Dyalog" for Windows

Interface Guide

Version: 14.0

Dyalog Limited

email: support@dyalog.com

http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2015 by Dyalog Limited

All rights reserved.

Version: 14.0

Revision: 20150302

No part of this publication may be reproduced in any form by any means without the prior written per-

mission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents hereof and specifically
disclaims any implied warranties of merchantability or fitness for any particular purpose. Dyalog Limited

reserves the right to revise this publication without notification.

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The Open Group.

Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

All other trademarks and copyrights are acknowledged.

Contents

Chapter 1:Introduction .. 1
OVCIVICW . .. 1
[070) 417 o 2
Creating ObJeCtS ... oL 8
PrOpeItieS - . L. 11
User Interaction & EVents 17
M ethods .. 24
GUI Objects a8 NamMESPACESttt e 26
Modal Dialog BOXESo 31
Multi-Threading with Objects - . 33
The Co-ordinate System 34
COlOUT .. 36
FOMES . 37
Drag and Drop ... o 38
DU N g . 39
Creating Objectsusing NEW 40
Native Look and Feel ... il 41
Chapter 2: GUITutorial 43
IntrOdUC I ON 43
SOME COMCOPS ... 43
Creating a FOrm L 44
Adding a Fahrenheit Label 45
Adding a Fahrenheit Edit Field ... 46
Adding a Centigrade Label & Edit Field 47
Adding Calculate Buttons 48
Closing the Application Window __ .. 49
Adding a Quit Button ...l 50
The Calculation FUnctions 51
Testing the Application il 52
Making the Enter Key Work .. 53
Introducing a ScrollBar .. L 54
Adding a MenU ..o 55
Running from Desktop 58
Using NEW instead of WOC . 60
Temperature Converter Class L 62
Dual Class Example .. 65

Chapter 3: Graphics 69

IntrodUC IO L 69
Drawing Linesl 70
Drawing in a Bitmap ...l 71
Multiple Graphical [tems 72
Unnamed Graphical Objects ... 73
Bitmaps and ICONS .. 74
M etatil S 76
Picture BUttOnS ... 78
USINg COMNS 81
Chapter4: Composite Controls 83
The ToolControl and ToolButton Objects 83
The CoolBar and CoolBand Objects 95
The TabControl and TabButton Objects e, 104
The StatusBar Object L 114
Chapter 5: Hints and Tips L 119
Using Hints ... 119
USINg TaPS oo 122
Hints and Tips Combined 123
Chapter 6: Usingthe Grid Object 125
Defining Overall Appearance o oo 126
Row and Column Titles 127
Displaying and Editing Values in Grid Cells 129
Specifying Individual Cell Attributes 134
Drawing Graphics on a Grid 138
Controlling User Input ... 141
TreeView Feature 145
Grid COMMENTS L 150
Chapter 7: Multiple-Document (MDI) Applications 153
M DI BehavioUr ... 154
Menus in MDI Applications 156
Defining a Window Menu 157
Arranging Child Forms and Icons 158
Chapter 8: DoCKINg ... 159
IntrodUCtiON _ il 159
Docking EVents o 160
Docking a Form inside another 162
Docking a Forminto a CoolBar 167

Undocking a SubForm ora CoolBand 169

Docking and Undocking a ToolControl 170
Native Look and Feel 174
Chapter 9: OLE Automation ClientandOLE Controls 175
IntrodUCtion ... 175
Using an OLE Server 176
Loading an ActiveX Control 176
Type Information 177
M ethods ... 186
PrOP e tieS il 190
BV Ot 192
Using the Microsoft Jet Database Engine 193
Using OLE Objects without Type Information 195
COlleCtioNS ... 197
NUll Values ... 198
Additional Interfaces 199
Writing Classes based on OLEClient 200
Chapter 10: OLE Automation Server 201
IntrodUCtiON _ il 201
In-process OLE SETVETS et e e e e e e e e 204
Out-of-process OLE SeIVers 206
The LOAN WoOrKspace oo 209
Implementing an Object Hierarchy 219
The CFILES WOrKSpaceo oo, 220
Configuring an out-of-process OLEServer for DCOM 230
Calling an OLE Function Asynchronously 234
Chapter 11: Writing ActiveX ControlsinDyalog 239
OV OTVIOW . 240
The Dual Control Tutorial ... L 244
Chapter12: Shared Variables (DDE) 269
Introduction to DDE 269
Shared Variable Principles 270
APL and DDE in Practice 275
State and Access Control 278
Example: Communication Between APLs 284
Example : Excel asthe Server 285
Example : Excel asthe Client 287
Example : APL as Compute Server for Excel 288
Restrictions & Limitations 290

Chapter 1: Introduction 1

Chapter 1:

Introduction

Overview

This manual describes various interfaces between Dyalog APL and Windows.

Chapter 1 introduces the concepts of the Dyalog APL Graphical User Interface (GUI)
and describes, in outline, how the system works.

Chapter 2 contains a tutorial which takes you step-by-step through the implementation
ofa simple GUI application.

Chapters 3 explains how to draw graphics using primitive graphical objects such as
Poly, Bitmap and Metafile objects.

Chapter 4 describes how to use toolbars, tab controls and status bars.

Chapter 6 covers the important Grid object that provides a spreadsheet interface for dis-
playing and editing tables of data and

Chapters 7 and 8 describe the Multiple Document Interface (MDI) and docking. Fur-
ther GUI material is provided in the WTUTOR, WTUTOR95 and WDESIGN work-
spaces.

Chapters 9-12 describe the various ways in which Dyalog APL may communicate with
other Windows applications using Component Object Model (COM) interfaces. These
interfaces allow APL to act as an OLE Automation server and client, and allow you to
write ActiveX controls in Dyalog APL.

Chapter 13 describes the DDE interface which is implemented using (traditional) APL
shared variables. However, please note that DDE has all but been replaced by COM,
and is no longer promoted as a major technology by Microsoft.

Chapter 1: Introduction 2

Concepts

The Dyalog APL GUI is based upon four important concepts; objects, properties,
events and methods.

Objects

Objects are instances of classes that contain information and provide functionality.
Most Dyalog APL objects are GUI objects that may be displayed on the screen and
with which you can interact. An example of an object is a push-button (an instance of
class Button) which you may press to cause the program to take a particular action.
Objects are defined in hierarchies.

Objects are also namespaces and may contain functions, variables, and indeed other
namespaces. This allows you to store the code and data that is required by a given
object within that object. Functions and variables stored in an object are hidden and
protected from conflicts with functions and variables in the outside workspace and
with those in other objects.

Properties

Each object has an associated set of properties which describe how it looks and
behaves. For example, a Button has a property called Caption which defines the char-
acter string to be displayed in it. It also has a property called Type which may be Push
(the button appears to move in and out when it is pressed), Radio (the button has two
states and may be toggled on and off); and so forth.

Events

During interaction with the user, an object is capable of generating events. There are
essentially two types of event, raw events and object events. Raw events are typically
associated with a particular hardware operation. Pressing a mouse button, pressing a
key on the keyboard, or moving the mouse pointer are examples of raw events. An
object event is generated by some action that is specific to the object in question, but
which may typically be achieved by a variety of hardware operations.

An example is the Select event. For a Button object, this event is generated when the
user presses the Button. In MS-Windows, this can be done in several ways. Firstly, the
user may click the left mouse button over the object. Secondly, under certain cir-
cumstances, the Select event can be generated when the user presses the Enter key. Fin-
ally, the event will occur if the user presses a "short-cut" (mnemonic) key that is
associated with the Button.

Chapter 1: Introduction 3

Methods

Methods are effectively functions that an object provides; they are things that you may
invoke to make the object do something for you. In Dyalog APL, the distinction
between methods and events is tenuous, because events also make objects perform
actions and you may generate events under program control. For example, a Scroll
event is generated by a scrollbar when the user moves the thumb. Conversely, you can
make a scrollbar scroll by generating a Scroll event. Nevertheless, the concept of a
method is useful to describe functions that can only be invoked by a program and are
not directly accessible to the user.

Chapter 1: Introduction

Objects

The following objects are supported.

System Objects

Root system-level object

Printer for hard-copy output

Clipboard provides access to Windows clipboard
Container Objects

CoolBand represents a band in a CoolBar

CoolBar a container for CoolBand objects

Form top-level Window

MDIClient container for MDI windows

SubForm acts as an MDI window or a constrained Form
Group a frame for grouping Buttons and other objects
Static a frame for drawing and clipping graphics
StatusBar ribbon status bar

TabBar contains TabBtns (tabs)

TabControl contains TabButtons (tabs)

ToolBar ribbon tool bar

ToolControl standard Windows tool control
PropertySheet contains PropertyPages

PropertyPage tabbed or paged container for other controls
Splitter divides a container into panes

Menu

MenuBar pull-down menu bar

Menu pop-up menu

Menultem selects an option or action

Separator separator between items

Chapter 1: Introduction

Action

Button selects an option

ToolButton performs an action or selects an option
TabBtn selects a tabbed SubForm

TabButton selects a tabbed SubForm

Scroll scroll bar

UpDown spin buttons

Locator graphical (positional) input device
Timer generates events at regular intervals
Information

Label displays static text

StatusField displays status information

MsgBox displays a message box

TipField displays pop-up context sensitive help
ProgressBar displays the progress of a lengthy operation

Input & Selection

Calendar displays a month calendar control

Grid displays a data matrix as a spreadsheet
Edit text input field

RichEdit text input with word-processing capabilities
Spinner input field with spin buttons

List for selecting an item

ListView displays a collection of items for selection
Combo edit field with selectabe list of choices
TreeView displays a hierarchical collection of items
TrackBar a slider control for analogue input/output
FileBox prompts user to select a file

Chapter 1: Introduction

Resource

Font loads a font

Bitmap defines a bitmap

Icon defines an icon

ImageList defines a collection of bitmaps or icons
Metafile loads a Windows Metafile

Cursor defines a cursor

Graphical Output

Circle draws a circle

Ellipse draws an ellipse

Marker draws a series of polymarkers

Poly draws lines

Rect draws rectangles

Image displays Bitmaps, Icons and Metafiles

Text draws graphical text

Miscellaneous

ActiveXContainer reprfirsents the application hosting a Dyalog APL
ActiveXControl

ActiveXControl | represents an ActiveX control written in Dyalog APL

NetClient provides access to .NET Classes

NetControl instantiates a .NET Control.

NetType exports an APL namespace as a Net Class

OCXClass provides access to OLE Custom Controls

OLEClient provides access to OLE Automation objects

OLEServer enables APL to act as an OLE Automation server

SM specifies a window for [JSM(character mode interface)

TCPSocket provides an interface to TCP/IP sockets

Chapter 1: Introduction 7

Implementation Overview

The Dyalog APL GUI is implemented by the following system functions :

0bQ |Dequeue processes user actions, invoking callbacks
ONQ |Enqueue generates an event under program control
OwC | Create Object creates new object with specified properties

awe

Get Properties

gets values of properties from an object

OWN

Object Names

reports names of all children of an object

aws

Set Properties

sets values of properties for an object

GUI Objects are a special type of namespace and have a name class of 9. They may
therefore be managed like any other workspace object. This means that they can be loc-
alised in function headers and erased with JEX. GUI objects are saved with your work-
space and reappear when it is loaded or copied.

Chapter 1: Introduction 8

Creating Objects

You create objects using [OWC. Its left argument is a character vector that specifies the
name of the object to be created. Its right argument specifies the object's Type and vari-
ous other properties. Its (shy) result is the full pathname of the newly created object.

The following statement creates a Form called ' f1' with the title "A Default Form"
and with default size, position, etc.

'f1' OWC 'Form' 'A Default Form'

r A Default Form g@“

Naming Objects

Objects are created in a hierarchy. The Form we have just created is a "top-level" object
to which we can attach other child objects, like buttons, scrollbars and so forth. You
can create any number of top-level objects like this, up to a limit imposed by MS-Win-
dows and your system configuration.

For reasons which will become apparent later, there is a single Root object whose name
is '. "' (dot)or '"#'.1t acts a bit like the root directory in a Windows system file struc-
ture, and is the implied parent of all the top-level objects you create.

Chapter 1: Introduction 9

When you create a top-level object, you don't actually have to specify that it is a child
of'the Root; this is implied. For any other object, you specify its position in the hier-

nn

archy by including the names of'its "parent", "grand-parent", and so forth in its name.
Object names are specified in the form:

‘grandparent.parent.child’

nn

where the "." character is used to separate the individual parts of the name. There is no
explicit limit to the depth ofthe object hierarchy; although in practice it is limited by
the rules governing which objects may be children of which others.

Complete object names must be unique, although you could use the same sub-name for
two objects that have different parents. For example, it would be valid to have
‘forml.btnl'and 'form2.btnl"'.

Apart from the "." separator, names may include any of the characters A-Z, a-z, and 0-9.
They are case-sensitive,so 'Formi ' isnot the same name as ' formi .

For graphical objects, it is permissible to omit the last part of the name, although the

parent name must be specified followed by a "." (dot). Further information is given later
in this chapter.

Specifying Properties

The right argument of JWC is a list of properties for the object being created. Apart
from trivial cases, it is always a nested vector. The first item in the list must specify the
object's Type. Other properties take default values and need not always be defined.
Properties are discussed more fully in the next section.

Saving Objects

GUI Objects are namespaces with nameclass 9.2. Like any other namespace they arer
saved in the workspace when it is saved and rebuild when the workspace is re-loaded.
The expression YOBJECTS or[NL 9.2 may be used to report their names. Like other
namespaces, GUI objects may be copied from a saved workspace using) COPY or[ICY.

Chapter 1: Introduction 10

The Object Hierarchy

This example illustrates how an object hierarchy is defined. The following statements
create a Form called 'accounts' which contains a Group called ' type ' and some
Buttons called 'PLAN', 'BUDGET' and 'ACTUAL ‘. The embedded spaces in these
statements are intended only to improve clarity. The numbers refer to the object's pos-
ition within its parent. This will be discussed in detail later.

accounts' OwC 'Form' 'Accounts'
accounts.type' OWC 'Group' 'Account Type'
accounts.type.PLAN' OWC 'Button' 'PLAN' (20 35)
accounts.type.BUDGET' [OWC 'Button' 'BUDGET' (45 30)
accounts.type.ACTUAL' [OWC 'Button' 'ACTUAL' (70 32)

=,

r Accounts g@

Aocount Tepe

PLAM

Schematically, this object structure looks as follows:

__ACTUAL
___accounts___type___BUDGET
__PLAN

Chapter 1: Introduction 11

Properties

Properties may be set using the system functions [JWC and [JWS and their values may be
retrieved using [JWG.

If the system variable [JWX is set to 1, properties may be set using assignment and ref-
erenced by name as if they were variables. This is generally faster and more convenient
than using (OWS and OWG.

Certain properties, in particular the Type property, can only be set using OWC. There is
no obvious rule that determines whether or not a property can only be set by [JWC; it is
a consequence of the Windows APL.

However, any property that can be set by [JWS can be set using assignment and the val-
ues of all properties can be retrieved by direct reference or using OWG.

Setting Properties with Assignment

You may set the value of a property using the assignment arrow «. For example:
‘F' OWC 'Form'

The following statement sets the Caption property to the string "Hello World":
F.Caption«<'Hello World'

Strand assignment may be used to set several properties in a single statement:
F.Size F.Posn«(40 50)(10 10)

However, distributed assignment is even more concise:
F.(Size Posn)«(40 50)(10 10)

Normal namespace path rules apply, so the following are all equivalent:
#.F.Caption<'Hello World'
)CS F

Caption«'Hello World'
:With 'F'
Caption<«'Hello World'
Posn«<40 50
Size«10 10

:EndWith

Chapter 1: Introduction 12

Notice however, that used directly in this way, Property names are case-sensitive. The
following expressions assign values to variables in F and have no effect on the Cap-
tion property.

F.caption<'Hello World'

F.CAPTION«'Hello World'

Retrieving property values by reference

Y ou may obtain the value of a property as if it were a variable, by simply referring to
the property name. For example:

F.Caption«<'Hello World'

F.Caption
Hello World

You can retrieve the values of several properties in one statement using strand nota-
tion:

F.Caption F.Posn F.Size
Hello World 40 50 10 10

Although, once again, the use of parentheses is even more concise:

F.(Caption Posn Size)
Hello World 40 50 10 10

Although setting and referencing a Property appears to be no different to setting and ref-
erencing a variable, it is not actually the same thing at all. When you set a Property
(whether by assignment or using JWC or JWS) to a particular value you are making a
request to Windows to do so; there is no guarantee that it will be honoured. For
example, having asked for a Font with face name of "Courier New", you cannot change
its Fixed property to 0, because the Courier New font is always fixed pitch.

'"F'OWC'Font' 'Courier New'

F.Fixed«0
F.Fixed

Chapter 1: Introduction 13

Setting Properties with JWC

Properties may also be set by the right argument of JWC. In these cases, they may be spe-
cified in one of two ways; either by their position in the argument, or by a keyword fol-
lowed by a value. The keyword is a character vector containing the name of the
property. Its value may be any appropriate array. Property names and value keywords
are not case sensitive; thus ' Form' could be spelled ' form', ' FORM', oreven
‘forM'

The Type property, which specifies the type of the object, applies to all objects and is
mandatory. It is therefore the first to be specified in the right argument to [JWC, and is
normally specified without the Type keyword. The value associated with the Type
property is a character vector.

With the exception of Type, all other properties have default values and need only be
specified if you want to override the defaults. For example, the following statements
would give you a default Button in a default Group in a default Form:

‘form' OWC 'Form'
‘form.g' OWC 'Group'
‘form.g.b1' [OWC 'Button’

Properties are specified in a sequence chosen to put the most commonly used ones first.
In practice, this allows you to specify most properties by position, rather than by
keyword/value pairs. For example, the Caption property is deemed to be the "most
used" property of a Button and is specified second after Type. The following two state-
ments are therefore equivalent:

'"F1.B1' [OWC 'Button' 'OK'
'F1.81' [OWC 'Button' ('Caption’ 'OK')

The third and fourth properties are (usually) Posn, which specifies the position ofa
child within its parent, and Size which specifies its size. The following statements all
create a Form with an empty title bar, whose top left corer is 10% down and 20%
across from the top left corer of the screen, and whose height is 60% of the screen
height and whose width is 40% of the screen width.

'"form' OWC 'Form' '' (10 20) (60 40)

"form' OWC 'Form' '' ('Posn' 10 20) ('Size' 60 40)
"form' OWC 'Form' '' ('Posn' 10 20) (60 40)

"form' [OWC 'Form' ('Posn' 10 20) (60 40)

Chapter 1: Introduction 14

Changing Property Values with WS

Once you have created an object using [JWC, you are free to alter most of its properties
using [JWS. However in general, those properties that define the overall structure of an
object's window cannot be altered using [JWS. Such immutable properties include Type
and (for some objects) Style. Note that if you find that you do need to alter one of these
properties dynamically, it is a simple matter to recreate the object with WC.

The syntax for WS is identical to that of JWC. The following examples illustrate how
the properties of a Button can be altered dynamically. Note that you can use WS in a
callback function to change the properties of any object, including the one that gen-
erated the event.

Create "OK" button at (10,10) that calls FOO when pressed
‘form.b1' [OWC 'Button' 'OK' (10 10)

Some time later, change caption and size
"form.b1' [OWS ('Caption' 'Yes') ('Size' 20 15)

Note that if the right argument to [JWS specifies a single property, it is not necessary to
enclose it. How the Property List is Processed

The system is designed to give you as much flexibility as possible in specifying prop-
erty values. You should find that any "reasonable" specification will be accepted.
However, you may find the following explanation of how the right argument of JWC
and [JWS is parsed, useful. The casual reader may wish to skip this page.

Items in the right argument are processed one by one. If the next array in the argument
is a simple array, or a nested array whose first element is not a character vector, the
array is taken to be the value of the next property, taking the properties in the order
defined for that object type.

When the system encounters a nested array whose first element is a character vector, it
is checked against the list of property names. If it is not a property name, the entire
array is taken to define the value of the next property as above.

Ifthe first element is a property name, the remainder of the nested array is taken to be
the value of the corresponding property. For convenience, considerable latitude is
allowed in how the structure of the property value is specified.

After assigning the value, the parser resets its internal pointer to the property following
the one named. Thus in the third and fourth examples on the preceding page, omitting
the Size keyword is acceptable, because Size is the next property after Posn.

Chapter 1: Introduction 15

In the reference section for each object, you will find the list of properties applicable to
that object, given in the order in which they are to be specified. This information is
also reported by the PropList property, which applies to all objects. The list of prop-
erties may also be obtained by executing the system command) PROPS in an object's
namespace.

The Event Property

Of'the many different properties supported, the Event property is rather special. Most of
the other properties determine an object's appearance and general behaviour. The Event
property, however, specifies how the application reacts to the user. Furthermore,
unlike most other properties, it takes not a single value, but a set of values, each of
which determines the action to be taken when a particular event occurs. In simple
terms, an event is something that the user can do. For example, pressing a mouse but-
ton, pressing a key, selecting an item from a menu, are all examples of events.

Like any other property, the Event property may be set by assignment or using OWC
and [JWS. Using assignment, you can specify settings for the entire set of events, or you
can set individual events one by one.

Each type of event has a name and a number. Although you may identify an event
either by its name or by its number, the use of its name is generally preferable. The
exception to this is user-defined events which may only be specified by number.

The list of events supported by a particular object is available from its EventList prop-
erty, or by executing the system command) EVENTS in an object's namespace.

To specify an individual event, you assign the action to the event name which is
optionally prefixed by the string ' on'. For example, the name for the event that occurs
when a user presses a key is 'KeyPress '. To this you assign an action. Event actions
are described in detail later in this chapter, but most commonly action is a character
vector containing the name of a function. This is termed a callback function, because it
will be automatically called for you when the corresponding event occurs. So if F1 isa
Form, the statement:

F1.onKeyPress«'CHECK_KEY'

specifies that the system is to call the function CHECK_KEY whenever the user presses
a key when F 1 has the input focus.

Chapter 1: Introduction 16

Using OWC and OWS, the same effect can be obtained by:
'"F1'OWC'Form' ('Event' 'onKeyPress' 'CHECK_KEY')

or

"F1'0OWS 'Event' 'onKeyPress' 'CHECK_KEY'

When a callback function is invoked, the system supplies an event message as its right
argument, and (optionally) an array that you specify, as its left argument. The event
message is a nested vector that contains information about the event. The first element
ofthe event message is always either a namespace reference to the object that gen-
erated the event or a character vector containing its name.

To instruct the system to pass the object name instead of a reference, you must use the
event name on its own (omitting the 'on' prefix) or the event number. This method is
retained for compatibility with previous versions of Dyalog APL that did not support
namespace references. For example, either of the following statements will associate
the callback function ' CHECK_KEY ' with the KeyPress event. However, when
"CHECK_KEY ' iscalled, it will be called with the character string ' F1 "' in the first
element of the right argument (the event message) instead of a direct reference to the
object F1.

F1.Event«'KeyPress' 'CHECK_KEY'
'F1'0OWS 'Event' 'KeyPress' 'CHECK_KEY'
'"F1'0OWS 'Event' 22 'CHECK_KEY'

Note that by default, all events are processed automatically by APL, and may be
ignored by your application unless you want to take a specific action. Thus, for
example, you don't have to handle Configure events when the user resizes your Form;
you can just let APL handle them for you.

Before looking further into events, it is necessary to describe how control is passed to
the user, and to introduce the concept of the event queue.

For further details, see the description of the Event property in the Object Reference.

Chapter 1: Introduction 17

User Interaction & Events

Giving Control to the User

As we have seen, JWC and [OWS are used to build up the definition of the user-interface
as a hierarchy of objects with properties. Notice that the interface is defined not only
in terms of its appearance and general behaviour, but also by specification of the Event
property, in terms of how it reacts to user actions.

Once you have defined your interface, you are ready to give control to the user. This is
simply done by calling JDQ. Alternatively, you may use the Wait method (if appro-
priate) which is identical to [JDQ in its operation.

0DQ performs several tasks. Firstly, it displays all objects that have been created but
not yet drawn. When you create objects, Dyalog APL/W automatically buffers the out-
put so as to avoid unpleasant flashing on the screen. Output is flushed when APL
requires input (at the 6-space prompt) and by [JDQ. Thus if you write a function that cre-
ates a Form containing a set of controls, nothing is drawn until, later on in the function,
you call IDQ. At this point the Form and its contents are displayed in a single screen
update, which is visually more pleasing than if they were drawn one by one. A second
task for JDQ is to cause the system to wait for user events. Objects that you create are
immediately active and capable of generating events. During development and testing,
you can immediately use them without an explicit wait. However, unless your applic-
ation uses the Session in conjunction with GUI objects you must call JDQ to cause the
application to wait for user input. In a run-time application, JDQ is essential.

The right argument to [JDQ specifies the objects with which the user may interact. If it
specifies ' . ', the user may interact with all active objects owned by the current thread
and with any new objects which are created in callback functions. If not, the right argu-
ment is a simple character vector or a vector of character vectors, containing the names
of one or more Form or PropertySheet objects and the Clipboard object, or the name of
a single modal object of type FileBox, Locator, MsgBox or Menu. All specified objects
must be owned by the current thread.

