-point representation 33-34, 36

complex numbers 35
for statements 94
fork 24
FORMAT ERROR 241
FORMAT FILE ACCESS ERROR 236
FORMAT FILE ERROR 236
FULL-SCREEN ERROR 235
function assignment 19
function body 18
function display 19
function header 18
function self-reference 131
function train 24
functions 17

ambivalent 17, 74
arguments of 17
defined 73
derived 73
dfns 122
distributed 52
dyadic 17
external 70
left argument 17
model syntax of 74
monadic 17
niladic 17
right argument 17
scope of 17

G

global names 76
goto branch statements 106
guards 125

H

hash tables 118
header

of function 18
of operator 21, 73

Index 270

header lines 76
high-priority callback 57
high minus symbol 3
HOLD ERROR 241
hold statements 99
home namespace 54

I

idiom 111
idiom list 111
idiom recognition 111
idioms 111
if statements 87
implements statement

constructor 158
destructor 163
method 190
trigger 108

in control word 94
include statement 192
incorrect command 242
INDEX ERROR 242
ineach control word 94-95
inheritance 145, 148
initialising fields 168
instances 149, 163

empty arrays of 155-156
integer numbers 3
interface statement 209-210
interfaces 189-190, 210
INTERNAL ERROR 243
INTERRUPT 243

K

KEY CODE RANK ERROR 236
KEY CODE TYPE ERROR 236
KEY CODE UNRECOGNISED 236
keyed property 185, 188

L

labels 75-76
lamp symbol 75
leave branch statements 106

left argument of function 17
left operand of operators 20
legal names 6
LENGTH ERROR 244
levels of migration towards APL2 71
levels of suspension 120
LIMIT ERROR 244
line editor 136, 139

editing directives 139
line numbers 140

line editor, traditional 19
line labels 75
line numbers 140
literals 4
local names 43, 73, 76
localisation 76
locking defined operations 119

M

major cells 14
mantissae 3
matrices 2
methods 166, 172

instance 172, 174
private 172
public 172
shared 172-173
superseding in the base class 175

migration levels 71
monadic functions 17
monadic operations 74
monadic operators 20
multi-dimensional arrays 2

N

name already exists 245
name association 57, 63
name is not a ws 245
name saved date/time 248
name scope rules 58
name separator 73
namelist 78, 151
names

function headers 74
global 76

Index 271

in function headers 78
legal 6
local 43, 73, 76

Namespace 38
namespace does not exist 245
namespace reference 2, 41, 44
namespace script 203
namespace statement 203, 209
namespaces

array expansion 48
distributed assignment 50
distributed functions 52
including in classes 192
Introduction 38
operators 54
reference syntax 40
unnamed 46

negative numbers 3
negative sign 3
nested arrays 5
new instance 149
niladic constructor 154, 156, 160
niladic functions 17
niladic operations 74
NO PIPES 244
NONCE ERROR 244
not copied name 246
not found name 246
not saved this ws is name 246
notation

keys 71
vector 7

numbered
property 182

numbered property 181
numbers 3

complex 4
decimals 3
empty vectors 4
integers 3
mantissae 3
negative 3

numeric arrays 3

O

operands 20, 73

operations
model syntax 74
pendent 120
suspended 120
valence of 74

operators 20
body 21
derived functions 20
dop 130
dop self-reference 131
dops 122
dyadic 20
header 21
in namespaces 54
model syntax of 74
monadic 20
operands 20
scope of 20

or-if condition 84
overridable 172, 175, 213
override 175, 213

P

parallel execution 28
parent object 40
pendent operations 120
Penguin Class example 190
power function 30
PROCESSOR TABLE FULL 247
properties 166, 176

default 182, 217
instance 177-178, 217
keyed 176, 185, 188, 217, 220
numbered 176, 180-182, 217, 219-220
private 217
properetyget function 180
propertyarguments class 178, 180, 185,

218
propertyget function 219-220
propertyset function 180
propertyshape function 180, 221
public 217
shared 179, 217
simple 176-179, 217, 219-220

property statement 217
propertyarguments class 178, 180, 185, 218

Index 272

propertyget function 180, 219-220
propertyset function 180
propertyshape function 180
prototype 13

Q

quote character 4

R

RANK ERROR 248
rank of arrays 2
recursion 131
repeat statements 92
RESIZE 248
return branch statements 106
right argument of function 17
right operand of operators 20
Root object 40

S

samplesdirectory 135
scalar arrays 2
scalars 2
scope of functions 17
scope of operators 20
search functions 118
section statement 107
select statements 96
self-reference

functions 131
operators 131

semi-colon sparator 73
shape of arrays 2
shy results 74, 125
signal event 264
specification 6

of variables 6
standard error action 224
state indicator 120
statement separators 75
statements 75

branch statements 106
conditional statements 87

static localisation 43
static name scope 126
strand notation 7
structuring of arrays 8
subarrays 14
suspended operations 120
suspension

levels of 120
switching threads 57
synchronising threads 64
SYNTAX ERROR 249
syntax of operations 74
sys error number 250
system errors 250

T

tail calls 126, 131
thread switching 57
threads 55, 59

debugging 67
external functions 63
latch example 66
paused and suspended 68
semaphore example 65
synchronise 64

threads and external functions 63
threads and niladic functions 62
TIMEOUT 250
tokens

introduction 64
latch example 66
semaphore example 65

too many names 251
train 24
TRANSLATION ERROR 250
TRAP ERROR 250
trap statements 103
trigger fields 171
triggerarguments class 108
triggers 108
types of arrays 3