In general, [JDQ first updates the screen with any pending changes, then hands control
to the user and waits for an event. If its right argument is ' . ', [1DQ processes events for
all active objects, i.e. for those objects and their children whose Active property is 1. If
the right argument contains the name of one or more Form and/or Clipboard objects,
0DQ processes events for all of these objects and their children, and (if the current
thread is thread 0) for the Root object, but ignores any others, even though they may be
currently active.

Chapter 1: Introduction 18

If the right argument specifies a single modal object, [IDQ displays the object on the
screen, handles user-interaction with it, and then hides the object when the user has fin-
ished with it. An event is generated according to the manner in which the user ter-
minated.

Events are managed by both the Operating System and by JDQ using a queue. A
detailed understanding of how the queue works is not absolutely necessary, and you
may skip the following explanation. However, if you are planning to develop major
applications using the GUI, please continue.

The Event Queue

There are in fact two separate queues, one maintained by MS-Windows and one

internal to APL. The MS-Windows queue is used to capture all events that APL needs
to process. These include events for your GUI objects as well as other events concerned
with APL's own Session Window, Edit Windows, etc. At various points during exe-
cution, APL reads events from the MS-Windows queue and either processes them imme-
diately or, if they are events concerned with objects you have defined with JWC, APL
places them on its own internal queue. It is this queue to which 0DQ looks for its next
event.

When [IDQ receives an event, it can either ignore it, process it internally, execute a
string, call a callback function, or terminate according to the action you have defined
for that event. The way you define different actions is described in detail later in this
Chapter.

If you have disabled a particular event by setting its action code to ~1,[IDQ simply
ignores it. For example, if you set the action code of a KeyPress event to ™ 1, keystrokes
in that object will be ignored. If you have told [IDQ to process an event normally (the
default action code of 0) DQ performs the default processing for the event in question.
For example, the default processing for a KeyPress event in an Edit object is to display
the character and move the input cursor.

If you have associated a string or a callback function with a particular event in a par-
ticular object, DQ executes the string or invokes the callback function for you. During
the execution of the string or the callback function, the user may cause other events. If
so, these are added to APL's internal queue but they are not acted upon immediately.
When the execution of the string or the callback function terminates, control returns to
0DQ which once more looks to the internal queue. If another event has been added
while the callback function was running, this is read and acted upon. If not, [1DQ looks
to the MS-Windows queue and waits for the next event to occur.

Chapter 1: Introduction 19

If you have associated an asynchronous callback function with an event (by append-
ing the character "&" to the name of'the function), 0DQ starts the callback function in a
new thread and is then immediately ready to process the next event; [IDQ does not wait
for an asynchronous callback function to complete.

If[DQ reads an event with an associated action code of 1, it terminates and returns the
event message which was generated by the event, as a result. The normal processing
for the event is not actioned. During the time between [IDQ terminating and you call-
ing it again, events are discarded. Events are only stored up in the queue if[IDQ is act-
ive (i.e. there is a [IDQ in the state indicator). It is therefore usually better to process
events using callback functions.

Assignment and reference to the Event Property

There are a number of special considerations when using assignment and reference to
the Event property.

You can set the action for a single event by prefixing the Event name by "on". For
example, to set the action of a MouseUp event on a Form F to execute the callback
function FOO:

F.onMouseUp<«'UP'
F .onMouseUp
#.UP

Notice that the value returned (# . UP) is not necessarily exactly the same as you set it
(UP).

If you reference the Event property, you will obtain all the current settings, reported in
order of their internal event number. Notice the use of distributed strand notation to set
more than one event in the same statement.

F.(onMouseUp onMouseDown)<«'UP' ('DOWN' 42)
F.Event
onMouseDown #.DOWN 42 onMouseUp #.UP

If you set the Event property using assignment, all the event actions are redefined, i.e.
previous event settings are lost. For example:

F.(onMouseUp onMouseDown)<«'UP' ('DOWN' 42)
F.Event
onMouseDown #.DOWN 42 onMouseUp #.UP

F.Event«'onMouseMove' 'MOVE'
F.Event
onMouseMove #.MOVE

Chapter 1: Introduction 20

The All event can also be set by assignment, and it too clears previous settings. Notice
too that a subsequent reference to a specific event using the "on" prefix, will report the
"All" setting, unless it is specifically reset.

F.(onMouseUp onMouseDown)<«'UP' ('DOWN' 42)
F.Event
onMouseDown #.DOWN 42 onMouseUp #.UP

F.onAll«'FOO'
F.Event
onAll #.FOO

F.onMouseMove
#.FOO0

F.Event«'onMouseMove' 'MOVE'
F.Event
onMouseMove #.MOVE

If no events are set, the result obtained by WG and the result obtained by referencing
Event directly are different:

"F'OWC'Form'

DISPLAY 'F'0WG'Event'

10 0]
DISPLAY F.Event

(@-—mmmeemmeee .

| mmmoee- |

| | .e. .e. | |

T O I I

I I I_I I_I I I

| emmmmm- "
o [

Callback Functions

By setting the action code to 1 for all the events you are interested in, you could write
the control loop in your application as:

Loop: Event « [IDQ 'system'
test Event[1] (object name)
and Event[2] (event code)
~Label

Label: process event for object
~Loop

Chapter 1: Introduction 21

However, such code can be error prone and difficult to maintain. Another limitation is
that events that occur between successive calls on [0DQ are discarded.

An alternative is to use callback functions. Not only do they encourage an object-ori-
ented modular approach to programming, but they can also be used to validate the
user's actions and prevent something untoward happening. For example, a callback
function can prevent the user from terminating the application at an inappropriate
point. The use of callback functions will also produce applications that execute faster
than those that process events by exiting [IDQ and looping back again as above.

You associate a callback function with a particular event or set of events in a given
object. There is nothing to prevent you from using the same callback function with sev-
eral objects, but it only makes sense to do so if the processing for the event(s) is com-
mon to all of them. The object that caused the event is identified by the first element of
the right argument when the callback is invoked.

When an event occurs that has an action set to a character vector, the system looks for a
function with that name. If none exists [JDQ terminates with a VALUE ERROR. Ifthe
function does exist, it is called. If the callback function was called FOO and it stopped
on line [1], the State Indicator would be:

)SI
FOO[1]x
0bQ

A callback function may be defined with any syntax, i.e. it may be dyadic, monadic, or
niladic. If it is monadic or dyadic, 0DQ calls it with the event message as its right argu-
ment. If the function is dyadic, its left argument will contain the value of the array that
was associated with the event.

A callback function is otherwise no different from any other function that you can
define. Indeed there is nothing to prevent you from calling one explicitly in your code.
For example, a callback function that is invoked automatically could call a second call-
back function directly, perhaps to simulate another event.

By default, a callback function is run synchronously. This means that JDQ waits for it
to return a result before attempting to process any other events. Events that are gen-
erated by Windows while the callback function is running are simply queued.

Alteratively, you may specify that a callback function is to be run asynchronously. In
this case, [JDQ starts the function in a new thread, but instead of waiting for it to com-
plete, proceeds immediately to the next event in the queue. See Asynchronous Call-
backs for further information.

Chapter 1: Introduction 22

Modifying or Inhibiting the Default Processing

It is often desirable to inhibit the normal processing of an event, and it is occasionally
useful to substitute some other action for the default. One way of inhibiting an event is
to set its action code to ~ 1. However this mechanism is non-selective and is not always
applicable. You can use it for example to ignore all keystrokes, but not to ignore par-
ticular ones.

Synchronous callback functions provide an additional mechanism which allows you to
selectively inhibit default processing of an event. The mechanism also allows you to
modify the event in order to achieve a different effect.

For example, you can use a callback function to ignore a particular keystroke or set of
keystrokes, or even to replace the original keystroke with a different one. Similarly,
you can use a callback function to selectively ignore a LostFocus event if the data in
the field is invalid. Callback functions therefore give you much finer control over
event processing. The mechanism uses the result returned by the callback function and
operates as follows.

When an event occurs that has a synchronous callback function attached, JDQ invokes
the callback function (passing it the event message as its right argument) before per-
forming any other action and waits for the callback to complete. When the callback
function terminates (exits) JDQ examines its result.

If the callback function returned no result, or returned a scalar 1 or the identical event
message with which it was invoked, [IDQ then carries out the default processing for the
event in question. If the callback function returned a 0, [IDQ takes no further action and
the event is effectively ignored. Finally, if the callback returns a different event mes-
sage (from the one supplied as its right argument), [IDQ performs the default processing
associated with the new event rather than with the original one.

For example, consider a callback function attached to a KeyPress event in an Edit
object. When the user presses a key, for the sake of example, the unshifted "a" key, DQ
invokes the callback function, passing it the corresponding event message as its right
argument. This event message includes information about which key was pressed, in
this case "a". The various possibilities are:

o If the callback function returns a value of 1 or the same event message with
which it was invoked, [IDQ carries out the default processing for the original
event. In this case a lower-case "a" is displayed in the field.

o If the callback function returns a value of 0, [JDQ takes no further action and
the keystroke is ignored.

e If the callback function modifies the event message and changes the key from

an "a" to a "b", DQ carries out the default processing associated with the new
event, and displays a lower-case "b" instead.

Chapter 1: Introduction 23

Note that asynchronous callback functions may not be used to modify or inhibit the
default processing because their results are ignored.

Generating Events using [NQ

The ONQ system function is used to generate events under program control and has sev-
eral uses.

Firstly, it can be used to do something automatically for the user. For example, the fol-
lowing expression gives the input focus to the object Form1 . ED1.

ONQ Forml.ED1 'GotFocus'

Secondly, [INQ can be used to generate user-defined events which trigger special
actions either by invoking callback functions or by causing [JDQ to terminate. For
example, if you were to define the Event property on 'Formi ' as:

'"Formt1' [OWS ('Event' 1001 'FOO')('Event' 1002 1)
The expression:

ONQ Forml 1001 'Hello' 42

would cause [IDQ to invoke the function FOO, passing it the entire event message
(#.Forml 1001 'Hello' 42) asitsright argument. Similarly, the expression:

ONQ 'Formi' 1002 23.59
would cause [IDQ to terminate with the array ('Form1' 1002 23.59) asits result.

[NQ can be used to generate events in one of three ways which affect the context in
which the event is processed.

Ifit is used monadically as in the examples above, or with a left argument of 0, ONQ
adds the event specified in its right argument onto the bottom of the event queue. The
event is then processed by [IDQ when it reaches the head of the queue. You can add
events to the queue prior to calling [1DQ, or from within a callback function which is
itself called by DQ. In either case, the context in which the event is finally processed
may be completely different from the context in which the event was placed on the
queue. When used in this way, the result of [INQ is always an empty character vector.

Chapter 1: Introduction 24

If you use [JNQ with a left argument of 1, the event is processed there and then by [INQ
itself. If there is a callback function attached to the event, [INQ invokes it directly. Thus
like 0DQ, OONQ can appear in the State Indicator ST or) SI. This use of ONQ is used to
generate an event for an object that is not currently included in a [IDQ, and is the usual
way of generating the special (non-user) events on the Printer and other objects. It is
also used when you want to cause an event to occur immediately without waiting for
any events already in the queue to be processed first. When used in this way, the result
of ONQ is either an empty character vector, or the result of the callback function if one
is attached.

If you use (ONQ with a left argument of 2, APL immediately performs the default pro-
cessing (if any) for the event, bypassing any callback function. This case of ONQ is
often used within a callback function to put the object into the state that it would oth-
erwise be in when the callback terminated. When used in this way, the result of [INQ is
1. To avoid processing the event twice, the callback function should return 0.

The use of ONQ with a left argument of2, is the same as calling the event as a method,
and this is discussed in the next section.

A left argument of4 is a special case that is used by an ActiveXControl or NetType
object to generate an event in its host application. See Chapter 13 for details.

Methods
Calling Methods

A method is similar to a function in that it may or may not take an argument, perform
some action, and return a result.

Examples are the Print, NewPage, Setup and Abort methods, all of which cause a
Printer object to take a particular action.

If the system variable WX is 1, you may invoke an object's method using exactly the
same syntax as you would use to call a function in that object.

For example, to execute the IDNToDate method of a Calendar object named F . CAL,
you can use the expression:

F.CAL.IDNToDate 36525
2000 1 1 5

When you call a method in this way, the method name is case-sensitive and if you spell
it incorrectly, you will geta VALUE ERROR.

F.CAL.idntodate 36525
VALUE ERROR
F.C.idntodate 36525

A

Chapter 1: Introduction 25

Invoking Methods with [INQ

Methods may also be called using [INQ with a left argument of 2, indeed if WX is 0,
this is the only way to call a method.

The result of the method is returned by [INQ. Note however that the result is shy.

For example, for a TreeView object you can obtain status information about a par-
ticular item in the object using the GetltemState method:

O«2 ONQ 'f.tv' 'GetItemState' 6
96

Or you can call the IDNToDate method of a Calendar object F . C as follows:

0«2 ONQ 'F.CAL' 'IDNToDate' 36525
2000 1 1 5

When you call a method using 2 ONQ , the method name is not case-sensitive.

0«2 ONQ 'F.CAL' 'idntodate' 36525
2000 1 1 5

Events as Methods
Methods and events are closely related and most events can be invoked as methods.

For example, you can reposition and resize a Form in one step by calling its Configure
event as a method. The argument you supply is the same as the event message asso-
ciated with the event, but with the first two items (Object and Event code) omitted.

F.Configure 10 10 30 20
Or, using 2 [ONQ
2 ONQ 'F' 'Configure' 10 10 30 20

Notice that when you call an event as a method, you are executing the default pro-
cessing associated with the event. The setting for the Event property is ignored and, in
particular, any callback associated with the event is not executed.

Chapter 1: Introduction 26

GUI Objects as Namespaces

GUTI objects are a special type of namespace and this has several useful implications.
Firstly, instead of creating the children of an object from outside in the workspace, you
can use) CS to change to an object and create them from within. The only restriction is
that you can only create GUI objects that are valid as children of the current object. A
second benefit is that you can put the callback functions, together with any global vari-
ables they require, into the objects to which they apply. Consider the following
example.

First make a Form F 1

‘F1' OWC 'Form' 'GUI Objects as Namespaces'
('Size' 25 50)

Then change to the Form’s namespace

)CS F1
#.F1

Now you can create a Group (or any other child object), but because you are already
inside the Form, the name you give to the Group will be taken as being relative to the
Form. In other words, you must specify the part of the name that applies to the Group
itself, leaving out the 'F1. ' prefix that you would use if you executed the statement
outside in the workspace.

‘CH' [OWC 'Group' 'Counter' (10 10)(70 60)
You can continue to create other objects

'OK' [WC 'Button' '&0k' (20 80)(& 15)
"CAN' [WC 'Button' '&Cancel' (60 80) (& 15)
"FNT' OWC 'Font' 'Arial' 16 ('Weight' 700)

If you ask for a list of objects, you will see only those within the current namespace

JOBJECTS
CAN CH FNT OK

When you are inside an object you can also set (or get) a property directly, so you can
set the FontObj property for the Form with the following statement.

FontObj«'FNT'

You can achieve the same with [JWS by omitting its left argument:
OWS 'FontObj' 'FNT'

You can create a child of the Group from outside it ...

"CH.UP' [OWC 'Button' '+1' (20 10)(30 20)

Chapter 1: Introduction 27

or you can change to it and create others from within...

)CS CH
#.F1.CH
'DOWN' [WC 'Button' '-1' (60 10)(30 20)
"FNT' OWC 'Font' 'Arial' 32
"CTR' [OWC 'Label' ('FieldType' 'Numeric')
('FontObj' 'FNT')

Once again, if you request a list of objects you will see only those in the current
namespace.

JOBJECTS
CTR DOWN FNT upP

You can create functions and variables in a GUI namespace in exactly the same way as
in any other. So, for example, you could create a variable called COUNT and a function
CHANGE to update it:

COUNT « O

vV INCR CHANGE MSG
[1] COUNT<«COUNT+INCR
[2] CTR.Value«COUNT
v

You can also make CHANGE a callback function for the two Buttons.

UP.onSelect<«'CHANGE' 1
DOWN.onSelect«'CHANGE' ~1

Notice that because you were in the F 1 . CH namespace when you made this asso-
ciation, the event will fire the function CHANGE in the F 1 . CH namespace and, fur-
thermore, it will execute it within that namespace. Hence the names referenced by the
function are the local names, i.e. the variable COUNT and the Label CTR, within that
namespace.

So if you now switch back to the outer workspace

)CS
#

and click on the buttons...

The result will appear approximately as shown below

Chapter 1: Introduction 28

.,

r GUI Objects as Namespaces g@

Counter

+1

42
?

Attaching GUI Objects to Namespaces

Monadic OWC is used to attach a GUI component to an existing object. The existing
object must be a pure namespace or an appropriate GUI object (one that can legit-
imately be placed at that point in the object hierarchy). The operation may be per-
formed by changing space to the object or by running JWC inside the object using the
dot syntax. For example, the following statements are equivalent.

)CS F

#.F
OWC 'Form' A Attach a Form to this namespace
)CS

#

F.OWC'Form' A Attach a Form to namespace F

Monadic [JWC is often used in conjunction with the KeepOnClose property. This prop-
erty specifies whether or not an object remains in existence when its parent Form (or in
the case of a Form, the Form itself) is closed by the user or receives a Close event.

This facility is particularly useful if you wish to have functions and variables encap-
sulated within your Forms. You may want to save these structures in your workspace,
but you do not necessarily want the Forms to be visible when the workspace is loaded.

Chapter 1: Introduction 29

An alternative way to achieve this is to prevent the user from closing the Form and
instead make it invisible. This is achieved by intercepting the Close event on the Form
and set its Visible property to 0. Then, when the Form is subsequently required, its Vis-
ible property is set back to 1. However, if the Form needs adjustment because the work-
space was loaded on a PC with different screen resolution or for other reasons, it may
not be easy to achieve the desired result using OWS. Monadic OWC is generally a better
solution.

Namespace References and GUI Objects

The use of a GUI name in an expression is a reference to the GUI object, or ref for short.
If you assign a ref or call a function with a ref as an argument, the reference to the GUI
object is copied, not the GUI object itself.

So for example, if you have a Form named F:
'"F'OWC 'Form'

Assigning F to F 1, does not create a second Form F 1; it simply creates a second ref-

erence (F 1) to the Form F. Subsequently, you can manipulate the Form F using either
ForF1.

F1<F
F1

Fi.Caption«'Hello World'
F.Caption
Hello World

Similarly, if you call a function with F as the argument, the local argument name
becomes a second reference to the Form, and a new Form is not created:

Here is a simple function which approximately centres a Form in the middle of the
screen:

V R«SHOW_CENTRE FORM;OLD;SCREEN
[1] SCREEN«>"', '[IWG'DevCaps'
[2] OLD<«FORM.Coord
[3] FORM.Coord<«'Pixel'
[4] R<FORM.Posn«|[0.5xSCREEN-FORM.Size
[5] FORM.Coord<OLD

Chapter 1: Introduction 30

The function can be called using either F or F 1 (or any other Form) as an argument:

SHOW_CENTRE F
287 329

SHOW_CENTRE F1
287 329

A ref'to a GUI object can conveniently be used as the argument to : Wi th; for
example, the SHOW_CENTRE function can instead be written as follows:

vV R«SHOW_CENTRE FORM;OLD;SCREEN
[1] SCREEN<«>"'. '[JWG'DevCaps'
[2] :With FORM

[3] OLD<«Coord
[4] Coord<«'Pixel’
[5] R«Posn<«|0.5xSCREEN-Size
[6] Coord«OLD
[7] :EndWith
\%

If instead, you actually want to duplicate (clone) a GUI object, you may do so by call-
ing OWC with a ref as the right argument and the new name as the left argument.

For example:

'"F' OWC 'Form' 'Cloning Example'’

'"F.B' OWC 'Group' 'Background' (10 10)(80 30)

'F.B.R' [OWC 'Button' 'Red' (20 10)('Style' 'Radio')

'F.B.B' OWC 'Button' 'Blue' (50 10)('Style' 'Radio')

'F.B.G' [OWC 'Button' 'Green' (80 10)('Style' 'Radio')
Then, instead of creating a second Group for selecting Foreground colour line by line
as before, you can clone the "Background" Group as follows:

‘F.F' OwWC F.B

The new Group F . F is an exact copy of F . B and will have the same Posn, Size and
Caption, as well as having identical children. To achieve the desired result, it is there-
fore only necessary to change its Posn and Caption properties; for example:

F.F.Caption F.F.Posn « 'ForeGround' (10 60)

The result is illustrated below.

Chapter 1: Introduction 31

r Cloning Example g@
Background ForeGround
© Red O Red
) Blue) Blue
) Green) Green

Note that when a namespace is cloned in this way, the objects (functions, variables and
other namespaces) within it are not necessarily duplicated. Instead, the objects in
cloned namespaces are in effect just pointers to the original objects. However, if you
subsequently change the clone, or the original object to which it refers, the two are de-
coupled and a second copy ensues. This mechanism makes it possible to create large
numbers of instances of a single class namespace without consuming an excessive
amount of workspace.

Modal Dialog Boxes

Up to now, it has been assumed that your user has constant access to all of the interface
features and controls that you have provided. The user is in charge; your application
merely responds to his requests.

Although this is generally considered desirable, there are times when a particular oper-
ation must be allowed to complete before anything else can be done. For example, an
unexpected error may occur and the user must decide upon the next course of action
(e.g. Continue, Restart, Quit). In these situations, a modal dialog box is required. A
modal dialog box is one to which the user must respond before the application will con-
tinue. While the modal dialog box is in operation, interaction with all other objects is
inhibited.

A modal dialog box is simply achieved by calling [IDQ with just the name of'the cor-
responding Form in its argument. This can be done from within a callback function or
indeed from any point in an application. To make the local [IDQ terminate, you may
specify an action code of 1 for an event. Alternatively, if you wish to make exclusive
use of callback functions to process events, you can cause the [JDQ to terminate by eras-
ing the Form from a callback function.

Chapter 1: Introduction 32

For example, suppose that you want the user to close the dialog box by clicking an
"OK" button. You would specify the Event property for the Button as:

('Event' 'Select' 'EXIT')
... and the function EXIT is simply...

vV EXIT Msg;BTN;Form
[1] A Terminate modal [DQ by erasing Form
[2] OBJ<«3>Msg
[3] Form<(~1+0BJi1'.')10BJ A Get Form name
[4] JEX Form

\4

Note that this function is fairly general, as it gets the name of the Form from the name
ofthe object that generated the event.

The MsgBox and FileBox Objects

The MsgBox and FileBox objects are standard MS-Windows dialog boxes and are
strictly modal. The following discussion refers to the way a MsgBox is used, but
applies equally to a FileBox.

The MsgBox is a pop-up modal dialog box with a title bar (defined by the Caption
property), an icon (defined by the Style property), some text (defined by the Text prop-
erty) and up to three buttons (defined by the Btns property).

The MsgBox does not appear on the screen when you create it with JWC. Instead, it
pops up ONLY when you call [IDQ with the name of the MsgBox as its sole right argu-
ment. Furthermore, the MsgBox automatically pops down when the user clicks on any
one of its buttons; you don't actually have to enable any events to achieve this. For
example:

"ERR' [OWC 'MsgBox' 'Input Error' '' 'Error'

creates an invisible MsgBox with the title (Caption) ' Input Error',no text,and a
Style of 'Error'. This gives it a "Stop sign" icon. When you want to issue an error
message to your user, you simply call a function (let's call it ERRMSG) which is defined
as follows:

vV ERRMSG Msg
[1] A Displays 'ERR' message box
[2] ERR.Text«Msg A Put Msg in box
[3] 0oQ 'ERR'

v

Chapter 1: Introduction 33

Note that [IDQ will terminate automatically when the user clicks one of the buttons in
the MsgBox object.

In this case we were not interested in the particular button that the user pressed. If you
are interested in this information, you can enable special events associated with these
buttons. For details, see the description of the MsgBox and FileBox objects in the
Object Reference.

Multi-Threading with Objects

The following rules apply when using threads and objects together.

1.

4. Any thread may execute the expression [JDQ

All events generated by an object are reported to the thread that owns the

object and cannot be detected by any other threads. A thread owns an object
if it has created it or inherited it. If a thread terminates without destroying an
object, the ownership of the object and its events passes to the parent thread.

. The Root object ' . " and the Session object [JSE are owned by thread 0.

Events on these objects will be only be detected and processed by 0DQ run-
ning in thread 0, or by the implicit (DQ that runs in the Session during devel-
opment.

Several threads may invoke [JDQ concurrently. However, each thread may

only use [JDQ on objects that it owns. If a thread attempts to invoke [0DQ on

an object owned by another thread, it will fail with DOMAIN ERROR.

'. ', however:

a. In thread 0, the expression [1DQ will detect and process events on
the Root object and on any Forms and other top-level objects owned by
thread O or created by callbacks running in thread 0. The expression will
terminate if there are no active and visible top level objects and there are
no callbacks attached to events on Root.

b. In any other thread, the expression [1DQ will detect and process
events on any Forms and other top-level objects owned by that thread or
created by callbacks running in that thread. The expression will terminate
if there are no active and visible top level objects owned by that thread.

Chapter 1: Introduction 34

5. A thread may use [ONQ to post an event to an object owned by another thread,
or to invoke the default processing for an event, or to execute a method in
such an object. This means that the following uses of ONQ are allowed when
the object in question is owned by another thread:

ONQ object event...

0 [ONQ object event...

2 [ONQ object event...

2 [ONQ object method...

3 ONQ ole_object method...

4 [ONQ activexcontrol event...

The only use of [INQ that is prohibited in these circumstances is
1 ONQ object event...
which will generate a DOMAIN ERROR.

6. While a thread is waiting for user response to a strictly modal object such as
a MsgBox, FileBox, Menu or Locator object, any other threads that are run-
ning remain suspended. APL is not able to switch execution to another thread
in these circumstances.

The Co-ordinate System

Each object has a Coord property that determines the units in which its Posn and Size
properties are expressed. Coord may be set to one of the following values :

this means that the object assumes the same co-ordinate system
"Inherit' |as its parent. This is the default for all objects except the Root

object.
'Prop" the position and size of the object are expressed as a percentage
P of the dimensions of its parent.
‘Pixel’ The position and size of the object are expressed in pixels.
‘User the position and size of the object are expressed in units defined
by the YRange and XRange properties of the object's parent.
‘Cell’ the position and size of the object are expressed in cell

coordinates (applies only to Grid and its graphical children).

Chapter 1: Introduction 35

By default, the value of Coord for the Root object is 'Prop . For all other objects, the
defaultis ' Inherit'. This means that the default co-ordinate system is a pro-
portional one.

You can change Coord from one value to another as you require. It only affects the
units in which Size and Posn are currently expressed. The physical position and size
are unaffected. Note that if you set Posn and/or Size in the same OJWC or WS statement
as you set Coord, it is the old value of Coord that is applied.

The co-ordinate system is also independent of the way in which objects are recon-
figured when their parent is resized. This is perhaps not immediately obvious, as it
might be expected that objects which are specified using Pixel co-ordinates will be
unaffected when their parent is resized. This is not necessarily the case as the manner in
which objects respond to their parent being resized is determined independently by the
AutoConfand Attach properties.

The User co-ordinate system is useful not only to automate scaling for graphics, but
also to perform scrolling. This is possible because XRange and YRange define not just
the scale along each axis, but also the position of the origin of the co-ordinate system
in the parent window.

Chapter 1: Introduction 36

Colour

Colours are specified using the FCol (foreground colour) and BCol (background col-
our) properties. Graphical objects have an additional FillCol (fill colour) property.

A single colour may be specified in one of two ways, either as a negative integer that
refers to one of a set of standard Windows colours, or as a 3-element numeric vector.
The latter specifies a colour directly in terms of its red, green and blue intensities which
are measured on the scale of 0 (none) to 255 (full intensity). Standard Windows colours
are:

Colour Element Colour Element

0 Default 11 Active Border

-1 Scroll Bars “12 Inactive Border

2 Desktop ~13 Application Workspace
-3 Active Title Bar 1y Highlight

4 Inactive Title Bar ~15 Highlighted Text

5 Menu Bar “16 Button Face

6 Window Background “17 Button Shadow

-7 Window Frame ~18 Disabled Text

-8 Menu Text ~19 Button Text

-9 Window Text —20 Inactive Title Bar Text
10 Active Title Bar Text “21 Button Highlight

A colour specification of 0 (which is the default) selects the appropriate background or
foreground colour defined by your current colour scheme for the object in question. For
example, if you select yellow as your MS-Windows Menu Bar colour, you will get a
yellow background in Menu and Menultem objects as the default if BCol is not spe-
cified.

To select a colour explicitly, you specify its RGB components as a 3-element vector.
For example:

(255 0 0) =red (0 255 0) = green
(255 255 0) = yellow (192 192 192) = grey
(0 0 0) = black (255 255 255) = white

Note that the colour actually realised depends upon the capabilities of the device in
question and the current contents of the Windows colour map.

A colour specification of € (zilde) selects a transparent colour.

Chapter 1: Introduction 37

Fonts

In keeping with the manner in which fonts are managed by Microsoft Windows and
other GUI environments, Dyalog APL treats fonts as objects which you create (load)
using [OWC and erase (unload) using (E X or localisation.

A Font object is created and assigned a name using [JWC. This name is then referenced
by other objects via their FontObj properties. For example to use an Arial bold italic
font of height 32 pixels in two Labels:

"A32' [OWC 'Font' 'ARIAL' 32 0 1 0 700

"F.L1' [OWC 'Label' 'Hello' (20 10) ('FontObj' 'A32'")
"F.L2' [OWC 'Label' 'World' (20 10) ('FontObj' 'A32'")

If a font is referenced by more than one Form, you should create the Font as a top-level
object, as in the above example. However, if the font is referenced by a single Form,
you may make the Font object a child of that Form. The font will then automatically be
unloaded when you erase the Form with which it is associated.

Compatibility Note:

In the first release of Dyalog APL/W (Version 6.2), fonts were referenced directly by
the FontObj property. The above example would have been achieved by:

'F.L1' [OWC 'Label' 'Hello' (10 10)
('FontObj' 'ARIAL' 32 0 1 0 700)

"F.L2' OWC 'Label' 'World' (20 10)
('FontObj' 'ARIAL' 32 0 1 0 700)

Although this original mechanism continues to be supported, it is recommended that
you use the method based on Font objects which supersedes it.

Chapter 1: Introduction 38

Drag and Drop

Dyalog APL/W provides built-in support for drag/drop operations through the Drag-
able property. This applies to all objects for which drag/drop is appropriate.

The default value of Dragable is 0 which means that the object cannot be
drag/dropped. To enable drag/drop, you can set it to 1 or 2. A value of 1 means that the
user drags a box that represents the bounding rectangle of the object. In general, a
value of 2 means that the user drags the outline of the object itself, whether or not it is
rectangular. However, there are two exceptions. For a Text object, ('Dragable' 2)
means that the user drags the text itself. For an Image object that contains an Icon,
('Dragable' 2) means that the user drags the icon itself, and not just its outline.

If Dragable is 1 or 2, the user may drag/drop the object using the mouse.
When the user drops an object, the default processing for the event is:

a. If the object is dropped over its parent, it is moved to the new location.
b. If the object is dropped over an object other than its parent, the dragged
object remains where it is.

If you enable the DragDrop event (11) on all eligible objects, you can control what hap-
pens explicitly. If an object is dropped onto a new parent, you can move it by first delet-
ing it and then recreating it. Note that you must give it a new name to reflect its new
parentage. Note too that the DragDrop event reports co-ordinates relative to the object
being dropped on, so it is easy to rebuild the object in the correct position and with the
correct size.

An alternative to using the built-in drag/drop operation is to do it yourself with the
Locator object. This is no less efficient and has the advantage that you can choose
which mouse button you use. It can also be used to move a group of objects. However,
the Locator only supports a rectangular or elliptical outline.

Chapter 1: Introduction 39

Debugging

Four features are built into the system to assist in developing and debugging GUI
applications.

Firstly, if you execute [JWC and/or [JWS statements from the Session or by tracing a func-
tion, they have an immediate effect on the screen. Thus you can see immediately the

Secondly, if you use OWC with an existing name, the original object is destroyed and
then re-created. This allows you to repeatedly edit and execute a single statement until
it gives the effect you desire.

Thirdly, if you TRACE a [IDQ statement, any callback functions that are invoked will
be traced as they occur. This is invaluable in debugging. However, callbacks invoked
by certain "raw" events, for example MouseMove, can be awkward to trace as the act of
moving the mouse pointer to the Trace window interferes with the operation in the
object concerned.

Finally, [INQ can be used to artificially generate events and sequences of events in a
controlled manner. This can be useful for developing repeatable test data for your
application.

Chapter 1: Introduction 40

Creating Objects using [INEW

With the introduction of Classes in Version 11.0, you may manipulate Dyalog GUI
objects as Instances of built-in (GUI) Classes. This approach supplements (but does not
replace) the use of AWC, WS and so forth.

To create a GUT object using (ONEW, the Class is given as the GUI Object name and the
Constructor Argument as a vector of (Property Name / Property Value) pairs. For
example, to create a Form:

F1<[ONEW 'Form' (c'Caption' 'Hello World')

Notice however that only perfectly formed name/value pairs are accepted. The highly
flexible syntax for specifying Properties by position and omitting levels of enclosure,
that is supported by OWC and [OWS, is not provided with OONEW.

Naturally, you may reference and assign Properties in the same way as for objects cre-
ated using (JWC:

F1.Size
50 50
F1.Size«20 30

Callbacks to regular defined functions in the Root or in another space, work in the
same way too. If function FOO merely displays its argument:

vV FOO M
(1] O«M
v

F1.onMouseUp+«'#.FOO'
#.[Form] MouseUp 78.57142639 u4k4.62540...

Note that the first item in the event message is a ref to the Instance of the Form.

To create a control such as a Button, it is only necessary to run ONEW inside a refto the
appropriate parent object. For example:

Bi«F1.0ONEW 'Button' (('Caption' '&0K')('Size' (10 10)))

As illustrated in this example, it is not necessary to assign the resulting Button Instance
to a name inside the Form (F 1 in this case). However, it is a good idea to do so that refs
to Instances of controls are expunged when the parent object is expunged. In the
example above, expunging F 1 will not remove the Form from the screen because B 1
still exists as a ref to the Button. So, the following is safer:

F1.B1«F1.0ONEW'Button'(('Caption' '&0K')('Size' (10 10)))
Or perhaps better still,
F1.(B1«[ONEW 'Button'(('Caption' '&0K')('Size' (10 10))))

Chapter 1: Introduction 4

Native Look and Feel

Windows Native Look and Feel is an optional feature of Windows from Windows XP
onwards.

If Native Look and Feel is enabled, user-interface controls such as Buttons take on a dif-
ferent appearance and certain controls (such as the ListView) provide enhanced fea-
tures.

The following pictures illustrate the appearance of a simple Button created with and
without Native Look and Feel under Windows XP and Windows 7.

r Mative Look and Feel: NO [Z]@W

Mative Look and Feel: MO |

, Native Look and Feel: YES E]@\

M ative Loak and Feel: YES]

Mative Look and Feel: NO | — | (=} | mtatm

Mative Look and Feel: NO |

Chapter 1: Introduction 42

Nati\re Look and Feel YES | = || (=] ||ﬁ|

| Native Look and Feel YES |

Dyalog Session

During development, both the Dyalog Session and the Dyalog APL GUI will display
native style buttons, combo boxes, and other GUI components if Native Look and Feel
is enabled. The option is provided in the General tab of the Configuration dialog.

Applications
There are two ways to enable Native Look and Feel in end-user applications.

Ifyou use the File/Export... menu item on the Session MenuBar to create a bound
executable, an OLE Server (in-process or out-of-process), an ActiveX Control or a
NET Assembly, check the option box labelled Enable Native Look and Feel in the
create bound file dialog box. See User Guide.

If not, set the XPLookandFeel parameter to 1, when you run the program. For example:
dyalogrt.exe XPLookAndFeel=1 myws.dws

Note that to have effect, Native Look and Feel must also be enabled at the Windows
level.

Chapter 2: GUI Tutorial 43

Chapter 2:

GUI Tutorial

Introduction

This tutorial illustrates how to go about developing a GUI application in Dyalog
APL/W. It is necessarily an elementary example, but illustrates what is involved. The
example is a simple Temperature Converter. It lets you enter a temperature value in
either Fahrenheit or Centigrade and have it converted to the other scale.

Some Concepts
Objects

Objects are GUI components such as Forms, Buttons and Scrollbars. You create objects
using the system function OWC. Its left argument is a name for the object; its right argu-
ment specifies the object type and various properties. Objects are created in a hier-
archy.

Properties

Properties specify the appearance and behaviour of an object. For example, the Caption
property specifies the text that appears on a Button or the title that appears in the title
bar on a Form. When you create an object with [JWC, its right argument specifies its
properties. You can also set properties using [JWS. This lets you dynamically alter the
appearance and behaviour of an object as required.

Events

Events are things that happen in objects as a result (usually) of some action by the user.
For example, when the user clicks a Menultem, it generates a Select event. Similarly,
when the user focuses on an object, it generates a GotFocus event.

Chapter 2: GUI Tutorial 44

Callback Functions

Callback Functions are APL functions that you can associate with a particular event in
a particular object. Interaction with the user is controlled by the system function [IDQ.
This function performs all of the routine tasks involved in driving the GUI interface.
However, its main role is to invoke your callback functions for you as and when events
occur.

That's enough theory for now ... let's see how it all works in practice.

Creating a Form

The first task is to create a Form which is to act as the main window for our application.
We will call the Form ' TEMP ' and give it a title (Caption) of "Temperature Con-
verter".

We will position the Form 68% down and 50% along the screen. This will avoid it
interfering with the APL Session Window, and make development easier.

The Form will have a height equal to 30% of the height of the screen, and a width of
40% of'the screen width.

TITLE«'Temperature Converter'
'TEMP' [OWC 'Form' TITLE (68 50)(30 40)

r Temperature Converter [Z]@ﬁ

Chapter 2: GUI Tutorial 45

Adding a Fahrenheit Label

We are going to need two edit fields to input and display temperatures and two labels
to identify them.

Let's create the "Fahrenheit" label first. It doesn't really matter what we call it because
we won't need to refer to it later. Nevertheless, it has to have a name. Let's call it LF.
We will place it at (10,10) but we don't need to specify its Size; OWC will make it just
big enough to fit its Caption.

'"TEMP.LF' [OWC'Label' 'Fahrenheit' (10 10)

r Temperature Converter g@ﬂ

Fahrenheit

Chapter 2: GUI Tutorial 46

Adding a Fahrenheit Edit Field

Now let's add the edit field for Fahrenheit. We will call it F and place it alongside the
label, but 40% along. Initially the field will be empty. We will make it 20% wide but
let its height default. JWC will make it just big enough to fit the current font height. As
the field is to handle numbers, we will set its FieldType to ' Numeric'.

'TEMP.F' OWC 'Edit' '' (10 40)(& 20)('FieldType' 'Numeric')
Temperature Converter g@

Fahrenheit

Chapter 2: GUI Tutorial 47

Adding a Centigrade Label & Edit Field

Now we need to add a corresponding Centigrade label and edit field. We'll call these
objects LC and C respectively, and place them 40% down the Form.

'TEMP.LC' OWC'Label' 'Centigrade' (40 10)

'TEMP.C' OWC 'Edit' '' (40 40)(® 20)('FieldType' 'Numeric')
s 1
Temperature Converter g@
Fahrenheit

Centigrade

Chapter 2: GUI Tutorial 48

Adding Calculate Buttons

Our Temperature Converter must work both ways; from Fahrenheit to Centigrade and
vice versa. There are a number of different ways of making this happen.

A simple approach is to have two buttons for the user to press; one for Fahrenheit to
Centigrade, and one for Centigrade to Fahrenheit. We will call the first one F2C and
place it alongside the Fahrenheit edit field. The caption on this button will be ' F -
>C'. When the user presses the button, we want our application to calculate the cen-
tigrade temperature. For this we need a callback function. Let's call it f 2c. Notice how
you associate a callback function with a particular event. In this case, the Select event.
This event is generated by a Button when it is pressed.

(The statement below is broken into two only so as to fit on the page)

FB«'Button' 'F->C' (10 70)('Event' 'Select' 'f2c')
'"TEMP.F2C'[OWC FB

r Temperature Converter g@ﬂ

Fahrenheit F-xC

Centigrade

Notice that it is not necessary to specify the Size of the button; the default size fits the
Caption nicely. Now let's add the Centigrade to Fahrenheit button. This will be called
C2F and have an associated callback function c2f. We could have chosen to have a
single callback function associated with both buttons, which would save a few lines of
code. Having separate functions is perhaps clearer.

Chapter 2: GUI Tutorial 49

Again, the statement is split into two only to make it fit onto the page.

FC«'Button' 'C->F' (40 70)('Event' 'Select' 'c2f')
'"TEMP.C2F'DWC FC

r Temperature Converter g@ﬁ

Fahrenhert F-»C

Centigrade

Closing the Application Window

Then we need something to allow our user to terminate our application. He will expect
the application to terminate when he closes the window. We will implement this by
having a callback function called QUIT which will simply call JOFF, i.e.

vV _QUIT
[1] OoFF
v

We can associate this with the Close event on the Form TEMP. This event will be gen-
erated when the user closes the window from its System Menu

TEMP.onClose«'QUIT'

Although here we have used assignment to set the Event property, we could just as eas-
ily have defined it when we created the Form by adding ('Event' 'Close’
"QUIT") to the right argument of WC.

Chapter 2: GUI Tutorial 50

Adding a Quit Button

Finally, we will add a "Quit" button, attaching the same QUIT function as a callback,
but this time to the Select event which occurs when the user presses it.

Instead of having a default sized button, we will make it nice and big, and position it
centrally.

To make the statement fit on the page, it is split into three. The Posn and Size prop-
erties are explicitly named for clarity.

QB«'Button' '&Quit' ('Posn' 70 30)
QB,«('Size' & 40)('Event' 'Select' 'QUIT')
'"TEMP.Q' [OWC QB

r Temperature Converter g@ﬁ

Fahrenhert F-»C

Centigrade

Duit |

Notice how the ampersand (&) in the Caption is used to specify the mnemonic (short-
cut) key. This can be used to press the button instead of clicking the mouse.

Chapter 2: GUI Tutorial 51

The Calculation Functions

So far we have built the user-interface, and we have written one callback function
QUIT to terminate the application. We now need to write the two functions f2c and
c2f which will actually perform the conversions. First let's tackle f2c.

A callback such as this one performs just one simple action. This does not depend upon
the type of event that called it (there is only one), so the function has no need of argu-
ments. Neither does it need to do anything fancy, such as preventing the event from pro-
ceeding. It need not therefore return a result. The header line, which includes the local
variables we will need, is then...

[0] f2c;F;C

The first thing the function must do is to obtain the contents of the Fahrenheit edit field
which is called TEMP . F. As we have defined the FieldType as ' Numeric', this is eas-
ily done by querying its Value property...

[1] F <« TEMP.F.Value
Next, we need to calculate Centigrade from Fahrenheit...
[2] C « (F-32) x 5%9

... and finally, display the value in the Centigrade edit field. As we have also defined
this as a numeric field, we can just set its Value property using assignment.

[3] TEMP.C.Value<C
So our completed f 2 ¢ callback function is...

v f2c;F;C
[1] F <« TEMP.F.Value
[2] C <« (F-32) x 5+9
[3] TEMP.C.Value<C

which can be simplified to:

v f2c
[1] TEMP.C.Value«(TEMP.F.Value-32)x5+9
v

The Centigrade to Fahrenheit callback function c2f looks very similar:

V c2fF
[1] TEMP.F.Value«32+TEMP.C.Valuex9+5
\4

Chapter 2: GUI Tutorial 52

Testing the Application

Before we test our application, it would be a good idea to) SAVE the workspace. If
you remember, the QUIT callback calls JOFF, so if we don't want to lose our work...

)SAVE TEMP
TEMP saved

Note that the GUI objects we have created are all saved with the workspace. You don't
have to re-build them every time you) LOAD it again.

If this was a Run-Time application, we would have to use [IDQ to run it. However, as it
is not, we can just go ahead and use it from the Session. Click on the Fahrenheit edit
field and enter a number (say 212). Now click on the "F->C" button. The Temperature
Converter window should look like the picture below.

r Temperature Converter g@ﬂ

Fahrenheit a1z

Centigrade o0

Quit |

If you have mis-typed any of the functions in this example, you may get an error. If this
happens, don't worry; simply correct the error as you would with any other APL applic-
ation, and type ~[JLC.

Ifyou gota VALUE ERROR error,you have probably mis-spelt the name of the call-
back function. If so, you can fix it using [OWS to reset the appropriate Event property.

Don't click the "Quit" button or close the window (yet). If you do so your APL session
will terminate.

Chapter 2: GUI Tutorial 53

If you want to follow what is happening you can use the Tracer. This requires a state-
ment to trace, so we will use [JDQ just as you would in a real application. To do this,
type dDQ '.' in the Session window, then, instead of pressing Enter (to execute it),
press Ctrl+Enter (to Trace it). Having done this, enter your data into one of the edit
fields and click the "F->C" or "C->F" buttons as before. When you do so, your callback
function will pop-up in a Trace Window. Step it through (if in doubt, see the section
on the Tracer) and watch how it works. When the callback has finished, its Trace win-
dow disappears. Don’t forget, you are running a [JDQ. To terminate it, press Ctrl+Break
or select Interrupt from the Action menu.

Making the Enter Key Work

Ok, so the basic application works. Let's look at what we can do to improve it.

The first thing we can do is to let the user press the Enter key to make the system re-cal-
culate, rather than having to click on a button. There are a number of alternatives, but
we will do it using the Default property of Buttons.

In any Form, you can allocate a single Button to be the Default Button. In simple terms,
pressing Enter anywhere in the Form has the same effect as clicking the Default Button.
Let's do this for the "F->C" Button :

TEMP.F2C.Default«1l

Now type a number into the Fahrenheit field and then press the Enter key. As you will
see, this fires the Default Button labelled "F->C". The only problem with this is that the
user cannot run the calculation the other way round using the Enter key. We need some
mechanism to switch which Button is the Default one depending upon which field the
user typed in.

This is easily achieved by making use of the GotFocus event. This is generated when
the user puts the cursor into the edit field prior to typing. So all we need do is attach a
callback to set the Default Button whenever a GotFocus event occurs in either edit
field. We could use two separate callbacks or we could make use of the fact that you
can make APL supply data of your choice to a callback when it is fired. This is sup-
plied as its left argument.

The first of the next two statements attaches the callback function 'SET_DEF ' to the
GotFocus event in the Fahrenheit edit field. It also specifies that when APL runs the
callback, it should supply the character vector ' TEMP . F2C"' to SET_DEF asiits left
argument. ' TEMP.F2C" is of course the name of the Button which we want to make
the Default one. The second statement is identical, except that it instructs APL to sup-
ply the name of the Centigrade to Fahrenheit Button ' TEMP . C2F '

TEMP.F.onGotFocus « 'SET_DEF' 'TEMP.F2C'
TEMP.C.onGotFocus « 'SET_DEF' 'TEMP.C2F'

Chapter 2: GUI Tutorial 54

Where the callback 'SET_DEF ' is defined as...

v BTN SET_DEF MSG
[1] BTN [OWS'Default' 1
v

Now let's test the application again. Try typing numbers in both fields and pressing
enter each time.

Introducing a ScrollBar

Another way to improve the application would be to allow the user to input using a
slider or scrollbar. Let's create one called ' TEMP.S ' ...

SCR«'Scroll' ('Range' 101)('Event' 'Scroll' 'C2F')
'TEMP.S' [OWC SCR

Temperature Converter g@
.ﬁ‘ "
Fahrerheit F->C
Centigrade
[Guait]
.

The range of a scrollbar goes from 1 to the value of the Range property. Setting Range
to 101 will give us arange of 1-101. You will see in a moment why we need to do this.
The Scroll event will be generated whenever the user moves the scrollbar. We have
associated it with the callback function ' C2F ' which we will define as follows:

v C2F MSG

[1] A Callback for Centigrade input via scrollbar
[2] TEMP.C.Value«101-45MSG
[3] TEMP.F.Value«32+TEMP.C.Value=+5+9

Chapter 2: GUI Tutorial 55

The Event message MSG contains information about the Scroll event. Its 4th element
contains the requested thumb position. As we want to go from 0 at the top, to 100 at
the bottom, we need to subtract this value from 101. This is done in line 2 of the func-
tion. C2F [3] calculates the corresponding Fahrenheit value.

Try moving the scrollbar and see what happens...

£l Temperature Converter E]@
Fahrenheit 174.2 F>C
Centigrade 3
[Cluit]
<

Adding a Menu

It would also be helpful if you could use the scrollbar to calculate in the reverse dir-
ection, from Fahrenheit to Centigrade. Let's add this facility, and give you the ability to
choose to which scale the scrollbar applies through a menu.

To create a menu structure in a bar along the top of a Form (as opposed to a floating or
pop-up menu) we first need to create a MenuBar object. This type of object has very
few properties, and we need only specify its name, ' TEMP .MB'.

'TEMP.MB' [IWC 'MenuBar’
Notice that, at this stage, there is no change in the appearance of the Form.

Then we can add a menu with the Caption 'Scale'. The name of the menu is
"TEMP .MB.M'. Adding the first menu causes the MenuBar to become visible.

'"TEMP.MB.M' [OWC 'Menu' '&Scale'

Chapter 2: GUI Tutorial 56

Temperature Converter g@
Scale
]
Fahrenibeit 174.2 F-:C

Centigrade 74

[Quit |

Note that the ampersand (&) allows the user to select the menu quickly by pressing
"Alt+S".

Now we can add the two options to the menu. Note that the MenuBar and Menu
objects do not represent final choices, they merely specify a path to a choice which is
represented by the Menultem object. When either of these is chosen, we want to
execute a callback function that will make the necessary changes to the scrollbar. The
statements to create each of these Menultems are broken into 3 only to fit them onto
the page.

First we create the Centigrade Menultem...

C«'Menultem' '&Centigrade’
C,«('Checked' 1)('Event' 'Select' 'SET_C')
‘TEMP.MB.M.C' [OWC C

Setting the Checked property to 1 will cause a tick mark to appear against this option,
indicating that it is the current one in force.