U

underbar character 6
unnamed namespaces 46

Index 273

Unscripted Function 205
until conditional 92
user-defined operations 73
using statement 211

V

valence of functions 17
valence of operations 74
valency 17
valid names 6
VALUE ERROR 251
variables

external 69
specification of 6

vector arrays 2
vector notation 7
vectors 2

empty numeric 4
visible names 76

W

warning duplicate label 251
warning duplicate name 252
warning label name present in line 0 252
warning pendent operation 252
warning unmatched brackets 253
warning unmatched parentheses 253
while statements 90
with statements 98
Workspaces 1
WS FULL 254
ws not found 254
ws too large 254

Z

zilde constant 4

274 Dyalog APL/W Programmer's Guide

	Chapter 1: Introduction
	Workspaces
	Arrays
	Legal Names
	Specification of Variables
	Vector Notation
	Structuring of Arrays
	Display of Arrays
	Prototypes and Fill Items
	Cells and Sub-arrays
	Expressions
	Functions
	Operators
	Binding Strength
	Function Trains
	Parallel Execution
	Complex Numbers
	128 Bit Decimal Floating-Point Support
	Namespaces
	Threads
	External Variables
	Component Files
	Auxiliary Processors
	Key to Notation
	Migration Level

	Chapter 2: Defined Functions & Operators
	Canonical Representation
	Model Syntax
	Statements
	Global & Local Names
	Namelists
	Function Declaration Statements
	Access Statement
	Attribute Statement
	Implements Statement
	Signature Statement

	Control Structures
	Access Statement
	Attribute Statement
	If Statement
	While Statement
	Repeat Statement
	For Statement
	Select Statement
	With Statement
	Hold Statement
	Trap Statement
	GoTo Statement
	Return Statement
	Leave Statement
	Continue Statement
	Section Statement

	Triggers
	Idiom Recognition
	Search Functions and Hash Tables
	Locked Functions & Operators
	The State Indicator
	Dfns & Dops
	APL Line Editor

	Chapter 3: Object Oriented Programing
	Introducing Classes
	Constructors
	Destructors
	Class Members
	Fields
	Methods
	Properties
	Interfaces
	Including Namespaces in Classes
	Nested Classes
	Namespace Scripts
	Class Declaration Statements
	:Field Statement
	:Property Section
	PropertyGet Function
	PropertySet Function
	PropertyShape Function

	Chapter 4: Error Messages
	Introduction
	Standard Error Action
	APL Errors
	Operating System Error Messages
	Windows Operating System Error Messages
	APL Error Messages
	bad ws
	cannot create name
	clear ws
	copy incomplete
	DEADLOCK
	defn error
	DOMAIN ERROR
	EOF INTERRUPT
	EXCEPTION
	FIELD CONTENTS RANK ERROR
	FIELD CONTENTS TOO MANY COLUMNS
	FIELD POSITION ERROR
	FIELD CONTENTS TYPE MISMATCH
	FIELD TYPE BEHAVIOUR UNRECOGNISED
	FIELD ATTRIBUTES RANK ERROR
	FIELD ATTRIBUTES LENGTH ERROR
	FULL SCREEN ERROR
	KEY CODE UNRECOGNISED
	KEY CODE RANK ERROR
	KEY CODE TYPE ERROR
	FORMAT FILE ACCESS ERROR
	FORMAT FILE ERROR
	FILE ACCESS ERROR
	FILE ACCESS ERROR CONVERTING
	FILE COMPONENT DAMAGED
	FILE DAMAGED
	FILE FULL
	FILE INDEX ERROR
	FILE NAME ERROR
	FILE NAME QUOTA USED UP
	FILE SYSTEM ERROR
	FILE SYSTEM NO SPACE
	FILE SYSTEM NOT AVAILABLE
	FILE SYSTEM TIES USED UP
	FILE TIE ERROR
	FILE TIED
	FILE TIED REMOTELY
	FILE TIE QUOTA USED UP
	FORMAT ERROR
	HOLD ERROR
	incorrect command
	INDEX ERROR
	INTERNAL ERROR
	INTERRUPT
	is name
	LENGTH ERROR
	LIMIT ERROR
	NONCE ERROR
	NO PIPES
	name is not a ws
	Name already exists
	Namespace does not exist
	not copied name
	not found name
	not saved this ws is name
	PROCESSOR TABLE FULL
	RANK ERROR
	RESIZE
	name saved date time
	SYNTAX ERROR
	sys error number
	TIMEOUT
	TRANSLATION ERROR
	TRAP ERROR
	too many names
	VALUE ERROR
	warning duplicate label
	warning duplicate name
	warning pendent operation
	warning label name present
	warning unmatched brackets
	warning unmatched parentheses
	was name
	WS FULL
	ws not found
	ws too large

	Operating System Error Messages
	FILE ERROR 1 Not owner
	FILE ERROR 2 No such file
	FILE ERROR 5 I O error
	FILE ERROR 6 No such device
	FILE ERROR 13 Permission denied
	FILE ERROR 20 Not a directory
	FILE ERROR 21 Is a directory
	FILE ERROR 23 File table overflow
	FILE ERROR 24 Too many open
	FILE ERROR 26 Text file busy
	FILE ERROR 27 File too large
	FILE ERROR 28 No space left
	FILE ERROR 30 Read only file

	Symbolic Index
	Index