Then the Fahrenheit Menultem...

F«'Menultem' '&Fahrenheit’
F,«<('Checked' 0)('Event' 'Select' 'SET_F"')
"TEMP.MB.M.F' [OWC F

Notice that as the default value of Checked is 0, we didn't really have to set it expli-
citly for Fahrenheit. Nevertheless, it will do no harm to do so, and improves clarity.

The SET_C callback function is defined as follows:

Chapter 2: GUI Tutorial

57

v SET_C
[1] A Sets the scrollbar to work in Centigrade
[2] TEMP.S.Range<«101
[3] TEMP.S.onScroll«'C2F'
[4] TEMP.MB.M.C.Checked<«1
[5] TEMP.MB.M.F.Checked<«0

\%

Line [2] simply sets the Range property of the scrollbar to be 101, and line [3] makes
C2F the callback function when the scrollbar is moved. Lines [4] and [5] ensure that

the tick mark is set on the chosen option.

The SET_F function is very similar...

v SET_F
[1] A Sets the scrollbar to work in Fahrenheit
[2] TEMP.S.Range<«213
[3] TEMP.S.onScroll«'F2C'
[4] TEMP .MB.M.F.Checked « 1
[5] TEMP.MB.M.C.Checked « 0

\%

and of course we need F2C to make the scrollbar work in Fahrenheit.

vV F2C Msg;C;F
[1] A Callback for Fahrenheit input via scrollbar
[2] TEMP.F.Value«213-4o5Msg
[3] TEMP.C.Value«(TEMP.F.Value-32)x5+9

v

Chapter 2: GUI Tutorial 58

Running from Desktop

Now that we have a final working application, it would be nice to add it as a shortcut,
so that the user can run it from the Start Menu or from the Desktop, like any other
application.

First we need to define [JL X so that the application starts automatically.

DLX - IDDQ”-"'

or, to avoid so many confusing quotes...
OLx « 0

DDQ] .]

Next, it would be a good idea to clear the edit fields and ensure that the scrollbar is in
its default position:

'"TEMP.F' [OWS 'Text' "'
'TEMP.C' [OWS 'Text' "'
'"TEMP.S' [OWS 'Thumb' 1

Then we must) SAVE the workspace...

)SAVE TEMP
TEMP saved

... and exit APL
)OFF

The next step is to add the application to the Desktop. This is done in the normal way,
ie.

Right-click on the Desktop and choose "New" followed by "Shortcut".

Type in the appropriate command line, such as:

"C:\Program Files\Dyalog\Dyalog APL 13.1 Unicode\dyalog.exe" temp.d
wSs

Chapter 2: GUI Tutorial 59

-,

Create Shortcut

This wizard helps vou to create shortouts ko local ar
nebwork programs, files, folders, computers, or Internet
addresses,

Twpe the location of the item:

L 13.1 Unicodetdyalog.exe” temp. dws|

Click Mext to continue,

Mexk = l[Cancel

Select "Next" and give the application a name, then select "Finish".

The resulting icon is shown below. Note that although by default you will get a stand-
ard Dyalog APL icon, you could of course select another one from elsewhere on your
system.

Ly

Temperature
Converter

Clicking on this icon will start your application. Notice that the APL Session Window
will NOT appear at any stage unless there is an error in your code. All the user will see
is your "Temperature Converter" dialog box.

Chapter 2: GUI Tutorial 60

Using OONEW instead of OWC

From Version 11 onwards, it is possible to use (JNEW to create Instances of the built-in
GUI Classes. The following function illustrates this approach using the Temperature
Converter example described previously.

[1]
[2]

[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

vV TempConv;TITLE;TEMP
TITLE«'Temperature Converter'
TEMP<INEW'Form' (('Caption'TITLE)('Posn'(10 10))

TEMP.
TEMP.
TEMP.

TEMP.

TEMP.

TEMP.

TEMP.

TEMP.

TEMP.
TEMP.

TEMP.

TEMP.

TEMP.
TEMP.
TEMP.
TEMP.
TEMP.
TEMP.
TEMP.
TEMP.
TEMP.

('Size'(30 40)))

(MB<[JNEW< 'MenuBar"')
MB. (M<ONEW'Menu' (,c'Caption' '&Scale'))
MB .M. (C<[INEW'Menultem'
(('Caption' '&Centigrade')('Checked' 1)))
MB .M. (F<[INEW'MenulItem'
(,<('Caption' '&Fahrenheit')))

(LF<[INEW'Label'(('Caption' 'Fahrenheit')
('Posn'(10 10))))
(F<ONEW'Edit'(('Posn'(10 40))('Size'(® 20))
('FieldType' 'Numeric')))

(LC+[INEW'Label'(('Caption' 'Centigrade')
('Posn' (40 10))))
(C<[INEW'Edit'(('Posn' (40 40))('Size'(®& 20))
('FieldType' 'Numeric')))

(F2C«[INEW'Button'(('Caption' 'F->C')
('Posn'(10 70))('Default’ 1)))
(C2F<[INEW'Button' (('Caption' 'C->F')
('"Posn' (40 70))))
(Q<ONEW'Button'(('Caption' '&Quit")
('Posn'(70 30))('Size'(® 40))
('Cancel' 1)))

(S<ONEW'Scroll'(c('Range' 101)))

MB.M.C.onSelect«'SET_C'
MB.M.F.onSelect«'SET_F'
F2C.onSelect«'f2c'
F.onGotFocus<«'SET_DEF'
C2F.onSelect«'c2f'
C.onGotFocus<«'SET_DEF'
onClose<«'QUIT'
Q.onSelect«'QUIT'
S.onScroll«'c2f_scroll'

(DQ'TEMP'

Chapter 2: GUI Tutorial 61

For brevity, only a couple of the callback functions are shown here.

v f2c

[1] TEMP.C.Value«(TEMP.F.Value-32)x5+9
\%

vV c2f_scroll MSG
[1] A Callback for Centigrade input via scrollbar
[2] TEMP.C.Value«101-4>MSG
[31] c2f

v

-
Temperature Converter

Fahrerheit 212

Centigrade 100

Quit |

Chapter 2: GUI Tutorial 62

Temperature Converter Class

You may create user-defined Classes based upon Dyalog GUI objects as illustrated by
the Temperature Converter Class which is listed overleaf.

To base a Class on a Dyalog GUI object, you specify the name of the object as its Base
Class. For example, the Temperature Converter is based upon a Form:

:Class Temp: 'Form'

Being based upon a top-level GUI object, the Temperature Converter may be used as
follows:

T1«<[ONEW Temp(c'Posn' (68 50))

r Temperature Converter g@ﬂ

Fahrenheit a2

Centigrade o0

Quit |

Chapter 2: GUI Tutorial

63

Temperature Converter Example

:Class Temp: 'Form’

v

dd <

<

Make pv;TITLE
:Access Public
TITLE«'Temperature Converter'
:Implements Constructor :Base (c'Caption' TITLE),pv,
c('Size' (30 40))
MB<[INEW< 'MenuBar'
MB. (M<ONEW'Menu'(,<'Caption' '&Scale'))
MB .M. (C<[INEW'MenuItem'(('Caption' '&Centigrade')
('Checked' 1)))

MB.M. (F<[INEW'MenuItem'(,<('Caption' '&Fahrenheit')))
LF<[INEW'Label ' (('Caption' 'Fahrenheit')

('Posn' (10 10)))
F<OONEW'Edit'(('Posn'(10 40))('Size'(® 20))

('FieldType' 'Numeric'))

LC<[INEW'Label'(('Caption' 'Centigrade')

('Posn'(40 10)))

C+{NEW'Edit' (('Posn’' (40 40))('Size'(& 20))
('FieldType' 'Numeric'))
F2C<INEW'Button'(('Caption' 'F->C')('Posn'(10 70))
('Default' 1))

C2F«[ONEW'Button' (('Caption' 'C->F')('Posn' (40 70)))

Q<[INEW'Button' (('Caption' '&Quit')('Posn'(70 30))
('Size'(® 40))('Cancel’ 1))

S«[ONEW'Scroll'(<('Range' 101))

MB.M.C.onSelect«'SET_C'

MB.M.F.onSelect«'SET_F'

F2C.onSelect<«'f2c'

F.onGotFocus<«'SET_DEF'

C2F.onSelect«'c2f"'

C.onGotFocus<«'SET_DEF'

onClose«'QUIT'

Q.onSelect«'QUIT'

S.onScroll«'c2f_scroll'

f2c
C.Value<«(F.Value-32)x5+9

c2f
F.Value«32+C.Valuex9+5

c2f_scroll MSG

A Callback for Centigrade input via scrollbar
C.Value«101-4>MSG

c2f

f2c_scroll Msg

A Callback for Fahrenheit input via scrollbar
F.Value<213-4oMsg

f2c

Chapter 2: GUI Tutorial 64

vV Quit
Close

vV SET_DEF MSG
(2MSG) .Default«t

v SET_C
A Sets the scrollbar to work in Centigrade
S.Range<«101
S.onScroll«'c2f_scroll'
MB.M.C.Checked«1
MB.M.F.Checked+0

v SET_F
A Sets the scrollbar to work in Fahrenheit
S.Range<«213
S.onScroll«'f2c_scroll'
MB.M.F.Checked+«1
MB.M.C.Checked<«0

v
:EndClass A Temp
Notice that the : Implements Constructor statement of its Constructor Make:

:Implements Constructor :Base (c'Caption' TITLE),pv,
c('Size' (30 40))

passes on the application-specific property list (pv) given as its argument, but (in this
case) specifies Caption and Size as well. The order in which the properties are specified
in the : Base call ensures that the former will act as a default (and be overridden by an
application-specific Caption requested in pv), whereas the specified Size of (30 40)
will override whatever value of Size is requested by the host application in pv.

Other Instances can co-exist with the first:

T2«[ONEW Temp(('Caption' 'My Application')
('Posn' (10 10))

Chapter 2: GUI Tutorial 65

Dual Class Example

The Dual Class example is based upon the example used to illustrate how you may
build an ActiveX Control in Dyalog APL (see Chapter 13), but re-engineered as a
internal Dyalog APL Class. The full listing of the Dual Class script is provided over-
leaf.

This version of Dual is based upon a SubForm:
:Class Dual: 'SubForm'

The Dual Control requires a GUI parent but several Instances can co-exist, quite inde-
pendently, in the same parent.

For example, function RUN creates a Form and 3 Instances of Dual; one to convert Cen-
tigrade to Fahrenheit, one to convert Fahrenheit to Centigrade, and the third to convert
centimetres to inches.

vV RUN;F;D1PROPS;D2PROPS;D3PROPS

N =

F<ONEW'Form' (('Caption' 'Dual Instances')
('Coord' 'Pixel')('Size'(320 320)))

Fw

D1PROPS«('Captiont' 'Centigrade')
('Caption2' 'Fahrenheit')
D1PROPS,«('Intercept' 32)('Gradient'(9+5))
('Valuel' 0)('Range'(0 100))
F.D1«F.0ONEW Dual(('Coord' 'Pixel')('Posn'(10 10))
('Size'(100 300)),D1PROPS)

o

Lo Lo | L} [} Lo Lo | L Lo |
[o BN (8]
— — — —_a —

D2PROPS+('Captionl' 'Fahrenheit')
('Caption2' 'Centigrade')
D2PROPS,«('Intercept'(-32x5+9))('Gradient'(5%9))
('Valuel' 0)('Range'(0 212))
[10] F.D2«F.[ONEW Dual(('Coord' 'Pixel')('Posn'(110 10))
('Size'(100 300)),D2PROPS)
[11]

[12] D3PROPS«+('Captionl' 'Centimetres')
('Caption2' 'Inches')
[13] D3PROPS,«('Intercept' 0)('Gradient'(+2.54))
('Valuel' 0)('Range'(0 100))
[14] F.D3«F.[ONEW Dual(('Coord' 'Pixel')('Posn'(210 10))
('Size'(100 300)),D3PROPS)
[15]

[16] [ODQ'F'

—
(o}
—

Chapter 2: GUI Tutorial 66

=,

r Dual Instances g@

Centigrade 26
J
Fahrenheit T
Fahrenheit 11
3

Centigrade 43
Fenﬁmehes ?t
]nches - EF.HEE?EEEE

Dual's Constructor Make first splits its constructor arguments into those that apply to
the Dual Class itself, and those that apply to the SubForm. Its : Imp Lements
Constructor statement then passes these on to the Base Constructor, together with
an appropriate setting for EdgeStyle.

:Implements Constructor :Base BaseArgs,

Dual Class Example

:Class Dual:

'SubForm'

:Include GUITools

:Field
:Field
:Field
:Field
:Field
:Field
:Field
:Field

Private
Private
Private
Private
Private
Private
Private
Private

_Captioni«'
_Caption2«'
_Valuel<«0
_Value2<«0
_Range<0
_Intercept«0
_Gradient+«1
_Height<40

c'EdgeStyle' 'Dialog’

Chapter 2: GUI Tutorial

67

v

v

Create args;H;W;POS;SH;CH;Y1;Y2;BaseArgs;MyArgs;
Defaults

tAccess Public

MyArgs BaseArgs<«SplitNV args

:Implements Constructor :Base BaseArgs,

c'EdgeStyle' 'Dialog’

ExecNV_ MyArgs ma Set Flds named _PropertyName
MyArgs
Coord«'Pixel"
H W<Size
POS<«2110.5%0[(H-_Height)
CH+>GetTextSize'W'
'Slider'[WC'TrackBar'POS('Size'_Height W)
Slider.(Limits AutoConf)<«_Range 0
Slider.(TickSpacing TickAlign)«10 'Top'
Slider.onThumbDrag<«'ChangeValue'
Slider.onScroll«'ChangeValue'
Y1«POS[1]-CH+1
Y2«<POS[1]+_Height+1
"Captioni_'[JWC'Text'_Caption1(Y1,0)('AutoConf' 0)
‘Caption2_'[IWC'Text'_Caption2(Y2,0)('AutoConf' 0)
'Valuel_ '[OWC'Text'(s_Valuel)(Y1,W)('HAlign' 2)
('AutoConf' 0)
CalcValue2
'Value2_'[DWC'Text'(s_Value2)(Y2,W)('HAlign' 2)
('"AutoConf' 0)
onConfigure«'Configure'

Property Captionl, Caption2
Access Public
V R«Get arg
R«(arg.Name, '_')OWG'Text"'
v
vV Set arg
(arg.Name,'_')OWS'Text'arg.NewValue

v
:EndProperty

:Property Valuel
tAccess Public

V R<Get
R«_Valuel
\'4
vV Set arg
ONQ'Slider' 'Scroll' 0 arg.NewValue
v

:EndProperty

Chapter 2: GUI Tutorial 68

:Property Intercept, Gradient, Range, Height, Value2
tAccess Public
V R<Get arg
R«s'_',arg.Name
\'
:EndProperty

vV CalcValue2
_Value2«_Intercept+_Gradientx_Valuel
v

vV ChangeValue MSG
A Callback for ThumbDrag and Scroll
_Valuel«>71tMSG
CalcValue2
Valuel_.Text«3s_Valuel
Value2_.Text«3s_Value2

v

vV Configure MSG;H;W;POS;CH;Y1:;Y2
2 ONQ MSG
H W«Size
POS<«21|0.5x(H-_Height)
CH+>GetTextSize'W'
Slider.(Posn Size)«POS(_Height W)
Y1«POS[1]-CH+1
Y2«POS[1]+_Height+1
Captioni_.Points«1 2pY1,0
Caption2_.Points«1 2pY2,0
Valuel_.Points«l 2pY1,W
Valuel_.Points«l 2pY2,W

v

:EndClass A Dual

Chapter 3: Graphics

69

Chapter 3:

Graphics

Introduction

Graphical output is performed using the following objects:

Graphical Output

Circle

draws circles, arcs and pie charts

Ellipse

draws ellipses

Marker

draws a series of polymarkers

Poly

draws lines

Rect

draws rectangles

Image

displays or prints Bitmaps, Icons and Metafiles

Text

displays or prints graphical text

These graphical objects can be drawn in (i.e. be the children of) a wide range of other
objects including a Form, Static, Printer and Bitmap.

Additional graphical resources are provided by the following objects. These are

unusual in that they are not visible except when referenced as the property of another

object:

Resource

Font

loads a font

Bitmap

defines a bitmap

Icon

defines an icon

Metafile

loads a Windows Metafile

Chapter 3: Graphics 70

Graphical objects are created, like any other object, using [JWC and have properties that
can be changed using [JWS and queried using JWG. Graphical objects also generate cer-
tain events.

Drawing Lines

To draw a line you use the Poly object. The following example draws a line in a Form
from the point (y=10, x=5) to the point (y=90, x=60) :

"F! OWC 'Form' 'Drawing Lines' ('Size' 25 50)
'"F.Line' OWC 'Poly' ((10 90)(5 60))

r Drawing Lines g@w

In the above example, the points are specified as a 2-element nested vector containing
y-coordinates and x-coordinates respectively. You can also use a 2-column matrix, e.g.

'F.Line'[JWC'Poly' (% 2p90 5 5 50 90 95 90 5)

r Drawing Lines g@-‘

Notice that because the second example replaced the object F . L i ne, the original line
drawn in the first example has been erased.

Chapter 3: Graphics 7

In common with the position and size of other GUI objects, y-coordinates precede x-
coordinates. Graphical software typically uses (x,y) rather than (y,x) but the latter is
consistent with the order in which coordinates are specified and reported for all other
objects and events. The Dyalog APL GUI support allows you to freely mix graphical
objects with other GUI components (for example, you can use the graphical Text
object in place of a Label) and this (y,x) consistency serves to avoid confusion.

When a graphical object in a screen object is erased its parent is restored to the appear-
ance that it had before that graphical object was created. Thus:

‘F.Line' OWC 'Poly' (2 2p10 5 50 10)
OEX 'F.Line'

first draws a line and then removes it. The following expression clears all graphical
objects (and any other non-graphical ones too) from a parent object 'F ':

OEX OWN'F'

Similarly, objects automatically disappear when a function in which they are localised
exits.

Erasing graphical objects that have been drawn on a Printer has no effect. Once drawn
they cannot be undrawn.

Drawing in a Bitmap

A bitmap is an invisible resource (in effect, an area of memory) that is only displayed
on the screen when it is referenced by another object. Any of the seven graphical
objects (Circle, Ellipse, Image, Marker, Poly, Text and Rect) can be drawn in a bitmap
(represented by a Bitmap object), using exactly the same [JWC syntax as if you were
drawing in a Form, Static or Printer. However, drawing in a Bitmap is, like drawing on
a Printer, an operation that cannot be "undone".

This facility allows you to construct a picture using lines, circles, text etc. and then
later display it or save it as a bitmap.

Chapter 3: Graphics 72

Multiple Graphical ltems

All graphical output objects (Circle, Ellipse, Image, Marker, Poly, Text and Rect) per-
mit nested arguments so that you can draw several items with a single object. This fea-
ture has several advantages. Firstly, it allows you to treat related graphical items as a
single object with a single name. This reduces the potential number of objects in exist-
ence and reduces the number of program statements needed to draw them. For example,
sets of tick marks or grid lines do not have to be drawn separately, but can be rep-
resented by one object. Furthermore, because a set of lines can be embodied in a single
object, you can erase them, replace them or drag/drop them as a unit. A further con-
sideration is performance. A set of graphical items represented by a single object will
normally be drawn faster than if each item was represented by separate objects.

For example, the following statements draw two separate rectangles; a red one at
(y=10,x=20) and a blue one at (y=50, x=60). Both rectangles are size (30,30).

RED BLUE <« (255 0 0)(0 0 255)

'"F.R1' OWC 'Rect' (10 20)(30 30) ('FCol' RED)
'F.R2' [OWC 'Rect' (50 60)(30 30) ('FCol' BLUE)

The next statement achieves the same result, but uses only one object:

‘F.R'" OWC 'Rect' ((10 50)(20 60)) (30 30)
('FCol' RED BLUE)

The rectangles drawn by both these sets of statements are shown below (blue and red
have been replaced by black for clarity).

P Multiple Graphical Items g@1

The capability to specify more than one graphical item as a single object is particularly
useful with the Text object as it allows you to display or print several text items (at dif-
ferent positions and in different colours if you wish) in a single statement. For example,
the following expressions display a set of "labels" in a Form 'F1':

Chapter 3: Graphics 73

LAB«'Name' 'Age' 'Address'
POS«3 2p10 10 10 60 30 10
'F1.LABS' OWC 'Text' LAB POS

r Multiple Text Items g@-\

Mame Age

Address

Unnamed Graphical Objects

When using the seven graphical output objects, you can optionally omit the final part
of'the name. For example, the following expression is valid:

"F.'" OWC 'Poly' (2 2p10 5 50 10)

When you create a named object, all of the properties pertaining to that object are
stored internally in your workspace. A polyline consisting of a large number of points
thus takes up a significant amount of memory. However, this is necessary because the
APL interpreter needs the information in order to redraw the object when another win-
dow is placed over it and then moved away again (exposure) or when the user resizes
the Form in which it is displayed.

When you create an unnamed graphical object, the object is drawn, but its properties
are not remembered internally, thus conserving workspace. This has two consequences.
Firstly, you cannot subsequently modify or query the object's properties; you must
name an object if you are ever going to refer to it again. Secondly, the object cannot
automatically be redrawn (by APL) when it is exposed or resized. Instead, you must
control this yourselfusing the Expose event.

Unnamed graphical objects are useful in the following circumstances:

e For output to a Printer.

e When you are very short of workspace.

e When you are sure that the window you are drawing in will not need to be
redrawn, for example, when you are working "full-screen".

e For drawing in a Bitmap or a Metafile.

e For creating bitmaps in an ImageList

Chapter 3: Graphics 74

Bitmaps and Icons

Bitmaps and icons are implemented as separate objects that you can create and destroy.
Once you have created such an object you can reference it as many times as you wish.
For example, you can use the same bitmap in several Buttons or associate the same icon
with several Forms.

The Bitmap and Icon objects can be created in one of two ways. They are either loaded
from an existing file or they are defined from APL arrays.

The files concerned must be in the appropriate Windows format for the object (BMP or
ICO files) which can be edited by a standard Windows utility such as Paintbrush. The
following example creates a Bitmap object from the CARS.BMP bitmap file which is
supplied in the WS sub-directory:

ROOT+«'C:\Program Files\Dyalog\Dyalog APL 13.1 Unicode\'
"CARS' [WC 'Bitmap' (ROOT, '\WS\CARS')

Then you can use the Bitmap to fill the background of a Form by:
'"F1' OWC 'Form' ('Picture' CARS 1)('Size' 25 50)

-~

it x|
PPDPDPDPPPPDPDPDDG
PPPPDPPPPDPDPDPDG
PPPPPPDPDPDPDPDPDG
PPPPPPDPDPDPDPDPDG

The "1" in the expression specifies that the Bitmap is to be used to "tile" the back-
ground of the Form. The result is shown in the illustration below. You can also pos-
ition the Bitmap in the top-left (0) or centre (3) of the Form, or even have the Bitmap
scaled automatically (2) to fit exactly in the Form. These settings are useful for dis-
playing pictures. You can explore these facilities using the BMVIEW function in the
UTIL workspace.

Instead of creating Bitmap and Icon objects from file, you can define them using APL
arrays. These arrays specify the individual pixels that make up the picture or shape of
the object in question.

Chapter 3: Graphics 75

There are two ways to define a Bitmap object from APL arrays. The first method, which
is limited to colour palettes of 16 or 256 colours is to supply two arrays; one con-
taining the colour indices for every pixel in the bitmap, and one containing the colour
map. The colour map specifies the colours (in terms of their red, green and blue com-
ponents) corresponding to the indices in the first array. For example, the following
expressions create a 32 x 32 Bitmap from the arrays PIX and CM:

PpPIX A colour index (in CM) of each pixel
32 32

pCM A 16-row matrix of RGB values
16 3

'BM' OWC 'Bitmap' ('Bits' PIX)('CMap' CM)
The reason that this method is restricted to 256 colours is that the CMap array con-
taining the colour map is, of necessity, the same size as the colour palette. Even for a rel-
atively modest 16-bit colour palette, the size of the array would be 65536 x 3.

The second method, which applies to all sizes of colour palette, is to use a single array
that represents each pixel by a number that is an encoding of the red, green and blue
components. The formula used to calculate each pixel value is:

256.LRED GREEN BLUE
where RED, GREEN and BLUE are integers in the range 0-255.
Thus the example above can be achieved using a single array CBITS as follows:

CBITS+(256L8%CMAP)[OIO+PIX]
'BM' [OWC 'Bitmap' ('CBits' CBITS)

While it is possible to define bitmaps by creating appropriate APL arrays, it is likely
that you will load them from file, e.g.

'BM' OWC 'Bitmap' (ROOT,'\WS\CARS')
PIX CM « 'BM' [IWG 'Bits' 'CMap'

Chapter 3: Graphics 76

Metafiles

A Windows metafile is a mechanism for representing a picture as a collection of graph-
ics commands. Once a metafile has been created, the picture that it represents can be
drawn repeatedly from it. Metafiles are device-independent, so the picture can be repro-
duced on different devices. Unlike bitmaps, metafiles can be scaled accurately and are
therefore particularly useful for passing graphical information between different applic-
ations. Note that some other applications only support placeable metafiles. See RealS-
ize property for details.

Creating a Metafile Object

In Dyalog APL, a Windows metafile is represented by the Metafile object. This is cre-
ated in much the same way as a Bitmap object. That is, you can either make a Metafile
object from an existing .WMF file, or you can create an empty one and then draw onto
it using Poly, Text and other graphical objects. For example, to create a Metafile object
called Tigger fromthe 0332364 .wmf metafile that comes with Microsoft Office,
you can execute the following:

Dir<'C:\Program Files\Microsoft Office\MEDIA\CAGCAT10\"'
'Tigger'OWC'Metafile' (Dir,'j033236k4.wmf")

Ifinstead you wanted to create a metafile drawing from scratch, you could do so as fol-
lows. Notice that there is no need to assign names to the graphical objects drawn onto
the Metafile.

'"METADUCK' [WC 'Metafile' "'
"METADUCK.' [OWC 'Poly' DUCK
'"METADUCK.' [OWC 'Text' 'Quack' (25 86)

Chapter 3: Graphics 77

Drawing a Metafile Object

A Metafile object is drawn by specifying either the object itself or its name as the Pic-
ture property of another object. This causes the Metafile to be drawn in that object and
scaled to fit exactly within its boundaries.

The following statement creates a Form containing the Metafile object Tigger.

"FL1'OWC'Form' ('Size' 25 50) ('Picture' Tigger)

The next statement replaces the Picture with the Metafile object METADUCK.
F1.Picture«METADUCK

m

'S

Chapter 3: Graphics 78

Picture Buttons

Picture buttons in foolbars are most conveniently represented by ToolButtons in
ToolControls (see Chapter 4). Pictures on stand-alone buttons or buttons used in the
(superseded) ToolBar object, may be created using Bitmap, Icon and Metafile objects
and there are two different methods provided. The first (and the simplest) is to use the
Picture property which applies to all 3 types of image,(Bitmap, Icon or Metafile). The
second method is to use the BtnPix property. This requires rather more effort, and only
draws Bitmaps, and not Icons or Metafiles. However, the BtnPix property gives you
total control over the appearance of a Button which the Picture property does not.

Using the Picture Property

The Picture property overlays a Bitmap, Icon or Metafile on top of a standard push-
button. The following example uses an icon which is included with Dyalog APL.

dyalog«2 [ONQ'.' 'GetEnvironment' 'dyalog'
'spider'[JWC'Icon'(dyalog, 'ws\arachnid.ico')
"F'OWC'Form' 'Using the Picture Property'
'"F.B'OWC'Button'('Coord' 'Pixel')('Size' 40 40)
F.B.Picture<spider 3

-~

I.Ising the Picture Property g@

|

Notice that (by definition) an icon is 32 x 32 pixels in size. To allow space for the push-
button borders you have to make the Button at least 40 x 40 pixels. The "3" means put
the 'spider' inthe centre of the button.

When you press a Button which has its Picture property set like this, APL auto-
matically shifts the overlaid image down and to the right by 1 pixel. This complements
the change in appearance of the button borders and achieves a "pressed-in" look. When
you release the button, APL shifts the image back again.

The Picture property therefore provides a very simple mechanism for implementing a
"tool-button", especially if you already have a bitmap or icon file that you want to use.

Chapter 3: Graphics 79

However, the Picture property has certain limitations. Firstly, you cannot alter the
"pressed-in" look of'the Button which is determined automatically for you. You might
want the Button to change colour when you press it, and you cannot achieve this with
the Picture property. Secondly, the appearance of the Button is unchanged when you
make it inactive (by setting its Active property to 0).

Note that if you use the Picture property on Radio or Check buttons, the buttons
assume pushbutton appearance although their radio/check behaviour is unaffected.

Using the BtnPix Property

You can obtain complete control over the appearance of a Button by using the BtnPix
property; however this entails more work on your part.

BtnPix allows you to associate three bitmaps with a Button, i.e.

e one for when the Button is in its normal state
e one for when it is pressed/selected
e one for when it is inactive

For example, if you have created three Bitmap objects called UP, DOWN and DEAD, you
define the Button as follows:

'F.B' OWC 'Button' ('BtnPix' UP DOWN DEAD)

APL subsequently displays one of the three Bitmap objects according to the state of
the Button; i.e. UP for its normal state (State 0), DOWN for its pressed/selected state
(State 1) or DEAD when it is inactive (Active 0).

The BtnPix property requires that you use Bitmap objects; it doesn't work for Icons.
This is because icons are normally at least partly transparent. However, it is very easy
to convert an icon file to a Bitmap object. First you create an Icon object from the icon
(ICO) file. Next you read the icon's pattern definition (Bits property) and colour map
(CMap property) into the workspace. Then finally, you create a Bitmap from these two
arrays.

The following example illustrates how you can make a Button from icons supplied
with Windows.

Load a closed foldericon:
'T1'OWC'Icon'('Shell32.dll"' ~3)
Read its Bits (pattern) and CMap (colour map):
Bits CMap « 'T1' [OWG 'Bits' 'CMap'’

Chapter 3: Graphics 80

Now define a Bitmap from these variables, (replacing the T1 object):
'T1' OWC 'Bitmap' '' Bits CMap
Now make a second Bitmap:

'"T2'0OWC'Icon'('Shell32.dlLl"' ~4)
'T2'I:IWC'B1'tmap' 'YO'T2'OWG'Bits! 'CMap'

Now define the Button. Notice that the third (inactive) bitmap is optional.
‘F.B' [OWC 'Button' ('BtnPix' 'T1' 'T2")

The pictures below show the button in its normal and pressed states.

B Benpix E]@T B Bnpix g@“

» d

Chapter 3: Graphics 81

Using Icons

You have seen how icons can be displayed using the Picture property. Other uses of
icons are described below.

Firstly, you can associate an icon with a Form or so that the icon is displayed (by Win-
dows) when the Form is minimised. This is done using the IconObj property. For
example, the following expressions would associate the UK Flag icon distributed with
Visual Basic with the Form ' F1"'. This icon would then be displayed when 'F1' is
minimised.

"star'OWC'Icon'('Shell32.dll' ~43)
'"F1' OWC 'Form' ('IconObj' star)

The IconObj property also applies to the Root object ' . '. This defines the icon to be
displayed for your application as a whole when the user toggles between applications
using Alt+Tab. It is used in conjunction with the Caption property which determines
the description of your application that is shown alongside the icon, e.g.

‘MYIcon' OWC 'Icon' ...
"." OWS ('IconObj' MYIcon) ('Caption' 'My System')

An icon can be displayed using the Image object. This object is used to position one or
more Icon objects (or Bitmap objects) in a Form or Static. It can also be used to draw an
icon on a Printer. If you make the Image dragable, you will be able to drag/drop the
icon. The following example displays a dragable Icon at (10,10) in a Form. It also asso-
ciates the callback function 'Drop' with the DragDrop event so that this function is
called when the user drag/drops the icon.

‘F1' OWC 'Form' ('Event' 'DragDrop' 'Drop')
"star'0OWC'Icon'('Shell32.dll' ~43)

'F1.I' OWC 'Image’ (10 10) ('Picture' star)
F1.I.Dragable<«2

[)igplaying an lcon using an Image [Z]@
o

Notice that setting Dragab L eto 2 specifies that an object is fully displayed while it is
being dragged. Setting Dragab Ll e to 1 causes only the bounding rectangle around the
object to be dragged.

Chapter 3: Graphics

82

Chapter 4: Composite Controls 83

Chapter 4:

Composite Controls

This chapter describes how to use the ToolControl, CoolBar, TabControl and StatusBar
objects.

Several of these objects require the Windows Custom Control Library
COMCTL32.DLL, Version 4.72 or higher.

The ToolControl and ToolButton Objects

The ToolControl object is normally used in conjunction with ToolButtons, although it
may also act as a parent for other objects, including a MenuBar.

A ToolButton may display a Caption and an Image, although both are optional. Images
for individual ToolButtons are not defined one-by-one, but instead are defined by an
ImageList which contains a set of bitmaps or icons.

The ImageListObj property of the ToolControl specifies the name of one or more
ImageList objects to be used. The Imagelndex properties of each of the ToolButtons
specifies which of'the images in each ImageList object apply to which of the ToolBut-
tons.

Standard Bitmap Resources

Typically, you will want your ToolControls to provide standard Windows buttons and
the easiest way to achieve this is to utilise the standard Windows bitmaps that are con-
tained in COMCTL32.DLL. There are three main sets of bitmaps, each of which is
provided in two sizes, small (16x16) and large (24 x 24).

Resource number 120 (IDB_STD SMALL COLOR)and 121 (IDB_STD LARGE
COLOR) contain the following set of assorted bitmap images.

& B e XD S EGER? 0 oS

Chapter 4: Composite Controls 84

Resource number 124 (IDB_ VIEW SMALL COLOR)and 125 (IDB_VIEW LARGE
COLOR) contain a set of bitmaps relating to different views of information. These are
used, for example in the Windows Explorer tool bar

8 105 B E

Resource number 130 (IDB_HIST SMALL COLOR)and 131 (IDB_HIST LARGE
COLOR) contain another useful set of bitmaps

1)
COMCTL32.DLL also contains individual bitmaps in resources 132-134.

Dyalog Bitmap Resources

Another three sets of useful bitmaps are to be found in the DYARES32.DLL file. These
bitmaps are used in the Dyalog APL/W Session tool buttons. Note that if you include
these bitmaps in a run-time application, you will have to ship DYARES32.DLL with
it.

The normal set of bitmaps associated with the Session buttons may be created using
the statement:

"bm'0wc'Bitmap' ('DYARES32' 'tb_normal')

O EESEBEE sV E & o o0 G

The bitmaps used when the buttons are highlighted may be created using the statement
(note that the file name may be elided)

"bm'Owc'Bitmap’ ('' 'tb_hot'")

SR E B B, [0 e QG

The bitmaps used when the buttons are inactive may be created using the statement

"bm'Owc'Bitmap' ('' 'tb_inactive')

[= = e s o o e [R

Chapter 4: Composite Controls 85

Creating ImageLists for ToolButtons

You may use up to three ImageList objects to represent ToolButton images. These will
be used to specify the pictures of the ToolButton objects in their normal, highlighted
(sometimes termed hot) and inactive states respectively.

The set of images in each ImageList is then defined by creating unnamed Bitmap or
Icon objects as children.

When creating an ImagelList, it is a good idea to set its MapCols property to 1. This
means that standard button colours used in the bitmaps will automatically be adjusted
to take the user’s colour preferences into account.

When you create each ToolButton you specify its Imagelndex property, selecting up to
three pictures (normal, highlighted and inactive) to be displayed on the button.

If you specify only a single ImageList, the picture on the ToolButton will be the same
in all three cases. However, the appearance of the buttons themselves change when the
button is highlighted or pressed, and in many situations this may be sufficient beha-
viour.

The following example illustrates how a simple ToolControl can be constructed using
standard Windows bitmaps. Notice that the Masked property of the ImageList is set to
0; this is necessary if the ImageList is to contain bitmaps, as opposed to icons.
Secondly, because the bitmaps are in this case size 16 x 16, it is unnecessary to specify
the Size property of the ImageList which is, by default, also 16 x 16.

'"F'OWC'Form' 'ToolControl'('Size' 10 40)
'"F.TB'OWC'ToolControl'’
.TB.IL'0WC'ImageList'('Masked' 0) ('MapCols' 1)
LTB.IL.'OWC'Bitmap'('ComCtl32' 120)a STD_SMALL
.TB'[OWS'ImagelListObj' 'F.TB.IL'
.TB.B1'[IWC'ToolButton' 'New'('ImageIndex' 7)
.TB.B2'OWC'ToolButton' 'Open'('ImageIndex' 8)
.TB.B3'0WC'ToolButton' 'Save'('ImageIndex' 9)

£l ToolControl g@
L = HE

Mew Open Save

MM M M M M m

Chapter 4: Composite Controls 86

The Style Property

The overall appearance of the ToolButton objects displayed by the ToolControl is
defined by the Style property of the ToolControl itself, rather than by properties of indi-
vidual ToolButtons.

Note that the Style property may only be set when the ToolControl is created using
(OWC and may not subsequently be changed using [OWS.

Style may be 'FlatButtons', 'Buttons’, 'List' or 'FlatList'.The
default Style is of a ToolControl is 'FlatButtons ', as is the first example above.
The following examples illustrate the other three styles:

r ToolControl: Buttons Style g@-\

O | = | E
Mew | Open| Save

r ToolControl: List Style g@w

[Mew ||j-’-Elpen| ESave|

ToolControl: FlatList Style g@

[Mew [2rOpen ESave

IThe appearance of the ToolControl is also heavily dependent upon whether or not Native Look and
Feel is enabled. The screen-shots in this manual were all taken using Windows XP with Native Look
and Feel disabled.. See User Guide for details.

Chapter 4: Composite Controls 87

The Divider Property

You will notice that, in the above examples, there is a thin groove drawn above the
ToolControl. The presence or absence of this groove is controlled by the Divider prop-
erty whose default is 1. The following picture illustrates the effect of setting Divider to
0.

ToolControl: Mo Divider g@
LD = E

Mew Open Save

The MultiLine Property

The MultiLine property specifies whether or not ToolButtons (and other child con-
trols) are arranged in several rows (or columns) when there are more than would oth-
erwise fit.

If MultiLine is 0 (the default), the ToolControl object c/ips its children and the user
must resize the Form to bring more objects into view.

Note that you may change MultiLine dynamically, using (OWS.

'F'OWC'Form' 'ToolControl: MultiLine 0'
'F.TB'OWC'ToolControl'('Style' 'List')

.TB.IL'[WC'ImageList'('Masked’' 0)('Size' 24 2u)
LTB.IL.'OWC'Bitmap'('ComCtl32' 121)a STD_LARGE
.TB'0OWS'ImagelListObj' 'F.TB.IL'

M M

.TB.B1'[IWC'ToolButton' 'Cut'('ImageIndex' 1)
.TB.B2'0OWC'ToolButton' 'Copy'('ImageIndex' 2)
.TB.B3'0WC'ToolButton' 'Paste'('ImageIndex' 3)
.TB.B4'[DWC'ToolButton' 'Undo'('ImageIndex' 4)
.TB.B5'0WC'ToolButton' 'Redo'('ImageIndex' 5)

.TB.B6'[D0WC'ToolButton' 'Delete'('Imagelndex' 6)

tfé] ToolControl: MultiLine 0 [Z]@
& Cut ‘Enpy ‘

MM M M M m

K Undo | O

FPaste

If we set MultiLine to 1, the ToolButtons are instead displayed in several rows:

Chapter 4: Composite Controls 88

r ToolControl: MultiLine 1 E]@-\

EX:, it Eé Copy
a Redo >< Delete

£y Paste | w72 Undo

The Transparent Property

The Transparent property (default 0) specifies whether or not the ToolControl is trans-
parent. Note that Transparent must be set when the object is created using OWC and
may not subsequently be changed using [JWS.

If a ToolControl is created with Transparent set to 1, the visual effect is as if the
ToolButtons (and other controls) were drawn directly on the parent Form as shown
below.

"F'OWC'Form' 'ToolControl: Transparent 1)'
ROOT«'C:\Program Files\Dyalog\Dyalog APL 13.1 Unicode\'
"F.BM'OWC'Bitmap' (ROOT, '\WS\BUBBLES")

"F'OWS'Picture' 'F.BM' 1

.TB'OWC'ToolControl'('Style' 'Buttons')('Transparent'1l)
.TB.IL'0WC'ImageList'('Masked' 0)('Size' 24 2Uu4)
.TB.IL.'OWC'Bitmap'('ComCtl32' 121)p STD_LARGE
.TB'[OWS'ImagelListObj' 'F.TB.IL'

i B B By |

.TB.B1'0WC'ToolButton' 'New'('ImageIndex' 7)
.TB.B2'[OWC'ToolButton' 'Open'('ImageIndex' 8)
.TB.B3'0WC'ToolButton' 'Save'('ImagelIndex' 9)

e ToolControl: Transparent 1) E]@

M M

Mew | Open| 5 ave ..'." _E * ..

L

i . . o .
b & oo . B & O . W 6 E . B 6 O . W 6 E .

Chapter 4: Composite Controls 89

Radio buttons, Check buttons and Separators

The Style property of a ToolButton may be 'Push', 'Check', 'Radio’,
'Separator' or 'DropDown'.

Push buttons (the default) are used to generate actions and pop in and out when
clicked.

Radio and Check buttons are used to select options and have two states, normal (out)
and selected (in). Their State property is 0 when the button is in its normal (unselected
state) or 1 when it is selected.

A group of adjacent ToolButtons with Style 'Radio' defines a set in which only one
of'the ToolButtons may be selected at any one time. The act of selecting one will auto-
matically deselect any other. Note that a group of Radio buttons must be separated

from Check buttons or other groups of Radio buttons by ToolButtons of another Style.

Separator buttons are a special case as they have no Caption or picture, but appear as a
thin vertical grooves that are used only to separate groups of buttons.

The following example illustrates how two groups of radio buttons are established by
inserting a ToolButton with Style ' Separator' between them. This ToolControl
could be used to control the appearance of a ListView object. The first group is used to
select the view (Large Icon, Small Icon, List or Report), and the second is used to sort
the items by Name, Size or Date. In the picture, the user has selected Small Icon View
and Sort by Date.

'"F'OWC'Form' 'ToolControl: Radio Buttons'
'"F.TB'OWC'ToolControl’

'"F.TB.IL'[WC'ImageList'('Masked' 0)
'"F.TB.IL.'OWC'Bitmap'('ComCtl32' 124)a VIEW_SMALL
"F.TB'(WS'ImageListObj' 'F.TB.IL'

'F.TB.B1'[0WC'ToolButton' 'Large'('ImageIndex' 1)('Style' 'Radio')
'"F.TB.B2'[JWC'ToolButton' 'Small'('ImageIndex' 2)('Style' 'Radio')
'F.TB.B3'0WC'ToolButton' 'List'('ImageIndex' 3)('Style' 'Radio')
'"F.TB.B4'[IWC'ToolButton' 'Details'('ImageIndex' 4)('Style' 'Radio')

'"F.TB.S1'[0WC'ToolButton'('Style' 'Separator')
'"F.TB.B5'[]WC'ToolButton' 'Name'('ImageIndex' 5)('Style' 'Radio')

'F.TB.B6'[IWC'ToolButton' 'Size'('Imagelndex' 6)('Style' 'Radio')
'"F.TB.B7'[OWC'ToolButton' 'Date'('ImageIndex' 7)('Style' 'Radio')

Chapter 4: Composite Controls 90

ToolControl: Radio Buttons g@
el Ol @&

Large | Small Lzt Detals | Mame Size | Date

Notice that the appearance of the Separator ToolButton is less obvious when the
ToolControl Style is Buttons or List, but the radio grouping effect is the same:

ToolControl: List Style with Radie Buttons g@
[Be] Large I F5mal [List | Details| 2 | Name | 03l Size | @] Date

Drop-Down buttons

It is possible to define ToolButtons that display a drop-down menu from which the
user may choose an option. This is done by creating a ToolButton with Style
‘DropDown’.

A ToolButton with Style 'DropDown ' has an associated popup Menu object which
is named by its Popup property. There are two cases to consider.

If the ShowDropDown property of the parent ToolControl is 0, clicking the ToolBut-
ton causes the popup menu to appear. In this case, the ToolButton itself does not itself
generate a Select event; you must rely on the user selecting a Menultem to specify a par-
ticular action.

Ifthe ShowDropDown property of the parent ToolControl is 1, clicking the dropdown
button causes the popup menu to appear; clicking the ToolButton itself generates a
Select event, but does not display the popup menu.

Chapter 4: Composite Controls

91

"F'OWC'Form' 'ToolControl: Dropdown Buttons'
'F.TB'OWC'ToolControl'('ShowDropDown' 1)

:With 'F.FMENU'0WC'Menu’ A Popup File menu
"NEW'0WC'Menultem' '&New'
'OPEN'0WC'Menultem' '&Open'

'CLOSE 'lWC'Menultem' '&Close’

:EndWith

:With 'F.EMENU'(WC'Menu' A Popup Edit menu
'CUT'0OWC'Menultem' 'Cu&t'’
"COPY'[WC'Menultem' '&Copy'

"PASTE '00WC'Menultem' '&Paste’
:EndWith

.TB.B1'0WC'ToolButton' 'File'('Style' 'DropDown')('Popup’

)
)

ToolControl: Dropdown Buttons g@

File | ~ Edit =
e
Open
Close

A MenuBar as the child of a ToolControl

'F

UI

'F.TB.B2'[0WC'ToolButton' 'Edit'('Style' 'DropDown')('Popup’
UI

'F.FMEN

'F.EMEN

As a special case, the ToolControl may contain a MenuBar as its only child. In this
case, Dyalog APL/W causes the menu items to be drawn as buttons, even under Win-

dows 95.

Although nothing is done to prevent it, the use of other objects in a ToolControl con-

taining a MenuBar, is not supported.

Chapter 4: Composite Controls

'"F'OWC'Form' 'ToolControl with MenuBar'
'F.TB'0OWC'ToolControl'

:With 'F.TB.MB'OWC'MenuBar'

:With 'File'[JWC'Menu’ 'File'
'New'[JWC'Menultem' 'New'
'Open'[OWC'Menultem' 'Open’
'Close'[JWC'Menultem' 'Close’

:EndWith

:With 'Edit'[OWC'Menu’ 'Edit'
'Cut'WC'Menultem' 'Cut'
'Copy 'O0WC'Menultem' 'Copy'
'Paste'[JWC'Menultem' 'Paste’

:EndWith
:EndWith
ToolControl with MenuBar E]@
File | Edit
Cuk
Copy
Paste

Chapter 4: Composite Controls 93

Providing User Customisation

It is common to allow the user to switch the appearance of a ToolControl dynamically.
This may be done using a pop-up menu. In addition to providing a choice of styles, the
user may switch the text captions on and off.

The ShowCaptions property specifies whether or not the captions of ToolButton
objects are drawn. Its default value is 1 (draw captions).

ToolButtons drawn without captions occupy much less space and ShowCaptions
provides a quick way to turn captions on/off for user customisation.

r ToolControl: User Options g@-\
¥ 'SR 4

Cut Copy Paste Undo Redo ® Flat Buttans
Butkons

Lisk
Flat Lisk

v Show Text
MulkiLine

The following functions illustrate how this was achieved.

vV Example
[1] '"F'OWC'Form' 'ToolControl: User Options'
[2] '"F.TB'OWC'ToolControl'
[3] '"F.TB'OWS'Event' 'MouseDown' 'TC_POPUP'
(4]
[5] 'F.TB.IL'0OWC'ImageList'('Masked’' 0)('Size' 24 24)
[6] 'F.TB.IL.'[WC'Bitmap'('ComCtl32' 121)a STD_LARGE
[7] "F.TB'0OWS'ImagelListObj' 'F.TB.IL'
[8]
[9] '"F.TB.B1'[JWC'ToolButton' 'Cut'('ImageIndex' 1)
[10] '"F.TB.B2'[JWC'ToolButton' 'Copy'('Imagelndex' 2)
[11] '"F.TB.B3'[JWC'ToolButton' 'Paste’'('ImageIndex’' 3)
[12] '"F.TB.B4'[JWC'ToolButton' 'Undo'('ImageIndex' 4)
[13] 'F.TB.B5'[JWC'ToolButton' 'Redo'('ImageIndex' 5)
[14] "F.TB.B6'[DWC'ToolButton' 'Delete’'('Imagelndex' 6)

Chapter 4: Composite Controls

94

(10]
[11]

[12]
[13]

[14]
[15]
[16]

(17]

(18]
[19]
[20]
[21]
[22]
(23]
[24]
[25]
[26]

[27]
[28]
[29]
[30]
[31]
[32]

v

v

TC_POPUP MSG;popup;TC;STYLE; SHOW;MULTI;OPTION
A Popup menu on ToolControl
:If (2#55MSG) A Right mouse button ?
:Return
tEndIf

TC«'#.',oMSG
STYLE SHOW MULTI<«TC [OWG'Style' ‘ShowCaptions'
'MultilLine'

:With 'popup'0WC'Menu’
'FlatButtons'[JWC'Menultem' '&Flat Buttons'

('Style' 'Radio')
'Buttons'[JWC'MenulItem' '&Buttons'

('Style' 'Radio')
'List'OWC'Menultem' '&List'('Style' 'Radio')
'"FlatList'[OWC'Menultem' 'Fla&t List'

('Style' 'Radio')

STYLE [OWS'Checked' 1

'sep'[0WC'Separator’

'ShowCaptions'[JWC'Menultem’ '&Show Text'
('Checked'SHOW)

'MultiLine'[JWC'Menultem' '&Multiline’
('Checked'MULTI)

('Menultem'OWN'')OWS " c'Event' 'Select' 1

:If 0=pMSG<[IDQ"'
:Return
tEndIf

:Select OPTION«>MSG
:Caselist 'FlatButtons' 'Buttons' 'List'
'FlatList’
TC OWS'Style'OPTION
:Else
TC [OWS OPTION(~TC [OWG OPTION)
:EndSelect

:EndWith

Chapter 4: Composite Controls 95

The CoolBar and CoolBand Objects

A CoolBar contains one or more bands (CoolBands). Each band can have any com-
bination of a gripper bar, a bitmap, a text label, and a single child object.

Using the gripper bars, the user may drag bands from one row to another, resize bands
in the same row, and maximise or minimise bands in a row. The CoolBar therefore
gives the user a degree of control over the layout of the controls that it contains.

A CoolBand may not contain more than one child object, but that child object may
itself be a container such as a ToolControl or a SubForm.

The following example illustrates a CoolBar containing two CoolBands, each of
which itself contains a ToolControl.

"F'OWC'Form' 'CoolBar Object with ToolControls'
"F.IL'OWC'ImagelList'('Masked' 0)('MapCols' 1)
'F.IL.'OWC'Bitmap'('ComCtl32' 120)a STD_SMALL

'F.CB'OWC'CoolBar'

:With 'F.CB.C1'OWC'CoolBand’
'TB'OWC'ToolControl'('ImageListObj' "#.F.IL")
'TB.B1'[JWC'ToolButton' 'New'('ImageIndex' 7)
'TB.B2'[0WC'ToolButton' 'Open’'('ImageIndex' 8)
‘TB.B3'[WC'ToolButton' 'Save'('ImageIndex' 9)

:EndWith

:With 'F.CB.C2'WC'CoolBand'
‘TB'OWC'ToolControl'('ImageListObj' '"#.F.IL")
'TB.B1'[JWC'ToolButton' 'Cut'('ImageIndex' 1)
'TB.B2'[JWC'ToolButton' 'Copy'('ImageIndex' 2)
'TB.B3'[WC'ToolButton' 'Paste'('ImageIndex' 3)
‘TB.B4'[JWC'ToolButton' 'Undo'('ImageIndex' 4)
'TB.B5'[JWC'ToolButton' 'Redo’'('ImageIndex' 5)

:EndWith

CoolBar Object with ToolControls E]@
O = E
Mew Open Save
% Bz [T]

Cut Copp Paste Undo Redo

Chapter 4: Composite Controls 96

The user may move band 2 into row 1 by dragging the gripper bar:

5 =
CuulBﬂr Object with ToolControls E]@

D Eﬁ. n 'Ilré' | =2 K Tl
Mew Open Save Cut Copy Paste Undo Redo

CoolBar: FixedOrder Property

FixedOrder is a property of the CoolBar and specifies whether or not the CoolBar dis-
plays CoolBands in the same order. If FixedOrder is 1, the user may move bands which
have gripper bars to different rows, but the band order is static. The default is 0.

CoolBand: GripperMode Property

GripperMode is a property of a CoolBand and specifies whether or not the CoolBand
has a gripper bar which is used to reposition and resize the CoolBand within its parent
CoolBar. GripperMode is a character vector with the value 'Always' (the default),
‘Never' or 'Auto'.If GripperMode is'Always ', the CoolBand displays a gripper
bar even ifit is the only CoolBand in the CoolBar. If GripperMode is'Never ', the
CoolBand does not have a gripper bar and may not be directly repositioned or resized
by the user. If GripperMode is 'Auto ', the CoolBand displays a gripper bar only if
there are other CoolBands in the same CoolBar.

CoolBar: DbIClickToggle Property

Ifit has a gripper bar, the user may maximise one of the bands in a row, causing the
other bands to be minimised. The action required to do this is defined by the DblClick-
Toggle property which is a property of the CoolBar.

IfDblClickToggle is O (the default), the user must single-click the gripper bar. If
DblClickToggle is 1, the user must double-click the gripper bar. These actions toggle a
child CoolBand between its maximised and minimised state. The following picture
shows the first CoolBand maximised.

Chapter 4: Composite Controls

b |

E CoolBar Object with ToolControls M
0 & HE j

Mew Open Save

The next picture shows the second CoolBand maximised.

E CoolBar Object with ToolControls uw
H % B o o

Cut Copy Paste Undo Fedo

Chapter 4: Composite Controls 98

CoolBar: VariableHeight/BandBorders Properties
These two properties affect the appearance of the CoolBar.

The VariableHeight property specifies whether or not the CoolBar displays bands in
different rows at the minimum required height (the default), or all the same height.

The BandBorders property specifies whether or not narrow lines are drawn to separate
adjacent bands. The default is 0 (no lines).

The following example uses simple controls (as opposed to container controls) as chil-
dren of the CoolBands and illustrate the effect of these properties on the appearance of
the CoolBar.

"F'O0WC'Form' 'CoolBar Object with simple controls'
'"F.CB'OWC'CoolBar’

:With F.CB.C1'(DWC'CoolBand'’
'E1'(WC'Edit"' 'Editt’
:EndWith

:With 'F.CB.C2'JWC'CoolBand'
'C1'OWC'Combo'('One' 'Two' 'Three')('SelItems' 0 1 0)
:EndWith

:With 'F.CB.C3'[0WC'CoolBand’
'E2'[JWC'Edit' (3 5p'Edit2')('Style’ 'Multi')
:EndWith

CoolBar Object with simple controls g@

|E|:Iit1

|Tw-:| ﬂ

Edit2
Edit2
Edit2

Chapter 4: Composite Controls

Ifthe CoolBands are arranged in the same row, the height of the row expands to accom-
modate the largest one as shown below.

E CoolBar Object with simple controls M

‘ |Edit1

Edit2
| T - Edi2

Edit2

The picture below illustrates the effect of setting VariableHeight to 0.

8 CoolBar Object: VariableHeight 0 |~ |[O1/53]

|Edit1

ITw-:u

[

Edit2
Edit2
Edit2

The picture below shows the effect on appearance of setting BandBorders to 1.

E CoolBar Object: BandBorders 1 uw

J |Edit1

JITw-:n

‘ Edit?

[

Edit2
Edit2

Chapter 4: Composite Controls 100

CoolBand: ChildEdge Property

ChildEdge is a property of a CoolBand and specifies whether or not the CoolBand
leaves space above and below the object that it contains.

If the ChildEdge property of each CoolBand had been set to 1 in the above example,
then the result would show wider borders between each band.

i8] CoolBar Object: ChildEdge 1 M=l

|E|:Iit1

|Tw-:| ﬂ

Edit2
Edit2
Edit2

Chapter 4: Composite Controls

101

CoolBand: Caption and Imagelndex Properties

The Caption and Imagelndex properties of a CoolBand are used to display an optional

text string and picture in the CoolBand.

The picture is defined by an image in an ImageList object whose name is referenced by
the ImageListObj property of the parent CoolBar. The following example illustrates

how this is done.

"F'OWC'Form' 'CoolBand Caption and ImageIndex'
"F.IL'OWC'ImageList'('Masked' 0)('MapCols' 1)
'"F.IL.'OWC'Bitmap'('ComCtl32' 120)A STD_SMALL

.CB'[JWC'CoolBar'('ImageListObj' 'F.CB.IL')
.CB.IL'OWC'ImagelList'('Masked' 1)('MapCols' 1)
.CB.IL.'OWC'Icon'('"' 'aplicon')
.CB.IL.'OWC'Icon'('' 'editicon')

MM M M m

:With 'F.CB.C1'[D0WC'CoolBand' 'File'('ImageIndex' 1)
'"TB'OWC'ToolControl'('ImageListObj"' '#.F.IL')('Divider'
‘TB.B1'[IWC'ToolButton' 'New'('ImagelIndex' 7)
'TB.B2'[JWC'ToolButton' 'Open'('Imagelndex' 8)
'TB.B3'WC'ToolButton' 'Save'('ImagelIndex' 9)

:EndWith

:With 'F.CB.C2'0WC'CoolBand' 'Edit'('ImageIndex' 2)
'TB'OWC'ToolControl'('ImageListObj' '#.F.IL')('Divider'
‘TB.B1'[JWC'ToolButton' 'Cut'('Imagelndex' 1)
'TB.B2'OWC'ToolButton' 'Copy'('ImageIndex' 2)
'TB.B3'[JWC'ToolButton' 'Paste’'('ImageIndex' 3)
'TB.B4'[WC'ToolButton' 'Undo'('Imagelndex' 4)
'TB.B5'[JWC'ToolButton' 'Redo'('Imagelndex' 5)

:EndWith

CoolBand Caption and Imagelndex g@
Gr. O =& B g b = IR

Mew Open Save Cut Copy Paste Undo Redo

0)

0)

Chapter 4: Composite Controls 102

Note that the Caption and image are displayed when the CoolBand is minimised as
shown below:

i CoolBand Caption and Imagelndex g@
JibFile b = E

Mew Open Save

CoolBand: Size, Posn, NewLine, Index Properties

The Size property of a CoolBand is partially read-only and may only be used to specify
its width; because the height ofa CoolBand is determined by its contents. Furthermore,
the Size property may only be specified when the CoolBand is created using OWC.

The position of a Cool Band within a CoolBar is determined by its Index and NewLine
properties, and by the position and size of preceding CoolBand objects in the same
CoolBar. The Posn property is read-only.

The Index property specifies the position of a CoolBand within its parent CoolBar, rel-
ative to other CoolBands and is 10 dependent. Initially, the value of Index is determ-
ined by the order in which the CoolBands are created. Y ou may re-order the
CoolBands within a CoolBar by changing its Index property with [JWS.

The NewLine property specifies whether or not the CoolBand occupies the same row
as an existing CoolBand, or is displayed on a new line within its CoolBar parent.

The value of NewLine in the first CoolBand in a CoolBar is always [JI10, even if you
specify it to be 0. You may move a CoolBand to the previous or next row by changing
its NewLine property (using OWS) from 1 to 0, or from 0 to 1 respectively.

If you wish to remember the user’s chosen layout when your application terminates,
you must store the values of Index, Size and NewLine for each of the CoolBands.
When your application is next started, you must re-create the CoolBands with the same
values of these properties.

Chapter 4: Composite Controls 103

CoolBands with SubForms

The CoolBand object itself may contain only a single child object. However, if that
child is a SubForm containing other objects, the CoolBand can appear to manage a
group of objects. A similar effect can be obtained using a ToolBar or ToolControl.

The following example illustrates this technique. Note that the SubForms are disguised
by setting their EdgeStyle and BCol properties. In addition, their AutoConf properties
are set to 0 to prevent resizing of the child controls when the CoolBands are resized.

'"F'OWC'Form' 'CoolBar with SubForms'('Size' 25 50)
'"F'OWS'Coord' 'Pixel'

"F.CB'OWC'CoolBar'

:With 'F.CB.C1'[JWC'CoolBand'
'S'OWC'SubForm'('Size' 30 €)('EdgeStyle' 'Default')
('BCol' T16)('AutoConf' 0)
'S.E1'(OWC'Edit' 'Edit 1'(2 2)(& 60)
'S.C1'[DWC'Combo'('One' 'Two')''(2 70)(® 60)
:EndWith

:With 'F.CB.C2'OWC'CoolBand'
'S'OWC'SubForm'('Size' 30 @)('EdgeStyle' 'Default')
('BCol' ~16)('AutoConf' 0)
'S.E1'0OWC'Edit' 'Edit 2'(2 2)(& 60)
'S.C1'OWC'Combo' ('One' 'Two')''(2 70)(& 60)
:EndWith

- 4
£l CoolBar with SubForms g@
[Edit 1 | R | =l

Chapter 4: Composite Controls 104

The TabControl and TabButton Objects

The TabControl object provides access to the standard Windows NT tab control.

The standard tab control is analogous to a set of dividers in a notebook and allows you
to define a set of pages that occupy the same area of a window or dialog box. Each
page consists of a set of information or a group of controls that the application displays
when the user selects the corresponding tab.

A special type of tab control displays tabs that look like buttons. For example, the Win-
dows 98 taskbar is such a tab control.

To implement a multiple page tabbed dialog, illustrated below, you should create a
Form, then a TabControl with Style ' Tabs ' (which is the default) as a child of the
Form.

'"F'OWC'Form' 'TabControl: Default'('Size' 25 50)
'F.TC'OWC'TabControl'

Individual tabs or buttons are represented by TabButton objects which should be cre-
ated as children of the TabControl object. Optional captions and pictures are specified
by the Caption and Imagelndex properties of the individual TabButton objects them-
selves.

"F.TC.IL'OWC'Imagelist’
'"F.TC.IL.'OWC'Icon'('"'" '"APLIcon')
'"F.TC.IL.'OWC'Icon'('" 'FUNIcon')
'"F.TC.IL.'OWC'Icon'('"'" "EDITIcon')
"F.TC'OWS'ImagelListObj' 'F.TC.IL'

Next, create one or more pairs of TabButton and SubForm objects as children of the
TabControl. You associate each SubForm with a particular tab by setting its TabObyj
property to the name of the associated TabButton object. Making the SubForms chil-
dren of the TabControl ensures that, by default, they will automatically be resized cor-
rectly. (You may alternatively create your SubForms as children of the main Form and
establish appropriate resize behaviour using their Attach property.)

'"F.TC.T1'0WC'TabButton' 'One'('ImageIndex' 1)
.TC.T2'0WC'TabButton' 'Two'('ImageIndex' 2)
.TC.T3'0WC'TabButton' 'Three'('ImageIndex' 3)
.S1'[OWC'SubForm' ('TabObj' 'F.TC.T1"')
.TC.S2'0WC'SubForm'('TabObj' 'F.TC.T2")
.TC.S3'0OWC'SubForm'('TabObj' 'F.TC.T3"')

MMM M M
—
(@}

Chapter 4: Composite Controls 105

£ TabControl: Default g@
ﬁbDne]EITWDE :

Style, FlatSeparators and HotTrack Properties

The Style property determines the overall appearance of the tabs or buttons in a
TabControl and may be 'Tabs' (the default), 'Buttons' or 'FlatButtons'.

A TabControl object with Style 'Buttons' or 'FlatButtons' maybeusedina

similar way (i.e. to display a set of alternative pages), although buttons in this type of

TabControl are more normally used to execute commands. For this reason, these styles
of TabControl are borderless.

" TabControl: Buttons Style g@“

Chapter 4: Composite Controls 106

TabControl: FlatButtons Style g@
ED One a Two [Thies:

If Styleis 'FlatButtons ', the FlatSeparators property specifies whether or not sep-
arators are drawn between the buttons. The following example illustrates the effect of
setting FlatSeparators to 1.

TabControl: FlatButtons with FlatSeparators g@

Broore |] Two e Thies:

The HotTrack property specifies whether or not the tabs or buttons in a TabControl
object (which are represented by TabButton objects), are automatically highlighted by
the mouse pointer.

Chapter 4: Composite Controls 107

The Align Property

The Align property specifies along which of the 4 edges of the TabControl the tabs or
buttons are arranged. Align also controls the relative positioning of the picture and
Caption within each TabButton. Align may be Top (the default), Bottom, Left or
Right.

If Alignis 'Top' or 'Bottom', the tabs or buttons are arranged along the top or bot-
tom edge of the TabControl and the picture is drawn to the left of the Caption.

'"F'OWC'Form' 'TabControl: Align Bottom'('Size' 25 50)
'"F.TC'OWC'TabControl'('Align' 'Bottom')

.TC.IL'0WC'ImagelList'

.TC.IL.'OWC'Icon'("'' 'APLIcon')
.TC.IL.'0WC'Icon'("'' 'FUNIcon')
.TC.IL.'WC'Icon'("'' 'EDITIcon')

b s B s B |

"F.TC'OWS'ImagelListObj' 'F.TC.IL'

'"F.TC.TL1'0WC'TabButton' 'One'('Imagelndex' 1)
'"F.TC.T2'0WC'TabButton' 'Two'('Imagelndex' 2)
'"F.TC.T3'0OWC'TabButton' 'Three'('ImageIndex' 3)

"F.S1'0WC'SubForm' ('TabObj' 'F.TC.T1")

"F.S2'0WC'SubForm' ('TabObj' 'F.TC.T2")
"F.S3'0WC'SubForm'('TabObj"' 'F.TC.T3")

r TabControl: Align Bottom g@ﬁ

If Alignis 'Left' or 'Right ', the tabs or buttons are arranged top-to-bottom along
the left or right edge of the TabControl as shown below.

Chapter 4: Composite Controls 108

r TabControl: Align Left E]@W

: |':_‘]J Twa[@ Ohe

=]

The MultiLine Property

The MultiLine property of a TabControl determines whether or not your tabs or but-
tons will be arranged in multiple flights or multiple rows/columns.

The default value of MultiLine is 0, in which case, if you have more tabs or buttons
than will fit in the space provided, the TabControl displays an UpDown control to per-
mit the user to scroll them.

Chapter 4: Composite Controls 109

TabControl: Default g@
| 2 FirstTabl & Second Tal:ul Efa Third Tab ﬁF'ﬂLI

If MultiLine is set to 1, the tabs are displayed in multiple flights.

TabControl: Default g@
gb Firzt Tab I q'i’_hl Second Tab |

iz Thid Tab 5 Fourth Tab |

If the TabControl has Style 'Buttons ' and MultiLine is set to 1, the buttons are dis-
played in multiple rows.

TabControl: MultiLine Buttons g@
ﬁb First T ab | B Second Tab I

5] Third Tah [5 Founth Tab

Chapter 4: Composite Controls 110

The ScrollOpposite Property

The ScrollOpposite property specifies that unneeded tabs scroll to the opposite side of
a TabControl, when a tab is selected. This only applies when MultiLine is 1.

The following example illustrates a TabControl with ScrollOpposite set to 1, after the
user has clicked Third Tab. Notice that, in this example, the SubForms have been cre-
ated as children of the TabControl. This is necessary to ensure that they are managed
correctly in this case.

'"F'OWC'Form' 'TabControl: ScrollOpposite’
'"F.TC'OWC'TabControl' ('ScrollOpposite' 1)('MultiLine' 1)

.TC.IL'0WC'ImagelList'

.TC.IL.'OWC'Icon'("'' 'APLIcon')
.TC.IL.'0WC'Icon'("'' 'FUNIcon')
.TC.IL.'WC'Icon'("'' 'EDITIcon')

b s B s B |

"F.TC'OWS'ImagelListObj' 'F.TC.IL'

'"F.TC.TL1'0WC'TabButton' 'First Tab'('ImageIndex' 1)
'"F.TC.T2'0OWC'TabButton' 'Second Tab'('ImageIndex' 2)
'"F.TC.T3'0OWC'TabButton' 'Third Tab'('ImageIndex' 3)
'"F.TC.T4'0WC'TabButton' 'Fourth Tab'('ImageIndex' 1)
TabControl: Scrolllpposite g@

Fa] Thid Tab] B Fouth Tab]

,S[b First T ab J] Second Tab

If MultiLine is 1, the way that multiple flights of tabs or rows/columns of buttons are
displayed is further defined by the Justify property which may be 'Right ' (the
default) or 'None"'.

Chapter 4: Composite Controls

The Justify Property

If Justify is 'Right ' (which is the default), the TabControl increases the width of
each tab, if necessary, so that each row of'tabs fills the entire width ofthe tab control.

Otherwise, if Justify is empty or ' None ', the rows are ragged as shown below.

'"F'OWC'Form' 'TabControl: MultilLine Tabs, Justify None'
"F.TC'OWC'TabControl'('MultiLine’ 1)('Justify ' 'None')

'F.TC.IL'[OWC'Imagelist'

'"F.TC.IL.'0OWC'Icon'('' 'APLIcon')
'"F.TC.IL.'OWC'Icon'('"' 'FUNIcon')
'F.TC.IL.'OWC'Icon'('"' 'EDITIcon')
"F.TC'OWS'ImagelListObj' 'F.TC.IL'
'"F.TC.T1'0OWC'TabButton' 'First Tab'('ImageIndex' 1)
'"F.TC.T2'0WC'TabButton' 'Second Tab'('ImageIndex' 2)
'"F.TC.T3'0WC'TabButton' 'Third Tab'('ImageIndex' 3)
'"F.TC.T4+'0WC'TabButton' 'Fourth Tab'('ImageIndex' 1)

TabControl: MultiLine , Justify MHone g@

,ﬁ& FirstTah] qla Second Tab

%] Third Tab | [

The next picture illustrates the effect of Justify 'None ' on a TabControl with Style

'Buttons'.

TabControl: MultiLine , Justify Mone g@

B FistTab|) Second Tab | Bl Thid Tab |

Chapter 4: Composite Controls 112

The TabSize and TabJustify Properties

By default, the size of the tabs may vary from one row to another. Fixed size tabs may
be obtained by setting the TabSize property.

If fixed size tabs are in effect, the positions at which the picture and Caption are drawn
within each TabButton is controlled by the TabJustify property which may be
‘Centre'(the default), 'Edge',or 'IconEdge"'.

'"F'OWC'Form' 'TabControl: TabJustify Centre'
"F.TC'OWC'TabControl'('Style' 'Buttons')('TabSize'® 30)

.TC.IL'0WC'ImagelList'
.TC.IL.'OWC'Icon'("'' 'APLIcon')
.TC.IL.'0WC'Icon'("'' 'FUNIcon')
.TC.IL.'WC'Icon'("'' 'EDITIcon')
.TC'OWS'ImagelListObj' 'F.TC.IL'

MM M M

.TC.T1'WC'TabButton' 'One'('ImageIndex' 1)
.TC.T2'0WC'TabButton' 'Two'('Imagelndex' 2)
.TC.T3'0WC'TabButton' 'Three'('ImageIndex' 3)

Mm M

TabControl: TabJustify Centre

| ﬁ One B T |

If TabJustify is set to ' Edge ' then the picture and text on the TabButton are justified
along the side defined by the Align property (default ' Top").

'"F'OWC'Form' 'TabControl: TabJustify Edge'('Size' 10 40)
'"F.TC'OWC'TabControl'('Style' 'Buttons')
('TabJustify' 'Edge')('TabSize'® 30)

etc.
TabControl: TabJustify Edge [Z]@
| B ore £ Two il |

If, instead, the TabJustify property is setto ' IconEdge ' then the text is centred and
only the icons are justified.

Chapter 4: Composite Controls 113

TabControl: TabJustify lconEdge g@
| ﬁ Ore B Two i Threqm

The TabFocus Property
The TabFocus property specifies the focus behaviour for the TabControl object.

TabFocus is a character vector that may be 'Normal ' (the default), 'Never' or
'ButtonDown'.

If TabFocus is 'Normal ', the tabs or buttons in a TabControl do not immediately
receive the input focus when clicked, but only when clicked a second time. This means
that, normally, when the user circulates through the tabs, the input focus will be given
to the appropriate control in the associated SubForm. However, if the user clicks twice
in succession on the same tab or button, the TabControl itself will receive the input
focus.

If TabFocus is 'ButtonDown ', the tabs or buttons in a TabControl receive the input
focus when clicked.

If TabFocus is 'Never ', the tabs or buttons in a TabControl never receive the input
focus. This allows the user to circulate through a set of tabbed SubForms without ever
losing the input focus to the TabControl itself.

Chapter 4: Composite Controls 114

The StatusBar Object

Like the Toolbar, the StatusBar object is also a container that manages its children.
However, the StatusBar may contain only one type of object, namely StatusFields. By
default, the StatusBar is a flat grey object, positioned along the bottom edge of a Form,
upon which the StatusFields are drawn as sunken rectangles. StatusFields display tex-
tual information and are typically used for help messages and for monitoring the status
of'an application. They can also be used to automatically report the status of the Caps
Lock, Num Lock, Scroll Lock, and Insert keys

The following example illustrates a default StatusBar containing three StatusFields.
Notice how the StatusFields are positioned automatically.

'TEST'OWC'Form' 'Simple StatusBar'

'"TEST' [OWS'BCol' (255 255 255)
'"TEST.SB'0OWC'StatusBar'
'"TEST.SB.S1'(DWC'StatusField' 'Field1l:' 'textt'
'TEST.SB.S2'OWC'StatusField' 'Field2:' 'text2'
'"TEST.SB.S3'[DWC'StatusField' 'Field3:' 'text3'

r Simple StatusBar E]@-\

Field1:text1 Field2:text Field3:text3

A Default StatusBar

The following example illustrates a scrolling StatusBar. The fourth StatusField extends
beyond the right edge of the StatusBar and, because HScroll is ~2, a mini scrollbar
appears.

'"TEST'OWC'Form' 'Scrolling StatusBar'
('BCol' (255 255 255))

'TEST.SB'WC'StatusBar'('HScroll' ~2)

'"TEST.SB.S1'[DWC'StatusField' 'Field1l:' 'textt'
'"TEST.SB.S2'[DWC'StatusField' 'Field2:' 'text2'
'TEST.SB.S3'0OWC'StatusField' 'Field3:' 'text3'

'"TEST.SB.S4'[DWC'StatusField' 'Field4:' 'texth'

Chapter 4: Composite Controls 115

r Scrolling StatusBar g@ﬁ

|4 4] B] M Field1:textt Field?:text2 Field:te

A Scrolling StatusBar

As an alternative to single-row scrolling StatusBar, you can have a multi-line one.
Indeed, this is the default if you omit to specify HScroll. However, you do have to
explicitly set the height of the StatusBar to accommodate the second row.

'"TEST'OWC'Form' 'Multi Line StatusBar'
('BCol' (255 255 255))

'TEST.SB.S1'[IWC'StatusField' 'Fieldi:' 'textl'
'TEST.SB.S2'[IWC'StatusField' 'Field2:' 'text2'
'TEST.SB.S3'[IWC'StatusField' 'Field3:' 'text3'
'TEST.SB.S4'[IWC'StatusField' 'Fieldi:' 'texth'

r MultiLine StatusBar E]@-\

Field1:text1 Fieldz: test2 Field3:text3
Field4:textd

A Multi-line StatusBar

Chapter 4: Composite Controls 116

Using StatusFields

There are basically three ways of using StatusFields. Firstly, you can display inform-
ation in them directly from your program by setting their Caption and/or Text prop-
erties. For example, if you are executing a lengthy calculation, you may wish to
display the word "Calculating ..." as the Caption of a StatusField and, as the cal-
culations proceed, display (say) "Phase 1" followed in due course by "Phase 2", and so
forth. You can also use StatusFields to display application messages, including warn-
ing and error messages, where the use of a MsgBox is inappropriate.

The second major use of a StatusField is to display hints which you do by setting the
HintObj property of an object to the name of the StatusField. Used in this way, a
StatusField automatically displays context sensitive help when the user places the
mouse pointer over an object. This topic is described in Chapter 5.The third use ofa
Status Field is to monitor the status of the keyboard. This is achieved by setting its
Style property to one of the following keywords:

Keyword |Meaning

CapsLock |Monitors state of Caps Lock key

ScrollLock |Monitors state of Scroll Lock key

NumLock [Monitors state of Num Lock key

KeyMode [Monitors the keyboard mode (APL/ASCII) (Classic Edition only)

InsRep Monitors the state of the Insert/Replace toggle key

Chapter 4: Composite Controls 117

The following example illustrates different uses of the StatusField object. The first
StatusField F . SB.S1 is used for context-sensitive help by making it the HintObj for
the Form F. The second StatusField F . SB.S2 is simply used to display application
status; in this case "Ready ...". The third and fourth StatusField objects monitor the
status of the Insert and Caps Lock keys respectively. Note that whilst the Caps Lock,
Num Lock and Scroll Lock keys have a recognised state, the Insert key does not. Ini-
tially, APL sets the key to "Ins" and then toggles to and from "Rep" whenever the key
is pressed. To discover which mode the keyboard is in, you should use (OWG to read the
value of the Text property of the StatusField.

"F'OWC'Form' 'Using StatusFields'('Coord' 'Pixel')
'"F.SB'0WC'StatusBar'

'"F.SB.S1'0WC'StatusField'('Size'® 150)
"F'OWS'HintObj"' 'F.SB.S1'

'F.SB.S2'[WC'StatusField' 'Ready ...'
'"F.SB.S3'WC'StatusField' ('Style' 'InsRep')('Size'® 50)
"F.SB.S4'[WC'StatusField' ('Style' 'CapsLock')('Size'® 50)

'"F.L'OWC'List'WINES(O 0)(F.Sizex0.8 1)('Hint' 'Choose a Wi
ne')

r UIsing StatusFields g@ﬁ

Chateau Belair
Chateau Bellevue
Chateau Bergat
Chateau Berliquet
Chateau Bragard

Choosze a Wine Ready ... |Inz CAPS

Chapter 4: Composite Controls 118

Chapter 5: Hints and Tips 119

Chapter 5:

Hints and Tips

In many applications it is often a good idea to provide short context-sensitive help mes-
sages that tell the user what action each control (menuitem, button and so forth) per-
forms. It is conventional to do this by displaying a message when the user points to a
control with the mouse. The provision of this facility is particularly helpful for users
who are not familiar with your application or who use it only occasionally. Constant
prompting can however become irritating for an experienced user, so it is a good idea
to provide a means to disable it.

Dyalog APL/W provides two mechanisms, hints and tips, that make the provision of
context-sensitive help very easy and efficient to implement. Hints are help messages
displayed in a fixed region, typically a field in a status bar, that is reserved for the pur-
pose. For example, when the user browses through a menu, a message describing each
of'the options may be displayed in the status bar. The user has only to glance at the
status bar to obtain guidance. Tips are similar, but instead of being displayed in a fixed
location, they are displayed as pop-up messages over the control to which they refer.
The choice of using hints or tips is a matter of taste and indeed many applications fea-
ture both.

Using Hints

All of the GUI objects supported by Dyalog APL that have a visible presence on the
screen have a Hint property and a HintObj property. Quite simply, when the user
moves the mouse pointer over the object the contents of its Hint property are displayed
in the object referenced by its HintObj property. When the user moves the mouse
pointer away from the object, its Hint disappears. If an object has a Hint, but its
HintObj property is empty, the system uses the HintObj defined for its parent, or for its
parent’s parent, and so forth up the tree. If there is no HintObj defined, the Hint is
simply not displayed. This mechanism has two useful attributes:

Chapter 5: Hints and Tips 120

. it allows you to easily define a single region for help messages for all of the

controls in a Form, but still provides the flexibility for using different message
locations for different controls if appropriate.

. to enable or disable the display of hints all you typically have to do is to set

or clear the HintObj property on the parent Form

The object named by HintObj may be any object with either a Caption property or a
Text property. Thus you can use the Caption on a Label, Form, or Button or the text in
an Edit object. If you use a StatusField object which has both Caption and Text prop-
erties, the Text property is employed. If you set HintObj to the name of an object
which possesses neither of these properties, the hints will simply not be displayed. The
following example illustrates the use of a StatusField for displaying hints.

Example: Using a StatusField for Hints

This example illustrates the use of a StatusField object to display hints. .

'Test'0WC 'Form' 'Using Hints'('HintObj' 'Test.SB.H')

'Test.MB' [OWC 'MenuBar'

'Test .MB.F' [OWC 'Menu' '&File'

HINT « 'Creates a new empty document'
'Test.MB.F.New' [OWC 'MenuItem' '&New' ('Hint' HINT)

'Test.SB' [OWC 'StatusBar'
'Test.SB.H' OWC 'StatusField' ('Size' & 98)

-

LJsing Hints g@

Mew

Createz a new empty document

Using a StatusBar to display Hints

Chapter 5: Hints and Tips 121

Example: Using an Edit Object for Hints

You can display a much larger amount of information using a multi-line Edit object as
shown in this example.

‘Test'OWC 'Form' 'Using Hints' ('HintObj' 'Test.ED')
'Test.MB' [JWC 'MenuBar'

'Test.MB.F' [JWC 'Menu' '&File'’

HINT <« 100p'Creates a new empty document

‘Test .MB.F.New' [OWC 'Menultem' '&New' ('Hint' HINT)

‘Test.ED' [OWC 'Edit' ('Style' 'Multi')

r Ulsing Hints g@-\

File

Mew

Creates a new empty document Creates
a new empty document Creates a new
empty dacument Creates a new

Displaying Hints in an Edit object

Chapter 5: Hints and Tips 122

Using Tips

Tips work in a very similar way to Hints. Most of the GUI objects that have a visible
presence on the screen have a Tip property and a TipObj property. Exceptions are
Menus, Menultems and other pop-up objects. The TipObj property contains the name
of'a TipField object. This is a special kind of pop-up object whose sole purpose is to
display tips. When the user moves the mouse pointer over the object the corresponding
TipField appears displaying the object’s Tip. When the mouse pointer moves away
from the object, the TipField disappears. If an object has a Tip, but its TipObj property
is empty, the system uses the TipObj defined for its parent, or for its parent’s parent,
and so forth up the tree. If there is no TipObj defined, the Tip is simply not displayed.
Normally, you need only define one TipField for your application, but if you want to
use different colours or fonts for individual tips, you may define as many different
TipFields as you require. Again, it is very simple to turn tips on and off.

Example

This example shows how easy it is to associate a tip with an object, in this case a But-
ton.

'Test'0WC 'Form' 'Using Tips'('TipObj' 'Test.Tip')

'Test.Tip' OWC 'TipField'
‘Test.B' OWC 'Button' '&0k' ('Tip' 'Press Me')

T
i

Using Tips

Chapter 5: Hints and Tips 123

Hints and Tips Combined

There is no reason why you cannot provide Hints and Tips. The next exampleshows
how an object, in this case a Combo, can have both defined.

Example
'Test'WC 'Form' 'Using Hints and Tips'

'Test.SB' [OWC 'StatusBar'
'Test.SB.H' [OWC 'StatusField' ('Size' & 98)
'Test' [OWS 'HintObj' 'Test.SB.H'

'Test.Tip' OWC 'TipField'
'Test' [OWS 'TipObj' 'Test.Tip'

‘Test.C' (OWC 'Combo' WINES

'Test.C' OWS 'Hint' 'Select your wine from this
list'

'Test.C' OWS 'Tip' 'Wine Cellar'

13
i)

Chateau Bellevue j

Wine Cellar

Select pour wine from thiz list

Hints and Tips Combined

Chapter 5: Hints and Tips 124

Chapter 6: Using the Grid Object 125

Chapter 6:

Using the Grid Object

The Grid object allows you to display information in a series of rows and columns and
lets the user input and change the data. The Grid has four main components; a matrix of
cells that represents the data, a set of row titles, a set of column titles, and a pair of
scroll bars. The following picture illustrates these components. The scroll bars scroll

the data cells and either the row or column titles. The row titles remain fixed in place
when the data cells scroll horizontally and the column titles stay fixed when the data is

scrolled vertically.
= Wine Sales by Month n o
File Edit
| ohatesu Baleauzen | Jl le 92 l
2SS | B A %
Jan Feb Mar
Chateau Ausone 132 756 459 533
Clos de I'Angelus 35 54 530 672
Chateau Baleau 527 92 654 416
Chateau Balestard-La-| 757 992 366 248
Chateau Beau-Mazeraf 437 767 478 238
Chateau Belair 505 517 320 987
Chateau Bellevue 914 530 465 941
Chateau Bergat 630 737 726 100
Chateau Berliquet 842 270 416 538
Chateau Bragard 499 956 749 555
o azc a a1 ,-.-,‘ +
Ready ... [Ins Caps INum

The components of the Grid object

Chapter 6: Using the Grid Object 126

Defining Overall Appearance

By default, the Grid inherits its font from the parent Form, or ultimately, from the Root
object. This defaults to your Windows System font.

You can change the font for the Grid as a whole using its FontObj property. This font
will be used for the row titles, column titles and for the data. You can separately define
the font for the data using the CellFonts property. Thus, for example, if you wanted to
use Helvetica 12 for the titles and Arial 10 for the data, you could do so as follows:

‘Test.G' [OWS 'FontObj' 'Helvetica' 12

'Test.CF' [OWC 'Font' 'Arial' 10
'Test.G' [WS 'CellFonts' 'Test.CF'

The FCol and BCol properties specify the foreground and background colours for the
text in the data cells. The default colour scheme is black on white. FCol and BCol may
define single colours which refer to all the cells, or a set of colours to be applied to dif-
ferent cells

The colour of the gridlines is specified by GridFCol. To draw a Grid with no gridlines,
set GridFCol to the same colour as is defined by BCol.

Ifthe Grid is larger than the space occupied by the data cells, GridBCol specifies the
colour used to fill the area between the end of the last column of data and the right
edge of the Grid, and between the bottom row of data and the bottom edge of the Grid.

The ClipCells property determines whether or not the Grid displays partial cells. The
default is 1. If you set ClipCells to 0, the Grid displays only complete cells and auto-
matically fills the space between the last visible cell and the edge of the Grid with the
GridBCol colour.

The following example shows a default Grid (ClipCells is 1) in which the third column
of data is in fact incomplete (clipped), although this is by no means apparent to the
user.

Chapter 6: Using the Grid Object 127

CIipCeIIs 15 1 (the default) g@
& B C i

1 14 76 4

5 52 o4

5 £ 59 3

4 77 27

£ 99 73 7

3 48 24 2_.‘“’:

< >

This second picture shows the effect on the Grid of setting ClipCells to 0 which pre-
vents such potential confusion.

] ClipCells is 0 M=
& E Kad
1 76 E7
2 53 56
3 56 74
4 a8 40
] 63 52
L
< I

Row and Column Titles

Row and column titles are defined by the RowTitles and ColTitles properties, each of
which is a vector of character arrays. An element of RowTitles and ColTitles may be a
character vector specifying a 1-row title, or a matrix or vector of vectors which specify
multi-row titles.

The height of the area used to display column titles is specified by the TitleHeight
property. The width of the area used to display row titles is defined by the TitleWidth
property. The alignment of text within the title cells is defined by RowTitleAlign and
ColTitleAlign and the colour of the text is specified by RowTitleFCol and
ColTitleFCol.

Multi-level titles are also possible and are defined by the RowTitleDepth and
ColTitleDepth properties. An example of what can be achieved is shown below.

Chapter 6: Using the Grid Object

128

V HierarchicalTitles;Q1;Q2;Q3;Q4;TITLES;CDEPTH

[1] '"F'OWC'Form' '"'('Size' 313 362)('Coord'
[2] F.Caption«<'Hierarchical Titles'
[3] '"'F.G'OWC'Grid'(?12 6p100)(0 0)F.Size
[4] F.G.(TitleWidth TitleHeight CellWidths)«120 60 40
[5] Q1<'Q1' 'Jan' 'Feb' 'Mar'
[6] Q2«'Q2"' 'Apr' 'May' 'Jun'
[7] Q3«'Q3"' "Jul' 'Aug' 'Sep'
[8] Q4«'Q4' 'Oct' 'Nov' 'Dec'
[9] TITLES«(<c'2013'),Q1,Q2,Q3,Qk%
[10] CDEPTH«0,16p1 2 2 2
[11] F.G.(RowTitles RowTitleDepth)«TITLES CDEPTH
[12] F.G.RowTitleAlign«'Centre'
[13] TITLES«'Wine' 'Red' 'White'
[14] TITLES,«'Champagne' 'Red' 'White' 'Rose'’
[15] TITLES,«ct'Beer' ' and' 'Cider'
[16] CDEPTH«0O 1 1 01 1 1 O
[17] F.G.(ColTitles ColTitleDepth)«TITLES CDEPTH
\%
Hierarchical Titles [Z]@
Wfine Champaagne Beer
and
Fied |‘white | Fed | ‘whie | Fose | Cider
Jan 90 95 14 46 B3 28
a1 Fehb 41 74 4 K 20 a2
b ar 28 i 41 s 73 s
Apr G4 an 1 B3 35 43
2 R ET a0 53 32 a6 14 a0
Jun 39 a5 G 46 I a0
2M3
Jul 97 100 100 s 35 aa
a3 Aug 20 G1 ala) 26 e s
Sep a2 h 61 93 an a6
Ot 15 11 53 25 58 34
(4 Moy G5 7 a5 aa 34 15
Dec s GY 41 A9] Al

'Pixel')

Chapter 6: Using the Grid Object 129

Displaying and Editing Values in Grid Cells

The Grid can display the value in a cell directly (as in Fig 7.1) or indirectly via an asso-
ciated object. You do not (as you might first expect) define input and validation char-
acteristics for the cells directly, instead you do so indirectly through associated objects.
Objects are associated with Grid cells by the Input property. If a cell has an associated
object, its value is displayed and edited using that object. Several types of object may
be associated with Grid cells, including Edit, Label, Button (Push, Radio and Check),
and Combo objects. You can use a single associated object for the entire Grid, or you
can associate different objects with individual cells.

Edit and Label objects impose formatting on the cells with which they are associated
according to the values of their FieldType and Decimal properties (for numbers, dates
and time) and their Justify property (for text). In addition, Label objects protect cells
(because a Label has no input mechanism), while Edit objects impose input validation.
If you use an Edit object with a FieldType of Numeric, the user may only enter num-
bers into the corresponding cells of the Grid. For both Edit and Label objects, the
FieldType and Decimals properties of the object are used to format the data displayed
in the corresponding cells of the Grid. For example, if the FieldType property of the
associated object is Date, the numeric elements in Values will be displayed as dates.

Numeric cells may also be formatted using the FormatString property which applies
OFMT format specifications to the data. The AlignChar property permits formatted data
to be aligned in a column. For example, you can specify that numbers in a column are
aligned on their decimal points.

Combo objects can be used to allow the user to select a cell value from a set of altern-
atives. Radio and Check Buttons may be used to display and edit Boolean values.

Associated Edit, Label and Combo objects may be external to the Grid (for example,
you can have the user type values into a companion edit field) or they may be internal.
Internal objects (which are implemented as children of the Grid) float from cell to cell
and allow the data to be changed in-situ. Button, Spinner and TrackBar objects may
only be internal.

Chapter 6: Using the Grid Object 130

Using a Floating Edit Field

If the Edit object specified by Input is owned by (i.e. is a child of) the Grid itself, the
Edit object floats from cell to cell as the user moves around the Grid. For example, if
the user clicks on the cell addressed by row 4, column 3, the Edit object is auto-
matically moved to that location and the data in that cell is copied into it ready for edit-
ing. When the user moves the focus away from this cell, the data in the Edit object is
copied back into it (and into the corresponding element of the Values property) before
the Edit object is moved away to the new cell location. This mechanism provides in-
situ editing. Continuing the example illustrated in Figure 7.1, in-situ editing could be
achieved as follows:

'Test.G.ED' [OWC 'Edit' ('FieldType' 'Numeric')
'Test.G' OWS 'Input' 'Test.G.ED'

In-situ editing provides two input modes; Scroll and InCell. In Scroll mode the cursor
keys move from one cell to another. In InCell mode, the cursor keys move the cursor a
character at a time within the cell; to switch to a new cell, the user must press the Tab
key or use the mouse. The InputMode property allows you to control the input mode
directly or to allow the user to switch from one to another. In the latter case, the user
does so by pressing a key defined by the InputModeKey property or by double-click-
ing the left mouse button.

Using a Fixed Edit Field

A different style of editing may be provided by specifying the name of an external Edit
object that you have created. This can be any Edit object you wish to use; it need not
even be owned by the same Form as the Grid. In this case, the Edit object remains
stationary (wherever you have positioned it), but as the user moves the focus from cell
to cell, the cell contents are copied into it and made available for editing. The current
cell is identified by a thick border. When the user shifts the focus, the data is copied
out from the Edit object into the corresponding cell before data in the newly selected
one is copied in. Continuing the example illustrated in Figure 7.1, external editing
could be achieved as follows:

‘Test.ED' OwC 'edit' ('FieldType' 'Numeric')
‘Test.G' OWS 'Input' 'Test.ED'

Chapter 6: Using the Grid Object 131

Using Label Objects

If Input specifies a Label object, it too may either be a child of the Grid or an external
Label. A Label is useful to format cell data (through its FieldType property) and to pro-
tect cells from being changed

Ifthe Label is a child ofthe Grid, it floats from cell to cell in the same way as a floating
Edit object. However, unlike the situation with other objects, the row and column
titles are not indented to help identify the current cell. If the Label is borderless (which
is the default) and has the same font and colour characteristics of the cells themselves,
the user will receive no visual feedback when a corresponding cell is addressed, even
though the current cell (reflected by the CurCell property) does in fact change. There-
fore, if you want to protect the data by using a Label and you want the user to be able
to identify the current cell, you should give the Label a border, a special colour scheme
or a special font.

Using Combo Objects

A Combo object is used to present a list of choices for a cell. Although you may use an
external Combo, internal Combos are more suitable for most applications. If different
cells have different sets of choices, you can create several Combo objects, each with its
own set of Items and associate different cells with different Combos through the
CellTypes property. Alternatively, you can use a single Combo and change Items
dynamically from a callback on the CellMove event. In all cases, the value in the cell
corresponds to the Text property of the Combo.

If you use a floating Combo, the appearance of the non-current cells depends upon the
value of the ShowInput property. If ShowInput is O (the default), the non-current cells
are drawn in the standard way as if there were no associated input object. If ShowInput
is 1, the non-current cells are given the appearance of a Combo, although the system
does not actually use Combos to do so. Furthermore, there is a subtle difference in beha-
viour. If ShowInput is 0, the user must click twice to change a value; once to position
the Combo on the new cell and again to drop its list box. If ShowInput is 1, the user
may drop the list box with a single click on the cell.

Note that ShowInput may be a scalar that applies to the whole Grid, or a vector whose
elements applies to different cells through the CellType property.

The following Grid uses two internal Combo objects for the Job Title and Region
columns, but with ShowInput set to 0. Only the current cell has Combo appearance.

Chapter 6: Using the Grid Object 132

V Employees;Surname;JobTitle;Region;Salary;DATA;Jobs;Regions

[1] '"F'OWC'Form' ''('Size' 126 401)('Coord' 'Pixel')
[2] F.Caption«'Employee DataBase'

[3] Surname<«'Brown' 'Jones' 'Green' 'Black' 'White'
[4] JobTitle«'Manager' 'Project Leader' 'Consultant'
[5] JobTitle,«'Programmer' 'Assistant'

[6] Region<«'South' 'South' 'South' 'East' 'Central'’
[7] Salary«64000 43250 45000 30000 4000
[8] DATA«1[0.5]Surname JobTitle Region Salary

[9] '"F.G'OWC'Grid'DATA(O 0)F.Size
[10] Jobs«JobTitle
[11] Regions<«'North' 'South' 'East' 'West' 'Central'
[12] 'F.G.JobTitle'WC'Combo'Jobs
[13] 'F.G.Region'[IWC'Combo'Regions
[14] 'F.G.Salary'[]WC'Label'('FieldType' 'Currency')
[15] F.G.Input«'' 'F.G.JobTitle' 'F.G.Regions' 'F.G.Salary'
[16] F.G.CellTypes«(pF.G.Values)pl 2 3 4
[17] F.G.TitleWidth<«0
[18] F.G.ColTitles«'Surname' 'Job Title' 'Region' 'Salary'
\'4
Employee DataBase g@
Surname Job Title Reqgion Salamy
Browwn b anager South £B4000.00
Jones Froject Leader Sauth £43250.00
Green 7 || South £45000.00
Black Prograrmnner East £ 3000000
Wit Agziztant Central £4000.00

The same Grid with ShowInput set to 1 is illustrated below. In this case, all of the cells
associated with Combo objects have Combo appearance.

F.G.ShowInput
0
F.G.ShowInput<«1
Employee DataBase g@
Surname Job Title Region Salary
Brown tanager || 5outh hd £E4000.00
Jones Project Leader | South -] £43250.00
Green = || South | £45000.00
Black Programmer || East -] £30000.00
white Assistant || Certral -] £4000.00

Chapter 6: Using the Grid Object 133

Using Radio and Check Button Objects

Radio and Check Buttons behave in a similar way to Combo objects except that they
may only be used internally. The value in the cell associated with the Button must be 0
or 1 and corresponds to the Button’s State property. The value is toggled by clicking
the Button.

If ShowInput is 0, the user must click twice to change a value; once to position the
(floating) Button on the cell, and a second time to toggle its state. If ShowInput is 1,

the user may change cell values directly with a single click. Note that this may be
undesirable in certain applications because the user cannot click on a cell without chan-
ging its value.

By default, the value of the EdgeStyle property for a Radio or Check Button which is
created as the child ofa Grid is 'None ', so you must set EdgeStyle explicitly to
'Plinth' ifa3-dimensional appearance is required.

You can refine the appearance of the Radio or Check Button using its Align property.
This may be setto 'Left', 'Right' or 'Centre' (and 'Center'). The latter
causes the symbol part of the Button (the circle or checkbox) to be centred within the
corresponding Grid cell(s) but should only be used if the Caption property is empty.

The following illustrates different values for the Align property using Check Buttons.
vV AlignedCheckBoxes;CStyle

[1] '"F'OWC'Form' 'Aligned Check Boxes in a Grid'

[2] "F.G'OWC'Grid' (T1+210 3p2)(0 0)(100 100)('ShowInput' 1)
[3] CStyle«('Style' 'Check')('EdgeStyle' 'Plinth')

[4] 'F.G.C1'0WC'Button' 'Left',CStyle,('Align' 'Left')

[5] 'F.G.C2'0WC'Button' '',CStyle,('Align' 'Centre')

[6] 'F.G.C3'0WC'Button' 'Right',CStyle,('Align' 'Right')
[7]

[8] 'F.G'OWS'Input'('F.G.C1" 'F.G.C2' 'F.G.C3")

[9] '"F.G'OWS'CellTypes' (10 3p1 2 3)

Chapter 6: Using the Grid Object 134

Aligned Check Boxes in a Grid M=%
A, E C
1 Left v v v Right
2 Left [I v Right
3 Left [I [Right
4 Left v » v Right
5 Left v n ™ Right
E Left [I v Right
¥ Left B N [Right
g Left v v W Right
3 Left v v [Right
10 Left [I v Right

Specifying Individual Cell Attributes

The FCol, BCol, CellFonts and Input properties can be used to specify attributes of indi-
vidual cells. One possible design would be for these properties to be matrices like the
Values property, each of whose elements corresponded to a cell in the Grid. However,
although conceptually simple, this design was considered to be wasteful in terms of
workspace, especially as it is unlikely that every cell will require a totally individual
set of attributes. Instead, FCol, BCol, CellFonts and Input either specify a single attrib-
ute to be applied to all cells, or they specify a vector of attributes which are indexed
through the CellTypes property. This design is slightly more complex to use, but min-
imises the workspace needed to represent cell information.

CellTypes is an integer matrix of the same size as Values. Each number in CellTypes
defines the #ype of the corresponding cell, where fype means a particular set of cell
attributes defined by the BCol, FCol, CellFonts and Input properties.

If an element of CellTypes is 0 or 1, the corresponding cell is displayed using the nor-
mal value of each of the FCol, BCol, CellFonts and Input properties. The normal value
is either the value defined by its first element or, if the property has not been specified,
its default value.

If an element of CellTypes is greater than 1, the corresponding element of each of the
FCol, BCol, CellFonts and Input properties is used. However, if a particular property
applies to all cells, you need only specify one value; there is no need to repeat it. This
mechanism is perhaps best explained by using examples.

Chapter 6: Using the Grid Object 135

Example 1

Suppose that you want to use a Grid to display a numeric matrix DATA and you want
to show elements whose value exceeds 150 with a grey background. Effectively, there
are 2 different types of cell; normal white ones and dark grey ones. This can be

achieved as follows:

DATA<«?12 3p300
"F'OWC'Form' 'Example 1'
'"F.G'WC'Grid'DATA(O 0)F.Size
'"F.G'OWS'Cel lTypes' (1+DATA>150)

'"F.G'OWS'BCol ' (192 192 192)(128 128 128)

ﬂHExampka1 [:j[:]ﬁ!'
&, B C

1 40 227 138
2 CellTypes[3;3] =1, so cell I ___FE:P._ — 13
3 | uses firat element of Beol e 204 281

4 _\.Wku'.l:h is 255 255 255 (white) | 156 2E))
5 11 17 153
E 202 3 116
i .-.CE]].TYPES[ﬁ;E] =12, o cell e 207
8 uses sgcnnd element of Bool r,--f"“' 280 aRd
g _H.wh.tch 1z 192 192 192 (zrev) [- 197
10 125 211 274
11 224 73 15
12 221 89 130

Chapter 6: Using the Grid Object 136

Example 2

Continuing on from the first example, suppose that in addition, you want to show val-
ues that exceed 200 with a white background, but using a bold font. Now you have 3
types of cell; white background with normal font, grey background with normal font,
and white background with bold font. This can be done as follows:

CT«(DATA>200)+1+DATA>100
'"F.G'OWS'CellTypes'CT
COL+«(255 255 255)(192 192 192)(255 255 255)
'F.G'DWS'BCol 'COL
‘Normal 'OWC'Font' 'Arial' 16
'Bold'[JWC'Font' 'Arial' 16('Weight' 1000)
'F.G'OOWS'CellFonts' 'Normal' 'Normal' 'Bold'

Example 2 BEX
| A | B C

1 (CellTypes[2:3] =1, sa cell .'| 227 133

o | uses BCal[l] which is 235 253 —— 15
2355 (white) and CellF onts[1] ue——

3| whichis 'Mormal | 204 281

4 - 1 Mme] 156 250

5 [CellTypes[5,3]=2, z0 cell | 170 159

5 uses BCol[2] which is 192 192 ______—--'3 116
192 (grev) and CellF onts[2] —

7 | which is Mormat | 126 207

g | 1771 280 254

g CellTypes[10;3] =3, so cell] 25 197
uges BCol[3] which is 255 255 Tt

10 | 355 (white) and CellFonts[3] "= 274

11 | which iz Baold' 79 14

12 221 59 150

Chapter 6: Using the Grid Object 137

Example 3

This is a more complex example that introduces different uses of the Input property to
handle numeric and date cells. Suppose that you wish to display the names, date of
birth, and salaries of some people. The user may edit the salary and date of birth, but
not the name. Salaries in excess 0of $19,999 are to be shown in bold

This means that we need 4 types of cell; the "names" cells, the "date of birth" cells, the
cells containing salaries below $20,000 and those cells containing $20,000 or more.
The Input property must specify 3 different objects; a Label for the protected "names"
cells, an Edit object for the "date" cells, and a different Edit object for the salaries. The
CellFonts property must specify the two different fonts required; normal and bold.

"F'OWC'Form' 'Example 3'
'F.G'OWC'Grid'('Posn' 0 0)F.Size
'"F.G'OWS'Values' (t[0.5]NAMES BIRTHDATES SALARIES)

CT«1,2,[1.5]3+SALARIES>19999
'"F.G'WS'Cel LTypes'CT

'"F.G.Name'[JWC'Label'('FontObj"'
'F.G.Date'[IWC'Edit'('FieldType' 'Date')
'F.G.Sal'(JWC'Edit'('FieldType' 'Currency')
INPUTS«'F.G.Name' 'F.G.Date',2pc'F.G.Sal’
"F.G'OWS'Input'INPUTS

‘Normal ')

‘Normal 'OWC'Font' 'Arial' 16
'Bold'JWC'Font' 'Arial' 16('Weight’
FONTS«(3pc'Normal'),c'Bold"’
'F.G'OWS'CelLFonts'FONTS

1000)

ﬂEExampka3 [:j[:]ﬁ!l
A, B C
1 Jones 02031992 £10303.00
2 Smith ——=« CellTypes[2;1]=1 28263.00
3 YWhite 20/05/1993 £10866.00
4_: GeIIT}.rpes[-q.;E]:E\.__'_'; = H1/06/1993 £10862.00
] 'Donnel 16/11/1992 £2420.00
B Ena.:r." CeIITypes[Ei;S]:ST—'_-_; 1 E17167.00
7 Redrriaf [0S T3 £23292.00
| I
8 Greer CellTypes[7:3]= 4‘1_?' — L £25327.00
g A b T I £14733.00
10 Andrews 05081994 £24520.00
11 Bachelor 15/03/1992 £19263.00

Chapter 6: Using the Grid Object 138

Drawing Graphics on a Grid

You may draw graphics on a Grid by creating graphical objects (Circle, Ellipse, Image,
Marker, Poly, Rect and text) as children of the Grid.

For the Grid (but only for the Grid) the Coord property may be setto 'Cel l ' asan
alternativeto 'Prop', 'Pixel ' or "User'. This allows you to easily position
graphical objects relative to individual cells or ranges of cells. The origin of the Grid
(0,0) is deemed to be the top left comer of the data (i.e. the area inside the row and
column titles). In Cell co-ordinates, the value (1,1) is therefore the bottom right corner
of'the first cell. Regardless of the coordinate system, graphical objects scroll with the
data.

The following example illustrates how to draw a box around the cells in rows 2 to 4
and columns 3 to 6.

'"F'OWC'Form' 'Graphics on a Grid'('Coord' 'Pixel')
'F.G'OWC'Grid'(?10 10p100)(0 O)F.Size('CellWidths' 40)
'"F.G.L'OWC'Rect' (1 2)(3 4)('LWidth' 4)('Coord' 'Cell"')

Graphics on a Grid E]@
A] C D E F G T
14 7B 45 L 22 4] B3
52 a4 4 B 53 B3 1
B3 59 94 a5 53 10 BE
i 27 4] 74 33 B4 7B
33 73 i GG a B4 a3
43 24 23 36 17 43 a0
a1 52 32 93 a0 27 10
29 28 92 53 47 95 E

13 2 E9 ar B3 4 T3 ||w
»

PSR I ™ e Y 0 (N T I

The OnTop property of the graphical object controls how it is drawn relative to the
grid lines and cell text. For graphical objects created as a child of a Grid, OnTop may
be 0,1 or2.

0 | Graphical object is drawn behind grid lines and cell text

1 | Graphical object is drawn on top of grid lines but behind cell text

2 | Graphical object is drawn on top of grid lines and cell text

Chapter 6: Using the Grid Object 139

The following example shows the effect of the OnTop property on how an Image is
drawn on a Grid.

"F'OWC'Form' 'Graphics on a Grid'('Coord' 'Pixel')
'"F.G'OWC'Grid'(?10 10p100)(0 O)F.Size('CellWidths' 40)
DyalogDir«2 [ONQ'.' 'GetEnvironment' 'Dyalog’
'F.M'OWC'Metafile'(DyalogDir, '\WS\DOLLAR")
'"F.G.I'OWC'Image' (0 0)('Size' 10 10)('Coord' 'Cell’)

"F.G.I'OWS('Picture' 'F.M')('OnTop' 0)

r Graphics on a Grid g@w

P, o I T e 3 N TR L

Chapter 6: Using the Grid Object 140

F.G.I.OnTop+1

Graphics on a Grid g@
sl fleclo e F]G [~

mgjumraﬁn STATES F III'.EI‘EEI

52

0_-_2

| i

F.G.I.0nTop<«2

P, I R e 0 (N T L

Graphics on a Grid

PSR I ™ e Y 0 (N T I

Chapter 6: Using the Grid Object 141

Controlling User Input

The Grid object is designed to allow you to implement simple applications with very
little programming effort. Y ou merely present the data to be edited by setting the Val-
ues property and then get it back again once the user has signalled completion. The val-
idation imposed by the associated Edit object(s) will prevent the user from entering
invalid data and your program can leave the user interaction to be managed entirely by
APL. However, for more sophisticated applications, the Grid triggers events which
allow your program to respond dynamically to user actions.

Moving from Cell to Cell

When the user moves from one cell to another, the Grid generates a CellMove event.
This reports the co-ordinates (row and column) of the newly selected cell. The
CellMove event serves two purposes. Firstly, it allows you to take some special action
when the user selects a particular cell. For example, you could display a Combo or List
object to let the user choose a new value from a pre-defined set, then copy the selected
value into the cell. Secondly, the CellMove event provides the means for you to pos-
ition the user in a particular cell under program control, using [INQ.

Changing Standard Validation Behaviour

Input validation is provided by the Edit object associated with a cell. By default, the
built-in validation will prevent the user from leaving the cell should the data in that

cell be invalid. For example, if the FieldType is 'Date ' and the user enters 29th Febru-
ary and a non-leap year, APL will beep and not allow the user to leave the cell until a
valid date has been entered If you wish instead to take some other action, for example
display a message box, you should use the CellError event. This event is generated
immediately the user attempts to move to another cell when the data in the current cell
is invalid. The event is also generated if the user selects a Menultem, presses a Button

or otherwise changes the focus away from the current cell.

The CellError event reports the row and column number of the current cell, the
(invalid) text string in that cell, the name of the object to which the user has transferred
attention or the co-ordinates of the new cell selected. The default action of the event is
to beep, so to disable the beep your callback function should return a 0. If you wish to
allow the user to move to a different cell, you must do so explicitly by generating a
CellMove event using [INQ or by returning a CellMove event as the result of the call-
back.

Chapter 6: Using the Grid Object 142

Reacting to Changes

If enabled, the Grid object generates a CellChange event whenever the user alters data
in a cell and then attempts to move to another cell or otherwise shifts the focus away
from the current cell. This allows you to perform additional validation or to trigger cal-
culations when the user changes a value. The CellChange event reports the co-ordin-
ates of the current cell and the new value, together with information about the newly
selected cell or the external object to which the focus has changed.

The default action of the CellChange event is to replace the current value of the cell
with the new one. If you wish to prevent this happening, your callback function must
return a 0. If in addition you wish the focus to remain on the current cell, you must do
this explicitly by using the CellMove event to reposition the current cell back to the
one the user has attempted to leave.

Restoring User Changes

The Grid object supports an Undo method which causes the last change made by the
user to be reversed. This method can only be invoked under program control using [INQ
and cannot be directly generated by the user. If you want to provide an undo facility, it
is recommended that you attach a suitable callback function to a Menultem or a But-
ton. To perform an undo operation, the callback function should then generate an
Undo event for the Grid object.

Updating Cell Data

You can change the entire contents of the Grid by resetting its Values property with
[OWS. However, this will causes the entire Grid to be redrawn and is not to be recom-
mended if you only want to change one cell or just a few cells.

You can change the value in a particular cell by using [ONQ to send a CellChange event
to the Grid. For example, if you want to alter the value in row 2 column 3 of the Grid
object called Test .G to 42, you simply execute the following statement :

ONQ 'Test.G' 'CellChange' 2 3 42

To update an entire row or column of data you can use the RowChange and
ColChange events. For example, to change all 12 columns of row 500 to the 12-ele-
ment vector TOTAL, you could execute :

ONQ 'Test.G' 'RowChange' 500 TOTAL

Chapter 6: Using the Grid Object 143

Deleting Rows and Columns

You can delete a row or column by using [JNQ to send a DelRow or DelCol message to
the Grid object. For example, the following statement deletes the 123rd row from the
Grid object Test . G. Note that if you have specified it, the corresponding element of
RowTitles is removed too.

ONQ 'Test.G' 'DelRow' 123

Inserting Rows and Columns

You can insert or add a row or column using the AddRow or AddCol method. You
must specify the following information.

row or column number
title (optional)

height or width (optional)
undo flag (optional)
resize flag (optional)

title colour (optional)

gridline type (optional)

The event message must specify the number of the row or column you wish to insert.
This is index-origin dependent and indicates the number that the row or column will
have after it has been inserted. For example, if JI0 is I and you wish to insert a row
between the 10th and 11th rows, you specify the number of the row to be inserted as
11. If you wish to insert a new column before the first one, you specify a column num-
ber of 1. To append a row or column to the end of the Grid, you should specify 1 + the
current number of rows or columns.

If you have specified RowTitles or ColTitles, the message may include a title for the
new row or column and this will be inserted in RowTitles or ColTitles as appropriate.
If you fail to supply a new title, an empty vector will be inserted in RowTitles or
ColTitles for you. If you are using default row and column headers and you have not
specified RowTitles or ColTitles, any title you supply will be ignored. In this case the
rows and columns will be re-labelled automatically.

Ifyou have set CellHeights or CellWidths to a vector, the AddRow or AddCol event
message may include the height or width of the new row or column being inserted. If
you fail to supply one or you specify a value of ~ 1 the default value will apply. Note
that setting the height or width to 0 is allowed and will cause the new row or column
to be invisible. If CellHeights or CellWidths has not been specified or is a scalar, the
new row or column will be given the same height or width as the others and any value
that you specify is ignored.

Chapter 6: Using the Grid Object 144

The undo flag indicates whether or not the insertion will be added to the undo stack
and may therefore be subsequently undone. Its default value is 1.

If the data in the Grid is entirely numeric, the new row or column will be filled with
zeros. If not, it will be filled with empty character vectors. If you want to set the row or
column data explicitly, you should invoke the ChangeRow or ChangeCol immediately
after the AddRow or AddCol event. The ChangeRow and ChangeCol event require
just the row or column number followed by the new data.

The following example adds a new row entitled "Chateau Latour" to a Grid object
called Test . G. The first statement adds a new row between rows 122 and 123 (it
becomes row 123) of the Grid. It will be of default height (or the same as all the other
rows) and the change may not be undone (the undo flag is 0). The second statement
sets the data in the new row to the values defined by the vector LATOUR_SALES.

[ONQ 'Test.G' 'AddRow' 123 'Chateau Latour' ~1 0
ONQ 'Test.G' 'ChangeRow' 123 LATOUR_SALES

Chapter 6: Using the Grid Object 145

TreeView Feature

Introduction

The Grid can display a TreeView like interface in the row titles and automatically
shows and hides row of data as the user expands and contracts nodes of the tree.

RowTreeDepth property

The tree structure is specified by the RowTreeDepth property This is either a scalar 0 or
an integer vector of the same length as the number of rows in the grid. RowTreeDepth
is similar to the Depth property of the TreeView object.

Each element of RowTreeDepth specifies the depth of the corresponding row of the
Grid. A value of 0 indicates that the row is a top-level row. A value of 1 indicates that
the corresponding row is a child of the most recent row whose RowTreeDepth is 0; a
value of 2 indicates that the corresponding row is a child of the most recent row whose
RowTreeDepth is 1, and so forth.

The picture below illustrates the initial appearance of a Grid with TreeView behaviour.
Notice that at first only the top-level rows are displayed.

Grid: TreeView Feature g@
Wi
A] C D E

2000 1278 1278 1278 1278 1278
2001 1405.8 1405.8 1405.8 1405.8 1405.8
2002 16336 15336 16336 15336 16336
2003 16614 1661.4 16614 1661.4 16614
2004 1789.2 1789.2 1789.2 1789.2 1789.2

The tree structure is defined on TreeGrid[26]. In this example, the Grid has top-
level rows (RowTreeDepth of 0) that contain annual totals. The second-tier rows
(RowTreeDepth of 1), contain quarterly totals, while the third-tier rows
(RowTreeDepth of 2) contain monthly figures.

Chapter 6: Using the Grid Object 146

N -

Ll \O 0o NONOVF W
- O —_ g —ia

[N e N o N o W N e N N N s N o N o e N s W s N ey | mrm mre M mrm

NNNNNNNNPRP PP RPRPRPRRE R
OO FWNFPROOVUONOUOIFWN
| W [y N [y Ny N S Sy Sy S SO N N S S— — — —_t

V TreeGrid;SIZE;YR;YRS;DATA;MDATA;QDATA;YDATA;IX
SIZE«126 381
"F'OWC'Form' 'Grid: TreeView Feature'
('Coord' 'Pixel')
F.Size«SIZE
.MB'OWC'MenuBar'
.MB.View'[IWC'Menu' 'View'
.MB.View.Expandl'[0WC'Menultem' 'Expand Years'
.MB.View.Expandl'[DWS'Event' 'Select’
'¢F.G.RowSetVisibleDepth 1'
F.MB.View.Expand2'[JWC'Menultem' 'Expand ALL'
'"F.MB.View.Expand2'[JWS'Event' 'Select’
'¢F.G.RowSetVisibleDepth 2'
'F.MB.View.Collapse'D0WC'MenuItem' 'Collapse ALL'
'F.MB.View.Collapse'DWS'Event' ‘Select'
"¢F.G.RowSetVisibleDepth 0'
'F.G'OWC'Grid'('Posn' 0 0)SIZE
F.G.(TitleWidth CellWidths«80 60)
YR«'Q1' 'Jan' 'Feb' 'Mar' 'Q2' 'Apr' 'May' 'Jun'
YR,«'Q3"' 'Jul' 'Aug' 'Sep' 'Q4' 'Oct' 'Nov' 'Dec'
YRS«'2000' '2001' '2002' '2003' '2004'
F.G.RowTitles«>,/(c"YRS), cYR
MDATA«12 5p5/100+112
YDATA«+#MDATA
QDATA«(3+/[1]IMDATA)[1 4 7 103]
MDATA<((pYR)pO 1 1 1)\MDATA
MDATA[1 5 9 13;]«QDATA
YDATA<YDATA,[1]MDATA
DATA«>,[1]/1 1.1 1.2 1.3 1.4xcYDATA
F.G.Values<DATA
F.G.RowTreeDepth«(pF.G.RowTitles)pO,(pYR)pl 2 2 2
v

b Bt Mt B |

Chapter 6: Using the Grid Object

147

When the user clicks on one of the nodes indicated by a "+" symbol, the Grid auto-

matically expands to display the rows at the next level below that node. At the same
time, an Expanding event is generated. In the next picture, the user has clicked on the
2001 node and, below that, the O3 node.

Grid: TreeView Feature

BEx]

Wig
A, E C D E

2000 1278 1278 1278 1278 1278
& 2001 1405.8 1405.8 1405.8 1405.8 1405.8
~E G1 3366 3366 3366 3366 3366
- 02 3465 346.5 3465 346.5 3465
- 03 3564 356.4 3564 356.4 3564

--------- Jul ney 177 ney 177 ney

--------- &g 11a.48 1128 11a.48 1128 11a.48

--------- Sep 119.9 1149.9 119.9 1149.9 119.9
~E G4 3663 366.3 3663 366.3 3663
2002 15336 15336 15336 15336 15336
2003 16E1.4 1661.4 16E1.4 1661.4 16E1.4
2004 17832 1783.2 17832 1783.2 17832

RowSetVisibleDepth Method

The Grid provides a RowSetVisibleDepth method that provides tier-level control over

which rows are displayed.

The value of its argument is an integer that specifies the depth of rows to be displayed.
The Grid displays all rows whose RowTreeDepth values are less than or equal to this

value. In the example, this method is called by items on the View menu.

Chapter 6: Using the Grid Object 148

The next picture shows how the Grid is displayed after choosing Expand Years from
the View menu. Notice that, as specified by TreeGrid[6] this menu item simply
executes the RowSetVisibleDepth method with an argument of 1.

Grid: TreeView Feature E]@
Wit
&, E C 1] E ~
E 2000 1278 1278 1278 1278 1278
- [306 30k 306 30k 306
- 2 35 315 35 315 315
- Q3 324 324 324 324 324
- 14 333 333 333 333 333
& 200 1405.8 1405.8 1405.8 1405.8 1405.8
~E Q1 3366 336.6 3366 3366 3366
- 2 JB5 3465 JB5 3465 2465
- L3 356.4 396.4 356.4 396.4 3564
- 14 3EE.3 366.3 3EE.3 366.3 3663
E 2002 18336 16336 18336 16336 15336
- aE7.2 3672 aE7.2 3672 3672
- (2 378 378 378 378 a7a
- 3 388.8 388.8 388.8 388.8 3888
~E 04 3996 3996 3996 3396 3996
E 2003 16614 1661.4 16614 1661.4 1661.4
~[H [3978 3378 3978 3378 3378
- (2 4095 409.5 4095 409.5 4095
- (3 4.2 421.2 4.2 421.2 4212
- Q4 4323 4329 4323 4329 4329 |

Chapter 6: Using the Grid Object 149

Similarly, the Expand All item executes RowSetVisibleDepth 2, as specified by
TreeGrid[7] and this causes the Grid to display all rows up to and including
RowTreeDepth of 2 as shown below.

- 5
Grid: TreeView Feature E]@
Wig

A E C D E R
B 2000 1278 1278 1278 1278 1278
-E 01 306 308 306 306 06
......... e 1m 101 1m 1m 1m
......... Feb 102 102 102 102 102
......... bar 103 103 103 103 103
-3 02 315 315 315 315 15
--------- Apr 104 104 104 104 104
--------- My 105 105 105 105 105
......... I 106 10F 106 106 106
- Q3 324 324 324 324 324
......... Jul 107 107 107 107 107
......... g 108 108 108 108 108
......... Sep 109 109 109 109 103
- 34 133 333 133 333 333
--------- Oet 110 110 110 110 110
--------- Mo 1M 111 1M 111 111

......... Dec 112 112 112 112 112 |»e

Note that the Collapse All item executes RowSetVisibleDepth 0, which causes only
the top-level rows to be displayed.

You may open specific nodes by invoking the Expanding event as a method.

Fine control over the appearance of the tree is provided through the RowTreelmages
and RowTreeStyle properties. See Object Reference for further details.

Chapter 6: Using the Grid Object 150

Grid Comments

Introduction

Grid comments are implemented in a manner that is consistent with the way comments
are handled in Microsoft Excel.

If a comment is associated with a cell, a small red triangle is displayed in its top right
cormner. When the user rests the mouse pointer over a commented cell, the comment is
displayed as a pop-up with an arrow pointing back to the cell to which it refers. The
comment disappears when the mouse pointer is moved away. This is referred to as tip
behaviour.

It is also possible to display and hide comments under program control. A comment
window displayed under program control does not (normally) disappear automatically
when the user moves the mouse, but instead must be hidden explicitly. It is therefore
possible to have several comments visible.

Implementation

Because comments are typically sparse, this facility is implemented by a small set of
methods rather than as a property, and comments are stored internally in data structures
that minimise storage space. The following methods and events are provided.

Event/Method | Number | Description

AddComment |220 Associates a comment with a cell

Deletes the comment associated with a particular

DelComment |221
cell

GetComment |222 Retrieves the comment associated with a given cell

Displays a comment either as a pop-up or on-top

ShowComment | 223 .
window

HideComment | 224 Hides a comment

Reported when user clicks the mouse on a comment

ClickComment | 225 .
window

A comment is described by its text content and the size of the window in which it
appears. The text may optionally be Rich Text (RTF) such as that produced by the
value of the RTFText property of a RichEdit object. The size of the window is spe-
cified in pixels.

Chapter 6: Using the Grid Object 151

AddComment Method

This method is used to add a new comment. For example, the following statement asso-
ciates a comment with the cell at row 2, column 1; the text of the comment is "Hello",
and the size of the comment window is 50 pixels (high) by 60 pixels (wide).

2 ONQ'F.G' 'AddComment' 2 1 'Hello' 50 60

The height and width of the comment window, specified by the last 2 elements of the
right argument to [INQ are both optional. If the cell already has an associated comment,
the new comment replaces it.

Note that just before the comment is displayed, the Grid generates a ShowComment
event which gives you the opportunity to (temporarily) change the text and/or window
size of a comment dynamically.

DelComment Method

This method is used to delete a comment. For example, the following expression
removes the comment associated with the cell at row 2, column 1.

2 ONQ'F.G' 'DelComment' 2 1

If the row and column number are omitted, all comments are deleted.

GetComment Method

This method is used to retrieve the comment associated with a cell. For example, the fol-
lowing expression retrieves the comment associated with the cell at row 3, column 1.

0«2 ONQ 'F.G' 'GetComment' 3 1
1 3 Hello 175 100

Ifthere is no comment associated with the specified cell, the result is a scalar 1.

ShowComment Event/Method

Ifenabled, a Grid will generate a ShowComment event when the user rests the mouse
pointer over a commented cell. You may use this event to modify the appearance of the
comment dynamically.

Y ou may display the comment associated with a particular cell under program control
by generating a ShowComment event using [INQ. By default, a comment displayed
under program control does not exhibit tip behaviour but remains visible until it i